xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision 86aa9539fef591a363b06a0ebd3aa7a07f4c1579)
1 /*-
2  * Copyright (c) 2016-2019
3  *	Netflix Inc.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipsec.h"
34 #include "opt_tcpdebug.h"
35 
36 #include <sys/param.h>
37 #include <sys/module.h>
38 #include <sys/kernel.h>
39 #ifdef TCP_HHOOK
40 #include <sys/hhook.h>
41 #endif
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>		/* for proc0 declaration */
48 #ifdef NETFLIX_STATS
49 #include <sys/qmath.h>
50 #endif
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/tree.h>
56 #ifdef NETFLIX_STATS
57 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
58 #endif
59 #include <sys/refcount.h>
60 #include <sys/queue.h>
61 #include <sys/smp.h>
62 #include <sys/kthread.h>
63 #include <sys/kern_prefetch.h>
64 
65 #include <vm/uma.h>
66 
67 #include <net/route.h>
68 #include <net/vnet.h>
69 
70 #define TCPSTATES		/* for logging */
71 
72 #include <netinet/in.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip.h>
76 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
77 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
78 #include <netinet/ip_var.h>
79 #include <netinet/ip6.h>
80 #include <netinet6/in6_pcb.h>
81 #include <netinet6/ip6_var.h>
82 #define	TCPOUTFLAGS
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fsm.h>
85 #include <netinet/tcp_log_buf.h>
86 #include <netinet/tcp_seq.h>
87 #include <netinet/tcp_timer.h>
88 #include <netinet/tcp_var.h>
89 #include <netinet/tcp_hpts.h>
90 #include <netinet/tcpip.h>
91 #include <netinet/cc/cc.h>
92 #include <netinet/tcp_fastopen.h>
93 #ifdef TCPDEBUG
94 #include <netinet/tcp_debug.h>
95 #endif				/* TCPDEBUG */
96 #ifdef TCP_OFFLOAD
97 #include <netinet/tcp_offload.h>
98 #endif
99 #ifdef INET6
100 #include <netinet6/tcp6_var.h>
101 #endif
102 
103 #include <netipsec/ipsec_support.h>
104 
105 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
106 #include <netipsec/ipsec.h>
107 #include <netipsec/ipsec6.h>
108 #endif				/* IPSEC */
109 
110 #include <netinet/udp.h>
111 #include <netinet/udp_var.h>
112 #include <machine/in_cksum.h>
113 
114 #ifdef MAC
115 #include <security/mac/mac_framework.h>
116 #endif
117 #include "sack_filter.h"
118 #include "tcp_rack.h"
119 #include "rack_bbr_common.h"
120 
121 uma_zone_t rack_zone;
122 uma_zone_t rack_pcb_zone;
123 
124 #ifndef TICKS2SBT
125 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
126 #endif
127 
128 struct sysctl_ctx_list rack_sysctl_ctx;
129 struct sysctl_oid *rack_sysctl_root;
130 
131 #define CUM_ACKED 1
132 #define SACKED 2
133 
134 /*
135  * The RACK module incorporates a number of
136  * TCP ideas that have been put out into the IETF
137  * over the last few years:
138  * - Matt Mathis's Rate Halving which slowly drops
139  *    the congestion window so that the ack clock can
140  *    be maintained during a recovery.
141  * - Yuchung Cheng's RACK TCP (for which its named) that
142  *    will stop us using the number of dup acks and instead
143  *    use time as the gage of when we retransmit.
144  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
145  *    of Dukkipati et.al.
146  * RACK depends on SACK, so if an endpoint arrives that
147  * cannot do SACK the state machine below will shuttle the
148  * connection back to using the "default" TCP stack that is
149  * in FreeBSD.
150  *
151  * To implement RACK the original TCP stack was first decomposed
152  * into a functional state machine with individual states
153  * for each of the possible TCP connection states. The do_segement
154  * functions role in life is to mandate the connection supports SACK
155  * initially and then assure that the RACK state matches the conenction
156  * state before calling the states do_segment function. Each
157  * state is simplified due to the fact that the original do_segment
158  * has been decomposed and we *know* what state we are in (no
159  * switches on the state) and all tests for SACK are gone. This
160  * greatly simplifies what each state does.
161  *
162  * TCP output is also over-written with a new version since it
163  * must maintain the new rack scoreboard.
164  *
165  */
166 static int32_t rack_precache = 1;
167 static int32_t rack_tlp_thresh = 1;
168 static int32_t rack_reorder_thresh = 2;
169 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
170 						 * - 60 seconds */
171 static int32_t rack_pkt_delay = 1;
172 static int32_t rack_inc_var = 0;/* For TLP */
173 static int32_t rack_reduce_largest_on_idle = 0;
174 static int32_t rack_min_pace_time = 0;
175 static int32_t rack_min_pace_time_seg_req=6;
176 static int32_t rack_early_recovery = 1;
177 static int32_t rack_early_recovery_max_seg = 6;
178 static int32_t rack_send_a_lot_in_prr = 1;
179 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
180 static int32_t rack_tlp_in_recovery = 1;	/* Can we do TLP in recovery? */
181 static int32_t rack_verbose_logging = 0;
182 static int32_t rack_ignore_data_after_close = 1;
183 static int32_t rack_map_entries_limit = 1024;
184 static int32_t rack_map_split_limit = 256;
185 
186 /*
187  * Currently regular tcp has a rto_min of 30ms
188  * the backoff goes 12 times so that ends up
189  * being a total of 122.850 seconds before a
190  * connection is killed.
191  */
192 static int32_t rack_tlp_min = 10;
193 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
194 static int32_t rack_rto_max = 30000;	/* 30 seconds */
195 static const int32_t rack_free_cache = 2;
196 static int32_t rack_hptsi_segments = 40;
197 static int32_t rack_rate_sample_method = USE_RTT_LOW;
198 static int32_t rack_pace_every_seg = 1;
199 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
200 static int32_t rack_slot_reduction = 4;
201 static int32_t rack_lower_cwnd_at_tlp = 0;
202 static int32_t rack_use_proportional_reduce = 0;
203 static int32_t rack_proportional_rate = 10;
204 static int32_t rack_tlp_max_resend = 2;
205 static int32_t rack_limited_retran = 0;
206 static int32_t rack_always_send_oldest = 0;
207 static int32_t rack_sack_block_limit = 128;
208 static int32_t rack_use_sack_filter = 1;
209 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
210 
211 /* Rack specific counters */
212 counter_u64_t rack_badfr;
213 counter_u64_t rack_badfr_bytes;
214 counter_u64_t rack_rtm_prr_retran;
215 counter_u64_t rack_rtm_prr_newdata;
216 counter_u64_t rack_timestamp_mismatch;
217 counter_u64_t rack_reorder_seen;
218 counter_u64_t rack_paced_segments;
219 counter_u64_t rack_unpaced_segments;
220 counter_u64_t rack_saw_enobuf;
221 counter_u64_t rack_saw_enetunreach;
222 
223 /* Tail loss probe counters */
224 counter_u64_t rack_tlp_tot;
225 counter_u64_t rack_tlp_newdata;
226 counter_u64_t rack_tlp_retran;
227 counter_u64_t rack_tlp_retran_bytes;
228 counter_u64_t rack_tlp_retran_fail;
229 counter_u64_t rack_to_tot;
230 counter_u64_t rack_to_arm_rack;
231 counter_u64_t rack_to_arm_tlp;
232 counter_u64_t rack_to_alloc;
233 counter_u64_t rack_to_alloc_hard;
234 counter_u64_t rack_to_alloc_emerg;
235 counter_u64_t rack_to_alloc_limited;
236 counter_u64_t rack_alloc_limited_conns;
237 counter_u64_t rack_split_limited;
238 
239 counter_u64_t rack_sack_proc_all;
240 counter_u64_t rack_sack_proc_short;
241 counter_u64_t rack_sack_proc_restart;
242 counter_u64_t rack_runt_sacks;
243 counter_u64_t rack_used_tlpmethod;
244 counter_u64_t rack_used_tlpmethod2;
245 counter_u64_t rack_enter_tlp_calc;
246 counter_u64_t rack_input_idle_reduces;
247 counter_u64_t rack_tlp_does_nada;
248 
249 /* Temp CPU counters */
250 counter_u64_t rack_find_high;
251 
252 counter_u64_t rack_progress_drops;
253 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
254 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
255 
256 /*
257  * This was originally defined in tcp_timer.c, but is now reproduced here given
258  * the unification of the SYN and non-SYN retransmit timer exponents combined
259  * with wanting to retain previous behaviour for previously deployed stack
260  * versions.
261  */
262 int	tcp_syn_backoff[TCP_MAXRXTSHIFT + 1] =
263     { 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 64, 64 };
264 
265 static void
266 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
267 
268 static int
269 rack_process_ack(struct mbuf *m, struct tcphdr *th,
270     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
271     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
272 static int
273 rack_process_data(struct mbuf *m, struct tcphdr *th,
274     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
275     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
276 static void
277 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
278     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
279 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
280 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
281     uint8_t limit_type);
282 static struct rack_sendmap *
283 rack_check_recovery_mode(struct tcpcb *tp,
284     uint32_t tsused);
285 static void
286 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
287     uint32_t type);
288 static void rack_counter_destroy(void);
289 static int
290 rack_ctloutput(struct socket *so, struct sockopt *sopt,
291     struct inpcb *inp, struct tcpcb *tp);
292 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
293 static void
294 rack_do_segment(struct mbuf *m, struct tcphdr *th,
295     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
296     uint8_t iptos);
297 static void rack_dtor(void *mem, int32_t size, void *arg);
298 static void
299 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
300     uint32_t t, uint32_t cts);
301 static struct rack_sendmap *
302 rack_find_high_nonack(struct tcp_rack *rack,
303     struct rack_sendmap *rsm);
304 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
305 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
306 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
307 static int
308 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
309     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
310 static int32_t rack_handoff_ok(struct tcpcb *tp);
311 static int32_t rack_init(struct tcpcb *tp);
312 static void rack_init_sysctls(void);
313 static void
314 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
315     struct tcphdr *th);
316 static void
317 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
318     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
319     uint8_t pass, struct rack_sendmap *hintrsm);
320 static void
321 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
322     struct rack_sendmap *rsm);
323 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num);
324 static int32_t rack_output(struct tcpcb *tp);
325 static void
326 rack_hpts_do_segment(struct mbuf *m, struct tcphdr *th,
327     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
328     uint8_t iptos, int32_t nxt_pkt, struct timeval *tv);
329 
330 static uint32_t
331 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
332     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
333     uint32_t cts);
334 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
335 static void rack_remxt_tmr(struct tcpcb *tp);
336 static int
337 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
338     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
339 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
340 static int32_t rack_stopall(struct tcpcb *tp);
341 static void
342 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
343     uint32_t delta);
344 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
345 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
346 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
347 static uint32_t
348 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
349     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
350 static void
351 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
352     struct rack_sendmap *rsm, uint32_t ts);
353 static int
354 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
355     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
356 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
357 static void
358 rack_challenge_ack(struct mbuf *m, struct tcphdr *th,
359     struct tcpcb *tp, int32_t * ret_val);
360 static int
361 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
362     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
363     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
364 static int
365 rack_do_closing(struct mbuf *m, struct tcphdr *th,
366     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
367     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
368 static void rack_do_drop(struct mbuf *m, struct tcpcb *tp);
369 static void
370 rack_do_dropafterack(struct mbuf *m, struct tcpcb *tp,
371     struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val);
372 static void
373 rack_do_dropwithreset(struct mbuf *m, struct tcpcb *tp,
374     struct tcphdr *th, int32_t rstreason, int32_t tlen);
375 static int
376 rack_do_established(struct mbuf *m, struct tcphdr *th,
377     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
378     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
379 static int
380 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
381     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
382     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt);
383 static int
384 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
385     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
386     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
387 static int
388 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
389     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
390     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
391 static int
392 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
393     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
394     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
395 static int
396 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
397     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
398     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
399 static int
400 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
401     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
402     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
403 static int
404 rack_drop_checks(struct tcpopt *to, struct mbuf *m,
405     struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp, int32_t * thf,
406     int32_t * drop_hdrlen, int32_t * ret_val);
407 static int
408 rack_process_rst(struct mbuf *m, struct tcphdr *th,
409     struct socket *so, struct tcpcb *tp);
410 struct rack_sendmap *
411 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
412     uint32_t tsused);
413 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
414 static void
415      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
416 
417 static int
418 rack_ts_check(struct mbuf *m, struct tcphdr *th,
419     struct tcpcb *tp, int32_t tlen, int32_t thflags, int32_t * ret_val);
420 
421 int32_t rack_clear_counter=0;
422 
423 
424 static int
425 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
426 {
427 	uint32_t stat;
428 	int32_t error;
429 
430 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
431 	if (error || req->newptr == NULL)
432 		return error;
433 
434 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
435 	if (error)
436 		return (error);
437 	if (stat == 1) {
438 #ifdef INVARIANTS
439 		printf("Clearing RACK counters\n");
440 #endif
441 		counter_u64_zero(rack_badfr);
442 		counter_u64_zero(rack_badfr_bytes);
443 		counter_u64_zero(rack_rtm_prr_retran);
444 		counter_u64_zero(rack_rtm_prr_newdata);
445 		counter_u64_zero(rack_timestamp_mismatch);
446 		counter_u64_zero(rack_reorder_seen);
447 		counter_u64_zero(rack_tlp_tot);
448 		counter_u64_zero(rack_tlp_newdata);
449 		counter_u64_zero(rack_tlp_retran);
450 		counter_u64_zero(rack_tlp_retran_bytes);
451 		counter_u64_zero(rack_tlp_retran_fail);
452 		counter_u64_zero(rack_to_tot);
453 		counter_u64_zero(rack_to_arm_rack);
454 		counter_u64_zero(rack_to_arm_tlp);
455 		counter_u64_zero(rack_paced_segments);
456 		counter_u64_zero(rack_unpaced_segments);
457 		counter_u64_zero(rack_saw_enobuf);
458 		counter_u64_zero(rack_saw_enetunreach);
459 		counter_u64_zero(rack_to_alloc_hard);
460 		counter_u64_zero(rack_to_alloc_emerg);
461 		counter_u64_zero(rack_sack_proc_all);
462 		counter_u64_zero(rack_sack_proc_short);
463 		counter_u64_zero(rack_sack_proc_restart);
464 		counter_u64_zero(rack_to_alloc);
465 		counter_u64_zero(rack_to_alloc_limited);
466 		counter_u64_zero(rack_alloc_limited_conns);
467 		counter_u64_zero(rack_split_limited);
468 		counter_u64_zero(rack_find_high);
469 		counter_u64_zero(rack_runt_sacks);
470 		counter_u64_zero(rack_used_tlpmethod);
471 		counter_u64_zero(rack_used_tlpmethod2);
472 		counter_u64_zero(rack_enter_tlp_calc);
473 		counter_u64_zero(rack_progress_drops);
474 		counter_u64_zero(rack_tlp_does_nada);
475 	}
476 	rack_clear_counter = 0;
477 	return (0);
478 }
479 
480 
481 
482 static void
483 rack_init_sysctls()
484 {
485 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
486 	    SYSCTL_CHILDREN(rack_sysctl_root),
487 	    OID_AUTO, "map_limit", CTLFLAG_RW,
488 	    &rack_map_entries_limit , 1024,
489 	    "Is there a limit on how big the sendmap can grow? ");
490 
491 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
492 	    SYSCTL_CHILDREN(rack_sysctl_root),
493 	    OID_AUTO, "map_splitlimit", CTLFLAG_RW,
494 	    &rack_map_split_limit , 256,
495 	    "Is there a limit on how much splitting a peer can do?");
496 
497 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
498 	    SYSCTL_CHILDREN(rack_sysctl_root),
499 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
500 	    &rack_rate_sample_method , USE_RTT_LOW,
501 	    "What method should we use for rate sampling 0=high, 1=low ");
502 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
503 	    SYSCTL_CHILDREN(rack_sysctl_root),
504 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
505 	    &rack_ignore_data_after_close, 0,
506 	    "Do we hold off sending a RST until all pending data is ack'd");
507 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
508 	    SYSCTL_CHILDREN(rack_sysctl_root),
509 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
510 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
511 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
512 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
513 	    SYSCTL_CHILDREN(rack_sysctl_root),
514 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
515 	    &rack_min_pace_time, 0,
516 	    "Should we enforce a minimum pace time of 1ms");
517 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
518 	    SYSCTL_CHILDREN(rack_sysctl_root),
519 	    OID_AUTO, "min_pace_segs", CTLFLAG_RW,
520 	    &rack_min_pace_time_seg_req, 6,
521 	    "How many segments have to be in the len to enforce min-pace-time");
522 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
523 	    SYSCTL_CHILDREN(rack_sysctl_root),
524 	    OID_AUTO, "idle_reduce_high", CTLFLAG_RW,
525 	    &rack_reduce_largest_on_idle, 0,
526 	    "Should we reduce the largest cwnd seen to IW on idle reduction");
527 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
528 	    SYSCTL_CHILDREN(rack_sysctl_root),
529 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
530 	    &rack_verbose_logging, 0,
531 	    "Should RACK black box logging be verbose");
532 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
533 	    SYSCTL_CHILDREN(rack_sysctl_root),
534 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
535 	    &rack_use_sack_filter, 1,
536 	    "Do we use sack filtering?");
537 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
538 	    SYSCTL_CHILDREN(rack_sysctl_root),
539 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
540 	    &rack_delayed_ack_time, 200,
541 	    "Delayed ack time (200ms)");
542 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
543 	    SYSCTL_CHILDREN(rack_sysctl_root),
544 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
545 	    &rack_tlp_min, 10,
546 	    "TLP minimum timeout per the specification (10ms)");
547 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
548 	    SYSCTL_CHILDREN(rack_sysctl_root),
549 	    OID_AUTO, "precache", CTLFLAG_RW,
550 	    &rack_precache, 0,
551 	    "Where should we precache the mcopy (0 is not at all)");
552 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
553 	    SYSCTL_CHILDREN(rack_sysctl_root),
554 	    OID_AUTO, "sblklimit", CTLFLAG_RW,
555 	    &rack_sack_block_limit, 128,
556 	    "When do we start paying attention to small sack blocks");
557 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
558 	    SYSCTL_CHILDREN(rack_sysctl_root),
559 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
560 	    &rack_always_send_oldest, 1,
561 	    "Should we always send the oldest TLP and RACK-TLP");
562 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
563 	    SYSCTL_CHILDREN(rack_sysctl_root),
564 	    OID_AUTO, "rack_tlp_in_recovery", CTLFLAG_RW,
565 	    &rack_tlp_in_recovery, 1,
566 	    "Can we do a TLP during recovery?");
567 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
568 	    SYSCTL_CHILDREN(rack_sysctl_root),
569 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
570 	    &rack_limited_retran, 0,
571 	    "How many times can a rack timeout drive out sends");
572 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
573 	    SYSCTL_CHILDREN(rack_sysctl_root),
574 	    OID_AUTO, "minrto", CTLFLAG_RW,
575 	    &rack_rto_min, 0,
576 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
577 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
578 	    SYSCTL_CHILDREN(rack_sysctl_root),
579 	    OID_AUTO, "maxrto", CTLFLAG_RW,
580 	    &rack_rto_max, 0,
581 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
582 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
583 	    SYSCTL_CHILDREN(rack_sysctl_root),
584 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
585 	    &rack_tlp_max_resend, 2,
586 	    "How many times does TLP retry a single segment or multiple with no ACK");
587 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
588 	    SYSCTL_CHILDREN(rack_sysctl_root),
589 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
590 	    &rack_use_proportional_reduce, 0,
591 	    "Should we proportionaly reduce cwnd based on the number of losses ");
592 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
593 	    SYSCTL_CHILDREN(rack_sysctl_root),
594 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
595 	    &rack_proportional_rate, 10,
596 	    "What percent reduction per loss");
597 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
598 	    SYSCTL_CHILDREN(rack_sysctl_root),
599 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
600 	    &rack_lower_cwnd_at_tlp, 0,
601 	    "When a TLP completes a retran should we enter recovery?");
602 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
603 	    SYSCTL_CHILDREN(rack_sysctl_root),
604 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
605 	    &rack_slot_reduction, 4,
606 	    "When setting a slot should we reduce by divisor");
607 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
608 	    SYSCTL_CHILDREN(rack_sysctl_root),
609 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
610 	    &rack_pace_every_seg, 1,
611 	    "Should we pace out every segment hptsi");
612 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
613 	    SYSCTL_CHILDREN(rack_sysctl_root),
614 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
615 	    &rack_hptsi_segments, 6,
616 	    "Should we pace out only a limited size of segments");
617 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
618 	    SYSCTL_CHILDREN(rack_sysctl_root),
619 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
620 	    &rack_send_a_lot_in_prr, 1,
621 	    "Send a lot in prr");
622 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
623 	    SYSCTL_CHILDREN(rack_sysctl_root),
624 	    OID_AUTO, "minto", CTLFLAG_RW,
625 	    &rack_min_to, 1,
626 	    "Minimum rack timeout in milliseconds");
627 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
628 	    SYSCTL_CHILDREN(rack_sysctl_root),
629 	    OID_AUTO, "earlyrecoveryseg", CTLFLAG_RW,
630 	    &rack_early_recovery_max_seg, 6,
631 	    "Max segments in early recovery");
632 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
633 	    SYSCTL_CHILDREN(rack_sysctl_root),
634 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
635 	    &rack_early_recovery, 1,
636 	    "Do we do early recovery with rack");
637 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
638 	    SYSCTL_CHILDREN(rack_sysctl_root),
639 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
640 	    &rack_reorder_thresh, 2,
641 	    "What factor for rack will be added when seeing reordering (shift right)");
642 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
643 	    SYSCTL_CHILDREN(rack_sysctl_root),
644 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
645 	    &rack_tlp_thresh, 1,
646 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
647 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
648 	    SYSCTL_CHILDREN(rack_sysctl_root),
649 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
650 	    &rack_reorder_fade, 0,
651 	    "Does reorder detection fade, if so how many ms (0 means never)");
652 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
653 	    SYSCTL_CHILDREN(rack_sysctl_root),
654 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
655 	    &rack_pkt_delay, 1,
656 	    "Extra RACK time (in ms) besides reordering thresh");
657 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
658 	    SYSCTL_CHILDREN(rack_sysctl_root),
659 	    OID_AUTO, "inc_var", CTLFLAG_RW,
660 	    &rack_inc_var, 0,
661 	    "Should rack add to the TLP timer the variance in rtt calculation");
662 	rack_badfr = counter_u64_alloc(M_WAITOK);
663 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
664 	    SYSCTL_CHILDREN(rack_sysctl_root),
665 	    OID_AUTO, "badfr", CTLFLAG_RD,
666 	    &rack_badfr, "Total number of bad FRs");
667 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
668 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
669 	    SYSCTL_CHILDREN(rack_sysctl_root),
670 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
671 	    &rack_badfr_bytes, "Total number of bad FRs");
672 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
673 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
674 	    SYSCTL_CHILDREN(rack_sysctl_root),
675 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
676 	    &rack_rtm_prr_retran,
677 	    "Total number of prr based retransmits");
678 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
679 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
680 	    SYSCTL_CHILDREN(rack_sysctl_root),
681 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
682 	    &rack_rtm_prr_newdata,
683 	    "Total number of prr based new transmits");
684 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
685 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
686 	    SYSCTL_CHILDREN(rack_sysctl_root),
687 	    OID_AUTO, "tsnf", CTLFLAG_RD,
688 	    &rack_timestamp_mismatch,
689 	    "Total number of timestamps that we could not find the reported ts");
690 	rack_find_high = counter_u64_alloc(M_WAITOK);
691 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
692 	    SYSCTL_CHILDREN(rack_sysctl_root),
693 	    OID_AUTO, "findhigh", CTLFLAG_RD,
694 	    &rack_find_high,
695 	    "Total number of FIN causing find-high");
696 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
697 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
698 	    SYSCTL_CHILDREN(rack_sysctl_root),
699 	    OID_AUTO, "reordering", CTLFLAG_RD,
700 	    &rack_reorder_seen,
701 	    "Total number of times we added delay due to reordering");
702 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
703 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
704 	    SYSCTL_CHILDREN(rack_sysctl_root),
705 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
706 	    &rack_tlp_tot,
707 	    "Total number of tail loss probe expirations");
708 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
709 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
710 	    SYSCTL_CHILDREN(rack_sysctl_root),
711 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
712 	    &rack_tlp_newdata,
713 	    "Total number of tail loss probe sending new data");
714 
715 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
716 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
717 	    SYSCTL_CHILDREN(rack_sysctl_root),
718 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
719 	    &rack_tlp_retran,
720 	    "Total number of tail loss probe sending retransmitted data");
721 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
722 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
723 	    SYSCTL_CHILDREN(rack_sysctl_root),
724 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
725 	    &rack_tlp_retran_bytes,
726 	    "Total bytes of tail loss probe sending retransmitted data");
727 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
728 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
729 	    SYSCTL_CHILDREN(rack_sysctl_root),
730 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
731 	    &rack_tlp_retran_fail,
732 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
733 	rack_to_tot = counter_u64_alloc(M_WAITOK);
734 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
735 	    SYSCTL_CHILDREN(rack_sysctl_root),
736 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
737 	    &rack_to_tot,
738 	    "Total number of times the rack to expired?");
739 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
740 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
741 	    SYSCTL_CHILDREN(rack_sysctl_root),
742 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
743 	    &rack_to_arm_rack,
744 	    "Total number of times the rack timer armed?");
745 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
746 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
747 	    SYSCTL_CHILDREN(rack_sysctl_root),
748 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
749 	    &rack_to_arm_tlp,
750 	    "Total number of times the tlp timer armed?");
751 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
752 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
753 	    SYSCTL_CHILDREN(rack_sysctl_root),
754 	    OID_AUTO, "paced", CTLFLAG_RD,
755 	    &rack_paced_segments,
756 	    "Total number of times a segment send caused hptsi");
757 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
758 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
759 	    SYSCTL_CHILDREN(rack_sysctl_root),
760 	    OID_AUTO, "unpaced", CTLFLAG_RD,
761 	    &rack_unpaced_segments,
762 	    "Total number of times a segment did not cause hptsi");
763 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
764 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
765 	    SYSCTL_CHILDREN(rack_sysctl_root),
766 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
767 	    &rack_saw_enobuf,
768 	    "Total number of times a segment did not cause hptsi");
769 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
770 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
771 	    SYSCTL_CHILDREN(rack_sysctl_root),
772 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
773 	    &rack_saw_enetunreach,
774 	    "Total number of times a segment did not cause hptsi");
775 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
776 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
777 	    SYSCTL_CHILDREN(rack_sysctl_root),
778 	    OID_AUTO, "allocs", CTLFLAG_RD,
779 	    &rack_to_alloc,
780 	    "Total allocations of tracking structures");
781 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
782 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
783 	    SYSCTL_CHILDREN(rack_sysctl_root),
784 	    OID_AUTO, "allochard", CTLFLAG_RD,
785 	    &rack_to_alloc_hard,
786 	    "Total allocations done with sleeping the hard way");
787 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
788 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
789 	    SYSCTL_CHILDREN(rack_sysctl_root),
790 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
791 	    &rack_to_alloc_emerg,
792 	    "Total allocations done from emergency cache");
793 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
794 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
795 	    SYSCTL_CHILDREN(rack_sysctl_root),
796 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
797 	    &rack_to_alloc_limited,
798 	    "Total allocations dropped due to limit");
799 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
800 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
801 	    SYSCTL_CHILDREN(rack_sysctl_root),
802 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
803 	    &rack_alloc_limited_conns,
804 	    "Connections with allocations dropped due to limit");
805 	rack_split_limited = counter_u64_alloc(M_WAITOK);
806 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
807 	    SYSCTL_CHILDREN(rack_sysctl_root),
808 	    OID_AUTO, "split_limited", CTLFLAG_RD,
809 	    &rack_split_limited,
810 	    "Split allocations dropped due to limit");
811 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
812 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
813 	    SYSCTL_CHILDREN(rack_sysctl_root),
814 	    OID_AUTO, "sack_long", CTLFLAG_RD,
815 	    &rack_sack_proc_all,
816 	    "Total times we had to walk whole list for sack processing");
817 
818 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
819 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
820 	    SYSCTL_CHILDREN(rack_sysctl_root),
821 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
822 	    &rack_sack_proc_restart,
823 	    "Total times we had to walk whole list due to a restart");
824 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
825 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
826 	    SYSCTL_CHILDREN(rack_sysctl_root),
827 	    OID_AUTO, "sack_short", CTLFLAG_RD,
828 	    &rack_sack_proc_short,
829 	    "Total times we took shortcut for sack processing");
830 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
831 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
832 	    SYSCTL_CHILDREN(rack_sysctl_root),
833 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
834 	    &rack_enter_tlp_calc,
835 	    "Total times we called calc-tlp");
836 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
837 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
838 	    SYSCTL_CHILDREN(rack_sysctl_root),
839 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
840 	    &rack_used_tlpmethod,
841 	    "Total number of runt sacks");
842 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
843 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
844 	    SYSCTL_CHILDREN(rack_sysctl_root),
845 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
846 	    &rack_used_tlpmethod2,
847 	    "Total number of runt sacks 2");
848 	rack_runt_sacks = counter_u64_alloc(M_WAITOK);
849 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
850 	    SYSCTL_CHILDREN(rack_sysctl_root),
851 	    OID_AUTO, "runtsacks", CTLFLAG_RD,
852 	    &rack_runt_sacks,
853 	    "Total number of runt sacks");
854 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
855 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
856 	    SYSCTL_CHILDREN(rack_sysctl_root),
857 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
858 	    &rack_progress_drops,
859 	    "Total number of progress drops");
860 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
861 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
862 	    SYSCTL_CHILDREN(rack_sysctl_root),
863 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
864 	    &rack_input_idle_reduces,
865 	    "Total number of idle reductions on input");
866 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
867 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
868 	    SYSCTL_CHILDREN(rack_sysctl_root),
869 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
870 	    &rack_tlp_does_nada,
871 	    "Total number of nada tlp calls");
872 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
873 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
874 	    OID_AUTO, "outsize", CTLFLAG_RD,
875 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
876 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
877 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
878 	    OID_AUTO, "opts", CTLFLAG_RD,
879 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
880 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
881 	    SYSCTL_CHILDREN(rack_sysctl_root),
882 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
883 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
884 }
885 
886 static inline int32_t
887 rack_progress_timeout_check(struct tcpcb *tp)
888 {
889 #ifdef NETFLIX_PROGRESS
890 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
891 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
892 			/*
893 			 * There is an assumption that the caller
894 			 * will drop the connection so we will
895 			 * increment the counters here.
896 			 */
897 			struct tcp_rack *rack;
898 			rack = (struct tcp_rack *)tp->t_fb_ptr;
899 			counter_u64_add(rack_progress_drops, 1);
900 			TCPSTAT_INC(tcps_progdrops);
901 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
902 			return (1);
903 		}
904 	}
905 #endif
906 	return (0);
907 }
908 
909 
910 static void
911 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
912 {
913 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
914 		union tcp_log_stackspecific log;
915 
916 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
917 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
918 		log.u_bbr.flex2 = to;
919 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
920 		log.u_bbr.flex4 = slot;
921 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
922 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
923 		log.u_bbr.flex8 = which;
924 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
925 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
926 		TCP_LOG_EVENT(rack->rc_tp, NULL,
927 		    &rack->rc_inp->inp_socket->so_rcv,
928 		    &rack->rc_inp->inp_socket->so_snd,
929 		    BBR_LOG_TIMERSTAR, 0,
930 		    0, &log, false);
931 	}
932 }
933 
934 static void
935 rack_log_to_event(struct tcp_rack *rack, int32_t to_num)
936 {
937 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
938 		union tcp_log_stackspecific log;
939 
940 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
941 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
942 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
943 		log.u_bbr.flex8 = to_num;
944 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
945 		log.u_bbr.flex2 = rack->rc_rack_rtt;
946 		TCP_LOG_EVENT(rack->rc_tp, NULL,
947 		    &rack->rc_inp->inp_socket->so_rcv,
948 		    &rack->rc_inp->inp_socket->so_snd,
949 		    BBR_LOG_RTO, 0,
950 		    0, &log, false);
951 	}
952 }
953 
954 static void
955 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
956     uint32_t o_srtt, uint32_t o_var)
957 {
958 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
959 		union tcp_log_stackspecific log;
960 
961 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
962 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
963 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
964 		log.u_bbr.flex1 = t;
965 		log.u_bbr.flex2 = o_srtt;
966 		log.u_bbr.flex3 = o_var;
967 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
968 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
969 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
970 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
971 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
972 		TCP_LOG_EVENT(tp, NULL,
973 		    &rack->rc_inp->inp_socket->so_rcv,
974 		    &rack->rc_inp->inp_socket->so_snd,
975 		    BBR_LOG_BBRRTT, 0,
976 		    0, &log, false);
977 	}
978 }
979 
980 static void
981 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
982 {
983 	/*
984 	 * Log the rtt sample we are
985 	 * applying to the srtt algorithm in
986 	 * useconds.
987 	 */
988 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
989 		union tcp_log_stackspecific log;
990 		struct timeval tv;
991 
992 		memset(&log, 0, sizeof(log));
993 		/* Convert our ms to a microsecond */
994 		log.u_bbr.flex1 = rtt * 1000;
995 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
996 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
997 		    &rack->rc_inp->inp_socket->so_rcv,
998 		    &rack->rc_inp->inp_socket->so_snd,
999 		    TCP_LOG_RTT, 0,
1000 		    0, &log, false, &tv);
1001 	}
1002 }
1003 
1004 
1005 static inline void
1006 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
1007 {
1008 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1009 		union tcp_log_stackspecific log;
1010 
1011 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1012 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1013 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1014 		log.u_bbr.flex1 = line;
1015 		log.u_bbr.flex2 = tick;
1016 		log.u_bbr.flex3 = tp->t_maxunacktime;
1017 		log.u_bbr.flex4 = tp->t_acktime;
1018 		log.u_bbr.flex8 = event;
1019 		TCP_LOG_EVENT(tp, NULL,
1020 		    &rack->rc_inp->inp_socket->so_rcv,
1021 		    &rack->rc_inp->inp_socket->so_snd,
1022 		    BBR_LOG_PROGRESS, 0,
1023 		    0, &log, false);
1024 	}
1025 }
1026 
1027 static void
1028 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
1029 {
1030 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1031 		union tcp_log_stackspecific log;
1032 
1033 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1034 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1035 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1036 		log.u_bbr.flex1 = slot;
1037 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
1038 		log.u_bbr.flex8 = rack->rc_in_persist;
1039 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1040 		    &rack->rc_inp->inp_socket->so_rcv,
1041 		    &rack->rc_inp->inp_socket->so_snd,
1042 		    BBR_LOG_BBRSND, 0,
1043 		    0, &log, false);
1044 	}
1045 }
1046 
1047 static void
1048 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
1049 {
1050 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1051 		union tcp_log_stackspecific log;
1052 
1053 		memset(&log, 0, sizeof(log));
1054 		log.u_bbr.flex1 = did_out;
1055 		log.u_bbr.flex2 = nxt_pkt;
1056 		log.u_bbr.flex3 = way_out;
1057 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1058 		log.u_bbr.flex7 = rack->r_wanted_output;
1059 		log.u_bbr.flex8 = rack->rc_in_persist;
1060 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1061 		    &rack->rc_inp->inp_socket->so_rcv,
1062 		    &rack->rc_inp->inp_socket->so_snd,
1063 		    BBR_LOG_DOSEG_DONE, 0,
1064 		    0, &log, false);
1065 	}
1066 }
1067 
1068 
1069 static void
1070 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1071 {
1072 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1073 		union tcp_log_stackspecific log;
1074 
1075 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1076 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1077 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1078 		log.u_bbr.flex1 = slot;
1079 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1080 		log.u_bbr.flex7 = hpts_calling;
1081 		log.u_bbr.flex8 = rack->rc_in_persist;
1082 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1083 		    &rack->rc_inp->inp_socket->so_rcv,
1084 		    &rack->rc_inp->inp_socket->so_snd,
1085 		    BBR_LOG_JUSTRET, 0,
1086 		    tlen, &log, false);
1087 	}
1088 }
1089 
1090 static void
1091 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1092 {
1093 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1094 		union tcp_log_stackspecific log;
1095 
1096 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1097 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1098 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1099 		log.u_bbr.flex1 = line;
1100 		log.u_bbr.flex2 = 0;
1101 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1102 		log.u_bbr.flex4 = 0;
1103 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1104 		log.u_bbr.flex8 = hpts_removed;
1105 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1106 		    &rack->rc_inp->inp_socket->so_rcv,
1107 		    &rack->rc_inp->inp_socket->so_snd,
1108 		    BBR_LOG_TIMERCANC, 0,
1109 		    0, &log, false);
1110 	}
1111 }
1112 
1113 static void
1114 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1115 {
1116 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1117 		union tcp_log_stackspecific log;
1118 
1119 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1120 		log.u_bbr.flex1 = timers;
1121 		log.u_bbr.flex2 = ret;
1122 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1123 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1124 		log.u_bbr.flex5 = cts;
1125 		TCP_LOG_EVENT(rack->rc_tp, NULL,
1126 		    &rack->rc_inp->inp_socket->so_rcv,
1127 		    &rack->rc_inp->inp_socket->so_snd,
1128 		    BBR_LOG_TO_PROCESS, 0,
1129 		    0, &log, false);
1130 	}
1131 }
1132 
1133 static void
1134 rack_counter_destroy()
1135 {
1136 	counter_u64_free(rack_badfr);
1137 	counter_u64_free(rack_badfr_bytes);
1138 	counter_u64_free(rack_rtm_prr_retran);
1139 	counter_u64_free(rack_rtm_prr_newdata);
1140 	counter_u64_free(rack_timestamp_mismatch);
1141 	counter_u64_free(rack_reorder_seen);
1142 	counter_u64_free(rack_tlp_tot);
1143 	counter_u64_free(rack_tlp_newdata);
1144 	counter_u64_free(rack_tlp_retran);
1145 	counter_u64_free(rack_tlp_retran_bytes);
1146 	counter_u64_free(rack_tlp_retran_fail);
1147 	counter_u64_free(rack_to_tot);
1148 	counter_u64_free(rack_to_arm_rack);
1149 	counter_u64_free(rack_to_arm_tlp);
1150 	counter_u64_free(rack_paced_segments);
1151 	counter_u64_free(rack_unpaced_segments);
1152 	counter_u64_free(rack_saw_enobuf);
1153 	counter_u64_free(rack_saw_enetunreach);
1154 	counter_u64_free(rack_to_alloc_hard);
1155 	counter_u64_free(rack_to_alloc_emerg);
1156 	counter_u64_free(rack_sack_proc_all);
1157 	counter_u64_free(rack_sack_proc_short);
1158 	counter_u64_free(rack_sack_proc_restart);
1159 	counter_u64_free(rack_to_alloc);
1160 	counter_u64_free(rack_to_alloc_limited);
1161 	counter_u64_free(rack_split_limited);
1162 	counter_u64_free(rack_find_high);
1163 	counter_u64_free(rack_runt_sacks);
1164 	counter_u64_free(rack_enter_tlp_calc);
1165 	counter_u64_free(rack_used_tlpmethod);
1166 	counter_u64_free(rack_used_tlpmethod2);
1167 	counter_u64_free(rack_progress_drops);
1168 	counter_u64_free(rack_input_idle_reduces);
1169 	counter_u64_free(rack_tlp_does_nada);
1170 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1171 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1172 }
1173 
1174 static struct rack_sendmap *
1175 rack_alloc(struct tcp_rack *rack)
1176 {
1177 	struct rack_sendmap *rsm;
1178 
1179 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1180 	if (rsm) {
1181 		rack->r_ctl.rc_num_maps_alloced++;
1182 		counter_u64_add(rack_to_alloc, 1);
1183 		return (rsm);
1184 	}
1185 	if (rack->rc_free_cnt) {
1186 		counter_u64_add(rack_to_alloc_emerg, 1);
1187 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1188 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_next);
1189 		rack->rc_free_cnt--;
1190 		return (rsm);
1191 	}
1192 	return (NULL);
1193 }
1194 
1195 static struct rack_sendmap *
1196 rack_alloc_full_limit(struct tcp_rack *rack)
1197 {
1198 	if ((rack_map_entries_limit > 0) &&
1199 	    (rack->r_ctl.rc_num_maps_alloced >= rack_map_entries_limit)) {
1200 		counter_u64_add(rack_to_alloc_limited, 1);
1201 		if (!rack->alloc_limit_reported) {
1202 			rack->alloc_limit_reported = 1;
1203 			counter_u64_add(rack_alloc_limited_conns, 1);
1204 		}
1205 		return (NULL);
1206 	}
1207 	return (rack_alloc(rack));
1208 }
1209 
1210 /* wrapper to allocate a sendmap entry, subject to a specific limit */
1211 static struct rack_sendmap *
1212 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
1213 {
1214 	struct rack_sendmap *rsm;
1215 
1216 	if (limit_type) {
1217 		/* currently there is only one limit type */
1218 		if (rack_map_split_limit > 0 &&
1219 		    rack->r_ctl.rc_num_split_allocs >= rack_map_split_limit) {
1220 			counter_u64_add(rack_split_limited, 1);
1221 			if (!rack->alloc_limit_reported) {
1222 				rack->alloc_limit_reported = 1;
1223 				counter_u64_add(rack_alloc_limited_conns, 1);
1224 			}
1225 			return (NULL);
1226 		}
1227 	}
1228 
1229 	/* allocate and mark in the limit type, if set */
1230 	rsm = rack_alloc(rack);
1231 	if (rsm != NULL && limit_type) {
1232 		rsm->r_limit_type = limit_type;
1233 		rack->r_ctl.rc_num_split_allocs++;
1234 	}
1235 	return (rsm);
1236 }
1237 
1238 static void
1239 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1240 {
1241 	if (rsm->r_limit_type) {
1242 		/* currently there is only one limit type */
1243 		rack->r_ctl.rc_num_split_allocs--;
1244 	}
1245 	if (rack->r_ctl.rc_tlpsend == rsm)
1246 		rack->r_ctl.rc_tlpsend = NULL;
1247 	if (rack->r_ctl.rc_next == rsm)
1248 		rack->r_ctl.rc_next = NULL;
1249 	if (rack->r_ctl.rc_sacklast == rsm)
1250 		rack->r_ctl.rc_sacklast = NULL;
1251 	if (rack->rc_free_cnt < rack_free_cache) {
1252 		memset(rsm, 0, sizeof(struct rack_sendmap));
1253 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_next);
1254 		rsm->r_limit_type = 0;
1255 		rack->rc_free_cnt++;
1256 		return;
1257 	}
1258 	rack->r_ctl.rc_num_maps_alloced--;
1259 	uma_zfree(rack_zone, rsm);
1260 }
1261 
1262 /*
1263  * CC wrapper hook functions
1264  */
1265 static void
1266 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1267     uint16_t type, int32_t recovery)
1268 {
1269 #ifdef NETFLIX_STATS
1270 	int32_t gput;
1271 #endif
1272 
1273 	INP_WLOCK_ASSERT(tp->t_inpcb);
1274 
1275 	tp->ccv->nsegs = nsegs;
1276 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1277 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1278 		uint32_t max;
1279 
1280 		max = rack->r_ctl.rc_early_recovery_segs * tp->t_maxseg;
1281 		if (tp->ccv->bytes_this_ack > max) {
1282 			tp->ccv->bytes_this_ack = max;
1283 		}
1284 	}
1285 	if (tp->snd_cwnd <= tp->snd_wnd)
1286 		tp->ccv->flags |= CCF_CWND_LIMITED;
1287 	else
1288 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1289 
1290 	if (type == CC_ACK) {
1291 #ifdef NETFLIX_STATS
1292 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1293 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1294 		if ((tp->t_flags & TF_GPUTINPROG) &&
1295 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1296 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1297 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1298 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1299 			    gput);
1300 			/*
1301 			 * XXXLAS: This is a temporary hack, and should be
1302 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1303 			 * API to deal with chained VOIs.
