xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * Copyright (c) 2016-9 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include "opt_kern_tls.h"
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h>		/* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #ifdef KERN_TLS
52 #include <sys/ktls.h>
53 #endif
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #ifdef STATS
57 #include <sys/qmath.h>
58 #include <sys/tree.h>
59 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
60 #endif
61 #include <sys/refcount.h>
62 #include <sys/tree.h>
63 #include <sys/queue.h>
64 #include <sys/smp.h>
65 #include <sys/kthread.h>
66 #include <sys/kern_prefetch.h>
67 
68 #include <vm/uma.h>
69 
70 #include <net/route.h>
71 #include <net/route/nhop.h>
72 #include <net/vnet.h>
73 
74 #define TCPSTATES		/* for logging */
75 
76 #include <netinet/in.h>
77 #include <netinet/in_kdtrace.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/ip.h>
80 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
81 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
82 #include <netinet/ip_var.h>
83 #include <netinet/ip6.h>
84 #include <netinet6/in6_pcb.h>
85 #include <netinet6/ip6_var.h>
86 #include <netinet/tcp.h>
87 #define	TCPOUTFLAGS
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_log_buf.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/tcp_hpts.h>
94 #include <netinet/tcpip.h>
95 #include <netinet/cc/cc.h>
96 #include <netinet/tcp_fastopen.h>
97 #include <netinet/tcp_lro.h>
98 #ifdef TCPDEBUG
99 #include <netinet/tcp_debug.h>
100 #endif				/* TCPDEBUG */
101 #ifdef TCP_OFFLOAD
102 #include <netinet/tcp_offload.h>
103 #endif
104 #ifdef INET6
105 #include <netinet6/tcp6_var.h>
106 #endif
107 
108 #include <netipsec/ipsec_support.h>
109 
110 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
111 #include <netipsec/ipsec.h>
112 #include <netipsec/ipsec6.h>
113 #endif				/* IPSEC */
114 
115 #include <netinet/udp.h>
116 #include <netinet/udp_var.h>
117 #include <machine/in_cksum.h>
118 
119 #ifdef MAC
120 #include <security/mac/mac_framework.h>
121 #endif
122 #include "sack_filter.h"
123 #include "tcp_rack.h"
124 #include "rack_bbr_common.h"
125 
126 uma_zone_t rack_zone;
127 uma_zone_t rack_pcb_zone;
128 
129 #ifndef TICKS2SBT
130 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
131 #endif
132 
133 struct sysctl_ctx_list rack_sysctl_ctx;
134 struct sysctl_oid *rack_sysctl_root;
135 
136 #define CUM_ACKED 1
137 #define SACKED 2
138 
139 /*
140  * The RACK module incorporates a number of
141  * TCP ideas that have been put out into the IETF
142  * over the last few years:
143  * - Matt Mathis's Rate Halving which slowly drops
144  *    the congestion window so that the ack clock can
145  *    be maintained during a recovery.
146  * - Yuchung Cheng's RACK TCP (for which its named) that
147  *    will stop us using the number of dup acks and instead
148  *    use time as the gage of when we retransmit.
149  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
150  *    of Dukkipati et.al.
151  * RACK depends on SACK, so if an endpoint arrives that
152  * cannot do SACK the state machine below will shuttle the
153  * connection back to using the "default" TCP stack that is
154  * in FreeBSD.
155  *
156  * To implement RACK the original TCP stack was first decomposed
157  * into a functional state machine with individual states
158  * for each of the possible TCP connection states. The do_segement
159  * functions role in life is to mandate the connection supports SACK
160  * initially and then assure that the RACK state matches the conenction
161  * state before calling the states do_segment function. Each
162  * state is simplified due to the fact that the original do_segment
163  * has been decomposed and we *know* what state we are in (no
164  * switches on the state) and all tests for SACK are gone. This
165  * greatly simplifies what each state does.
166  *
167  * TCP output is also over-written with a new version since it
168  * must maintain the new rack scoreboard.
169  *
170  */
171 static int32_t rack_tlp_thresh = 1;
172 static int32_t rack_reorder_thresh = 2;
173 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
174 						 * - 60 seconds */
175 /* Attack threshold detections */
176 static uint32_t rack_highest_sack_thresh_seen = 0;
177 static uint32_t rack_highest_move_thresh_seen = 0;
178 
179 static int32_t rack_pkt_delay = 1;
180 static int32_t rack_min_pace_time = 0;
181 static int32_t rack_early_recovery = 1;
182 static int32_t rack_send_a_lot_in_prr = 1;
183 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
184 static int32_t rack_verbose_logging = 0;
185 static int32_t rack_ignore_data_after_close = 1;
186 static int32_t use_rack_cheat = 1;
187 static int32_t rack_persist_min = 250;	/* 250ms */
188 static int32_t rack_persist_max = 1000;	/* 1 Second */
189 static int32_t rack_sack_not_required = 0;	/* set to one to allow non-sack to use rack */
190 static int32_t rack_hw_tls_max_seg = 0; /* 0 means use hw-tls single segment */
191 
192 /*
193  * Currently regular tcp has a rto_min of 30ms
194  * the backoff goes 12 times so that ends up
195  * being a total of 122.850 seconds before a
196  * connection is killed.
197  */
198 static int32_t rack_tlp_min = 10;
199 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
200 static int32_t rack_rto_max = 4000;	/* 4 seconds */
201 static const int32_t rack_free_cache = 2;
202 static int32_t rack_hptsi_segments = 40;
203 static int32_t rack_rate_sample_method = USE_RTT_LOW;
204 static int32_t rack_pace_every_seg = 0;
205 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
206 static int32_t rack_slot_reduction = 4;
207 static int32_t rack_lower_cwnd_at_tlp = 0;
208 static int32_t rack_use_proportional_reduce = 0;
209 static int32_t rack_proportional_rate = 10;
210 static int32_t rack_tlp_max_resend = 2;
211 static int32_t rack_limited_retran = 0;
212 static int32_t rack_always_send_oldest = 0;
213 static int32_t rack_use_sack_filter = 1;
214 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
215 static int32_t rack_per_of_gp = 50;
216 
217 /* Rack specific counters */
218 counter_u64_t rack_badfr;
219 counter_u64_t rack_badfr_bytes;
220 counter_u64_t rack_rtm_prr_retran;
221 counter_u64_t rack_rtm_prr_newdata;
222 counter_u64_t rack_timestamp_mismatch;
223 counter_u64_t rack_reorder_seen;
224 counter_u64_t rack_paced_segments;
225 counter_u64_t rack_unpaced_segments;
226 counter_u64_t rack_calc_zero;
227 counter_u64_t rack_calc_nonzero;
228 counter_u64_t rack_saw_enobuf;
229 counter_u64_t rack_saw_enetunreach;
230 counter_u64_t rack_per_timer_hole;
231 
232 /* Tail loss probe counters */
233 counter_u64_t rack_tlp_tot;
234 counter_u64_t rack_tlp_newdata;
235 counter_u64_t rack_tlp_retran;
236 counter_u64_t rack_tlp_retran_bytes;
237 counter_u64_t rack_tlp_retran_fail;
238 counter_u64_t rack_to_tot;
239 counter_u64_t rack_to_arm_rack;
240 counter_u64_t rack_to_arm_tlp;
241 counter_u64_t rack_to_alloc;
242 counter_u64_t rack_to_alloc_hard;
243 counter_u64_t rack_to_alloc_emerg;
244 counter_u64_t rack_to_alloc_limited;
245 counter_u64_t rack_alloc_limited_conns;
246 counter_u64_t rack_split_limited;
247 
248 counter_u64_t rack_sack_proc_all;
249 counter_u64_t rack_sack_proc_short;
250 counter_u64_t rack_sack_proc_restart;
251 counter_u64_t rack_sack_attacks_detected;
252 counter_u64_t rack_sack_attacks_reversed;
253 counter_u64_t rack_sack_used_next_merge;
254 counter_u64_t rack_sack_splits;
255 counter_u64_t rack_sack_used_prev_merge;
256 counter_u64_t rack_sack_skipped_acked;
257 counter_u64_t rack_ack_total;
258 counter_u64_t rack_express_sack;
259 counter_u64_t rack_sack_total;
260 counter_u64_t rack_move_none;
261 counter_u64_t rack_move_some;
262 
263 counter_u64_t rack_used_tlpmethod;
264 counter_u64_t rack_used_tlpmethod2;
265 counter_u64_t rack_enter_tlp_calc;
266 counter_u64_t rack_input_idle_reduces;
267 counter_u64_t rack_collapsed_win;
268 counter_u64_t rack_tlp_does_nada;
269 
270 /* Counters for HW TLS */
271 counter_u64_t rack_tls_rwnd;
272 counter_u64_t rack_tls_cwnd;
273 counter_u64_t rack_tls_app;
274 counter_u64_t rack_tls_other;
275 counter_u64_t rack_tls_filled;
276 counter_u64_t rack_tls_rxt;
277 counter_u64_t rack_tls_tlp;
278 
279 /* Temp CPU counters */
280 counter_u64_t rack_find_high;
281 
282 counter_u64_t rack_progress_drops;
283 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
284 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
285 
286 static void
287 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
288 
289 static int
290 rack_process_ack(struct mbuf *m, struct tcphdr *th,
291     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
292     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
293 static int
294 rack_process_data(struct mbuf *m, struct tcphdr *th,
295     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
296     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
297 static void
298 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
299     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
300 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
301 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
302     uint8_t limit_type);
303 static struct rack_sendmap *
304 rack_check_recovery_mode(struct tcpcb *tp,
305     uint32_t tsused);
306 static void
307 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
308     uint32_t type);
309 static void rack_counter_destroy(void);
310 static int
311 rack_ctloutput(struct socket *so, struct sockopt *sopt,
312     struct inpcb *inp, struct tcpcb *tp);
313 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
314 static void
315 rack_do_segment(struct mbuf *m, struct tcphdr *th,
316     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
317     uint8_t iptos);
318 static void rack_dtor(void *mem, int32_t size, void *arg);
319 static void
320 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
321     uint32_t t, uint32_t cts);
322 static struct rack_sendmap *
323 rack_find_high_nonack(struct tcp_rack *rack,
324     struct rack_sendmap *rsm);
325 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
326 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
327 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
328 static int
329 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
330     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
331 static int32_t rack_handoff_ok(struct tcpcb *tp);
332 static int32_t rack_init(struct tcpcb *tp);
333 static void rack_init_sysctls(void);
334 static void
335 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
336     struct tcphdr *th);
337 static void
338 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
339     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
340     uint8_t pass, struct rack_sendmap *hintrsm);
341 static void
342 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
343     struct rack_sendmap *rsm);
344 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int num);
345 static int32_t rack_output(struct tcpcb *tp);
346 
347 static uint32_t
348 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
349     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
350     uint32_t cts, int *moved_two);
351 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
352 static void rack_remxt_tmr(struct tcpcb *tp);
353 static int
354 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
355     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
356 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
357 static int32_t rack_stopall(struct tcpcb *tp);
358 static void
359 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
360     uint32_t delta);
361 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
362 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
363 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
364 static uint32_t
365 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
366     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
367 static void
368 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
369     struct rack_sendmap *rsm, uint32_t ts);
370 static int
371 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
372     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
373 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
374 static int
375 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
376     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
377     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
378 static int
379 rack_do_closing(struct mbuf *m, struct tcphdr *th,
380     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
381     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
382 static int
383 rack_do_established(struct mbuf *m, struct tcphdr *th,
384     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
385     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
386 static int
387 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
388     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
389     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
390 static int
391 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
392     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
393     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
394 static int
395 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
396     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
397     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
398 static int
399 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
400     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
401     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
402 static int
403 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
404     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
405     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
406 static int
407 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
408     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
409     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
410 struct rack_sendmap *
411 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
412     uint32_t tsused);
413 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
414 static void
415      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
416 
417 int32_t rack_clear_counter=0;
418 
419 
420 static int
421 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
422 {
423 	uint32_t stat;
424 	int32_t error;
425 
426 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
427 	if (error || req->newptr == NULL)
428 		return error;
429 
430 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
431 	if (error)
432 		return (error);
433 	if (stat == 1) {
434 #ifdef INVARIANTS
435 		printf("Clearing RACK counters\n");
436 #endif
437 		counter_u64_zero(rack_badfr);
438 		counter_u64_zero(rack_badfr_bytes);
439 		counter_u64_zero(rack_rtm_prr_retran);
440 		counter_u64_zero(rack_rtm_prr_newdata);
441 		counter_u64_zero(rack_timestamp_mismatch);
442 		counter_u64_zero(rack_reorder_seen);
443 		counter_u64_zero(rack_tlp_tot);
444 		counter_u64_zero(rack_tlp_newdata);
445 		counter_u64_zero(rack_tlp_retran);
446 		counter_u64_zero(rack_tlp_retran_bytes);
447 		counter_u64_zero(rack_tlp_retran_fail);
448 		counter_u64_zero(rack_to_tot);
449 		counter_u64_zero(rack_to_arm_rack);
450 		counter_u64_zero(rack_to_arm_tlp);
451 		counter_u64_zero(rack_paced_segments);
452 		counter_u64_zero(rack_calc_zero);
453 		counter_u64_zero(rack_calc_nonzero);
454 		counter_u64_zero(rack_unpaced_segments);
455 		counter_u64_zero(rack_saw_enobuf);
456 		counter_u64_zero(rack_saw_enetunreach);
457 		counter_u64_zero(rack_per_timer_hole);
458 		counter_u64_zero(rack_to_alloc_hard);
459 		counter_u64_zero(rack_to_alloc_emerg);
460 		counter_u64_zero(rack_sack_proc_all);
461 		counter_u64_zero(rack_sack_proc_short);
462 		counter_u64_zero(rack_sack_proc_restart);
463 		counter_u64_zero(rack_to_alloc);
464 		counter_u64_zero(rack_to_alloc_limited);
465 		counter_u64_zero(rack_alloc_limited_conns);
466 		counter_u64_zero(rack_split_limited);
467 		counter_u64_zero(rack_find_high);
468 		counter_u64_zero(rack_tls_rwnd);
469 		counter_u64_zero(rack_tls_cwnd);
470 		counter_u64_zero(rack_tls_app);
471 		counter_u64_zero(rack_tls_other);
472 		counter_u64_zero(rack_tls_filled);
473 		counter_u64_zero(rack_tls_rxt);
474 		counter_u64_zero(rack_tls_tlp);
475 		counter_u64_zero(rack_sack_attacks_detected);
476 		counter_u64_zero(rack_sack_attacks_reversed);
477 		counter_u64_zero(rack_sack_used_next_merge);
478 		counter_u64_zero(rack_sack_used_prev_merge);
479 		counter_u64_zero(rack_sack_splits);
480 		counter_u64_zero(rack_sack_skipped_acked);
481 		counter_u64_zero(rack_ack_total);
482 		counter_u64_zero(rack_express_sack);
483 		counter_u64_zero(rack_sack_total);
484 		counter_u64_zero(rack_move_none);
485 		counter_u64_zero(rack_move_some);
486 		counter_u64_zero(rack_used_tlpmethod);
487 		counter_u64_zero(rack_used_tlpmethod2);
488 		counter_u64_zero(rack_enter_tlp_calc);
489 		counter_u64_zero(rack_progress_drops);
490 		counter_u64_zero(rack_tlp_does_nada);
491 		counter_u64_zero(rack_collapsed_win);
492 
493 	}
494 	rack_clear_counter = 0;
495 	return (0);
496 }
497 
498 
499 
500 static void
501 rack_init_sysctls(void)
502 {
503 	struct sysctl_oid *rack_counters;
504 	struct sysctl_oid *rack_attack;
505 
506 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
507 	    SYSCTL_CHILDREN(rack_sysctl_root),
508 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
509 	    &rack_rate_sample_method , USE_RTT_LOW,
510 	    "What method should we use for rate sampling 0=high, 1=low ");
511 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
512 	    SYSCTL_CHILDREN(rack_sysctl_root),
513 	    OID_AUTO, "hw_tlsmax", CTLFLAG_RW,
514 	    &rack_hw_tls_max_seg , 0,
515 	    "Do we have a multplier of TLS records we can send as a max (0=1 TLS record)? ");
516 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
517 	    SYSCTL_CHILDREN(rack_sysctl_root),
518 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
519 	    &rack_ignore_data_after_close, 0,
520 	    "Do we hold off sending a RST until all pending data is ack'd");
521 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
522 	    SYSCTL_CHILDREN(rack_sysctl_root),
523 	    OID_AUTO, "cheat_rxt", CTLFLAG_RW,
524 	    &use_rack_cheat, 1,
525 	    "Do we use the rxt cheat for rack?");
526 
527 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
528 	    SYSCTL_CHILDREN(rack_sysctl_root),
529 	    OID_AUTO, "persmin", CTLFLAG_RW,
530 	    &rack_persist_min, 250,
531 	    "What is the minimum time in milliseconds between persists");
532 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
533 	    SYSCTL_CHILDREN(rack_sysctl_root),
534 	    OID_AUTO, "persmax", CTLFLAG_RW,
535 	    &rack_persist_max, 1000,
536 	    "What is the largest delay in milliseconds between persists");
537 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
538 	    SYSCTL_CHILDREN(rack_sysctl_root),
539 	    OID_AUTO, "no_sack_needed", CTLFLAG_RW,
540 	    &rack_sack_not_required, 0,
541 	    "Do we allow rack to run on connections not supporting SACK?");
542 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
543 	    SYSCTL_CHILDREN(rack_sysctl_root),
544 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
545 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
546 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
547 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
548 	    SYSCTL_CHILDREN(rack_sysctl_root),
549 	    OID_AUTO, "gp_percentage", CTLFLAG_RW,
550 	    &rack_per_of_gp, 50,
551 	    "Do we pace to percentage of goodput (0=old method)?");
552 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
553 	    SYSCTL_CHILDREN(rack_sysctl_root),
554 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
555 	    &rack_min_pace_time, 0,
556 	    "Should we enforce a minimum pace time of 1ms");
557 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
558 	    SYSCTL_CHILDREN(rack_sysctl_root),
559 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
560 	    &rack_verbose_logging, 0,
561 	    "Should RACK black box logging be verbose");
562 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
563 	    SYSCTL_CHILDREN(rack_sysctl_root),
564 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
565 	    &rack_use_sack_filter, 1,
566 	    "Do we use sack filtering?");
567 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
568 	    SYSCTL_CHILDREN(rack_sysctl_root),
569 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
570 	    &rack_delayed_ack_time, 200,
571 	    "Delayed ack time (200ms)");
572 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
573 	    SYSCTL_CHILDREN(rack_sysctl_root),
574 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
575 	    &rack_tlp_min, 10,
576 	    "TLP minimum timeout per the specification (10ms)");
577 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
578 	    SYSCTL_CHILDREN(rack_sysctl_root),
579 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
580 	    &rack_always_send_oldest, 1,
581 	    "Should we always send the oldest TLP and RACK-TLP");
582 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
583 	    SYSCTL_CHILDREN(rack_sysctl_root),
584 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
585 	    &rack_limited_retran, 0,
586 	    "How many times can a rack timeout drive out sends");
587 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
588 	    SYSCTL_CHILDREN(rack_sysctl_root),
589 	    OID_AUTO, "minrto", CTLFLAG_RW,
590 	    &rack_rto_min, 0,
591 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
592 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
593 	    SYSCTL_CHILDREN(rack_sysctl_root),
594 	    OID_AUTO, "maxrto", CTLFLAG_RW,
595 	    &rack_rto_max, 0,
596 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
597 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
598 	    SYSCTL_CHILDREN(rack_sysctl_root),
599 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
600 	    &rack_tlp_max_resend, 2,
601 	    "How many times does TLP retry a single segment or multiple with no ACK");
602 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
603 	    SYSCTL_CHILDREN(rack_sysctl_root),
604 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
605 	    &rack_use_proportional_reduce, 0,
606 	    "Should we proportionaly reduce cwnd based on the number of losses ");
607 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
608 	    SYSCTL_CHILDREN(rack_sysctl_root),
609 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
610 	    &rack_proportional_rate, 10,
611 	    "What percent reduction per loss");
612 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
613 	    SYSCTL_CHILDREN(rack_sysctl_root),
614 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
615 	    &rack_lower_cwnd_at_tlp, 0,
616 	    "When a TLP completes a retran should we enter recovery?");
617 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
618 	    SYSCTL_CHILDREN(rack_sysctl_root),
619 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
620 	    &rack_slot_reduction, 4,
621 	    "When setting a slot should we reduce by divisor");
622 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
623 	    SYSCTL_CHILDREN(rack_sysctl_root),
624 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
625 	    &rack_pace_every_seg, 0,
626 	    "Should we use the original pacing mechanism that did not pace much?");
627 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
628 	    SYSCTL_CHILDREN(rack_sysctl_root),
629 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
630 	    &rack_hptsi_segments, 40,
631 	    "Should we pace out only a limited size of segments");
632 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
633 	    SYSCTL_CHILDREN(rack_sysctl_root),
634 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
635 	    &rack_send_a_lot_in_prr, 1,
636 	    "Send a lot in prr");
637 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
638 	    SYSCTL_CHILDREN(rack_sysctl_root),
639 	    OID_AUTO, "minto", CTLFLAG_RW,
640 	    &rack_min_to, 1,
641 	    "Minimum rack timeout in milliseconds");
642 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
643 	    SYSCTL_CHILDREN(rack_sysctl_root),
644 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
645 	    &rack_early_recovery, 1,
646 	    "Do we do early recovery with rack");
647 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
648 	    SYSCTL_CHILDREN(rack_sysctl_root),
649 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
650 	    &rack_reorder_thresh, 2,
651 	    "What factor for rack will be added when seeing reordering (shift right)");
652 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
653 	    SYSCTL_CHILDREN(rack_sysctl_root),
654 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
655 	    &rack_tlp_thresh, 1,
656 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
657 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
658 	    SYSCTL_CHILDREN(rack_sysctl_root),
659 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
660 	    &rack_reorder_fade, 0,
661 	    "Does reorder detection fade, if so how many ms (0 means never)");
662 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
663 	    SYSCTL_CHILDREN(rack_sysctl_root),
664 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
665 	    &rack_pkt_delay, 1,
666 	    "Extra RACK time (in ms) besides reordering thresh");
667 
668 	rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
669 	    SYSCTL_CHILDREN(rack_sysctl_root),
670 	    OID_AUTO,
671 	    "stats",
672 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
673 	    "Rack Counters");
674 	rack_badfr = counter_u64_alloc(M_WAITOK);
675 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
676 	    SYSCTL_CHILDREN(rack_counters),
677 	    OID_AUTO, "badfr", CTLFLAG_RD,
678 	    &rack_badfr, "Total number of bad FRs");
679 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
680 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
681 	    SYSCTL_CHILDREN(rack_counters),
682 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
683 	    &rack_badfr_bytes, "Total number of bad FRs");
684 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
685 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
686 	    SYSCTL_CHILDREN(rack_counters),
687 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
688 	    &rack_rtm_prr_retran,
689 	    "Total number of prr based retransmits");
690 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
691 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
692 	    SYSCTL_CHILDREN(rack_counters),
693 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
694 	    &rack_rtm_prr_newdata,
695 	    "Total number of prr based new transmits");
696 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
697 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
698 	    SYSCTL_CHILDREN(rack_counters),
699 	    OID_AUTO, "tsnf", CTLFLAG_RD,
700 	    &rack_timestamp_mismatch,
701 	    "Total number of timestamps that we could not find the reported ts");
702 	rack_find_high = counter_u64_alloc(M_WAITOK);
703 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
704 	    SYSCTL_CHILDREN(rack_counters),
705 	    OID_AUTO, "findhigh", CTLFLAG_RD,
706 	    &rack_find_high,
707 	    "Total number of FIN causing find-high");
708 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
709 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
710 	    SYSCTL_CHILDREN(rack_counters),
711 	    OID_AUTO, "reordering", CTLFLAG_RD,
712 	    &rack_reorder_seen,
713 	    "Total number of times we added delay due to reordering");
714 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
715 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
716 	    SYSCTL_CHILDREN(rack_counters),
717 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
718 	    &rack_tlp_tot,
719 	    "Total number of tail loss probe expirations");
720 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
721 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
722 	    SYSCTL_CHILDREN(rack_counters),
723 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
724 	    &rack_tlp_newdata,
725 	    "Total number of tail loss probe sending new data");
726 
727 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
728 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
729 	    SYSCTL_CHILDREN(rack_counters),
730 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
731 	    &rack_tlp_retran,
732 	    "Total number of tail loss probe sending retransmitted data");
733 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
734 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
735 	    SYSCTL_CHILDREN(rack_counters),
736 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
737 	    &rack_tlp_retran_bytes,
738 	    "Total bytes of tail loss probe sending retransmitted data");
739 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
740 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
741 	    SYSCTL_CHILDREN(rack_counters),
742 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
743 	    &rack_tlp_retran_fail,
744 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
745 	rack_to_tot = counter_u64_alloc(M_WAITOK);
746 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
747 	    SYSCTL_CHILDREN(rack_counters),
748 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
749 	    &rack_to_tot,
750 	    "Total number of times the rack to expired?");
751 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
752 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
753 	    SYSCTL_CHILDREN(rack_counters),
754 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
755 	    &rack_to_arm_rack,
756 	    "Total number of times the rack timer armed?");
757 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
758 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
759 	    SYSCTL_CHILDREN(rack_counters),
760 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
761 	    &rack_to_arm_tlp,
762 	    "Total number of times the tlp timer armed?");
763 
764 	rack_calc_zero = counter_u64_alloc(M_WAITOK);
765 	rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
766 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
767 	    SYSCTL_CHILDREN(rack_counters),
768 	    OID_AUTO, "calc_zero", CTLFLAG_RD,
769 	    &rack_calc_zero,
770 	    "Total number of times pacing time worked out to zero?");
771 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
772 	    SYSCTL_CHILDREN(rack_counters),
773 	    OID_AUTO, "calc_nonzero", CTLFLAG_RD,
774 	    &rack_calc_nonzero,
775 	    "Total number of times pacing time worked out to non-zero?");
776 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
777 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
778 	    SYSCTL_CHILDREN(rack_counters),
779 	    OID_AUTO, "paced", CTLFLAG_RD,
780 	    &rack_paced_segments,
781 	    "Total number of times a segment send caused hptsi");
782 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
783 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
784 	    SYSCTL_CHILDREN(rack_counters),
785 	    OID_AUTO, "unpaced", CTLFLAG_RD,
786 	    &rack_unpaced_segments,
787 	    "Total number of times a segment did not cause hptsi");
788 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
789 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
790 	    SYSCTL_CHILDREN(rack_counters),
791 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
792 	    &rack_saw_enobuf,
793 	    "Total number of times a segment did not cause hptsi");
794 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
795 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
796 	    SYSCTL_CHILDREN(rack_counters),
797 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
798 	    &rack_saw_enetunreach,
799 	    "Total number of times a segment did not cause hptsi");
800 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
801 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
802 	    SYSCTL_CHILDREN(rack_counters),
803 	    OID_AUTO, "allocs", CTLFLAG_RD,
804 	    &rack_to_alloc,
805 	    "Total allocations of tracking structures");
806 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
807 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
808 	    SYSCTL_CHILDREN(rack_counters),
809 	    OID_AUTO, "allochard", CTLFLAG_RD,
810 	    &rack_to_alloc_hard,
811 	    "Total allocations done with sleeping the hard way");
812 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
813 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
814 	    SYSCTL_CHILDREN(rack_counters),
815 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
816 	    &rack_to_alloc_emerg,
817 	    "Total allocations done from emergency cache");
818 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
819 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
820 	    SYSCTL_CHILDREN(rack_counters),
821 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
822 	    &rack_to_alloc_limited,
823 	    "Total allocations dropped due to limit");
824 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
825 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
826 	    SYSCTL_CHILDREN(rack_counters),
827 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
828 	    &rack_alloc_limited_conns,
829 	    "Connections with allocations dropped due to limit");
830 	rack_split_limited = counter_u64_alloc(M_WAITOK);
831 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
832 	    SYSCTL_CHILDREN(rack_counters),
833 	    OID_AUTO, "split_limited", CTLFLAG_RD,
834 	    &rack_split_limited,
835 	    "Split allocations dropped due to limit");
836 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
837 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
838 	    SYSCTL_CHILDREN(rack_counters),
839 	    OID_AUTO, "sack_long", CTLFLAG_RD,
840 	    &rack_sack_proc_all,
841 	    "Total times we had to walk whole list for sack processing");
842 
843 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
844 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
845 	    SYSCTL_CHILDREN(rack_counters),
846 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
847 	    &rack_sack_proc_restart,
848 	    "Total times we had to walk whole list due to a restart");
849 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
850 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
851 	    SYSCTL_CHILDREN(rack_counters),
852 	    OID_AUTO, "sack_short", CTLFLAG_RD,
853 	    &rack_sack_proc_short,
854 	    "Total times we took shortcut for sack processing");
855 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
856 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
857 	    SYSCTL_CHILDREN(rack_counters),
858 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
859 	    &rack_enter_tlp_calc,
860 	    "Total times we called calc-tlp");
861 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
862 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
863 	    SYSCTL_CHILDREN(rack_counters),
864 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
865 	    &rack_used_tlpmethod,
866 	    "Total number of runt sacks");
867 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
868 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
869 	    SYSCTL_CHILDREN(rack_counters),
870 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
871 	    &rack_used_tlpmethod2,
872 	    "Total number of times we hit TLP method 2");
873 	/* Sack Attacker detection stuff */
874 	rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
875 	    SYSCTL_CHILDREN(rack_sysctl_root),
876 	    OID_AUTO,
877 	    "sack_attack",
878 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
879 	    "Rack Sack Attack Counters and Controls");
880 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
881 	    SYSCTL_CHILDREN(rack_attack),
882 	    OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
883 	    &rack_highest_sack_thresh_seen, 0,
884 	    "Highest sack to ack ratio seen");
885 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
886 	    SYSCTL_CHILDREN(rack_attack),
887 	    OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
888 	    &rack_highest_move_thresh_seen, 0,
889 	    "Highest move to non-move ratio seen");
890 	rack_ack_total = counter_u64_alloc(M_WAITOK);
891 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
892 	    SYSCTL_CHILDREN(rack_attack),
893 	    OID_AUTO, "acktotal", CTLFLAG_RD,
894 	    &rack_ack_total,
895 	    "Total number of Ack's");
896 
897 	rack_express_sack = counter_u64_alloc(M_WAITOK);
898 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
899 	    SYSCTL_CHILDREN(rack_attack),
900 	    OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
901 	    &rack_express_sack,
902 	    "Total expresss number of Sack's");
903 	rack_sack_total = counter_u64_alloc(M_WAITOK);
904 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
905 	    SYSCTL_CHILDREN(rack_attack),
906 	    OID_AUTO, "sacktotal", CTLFLAG_RD,
907 	    &rack_sack_total,
908 	    "Total number of SACK's");
909 	rack_move_none = counter_u64_alloc(M_WAITOK);
910 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
911 	    SYSCTL_CHILDREN(rack_attack),
912 	    OID_AUTO, "move_none", CTLFLAG_RD,
913 	    &rack_move_none,
914 	    "Total number of SACK index reuse of postions under threshold");
915 	rack_move_some = counter_u64_alloc(M_WAITOK);
916 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
917 	    SYSCTL_CHILDREN(rack_attack),
918 	    OID_AUTO, "move_some", CTLFLAG_RD,
919 	    &rack_move_some,
920 	    "Total number of SACK index reuse of postions over threshold");
921 	rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
922 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
923 	    SYSCTL_CHILDREN(rack_attack),
924 	    OID_AUTO, "attacks", CTLFLAG_RD,
925 	    &rack_sack_attacks_detected,
926 	    "Total number of SACK attackers that had sack disabled");
927 	rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
928 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
929 	    SYSCTL_CHILDREN(rack_attack),
930 	    OID_AUTO, "reversed", CTLFLAG_RD,
931 	    &rack_sack_attacks_reversed,
932 	    "Total number of SACK attackers that were later determined false positive");
933 	rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
934 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
935 	    SYSCTL_CHILDREN(rack_attack),
936 	    OID_AUTO, "nextmerge", CTLFLAG_RD,
937 	    &rack_sack_used_next_merge,
938 	    "Total number of times we used the next merge");
939 	rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
940 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
941 	    SYSCTL_CHILDREN(rack_attack),
942 	    OID_AUTO, "prevmerge", CTLFLAG_RD,
943 	    &rack_sack_used_prev_merge,
944 	    "Total number of times we used the prev merge");
945 	rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
946 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
947 	    SYSCTL_CHILDREN(rack_attack),
948 	    OID_AUTO, "skipacked", CTLFLAG_RD,
949 	    &rack_sack_skipped_acked,
950 	    "Total number of times we skipped previously sacked");
951 	rack_sack_splits = counter_u64_alloc(M_WAITOK);
952 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
953 	    SYSCTL_CHILDREN(rack_attack),
954 	    OID_AUTO, "ofsplit", CTLFLAG_RD,
955 	    &rack_sack_splits,
956 	    "Total number of times we did the old fashion tree split");
957 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
958 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
959 	    SYSCTL_CHILDREN(rack_counters),
960 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
961 	    &rack_progress_drops,
962 	    "Total number of progress drops");
963 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
964 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
965 	    SYSCTL_CHILDREN(rack_counters),
966 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
967 	    &rack_input_idle_reduces,
968 	    "Total number of idle reductions on input");
969 	rack_collapsed_win = counter_u64_alloc(M_WAITOK);
970 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
971 	    SYSCTL_CHILDREN(rack_counters),
972 	    OID_AUTO, "collapsed_win", CTLFLAG_RD,
973 	    &rack_collapsed_win,
974 	    "Total number of collapsed windows");
975 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
976 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
977 	    SYSCTL_CHILDREN(rack_counters),
978 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
979 	    &rack_tlp_does_nada,
980 	    "Total number of nada tlp calls");
981 
982 	rack_tls_rwnd = counter_u64_alloc(M_WAITOK);
983 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
984 	    SYSCTL_CHILDREN(rack_counters),
985 	    OID_AUTO, "tls_rwnd", CTLFLAG_RD,
986 	    &rack_tls_rwnd,
987 	    "Total hdwr tls rwnd limited");
988 
989 	rack_tls_cwnd = counter_u64_alloc(M_WAITOK);
990 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
991 	    SYSCTL_CHILDREN(rack_counters),
992 	    OID_AUTO, "tls_cwnd", CTLFLAG_RD,
993 	    &rack_tls_cwnd,
994 	    "Total hdwr tls cwnd limited");
995 
996 	rack_tls_app = counter_u64_alloc(M_WAITOK);
997 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
998 	    SYSCTL_CHILDREN(rack_counters),
999 	    OID_AUTO, "tls_app", CTLFLAG_RD,
1000 	    &rack_tls_app,
1001 	    "Total hdwr tls app limited");
1002 
1003 	rack_tls_other = counter_u64_alloc(M_WAITOK);
1004 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1005 	    SYSCTL_CHILDREN(rack_counters),
1006 	    OID_AUTO, "tls_other", CTLFLAG_RD,
1007 	    &rack_tls_other,
1008 	    "Total hdwr tls other limited");
1009 
1010 	rack_tls_filled = counter_u64_alloc(M_WAITOK);
1011 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1012 	    SYSCTL_CHILDREN(rack_counters),
1013 	    OID_AUTO, "tls_filled", CTLFLAG_RD,
1014 	    &rack_tls_filled,
1015 	    "Total hdwr tls filled");
1016 
1017 	rack_tls_rxt = counter_u64_alloc(M_WAITOK);
1018 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1019 	    SYSCTL_CHILDREN(rack_counters),
1020 	    OID_AUTO, "tls_rxt", CTLFLAG_RD,
1021 	    &rack_tls_rxt,
1022 	    "Total hdwr rxt");
1023 
1024 	rack_tls_tlp = counter_u64_alloc(M_WAITOK);
1025 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1026 	    SYSCTL_CHILDREN(rack_counters),
1027 	    OID_AUTO, "tls_tlp", CTLFLAG_RD,
1028 	    &rack_tls_tlp,
1029 	    "Total hdwr tls tlp");
1030 	rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1031 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1032 	    SYSCTL_CHILDREN(rack_counters),
1033 	    OID_AUTO, "timer_hole", CTLFLAG_RD,
1034 	    &rack_per_timer_hole,
1035 	    "Total persists start in timer hole");
1036 
1037 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1038 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1039 	    OID_AUTO, "outsize", CTLFLAG_RD,
1040 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1041 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1042 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1043 	    OID_AUTO, "opts", CTLFLAG_RD,
1044 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1045 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1046 	    SYSCTL_CHILDREN(rack_sysctl_root),
1047 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1048 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1049 }
1050 
1051 static __inline int
1052 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1053 {
1054 	if (SEQ_GEQ(b->r_start, a->r_start) &&
1055 	    SEQ_LT(b->r_start, a->r_end)) {
1056 		/*
1057 		 * The entry b is within the
1058 		 * block a. i.e.:
1059 		 * a --   |-------------|
1060 		 * b --   |----|
1061 		 * <or>
1062 		 * b --       |------|
1063 		 * <or>
1064 		 * b --       |-----------|
1065 		 */
1066 		return (0);
1067 	} else if (SEQ_GEQ(b->r_start, a->r_end)) {
1068 		/*
1069 		 * b falls as either the next
1070 		 * sequence block after a so a
1071 		 * is said to be smaller than b.