1304 			 */
1305 			if (tp->t_stats_gput_prev > 0)
1306 				stats_voi_update_abs_s32(tp->t_stats,
1307 				    VOI_TCP_GPUT_ND,
1308 				    ((gput - tp->t_stats_gput_prev) * 100) /
1309 				    tp->t_stats_gput_prev);
1310 			tp->t_flags &= ~TF_GPUTINPROG;
1311 			tp->t_stats_gput_prev = gput;
1312 			if (tp->t_maxpeakrate) {
1313 				/*
1314 				 * We update t_peakrate_thr. This gives us roughly
1315 				 * one update per round trip time.
1316 				 */
1317 				tcp_update_peakrate_thr(tp);
1318 			}
1319 		}
1320 #endif
1321 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1322 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1323 			    nsegs * V_tcp_abc_l_var * tp->t_maxseg);
1324 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1325 				tp->t_bytes_acked -= tp->snd_cwnd;
1326 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1327 			}
1328 		} else {
1329 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1330 			tp->t_bytes_acked = 0;
1331 		}
1332 	}
1333 	if (CC_ALGO(tp)->ack_received != NULL) {
1334 		/* XXXLAS: Find a way to live without this */
1335 		tp->ccv->curack = th->th_ack;
1336 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1337 	}
1338 #ifdef NETFLIX_STATS
1339 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1340 #endif
1341 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1342 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1343 	}
1344 	/* we enforce max peak rate if it is set. */
1345 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1346 		tp->snd_cwnd = tp->t_peakrate_thr;
1347 	}
1348 }
1349 
1350 static void
1351 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1352 {
1353 	struct tcp_rack *rack;
1354 
1355 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1356 	INP_WLOCK_ASSERT(tp->t_inpcb);
1357 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1358 		rack->r_wanted_output++;
1359 }
1360 
1361 static void
1362 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1363 {
1364 	struct tcp_rack *rack;
1365 
1366 	INP_WLOCK_ASSERT(tp->t_inpcb);
1367 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1368 	if (CC_ALGO(tp)->post_recovery != NULL) {
1369 		tp->ccv->curack = th->th_ack;
1370 		CC_ALGO(tp)->post_recovery(tp->ccv);
1371 	}
1372 	/*
1373 	 * Here we can in theory adjust cwnd to be based on the number of
1374 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1375 	 * based on the rack_use_proportional flag.
1376 	 */
1377 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1378 		int32_t reduce;
1379 
1380 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1381 		if (reduce > 50) {
1382 			reduce = 50;
1383 		}
1384 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1385 	} else {
1386 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1387 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1388 			tp->snd_cwnd = tp->snd_ssthresh;
1389 		}
1390 	}
1391 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1392 		/* Suck the next prr cnt back into cwnd */
1393 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1394 		rack->r_ctl.rc_prr_sndcnt = 0;
1395 	}
1396 	tp->snd_recover = tp->snd_una;
1397 	EXIT_RECOVERY(tp->t_flags);
1398 }
1399 
1400 static void
1401 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1402 {
1403 	struct tcp_rack *rack;
1404 
1405 	INP_WLOCK_ASSERT(tp->t_inpcb);
1406 
1407 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1408 	switch (type) {
1409 	case CC_NDUPACK:
1410 /*		rack->r_ctl.rc_ssthresh_set = 1;*/
1411 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1412 			rack->r_ctl.rc_tlp_rtx_out = 0;
1413 			rack->r_ctl.rc_prr_delivered = 0;
1414 			rack->r_ctl.rc_prr_out = 0;
1415 			rack->r_ctl.rc_loss_count = 0;
1416 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
1417 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1418 			tp->snd_recover = tp->snd_max;
1419 			if (tp->t_flags & TF_ECN_PERMIT)
1420 				tp->t_flags |= TF_ECN_SND_CWR;
1421 		}
1422 		break;
1423 	case CC_ECN:
1424 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1425 			TCPSTAT_INC(tcps_ecn_rcwnd);
1426 			tp->snd_recover = tp->snd_max;
1427 			if (tp->t_flags & TF_ECN_PERMIT)
1428 				tp->t_flags |= TF_ECN_SND_CWR;
1429 		}
1430 		break;
1431 	case CC_RTO:
1432 		tp->t_dupacks = 0;
1433 		tp->t_bytes_acked = 0;
1434 		EXIT_RECOVERY(tp->t_flags);
1435 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1436 		    tp->t_maxseg) * tp->t_maxseg;
1437 		tp->snd_cwnd = tp->t_maxseg;
1438 		break;
1439 	case CC_RTO_ERR:
1440 		TCPSTAT_INC(tcps_sndrexmitbad);
1441 		/* RTO was unnecessary, so reset everything. */
1442 		tp->snd_cwnd = tp->snd_cwnd_prev;
1443 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1444 		tp->snd_recover = tp->snd_recover_prev;
1445 		if (tp->t_flags & TF_WASFRECOVERY)
1446 			ENTER_FASTRECOVERY(tp->t_flags);
1447 		if (tp->t_flags & TF_WASCRECOVERY)
1448 			ENTER_CONGRECOVERY(tp->t_flags);
1449 		tp->snd_nxt = tp->snd_max;
1450 		tp->t_badrxtwin = 0;
1451 		break;
1452 	}
1453 
1454 	if (CC_ALGO(tp)->cong_signal != NULL) {
1455 		if (th != NULL)
1456 			tp->ccv->curack = th->th_ack;
1457 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1458 	}
1459 }
1460 
1461 
1462 
1463 static inline void
1464 rack_cc_after_idle(struct tcpcb *tp, int reduce_largest)
1465 {
1466 	uint32_t i_cwnd;
1467 
1468 	INP_WLOCK_ASSERT(tp->t_inpcb);
1469 
1470 #ifdef NETFLIX_STATS
1471 	TCPSTAT_INC(tcps_idle_restarts);
1472 	if (tp->t_state == TCPS_ESTABLISHED)
1473 		TCPSTAT_INC(tcps_idle_estrestarts);
1474 #endif
1475 	if (CC_ALGO(tp)->after_idle != NULL)
1476 		CC_ALGO(tp)->after_idle(tp->ccv);
1477 
1478 	if (V_tcp_initcwnd_segments)
1479 		i_cwnd = min((V_tcp_initcwnd_segments * tp->t_maxseg),
1480 		    max(2 * tp->t_maxseg, 14600));
1481 	else if (V_tcp_do_rfc3390)
1482 		i_cwnd = min(4 * tp->t_maxseg,
1483 		    max(2 * tp->t_maxseg, 4380));
1484 	else {
1485 		/* Per RFC5681 Section 3.1 */
1486 		if (tp->t_maxseg > 2190)
1487 			i_cwnd = 2 * tp->t_maxseg;
1488 		else if (tp->t_maxseg > 1095)
1489 			i_cwnd = 3 * tp->t_maxseg;
1490 		else
1491 			i_cwnd = 4 * tp->t_maxseg;
1492 	}
1493 	if (reduce_largest) {
1494 		/*
1495 		 * Do we reduce the largest cwnd to make
1496 		 * rack play nice on restart hptsi wise?
1497 		 */
1498 		if (((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rack_largest_cwnd  > i_cwnd)
1499 			((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rack_largest_cwnd = i_cwnd;
1500 	}
1501 	/*
1502 	 * Being idle is no differnt than the initial window. If the cc
1503 	 * clamps it down below the initial window raise it to the initial
1504 	 * window.
1505 	 */
1506 	if (tp->snd_cwnd < i_cwnd) {
1507 		tp->snd_cwnd = i_cwnd;
1508 	}
1509 }
1510 
1511 
1512 /*
1513  * Indicate whether this ack should be delayed.  We can delay the ack if
1514  * following conditions are met:
1515  *	- There is no delayed ack timer in progress.
1516  *	- Our last ack wasn't a 0-sized window. We never want to delay
1517  *	  the ack that opens up a 0-sized window.
1518  *	- LRO wasn't used for this segment. We make sure by checking that the
1519  *	  segment size is not larger than the MSS.
1520  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1521  *	  connection.
1522  */
1523 #define DELAY_ACK(tp, tlen)			 \
1524 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1525 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1526 	(tlen <= tp->t_maxseg) &&		 \
1527 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1528 
1529 static inline void
1530 rack_calc_rwin(struct socket *so, struct tcpcb *tp)
1531 {
1532 	int32_t win;
1533 
1534 	/*
1535 	 * Calculate amount of space in receive window, and then do TCP
1536 	 * input processing. Receive window is amount of space in rcv queue,
1537 	 * but not less than advertised window.
1538 	 */
1539 	win = sbspace(&so->so_rcv);
1540 	if (win < 0)
1541 		win = 0;
1542 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1543 }
1544 
1545 static void
1546 rack_do_drop(struct mbuf *m, struct tcpcb *tp)
1547 {
1548 	/*
1549 	 * Drop space held by incoming segment and return.
1550 	 */
1551 	if (tp != NULL)
1552 		INP_WUNLOCK(tp->t_inpcb);
1553 	if (m)
1554 		m_freem(m);
1555 }
1556 
1557 static void
1558 rack_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t rstreason, int32_t tlen)
1559 {
1560 	if (tp != NULL) {
1561 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1562 		INP_WUNLOCK(tp->t_inpcb);
1563 	} else
1564 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1565 }
1566 
1567 /*
1568  * The value in ret_val informs the caller
1569  * if we dropped the tcb (and lock) or not.
1570  * 1 = we dropped it, 0 = the TCB is still locked
1571  * and valid.
1572  */
1573 static void
1574 rack_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
1575 {
1576 	/*
1577 	 * Generate an ACK dropping incoming segment if it occupies sequence
1578 	 * space, where the ACK reflects our state.
1579 	 *
1580 	 * We can now skip the test for the RST flag since all paths to this
1581 	 * code happen after packets containing RST have been dropped.
1582 	 *
1583 	 * In the SYN-RECEIVED state, don't send an ACK unless the segment
1584 	 * we received passes the SYN-RECEIVED ACK test. If it fails send a
1585 	 * RST.  This breaks the loop in the "LAND" DoS attack, and also
1586 	 * prevents an ACK storm between two listening ports that have been
1587 	 * sent forged SYN segments, each with the source address of the
1588 	 * other.
1589 	 */
1590 	struct tcp_rack *rack;
1591 
1592 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
1593 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
1594 	    SEQ_GT(th->th_ack, tp->snd_max))) {
1595 		*ret_val = 1;
1596 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
1597 		return;
1598 	} else
1599 		*ret_val = 0;
1600 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1601 	rack->r_wanted_output++;
1602 	tp->t_flags |= TF_ACKNOW;
1603 	if (m)
1604 		m_freem(m);
1605 }
1606 
1607 
1608 static int
1609 rack_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
1610 {
1611 	/*
1612 	 * RFC5961 Section 3.2
1613 	 *
1614 	 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
1615 	 * window, we send challenge ACK.
1616 	 *
1617 	 * Note: to take into account delayed ACKs, we should test against
1618 	 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
1619 	 * of closed window, not covered by the RFC.
1620 	 */
1621 	int dropped = 0;
1622 
1623 	if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
1624 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1625 	    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1626 
1627 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1628 		KASSERT(tp->t_state != TCPS_SYN_SENT,
1629 		    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
1630 		    __func__, th, tp));
1631 
1632 		if (V_tcp_insecure_rst ||
1633 		    (tp->last_ack_sent == th->th_seq) ||
1634 		    (tp->rcv_nxt == th->th_seq) ||
1635 		    ((tp->last_ack_sent - 1) == th->th_seq)) {
1636 			TCPSTAT_INC(tcps_drops);
1637 			/* Drop the connection. */
1638 			switch (tp->t_state) {
1639 			case TCPS_SYN_RECEIVED:
1640 				so->so_error = ECONNREFUSED;
1641 				goto close;
1642 			case TCPS_ESTABLISHED:
1643 			case TCPS_FIN_WAIT_1:
1644 			case TCPS_FIN_WAIT_2:
1645 			case TCPS_CLOSE_WAIT:
1646 			case TCPS_CLOSING:
1647 			case TCPS_LAST_ACK:
1648 				so->so_error = ECONNRESET;
1649 		close:
1650 				tcp_state_change(tp, TCPS_CLOSED);
1651 				/* FALLTHROUGH */
1652 			default:
1653 				tp = tcp_close(tp);
1654 			}
1655 			dropped = 1;
1656 			rack_do_drop(m, tp);
1657 		} else {
1658 			TCPSTAT_INC(tcps_badrst);
1659 			/* Send challenge ACK. */
1660 			tcp_respond(tp, mtod(m, void *), th, m,
1661 			    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
1662 			tp->last_ack_sent = tp->rcv_nxt;
1663 		}
1664 	} else {
1665 		m_freem(m);
1666 	}
1667 	return (dropped);
1668 }
1669 
1670 /*
1671  * The value in ret_val informs the caller
1672  * if we dropped the tcb (and lock) or not.
1673  * 1 = we dropped it, 0 = the TCB is still locked
1674  * and valid.
1675  */
1676 static void
1677 rack_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
1678 {
1679 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1680 
1681 	TCPSTAT_INC(tcps_badsyn);
1682 	if (V_tcp_insecure_syn &&
1683 	    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1684 	    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1685 		tp = tcp_drop(tp, ECONNRESET);
1686 		*ret_val = 1;
1687 		rack_do_drop(m, tp);
1688 	} else {
1689 		/* Send challenge ACK. */
1690 		tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
1691 		    tp->snd_nxt, TH_ACK);
1692 		tp->last_ack_sent = tp->rcv_nxt;
1693 		m = NULL;
1694 		*ret_val = 0;
1695 		rack_do_drop(m, NULL);
1696 	}
1697 }
1698 
1699 /*
1700  * rack_ts_check returns 1 for you should not proceed. It places
1701  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
1702  * that the TCB is unlocked and probably dropped. The 0 indicates the
1703  * TCB is still valid and locked.
1704  */
1705 static int
1706 rack_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t tlen, int32_t thflags, int32_t * ret_val)
1707 {
1708 
1709 	/* Check to see if ts_recent is over 24 days old.  */
1710 	if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
1711 		/*
1712 		 * Invalidate ts_recent.  If this segment updates ts_recent,
1713 		 * the age will be reset later and ts_recent will get a
1714 		 * valid value.  If it does not, setting ts_recent to zero
1715 		 * will at least satisfy the requirement that zero be placed
1716 		 * in the timestamp echo reply when ts_recent isn't valid.
1717 		 * The age isn't reset until we get a valid ts_recent
1718 		 * because we don't want out-of-order segments to be dropped
1719 		 * when ts_recent is old.
1720 		 */
1721 		tp->ts_recent = 0;
1722 	} else {
1723 		TCPSTAT_INC(tcps_rcvduppack);
1724 		TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1725 		TCPSTAT_INC(tcps_pawsdrop);
1726 		*ret_val = 0;
1727 		if (tlen) {
1728 			rack_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
1729 		} else {
1730 			rack_do_drop(m, NULL);
1731 		}
1732 		return (1);
1733 	}
1734 	return (0);
1735 }
1736 
1737 /*
1738  * rack_drop_checks returns 1 for you should not proceed. It places
1739  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
1740  * that the TCB is unlocked and probably dropped. The 0 indicates the
1741  * TCB is still valid and locked.
1742  */
1743 static int
1744 rack_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp, int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
1745 {
1746 	int32_t todrop;
1747 	int32_t thflags;
1748 	int32_t tlen;
1749 
1750 	thflags = *thf;
1751 	tlen = *tlenp;
1752 	todrop = tp->rcv_nxt - th->th_seq;
1753 	if (todrop > 0) {
1754 		if (thflags & TH_SYN) {
1755 			thflags &= ~TH_SYN;
1756 			th->th_seq++;
1757 			if (th->th_urp > 1)
1758 				th->th_urp--;
1759 			else
1760 				thflags &= ~TH_URG;
1761 			todrop--;
1762 		}
1763 		/*
1764 		 * Following if statement from Stevens, vol. 2, p. 960.
1765 		 */
1766 		if (todrop > tlen
1767 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1768 			/*
1769 			 * Any valid FIN must be to the left of the window.
1770 			 * At this point the FIN must be a duplicate or out
1771 			 * of sequence; drop it.
1772 			 */
1773 			thflags &= ~TH_FIN;
1774 			/*
1775 			 * Send an ACK to resynchronize and drop any data.
1776 			 * But keep on processing for RST or ACK.
1777 			 */
1778 			tp->t_flags |= TF_ACKNOW;
1779 			todrop = tlen;
1780 			TCPSTAT_INC(tcps_rcvduppack);
1781 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1782 		} else {
1783 			TCPSTAT_INC(tcps_rcvpartduppack);
1784 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1785 		}
1786 		*drop_hdrlen += todrop;	/* drop from the top afterwards */
1787 		th->th_seq += todrop;
1788 		tlen -= todrop;
1789 		if (th->th_urp > todrop)
1790 			th->th_urp -= todrop;
1791 		else {
1792 			thflags &= ~TH_URG;
1793 			th->th_urp = 0;
1794 		}
1795 	}
1796 	/*
1797 	 * If segment ends after window, drop trailing data (and PUSH and
1798 	 * FIN); if nothing left, just ACK.
1799 	 */
1800 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1801 	if (todrop > 0) {
1802 		TCPSTAT_INC(tcps_rcvpackafterwin);
1803 		if (todrop >= tlen) {
1804 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1805 			/*
1806 			 * If window is closed can only take segments at
1807 			 * window edge, and have to drop data and PUSH from
1808 			 * incoming segments.  Continue processing, but
1809 			 * remember to ack.  Otherwise, drop segment and
1810 			 * ack.
1811 			 */
1812 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1813 				tp->t_flags |= TF_ACKNOW;
1814 				TCPSTAT_INC(tcps_rcvwinprobe);
1815 			} else {
1816 				rack_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
1817 				return (1);
1818 			}
1819 		} else
1820 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1821 		m_adj(m, -todrop);
1822 		tlen -= todrop;
1823 		thflags &= ~(TH_PUSH | TH_FIN);
1824 	}
1825 	*thf = thflags;
1826 	*tlenp = tlen;
1827 	return (0);
1828 }
1829 
1830 static struct rack_sendmap *
1831 rack_find_lowest_rsm(struct tcp_rack *rack)
1832 {
1833 	struct rack_sendmap *rsm;
1834 
1835 	/*
1836 	 * Walk the time-order transmitted list looking for an rsm that is
1837 	 * not acked. This will be the one that was sent the longest time
1838 	 * ago that is still outstanding.
1839 	 */
1840 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1841 		if (rsm->r_flags & RACK_ACKED) {
1842 			continue;
1843 		}
1844 		goto finish;
1845 	}
1846 finish:
1847 	return (rsm);
1848 }
1849 
1850 static struct rack_sendmap *
1851 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1852 {
1853 	struct rack_sendmap *prsm;
1854 
1855 	/*
1856 	 * Walk the sequence order list backward until we hit and arrive at
1857 	 * the highest seq not acked. In theory when this is called it
1858 	 * should be the last segment (which it was not).
1859 	 */
1860 	counter_u64_add(rack_find_high, 1);
1861 	prsm = rsm;
1862 	TAILQ_FOREACH_REVERSE_FROM(prsm, &rack->r_ctl.rc_map, rack_head, r_next) {
1863 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1864 			continue;
1865 		}
1866 		return (prsm);
1867 	}
1868 	return (NULL);
1869 }
1870 
1871 
1872 static uint32_t
1873 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1874 {
1875 	int32_t lro;
1876 	uint32_t thresh;
1877 
1878 	/*
1879 	 * lro is the flag we use to determine if we have seen reordering.
1880 	 * If it gets set we have seen reordering. The reorder logic either
1881 	 * works in one of two ways:
1882 	 *
1883 	 * If reorder-fade is configured, then we track the last time we saw
1884 	 * re-ordering occur. If we reach the point where enough time as
1885 	 * passed we no longer consider reordering has occuring.
1886 	 *
1887 	 * Or if reorder-face is 0, then once we see reordering we consider
1888 	 * the connection to alway be subject to reordering and just set lro
1889 	 * to 1.
1890 	 *
1891 	 * In the end if lro is non-zero we add the extra time for
1892 	 * reordering in.
1893 	 */
1894 	if (srtt == 0)
1895 		srtt = 1;
1896 	if (rack->r_ctl.rc_reorder_ts) {
1897 		if (rack->r_ctl.rc_reorder_fade) {
1898 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1899 				lro = cts - rack->r_ctl.rc_reorder_ts;
1900 				if (lro == 0) {
1901 					/*
1902 					 * No time as passed since the last
1903 					 * reorder, mark it as reordering.
1904 					 */
1905 					lro = 1;
1906 				}
1907 			} else {
1908 				/* Negative time? */
1909 				lro = 0;
1910 			}
1911 			if (lro > rack->r_ctl.rc_reorder_fade) {
1912 				/* Turn off reordering seen too */
1913 				rack->r_ctl.rc_reorder_ts = 0;
1914 				lro = 0;
1915 			}
1916 		} else {
1917 			/* Reodering does not fade */
1918 			lro = 1;
1919 		}
1920 	} else {
1921 		lro = 0;
1922 	}
1923 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1924 	if (lro) {
1925 		/* It must be set, if not you get 1/4 rtt */
1926 		if (rack->r_ctl.rc_reorder_shift)
1927 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1928 		else
1929 			thresh += (srtt >> 2);
1930 	} else {
1931 		thresh += 1;
1932 	}
1933 	/* We don't let the rack timeout be above a RTO */
1934 
1935 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
1936 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
1937 	}
1938 	/* And we don't want it above the RTO max either */
1939 	if (thresh > rack_rto_max) {
1940 		thresh = rack_rto_max;
1941 	}
1942 	return (thresh);
1943 }
1944 
1945 static uint32_t
1946 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
1947 		     struct rack_sendmap *rsm, uint32_t srtt)
1948 {
1949 	struct rack_sendmap *prsm;
1950 	uint32_t thresh, len;
1951 	int maxseg;
1952 
1953 	if (srtt == 0)
1954 		srtt = 1;
1955 	if (rack->r_ctl.rc_tlp_threshold)
1956 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
1957 	else
1958 		thresh = (srtt * 2);
1959 
1960 	/* Get the previous sent packet, if any  */
1961 	maxseg = tcp_maxseg(tp);
1962 	counter_u64_add(rack_enter_tlp_calc, 1);
1963 	len = rsm->r_end - rsm->r_start;
1964 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
1965 		/* Exactly like the ID */
1966 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
1967 			uint32_t alt_thresh;
1968 			/*
1969 			 * Compensate for delayed-ack with the d-ack time.
1970 			 */
1971 			counter_u64_add(rack_used_tlpmethod, 1);
1972 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
1973 			if (alt_thresh > thresh)
1974 				thresh = alt_thresh;
1975 		}
1976 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
1977 		/* 2.1 behavior */
1978 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
1979 		if (prsm && (len <= maxseg)) {
1980 			/*
1981 			 * Two packets outstanding, thresh should be (2*srtt) +
1982 			 * possible inter-packet delay (if any).
1983 			 */
1984 			uint32_t inter_gap = 0;
1985 			int idx, nidx;
1986 
1987 			counter_u64_add(rack_used_tlpmethod, 1);
1988 			idx = rsm->r_rtr_cnt - 1;
1989 			nidx = prsm->r_rtr_cnt - 1;
1990 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
1991 				/* Yes it was sent later (or at the same time) */
1992 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
1993 			}
1994 			thresh += inter_gap;
1995 		} else 	if (len <= maxseg) {
1996 			/*
1997 			 * Possibly compensate for delayed-ack.
1998 			 */
1999 			uint32_t alt_thresh;
2000 
2001 			counter_u64_add(rack_used_tlpmethod2, 1);
2002 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2003 			if (alt_thresh > thresh)
2004 				thresh = alt_thresh;
2005 		}
2006 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
2007 		/* 2.2 behavior */
2008 		if (len <= maxseg) {
2009 			uint32_t alt_thresh;
2010 			/*
2011 			 * Compensate for delayed-ack with the d-ack time.
2012 			 */
2013 			counter_u64_add(rack_used_tlpmethod, 1);
2014 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2015 			if (alt_thresh > thresh)
2016 				thresh = alt_thresh;
2017 		}
2018 	}
2019  	/* Not above an RTO */
2020 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
2021 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
2022 	}
2023 	/* Not above a RTO max */
2024 	if (thresh > rack_rto_max) {
2025 		thresh = rack_rto_max;
2026 	}
2027 	/* Apply user supplied min TLP */
2028 	if (thresh < rack_tlp_min) {
2029 		thresh = rack_tlp_min;
2030 	}
2031 	return (thresh);
2032 }
2033 
2034 static struct rack_sendmap *
2035 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
2036 {
2037 	/*
2038 	 * Check to see that we don't need to fall into recovery. We will
2039 	 * need to do so if our oldest transmit is past the time we should
2040 	 * have had an ack.
2041 	 */
2042 	struct tcp_rack *rack;
2043 	struct rack_sendmap *rsm;
2044 	int32_t idx;
2045 	uint32_t srtt_cur, srtt, thresh;
2046 
2047 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2048 	if (TAILQ_EMPTY(&rack->r_ctl.rc_map)) {
2049 		return (NULL);
2050 	}
2051 	srtt_cur = tp->t_srtt >> TCP_RTT_SHIFT;
2052 	srtt = TICKS_2_MSEC(srtt_cur);
2053 	if (rack->rc_rack_rtt && (srtt > rack->rc_rack_rtt))
2054 		srtt = rack->rc_rack_rtt;
2055 
2056 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2057 	if (rsm == NULL)
2058 		return (NULL);
2059 
2060 	if (rsm->r_flags & RACK_ACKED) {
2061 		rsm = rack_find_lowest_rsm(rack);
2062 		if (rsm == NULL)
2063 			return (NULL);
2064 	}
2065 	idx = rsm->r_rtr_cnt - 1;
2066 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2067 	if (tsused < rsm->r_tim_lastsent[idx]) {
2068 		return (NULL);
2069 	}
2070 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2071 		return (NULL);
2072 	}
2073 	/* Ok if we reach here we are over-due */
2074 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2075 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2076 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2077 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2078 	return (rsm);
2079 }
2080 
2081 static uint32_t
2082 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2083 {
2084 	int32_t t;
2085 	int32_t tt;
2086 	uint32_t ret_val;
2087 
2088 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2089 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2090 	    tcp_persmin, tcp_persmax);
2091 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2092 		tp->t_rxtshift++;
2093 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2094 	ret_val = (uint32_t)tt;
2095 	return (ret_val);
2096 }
2097 
2098 static uint32_t
2099 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2100 {
2101 	/*
2102 	 * Start the FR timer, we do this based on getting the first one in
2103 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2104 	 * events we need to stop the running timer (if its running) before
2105 	 * starting the new one.
2106 	 */
2107 	uint32_t thresh, exp, to, srtt, time_since_sent;
2108 	uint32_t srtt_cur;
2109 	int32_t idx;
2110 	int32_t is_tlp_timer = 0;
2111 	struct rack_sendmap *rsm;
2112 
2113 	if (rack->t_timers_stopped) {
2114 		/* All timers have been stopped none are to run */
2115 		return (0);
2116 	}
2117 	if (rack->rc_in_persist) {
2118 		/* We can't start any timer in persists */
2119 		return (rack_get_persists_timer_val(tp, rack));
2120 	}
2121 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2122 	if (rsm == NULL) {
2123 		/* Nothing on the send map */
2124 activate_rxt:
2125 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2126 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2127 			to = TICKS_2_MSEC(tp->t_rxtcur);
2128 			if (to == 0)
2129 				to = 1;
2130 			return (to);
2131 		}
2132 		return (0);
2133 	}
2134 	if (rsm->r_flags & RACK_ACKED) {
2135 		rsm = rack_find_lowest_rsm(rack);
2136 		if (rsm == NULL) {
2137 			/* No lowest? */
2138 			goto activate_rxt;
2139 		}
2140 	}
2141 	/* Convert from ms to usecs */
2142 	if (rsm->r_flags & RACK_SACK_PASSED) {
2143 		if ((tp->t_flags & TF_SENTFIN) &&
2144 		    ((tp->snd_max - tp->snd_una) == 1) &&
2145 		    (rsm->r_flags & RACK_HAS_FIN)) {
2146 			/*
2147 			 * We don't start a rack timer if all we have is a
2148 			 * FIN outstanding.
2149 			 */
2150 			goto activate_rxt;
2151 		}
2152 		if (tp->t_srtt) {
2153 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2154 			srtt = TICKS_2_MSEC(srtt_cur);
2155 		} else
2156 			srtt = RACK_INITIAL_RTO;
2157 
2158 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2159 		idx = rsm->r_rtr_cnt - 1;
2160 		exp = rsm->r_tim_lastsent[idx] + thresh;
2161 		if (SEQ_GEQ(exp, cts)) {
2162 			to = exp - cts;
2163 			if (to < rack->r_ctl.rc_min_to) {
2164 				to = rack->r_ctl.rc_min_to;
2165 			}
2166 		} else {
2167 			to = rack->r_ctl.rc_min_to;
2168 		}
2169 	} else {
2170 		/* Ok we need to do a TLP not RACK */
2171 		if ((rack->rc_tlp_in_progress != 0) ||
2172 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2173 			/*
2174 			 * The previous send was a TLP or a tlp_rtx is in
2175 			 * process.
2176 			 */
2177 			goto activate_rxt;
2178 		}
2179 		if ((tp->snd_max - tp->snd_una) > tp->snd_wnd) {
2180 			/*
2181 			 * Peer collapsed rwnd, don't do TLP.
2182 			 */
2183 			goto activate_rxt;
2184 		}
2185 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2186 		if (rsm == NULL) {
2187 			/* We found no rsm to TLP with. */
2188 			goto activate_rxt;
2189 		}
2190 		if (rsm->r_flags & RACK_HAS_FIN) {
2191 			/* If its a FIN we dont do TLP */
2192 			rsm = NULL;
2193 			goto activate_rxt;
2194 		}
2195 		idx = rsm->r_rtr_cnt - 1;
2196 		if (TSTMP_GT(cts,  rsm->r_tim_lastsent[idx]))
2197 			time_since_sent = cts - rsm->r_tim_lastsent[idx];
2198 		else
2199 			time_since_sent = 0;
2200 		is_tlp_timer = 1;
2201 		if (tp->t_srtt) {
2202 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2203 			srtt = TICKS_2_MSEC(srtt_cur);
2204 		} else
2205 			srtt = RACK_INITIAL_RTO;
2206 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2207 		if (thresh > time_since_sent)
2208 			to = thresh - time_since_sent;
2209 		else
2210 			to = rack->r_ctl.rc_min_to;
2211 		if (to > TCPTV_REXMTMAX) {
2212 			/*
2213 			 * If the TLP time works out to larger than the max
2214 			 * RTO lets not do TLP.. just RTO.
2215 			 */
2216 			goto activate_rxt;
2217 		}
2218 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2219 			/*
2220 			 * The tail is no longer the last one I did a probe
2221 			 * on
2222 			 */
2223 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2224 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2225 		}
2226 	}
2227 	if (is_tlp_timer == 0) {
2228 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2229 	} else {
2230 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2231 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2232 			/*
2233 			 * We have exceeded how many times we can retran the
2234 			 * current TLP timer, switch to the RTO timer.
2235 			 */
2236 			goto activate_rxt;
2237 		} else {
2238 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2239 		}
2240 	}
2241 	if (to == 0)
2242 		to = 1;
2243 	return (to);
2244 }
2245 
2246 static void
2247 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2248 {
2249 	if (rack->rc_in_persist == 0) {
2250 		if (((tp->t_flags & TF_SENTFIN) == 0) &&
2251 		    (tp->snd_max - tp->snd_una) >= sbavail(&rack->rc_inp->inp_socket->so_snd))
2252 			/* Must need to send more data to enter persist */
2253 			return;
2254 		rack->r_ctl.rc_went_idle_time = cts;
2255 		rack_timer_cancel(tp, rack, cts, __LINE__);
2256 		tp->t_rxtshift = 0;
2257 		rack->rc_in_persist = 1;
2258 	}
2259 }
2260 
2261 static void
2262 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2263 {
2264 	if (rack->rc_inp->inp_in_hpts)  {
2265 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2266 		rack->r_ctl.rc_hpts_flags  = 0;
2267 	}
2268 	rack->rc_in_persist = 0;
2269 	rack->r_ctl.rc_went_idle_time = 0;
2270 	tp->t_flags &= ~TF_FORCEDATA;
2271 	tp->t_rxtshift = 0;
2272 }
2273 
2274 static void
2275 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, int32_t line,
2276     int32_t slot, uint32_t tot_len_this_send, int32_t frm_out_sbavail)
2277 {
2278 	struct inpcb *inp;
2279 	uint32_t delayed_ack = 0;
2280 	uint32_t hpts_timeout;
2281 	uint8_t stopped;
2282 	uint32_t left = 0;
2283 
2284 	inp = tp->t_inpcb;
2285 	if (inp->inp_in_hpts) {
2286 		/* A previous call is already set up */
2287 		return;
2288 	}
2289 
2290 	if ((tp->t_state == TCPS_CLOSED) ||
2291 	    (tp->t_state == TCPS_LISTEN)) {
2292 		return;
2293 	}
2294 	stopped = rack->rc_tmr_stopped;
2295 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2296 		left = rack->r_ctl.rc_timer_exp - cts;
2297 	}
2298 	rack->r_ctl.rc_timer_exp = 0;
2299 	if (rack->rc_inp->inp_in_hpts == 0) {
2300 		rack->r_ctl.rc_hpts_flags = 0;
2301 	}
2302 	if (slot) {
2303 		/* We are hptsi too */
2304 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2305 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2306 		/*
2307 		 * We are still left on the hpts when the to goes
2308 		 * it will be for output.
2309 		 */
2310 		if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts))
2311 			slot = rack->r_ctl.rc_last_output_to - cts;
2312 		else
2313 			slot = 1;
2314 	}
2315 	if ((tp->snd_wnd == 0) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2316 		/* No send window.. we must enter persist */
2317 		rack_enter_persist(tp, rack, cts);
2318 	} else if ((frm_out_sbavail &&
2319 		    (frm_out_sbavail > (tp->snd_max - tp->snd_una)) &&
2320 		    (tp->snd_wnd < tp->t_maxseg)) &&
2321 	    TCPS_HAVEESTABLISHED(tp->t_state)) {
2322 		/*
2323 		 * If we have no window or we can't send a segment (and have
2324 		 * data to send.. we cheat here and frm_out_sbavail is
2325 		 * passed in with the sbavail(sb) only from bbr_output) and
2326 		 * we are established, then we must enter persits (if not
2327 		 * already in persits).
2328 		 */
2329 		rack_enter_persist(tp, rack, cts);
2330 	}
2331 	hpts_timeout = rack_timer_start(tp, rack, cts);
2332 	if (tp->t_flags & TF_DELACK) {
2333 		delayed_ack = tcp_delacktime;
2334 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2335 	}
2336 	if (delayed_ack && ((hpts_timeout == 0) ||
2337 			    (delayed_ack < hpts_timeout)))
2338 		hpts_timeout = delayed_ack;
2339 	else
2340 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2341 	/*
2342 	 * If no timers are going to run and we will fall off the hptsi
2343 	 * wheel, we resort to a keep-alive timer if its configured.