1072 		 * i.e:
1073 		 * a --   |------|
1074 		 * b --          |--------|
1075 		 * or
1076 		 * b --              |-----|
1077 		 */
1078 		return (1);
1079 	}
1080 	/*
1081 	 * Whats left is where a is
1082 	 * larger than b. i.e:
1083 	 * a --         |-------|
1084 	 * b --  |---|
1085 	 * or even possibly
1086 	 * b --   |--------------|
1087 	 */
1088 	return (-1);
1089 }
1090 
1091 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1092 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1093 
1094 static inline int32_t
1095 rack_progress_timeout_check(struct tcpcb *tp)
1096 {
1097 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
1098 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
1099 			/*
1100 			 * There is an assumption that the caller
1101 			 * will drop the connection so we will
1102 			 * increment the counters here.
1103 			 */
1104 			struct tcp_rack *rack;
1105 			rack = (struct tcp_rack *)tp->t_fb_ptr;
1106 			counter_u64_add(rack_progress_drops, 1);
1107 #ifdef NETFLIX_STATS
1108 			KMOD_TCPSTAT_INC(tcps_progdrops);
1109 #endif
1110 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
1111 			return (1);
1112 		}
1113 	}
1114 	return (0);
1115 }
1116 
1117 
1118 
1119 static void
1120 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
1121 {
1122 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1123 		union tcp_log_stackspecific log;
1124 		struct timeval tv;
1125 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1126 		log.u_bbr.flex1 = tsused;
1127 		log.u_bbr.flex2 = thresh;
1128 		log.u_bbr.flex3 = rsm->r_flags;
1129 		log.u_bbr.flex4 = rsm->r_dupack;
1130 		log.u_bbr.flex5 = rsm->r_start;
1131 		log.u_bbr.flex6 = rsm->r_end;
1132 		log.u_bbr.flex8 = mod;
1133 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1134 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1135 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1136 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1137 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1138 		    &rack->rc_inp->inp_socket->so_rcv,
1139 		    &rack->rc_inp->inp_socket->so_snd,
1140 		    BBR_LOG_SETTINGS_CHG, 0,
1141 		    0, &log, false, &tv);
1142 	}
1143 }
1144 
1145 
1146 
1147 static void
1148 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
1149 {
1150 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1151 		union tcp_log_stackspecific log;
1152 		struct timeval tv;
1153 
1154 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1155 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
1156 		log.u_bbr.flex2 = to;
1157 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1158 		log.u_bbr.flex4 = slot;
1159 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
1160 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1161 		log.u_bbr.flex7 = rack->rc_in_persist;
1162 		log.u_bbr.flex8 = which;
1163 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1164 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1165 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1166 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1167 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1168 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1169 		    &rack->rc_inp->inp_socket->so_rcv,
1170 		    &rack->rc_inp->inp_socket->so_snd,
1171 		    BBR_LOG_TIMERSTAR, 0,
1172 		    0, &log, false, &tv);
1173 	}
1174 }
1175 
1176 static void
1177 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int no)
1178 {
1179 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1180 		union tcp_log_stackspecific log;
1181 		struct timeval tv;
1182 
1183 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1184 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1185 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1186 		log.u_bbr.flex8 = to_num;
1187 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
1188 		log.u_bbr.flex2 = rack->rc_rack_rtt;
1189 		log.u_bbr.flex3 = no;
1190 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1191 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1192 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1193 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1194 		    &rack->rc_inp->inp_socket->so_rcv,
1195 		    &rack->rc_inp->inp_socket->so_snd,
1196 		    BBR_LOG_RTO, 0,
1197 		    0, &log, false, &tv);
1198 	}
1199 }
1200 
1201 static void
1202 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
1203     uint32_t o_srtt, uint32_t o_var)
1204 {
1205 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1206 		union tcp_log_stackspecific log;
1207 		struct timeval tv;
1208 
1209 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1210 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1211 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1212 		log.u_bbr.flex1 = t;
1213 		log.u_bbr.flex2 = o_srtt;
1214 		log.u_bbr.flex3 = o_var;
1215 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
1216 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
1217 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
1218 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
1219 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
1220 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1221 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1222 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1223 		TCP_LOG_EVENTP(tp, NULL,
1224 		    &rack->rc_inp->inp_socket->so_rcv,
1225 		    &rack->rc_inp->inp_socket->so_snd,
1226 		    BBR_LOG_BBRRTT, 0,
1227 		    0, &log, false, &tv);
1228 	}
1229 }
1230 
1231 static void
1232 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
1233 {
1234 	/*
1235 	 * Log the rtt sample we are
1236 	 * applying to the srtt algorithm in
1237 	 * useconds.
1238 	 */
1239 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1240 		union tcp_log_stackspecific log;
1241 		struct timeval tv;
1242 
1243 		/* Convert our ms to a microsecond */
1244 		memset(&log, 0, sizeof(log));
1245 		log.u_bbr.flex1 = rtt * 1000;
1246 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1247 		log.u_bbr.flex3 = rack->r_ctl.sack_count;
1248 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1249 		log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
1250 		log.u_bbr.flex8 = rack->sack_attack_disable;
1251 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1252 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1253 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1254 		    &rack->rc_inp->inp_socket->so_rcv,
1255 		    &rack->rc_inp->inp_socket->so_snd,
1256 		    TCP_LOG_RTT, 0,
1257 		    0, &log, false, &tv);
1258 	}
1259 }
1260 
1261 
1262 static inline void
1263 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
1264 {
1265 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1266 		union tcp_log_stackspecific log;
1267 		struct timeval tv;
1268 
1269 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1270 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1271 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1272 		log.u_bbr.flex1 = line;
1273 		log.u_bbr.flex2 = tick;
1274 		log.u_bbr.flex3 = tp->t_maxunacktime;
1275 		log.u_bbr.flex4 = tp->t_acktime;
1276 		log.u_bbr.flex8 = event;
1277 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1278 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1279 		TCP_LOG_EVENTP(tp, NULL,
1280 		    &rack->rc_inp->inp_socket->so_rcv,
1281 		    &rack->rc_inp->inp_socket->so_snd,
1282 		    BBR_LOG_PROGRESS, 0,
1283 		    0, &log, false, &tv);
1284 	}
1285 }
1286 
1287 static void
1288 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
1289 {
1290 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1291 		union tcp_log_stackspecific log;
1292 		struct timeval tv;
1293 
1294 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1295 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1296 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1297 		log.u_bbr.flex1 = slot;
1298 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
1299 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
1300 		log.u_bbr.flex8 = rack->rc_in_persist;
1301 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1302 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1303 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1304 		    &rack->rc_inp->inp_socket->so_rcv,
1305 		    &rack->rc_inp->inp_socket->so_snd,
1306 		    BBR_LOG_BBRSND, 0,
1307 		    0, &log, false, &tv);
1308 	}
1309 }
1310 
1311 static void
1312 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
1313 {
1314 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1315 		union tcp_log_stackspecific log;
1316 		struct timeval tv;
1317 
1318 		memset(&log, 0, sizeof(log));
1319 		log.u_bbr.flex1 = did_out;
1320 		log.u_bbr.flex2 = nxt_pkt;
1321 		log.u_bbr.flex3 = way_out;
1322 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1323 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1324 		log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
1325 		log.u_bbr.flex7 = rack->r_wanted_output;
1326 		log.u_bbr.flex8 = rack->rc_in_persist;
1327 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1328 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1329 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1330 		    &rack->rc_inp->inp_socket->so_rcv,
1331 		    &rack->rc_inp->inp_socket->so_snd,
1332 		    BBR_LOG_DOSEG_DONE, 0,
1333 		    0, &log, false, &tv);
1334 	}
1335 }
1336 
1337 static void
1338 rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm)
1339 {
1340 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1341 		union tcp_log_stackspecific log;
1342 		struct timeval tv;
1343 		uint32_t cts;
1344 
1345 		memset(&log, 0, sizeof(log));
1346 		cts = tcp_get_usecs(&tv);
1347 		log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
1348 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
1349 		log.u_bbr.flex4 = len;
1350 		log.u_bbr.flex5 = orig_len;
1351 		log.u_bbr.flex6 = rack->r_ctl.rc_sacked;
1352 		log.u_bbr.flex7 = mod;
1353 		log.u_bbr.flex8 = frm;
1354 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1355 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1356 		TCP_LOG_EVENTP(tp, NULL,
1357 		    &tp->t_inpcb->inp_socket->so_rcv,
1358 		    &tp->t_inpcb->inp_socket->so_snd,
1359 		    TCP_HDWR_TLS, 0,
1360 		    0, &log, false, &tv);
1361 	}
1362 }
1363 
1364 static void
1365 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1366 {
1367 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1368 		union tcp_log_stackspecific log;
1369 		struct timeval tv;
1370 
1371 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1372 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1373 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1374 		log.u_bbr.flex1 = slot;
1375 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1376 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1377 		log.u_bbr.flex7 = hpts_calling;
1378 		log.u_bbr.flex8 = rack->rc_in_persist;
1379 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1380 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1381 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1382 		    &rack->rc_inp->inp_socket->so_rcv,
1383 		    &rack->rc_inp->inp_socket->so_snd,
1384 		    BBR_LOG_JUSTRET, 0,
1385 		    tlen, &log, false, &tv);
1386 	}
1387 }
1388 
1389 static void
1390 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1391 {
1392 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1393 		union tcp_log_stackspecific log;
1394 		struct timeval tv;
1395 
1396 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1397 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1398 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1399 		log.u_bbr.flex1 = line;
1400 		log.u_bbr.flex2 = 0;
1401 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1402 		log.u_bbr.flex4 = 0;
1403 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1404 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1405 		log.u_bbr.flex8 = hpts_removed;
1406 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1407 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1408 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1409 		    &rack->rc_inp->inp_socket->so_rcv,
1410 		    &rack->rc_inp->inp_socket->so_snd,
1411 		    BBR_LOG_TIMERCANC, 0,
1412 		    0, &log, false, &tv);
1413 	}
1414 }
1415 
1416 static void
1417 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1418 {
1419 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1420 		union tcp_log_stackspecific log;
1421 		struct timeval tv;
1422 
1423 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1424 		log.u_bbr.flex1 = timers;
1425 		log.u_bbr.flex2 = ret;
1426 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1427 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1428 		log.u_bbr.flex5 = cts;
1429 		log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
1430 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1431 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1432 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1433 		    &rack->rc_inp->inp_socket->so_rcv,
1434 		    &rack->rc_inp->inp_socket->so_snd,
1435 		    BBR_LOG_TO_PROCESS, 0,
1436 		    0, &log, false, &tv);
1437 	}
1438 }
1439 
1440 static void
1441 rack_log_to_prr(struct tcp_rack *rack, int frm)
1442 {
1443 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1444 		union tcp_log_stackspecific log;
1445 		struct timeval tv;
1446 
1447 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1448 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
1449 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
1450 		log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
1451 		log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
1452 		log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
1453 		log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
1454 		log.u_bbr.flex8 = frm;
1455 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1456 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1457 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1458 		    &rack->rc_inp->inp_socket->so_rcv,
1459 		    &rack->rc_inp->inp_socket->so_snd,
1460 		    BBR_LOG_BBRUPD, 0,
1461 		    0, &log, false, &tv);
1462 	}
1463 }
1464 
1465 #ifdef NETFLIX_EXP_DETECTION
1466 static void
1467 rack_log_sad(struct tcp_rack *rack, int event)
1468 {
1469 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1470 		union tcp_log_stackspecific log;
1471 		struct timeval tv;
1472 
1473 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1474 		log.u_bbr.flex1 = rack->r_ctl.sack_count;
1475 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1476 		log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
1477 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1478 		log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
1479 		log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
1480 		log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
1481 		log.u_bbr.lt_epoch = (tcp_force_detection << 8);
1482 		log.u_bbr.lt_epoch |= rack->do_detection;
1483 		log.u_bbr.applimited = tcp_map_minimum;
1484 		log.u_bbr.flex7 = rack->sack_attack_disable;
1485 		log.u_bbr.flex8 = event;
1486 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1487 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1488 		log.u_bbr.delivered = tcp_sad_decay_val;
1489 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1490 		    &rack->rc_inp->inp_socket->so_rcv,
1491 		    &rack->rc_inp->inp_socket->so_snd,
1492 		    TCP_SAD_DETECTION, 0,
1493 		    0, &log, false, &tv);
1494 	}
1495 }
1496 #endif
1497 
1498 static void
1499 rack_counter_destroy(void)
1500 {
1501 	counter_u64_free(rack_badfr);
1502 	counter_u64_free(rack_badfr_bytes);
1503 	counter_u64_free(rack_rtm_prr_retran);
1504 	counter_u64_free(rack_rtm_prr_newdata);
1505 	counter_u64_free(rack_timestamp_mismatch);
1506 	counter_u64_free(rack_reorder_seen);
1507 	counter_u64_free(rack_tlp_tot);
1508 	counter_u64_free(rack_tlp_newdata);
1509 	counter_u64_free(rack_tlp_retran);
1510 	counter_u64_free(rack_tlp_retran_bytes);
1511 	counter_u64_free(rack_tlp_retran_fail);
1512 	counter_u64_free(rack_to_tot);
1513 	counter_u64_free(rack_to_arm_rack);
1514 	counter_u64_free(rack_to_arm_tlp);
1515 	counter_u64_free(rack_paced_segments);
1516 	counter_u64_free(rack_unpaced_segments);
1517 	counter_u64_free(rack_saw_enobuf);
1518 	counter_u64_free(rack_saw_enetunreach);
1519 	counter_u64_free(rack_to_alloc_hard);
1520 	counter_u64_free(rack_to_alloc_emerg);
1521 	counter_u64_free(rack_sack_proc_all);
1522 	counter_u64_free(rack_sack_proc_short);
1523 	counter_u64_free(rack_sack_proc_restart);
1524 	counter_u64_free(rack_to_alloc);
1525 	counter_u64_free(rack_to_alloc_limited);
1526 	counter_u64_free(rack_alloc_limited_conns);
1527 	counter_u64_free(rack_split_limited);
1528 	counter_u64_free(rack_find_high);
1529 	counter_u64_free(rack_enter_tlp_calc);
1530 	counter_u64_free(rack_used_tlpmethod);
1531 	counter_u64_free(rack_used_tlpmethod2);
1532 	counter_u64_free(rack_progress_drops);
1533 	counter_u64_free(rack_input_idle_reduces);
1534 	counter_u64_free(rack_collapsed_win);
1535 	counter_u64_free(rack_tlp_does_nada);
1536 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1537 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1538 }
1539 
1540 static struct rack_sendmap *
1541 rack_alloc(struct tcp_rack *rack)
1542 {
1543 	struct rack_sendmap *rsm;
1544 
1545 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1546 	if (rsm) {
1547 		rack->r_ctl.rc_num_maps_alloced++;
1548 		counter_u64_add(rack_to_alloc, 1);
1549 		return (rsm);
1550 	}
1551 	if (rack->rc_free_cnt) {
1552 		counter_u64_add(rack_to_alloc_emerg, 1);
1553 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1554 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
1555 		rack->rc_free_cnt--;
1556 		return (rsm);
1557 	}
1558 	return (NULL);
1559 }
1560 
1561 static struct rack_sendmap *
1562 rack_alloc_full_limit(struct tcp_rack *rack)
1563 {
1564 	if ((V_tcp_map_entries_limit > 0) &&
1565 	    (rack->do_detection == 0) &&
1566 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
1567 		counter_u64_add(rack_to_alloc_limited, 1);
1568 		if (!rack->alloc_limit_reported) {
1569 			rack->alloc_limit_reported = 1;
1570 			counter_u64_add(rack_alloc_limited_conns, 1);
1571 		}
1572 		return (NULL);
1573 	}
1574 	return (rack_alloc(rack));
1575 }
1576 
1577 /* wrapper to allocate a sendmap entry, subject to a specific limit */
1578 static struct rack_sendmap *
1579 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
1580 {
1581 	struct rack_sendmap *rsm;
1582 
1583 	if (limit_type) {
1584 		/* currently there is only one limit type */
1585 		if (V_tcp_map_split_limit > 0 &&
1586 		    (rack->do_detection == 0) &&
1587 		    rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
1588 			counter_u64_add(rack_split_limited, 1);
1589 			if (!rack->alloc_limit_reported) {
1590 				rack->alloc_limit_reported = 1;
1591 				counter_u64_add(rack_alloc_limited_conns, 1);
1592 			}
1593 			return (NULL);
1594 		}
1595 	}
1596 
1597 	/* allocate and mark in the limit type, if set */
1598 	rsm = rack_alloc(rack);
1599 	if (rsm != NULL && limit_type) {
1600 		rsm->r_limit_type = limit_type;
1601 		rack->r_ctl.rc_num_split_allocs++;
1602 	}
1603 	return (rsm);
1604 }
1605 
1606 static void
1607 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1608 {
1609 	if (rsm->r_limit_type) {
1610 		/* currently there is only one limit type */
1611 		rack->r_ctl.rc_num_split_allocs--;
1612 	}
1613 	if (rack->r_ctl.rc_tlpsend == rsm)
1614 		rack->r_ctl.rc_tlpsend = NULL;
1615 	if (rack->r_ctl.rc_sacklast == rsm)
1616 		rack->r_ctl.rc_sacklast = NULL;
1617 	if (rack->rc_free_cnt < rack_free_cache) {
1618 		memset(rsm, 0, sizeof(struct rack_sendmap));
1619 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
1620 		rsm->r_limit_type = 0;
1621 		rack->rc_free_cnt++;
1622 		return;
1623 	}
1624 	rack->r_ctl.rc_num_maps_alloced--;
1625 	uma_zfree(rack_zone, rsm);
1626 }
1627 
1628 /*
1629  * CC wrapper hook functions
1630  */
1631 static void
1632 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1633     uint16_t type, int32_t recovery)
1634 {
1635 #ifdef STATS
1636 	int32_t gput;
1637 #endif
1638 
1639 	INP_WLOCK_ASSERT(tp->t_inpcb);
1640 	tp->ccv->nsegs = nsegs;
1641 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1642 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1643 		uint32_t max;
1644 
1645 		max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
1646 		if (tp->ccv->bytes_this_ack > max) {
1647 			tp->ccv->bytes_this_ack = max;
1648 		}
1649 	}
1650 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
1651 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
1652 	     (tp->snd_cwnd < (ctf_flight_size(tp, rack->r_ctl.rc_sacked) * 2))))
1653 		tp->ccv->flags |= CCF_CWND_LIMITED;
1654 	else
1655 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1656 
1657 	if (type == CC_ACK) {
1658 #ifdef STATS
1659 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1660 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1661 		if ((tp->t_flags & TF_GPUTINPROG) &&
1662 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1663 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1664 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1665 			/* We store it in bytes per ms (or kbytes per sec) */
1666 			rack->r_ctl.rc_gp_history[rack->r_ctl.rc_gp_hist_idx] = gput / 8;
1667 			rack->r_ctl.rc_gp_hist_idx++;
1668 			if (rack->r_ctl.rc_gp_hist_idx >= RACK_GP_HIST)
1669 				rack->r_ctl.rc_gp_hist_filled = 1;
1670 			rack->r_ctl.rc_gp_hist_idx %= RACK_GP_HIST;
1671 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1672 			    gput);
1673 			/*
1674 			 * XXXLAS: This is a temporary hack, and should be
1675 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1676 			 * API to deal with chained VOIs.
1677 			 */
1678 			if (tp->t_stats_gput_prev > 0)
1679 				stats_voi_update_abs_s32(tp->t_stats,
1680 				    VOI_TCP_GPUT_ND,
1681 				    ((gput - tp->t_stats_gput_prev) * 100) /
1682 				    tp->t_stats_gput_prev);
1683 			tp->t_flags &= ~TF_GPUTINPROG;
1684 			tp->t_stats_gput_prev = gput;
1685 #ifdef NETFLIX_PEAKRATE
1686 			if (tp->t_maxpeakrate) {
1687 				/*
1688 				 * We update t_peakrate_thr. This gives us roughly
1689 				 * one update per round trip time.
1690 				 */
1691 				tcp_update_peakrate_thr(tp);
1692 			}
1693 #endif
1694 		}
1695 #endif
1696 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1697 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1698 			    nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
1699 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1700 				tp->t_bytes_acked -= tp->snd_cwnd;
1701 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1702 			}
1703 		} else {
1704 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1705 			tp->t_bytes_acked = 0;
1706 		}
1707 	}
1708 	if (CC_ALGO(tp)->ack_received != NULL) {
1709 		/* XXXLAS: Find a way to live without this */
1710 		tp->ccv->curack = th->th_ack;
1711 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1712 	}
1713 #ifdef STATS
1714 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1715 #endif
1716 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1717 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1718 	}
1719 	/* we enforce max peak rate if it is set. */
1720 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1721 		tp->snd_cwnd = tp->t_peakrate_thr;
1722 	}
1723 }
1724 
1725 static void
1726 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1727 {
1728 	struct tcp_rack *rack;
1729 
1730 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1731 	INP_WLOCK_ASSERT(tp->t_inpcb);
1732 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1733 		rack->r_wanted_output++;
1734 }
1735 
1736 static void
1737 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1738 {
1739 	struct tcp_rack *rack;
1740 
1741 	INP_WLOCK_ASSERT(tp->t_inpcb);
1742 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1743 	if (CC_ALGO(tp)->post_recovery != NULL) {
1744 		tp->ccv->curack = th->th_ack;
1745 		CC_ALGO(tp)->post_recovery(tp->ccv);
1746 	}
1747 	/*
1748 	 * Here we can in theory adjust cwnd to be based on the number of
1749 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1750 	 * based on the rack_use_proportional flag.
1751 	 */
1752 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1753 		int32_t reduce;
1754 
1755 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1756 		if (reduce > 50) {
1757 			reduce = 50;
1758 		}
1759 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1760 	} else {
1761 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1762 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1763 			tp->snd_cwnd = tp->snd_ssthresh;
1764 		}
1765 	}
1766 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1767 		/* Suck the next prr cnt back into cwnd */
1768 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1769 		rack->r_ctl.rc_prr_sndcnt = 0;
1770 		rack_log_to_prr(rack, 1);
1771 	}
1772 	tp->snd_recover = tp->snd_una;
1773 	EXIT_RECOVERY(tp->t_flags);
1774 
1775 
1776 }
1777 
1778 static void
1779 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1780 {
1781 	struct tcp_rack *rack;
1782 
1783 	INP_WLOCK_ASSERT(tp->t_inpcb);
1784 
1785 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1786 	switch (type) {
1787 	case CC_NDUPACK:
1788 		tp->t_flags &= ~TF_WASFRECOVERY;
1789 		tp->t_flags &= ~TF_WASCRECOVERY;
1790 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1791 			rack->r_ctl.rc_tlp_rtx_out = 0;
1792 			rack->r_ctl.rc_prr_delivered = 0;
1793 			rack->r_ctl.rc_prr_out = 0;
1794 			rack->r_ctl.rc_loss_count = 0;
1795 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
1796 			rack_log_to_prr(rack, 2);
1797 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1798 			tp->snd_recover = tp->snd_max;
1799 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1800 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1801 		}
1802 		break;
1803 	case CC_ECN:
1804 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1805 			KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
1806 			tp->snd_recover = tp->snd_max;
1807 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1808 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1809 		}
1810 		break;
1811 	case CC_RTO:
1812 		tp->t_dupacks = 0;
1813 		tp->t_bytes_acked = 0;
1814 		EXIT_RECOVERY(tp->t_flags);
1815 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1816 		    ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
1817 		tp->snd_cwnd = ctf_fixed_maxseg(tp);
1818 		if (tp->t_flags2 & TF2_ECN_PERMIT)
1819 			tp->t_flags2 |= TF2_ECN_SND_CWR;
1820 		break;
1821 	case CC_RTO_ERR:
1822 		KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
1823 		/* RTO was unnecessary, so reset everything. */
1824 		tp->snd_cwnd = tp->snd_cwnd_prev;
1825 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1826 		tp->snd_recover = tp->snd_recover_prev;
1827 		if (tp->t_flags & TF_WASFRECOVERY) {
1828 			ENTER_FASTRECOVERY(tp->t_flags);
1829 			tp->t_flags &= ~TF_WASFRECOVERY;
1830 		}
1831 		if (tp->t_flags & TF_WASCRECOVERY) {
1832 			ENTER_CONGRECOVERY(tp->t_flags);
1833 			tp->t_flags &= ~TF_WASCRECOVERY;
1834 		}
1835 		tp->snd_nxt = tp->snd_max;
1836 		tp->t_badrxtwin = 0;
1837 		break;
1838 	}
1839 
1840 	if (CC_ALGO(tp)->cong_signal != NULL) {
1841 		if (th != NULL)
1842 			tp->ccv->curack = th->th_ack;
1843 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1844 	}
1845 }
1846 
1847 
1848 
1849 static inline void
1850 rack_cc_after_idle(struct tcpcb *tp)
1851 {
1852 	uint32_t i_cwnd;
1853 
1854 	INP_WLOCK_ASSERT(tp->t_inpcb);
1855 
1856 #ifdef NETFLIX_STATS
1857 	KMOD_TCPSTAT_INC(tcps_idle_restarts);
1858 	if (tp->t_state == TCPS_ESTABLISHED)
1859 		KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
1860 #endif
1861 	if (CC_ALGO(tp)->after_idle != NULL)
1862 		CC_ALGO(tp)->after_idle(tp->ccv);
1863 
1864 	if (tp->snd_cwnd == 1)
1865 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
1866 	else
1867 		i_cwnd = tcp_compute_initwnd(tcp_maxseg(tp));
1868 
1869 	/*
1870 	 * Being idle is no differnt than the initial window. If the cc
1871 	 * clamps it down below the initial window raise it to the initial
1872 	 * window.
1873 	 */
1874 	if (tp->snd_cwnd < i_cwnd) {
1875 		tp->snd_cwnd = i_cwnd;
1876 	}
1877 }
1878 
1879 
1880 /*
1881  * Indicate whether this ack should be delayed.  We can delay the ack if
1882  * following conditions are met:
1883  *	- There is no delayed ack timer in progress.
1884  *	- Our last ack wasn't a 0-sized window. We never want to delay
1885  *	  the ack that opens up a 0-sized window.
1886  *	- LRO wasn't used for this segment. We make sure by checking that the
1887  *	  segment size is not larger than the MSS.
1888  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1889  *	  connection.
1890  */
1891 #define DELAY_ACK(tp, tlen)			 \
1892 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1893 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1894 	(tlen <= tp->t_maxseg) &&		 \
1895 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1896 
1897 static struct rack_sendmap *
1898 rack_find_lowest_rsm(struct tcp_rack *rack)
1899 {
1900 	struct rack_sendmap *rsm;
1901 
1902 	/*
1903 	 * Walk the time-order transmitted list looking for an rsm that is
1904 	 * not acked. This will be the one that was sent the longest time
1905 	 * ago that is still outstanding.
1906 	 */
1907 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1908 		if (rsm->r_flags & RACK_ACKED) {
1909 			continue;
1910 		}
1911 		goto finish;
1912 	}
1913 finish:
1914 	return (rsm);
1915 }
1916 
1917 static struct rack_sendmap *
1918 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1919 {
1920 	struct rack_sendmap *prsm;
1921 
1922 	/*
1923 	 * Walk the sequence order list backward until we hit and arrive at
1924 	 * the highest seq not acked. In theory when this is called it
1925 	 * should be the last segment (which it was not).
1926 	 */
1927 	counter_u64_add(rack_find_high, 1);
1928 	prsm = rsm;
1929 	RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
1930 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1931 			continue;
1932 		}
1933 		return (prsm);
1934 	}
1935 	return (NULL);
1936 }
1937 
1938 
1939 static uint32_t
1940 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1941 {
1942 	int32_t lro;
1943 	uint32_t thresh;
1944 
1945 	/*
1946 	 * lro is the flag we use to determine if we have seen reordering.
1947 	 * If it gets set we have seen reordering. The reorder logic either
1948 	 * works in one of two ways:
1949 	 *
1950 	 * If reorder-fade is configured, then we track the last time we saw
1951 	 * re-ordering occur. If we reach the point where enough time as
1952 	 * passed we no longer consider reordering has occuring.
1953 	 *
1954 	 * Or if reorder-face is 0, then once we see reordering we consider
1955 	 * the connection to alway be subject to reordering and just set lro
1956 	 * to 1.
1957 	 *
1958 	 * In the end if lro is non-zero we add the extra time for
1959 	 * reordering in.
1960 	 */
1961 	if (srtt == 0)
1962 		srtt = 1;
1963 	if (rack->r_ctl.rc_reorder_ts) {
1964 		if (rack->r_ctl.rc_reorder_fade) {
1965 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1966 				lro = cts - rack->r_ctl.rc_reorder_ts;
1967 				if (lro == 0) {
1968 					/*
1969 					 * No time as passed since the last
1970 					 * reorder, mark it as reordering.
1971 					 */
1972 					lro = 1;
1973 				}
1974 			} else {
1975 				/* Negative time? */
1976 				lro = 0;
1977 			}
1978 			if (lro > rack->r_ctl.rc_reorder_fade) {
1979 				/* Turn off reordering seen too */
1980 				rack->r_ctl.rc_reorder_ts = 0;
1981 				lro = 0;
1982 			}
1983 		} else {
1984 			/* Reodering does not fade */
1985 			lro = 1;
1986 		}
1987 	} else {
1988 		lro = 0;
1989 	}
1990 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1991 	if (lro) {
1992 		/* It must be set, if not you get 1/4 rtt */
1993 		if (rack->r_ctl.rc_reorder_shift)
1994 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1995 		else
1996 			thresh += (srtt >> 2);
1997 	} else {
1998 		thresh += 1;
1999 	}
2000 	/* We don't let the rack timeout be above a RTO */
2001 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
2002 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
2003 	}
2004 	/* And we don't want it above the RTO max either */
2005 	if (thresh > rack_rto_max) {
2006 		thresh = rack_rto_max;
2007 	}
2008 	return (thresh);
2009 }
2010 
2011 static uint32_t
2012 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
2013 		     struct rack_sendmap *rsm, uint32_t srtt)
2014 {
2015 	struct rack_sendmap *prsm;
2016 	uint32_t thresh, len;
2017 	int maxseg;
2018 
2019 	if (srtt == 0)
2020 		srtt = 1;
2021 	if (rack->r_ctl.rc_tlp_threshold)
2022 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
2023 	else
2024 		thresh = (srtt * 2);
2025 
2026 	/* Get the previous sent packet, if any  */
2027 	maxseg = ctf_fixed_maxseg(tp);
2028 	counter_u64_add(rack_enter_tlp_calc, 1);
2029 	len = rsm->r_end - rsm->r_start;
2030 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
2031 		/* Exactly like the ID */
2032 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
2033 			uint32_t alt_thresh;
2034 			/*
2035 			 * Compensate for delayed-ack with the d-ack time.
2036 			 */
2037 			counter_u64_add(rack_used_tlpmethod, 1);
2038 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2039 			if (alt_thresh > thresh)
2040 				thresh = alt_thresh;
2041 		}
2042 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
2043 		/* 2.1 behavior */
2044 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
2045 		if (prsm && (len <= maxseg)) {
2046 			/*
2047 			 * Two packets outstanding, thresh should be (2*srtt) +
2048 			 * possible inter-packet delay (if any).
2049 			 */
2050 			uint32_t inter_gap = 0;
2051 			int idx, nidx;
2052 
2053 			counter_u64_add(rack_used_tlpmethod, 1);
2054 			idx = rsm->r_rtr_cnt - 1;
2055 			nidx = prsm->r_rtr_cnt - 1;
2056 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
2057 				/* Yes it was sent later (or at the same time) */
2058 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
2059 			}
2060 			thresh += inter_gap;
2061 		} else 	if (len <= maxseg) {
2062 			/*
2063 			 * Possibly compensate for delayed-ack.
2064 			 */
2065 			uint32_t alt_thresh;
2066 
2067 			counter_u64_add(rack_used_tlpmethod2, 1);
2068 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2069 			if (alt_thresh > thresh)
2070 				thresh = alt_thresh;
2071 		}
2072 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
2073 		/* 2.2 behavior */
2074 		if (len <= maxseg) {
2075 			uint32_t alt_thresh;
2076 			/*
2077 			 * Compensate for delayed-ack with the d-ack time.
2078 			 */
2079 			counter_u64_add(rack_used_tlpmethod, 1);
2080 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2081 			if (alt_thresh > thresh)
2082 				thresh = alt_thresh;
2083 		}
2084 	}
2085  	/* Not above an RTO */
2086 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
2087 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
2088 	}
2089 	/* Not above a RTO max */
2090 	if (thresh > rack_rto_max) {
2091 		thresh = rack_rto_max;
2092 	}
2093 	/* Apply user supplied min TLP */
2094 	if (thresh < rack_tlp_min) {
2095 		thresh = rack_tlp_min;
2096 	}
2097 	return (thresh);
2098 }
2099 
2100 static uint32_t
2101 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
2102 {
2103 	/*
2104 	 * We want the rack_rtt which is the
2105 	 * last rtt we measured. However if that
2106 	 * does not exist we fallback to the srtt (which
2107 	 * we probably will never do) and then as a last
2108 	 * resort we use RACK_INITIAL_RTO if no srtt is
2109 	 * yet set.
2110 	 */
2111 	if (rack->rc_rack_rtt)
2112 		return(rack->rc_rack_rtt);
2113 	else if (tp->t_srtt == 0)
2114 		return(RACK_INITIAL_RTO);
2115 	return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT));
2116 }
2117 
2118 static struct rack_sendmap *
2119 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
2120 {
2121 	/*
2122 	 * Check to see that we don't need to fall into recovery. We will
2123 	 * need to do so if our oldest transmit is past the time we should
2124 	 * have had an ack.
2125 	 */
2126 	struct tcp_rack *rack;
2127 	struct rack_sendmap *rsm;
2128 	int32_t idx;
2129 	uint32_t srtt, thresh;
2130 
2131 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2132 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
2133 		return (NULL);
2134 	}
2135 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2136 	if (rsm == NULL)
2137 		return (NULL);
2138 
2139 	if (rsm->r_flags & RACK_ACKED) {
2140 		rsm = rack_find_lowest_rsm(rack);
2141 		if (rsm == NULL)
2142 			return (NULL);
2143 	}
2144 	idx = rsm->r_rtr_cnt - 1;
2145 	srtt = rack_grab_rtt(tp, rack);
2146 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2147 	if (tsused < rsm->r_tim_lastsent[idx]) {
2148 		return (NULL);
2149 	}
2150 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2151 		return (NULL);
2152 	}
2153 	/* Ok if we reach here we are over-due */
2154 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2155 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2156 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2157 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2158 	return (rsm);
2159 }
2160 
2161 static uint32_t
2162 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2163 {
2164 	int32_t t;
2165 	int32_t tt;
2166 	uint32_t ret_val;
2167 
2168 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2169 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2170 	    rack_persist_min, rack_persist_max);
2171 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2172 		tp->t_rxtshift++;
2173 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2174 	ret_val = (uint32_t)tt;
2175 	return (ret_val);
2176 }
2177 
2178 static uint32_t
2179 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
2180 {
2181 	/*
2182 	 * Start the FR timer, we do this based on getting the first one in
2183 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2184 	 * events we need to stop the running timer (if its running) before
2185 	 * starting the new one.
2186 	 */
2187 	uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
2188 	uint32_t srtt_cur;
2189 	int32_t idx;
2190 	int32_t is_tlp_timer = 0;
2191 	struct rack_sendmap *rsm;
2192 
2193 	if (rack->t_timers_stopped) {
2194 		/* All timers have been stopped none are to run */
2195 		return (0);
2196 	}
2197 	if (rack->rc_in_persist) {
2198 		/* We can't start any timer in persists */
2199 		return (rack_get_persists_timer_val(tp, rack));
2200 	}
2201 	if ((tp->t_state < TCPS_ESTABLISHED) ||
2202 	    ((tp->t_flags & TF_SACK_PERMIT) == 0))
2203 		goto activate_rxt;
2204 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2205 	if ((rsm == NULL) || sup_rack) {
2206 		/* Nothing on the send map */
2207 activate_rxt:
2208 		time_since_sent = 0;
2209 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2210 		if (rsm) {
2211 			idx = rsm->r_rtr_cnt - 1;
2212 			if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2213 				tstmp_touse = rsm->r_tim_lastsent[idx];
2214 			else
2215 				tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2216 			if (TSTMP_GT(tstmp_touse, cts))
2217 			    time_since_sent = cts - tstmp_touse;
2218 		}
2219 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2220 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2221 			to = TICKS_2_MSEC(tp->t_rxtcur);
2222 			if (to > time_since_sent)
2223 				to -= time_since_sent;
2224 			else
2225 				to = rack->r_ctl.rc_min_to;
2226 			if (to == 0)
2227 				to = 1;
2228 			return (to);
2229 		}
2230 		return (0);
2231 	}
2232 	if (rsm->r_flags & RACK_ACKED) {
2233 		rsm = rack_find_lowest_rsm(rack);
2234 		if (rsm == NULL) {
2235 			/* No lowest? */
2236 			goto activate_rxt;
2237 		}
2238 	}
2239 	if (rack->sack_attack_disable) {
2240 		/*
2241 		 * We don't want to do
2242 		 * any TLP's if you are an attacker.
2243 		 * Though if you are doing what
2244 		 * is expected you may still have
2245 		 * SACK-PASSED marks.