2344 	 */
2345 	if ((hpts_timeout == 0) &&
2346 	    (slot == 0)) {
2347 		if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2348 		    (tp->t_state <= TCPS_CLOSING)) {
2349 			/*
2350 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2351 			 * del-ack), we don't have segments being paced. So
2352 			 * all that is left is the keepalive timer.
2353 			 */
2354 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2355 				/* Get the established keep-alive time */
2356 				hpts_timeout = TP_KEEPIDLE(tp);
2357 			} else {
2358 				/* Get the initial setup keep-alive time */
2359 				hpts_timeout = TP_KEEPINIT(tp);
2360 			}
2361 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2362 		}
2363 	}
2364 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2365 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2366 		/*
2367 		 * RACK, TLP, persists and RXT timers all are restartable
2368 		 * based on actions input .. i.e we received a packet (ack
2369 		 * or sack) and that changes things (rw, or snd_una etc).
2370 		 * Thus we can restart them with a new value. For
2371 		 * keep-alive, delayed_ack we keep track of what was left
2372 		 * and restart the timer with a smaller value.
2373 		 */
2374 		if (left < hpts_timeout)
2375 			hpts_timeout = left;
2376 	}
2377 	if (hpts_timeout) {
2378 		/*
2379 		 * Hack alert for now we can't time-out over 2,147,483
2380 		 * seconds (a bit more than 596 hours), which is probably ok
2381 		 * :).
2382 		 */
2383 		if (hpts_timeout > 0x7ffffffe)
2384 			hpts_timeout = 0x7ffffffe;
2385 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2386 	}
2387 	if (slot) {
2388 		rack->r_ctl.rc_last_output_to = cts + slot;
2389 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2390 			if (rack->rc_inp->inp_in_hpts == 0)
2391 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2392 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2393 		} else {
2394 			/*
2395 			 * Arrange for the hpts to kick back in after the
2396 			 * t-o if the t-o does not cause a send.
2397 			 */
2398 			if (rack->rc_inp->inp_in_hpts == 0)
2399 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2400 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2401 		}
2402 	} else if (hpts_timeout) {
2403 		if (rack->rc_inp->inp_in_hpts == 0)
2404 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2405 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2406 	} else {
2407 		/* No timer starting */
2408 #ifdef INVARIANTS
2409 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2410 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2411 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2412 		}
2413 #endif
2414 	}
2415 	rack->rc_tmr_stopped = 0;
2416 	if (slot)
2417 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2418 }
2419 
2420 /*
2421  * RACK Timer, here we simply do logging and house keeping.
2422  * the normal rack_output() function will call the
2423  * appropriate thing to check if we need to do a RACK retransmit.
2424  * We return 1, saying don't proceed with rack_output only
2425  * when all timers have been stopped (destroyed PCB?).
2426  */
2427 static int
2428 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2429 {
2430 	/*
2431 	 * This timer simply provides an internal trigger to send out data.
2432 	 * The check_recovery_mode call will see if there are needed
2433 	 * retransmissions, if so we will enter fast-recovery. The output
2434 	 * call may or may not do the same thing depending on sysctl
2435 	 * settings.
2436 	 */
2437 	struct rack_sendmap *rsm;
2438 	int32_t recovery;
2439 
2440 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2441 		return (1);
2442 	}
2443 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2444 		/* Its not time yet */
2445 		return (0);
2446 	}
2447 	rack_log_to_event(rack, RACK_TO_FRM_RACK);
2448 	recovery = IN_RECOVERY(tp->t_flags);
2449 	counter_u64_add(rack_to_tot, 1);
2450 	if (rack->r_state && (rack->r_state != tp->t_state))
2451 		rack_set_state(tp, rack);
2452 	rsm = rack_check_recovery_mode(tp, cts);
2453 	if (rsm) {
2454 		uint32_t rtt;
2455 
2456 		rtt = rack->rc_rack_rtt;
2457 		if (rtt == 0)
2458 			rtt = 1;
2459 		if ((recovery == 0) &&
2460 		    (rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg)) {
2461 			/*
2462 			 * The rack-timeout that enter's us into recovery
2463 			 * will force out one MSS and set us up so that we
2464 			 * can do one more send in 2*rtt (transitioning the
2465 			 * rack timeout into a rack-tlp).
2466 			 */
2467 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2468 		} else if ((rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg) &&
2469 		    ((rsm->r_end - rsm->r_start) > rack->r_ctl.rc_prr_sndcnt)) {
2470 			/*
2471 			 * When a rack timer goes, we have to send at
2472 			 * least one segment. They will be paced a min of 1ms
2473 			 * apart via the next rack timer (or further
2474 			 * if the rack timer dictates it).
2475 			 */
2476 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2477 		}
2478 	} else {
2479 		/* This is a case that should happen rarely if ever */
2480 		counter_u64_add(rack_tlp_does_nada, 1);
2481 #ifdef TCP_BLACKBOX
2482 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2483 #endif
2484 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2485 	}
2486 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2487 	return (0);
2488 }
2489 
2490 static struct rack_sendmap *
2491 rack_merge_rsm(struct tcp_rack *rack,
2492 	       struct rack_sendmap *l_rsm,
2493 	       struct rack_sendmap *r_rsm)
2494 {
2495 	/*
2496 	 * We are merging two ack'd RSM's,
2497 	 * the l_rsm is on the left (lower seq
2498 	 * values) and the r_rsm is on the right
2499 	 * (higher seq value). The simplest way
2500 	 * to merge these is to move the right
2501 	 * one into the left. I don't think there
2502 	 * is any reason we need to try to find
2503 	 * the oldest (or last oldest retransmitted).
2504 	 */
2505 	l_rsm->r_end = r_rsm->r_end;
2506 	if (r_rsm->r_rtr_bytes)
2507 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
2508 	if (r_rsm->r_in_tmap) {
2509 		/* This really should not happen */
2510 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
2511 	}
2512 	/* Now the flags */
2513 	if (r_rsm->r_flags & RACK_HAS_FIN)
2514 		l_rsm->r_flags |= RACK_HAS_FIN;
2515 	if (r_rsm->r_flags & RACK_TLP)
2516 		l_rsm->r_flags |= RACK_TLP;
2517 	TAILQ_REMOVE(&rack->r_ctl.rc_map, r_rsm, r_next);
2518 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
2519 		/* Transfer the split limit to the map we free */
2520 		r_rsm->r_limit_type = l_rsm->r_limit_type;
2521 		l_rsm->r_limit_type = 0;
2522 	}
2523 	rack_free(rack, r_rsm);
2524 	return(l_rsm);
2525 }
2526 
2527 /*
2528  * TLP Timer, here we simply setup what segment we want to
2529  * have the TLP expire on, the normal rack_output() will then
2530  * send it out.
2531  *
2532  * We return 1, saying don't proceed with rack_output only
2533  * when all timers have been stopped (destroyed PCB?).
2534  */
2535 static int
2536 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2537 {
2538 	/*
2539 	 * Tail Loss Probe.
2540 	 */
2541 	struct rack_sendmap *rsm = NULL;
2542 	struct socket *so;
2543 	uint32_t amm, old_prr_snd = 0;
2544 	uint32_t out, avail;
2545 
2546 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2547 		return (1);
2548 	}
2549 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2550 		/* Its not time yet */
2551 		return (0);
2552 	}
2553 	if (rack_progress_timeout_check(tp)) {
2554 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2555 		return (1);
2556 	}
2557 	/*
2558 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2559 	 * need to figure out how to force a full MSS segment out.
2560 	 */
2561 	rack_log_to_event(rack, RACK_TO_FRM_TLP);
2562 	counter_u64_add(rack_tlp_tot, 1);
2563 	if (rack->r_state && (rack->r_state != tp->t_state))
2564 		rack_set_state(tp, rack);
2565 	so = tp->t_inpcb->inp_socket;
2566 	avail = sbavail(&so->so_snd);
2567 	out = tp->snd_max - tp->snd_una;
2568 	rack->rc_timer_up = 1;
2569 	/*
2570 	 * If we are in recovery we can jazz out a segment if new data is
2571 	 * present simply by setting rc_prr_sndcnt to a segment.
2572 	 */
2573 	if ((avail > out) &&
2574 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2575 		/* New data is available */
2576 		amm = avail - out;
2577 		if (amm > tp->t_maxseg) {
2578 			amm = tp->t_maxseg;
2579 		} else if ((amm < tp->t_maxseg) && ((tp->t_flags & TF_NODELAY) == 0)) {
2580 			/* not enough to fill a MTU and no-delay is off */
2581 			goto need_retran;
2582 		}
2583 		if (IN_RECOVERY(tp->t_flags)) {
2584 			/* Unlikely */
2585 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2586 			if (out + amm <= tp->snd_wnd)
2587 				rack->r_ctl.rc_prr_sndcnt = amm;
2588 			else
2589 				goto need_retran;
2590 		} else {
2591 			/* Set the send-new override */
2592 			if (out + amm <= tp->snd_wnd)
2593 				rack->r_ctl.rc_tlp_new_data = amm;
2594 			else
2595 				goto need_retran;
2596 		}
2597 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2598 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2599 		rack->r_ctl.rc_tlpsend = NULL;
2600 		counter_u64_add(rack_tlp_newdata, 1);
2601 		goto send;
2602 	}
2603 need_retran:
2604 	/*
2605 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2606 	 * optionally the first un-acked segment.
2607 	 */
2608 	if (rack_always_send_oldest)
2609 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2610 	else {
2611 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
2612 		if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2613 			rsm = rack_find_high_nonack(rack, rsm);
2614 		}
2615 	}
2616 	if (rsm == NULL) {
2617 		counter_u64_add(rack_tlp_does_nada, 1);
2618 #ifdef TCP_BLACKBOX
2619 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2620 #endif
2621 		goto out;
2622 	}
2623 	if ((rsm->r_end - rsm->r_start) > tp->t_maxseg) {
2624 		/*
2625 		 * We need to split this the last segment in two.
2626 		 */
2627 		int32_t idx;
2628 		struct rack_sendmap *nrsm;
2629 
2630 		nrsm = rack_alloc_full_limit(rack);
2631 		if (nrsm == NULL) {
2632 			/*
2633 			 * No memory to split, we will just exit and punt
2634 			 * off to the RXT timer.
2635 			 */
2636 			counter_u64_add(rack_tlp_does_nada, 1);
2637 			goto out;
2638 		}
2639 		nrsm->r_start = (rsm->r_end - tp->t_maxseg);
2640 		nrsm->r_end = rsm->r_end;
2641 		nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2642 		nrsm->r_flags = rsm->r_flags;
2643 		nrsm->r_sndcnt = rsm->r_sndcnt;
2644 		nrsm->r_rtr_bytes = 0;
2645 		rsm->r_end = nrsm->r_start;
2646 		for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2647 			nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2648 		}
2649 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
2650 		if (rsm->r_in_tmap) {
2651 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2652 			nrsm->r_in_tmap = 1;
2653 		}
2654 		rsm->r_flags &= (~RACK_HAS_FIN);
2655 		rsm = nrsm;
2656 	}
2657 	rack->r_ctl.rc_tlpsend = rsm;
2658 	rack->r_ctl.rc_tlp_rtx_out = 1;
2659 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2660 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2661 		tp->t_rxtshift++;
2662 	} else {
2663 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2664 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2665 	}
2666 send:
2667 	rack->r_ctl.rc_tlp_send_cnt++;
2668 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2669 		/*
2670 		 * Can't [re]/transmit a segment we have not heard from the
2671 		 * peer in max times. We need the retransmit timer to take
2672 		 * over.
2673 		 */
2674 restore:
2675 		rack->r_ctl.rc_tlpsend = NULL;
2676 		if (rsm)
2677 			rsm->r_flags &= ~RACK_TLP;
2678 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2679 		counter_u64_add(rack_tlp_retran_fail, 1);
2680 		goto out;
2681 	} else if (rsm) {
2682 		rsm->r_flags |= RACK_TLP;
2683 	}
2684 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2685 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2686 		/*
2687 		 * We don't want to send a single segment more than the max
2688 		 * either.
2689 		 */
2690 		goto restore;
2691 	}
2692 	rack->r_timer_override = 1;
2693 	rack->r_tlp_running = 1;
2694 	rack->rc_tlp_in_progress = 1;
2695 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2696 	return (0);
2697 out:
2698 	rack->rc_timer_up = 0;
2699 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2700 	return (0);
2701 }
2702 
2703 /*
2704  * Delayed ack Timer, here we simply need to setup the
2705  * ACK_NOW flag and remove the DELACK flag. From there
2706  * the output routine will send the ack out.
2707  *
2708  * We only return 1, saying don't proceed, if all timers
2709  * are stopped (destroyed PCB?).
2710  */
2711 static int
2712 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2713 {
2714 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2715 		return (1);
2716 	}
2717 	rack_log_to_event(rack, RACK_TO_FRM_DELACK);
2718 	tp->t_flags &= ~TF_DELACK;
2719 	tp->t_flags |= TF_ACKNOW;
2720 	TCPSTAT_INC(tcps_delack);
2721 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2722 	return (0);
2723 }
2724 
2725 /*
2726  * Persists timer, here we simply need to setup the
2727  * FORCE-DATA flag the output routine will send
2728  * the one byte send.
2729  *
2730  * We only return 1, saying don't proceed, if all timers
2731  * are stopped (destroyed PCB?).
2732  */
2733 static int
2734 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2735 {
2736 	struct inpcb *inp;
2737 	int32_t retval = 0;
2738 
2739 	inp = tp->t_inpcb;
2740 
2741 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2742 		return (1);
2743 	}
2744 	if (rack->rc_in_persist == 0)
2745 		return (0);
2746 	if (rack_progress_timeout_check(tp)) {
2747 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2748 		return (1);
2749 	}
2750 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2751 	/*
2752 	 * Persistence timer into zero window. Force a byte to be output, if
2753 	 * possible.
2754 	 */
2755 	TCPSTAT_INC(tcps_persisttimeo);
2756 	/*
2757 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2758 	 * window is closed.  After a full backoff, drop the connection if
2759 	 * the idle time (no responses to probes) reaches the maximum
2760 	 * backoff that we would use if retransmitting.
2761 	 */
2762 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2763 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2764 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2765 		TCPSTAT_INC(tcps_persistdrop);
2766 		retval = 1;
2767 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2768 		goto out;
2769 	}
2770 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2771 	    tp->snd_una == tp->snd_max)
2772 		rack_exit_persist(tp, rack);
2773 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2774 	/*
2775 	 * If the user has closed the socket then drop a persisting
2776 	 * connection after a much reduced timeout.
2777 	 */
2778 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2779 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2780 		retval = 1;
2781 		TCPSTAT_INC(tcps_persistdrop);
2782 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2783 		goto out;
2784 	}
2785 	tp->t_flags |= TF_FORCEDATA;
2786 out:
2787 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST);
2788 	return (retval);
2789 }
2790 
2791 /*
2792  * If a keepalive goes off, we had no other timers
2793  * happening. We always return 1 here since this
2794  * routine either drops the connection or sends
2795  * out a segment with respond.
2796  */
2797 static int
2798 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2799 {
2800 	struct tcptemp *t_template;
2801 	struct inpcb *inp;
2802 
2803 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2804 		return (1);
2805 	}
2806 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
2807 	inp = tp->t_inpcb;
2808 	rack_log_to_event(rack, RACK_TO_FRM_KEEP);
2809 	/*
2810 	 * Keep-alive timer went off; send something or drop connection if
2811 	 * idle for too long.
2812 	 */
2813 	TCPSTAT_INC(tcps_keeptimeo);
2814 	if (tp->t_state < TCPS_ESTABLISHED)
2815 		goto dropit;
2816 	if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2817 	    tp->t_state <= TCPS_CLOSING) {
2818 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
2819 			goto dropit;
2820 		/*
2821 		 * Send a packet designed to force a response if the peer is
2822 		 * up and reachable: either an ACK if the connection is
2823 		 * still alive, or an RST if the peer has closed the
2824 		 * connection due to timeout or reboot. Using sequence
2825 		 * number tp->snd_una-1 causes the transmitted zero-length
2826 		 * segment to lie outside the receive window; by the
2827 		 * protocol spec, this requires the correspondent TCP to
2828 		 * respond.
2829 		 */
2830 		TCPSTAT_INC(tcps_keepprobe);
2831 		t_template = tcpip_maketemplate(inp);
2832 		if (t_template) {
2833 			tcp_respond(tp, t_template->tt_ipgen,
2834 			    &t_template->tt_t, (struct mbuf *)NULL,
2835 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2836 			free(t_template, M_TEMP);
2837 		}
2838 	}
2839 	rack_start_hpts_timer(rack, tp, cts, __LINE__, 0, 0, 0);
2840 	return (1);
2841 dropit:
2842 	TCPSTAT_INC(tcps_keepdrops);
2843 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2844 	return (1);
2845 }
2846 
2847 /*
2848  * Retransmit helper function, clear up all the ack
2849  * flags and take care of important book keeping.
2850  */
2851 static void
2852 rack_remxt_tmr(struct tcpcb *tp)
2853 {
2854 	/*
2855 	 * The retransmit timer went off, all sack'd blocks must be
2856 	 * un-acked.
2857 	 */
2858 	struct rack_sendmap *rsm, *trsm = NULL;
2859 	struct tcp_rack *rack;
2860 	int32_t cnt = 0;
2861 
2862 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2863 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
2864 	rack_log_to_event(rack, RACK_TO_FRM_TMR);
2865 	if (rack->r_state && (rack->r_state != tp->t_state))
2866 		rack_set_state(tp, rack);
2867 	/*
2868 	 * Ideally we would like to be able to
2869 	 * mark SACK-PASS on anything not acked here.
2870 	 * However, if we do that we would burst out
2871 	 * all that data 1ms apart. This would be unwise,
2872 	 * so for now we will just let the normal rxt timer
2873 	 * and tlp timer take care of it.
2874 	 */
2875 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
2876 		if (rsm->r_flags & RACK_ACKED) {
2877 			cnt++;
2878 			rsm->r_sndcnt = 0;
2879 			if (rsm->r_in_tmap == 0) {
2880 				/* We must re-add it back to the tlist */
2881 				if (trsm == NULL) {
2882 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
2883 				} else {
2884 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
2885 				}
2886 				rsm->r_in_tmap = 1;
2887 				trsm = rsm;
2888 			}
2889 		}
2890 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
2891 	}
2892 	/* Clear the count (we just un-acked them) */
2893 	rack->r_ctl.rc_sacked = 0;
2894 	/* Clear the tlp rtx mark */
2895 	rack->r_ctl.rc_tlp_rtx_out = 0;
2896 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2897 	rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_map);
2898 	/* Setup so we send one segment */
2899 	if (rack->r_ctl.rc_prr_sndcnt < tp->t_maxseg)
2900 		rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
2901 	rack->r_timer_override = 1;
2902 }
2903 
2904 /*
2905  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
2906  * we will setup to retransmit the lowest seq number outstanding.
2907  */
2908 static int
2909 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2910 {
2911 	int32_t rexmt;
2912 	struct inpcb *inp;
2913 	int32_t retval = 0;
2914 
2915 	inp = tp->t_inpcb;
2916 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2917 		return (1);
2918 	}
2919 	if (rack_progress_timeout_check(tp)) {
2920 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2921 		return (1);
2922 	}
2923 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
2924 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
2925 	    (tp->snd_una == tp->snd_max)) {
2926 		/* Nothing outstanding .. nothing to do */
2927 		return (0);
2928 	}
2929 	/*
2930 	 * Retransmission timer went off.  Message has not been acked within
2931 	 * retransmit interval.  Back off to a longer retransmit interval
2932 	 * and retransmit one segment.
2933 	 */
2934 	if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
2935 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
2936 		TCPSTAT_INC(tcps_timeoutdrop);
2937 		retval = 1;
2938 		tcp_set_inp_to_drop(rack->rc_inp,
2939 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
2940 		goto out;
2941 	}
2942 	rack_remxt_tmr(tp);
2943 	if (tp->t_state == TCPS_SYN_SENT) {
2944 		/*
2945 		 * If the SYN was retransmitted, indicate CWND to be limited
2946 		 * to 1 segment in cc_conn_init().
2947 		 */
2948 		tp->snd_cwnd = 1;
2949 	} else if (tp->t_rxtshift == 1) {
2950 		/*
2951 		 * first retransmit; record ssthresh and cwnd so they can be
2952 		 * recovered if this turns out to be a "bad" retransmit. A
2953 		 * retransmit is considered "bad" if an ACK for this segment
2954 		 * is received within RTT/2 interval; the assumption here is
2955 		 * that the ACK was already in flight.  See "On Estimating
2956 		 * End-to-End Network Path Properties" by Allman and Paxson
2957 		 * for more details.
2958 		 */
2959 		tp->snd_cwnd_prev = tp->snd_cwnd;
2960 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
2961 		tp->snd_recover_prev = tp->snd_recover;
2962 		if (IN_FASTRECOVERY(tp->t_flags))
2963 			tp->t_flags |= TF_WASFRECOVERY;
2964 		else
2965 			tp->t_flags &= ~TF_WASFRECOVERY;
2966 		if (IN_CONGRECOVERY(tp->t_flags))
2967 			tp->t_flags |= TF_WASCRECOVERY;
2968 		else
2969 			tp->t_flags &= ~TF_WASCRECOVERY;
2970 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
2971 		tp->t_flags |= TF_PREVVALID;
2972 	} else
2973 		tp->t_flags &= ~TF_PREVVALID;
2974 	TCPSTAT_INC(tcps_rexmttimeo);
2975 	if ((tp->t_state == TCPS_SYN_SENT) ||
2976 	    (tp->t_state == TCPS_SYN_RECEIVED))
2977 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_syn_backoff[tp->t_rxtshift]);
2978 	else
2979 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
2980 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
2981 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
2982 	   MSEC_2_TICKS(rack_rto_max));
2983 	/*
2984 	 * We enter the path for PLMTUD if connection is established or, if
2985 	 * connection is FIN_WAIT_1 status, reason for the last is that if
2986 	 * amount of data we send is very small, we could send it in couple
2987 	 * of packets and process straight to FIN. In that case we won't
2988 	 * catch ESTABLISHED state.
2989 	 */
2990 	if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
2991 	    || (tp->t_state == TCPS_FIN_WAIT_1))) {
2992 #ifdef INET6
2993 		int32_t isipv6;
2994 #endif
2995 
2996 		/*
2997 		 * Idea here is that at each stage of mtu probe (usually,
2998 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
2999 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
3000 		 * should take care of that.
3001 		 */
3002 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
3003 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
3004 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
3005 		    tp->t_rxtshift % 2 == 0)) {
3006 			/*
3007 			 * Enter Path MTU Black-hole Detection mechanism: -
3008 			 * Disable Path MTU Discovery (IP "DF" bit). -
3009 			 * Reduce MTU to lower value than what we negotiated
3010 			 * with peer.
3011 			 */
3012 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
3013 				/* Record that we may have found a black hole. */
3014 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
3015 				/* Keep track of previous MSS. */
3016 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
3017 			}
3018 
3019 			/*
3020 			 * Reduce the MSS to blackhole value or to the
3021 			 * default in an attempt to retransmit.
3022 			 */
3023 #ifdef INET6
3024 			isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? 1 : 0;
3025 			if (isipv6 &&
3026 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
3027 				/* Use the sysctl tuneable blackhole MSS. */
3028 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
3029 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3030 			} else if (isipv6) {
3031 				/* Use the default MSS. */
3032 				tp->t_maxseg = V_tcp_v6mssdflt;
3033 				/*
3034 				 * Disable Path MTU Discovery when we switch
3035 				 * to minmss.
3036 				 */
3037 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3038 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3039 			}
3040 #endif
3041 #if defined(INET6) && defined(INET)
3042 			else
3043 #endif
3044 #ifdef INET
3045 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
3046 				/* Use the sysctl tuneable blackhole MSS. */
3047 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
3048 				TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3049 			} else {
3050 				/* Use the default MSS. */
3051 				tp->t_maxseg = V_tcp_mssdflt;
3052 				/*
3053 				 * Disable Path MTU Discovery when we switch
3054 				 * to minmss.
3055 				 */
3056 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3057 				TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3058 			}
3059 #endif
3060 		} else {
3061 			/*
3062 			 * If further retransmissions are still unsuccessful
3063 			 * with a lowered MTU, maybe this isn't a blackhole
3064 			 * and we restore the previous MSS and blackhole
3065 			 * detection flags. The limit '6' is determined by
3066 			 * giving each probe stage (1448, 1188, 524) 2
3067 			 * chances to recover.
3068 			 */
3069 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
3070 			    (tp->t_rxtshift >= 6)) {
3071 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
3072 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
3073 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
3074 				TCPSTAT_INC(tcps_pmtud_blackhole_failed);
3075 			}
3076 		}
3077 	}
3078 	/*
3079 	 * Disable RFC1323 and SACK if we haven't got any response to our
3080 	 * third SYN to work-around some broken terminal servers (most of
3081 	 * which have hopefully been retired) that have bad VJ header
3082 	 * compression code which trashes TCP segments containing
3083 	 * unknown-to-them TCP options.
3084 	 */
3085 	if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
3086 	    (tp->t_rxtshift == 3))
3087 		tp->t_flags &= ~(TF_REQ_SCALE | TF_REQ_TSTMP | TF_SACK_PERMIT);
3088 	/*
3089 	 * If we backed off this far, our srtt estimate is probably bogus.
3090 	 * Clobber it so we'll take the next rtt measurement as our srtt;
3091 	 * move the current srtt into rttvar to keep the current retransmit
3092 	 * times until then.
3093 	 */
3094 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3095 #ifdef INET6
3096 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3097 			in6_losing(tp->t_inpcb);
3098 		else
3099 #endif
3100 			in_losing(tp->t_inpcb);
3101 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3102 		tp->t_srtt = 0;
3103 	}
3104 	if (rack_use_sack_filter)
3105 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3106 	tp->snd_recover = tp->snd_max;
3107 	tp->t_flags |= TF_ACKNOW;
3108 	tp->t_rtttime = 0;
3109 	rack_cong_signal(tp, NULL, CC_RTO);
3110 out:
3111 	return (retval);
3112 }
3113 
3114 static int
3115 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3116 {
3117 	int32_t ret = 0;
3118 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3119 
3120 	if (timers == 0) {
3121 		return (0);
3122 	}
3123 	if (tp->t_state == TCPS_LISTEN) {
3124 		/* no timers on listen sockets */
3125 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3126 			return (0);
3127 		return (1);
3128 	}
3129 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3130 		uint32_t left;
3131 
3132 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3133 			ret = -1;
3134 			rack_log_to_processing(rack, cts, ret, 0);
3135 			return (0);
3136 		}
3137 		if (hpts_calling == 0) {
3138 			ret = -2;
3139 			rack_log_to_processing(rack, cts, ret, 0);
3140 			return (0);
3141 		}
3142 		/*
3143 		 * Ok our timer went off early and we are not paced false
3144 		 * alarm, go back to sleep.
3145 		 */
3146 		ret = -3;
3147 		left = rack->r_ctl.rc_timer_exp - cts;
3148 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3149 		rack_log_to_processing(rack, cts, ret, left);
3150 		rack->rc_last_pto_set = 0;
3151 		return (1);
3152 	}
3153 	rack->rc_tmr_stopped = 0;
3154 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3155 	if (timers & PACE_TMR_DELACK) {
3156 		ret = rack_timeout_delack(tp, rack, cts);
3157 	} else if (timers & PACE_TMR_RACK) {
3158 		ret = rack_timeout_rack(tp, rack, cts);
3159 	} else if (timers & PACE_TMR_TLP) {
3160 		ret = rack_timeout_tlp(tp, rack, cts);
3161 	} else if (timers & PACE_TMR_RXT) {
3162 		ret = rack_timeout_rxt(tp, rack, cts);
3163 	} else if (timers & PACE_TMR_PERSIT) {
3164 		ret = rack_timeout_persist(tp, rack, cts);
3165 	} else if (timers & PACE_TMR_KEEP) {
3166 		ret = rack_timeout_keepalive(tp, rack, cts);
3167 	}
3168 	rack_log_to_processing(rack, cts, ret, timers);
3169 	return (ret);
3170 }
3171 
3172 static void
3173 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3174 {
3175 	uint8_t hpts_removed = 0;
3176 
3177 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3178 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3179 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3180 		hpts_removed = 1;
3181 	}
3182 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3183 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3184 		if (rack->rc_inp->inp_in_hpts &&
3185 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3186 			/*
3187 			 * Canceling timer's when we have no output being
3188 			 * paced. We also must remove ourselves from the
3189 			 * hpts.
3190 			 */
3191 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3192 			hpts_removed = 1;
3193 		}
3194 		rack_log_to_cancel(rack, hpts_removed, line);
3195 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3196 	}
3197 }
3198 
3199 static void
3200 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3201 {
3202 	return;
3203 }
3204 
3205 static int
3206 rack_stopall(struct tcpcb *tp)
3207 {
3208 	struct tcp_rack *rack;
3209 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3210 	rack->t_timers_stopped = 1;
3211 	return (0);
3212 }
3213 
3214 static void
3215 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3216 {
3217 	return;
3218 }
3219 
3220 static int
3221 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3222 {
3223 	return (0);
3224 }
3225 
3226 static void
3227 rack_stop_all_timers(struct tcpcb *tp)
3228 {
3229 	struct tcp_rack *rack;
3230 
3231 	/*
3232 	 * Assure no timers are running.
3233 	 */
3234 	if (tcp_timer_active(tp, TT_PERSIST)) {
3235 		/* We enter in persists, set the flag appropriately */
3236 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3237 		rack->rc_in_persist = 1;
3238 	}
3239 	tcp_timer_suspend(tp, TT_PERSIST);
3240 	tcp_timer_suspend(tp, TT_REXMT);
3241 	tcp_timer_suspend(tp, TT_KEEP);
3242 	tcp_timer_suspend(tp, TT_DELACK);
3243 }
3244 
3245 static void
3246 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3247     struct rack_sendmap *rsm, uint32_t ts)
3248 {
3249 	int32_t idx;
3250 
3251 	rsm->r_rtr_cnt++;
3252 	rsm->r_sndcnt++;
3253 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3254 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3255 		rsm->r_flags |= RACK_OVERMAX;
3256 	}
3257 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3258 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3259 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3260 	}
3261 	idx = rsm->r_rtr_cnt - 1;
3262 	rsm->r_tim_lastsent[idx] = ts;
3263 	if (rsm->r_flags & RACK_ACKED) {
3264 		/* Problably MTU discovery messing with us */
3265 		rsm->r_flags &= ~RACK_ACKED;
3266 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3267 	}
3268 	if (rsm->r_in_tmap) {
3269 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3270 	}
3271 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3272 	rsm->r_in_tmap = 1;
3273 	if (rsm->r_flags & RACK_SACK_PASSED) {
3274 		/* We have retransmitted due to the SACK pass */
3275 		rsm->r_flags &= ~RACK_SACK_PASSED;
3276 		rsm->r_flags |= RACK_WAS_SACKPASS;
3277 	}
3278 	/* Update memory for next rtr */
3279 	rack->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
3280 }
3281 
3282 
3283 static uint32_t
3284 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3285     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp)
3286 {
3287 	/*
3288 	 * We (re-)transmitted starting at rsm->r_start for some length
3289 	 * (possibly less than r_end.
3290 	 */
3291 	struct rack_sendmap *nrsm;
3292 	uint32_t c_end;
3293 	int32_t len;
3294 	int32_t idx;
3295 
3296 	len = *lenp;
3297 	c_end = rsm->r_start + len;
3298 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3299 		/*
3300 		 * We retransmitted the whole piece or more than the whole
3301 		 * slopping into the next rsm.
3302 		 */
3303 		rack_update_rsm(tp, rack, rsm, ts);
3304 		if (c_end == rsm->r_end) {
3305 			*lenp = 0;
3306 			return (0);
3307 		} else {
3308 			int32_t act_len;
3309 
3310 			/* Hangs over the end return whats left */
3311 			act_len = rsm->r_end - rsm->r_start;
3312 			*lenp = (len - act_len);
3313 			return (rsm->r_end);
3314 		}
3315 		/* We don't get out of this block. */
3316 	}
3317 	/*
3318 	 * Here we retransmitted less than the whole thing which means we
3319 	 * have to split this into what was transmitted and what was not.
3320 	 */
3321 	nrsm = rack_alloc_full_limit(rack);
3322 	if (nrsm == NULL) {
3323 		/*
3324 		 * We can't get memory, so lets not proceed.
3325 		 */
3326 		*lenp = 0;
3327 		return (0);
3328 	}
3329 	/*
3330 	 * So here we are going to take the original rsm and make it what we
3331 	 * retransmitted. nrsm will be the tail portion we did not
3332 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3333 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3334 	 * 1, 6 and the new piece will be 6, 11.
3335 	 */
3336 	nrsm->r_start = c_end;
3337 	nrsm->r_end = rsm->r_end;
3338 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3339 	nrsm->r_flags = rsm->r_flags;
3340 	nrsm->r_sndcnt = rsm->r_sndcnt;
3341 	nrsm->r_rtr_bytes = 0;
3342 	rsm->r_end = c_end;
3343 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3344 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3345 	}
3346 	TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3347 	if (rsm->r_in_tmap) {
3348 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3349 		nrsm->r_in_tmap = 1;
3350 	}
3351 	rsm->r_flags &= (~RACK_HAS_FIN);
3352 	rack_update_rsm(tp, rack, rsm, ts);
3353 	*lenp = 0;
3354 	return (0);
3355 }
3356 
3357 
3358 static void
3359 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3360     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3361     uint8_t pass, struct rack_sendmap *hintrsm)
3362 {
3363 	struct tcp_rack *rack;
3364 	struct rack_sendmap *rsm, *nrsm;
3365 	register uint32_t snd_max, snd_una;
3366 	int32_t idx;
3367 
3368 	/*
3369 	 * Add to the RACK log of packets in flight or retransmitted. If
3370 	 * there is a TS option we will use the TS echoed, if not we will
3371 	 * grab a TS.
3372 	 *
3373 	 * Retransmissions will increment the count and move the ts to its
3374 	 * proper place. Note that if options do not include TS's then we
3375 	 * won't be able to effectively use the ACK for an RTT on a retran.
3376 	 *
3377 	 * Notes about r_start and r_end. Lets consider a send starting at
3378 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3379 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3380 	 * This means that r_end is actually the first sequence for the next
3381 	 * slot (11).
3382 	 *
3383 	 */
3384 	/*
3385 	 * If err is set what do we do XXXrrs? should we not add the thing?
3386 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3387 	 * i.e. proceed with add ** do this for now.
3388 	 */
3389 	INP_WLOCK_ASSERT(tp->t_inpcb);
3390 	if (err)
3391 		/*
3392 		 * We don't log errors -- we could but snd_max does not
3393 		 * advance in this case either.
3394 		 */
3395 		return;
3396 
3397 	if (th_flags & TH_RST) {
3398 		/*
3399 		 * We don't log resets and we return immediately from
3400 		 * sending
3401 		 */
3402 		return;
3403 	}
3404 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3405 	snd_una = tp->snd_una;
3406 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3407 		/* Are sending an old segment to induce an ack (keep-alive)? */
3408 		return;
3409 	}
3410 	if (SEQ_LT(seq_out, snd_una)) {
3411 		/* huh? should we panic? */
3412 		uint32_t end;
3413 
3414 		end = seq_out + len;
3415 		seq_out = snd_una;
3416 		len = end - seq_out;
3417 	}
3418 	snd_max = tp->snd_max;
3419 	if (th_flags & (TH_SYN | TH_FIN)) {
3420 		/*
3421 		 * The call to rack_log_output is made before bumping
3422 		 * snd_max. This means we can record one extra byte on a SYN
3423 		 * or FIN if seq_out is adding more on and a FIN is present
3424 		 * (and we are not resending).
3425 		 */
3426 		if (th_flags & TH_SYN)
3427 			len++;
3428 		if (th_flags & TH_FIN)
3429 			len++;
3430 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3431 			/*
3432 			 * The add/update as not been done for the FIN/SYN
3433 			 * yet.
3434 			 */
3435 			snd_max = tp->snd_nxt;
3436 		}
3437 	}
3438 	if (len == 0) {
3439 		/* We don't log zero window probes */
3440 		return;
3441 	}
3442 	rack->r_ctl.rc_time_last_sent = ts;
3443 	if (IN_RECOVERY(tp->t_flags)) {
3444 		rack->r_ctl.rc_prr_out += len;
3445 	}
3446 	/* First question is it a retransmission? */
3447 	if (seq_out == snd_max) {
3448 again:
3449 		rsm = rack_alloc(rack);
3450 		if (rsm == NULL) {
3451 			/*
3452 			 * Hmm out of memory and the tcb got destroyed while
3453 			 * we tried to wait.
3454 			 */
3455 			return;
3456 		}
3457 		if (th_flags & TH_FIN) {
3458 			rsm->r_flags = RACK_HAS_FIN;
3459 		} else {
3460 			rsm->r_flags = 0;
3461 		}
3462 		rsm->r_tim_lastsent[0] = ts;
3463 		rsm->r_rtr_cnt = 1;
3464 		rsm->r_rtr_bytes = 0;
3465 		rsm->r_start = seq_out;
3466 		rsm->r_end = rsm->r_start + len;
3467 		rsm->r_sndcnt = 0;
3468 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_map, rsm, r_next);
3469 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3470 		rsm->r_in_tmap = 1;
3471 		return;
3472 	}
3473 	/*
3474 	 * If we reach here its a retransmission and we need to find it.
3475 	 */
3476 more:
3477 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3478 		rsm = hintrsm;
3479 		hintrsm = NULL;
3480 	} else if (rack->r_ctl.rc_next) {
3481 		/* We have a hint from a previous run */
3482 		rsm = rack->r_ctl.rc_next;
3483 	} else {
3484 		/* No hints sorry */
3485 		rsm = NULL;
3486 	}
3487 	if ((rsm) && (rsm->r_start == seq_out)) {
3488 		/*
3489 		 * We used rc_next or hintrsm  to retransmit, hopefully the
3490 		 * likely case.
3491 		 */
3492 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3493 		if (len == 0) {
3494 			return;
3495 		} else {
3496 			goto more;
3497 		}
3498 	}
3499 	/* Ok it was not the last pointer go through it the hard way. */
3500 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
3501 		if (rsm->r_start == seq_out) {
3502 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3503 			rack->r_ctl.rc_next = TAILQ_NEXT(rsm, r_next);
3504 			if (len == 0) {
3505 				return;
3506 			} else {
3507 				continue;
3508 			}
3509 		}
3510 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3511 			/* Transmitted within this piece */
3512 			/*
3513 			 * Ok we must split off the front and then let the
3514 			 * update do the rest
3515 			 */
3516 			nrsm = rack_alloc_full_limit(rack);
3517 			if (nrsm == NULL) {
3518 				rack_update_rsm(tp, rack, rsm, ts);
3519 				return;
3520 			}
3521 			/*
3522 			 * copy rsm to nrsm and then trim the front of rsm
3523 			 * to not include this part.
3524 			 */
3525 			nrsm->r_start = seq_out;
3526 			nrsm->r_end = rsm->r_end;
3527 			nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
3528 			nrsm->r_flags = rsm->r_flags;
3529 			nrsm->r_sndcnt = rsm->r_sndcnt;
3530 			nrsm->r_rtr_bytes = 0;
3531 			for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
3532 				nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
3533 			}
3534 			rsm->r_end = nrsm->r_start;
3535 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
3536 			if (rsm->r_in_tmap) {
3537 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3538 				nrsm->r_in_tmap = 1;
3539 			}
3540 			rsm->r_flags &= (~RACK_HAS_FIN);
3541 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3542 			if (len == 0) {
3543 				return;
3544 			}
3545 		}
3546 	}
3547 	/*
3548 	 * Hmm not found in map did they retransmit both old and on into the
3549 	 * new?
3550 	 */
3551 	if (seq_out == tp->snd_max) {
3552 		goto again;
3553 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3554 #ifdef INVARIANTS
3555 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3556 		    seq_out, len, tp->snd_una, tp->snd_max);
3557 		printf("Starting Dump of all rack entries\n");
3558 		TAILQ_FOREACH(rsm, &rack->r_ctl.rc_map, r_next) {
3559 			printf("rsm:%p start:%u end:%u\n",
3560 			    rsm, rsm->r_start, rsm->r_end);
3561 		}
3562 		printf("Dump complete\n");
3563 		panic("seq_out not found rack:%p tp:%p",
3564 		    rack, tp);
3565 #endif
3566 	} else {
3567 #ifdef INVARIANTS
3568 		/*
3569 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3570 		 * flag)
3571 		 */
3572 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3573 		    seq_out, len, tp->snd_max, tp);
3574 #endif
3575 	}
3576 }
3577 
3578 /*
3579  * Record one of the RTT updates from an ack into
3580  * our sample structure.
3581  */
3582 static void
3583 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3584 {
3585 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3586 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3587 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3588 	}
3589 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3590 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3591 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3592 	}
3593 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3594 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3595 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3596 }
3597 
3598 /*
3599  * Collect new round-trip time estimate
3600  * and update averages and current timeout.
3601  */
3602 static void
3603 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3604 {
3605 	int32_t delta;
3606 	uint32_t o_srtt, o_var;
3607 	int32_t rtt;
3608 
3609 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3610 		/* No valid sample */
3611 		return;
3612 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3613 		/* We are to use the lowest RTT seen in a single ack */
3614 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3615 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3616 		/* We are to use the highest RTT seen in a single ack */
3617 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3618 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3619 		/* We are to use the average RTT seen in a single ack */
3620 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3621 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3622 	} else {
3623 #ifdef INVARIANTS
3624 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3625 #endif
3626 		return;
3627 	}
3628 	if (rtt == 0)
3629 		rtt = 1;
3630 	rack_log_rtt_sample(rack, rtt);
3631 	o_srtt = tp->t_srtt;
3632 	o_var = tp->t_rttvar;
3633 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3634 	if (tp->t_srtt != 0) {
3635 		/*
3636 		 * srtt is stored as fixed point with 5 bits after the
3637 		 * binary point (i.e., scaled by 8).  The following magic is
3638 		 * equivalent to the smoothing algorithm in rfc793 with an
3639 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3640 		 * Adjust rtt to origin 0.
3641 		 */
3642 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3643 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3644 
3645 		tp->t_srtt += delta;
3646 		if (tp->t_srtt <= 0)
3647 			tp->t_srtt = 1;
3648 
3649 		/*
3650 		 * We accumulate a smoothed rtt variance (actually, a
3651 		 * smoothed mean difference), then set the retransmit timer
3652 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3653 		 * is stored as fixed point with 4 bits after the binary
3654 		 * point (scaled by 16).  The following is equivalent to
3655 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3656 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3657 		 * wired-in beta.
3658 		 */
3659 		if (delta < 0)
3660 			delta = -delta;
3661 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3662 		tp->t_rttvar += delta;
3663 		if (tp->t_rttvar <= 0)
3664 			tp->t_rttvar = 1;
3665 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3666 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3667 	} else {
3668 		/*
3669 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3670 		 * variance to half the rtt (so our first retransmit happens
3671 		 * at 3*rtt).
3672 		 */
3673 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3674 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3675 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3676 	}
3677 	TCPSTAT_INC(tcps_rttupdated);
3678 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3679 	tp->t_rttupdated++;
3680 #ifdef NETFLIX_STATS
3681 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3682 #endif
3683 	tp->t_rxtshift = 0;
3684 
3685 	/*
3686 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3687 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3688 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3689 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3690 	 * uncertainty in the firing of the timer.  The bias will give us
3691 	 * exactly the 1.5 tick we need.  But, because the bias is
3692 	 * statistical, we have to test that we don't drop below the minimum
3693 	 * feasible timer (which is 2 ticks).
3694 	 */
3695 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3696 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3697 	tp->t_softerror = 0;
3698 }
3699 
3700 static void
3701 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3702     uint32_t t, uint32_t cts)
3703 {
3704 	/*
3705 	 * For this RSM, we acknowledged the data from a previous
3706 	 * transmission, not the last one we made. This means we did a false
3707 	 * retransmit.
3708 	 */
3709 	struct tcp_rack *rack;
3710 
3711 	if (rsm->r_flags & RACK_HAS_FIN) {
3712 		/*
3713 		 * The sending of the FIN often is multiple sent when we
3714 		 * have everything outstanding ack'd. We ignore this case
3715 		 * since its over now.
3716 		 */
3717 		return;
3718 	}
3719 	if (rsm->r_flags & RACK_TLP) {
3720 		/*
3721 		 * We expect TLP's to have this occur.
3722 		 */
3723 		return;
3724 	}
3725 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3726 	/* should we undo cc changes and exit recovery? */
3727 	if (IN_RECOVERY(tp->t_flags)) {
3728 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3729 			/*
3730 			 * Undo what we ratched down and exit recovery if
3731 			 * possible
3732 			 */
3733 			EXIT_RECOVERY(tp->t_flags);
3734 			tp->snd_recover = tp->snd_una;
3735 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3736 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3737 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3738 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3739 		}
3740 	}
3741 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3742 		/*
3743 		 * We retransmitted based on a sack and the earlier
3744 		 * retransmission ack'd it - re-ordering is occuring.
3745 		 */
3746 		counter_u64_add(rack_reorder_seen, 1);
3747 		rack->r_ctl.rc_reorder_ts = cts;
3748 	}
3749 	counter_u64_add(rack_badfr, 1);
3750 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3751 }
3752 
3753 
3754 static int
3755 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3756     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3757 {
3758 	int32_t i;
3759 	uint32_t t;
3760 
3761 	if (rsm->r_flags & RACK_ACKED)
3762 		/* Already done */
3763 		return (0);
3764 
3765 
3766 	if ((rsm->r_rtr_cnt == 1) ||
3767 	    ((ack_type == CUM_ACKED) &&
3768 	    (to->to_flags & TOF_TS) &&
3769 	    (to->to_tsecr) &&
3770 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
3771 	    ) {
3772 		/*
3773 		 * We will only find a matching timestamp if its cum-acked.
3774 		 * But if its only one retransmission its for-sure matching
3775 		 * :-)
3776 		 */
3777 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3778 		if ((int)t <= 0)
3779 			t = 1;
3780 		if (!tp->t_rttlow || tp->t_rttlow > t)
3781 			tp->t_rttlow = t;
3782 		if (!rack->r_ctl.rc_rack_min_rtt ||
3783 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3784 			rack->r_ctl.rc_rack_min_rtt = t;
3785 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
3786 				rack->r_ctl.rc_rack_min_rtt = 1;
3787 			}
3788 		}
3789 		tcp_rack_xmit_timer(rack, TCP_TS_TO_TICKS(t) + 1);
3790 		if ((rsm->r_flags & RACK_TLP) &&
3791 		    (!IN_RECOVERY(tp->t_flags))) {
3792 			/* Segment was a TLP and our retrans matched */
3793 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
3794 				rack->r_ctl.rc_rsm_start = tp->snd_max;
3795 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
3796 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
3797 				rack_cong_signal(tp, NULL, CC_NDUPACK);
3798 				/*
3799 				 * When we enter recovery we need to assure
3800 				 * we send one packet.
3801 				 */
3802 				rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
3803 			} else
3804 				rack->r_ctl.rc_tlp_rtx_out = 0;
3805 		}
3806 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
3807 			/* New more recent rack_tmit_time */
3808 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3809 			rack->rc_rack_rtt = t;
3810 		}
3811 		return (1);
3812 	}
3813 	/*
3814 	 * We clear the soft/rxtshift since we got an ack.
3815 	 * There is no assurance we will call the commit() function
3816 	 * so we need to clear these to avoid incorrect handling.
3817 	 */
3818 	tp->t_rxtshift = 0;
3819 	tp->t_softerror = 0;
3820 	if ((to->to_flags & TOF_TS) &&
3821 	    (ack_type == CUM_ACKED) &&
3822 	    (to->to_tsecr) &&
3823 	    ((rsm->r_flags & (RACK_DEFERRED | RACK_OVERMAX)) == 0)) {
3824 		/*
3825 		 * Now which timestamp does it match? In this block the ACK
3826 		 * must be coming from a previous transmission.
3827 		 */
3828 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
3829 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
3830 				t = cts - rsm->r_tim_lastsent[i];
3831 				if ((int)t <= 0)
3832 					t = 1;
3833 				if ((i + 1) < rsm->r_rtr_cnt) {
3834 					/* Likely */
3835 					rack_earlier_retran(tp, rsm, t, cts);
3836 				}
3837 				if (!tp->t_rttlow || tp->t_rttlow > t)
3838 					tp->t_rttlow = t;
3839 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3840 					rack->r_ctl.rc_rack_min_rtt = t;
3841 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
3842 						rack->r_ctl.rc_rack_min_rtt = 1;
3843 					}
3844 				}
3845                                 /*
3846 				 * Note the following calls to
3847 				 * tcp_rack_xmit_timer() are being commented
3848 				 * out for now. They give us no more accuracy
3849 				 * and often lead to a wrong choice. We have
3850 				 * enough samples that have not been
3851 				 * retransmitted. I leave the commented out
3852 				 * code in here in case in the future we
3853 				 * decide to add it back (though I can't forsee
3854 				 * doing that). That way we will easily see
3855 				 * where they need to be placed.
3856 				 */
3857 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
3858 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
3859 					/* New more recent rack_tmit_time */
3860 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
3861 					rack->rc_rack_rtt = t;
3862 				}
3863 				return (1);
3864 			}
3865 		}
3866 		goto ts_not_found;
3867 	} else {
3868 		/*
3869 		 * Ok its a SACK block that we retransmitted. or a windows
3870 		 * machine without timestamps. We can tell nothing from the
3871 		 * time-stamp since its not there or the time the peer last
3872 		 * recieved a segment that moved forward its cum-ack point.
3873 		 */
3874 ts_not_found:
3875 		i = rsm->r_rtr_cnt - 1;
3876 		t = cts - rsm->r_tim_lastsent[i];
3877 		if ((int)t <= 0)
3878 			t = 1;
3879 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3880 			/*
3881 			 * We retransmitted and the ack came back in less
3882 			 * than the smallest rtt we have observed. We most
3883 			 * likey did an improper retransmit as outlined in
3884 			 * 4.2 Step 3 point 2 in the rack-draft.
3885 			 */
3886 			i = rsm->r_rtr_cnt - 2;
3887 			t = cts - rsm->r_tim_lastsent[i];
3888 			rack_earlier_retran(tp, rsm, t, cts);
3889 		} else if (rack->r_ctl.rc_rack_min_rtt) {
3890 			/*
3891 			 * We retransmitted it and the retransmit did the
3892 			 * job.
3893 			 */
3894 			if (!rack->r_ctl.rc_rack_min_rtt ||
3895 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
3896 				rack->r_ctl.rc_rack_min_rtt = t;
3897 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
3898 					rack->r_ctl.rc_rack_min_rtt = 1;
3899 				}
3900 			}
3901 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
3902 				/* New more recent rack_tmit_time */
3903 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
3904 				rack->rc_rack_rtt = t;
3905 			}
3906 			return (1);
3907 		}
3908 	}
3909 	return (0);
3910 }
3911 
3912 /*
3913  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
3914  */
3915 static void
3916 rack_log_sack_passed(struct tcpcb *tp,
3917     struct tcp_rack *rack, struct rack_sendmap *rsm)
3918 {
3919 	struct rack_sendmap *nrsm;
3920 	uint32_t ts;
3921 	int32_t idx;
3922 
3923 	idx = rsm->r_rtr_cnt - 1;
3924 	ts = rsm->r_tim_lastsent[idx];
3925 	nrsm = rsm;
3926 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
3927 	    rack_head, r_tnext) {
3928 		if (nrsm == rsm) {
3929 			/* Skip orginal segment he is acked */
3930 			continue;
3931 		}
3932 		if (nrsm->r_flags & RACK_ACKED) {
3933 			/* Skip ack'd segments */
3934 			continue;
3935 		}
3936 		if (nrsm->r_flags & RACK_SACK_PASSED) {
3937 			/*
3938 			 * We found one that is already marked
3939 			 * passed, we have been here before and
3940 			 * so all others below this are marked.
3941 			 */
3942 			break;
3943 		}
3944 		idx = nrsm->r_rtr_cnt - 1;
3945 		if (ts == nrsm->r_tim_lastsent[idx]) {
3946 			/*
3947 			 * For this case lets use seq no, if we sent in a
3948 			 * big block (TSO) we would have a bunch of segments
3949 			 * sent at the same time.
3950 			 *
3951 			 * We would only get a report if its SEQ is earlier.
3952 			 * If we have done multiple retransmits the times
3953 			 * would not be equal.
3954 			 */
3955 			if (SEQ_LT(nrsm->r_start, rsm->r_start)) {
3956 				nrsm->r_flags |= RACK_SACK_PASSED;
3957 				nrsm->r_flags &= ~RACK_WAS_SACKPASS;
3958 			}
3959 		} else {
3960 			/*
3961 			 * Here they were sent at different times, not a big
3962 			 * block. Since we transmitted this one later and
3963 			 * see it sack'd then this must also be missing (or
3964 			 * we would have gotten a sack block for it)
3965 			 */
3966 			nrsm->r_flags |= RACK_SACK_PASSED;
3967 			nrsm->r_flags &= ~RACK_WAS_SACKPASS;
3968 		}
3969 	}
3970 }
3971 
3972 static uint32_t
3973 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
3974     struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts)
3975 {
3976 	int32_t idx;
3977 	int32_t times = 0;
3978 	uint32_t start, end, changed = 0;
3979 	struct rack_sendmap *rsm, *nrsm;
3980 	int32_t used_ref = 1;
3981 
3982 	start = sack->start;
3983 	end = sack->end;
3984 	rsm = *prsm;
3985 	if (rsm && SEQ_LT(start, rsm->r_start)) {
3986 		TAILQ_FOREACH_REVERSE_FROM(rsm, &rack->r_ctl.rc_map, rack_head, r_next) {
3987 			if (SEQ_GEQ(start, rsm->r_start) &&
3988 			    SEQ_LT(start, rsm->r_end)) {
3989 				goto do_rest_ofb;
3990 			}
3991 		}
3992 	}
3993 	if (rsm == NULL) {
3994 start_at_beginning:
3995 		rsm = NULL;
3996 		used_ref = 0;
3997 	}
3998 	/* First lets locate the block where this guy is */
3999 	TAILQ_FOREACH_FROM(rsm, &rack->r_ctl.rc_map, r_next) {
4000 		if (SEQ_GEQ(start, rsm->r_start) &&
4001 		    SEQ_LT(start, rsm->r_end)) {
4002 			break;
4003 		}
4004 	}
4005 do_rest_ofb:
4006 	if (rsm == NULL) {
4007 		/*
4008 		 * This happens when we get duplicate sack blocks with the
4009 		 * same end. For example SACK 4: 100 SACK 3: 100 The sort
4010 		 * will not change there location so we would just start at
4011 		 * the end of the first one and get lost.
4012 		 */
4013 		if (tp->t_flags & TF_SENTFIN) {
4014 			/*
4015 			 * Check to see if we have not logged the FIN that
4016 			 * went out.
4017 			 */
4018 			nrsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
4019 			if (nrsm && (nrsm->r_end + 1) == tp->snd_max) {
4020 				/*
4021 				 * Ok we did not get the FIN logged.
4022 				 */
4023 				nrsm->r_end++;
4024 				rsm = nrsm;
4025 				goto do_rest_ofb;
4026 			}
4027 		}
4028 		if (times == 1) {
4029 #ifdef INVARIANTS
4030 			panic("tp:%p rack:%p sack:%p to:%p prsm:%p",
4031 			    tp, rack, sack, to, prsm);
4032 #else
4033 			goto out;
4034 #endif
4035 		}
4036 		times++;
4037 		counter_u64_add(rack_sack_proc_restart, 1);
4038 		goto start_at_beginning;
4039 	}
4040 	/* Ok we have an ACK for some piece of rsm */
4041 	if (rsm->r_start != start) {
4042 		/*
4043 		 * Need to split this in two pieces the before and after.
4044 		 */
4045 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4046 		if (nrsm == NULL) {
4047 			/*
4048 			 * failed XXXrrs what can we do but loose the sack
4049 			 * info?
4050 			 */
4051 			goto out;
4052 		}
4053 		nrsm->r_start = start;
4054 		nrsm->r_rtr_bytes = 0;
4055 		nrsm->r_end = rsm->r_end;
4056 		nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
4057 		nrsm->r_flags = rsm->r_flags;
4058 		nrsm->r_sndcnt = rsm->r_sndcnt;
4059 		for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
4060 			nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
4061 		}
4062 		rsm->r_end = nrsm->r_start;
4063 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
4064 		if (rsm->r_in_tmap) {
4065 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4066 			nrsm->r_in_tmap = 1;
4067 		}
4068 		rsm->r_flags &= (~RACK_HAS_FIN);
4069 		rsm = nrsm;
4070 	}
4071 	if (SEQ_GEQ(end, rsm->r_end)) {
4072 		/*
4073 		 * The end of this block is either beyond this guy or right
4074 		 * at this guy.
4075 		 */
4076 
4077 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4078 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4079 			changed += (rsm->r_end - rsm->r_start);
4080 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4081 			rack_log_sack_passed(tp, rack, rsm);
4082 			/* Is Reordering occuring? */
4083 			if (rsm->r_flags & RACK_SACK_PASSED) {
4084 				counter_u64_add(rack_reorder_seen, 1);
4085 				rack->r_ctl.rc_reorder_ts = cts;
4086 			}
4087 			rsm->r_flags |= RACK_ACKED;
4088 			rsm->r_flags &= ~RACK_TLP;
4089 			if (rsm->r_in_tmap) {
4090 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4091 				rsm->r_in_tmap = 0;
4092 			}
4093 		}
4094 		if (end == rsm->r_end) {
4095 			/* This block only - done */
4096 			goto out;
4097 		}
4098 		/* There is more not coverend by this rsm move on */
4099 		start = rsm->r_end;
4100 		nrsm = TAILQ_NEXT(rsm, r_next);
4101 		rsm = nrsm;
4102 		times = 0;
4103 		goto do_rest_ofb;
4104 	}
4105 	/* Ok we need to split off this one at the tail */
4106 	nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4107 	if (nrsm == NULL) {
4108 		/* failed rrs what can we do but loose the sack info? */
4109 		goto out;
4110 	}
4111 	/* Clone it */
4112 	nrsm->r_start = end;
4113 	nrsm->r_end = rsm->r_end;
4114 	nrsm->r_rtr_bytes = 0;
4115 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
4116 	nrsm->r_flags = rsm->r_flags;
4117 	nrsm->r_sndcnt = rsm->r_sndcnt;
4118 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
4119 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
4120 	}
4121 	/* The sack block does not cover this guy fully */
4122 	rsm->r_flags &= (~RACK_HAS_FIN);
4123 	rsm->r_end = end;
4124 	TAILQ_INSERT_AFTER(&rack->r_ctl.rc_map, rsm, nrsm, r_next);
4125 	if (rsm->r_in_tmap) {
4126 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4127 		nrsm->r_in_tmap = 1;
4128 	}
4129 	if (rsm->r_flags & RACK_ACKED) {
4130 		/* Been here done that */
4131 		goto out;
4132 	}
4133 	rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4134 	changed += (rsm->r_end - rsm->r_start);
4135 	rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4136 	rack_log_sack_passed(tp, rack, rsm);
4137 	/* Is Reordering occuring? */
4138 	if (rsm->r_flags & RACK_SACK_PASSED) {
4139 		counter_u64_add(rack_reorder_seen, 1);
4140 		rack->r_ctl.rc_reorder_ts = cts;
4141 	}
4142 	rsm->r_flags |= RACK_ACKED;
4143 	rsm->r_flags &= ~RACK_TLP;
4144 	if (rsm->r_in_tmap) {
4145 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4146 		rsm->r_in_tmap = 0;
4147 	}
4148 out:
4149 	if (rsm && (rsm->r_flags & RACK_ACKED)) {
4150 		/*
4151 		 * Now can we merge this newly acked
4152 		 * block with either the previous or
4153 		 * next block?
4154 		 */
4155 		nrsm = TAILQ_NEXT(rsm, r_next);
4156 		if (nrsm &&
4157 		    (nrsm->r_flags & RACK_ACKED)) {
4158 			/* yep this and next can be merged */
4159 			rsm = rack_merge_rsm(rack, rsm, nrsm);
4160 		}
4161 		/* Now what about the previous? */
4162 		nrsm = TAILQ_PREV(rsm, rack_head, r_next);
4163 		if (nrsm &&
4164 		    (nrsm->r_flags & RACK_ACKED)) {
4165 			/* yep the previous and this can be merged */
4166 			rsm = rack_merge_rsm(rack, nrsm, rsm);
4167 		}
4168 	}
4169 	if (used_ref == 0) {
4170 		counter_u64_add(rack_sack_proc_all, 1);
4171 	} else {
4172 		counter_u64_add(rack_sack_proc_short, 1);
4173 	}
4174 	/* Save off where we last were */
4175 	if (rsm)
4176 		rack->r_ctl.rc_sacklast = TAILQ_NEXT(rsm, r_next);
4177 	else
4178 		rack->r_ctl.rc_sacklast = NULL;
4179 	*prsm = rsm;
4180 	return (changed);
4181 }
4182 
4183 static void inline
4184 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4185 {
4186 	struct rack_sendmap *tmap;
4187 
4188 	tmap = NULL;
4189 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4190 		/* Its no longer sacked, mark it so */
4191 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4192 #ifdef INVARIANTS
4193 		if (rsm->r_in_tmap) {
4194 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4195 			      rack, rsm, rsm->r_flags);
4196 		}
4197 #endif
4198 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4199 		/* Rebuild it into our tmap */
4200 		if (tmap == NULL) {
4201 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4202 			tmap = rsm;
4203 		} else {
4204 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4205 			tmap = rsm;
4206 		}
4207 		tmap->r_in_tmap = 1;
4208 		rsm = TAILQ_NEXT(rsm, r_next);
4209 	}
4210 	/*
4211 	 * Now lets possibly clear the sack filter so we start
4212 	 * recognizing sacks that cover this area.
4213 	 */
4214 	if (rack_use_sack_filter)
4215 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4216 
4217 }
4218 
4219 static void
4220 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4221 {
4222 	uint32_t changed, last_seq, entered_recovery = 0;
4223 	struct tcp_rack *rack;
4224 	struct rack_sendmap *rsm;
4225 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4226 	register uint32_t th_ack;
4227 	int32_t i, j, k, num_sack_blks = 0;
4228 	uint32_t cts, acked, ack_point, sack_changed = 0;
4229 
4230 	INP_WLOCK_ASSERT(tp->t_inpcb);
4231 	if (th->th_flags & TH_RST) {
4232 		/* We don't log resets */
4233 		return;
4234 	}
4235 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4236 	cts = tcp_ts_getticks();
4237 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4238 	changed = 0;
4239 	th_ack = th->th_ack;
4240 
4241 	if (SEQ_GT(th_ack, tp->snd_una)) {
4242 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4243 		tp->t_acktime = ticks;
4244 	}
4245 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4246 		changed = th_ack - rsm->r_start;
4247 	if (changed) {
4248 		/*
4249 		 * The ACK point is advancing to th_ack, we must drop off
4250 		 * the packets in the rack log and calculate any eligble
4251 		 * RTT's.
4252 		 */
4253 		rack->r_wanted_output++;
4254 more:
4255 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4256 		if (rsm == NULL) {
4257 			if ((th_ack - 1) == tp->iss) {
4258 				/*
4259 				 * For the SYN incoming case we will not
4260 				 * have called tcp_output for the sending of
4261 				 * the SYN, so there will be no map. All
4262 				 * other cases should probably be a panic.
4263 				 */
4264 				goto proc_sack;
4265 			}
4266 			if (tp->t_flags & TF_SENTFIN) {
4267 				/* if we send a FIN we will not hav a map */
4268 				goto proc_sack;
4269 			}
4270 #ifdef INVARIANTS
4271 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4272 			    tp,
4273 			    th, tp->t_state, rack,
4274 			    tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4275 #endif
4276 			goto proc_sack;
4277 		}
4278 		if (SEQ_LT(th_ack, rsm->r_start)) {
4279 			/* Huh map is missing this */
4280 #ifdef INVARIANTS
4281 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4282 			    rsm->r_start,
4283 			    th_ack, tp->t_state, rack->r_state);
4284 #endif
4285 			goto proc_sack;
4286 		}
4287 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4288 		/* Now do we consume the whole thing? */
4289 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4290 			/* Its all consumed. */
4291 			uint32_t left;
4292 
4293 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4294 			rsm->r_rtr_bytes = 0;
4295 			TAILQ_REMOVE(&rack->r_ctl.rc_map, rsm, r_next);
4296 			if (rsm->r_in_tmap) {
4297 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4298 				rsm->r_in_tmap = 0;
4299 			}
4300 			if (rack->r_ctl.rc_next == rsm) {
4301 				/* scoot along the marker */
4302 				rack->r_ctl.rc_next = TAILQ_FIRST(&rack->r_ctl.rc_map);
4303 			}
4304 			if (rsm->r_flags & RACK_ACKED) {
4305 				/*
4306 				 * It was acked on the scoreboard -- remove
4307 				 * it from total
4308 				 */
4309 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4310 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4311 				/*
4312 				 * There are acked segments ACKED on the
4313 				 * scoreboard further up. We are seeing
4314 				 * reordering.
4315 				 */
4316 				counter_u64_add(rack_reorder_seen, 1);
4317 				rsm->r_flags |= RACK_ACKED;
4318 				rack->r_ctl.rc_reorder_ts = cts;
4319 			}
4320 			left = th_ack - rsm->r_end;
4321 			if (rsm->r_rtr_cnt > 1) {
4322 				/*
4323 				 * Technically we should make r_rtr_cnt be
4324 				 * monotonicly increasing and just mod it to
4325 				 * the timestamp it is replacing.. that way
4326 				 * we would have the last 3 retransmits. Now
4327 				 * rc_loss_count will be wrong if we
4328 				 * retransmit something more than 2 times in
4329 				 * recovery :(
4330 				 */
4331 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4332 			}
4333 			/* Free back to zone */
4334 			rack_free(rack, rsm);
4335 			if (left) {
4336 				goto more;
4337 			}
4338 			goto proc_sack;
4339 		}
4340 		if (rsm->r_flags & RACK_ACKED) {
4341 			/*
4342 			 * It was acked on the scoreboard -- remove it from
4343 			 * total for the part being cum-acked.
4344 			 */
4345 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4346 		}
4347 		rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4348 		rsm->r_rtr_bytes = 0;
4349 		rsm->r_start = th_ack;
4350 	}
4351 proc_sack:
4352 	/* Check for reneging */
4353 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
4354 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4355 		/*
4356 		 * The peer has moved snd_una up to
4357 		 * the edge of this send, i.e. one
4358 		 * that it had previously acked. The only
4359 		 * way that can be true if the peer threw
4360 		 * away data (space issues) that it had
4361 		 * previously sacked (else it would have
4362 		 * given us snd_una up to (rsm->r_end).
4363 		 * We need to undo the acked markings here.
4364 		 *
4365 		 * Note we have to look to make sure th_ack is
4366 		 * our rsm->r_start in case we get an old ack
4367 		 * where th_ack is behind snd_una.
4368 		 */
4369 		rack_peer_reneges(rack, rsm, th->th_ack);
4370 	}
4371 	if ((to->to_flags & TOF_SACK) == 0) {
4372 		/* We are done nothing left to log */
4373 		goto out;
4374 	}
4375 	rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_map, rack_sendmap, r_next);
4376 	if (rsm) {
4377 		last_seq = rsm->r_end;
4378 	} else {
4379 		last_seq = tp->snd_max;
4380 	}
4381 	/* Sack block processing */
4382 	if (SEQ_GT(th_ack, tp->snd_una))
4383 		ack_point = th_ack;
4384 	else
4385 		ack_point = tp->snd_una;
4386 	for (i = 0; i < to->to_nsacks; i++) {
4387 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4388 		    &sack, sizeof(sack));
4389 		sack.start = ntohl(sack.start);
4390 		sack.end = ntohl(sack.end);
4391 		if (SEQ_GT(sack.end, sack.start) &&
4392 		    SEQ_GT(sack.start, ack_point) &&
4393 		    SEQ_LT(sack.start, tp->snd_max) &&
4394 		    SEQ_GT(sack.end, ack_point) &&
4395 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4396 			if ((rack->r_ctl.rc_num_maps_alloced > rack_sack_block_limit) &&
4397 			    (SEQ_LT(sack.end, last_seq)) &&
4398 			    ((sack.end - sack.start) < (tp->t_maxseg / 8))) {
4399 				/*
4400 				 * Not the last piece and its smaller than
4401 				 * 1/8th of a MSS. We ignore this.
4402 				 */
4403 				counter_u64_add(rack_runt_sacks, 1);
4404 				continue;
4405 			}
4406 			sack_blocks[num_sack_blks] = sack;
4407 			num_sack_blks++;
4408 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4409 			   SEQ_LEQ(sack.end, th_ack)) {
4410 			/*
4411 			 * Its a D-SACK block.
4412 			 */
4413 /*			tcp_record_dsack(sack.start, sack.end); */
4414 		}
4415 	}
4416 	if (num_sack_blks == 0)
4417 		goto out;
4418 	/*
4419 	 * Sort the SACK blocks so we can update the rack scoreboard with
4420 	 * just one pass.
4421 	 */
4422 	if (rack_use_sack_filter) {
4423 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
4424 						 num_sack_blks, th->th_ack);
4425 		ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
4426 	}
4427 	if (num_sack_blks < 2) {
4428 		goto do_sack_work;
4429 	}
4430 	/* Sort the sacks */
4431 	for (i = 0; i < num_sack_blks; i++) {
4432 		for (j = i + 1; j < num_sack_blks; j++) {
4433 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4434 				sack = sack_blocks[i];
4435 				sack_blocks[i] = sack_blocks[j];
4436 				sack_blocks[j] = sack;
4437 			}
4438 		}
4439 	}
4440 	/*
4441 	 * Now are any of the sack block ends the same (yes some
4442 	 * implememtations send these)?
4443 	 */
4444 again:
4445 	if (num_sack_blks > 1) {
4446 		for (i = 0; i < num_sack_blks; i++) {
4447 			for (j = i + 1; j < num_sack_blks; j++) {
4448 				if (sack_blocks[i].end == sack_blocks[j].end) {
4449 					/*
4450 					 * Ok these two have the same end we
4451 					 * want the smallest end and then
4452 					 * throw away the larger and start
4453 					 * again.
4454 					 */
4455 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4456 						/*
4457 						 * The second block covers
4458 						 * more area use that
4459 						 */
4460 						sack_blocks[i].start = sack_blocks[j].start;
4461 					}
4462 					/*
4463 					 * Now collapse out the dup-sack and
4464 					 * lower the count
4465 					 */
4466 					for (k = (j + 1); k < num_sack_blks; k++) {
4467 						sack_blocks[j].start = sack_blocks[k].start;
4468 						sack_blocks[j].end = sack_blocks[k].end;
4469 						j++;
4470 					}
4471 					num_sack_blks--;
4472 					goto again;
4473 				}
4474 			}
4475 		}
4476 	}
4477 do_sack_work:
4478 	rsm = rack->r_ctl.rc_sacklast;
4479 	for (i = 0; i < num_sack_blks; i++) {
4480 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts);
4481 		if (acked) {
4482 			rack->r_wanted_output++;
4483 			changed += acked;
4484 			sack_changed += acked;
4485 		}
4486 	}
4487 out:
4488 	if (changed) {
4489 		/* Something changed cancel the rack timer */
4490 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4491 	}
4492 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
4493 		/*
4494 		 * Ok we have a high probability that we need to go in to
4495 		 * recovery since we have data sack'd
4496 		 */
4497 		struct rack_sendmap *rsm;
4498 		uint32_t tsused;
4499 
4500 		tsused = tcp_ts_getticks();
4501 		rsm = tcp_rack_output(tp, rack, tsused);
4502 		if (rsm) {
4503 			/* Enter recovery */
4504 			rack->r_ctl.rc_rsm_start = rsm->r_start;
4505 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4506 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4507 			entered_recovery = 1;
4508 			rack_cong_signal(tp, NULL, CC_NDUPACK);
4509 			/*
4510 			 * When we enter recovery we need to assure we send
4511 			 * one packet.
4512 			 */
4513 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
4514 			rack->r_timer_override = 1;
4515 		}
4516 	}
4517 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
4518 		/* Deal with changed an PRR here (in recovery only) */
4519 		uint32_t pipe, snd_una;
4520 
4521 		rack->r_ctl.rc_prr_delivered += changed;
4522 		/* Compute prr_sndcnt */
4523 		if (SEQ_GT(tp->snd_una, th_ack)) {
4524 			snd_una = tp->snd_una;
4525 		} else {
4526 			snd_una = th_ack;
4527 		}
4528 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
4529 		if (pipe > tp->snd_ssthresh) {
4530 			long sndcnt;
4531 
4532 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
4533 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
4534 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
4535 			else {
4536 				rack->r_ctl.rc_prr_sndcnt = 0;
4537 				sndcnt = 0;
4538 			}
4539 			sndcnt++;
4540 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
4541 				sndcnt -= rack->r_ctl.rc_prr_out;
4542 			else
4543 				sndcnt = 0;
4544 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
4545 		} else {
4546 			uint32_t limit;
4547 
4548 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
4549 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
4550 			else
4551 				limit = 0;
4552 			if (changed > limit)
4553 				limit = changed;
4554 			limit += tp->t_maxseg;
4555 			if (tp->snd_ssthresh > pipe) {
4556 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
4557 			} else {
4558 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
4559 			}
4560 		}
4561 		if (rack->r_ctl.rc_prr_sndcnt >= tp->t_maxseg) {
4562 			rack->r_timer_override = 1;
4563 		}
4564 	}
4565 }
4566 
4567 /*
4568  * Return value of 1, we do not need to call rack_process_data().
4569  * return value of 0, rack_process_data can be called.
4570  * For ret_val if its 0 the TCP is locked, if its non-zero
4571  * its unlocked and probably unsafe to touch the TCB.
4572  */
4573 static int
4574 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
4575     struct tcpcb *tp, struct tcpopt *to,
4576     uint32_t tiwin, int32_t tlen,
4577     int32_t * ofia, int32_t thflags, int32_t * ret_val)
4578 {
4579 	int32_t ourfinisacked = 0;
4580 	int32_t nsegs, acked_amount;
4581 	int32_t acked;
4582 	struct mbuf *mfree;
4583 	struct tcp_rack *rack;
4584 	int32_t recovery = 0;
4585 
4586 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4587 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
4588 		rack_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
4589 		return (1);
4590 	}
4591 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
4592 		rack_log_ack(tp, to, th);
4593 	}
4594 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
4595 		/*
4596 		 * Old ack, behind (or duplicate to) the last one rcv'd
4597 		 * Note: Should mark reordering is occuring! We should also
4598 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
4599 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
4600 		 * retran and> ack 3
4601 		 */
4602 		return (0);
4603 	}
4604 	/*
4605 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
4606 	 * something we sent.
4607 	 */
4608 	if (tp->t_flags & TF_NEEDSYN) {
4609 		/*
4610 		 * T/TCP: Connection was half-synchronized, and our SYN has
4611 		 * been ACK'd (so connection is now fully synchronized).  Go
4612 		 * to non-starred state, increment snd_una for ACK of SYN,
4613 		 * and check if we can do window scaling.
4614 		 */
4615 		tp->t_flags &= ~TF_NEEDSYN;
4616 		tp->snd_una++;
4617 		/* Do window scaling? */
4618 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
4619 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
4620 			tp->rcv_scale = tp->request_r_scale;
4621 			/* Send window already scaled. */
4622 		}
4623 	}
4624 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4625 	INP_WLOCK_ASSERT(tp->t_inpcb);
4626 
4627 	acked = BYTES_THIS_ACK(tp, th);
4628 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
4629 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
4630 
4631 	/*
4632 	 * If we just performed our first retransmit, and the ACK arrives
4633 	 * within our recovery window, then it was a mistake to do the
4634 	 * retransmit in the first place.  Recover our original cwnd and
4635 	 * ssthresh, and proceed to transmit where we left off.
4636 	 */
4637 	if (tp->t_flags & TF_PREVVALID) {
4638 		tp->t_flags &= ~TF_PREVVALID;
4639 		if (tp->t_rxtshift == 1 &&
4640 		    (int)(ticks - tp->t_badrxtwin) < 0)
4641 			rack_cong_signal(tp, th, CC_RTO_ERR);
4642 	}
4643 	/*
4644 	 * If we have a timestamp reply, update smoothed round trip time. If
4645 	 * no timestamp is present but transmit timer is running and timed
4646 	 * sequence number was acked, update smoothed round trip time. Since
4647 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
4648 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
4649 	 * timer.
4650 	 *
4651 	 * Some boxes send broken timestamp replies during the SYN+ACK
4652 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
4653 	 * and blow up the retransmit timer.
4654 	 */
4655 	/*
4656 	 * If all outstanding data is acked, stop retransmit timer and
4657 	 * remember to restart (more output or persist). If there is more
4658 	 * data to be acked, restart retransmit timer, using current
4659 	 * (possibly backed-off) value.
4660 	 */
4661 	if (th->th_ack == tp->snd_max) {
4662 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4663 		rack->r_wanted_output++;
4664 	}
4665 	/*
4666 	 * If no data (only SYN) was ACK'd, skip rest of ACK processing.
4667 	 */
4668 	if (acked == 0) {
4669 		if (ofia)
4670 			*ofia = ourfinisacked;
4671 		return (0);
4672 	}
4673 	if (rack->r_ctl.rc_early_recovery) {
4674 		if (IN_RECOVERY(tp->t_flags)) {
4675 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
4676 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
4677 				tcp_rack_partialack(tp, th);
4678 			} else {
4679 				rack_post_recovery(tp, th);
4680 				recovery = 1;
4681 			}
4682 		}
4683 	}
4684 	/*
4685 	 * Let the congestion control algorithm update congestion control
4686 	 * related information. This typically means increasing the
4687 	 * congestion window.
4688 	 */
4689 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
4690 	SOCKBUF_LOCK(&so->so_snd);
4691 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
4692 	tp->snd_wnd -= acked_amount;
4693 	mfree = sbcut_locked(&so->so_snd, acked_amount);
4694 	if ((sbused(&so->so_snd) == 0) &&
4695 	    (acked > acked_amount) &&
4696 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
4697 		ourfinisacked = 1;
4698 	}
4699 	/* NB: sowwakeup_locked() does an implicit unlock. */
4700 	sowwakeup_locked(so);
4701 	m_freem(mfree);
4702 	if (rack->r_ctl.rc_early_recovery == 0) {
4703 		if (IN_RECOVERY(tp->t_flags)) {
4704 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
4705 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
4706 				tcp_rack_partialack(tp, th);
4707 			} else {
4708 				rack_post_recovery(tp, th);
4709 			}
4710 		}
4711 	}
4712 	tp->snd_una = th->th_ack;
4713 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
4714 		tp->snd_recover = tp->snd_una;
4715 
4716 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
4717 		tp->snd_nxt = tp->snd_una;
4718 	}
4719 	if (tp->snd_una == tp->snd_max) {
4720 		/* Nothing left outstanding */
4721 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
4722 		tp->t_acktime = 0;
4723 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4724 		/* Set need output so persist might get set */
4725 		rack->r_wanted_output++;
4726 		if (rack_use_sack_filter)
4727 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
4728 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
4729 		    (sbavail(&so->so_snd) == 0) &&
4730 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
4731 			/*
4732 			 * The socket was gone and the
4733 			 * peer sent data, time to
4734 			 * reset him.