2246 		 */
2247 		goto activate_rxt;
2248 	}
2249 	/* Convert from ms to usecs */
2250 	if (rsm->r_flags & RACK_SACK_PASSED) {
2251 		if ((tp->t_flags & TF_SENTFIN) &&
2252 		    ((tp->snd_max - tp->snd_una) == 1) &&
2253 		    (rsm->r_flags & RACK_HAS_FIN)) {
2254 			/*
2255 			 * We don't start a rack timer if all we have is a
2256 			 * FIN outstanding.
2257 			 */
2258 			goto activate_rxt;
2259 		}
2260 		if ((rack->use_rack_cheat == 0) &&
2261 		    (IN_RECOVERY(tp->t_flags)) &&
2262 		     (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
2263 			/*
2264 			 * We are not cheating, in recovery  and
2265 			 * not enough ack's to yet get our next
2266 			 * retransmission out.
2267 			 *
2268 			 * Note that classified attackers do not
2269 			 * get to use the rack-cheat.
2270 			 */
2271 			goto activate_tlp;
2272 		}
2273 		srtt = rack_grab_rtt(tp, rack);
2274 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2275 		idx = rsm->r_rtr_cnt - 1;
2276 		exp = rsm->r_tim_lastsent[idx] + thresh;
2277 		if (SEQ_GEQ(exp, cts)) {
2278 			to = exp - cts;
2279 			if (to < rack->r_ctl.rc_min_to) {
2280 				to = rack->r_ctl.rc_min_to;
2281 			}
2282 		} else {
2283 			to = rack->r_ctl.rc_min_to;
2284 		}
2285 	} else {
2286 		/* Ok we need to do a TLP not RACK */
2287 activate_tlp:
2288 		if ((rack->rc_tlp_in_progress != 0) ||
2289 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2290 			/*
2291 			 * The previous send was a TLP or a tlp_rtx is in
2292 			 * process.
2293 			 */
2294 			goto activate_rxt;
2295 		}
2296 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2297 		if (rsm == NULL) {
2298 			/* We found no rsm to TLP with. */
2299 			goto activate_rxt;
2300 		}
2301 		if (rsm->r_flags & RACK_HAS_FIN) {
2302 			/* If its a FIN we dont do TLP */
2303 			rsm = NULL;
2304 			goto activate_rxt;
2305 		}
2306 		idx = rsm->r_rtr_cnt - 1;
2307 		time_since_sent = 0;
2308 		if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2309 			tstmp_touse = rsm->r_tim_lastsent[idx];
2310 		else
2311 			tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2312 		if (TSTMP_GT(tstmp_touse, cts))
2313 		    time_since_sent = cts - tstmp_touse;
2314 		is_tlp_timer = 1;
2315 		if (tp->t_srtt) {
2316 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2317 			srtt = TICKS_2_MSEC(srtt_cur);
2318 		} else
2319 			srtt = RACK_INITIAL_RTO;
2320 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2321 		if (thresh > time_since_sent)
2322 			to = thresh - time_since_sent;
2323 		else
2324 			to = rack->r_ctl.rc_min_to;
2325 		if (to > TCPTV_REXMTMAX) {
2326 			/*
2327 			 * If the TLP time works out to larger than the max
2328 			 * RTO lets not do TLP.. just RTO.
2329 			 */
2330 			goto activate_rxt;
2331 		}
2332 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2333 			/*
2334 			 * The tail is no longer the last one I did a probe
2335 			 * on
2336 			 */
2337 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2338 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2339 		}
2340 	}
2341 	if (is_tlp_timer == 0) {
2342 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2343 	} else {
2344 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2345 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2346 			/*
2347 			 * We have exceeded how many times we can retran the
2348 			 * current TLP timer, switch to the RTO timer.
2349 			 */
2350 			goto activate_rxt;
2351 		} else {
2352 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2353 		}
2354 	}
2355 	if (to == 0)
2356 		to = 1;
2357 	return (to);
2358 }
2359 
2360 static void
2361 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2362 {
2363 	if (rack->rc_in_persist == 0) {
2364 		rack->r_ctl.rc_went_idle_time = cts;
2365 		rack_timer_cancel(tp, rack, cts, __LINE__);
2366 		tp->t_rxtshift = 0;
2367 		rack->rc_in_persist = 1;
2368 	}
2369 }
2370 
2371 static void
2372 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2373 {
2374 	if (rack->rc_inp->inp_in_hpts)  {
2375 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2376 		rack->r_ctl.rc_hpts_flags  = 0;
2377 	}
2378 	rack->rc_in_persist = 0;
2379 	rack->r_ctl.rc_went_idle_time = 0;
2380 	tp->t_flags &= ~TF_FORCEDATA;
2381 	tp->t_rxtshift = 0;
2382 }
2383 
2384 static void
2385 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
2386       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
2387 {
2388 	struct inpcb *inp;
2389 	uint32_t delayed_ack = 0;
2390 	uint32_t hpts_timeout;
2391 	uint8_t stopped;
2392 	uint32_t left = 0;
2393 
2394 	inp = tp->t_inpcb;
2395 	if (inp->inp_in_hpts) {
2396 		/* A previous call is already set up */
2397 		return;
2398 	}
2399 	if ((tp->t_state == TCPS_CLOSED) ||
2400 	    (tp->t_state == TCPS_LISTEN)) {
2401 		return;
2402 	}
2403 	stopped = rack->rc_tmr_stopped;
2404 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2405 		left = rack->r_ctl.rc_timer_exp - cts;
2406 	}
2407 	rack->tlp_timer_up = 0;
2408 	rack->r_ctl.rc_timer_exp = 0;
2409 	if (rack->rc_inp->inp_in_hpts == 0) {
2410 		rack->r_ctl.rc_hpts_flags = 0;
2411 	}
2412 	if (slot) {
2413 		/* We are hptsi too */
2414 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2415 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2416 		/*
2417 		 * We are still left on the hpts when the to goes
2418 		 * it will be for output.
2419 		 */
2420 		if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts))
2421 			slot = rack->r_ctl.rc_last_output_to - cts;
2422 		else
2423 			slot = 1;
2424 	}
2425 	hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
2426 #ifdef NETFLIX_EXP_DETECTION
2427 	if (rack->sack_attack_disable &&
2428 	    (slot < USEC_TO_MSEC(tcp_sad_pacing_interval))) {
2429 		/*
2430 		 * We have a potential attacker on
2431 		 * the line. We have possibly some
2432 		 * (or now) pacing time set. We want to
2433 		 * slow down the processing of sacks by some
2434 		 * amount (if it is an attacker). Set the default
2435 		 * slot for attackers in place (unless the orginal
2436 		 * interval is longer). Its stored in
2437 		 * micro-seconds, so lets convert to msecs.
2438 		 */
2439 		slot = USEC_TO_MSEC(tcp_sad_pacing_interval);
2440 	}
2441 #endif
2442 	if (tp->t_flags & TF_DELACK) {
2443 		delayed_ack = TICKS_2_MSEC(tcp_delacktime);
2444 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2445 	}
2446 	if (delayed_ack && ((hpts_timeout == 0) ||
2447 			    (delayed_ack < hpts_timeout)))
2448 		hpts_timeout = delayed_ack;
2449 	else
2450 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2451 	/*
2452 	 * If no timers are going to run and we will fall off the hptsi
2453 	 * wheel, we resort to a keep-alive timer if its configured.
2454 	 */
2455 	if ((hpts_timeout == 0) &&
2456 	    (slot == 0)) {
2457 		if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2458 		    (tp->t_state <= TCPS_CLOSING)) {
2459 			/*
2460 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2461 			 * del-ack), we don't have segments being paced. So
2462 			 * all that is left is the keepalive timer.
2463 			 */
2464 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2465 				/* Get the established keep-alive time */
2466 				hpts_timeout = TP_KEEPIDLE(tp);
2467 			} else {
2468 				/* Get the initial setup keep-alive time */
2469 				hpts_timeout = TP_KEEPINIT(tp);
2470 			}
2471 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2472 		}
2473 	}
2474 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2475 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2476 		/*
2477 		 * RACK, TLP, persists and RXT timers all are restartable
2478 		 * based on actions input .. i.e we received a packet (ack
2479 		 * or sack) and that changes things (rw, or snd_una etc).
2480 		 * Thus we can restart them with a new value. For
2481 		 * keep-alive, delayed_ack we keep track of what was left
2482 		 * and restart the timer with a smaller value.
2483 		 */
2484 		if (left < hpts_timeout)
2485 			hpts_timeout = left;
2486 	}
2487 	if (hpts_timeout) {
2488 		/*
2489 		 * Hack alert for now we can't time-out over 2,147,483
2490 		 * seconds (a bit more than 596 hours), which is probably ok
2491 		 * :).
2492 		 */
2493 		if (hpts_timeout > 0x7ffffffe)
2494 			hpts_timeout = 0x7ffffffe;
2495 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2496 	}
2497 	if (slot) {
2498 		rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2499 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)
2500 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2501 		else
2502 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2503 		rack->r_ctl.rc_last_output_to = cts + slot;
2504 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2505 			if (rack->rc_inp->inp_in_hpts == 0)
2506 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2507 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2508 		} else {
2509 			/*
2510 			 * Arrange for the hpts to kick back in after the
2511 			 * t-o if the t-o does not cause a send.
2512 			 */
2513 			if (rack->rc_inp->inp_in_hpts == 0)
2514 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2515 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2516 		}
2517 	} else if (hpts_timeout) {
2518 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)  {
2519 			/* For a rack timer, don't wake us */
2520 			rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2521 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2522 		} else {
2523 			/* All other timers wake us up */
2524 			rack->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
2525 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2526 		}
2527 		if (rack->rc_inp->inp_in_hpts == 0)
2528 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2529 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2530 	} else {
2531 		/* No timer starting */
2532 #ifdef INVARIANTS
2533 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2534 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2535 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2536 		}
2537 #endif
2538 	}
2539 	rack->rc_tmr_stopped = 0;
2540 	if (slot)
2541 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2542 }
2543 
2544 /*
2545  * RACK Timer, here we simply do logging and house keeping.
2546  * the normal rack_output() function will call the
2547  * appropriate thing to check if we need to do a RACK retransmit.
2548  * We return 1, saying don't proceed with rack_output only
2549  * when all timers have been stopped (destroyed PCB?).
2550  */
2551 static int
2552 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2553 {
2554 	/*
2555 	 * This timer simply provides an internal trigger to send out data.
2556 	 * The check_recovery_mode call will see if there are needed
2557 	 * retransmissions, if so we will enter fast-recovery. The output
2558 	 * call may or may not do the same thing depending on sysctl
2559 	 * settings.
2560 	 */
2561 	struct rack_sendmap *rsm;
2562 	int32_t recovery, ll;
2563 
2564 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2565 		return (1);
2566 	}
2567 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2568 		/* Its not time yet */
2569 		return (0);
2570 	}
2571 	recovery = IN_RECOVERY(tp->t_flags);
2572 	counter_u64_add(rack_to_tot, 1);
2573 	if (rack->r_state && (rack->r_state != tp->t_state))
2574 		rack_set_state(tp, rack);
2575 	rsm = rack_check_recovery_mode(tp, cts);
2576 	if (rsm)
2577 		ll = rsm->r_end - rsm->r_start;
2578 	else
2579 		ll = 0;
2580 	rack_log_to_event(rack, RACK_TO_FRM_RACK, ll);
2581 	if (rsm) {
2582 		uint32_t rtt;
2583 
2584 		rtt = rack->rc_rack_rtt;
2585 		if (rtt == 0)
2586 			rtt = 1;
2587 		if ((recovery == 0) &&
2588 		    (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
2589 			/*
2590 			 * The rack-timeout that enter's us into recovery
2591 			 * will force out one MSS and set us up so that we
2592 			 * can do one more send in 2*rtt (transitioning the
2593 			 * rack timeout into a rack-tlp).
2594 			 */
2595 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2596 			rack_log_to_prr(rack, 3);
2597 		} else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) &&
2598 			   rack->use_rack_cheat) {
2599 			/*
2600 			 * When a rack timer goes, if the rack cheat is
2601 			 * on, arrange it so we can send a full segment.
2602 			 */
2603 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2604 			rack_log_to_prr(rack, 4);
2605 		}
2606 	} else {
2607 		/* This is a case that should happen rarely if ever */
2608 		counter_u64_add(rack_tlp_does_nada, 1);
2609 #ifdef TCP_BLACKBOX
2610 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2611 #endif
2612 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2613 	}
2614 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2615 	return (0);
2616 }
2617 
2618 static __inline void
2619 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
2620 	       struct rack_sendmap *rsm, uint32_t start)
2621 {
2622 	int idx;
2623 
2624 	nrsm->r_start = start;
2625 	nrsm->r_end = rsm->r_end;
2626 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2627 	nrsm->r_flags = rsm->r_flags;
2628 	nrsm->r_dupack = rsm->r_dupack;
2629 	nrsm->r_rtr_bytes = 0;
2630 	rsm->r_end = nrsm->r_start;
2631 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2632 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2633 	}
2634 }
2635 
2636 static struct rack_sendmap *
2637 rack_merge_rsm(struct tcp_rack *rack,
2638 	       struct rack_sendmap *l_rsm,
2639 	       struct rack_sendmap *r_rsm)
2640 {
2641 	/*
2642 	 * We are merging two ack'd RSM's,
2643 	 * the l_rsm is on the left (lower seq
2644 	 * values) and the r_rsm is on the right
2645 	 * (higher seq value). The simplest way
2646 	 * to merge these is to move the right
2647 	 * one into the left. I don't think there
2648 	 * is any reason we need to try to find
2649 	 * the oldest (or last oldest retransmitted).
2650 	 */
2651 	struct rack_sendmap *rm;
2652 
2653 	l_rsm->r_end = r_rsm->r_end;
2654 	if (l_rsm->r_dupack < r_rsm->r_dupack)
2655 		l_rsm->r_dupack = r_rsm->r_dupack;
2656 	if (r_rsm->r_rtr_bytes)
2657 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
2658 	if (r_rsm->r_in_tmap) {
2659 		/* This really should not happen */
2660 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
2661 		r_rsm->r_in_tmap = 0;
2662 	}
2663 	/* Now the flags */
2664 	if (r_rsm->r_flags & RACK_HAS_FIN)
2665 		l_rsm->r_flags |= RACK_HAS_FIN;
2666 	if (r_rsm->r_flags & RACK_TLP)
2667 		l_rsm->r_flags |= RACK_TLP;
2668 	if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
2669 		l_rsm->r_flags |= RACK_RWND_COLLAPSED;
2670 	rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
2671 #ifdef INVARIANTS
2672 	if (rm != r_rsm) {
2673 		panic("removing head in rack:%p rsm:%p rm:%p",
2674 		      rack, r_rsm, rm);
2675 	}
2676 #endif
2677 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
2678 		/* Transfer the split limit to the map we free */
2679 		r_rsm->r_limit_type = l_rsm->r_limit_type;
2680 		l_rsm->r_limit_type = 0;
2681 	}
2682 	rack_free(rack, r_rsm);
2683 	return(l_rsm);
2684 }
2685 
2686 /*
2687  * TLP Timer, here we simply setup what segment we want to
2688  * have the TLP expire on, the normal rack_output() will then
2689  * send it out.
2690  *
2691  * We return 1, saying don't proceed with rack_output only
2692  * when all timers have been stopped (destroyed PCB?).
2693  */
2694 static int
2695 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2696 {
2697 	/*
2698 	 * Tail Loss Probe.
2699 	 */
2700 	struct rack_sendmap *rsm = NULL;
2701 	struct rack_sendmap *insret;
2702 	struct socket *so;
2703 	uint32_t amm, old_prr_snd = 0;
2704 	uint32_t out, avail;
2705 	int collapsed_win = 0;
2706 
2707 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2708 		return (1);
2709 	}
2710 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2711 		/* Its not time yet */
2712 		return (0);
2713 	}
2714 	if (rack_progress_timeout_check(tp)) {
2715 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2716 		return (1);
2717 	}
2718 	/*
2719 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2720 	 * need to figure out how to force a full MSS segment out.
2721 	 */
2722 	rack_log_to_event(rack, RACK_TO_FRM_TLP, 0);
2723 	counter_u64_add(rack_tlp_tot, 1);
2724 	if (rack->r_state && (rack->r_state != tp->t_state))
2725 		rack_set_state(tp, rack);
2726 	so = tp->t_inpcb->inp_socket;
2727 #ifdef KERN_TLS
2728 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
2729 		/*
2730 		 * For hardware TLS we do *not* want to send
2731 		 * new data, lets instead just do a retransmission.
2732 		 */
2733 		goto need_retran;
2734 	}
2735 #endif
2736 	avail = sbavail(&so->so_snd);
2737 	out = tp->snd_max - tp->snd_una;
2738 	rack->tlp_timer_up = 1;
2739 	if (out > tp->snd_wnd) {
2740 		/* special case, we need a retransmission */
2741 		collapsed_win = 1;
2742 		goto need_retran;
2743 	}
2744 	/*
2745 	 * If we are in recovery we can jazz out a segment if new data is
2746 	 * present simply by setting rc_prr_sndcnt to a segment.
2747 	 */
2748 	if ((avail > out) &&
2749 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2750 		/* New data is available */
2751 		amm = avail - out;
2752 		if (amm > ctf_fixed_maxseg(tp)) {
2753 			amm = ctf_fixed_maxseg(tp);
2754 		} else if ((amm < ctf_fixed_maxseg(tp)) && ((tp->t_flags & TF_NODELAY) == 0)) {
2755 			/* not enough to fill a MTU and no-delay is off */
2756 			goto need_retran;
2757 		}
2758 		if (IN_RECOVERY(tp->t_flags)) {
2759 			/* Unlikely */
2760 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2761 			if (out + amm <= tp->snd_wnd) {
2762 				rack->r_ctl.rc_prr_sndcnt = amm;
2763 				rack_log_to_prr(rack, 4);
2764 			} else
2765 				goto need_retran;
2766 		} else {
2767 			/* Set the send-new override */
2768 			if (out + amm <= tp->snd_wnd)
2769 				rack->r_ctl.rc_tlp_new_data = amm;
2770 			else
2771 				goto need_retran;
2772 		}
2773 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2774 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2775 		rack->r_ctl.rc_tlpsend = NULL;
2776 		counter_u64_add(rack_tlp_newdata, 1);
2777 		goto send;
2778 	}
2779 need_retran:
2780 	/*
2781 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2782 	 * optionally the first un-acked segment.
2783 	 */
2784 	if (collapsed_win == 0) {
2785 		if (rack_always_send_oldest)
2786 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2787 		else {
2788 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2789 			if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2790 				rsm = rack_find_high_nonack(rack, rsm);
2791 			}
2792 		}
2793 		if (rsm == NULL) {
2794 			counter_u64_add(rack_tlp_does_nada, 1);
2795 #ifdef TCP_BLACKBOX
2796 			tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2797 #endif
2798 			goto out;
2799 		}
2800 	} else {
2801 		/*
2802 		 * We must find the last segment
2803 		 * that was acceptable by the client.
2804 		 */
2805 		RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
2806 			if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
2807 				/* Found one */
2808 				break;
2809 			}
2810 		}
2811 		if (rsm == NULL) {
2812 			/* None? if so send the first */
2813 			rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2814 			if (rsm == NULL) {
2815 				counter_u64_add(rack_tlp_does_nada, 1);
2816 #ifdef TCP_BLACKBOX
2817 				tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2818 #endif
2819 				goto out;
2820 			}
2821 		}
2822 	}
2823 	if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
2824 		/*
2825 		 * We need to split this the last segment in two.
2826 		 */
2827 		struct rack_sendmap *nrsm;
2828 
2829 
2830 		nrsm = rack_alloc_full_limit(rack);
2831 		if (nrsm == NULL) {
2832 			/*
2833 			 * No memory to split, we will just exit and punt
2834 			 * off to the RXT timer.
2835 			 */
2836 			counter_u64_add(rack_tlp_does_nada, 1);
2837 			goto out;
2838 		}
2839 		rack_clone_rsm(rack, nrsm, rsm,
2840 			       (rsm->r_end - ctf_fixed_maxseg(tp)));
2841 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
2842 #ifdef INVARIANTS
2843 		if (insret != NULL) {
2844 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
2845 			      nrsm, insret, rack, rsm);
2846 		}
2847 #endif
2848 		if (rsm->r_in_tmap) {
2849 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2850 			nrsm->r_in_tmap = 1;
2851 		}
2852 		rsm->r_flags &= (~RACK_HAS_FIN);
2853 		rsm = nrsm;
2854 	}
2855 	rack->r_ctl.rc_tlpsend = rsm;
2856 	rack->r_ctl.rc_tlp_rtx_out = 1;
2857 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2858 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2859 		tp->t_rxtshift++;
2860 	} else {
2861 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2862 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2863 	}
2864 send:
2865 	rack->r_ctl.rc_tlp_send_cnt++;
2866 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2867 		/*
2868 		 * Can't [re]/transmit a segment we have not heard from the
2869 		 * peer in max times. We need the retransmit timer to take
2870 		 * over.
2871 		 */
2872 	restore:
2873 		rack->r_ctl.rc_tlpsend = NULL;
2874 		if (rsm)
2875 			rsm->r_flags &= ~RACK_TLP;
2876 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2877 		rack_log_to_prr(rack, 5);
2878 		counter_u64_add(rack_tlp_retran_fail, 1);
2879 		goto out;
2880 	} else if (rsm) {
2881 		rsm->r_flags |= RACK_TLP;
2882 	}
2883 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2884 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2885 		/*
2886 		 * We don't want to send a single segment more than the max
2887 		 * either.
2888 		 */
2889 		goto restore;
2890 	}
2891 	rack->r_timer_override = 1;
2892 	rack->r_tlp_running = 1;
2893 	rack->rc_tlp_in_progress = 1;
2894 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2895 	return (0);
2896 out:
2897 	rack->tlp_timer_up = 0;
2898 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2899 	return (0);
2900 }
2901 
2902 /*
2903  * Delayed ack Timer, here we simply need to setup the
2904  * ACK_NOW flag and remove the DELACK flag. From there
2905  * the output routine will send the ack out.
2906  *
2907  * We only return 1, saying don't proceed, if all timers
2908  * are stopped (destroyed PCB?).
2909  */
2910 static int
2911 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2912 {
2913 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2914 		return (1);
2915 	}
2916 	rack_log_to_event(rack, RACK_TO_FRM_DELACK, 0);
2917 	tp->t_flags &= ~TF_DELACK;
2918 	tp->t_flags |= TF_ACKNOW;
2919 	KMOD_TCPSTAT_INC(tcps_delack);
2920 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2921 	return (0);
2922 }
2923 
2924 /*
2925  * Persists timer, here we simply need to setup the
2926  * FORCE-DATA flag the output routine will send
2927  * the one byte send.
2928  *
2929  * We only return 1, saying don't proceed, if all timers
2930  * are stopped (destroyed PCB?).
2931  */
2932 static int
2933 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2934 {
2935 	struct tcptemp *t_template;
2936 	struct inpcb *inp;
2937 	int32_t retval = 1;
2938 
2939 	inp = tp->t_inpcb;
2940 
2941 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2942 		return (1);
2943 	}
2944 	if (rack->rc_in_persist == 0)
2945 		return (0);
2946 	if (rack_progress_timeout_check(tp)) {
2947 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2948 		return (1);
2949 	}
2950 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2951 	/*
2952 	 * Persistence timer into zero window. Force a byte to be output, if
2953 	 * possible.
2954 	 */
2955 	KMOD_TCPSTAT_INC(tcps_persisttimeo);
2956 	/*
2957 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2958 	 * window is closed.  After a full backoff, drop the connection if
2959 	 * the idle time (no responses to probes) reaches the maximum
2960 	 * backoff that we would use if retransmitting.
2961 	 */
2962 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2963 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2964 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2965 		KMOD_TCPSTAT_INC(tcps_persistdrop);
2966 		retval = 1;
2967 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2968 		goto out;
2969 	}
2970 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2971 	    tp->snd_una == tp->snd_max)
2972 		rack_exit_persist(tp, rack);
2973 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2974 	/*
2975 	 * If the user has closed the socket then drop a persisting
2976 	 * connection after a much reduced timeout.
2977 	 */
2978 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2979 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2980 		retval = 1;
2981 		KMOD_TCPSTAT_INC(tcps_persistdrop);
2982 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2983 		goto out;
2984 	}
2985 	t_template = tcpip_maketemplate(rack->rc_inp);
2986 	if (t_template) {
2987 		tcp_respond(tp, t_template->tt_ipgen,
2988 			    &t_template->tt_t, (struct mbuf *)NULL,
2989 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2990 		/* This sends an ack */
2991 		if (tp->t_flags & TF_DELACK)
2992 			tp->t_flags &= ~TF_DELACK;
2993 		free(t_template, M_TEMP);
2994 	}
2995 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2996 		tp->t_rxtshift++;
2997 out:
2998 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST, 0);
2999 	rack_start_hpts_timer(rack, tp, cts,
3000 			      0, 0, 0);
3001 	return (retval);
3002 }
3003 
3004 /*
3005  * If a keepalive goes off, we had no other timers
3006  * happening. We always return 1 here since this
3007  * routine either drops the connection or sends
3008  * out a segment with respond.
3009  */
3010 static int
3011 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3012 {
3013 	struct tcptemp *t_template;
3014 	struct inpcb *inp;
3015 
3016 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3017 		return (1);
3018 	}
3019 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
3020 	inp = tp->t_inpcb;
3021 	rack_log_to_event(rack, RACK_TO_FRM_KEEP, 0);
3022 	/*
3023 	 * Keep-alive timer went off; send something or drop connection if
3024 	 * idle for too long.
3025 	 */
3026 	KMOD_TCPSTAT_INC(tcps_keeptimeo);
3027 	if (tp->t_state < TCPS_ESTABLISHED)
3028 		goto dropit;
3029 	if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
3030 	    tp->t_state <= TCPS_CLOSING) {
3031 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
3032 			goto dropit;
3033 		/*
3034 		 * Send a packet designed to force a response if the peer is
3035 		 * up and reachable: either an ACK if the connection is
3036 		 * still alive, or an RST if the peer has closed the
3037 		 * connection due to timeout or reboot. Using sequence
3038 		 * number tp->snd_una-1 causes the transmitted zero-length
3039 		 * segment to lie outside the receive window; by the
3040 		 * protocol spec, this requires the correspondent TCP to
3041 		 * respond.
3042 		 */
3043 		KMOD_TCPSTAT_INC(tcps_keepprobe);
3044 		t_template = tcpip_maketemplate(inp);
3045 		if (t_template) {
3046 			tcp_respond(tp, t_template->tt_ipgen,
3047 			    &t_template->tt_t, (struct mbuf *)NULL,
3048 			    tp->rcv_nxt, tp->snd_una - 1, 0);
3049 			free(t_template, M_TEMP);
3050 		}
3051 	}
3052 	rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
3053 	return (1);
3054 dropit:
3055 	KMOD_TCPSTAT_INC(tcps_keepdrops);
3056 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
3057 	return (1);
3058 }
3059 
3060 /*
3061  * Retransmit helper function, clear up all the ack
3062  * flags and take care of important book keeping.
3063  */
3064 static void
3065 rack_remxt_tmr(struct tcpcb *tp)
3066 {
3067 	/*
3068 	 * The retransmit timer went off, all sack'd blocks must be
3069 	 * un-acked.
3070 	 */
3071 	struct rack_sendmap *rsm, *trsm = NULL;
3072 	struct tcp_rack *rack;
3073 	int32_t cnt = 0;
3074 
3075 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3076 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
3077 	rack_log_to_event(rack, RACK_TO_FRM_TMR, 0);
3078 	if (rack->r_state && (rack->r_state != tp->t_state))
3079 		rack_set_state(tp, rack);
3080 	/*
3081 	 * Ideally we would like to be able to
3082 	 * mark SACK-PASS on anything not acked here.
3083 	 * However, if we do that we would burst out
3084 	 * all that data 1ms apart. This would be unwise,
3085 	 * so for now we will just let the normal rxt timer
3086 	 * and tlp timer take care of it.
3087 	 */
3088 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3089 		if (rsm->r_flags & RACK_ACKED) {
3090 			cnt++;
3091 			rsm->r_dupack = 0;
3092 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3093 			if (rsm->r_in_tmap == 0) {
3094 				/* We must re-add it back to the tlist */
3095 				if (trsm == NULL) {
3096 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3097 				} else {
3098 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
3099 				}
3100 				rsm->r_in_tmap = 1;
3101 			}
3102 		}
3103 		trsm = rsm;
3104 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
3105 	}
3106 	/* Clear the count (we just un-acked them) */
3107 	rack->r_ctl.rc_sacked = 0;
3108 	/* Clear the tlp rtx mark */
3109 	rack->r_ctl.rc_tlp_rtx_out = 0;
3110 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
3111 	rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3112 	rack->r_ctl.rc_prr_sndcnt = 0;
3113 	rack_log_to_prr(rack, 6);
3114 	rack->r_timer_override = 1;
3115 }
3116 
3117 /*
3118  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
3119  * we will setup to retransmit the lowest seq number outstanding.
3120  */
3121 static int
3122 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3123 {
3124 	int32_t rexmt;
3125 	struct inpcb *inp;
3126 	int32_t retval = 0;
3127 	bool isipv6;
3128 
3129 	inp = tp->t_inpcb;
3130 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3131 		return (1);
3132 	}
3133 	if (rack_progress_timeout_check(tp)) {
3134 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
3135 		return (1);
3136 	}
3137 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
3138 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
3139 	    (tp->snd_una == tp->snd_max)) {
3140 		/* Nothing outstanding .. nothing to do */
3141 		return (0);
3142 	}
3143 	/*
3144 	 * Retransmission timer went off.  Message has not been acked within
3145 	 * retransmit interval.  Back off to a longer retransmit interval
3146 	 * and retransmit one segment.
3147 	 */
3148 	rack_remxt_tmr(tp);
3149 	if ((rack->r_ctl.rc_resend == NULL) ||
3150 	    ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
3151 		/*
3152 		 * If the rwnd collapsed on
3153 		 * the one we are retransmitting
3154 		 * it does not count against the
3155 		 * rxt count.
3156 		 */
3157 		tp->t_rxtshift++;
3158 	}
3159 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
3160 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
3161 		KMOD_TCPSTAT_INC(tcps_timeoutdrop);
3162 		retval = 1;
3163 		tcp_set_inp_to_drop(rack->rc_inp,
3164 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
3165 		goto out;
3166 	}
3167 	if (tp->t_state == TCPS_SYN_SENT) {
3168 		/*
3169 		 * If the SYN was retransmitted, indicate CWND to be limited
3170 		 * to 1 segment in cc_conn_init().
3171 		 */
3172 		tp->snd_cwnd = 1;
3173 	} else if (tp->t_rxtshift == 1) {
3174 		/*
3175 		 * first retransmit; record ssthresh and cwnd so they can be
3176 		 * recovered if this turns out to be a "bad" retransmit. A
3177 		 * retransmit is considered "bad" if an ACK for this segment
3178 		 * is received within RTT/2 interval; the assumption here is
3179 		 * that the ACK was already in flight.  See "On Estimating
3180 		 * End-to-End Network Path Properties" by Allman and Paxson
3181 		 * for more details.
3182 		 */
3183 		tp->snd_cwnd_prev = tp->snd_cwnd;
3184 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
3185 		tp->snd_recover_prev = tp->snd_recover;
3186 		if (IN_FASTRECOVERY(tp->t_flags))
3187 			tp->t_flags |= TF_WASFRECOVERY;
3188 		else
3189 			tp->t_flags &= ~TF_WASFRECOVERY;
3190 		if (IN_CONGRECOVERY(tp->t_flags))
3191 			tp->t_flags |= TF_WASCRECOVERY;
3192 		else
3193 			tp->t_flags &= ~TF_WASCRECOVERY;
3194 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
3195 		tp->t_flags |= TF_PREVVALID;
3196 	} else
3197 		tp->t_flags &= ~TF_PREVVALID;
3198 	KMOD_TCPSTAT_INC(tcps_rexmttimeo);
3199 	if ((tp->t_state == TCPS_SYN_SENT) ||
3200 	    (tp->t_state == TCPS_SYN_RECEIVED))
3201 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]);
3202 	else
3203 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
3204 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
3205 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
3206 	   MSEC_2_TICKS(rack_rto_max));
3207 	/*
3208 	 * We enter the path for PLMTUD if connection is established or, if
3209 	 * connection is FIN_WAIT_1 status, reason for the last is that if
3210 	 * amount of data we send is very small, we could send it in couple
3211 	 * of packets and process straight to FIN. In that case we won't
3212 	 * catch ESTABLISHED state.
3213 	 */
3214 #ifdef INET6
3215 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false;
3216 #else
3217 	isipv6 = false;
3218 #endif
3219 	if (((V_tcp_pmtud_blackhole_detect == 1) ||
3220 	    (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
3221 	    (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
3222 	    ((tp->t_state == TCPS_ESTABLISHED) ||
3223 	    (tp->t_state == TCPS_FIN_WAIT_1))) {
3224 
3225 		/*
3226 		 * Idea here is that at each stage of mtu probe (usually,
3227 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
3228 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
3229 		 * should take care of that.
3230 		 */
3231 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
3232 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
3233 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
3234 		    tp->t_rxtshift % 2 == 0)) {
3235 			/*
3236 			 * Enter Path MTU Black-hole Detection mechanism: -
3237 			 * Disable Path MTU Discovery (IP "DF" bit). -
3238 			 * Reduce MTU to lower value than what we negotiated
3239 			 * with peer.
3240 			 */
3241 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
3242 				/* Record that we may have found a black hole. */
3243 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
3244 				/* Keep track of previous MSS. */
3245 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
3246 			}
3247 
3248 			/*
3249 			 * Reduce the MSS to blackhole value or to the
3250 			 * default in an attempt to retransmit.
3251 			 */
3252 #ifdef INET6
3253 			if (isipv6 &&
3254 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
3255 				/* Use the sysctl tuneable blackhole MSS. */
3256 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
3257 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3258 			} else if (isipv6) {
3259 				/* Use the default MSS. */
3260 				tp->t_maxseg = V_tcp_v6mssdflt;
3261 				/*
3262 				 * Disable Path MTU Discovery when we switch
3263 				 * to minmss.
3264 				 */
3265 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3266 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3267 			}
3268 #endif
3269 #if defined(INET6) && defined(INET)
3270 			else
3271 #endif
3272 #ifdef INET
3273 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
3274 				/* Use the sysctl tuneable blackhole MSS. */
3275 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
3276 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3277 			} else {
3278 				/* Use the default MSS. */
3279 				tp->t_maxseg = V_tcp_mssdflt;
3280 				/*
3281 				 * Disable Path MTU Discovery when we switch
3282 				 * to minmss.
3283 				 */
3284 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3285 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3286 			}
3287 #endif
3288 		} else {
3289 			/*
3290 			 * If further retransmissions are still unsuccessful
3291 			 * with a lowered MTU, maybe this isn't a blackhole
3292 			 * and we restore the previous MSS and blackhole
3293 			 * detection flags. The limit '6' is determined by
3294 			 * giving each probe stage (1448, 1188, 524) 2
3295 			 * chances to recover.
3296 			 */
3297 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
3298 			    (tp->t_rxtshift >= 6)) {
3299 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
3300 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
3301 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
3302 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
3303 			}
3304 		}
3305 	}
3306 	/*
3307 	 * If we backed off this far, our srtt estimate is probably bogus.
3308 	 * Clobber it so we'll take the next rtt measurement as our srtt;
3309 	 * move the current srtt into rttvar to keep the current retransmit
3310 	 * times until then.
3311 	 */
3312 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3313 #ifdef INET6
3314 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3315 			in6_losing(tp->t_inpcb);
3316 		else
3317 #endif
3318 			in_losing(tp->t_inpcb);
3319 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3320 		tp->t_srtt = 0;
3321 	}
3322 	if (rack_use_sack_filter)
3323 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3324 	tp->snd_recover = tp->snd_max;
3325 	tp->t_flags |= TF_ACKNOW;
3326 	tp->t_rtttime = 0;
3327 	rack_cong_signal(tp, NULL, CC_RTO);
3328 out:
3329 	return (retval);
3330 }
3331 
3332 static int
3333 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3334 {
3335 	int32_t ret = 0;
3336 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3337 
3338 	if (timers == 0) {
3339 		return (0);
3340 	}
3341 	if (tp->t_state == TCPS_LISTEN) {
3342 		/* no timers on listen sockets */
3343 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3344 			return (0);
3345 		return (1);
3346 	}
3347 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3348 		uint32_t left;
3349 
3350 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3351 			ret = -1;
3352 			rack_log_to_processing(rack, cts, ret, 0);
3353 			return (0);
3354 		}
3355 		if (hpts_calling == 0) {
3356 			ret = -2;
3357 			rack_log_to_processing(rack, cts, ret, 0);
3358 			return (0);
3359 		}
3360 		/*
3361 		 * Ok our timer went off early and we are not paced false
3362 		 * alarm, go back to sleep.