4735 			 */
4736 			*ret_val = 1;
4737 			tp = tcp_close(tp);
4738 			rack_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
4739 			return (1);
4740 		}
4741 	}
4742 	if (ofia)
4743 		*ofia = ourfinisacked;
4744 	return (0);
4745 }
4746 
4747 
4748 /*
4749  * Return value of 1, the TCB is unlocked and most
4750  * likely gone, return value of 0, the TCP is still
4751  * locked.
4752  */
4753 static int
4754 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
4755     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
4756     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
4757 {
4758 	/*
4759 	 * Update window information. Don't look at window if no ACK: TAC's
4760 	 * send garbage on first SYN.
4761 	 */
4762 	int32_t nsegs;
4763 #ifdef TCP_RFC7413
4764 	int32_t tfo_syn;
4765 #else
4766 #define	tfo_syn	(FALSE)
4767 #endif
4768 	struct tcp_rack *rack;
4769 
4770 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4771 	INP_WLOCK_ASSERT(tp->t_inpcb);
4772 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
4773 	if ((thflags & TH_ACK) &&
4774 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
4775 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
4776 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
4777 		/* keep track of pure window updates */
4778 		if (tlen == 0 &&
4779 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
4780 			TCPSTAT_INC(tcps_rcvwinupd);
4781 		tp->snd_wnd = tiwin;
4782 		tp->snd_wl1 = th->th_seq;
4783 		tp->snd_wl2 = th->th_ack;
4784 		if (tp->snd_wnd > tp->max_sndwnd)
4785 			tp->max_sndwnd = tp->snd_wnd;
4786 		rack->r_wanted_output++;
4787 	} else if (thflags & TH_ACK) {
4788 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
4789 			tp->snd_wnd = tiwin;
4790 			tp->snd_wl1 = th->th_seq;
4791 			tp->snd_wl2 = th->th_ack;
4792 		}
4793 	}
4794 	/* Was persist timer active and now we have window space? */
4795 	if ((rack->rc_in_persist != 0) && tp->snd_wnd) {
4796 		rack_exit_persist(tp, rack);
4797 		tp->snd_nxt = tp->snd_max;
4798 		/* Make sure we output to start the timer */
4799 		rack->r_wanted_output++;
4800 	}
4801 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
4802 		m_freem(m);
4803 		return (0);
4804 	}
4805 	/*
4806 	 * Process segments with URG.
4807 	 */
4808 	if ((thflags & TH_URG) && th->th_urp &&
4809 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4810 		/*
4811 		 * This is a kludge, but if we receive and accept random
4812 		 * urgent pointers, we'll crash in soreceive.  It's hard to
4813 		 * imagine someone actually wanting to send this much urgent
4814 		 * data.
4815 		 */
4816 		SOCKBUF_LOCK(&so->so_rcv);
4817 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
4818 			th->th_urp = 0;	/* XXX */
4819 			thflags &= ~TH_URG;	/* XXX */
4820 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
4821 			goto dodata;	/* XXX */
4822 		}
4823 		/*
4824 		 * If this segment advances the known urgent pointer, then
4825 		 * mark the data stream.  This should not happen in
4826 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
4827 		 * FIN has been received from the remote side. In these
4828 		 * states we ignore the URG.
4829 		 *
4830 		 * According to RFC961 (Assigned Protocols), the urgent
4831 		 * pointer points to the last octet of urgent data.  We
4832 		 * continue, however, to consider it to indicate the first
4833 		 * octet of data past the urgent section as the original
4834 		 * spec states (in one of two places).
4835 		 */
4836 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
4837 			tp->rcv_up = th->th_seq + th->th_urp;
4838 			so->so_oobmark = sbavail(&so->so_rcv) +
4839 			    (tp->rcv_up - tp->rcv_nxt) - 1;
4840 			if (so->so_oobmark == 0)
4841 				so->so_rcv.sb_state |= SBS_RCVATMARK;
4842 			sohasoutofband(so);
4843 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
4844 		}
4845 		SOCKBUF_UNLOCK(&so->so_rcv);
4846 		/*
4847 		 * Remove out of band data so doesn't get presented to user.
4848 		 * This can happen independent of advancing the URG pointer,
4849 		 * but if two URG's are pending at once, some out-of-band
4850 		 * data may creep in... ick.
4851 		 */
4852 		if (th->th_urp <= (uint32_t) tlen &&
4853 		    !(so->so_options & SO_OOBINLINE)) {
4854 			/* hdr drop is delayed */
4855 			tcp_pulloutofband(so, th, m, drop_hdrlen);
4856 		}
4857 	} else {
4858 		/*
4859 		 * If no out of band data is expected, pull receive urgent
4860 		 * pointer along with the receive window.
4861 		 */
4862 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
4863 			tp->rcv_up = tp->rcv_nxt;
4864 	}
4865 dodata:				/* XXX */
4866 	INP_WLOCK_ASSERT(tp->t_inpcb);
4867 
4868 	/*
4869 	 * Process the segment text, merging it into the TCP sequencing
4870 	 * queue, and arranging for acknowledgment of receipt if necessary.
4871 	 * This process logically involves adjusting tp->rcv_wnd as data is
4872 	 * presented to the user (this happens in tcp_usrreq.c, case
4873 	 * PRU_RCVD).  If a FIN has already been received on this connection
4874 	 * then we just ignore the text.
4875 	 */
4876 #ifdef TCP_RFC7413
4877 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
4878 	    (tp->t_flags & TF_FASTOPEN));
4879 #endif
4880 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
4881 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4882 		tcp_seq save_start = th->th_seq;
4883 		tcp_seq save_rnxt  = tp->rcv_nxt;
4884 		int     save_tlen  = tlen;
4885 
4886 		m_adj(m, drop_hdrlen);	/* delayed header drop */
4887 		/*
4888 		 * Insert segment which includes th into TCP reassembly
4889 		 * queue with control block tp.  Set thflags to whether
4890 		 * reassembly now includes a segment with FIN.  This handles
4891 		 * the common case inline (segment is the next to be
4892 		 * received on an established connection, and the queue is
4893 		 * empty), avoiding linkage into and removal from the queue
4894 		 * and repetition of various conversions. Set DELACK for
4895 		 * segments received in order, but ack immediately when
4896 		 * segments are out of order (so fast retransmit can work).
4897 		 */
4898 		if (th->th_seq == tp->rcv_nxt &&
4899 		    SEGQ_EMPTY(tp) &&
4900 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
4901 		    tfo_syn)) {
4902 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
4903 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4904 				tp->t_flags |= TF_DELACK;
4905 			} else {
4906 				rack->r_wanted_output++;
4907 				tp->t_flags |= TF_ACKNOW;
4908 			}
4909 			tp->rcv_nxt += tlen;
4910 			thflags = th->th_flags & TH_FIN;
4911 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
4912 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
4913 			SOCKBUF_LOCK(&so->so_rcv);
4914 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4915 				m_freem(m);
4916 			else
4917 				sbappendstream_locked(&so->so_rcv, m, 0);
4918 			/* NB: sorwakeup_locked() does an implicit unlock. */
4919 			sorwakeup_locked(so);
4920 		} else {
4921 			/*
4922 			 * XXX: Due to the header drop above "th" is
4923 			 * theoretically invalid by now.  Fortunately
4924 			 * m_adj() doesn't actually frees any mbufs when
4925 			 * trimming from the head.
4926 			 */
4927 			tcp_seq temp = save_start;
4928 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
4929 			tp->t_flags |= TF_ACKNOW;
4930 		}
4931 		if (((tlen == 0) && (save_tlen > 0) &&
4932 		    (SEQ_LT(save_start, save_rnxt)))) {
4933 			/*
4934 			 * DSACK actually handled in the fastpath
4935 			 * above.
4936 			 */
4937 			tcp_update_sack_list(tp, save_start, save_start + save_tlen);
4938 		} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
4939 			/*
4940 			 * Cleaning sackblks by using zero length
4941 			 * update.
4942 			 */
4943 			tcp_update_sack_list(tp, save_start, save_start);
4944 		} else if ((tlen > 0) && (tlen >= save_tlen)) {
4945 			/* Update of sackblks. */
4946 			tcp_update_sack_list(tp, save_start, save_start + save_tlen);
4947 		} else if (tlen > 0) {
4948 			tcp_update_sack_list(tp, save_start, save_start+tlen);
4949 		}
4950 	} else {
4951 		m_freem(m);
4952 		thflags &= ~TH_FIN;
4953 	}
4954 
4955 	/*
4956 	 * If FIN is received ACK the FIN and let the user know that the
4957 	 * connection is closing.
4958 	 */
4959 	if (thflags & TH_FIN) {
4960 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4961 			socantrcvmore(so);
4962 			/*
4963 			 * If connection is half-synchronized (ie NEEDSYN
4964 			 * flag on) then delay ACK, so it may be piggybacked
4965 			 * when SYN is sent. Otherwise, since we received a
4966 			 * FIN then no more input can be expected, send ACK
4967 			 * now.
4968 			 */
4969 			if (tp->t_flags & TF_NEEDSYN) {
4970 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4971 				tp->t_flags |= TF_DELACK;
4972 			} else {
4973 				tp->t_flags |= TF_ACKNOW;
4974 			}
4975 			tp->rcv_nxt++;
4976 		}
4977 		switch (tp->t_state) {
4978 
4979 			/*
4980 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
4981 			 * CLOSE_WAIT state.
4982 			 */
4983 		case TCPS_SYN_RECEIVED:
4984 			tp->t_starttime = ticks;
4985 			/* FALLTHROUGH */
4986 		case TCPS_ESTABLISHED:
4987 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4988 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
4989 			break;
4990 
4991 			/*
4992 			 * If still in FIN_WAIT_1 STATE FIN has not been
4993 			 * acked so enter the CLOSING state.
4994 			 */
4995 		case TCPS_FIN_WAIT_1:
4996 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
4997 			tcp_state_change(tp, TCPS_CLOSING);
4998 			break;
4999 
5000 			/*
5001 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5002 			 * starting the time-wait timer, turning off the
5003 			 * other standard timers.
5004 			 */
5005 		case TCPS_FIN_WAIT_2:
5006 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5007 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5008 			tcp_twstart(tp);
5009 			return (1);
5010 		}
5011 	}
5012 	/*
5013 	 * Return any desired output.
5014 	 */
5015 	if ((tp->t_flags & TF_ACKNOW) || (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
5016 		rack->r_wanted_output++;
5017 	}
5018 	INP_WLOCK_ASSERT(tp->t_inpcb);
5019 	return (0);
5020 }
5021 
5022 /*
5023  * Here nothing is really faster, its just that we
5024  * have broken out the fast-data path also just like
5025  * the fast-ack.
5026  */
5027 static int
5028 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
5029     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5030     uint32_t tiwin, int32_t nxt_pkt)
5031 {
5032 	int32_t nsegs;
5033 	int32_t newsize = 0;	/* automatic sockbuf scaling */
5034 	struct tcp_rack *rack;
5035 #ifdef TCPDEBUG
5036 	/*
5037 	 * The size of tcp_saveipgen must be the size of the max ip header,
5038 	 * now IPv6.
5039 	 */
5040 	u_char tcp_saveipgen[IP6_HDR_LEN];
5041 	struct tcphdr tcp_savetcp;
5042 	short ostate = 0;
5043 
5044 #endif
5045 	/*
5046 	 * If last ACK falls within this segment's sequence numbers, record
5047 	 * the timestamp. NOTE that the test is modified according to the
5048 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5049 	 */
5050 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
5051 		return (0);
5052 	}
5053 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5054 		return (0);
5055 	}
5056 	if (tiwin && tiwin != tp->snd_wnd) {
5057 		return (0);
5058 	}
5059 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
5060 		return (0);
5061 	}
5062 	if (__predict_false((to->to_flags & TOF_TS) &&
5063 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
5064 		return (0);
5065 	}
5066 	if (__predict_false((th->th_ack != tp->snd_una))) {
5067 		return (0);
5068 	}
5069 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
5070 		return (0);
5071 	}
5072 	if ((to->to_flags & TOF_TS) != 0 &&
5073 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5074 		tp->ts_recent_age = tcp_ts_getticks();
5075 		tp->ts_recent = to->to_tsval;
5076 	}
5077 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5078 	/*
5079 	 * This is a pure, in-sequence data packet with nothing on the
5080 	 * reassembly queue and we have enough buffer space to take it.
5081 	 */
5082 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5083 
5084 
5085 	/* Clean receiver SACK report if present */
5086 	if (tp->rcv_numsacks)
5087 	        tcp_clean_sackreport(tp);
5088 	TCPSTAT_INC(tcps_preddat);
5089 	tp->rcv_nxt += tlen;
5090 	/*
5091 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
5092 	 */
5093 	tp->snd_wl1 = th->th_seq;
5094 	/*
5095 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
5096 	 */
5097 	tp->rcv_up = tp->rcv_nxt;
5098 	TCPSTAT_ADD(tcps_rcvpack, nsegs);
5099 	TCPSTAT_ADD(tcps_rcvbyte, tlen);
5100 #ifdef TCPDEBUG
5101 	if (so->so_options & SO_DEBUG)
5102 		tcp_trace(TA_INPUT, ostate, tp,
5103 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
5104 #endif
5105 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
5106 
5107 	/* Add data to socket buffer. */
5108 	SOCKBUF_LOCK(&so->so_rcv);
5109 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5110 		m_freem(m);
5111 	} else {
5112 		/*
5113 		 * Set new socket buffer size. Give up when limit is
5114 		 * reached.
5115 		 */
5116 		if (newsize)
5117 			if (!sbreserve_locked(&so->so_rcv,
5118 			    newsize, so, NULL))
5119 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
5120 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5121 		sbappendstream_locked(&so->so_rcv, m, 0);
5122 		rack_calc_rwin(so, tp);
5123 	}
5124 	/* NB: sorwakeup_locked() does an implicit unlock. */
5125 	sorwakeup_locked(so);
5126 	if (DELAY_ACK(tp, tlen)) {
5127 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5128 		tp->t_flags |= TF_DELACK;
5129 	} else {
5130 		tp->t_flags |= TF_ACKNOW;
5131 		rack->r_wanted_output++;
5132 	}
5133 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
5134 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5135 	return (1);
5136 }
5137 
5138 /*
5139  * This subfunction is used to try to highly optimize the
5140  * fast path. We again allow window updates that are
5141  * in sequence to remain in the fast-path. We also add
5142  * in the __predict's to attempt to help the compiler.
5143  * Note that if we return a 0, then we can *not* process
5144  * it and the caller should push the packet into the
5145  * slow-path.
5146  */
5147 static int
5148 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5149     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5150     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
5151 {
5152 	int32_t acked;
5153 	int32_t nsegs;
5154 
5155 #ifdef TCPDEBUG
5156 	/*
5157 	 * The size of tcp_saveipgen must be the size of the max ip header,
5158 	 * now IPv6.
5159 	 */
5160 	u_char tcp_saveipgen[IP6_HDR_LEN];
5161 	struct tcphdr tcp_savetcp;
5162 	short ostate = 0;
5163 
5164 #endif
5165 	struct tcp_rack *rack;
5166 
5167 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5168 		/* Old ack, behind (or duplicate to) the last one rcv'd */
5169 		return (0);
5170 	}
5171 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
5172 		/* Above what we have sent? */
5173 		return (0);
5174 	}
5175 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5176 		/* We are retransmitting */
5177 		return (0);
5178 	}
5179 	if (__predict_false(tiwin == 0)) {
5180 		/* zero window */
5181 		return (0);
5182 	}
5183 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
5184 		/* We need a SYN or a FIN, unlikely.. */
5185 		return (0);
5186 	}
5187 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
5188 		/* Timestamp is behind .. old ack with seq wrap? */
5189 		return (0);
5190 	}
5191 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
5192 		/* Still recovering */
5193 		return (0);
5194 	}
5195 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5196 	if (rack->r_ctl.rc_sacked) {
5197 		/* We have sack holes on our scoreboard */
5198 		return (0);
5199 	}
5200 	/* Ok if we reach here, we can process a fast-ack */
5201 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5202 	rack_log_ack(tp, to, th);
5203 	/* Did the window get updated? */
5204 	if (tiwin != tp->snd_wnd) {
5205 		tp->snd_wnd = tiwin;
5206 		tp->snd_wl1 = th->th_seq;
5207 		if (tp->snd_wnd > tp->max_sndwnd)
5208 			tp->max_sndwnd = tp->snd_wnd;
5209 	}
5210 	if ((rack->rc_in_persist != 0) && (tp->snd_wnd >= tp->t_maxseg)) {
5211 		rack_exit_persist(tp, rack);
5212 	}
5213 	/*
5214 	 * If last ACK falls within this segment's sequence numbers, record
5215 	 * the timestamp. NOTE that the test is modified according to the
5216 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5217 	 */
5218 	if ((to->to_flags & TOF_TS) != 0 &&
5219 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5220 		tp->ts_recent_age = tcp_ts_getticks();
5221 		tp->ts_recent = to->to_tsval;
5222 	}
5223 	/*
5224 	 * This is a pure ack for outstanding data.
5225 	 */
5226 	TCPSTAT_INC(tcps_predack);
5227 
5228 	/*
5229 	 * "bad retransmit" recovery.
5230 	 */
5231 	if (tp->t_flags & TF_PREVVALID) {
5232 		tp->t_flags &= ~TF_PREVVALID;
5233 		if (tp->t_rxtshift == 1 &&
5234 		    (int)(ticks - tp->t_badrxtwin) < 0)
5235 			rack_cong_signal(tp, th, CC_RTO_ERR);
5236 	}
5237 	/*
5238 	 * Recalculate the transmit timer / rtt.
5239 	 *
5240 	 * Some boxes send broken timestamp replies during the SYN+ACK
5241 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5242 	 * and blow up the retransmit timer.
5243 	 */
5244 	acked = BYTES_THIS_ACK(tp, th);
5245 
5246 #ifdef TCP_HHOOK
5247 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
5248 	hhook_run_tcp_est_in(tp, th, to);
5249 #endif
5250 
5251 	TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5252 	TCPSTAT_ADD(tcps_rcvackbyte, acked);
5253 	sbdrop(&so->so_snd, acked);
5254 	/*
5255 	 * Let the congestion control algorithm update congestion control
5256 	 * related information. This typically means increasing the
5257 	 * congestion window.
5258 	 */
5259 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
5260 
5261 	tp->snd_una = th->th_ack;
5262 	/*
5263 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
5264 	 */
5265 	tp->snd_wl2 = th->th_ack;
5266 	tp->t_dupacks = 0;
5267 	m_freem(m);
5268 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
5269 
5270 	/*
5271 	 * If all outstanding data are acked, stop retransmit timer,
5272 	 * otherwise restart timer using current (possibly backed-off)
5273 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
5274 	 * If data are ready to send, let tcp_output decide between more
5275 	 * output or persist.
5276 	 */
5277 #ifdef TCPDEBUG
5278 	if (so->so_options & SO_DEBUG)
5279 		tcp_trace(TA_INPUT, ostate, tp,
5280 		    (void *)tcp_saveipgen,
5281 		    &tcp_savetcp, 0);
5282 #endif
5283 	if (tp->snd_una == tp->snd_max) {
5284 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5285 		tp->t_acktime = 0;
5286 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5287 	}
5288 	/* Wake up the socket if we have room to write more */
5289 	sowwakeup(so);
5290 	if (sbavail(&so->so_snd)) {
5291 		rack->r_wanted_output++;
5292 	}
5293 	return (1);
5294 }
5295 
5296 /*
5297  * Return value of 1, the TCB is unlocked and most
5298  * likely gone, return value of 0, the TCP is still
5299  * locked.
5300  */
5301 static int
5302 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
5303     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5304     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5305 {
5306 	int32_t ret_val = 0;
5307 	int32_t todrop;
5308 	int32_t ourfinisacked = 0;
5309 
5310 	rack_calc_rwin(so, tp);
5311 	/*
5312 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
5313 	 * SYN, drop the input. if seg contains a RST, then drop the
5314 	 * connection. if seg does not contain SYN, then drop it. Otherwise
5315 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
5316 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
5317 	 * contains an ECE and ECN support is enabled, the stream is ECN
5318 	 * capable. if SYN has been acked change to ESTABLISHED else
5319 	 * SYN_RCVD state arrange for segment to be acked (eventually)
5320 	 * continue processing rest of data/controls, beginning with URG
5321 	 */
5322 	if ((thflags & TH_ACK) &&
5323 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
5324 	    SEQ_GT(th->th_ack, tp->snd_max))) {
5325 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5326 		return (1);
5327 	}
5328 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
5329 		TCP_PROBE5(connect__refused, NULL, tp,
5330 		    mtod(m, const char *), tp, th);
5331 		tp = tcp_drop(tp, ECONNREFUSED);
5332 		rack_do_drop(m, tp);
5333 		return (1);
5334 	}
5335 	if (thflags & TH_RST) {
5336 		rack_do_drop(m, tp);
5337 		return (1);
5338 	}
5339 	if (!(thflags & TH_SYN)) {
5340 		rack_do_drop(m, tp);
5341 		return (1);
5342 	}
5343 	tp->irs = th->th_seq;
5344 	tcp_rcvseqinit(tp);
5345 	if (thflags & TH_ACK) {
5346 		TCPSTAT_INC(tcps_connects);
5347 		soisconnected(so);
5348 #ifdef MAC
5349 		mac_socketpeer_set_from_mbuf(m, so);
5350 #endif
5351 		/* Do window scaling on this connection? */
5352 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5353 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5354 			tp->rcv_scale = tp->request_r_scale;
5355 		}
5356 		tp->rcv_adv += min(tp->rcv_wnd,
5357 		    TCP_MAXWIN << tp->rcv_scale);
5358 		/*
5359 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
5360 		 * will be turned on later.
5361 		 */
5362 		if (DELAY_ACK(tp, tlen) && tlen != 0) {
5363 			rack_timer_cancel(tp, (struct tcp_rack *)tp->t_fb_ptr,
5364 					  ((struct tcp_rack *)tp->t_fb_ptr)->r_ctl.rc_rcvtime, __LINE__);
5365 			tp->t_flags |= TF_DELACK;
5366 		} else {
5367 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
5368 			tp->t_flags |= TF_ACKNOW;
5369 		}
5370 
5371 		if ((thflags & TH_ECE) && V_tcp_do_ecn) {
5372 			tp->t_flags |= TF_ECN_PERMIT;
5373 			TCPSTAT_INC(tcps_ecn_shs);
5374 		}
5375 		/*
5376 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
5377 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
5378 		 */
5379 		tp->t_starttime = ticks;
5380 		if (tp->t_flags & TF_NEEDFIN) {
5381 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
5382 			tp->t_flags &= ~TF_NEEDFIN;
5383 			thflags &= ~TH_SYN;
5384 		} else {
5385 			tcp_state_change(tp, TCPS_ESTABLISHED);
5386 			TCP_PROBE5(connect__established, NULL, tp,
5387 			    mtod(m, const char *), tp, th);
5388 			cc_conn_init(tp);
5389 		}
5390 	} else {
5391 		/*
5392 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
5393 		 * open.  If segment contains CC option and there is a
5394 		 * cached CC, apply TAO test. If it succeeds, connection is *
5395 		 * half-synchronized. Otherwise, do 3-way handshake:
5396 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
5397 		 * there was no CC option, clear cached CC value.
5398 		 */
5399 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
5400 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
5401 	}
5402 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5403 	INP_WLOCK_ASSERT(tp->t_inpcb);
5404 	/*
5405 	 * Advance th->th_seq to correspond to first data byte. If data,
5406 	 * trim to stay within window, dropping FIN if necessary.
5407 	 */
5408 	th->th_seq++;
5409 	if (tlen > tp->rcv_wnd) {
5410 		todrop = tlen - tp->rcv_wnd;
5411 		m_adj(m, -todrop);
5412 		tlen = tp->rcv_wnd;
5413 		thflags &= ~TH_FIN;
5414 		TCPSTAT_INC(tcps_rcvpackafterwin);
5415 		TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
5416 	}
5417 	tp->snd_wl1 = th->th_seq - 1;
5418 	tp->rcv_up = th->th_seq;
5419 	/*
5420 	 * Client side of transaction: already sent SYN and data. If the
5421 	 * remote host used T/TCP to validate the SYN, our data will be
5422 	 * ACK'd; if so, enter normal data segment processing in the middle
5423 	 * of step 5, ack processing. Otherwise, goto step 6.
5424 	 */
5425 	if (thflags & TH_ACK) {
5426 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
5427 			return (ret_val);
5428 		/* We may have changed to FIN_WAIT_1 above */
5429 		if (tp->t_state == TCPS_FIN_WAIT_1) {
5430 			/*
5431 			 * In FIN_WAIT_1 STATE in addition to the processing
5432 			 * for the ESTABLISHED state if our FIN is now
5433 			 * acknowledged then enter FIN_WAIT_2.
5434 			 */
5435 			if (ourfinisacked) {
5436 				/*
5437 				 * If we can't receive any more data, then
5438 				 * closing user can proceed. Starting the
5439 				 * timer is contrary to the specification,
5440 				 * but if we don't get a FIN we'll hang
5441 				 * forever.
5442 				 *
5443 				 * XXXjl: we should release the tp also, and
5444 				 * use a compressed state.
5445 				 */
5446 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5447 					soisdisconnected(so);
5448 					tcp_timer_activate(tp, TT_2MSL,
5449 					    (tcp_fast_finwait2_recycle ?
5450 					    tcp_finwait2_timeout :
5451 					    TP_MAXIDLE(tp)));
5452 				}
5453 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
5454 			}
5455 		}
5456 	}
5457 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5458 	    tiwin, thflags, nxt_pkt));
5459 }
5460 
5461 /*
5462  * Return value of 1, the TCB is unlocked and most
5463  * likely gone, return value of 0, the TCP is still
5464  * locked.
5465  */
5466 static int
5467 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
5468     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5469     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5470 {
5471 	int32_t ret_val = 0;
5472 	int32_t ourfinisacked = 0;
5473 
5474 	rack_calc_rwin(so, tp);
5475 
5476 	if ((thflags & TH_ACK) &&
5477 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
5478 	    SEQ_GT(th->th_ack, tp->snd_max))) {
5479 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5480 		return (1);
5481 	}
5482 #ifdef TCP_RFC7413
5483 	if (tp->t_flags & TF_FASTOPEN) {
5484 		/*
5485 		 * When a TFO connection is in SYN_RECEIVED, the only valid
5486 		 * packets are the initial SYN, a retransmit/copy of the
5487 		 * initial SYN (possibly with a subset of the original
5488 		 * data), a valid ACK, a FIN, or a RST.
5489 		 */
5490 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
5491 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5492 			return (1);
5493 		} else if (thflags & TH_SYN) {
5494 			/* non-initial SYN is ignored */
5495 			struct tcp_rack *rack;
5496 
5497 			rack = (struct tcp_rack *)tp->t_fb_ptr;
5498 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
5499 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
5500 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
5501 				rack_do_drop(m, NULL);
5502 				return (0);
5503 			}
5504 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
5505 			rack_do_drop(m, NULL);
5506 			return (0);
5507 		}
5508 	}
5509 #endif
5510 	if (thflags & TH_RST)
5511 		return (rack_process_rst(m, th, so, tp));
5512 	/*
5513 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5514 	 * synchronized state.
5515 	 */
5516 	if (thflags & TH_SYN) {
5517 		rack_challenge_ack(m, th, tp, &ret_val);
5518 		return (ret_val);
5519 	}
5520 	/*
5521 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5522 	 * it's less than ts_recent, drop it.
5523 	 */
5524 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5525 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5526 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5527 			return (ret_val);
5528 	}
5529 	/*
5530 	 * In the SYN-RECEIVED state, validate that the packet belongs to
5531 	 * this connection before trimming the data to fit the receive
5532 	 * window.  Check the sequence number versus IRS since we know the
5533 	 * sequence numbers haven't wrapped.  This is a partial fix for the
5534 	 * "LAND" DoS attack.
5535 	 */
5536 	if (SEQ_LT(th->th_seq, tp->irs)) {
5537 		rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5538 		return (1);
5539 	}
5540 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5541 		return (ret_val);
5542 	}
5543 	/*
5544 	 * If last ACK falls within this segment's sequence numbers, record
5545 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5546 	 * from the latest proposal of the tcplw@cray.com list (Braden
5547 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5548 	 * with our earlier PAWS tests, so this check should be solely
5549 	 * predicated on the sequence space of this segment. 3) That we
5550 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5551 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5552 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5553 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5554 	 * p.869. In such cases, we can still calculate the RTT correctly
5555 	 * when RCV.NXT == Last.ACK.Sent.
5556 	 */
5557 	if ((to->to_flags & TOF_TS) != 0 &&
5558 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5559 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5560 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5561 		tp->ts_recent_age = tcp_ts_getticks();
5562 		tp->ts_recent = to->to_tsval;
5563 	}
5564 	/*
5565 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5566 	 * is on (half-synchronized state), then queue data for later
5567 	 * processing; else drop segment and return.
5568 	 */
5569 	if ((thflags & TH_ACK) == 0) {
5570 #ifdef TCP_RFC7413
5571 		if (tp->t_flags & TF_FASTOPEN) {
5572 			tp->snd_wnd = tiwin;
5573 			cc_conn_init(tp);
5574 		}
5575 #endif
5576 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5577 		    tiwin, thflags, nxt_pkt));
5578 	}
5579 	TCPSTAT_INC(tcps_connects);
5580 	soisconnected(so);
5581 	/* Do window scaling? */
5582 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5583 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5584 		tp->rcv_scale = tp->request_r_scale;
5585 		tp->snd_wnd = tiwin;
5586 	}
5587 	/*
5588 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
5589 	 * FIN-WAIT-1
5590 	 */
5591 	tp->t_starttime = ticks;
5592 	if (tp->t_flags & TF_NEEDFIN) {
5593 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
5594 		tp->t_flags &= ~TF_NEEDFIN;
5595 	} else {
5596 		tcp_state_change(tp, TCPS_ESTABLISHED);
5597 		TCP_PROBE5(accept__established, NULL, tp,
5598 		    mtod(m, const char *), tp, th);
5599 #ifdef TCP_RFC7413
5600 		if (tp->t_tfo_pending) {
5601 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
5602 			tp->t_tfo_pending = NULL;
5603 
5604 			/*
5605 			 * Account for the ACK of our SYN prior to regular
5606 			 * ACK processing below.
5607 			 */
5608 			tp->snd_una++;
5609 		}
5610 		/*
5611 		 * TFO connections call cc_conn_init() during SYN
5612 		 * processing.  Calling it again here for such connections
5613 		 * is not harmless as it would undo the snd_cwnd reduction
5614 		 * that occurs when a TFO SYN|ACK is retransmitted.
5615 		 */
5616 		if (!(tp->t_flags & TF_FASTOPEN))
5617 #endif
5618 			cc_conn_init(tp);
5619 	}
5620 	/*
5621 	 * If segment contains data or ACK, will call tcp_reass() later; if
5622 	 * not, do so now to pass queued data to user.
5623 	 */
5624 	if (tlen == 0 && (thflags & TH_FIN) == 0)
5625 		(void)tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
5626 		    (struct mbuf *)0);
5627 	tp->snd_wl1 = th->th_seq - 1;
5628 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
5629 		return (ret_val);
5630 	}
5631 	if (tp->t_state == TCPS_FIN_WAIT_1) {
5632 		/* We could have went to FIN_WAIT_1 (or EST) above */
5633 		/*
5634 		 * In FIN_WAIT_1 STATE in addition to the processing for the
5635 		 * ESTABLISHED state if our FIN is now acknowledged then
5636 		 * enter FIN_WAIT_2.
5637 		 */
5638 		if (ourfinisacked) {
5639 			/*
5640 			 * If we can't receive any more data, then closing
5641 			 * user can proceed. Starting the timer is contrary
5642 			 * to the specification, but if we don't get a FIN
5643 			 * we'll hang forever.
5644 			 *
5645 			 * XXXjl: we should release the tp also, and use a
5646 			 * compressed state.
5647 			 */
5648 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5649 				soisdisconnected(so);
5650 				tcp_timer_activate(tp, TT_2MSL,
5651 				    (tcp_fast_finwait2_recycle ?
5652 				    tcp_finwait2_timeout :
5653 				    TP_MAXIDLE(tp)));
5654 			}
5655 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
5656 		}
5657 	}
5658 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5659 	    tiwin, thflags, nxt_pkt));
5660 }
5661 
5662 /*
5663  * Return value of 1, the TCB is unlocked and most
5664  * likely gone, return value of 0, the TCP is still
5665  * locked.
5666  */
5667 static int
5668 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
5669     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5670     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5671 {
5672 	int32_t ret_val = 0;
5673 
5674 	/*
5675 	 * Header prediction: check for the two common cases of a
5676 	 * uni-directional data xfer.  If the packet has no control flags,
5677 	 * is in-sequence, the window didn't change and we're not
5678 	 * retransmitting, it's a candidate.  If the length is zero and the
5679 	 * ack moved forward, we're the sender side of the xfer.  Just free
5680 	 * the data acked & wake any higher level process that was blocked
5681 	 * waiting for space.  If the length is non-zero and the ack didn't
5682 	 * move, we're the receiver side.  If we're getting packets in-order
5683 	 * (the reassembly queue is empty), add the data toc The socket
5684 	 * buffer and note that we need a delayed ack. Make sure that the
5685 	 * hidden state-flags are also off. Since we check for
5686 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
5687 	 */
5688 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
5689 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
5690 	    __predict_true(SEGQ_EMPTY(tp)) &&
5691 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
5692 		struct tcp_rack *rack;
5693 
5694 		rack = (struct tcp_rack *)tp->t_fb_ptr;
5695 		if (tlen == 0) {
5696 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
5697 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
5698 				return (0);
5699 			}
5700 		} else {
5701 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
5702 			    tiwin, nxt_pkt)) {
5703 				return (0);
5704 			}
5705 		}
5706 	}
5707 	rack_calc_rwin(so, tp);
5708 
5709 	if (thflags & TH_RST)
5710 		return (rack_process_rst(m, th, so, tp));
5711 
5712 	/*
5713 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5714 	 * synchronized state.
5715 	 */
5716 	if (thflags & TH_SYN) {
5717 		rack_challenge_ack(m, th, tp, &ret_val);
5718 		return (ret_val);
5719 	}
5720 	/*
5721 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5722 	 * it's less than ts_recent, drop it.
5723 	 */
5724 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5725 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5726 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5727 			return (ret_val);
5728 	}
5729 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5730 		return (ret_val);
5731 	}
5732 	/*
5733 	 * If last ACK falls within this segment's sequence numbers, record
5734 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5735 	 * from the latest proposal of the tcplw@cray.com list (Braden
5736 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5737 	 * with our earlier PAWS tests, so this check should be solely
5738 	 * predicated on the sequence space of this segment. 3) That we
5739 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5740 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5741 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5742 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5743 	 * p.869. In such cases, we can still calculate the RTT correctly
5744 	 * when RCV.NXT == Last.ACK.Sent.
5745 	 */
5746 	if ((to->to_flags & TOF_TS) != 0 &&
5747 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5748 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5749 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5750 		tp->ts_recent_age = tcp_ts_getticks();
5751 		tp->ts_recent = to->to_tsval;
5752 	}
5753 	/*
5754 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5755 	 * is on (half-synchronized state), then queue data for later
5756 	 * processing; else drop segment and return.
5757 	 */
5758 	if ((thflags & TH_ACK) == 0) {
5759 		if (tp->t_flags & TF_NEEDSYN) {
5760 
5761 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5762 			    tiwin, thflags, nxt_pkt));
5763 
5764 		} else if (tp->t_flags & TF_ACKNOW) {
5765 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
5766 			return (ret_val);
5767 		} else {
5768 			rack_do_drop(m, NULL);
5769 			return (0);
5770 		}
5771 	}
5772 	/*
5773 	 * Ack processing.
5774 	 */
5775 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
5776 		return (ret_val);
5777 	}
5778 	if (sbavail(&so->so_snd)) {
5779 		if (rack_progress_timeout_check(tp)) {
5780 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5781 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5782 			return (1);
5783 		}
5784 	}
5785 	/* State changes only happen in rack_process_data() */
5786 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5787 	    tiwin, thflags, nxt_pkt));
5788 }
5789 
5790 /*
5791  * Return value of 1, the TCB is unlocked and most
5792  * likely gone, return value of 0, the TCP is still
5793  * locked.
5794  */
5795 static int
5796 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
5797     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5798     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5799 {
5800 	int32_t ret_val = 0;
5801 
5802 	rack_calc_rwin(so, tp);
5803 	if (thflags & TH_RST)
5804 		return (rack_process_rst(m, th, so, tp));
5805 	/*
5806 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5807 	 * synchronized state.
5808 	 */
5809 	if (thflags & TH_SYN) {
5810 		rack_challenge_ack(m, th, tp, &ret_val);
5811 		return (ret_val);
5812 	}
5813 	/*
5814 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5815 	 * it's less than ts_recent, drop it.
5816 	 */
5817 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5818 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5819 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5820 			return (ret_val);
5821 	}
5822 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5823 		return (ret_val);
5824 	}
5825 	/*
5826 	 * If last ACK falls within this segment's sequence numbers, record
5827 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5828 	 * from the latest proposal of the tcplw@cray.com list (Braden
5829 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5830 	 * with our earlier PAWS tests, so this check should be solely
5831 	 * predicated on the sequence space of this segment. 3) That we
5832 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5833 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5834 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5835 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5836 	 * p.869. In such cases, we can still calculate the RTT correctly
5837 	 * when RCV.NXT == Last.ACK.Sent.
5838 	 */
5839 	if ((to->to_flags & TOF_TS) != 0 &&
5840 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5841 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5842 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5843 		tp->ts_recent_age = tcp_ts_getticks();
5844 		tp->ts_recent = to->to_tsval;
5845 	}
5846 	/*
5847 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5848 	 * is on (half-synchronized state), then queue data for later
5849 	 * processing; else drop segment and return.
5850 	 */
5851 	if ((thflags & TH_ACK) == 0) {
5852 		if (tp->t_flags & TF_NEEDSYN) {
5853 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5854 			    tiwin, thflags, nxt_pkt));
5855 
5856 		} else if (tp->t_flags & TF_ACKNOW) {
5857 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
5858 			return (ret_val);
5859 		} else {
5860 			rack_do_drop(m, NULL);
5861 			return (0);
5862 		}
5863 	}
5864 	/*
5865 	 * Ack processing.
5866 	 */
5867 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
5868 		return (ret_val);
5869 	}
5870 	if (sbavail(&so->so_snd)) {
5871 		if (rack_progress_timeout_check(tp)) {
5872 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5873 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
5874 			return (1);
5875 		}
5876 	}
5877 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5878 	    tiwin, thflags, nxt_pkt));
5879 }
5880 
5881 static int
5882 rack_check_data_after_close(struct mbuf *m,
5883     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
5884 {
5885 	struct tcp_rack *rack;
5886 
5887 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
5888 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5889 	if (rack->rc_allow_data_af_clo == 0) {
5890 	close_now:
5891 		tp = tcp_close(tp);
5892 		TCPSTAT_INC(tcps_rcvafterclose);
5893 		rack_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
5894 		return (1);
5895 	}
5896 	if (sbavail(&so->so_snd) == 0)
5897 		goto close_now;
5898 	/* Ok we allow data that is ignored and a followup reset */
5899 	tp->rcv_nxt = th->th_seq + *tlen;
5900 	tp->t_flags2 |= TF2_DROP_AF_DATA;
5901 	rack->r_wanted_output = 1;
5902 	*tlen = 0;
5903 	return (0);
5904 }
5905 
5906 /*
5907  * Return value of 1, the TCB is unlocked and most
5908  * likely gone, return value of 0, the TCP is still
5909  * locked.
5910  */
5911 static int
5912 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
5913     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5914     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5915 {
5916 	int32_t ret_val = 0;
5917 	int32_t ourfinisacked = 0;
5918 
5919 	rack_calc_rwin(so, tp);
5920 
5921 	if (thflags & TH_RST)
5922 		return (rack_process_rst(m, th, so, tp));
5923 	/*
5924 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
5925 	 * synchronized state.
5926 	 */
5927 	if (thflags & TH_SYN) {
5928 		rack_challenge_ack(m, th, tp, &ret_val);
5929 		return (ret_val);
5930 	}
5931 	/*
5932 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
5933 	 * it's less than ts_recent, drop it.
5934 	 */
5935 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
5936 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
5937 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
5938 			return (ret_val);
5939 	}
5940 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
5941 		return (ret_val);
5942 	}
5943 	/*
5944 	 * If new data are received on a connection after the user processes
5945 	 * are gone, then RST the other end.
5946 	 */
5947 	if ((so->so_state & SS_NOFDREF) && tlen) {
5948 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
5949 			return (1);
5950 	}
5951 	/*
5952 	 * If last ACK falls within this segment's sequence numbers, record
5953 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
5954 	 * from the latest proposal of the tcplw@cray.com list (Braden
5955 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
5956 	 * with our earlier PAWS tests, so this check should be solely
5957 	 * predicated on the sequence space of this segment. 3) That we
5958 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
5959 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
5960 	 * SEG.Len, This modified check allows us to overcome RFC1323's
5961 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
5962 	 * p.869. In such cases, we can still calculate the RTT correctly
5963 	 * when RCV.NXT == Last.ACK.Sent.
5964 	 */
5965 	if ((to->to_flags & TOF_TS) != 0 &&
5966 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
5967 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
5968 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
5969 		tp->ts_recent_age = tcp_ts_getticks();
5970 		tp->ts_recent = to->to_tsval;
5971 	}
5972 	/*
5973 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
5974 	 * is on (half-synchronized state), then queue data for later
5975 	 * processing; else drop segment and return.
5976 	 */
5977 	if ((thflags & TH_ACK) == 0) {
5978 		if (tp->t_flags & TF_NEEDSYN) {
5979 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
5980 			    tiwin, thflags, nxt_pkt));
5981 		} else if (tp->t_flags & TF_ACKNOW) {
5982 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
5983 			return (ret_val);
5984 		} else {
5985 			rack_do_drop(m, NULL);
5986 			return (0);
5987 		}
5988 	}
5989 	/*
5990 	 * Ack processing.
5991 	 */
5992 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
5993 		return (ret_val);
5994 	}
5995 	if (ourfinisacked) {
5996 		/*
5997 		 * If we can't receive any more data, then closing user can
5998 		 * proceed. Starting the timer is contrary to the
5999 		 * specification, but if we don't get a FIN we'll hang
6000 		 * forever.
6001 		 *
6002 		 * XXXjl: we should release the tp also, and use a
6003 		 * compressed state.
6004 		 */
6005 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6006 			soisdisconnected(so);
6007 			tcp_timer_activate(tp, TT_2MSL,
6008 			    (tcp_fast_finwait2_recycle ?
6009 			    tcp_finwait2_timeout :
6010 			    TP_MAXIDLE(tp)));
6011 		}
6012 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
6013 	}
6014 	if (sbavail(&so->so_snd)) {
6015 		if (rack_progress_timeout_check(tp)) {
6016 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6017 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6018 			return (1);
6019 		}
6020 	}
6021 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6022 	    tiwin, thflags, nxt_pkt));
6023 }
6024 
6025 /*
6026  * Return value of 1, the TCB is unlocked and most
6027  * likely gone, return value of 0, the TCP is still
6028  * locked.
6029  */
6030 static int
6031 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
6032     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6033     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
6034 {
6035 	int32_t ret_val = 0;
6036 	int32_t ourfinisacked = 0;
6037 
6038 	rack_calc_rwin(so, tp);
6039 
6040 	if (thflags & TH_RST)
6041 		return (rack_process_rst(m, th, so, tp));
6042 	/*
6043 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6044 	 * synchronized state.
6045 	 */
6046 	if (thflags & TH_SYN) {
6047 		rack_challenge_ack(m, th, tp, &ret_val);
6048 		return (ret_val);
6049 	}
6050 	/*
6051 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6052 	 * it's less than ts_recent, drop it.
6053 	 */
6054 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6055 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6056 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
6057 			return (ret_val);
6058 	}
6059 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6060 		return (ret_val);
6061 	}
6062 	/*
6063 	 * If new data are received on a connection after the user processes
6064 	 * are gone, then RST the other end.
6065 	 */
6066 	if ((so->so_state & SS_NOFDREF) && tlen) {
6067 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6068 			return (1);
6069 	}
6070 	/*
6071 	 * If last ACK falls within this segment's sequence numbers, record
6072 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6073 	 * from the latest proposal of the tcplw@cray.com list (Braden
6074 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6075 	 * with our earlier PAWS tests, so this check should be solely
6076 	 * predicated on the sequence space of this segment. 3) That we
6077 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6078 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6079 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6080 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6081 	 * p.869. In such cases, we can still calculate the RTT correctly
6082 	 * when RCV.NXT == Last.ACK.Sent.
6083 	 */
6084 	if ((to->to_flags & TOF_TS) != 0 &&
6085 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6086 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6087 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6088 		tp->ts_recent_age = tcp_ts_getticks();
6089 		tp->ts_recent = to->to_tsval;
6090 	}
6091 	/*
6092 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6093 	 * is on (half-synchronized state), then queue data for later
6094 	 * processing; else drop segment and return.
6095 	 */
6096 	if ((thflags & TH_ACK) == 0) {
6097 		if (tp->t_flags & TF_NEEDSYN) {
6098 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6099 			    tiwin, thflags, nxt_pkt));
6100 		} else if (tp->t_flags & TF_ACKNOW) {
6101 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6102 			return (ret_val);
6103 		} else {
6104 			rack_do_drop(m, NULL);
6105 			return (0);
6106 		}
6107 	}
6108 	/*
6109 	 * Ack processing.
6110 	 */
6111 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6112 		return (ret_val);
6113 	}
6114 	if (ourfinisacked) {
6115 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6116 		tcp_twstart(tp);
6117 		m_freem(m);
6118 		return (1);
6119 	}
6120 	if (sbavail(&so->so_snd)) {
6121 		if (rack_progress_timeout_check(tp)) {
6122 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6123 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6124 			return (1);
6125 		}
6126 	}
6127 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6128 	    tiwin, thflags, nxt_pkt));
6129 }
6130 
6131 /*
6132  * Return value of 1, the TCB is unlocked and most
6133  * likely gone, return value of 0, the TCP is still
6134  * locked.
6135  */
6136 static int
6137 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6138     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6139     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
6140 {
6141 	int32_t ret_val = 0;
6142 	int32_t ourfinisacked = 0;
6143 
6144 	rack_calc_rwin(so, tp);
6145 
6146 	if (thflags & TH_RST)
6147 		return (rack_process_rst(m, th, so, tp));
6148 	/*
6149 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6150 	 * synchronized state.
6151 	 */
6152 	if (thflags & TH_SYN) {
6153 		rack_challenge_ack(m, th, tp, &ret_val);
6154 		return (ret_val);
6155 	}
6156 	/*
6157 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6158 	 * it's less than ts_recent, drop it.
6159 	 */
6160 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6161 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6162 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
6163 			return (ret_val);
6164 	}
6165 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6166 		return (ret_val);
6167 	}
6168 	/*
6169 	 * If new data are received on a connection after the user processes
6170 	 * are gone, then RST the other end.
6171 	 */
6172 	if ((so->so_state & SS_NOFDREF) && tlen) {
6173 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6174 			return (1);
6175 	}
6176 	/*
6177 	 * If last ACK falls within this segment's sequence numbers, record
6178 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6179 	 * from the latest proposal of the tcplw@cray.com list (Braden
6180 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6181 	 * with our earlier PAWS tests, so this check should be solely
6182 	 * predicated on the sequence space of this segment. 3) That we
6183 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6184 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6185 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6186 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6187 	 * p.869. In such cases, we can still calculate the RTT correctly
6188 	 * when RCV.NXT == Last.ACK.Sent.
6189 	 */
6190 	if ((to->to_flags & TOF_TS) != 0 &&
6191 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6192 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6193 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6194 		tp->ts_recent_age = tcp_ts_getticks();
6195 		tp->ts_recent = to->to_tsval;
6196 	}
6197 	/*
6198 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6199 	 * is on (half-synchronized state), then queue data for later
6200 	 * processing; else drop segment and return.
6201 	 */
6202 	if ((thflags & TH_ACK) == 0) {
6203 		if (tp->t_flags & TF_NEEDSYN) {
6204 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6205 			    tiwin, thflags, nxt_pkt));
6206 		} else if (tp->t_flags & TF_ACKNOW) {
6207 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6208 			return (ret_val);
6209 		} else {
6210 			rack_do_drop(m, NULL);
6211 			return (0);
6212 		}
6213 	}
6214 	/*
6215 	 * case TCPS_LAST_ACK: Ack processing.
6216 	 */
6217 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6218 		return (ret_val);
6219 	}
6220 	if (ourfinisacked) {
6221 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
6222 		tp = tcp_close(tp);
6223 		rack_do_drop(m, tp);
6224 		return (1);
6225 	}
6226 	if (sbavail(&so->so_snd)) {
6227 		if (rack_progress_timeout_check(tp)) {
6228 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6229 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6230 			return (1);
6231 		}
6232 	}
6233 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6234 	    tiwin, thflags, nxt_pkt));
6235 }
6236 
6237 
6238 /*
6239  * Return value of 1, the TCB is unlocked and most
6240  * likely gone, return value of 0, the TCP is still
6241  * locked.
6242  */
6243 static int
6244 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
6245     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6246     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
6247 {
6248 	int32_t ret_val = 0;
6249 	int32_t ourfinisacked = 0;
6250 
6251 	rack_calc_rwin(so, tp);
6252 
6253 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
6254 	if (thflags & TH_RST)
6255 		return (rack_process_rst(m, th, so, tp));
6256 	/*
6257 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6258 	 * synchronized state.
6259 	 */
6260 	if (thflags & TH_SYN) {
6261 		rack_challenge_ack(m, th, tp, &ret_val);
6262 		return (ret_val);
6263 	}
6264 	/*
6265 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6266 	 * it's less than ts_recent, drop it.
6267 	 */
6268 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6269 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6270 		if (rack_ts_check(m, th, tp, tlen, thflags, &ret_val))
6271 			return (ret_val);
6272 	}
6273 	if (rack_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6274 		return (ret_val);
6275 	}
6276 	/*
6277 	 * If new data are received on a connection after the user processes
6278 	 * are gone, then RST the other end.
6279 	 */
6280 	if ((so->so_state & SS_NOFDREF) &&
6281 	    tlen) {
6282 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6283 			return (1);
6284 	}
6285 	/*
6286 	 * If last ACK falls within this segment's sequence numbers, record
6287 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6288 	 * from the latest proposal of the tcplw@cray.com list (Braden
6289 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6290 	 * with our earlier PAWS tests, so this check should be solely
6291 	 * predicated on the sequence space of this segment. 3) That we
6292 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6293 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6294 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6295 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6296 	 * p.869. In such cases, we can still calculate the RTT correctly
6297 	 * when RCV.NXT == Last.ACK.Sent.
6298 	 */
6299 	if ((to->to_flags & TOF_TS) != 0 &&
6300 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6301 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6302 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6303 		tp->ts_recent_age = tcp_ts_getticks();
6304 		tp->ts_recent = to->to_tsval;
6305 	}
6306 	/*
6307 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6308 	 * is on (half-synchronized state), then queue data for later
6309 	 * processing; else drop segment and return.
6310 	 */
6311 	if ((thflags & TH_ACK) == 0) {
6312 		if (tp->t_flags & TF_NEEDSYN) {
6313 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6314 			    tiwin, thflags, nxt_pkt));
6315 		} else if (tp->t_flags & TF_ACKNOW) {
6316 			rack_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6317 			return (ret_val);
6318 		} else {
6319 			rack_do_drop(m, NULL);
6320 			return (0);
6321 		}
6322 	}
6323 	/*
6324 	 * Ack processing.
6325 	 */
6326 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6327 		return (ret_val);
6328 	}
6329 	if (sbavail(&so->so_snd)) {
6330 		if (rack_progress_timeout_check(tp)) {
6331 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6332 			rack_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6333 			return (1);
6334 		}
6335 	}
6336 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6337 	    tiwin, thflags, nxt_pkt));
6338 }
6339 
6340 
6341 static void inline
6342 rack_clear_rate_sample(struct tcp_rack *rack)
6343 {
6344 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
6345 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
6346 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
6347 }
6348 
6349 static int
6350 rack_init(struct tcpcb *tp)
6351 {
6352 	struct tcp_rack *rack = NULL;
6353 
6354 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
6355 	if (tp->t_fb_ptr == NULL) {
6356 		/*
6357 		 * We need to allocate memory but cant. The INP and INP_INFO
6358 		 * locks and they are recusive (happens during setup. So a
6359 		 * scheme to drop the locks fails :(
6360 		 *
6361 		 */
6362 		return (ENOMEM);
6363 	}
6364 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
6365 
6366 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6367 	TAILQ_INIT(&rack->r_ctl.rc_map);
6368 	TAILQ_INIT(&rack->r_ctl.rc_free);
6369 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
6370 	rack->rc_tp = tp;
6371 	if (tp->t_inpcb) {
6372 		rack->rc_inp = tp->t_inpcb;
6373 	}
6374 	/* Probably not needed but lets be sure */
6375 	rack_clear_rate_sample(rack);
6376 	rack->r_cpu = 0;
6377 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
6378 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
6379 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
6380 	rack->rc_pace_reduce = rack_slot_reduction;
6381 	if (V_tcp_delack_enabled)
6382 		tp->t_delayed_ack = 1;
6383 	else
6384 		tp->t_delayed_ack = 0;
6385 	rack->rc_pace_max_segs = rack_hptsi_segments;
6386 	rack->r_ctl.rc_early_recovery_segs = rack_early_recovery_max_seg;
6387 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
6388 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
6389 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
6390 	rack->r_idle_reduce_largest  = rack_reduce_largest_on_idle;
6391 	rack->r_enforce_min_pace = rack_min_pace_time;
6392 	rack->r_min_pace_seg_thresh = rack_min_pace_time_seg_req;
6393 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
6394 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
6395 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
6396 	rack->rc_always_pace = rack_pace_every_seg;
6397 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
6398 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
6399 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
6400 	rack->r_ctl.rc_min_to = rack_min_to;
6401 	rack->r_ctl.rc_prr_inc_var = rack_inc_var;
6402 	if (tp->snd_una != tp->snd_max) {
6403 		/* Create a send map for the current outstanding data */
6404 		struct rack_sendmap *rsm;
6405 
6406 		rsm = rack_alloc(rack);
6407 		if (rsm == NULL) {
6408 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
6409 			tp->t_fb_ptr = NULL;
6410 			return (ENOMEM);
6411 		}
6412 		rsm->r_flags = RACK_OVERMAX;
6413 		rsm->r_tim_lastsent[0] = tcp_ts_getticks();
6414 		rsm->r_rtr_cnt = 1;
6415 		rsm->r_rtr_bytes = 0;
6416 		rsm->r_start = tp->snd_una;
6417 		rsm->r_end = tp->snd_max;
6418 		rsm->r_sndcnt = 0;
6419 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_map, rsm, r_next);
6420 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6421 		rsm->r_in_tmap = 1;
6422 	}
6423 	rack_stop_all_timers(tp);
6424 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6425 	return (0);
6426 }
6427 
6428 static int
6429 rack_handoff_ok(struct tcpcb *tp)
6430 {
6431 	if ((tp->t_state == TCPS_CLOSED) ||
6432 	    (tp->t_state == TCPS_LISTEN)) {
6433 		/* Sure no problem though it may not stick */
6434 		return (0);
6435 	}
6436 	if ((tp->t_state == TCPS_SYN_SENT) ||
6437 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
6438 		/*
6439 		 * We really don't know you have to get to ESTAB or beyond
6440 		 * to tell.
6441 		 */
6442 		return (EAGAIN);
6443 	}
6444 	if (tp->t_flags & TF_SACK_PERMIT) {
6445 		return (0);
6446 	}
6447 	/*
6448 	 * If we reach here we don't do SACK on this connection so we can
6449 	 * never do rack.
6450 	 */
6451 	return (EINVAL);
6452 }
6453 
6454 static void
6455 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
6456 {
6457 	if (tp->t_fb_ptr) {
6458 		struct tcp_rack *rack;
6459 		struct rack_sendmap *rsm;
6460 
6461 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6462 #ifdef TCP_BLACKBOX
6463 		tcp_log_flowend(tp);
6464 #endif
6465 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
6466 		while (rsm) {
6467 			TAILQ_REMOVE(&rack->r_ctl.rc_map, rsm, r_next);
6468 			uma_zfree(rack_zone, rsm);
6469 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_map);
6470 		}
6471 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
6472 		while (rsm) {
6473 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_next);
6474 			uma_zfree(rack_zone, rsm);
6475 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
6476 		}
6477 		rack->rc_free_cnt = 0;
6478 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
6479 		tp->t_fb_ptr = NULL;
6480 	}
6481 	/* Make sure snd_nxt is correctly set */
6482 	tp->snd_nxt = tp->snd_max;
6483 }
6484 
6485 static void
6486 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
6487 {
6488 	switch (tp->t_state) {
6489 	case TCPS_SYN_SENT:
6490 		rack->r_state = TCPS_SYN_SENT;
6491 		rack->r_substate = rack_do_syn_sent;
6492 		break;
6493 	case TCPS_SYN_RECEIVED:
6494 		rack->r_state = TCPS_SYN_RECEIVED;
6495 		rack->r_substate = rack_do_syn_recv;
6496 		break;
6497 	case TCPS_ESTABLISHED:
6498 		rack->r_state = TCPS_ESTABLISHED;
6499 		rack->r_substate = rack_do_established;
6500 		break;
6501 	case TCPS_CLOSE_WAIT:
6502 		rack->r_state = TCPS_CLOSE_WAIT;
6503 		rack->r_substate = rack_do_close_wait;
6504 		break;
6505 	case TCPS_FIN_WAIT_1:
6506 		rack->r_state = TCPS_FIN_WAIT_1;
6507 		rack->r_substate = rack_do_fin_wait_1;
6508 		break;
6509 	case TCPS_CLOSING:
6510 		rack->r_state = TCPS_CLOSING;
6511 		rack->r_substate = rack_do_closing;
6512 		break;
6513 	case TCPS_LAST_ACK:
6514 		rack->r_state = TCPS_LAST_ACK;
6515 		rack->r_substate = rack_do_lastack;
6516 		break;
6517 	case TCPS_FIN_WAIT_2:
6518 		rack->r_state = TCPS_FIN_WAIT_2;
6519 		rack->r_substate = rack_do_fin_wait_2;
6520 		break;
6521 	case TCPS_LISTEN:
6522 	case TCPS_CLOSED:
6523 	case TCPS_TIME_WAIT:
6524 	default:
6525 		break;
6526 	};
6527 }
6528 
6529 
6530 static void
6531 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
6532 {
6533 	/*
6534 	 * We received an ack, and then did not
6535 	 * call send or were bounced out due to the
6536 	 * hpts was running. Now a timer is up as well, is
6537 	 * it the right timer?
6538 	 */
6539 	struct rack_sendmap *rsm;
6540 	int tmr_up;
6541 
6542 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
6543 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
6544 		return;
6545 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6546 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
6547 	    (tmr_up == PACE_TMR_RXT)) {
6548 		/* Should be an RXT */
6549 		return;
6550 	}
6551 	if (rsm == NULL) {
6552 		/* Nothing outstanding? */
6553 		if (tp->t_flags & TF_DELACK) {
6554 			if (tmr_up == PACE_TMR_DELACK)
6555 				/* We are supposed to have delayed ack up and we do */
6556 				return;
6557 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
6558 			/*
6559 			 * if we hit enobufs then we would expect the possiblity
6560 			 * of nothing outstanding and the RXT up (and the hptsi timer).
6561 			 */
6562 			return;
6563 		} else if (((tcp_always_keepalive ||
6564 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
6565 			    (tp->t_state <= TCPS_CLOSING)) &&
6566 			   (tmr_up == PACE_TMR_KEEP) &&
6567 			   (tp->snd_max == tp->snd_una)) {
6568 			/* We should have keep alive up and we do */
6569 			return;
6570 		}
6571 	}
6572 	if (rsm && (rsm->r_flags & RACK_SACK_PASSED)) {
6573 		if ((tp->t_flags & TF_SENTFIN) &&
6574 		    ((tp->snd_max - tp->snd_una) == 1) &&
6575 		    (rsm->r_flags & RACK_HAS_FIN)) {
6576 			/* needs to be a RXT */
6577 			if (tmr_up == PACE_TMR_RXT)
6578 				return;
6579 		} else if (tmr_up == PACE_TMR_RACK)
6580 			return;
6581 	} else if (SEQ_GT(tp->snd_max,tp->snd_una) &&
6582 		   ((tmr_up == PACE_TMR_TLP) ||
6583 		    (tmr_up == PACE_TMR_RXT))) {
6584 		/*
6585 		 * Either a TLP or RXT is fine if no sack-passed
6586 		 * is in place and data is outstanding.
6587 		 */
6588 		return;
6589 	} else if (tmr_up == PACE_TMR_DELACK) {
6590 		/*
6591 		 * If the delayed ack was going to go off
6592 		 * before the rtx/tlp/rack timer were going to
6593 		 * expire, then that would be the timer in control.
6594 		 * Note we don't check the time here trusting the
6595 		 * code is correct.
6596 		 */
6597 		return;
6598 	}
6599 	/*
6600 	 * Ok the timer originally started is not what we want now.
6601 	 * We will force the hpts to be stopped if any, and restart
6602 	 * with the slot set to what was in the saved slot.
6603 	 */
6604 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6605 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6606 }
6607 
6608 static void
6609 rack_hpts_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
6610     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
6611     int32_t nxt_pkt, struct timeval *tv)
6612 {
6613 	int32_t thflags, retval, did_out = 0;
6614 	int32_t way_out = 0;
6615 	uint32_t cts;
6616 	uint32_t tiwin;
6617 	struct tcpopt to;
6618 	struct tcp_rack *rack;
6619 	struct rack_sendmap *rsm;
6620 	int32_t prev_state = 0;
6621 
6622 	cts = tcp_tv_to_mssectick(tv);
6623 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6624 
6625 	kern_prefetch(rack, &prev_state);
6626 	prev_state = 0;
6627 	thflags = th->th_flags;
6628 	/*
6629 	 * If this is either a state-changing packet or current state isn't
6630 	 * established, we require a read lock on tcbinfo.  Otherwise, we
6631 	 * allow the tcbinfo to be in either locked or unlocked, as the
6632 	 * caller may have unnecessarily acquired a lock due to a race.
6633 	 */
6634 	INP_WLOCK_ASSERT(tp->t_inpcb);
6635 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
6636 	    __func__));
6637 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
6638 	    __func__));
6639 	{
6640 		union tcp_log_stackspecific log;
6641 
6642 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
6643 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
6644 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
6645 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
6646 		TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
6647 		    tlen, &log, true);
6648 	}
6649 	/*
6650 	 * Segment received on connection. Reset idle time and keep-alive
6651 	 * timer. XXX: This should be done after segment validation to
6652 	 * ignore broken/spoofed segs.
6653 	 */
6654 	if  (tp->t_idle_reduce && (tp->snd_max == tp->snd_una)) {
6655 		if ((ticks - tp->t_rcvtime) >= tp->t_rxtcur) {
6656 			counter_u64_add(rack_input_idle_reduces, 1);
6657 			rack_cc_after_idle(tp,
6658 			    (rack->r_idle_reduce_largest ? 1 :0));
6659 		}
6660 	}
6661 	rack->r_ctl.rc_rcvtime = cts;
6662 	tp->t_rcvtime = ticks;
6663 
6664 	/*
6665 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
6666 	 * the scale is zero.
6667 	 */
6668 	tiwin = th->th_win << tp->snd_scale;
6669 #ifdef NETFLIX_STATS
6670 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
6671 #endif
6672 	/*
6673 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
6674 	 * this to occur after we've validated the segment.
6675 	 */
6676 	if (tp->t_flags & TF_ECN_PERMIT) {
6677 		if (thflags & TH_CWR)
6678 			tp->t_flags &= ~TF_ECN_SND_ECE;
6679 		switch (iptos & IPTOS_ECN_MASK) {
6680 		case IPTOS_ECN_CE:
6681 			tp->t_flags |= TF_ECN_SND_ECE;
6682 			TCPSTAT_INC(tcps_ecn_ce);
6683 			break;
6684 		case IPTOS_ECN_ECT0:
6685 			TCPSTAT_INC(tcps_ecn_ect0);
6686 			break;
6687 		case IPTOS_ECN_ECT1:
6688 			TCPSTAT_INC(tcps_ecn_ect1);
6689 			break;
6690 		}
6691 		/* Congestion experienced. */
6692 		if (thflags & TH_ECE) {
6693 			rack_cong_signal(tp, th, CC_ECN);
6694 		}
6695 	}
6696 	/*
6697 	 * Parse options on any incoming segment.
6698 	 */
6699 	tcp_dooptions(&to, (u_char *)(th + 1),
6700 	    (th->th_off << 2) - sizeof(struct tcphdr),
6701 	    (thflags & TH_SYN) ? TO_SYN : 0);
6702 
6703 	/*
6704 	 * If echoed timestamp is later than the current time, fall back to
6705 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
6706 	 * were used when this connection was established.
6707 	 */
6708 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
6709 		to.to_tsecr -= tp->ts_offset;
6710 		if (TSTMP_GT(to.to_tsecr, cts))
6711 			to.to_tsecr = 0;
6712 	}
6713 	/*
6714 	 * If its the first time in we need to take care of options and
6715 	 * verify we can do SACK for rack!
6716 	 */
6717 	if (rack->r_state == 0) {
6718 		/* Should be init'd by rack_init() */
6719 		KASSERT(rack->rc_inp != NULL,
6720 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
6721 		if (rack->rc_inp == NULL) {
6722 			rack->rc_inp = tp->t_inpcb;
6723 		}
6724 
6725 		/*
6726 		 * Process options only when we get SYN/ACK back. The SYN
6727 		 * case for incoming connections is handled in tcp_syncache.
6728 		 * According to RFC1323 the window field in a SYN (i.e., a
6729 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
6730 		 * this is traditional behavior, may need to be cleaned up.
6731 		 */
6732 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
6733 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
6734 			if ((to.to_flags & TOF_SCALE) &&
6735 			    (tp->t_flags & TF_REQ_SCALE)) {
6736 				tp->t_flags |= TF_RCVD_SCALE;
6737 				tp->snd_scale = to.to_wscale;
6738 			}
6739 			/*
6740 			 * Initial send window.  It will be updated with the
6741 			 * next incoming segment to the scaled value.
6742 			 */
6743 			tp->snd_wnd = th->th_win;
6744 			if (to.to_flags & TOF_TS) {
6745 				tp->t_flags |= TF_RCVD_TSTMP;
6746 				tp->ts_recent = to.to_tsval;
6747 				tp->ts_recent_age = cts;
6748 			}
6749 			if (to.to_flags & TOF_MSS)
6750 				tcp_mss(tp, to.to_mss);
6751 			if ((tp->t_flags & TF_SACK_PERMIT) &&
6752 			    (to.to_flags & TOF_SACKPERM) == 0)
6753 				tp->t_flags &= ~TF_SACK_PERMIT;
6754 		}
6755 		/*
6756 		 * At this point we are at the initial call. Here we decide
6757 		 * if we are doing RACK or not. We do this by seeing if
6758 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
6759 		 * we switch to the default code.
6760 		 */
6761 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
6762 			tcp_switch_back_to_default(tp);
6763 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
6764 			    tlen, iptos);
6765 			return;
6766 		}
6767 		/* Set the flag */
6768 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
6769 		tcp_set_hpts(tp->t_inpcb);
6770 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
6771 	}
6772 	/*
6773 	 * This is the one exception case where we set the rack state
6774 	 * always. All other times (timers etc) we must have a rack-state
6775 	 * set (so we assure we have done the checks above for SACK).
6776 	 */
6777 	if (rack->r_state != tp->t_state)
6778 		rack_set_state(tp, rack);
6779 	if (SEQ_GT(th->th_ack, tp->snd_una) && (rsm = TAILQ_FIRST(&rack->r_ctl.rc_map)) != NULL)
6780 		kern_prefetch(rsm, &prev_state);
6781 	prev_state = rack->r_state;
6782 	rack->r_ctl.rc_tlp_send_cnt = 0;
6783 	rack_clear_rate_sample(rack);
6784 	retval = (*rack->r_substate) (m, th, so,
6785 	    tp, &to, drop_hdrlen,
6786 	    tlen, tiwin, thflags, nxt_pkt);
6787 #ifdef INVARIANTS
6788 	if ((retval == 0) &&
6789 	    (tp->t_inpcb == NULL)) {
6790 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
6791 		    retval, tp, prev_state);
6792 	}
6793 #endif
6794 	if (retval == 0) {
6795 		/*
6796 		 * If retval is 1 the tcb is unlocked and most likely the tp
6797 		 * is gone.
6798 		 */
6799 		INP_WLOCK_ASSERT(tp->t_inpcb);
6800 		tcp_rack_xmit_timer_commit(rack, tp);
6801 		if (nxt_pkt == 0) {
6802 			if (rack->r_wanted_output != 0) {
6803 				did_out = 1;
6804 				(void)tp->t_fb->tfb_tcp_output(tp);
6805 			}
6806 			rack_start_hpts_timer(rack, tp, cts, __LINE__, 0, 0, 0);
6807 		}
6808 		if (((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
6809 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
6810 		     (tp->t_flags & TF_DELACK) ||
6811 		     ((tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
6812 		      (tp->t_state <= TCPS_CLOSING)))) {
6813 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
6814 			if ((tp->snd_max == tp->snd_una) &&
6815 			    ((tp->t_flags & TF_DELACK) == 0) &&
6816 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
6817 				/* keep alive not needed if we are hptsi output yet */
6818 				;
6819 			} else {
6820 				if (rack->rc_inp->inp_in_hpts)
6821 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
6822 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), __LINE__, 0, 0, 0);
6823 			}
6824 			way_out = 1;
6825 		} else {
6826 			/* Do we have the correct timer running? */
6827 			rack_timer_audit(tp, rack, &so->so_snd);
6828 			way_out = 2;
6829 		}
6830 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
6831 		if (did_out)
6832 			rack->r_wanted_output = 0;
6833 #ifdef INVARIANTS
6834 		if (tp->t_inpcb == NULL) {
6835 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
6836 			      did_out,
6837 			      retval, tp, prev_state);
6838 		}
6839 #endif
6840 		INP_WUNLOCK(tp->t_inpcb);
6841 	}
6842 }
6843 
6844 void
6845 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
6846     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
6847 {
6848 	struct timeval tv;
6849 #ifdef RSS
6850 	struct tcp_function_block *tfb;
6851 	struct tcp_rack *rack;
6852 	struct inpcb *inp;
6853 
6854 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6855 	if (rack->r_state == 0) {
6856 		/*
6857 		 * Initial input (ACK to SYN-ACK etc)lets go ahead and get
6858 		 * it processed
6859 		 */
6860 		tcp_get_usecs(&tv);
6861 		rack_hpts_do_segment(m, th, so, tp, drop_hdrlen,
6862 		    tlen, iptos, 0, &tv);
6863 		return;
6864 	}
6865 	tcp_queue_to_input(tp, m, th, tlen, drop_hdrlen, iptos);
6866 	INP_WUNLOCK(tp->t_inpcb);
6867 #else
6868 	tcp_get_usecs(&tv);
6869 	rack_hpts_do_segment(m, th, so, tp, drop_hdrlen,
6870 	    tlen, iptos, 0, &tv);
6871 #endif
6872 }
6873 
6874 struct rack_sendmap *
6875 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
6876 {
6877 	struct rack_sendmap *rsm = NULL;
6878 	int32_t idx;
6879 	uint32_t srtt_cur, srtt = 0, thresh = 0, ts_low = 0;
6880 
6881 	/* Return the next guy to be re-transmitted */
6882 	if (TAILQ_EMPTY(&rack->r_ctl.rc_map)) {
6883 		return (NULL);
6884 	}
6885 	if (tp->t_flags & TF_SENTFIN) {
6886 		/* retran the end FIN? */
6887 		return (NULL);
6888 	}
6889 	/* ok lets look at this one */
6890 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6891 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
6892 		goto check_it;
6893 	}
6894 	rsm = rack_find_lowest_rsm(rack);
6895 	if (rsm == NULL) {
6896 		return (NULL);
6897 	}
6898 check_it:
6899 	srtt_cur = tp->t_srtt >> TCP_RTT_SHIFT;
6900 	srtt = TICKS_2_MSEC(srtt_cur);
6901 	if (rack->rc_rack_rtt && (srtt > rack->rc_rack_rtt))
6902 		srtt = rack->rc_rack_rtt;
6903 	if (rsm->r_flags & RACK_ACKED) {
6904 		return (NULL);
6905 	}
6906 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
6907 		/* Its not yet ready */
6908 		return (NULL);
6909 	}
6910 	idx = rsm->r_rtr_cnt - 1;
6911 	ts_low = rsm->r_tim_lastsent[idx];
6912 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
6913 	if (tsused <= ts_low) {
6914 		return (NULL);
6915 	}
6916 	if ((tsused - ts_low) >= thresh) {
6917 		return (rsm);
6918 	}
6919 	return (NULL);
6920 }
6921 
6922 static int
6923 rack_output(struct tcpcb *tp)
6924 {
6925 	struct socket *so;
6926 	uint32_t recwin, sendwin;
6927 	uint32_t sb_offset;
6928 	int32_t len, flags, error = 0;
6929 	struct mbuf *m;
6930 	struct mbuf *mb;
6931 	uint32_t if_hw_tsomaxsegcount = 0;
6932 	uint32_t if_hw_tsomaxsegsize;
6933 	long tot_len_this_send = 0;
6934 	struct ip *ip = NULL;
6935 #ifdef TCPDEBUG
6936 	struct ipovly *ipov = NULL;
6937 #endif
6938 #ifdef NETFLIX_TCP_O_UDP
6939 	struct udphdr *udp = NULL;
6940 #endif
6941 	struct tcp_rack *rack;
6942 	struct tcphdr *th;
6943 	uint8_t pass = 0;
6944 	u_char opt[TCP_MAXOLEN];
6945 	unsigned ipoptlen, optlen, hdrlen;
6946 #ifdef NETFLIX_TCP_O_UDP
6947 	unsigned ulen;
6948 #endif
6949 	uint32_t rack_seq;
6950 
6951 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
6952 	unsigned ipsec_optlen = 0;
6953 
6954 #endif
6955 	int32_t idle, sendalot;
6956 	int32_t sub_from_prr = 0;
6957 	volatile int32_t sack_rxmit;
6958 	struct rack_sendmap *rsm = NULL;
6959 	int32_t tso, mtu, would_have_fin = 0;
6960 	struct tcpopt to;
6961 	int32_t slot = 0;
6962 	uint32_t cts;
6963 	uint8_t hpts_calling, doing_tlp = 0;
6964 	int32_t do_a_prefetch;
6965 	int32_t prefetch_rsm = 0;
6966 	int32_t prefetch_so_done = 0;
6967 	struct tcp_log_buffer *lgb = NULL;
6968 	struct inpcb *inp;
6969 	struct sockbuf *sb;
6970 #ifdef INET6
6971 	struct ip6_hdr *ip6 = NULL;
6972 	int32_t isipv6;
6973 #endif
6974 	/* setup and take the cache hits here */
6975 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6976 	inp = rack->rc_inp;
6977 	so = inp->inp_socket;
6978 	sb = &so->so_snd;
6979 	kern_prefetch(sb, &do_a_prefetch);
6980 	do_a_prefetch = 1;
6981 
6982 	INP_WLOCK_ASSERT(inp);
6983 #ifdef TCP_OFFLOAD
6984 	if (tp->t_flags & TF_TOE)
6985 		return (tcp_offload_output(tp));
6986 #endif
6987 
6988 #ifdef TCP_RFC7413
6989 	/*
6990 	 * For TFO connections in SYN_RECEIVED, only allow the initial
6991 	 * SYN|ACK and those sent by the retransmit timer.
6992 	 */
6993 	if ((tp->t_flags & TF_FASTOPEN) &&
6994 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
6995 	    SEQ_GT(tp->snd_max, tp->snd_una) &&	/* inital SYN|ACK sent */
6996 	    (tp->snd_nxt != tp->snd_una))	/* not a retransmit */
6997 		return (0);
6998 #endif
6999 #ifdef INET6
7000 	if (rack->r_state) {
7001 		/* Use the cache line loaded if possible */
7002 		isipv6 = rack->r_is_v6;
7003 	} else {
7004 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
7005 	}
7006 #endif
7007 	cts = tcp_ts_getticks();
7008 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
7009 	    inp->inp_in_hpts) {
7010 		/*
7011 		 * We are on the hpts for some timer but not hptsi output.
7012 		 * Remove from the hpts unconditionally.
7013 		 */
7014 		rack_timer_cancel(tp, rack, cts, __LINE__);
7015 	}
7016 	/* Mark that we have called rack_output(). */
7017 	if ((rack->r_timer_override) ||
7018 	    (tp->t_flags & TF_FORCEDATA) ||
7019 	    (tp->t_state < TCPS_ESTABLISHED)) {
7020 		if (tp->t_inpcb->inp_in_hpts)
7021 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
7022 	} else if (tp->t_inpcb->inp_in_hpts) {
7023 		/*
7024 		 * On the hpts you can't pass even if ACKNOW is on, we will
7025 		 * when the hpts fires.
7026 		 */
7027 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
7028 		return (0);
7029 	}
7030 	hpts_calling = inp->inp_hpts_calls;
7031 	inp->inp_hpts_calls = 0;
7032 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
7033 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
7034 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
7035 			return (0);
7036 		}
7037 	}
7038 	rack->r_wanted_output = 0;
7039 	rack->r_timer_override = 0;
7040 	/*
7041 	 * Determine length of data that should be transmitted, and flags
7042 	 * that will be used. If there is some data or critical controls
7043 	 * (SYN, RST) to send, then transmit; otherwise, investigate
7044 	 * further.