3363 		 */
3364 		ret = -3;
3365 		left = rack->r_ctl.rc_timer_exp - cts;
3366 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3367 		rack_log_to_processing(rack, cts, ret, left);
3368 		rack->rc_last_pto_set = 0;
3369 		return (1);
3370 	}
3371 	rack->rc_tmr_stopped = 0;
3372 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3373 	if (timers & PACE_TMR_DELACK) {
3374 		ret = rack_timeout_delack(tp, rack, cts);
3375 	} else if (timers & PACE_TMR_RACK) {
3376 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3377 		ret = rack_timeout_rack(tp, rack, cts);
3378 	} else if (timers & PACE_TMR_TLP) {
3379 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3380 		ret = rack_timeout_tlp(tp, rack, cts);
3381 	} else if (timers & PACE_TMR_RXT) {
3382 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3383 		ret = rack_timeout_rxt(tp, rack, cts);
3384 	} else if (timers & PACE_TMR_PERSIT) {
3385 		ret = rack_timeout_persist(tp, rack, cts);
3386 	} else if (timers & PACE_TMR_KEEP) {
3387 		ret = rack_timeout_keepalive(tp, rack, cts);
3388 	}
3389 	rack_log_to_processing(rack, cts, ret, timers);
3390 	return (ret);
3391 }
3392 
3393 static void
3394 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3395 {
3396 	uint8_t hpts_removed = 0;
3397 
3398 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3399 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3400 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3401 		hpts_removed = 1;
3402 	}
3403 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3404 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3405 		if (rack->rc_inp->inp_in_hpts &&
3406 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3407 			/*
3408 			 * Canceling timer's when we have no output being
3409 			 * paced. We also must remove ourselves from the
3410 			 * hpts.
3411 			 */
3412 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3413 			hpts_removed = 1;
3414 		}
3415 		rack_log_to_cancel(rack, hpts_removed, line);
3416 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3417 	}
3418 }
3419 
3420 static void
3421 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3422 {
3423 	return;
3424 }
3425 
3426 static int
3427 rack_stopall(struct tcpcb *tp)
3428 {
3429 	struct tcp_rack *rack;
3430 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3431 	rack->t_timers_stopped = 1;
3432 	return (0);
3433 }
3434 
3435 static void
3436 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3437 {
3438 	return;
3439 }
3440 
3441 static int
3442 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3443 {
3444 	return (0);
3445 }
3446 
3447 static void
3448 rack_stop_all_timers(struct tcpcb *tp)
3449 {
3450 	struct tcp_rack *rack;
3451 
3452 	/*
3453 	 * Assure no timers are running.
3454 	 */
3455 	if (tcp_timer_active(tp, TT_PERSIST)) {
3456 		/* We enter in persists, set the flag appropriately */
3457 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3458 		rack->rc_in_persist = 1;
3459 	}
3460 	tcp_timer_suspend(tp, TT_PERSIST);
3461 	tcp_timer_suspend(tp, TT_REXMT);
3462 	tcp_timer_suspend(tp, TT_KEEP);
3463 	tcp_timer_suspend(tp, TT_DELACK);
3464 }
3465 
3466 static void
3467 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3468     struct rack_sendmap *rsm, uint32_t ts)
3469 {
3470 	int32_t idx;
3471 
3472 	rsm->r_rtr_cnt++;
3473 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3474 	rsm->r_dupack = 0;
3475 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3476 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3477 		rsm->r_flags |= RACK_OVERMAX;
3478 	}
3479 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3480 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3481 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3482 	}
3483 	idx = rsm->r_rtr_cnt - 1;
3484 	rsm->r_tim_lastsent[idx] = ts;
3485 	if (rsm->r_flags & RACK_ACKED) {
3486 		/* Problably MTU discovery messing with us */
3487 		rsm->r_flags &= ~RACK_ACKED;
3488 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3489 	}
3490 	if (rsm->r_in_tmap) {
3491 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3492 		rsm->r_in_tmap = 0;
3493 	}
3494 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3495 	rsm->r_in_tmap = 1;
3496 	if (rsm->r_flags & RACK_SACK_PASSED) {
3497 		/* We have retransmitted due to the SACK pass */
3498 		rsm->r_flags &= ~RACK_SACK_PASSED;
3499 		rsm->r_flags |= RACK_WAS_SACKPASS;
3500 	}
3501 }
3502 
3503 
3504 static uint32_t
3505 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3506     struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp)
3507 {
3508 	/*
3509 	 * We (re-)transmitted starting at rsm->r_start for some length
3510 	 * (possibly less than r_end.
3511 	 */
3512 	struct rack_sendmap *nrsm, *insret;
3513 	uint32_t c_end;
3514 	int32_t len;
3515 
3516 	len = *lenp;
3517 	c_end = rsm->r_start + len;
3518 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3519 		/*
3520 		 * We retransmitted the whole piece or more than the whole
3521 		 * slopping into the next rsm.
3522 		 */
3523 		rack_update_rsm(tp, rack, rsm, ts);
3524 		if (c_end == rsm->r_end) {
3525 			*lenp = 0;
3526 			return (0);
3527 		} else {
3528 			int32_t act_len;
3529 
3530 			/* Hangs over the end return whats left */
3531 			act_len = rsm->r_end - rsm->r_start;
3532 			*lenp = (len - act_len);
3533 			return (rsm->r_end);
3534 		}
3535 		/* We don't get out of this block. */
3536 	}
3537 	/*
3538 	 * Here we retransmitted less than the whole thing which means we
3539 	 * have to split this into what was transmitted and what was not.
3540 	 */
3541 	nrsm = rack_alloc_full_limit(rack);
3542 	if (nrsm == NULL) {
3543 		/*
3544 		 * We can't get memory, so lets not proceed.
3545 		 */
3546 		*lenp = 0;
3547 		return (0);
3548 	}
3549 	/*
3550 	 * So here we are going to take the original rsm and make it what we
3551 	 * retransmitted. nrsm will be the tail portion we did not
3552 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3553 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3554 	 * 1, 6 and the new piece will be 6, 11.
3555 	 */
3556 	rack_clone_rsm(rack, nrsm, rsm, c_end);
3557 	nrsm->r_dupack = 0;
3558 	rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
3559 	insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3560 #ifdef INVARIANTS
3561 	if (insret != NULL) {
3562 		panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3563 		      nrsm, insret, rack, rsm);
3564 	}
3565 #endif
3566 	if (rsm->r_in_tmap) {
3567 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3568 		nrsm->r_in_tmap = 1;
3569 	}
3570 	rsm->r_flags &= (~RACK_HAS_FIN);
3571 	rack_update_rsm(tp, rack, rsm, ts);
3572 	*lenp = 0;
3573 	return (0);
3574 }
3575 
3576 
3577 static void
3578 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3579     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3580     uint8_t pass, struct rack_sendmap *hintrsm)
3581 {
3582 	struct tcp_rack *rack;
3583 	struct rack_sendmap *rsm, *nrsm, *insret, fe;
3584 	register uint32_t snd_max, snd_una;
3585 
3586 	/*
3587 	 * Add to the RACK log of packets in flight or retransmitted. If
3588 	 * there is a TS option we will use the TS echoed, if not we will
3589 	 * grab a TS.
3590 	 *
3591 	 * Retransmissions will increment the count and move the ts to its
3592 	 * proper place. Note that if options do not include TS's then we
3593 	 * won't be able to effectively use the ACK for an RTT on a retran.
3594 	 *
3595 	 * Notes about r_start and r_end. Lets consider a send starting at
3596 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3597 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3598 	 * This means that r_end is actually the first sequence for the next
3599 	 * slot (11).
3600 	 *
3601 	 */
3602 	/*
3603 	 * If err is set what do we do XXXrrs? should we not add the thing?
3604 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3605 	 * i.e. proceed with add ** do this for now.
3606 	 */
3607 	INP_WLOCK_ASSERT(tp->t_inpcb);
3608 	if (err)
3609 		/*
3610 		 * We don't log errors -- we could but snd_max does not
3611 		 * advance in this case either.
3612 		 */
3613 		return;
3614 
3615 	if (th_flags & TH_RST) {
3616 		/*
3617 		 * We don't log resets and we return immediately from
3618 		 * sending
3619 		 */
3620 		return;
3621 	}
3622 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3623 	snd_una = tp->snd_una;
3624 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3625 		/* Are sending an old segment to induce an ack (keep-alive)? */
3626 		return;
3627 	}
3628 	if (SEQ_LT(seq_out, snd_una)) {
3629 		/* huh? should we panic? */
3630 		uint32_t end;
3631 
3632 		end = seq_out + len;
3633 		seq_out = snd_una;
3634 		if (SEQ_GEQ(end, seq_out))
3635 			len = end - seq_out;
3636 		else
3637 			len = 0;
3638 	}
3639 	snd_max = tp->snd_max;
3640 	if (th_flags & (TH_SYN | TH_FIN)) {
3641 		/*
3642 		 * The call to rack_log_output is made before bumping
3643 		 * snd_max. This means we can record one extra byte on a SYN
3644 		 * or FIN if seq_out is adding more on and a FIN is present
3645 		 * (and we are not resending).
3646 		 */
3647 		if (th_flags & TH_SYN)
3648 			len++;
3649 		if (th_flags & TH_FIN)
3650 			len++;
3651 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3652 			/*
3653 			 * The add/update as not been done for the FIN/SYN
3654 			 * yet.
3655 			 */
3656 			snd_max = tp->snd_nxt;
3657 		}
3658 	}
3659 	if (len == 0) {
3660 		/* We don't log zero window probes */
3661 		return;
3662 	}
3663 	rack->r_ctl.rc_time_last_sent = ts;
3664 	if (IN_RECOVERY(tp->t_flags)) {
3665 		rack->r_ctl.rc_prr_out += len;
3666 	}
3667 	/* First question is it a retransmission or new? */
3668 	if (seq_out == snd_max) {
3669 		/* Its new */
3670 again:
3671 		rsm = rack_alloc(rack);
3672 		if (rsm == NULL) {
3673 			/*
3674 			 * Hmm out of memory and the tcb got destroyed while
3675 			 * we tried to wait.
3676 			 */
3677 			return;
3678 		}
3679 		if (th_flags & TH_FIN) {
3680 			rsm->r_flags = RACK_HAS_FIN;
3681 		} else {
3682 			rsm->r_flags = 0;
3683 		}
3684 		rsm->r_tim_lastsent[0] = ts;
3685 		rsm->r_rtr_cnt = 1;
3686 		rsm->r_rtr_bytes = 0;
3687 		if (th_flags & TH_SYN) {
3688 			/* The data space is one beyond snd_una */
3689 			rsm->r_start = seq_out + 1;
3690 			rsm->r_end = rsm->r_start + (len - 1);
3691 		} else {
3692 			/* Normal case */
3693 			rsm->r_start = seq_out;
3694 			rsm->r_end = rsm->r_start + len;
3695 		}
3696 		rsm->r_dupack = 0;
3697 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3698 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
3699 #ifdef INVARIANTS
3700 		if (insret != NULL) {
3701 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3702 			      nrsm, insret, rack, rsm);
3703 		}
3704 #endif
3705 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3706 		rsm->r_in_tmap = 1;
3707 		return;
3708 	}
3709 	/*
3710 	 * If we reach here its a retransmission and we need to find it.
3711 	 */
3712 	memset(&fe, 0, sizeof(fe));
3713 more:
3714 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3715 		rsm = hintrsm;
3716 		hintrsm = NULL;
3717 	} else {
3718 		/* No hints sorry */
3719 		rsm = NULL;
3720 	}
3721 	if ((rsm) && (rsm->r_start == seq_out)) {
3722 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3723 		if (len == 0) {
3724 			return;
3725 		} else {
3726 			goto more;
3727 		}
3728 	}
3729 	/* Ok it was not the last pointer go through it the hard way. */
3730 refind:
3731 	fe.r_start = seq_out;
3732 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3733 	if (rsm) {
3734 		if (rsm->r_start == seq_out) {
3735 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3736 			if (len == 0) {
3737 				return;
3738 			} else {
3739 				goto refind;
3740 			}
3741 		}
3742 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3743 			/* Transmitted within this piece */
3744 			/*
3745 			 * Ok we must split off the front and then let the
3746 			 * update do the rest
3747 			 */
3748 			nrsm = rack_alloc_full_limit(rack);
3749 			if (nrsm == NULL) {
3750 				rack_update_rsm(tp, rack, rsm, ts);
3751 				return;
3752 			}
3753 			/*
3754 			 * copy rsm to nrsm and then trim the front of rsm
3755 			 * to not include this part.
3756 			 */
3757 			rack_clone_rsm(rack, nrsm, rsm, seq_out);
3758 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3759 #ifdef INVARIANTS
3760 			if (insret != NULL) {
3761 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3762 				      nrsm, insret, rack, rsm);
3763 			}
3764 #endif
3765 			if (rsm->r_in_tmap) {
3766 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3767 				nrsm->r_in_tmap = 1;
3768 			}
3769 			rsm->r_flags &= (~RACK_HAS_FIN);
3770 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3771 			if (len == 0) {
3772 				return;
3773 			} else if (len > 0)
3774 				goto refind;
3775 		}
3776 	}
3777 	/*
3778 	 * Hmm not found in map did they retransmit both old and on into the
3779 	 * new?
3780 	 */
3781 	if (seq_out == tp->snd_max) {
3782 		goto again;
3783 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3784 #ifdef INVARIANTS
3785 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3786 		    seq_out, len, tp->snd_una, tp->snd_max);
3787 		printf("Starting Dump of all rack entries\n");
3788 		RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3789 			printf("rsm:%p start:%u end:%u\n",
3790 			    rsm, rsm->r_start, rsm->r_end);
3791 		}
3792 		printf("Dump complete\n");
3793 		panic("seq_out not found rack:%p tp:%p",
3794 		    rack, tp);
3795 #endif
3796 	} else {
3797 #ifdef INVARIANTS
3798 		/*
3799 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3800 		 * flag)
3801 		 */
3802 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3803 		    seq_out, len, tp->snd_max, tp);
3804 #endif
3805 	}
3806 }
3807 
3808 /*
3809  * Record one of the RTT updates from an ack into
3810  * our sample structure.
3811  */
3812 static void
3813 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3814 {
3815 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3816 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3817 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3818 	}
3819 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3820 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3821 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3822 	}
3823 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3824 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3825 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3826 }
3827 
3828 /*
3829  * Collect new round-trip time estimate
3830  * and update averages and current timeout.
3831  */
3832 static void
3833 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3834 {
3835 	int32_t delta;
3836 	uint32_t o_srtt, o_var;
3837 	int32_t rtt;
3838 
3839 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3840 		/* No valid sample */
3841 		return;
3842 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3843 		/* We are to use the lowest RTT seen in a single ack */
3844 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3845 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3846 		/* We are to use the highest RTT seen in a single ack */
3847 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3848 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3849 		/* We are to use the average RTT seen in a single ack */
3850 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3851 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3852 	} else {
3853 #ifdef INVARIANTS
3854 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3855 #endif
3856 		return;
3857 	}
3858 	if (rtt == 0)
3859 		rtt = 1;
3860 	rack_log_rtt_sample(rack, rtt);
3861 	o_srtt = tp->t_srtt;
3862 	o_var = tp->t_rttvar;
3863 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3864 	if (tp->t_srtt != 0) {
3865 		/*
3866 		 * srtt is stored as fixed point with 5 bits after the
3867 		 * binary point (i.e., scaled by 8).  The following magic is
3868 		 * equivalent to the smoothing algorithm in rfc793 with an
3869 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3870 		 * Adjust rtt to origin 0.
3871 		 */
3872 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3873 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3874 
3875 		tp->t_srtt += delta;
3876 		if (tp->t_srtt <= 0)
3877 			tp->t_srtt = 1;
3878 
3879 		/*
3880 		 * We accumulate a smoothed rtt variance (actually, a
3881 		 * smoothed mean difference), then set the retransmit timer
3882 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3883 		 * is stored as fixed point with 4 bits after the binary
3884 		 * point (scaled by 16).  The following is equivalent to
3885 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3886 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3887 		 * wired-in beta.
3888 		 */
3889 		if (delta < 0)
3890 			delta = -delta;
3891 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3892 		tp->t_rttvar += delta;
3893 		if (tp->t_rttvar <= 0)
3894 			tp->t_rttvar = 1;
3895 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3896 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3897 	} else {
3898 		/*
3899 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3900 		 * variance to half the rtt (so our first retransmit happens
3901 		 * at 3*rtt).
3902 		 */
3903 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3904 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3905 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3906 	}
3907 	KMOD_TCPSTAT_INC(tcps_rttupdated);
3908 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3909 	tp->t_rttupdated++;
3910 #ifdef STATS
3911 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3912 #endif
3913 	tp->t_rxtshift = 0;
3914 
3915 	/*
3916 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3917 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3918 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3919 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3920 	 * uncertainty in the firing of the timer.  The bias will give us
3921 	 * exactly the 1.5 tick we need.  But, because the bias is
3922 	 * statistical, we have to test that we don't drop below the minimum
3923 	 * feasible timer (which is 2 ticks).
3924 	 */
3925 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3926 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3927 	tp->t_softerror = 0;
3928 }
3929 
3930 static void
3931 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3932     uint32_t t, uint32_t cts)
3933 {
3934 	/*
3935 	 * For this RSM, we acknowledged the data from a previous
3936 	 * transmission, not the last one we made. This means we did a false
3937 	 * retransmit.
3938 	 */
3939 	struct tcp_rack *rack;
3940 
3941 	if (rsm->r_flags & RACK_HAS_FIN) {
3942 		/*
3943 		 * The sending of the FIN often is multiple sent when we
3944 		 * have everything outstanding ack'd. We ignore this case
3945 		 * since its over now.
3946 		 */
3947 		return;
3948 	}
3949 	if (rsm->r_flags & RACK_TLP) {
3950 		/*
3951 		 * We expect TLP's to have this occur.
3952 		 */
3953 		return;
3954 	}
3955 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3956 	/* should we undo cc changes and exit recovery? */
3957 	if (IN_RECOVERY(tp->t_flags)) {
3958 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3959 			/*
3960 			 * Undo what we ratched down and exit recovery if
3961 			 * possible
3962 			 */
3963 			EXIT_RECOVERY(tp->t_flags);
3964 			tp->snd_recover = tp->snd_una;
3965 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3966 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3967 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3968 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3969 		}
3970 	}
3971 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3972 		/*
3973 		 * We retransmitted based on a sack and the earlier
3974 		 * retransmission ack'd it - re-ordering is occuring.
3975 		 */
3976 		counter_u64_add(rack_reorder_seen, 1);
3977 		rack->r_ctl.rc_reorder_ts = cts;
3978 	}
3979 	counter_u64_add(rack_badfr, 1);
3980 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3981 }
3982 
3983 
3984 static int
3985 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3986     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3987 {
3988 	int32_t i;
3989 	uint32_t t;
3990 
3991 	if (rsm->r_flags & RACK_ACKED)
3992 		/* Already done */
3993 		return (0);
3994 
3995 
3996 	if ((rsm->r_rtr_cnt == 1) ||
3997 	    ((ack_type == CUM_ACKED) &&
3998 	    (to->to_flags & TOF_TS) &&
3999 	    (to->to_tsecr) &&
4000 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
4001 	    ) {
4002 		/*
4003 		 * We will only find a matching timestamp if its cum-acked.
4004 		 * But if its only one retransmission its for-sure matching
4005 		 * :-)
4006 		 */
4007 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4008 		if ((int)t <= 0)
4009 			t = 1;
4010 		if (!tp->t_rttlow || tp->t_rttlow > t)
4011 			tp->t_rttlow = t;
4012 		if (!rack->r_ctl.rc_rack_min_rtt ||
4013 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4014 			rack->r_ctl.rc_rack_min_rtt = t;
4015 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
4016 				rack->r_ctl.rc_rack_min_rtt = 1;
4017 			}
4018 		}
4019 		tcp_rack_xmit_timer(rack, t + 1);
4020 		if ((rsm->r_flags & RACK_TLP) &&
4021 		    (!IN_RECOVERY(tp->t_flags))) {
4022 			/* Segment was a TLP and our retrans matched */
4023 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
4024 				rack->r_ctl.rc_rsm_start = tp->snd_max;
4025 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4026 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4027 				rack_cong_signal(tp, NULL, CC_NDUPACK);
4028 				/*
4029 				 * When we enter recovery we need to assure
4030 				 * we send one packet.
4031 				 */
4032 				rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4033 				rack_log_to_prr(rack, 7);
4034 			}
4035 		}
4036 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4037 			/* New more recent rack_tmit_time */
4038 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4039 			rack->rc_rack_rtt = t;
4040 		}
4041 		return (1);
4042 	}
4043 	/*
4044 	 * We clear the soft/rxtshift since we got an ack.
4045 	 * There is no assurance we will call the commit() function
4046 	 * so we need to clear these to avoid incorrect handling.
4047 	 */
4048 	tp->t_rxtshift = 0;
4049 	tp->t_softerror = 0;
4050 	if ((to->to_flags & TOF_TS) &&
4051 	    (ack_type == CUM_ACKED) &&
4052 	    (to->to_tsecr) &&
4053 	    ((rsm->r_flags & RACK_OVERMAX) == 0)) {
4054 		/*
4055 		 * Now which timestamp does it match? In this block the ACK
4056 		 * must be coming from a previous transmission.
4057 		 */
4058 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
4059 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
4060 				t = cts - rsm->r_tim_lastsent[i];
4061 				if ((int)t <= 0)
4062 					t = 1;
4063 				if ((i + 1) < rsm->r_rtr_cnt) {
4064 					/* Likely */
4065 					rack_earlier_retran(tp, rsm, t, cts);
4066 				}
4067 				if (!tp->t_rttlow || tp->t_rttlow > t)
4068 					tp->t_rttlow = t;
4069 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4070 					rack->r_ctl.rc_rack_min_rtt = t;
4071 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
4072 						rack->r_ctl.rc_rack_min_rtt = 1;
4073 					}
4074 				}
4075                                 /*
4076 				 * Note the following calls to
4077 				 * tcp_rack_xmit_timer() are being commented
4078 				 * out for now. They give us no more accuracy
4079 				 * and often lead to a wrong choice. We have
4080 				 * enough samples that have not been
4081 				 * retransmitted. I leave the commented out
4082 				 * code in here in case in the future we
4083 				 * decide to add it back (though I can't forsee
4084 				 * doing that). That way we will easily see
4085 				 * where they need to be placed.
4086 				 */
4087 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
4088 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4089 					/* New more recent rack_tmit_time */
4090 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4091 					rack->rc_rack_rtt = t;
4092 				}
4093 				return (1);
4094 			}
4095 		}
4096 		goto ts_not_found;
4097 	} else {
4098 		/*
4099 		 * Ok its a SACK block that we retransmitted. or a windows
4100 		 * machine without timestamps. We can tell nothing from the
4101 		 * time-stamp since its not there or the time the peer last
4102 		 * recieved a segment that moved forward its cum-ack point.
4103 		 */
4104 ts_not_found:
4105 		i = rsm->r_rtr_cnt - 1;
4106 		t = cts - rsm->r_tim_lastsent[i];
4107 		if ((int)t <= 0)
4108 			t = 1;
4109 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4110 			/*
4111 			 * We retransmitted and the ack came back in less
4112 			 * than the smallest rtt we have observed. We most
4113 			 * likey did an improper retransmit as outlined in
4114 			 * 4.2 Step 3 point 2 in the rack-draft.
4115 			 */
4116 			i = rsm->r_rtr_cnt - 2;
4117 			t = cts - rsm->r_tim_lastsent[i];
4118 			rack_earlier_retran(tp, rsm, t, cts);
4119 		} else if (rack->r_ctl.rc_rack_min_rtt) {
4120 			/*
4121 			 * We retransmitted it and the retransmit did the
4122 			 * job.
4123 			 */
4124 			if (!rack->r_ctl.rc_rack_min_rtt ||
4125 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4126 				rack->r_ctl.rc_rack_min_rtt = t;
4127 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
4128 					rack->r_ctl.rc_rack_min_rtt = 1;
4129 				}
4130 			}
4131 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
4132 				/* New more recent rack_tmit_time */
4133 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
4134 				rack->rc_rack_rtt = t;
4135 			}
4136 			return (1);
4137 		}
4138 	}
4139 	return (0);
4140 }
4141 
4142 /*
4143  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
4144  */
4145 static void
4146 rack_log_sack_passed(struct tcpcb *tp,
4147     struct tcp_rack *rack, struct rack_sendmap *rsm)
4148 {
4149 	struct rack_sendmap *nrsm;
4150 
4151 	nrsm = rsm;
4152 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
4153 	    rack_head, r_tnext) {
4154 		if (nrsm == rsm) {
4155 			/* Skip orginal segment he is acked */
4156 			continue;
4157 		}
4158 		if (nrsm->r_flags & RACK_ACKED) {
4159 			/*
4160 			 * Skip ack'd segments, though we
4161 			 * should not see these, since tmap
4162 			 * should not have ack'd segments.
4163 			 */
4164 			continue;
4165 		}
4166 		if (nrsm->r_flags & RACK_SACK_PASSED) {
4167 			/*
4168 			 * We found one that is already marked
4169 			 * passed, we have been here before and
4170 			 * so all others below this are marked.
4171 			 */
4172 			break;
4173 		}
4174 		nrsm->r_flags |= RACK_SACK_PASSED;
4175 		nrsm->r_flags &= ~RACK_WAS_SACKPASS;
4176 	}
4177 }
4178 
4179 static uint32_t
4180 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
4181 		   struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
4182 {
4183 	uint32_t start, end, changed = 0;
4184 	struct rack_sendmap stack_map;
4185 	struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
4186 	int32_t used_ref = 1;
4187 	int moved = 0;
4188 
4189 	start = sack->start;
4190 	end = sack->end;
4191 	rsm = *prsm;
4192 	memset(&fe, 0, sizeof(fe));
4193 do_rest_ofb:
4194 	if ((rsm == NULL) ||
4195 	    (SEQ_LT(end, rsm->r_start)) ||
4196 	    (SEQ_GEQ(start, rsm->r_end)) ||
4197 	    (SEQ_LT(start, rsm->r_start))) {
4198 		/*
4199 		 * We are not in the right spot,
4200 		 * find the correct spot in the tree.
4201 		 */
4202 		used_ref = 0;
4203 		fe.r_start = start;
4204 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4205 		moved++;
4206 	}
4207 	if (rsm == NULL) {
4208 		/* TSNH */
4209 		goto out;
4210 	}
4211 	/* Ok we have an ACK for some piece of this rsm */
4212 	if (rsm->r_start != start) {
4213 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4214 			/**
4215 			 * Need to split this in two pieces the before and after,
4216 			 * the before remains in the map, the after must be
4217 			 * added. In other words we have:
4218 			 * rsm        |--------------|
4219 			 * sackblk        |------->
4220 			 * rsm will become
4221 			 *     rsm    |---|
4222 			 * and nrsm will be  the sacked piece
4223 			 *     nrsm       |----------|
4224 			 *
4225 			 * But before we start down that path lets
4226 			 * see if the sack spans over on top of
4227 			 * the next guy and it is already sacked.
4228 			 */
4229 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4230 			if (next && (next->r_flags & RACK_ACKED) &&
4231 			    SEQ_GEQ(end, next->r_start)) {
4232 				/**
4233 				 * So the next one is already acked, and
4234 				 * we can thus by hookery use our stack_map
4235 				 * to reflect the piece being sacked and
4236 				 * then adjust the two tree entries moving
4237 				 * the start and ends around. So we start like:
4238 				 *  rsm     |------------|             (not-acked)
4239 				 *  next                 |-----------| (acked)
4240 				 *  sackblk        |-------->
4241 				 *  We want to end like so:
4242 				 *  rsm     |------|                   (not-acked)
4243 				 *  next           |-----------------| (acked)
4244 				 *  nrsm           |-----|
4245 				 * Where nrsm is a temporary stack piece we
4246 				 * use to update all the gizmos.
4247 				 */
4248 				/* Copy up our fudge block */
4249 				nrsm = &stack_map;
4250 				memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4251 				/* Now adjust our tree blocks */
4252 				rsm->r_end = start;
4253 				next->r_start = start;
4254 				/* Clear out the dup ack count of the remainder */
4255 				rsm->r_dupack = 0;
4256 				rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4257 				/* Now lets make sure our fudge block is right */
4258 				nrsm->r_start = start;
4259 				/* Now lets update all the stats and such */
4260 				rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4261 				changed += (nrsm->r_end - nrsm->r_start);
4262 				rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4263 				if (nrsm->r_flags & RACK_SACK_PASSED) {
4264 					counter_u64_add(rack_reorder_seen, 1);
4265 					rack->r_ctl.rc_reorder_ts = cts;
4266 				}
4267 				/*
4268 				 * Now we want to go up from rsm (the
4269 				 * one left un-acked) to the next one
4270 				 * in the tmap. We do this so when
4271 				 * we walk backwards we include marking
4272 				 * sack-passed on rsm (The one passed in
4273 				 * is skipped since it is generally called
4274 				 * on something sacked before removing it
4275 				 * from the tmap).
4276 				 */
4277 				if (rsm->r_in_tmap) {
4278 					nrsm = TAILQ_NEXT(rsm, r_tnext);
4279 					/*
4280 					 * Now that we have the next
4281 					 * one walk backwards from there.
4282 					 */
4283 					if (nrsm && nrsm->r_in_tmap)
4284 						rack_log_sack_passed(tp, rack, nrsm);
4285 				}
4286 				/* Now are we done? */
4287 				if (SEQ_LT(end, next->r_end) ||
4288 				    (end == next->r_end)) {
4289 					/* Done with block */
4290 					goto out;
4291 				}
4292 				counter_u64_add(rack_sack_used_next_merge, 1);
4293 				/* Postion for the next block */
4294 				start = next->r_end;
4295 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
4296 				if (rsm == NULL)
4297 					goto out;
4298 			} else {
4299 				/**
4300 				 * We can't use any hookery here, so we
4301 				 * need to split the map. We enter like
4302 				 * so:
4303 				 *  rsm      |--------|
4304 				 *  sackblk       |----->
4305 				 * We will add the new block nrsm and
4306 				 * that will be the new portion, and then
4307 				 * fall through after reseting rsm. So we
4308 				 * split and look like this:
4309 				 *  rsm      |----|
4310 				 *  sackblk       |----->
4311 				 *  nrsm          |---|
4312 				 * We then fall through reseting
4313 				 * rsm to nrsm, so the next block
4314 				 * picks it up.
4315 				 */
4316 				nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4317 				if (nrsm == NULL) {
4318 					/*
4319 					 * failed XXXrrs what can we do but loose the sack
4320 					 * info?
4321 					 */
4322 					goto out;
4323 				}
4324 				counter_u64_add(rack_sack_splits, 1);
4325 				rack_clone_rsm(rack, nrsm, rsm, start);
4326 				insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4327 #ifdef INVARIANTS
4328 				if (insret != NULL) {
4329 					panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4330 					      nrsm, insret, rack, rsm);
4331 				}
4332 #endif
4333 				if (rsm->r_in_tmap) {
4334 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4335 					nrsm->r_in_tmap = 1;
4336 				}
4337 				rsm->r_flags &= (~RACK_HAS_FIN);
4338 				/* Position us to point to the new nrsm that starts the sack blk */
4339 				rsm = nrsm;
4340 			}
4341 		} else {
4342 			/* Already sacked this piece */
4343 			counter_u64_add(rack_sack_skipped_acked, 1);
4344 			moved++;
4345 			if (end == rsm->r_end) {
4346 				/* Done with block */
4347 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4348 				goto out;
4349 			} else if (SEQ_LT(end, rsm->r_end)) {
4350 				/* A partial sack to a already sacked block */
4351 				moved++;
4352 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4353 				goto out;
4354 			} else {
4355 				/*
4356 				 * The end goes beyond this guy
4357 				 * repostion the start to the
4358 				 * next block.
4359 				 */
4360 				start = rsm->r_end;
4361 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4362 				if (rsm == NULL)
4363 					goto out;
4364 			}
4365 		}
4366 	}
4367 	if (SEQ_GEQ(end, rsm->r_end)) {
4368 		/**
4369 		 * The end of this block is either beyond this guy or right
4370 		 * at this guy. I.e.:
4371 		 *  rsm ---                 |-----|
4372 		 *  end                     |-----|
4373 		 *  <or>
4374 		 *  end                     |---------|
4375 		 */
4376 		if (rsm->r_flags & RACK_TLP)
4377 			rack->r_ctl.rc_tlp_rtx_out = 0;
4378 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4379 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4380 			changed += (rsm->r_end - rsm->r_start);
4381 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4382 			if (rsm->r_in_tmap) /* should be true */
4383 				rack_log_sack_passed(tp, rack, rsm);
4384 			/* Is Reordering occuring? */
4385 			if (rsm->r_flags & RACK_SACK_PASSED) {
4386 				rsm->r_flags &= ~RACK_SACK_PASSED;
4387 				counter_u64_add(rack_reorder_seen, 1);
4388 				rack->r_ctl.rc_reorder_ts = cts;
4389 			}
4390 			rsm->r_flags |= RACK_ACKED;
4391 			rsm->r_flags &= ~RACK_TLP;
4392 			if (rsm->r_in_tmap) {
4393 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4394 				rsm->r_in_tmap = 0;
4395 			}
4396 		} else {
4397 			counter_u64_add(rack_sack_skipped_acked, 1);
4398 			moved++;
4399 		}
4400 		if (end == rsm->r_end) {
4401 			/* This block only - done, setup for next  */
4402 			goto out;
4403 		}
4404 		/*
4405 		 * There is more not coverend by this rsm move on
4406 		 * to the next block in the RB tree.
4407 		 */
4408 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4409 		start = rsm->r_end;
4410 		rsm = nrsm;
4411 		if (rsm == NULL)
4412 			goto out;
4413 		goto do_rest_ofb;
4414 	}
4415 	/**
4416 	 * The end of this sack block is smaller than
4417 	 * our rsm i.e.:
4418 	 *  rsm ---                 |-----|
4419 	 *  end                     |--|
4420 	 */
4421 	if ((rsm->r_flags & RACK_ACKED) == 0) {
4422 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4423 		if (prev && (prev->r_flags & RACK_ACKED)) {
4424 			/**
4425 			 * Goal, we want the right remainder of rsm to shrink
4426 			 * in place and span from (rsm->r_start = end) to rsm->r_end.
4427 			 * We want to expand prev to go all the way
4428 			 * to prev->r_end <- end.
4429 			 * so in the tree we have before:
4430 			 *   prev     |--------|         (acked)
4431 			 *   rsm               |-------| (non-acked)
4432 			 *   sackblk           |-|
4433 			 * We churn it so we end up with
4434 			 *   prev     |----------|       (acked)
4435 			 *   rsm                 |-----| (non-acked)
4436 			 *   nrsm              |-| (temporary)
4437 			 */
4438 			nrsm = &stack_map;
4439 			memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4440 			prev->r_end = end;
4441 			rsm->r_start = end;
4442 			/* Now adjust nrsm (stack copy) to be
4443 			 * the one that is the small
4444 			 * piece that was "sacked".
4445 			 */
4446 			nrsm->r_end = end;
4447 			rsm->r_dupack = 0;
4448 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4449 			/*
4450 			 * Now nrsm is our new little piece
4451 			 * that is acked (which was merged
4452 			 * to prev). Update the rtt and changed
4453 			 * based on that. Also check for reordering.
4454 			 */
4455 			rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4456 			changed += (nrsm->r_end - nrsm->r_start);
4457 			rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4458 			if (nrsm->r_flags & RACK_SACK_PASSED) {
4459 				counter_u64_add(rack_reorder_seen, 1);
4460 				rack->r_ctl.rc_reorder_ts = cts;
4461 			}
4462 			rsm = prev;
4463 			counter_u64_add(rack_sack_used_prev_merge, 1);
4464 		} else {
4465 			/**
4466 			 * This is the case where our previous
4467 			 * block is not acked either, so we must
4468 			 * split the block in two.
4469 			 */
4470 			nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4471 			if (nrsm == NULL) {
4472 				/* failed rrs what can we do but loose the sack info? */
4473 				goto out;
4474 			}
4475 			/**
4476 			 * In this case nrsm becomes
4477 			 * nrsm->r_start = end;
4478 			 * nrsm->r_end = rsm->r_end;
4479 			 * which is un-acked.
4480 			 * <and>
4481 			 * rsm->r_end = nrsm->r_start;
4482 			 * i.e. the remaining un-acked
4483 			 * piece is left on the left
4484 			 * hand side.
4485 			 *
4486 			 * So we start like this
4487 			 * rsm      |----------| (not acked)
4488 			 * sackblk  |---|
4489 			 * build it so we have
4490 			 * rsm      |---|         (acked)
4491 			 * nrsm         |------|  (not acked)
4492 			 */
4493 			counter_u64_add(rack_sack_splits, 1);
4494 			rack_clone_rsm(rack, nrsm, rsm, end);
4495 			rsm->r_flags &= (~RACK_HAS_FIN);
4496 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4497 #ifdef INVARIANTS
4498 			if (insret != NULL) {
4499 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4500 				      nrsm, insret, rack, rsm);
4501 			}
4502 #endif
4503 			if (rsm->r_in_tmap) {
4504 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4505 				nrsm->r_in_tmap = 1;
4506 			}
4507 			nrsm->r_dupack = 0;
4508 			rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
4509 			if (rsm->r_flags & RACK_TLP)
4510 				rack->r_ctl.rc_tlp_rtx_out = 0;
4511 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4512 			changed += (rsm->r_end - rsm->r_start);
4513 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4514 			if (rsm->r_in_tmap) /* should be true */
4515 				rack_log_sack_passed(tp, rack, rsm);
4516 			/* Is Reordering occuring? */
4517 			if (rsm->r_flags & RACK_SACK_PASSED) {
4518 				rsm->r_flags &= ~RACK_SACK_PASSED;
4519 				counter_u64_add(rack_reorder_seen, 1);
4520 				rack->r_ctl.rc_reorder_ts = cts;
4521 			}
4522 			rsm->r_flags |= RACK_ACKED;
4523 			rsm->r_flags &= ~RACK_TLP;
4524 			if (rsm->r_in_tmap) {
4525 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4526 				rsm->r_in_tmap = 0;
4527 			}
4528 		}
4529 	} else if (start != end){
4530 		/*
4531 		 * The block was already acked.