7045 	 */
7046 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
7047 	if (tp->t_idle_reduce) {
7048 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
7049 			rack_cc_after_idle(tp,
7050 		            (rack->r_idle_reduce_largest ? 1 :0));
7051 	}
7052 	tp->t_flags &= ~TF_LASTIDLE;
7053 	if (idle) {
7054 		if (tp->t_flags & TF_MORETOCOME) {
7055 			tp->t_flags |= TF_LASTIDLE;
7056 			idle = 0;
7057 		}
7058 	}
7059 again:
7060 	/*
7061 	 * If we've recently taken a timeout, snd_max will be greater than
7062 	 * snd_nxt.  There may be SACK information that allows us to avoid
7063 	 * resending already delivered data.  Adjust snd_nxt accordingly.
7064 	 */
7065 	sendalot = 0;
7066 	cts = tcp_ts_getticks();
7067 	tso = 0;
7068 	mtu = 0;
7069 	sb_offset = tp->snd_max - tp->snd_una;
7070 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
7071 
7072 	flags = tcp_outflags[tp->t_state];
7073 	/*
7074 	 * Send any SACK-generated retransmissions.  If we're explicitly
7075 	 * trying to send out new data (when sendalot is 1), bypass this
7076 	 * function. If we retransmit in fast recovery mode, decrement
7077 	 * snd_cwnd, since we're replacing a (future) new transmission with
7078 	 * a retransmission now, and we previously incremented snd_cwnd in
7079 	 * tcp_input().
7080 	 */
7081 	/*
7082 	 * Still in sack recovery , reset rxmit flag to zero.
7083 	 */
7084 	while (rack->rc_free_cnt < rack_free_cache) {
7085 		rsm = rack_alloc(rack);
7086 		if (rsm == NULL) {
7087 			if (inp->inp_hpts_calls)
7088 				/* Retry in a ms */
7089 				slot = 1;
7090 			goto just_return_nolock;
7091 		}
7092 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_next);
7093 		rack->rc_free_cnt++;
7094 		rsm = NULL;
7095 	}
7096 	if (inp->inp_hpts_calls)
7097 		inp->inp_hpts_calls = 0;
7098 	sack_rxmit = 0;
7099 	len = 0;
7100 	rsm = NULL;
7101 	if (flags & TH_RST) {
7102 		SOCKBUF_LOCK(sb);
7103 		goto send;
7104 	}
7105 	if (rack->r_ctl.rc_tlpsend) {
7106 		/* Tail loss probe */
7107 		long cwin;
7108 		long tlen;
7109 
7110 		doing_tlp = 1;
7111 		rsm = rack->r_ctl.rc_tlpsend;
7112 		rack->r_ctl.rc_tlpsend = NULL;
7113 		sack_rxmit = 1;
7114 		tlen = rsm->r_end - rsm->r_start;
7115 		if (tlen > tp->t_maxseg)
7116 			tlen = tp->t_maxseg;
7117 #ifdef INVARIANTS
7118 		if (SEQ_GT(tp->snd_una, rsm->r_start)) {
7119 			panic("tp:%p rack:%p snd_una:%u rsm:%p r_start:%u",
7120 			    tp, rack, tp->snd_una, rsm, rsm->r_start);
7121 		}
7122 #endif
7123 		sb_offset = rsm->r_start - tp->snd_una;
7124 		cwin = min(tp->snd_wnd, tlen);
7125 		len = cwin;
7126 	} else if (rack->r_ctl.rc_resend) {
7127 		/* Retransmit timer */
7128 		rsm = rack->r_ctl.rc_resend;
7129 		rack->r_ctl.rc_resend = NULL;
7130 		len = rsm->r_end - rsm->r_start;
7131 		sack_rxmit = 1;
7132 		sendalot = 0;
7133 		sb_offset = rsm->r_start - tp->snd_una;
7134 		if (len >= tp->t_maxseg) {
7135 			len = tp->t_maxseg;
7136 		}
7137 		KASSERT(sb_offset >= 0, ("%s: sack block to the left of una : %d",
7138 		    __func__, sb_offset));
7139 	} else if ((rack->rc_in_persist == 0) &&
7140 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
7141 		long tlen;
7142 
7143 		if ((!IN_RECOVERY(tp->t_flags)) &&
7144 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
7145 			/* Enter recovery if not induced by a time-out */
7146 			rack->r_ctl.rc_rsm_start = rsm->r_start;
7147 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
7148 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
7149 			rack_cong_signal(tp, NULL, CC_NDUPACK);
7150 			/*
7151 			 * When we enter recovery we need to assure we send
7152 			 * one packet.
7153 			 */
7154 			rack->r_ctl.rc_prr_sndcnt = tp->t_maxseg;
7155 		}
7156 #ifdef INVARIANTS
7157 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
7158 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
7159 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
7160 		}
7161 #endif
7162 		tlen = rsm->r_end - rsm->r_start;
7163 		sb_offset = rsm->r_start - tp->snd_una;
7164 		if (tlen > rack->r_ctl.rc_prr_sndcnt) {
7165 			len = rack->r_ctl.rc_prr_sndcnt;
7166 		} else {
7167 			len = tlen;
7168 		}
7169 		if (len >= tp->t_maxseg) {
7170 			sendalot = 1;
7171 			len = tp->t_maxseg;
7172 		} else {
7173 			sendalot = 0;
7174 			if ((rack->rc_timer_up == 0) &&
7175 			    (len < tlen)) {
7176 				/*
7177 				 * If its not a timer don't send a partial
7178 				 * segment.
7179 				 */
7180 				len = 0;
7181 				goto just_return_nolock;
7182 			}
7183 		}
7184 		KASSERT(sb_offset >= 0, ("%s: sack block to the left of una : %d",
7185 		    __func__, sb_offset));
7186 		if (len > 0) {
7187 			sub_from_prr = 1;
7188 			sack_rxmit = 1;
7189 			TCPSTAT_INC(tcps_sack_rexmits);
7190 			TCPSTAT_ADD(tcps_sack_rexmit_bytes,
7191 			    min(len, tp->t_maxseg));
7192 			counter_u64_add(rack_rtm_prr_retran, 1);
7193 		}
7194 	}
7195 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
7196 		/* we are retransmitting the fin */
7197 		len--;
7198 		if (len) {
7199 			/*
7200 			 * When retransmitting data do *not* include the
7201 			 * FIN. This could happen from a TLP probe.
7202 			 */
7203 			flags &= ~TH_FIN;
7204 		}
7205 	}
7206 #ifdef INVARIANTS
7207 	/* For debugging */
7208 	rack->r_ctl.rc_rsm_at_retran = rsm;
7209 #endif
7210 	/*
7211 	 * Enforce a connection sendmap count limit if set
7212 	 * as long as we are not retransmiting.
7213 	 */
7214 	if ((rsm == NULL) &&
7215 	    (rack_map_entries_limit > 0) &&
7216 	    (rack->r_ctl.rc_num_maps_alloced >= rack_map_entries_limit)) {
7217 		counter_u64_add(rack_to_alloc_limited, 1);
7218 		if (!rack->alloc_limit_reported) {
7219 			rack->alloc_limit_reported = 1;
7220 			counter_u64_add(rack_alloc_limited_conns, 1);
7221 		}
7222 		goto just_return_nolock;
7223 	}
7224 	/*
7225 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
7226 	 * state flags.
7227 	 */
7228 	if (tp->t_flags & TF_NEEDFIN)
7229 		flags |= TH_FIN;
7230 	if (tp->t_flags & TF_NEEDSYN)
7231 		flags |= TH_SYN;
7232 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
7233 		void *end_rsm;
7234 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
7235 		if (end_rsm)
7236 			kern_prefetch(end_rsm, &prefetch_rsm);
7237 		prefetch_rsm = 1;
7238 	}
7239 	SOCKBUF_LOCK(sb);
7240 	/*
7241 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
7242 	 * if window is small but nonzero and time TF_SENTFIN expired, we
7243 	 * will send what we can and go to transmit state.
7244 	 */
7245 	if (tp->t_flags & TF_FORCEDATA) {
7246 		if (sendwin == 0) {
7247 			/*
7248 			 * If we still have some data to send, then clear
7249 			 * the FIN bit.  Usually this would happen below
7250 			 * when it realizes that we aren't sending all the
7251 			 * data.  However, if we have exactly 1 byte of
7252 			 * unsent data, then it won't clear the FIN bit
7253 			 * below, and if we are in persist state, we wind up
7254 			 * sending the packet without recording that we sent
7255 			 * the FIN bit.
7256 			 *
7257 			 * We can't just blindly clear the FIN bit, because
7258 			 * if we don't have any more data to send then the
7259 			 * probe will be the FIN itself.
7260 			 */
7261 			if (sb_offset < sbused(sb))
7262 				flags &= ~TH_FIN;
7263 			sendwin = 1;
7264 		} else {
7265 			if (rack->rc_in_persist)
7266 				rack_exit_persist(tp, rack);
7267 			/*
7268 			 * If we are dropping persist mode then we need to
7269 			 * correct snd_nxt/snd_max and off.
7270 			 */
7271 			tp->snd_nxt = tp->snd_max;
7272 			sb_offset = tp->snd_nxt - tp->snd_una;
7273 		}
7274 	}
7275 	/*
7276 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
7277 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
7278 	 * negative length.  This can also occur when TCP opens up its
7279 	 * congestion window while receiving additional duplicate acks after
7280 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
7281 	 * the fast-retransmit.
7282 	 *
7283 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
7284 	 * set to snd_una, the sb_offset will be 0, and the length may wind
7285 	 * up 0.
7286 	 *
7287 	 * If sack_rxmit is true we are retransmitting from the scoreboard
7288 	 * in which case len is already set.
7289 	 */
7290 	if (sack_rxmit == 0) {
7291 		uint32_t avail;
7292 
7293 		avail = sbavail(sb);
7294 		if (SEQ_GT(tp->snd_nxt, tp->snd_una))
7295 			sb_offset = tp->snd_nxt - tp->snd_una;
7296 		else
7297 			sb_offset = 0;
7298 		if (IN_RECOVERY(tp->t_flags) == 0) {
7299 			if (rack->r_ctl.rc_tlp_new_data) {
7300 				/* TLP is forcing out new data */
7301 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
7302 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
7303 				}
7304 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
7305 					len = tp->snd_wnd;
7306 				else
7307 					len = rack->r_ctl.rc_tlp_new_data;
7308 				rack->r_ctl.rc_tlp_new_data = 0;
7309 				doing_tlp = 1;
7310 			} else {
7311 				if (sendwin > avail) {
7312 					/* use the available */
7313 					if (avail > sb_offset) {
7314 						len = (int32_t)(avail - sb_offset);
7315 					} else {
7316 						len = 0;
7317 					}
7318 				} else {
7319 					if (sendwin > sb_offset) {
7320 						len = (int32_t)(sendwin - sb_offset);
7321 					} else {
7322 						len = 0;
7323 					}
7324 				}
7325 			}
7326 		} else {
7327 			uint32_t outstanding;
7328 
7329 			/*
7330 			 * We are inside of a SACK recovery episode and are
7331 			 * sending new data, having retransmitted all the
7332 			 * data possible so far in the scoreboard.
7333 			 */
7334 			outstanding = tp->snd_max - tp->snd_una;
7335 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
7336 				if (tp->snd_wnd > outstanding) {
7337 					len = tp->snd_wnd - outstanding;
7338 					/* Check to see if we have the data */
7339 					if (((sb_offset + len) > avail) &&
7340 					    (avail > sb_offset))
7341 						len = avail - sb_offset;
7342 					else
7343 						len = 0;
7344 				} else
7345 					len = 0;
7346 			} else if (avail > sb_offset)
7347 				len = avail - sb_offset;
7348 			else
7349 				len = 0;
7350 			if (len > 0) {
7351 				if (len > rack->r_ctl.rc_prr_sndcnt)
7352 					len = rack->r_ctl.rc_prr_sndcnt;
7353 
7354 				if (len > 0) {
7355 					sub_from_prr = 1;
7356 					counter_u64_add(rack_rtm_prr_newdata, 1);
7357 				}
7358 			}
7359 			if (len > tp->t_maxseg) {
7360 				/*
7361 				 * We should never send more than a MSS when
7362 				 * retransmitting or sending new data in prr
7363 				 * mode unless the override flag is on. Most
7364 				 * likely the PRR algorithm is not going to
7365 				 * let us send a lot as well :-)
7366 				 */
7367 				if (rack->r_ctl.rc_prr_sendalot == 0)
7368 					len = tp->t_maxseg;
7369 			} else if (len < tp->t_maxseg) {
7370 				/*
7371 				 * Do we send any? The idea here is if the
7372 				 * send empty's the socket buffer we want to
7373 				 * do it. However if not then lets just wait
7374 				 * for our prr_sndcnt to get bigger.
7375 				 */
7376 				long leftinsb;
7377 
7378 				leftinsb = sbavail(sb) - sb_offset;
7379 				if (leftinsb > len) {
7380 					/* This send does not empty the sb */
7381 					len = 0;
7382 				}
7383 			}
7384 		}
7385 	}
7386 	if (prefetch_so_done == 0) {
7387 		kern_prefetch(so, &prefetch_so_done);
7388 		prefetch_so_done = 1;
7389 	}
7390 	/*
7391 	 * Lop off SYN bit if it has already been sent.  However, if this is
7392 	 * SYN-SENT state and if segment contains data and if we don't know
7393 	 * that foreign host supports TAO, suppress sending segment.
7394 	 */
7395 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una)) {
7396 		if ((tp->t_state != TCPS_SYN_RECEIVED) &&
7397 		    (tp->t_state != TCPS_SYN_SENT))
7398 			flags &= ~TH_SYN;
7399 #ifdef TCP_RFC7413
7400 		/*
7401 		 * When sending additional segments following a TFO SYN|ACK,
7402 		 * do not include the SYN bit.
7403 		 */
7404 		if ((tp->t_flags & TF_FASTOPEN) &&
7405 		    (tp->t_state == TCPS_SYN_RECEIVED))
7406 			flags &= ~TH_SYN;
7407 #endif
7408 		sb_offset--, len++;
7409 		if (sbavail(sb) == 0)
7410 			len = 0;
7411 	}
7412 	/*
7413 	 * Be careful not to send data and/or FIN on SYN segments. This
7414 	 * measure is needed to prevent interoperability problems with not
7415 	 * fully conformant TCP implementations.
7416 	 */
7417 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
7418 		len = 0;
7419 		flags &= ~TH_FIN;
7420 	}
7421 #ifdef TCP_RFC7413
7422 	/*
7423 	 * When retransmitting SYN|ACK on a passively-created TFO socket,
7424 	 * don't include data, as the presence of data may have caused the
7425 	 * original SYN|ACK to have been dropped by a middlebox.
7426 	 */
7427 	if ((tp->t_flags & TF_FASTOPEN) &&
7428 	    ((tp->t_state == TCPS_SYN_RECEIVED) && (tp->t_rxtshift > 0)))
7429 		len = 0;
7430 #endif
7431 	if (len <= 0) {
7432 		/*
7433 		 * If FIN has been sent but not acked, but we haven't been
7434 		 * called to retransmit, len will be < 0.  Otherwise, window
7435 		 * shrank after we sent into it.  If window shrank to 0,
7436 		 * cancel pending retransmit, pull snd_nxt back to (closed)
7437 		 * window, and set the persist timer if it isn't already
7438 		 * going.  If the window didn't close completely, just wait
7439 		 * for an ACK.
7440 		 *
7441 		 * We also do a general check here to ensure that we will
7442 		 * set the persist timer when we have data to send, but a
7443 		 * 0-byte window. This makes sure the persist timer is set
7444 		 * even if the packet hits one of the "goto send" lines
7445 		 * below.
7446 		 */
7447 		len = 0;
7448 		if ((tp->snd_wnd == 0) &&
7449 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
7450 		    (sb_offset < (int)sbavail(sb))) {
7451 			tp->snd_nxt = tp->snd_una;
7452 			rack_enter_persist(tp, rack, cts);
7453 		}
7454 	}
7455 	/* len will be >= 0 after this point. */
7456 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
7457 	tcp_sndbuf_autoscale(tp, so, sendwin);
7458 	/*
7459 	 * Decide if we can use TCP Segmentation Offloading (if supported by
7460 	 * hardware).
7461 	 *
7462 	 * TSO may only be used if we are in a pure bulk sending state.  The
7463 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
7464 	 * options prevent using TSO.  With TSO the TCP header is the same
7465 	 * (except for the sequence number) for all generated packets.  This
7466 	 * makes it impossible to transmit any options which vary per
7467 	 * generated segment or packet.
7468 	 *
7469 	 * IPv4 handling has a clear separation of ip options and ip header
7470 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
7471 	 * the right thing below to provide length of just ip options and thus
7472 	 * checking for ipoptlen is enough to decide if ip options are present.
7473 	 */
7474 
7475 #ifdef INET6
7476 	if (isipv6)
7477 		ipoptlen = ip6_optlen(tp->t_inpcb);
7478 	else
7479 #endif
7480 		if (tp->t_inpcb->inp_options)
7481 			ipoptlen = tp->t_inpcb->inp_options->m_len -
7482 			    offsetof(struct ipoption, ipopt_list);
7483 		else
7484 			ipoptlen = 0;
7485 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7486 	/*
7487 	 * Pre-calculate here as we save another lookup into the darknesses
7488 	 * of IPsec that way and can actually decide if TSO is ok.
7489 	 */
7490 #ifdef INET6
7491 	if (isipv6 && IPSEC_ENABLED(ipv6))
7492 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
7493 #ifdef INET
7494 	else
7495 #endif
7496 #endif				/* INET6 */
7497 #ifdef INET
7498 	if (IPSEC_ENABLED(ipv4))
7499 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
7500 #endif				/* INET */
7501 #endif
7502 
7503 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7504 	ipoptlen += ipsec_optlen;
7505 #endif
7506 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > tp->t_maxseg &&
7507 #ifdef NETFLIX_TCP_O_UDP
7508 	    (tp->t_port == 0) &&
7509 #endif
7510 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
7511 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
7512 	    ipoptlen == 0)
7513 		tso = 1;
7514 	{
7515 		uint32_t outstanding;
7516 
7517 		outstanding = tp->snd_max - tp->snd_una;
7518 		if (tp->t_flags & TF_SENTFIN) {
7519 			/*
7520 			 * If we sent a fin, snd_max is 1 higher than
7521 			 * snd_una
7522 			 */
7523 			outstanding--;
7524 		}
7525 		if (outstanding > 0) {
7526 			/*
7527 			 * This is sub-optimal. We only send a stand alone
7528 			 * FIN on its own segment.
7529 			 */
7530 			if (flags & TH_FIN) {
7531 				flags &= ~TH_FIN;
7532 				would_have_fin = 1;
7533 			}
7534 		} else if (sack_rxmit) {
7535 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
7536 				flags &= ~TH_FIN;
7537 		} else {
7538 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
7539 			    sbused(sb)))
7540 				flags &= ~TH_FIN;
7541 		}
7542 	}
7543 	recwin = sbspace(&so->so_rcv);
7544 
7545 	/*
7546 	 * Sender silly window avoidance.   We transmit under the following
7547 	 * conditions when len is non-zero:
7548 	 *
7549 	 * - We have a full segment (or more with TSO) - This is the last
7550 	 * buffer in a write()/send() and we are either idle or running
7551 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
7552 	 * then 1/2 the maximum send window's worth of data (receiver may be
7553 	 * limited the window size) - we need to retransmit
7554 	 */
7555 	if (len) {
7556 		if (len >= tp->t_maxseg) {
7557 			pass = 1;
7558 			goto send;
7559 		}
7560 		/*
7561 		 * NOTE! on localhost connections an 'ack' from the remote
7562 		 * end may occur synchronously with the output and cause us
7563 		 * to flush a buffer queued with moretocome.  XXX
7564 		 *
7565 		 */
7566 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
7567 		    (idle || (tp->t_flags & TF_NODELAY)) &&
7568 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
7569 		    (tp->t_flags & TF_NOPUSH) == 0) {
7570 			pass = 2;
7571 			goto send;
7572 		}
7573 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
7574 			pass = 3;
7575 			goto send;
7576 		}
7577 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
7578 			goto send;
7579 		}
7580 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
7581 			pass = 4;
7582 			goto send;
7583 		}
7584 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
7585 			pass = 5;
7586 			goto send;
7587 		}
7588 		if (sack_rxmit) {
7589 			pass = 6;
7590 			goto send;
7591 		}
7592 	}
7593 	/*
7594 	 * Sending of standalone window updates.
7595 	 *
7596 	 * Window updates are important when we close our window due to a
7597 	 * full socket buffer and are opening it again after the application
7598 	 * reads data from it.  Once the window has opened again and the
7599 	 * remote end starts to send again the ACK clock takes over and
7600 	 * provides the most current window information.
7601 	 *
7602 	 * We must avoid the silly window syndrome whereas every read from
7603 	 * the receive buffer, no matter how small, causes a window update
7604 	 * to be sent.  We also should avoid sending a flurry of window
7605 	 * updates when the socket buffer had queued a lot of data and the
7606 	 * application is doing small reads.
7607 	 *
7608 	 * Prevent a flurry of pointless window updates by only sending an
7609 	 * update when we can increase the advertized window by more than
7610 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
7611 	 * full or is very small be more aggressive and send an update
7612 	 * whenever we can increase by two mss sized segments. In all other
7613 	 * situations the ACK's to new incoming data will carry further
7614 	 * window increases.
7615 	 *
7616 	 * Don't send an independent window update if a delayed ACK is
7617 	 * pending (it will get piggy-backed on it) or the remote side
7618 	 * already has done a half-close and won't send more data.  Skip
7619 	 * this if the connection is in T/TCP half-open state.
7620 	 */
7621 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
7622 	    !(tp->t_flags & TF_DELACK) &&
7623 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
7624 		/*
7625 		 * "adv" is the amount we could increase the window, taking
7626 		 * into account that we are limited by TCP_MAXWIN <<
7627 		 * tp->rcv_scale.
7628 		 */
7629 		int32_t adv;
7630 		int oldwin;
7631 
7632 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
7633 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
7634 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
7635 			adv -= oldwin;
7636 		} else
7637 			oldwin = 0;
7638 
7639 		/*
7640 		 * If the new window size ends up being the same as the old
7641 		 * size when it is scaled, then don't force a window update.
7642 		 */
7643 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
7644 			goto dontupdate;
7645 
7646 		if (adv >= (int32_t)(2 * tp->t_maxseg) &&
7647 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
7648 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
7649 		    so->so_rcv.sb_hiwat <= 8 * tp->t_maxseg)) {
7650 			pass = 7;
7651 			goto send;
7652 		}
7653 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
7654 			goto send;
7655 	}
7656 dontupdate:
7657 
7658 	/*
7659 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
7660 	 * is also a catch-all for the retransmit timer timeout case.
7661 	 */
7662 	if (tp->t_flags & TF_ACKNOW) {
7663 		pass = 8;
7664 		goto send;
7665 	}
7666 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
7667 		pass = 9;
7668 		goto send;
7669 	}
7670 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
7671 		pass = 10;
7672 		goto send;
7673 	}
7674 	/*
7675 	 * If our state indicates that FIN should be sent and we have not
7676 	 * yet done so, then we need to send.
7677 	 */
7678 	if (flags & TH_FIN) {
7679 		if ((tp->t_flags & TF_SENTFIN) ||
7680 		    (((tp->t_flags & TF_SENTFIN) == 0) &&
7681 		     (tp->snd_nxt == tp->snd_una))) {
7682 			pass = 11;
7683 			goto send;
7684 		}
7685 	}
7686 	/*
7687 	 * No reason to send a segment, just return.
7688 	 */
7689 just_return:
7690 	SOCKBUF_UNLOCK(sb);
7691 just_return_nolock:
7692 	if (tot_len_this_send == 0)
7693 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
7694 	rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, tot_len_this_send, 1);
7695 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
7696 	tp->t_flags &= ~TF_FORCEDATA;
7697 	return (0);
7698 
7699 send:
7700 	if (doing_tlp == 0) {
7701 		/*
7702 		 * Data not a TLP, and its not the rxt firing. If it is the
7703 		 * rxt firing, we want to leave the tlp_in_progress flag on
7704 		 * so we don't send another TLP. It has to be a rack timer
7705 		 * or normal send (response to acked data) to clear the tlp
7706 		 * in progress flag.
7707 		 */
7708 		rack->rc_tlp_in_progress = 0;
7709 	}
7710 	SOCKBUF_LOCK_ASSERT(sb);
7711 	if (len > 0) {
7712 		if (len >= tp->t_maxseg)
7713 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
7714 		else
7715 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
7716 	}
7717 	/*
7718 	 * Before ESTABLISHED, force sending of initial options unless TCP
7719 	 * set not to do any options. NOTE: we assume that the IP/TCP header
7720 	 * plus TCP options always fit in a single mbuf, leaving room for a
7721 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
7722 	 * + optlen <= MCLBYTES
7723 	 */
7724 	optlen = 0;
7725 #ifdef INET6
7726 	if (isipv6)
7727 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
7728 	else
7729 #endif
7730 		hdrlen = sizeof(struct tcpiphdr);
7731 
7732 	/*
7733 	 * Compute options for segment. We only have to care about SYN and
7734 	 * established connection segments.  Options for SYN-ACK segments
7735 	 * are handled in TCP syncache.
7736 	 */
7737 	to.to_flags = 0;
7738 	if ((tp->t_flags & TF_NOOPT) == 0) {
7739 		/* Maximum segment size. */
7740 		if (flags & TH_SYN) {
7741 			tp->snd_nxt = tp->iss;
7742 			to.to_mss = tcp_mssopt(&inp->inp_inc);
7743 #ifdef NETFLIX_TCP_O_UDP
7744 			if (tp->t_port)
7745 				to.to_mss -= V_tcp_udp_tunneling_overhead;
7746 #endif
7747 			to.to_flags |= TOF_MSS;
7748 #ifdef TCP_RFC7413
7749 			/*
7750 			 * Only include the TFO option on the first
7751 			 * transmission of the SYN|ACK on a
7752 			 * passively-created TFO socket, as the presence of
7753 			 * the TFO option may have caused the original
7754 			 * SYN|ACK to have been dropped by a middlebox.
7755 			 */
7756 			if ((tp->t_flags & TF_FASTOPEN) &&
7757 			    (tp->t_state == TCPS_SYN_RECEIVED) &&
7758 			    (tp->t_rxtshift == 0)) {
7759 				to.to_tfo_len = TCP_FASTOPEN_MAX_COOKIE_LEN;
7760 				to.to_tfo_cookie = (u_char *)&tp->t_tfo_cookie;
7761 				to.to_flags |= TOF_FASTOPEN;
7762 			}
7763 #endif
7764 		}
7765 		/* Window scaling. */
7766 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
7767 			to.to_wscale = tp->request_r_scale;
7768 			to.to_flags |= TOF_SCALE;
7769 		}
7770 		/* Timestamps. */
7771 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
7772 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
7773 			to.to_tsval = cts + tp->ts_offset;
7774 			to.to_tsecr = tp->ts_recent;
7775 			to.to_flags |= TOF_TS;
7776 		}
7777 		/* Set receive buffer autosizing timestamp. */
7778 		if (tp->rfbuf_ts == 0 &&
7779 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
7780 			tp->rfbuf_ts = tcp_ts_getticks();
7781 		/* Selective ACK's. */
7782 		if (flags & TH_SYN)
7783 			to.to_flags |= TOF_SACKPERM;
7784 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
7785 		    tp->rcv_numsacks > 0) {
7786 			to.to_flags |= TOF_SACK;
7787 			to.to_nsacks = tp->rcv_numsacks;
7788 			to.to_sacks = (u_char *)tp->sackblks;
7789 		}
7790 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
7791 		/* TCP-MD5 (RFC2385). */
7792 		if (tp->t_flags & TF_SIGNATURE)
7793 			to.to_flags |= TOF_SIGNATURE;
7794 #endif				/* TCP_SIGNATURE */
7795 
7796 		/* Processing the options. */
7797 		hdrlen += optlen = tcp_addoptions(&to, opt);
7798 	}
7799 #ifdef NETFLIX_TCP_O_UDP
7800 	if (tp->t_port) {
7801 		if (V_tcp_udp_tunneling_port == 0) {
7802 			/* The port was removed?? */
7803 			SOCKBUF_UNLOCK(&so->so_snd);
7804 			return (EHOSTUNREACH);
7805 		}
7806 		hdrlen += sizeof(struct udphdr);
7807 	}
7808 #endif
7809 	ipoptlen = 0;
7810 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
7811 	ipoptlen += ipsec_optlen;
7812 #endif
7813 
7814 	/*
7815 	 * Adjust data length if insertion of options will bump the packet
7816 	 * length beyond the t_maxseg length. Clear the FIN bit because we
7817 	 * cut off the tail of the segment.
7818 	 */
7819 	if (len + optlen + ipoptlen > tp->t_maxseg) {
7820 		if (flags & TH_FIN) {
7821 			would_have_fin = 1;
7822 			flags &= ~TH_FIN;
7823 		}
7824 		if (tso) {
7825 			uint32_t if_hw_tsomax;
7826 			uint32_t moff;
7827 			int32_t max_len;
7828 
7829 			/* extract TSO information */
7830 			if_hw_tsomax = tp->t_tsomax;
7831 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
7832 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
7833 			KASSERT(ipoptlen == 0,
7834 			    ("%s: TSO can't do IP options", __func__));
7835 
7836 			/*
7837 			 * Check if we should limit by maximum payload
7838 			 * length:
7839 			 */
7840 			if (if_hw_tsomax != 0) {
7841 				/* compute maximum TSO length */
7842 				max_len = (if_hw_tsomax - hdrlen -
7843 				    max_linkhdr);
7844 				if (max_len <= 0) {
7845 					len = 0;
7846 				} else if (len > max_len) {
7847 					sendalot = 1;
7848 					len = max_len;
7849 				}
7850 			}
7851 			/*
7852 			 * Prevent the last segment from being fractional
7853 			 * unless the send sockbuf can be emptied:
7854 			 */
7855 			max_len = (tp->t_maxseg - optlen);
7856 			if ((sb_offset + len) < sbavail(sb)) {
7857 				moff = len % (u_int)max_len;
7858 				if (moff != 0) {
7859 					len -= moff;
7860 					sendalot = 1;
7861 				}
7862 			}
7863 			/*
7864 			 * In case there are too many small fragments don't
7865 			 * use TSO:
7866 			 */
7867 			if (len <= max_len) {
7868 				len = max_len;
7869 				sendalot = 1;
7870 				tso = 0;
7871 			}
7872 			/*
7873 			 * Send the FIN in a separate segment after the bulk
7874 			 * sending is done. We don't trust the TSO
7875 			 * implementations to clear the FIN flag on all but
7876 			 * the last segment.
7877 			 */
7878 			if (tp->t_flags & TF_NEEDFIN)
7879 				sendalot = 1;
7880 
7881 		} else {
7882 			len = tp->t_maxseg - optlen - ipoptlen;
7883 			sendalot = 1;
7884 		}
7885 	} else
7886 		tso = 0;
7887 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
7888 	    ("%s: len > IP_MAXPACKET", __func__));
7889 #ifdef DIAGNOSTIC
7890 #ifdef INET6
7891 	if (max_linkhdr + hdrlen > MCLBYTES)
7892 #else
7893 	if (max_linkhdr + hdrlen > MHLEN)
7894 #endif
7895 		panic("tcphdr too big");
7896 #endif
7897 
7898 	/*
7899 	 * This KASSERT is here to catch edge cases at a well defined place.
7900 	 * Before, those had triggered (random) panic conditions further
7901 	 * down.
7902 	 */
7903 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
7904 	if ((len == 0) &&
7905 	    (flags & TH_FIN) &&
7906 	    (sbused(sb))) {
7907 		/*
7908 		 * We have outstanding data, don't send a fin by itself!.
7909 		 */
7910 		goto just_return;
7911 	}
7912 	/*
7913 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
7914 	 * and initialize the header from the template for sends on this
7915 	 * connection.
7916 	 */
7917 	if (len) {
7918 		uint32_t max_val;
7919 		uint32_t moff;
7920 
7921 		if (rack->rc_pace_max_segs)
7922 			max_val = rack->rc_pace_max_segs * tp->t_maxseg;
7923 		else
7924 			max_val = len;
7925 		/*
7926 		 * We allow a limit on sending with hptsi.
7927 		 */
7928 		if (len > max_val) {
7929 			len = max_val;
7930 		}
7931 #ifdef INET6
7932 		if (MHLEN < hdrlen + max_linkhdr)
7933 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
7934 		else
7935 #endif
7936 			m = m_gethdr(M_NOWAIT, MT_DATA);
7937 
7938 		if (m == NULL) {
7939 			SOCKBUF_UNLOCK(sb);
7940 			error = ENOBUFS;
7941 			sack_rxmit = 0;
7942 			goto out;
7943 		}
7944 		m->m_data += max_linkhdr;
7945 		m->m_len = hdrlen;
7946 
7947 		/*
7948 		 * Start the m_copy functions from the closest mbuf to the
7949 		 * sb_offset in the socket buffer chain.
7950 		 */
7951 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
7952 		if (len <= MHLEN - hdrlen - max_linkhdr) {
7953 			m_copydata(mb, moff, (int)len,
7954 			    mtod(m, caddr_t)+hdrlen);
7955 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7956 				sbsndptr_adv(sb, mb, len);
7957 			m->m_len += len;
7958 		} else {
7959 			struct sockbuf *msb;
7960 
7961 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7962 				msb = NULL;
7963 			else
7964 				msb = sb;
7965 			m->m_next = tcp_m_copym(/*tp, */ mb, moff, &len,
7966 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb /*, 0, NULL*/);
7967 			if (len <= (tp->t_maxseg - optlen)) {
7968 				/*
7969 				 * Must have ran out of mbufs for the copy
7970 				 * shorten it to no longer need tso. Lets
7971 				 * not put on sendalot since we are low on
7972 				 * mbufs.
7973 				 */
7974 				tso = 0;
7975 			}
7976 			if (m->m_next == NULL) {
7977 				SOCKBUF_UNLOCK(sb);
7978 				(void)m_free(m);
7979 				error = ENOBUFS;
7980 				sack_rxmit = 0;
7981 				goto out;
7982 			}
7983 		}
7984 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
7985 			TCPSTAT_INC(tcps_sndprobe);
7986 #ifdef NETFLIX_STATS
7987 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
7988 				stats_voi_update_abs_u32(tp->t_stats,
7989 				    VOI_TCP_RETXPB, len);
7990 			else
7991 				stats_voi_update_abs_u64(tp->t_stats,
7992 				    VOI_TCP_TXPB, len);
7993 #endif
7994 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
7995 			if (rsm && (rsm->r_flags & RACK_TLP)) {
7996 				/*
7997 				 * TLP should not count in retran count, but
7998 				 * in its own bin
7999 				 */
8000 /*				tp->t_sndtlppack++;*/
8001 /*				tp->t_sndtlpbyte += len;*/
8002 				counter_u64_add(rack_tlp_retran, 1);
8003 				counter_u64_add(rack_tlp_retran_bytes, len);
8004 			} else {
8005 				tp->t_sndrexmitpack++;
8006 				TCPSTAT_INC(tcps_sndrexmitpack);
8007 				TCPSTAT_ADD(tcps_sndrexmitbyte, len);
8008 			}
8009 #ifdef NETFLIX_STATS
8010 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
8011 			    len);
8012 #endif
8013 		} else {
8014 			TCPSTAT_INC(tcps_sndpack);
8015 			TCPSTAT_ADD(tcps_sndbyte, len);
8016 #ifdef NETFLIX_STATS
8017 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
8018 			    len);
8019 #endif
8020 		}
8021 		/*
8022 		 * If we're sending everything we've got, set PUSH. (This
8023 		 * will keep happy those implementations which only give
8024 		 * data to the user when a buffer fills or a PUSH comes in.)
8025 		 */
8026 		if (sb_offset + len == sbused(sb) &&
8027 		    sbused(sb) &&
8028 		    !(flags & TH_SYN))
8029 			flags |= TH_PUSH;
8030 
8031 		/*
8032 		 * Are we doing hptsi, if so we must calculate the slot. We
8033 		 * only do hptsi in ESTABLISHED and with no RESET being
8034 		 * sent where we have data to send.
8035 		 */
8036 		if (((tp->t_state == TCPS_ESTABLISHED) ||
8037 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
8038 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
8039 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
8040 		    ((flags & TH_FIN) == 0))) &&
8041 		    ((flags & TH_RST) == 0) &&
8042 		    (rack->rc_always_pace)) {
8043 			/*
8044 			 * We use the most optimistic possible cwnd/srtt for
8045 			 * sending calculations. This will make our
8046 			 * calculation anticipate getting more through
8047 			 * quicker then possible. But thats ok we don't want
8048 			 * the peer to have a gap in data sending.
8049 			 */
8050 			uint32_t srtt, cwnd, tr_perms = 0;
8051 
8052 			if (rack->r_ctl.rc_rack_min_rtt)
8053 				srtt = rack->r_ctl.rc_rack_min_rtt;
8054 			else
8055 				srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8056 			if (rack->r_ctl.rc_rack_largest_cwnd)
8057 				cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8058 			else
8059 				cwnd = tp->snd_cwnd;
8060 			tr_perms = cwnd / srtt;
8061 			if (tr_perms == 0) {
8062 				tr_perms = tp->t_maxseg;
8063 			}
8064 			tot_len_this_send += len;
8065 			/*
8066 			 * Calculate how long this will take to drain, if
8067 			 * the calculation comes out to zero, thats ok we
8068 			 * will use send_a_lot to possibly spin around for
8069 			 * more increasing tot_len_this_send to the point
8070 			 * that its going to require a pace, or we hit the
8071 			 * cwnd. Which in that case we are just waiting for
8072 			 * a ACK.
8073 			 */
8074 			slot = tot_len_this_send / tr_perms;
8075 			/* Now do we reduce the time so we don't run dry? */
8076 			if (slot && rack->rc_pace_reduce) {
8077 				int32_t reduce;
8078 
8079 				reduce = (slot / rack->rc_pace_reduce);
8080 				if (reduce < slot) {
8081 					slot -= reduce;
8082 				} else
8083 					slot = 0;
8084 			}
8085 			if (rack->r_enforce_min_pace &&
8086 			    (slot == 0) &&
8087 			    (tot_len_this_send >= (rack->r_min_pace_seg_thresh * tp->t_maxseg))) {
8088 				/* We are enforcing a minimum pace time of 1ms */
8089 				slot = rack->r_enforce_min_pace;
8090 			}
8091 		}
8092 		SOCKBUF_UNLOCK(sb);
8093 	} else {
8094 		SOCKBUF_UNLOCK(sb);
8095 		if (tp->t_flags & TF_ACKNOW)
8096 			TCPSTAT_INC(tcps_sndacks);
8097 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
8098 			TCPSTAT_INC(tcps_sndctrl);
8099 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
8100 			TCPSTAT_INC(tcps_sndurg);
8101 		else
8102 			TCPSTAT_INC(tcps_sndwinup);
8103 
8104 		m = m_gethdr(M_NOWAIT, MT_DATA);
8105 		if (m == NULL) {
8106 			error = ENOBUFS;
8107 			sack_rxmit = 0;
8108 			goto out;
8109 		}
8110 #ifdef INET6
8111 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
8112 		    MHLEN >= hdrlen) {
8113 			M_ALIGN(m, hdrlen);
8114 		} else
8115 #endif
8116 			m->m_data += max_linkhdr;
8117 		m->m_len = hdrlen;
8118 	}
8119 	SOCKBUF_UNLOCK_ASSERT(sb);
8120 	m->m_pkthdr.rcvif = (struct ifnet *)0;
8121 #ifdef MAC
8122 	mac_inpcb_create_mbuf(inp, m);
8123 #endif
8124 #ifdef INET6
8125 	if (isipv6) {
8126 		ip6 = mtod(m, struct ip6_hdr *);
8127 #ifdef NETFLIX_TCP_O_UDP
8128 		if (tp->t_port) {
8129 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
8130 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
8131 			udp->uh_dport = tp->t_port;
8132 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
8133 			udp->uh_ulen = htons(ulen);
8134 			th = (struct tcphdr *)(udp + 1);
8135 		} else
8136 #endif
8137 			th = (struct tcphdr *)(ip6 + 1);
8138 		tcpip_fillheaders(inp, /*tp->t_port, */ ip6, th);
8139 	} else
8140 #endif				/* INET6 */
8141 	{
8142 		ip = mtod(m, struct ip *);
8143 #ifdef TCPDEBUG
8144 		ipov = (struct ipovly *)ip;
8145 #endif
8146 #ifdef NETFLIX_TCP_O_UDP
8147 		if (tp->t_port) {
8148 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
8149 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
8150 			udp->uh_dport = tp->t_port;
8151 			ulen = hdrlen + len - sizeof(struct ip);
8152 			udp->uh_ulen = htons(ulen);
8153 			th = (struct tcphdr *)(udp + 1);
8154 		} else
8155 #endif
8156 			th = (struct tcphdr *)(ip + 1);
8157 		tcpip_fillheaders(inp,/*tp->t_port, */ ip, th);
8158 	}
8159 	/*
8160 	 * Fill in fields, remembering maximum advertised window for use in
8161 	 * delaying messages about window sizes. If resending a FIN, be sure
8162 	 * not to use a new sequence number.