4532 		 */
4533 		counter_u64_add(rack_sack_skipped_acked, 1);
4534 		moved++;
4535 	}
4536 out:
4537 	if (rsm && (rsm->r_flags & RACK_ACKED)) {
4538 		/*
4539 		 * Now can we merge where we worked
4540 		 * with either the previous or
4541 		 * next block?
4542 		 */
4543 		next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4544 		while (next) {
4545 		    if (next->r_flags & RACK_ACKED) {
4546 			/* yep this and next can be merged */
4547 			rsm = rack_merge_rsm(rack, rsm, next);
4548 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4549 		    } else
4550 			    break;
4551 		}
4552 		/* Now what about the previous? */
4553 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4554 		while (prev) {
4555 		    if (prev->r_flags & RACK_ACKED) {
4556 			/* yep the previous and this can be merged */
4557 			rsm = rack_merge_rsm(rack, prev, rsm);
4558 			prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4559 		    } else
4560 			    break;
4561 		}
4562 	}
4563 	if (used_ref == 0) {
4564 		counter_u64_add(rack_sack_proc_all, 1);
4565 	} else {
4566 		counter_u64_add(rack_sack_proc_short, 1);
4567 	}
4568 	/* Save off the next one for quick reference. */
4569 	if (rsm)
4570 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4571 	else
4572 		nrsm = NULL;
4573 	*prsm = rack->r_ctl.rc_sacklast = nrsm;
4574 	/* Pass back the moved. */
4575 	*moved_two = moved;
4576 	return (changed);
4577 }
4578 
4579 static void inline
4580 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4581 {
4582 	struct rack_sendmap *tmap;
4583 
4584 	tmap = NULL;
4585 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4586 		/* Its no longer sacked, mark it so */
4587 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4588 #ifdef INVARIANTS
4589 		if (rsm->r_in_tmap) {
4590 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4591 			      rack, rsm, rsm->r_flags);
4592 		}
4593 #endif
4594 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4595 		/* Rebuild it into our tmap */
4596 		if (tmap == NULL) {
4597 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4598 			tmap = rsm;
4599 		} else {
4600 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4601 			tmap = rsm;
4602 		}
4603 		tmap->r_in_tmap = 1;
4604 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4605 	}
4606 	/*
4607 	 * Now lets possibly clear the sack filter so we start
4608 	 * recognizing sacks that cover this area.
4609 	 */
4610 	if (rack_use_sack_filter)
4611 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4612 
4613 }
4614 
4615 static void
4616 rack_do_decay(struct tcp_rack *rack)
4617 {
4618 #ifdef NETFLIX_EXP_DETECTION
4619 	struct timeval res;
4620 
4621 #define	timersub(tvp, uvp, vvp)						\
4622 	do {								\
4623 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
4624 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
4625 		if ((vvp)->tv_usec < 0) {				\
4626 			(vvp)->tv_sec--;				\
4627 			(vvp)->tv_usec += 1000000;			\
4628 		}							\
4629 	} while (0)
4630 
4631 	timersub(&rack->r_ctl.rc_last_ack, &rack->r_ctl.rc_last_time_decay, &res);
4632 #undef timersub
4633 
4634 	rack->r_ctl.input_pkt++;
4635 	if ((rack->rc_in_persist) ||
4636 	    (res.tv_sec >= 1) ||
4637 	    (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
4638 		/*
4639 		 * Check for decay of non-SAD,
4640 		 * we want all SAD detection metrics to
4641 		 * decay 1/4 per second (or more) passed.
4642 		 */
4643 		uint32_t pkt_delta;
4644 
4645 		pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
4646 		/* Update our saved tracking values */
4647 		rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
4648 		rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
4649 		/* Now do we escape without decay? */
4650 		if (rack->rc_in_persist ||
4651 		    (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
4652 		    (pkt_delta < tcp_sad_low_pps)){
4653 			/*
4654 			 * We don't decay idle connections
4655 			 * or ones that have a low input pps.
4656 			 */
4657 			return;
4658 		}
4659 		/* Decay the counters */
4660 		rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
4661 							tcp_sad_decay_val);
4662 		rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
4663 							 tcp_sad_decay_val);
4664 		rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
4665 							       tcp_sad_decay_val);
4666 		rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
4667 								tcp_sad_decay_val);
4668 	}
4669 #endif
4670 }
4671 
4672 static void
4673 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4674 {
4675 	uint32_t changed, entered_recovery = 0;
4676 	struct tcp_rack *rack;
4677 	struct rack_sendmap *rsm, *rm;
4678 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4679 	register uint32_t th_ack;
4680 	int32_t i, j, k, num_sack_blks = 0;
4681 	uint32_t cts, acked, ack_point, sack_changed = 0;
4682 	int loop_start = 0, moved_two = 0;
4683 
4684 	INP_WLOCK_ASSERT(tp->t_inpcb);
4685 	if (th->th_flags & TH_RST) {
4686 		/* We don't log resets */
4687 		return;
4688 	}
4689 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4690 	cts = tcp_ts_getticks();
4691 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4692 	changed = 0;
4693 	th_ack = th->th_ack;
4694 	if (rack->sack_attack_disable == 0)
4695 		rack_do_decay(rack);
4696 	if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
4697 		/*
4698 		 * You only get credit for
4699 		 * MSS and greater (and you get extra
4700 		 * credit for larger cum-ack moves).
4701 		 */
4702 		int ac;
4703 
4704 		ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
4705 		rack->r_ctl.ack_count += ac;
4706 		counter_u64_add(rack_ack_total, ac);
4707 	}
4708 	if (rack->r_ctl.ack_count > 0xfff00000) {
4709 		/*
4710 		 * reduce the number to keep us under
4711 		 * a uint32_t.
4712 		 */
4713 		rack->r_ctl.ack_count /= 2;
4714 		rack->r_ctl.sack_count /= 2;
4715 	}
4716 	if (SEQ_GT(th_ack, tp->snd_una)) {
4717 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4718 		tp->t_acktime = ticks;
4719 	}
4720 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4721 		changed = th_ack - rsm->r_start;
4722 	if (changed) {
4723 		/*
4724 		 * The ACK point is advancing to th_ack, we must drop off
4725 		 * the packets in the rack log and calculate any eligble
4726 		 * RTT's.
4727 		 */
4728 		rack->r_wanted_output++;
4729 	more:
4730 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4731 		if (rsm == NULL) {
4732 			if ((th_ack - 1) == tp->iss) {
4733 				/*
4734 				 * For the SYN incoming case we will not
4735 				 * have called tcp_output for the sending of
4736 				 * the SYN, so there will be no map. All
4737 				 * other cases should probably be a panic.
4738 				 */
4739 				goto proc_sack;
4740 			}
4741 			if (tp->t_flags & TF_SENTFIN) {
4742 				/* if we send a FIN we will not hav a map */
4743 				goto proc_sack;
4744 			}
4745 #ifdef INVARIANTS
4746 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4747 			      tp,
4748 			      th, tp->t_state, rack,
4749 			      tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4750 #endif
4751 			goto proc_sack;
4752 		}
4753 		if (SEQ_LT(th_ack, rsm->r_start)) {
4754 			/* Huh map is missing this */
4755 #ifdef INVARIANTS
4756 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4757 			       rsm->r_start,
4758 			       th_ack, tp->t_state, rack->r_state);
4759 #endif
4760 			goto proc_sack;
4761 		}
4762 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4763 		/* Now do we consume the whole thing? */
4764 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4765 			/* Its all consumed. */
4766 			uint32_t left;
4767 
4768 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4769 			rsm->r_rtr_bytes = 0;
4770 			if (rsm->r_flags & RACK_TLP)
4771 				rack->r_ctl.rc_tlp_rtx_out = 0;
4772 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4773 #ifdef INVARIANTS
4774 			if (rm != rsm) {
4775 				panic("removing head in rack:%p rsm:%p rm:%p",
4776 				      rack, rsm, rm);
4777 			}
4778 #endif
4779 			if (rsm->r_in_tmap) {
4780 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4781 				rsm->r_in_tmap = 0;
4782 			}
4783 			if (rsm->r_flags & RACK_ACKED) {
4784 				/*
4785 				 * It was acked on the scoreboard -- remove
4786 				 * it from total
4787 				 */
4788 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4789 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4790 				/*
4791 				 * There are segments ACKED on the
4792 				 * scoreboard further up. We are seeing
4793 				 * reordering.
4794 				 */
4795 				rsm->r_flags &= ~RACK_SACK_PASSED;
4796 				counter_u64_add(rack_reorder_seen, 1);
4797 				rsm->r_flags |= RACK_ACKED;
4798 				rack->r_ctl.rc_reorder_ts = cts;
4799 			}
4800 			left = th_ack - rsm->r_end;
4801 			if (rsm->r_rtr_cnt > 1) {
4802 				/*
4803 				 * Technically we should make r_rtr_cnt be
4804 				 * monotonicly increasing and just mod it to
4805 				 * the timestamp it is replacing.. that way
4806 				 * we would have the last 3 retransmits. Now
4807 				 * rc_loss_count will be wrong if we
4808 				 * retransmit something more than 2 times in
4809 				 * recovery :(
4810 				 */
4811 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4812 			}
4813 			/* Free back to zone */
4814 			rack_free(rack, rsm);
4815 			if (left) {
4816 				goto more;
4817 			}
4818 			goto proc_sack;
4819 		}
4820 		if (rsm->r_flags & RACK_ACKED) {
4821 			/*
4822 			 * It was acked on the scoreboard -- remove it from
4823 			 * total for the part being cum-acked.
4824 			 */
4825 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4826 		}
4827 		/*
4828 		 * Clear the dup ack count for
4829 		 * the piece that remains.
4830 		 */
4831 		rsm->r_dupack = 0;
4832 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4833 		if (rsm->r_rtr_bytes) {
4834 			/*
4835 			 * It was retransmitted adjust the
4836 			 * sack holes for what was acked.
4837 			 */
4838 			int ack_am;
4839 
4840 			ack_am = (th_ack - rsm->r_start);
4841 			if (ack_am >= rsm->r_rtr_bytes) {
4842 				rack->r_ctl.rc_holes_rxt -= ack_am;
4843 				rsm->r_rtr_bytes -= ack_am;
4844 			}
4845 		}
4846 		/* Update where the piece starts */
4847 		rsm->r_start = th_ack;
4848 	}
4849 proc_sack:
4850 	/* Check for reneging */
4851 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4852 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4853 		/*
4854 		 * The peer has moved snd_una up to
4855 		 * the edge of this send, i.e. one
4856 		 * that it had previously acked. The only
4857 		 * way that can be true if the peer threw
4858 		 * away data (space issues) that it had
4859 		 * previously sacked (else it would have
4860 		 * given us snd_una up to (rsm->r_end).
4861 		 * We need to undo the acked markings here.
4862 		 *
4863 		 * Note we have to look to make sure th_ack is
4864 		 * our rsm->r_start in case we get an old ack
4865 		 * where th_ack is behind snd_una.
4866 		 */
4867 		rack_peer_reneges(rack, rsm, th->th_ack);
4868 	}
4869 	if ((to->to_flags & TOF_SACK) == 0) {
4870 		/* We are done nothing left */
4871 		goto out;
4872 	}
4873 	/* Sack block processing */
4874 	if (SEQ_GT(th_ack, tp->snd_una))
4875 		ack_point = th_ack;
4876 	else
4877 		ack_point = tp->snd_una;
4878 	for (i = 0; i < to->to_nsacks; i++) {
4879 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4880 		      &sack, sizeof(sack));
4881 		sack.start = ntohl(sack.start);
4882 		sack.end = ntohl(sack.end);
4883 		if (SEQ_GT(sack.end, sack.start) &&
4884 		    SEQ_GT(sack.start, ack_point) &&
4885 		    SEQ_LT(sack.start, tp->snd_max) &&
4886 		    SEQ_GT(sack.end, ack_point) &&
4887 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4888 			sack_blocks[num_sack_blks] = sack;
4889 			num_sack_blks++;
4890 #ifdef NETFLIX_STATS
4891 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4892 			   SEQ_LEQ(sack.end, th_ack)) {
4893 			/*
4894 			 * Its a D-SACK block.
4895 			 */
4896 			tcp_record_dsack(sack.start, sack.end);
4897 #endif
4898 		}
4899 
4900 	}
4901 	/*
4902 	 * Sort the SACK blocks so we can update the rack scoreboard with
4903 	 * just one pass.
4904 	 */
4905 	if (rack_use_sack_filter) {
4906 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
4907 						 num_sack_blks, th->th_ack);
4908 		ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
4909 	}
4910 	if (num_sack_blks == 0)  {
4911 		/* Nothing to sack (DSACKs?) */
4912 		goto out_with_totals;
4913 	}
4914 	if (num_sack_blks < 2) {
4915 		/* Only one, we don't need to sort */
4916 		goto do_sack_work;
4917 	}
4918 	/* Sort the sacks */
4919 	for (i = 0; i < num_sack_blks; i++) {
4920 		for (j = i + 1; j < num_sack_blks; j++) {
4921 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4922 				sack = sack_blocks[i];
4923 				sack_blocks[i] = sack_blocks[j];
4924 				sack_blocks[j] = sack;
4925 			}
4926 		}
4927 	}
4928 	/*
4929 	 * Now are any of the sack block ends the same (yes some
4930 	 * implementations send these)?
4931 	 */
4932 again:
4933 	if (num_sack_blks == 0)
4934 		goto out_with_totals;
4935 	if (num_sack_blks > 1) {
4936 		for (i = 0; i < num_sack_blks; i++) {
4937 			for (j = i + 1; j < num_sack_blks; j++) {
4938 				if (sack_blocks[i].end == sack_blocks[j].end) {
4939 					/*
4940 					 * Ok these two have the same end we
4941 					 * want the smallest end and then
4942 					 * throw away the larger and start
4943 					 * again.
4944 					 */
4945 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4946 						/*
4947 						 * The second block covers
4948 						 * more area use that
4949 						 */
4950 						sack_blocks[i].start = sack_blocks[j].start;
4951 					}
4952 					/*
4953 					 * Now collapse out the dup-sack and
4954 					 * lower the count
4955 					 */
4956 					for (k = (j + 1); k < num_sack_blks; k++) {
4957 						sack_blocks[j].start = sack_blocks[k].start;
4958 						sack_blocks[j].end = sack_blocks[k].end;
4959 						j++;
4960 					}
4961 					num_sack_blks--;
4962 					goto again;
4963 				}
4964 			}
4965 		}
4966 	}
4967 do_sack_work:
4968 	/*
4969 	 * First lets look to see if
4970 	 * we have retransmitted and
4971 	 * can use the transmit next?
4972 	 */
4973 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4974 	if (rsm &&
4975 	    SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
4976 	    SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
4977 		/*
4978 		 * We probably did the FR and the next
4979 		 * SACK in continues as we would expect.
4980 		 */
4981 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
4982 		if (acked) {
4983 			rack->r_wanted_output++;
4984 			changed += acked;
4985 			sack_changed += acked;
4986 		}
4987 		if (num_sack_blks == 1) {
4988 			/*
4989 			 * This is what we would expect from
4990 			 * a normal implementation to happen
4991 			 * after we have retransmitted the FR,
4992 			 * i.e the sack-filter pushes down
4993 			 * to 1 block and the next to be retransmitted
4994 			 * is the sequence in the sack block (has more
4995 			 * are acked). Count this as ACK'd data to boost
4996 			 * up the chances of recovering any false positives.
4997 			 */
4998 			rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
4999 			counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
5000 			counter_u64_add(rack_express_sack, 1);
5001 			if (rack->r_ctl.ack_count > 0xfff00000) {
5002 				/*
5003 				 * reduce the number to keep us under
5004 				 * a uint32_t.
5005 				 */
5006 				rack->r_ctl.ack_count /= 2;
5007 				rack->r_ctl.sack_count /= 2;
5008 			}
5009 			goto out_with_totals;
5010 		} else {
5011 			/*
5012 			 * Start the loop through the
5013 			 * rest of blocks, past the first block.
5014 			 */
5015 			moved_two = 0;
5016 			loop_start = 1;
5017 		}
5018 	}
5019 	/* Its a sack of some sort */
5020 	rack->r_ctl.sack_count++;
5021 	if (rack->r_ctl.sack_count > 0xfff00000) {
5022 		/*
5023 		 * reduce the number to keep us under
5024 		 * a uint32_t.
5025 		 */
5026 		rack->r_ctl.ack_count /= 2;
5027 		rack->r_ctl.sack_count /= 2;
5028 	}
5029 	counter_u64_add(rack_sack_total, 1);
5030 	if (rack->sack_attack_disable) {
5031 		/* An attacker disablement is in place */
5032 		if (num_sack_blks > 1) {
5033 			rack->r_ctl.sack_count += (num_sack_blks - 1);
5034 			rack->r_ctl.sack_moved_extra++;
5035 			counter_u64_add(rack_move_some, 1);
5036 			if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
5037 				rack->r_ctl.sack_moved_extra /= 2;
5038 				rack->r_ctl.sack_noextra_move /= 2;
5039 			}
5040 		}
5041 		goto out;
5042 	}
5043 	rsm = rack->r_ctl.rc_sacklast;
5044 	for (i = loop_start; i < num_sack_blks; i++) {
5045 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
5046 		if (acked) {
5047 			rack->r_wanted_output++;
5048 			changed += acked;
5049 			sack_changed += acked;
5050 		}
5051 		if (moved_two) {
5052 			/*
5053 			 * If we did not get a SACK for at least a MSS and
5054 			 * had to move at all, or if we moved more than our
5055 			 * threshold, it counts against the "extra" move.
5056 			 */
5057 			rack->r_ctl.sack_moved_extra += moved_two;
5058 			counter_u64_add(rack_move_some, 1);
5059 		} else {
5060 			/*
5061 			 * else we did not have to move
5062 			 * any more than we would expect.
5063 			 */
5064 			rack->r_ctl.sack_noextra_move++;
5065 			counter_u64_add(rack_move_none, 1);
5066 		}
5067 		if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
5068 			/*
5069 			 * If the SACK was not a full MSS then
5070 			 * we add to sack_count the number of
5071 			 * MSS's (or possibly more than
5072 			 * a MSS if its a TSO send) we had to skip by.
5073 			 */
5074 			rack->r_ctl.sack_count += moved_two;
5075 			counter_u64_add(rack_sack_total, moved_two);
5076 		}
5077 		/*
5078 		 * Now we need to setup for the next
5079 		 * round. First we make sure we won't
5080 		 * exceed the size of our uint32_t on
5081 		 * the various counts, and then clear out
5082 		 * moved_two.
5083 		 */
5084 		if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
5085 		    (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
5086 			rack->r_ctl.sack_moved_extra /= 2;
5087 			rack->r_ctl.sack_noextra_move /= 2;
5088 		}
5089 		if (rack->r_ctl.sack_count > 0xfff00000) {
5090 			rack->r_ctl.ack_count /= 2;
5091 			rack->r_ctl.sack_count /= 2;
5092 		}
5093 		moved_two = 0;
5094 	}
5095 out_with_totals:
5096 	if (num_sack_blks > 1) {
5097 		/*
5098 		 * You get an extra stroke if
5099 		 * you have more than one sack-blk, this
5100 		 * could be where we are skipping forward
5101 		 * and the sack-filter is still working, or
5102 		 * it could be an attacker constantly
5103 		 * moving us.
5104 		 */
5105 		rack->r_ctl.sack_moved_extra++;
5106 		counter_u64_add(rack_move_some, 1);
5107 	}
5108 out:
5109 #ifdef NETFLIX_EXP_DETECTION
5110 	if ((rack->do_detection || tcp_force_detection) &&
5111 	    tcp_sack_to_ack_thresh &&
5112 	    tcp_sack_to_move_thresh &&
5113 	    ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
5114 		/*
5115 		 * We have thresholds set to find
5116 		 * possible attackers and disable sack.
5117 		 * Check them.
5118 		 */
5119 		uint64_t ackratio, moveratio, movetotal;
5120 
5121 		/* Log detecting */
5122 		rack_log_sad(rack, 1);
5123 		ackratio = (uint64_t)(rack->r_ctl.sack_count);
5124 		ackratio *= (uint64_t)(1000);
5125 		if (rack->r_ctl.ack_count)
5126 			ackratio /= (uint64_t)(rack->r_ctl.ack_count);
5127 		else {
5128 			/* We really should not hit here */
5129 			ackratio = 1000;
5130 		}
5131 		if ((rack->sack_attack_disable  == 0) &&
5132 		    (ackratio > rack_highest_sack_thresh_seen))
5133 			rack_highest_sack_thresh_seen = (uint32_t)ackratio;
5134 		movetotal = rack->r_ctl.sack_moved_extra;
5135 		movetotal += rack->r_ctl.sack_noextra_move;
5136 		moveratio = rack->r_ctl.sack_moved_extra;
5137 		moveratio *= (uint64_t)1000;
5138 		if (movetotal)
5139 			moveratio /= movetotal;
5140 		else {
5141 			/* No moves, thats pretty good */
5142 			moveratio = 0;
5143 		}
5144 		if ((rack->sack_attack_disable == 0) &&
5145 		    (moveratio > rack_highest_move_thresh_seen))
5146 			rack_highest_move_thresh_seen = (uint32_t)moveratio;
5147 		if (rack->sack_attack_disable == 0) {
5148 			if ((ackratio > tcp_sack_to_ack_thresh) &&
5149 			    (moveratio > tcp_sack_to_move_thresh)) {
5150 				/* Disable sack processing */
5151 				rack->sack_attack_disable = 1;
5152 				if (rack->r_rep_attack == 0) {
5153 					rack->r_rep_attack = 1;
5154 					counter_u64_add(rack_sack_attacks_detected, 1);
5155 				}
5156 				if (tcp_attack_on_turns_on_logging) {
5157 					/*
5158 					 * Turn on logging, used for debugging
5159 					 * false positives.
5160 					 */
5161 					rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
5162 				}
5163 				/* Clamp the cwnd at flight size */
5164 				rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
5165 				rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
5166 				rack_log_sad(rack, 2);
5167 			}
5168 		} else {
5169 			/* We are sack-disabled check for false positives */
5170 			if ((ackratio <= tcp_restoral_thresh) ||
5171 			    (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
5172 				rack->sack_attack_disable  = 0;
5173 				rack_log_sad(rack, 3);
5174 				/* Restart counting */
5175 				rack->r_ctl.sack_count = 0;
5176 				rack->r_ctl.sack_moved_extra = 0;
5177 				rack->r_ctl.sack_noextra_move = 1;
5178 				rack->r_ctl.ack_count = max(1,
5179 				      (BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp)));
5180 
5181 				if (rack->r_rep_reverse == 0) {
5182 					rack->r_rep_reverse = 1;
5183 					counter_u64_add(rack_sack_attacks_reversed, 1);
5184 				}
5185 				/* Restore the cwnd */
5186 				if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
5187 					rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
5188 			}
5189 		}
5190 	}
5191 #endif
5192 	if (changed) {
5193 		/* Something changed cancel the rack timer */
5194 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5195 	}
5196 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
5197 		/*
5198 		 * Ok we have a high probability that we need to go in to
5199 		 * recovery since we have data sack'd
5200 		 */
5201 		struct rack_sendmap *rsm;
5202 		uint32_t tsused;
5203 
5204 		tsused = tcp_ts_getticks();
5205 		rsm = tcp_rack_output(tp, rack, tsused);
5206 		if (rsm) {
5207 			/* Enter recovery */
5208 			rack->r_ctl.rc_rsm_start = rsm->r_start;
5209 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
5210 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
5211 			entered_recovery = 1;
5212 			rack_cong_signal(tp, NULL, CC_NDUPACK);
5213 			/*
5214 			 * When we enter recovery we need to assure we send
5215 			 * one packet.
5216 			 */
5217 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
5218 			rack_log_to_prr(rack, 8);
5219 			rack->r_timer_override = 1;
5220 		}
5221 	}
5222 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
5223 		/* Deal with changed and PRR here (in recovery only) */
5224 		uint32_t pipe, snd_una;
5225 
5226 		rack->r_ctl.rc_prr_delivered += changed;
5227 		/* Compute prr_sndcnt */
5228 		if (SEQ_GT(tp->snd_una, th_ack)) {
5229 			snd_una = tp->snd_una;
5230 		} else {
5231 			snd_una = th_ack;
5232 		}
5233 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
5234 		if (pipe > tp->snd_ssthresh) {
5235 			long sndcnt;
5236 
5237 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
5238 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
5239 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
5240 			else {
5241 				rack->r_ctl.rc_prr_sndcnt = 0;
5242 				rack_log_to_prr(rack, 9);
5243 				sndcnt = 0;
5244 			}
5245 			sndcnt++;
5246 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
5247 				sndcnt -= rack->r_ctl.rc_prr_out;
5248 			else
5249 				sndcnt = 0;
5250 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
5251 			rack_log_to_prr(rack, 10);
5252 		} else {
5253 			uint32_t limit;
5254 
5255 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
5256 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
5257 			else
5258 				limit = 0;
5259 			if (changed > limit)
5260 				limit = changed;
5261 			limit += ctf_fixed_maxseg(tp);
5262 			if (tp->snd_ssthresh > pipe) {
5263 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
5264 				rack_log_to_prr(rack, 11);
5265 			} else {
5266 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
5267 				rack_log_to_prr(rack, 12);
5268 			}
5269 		}
5270 		if (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) {
5271 			rack->r_timer_override = 1;
5272 		}
5273 	}
5274 }
5275 
5276 static void
5277 rack_strike_dupack(struct tcp_rack *rack)
5278 {
5279 	struct rack_sendmap *rsm;
5280 
5281 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5282 	if (rsm && (rsm->r_dupack < 0xff)) {
5283 		rsm->r_dupack++;
5284 		if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
5285 			rack->r_wanted_output = 1;
5286 			rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
5287 		} else {
5288 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
5289 		}
5290 	}
5291 }
5292 
5293 /*
5294  * Return value of 1, we do not need to call rack_process_data().
5295  * return value of 0, rack_process_data can be called.
5296  * For ret_val if its 0 the TCP is locked, if its non-zero
5297  * its unlocked and probably unsafe to touch the TCB.
5298  */
5299 static int
5300 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5301     struct tcpcb *tp, struct tcpopt *to,
5302     uint32_t tiwin, int32_t tlen,
5303     int32_t * ofia, int32_t thflags, int32_t * ret_val)
5304 {
5305 	int32_t ourfinisacked = 0;
5306 	int32_t nsegs, acked_amount;
5307 	int32_t acked;
5308 	struct mbuf *mfree;
5309 	struct tcp_rack *rack;
5310 	int32_t recovery = 0;
5311 
5312 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5313 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
5314 		ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
5315 		rack->r_wanted_output++;
5316 		return (1);
5317 	}
5318 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
5319 		if (rack->rc_in_persist)
5320 			tp->t_rxtshift = 0;
5321 		if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
5322 			rack_strike_dupack(rack);
5323 		rack_log_ack(tp, to, th);
5324 	}
5325 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5326 		/*
5327 		 * Old ack, behind (or duplicate to) the last one rcv'd
5328 		 * Note: Should mark reordering is occuring! We should also
5329 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
5330 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
5331 		 * retran and> ack 3
5332 		 */
5333 		return (0);
5334 	}
5335 	/*
5336 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
5337 	 * something we sent.
5338 	 */
5339 	if (tp->t_flags & TF_NEEDSYN) {
5340 		/*
5341 		 * T/TCP: Connection was half-synchronized, and our SYN has
5342 		 * been ACK'd (so connection is now fully synchronized).  Go
5343 		 * to non-starred state, increment snd_una for ACK of SYN,
5344 		 * and check if we can do window scaling.
5345 		 */
5346 		tp->t_flags &= ~TF_NEEDSYN;
5347 		tp->snd_una++;
5348 		/* Do window scaling? */
5349 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5350 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5351 			tp->rcv_scale = tp->request_r_scale;
5352 			/* Send window already scaled. */
5353 		}
5354 	}
5355 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5356 	INP_WLOCK_ASSERT(tp->t_inpcb);
5357 
5358 	acked = BYTES_THIS_ACK(tp, th);
5359 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5360 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
5361 
5362 	/*
5363 	 * If we just performed our first retransmit, and the ACK arrives
5364 	 * within our recovery window, then it was a mistake to do the
5365 	 * retransmit in the first place.  Recover our original cwnd and
5366 	 * ssthresh, and proceed to transmit where we left off.
5367 	 */
5368 	if (tp->t_flags & TF_PREVVALID) {
5369 		tp->t_flags &= ~TF_PREVVALID;
5370 		if (tp->t_rxtshift == 1 &&
5371 		    (int)(ticks - tp->t_badrxtwin) < 0)
5372 			rack_cong_signal(tp, th, CC_RTO_ERR);
5373 	}
5374 	/*
5375 	 * If we have a timestamp reply, update smoothed round trip time. If
5376 	 * no timestamp is present but transmit timer is running and timed
5377 	 * sequence number was acked, update smoothed round trip time. Since
5378 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
5379 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
5380 	 * timer.
5381 	 *
5382 	 * Some boxes send broken timestamp replies during the SYN+ACK
5383 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5384 	 * and blow up the retransmit timer.
5385 	 */
5386 	/*
5387 	 * If all outstanding data is acked, stop retransmit timer and
5388 	 * remember to restart (more output or persist). If there is more
5389 	 * data to be acked, restart retransmit timer, using current
5390 	 * (possibly backed-off) value.
5391 	 */
5392 	if (th->th_ack == tp->snd_max) {
5393 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5394 		rack->r_wanted_output++;
5395 	}
5396 	if (acked == 0) {
5397 		if (ofia)
5398 			*ofia = ourfinisacked;
5399 		return (0);
5400 	}
5401 	if (rack->r_ctl.rc_early_recovery) {
5402 		if (IN_RECOVERY(tp->t_flags)) {
5403 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5404 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5405 				tcp_rack_partialack(tp, th);
5406 			} else {
5407 				rack_post_recovery(tp, th);
5408 				recovery = 1;
5409 			}
5410 		}
5411 	}
5412 	/*
5413 	 * Let the congestion control algorithm update congestion control
5414 	 * related information. This typically means increasing the
5415 	 * congestion window.
5416 	 */
5417 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
5418 	SOCKBUF_LOCK(&so->so_snd);
5419 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
5420 	tp->snd_wnd -= acked_amount;
5421 	mfree = sbcut_locked(&so->so_snd, acked_amount);
5422 	if ((sbused(&so->so_snd) == 0) &&
5423 	    (acked > acked_amount) &&
5424 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
5425 		ourfinisacked = 1;
5426 	}
5427 	/* NB: sowwakeup_locked() does an implicit unlock. */
5428 	sowwakeup_locked(so);
5429 	m_freem(mfree);
5430 	if (rack->r_ctl.rc_early_recovery == 0) {
5431 		if (IN_RECOVERY(tp->t_flags)) {
5432 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5433 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5434 				tcp_rack_partialack(tp, th);
5435 			} else {
5436 				rack_post_recovery(tp, th);
5437 			}
5438 		}
5439 	}
5440 	tp->snd_una = th->th_ack;
5441 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
5442 		tp->snd_recover = tp->snd_una;
5443 
5444 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
5445 		tp->snd_nxt = tp->snd_una;
5446 	}
5447 	if (tp->snd_una == tp->snd_max) {
5448 		/* Nothing left outstanding */
5449 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5450 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
5451 			tp->t_acktime = 0;
5452 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5453 		/* Set need output so persist might get set */
5454 		rack->r_wanted_output++;
5455 		if (rack_use_sack_filter)
5456 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5457 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
5458 		    (sbavail(&so->so_snd) == 0) &&
5459 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
5460 			/*
5461 			 * The socket was gone and the
5462 			 * peer sent data, time to
5463 			 * reset him.
5464 			 */
5465 			*ret_val = 1;
5466 			tp = tcp_close(tp);
5467 			ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
5468 			return (1);
5469 		}
5470 	}
5471 	if (ofia)
5472 		*ofia = ourfinisacked;
5473 	return (0);
5474 }
5475 
5476 static void
5477 rack_collapsed_window(struct tcp_rack *rack)
5478 {
5479 	/*
5480 	 * Now we must walk the
5481 	 * send map and divide the
5482 	 * ones left stranded. These
5483 	 * guys can't cause us to abort
5484 	 * the connection and are really
5485 	 * "unsent". However if a buggy
5486 	 * client actually did keep some
5487 	 * of the data i.e. collapsed the win
5488 	 * and refused to ack and then opened
5489 	 * the win and acked that data. We would
5490 	 * get into an ack war, the simplier
5491 	 * method then of just pretending we
5492 	 * did not send those segments something
5493 	 * won't work.
5494 	 */
5495 	struct rack_sendmap *rsm, *nrsm, fe, *insret;
5496 	tcp_seq max_seq;
5497 	uint32_t maxseg;
5498 
5499 	max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
5500 	maxseg = ctf_fixed_maxseg(rack->rc_tp);
5501 	memset(&fe, 0, sizeof(fe));
5502 	fe.r_start = max_seq;
5503 	/* Find the first seq past or at maxseq */
5504 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
5505 	if (rsm == NULL) {
5506 		/* Nothing to do strange */
5507 		rack->rc_has_collapsed = 0;
5508 		return;
5509 	}
5510 	/*
5511 	 * Now do we need to split at
5512 	 * the collapse point?
5513 	 */
5514 	if (SEQ_GT(max_seq, rsm->r_start)) {
5515 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
5516 		if (nrsm == NULL) {
5517 			/* We can't get a rsm, mark all? */
5518 			nrsm = rsm;
5519 			goto no_split;
5520 		}
5521 		/* Clone it */
5522 		rack_clone_rsm(rack, nrsm, rsm, max_seq);
5523 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
5524 #ifdef INVARIANTS
5525 		if (insret != NULL) {
5526 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
5527 			      nrsm, insret, rack, rsm);
5528 		}
5529 #endif
5530 		if (rsm->r_in_tmap) {
5531 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
5532 			nrsm->r_in_tmap = 1;
5533 		}
5534 		/*
5535 		 * Set in the new RSM as the
5536 		 * collapsed starting point
5537 		 */
5538 		rsm = nrsm;
5539 	}
5540 no_split:
5541 	counter_u64_add(rack_collapsed_win, 1);
5542 	RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
5543 		nrsm->r_flags |= RACK_RWND_COLLAPSED;
5544 		rack->rc_has_collapsed = 1;
5545 	}
5546 }
5547 
5548 static void
5549 rack_un_collapse_window(struct tcp_rack *rack)
5550 {
5551 	struct rack_sendmap *rsm;
5552 
5553 	RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
5554 		if (rsm->r_flags & RACK_RWND_COLLAPSED)
5555 			rsm->r_flags &= ~RACK_RWND_COLLAPSED;
5556 		else
5557 			break;
5558 	}
5559 	rack->rc_has_collapsed = 0;
5560 }
5561 
5562 /*
5563  * Return value of 1, the TCB is unlocked and most
5564  * likely gone, return value of 0, the TCP is still
5565  * locked.
5566  */
5567 static int
5568 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
5569     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
5570     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5571 {
5572 	/*
5573 	 * Update window information. Don't look at window if no ACK: TAC's
5574 	 * send garbage on first SYN.
5575 	 */
5576 	int32_t nsegs;
5577 	int32_t tfo_syn;
5578 	struct tcp_rack *rack;
5579 
5580 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5581 	INP_WLOCK_ASSERT(tp->t_inpcb);
5582 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5583 	if ((thflags & TH_ACK) &&
5584 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
5585 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
5586 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
5587 		/* keep track of pure window updates */
5588 		if (tlen == 0 &&
5589 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
5590 			KMOD_TCPSTAT_INC(tcps_rcvwinupd);
5591 		tp->snd_wnd = tiwin;
5592 		tp->snd_wl1 = th->th_seq;
5593 		tp->snd_wl2 = th->th_ack;
5594 		if (tp->snd_wnd > tp->max_sndwnd)
5595 			tp->max_sndwnd = tp->snd_wnd;
5596 		rack->r_wanted_output++;
5597 	} else if (thflags & TH_ACK) {
5598 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
5599 			tp->snd_wnd = tiwin;
5600 			tp->snd_wl1 = th->th_seq;
5601 			tp->snd_wl2 = th->th_ack;
5602 		}
5603 	}
5604 	if (tp->snd_wnd < ctf_outstanding(tp))
5605 		/* The peer collapsed the window */
5606 		rack_collapsed_window(rack);
5607 	else if (rack->rc_has_collapsed)
5608 		rack_un_collapse_window(rack);
5609 	/* Was persist timer active and now we have window space? */
5610 	if ((rack->rc_in_persist != 0) &&
5611 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
5612 				rack->r_ctl.rc_pace_min_segs))) {
5613 		rack_exit_persist(tp, rack);
5614 		tp->snd_nxt = tp->snd_max;
5615 		/* Make sure we output to start the timer */
5616 		rack->r_wanted_output++;
5617 	}
5618 	/* Do we enter persists? */
5619 	if ((rack->rc_in_persist == 0) &&
5620 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
5621 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
5622 	    (tp->snd_max == tp->snd_una) &&
5623 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
5624 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
5625 		/*
5626 		 * Here the rwnd is less than
5627 		 * the pacing size, we are established,
5628 		 * nothing is outstanding, and there is
5629 		 * data to send. Enter persists.
5630 		 */
5631 		tp->snd_nxt = tp->snd_una;
5632 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
5633 	}
5634 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
5635 		m_freem(m);
5636 		return (0);
5637 	}
5638 	/*
5639 	 * Process segments with URG.
5640 	 */
5641 	if ((thflags & TH_URG) && th->th_urp &&
5642 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5643 		/*
5644 		 * This is a kludge, but if we receive and accept random
5645 		 * urgent pointers, we'll crash in soreceive.  It's hard to
5646 		 * imagine someone actually wanting to send this much urgent
5647 		 * data.
5648 		 */
5649 		SOCKBUF_LOCK(&so->so_rcv);
5650 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
5651 			th->th_urp = 0;	/* XXX */
5652 			thflags &= ~TH_URG;	/* XXX */
5653 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
5654 			goto dodata;	/* XXX */
5655 		}
5656 		/*
5657 		 * If this segment advances the known urgent pointer, then
5658 		 * mark the data stream.  This should not happen in
5659 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
5660 		 * FIN has been received from the remote side. In these
5661 		 * states we ignore the URG.
5662 		 *
5663 		 * According to RFC961 (Assigned Protocols), the urgent
5664 		 * pointer points to the last octet of urgent data.  We
5665 		 * continue, however, to consider it to indicate the first
5666 		 * octet of data past the urgent section as the original
5667 		 * spec states (in one of two places).
5668 		 */
5669 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
5670 			tp->rcv_up = th->th_seq + th->th_urp;
5671 			so->so_oobmark = sbavail(&so->so_rcv) +
5672 			    (tp->rcv_up - tp->rcv_nxt) - 1;
5673 			if (so->so_oobmark == 0)
5674 				so->so_rcv.sb_state |= SBS_RCVATMARK;
5675 			sohasoutofband(so);
5676 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
5677 		}
5678 		SOCKBUF_UNLOCK(&so->so_rcv);
5679 		/*
5680 		 * Remove out of band data so doesn't get presented to user.
5681 		 * This can happen independent of advancing the URG pointer,
5682 		 * but if two URG's are pending at once, some out-of-band
5683 		 * data may creep in... ick.
5684 		 */
5685 		if (th->th_urp <= (uint32_t) tlen &&
5686 		    !(so->so_options & SO_OOBINLINE)) {
5687 			/* hdr drop is delayed */
5688 			tcp_pulloutofband(so, th, m, drop_hdrlen);
5689 		}
5690 	} else {
5691 		/*
5692 		 * If no out of band data is expected, pull receive urgent
5693 		 * pointer along with the receive window.
5694 		 */
5695 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
5696 			tp->rcv_up = tp->rcv_nxt;
5697 	}
5698 dodata:				/* XXX */
5699 	INP_WLOCK_ASSERT(tp->t_inpcb);
5700 
5701 	/*
5702 	 * Process the segment text, merging it into the TCP sequencing
5703 	 * queue, and arranging for acknowledgment of receipt if necessary.
5704 	 * This process logically involves adjusting tp->rcv_wnd as data is
5705 	 * presented to the user (this happens in tcp_usrreq.c, case
5706 	 * PRU_RCVD).  If a FIN has already been received on this connection
5707 	 * then we just ignore the text.
5708 	 */
5709 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
5710 		   IS_FASTOPEN(tp->t_flags));
5711 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
5712 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5713 		tcp_seq save_start = th->th_seq;
5714 		tcp_seq save_rnxt  = tp->rcv_nxt;
5715 		int     save_tlen  = tlen;
5716 
5717 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5718 		/*
5719 		 * Insert segment which includes th into TCP reassembly
5720 		 * queue with control block tp.  Set thflags to whether
5721 		 * reassembly now includes a segment with FIN.  This handles
5722 		 * the common case inline (segment is the next to be
5723 		 * received on an established connection, and the queue is
5724 		 * empty), avoiding linkage into and removal from the queue
5725 		 * and repetition of various conversions. Set DELACK for
5726 		 * segments received in order, but ack immediately when
5727 		 * segments are out of order (so fast retransmit can work).
5728 		 */
5729 		if (th->th_seq == tp->rcv_nxt &&
5730 		    SEGQ_EMPTY(tp) &&
5731 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
5732 		    tfo_syn)) {
5733 #ifdef NETFLIX_SB_LIMITS
5734 			u_int mcnt, appended;
5735 
5736 			if (so->so_rcv.sb_shlim) {
5737 				mcnt = m_memcnt(m);
5738 				appended = 0;
5739 				if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5740 				    CFO_NOSLEEP, NULL) == false) {
5741 					counter_u64_add(tcp_sb_shlim_fails, 1);
5742 					m_freem(m);
5743 					return (0);
5744 				}
5745 			}
5746 #endif
5747 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
5748 				rack_timer_cancel(tp, rack,
5749 				    rack->r_ctl.rc_rcvtime, __LINE__);
5750 				tp->t_flags |= TF_DELACK;
5751 			} else {
5752 				rack->r_wanted_output++;
5753 				tp->t_flags |= TF_ACKNOW;
5754 			}
5755 			tp->rcv_nxt += tlen;
5756 			thflags = th->th_flags & TH_FIN;
5757 			KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
5758 			KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
5759 			SOCKBUF_LOCK(&so->so_rcv);
5760 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5761 				m_freem(m);
5762 			} else
5763 #ifdef NETFLIX_SB_LIMITS
5764 				appended =
5765 #endif
5766 					sbappendstream_locked(&so->so_rcv, m, 0);
5767 			/* NB: sorwakeup_locked() does an implicit unlock. */
5768 			sorwakeup_locked(so);
5769 #ifdef NETFLIX_SB_LIMITS
5770 			if (so->so_rcv.sb_shlim && appended != mcnt)
5771 				counter_fo_release(so->so_rcv.sb_shlim,
5772 				    mcnt - appended);
5773 #endif
5774 		} else {
5775 			/*
5776 			 * XXX: Due to the header drop above "th" is
5777 			 * theoretically invalid by now.  Fortunately
5778 			 * m_adj() doesn't actually frees any mbufs when
5779 			 * trimming from the head.
5780 			 */
5781 			tcp_seq temp = save_start;
5782 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
5783 			tp->t_flags |= TF_ACKNOW;
5784 		}
5785 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
5786 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
5787 				/*
5788 				 * DSACK actually handled in the fastpath
5789 				 * above.
5790 				 */
5791 				tcp_update_sack_list(tp, save_start,
5792 				    save_start + save_tlen);
5793 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
5794 				if ((tp->rcv_numsacks >= 1) &&
5795 				    (tp->sackblks[0].end == save_start)) {
5796 					/*
5797 					 * Partial overlap, recorded at todrop
5798 					 * above.
5799 					 */
5800 					tcp_update_sack_list(tp,
5801 					    tp->sackblks[0].start,
5802 					    tp->sackblks[0].end);
5803 				} else {
5804 					tcp_update_dsack_list(tp, save_start,
5805 					    save_start + save_tlen);
5806 				}
5807 			} else if (tlen >= save_tlen) {
5808 				/* Update of sackblks. */
5809 				tcp_update_dsack_list(tp, save_start,
5810 				    save_start + save_tlen);
5811 			} else if (tlen > 0) {
5812 				tcp_update_dsack_list(tp, save_start,
5813 				    save_start + tlen);
5814 			}
5815 		}
5816 	} else {
5817 		m_freem(m);
5818 		thflags &= ~TH_FIN;
5819 	}
5820 
5821 	/*
5822 	 * If FIN is received ACK the FIN and let the user know that the
5823 	 * connection is closing.
5824 	 */
5825 	if (thflags & TH_FIN) {
5826 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5827 			socantrcvmore(so);
5828 			/*
5829 			 * If connection is half-synchronized (ie NEEDSYN
5830 			 * flag on) then delay ACK, so it may be piggybacked
5831 			 * when SYN is sent. Otherwise, since we received a
5832 			 * FIN then no more input can be expected, send ACK
5833 			 * now.
5834 			 */
5835 			if (tp->t_flags & TF_NEEDSYN) {
5836 				rack_timer_cancel(tp, rack,
5837 				    rack->r_ctl.rc_rcvtime, __LINE__);
5838 				tp->t_flags |= TF_DELACK;
5839 			} else {
5840 				tp->t_flags |= TF_ACKNOW;
5841 			}
5842 			tp->rcv_nxt++;
5843 		}
5844 		switch (tp->t_state) {
5845 
5846 			/*
5847 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
5848 			 * CLOSE_WAIT state.
5849 			 */
5850 		case TCPS_SYN_RECEIVED:
5851 			tp->t_starttime = ticks;
5852 			/* FALLTHROUGH */
5853 		case TCPS_ESTABLISHED:
5854 			rack_timer_cancel(tp, rack,
5855 			    rack->r_ctl.rc_rcvtime, __LINE__);
5856 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
5857 			break;
5858 
5859 			/*
5860 			 * If still in FIN_WAIT_1 STATE FIN has not been
5861 			 * acked so enter the CLOSING state.
5862 			 */
5863 		case TCPS_FIN_WAIT_1:
5864 			rack_timer_cancel(tp, rack,
5865 			    rack->r_ctl.rc_rcvtime, __LINE__);
5866 			tcp_state_change(tp, TCPS_CLOSING);
5867 			break;
5868 
5869 			/*
5870 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5871 			 * starting the time-wait timer, turning off the
5872 			 * other standard timers.
5873 			 */
5874 		case TCPS_FIN_WAIT_2:
5875 			rack_timer_cancel(tp, rack,
5876 			    rack->r_ctl.rc_rcvtime, __LINE__);
5877 			tcp_twstart(tp);
5878 			return (1);
5879 		}
5880 	}
5881 	/*
5882 	 * Return any desired output.
5883 	 */
5884 	if ((tp->t_flags & TF_ACKNOW) ||
5885 	    (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
5886 		rack->r_wanted_output++;
5887 	}
5888 	INP_WLOCK_ASSERT(tp->t_inpcb);
5889 	return (0);
5890 }
5891 
5892 /*
5893  * Here nothing is really faster, its just that we
5894  * have broken out the fast-data path also just like
5895  * the fast-ack.
5896  */
5897 static int
5898 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
5899     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5900     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
5901 {
5902 	int32_t nsegs;
5903 	int32_t newsize = 0;	/* automatic sockbuf scaling */
5904 	struct tcp_rack *rack;
5905 #ifdef NETFLIX_SB_LIMITS
5906 	u_int mcnt, appended;
5907 #endif
5908 #ifdef TCPDEBUG
5909 	/*
5910 	 * The size of tcp_saveipgen must be the size of the max ip header,
5911 	 * now IPv6.
5912 	 */
5913 	u_char tcp_saveipgen[IP6_HDR_LEN];
5914 	struct tcphdr tcp_savetcp;
5915 	short ostate = 0;
5916 
5917 #endif
5918 	/*
5919 	 * If last ACK falls within this segment's sequence numbers, record
5920 	 * the timestamp. NOTE that the test is modified according to the
5921 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5922 	 */
5923 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
5924 		return (0);
5925 	}
5926 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5927 		return (0);
5928 	}
5929 	if (tiwin && tiwin != tp->snd_wnd) {
5930 		return (0);
5931 	}
5932 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
5933 		return (0);
5934 	}
5935 	if (__predict_false((to->to_flags & TOF_TS) &&
5936 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
5937 		return (0);
5938 	}
5939 	if (__predict_false((th->th_ack != tp->snd_una))) {
5940 		return (0);
5941 	}
5942 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
5943 		return (0);
5944 	}
5945 	if ((to->to_flags & TOF_TS) != 0 &&
5946 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5947 		tp->ts_recent_age = tcp_ts_getticks();
5948 		tp->ts_recent = to->to_tsval;
5949 	}
5950 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5951 	/*
5952 	 * This is a pure, in-sequence data packet with nothing on the
5953 	 * reassembly queue and we have enough buffer space to take it.
5954 	 */
5955 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5956 
5957 #ifdef NETFLIX_SB_LIMITS
5958 	if (so->so_rcv.sb_shlim) {
5959 		mcnt = m_memcnt(m);
5960 		appended = 0;
5961 		if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5962 		    CFO_NOSLEEP, NULL) == false) {
5963 			counter_u64_add(tcp_sb_shlim_fails, 1);
5964 			m_freem(m);
5965 			return (1);
5966 		}
5967 	}
5968 #endif
5969 	/* Clean receiver SACK report if present */
5970 	if (tp->rcv_numsacks)
5971 		tcp_clean_sackreport(tp);
5972 	KMOD_TCPSTAT_INC(tcps_preddat);
5973 	tp->rcv_nxt += tlen;
5974 	/*
5975 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
5976 	 */
5977 	tp->snd_wl1 = th->th_seq;
5978 	/*
5979 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
5980 	 */
5981 	tp->rcv_up = tp->rcv_nxt;
5982 	KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
5983 	KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
5984 #ifdef TCPDEBUG
5985 	if (so->so_options & SO_DEBUG)
5986 		tcp_trace(TA_INPUT, ostate, tp,
5987 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
5988 #endif
5989 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
5990 
5991 	/* Add data to socket buffer. */
5992 	SOCKBUF_LOCK(&so->so_rcv);
5993 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5994 		m_freem(m);
5995 	} else {
5996 		/*
5997 		 * Set new socket buffer size. Give up when limit is
5998 		 * reached.
5999 		 */
6000 		if (newsize)
6001 			if (!sbreserve_locked(&so->so_rcv,
6002 			    newsize, so, NULL))
6003 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
6004 		m_adj(m, drop_hdrlen);	/* delayed header drop */
6005 #ifdef NETFLIX_SB_LIMITS
6006 		appended =
6007 #endif
6008 			sbappendstream_locked(&so->so_rcv, m, 0);
6009 		ctf_calc_rwin(so, tp);
6010 	}
6011 	/* NB: sorwakeup_locked() does an implicit unlock. */
6012 	sorwakeup_locked(so);
6013 #ifdef NETFLIX_SB_LIMITS
6014 	if (so->so_rcv.sb_shlim && mcnt != appended)
6015 		counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
6016 #endif
6017 	if (DELAY_ACK(tp, tlen)) {
6018 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6019 		tp->t_flags |= TF_DELACK;
6020 	} else {
6021 		tp->t_flags |= TF_ACKNOW;
6022 		rack->r_wanted_output++;
6023 	}
6024 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
6025 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6026 	return (1);
6027 }
6028 
6029 /*
6030  * This subfunction is used to try to highly optimize the
6031  * fast path. We again allow window updates that are
6032  * in sequence to remain in the fast-path. We also add
6033  * in the __predict's to attempt to help the compiler.
6034  * Note that if we return a 0, then we can *not* process
6035  * it and the caller should push the packet into the
6036  * slow-path.
6037  */
6038 static int
6039 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6040     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6041     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts, uint8_t iptos)
6042 {
6043 	int32_t acked;
6044 	int32_t nsegs;
6045 
6046 #ifdef TCPDEBUG
6047 	/*
6048 	 * The size of tcp_saveipgen must be the size of the max ip header,
6049 	 * now IPv6.
6050 	 */
6051 	u_char tcp_saveipgen[IP6_HDR_LEN];
6052 	struct tcphdr tcp_savetcp;
6053 	short ostate = 0;
6054 
6055 #endif
6056 	struct tcp_rack *rack;
6057 
6058 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
6059 		/* Old ack, behind (or duplicate to) the last one rcv'd */
6060 		return (0);
6061 	}
6062 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
6063 		/* Above what we have sent? */
6064 		return (0);
6065 	}
6066 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
6067 		/* We are retransmitting */
6068 		return (0);
6069 	}
6070 	if (__predict_false(tiwin == 0)) {
6071 		/* zero window */
6072 		return (0);
6073 	}
6074 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
6075 		/* We need a SYN or a FIN, unlikely.. */
6076 		return (0);
6077 	}
6078 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
6079 		/* Timestamp is behind .. old ack with seq wrap? */
6080 		return (0);
6081 	}
6082 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
6083 		/* Still recovering */
6084 		return (0);
6085 	}
6086 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6087 	if (rack->r_ctl.rc_sacked) {
6088 		/* We have sack holes on our scoreboard */
6089 		return (0);
6090 	}
6091 	/* Ok if we reach here, we can process a fast-ack */
6092 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
6093 	rack_log_ack(tp, to, th);
6094 	/*
6095 	 * We made progress, clear the tlp
6096 	 * out flag so we could start a TLP
6097 	 * again.
6098 	 */
6099 	rack->r_ctl.rc_tlp_rtx_out = 0;
6100 	/* Did the window get updated? */
6101 	if (tiwin != tp->snd_wnd) {
6102 		tp->snd_wnd = tiwin;
6103 		tp->snd_wl1 = th->th_seq;
6104 		if (tp->snd_wnd > tp->max_sndwnd)
6105 			tp->max_sndwnd = tp->snd_wnd;
6106 	}
6107 	/* Do we exit persists? */
6108 	if ((rack->rc_in_persist != 0) &&
6109 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
6110 			       rack->r_ctl.rc_pace_min_segs))) {
6111 		rack_exit_persist(tp, rack);
6112 	}
6113 	/* Do we enter persists? */
6114 	if ((rack->rc_in_persist == 0) &&
6115 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
6116 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
6117 	    (tp->snd_max == tp->snd_una) &&
6118 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
6119 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
6120 		/*
6121 		 * Here the rwnd is less than
6122 		 * the pacing size, we are established,
6123 		 * nothing is outstanding, and there is
6124 		 * data to send. Enter persists.
6125 		 */
6126 		tp->snd_nxt = tp->snd_una;
6127 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
6128 	}
6129 	/*
6130 	 * If last ACK falls within this segment's sequence numbers, record
6131 	 * the timestamp. NOTE that the test is modified according to the
6132 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
6133 	 */
6134 	if ((to->to_flags & TOF_TS) != 0 &&
6135 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
6136 		tp->ts_recent_age = tcp_ts_getticks();
6137 		tp->ts_recent = to->to_tsval;
6138 	}
6139 	/*
6140 	 * This is a pure ack for outstanding data.
6141 	 */
6142 	KMOD_TCPSTAT_INC(tcps_predack);
6143 
6144 	/*
6145 	 * "bad retransmit" recovery.
6146 	 */
6147 	if (tp->t_flags & TF_PREVVALID) {
6148 		tp->t_flags &= ~TF_PREVVALID;
6149 		if (tp->t_rxtshift == 1 &&
6150 		    (int)(ticks - tp->t_badrxtwin) < 0)
6151 			rack_cong_signal(tp, th, CC_RTO_ERR);
6152 	}
6153 	/*
6154 	 * Recalculate the transmit timer / rtt.
6155 	 *
6156 	 * Some boxes send broken timestamp replies during the SYN+ACK
6157 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
6158 	 * and blow up the retransmit timer.
6159 	 */
6160 	acked = BYTES_THIS_ACK(tp, th);
6161 
6162 #ifdef TCP_HHOOK
6163 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
6164 	hhook_run_tcp_est_in(tp, th, to);
6165 #endif
6166 
6167 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
6168 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
6169 	sbdrop(&so->so_snd, acked);
6170 	/*
6171 	 * Let the congestion control algorithm update congestion control
6172 	 * related information. This typically means increasing the
6173 	 * congestion window.
6174 	 */
6175 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
6176 
6177 	tp->snd_una = th->th_ack;
6178 	if (tp->snd_wnd < ctf_outstanding(tp)) {
6179 		/* The peer collapsed the window */
6180 		rack_collapsed_window(rack);
6181 	} else if (rack->rc_has_collapsed)
6182 		rack_un_collapse_window(rack);
6183 
6184 	/*
6185 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
6186 	 */
6187 	tp->snd_wl2 = th->th_ack;
6188 	tp->t_dupacks = 0;
6189 	m_freem(m);
6190 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
6191 
6192 	/*
6193 	 * If all outstanding data are acked, stop retransmit timer,
6194 	 * otherwise restart timer using current (possibly backed-off)
6195 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
6196 	 * If data are ready to send, let tcp_output decide between more
6197 	 * output or persist.
6198 	 */
6199 #ifdef TCPDEBUG
6200 	if (so->so_options & SO_DEBUG)
6201 		tcp_trace(TA_INPUT, ostate, tp,
6202 		    (void *)tcp_saveipgen,
6203 		    &tcp_savetcp, 0);
6204 #endif
6205 	if (tp->snd_una == tp->snd_max) {
6206 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
6207 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
6208 			tp->t_acktime = 0;
6209 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6210 	}
6211 	/* Wake up the socket if we have room to write more */
6212 	sowwakeup(so);
6213 	if (sbavail(&so->so_snd)) {
6214 		rack->r_wanted_output++;
6215 	}
6216 	return (1);
6217 }
6218 
6219 /*
6220  * Return value of 1, the TCB is unlocked and most
6221  * likely gone, return value of 0, the TCP is still
6222  * locked.
6223  */
6224 static int
6225 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
6226     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6227     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t tos)
6228 {
6229 	int32_t ret_val = 0;
6230 	int32_t todrop;
6231 	int32_t ourfinisacked = 0;
6232 	struct tcp_rack *rack;
6233 
6234 	ctf_calc_rwin(so, tp);
6235 	/*
6236 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
6237 	 * SYN, drop the input. if seg contains a RST, then drop the
6238 	 * connection. if seg does not contain SYN, then drop it. Otherwise
6239 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
6240 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
6241 	 * contains an ECE and ECN support is enabled, the stream is ECN
6242 	 * capable. if SYN has been acked change to ESTABLISHED else
6243 	 * SYN_RCVD state arrange for segment to be acked (eventually)
6244 	 * continue processing rest of data/controls, beginning with URG
6245 	 */
6246 	if ((thflags & TH_ACK) &&
6247 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
6248 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6249 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6250 		return (1);
6251 	}
6252 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
6253 		TCP_PROBE5(connect__refused, NULL, tp,
6254 		    mtod(m, const char *), tp, th);
6255 		tp = tcp_drop(tp, ECONNREFUSED);
6256 		ctf_do_drop(m, tp);
6257 		return (1);
6258 	}
6259 	if (thflags & TH_RST) {
6260 		ctf_do_drop(m, tp);
6261 		return (1);
6262 	}
6263 	if (!(thflags & TH_SYN)) {
6264 		ctf_do_drop(m, tp);
6265 		return (1);
6266 	}
6267 	tp->irs = th->th_seq;
6268 	tcp_rcvseqinit(tp);
6269 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6270 	if (thflags & TH_ACK) {
6271 		int tfo_partial = 0;
6272 
6273 		KMOD_TCPSTAT_INC(tcps_connects);
6274 		soisconnected(so);
6275 #ifdef MAC
6276 		mac_socketpeer_set_from_mbuf(m, so);
6277 #endif
6278 		/* Do window scaling on this connection? */
6279 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6280 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6281 			tp->rcv_scale = tp->request_r_scale;
6282 		}
6283 		tp->rcv_adv += min(tp->rcv_wnd,
6284 		    TCP_MAXWIN << tp->rcv_scale);
6285 		/*
6286 		 * If not all the data that was sent in the TFO SYN
6287 		 * has been acked, resend the remainder right away.
6288 		 */
6289 		if (IS_FASTOPEN(tp->t_flags) &&
6290 		    (tp->snd_una != tp->snd_max)) {
6291 			tp->snd_nxt = th->th_ack;
6292 			tfo_partial = 1;
6293 		}
6294 		/*
6295 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
6296 		 * will be turned on later.
6297 		 */
6298 		if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
6299 			rack_timer_cancel(tp, rack,
6300 					  rack->r_ctl.rc_rcvtime, __LINE__);
6301 			tp->t_flags |= TF_DELACK;
6302 		} else {
6303 			rack->r_wanted_output++;
6304 			tp->t_flags |= TF_ACKNOW;
6305 		}
6306 
6307 		if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
6308 		    (V_tcp_do_ecn == 1)) {
6309 			tp->t_flags2 |= TF2_ECN_PERMIT;
6310 			KMOD_TCPSTAT_INC(tcps_ecn_shs);
6311 		}
6312 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
6313 			/*
6314 			 * We advance snd_una for the
6315 			 * fast open case. If th_ack is
6316 			 * acknowledging data beyond
6317 			 * snd_una we can't just call
6318 			 * ack-processing since the
6319 			 * data stream in our send-map
6320 			 * will start at snd_una + 1 (one
6321 			 * beyond the SYN). If its just
6322 			 * equal we don't need to do that
6323 			 * and there is no send_map.
6324 			 */
6325 			tp->snd_una++;
6326 		}
6327 		/*
6328 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
6329 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
6330 		 */
6331 		tp->t_starttime = ticks;
6332 		if (tp->t_flags & TF_NEEDFIN) {
6333 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
6334 			tp->t_flags &= ~TF_NEEDFIN;
6335 			thflags &= ~TH_SYN;
6336 		} else {
6337 			tcp_state_change(tp, TCPS_ESTABLISHED);
6338 			TCP_PROBE5(connect__established, NULL, tp,
6339 			    mtod(m, const char *), tp, th);
6340 			cc_conn_init(tp);
6341 		}
6342 	} else {
6343 		/*
6344 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
6345 		 * open.  If segment contains CC option and there is a
6346 		 * cached CC, apply TAO test. If it succeeds, connection is *
6347 		 * half-synchronized. Otherwise, do 3-way handshake:
6348 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
6349 		 * there was no CC option, clear cached CC value.
6350 		 */
6351 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
6352 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
6353 	}
6354 	INP_WLOCK_ASSERT(tp->t_inpcb);
6355 	/*
6356 	 * Advance th->th_seq to correspond to first data byte. If data,
6357 	 * trim to stay within window, dropping FIN if necessary.
6358 	 */
6359 	th->th_seq++;
6360 	if (tlen > tp->rcv_wnd) {
6361 		todrop = tlen - tp->rcv_wnd;
6362 		m_adj(m, -todrop);
6363 		tlen = tp->rcv_wnd;
6364 		thflags &= ~TH_FIN;
6365 		KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
6366 		KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
6367 	}
6368 	tp->snd_wl1 = th->th_seq - 1;
6369 	tp->rcv_up = th->th_seq;
6370 	/*
6371 	 * Client side of transaction: already sent SYN and data. If the
6372 	 * remote host used T/TCP to validate the SYN, our data will be
6373 	 * ACK'd; if so, enter normal data segment processing in the middle
6374 	 * of step 5, ack processing. Otherwise, goto step 6.
6375 	 */
6376 	if (thflags & TH_ACK) {
6377 		/* For syn-sent we need to possibly update the rtt */
6378 		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6379 			uint32_t t;
6380 
6381 			t = tcp_ts_getticks() - to->to_tsecr;
6382 			if (!tp->t_rttlow || tp->t_rttlow > t)
6383 				tp->t_rttlow = t;
6384 			tcp_rack_xmit_timer(rack, t + 1);
6385 			tcp_rack_xmit_timer_commit(rack, tp);
6386 		}
6387 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
6388 			return (ret_val);
6389 		/* We may have changed to FIN_WAIT_1 above */
6390 		if (tp->t_state == TCPS_FIN_WAIT_1) {
6391 			/*
6392 			 * In FIN_WAIT_1 STATE in addition to the processing
6393 			 * for the ESTABLISHED state if our FIN is now
6394 			 * acknowledged then enter FIN_WAIT_2.
6395 			 */
6396 			if (ourfinisacked) {
6397 				/*
6398 				 * If we can't receive any more data, then
6399 				 * closing user can proceed. Starting the
6400 				 * timer is contrary to the specification,
6401 				 * but if we don't get a FIN we'll hang
6402 				 * forever.
6403 				 *
6404 				 * XXXjl: we should release the tp also, and
6405 				 * use a compressed state.
6406 				 */
6407 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6408 					soisdisconnected(so);
6409 					tcp_timer_activate(tp, TT_2MSL,
6410 					    (tcp_fast_finwait2_recycle ?
6411 					    tcp_finwait2_timeout :
6412 					    TP_MAXIDLE(tp)));
6413 				}
6414 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
6415 			}
6416 		}
6417 	}
6418 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6419 	   tiwin, thflags, nxt_pkt));
6420 }
6421 
6422 /*
6423  * Return value of 1, the TCB is unlocked and most
6424  * likely gone, return value of 0, the TCP is still
6425  * locked.
6426  */
6427 static int
6428 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
6429     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6430     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6431 {
6432 	struct tcp_rack *rack;
6433 	int32_t ret_val = 0;
6434 	int32_t ourfinisacked = 0;
6435 
6436 	ctf_calc_rwin(so, tp);
6437 	if ((thflags & TH_ACK) &&
6438 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
6439 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6440 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6441 		return (1);
6442 	}
6443 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6444 	if (IS_FASTOPEN(tp->t_flags)) {
6445 		/*
6446 		 * When a TFO connection is in SYN_RECEIVED, the
6447 		 * only valid packets are the initial SYN, a
6448 		 * retransmit/copy of the initial SYN (possibly with
6449 		 * a subset of the original data), a valid ACK, a
6450 		 * FIN, or a RST.
6451 		 */
6452 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
6453 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6454 			return (1);
6455 		} else if (thflags & TH_SYN) {
6456 			/* non-initial SYN is ignored */
6457 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
6458 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
6459 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
6460 				ctf_do_drop(m, NULL);
6461 				return (0);
6462 			}
6463 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
6464 			ctf_do_drop(m, NULL);
6465 			return (0);
6466 		}
6467 	}
6468 	if ((thflags & TH_RST) ||
6469 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6470 		return (ctf_process_rst(m, th, so, tp));
6471 	/*
6472 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6473 	 * it's less than ts_recent, drop it.
6474 	 */
6475 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6476 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6477 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6478 			return (ret_val);
6479 	}
6480 	/*
6481 	 * In the SYN-RECEIVED state, validate that the packet belongs to
6482 	 * this connection before trimming the data to fit the receive
6483 	 * window.  Check the sequence number versus IRS since we know the
6484 	 * sequence numbers haven't wrapped.  This is a partial fix for the
6485 	 * "LAND" DoS attack.
6486 	 */
6487 	if (SEQ_LT(th->th_seq, tp->irs)) {
6488 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6489 		return (1);
6490 	}
6491 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6492 		return (ret_val);
6493 	}
6494 	/*
6495 	 * If last ACK falls within this segment's sequence numbers, record
6496 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6497 	 * from the latest proposal of the tcplw@cray.com list (Braden
6498 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6499 	 * with our earlier PAWS tests, so this check should be solely
6500 	 * predicated on the sequence space of this segment. 3) That we
6501 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6502 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6503 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6504 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6505 	 * p.869. In such cases, we can still calculate the RTT correctly
6506 	 * when RCV.NXT == Last.ACK.Sent.
6507 	 */
6508 	if ((to->to_flags & TOF_TS) != 0 &&
6509 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6510 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6511 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6512 		tp->ts_recent_age = tcp_ts_getticks();
6513 		tp->ts_recent = to->to_tsval;
6514 	}
6515 	tp->snd_wnd = tiwin;
6516 	/*
6517 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6518 	 * is on (half-synchronized state), then queue data for later
6519 	 * processing; else drop segment and return.
6520 	 */
6521 	if ((thflags & TH_ACK) == 0) {
6522 		if (IS_FASTOPEN(tp->t_flags)) {
6523 			cc_conn_init(tp);
6524 		}
6525 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6526 		    tiwin, thflags, nxt_pkt));
6527 	}
6528 	KMOD_TCPSTAT_INC(tcps_connects);
6529 	soisconnected(so);
6530 	/* Do window scaling? */
6531 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6532 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6533 		tp->rcv_scale = tp->request_r_scale;
6534 	}
6535 	/*
6536 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
6537 	 * FIN-WAIT-1
6538 	 */
6539 	tp->t_starttime = ticks;
6540 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
6541 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
6542 		tp->t_tfo_pending = NULL;
6543 
6544 		/*
6545 		 * Account for the ACK of our SYN prior to
6546 		 * regular ACK processing below.
6547 		 */
6548 		tp->snd_una++;
6549 	}
6550 	if (tp->t_flags & TF_NEEDFIN) {
6551 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
6552 		tp->t_flags &= ~TF_NEEDFIN;
6553 	} else {
6554 		tcp_state_change(tp, TCPS_ESTABLISHED);
6555 		TCP_PROBE5(accept__established, NULL, tp,
6556 		    mtod(m, const char *), tp, th);
6557 		/*
6558 		 * TFO connections call cc_conn_init() during SYN
6559 		 * processing.  Calling it again here for such connections
6560 		 * is not harmless as it would undo the snd_cwnd reduction
6561 		 * that occurs when a TFO SYN|ACK is retransmitted.
6562 		 */
6563 		if (!IS_FASTOPEN(tp->t_flags))
6564 			cc_conn_init(tp);
6565 	}
6566 	/*
6567 	 * If segment contains data or ACK, will call tcp_reass() later; if
6568 	 * not, do so now to pass queued data to user.
6569 	 */
6570 	if (tlen == 0 && (thflags & TH_FIN) == 0)
6571 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
6572 		    (struct mbuf *)0);
6573 	tp->snd_wl1 = th->th_seq - 1;
6574 	/* For syn-recv we need to possibly update the rtt */
6575 	if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6576 		uint32_t t;
6577 
6578 		t = tcp_ts_getticks() - to->to_tsecr;
6579 		if (!tp->t_rttlow || tp->t_rttlow > t)
6580 			tp->t_rttlow = t;
6581 		tcp_rack_xmit_timer(rack, t + 1);
6582 		tcp_rack_xmit_timer_commit(rack, tp);
6583 	}
6584 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6585 		return (ret_val);
6586 	}
6587 	if (tp->t_state == TCPS_FIN_WAIT_1) {
6588 		/* We could have went to FIN_WAIT_1 (or EST) above */
6589 		/*
6590 		 * In FIN_WAIT_1 STATE in addition to the processing for the
6591 		 * ESTABLISHED state if our FIN is now acknowledged then
6592 		 * enter FIN_WAIT_2.
6593 		 */
6594 		if (ourfinisacked) {
6595 			/*
6596 			 * If we can't receive any more data, then closing
6597 			 * user can proceed. Starting the timer is contrary
6598 			 * to the specification, but if we don't get a FIN
6599 			 * we'll hang forever.
6600 			 *
6601 			 * XXXjl: we should release the tp also, and use a
6602 			 * compressed state.
6603 			 */
6604 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6605 				soisdisconnected(so);
6606 				tcp_timer_activate(tp, TT_2MSL,
6607 				    (tcp_fast_finwait2_recycle ?
6608 				    tcp_finwait2_timeout :
6609 				    TP_MAXIDLE(tp)));
6610 			}
6611 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
6612 		}
6613 	}
6614 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6615 	    tiwin, thflags, nxt_pkt));
6616 }
6617 
6618 /*
6619  * Return value of 1, the TCB is unlocked and most
6620  * likely gone, return value of 0, the TCP is still
6621  * locked.
6622  */
6623 static int
6624 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
6625     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6626     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6627 {
6628 	int32_t ret_val = 0;
6629 
6630 	/*
6631 	 * Header prediction: check for the two common cases of a
6632 	 * uni-directional data xfer.  If the packet has no control flags,
6633 	 * is in-sequence, the window didn't change and we're not
6634 	 * retransmitting, it's a candidate.  If the length is zero and the
6635 	 * ack moved forward, we're the sender side of the xfer.  Just free
6636 	 * the data acked & wake any higher level process that was blocked
6637 	 * waiting for space.  If the length is non-zero and the ack didn't
6638 	 * move, we're the receiver side.  If we're getting packets in-order
6639 	 * (the reassembly queue is empty), add the data toc The socket
6640 	 * buffer and note that we need a delayed ack. Make sure that the
6641 	 * hidden state-flags are also off. Since we check for
6642 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
6643 	 */
6644 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
6645 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
6646 	    __predict_true(SEGQ_EMPTY(tp)) &&
6647 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
6648 		struct tcp_rack *rack;
6649 
6650 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6651 		if (tlen == 0) {
6652 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
6653 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime, iptos)) {
6654 				return (0);
6655 			}
6656 		} else {
6657 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
6658 			    tiwin, nxt_pkt, iptos)) {
6659 				return (0);
6660 			}
6661 		}
6662 	}
6663 	ctf_calc_rwin(so, tp);
6664 
6665 	if ((thflags & TH_RST) ||
6666 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6667 		return (ctf_process_rst(m, th, so, tp));
6668 
6669 	/*
6670 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6671 	 * synchronized state.
6672 	 */
6673 	if (thflags & TH_SYN) {
6674 		ctf_challenge_ack(m, th, tp, &ret_val);
6675 		return (ret_val);
6676 	}
6677 	/*
6678 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6679 	 * it's less than ts_recent, drop it.
6680 	 */
6681 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6682 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6683 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6684 			return (ret_val);
6685 	}
6686 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6687 		return (ret_val);
6688 	}
6689 	/*
6690 	 * If last ACK falls within this segment's sequence numbers, record
6691 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6692 	 * from the latest proposal of the tcplw@cray.com list (Braden
6693 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6694 	 * with our earlier PAWS tests, so this check should be solely
6695 	 * predicated on the sequence space of this segment. 3) That we
6696 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6697 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6698 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6699 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6700 	 * p.869. In such cases, we can still calculate the RTT correctly
6701 	 * when RCV.NXT == Last.ACK.Sent.
6702 	 */
6703 	if ((to->to_flags & TOF_TS) != 0 &&
6704 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6705 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6706 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6707 		tp->ts_recent_age = tcp_ts_getticks();
6708 		tp->ts_recent = to->to_tsval;
6709 	}
6710 	/*
6711 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6712 	 * is on (half-synchronized state), then queue data for later
6713 	 * processing; else drop segment and return.