8163 	 */
8164 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
8165 	    tp->snd_nxt == tp->snd_max)
8166 		tp->snd_nxt--;
8167 	/*
8168 	 * If we are starting a connection, send ECN setup SYN packet. If we
8169 	 * are on a retransmit, we may resend those bits a number of times
8170 	 * as per RFC 3168.
8171 	 */
8172 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
8173 		if (tp->t_rxtshift >= 1) {
8174 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
8175 				flags |= TH_ECE | TH_CWR;
8176 		} else
8177 			flags |= TH_ECE | TH_CWR;
8178 	}
8179 	if (tp->t_state == TCPS_ESTABLISHED &&
8180 	    (tp->t_flags & TF_ECN_PERMIT)) {
8181 		/*
8182 		 * If the peer has ECN, mark data packets with ECN capable
8183 		 * transmission (ECT). Ignore pure ack packets,
8184 		 * retransmissions and window probes.
8185 		 */
8186 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
8187 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
8188 #ifdef INET6
8189 			if (isipv6)
8190 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
8191 			else
8192 #endif
8193 				ip->ip_tos |= IPTOS_ECN_ECT0;
8194 			TCPSTAT_INC(tcps_ecn_ect0);
8195 		}
8196 		/*
8197 		 * Reply with proper ECN notifications.
8198 		 */
8199 		if (tp->t_flags & TF_ECN_SND_CWR) {
8200 			flags |= TH_CWR;
8201 			tp->t_flags &= ~TF_ECN_SND_CWR;
8202 		}
8203 		if (tp->t_flags & TF_ECN_SND_ECE)
8204 			flags |= TH_ECE;
8205 	}
8206 	/*
8207 	 * If we are doing retransmissions, then snd_nxt will not reflect
8208 	 * the first unsent octet.  For ACK only packets, we do not want the
8209 	 * sequence number of the retransmitted packet, we want the sequence
8210 	 * number of the next unsent octet.  So, if there is no data (and no
8211 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
8212 	 * ti_seq.  But if we are in persist state, snd_max might reflect
8213 	 * one byte beyond the right edge of the window, so use snd_nxt in
8214 	 * that case, since we know we aren't doing a retransmission.
8215 	 * (retransmit and persist are mutually exclusive...)
8216 	 */
8217 	if (sack_rxmit == 0) {
8218 		if (len || (flags & (TH_SYN | TH_FIN)) ||
8219 		    rack->rc_in_persist) {
8220 			th->th_seq = htonl(tp->snd_nxt);
8221 			rack_seq = tp->snd_nxt;
8222 		} else if (flags & TH_RST) {
8223 			/*
8224 			 * For a Reset send the last cum ack in sequence
8225 			 * (this like any other choice may still generate a
8226 			 * challenge ack, if a ack-update packet is in
8227 			 * flight).
8228 			 */
8229 			th->th_seq = htonl(tp->snd_una);
8230 			rack_seq = tp->snd_una;
8231 		} else {
8232 			th->th_seq = htonl(tp->snd_max);
8233 			rack_seq = tp->snd_max;
8234 		}
8235 	} else {
8236 		th->th_seq = htonl(rsm->r_start);
8237 		rack_seq = rsm->r_start;
8238 	}
8239 	th->th_ack = htonl(tp->rcv_nxt);
8240 	if (optlen) {
8241 		bcopy(opt, th + 1, optlen);
8242 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
8243 	}
8244 	th->th_flags = flags;
8245 	/*
8246 	 * Calculate receive window.  Don't shrink window, but avoid silly
8247 	 * window syndrome.
8248 	 */
8249 	if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
8250 	    recwin < (long)tp->t_maxseg)
8251 		recwin = 0;
8252 	if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
8253 	    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
8254 		recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
8255 	if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
8256 		recwin = (long)TCP_MAXWIN << tp->rcv_scale;
8257 
8258 	/*
8259 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
8260 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
8261 	 * handled in syncache.
8262 	 */
8263 	if (flags & TH_SYN)
8264 		th->th_win = htons((u_short)
8265 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
8266 	else
8267 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
8268 	/*
8269 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
8270 	 * window.  This may cause the remote transmitter to stall.  This
8271 	 * flag tells soreceive() to disable delayed acknowledgements when
8272 	 * draining the buffer.  This can occur if the receiver is
8273 	 * attempting to read more data than can be buffered prior to
8274 	 * transmitting on the connection.
8275 	 */
8276 	if (th->th_win == 0) {
8277 		tp->t_sndzerowin++;
8278 		tp->t_flags |= TF_RXWIN0SENT;
8279 	} else
8280 		tp->t_flags &= ~TF_RXWIN0SENT;
8281 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
8282 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
8283 		th->th_flags |= TH_URG;
8284 	} else
8285 		/*
8286 		 * If no urgent pointer to send, then we pull the urgent
8287 		 * pointer to the left edge of the send window so that it
8288 		 * doesn't drift into the send window on sequence number
8289 		 * wraparound.
8290 		 */
8291 		tp->snd_up = tp->snd_una;	/* drag it along */
8292 
8293 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
8294 	if (to.to_flags & TOF_SIGNATURE) {
8295 		/*
8296 		 * Calculate MD5 signature and put it into the place
8297 		 * determined before.
8298 		 * NOTE: since TCP options buffer doesn't point into
8299 		 * mbuf's data, calculate offset and use it.
8300 		 */
8301 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
8302 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
8303 			/*
8304 			 * Do not send segment if the calculation of MD5
8305 			 * digest has failed.
8306 			 */
8307 			goto out;
8308 		}
8309 	}
8310 #endif
8311 
8312 	/*
8313 	 * Put TCP length in extended header, and then checksum extended
8314 	 * header and data.
8315 	 */
8316 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
8317 #ifdef INET6
8318 	if (isipv6) {
8319 		/*
8320 		 * ip6_plen is not need to be filled now, and will be filled
8321 		 * in ip6_output.
8322 		 */
8323 #ifdef NETFLIX_TCP_O_UDP
8324 		if (tp->t_port) {
8325 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
8326 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
8327 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
8328 			th->th_sum = htons(0);
8329 			UDPSTAT_INC(udps_opackets);
8330 		} else {
8331 #endif
8332 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
8333 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
8334 			th->th_sum = in6_cksum_pseudo(ip6,
8335 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
8336 			    0);
8337 #ifdef NETFLIX_TCP_O_UDP
8338 		}
8339 #endif
8340 	}
8341 #endif
8342 #if defined(INET6) && defined(INET)
8343 	else
8344 #endif
8345 #ifdef INET
8346 	{
8347 #ifdef NETFLIX_TCP_O_UDP
8348 		if (tp->t_port) {
8349 			m->m_pkthdr.csum_flags = CSUM_UDP;
8350 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
8351 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
8352 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
8353 			th->th_sum = htons(0);
8354 			UDPSTAT_INC(udps_opackets);
8355 		} else {
8356 #endif
8357 			m->m_pkthdr.csum_flags = CSUM_TCP;
8358 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
8359 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
8360 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
8361 			    IPPROTO_TCP + len + optlen));
8362 #ifdef NETFLIX_TCP_O_UDP
8363 		}
8364 #endif
8365 		/* IP version must be set here for ipv4/ipv6 checking later */
8366 		KASSERT(ip->ip_v == IPVERSION,
8367 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
8368 	}
8369 #endif
8370 
8371 	/*
8372 	 * Enable TSO and specify the size of the segments. The TCP pseudo
8373 	 * header checksum is always provided. XXX: Fixme: This is currently
8374 	 * not the case for IPv6.
8375 	 */
8376 	if (tso) {
8377 		KASSERT(len > tp->t_maxseg - optlen,
8378 		    ("%s: len <= tso_segsz", __func__));
8379 		m->m_pkthdr.csum_flags |= CSUM_TSO;
8380 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
8381 	}
8382 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8383 	KASSERT(len + hdrlen + ipoptlen - ipsec_optlen == m_length(m, NULL),
8384 	    ("%s: mbuf chain shorter than expected: %d + %u + %u - %u != %u",
8385 	    __func__, len, hdrlen, ipoptlen, ipsec_optlen, m_length(m, NULL)));
8386 #else
8387 	KASSERT(len + hdrlen + ipoptlen == m_length(m, NULL),
8388 	    ("%s: mbuf chain shorter than expected: %d + %u + %u != %u",
8389 	    __func__, len, hdrlen, ipoptlen, m_length(m, NULL)));
8390 #endif
8391 
8392 #ifdef TCP_HHOOK
8393 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
8394 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
8395 #endif
8396 
8397 #ifdef TCPDEBUG
8398 	/*
8399 	 * Trace.
8400 	 */
8401 	if (so->so_options & SO_DEBUG) {
8402 		u_short save = 0;
8403 
8404 #ifdef INET6
8405 		if (!isipv6)
8406 #endif
8407 		{
8408 			save = ipov->ih_len;
8409 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
8410 			      * (th->th_off << 2) */ );
8411 		}
8412 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
8413 #ifdef INET6
8414 		if (!isipv6)
8415 #endif
8416 			ipov->ih_len = save;
8417 	}
8418 #endif				/* TCPDEBUG */
8419 
8420 	/* We're getting ready to send; log now. */
8421 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
8422 		union tcp_log_stackspecific log;
8423 
8424 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
8425 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
8426 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
8427 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
8428 		if (rsm || sack_rxmit) {
8429 			log.u_bbr.flex8 = 1;
8430 		} else {
8431 			log.u_bbr.flex8 = 0;
8432 		}
8433 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
8434 		    len, &log, false, NULL, NULL, 0, NULL);
8435 	} else
8436 		lgb = NULL;
8437 
8438 	/*
8439 	 * Fill in IP length and desired time to live and send to IP level.
8440 	 * There should be a better way to handle ttl and tos; we could keep
8441 	 * them in the template, but need a way to checksum without them.
8442 	 */
8443 	/*
8444 	 * m->m_pkthdr.len should have been set before cksum calcuration,
8445 	 * because in6_cksum() need it.
8446 	 */
8447 #ifdef INET6
8448 	if (isipv6) {
8449 		/*
8450 		 * we separately set hoplimit for every segment, since the
8451 		 * user might want to change the value via setsockopt. Also,
8452 		 * desired default hop limit might be changed via Neighbor
8453 		 * Discovery.
8454 		 */
8455 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
8456 
8457 		/*
8458 		 * Set the packet size here for the benefit of DTrace
8459 		 * probes. ip6_output() will set it properly; it's supposed
8460 		 * to include the option header lengths as well.
8461 		 */
8462 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
8463 
8464 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
8465 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
8466 		else
8467 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
8468 
8469 		if (tp->t_state == TCPS_SYN_SENT)
8470 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
8471 
8472 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
8473 		/* TODO: IPv6 IP6TOS_ECT bit on */
8474 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
8475 		    &inp->inp_route6,
8476 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
8477 		    NULL, NULL, inp);
8478 
8479 		if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
8480 			mtu = inp->inp_route6.ro_rt->rt_mtu;
8481 	}
8482 #endif				/* INET6 */
8483 #if defined(INET) && defined(INET6)
8484 	else
8485 #endif
8486 #ifdef INET
8487 	{
8488 		ip->ip_len = htons(m->m_pkthdr.len);
8489 #ifdef INET6
8490 		if (inp->inp_vflag & INP_IPV6PROTO)
8491 			ip->ip_ttl = in6_selecthlim(inp, NULL);
8492 #endif				/* INET6 */
8493 		/*
8494 		 * If we do path MTU discovery, then we set DF on every
8495 		 * packet. This might not be the best thing to do according
8496 		 * to RFC3390 Section 2. However the tcp hostcache migitates
8497 		 * the problem so it affects only the first tcp connection
8498 		 * with a host.
8499 		 *
8500 		 * NB: Don't set DF on small MTU/MSS to have a safe
8501 		 * fallback.
8502 		 */
8503 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
8504 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
8505 			if (tp->t_port == 0 || len < V_tcp_minmss) {
8506 				ip->ip_off |= htons(IP_DF);
8507 			}
8508 		} else {
8509 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
8510 		}
8511 
8512 		if (tp->t_state == TCPS_SYN_SENT)
8513 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
8514 
8515 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
8516 
8517 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
8518 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
8519 		    inp);
8520 		if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
8521 			mtu = inp->inp_route.ro_rt->rt_mtu;
8522 	}
8523 #endif				/* INET */
8524 
8525 out:
8526 	if (lgb) {
8527 		lgb->tlb_errno = error;
8528 		lgb = NULL;
8529 	}
8530 	/*
8531 	 * In transmit state, time the transmission and arrange for the
8532 	 * retransmit.  In persist state, just set snd_max.
8533 	 */
8534 	if (error == 0) {
8535 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
8536 		    (tp->t_flags & TF_SACK_PERMIT) &&
8537 		    tp->rcv_numsacks > 0)
8538 		    tcp_clean_dsack_blocks(tp);
8539 		if (len == 0)
8540 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
8541 		else if (len == 1) {
8542 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
8543 		} else if (len > 1) {
8544 			int idx;
8545 
8546 			idx = (len / tp->t_maxseg) + 3;
8547 			if (idx >= TCP_MSS_ACCT_ATIMER)
8548 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
8549 			else
8550 				counter_u64_add(rack_out_size[idx], 1);
8551 		}
8552 	}
8553 	if (sub_from_prr && (error == 0)) {
8554 		if (rack->r_ctl.rc_prr_sndcnt >= len)
8555 			rack->r_ctl.rc_prr_sndcnt -= len;
8556 		else
8557 			rack->r_ctl.rc_prr_sndcnt = 0;
8558 	}
8559 	sub_from_prr = 0;
8560 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
8561 	    pass, rsm);
8562 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
8563 	    (rack->rc_in_persist == 0)) {
8564 #ifdef NETFLIX_STATS
8565 		tcp_seq startseq = tp->snd_nxt;
8566 #endif
8567 		/*
8568 		 * Advance snd_nxt over sequence space of this segment.
8569 		 */
8570 		if (error)
8571 			/* We don't log or do anything with errors */
8572 			goto timer;
8573 
8574 		if (flags & (TH_SYN | TH_FIN)) {
8575 			if (flags & TH_SYN)
8576 				tp->snd_nxt++;
8577 			if (flags & TH_FIN) {
8578 				tp->snd_nxt++;
8579 				tp->t_flags |= TF_SENTFIN;
8580 			}
8581 		}
8582 		/* In the ENOBUFS case we do *not* update snd_max */
8583 		if (sack_rxmit)
8584 			goto timer;
8585 
8586 		tp->snd_nxt += len;
8587 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
8588 			if (tp->snd_una == tp->snd_max) {
8589 				/*
8590 				 * Update the time we just added data since
8591 				 * none was outstanding.
8592 				 */
8593 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
8594 				tp->t_acktime = ticks;
8595 			}
8596 			tp->snd_max = tp->snd_nxt;
8597 #ifdef NETFLIX_STATS
8598 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
8599 				tp->t_flags |= TF_GPUTINPROG;
8600 				tp->gput_seq = startseq;
8601 				tp->gput_ack = startseq +
8602 				    ulmin(sbavail(sb) - sb_offset, sendwin);
8603 				tp->gput_ts = tcp_ts_getticks();
8604 			}
8605 #endif
8606 		}
8607 		/*
8608 		 * Set retransmit timer if not currently set, and not doing
8609 		 * a pure ack or a keep-alive probe. Initial value for
8610 		 * retransmit timer is smoothed round-trip time + 2 *
8611 		 * round-trip time variance. Initialize shift counter which
8612 		 * is used for backoff of retransmit time.
8613 		 */
8614 timer:
8615 		if ((tp->snd_wnd == 0) &&
8616 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
8617 			/*
8618 			 * If the persists timer was set above (right before
8619 			 * the goto send), and still needs to be on. Lets
8620 			 * make sure all is canceled. If the persist timer
8621 			 * is not running, we want to get it up.
8622 			 */
8623 			if (rack->rc_in_persist == 0) {
8624 				rack_enter_persist(tp, rack, cts);
8625 			}
8626 		}
8627 	} else {
8628 		/*
8629 		 * Persist case, update snd_max but since we are in persist
8630 		 * mode (no window) we do not update snd_nxt.
8631 		 */
8632 		int32_t xlen = len;
8633 
8634 		if (error)
8635 			goto nomore;
8636 
8637 		if (flags & TH_SYN)
8638 			++xlen;
8639 		if (flags & TH_FIN) {
8640 			++xlen;
8641 			tp->t_flags |= TF_SENTFIN;
8642 		}
8643 		/* In the ENOBUFS case we do *not* update snd_max */
8644 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
8645 			if (tp->snd_una == tp->snd_max) {
8646 				/*
8647 				 * Update the time we just added data since
8648 				 * none was outstanding.
8649 				 */
8650 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
8651 				tp->t_acktime = ticks;
8652 			}
8653 			tp->snd_max = tp->snd_nxt + len;
8654 		}
8655 	}
8656 nomore:
8657 	if (error) {
8658 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
8659 		/*
8660 		 * Failures do not advance the seq counter above. For the
8661 		 * case of ENOBUFS we will fall out and retry in 1ms with
8662 		 * the hpts. Everything else will just have to retransmit
8663 		 * with the timer.
8664 		 *
8665 		 * In any case, we do not want to loop around for another
8666 		 * send without a good reason.
8667 		 */
8668 		sendalot = 0;
8669 		switch (error) {
8670 		case EPERM:
8671 			tp->t_flags &= ~TF_FORCEDATA;
8672 			tp->t_softerror = error;
8673 			return (error);
8674 		case ENOBUFS:
8675 			if (slot == 0) {
8676 				/*
8677 				 * Pace us right away to retry in a some
8678 				 * time
8679 				 */
8680 				slot = 1 + rack->rc_enobuf;
8681 				if (rack->rc_enobuf < 255)
8682 					rack->rc_enobuf++;
8683 				if (slot > (rack->rc_rack_rtt / 2)) {
8684 					slot = rack->rc_rack_rtt / 2;
8685 				}
8686 				if (slot < 10)
8687 					slot = 10;
8688 			}
8689 			counter_u64_add(rack_saw_enobuf, 1);
8690 			error = 0;
8691 			goto enobufs;
8692 		case EMSGSIZE:
8693 			/*
8694 			 * For some reason the interface we used initially
8695 			 * to send segments changed to another or lowered
8696 			 * its MTU. If TSO was active we either got an
8697 			 * interface without TSO capabilits or TSO was
8698 			 * turned off. If we obtained mtu from ip_output()
8699 			 * then update it and try again.
8700 			 */
8701 			if (tso)
8702 				tp->t_flags &= ~TF_TSO;
8703 			if (mtu != 0) {
8704 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
8705 				goto again;
8706 			}
8707 			slot = 10;
8708 			rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, 0, 1);
8709 			tp->t_flags &= ~TF_FORCEDATA;
8710 			return (error);
8711 		case ENETUNREACH:
8712 			counter_u64_add(rack_saw_enetunreach, 1);
8713 		case EHOSTDOWN:
8714 		case EHOSTUNREACH:
8715 		case ENETDOWN:
8716 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
8717 				tp->t_softerror = error;
8718 			}
8719 			/* FALLTHROUGH */
8720 		default:
8721 			slot = 10;
8722 			rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, 0, 1);
8723 			tp->t_flags &= ~TF_FORCEDATA;
8724 			return (error);
8725 		}
8726 	} else {
8727 		rack->rc_enobuf = 0;
8728 	}
8729 	TCPSTAT_INC(tcps_sndtotal);
8730 
8731 	/*
8732 	 * Data sent (as far as we can tell). If this advertises a larger
8733 	 * window than any other segment, then remember the size of the
8734 	 * advertised window. Any pending ACK has now been sent.
8735 	 */
8736 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
8737 		tp->rcv_adv = tp->rcv_nxt + recwin;
8738 	tp->last_ack_sent = tp->rcv_nxt;
8739 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
8740 enobufs:
8741 	rack->r_tlp_running = 0;
8742 	if ((flags & TH_RST) || (would_have_fin == 1)) {
8743 		/*
8744 		 * We don't send again after a RST. We also do *not* send
8745 		 * again if we would have had a find, but now have
8746 		 * outstanding data.
8747 		 */
8748 		slot = 0;
8749 		sendalot = 0;
8750 	}
8751 	if (slot) {
8752 		/* set the rack tcb into the slot N */
8753 		counter_u64_add(rack_paced_segments, 1);
8754 	} else if (sendalot) {
8755 		if (len)
8756 			counter_u64_add(rack_unpaced_segments, 1);
8757 		sack_rxmit = 0;
8758 		tp->t_flags &= ~TF_FORCEDATA;
8759 		goto again;
8760 	} else if (len) {
8761 		counter_u64_add(rack_unpaced_segments, 1);
8762 	}
8763 	tp->t_flags &= ~TF_FORCEDATA;
8764 	rack_start_hpts_timer(rack, tp, cts, __LINE__, slot, tot_len_this_send, 1);
8765 	return (error);
8766 }
8767 
8768 /*
8769  * rack_ctloutput() must drop the inpcb lock before performing copyin on
8770  * socket option arguments.  When it re-acquires the lock after the copy, it
8771  * has to revalidate that the connection is still valid for the socket
8772  * option.
8773  */
8774 static int
8775 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
8776     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
8777 {
8778 	int32_t error = 0, optval;
8779 
8780 	switch (sopt->sopt_name) {
8781 	case TCP_RACK_PROP_RATE:
8782 	case TCP_RACK_PROP:
8783 	case TCP_RACK_TLP_REDUCE:
8784 	case TCP_RACK_EARLY_RECOV:
8785 	case TCP_RACK_PACE_ALWAYS:
8786 	case TCP_DELACK:
8787 	case TCP_RACK_PACE_REDUCE:
8788 	case TCP_RACK_PACE_MAX_SEG:
8789 	case TCP_RACK_PRR_SENDALOT:
8790 	case TCP_RACK_MIN_TO:
8791 	case TCP_RACK_EARLY_SEG:
8792 	case TCP_RACK_REORD_THRESH:
8793 	case TCP_RACK_REORD_FADE:
8794 	case TCP_RACK_TLP_THRESH:
8795 	case TCP_RACK_PKT_DELAY:
8796 	case TCP_RACK_TLP_USE:
8797 	case TCP_RACK_TLP_INC_VAR:
8798 	case TCP_RACK_IDLE_REDUCE_HIGH:
8799 	case TCP_RACK_MIN_PACE:
8800 	case TCP_RACK_MIN_PACE_SEG:
8801 	case TCP_BBR_RACK_RTT_USE:
8802 	case TCP_DATA_AFTER_CLOSE:
8803 		break;
8804 	default:
8805 		return (tcp_default_ctloutput(so, sopt, inp, tp));
8806 		break;
8807 	}
8808 	INP_WUNLOCK(inp);
8809 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
8810 	if (error)
8811 		return (error);
8812 	INP_WLOCK(inp);
8813 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
8814 		INP_WUNLOCK(inp);
8815 		return (ECONNRESET);
8816 	}
8817 	tp = intotcpcb(inp);
8818 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8819 	switch (sopt->sopt_name) {
8820 	case TCP_RACK_PROP_RATE:
8821 		if ((optval <= 0) || (optval >= 100)) {
8822 			error = EINVAL;
8823 			break;
8824 		}
8825 		RACK_OPTS_INC(tcp_rack_prop_rate);
8826 		rack->r_ctl.rc_prop_rate = optval;
8827 		break;
8828 	case TCP_RACK_TLP_USE:
8829 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
8830 			error = EINVAL;
8831 			break;
8832 		}
8833 		RACK_OPTS_INC(tcp_tlp_use);
8834 		rack->rack_tlp_threshold_use = optval;
8835 		break;
8836 	case TCP_RACK_PROP:
8837 		/* RACK proportional rate reduction (bool) */
8838 		RACK_OPTS_INC(tcp_rack_prop);
8839 		rack->r_ctl.rc_prop_reduce = optval;
8840 		break;
8841 	case TCP_RACK_TLP_REDUCE:
8842 		/* RACK TLP cwnd reduction (bool) */
8843 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
8844 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
8845 		break;
8846 	case TCP_RACK_EARLY_RECOV:
8847 		/* Should recovery happen early (bool) */
8848 		RACK_OPTS_INC(tcp_rack_early_recov);
8849 		rack->r_ctl.rc_early_recovery = optval;
8850 		break;
8851 	case TCP_RACK_PACE_ALWAYS:
8852 		/* Use the always pace method (bool)  */
8853 		RACK_OPTS_INC(tcp_rack_pace_always);
8854 		if (optval > 0)
8855 			rack->rc_always_pace = 1;
8856 		else
8857 			rack->rc_always_pace = 0;
8858 		break;
8859 	case TCP_RACK_PACE_REDUCE:
8860 		/* RACK Hptsi reduction factor (divisor) */
8861 		RACK_OPTS_INC(tcp_rack_pace_reduce);
8862 		if (optval)
8863 			/* Must be non-zero */
8864 			rack->rc_pace_reduce = optval;
8865 		else
8866 			error = EINVAL;
8867 		break;
8868 	case TCP_RACK_PACE_MAX_SEG:
8869 		/* Max segments in a pace */
8870 		RACK_OPTS_INC(tcp_rack_max_seg);
8871 		rack->rc_pace_max_segs = optval;
8872 		break;
8873 	case TCP_RACK_PRR_SENDALOT:
8874 		/* Allow PRR to send more than one seg */
8875 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
8876 		rack->r_ctl.rc_prr_sendalot = optval;
8877 		break;
8878 	case TCP_RACK_MIN_TO:
8879 		/* Minimum time between rack t-o's in ms */
8880 		RACK_OPTS_INC(tcp_rack_min_to);
8881 		rack->r_ctl.rc_min_to = optval;
8882 		break;
8883 	case TCP_RACK_EARLY_SEG:
8884 		/* If early recovery max segments */
8885 		RACK_OPTS_INC(tcp_rack_early_seg);
8886 		rack->r_ctl.rc_early_recovery_segs = optval;
8887 		break;
8888 	case TCP_RACK_REORD_THRESH:
8889 		/* RACK reorder threshold (shift amount) */
8890 		RACK_OPTS_INC(tcp_rack_reord_thresh);
8891 		if ((optval > 0) && (optval < 31))
8892 			rack->r_ctl.rc_reorder_shift = optval;
8893 		else
8894 			error = EINVAL;
8895 		break;
8896 	case TCP_RACK_REORD_FADE:
8897 		/* Does reordering fade after ms time */
8898 		RACK_OPTS_INC(tcp_rack_reord_fade);
8899 		rack->r_ctl.rc_reorder_fade = optval;
8900 		break;
8901 	case TCP_RACK_TLP_THRESH:
8902 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
8903 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
8904 		if (optval)
8905 			rack->r_ctl.rc_tlp_threshold = optval;
8906 		else
8907 			error = EINVAL;
8908 		break;
8909 	case TCP_RACK_PKT_DELAY:
8910 		/* RACK added ms i.e. rack-rtt + reord + N */
8911 		RACK_OPTS_INC(tcp_rack_pkt_delay);
8912 		rack->r_ctl.rc_pkt_delay = optval;
8913 		break;
8914 	case TCP_RACK_TLP_INC_VAR:
8915 		/* Does TLP include rtt variance in t-o */
8916 		RACK_OPTS_INC(tcp_rack_tlp_inc_var);
8917 		rack->r_ctl.rc_prr_inc_var = optval;
8918 		break;
8919 	case TCP_RACK_IDLE_REDUCE_HIGH:
8920 		RACK_OPTS_INC(tcp_rack_idle_reduce_high);
8921 		if (optval)
8922 			rack->r_idle_reduce_largest = 1;
8923 		else
8924 			rack->r_idle_reduce_largest = 0;
8925 		break;
8926 	case TCP_DELACK:
8927 		if (optval == 0)
8928 			tp->t_delayed_ack = 0;
8929 		else
8930 			tp->t_delayed_ack = 1;
8931 		if (tp->t_flags & TF_DELACK) {
8932 			tp->t_flags &= ~TF_DELACK;
8933 			tp->t_flags |= TF_ACKNOW;
8934 			rack_output(tp);
8935 		}
8936 		break;
8937 	case TCP_RACK_MIN_PACE:
8938 		RACK_OPTS_INC(tcp_rack_min_pace);
8939 		if (optval > 3)
8940 			rack->r_enforce_min_pace = 3;
8941 		else
8942 			rack->r_enforce_min_pace = optval;
8943 		break;
8944 	case TCP_RACK_MIN_PACE_SEG:
8945 		RACK_OPTS_INC(tcp_rack_min_pace_seg);
8946 		if (optval >= 16)
8947 			rack->r_min_pace_seg_thresh = 15;
8948 		else
8949 			rack->r_min_pace_seg_thresh = optval;
8950 		break;
8951 	case TCP_BBR_RACK_RTT_USE:
8952 		if ((optval != USE_RTT_HIGH) &&
8953 		    (optval != USE_RTT_LOW) &&
8954 		    (optval != USE_RTT_AVG))
8955 			error = EINVAL;
8956 		else
8957 			rack->r_ctl.rc_rate_sample_method = optval;
8958 		break;
8959 	case TCP_DATA_AFTER_CLOSE:
8960 		if (optval)
8961 			rack->rc_allow_data_af_clo = 1;
8962 		else
8963 			rack->rc_allow_data_af_clo = 0;
8964 		break;
8965 	default:
8966 		return (tcp_default_ctloutput(so, sopt, inp, tp));
8967 		break;
8968 	}
8969 /*	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);*/
8970 	INP_WUNLOCK(inp);
8971 	return (error);
8972 }
8973 
8974 static int
8975 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
8976     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
8977 {
8978 	int32_t error, optval;
8979 
8980 	/*
8981 	 * Because all our options are either boolean or an int, we can just
8982 	 * pull everything into optval and then unlock and copy. If we ever
8983 	 * add a option that is not a int, then this will have quite an
8984 	 * impact to this routine.
8985 	 */
8986 	switch (sopt->sopt_name) {
8987 	case TCP_RACK_PROP_RATE:
8988 		optval = rack->r_ctl.rc_prop_rate;
8989 		break;
8990 	case TCP_RACK_PROP:
8991 		/* RACK proportional rate reduction (bool) */
8992 		optval = rack->r_ctl.rc_prop_reduce;
8993 		break;
8994 	case TCP_RACK_TLP_REDUCE:
8995 		/* RACK TLP cwnd reduction (bool) */
8996 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
8997 		break;
8998 	case TCP_RACK_EARLY_RECOV:
8999 		/* Should recovery happen early (bool) */
9000 		optval = rack->r_ctl.rc_early_recovery;
9001 		break;
9002 	case TCP_RACK_PACE_REDUCE:
9003 		/* RACK Hptsi reduction factor (divisor) */
9004 		optval = rack->rc_pace_reduce;
9005 		break;
9006 	case TCP_RACK_PACE_MAX_SEG:
9007 		/* Max segments in a pace */
9008 		optval = rack->rc_pace_max_segs;
9009 		break;
9010 	case TCP_RACK_PACE_ALWAYS:
9011 		/* Use the always pace method */
9012 		optval = rack->rc_always_pace;
9013 		break;
9014 	case TCP_RACK_PRR_SENDALOT:
9015 		/* Allow PRR to send more than one seg */
9016 		optval = rack->r_ctl.rc_prr_sendalot;
9017 		break;
9018 	case TCP_RACK_MIN_TO:
9019 		/* Minimum time between rack t-o's in ms */
9020 		optval = rack->r_ctl.rc_min_to;
9021 		break;
9022 	case TCP_RACK_EARLY_SEG:
9023 		/* If early recovery max segments */
9024 		optval = rack->r_ctl.rc_early_recovery_segs;
9025 		break;
9026 	case TCP_RACK_REORD_THRESH:
9027 		/* RACK reorder threshold (shift amount) */
9028 		optval = rack->r_ctl.rc_reorder_shift;
9029 		break;
9030 	case TCP_RACK_REORD_FADE:
9031 		/* Does reordering fade after ms time */
9032 		optval = rack->r_ctl.rc_reorder_fade;
9033 		break;
9034 	case TCP_RACK_TLP_THRESH:
9035 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
9036 		optval = rack->r_ctl.rc_tlp_threshold;
9037 		break;
9038 	case TCP_RACK_PKT_DELAY:
9039 		/* RACK added ms i.e. rack-rtt + reord + N */
9040 		optval = rack->r_ctl.rc_pkt_delay;
9041 		break;
9042 	case TCP_RACK_TLP_USE:
9043 		optval = rack->rack_tlp_threshold_use;
9044 		break;
9045 	case TCP_RACK_TLP_INC_VAR:
9046 		/* Does TLP include rtt variance in t-o */
9047 		optval = rack->r_ctl.rc_prr_inc_var;
9048 		break;
9049 	case TCP_RACK_IDLE_REDUCE_HIGH:
9050 		optval = rack->r_idle_reduce_largest;
9051 		break;
9052 	case TCP_RACK_MIN_PACE:
9053 		optval = rack->r_enforce_min_pace;
9054 		break;
9055 	case TCP_RACK_MIN_PACE_SEG:
9056 		optval = rack->r_min_pace_seg_thresh;
9057 		break;
9058 	case TCP_BBR_RACK_RTT_USE:
9059 		optval = rack->r_ctl.rc_rate_sample_method;
9060 		break;
9061 	case TCP_DELACK:
9062 		optval = tp->t_delayed_ack;
9063 		break;
9064 	case TCP_DATA_AFTER_CLOSE:
9065 		optval = rack->rc_allow_data_af_clo;
9066 		break;
9067 	default:
9068 		return (tcp_default_ctloutput(so, sopt, inp, tp));
9069 		break;
9070 	}
9071 	INP_WUNLOCK(inp);
9072 	error = sooptcopyout(sopt, &optval, sizeof optval);
9073 	return (error);
9074 }
9075 
9076 static int
9077 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
9078 {
9079 	int32_t error = EINVAL;
9080 	struct tcp_rack *rack;
9081 
9082 	rack = (struct tcp_rack *)tp->t_fb_ptr;
9083 	if (rack == NULL) {
9084 		/* Huh? */
9085 		goto out;
9086 	}
9087 	if (sopt->sopt_dir == SOPT_SET) {
9088 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
9089 	} else if (sopt->sopt_dir == SOPT_GET) {
9090 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
9091 	}
9092 out:
9093 	INP_WUNLOCK(inp);
9094 	return (error);
9095 }
9096 
9097 
9098 struct tcp_function_block __tcp_rack = {
9099 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
9100 	.tfb_tcp_output = rack_output,
9101 	.tfb_tcp_do_segment = rack_do_segment,
9102 	.tfb_tcp_ctloutput = rack_ctloutput,
9103 	.tfb_tcp_fb_init = rack_init,
9104 	.tfb_tcp_fb_fini = rack_fini,
9105 	.tfb_tcp_timer_stop_all = rack_stopall,
9106 	.tfb_tcp_timer_activate = rack_timer_activate,
9107 	.tfb_tcp_timer_active = rack_timer_active,
9108 	.tfb_tcp_timer_stop = rack_timer_stop,
9109 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
9110 	.tfb_tcp_handoff_ok = rack_handoff_ok
9111 };
9112 
9113 static const char *rack_stack_names[] = {
9114 	__XSTRING(STACKNAME),
9115 #ifdef STACKALIAS
9116 	__XSTRING(STACKALIAS),
9117 #endif
9118 };
9119 
9120 static int
9121 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
9122 {
9123 	memset(mem, 0, size);
9124 	return (0);
9125 }
9126 
9127 static void
9128 rack_dtor(void *mem, int32_t size, void *arg)
9129 {
9130 
9131 }
9132 
9133 static bool rack_mod_inited = false;
9134 
9135 static int
9136 tcp_addrack(module_t mod, int32_t type, void *data)
9137 {
9138 	int32_t err = 0;
9139 	int num_stacks;
9140 
9141 	switch (type) {
9142 	case MOD_LOAD:
9143 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
9144 		    sizeof(struct rack_sendmap),
9145 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
9146 
9147 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
9148 		    sizeof(struct tcp_rack),
9149 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
9150 
9151 		sysctl_ctx_init(&rack_sysctl_ctx);
9152 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
9153 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
9154 		    OID_AUTO,
9155 		    __XSTRING(STACKNAME),
9156 		    CTLFLAG_RW, 0,
9157 		    "");
9158 		if (rack_sysctl_root == NULL) {
9159 			printf("Failed to add sysctl node\n");
9160 			err = EFAULT;
9161 			goto free_uma;
9162 		}
9163 		rack_init_sysctls();
9164 		num_stacks = nitems(rack_stack_names);
9165 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
9166 		    rack_stack_names, &num_stacks);
9167 		if (err) {
9168 			printf("Failed to register %s stack name for "
9169 			    "%s module\n", rack_stack_names[num_stacks],
9170 			    __XSTRING(MODNAME));
9171 			sysctl_ctx_free(&rack_sysctl_ctx);
9172 free_uma:
9173 			uma_zdestroy(rack_zone);
9174 			uma_zdestroy(rack_pcb_zone);
9175 			rack_counter_destroy();
9176 			printf("Failed to register rack module -- err:%d\n", err);
9177 			return (err);
9178 		}
9179 		rack_mod_inited = true;
9180 		break;
9181 	case MOD_QUIESCE:
9182 		err = deregister_tcp_functions(&__tcp_rack, true, false);
9183 		break;
9184 	case MOD_UNLOAD:
9185 		err = deregister_tcp_functions(&__tcp_rack, false, true);
9186 		if (err == EBUSY)
9187 			break;
9188 		if (rack_mod_inited) {
9189 			uma_zdestroy(rack_zone);
9190 			uma_zdestroy(rack_pcb_zone);
9191 			sysctl_ctx_free(&rack_sysctl_ctx);
9192 			rack_counter_destroy();
9193 			rack_mod_inited = false;
9194 		}
9195 		err = 0;
9196 		break;
9197 	default:
9198 		return (EOPNOTSUPP);
9199 	}
9200 	return (err);
9201 }
9202 
9203 static moduledata_t tcp_rack = {
9204 	.name = __XSTRING(MODNAME),
9205 	.evhand = tcp_addrack,
9206 	.priv = 0
9207 };
9208 
9209 MODULE_VERSION(MODNAME, 1);
9210 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
9211 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
9212