6714 	 */
6715 	if ((thflags & TH_ACK) == 0) {
6716 		if (tp->t_flags & TF_NEEDSYN) {
6717 
6718 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6719 			    tiwin, thflags, nxt_pkt));
6720 
6721 		} else if (tp->t_flags & TF_ACKNOW) {
6722 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6723 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6724 			return (ret_val);
6725 		} else {
6726 			ctf_do_drop(m, NULL);
6727 			return (0);
6728 		}
6729 	}
6730 	/*
6731 	 * Ack processing.
6732 	 */
6733 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6734 		return (ret_val);
6735 	}
6736 	if (sbavail(&so->so_snd)) {
6737 		if (rack_progress_timeout_check(tp)) {
6738 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6739 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6740 			return (1);
6741 		}
6742 	}
6743 	/* State changes only happen in rack_process_data() */
6744 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6745 	    tiwin, thflags, nxt_pkt));
6746 }
6747 
6748 /*
6749  * Return value of 1, the TCB is unlocked and most
6750  * likely gone, return value of 0, the TCP is still
6751  * locked.
6752  */
6753 static int
6754 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
6755     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6756     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6757 {
6758 	int32_t ret_val = 0;
6759 
6760 	ctf_calc_rwin(so, tp);
6761 	if ((thflags & TH_RST) ||
6762 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6763 		return (ctf_process_rst(m, th, so, tp));
6764 	/*
6765 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6766 	 * synchronized state.
6767 	 */
6768 	if (thflags & TH_SYN) {
6769 		ctf_challenge_ack(m, th, tp, &ret_val);
6770 		return (ret_val);
6771 	}
6772 	/*
6773 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6774 	 * it's less than ts_recent, drop it.
6775 	 */
6776 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6777 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6778 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6779 			return (ret_val);
6780 	}
6781 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6782 		return (ret_val);
6783 	}
6784 	/*
6785 	 * If last ACK falls within this segment's sequence numbers, record
6786 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6787 	 * from the latest proposal of the tcplw@cray.com list (Braden
6788 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6789 	 * with our earlier PAWS tests, so this check should be solely
6790 	 * predicated on the sequence space of this segment. 3) That we
6791 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6792 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6793 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6794 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6795 	 * p.869. In such cases, we can still calculate the RTT correctly
6796 	 * when RCV.NXT == Last.ACK.Sent.
6797 	 */
6798 	if ((to->to_flags & TOF_TS) != 0 &&
6799 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6800 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6801 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6802 		tp->ts_recent_age = tcp_ts_getticks();
6803 		tp->ts_recent = to->to_tsval;
6804 	}
6805 	/*
6806 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6807 	 * is on (half-synchronized state), then queue data for later
6808 	 * processing; else drop segment and return.
6809 	 */
6810 	if ((thflags & TH_ACK) == 0) {
6811 		if (tp->t_flags & TF_NEEDSYN) {
6812 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6813 			    tiwin, thflags, nxt_pkt));
6814 
6815 		} else if (tp->t_flags & TF_ACKNOW) {
6816 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6817 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6818 			return (ret_val);
6819 		} else {
6820 			ctf_do_drop(m, NULL);
6821 			return (0);
6822 		}
6823 	}
6824 	/*
6825 	 * Ack processing.
6826 	 */
6827 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6828 		return (ret_val);
6829 	}
6830 	if (sbavail(&so->so_snd)) {
6831 		if (rack_progress_timeout_check(tp)) {
6832 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6833 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6834 			return (1);
6835 		}
6836 	}
6837 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6838 	    tiwin, thflags, nxt_pkt));
6839 }
6840 
6841 static int
6842 rack_check_data_after_close(struct mbuf *m,
6843     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
6844 {
6845 	struct tcp_rack *rack;
6846 
6847 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6848 	if (rack->rc_allow_data_af_clo == 0) {
6849 	close_now:
6850 		tp = tcp_close(tp);
6851 		KMOD_TCPSTAT_INC(tcps_rcvafterclose);
6852 		ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
6853 		return (1);
6854 	}
6855 	if (sbavail(&so->so_snd) == 0)
6856 		goto close_now;
6857 	/* Ok we allow data that is ignored and a followup reset */
6858 	tp->rcv_nxt = th->th_seq + *tlen;
6859 	tp->t_flags2 |= TF2_DROP_AF_DATA;
6860 	rack->r_wanted_output = 1;
6861 	*tlen = 0;
6862 	return (0);
6863 }
6864 
6865 /*
6866  * Return value of 1, the TCB is unlocked and most
6867  * likely gone, return value of 0, the TCP is still
6868  * locked.
6869  */
6870 static int
6871 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
6872     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6873     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6874 {
6875 	int32_t ret_val = 0;
6876 	int32_t ourfinisacked = 0;
6877 
6878 	ctf_calc_rwin(so, tp);
6879 
6880 	if ((thflags & TH_RST) ||
6881 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6882 		return (ctf_process_rst(m, th, so, tp));
6883 	/*
6884 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6885 	 * synchronized state.
6886 	 */
6887 	if (thflags & TH_SYN) {
6888 		ctf_challenge_ack(m, th, tp, &ret_val);
6889 		return (ret_val);
6890 	}
6891 	/*
6892 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6893 	 * it's less than ts_recent, drop it.
6894 	 */
6895 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6896 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6897 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6898 			return (ret_val);
6899 	}
6900 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6901 		return (ret_val);
6902 	}
6903 	/*
6904 	 * If new data are received on a connection after the user processes
6905 	 * are gone, then RST the other end.
6906 	 */
6907 	if ((so->so_state & SS_NOFDREF) && tlen) {
6908 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6909 			return (1);
6910 	}
6911 	/*
6912 	 * If last ACK falls within this segment's sequence numbers, record
6913 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6914 	 * from the latest proposal of the tcplw@cray.com list (Braden
6915 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6916 	 * with our earlier PAWS tests, so this check should be solely
6917 	 * predicated on the sequence space of this segment. 3) That we
6918 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6919 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6920 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6921 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6922 	 * p.869. In such cases, we can still calculate the RTT correctly
6923 	 * when RCV.NXT == Last.ACK.Sent.
6924 	 */
6925 	if ((to->to_flags & TOF_TS) != 0 &&
6926 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6927 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6928 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6929 		tp->ts_recent_age = tcp_ts_getticks();
6930 		tp->ts_recent = to->to_tsval;
6931 	}
6932 	/*
6933 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6934 	 * is on (half-synchronized state), then queue data for later
6935 	 * processing; else drop segment and return.
6936 	 */
6937 	if ((thflags & TH_ACK) == 0) {
6938 		if (tp->t_flags & TF_NEEDSYN) {
6939 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6940 			    tiwin, thflags, nxt_pkt));
6941 		} else if (tp->t_flags & TF_ACKNOW) {
6942 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6943 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6944 			return (ret_val);
6945 		} else {
6946 			ctf_do_drop(m, NULL);
6947 			return (0);
6948 		}
6949 	}
6950 	/*
6951 	 * Ack processing.
6952 	 */
6953 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6954 		return (ret_val);
6955 	}
6956 	if (ourfinisacked) {
6957 		/*
6958 		 * If we can't receive any more data, then closing user can
6959 		 * proceed. Starting the timer is contrary to the
6960 		 * specification, but if we don't get a FIN we'll hang
6961 		 * forever.
6962 		 *
6963 		 * XXXjl: we should release the tp also, and use a
6964 		 * compressed state.
6965 		 */
6966 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6967 			soisdisconnected(so);
6968 			tcp_timer_activate(tp, TT_2MSL,
6969 			    (tcp_fast_finwait2_recycle ?
6970 			    tcp_finwait2_timeout :
6971 			    TP_MAXIDLE(tp)));
6972 		}
6973 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
6974 	}
6975 	if (sbavail(&so->so_snd)) {
6976 		if (rack_progress_timeout_check(tp)) {
6977 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6978 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6979 			return (1);
6980 		}
6981 	}
6982 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6983 	    tiwin, thflags, nxt_pkt));
6984 }
6985 
6986 /*
6987  * Return value of 1, the TCB is unlocked and most
6988  * likely gone, return value of 0, the TCP is still
6989  * locked.
6990  */
6991 static int
6992 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
6993     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6994     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6995 {
6996 	int32_t ret_val = 0;
6997 	int32_t ourfinisacked = 0;
6998 
6999 	ctf_calc_rwin(so, tp);
7000 
7001 	if ((thflags & TH_RST) ||
7002 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7003 		return (ctf_process_rst(m, th, so, tp));
7004 	/*
7005 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7006 	 * synchronized state.
7007 	 */
7008 	if (thflags & TH_SYN) {
7009 		ctf_challenge_ack(m, th, tp, &ret_val);
7010 		return (ret_val);
7011 	}
7012 	/*
7013 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7014 	 * it's less than ts_recent, drop it.
7015 	 */
7016 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7017 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7018 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7019 			return (ret_val);
7020 	}
7021 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7022 		return (ret_val);
7023 	}
7024 	/*
7025 	 * If new data are received on a connection after the user processes
7026 	 * are gone, then RST the other end.
7027 	 */
7028 	if ((so->so_state & SS_NOFDREF) && tlen) {
7029 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7030 			return (1);
7031 	}
7032 	/*
7033 	 * If last ACK falls within this segment's sequence numbers, record
7034 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7035 	 * from the latest proposal of the tcplw@cray.com list (Braden
7036 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7037 	 * with our earlier PAWS tests, so this check should be solely
7038 	 * predicated on the sequence space of this segment. 3) That we
7039 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7040 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7041 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7042 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7043 	 * p.869. In such cases, we can still calculate the RTT correctly
7044 	 * when RCV.NXT == Last.ACK.Sent.
7045 	 */
7046 	if ((to->to_flags & TOF_TS) != 0 &&
7047 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7048 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7049 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7050 		tp->ts_recent_age = tcp_ts_getticks();
7051 		tp->ts_recent = to->to_tsval;
7052 	}
7053 	/*
7054 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7055 	 * is on (half-synchronized state), then queue data for later
7056 	 * processing; else drop segment and return.
7057 	 */
7058 	if ((thflags & TH_ACK) == 0) {
7059 		if (tp->t_flags & TF_NEEDSYN) {
7060 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7061 			    tiwin, thflags, nxt_pkt));
7062 		} else if (tp->t_flags & TF_ACKNOW) {
7063 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7064 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7065 			return (ret_val);
7066 		} else {
7067 			ctf_do_drop(m, NULL);
7068 			return (0);
7069 		}
7070 	}
7071 	/*
7072 	 * Ack processing.
7073 	 */
7074 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7075 		return (ret_val);
7076 	}
7077 	if (ourfinisacked) {
7078 		tcp_twstart(tp);
7079 		m_freem(m);
7080 		return (1);
7081 	}
7082 	if (sbavail(&so->so_snd)) {
7083 		if (rack_progress_timeout_check(tp)) {
7084 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7085 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7086 			return (1);
7087 		}
7088 	}
7089 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7090 	    tiwin, thflags, nxt_pkt));
7091 }
7092 
7093 /*
7094  * Return value of 1, the TCB is unlocked and most
7095  * likely gone, return value of 0, the TCP is still
7096  * locked.
7097  */
7098 static int
7099 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
7100     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7101     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7102 {
7103 	int32_t ret_val = 0;
7104 	int32_t ourfinisacked = 0;
7105 
7106 	ctf_calc_rwin(so, tp);
7107 
7108 	if ((thflags & TH_RST) ||
7109 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7110 		return (ctf_process_rst(m, th, so, tp));
7111 	/*
7112 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7113 	 * synchronized state.
7114 	 */
7115 	if (thflags & TH_SYN) {
7116 		ctf_challenge_ack(m, th, tp, &ret_val);
7117 		return (ret_val);
7118 	}
7119 	/*
7120 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7121 	 * it's less than ts_recent, drop it.
7122 	 */
7123 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7124 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7125 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7126 			return (ret_val);
7127 	}
7128 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7129 		return (ret_val);
7130 	}
7131 	/*
7132 	 * If new data are received on a connection after the user processes
7133 	 * are gone, then RST the other end.
7134 	 */
7135 	if ((so->so_state & SS_NOFDREF) && tlen) {
7136 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7137 			return (1);
7138 	}
7139 	/*
7140 	 * If last ACK falls within this segment's sequence numbers, record
7141 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7142 	 * from the latest proposal of the tcplw@cray.com list (Braden
7143 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7144 	 * with our earlier PAWS tests, so this check should be solely
7145 	 * predicated on the sequence space of this segment. 3) That we
7146 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7147 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7148 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7149 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7150 	 * p.869. In such cases, we can still calculate the RTT correctly
7151 	 * when RCV.NXT == Last.ACK.Sent.
7152 	 */
7153 	if ((to->to_flags & TOF_TS) != 0 &&
7154 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7155 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7156 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7157 		tp->ts_recent_age = tcp_ts_getticks();
7158 		tp->ts_recent = to->to_tsval;
7159 	}
7160 	/*
7161 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7162 	 * is on (half-synchronized state), then queue data for later
7163 	 * processing; else drop segment and return.
7164 	 */
7165 	if ((thflags & TH_ACK) == 0) {
7166 		if (tp->t_flags & TF_NEEDSYN) {
7167 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7168 			    tiwin, thflags, nxt_pkt));
7169 		} else if (tp->t_flags & TF_ACKNOW) {
7170 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7171 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7172 			return (ret_val);
7173 		} else {
7174 			ctf_do_drop(m, NULL);
7175 			return (0);
7176 		}
7177 	}
7178 	/*
7179 	 * case TCPS_LAST_ACK: Ack processing.
7180 	 */
7181 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7182 		return (ret_val);
7183 	}
7184 	if (ourfinisacked) {
7185 		tp = tcp_close(tp);
7186 		ctf_do_drop(m, tp);
7187 		return (1);
7188 	}
7189 	if (sbavail(&so->so_snd)) {
7190 		if (rack_progress_timeout_check(tp)) {
7191 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7192 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7193 			return (1);
7194 		}
7195 	}
7196 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7197 	    tiwin, thflags, nxt_pkt));
7198 }
7199 
7200 
7201 /*
7202  * Return value of 1, the TCB is unlocked and most
7203  * likely gone, return value of 0, the TCP is still
7204  * locked.
7205  */
7206 static int
7207 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
7208     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7209     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7210 {
7211 	int32_t ret_val = 0;
7212 	int32_t ourfinisacked = 0;
7213 
7214 	ctf_calc_rwin(so, tp);
7215 
7216 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
7217 	if ((thflags & TH_RST) ||
7218 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7219 		return (ctf_process_rst(m, th, so, tp));
7220 	/*
7221 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7222 	 * synchronized state.
7223 	 */
7224 	if (thflags & TH_SYN) {
7225 		ctf_challenge_ack(m, th, tp, &ret_val);
7226 		return (ret_val);
7227 	}
7228 	/*
7229 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7230 	 * it's less than ts_recent, drop it.
7231 	 */
7232 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7233 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7234 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7235 			return (ret_val);
7236 	}
7237 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7238 		return (ret_val);
7239 	}
7240 	/*
7241 	 * If new data are received on a connection after the user processes
7242 	 * are gone, then RST the other end.
7243 	 */
7244 	if ((so->so_state & SS_NOFDREF) &&
7245 	    tlen) {
7246 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7247 			return (1);
7248 	}
7249 	/*
7250 	 * If last ACK falls within this segment's sequence numbers, record
7251 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7252 	 * from the latest proposal of the tcplw@cray.com list (Braden
7253 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7254 	 * with our earlier PAWS tests, so this check should be solely
7255 	 * predicated on the sequence space of this segment. 3) That we
7256 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7257 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7258 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7259 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7260 	 * p.869. In such cases, we can still calculate the RTT correctly
7261 	 * when RCV.NXT == Last.ACK.Sent.
7262 	 */
7263 	if ((to->to_flags & TOF_TS) != 0 &&
7264 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7265 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7266 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7267 		tp->ts_recent_age = tcp_ts_getticks();
7268 		tp->ts_recent = to->to_tsval;
7269 	}
7270 	/*
7271 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7272 	 * is on (half-synchronized state), then queue data for later
7273 	 * processing; else drop segment and return.
7274 	 */
7275 	if ((thflags & TH_ACK) == 0) {
7276 		if (tp->t_flags & TF_NEEDSYN) {
7277 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7278 			    tiwin, thflags, nxt_pkt));
7279 		} else if (tp->t_flags & TF_ACKNOW) {
7280 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7281 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7282 			return (ret_val);
7283 		} else {
7284 			ctf_do_drop(m, NULL);
7285 			return (0);
7286 		}
7287 	}
7288 	/*
7289 	 * Ack processing.
7290 	 */
7291 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7292 		return (ret_val);
7293 	}
7294 	if (sbavail(&so->so_snd)) {
7295 		if (rack_progress_timeout_check(tp)) {
7296 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7297 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7298 			return (1);
7299 		}
7300 	}
7301 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7302 	    tiwin, thflags, nxt_pkt));
7303 }
7304 
7305 
7306 static void inline
7307 rack_clear_rate_sample(struct tcp_rack *rack)
7308 {
7309 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
7310 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
7311 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
7312 }
7313 
7314 static void
7315 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack)
7316 {
7317 	uint32_t tls_seg = 0;
7318 
7319 #ifdef KERN_TLS
7320 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
7321 		tls_seg = ctf_get_opt_tls_size(rack->rc_inp->inp_socket, rack->rc_tp->snd_wnd);
7322 		rack->r_ctl.rc_pace_min_segs = tls_seg;
7323 	} else
7324 #endif
7325 		rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
7326 	rack->r_ctl.rc_pace_max_segs = ctf_fixed_maxseg(tp) * rack->rc_pace_max_segs;
7327 	if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES)
7328 		rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
7329 #ifdef KERN_TLS
7330 	if (tls_seg != 0) {
7331 		if (rack_hw_tls_max_seg > 1) {
7332 			rack->r_ctl.rc_pace_max_segs /= tls_seg;
7333 			if (rack_hw_tls_max_seg < rack->r_ctl.rc_pace_max_segs)
7334 				rack->r_ctl.rc_pace_max_segs = rack_hw_tls_max_seg;
7335 		} else {
7336 			rack->r_ctl.rc_pace_max_segs = 1;
7337 		}
7338 		if (rack->r_ctl.rc_pace_max_segs == 0)
7339 			rack->r_ctl.rc_pace_max_segs = 1;
7340 		rack->r_ctl.rc_pace_max_segs *= tls_seg;
7341 	}
7342 #endif
7343 	rack_log_type_hrdwtso(tp, rack, tls_seg, rack->rc_inp->inp_socket->so_snd.sb_flags, 0, 2);
7344 }
7345 
7346 static int
7347 rack_init(struct tcpcb *tp)
7348 {
7349 	struct tcp_rack *rack = NULL;
7350 	struct rack_sendmap *insret;
7351 
7352 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
7353 	if (tp->t_fb_ptr == NULL) {
7354 		/*
7355 		 * We need to allocate memory but cant. The INP and INP_INFO
7356 		 * locks and they are recusive (happens during setup. So a
7357 		 * scheme to drop the locks fails :(
7358 		 *
7359 		 */
7360 		return (ENOMEM);
7361 	}
7362 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
7363 
7364 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7365 	RB_INIT(&rack->r_ctl.rc_mtree);
7366 	TAILQ_INIT(&rack->r_ctl.rc_free);
7367 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
7368 	rack->rc_tp = tp;
7369 	if (tp->t_inpcb) {
7370 		rack->rc_inp = tp->t_inpcb;
7371 	}
7372 	tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
7373 	/* Probably not needed but lets be sure */
7374 	rack_clear_rate_sample(rack);
7375 	rack->r_cpu = 0;
7376 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
7377 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
7378 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
7379 	rack->rc_pace_reduce = rack_slot_reduction;
7380 	if (use_rack_cheat)
7381 		rack->use_rack_cheat = 1;
7382 	if (V_tcp_delack_enabled)
7383 		tp->t_delayed_ack = 1;
7384 	else
7385 		tp->t_delayed_ack = 0;
7386 	rack->rc_pace_max_segs = rack_hptsi_segments;
7387 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
7388 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
7389 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
7390 	rack->r_enforce_min_pace = rack_min_pace_time;
7391 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
7392 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
7393 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
7394 	rack->rc_always_pace = rack_pace_every_seg;
7395 	rack_set_pace_segments(tp, rack);
7396 	rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
7397 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
7398 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
7399 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
7400 	rack->r_ctl.rc_min_to = rack_min_to;
7401 	rack->rack_per_of_gp = rack_per_of_gp;
7402 	microuptime(&rack->r_ctl.rc_last_ack);
7403 	rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
7404 	rack->r_ctl.rc_tlp_rxt_last_time = tcp_ts_getticks();
7405 	/* Do we force on detection? */
7406 #ifdef NETFLIX_EXP_DETECTION
7407 	if (tcp_force_detection)
7408 		rack->do_detection = 1;
7409 	else
7410 #endif
7411 		rack->do_detection = 0;
7412 	if (tp->snd_una != tp->snd_max) {
7413 		/* Create a send map for the current outstanding data */
7414 		struct rack_sendmap *rsm;
7415 
7416 		rsm = rack_alloc(rack);
7417 		if (rsm == NULL) {
7418 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7419 			tp->t_fb_ptr = NULL;
7420 			return (ENOMEM);
7421 		}
7422 		rsm->r_flags = RACK_OVERMAX;
7423 		rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time;
7424 		rsm->r_rtr_cnt = 1;
7425 		rsm->r_rtr_bytes = 0;
7426 		rsm->r_start = tp->snd_una;
7427 		rsm->r_end = tp->snd_max;
7428 		rsm->r_dupack = 0;
7429 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7430 #ifdef INVARIANTS
7431 		if (insret != NULL) {
7432 			panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
7433 			      insret, rack, rsm);
7434 		}
7435 #endif
7436 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7437 		rsm->r_in_tmap = 1;
7438 	}
7439 	rack_stop_all_timers(tp);
7440 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7441 	return (0);
7442 }
7443 
7444 static int
7445 rack_handoff_ok(struct tcpcb *tp)
7446 {
7447 	if ((tp->t_state == TCPS_CLOSED) ||
7448 	    (tp->t_state == TCPS_LISTEN)) {
7449 		/* Sure no problem though it may not stick */
7450 		return (0);
7451 	}
7452 	if ((tp->t_state == TCPS_SYN_SENT) ||
7453 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
7454 		/*
7455 		 * We really don't know you have to get to ESTAB or beyond
7456 		 * to tell.
7457 		 */
7458 		return (EAGAIN);
7459 	}
7460 	if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
7461 		return (0);
7462 	}
7463 	/*
7464 	 * If we reach here we don't do SACK on this connection so we can
7465 	 * never do rack.
7466 	 */
7467 	return (EINVAL);
7468 }
7469 
7470 static void
7471 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
7472 {
7473 	if (tp->t_fb_ptr) {
7474 		struct tcp_rack *rack;
7475 		struct rack_sendmap *rsm, *nrsm, *rm;
7476 		if (tp->t_inpcb) {
7477 			tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
7478 			tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
7479 		}
7480 		rack = (struct tcp_rack *)tp->t_fb_ptr;
7481 #ifdef TCP_BLACKBOX
7482 		tcp_log_flowend(tp);
7483 #endif
7484 		RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
7485 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7486 #ifdef INVARIANTS
7487 			if (rm != rsm) {
7488 				panic("At fini, rack:%p rsm:%p rm:%p",
7489 				      rack, rsm, rm);
7490 			}
7491 #endif
7492 			uma_zfree(rack_zone, rsm);
7493 		}
7494 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7495 		while (rsm) {
7496 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
7497 			uma_zfree(rack_zone, rsm);
7498 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7499 		}
7500 		rack->rc_free_cnt = 0;
7501 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7502 		tp->t_fb_ptr = NULL;
7503 	}
7504 	/* Make sure snd_nxt is correctly set */
7505 	tp->snd_nxt = tp->snd_max;
7506 }
7507 
7508 
7509 static void
7510 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
7511 {
7512 	switch (tp->t_state) {
7513 	case TCPS_SYN_SENT:
7514 		rack->r_state = TCPS_SYN_SENT;
7515 		rack->r_substate = rack_do_syn_sent;
7516 		break;
7517 	case TCPS_SYN_RECEIVED:
7518 		rack->r_state = TCPS_SYN_RECEIVED;
7519 		rack->r_substate = rack_do_syn_recv;
7520 		break;
7521 	case TCPS_ESTABLISHED:
7522 		rack_set_pace_segments(tp, rack);
7523 		rack->r_state = TCPS_ESTABLISHED;
7524 		rack->r_substate = rack_do_established;
7525 		break;
7526 	case TCPS_CLOSE_WAIT:
7527 		rack->r_state = TCPS_CLOSE_WAIT;
7528 		rack->r_substate = rack_do_close_wait;
7529 		break;
7530 	case TCPS_FIN_WAIT_1:
7531 		rack->r_state = TCPS_FIN_WAIT_1;
7532 		rack->r_substate = rack_do_fin_wait_1;
7533 		break;
7534 	case TCPS_CLOSING:
7535 		rack->r_state = TCPS_CLOSING;
7536 		rack->r_substate = rack_do_closing;
7537 		break;
7538 	case TCPS_LAST_ACK:
7539 		rack->r_state = TCPS_LAST_ACK;
7540 		rack->r_substate = rack_do_lastack;
7541 		break;
7542 	case TCPS_FIN_WAIT_2:
7543 		rack->r_state = TCPS_FIN_WAIT_2;
7544 		rack->r_substate = rack_do_fin_wait_2;
7545 		break;
7546 	case TCPS_LISTEN:
7547 	case TCPS_CLOSED:
7548 	case TCPS_TIME_WAIT:
7549 	default:
7550 		break;
7551 	};
7552 }
7553 
7554 
7555 static void
7556 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
7557 {
7558 	/*
7559 	 * We received an ack, and then did not
7560 	 * call send or were bounced out due to the
7561 	 * hpts was running. Now a timer is up as well, is
7562 	 * it the right timer?
7563 	 */
7564 	struct rack_sendmap *rsm;
7565 	int tmr_up;
7566 
7567 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
7568 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
7569 		return;
7570 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7571 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
7572 	    (tmr_up == PACE_TMR_RXT)) {
7573 		/* Should be an RXT */
7574 		return;
7575 	}
7576 	if (rsm == NULL) {
7577 		/* Nothing outstanding? */
7578 		if (tp->t_flags & TF_DELACK) {
7579 			if (tmr_up == PACE_TMR_DELACK)
7580 				/* We are supposed to have delayed ack up and we do */
7581 				return;
7582 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
7583 			/*
7584 			 * if we hit enobufs then we would expect the possiblity
7585 			 * of nothing outstanding and the RXT up (and the hptsi timer).
7586 			 */
7587 			return;
7588 		} else if (((V_tcp_always_keepalive ||
7589 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7590 			    (tp->t_state <= TCPS_CLOSING)) &&
7591 			   (tmr_up == PACE_TMR_KEEP) &&
7592 			   (tp->snd_max == tp->snd_una)) {
7593 			/* We should have keep alive up and we do */
7594 			return;
7595 		}
7596 	}
7597 	if (SEQ_GT(tp->snd_max, tp->snd_una) &&
7598 		   ((tmr_up == PACE_TMR_TLP) ||
7599 		    (tmr_up == PACE_TMR_RACK) ||
7600 		    (tmr_up == PACE_TMR_RXT))) {
7601 		/*
7602 		 * Either a Rack, TLP or RXT is fine if  we
7603 		 * have outstanding data.
7604 		 */
7605 		return;
7606 	} else if (tmr_up == PACE_TMR_DELACK) {
7607 		/*
7608 		 * If the delayed ack was going to go off
7609 		 * before the rtx/tlp/rack timer were going to
7610 		 * expire, then that would be the timer in control.
7611 		 * Note we don't check the time here trusting the
7612 		 * code is correct.
7613 		 */
7614 		return;
7615 	}
7616 	/*
7617 	 * Ok the timer originally started is not what we want now.
7618 	 * We will force the hpts to be stopped if any, and restart
7619 	 * with the slot set to what was in the saved slot.
7620 	 */
7621 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
7622 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7623 }
7624 
7625 static int
7626 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
7627     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
7628     int32_t nxt_pkt, struct timeval *tv)
7629 {
7630 	int32_t thflags, retval, did_out = 0;
7631 	int32_t way_out = 0;
7632 	uint32_t cts;
7633 	uint32_t tiwin;
7634 	struct tcpopt to;
7635 	struct tcp_rack *rack;
7636 	struct rack_sendmap *rsm;
7637 	int32_t prev_state = 0;
7638 
7639 	if (m->m_flags & M_TSTMP_LRO) {
7640 		tv->tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7641 		tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7642 	}
7643 	cts = tcp_tv_to_mssectick(tv);
7644 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7645 
7646 	kern_prefetch(rack, &prev_state);
7647 	prev_state = 0;
7648 	thflags = th->th_flags;
7649 
7650 	NET_EPOCH_ASSERT();
7651 	INP_WLOCK_ASSERT(tp->t_inpcb);
7652 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
7653 	    __func__));
7654 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
7655 	    __func__));
7656 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
7657 		union tcp_log_stackspecific log;
7658 		struct timeval tv;
7659 
7660 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
7661 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
7662 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
7663 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
7664 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
7665 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
7666 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
7667 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
7668 		TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
7669 		    tlen, &log, true, &tv);
7670 	}
7671 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
7672 		way_out = 4;
7673 		retval = 0;
7674 		goto done_with_input;
7675 	}
7676 	/*
7677 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
7678 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
7679 	 */
7680 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
7681 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
7682 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7683 		return(1);
7684 	}
7685 	/*
7686 	 * Segment received on connection. Reset idle time and keep-alive
7687 	 * timer. XXX: This should be done after segment validation to
7688 	 * ignore broken/spoofed segs.
7689 	 */
7690 	if  (tp->t_idle_reduce &&
7691 	     (tp->snd_max == tp->snd_una) &&
7692 	     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
7693 		counter_u64_add(rack_input_idle_reduces, 1);
7694 		rack_cc_after_idle(tp);
7695 	}
7696 	tp->t_rcvtime = ticks;
7697 
7698 	/*
7699 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
7700 	 * the scale is zero.
7701 	 */
7702 	tiwin = th->th_win << tp->snd_scale;
7703 #ifdef STATS
7704 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
7705 #endif
7706 	if (tiwin > rack->r_ctl.rc_high_rwnd)
7707 		rack->r_ctl.rc_high_rwnd = tiwin;
7708 	/*
7709 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
7710 	 * this to occur after we've validated the segment.
7711 	 */
7712 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
7713 		if (thflags & TH_CWR) {
7714 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
7715 			tp->t_flags |= TF_ACKNOW;
7716 		}
7717 		switch (iptos & IPTOS_ECN_MASK) {
7718 		case IPTOS_ECN_CE:
7719 			tp->t_flags2 |= TF2_ECN_SND_ECE;
7720 			KMOD_TCPSTAT_INC(tcps_ecn_ce);
7721 			break;
7722 		case IPTOS_ECN_ECT0:
7723 			KMOD_TCPSTAT_INC(tcps_ecn_ect0);
7724 			break;
7725 		case IPTOS_ECN_ECT1:
7726 			KMOD_TCPSTAT_INC(tcps_ecn_ect1);
7727 			break;
7728 		}
7729 
7730 		/* Process a packet differently from RFC3168. */
7731 		cc_ecnpkt_handler(tp, th, iptos);
7732 
7733 		/* Congestion experienced. */
7734 		if (thflags & TH_ECE) {
7735 			rack_cong_signal(tp, th, CC_ECN);
7736 		}
7737 	}
7738 	/*
7739 	 * Parse options on any incoming segment.
7740 	 */
7741 	tcp_dooptions(&to, (u_char *)(th + 1),
7742 	    (th->th_off << 2) - sizeof(struct tcphdr),
7743 	    (thflags & TH_SYN) ? TO_SYN : 0);
7744 
7745 	/*
7746 	 * If echoed timestamp is later than the current time, fall back to
7747 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
7748 	 * were used when this connection was established.
7749 	 */
7750 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
7751 		to.to_tsecr -= tp->ts_offset;
7752 		if (TSTMP_GT(to.to_tsecr, cts))
7753 			to.to_tsecr = 0;
7754 	}
7755 	/*
7756 	 * If its the first time in we need to take care of options and
7757 	 * verify we can do SACK for rack!
7758 	 */
7759 	if (rack->r_state == 0) {
7760 		/* Should be init'd by rack_init() */
7761 		KASSERT(rack->rc_inp != NULL,
7762 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
7763 		if (rack->rc_inp == NULL) {
7764 			rack->rc_inp = tp->t_inpcb;
7765 		}
7766 
7767 		/*
7768 		 * Process options only when we get SYN/ACK back. The SYN
7769 		 * case for incoming connections is handled in tcp_syncache.
7770 		 * According to RFC1323 the window field in a SYN (i.e., a
7771 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
7772 		 * this is traditional behavior, may need to be cleaned up.
7773 		 */
7774 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
7775 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
7776 			if ((to.to_flags & TOF_SCALE) &&
7777 			    (tp->t_flags & TF_REQ_SCALE)) {
7778 				tp->t_flags |= TF_RCVD_SCALE;
7779 				tp->snd_scale = to.to_wscale;
7780 			}
7781 			/*
7782 			 * Initial send window.  It will be updated with the
7783 			 * next incoming segment to the scaled value.
7784 			 */
7785 			tp->snd_wnd = th->th_win;
7786 			if (to.to_flags & TOF_TS) {
7787 				tp->t_flags |= TF_RCVD_TSTMP;
7788 				tp->ts_recent = to.to_tsval;
7789 				tp->ts_recent_age = cts;
7790 			}
7791 			if (to.to_flags & TOF_MSS)
7792 				tcp_mss(tp, to.to_mss);
7793 			if ((tp->t_flags & TF_SACK_PERMIT) &&
7794 			    (to.to_flags & TOF_SACKPERM) == 0)
7795 				tp->t_flags &= ~TF_SACK_PERMIT;
7796 			if (IS_FASTOPEN(tp->t_flags)) {
7797 				if (to.to_flags & TOF_FASTOPEN) {
7798 					uint16_t mss;
7799 
7800 					if (to.to_flags & TOF_MSS)
7801 						mss = to.to_mss;
7802 					else
7803 						if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
7804 							mss = TCP6_MSS;
7805 						else
7806 							mss = TCP_MSS;
7807 					tcp_fastopen_update_cache(tp, mss,
7808 					    to.to_tfo_len, to.to_tfo_cookie);
7809 				} else
7810 					tcp_fastopen_disable_path(tp);
7811 			}
7812 		}
7813 		/*
7814 		 * At this point we are at the initial call. Here we decide
7815 		 * if we are doing RACK or not. We do this by seeing if
7816 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
7817 		 * we switch to the default code.
7818 		 */
7819 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
7820 			tcp_switch_back_to_default(tp);
7821 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
7822 			    tlen, iptos);
7823 			return (1);
7824 		}
7825 		/* Set the flag */
7826 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
7827 		tcp_set_hpts(tp->t_inpcb);
7828 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
7829 	}
7830 	/*
7831 	 * This is the one exception case where we set the rack state
7832 	 * always. All other times (timers etc) we must have a rack-state
7833 	 * set (so we assure we have done the checks above for SACK).
7834 	 */
7835 	memcpy(&rack->r_ctl.rc_last_ack, tv, sizeof(struct timeval));
7836 	rack->r_ctl.rc_rcvtime = cts;
7837 	if (rack->r_state != tp->t_state)
7838 		rack_set_state(tp, rack);
7839 	if (SEQ_GT(th->th_ack, tp->snd_una) &&
7840 	    (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
7841 		kern_prefetch(rsm, &prev_state);
7842 	prev_state = rack->r_state;
7843 	rack->r_ctl.rc_tlp_send_cnt = 0;
7844 	rack_clear_rate_sample(rack);
7845 	retval = (*rack->r_substate) (m, th, so,
7846 	    tp, &to, drop_hdrlen,
7847 	    tlen, tiwin, thflags, nxt_pkt, iptos);
7848 #ifdef INVARIANTS
7849 	if ((retval == 0) &&
7850 	    (tp->t_inpcb == NULL)) {
7851 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
7852 		    retval, tp, prev_state);
7853 	}
7854 #endif
7855 	if (retval == 0) {
7856 		/*
7857 		 * If retval is 1 the tcb is unlocked and most likely the tp
7858 		 * is gone.
7859 		 */
7860 		INP_WLOCK_ASSERT(tp->t_inpcb);
7861 		if (rack->set_pacing_done_a_iw == 0) {
7862 			/* How much has been acked? */
7863 			if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
7864 				/* We have enough to set in the pacing segment size */
7865 				rack->set_pacing_done_a_iw = 1;
7866 				rack_set_pace_segments(tp, rack);
7867 			}
7868 		}
7869 		tcp_rack_xmit_timer_commit(rack, tp);
7870 		if ((nxt_pkt == 0) || (IN_RECOVERY(tp->t_flags))) {
7871 			if (rack->r_wanted_output != 0) {
7872 				did_out = 1;
7873 				(void)tp->t_fb->tfb_tcp_output(tp);
7874 			}
7875 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
7876 		}
7877 		if ((nxt_pkt == 0) &&
7878 		    ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
7879 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
7880 		     (tp->t_flags & TF_DELACK) ||
7881 		     ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7882 		      (tp->t_state <= TCPS_CLOSING)))) {
7883 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
7884 			if ((tp->snd_max == tp->snd_una) &&
7885 			    ((tp->t_flags & TF_DELACK) == 0) &&
7886 			    (rack->rc_inp->inp_in_hpts) &&
7887 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
7888 				/* keep alive not needed if we are hptsi output yet */
7889 				;
7890 			} else {
7891 				if (rack->rc_inp->inp_in_hpts) {
7892 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7893 					counter_u64_add(rack_per_timer_hole, 1);
7894 				}
7895 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7896 			}
7897 			way_out = 1;
7898 		} else if (nxt_pkt == 0) {
7899 			/* Do we have the correct timer running? */
7900 			rack_timer_audit(tp, rack, &so->so_snd);
7901 			way_out = 2;
7902 		}
7903 	done_with_input:
7904 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
7905 		if (did_out)
7906 			rack->r_wanted_output = 0;
7907 #ifdef INVARIANTS
7908 		if (tp->t_inpcb == NULL) {
7909 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
7910 			      did_out,
7911 			      retval, tp, prev_state);
7912 		}
7913 #endif
7914 	}
7915 	return (retval);
7916 }
7917 
7918 void
7919 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
7920     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
7921 {
7922 	struct timeval tv;
7923 
7924 	/* First lets see if we have old packets */
7925 	if (tp->t_in_pkt) {
7926 		if (ctf_do_queued_segments(so, tp, 1)) {
7927 			m_freem(m);
7928 			return;
7929 		}
7930 	}
7931 	if (m->m_flags & M_TSTMP_LRO) {
7932 		tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7933 		tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7934 	} else {
7935 		/* Should not be should we kassert instead? */
7936 		tcp_get_usecs(&tv);
7937 	}
7938 	if(rack_do_segment_nounlock(m, th, so, tp,
7939 				    drop_hdrlen, tlen, iptos, 0, &tv) == 0)
7940 		INP_WUNLOCK(tp->t_inpcb);
7941 }
7942 
7943 struct rack_sendmap *
7944 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
7945 {
7946 	struct rack_sendmap *rsm = NULL;
7947 	int32_t idx;
7948 	uint32_t srtt = 0, thresh = 0, ts_low = 0;
7949 
7950 	/* Return the next guy to be re-transmitted */
7951 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
7952 		return (NULL);
7953 	}
7954 	if (tp->t_flags & TF_SENTFIN) {
7955 		/* retran the end FIN? */
7956 		return (NULL);
7957 	}
7958 	/* ok lets look at this one */
7959 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7960 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
7961 		goto check_it;
7962 	}
7963 	rsm = rack_find_lowest_rsm(rack);
7964 	if (rsm == NULL) {
7965 		return (NULL);
7966 	}
7967 check_it:
7968 	if (rsm->r_flags & RACK_ACKED) {
7969 		return (NULL);
7970 	}
7971 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
7972 		/* Its not yet ready */
7973 		return (NULL);
7974 	}
7975 	srtt = rack_grab_rtt(tp, rack);
7976 	idx = rsm->r_rtr_cnt - 1;
7977 	ts_low = rsm->r_tim_lastsent[idx];
7978 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
7979 	if ((tsused == ts_low) ||
7980 	    (TSTMP_LT(tsused, ts_low))) {
7981 		/* No time since sending */
7982 		return (NULL);
7983 	}
7984 	if ((tsused - ts_low) < thresh) {
7985 		/* It has not been long enough yet */
7986 		return (NULL);
7987 	}
7988 	if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
7989 	    ((rsm->r_flags & RACK_SACK_PASSED) &&
7990 	     (rack->sack_attack_disable == 0))) {
7991 		/*
7992 		 * We have passed the dup-ack threshold <or>
7993 		 * a SACK has indicated this is missing.
7994 		 * Note that if you are a declared attacker
7995 		 * it is only the dup-ack threshold that
7996 		 * will cause retransmits.
7997 		 */
7998 		/* log retransmit reason */
7999 		rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
8000 		return (rsm);
8001 	}
8002 	return (NULL);
8003 }
8004 
8005 static int32_t
8006 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len)
8007 {
8008 	int32_t slot = 0;
8009 
8010 	if ((rack->rack_per_of_gp == 0) ||
8011 	    (rack->rc_always_pace == 0)) {
8012 		/*
8013 		 * We use the most optimistic possible cwnd/srtt for
8014 		 * sending calculations. This will make our
8015 		 * calculation anticipate getting more through
8016 		 * quicker then possible. But thats ok we don't want
8017 		 * the peer to have a gap in data sending.
8018 		 */
8019 		uint32_t srtt, cwnd, tr_perms = 0;
8020 
8021 old_method:
8022 		if (rack->r_ctl.rc_rack_min_rtt)
8023 			srtt = rack->r_ctl.rc_rack_min_rtt;
8024 		else
8025 			srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8026 		if (rack->r_ctl.rc_rack_largest_cwnd)
8027 			cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8028 		else
8029 			cwnd = tp->snd_cwnd;
8030 		tr_perms = cwnd / srtt;
8031 		if (tr_perms == 0) {
8032 			tr_perms = ctf_fixed_maxseg(tp);
8033 		}
8034 		/*
8035 		 * Calculate how long this will take to drain, if
8036 		 * the calculation comes out to zero, thats ok we
8037 		 * will use send_a_lot to possibly spin around for
8038 		 * more increasing tot_len_this_send to the point
8039 		 * that its going to require a pace, or we hit the
8040 		 * cwnd. Which in that case we are just waiting for
8041 		 * a ACK.
8042 		 */
8043 		slot = len / tr_perms;
8044 		/* Now do we reduce the time so we don't run dry? */
8045 		if (slot && rack->rc_pace_reduce) {
8046 			int32_t reduce;
8047 
8048 			reduce = (slot / rack->rc_pace_reduce);
8049 			if (reduce < slot) {
8050 				slot -= reduce;
8051 			} else
8052 				slot = 0;
8053 		}
8054 	} else {
8055 		int cnt;
8056 		uint64_t bw_est, bw_raise, res, lentim;
8057 
8058 		bw_est = 0;
8059 		for (cnt=0; cnt<RACK_GP_HIST; cnt++) {
8060 			if ((rack->r_ctl.rc_gp_hist_filled == 0) &&
8061 			    (rack->r_ctl.rc_gp_history[cnt] == 0))
8062 				break;
8063 			bw_est += rack->r_ctl.rc_gp_history[cnt];
8064 		}
8065 		if (bw_est == 0) {
8066 			/*
8067 			 * No way yet to make a b/w estimate
8068 			 * (no goodput est yet).
8069 			 */
8070 			goto old_method;
8071 		}
8072 		/* Covert to bytes per second */
8073 		bw_est *= MSEC_IN_SECOND;
8074 		/*
8075 		 * Now ratchet it up by our percentage. Note
8076 		 * that the minimum you can do is 1 which would
8077 		 * get you 101% of the average last N goodput estimates.
8078 		 * The max you can do is 256 which would yeild you
8079 		 * 356% of the last N goodput estimates.
8080 		 */
8081 		bw_raise = bw_est * (uint64_t)rack->rack_per_of_gp;
8082 		bw_est += bw_raise;
8083 		/* average by the number we added */
8084 		bw_est /= cnt;
8085 		/* Now calculate a rate based on this b/w */
8086 		lentim = (uint64_t) len * (uint64_t)MSEC_IN_SECOND;
8087 		res = lentim / bw_est;
8088 		slot = (uint32_t)res;
8089 	}
8090 	if (rack->r_enforce_min_pace &&
8091 	    (slot == 0)) {
8092 		/* We are enforcing a minimum pace time of 1ms */
8093 		slot = rack->r_enforce_min_pace;
8094 	}
8095 	if (slot)
8096 		counter_u64_add(rack_calc_nonzero, 1);
8097 	else
8098 		counter_u64_add(rack_calc_zero, 1);
8099 	return (slot);
8100 }
8101 
8102 static int
8103 rack_output(struct tcpcb *tp)
8104 {
8105 	struct socket *so;
8106 	uint32_t recwin, sendwin;
8107 	uint32_t sb_offset;
8108 	int32_t len, flags, error = 0;
8109 	struct mbuf *m;
8110 	struct mbuf *mb;
8111 	uint32_t if_hw_tsomaxsegcount = 0;
8112 	uint32_t if_hw_tsomaxsegsize = 0;
8113 	int32_t maxseg;
8114 	long tot_len_this_send = 0;
8115 	struct ip *ip = NULL;
8116 #ifdef TCPDEBUG
8117 	struct ipovly *ipov = NULL;
8118 #endif
8119 	struct udphdr *udp = NULL;
8120 	struct tcp_rack *rack;
8121 	struct tcphdr *th;
8122 	uint8_t pass = 0;
8123 	uint8_t wanted_cookie = 0;
8124 	u_char opt[TCP_MAXOLEN];
8125 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
8126 	uint32_t rack_seq;
8127 
8128 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8129 	unsigned ipsec_optlen = 0;
8130 
8131 #endif
8132 	int32_t idle, sendalot;
8133 	int32_t sub_from_prr = 0;
8134 	volatile int32_t sack_rxmit;
8135 	struct rack_sendmap *rsm = NULL;
8136 	int32_t tso, mtu;
8137 	struct tcpopt to;
8138 	int32_t slot = 0;
8139 	int32_t sup_rack = 0;
8140 	uint32_t cts;
8141 	uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0;
8142 	int32_t do_a_prefetch;
8143 	int32_t prefetch_rsm = 0;
8144 	int force_tso = 0;
8145 	int32_t orig_len;
8146 	int32_t prefetch_so_done = 0;
8147 	struct tcp_log_buffer *lgb = NULL;
8148 	struct inpcb *inp;
8149 	struct sockbuf *sb;
8150 #ifdef INET6
8151 	struct ip6_hdr *ip6 = NULL;
8152 	int32_t isipv6;
8153 #endif
8154 	uint8_t filled_all = 0;
8155 	bool hw_tls = false;
8156 
8157 	/* setup and take the cache hits here */
8158 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8159 	inp = rack->rc_inp;
8160 	so = inp->inp_socket;
8161 	sb = &so->so_snd;
8162 	kern_prefetch(sb, &do_a_prefetch);
8163 	do_a_prefetch = 1;
8164 
8165 #ifdef KERN_TLS
8166 	hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0;
8167 #endif
8168 
8169 	NET_EPOCH_ASSERT();
8170 	INP_WLOCK_ASSERT(inp);
8171 
8172 #ifdef TCP_OFFLOAD
8173 	if (tp->t_flags & TF_TOE)
8174 		return (tcp_offload_output(tp));
8175 #endif
8176 	maxseg = ctf_fixed_maxseg(tp);
8177 	/*
8178 	 * For TFO connections in SYN_RECEIVED, only allow the initial
8179 	 * SYN|ACK and those sent by the retransmit timer.
8180 	 */
8181 	if (IS_FASTOPEN(tp->t_flags) &&
8182 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
8183 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
8184 	    (rack->r_ctl.rc_resend == NULL))         /* not a retransmit */
8185 		return (0);
8186 #ifdef INET6
8187 	if (rack->r_state) {
8188 		/* Use the cache line loaded if possible */
8189 		isipv6 = rack->r_is_v6;
8190 	} else {
8191 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
8192 	}
8193 #endif
8194 	cts = tcp_ts_getticks();
8195 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
8196 	    inp->inp_in_hpts) {
8197 		/*
8198 		 * We are on the hpts for some timer but not hptsi output.
8199 		 * Remove from the hpts unconditionally.
8200 		 */
8201 		rack_timer_cancel(tp, rack, cts, __LINE__);
8202 	}
8203 	/* Mark that we have called rack_output(). */
8204 	if ((rack->r_timer_override) ||
8205 	    (tp->t_flags & TF_FORCEDATA) ||
8206 	    (tp->t_state < TCPS_ESTABLISHED)) {
8207 		if (tp->t_inpcb->inp_in_hpts)
8208 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
8209 	} else if (tp->t_inpcb->inp_in_hpts) {
8210 		/*
8211 		 * On the hpts you can't pass even if ACKNOW is on, we will
8212 		 * when the hpts fires.
8213 		 */
8214 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
8215 		return (0);
8216 	}
8217 	hpts_calling = inp->inp_hpts_calls;
8218 	inp->inp_hpts_calls = 0;
8219 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
8220 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
8221 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
8222 			return (0);
8223 		}
8224 	}
8225 	rack->r_wanted_output = 0;
8226 	rack->r_timer_override = 0;
8227 	/*
8228 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
8229 	 * only allow the initial SYN or SYN|ACK and those sent
8230 	 * by the retransmit timer.
8231 	 */
8232 	if (IS_FASTOPEN(tp->t_flags) &&
8233 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
8234 	     (tp->t_state == TCPS_SYN_SENT)) &&
8235 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
8236 	    (tp->t_rxtshift == 0))              /* not a retransmit */
8237 		return (0);
8238 	/*
8239 	 * Determine length of data that should be transmitted, and flags
8240 	 * that will be used. If there is some data or critical controls
8241 	 * (SYN, RST) to send, then transmit; otherwise, investigate
8242 	 * further.
8243 	 */
8244 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
8245 	if (tp->t_idle_reduce) {
8246 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
8247 			rack_cc_after_idle(tp);
8248 	}
8249 	tp->t_flags &= ~TF_LASTIDLE;
8250 	if (idle) {
8251 		if (tp->t_flags & TF_MORETOCOME) {
8252 			tp->t_flags |= TF_LASTIDLE;
8253 			idle = 0;
8254 		}
8255 	}
8256 again:
8257 	/*
8258 	 * If we've recently taken a timeout, snd_max will be greater than
8259 	 * snd_nxt.  There may be SACK information that allows us to avoid
8260 	 * resending already delivered data.  Adjust snd_nxt accordingly.
8261 	 */
8262 	sendalot = 0;
8263 	cts = tcp_ts_getticks();
8264 	tso = 0;
8265 	mtu = 0;
8266 	sb_offset = tp->snd_max - tp->snd_una;
8267 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
8268 
8269 	flags = tcp_outflags[tp->t_state];
8270 	while (rack->rc_free_cnt < rack_free_cache) {
8271 		rsm = rack_alloc(rack);
8272 		if (rsm == NULL) {
8273 			if (inp->inp_hpts_calls)
8274 				/* Retry in a ms */
8275 				slot = 1;
8276 			goto just_return_nolock;
8277 		}
8278 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
8279 		rack->rc_free_cnt++;
8280 		rsm = NULL;
8281 	}
8282 	if (inp->inp_hpts_calls)
8283 		inp->inp_hpts_calls = 0;
8284 	sack_rxmit = 0;
8285 	len = 0;
8286 	rsm = NULL;
8287 	if (flags & TH_RST) {
8288 		SOCKBUF_LOCK(sb);
8289 		goto send;
8290 	}
8291 	if (rack->r_ctl.rc_tlpsend) {
8292 		/* Tail loss probe */
8293 		long cwin;
8294 		long tlen;
8295 
8296 		doing_tlp = 1;
8297 		/*
8298 		 * Check if we can do a TLP with a RACK'd packet
8299 		 * this can happen if we are not doing the rack
8300 		 * cheat and we skipped to a TLP and it
8301 		 * went off.
8302 		 */
8303 		rsm = tcp_rack_output(tp, rack, cts);
8304 		if (rsm == NULL)
8305 			rsm = rack->r_ctl.rc_tlpsend;
8306 		rack->r_ctl.rc_tlpsend = NULL;
8307 		sack_rxmit = 1;
8308 		tlen = rsm->r_end - rsm->r_start;
8309 		if (tlen > ctf_fixed_maxseg(tp))
8310 			tlen = ctf_fixed_maxseg(tp);
8311 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8312 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8313 		    __func__, __LINE__,
8314 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8315 		sb_offset = rsm->r_start - tp->snd_una;
8316 		cwin = min(tp->snd_wnd, tlen);
8317 		len = cwin;
8318 	} else if (rack->r_ctl.rc_resend) {
8319 		/* Retransmit timer */
8320 		rsm = rack->r_ctl.rc_resend;
8321 		rack->r_ctl.rc_resend = NULL;
8322 		len = rsm->r_end - rsm->r_start;
8323 		sack_rxmit = 1;
8324 		sendalot = 0;
8325 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8326 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8327 		    __func__, __LINE__,
8328 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8329 		sb_offset = rsm->r_start - tp->snd_una;
8330 		if (len >= ctf_fixed_maxseg(tp)) {
8331 			len = ctf_fixed_maxseg(tp);
8332 		}
8333 	} else if ((rack->rc_in_persist == 0) &&
8334 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
8335 		int maxseg;
8336 
8337 		maxseg = ctf_fixed_maxseg(tp);
8338 		if ((!IN_RECOVERY(tp->t_flags)) &&
8339 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
8340 			/* Enter recovery if not induced by a time-out */
8341 			rack->r_ctl.rc_rsm_start = rsm->r_start;
8342 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
8343 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
8344 			rack_cong_signal(tp, NULL, CC_NDUPACK);
8345 			/*
8346 			 * When we enter recovery we need to assure we send
8347 			 * one packet.
8348 			 */
8349 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
8350 			rack_log_to_prr(rack, 13);
8351 		}
8352 #ifdef INVARIANTS
8353 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
8354 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
8355 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
8356 		}
8357 #endif
8358 		len = rsm->r_end - rsm->r_start;
8359 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8360 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8361 		    __func__, __LINE__,
8362 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8363 		sb_offset = rsm->r_start - tp->snd_una;
8364 		/* Can we send it within the PRR boundary? */
8365 		if ((rack->use_rack_cheat == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) {
8366 			/* It does not fit */
8367 			if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) &&
8368 			    (rack->r_ctl.rc_prr_sndcnt < maxseg)) {
8369 				/*
8370 				 * prr is less than a segment, we
8371 				 * have more acks due in besides
8372 				 * what we need to resend. Lets not send
8373 				 * to avoid sending small pieces of
8374 				 * what we need to retransmit.
8375 				 */
8376 				len = 0;
8377 				goto just_return_nolock;
8378 			}
8379 			len = rack->r_ctl.rc_prr_sndcnt;
8380 		}
8381 		sendalot = 0;
8382 		if (len >= maxseg) {
8383 			len = maxseg;
8384 		}
8385 		if (len > 0) {
8386 			sub_from_prr = 1;
8387 			sack_rxmit = 1;
8388 			KMOD_TCPSTAT_INC(tcps_sack_rexmits);
8389 			KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
8390 			    min(len, ctf_fixed_maxseg(tp)));
8391 			counter_u64_add(rack_rtm_prr_retran, 1);
8392 		}
8393 	}
8394 	/*
8395 	 * Enforce a connection sendmap count limit if set
8396 	 * as long as we are not retransmiting.
8397 	 */
8398 	if ((rsm == NULL) &&
8399 	    (rack->do_detection == 0) &&
8400 	    (V_tcp_map_entries_limit > 0) &&
8401 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
8402 		counter_u64_add(rack_to_alloc_limited, 1);
8403 		if (!rack->alloc_limit_reported) {
8404 			rack->alloc_limit_reported = 1;
8405 			counter_u64_add(rack_alloc_limited_conns, 1);
8406 		}
8407 		goto just_return_nolock;
8408 	}
8409 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
8410 		/* we are retransmitting the fin */
8411 		len--;
8412 		if (len) {
8413 			/*
8414 			 * When retransmitting data do *not* include the
8415 			 * FIN. This could happen from a TLP probe.
8416 			 */
8417 			flags &= ~TH_FIN;
8418 		}
8419 	}
8420 #ifdef INVARIANTS
8421 	/* For debugging */
8422 	rack->r_ctl.rc_rsm_at_retran = rsm;
8423 #endif
8424 	/*
8425 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
8426 	 * state flags.
8427 	 */
8428 	if (tp->t_flags & TF_NEEDFIN)
8429 		flags |= TH_FIN;
8430 	if (tp->t_flags & TF_NEEDSYN)
8431 		flags |= TH_SYN;
8432 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
8433 		void *end_rsm;
8434 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
8435 		if (end_rsm)
8436 			kern_prefetch(end_rsm, &prefetch_rsm);
8437 		prefetch_rsm = 1;
8438 	}
8439 	SOCKBUF_LOCK(sb);
8440 	/*
8441 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
8442 	 * if window is small but nonzero and time TF_SENTFIN expired, we
8443 	 * will send what we can and go to transmit state.
8444 	 */
8445 	if (tp->t_flags & TF_FORCEDATA) {
8446 		if (sendwin == 0) {
8447 			/*
8448 			 * If we still have some data to send, then clear
8449 			 * the FIN bit.  Usually this would happen below
8450 			 * when it realizes that we aren't sending all the
8451 			 * data.  However, if we have exactly 1 byte of
8452 			 * unsent data, then it won't clear the FIN bit
8453 			 * below, and if we are in persist state, we wind up
8454 			 * sending the packet without recording that we sent
8455 			 * the FIN bit.
8456 			 *
8457 			 * We can't just blindly clear the FIN bit, because
8458 			 * if we don't have any more data to send then the
8459 			 * probe will be the FIN itself.
8460 			 */
8461 			if (sb_offset < sbused(sb))
8462 				flags &= ~TH_FIN;
8463 			sendwin = 1;
8464 		} else {
8465 			if ((rack->rc_in_persist != 0) &&
8466  			    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
8467 					       rack->r_ctl.rc_pace_min_segs)))
8468 				rack_exit_persist(tp, rack);
8469 			/*
8470 			 * If we are dropping persist mode then we need to
8471 			 * correct snd_nxt/snd_max and off.
8472 			 */
8473 			tp->snd_nxt = tp->snd_max;
8474 			sb_offset = tp->snd_nxt - tp->snd_una;
8475 		}
8476 	}
8477 	/*
8478 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
8479 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
8480 	 * negative length.  This can also occur when TCP opens up its
8481 	 * congestion window while receiving additional duplicate acks after
8482 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
8483 	 * the fast-retransmit.
8484 	 *
8485 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
8486 	 * set to snd_una, the sb_offset will be 0, and the length may wind
8487 	 * up 0.
8488 	 *
8489 	 * If sack_rxmit is true we are retransmitting from the scoreboard
8490 	 * in which case len is already set.
8491 	 */
8492 	if (sack_rxmit == 0) {
8493 		uint32_t avail;
8494 
8495 		avail = sbavail(sb);
8496 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
8497 			sb_offset = tp->snd_nxt - tp->snd_una;
8498 		else
8499 			sb_offset = 0;
8500 		if (IN_RECOVERY(tp->t_flags) == 0) {
8501 			if (rack->r_ctl.rc_tlp_new_data) {
8502 				/* TLP is forcing out new data */
8503 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
8504 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
8505 				}
8506 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
8507 					len = tp->snd_wnd;
8508 				else
8509 					len = rack->r_ctl.rc_tlp_new_data;
8510 				rack->r_ctl.rc_tlp_new_data = 0;
8511 				new_data_tlp = doing_tlp = 1;
8512 			} else {
8513 				if (sendwin > avail) {
8514 					/* use the available */
8515 					if (avail > sb_offset) {
8516 						len = (int32_t)(avail - sb_offset);
8517 					} else {
8518 						len = 0;
8519 					}
8520 				} else {
8521 					if (sendwin > sb_offset) {
8522 						len = (int32_t)(sendwin - sb_offset);
8523 					} else {
8524 						len = 0;
8525 					}
8526 				}
8527 			}
8528 		} else {
8529 			uint32_t outstanding;
8530 
8531 			/*
8532 			 * We are inside of a SACK recovery episode and are
8533 			 * sending new data, having retransmitted all the
8534 			 * data possible so far in the scoreboard.
8535 			 */
8536 			outstanding = tp->snd_max - tp->snd_una;
8537 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
8538 				if (tp->snd_wnd > outstanding) {
8539 					len = tp->snd_wnd - outstanding;
8540 					/* Check to see if we have the data */
8541 					if (((sb_offset + len) > avail) &&
8542 					    (avail > sb_offset))
8543 						len = avail - sb_offset;
8544 					else
8545 						len = 0;
8546 				} else
8547 					len = 0;
8548 			} else if (avail > sb_offset)
8549 				len = avail - sb_offset;
8550 			else
8551 				len = 0;
8552 			if (len > 0) {
8553 				if (len > rack->r_ctl.rc_prr_sndcnt)
8554 					len = rack->r_ctl.rc_prr_sndcnt;
8555 				if (len > 0) {
8556 					sub_from_prr = 1;
8557 					counter_u64_add(rack_rtm_prr_newdata, 1);
8558 				}
8559 			}
8560 			if (len > ctf_fixed_maxseg(tp)) {
8561 				/*
8562 				 * We should never send more than a MSS when
8563 				 * retransmitting or sending new data in prr
8564 				 * mode unless the override flag is on. Most
8565 				 * likely the PRR algorithm is not going to
8566 				 * let us send a lot as well :-)
8567 				 */
8568 				if (rack->r_ctl.rc_prr_sendalot == 0)
8569 					len = ctf_fixed_maxseg(tp);
8570 			} else if (len < ctf_fixed_maxseg(tp)) {
8571 				/*
8572 				 * Do we send any? The idea here is if the
8573 				 * send empty's the socket buffer we want to
8574 				 * do it. However if not then lets just wait
8575 				 * for our prr_sndcnt to get bigger.
8576 				 */
8577 				long leftinsb;
8578 
8579 				leftinsb = sbavail(sb) - sb_offset;
8580 				if (leftinsb > len) {
8581 					/* This send does not empty the sb */
8582 					len = 0;
8583 				}
8584 			}
8585 		}
8586 	}
8587 	if (prefetch_so_done == 0) {
8588 		kern_prefetch(so, &prefetch_so_done);
8589 		prefetch_so_done = 1;
8590 	}
8591 	/*
8592 	 * Lop off SYN bit if it has already been sent.  However, if this is
8593 	 * SYN-SENT state and if segment contains data and if we don't know
8594 	 * that foreign host supports TAO, suppress sending segment.
8595 	 */
8596 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
8597 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
8598 		if (tp->t_state != TCPS_SYN_RECEIVED)
8599 			flags &= ~TH_SYN;
8600 		/*
8601 		 * When sending additional segments following a TFO SYN|ACK,
8602 		 * do not include the SYN bit.
8603 		 */
8604 		if (IS_FASTOPEN(tp->t_flags) &&
8605 		    (tp->t_state == TCPS_SYN_RECEIVED))
8606 			flags &= ~TH_SYN;
8607 		sb_offset--, len++;
8608 	}
8609 	/*
8610 	 * Be careful not to send data and/or FIN on SYN segments. This
8611 	 * measure is needed to prevent interoperability problems with not
8612 	 * fully conformant TCP implementations.
8613 	 */
8614 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
8615 		len = 0;
8616 		flags &= ~TH_FIN;
8617 	}
8618 	/*
8619 	 * On TFO sockets, ensure no data is sent in the following cases:
8620 	 *
8621 	 *  - When retransmitting SYN|ACK on a passively-created socket
8622 	 *
8623 	 *  - When retransmitting SYN on an actively created socket
8624 	 *
8625 	 *  - When sending a zero-length cookie (cookie request) on an
8626 	 *    actively created socket
8627 	 *
8628 	 *  - When the socket is in the CLOSED state (RST is being sent)
8629 	 */
8630 	if (IS_FASTOPEN(tp->t_flags) &&
8631 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
8632 	     ((tp->t_state == TCPS_SYN_SENT) &&
8633 	      (tp->t_tfo_client_cookie_len == 0)) ||
8634 	     (flags & TH_RST))) {
8635 		sack_rxmit = 0;
8636 		len = 0;
8637 	}
8638 	/* Without fast-open there should never be data sent on a SYN */
8639 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
8640 		len = 0;
8641 	orig_len = len;
8642 	if (len <= 0) {
8643 		/*
8644 		 * If FIN has been sent but not acked, but we haven't been
8645 		 * called to retransmit, len will be < 0.  Otherwise, window
8646 		 * shrank after we sent into it.  If window shrank to 0,
8647 		 * cancel pending retransmit, pull snd_nxt back to (closed)
8648 		 * window, and set the persist timer if it isn't already
8649 		 * going.  If the window didn't close completely, just wait
8650 		 * for an ACK.
8651 		 *
8652 		 * We also do a general check here to ensure that we will
8653 		 * set the persist timer when we have data to send, but a
8654 		 * 0-byte window. This makes sure the persist timer is set
8655 		 * even if the packet hits one of the "goto send" lines
8656 		 * below.
8657 		 */
8658 		len = 0;
8659 		if ((tp->snd_wnd == 0) &&
8660 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8661 		    (tp->snd_una == tp->snd_max) &&
8662 		    (sb_offset < (int)sbavail(sb))) {
8663 			tp->snd_nxt = tp->snd_una;
8664 			rack_enter_persist(tp, rack, cts);
8665 		}
8666 	} else if ((rsm == NULL) &&
8667 		   ((doing_tlp == 0) || (new_data_tlp == 1)) &&
8668 		   (len < rack->r_ctl.rc_pace_max_segs)) {
8669 		/*
8670 		 * We are not sending a full segment for
8671 		 * some reason. Should we not send anything (think
8672 		 * sws or persists)?
8673 		 */
8674 		if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8675 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8676 		    (len < (int)(sbavail(sb) - sb_offset))) {
8677 			/*
8678 			 * Here the rwnd is less than
8679 			 * the pacing size, this is not a retransmit,
8680 			 * we are established and
8681 			 * the send is not the last in the socket buffer
8682 			 * we send nothing, and may enter persists.
8683 			 */
8684 			len = 0;
8685 			if (tp->snd_max == tp->snd_una) {
8686 				/*
8687 				 * Nothing out we can
8688 				 * go into persists.
8689 				 */
8690 				rack_enter_persist(tp, rack, cts);
8691 				tp->snd_nxt = tp->snd_una;
8692 			}
8693 		} else if ((tp->snd_cwnd >= max(rack->r_ctl.rc_pace_min_segs, (maxseg * 4))) &&
8694 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8695 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8696 			   (len < rack->r_ctl.rc_pace_min_segs)) {
8697 			/*
8698 			 * Here we are not retransmitting, and
8699 			 * the cwnd is not so small that we could
8700 			 * not send at least a min size (rxt timer
8701 			 * not having gone off), We have 2 segments or
8702 			 * more already in flight, its not the tail end
8703 			 * of the socket buffer  and the cwnd is blocking
8704 			 * us from sending out a minimum pacing segment size.
8705 			 * Lets not send anything.
8706 			 */
8707 			len = 0;
8708 		} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
8709 			    min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8710 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8711 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8712 			   (TCPS_HAVEESTABLISHED(tp->t_state))) {
8713 			/*
8714 			 * Here we have a send window but we have
8715 			 * filled it up and we can't send another pacing segment.
8716 			 * We also have in flight more than 2 segments
8717 			 * and we are not completing the sb i.e. we allow
8718 			 * the last bytes of the sb to go out even if
8719 			 * its not a full pacing segment.
8720 			 */
8721 			len = 0;
8722 		}
8723 	}
8724 	/* len will be >= 0 after this point. */
8725 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
8726 	tcp_sndbuf_autoscale(tp, so, sendwin);
8727 	/*
8728 	 * Decide if we can use TCP Segmentation Offloading (if supported by
8729 	 * hardware).
8730 	 *
8731 	 * TSO may only be used if we are in a pure bulk sending state.  The
8732 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
8733 	 * options prevent using TSO.  With TSO the TCP header is the same
8734 	 * (except for the sequence number) for all generated packets.  This
8735 	 * makes it impossible to transmit any options which vary per
8736 	 * generated segment or packet.
8737 	 *
8738 	 * IPv4 handling has a clear separation of ip options and ip header
8739 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
8740 	 * the right thing below to provide length of just ip options and thus
8741 	 * checking for ipoptlen is enough to decide if ip options are present.
8742 	 */
8743 
8744 #ifdef INET6
8745 	if (isipv6)
8746 		ipoptlen = ip6_optlen(tp->t_inpcb);
8747 	else
8748 #endif
8749 		if (tp->t_inpcb->inp_options)
8750 			ipoptlen = tp->t_inpcb->inp_options->m_len -
8751 			    offsetof(struct ipoption, ipopt_list);
8752 		else
8753 			ipoptlen = 0;
8754 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8755 	/*
8756 	 * Pre-calculate here as we save another lookup into the darknesses
8757 	 * of IPsec that way and can actually decide if TSO is ok.
8758 	 */
8759 #ifdef INET6
8760 	if (isipv6 && IPSEC_ENABLED(ipv6))
8761 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
8762 #ifdef INET
8763 	else
8764 #endif
8765 #endif				/* INET6 */
8766 #ifdef INET
8767 	if (IPSEC_ENABLED(ipv4))
8768 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
8769 #endif				/* INET */
8770 #endif
8771 
8772 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8773 	ipoptlen += ipsec_optlen;
8774 #endif
8775 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > ctf_fixed_maxseg(tp) &&
8776 	    (tp->t_port == 0) &&
8777 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
8778 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
8779 	    ipoptlen == 0)
8780 		tso = 1;
8781 	{
8782 		uint32_t outstanding;
8783 
8784 		outstanding = tp->snd_max - tp->snd_una;
8785 		if (tp->t_flags & TF_SENTFIN) {
8786 			/*
8787 			 * If we sent a fin, snd_max is 1 higher than
8788 			 * snd_una
8789 			 */
8790 			outstanding--;
8791 		}
8792 		if (sack_rxmit) {
8793 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
8794 				flags &= ~TH_FIN;
8795 		} else {
8796 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
8797 			    sbused(sb)))
8798 				flags &= ~TH_FIN;
8799 		}
8800 	}
8801 	recwin = sbspace(&so->so_rcv);
8802 
8803 	/*
8804 	 * Sender silly window avoidance.   We transmit under the following
8805 	 * conditions when len is non-zero:
8806 	 *
8807 	 * - We have a full segment (or more with TSO) - This is the last
8808 	 * buffer in a write()/send() and we are either idle or running
8809 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
8810 	 * then 1/2 the maximum send window's worth of data (receiver may be
8811 	 * limited the window size) - we need to retransmit
8812 	 */
8813 	if (len) {
8814 		if (len >= ctf_fixed_maxseg(tp)) {
8815 			pass = 1;
8816 			goto send;
8817 		}
8818 		/*
8819 		 * NOTE! on localhost connections an 'ack' from the remote
8820 		 * end may occur synchronously with the output and cause us
8821 		 * to flush a buffer queued with moretocome.  XXX
8822 		 *
8823 		 */
8824 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
8825 		    (idle || (tp->t_flags & TF_NODELAY)) &&
8826 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
8827 		    (tp->t_flags & TF_NOPUSH) == 0) {
8828 			pass = 2;
8829 			goto send;
8830 		}
8831 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
8832 			pass = 3;
8833 			goto send;
8834 		}
8835 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
8836 			goto send;
8837 		}
8838 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
8839 			pass = 4;
8840 			goto send;
8841 		}
8842 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
8843 			pass = 5;
8844 			goto send;
8845 		}
8846 		if (sack_rxmit) {
8847 			pass = 6;
8848 			goto send;
8849 		}
8850 	}
8851 	/*
8852 	 * Sending of standalone window updates.
8853 	 *
8854 	 * Window updates are important when we close our window due to a
8855 	 * full socket buffer and are opening it again after the application
8856 	 * reads data from it.  Once the window has opened again and the
8857 	 * remote end starts to send again the ACK clock takes over and
8858 	 * provides the most current window information.
8859 	 *
8860 	 * We must avoid the silly window syndrome whereas every read from
8861 	 * the receive buffer, no matter how small, causes a window update
8862 	 * to be sent.  We also should avoid sending a flurry of window
8863 	 * updates when the socket buffer had queued a lot of data and the
8864 	 * application is doing small reads.
8865 	 *
8866 	 * Prevent a flurry of pointless window updates by only sending an
8867 	 * update when we can increase the advertized window by more than
8868 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
8869 	 * full or is very small be more aggressive and send an update
8870 	 * whenever we can increase by two mss sized segments. In all other
8871 	 * situations the ACK's to new incoming data will carry further
8872 	 * window increases.
8873 	 *
8874 	 * Don't send an independent window update if a delayed ACK is
8875 	 * pending (it will get piggy-backed on it) or the remote side
8876 	 * already has done a half-close and won't send more data.  Skip
8877 	 * this if the connection is in T/TCP half-open state.
8878 	 */
8879 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
8880 	    !(tp->t_flags & TF_DELACK) &&
8881 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
8882 		/*
8883 		 * "adv" is the amount we could increase the window, taking
8884 		 * into account that we are limited by TCP_MAXWIN <<
8885 		 * tp->rcv_scale.
8886 		 */
8887 		int32_t adv;
8888 		int oldwin;
8889 
8890 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
8891 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
8892 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
8893 			adv -= oldwin;
8894 		} else
8895 			oldwin = 0;
8896 
8897 		/*
8898 		 * If the new window size ends up being the same as the old
8899 		 * size when it is scaled, then don't force a window update.
8900 		 */
8901 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
8902 			goto dontupdate;
8903 
8904 		if (adv >= (int32_t)(2 * ctf_fixed_maxseg(tp)) &&
8905 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
8906 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
8907 		     so->so_rcv.sb_hiwat <= 8 * ctf_fixed_maxseg(tp))) {
8908 			pass = 7;
8909 			goto send;
8910 		}
8911 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
8912 			goto send;
8913 	}
8914 dontupdate:
8915 
8916 	/*
8917 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
8918 	 * is also a catch-all for the retransmit timer timeout case.
8919 	 */
8920 	if (tp->t_flags & TF_ACKNOW) {
8921 		pass = 8;
8922 		goto send;
8923 	}
8924 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
8925 		pass = 9;
8926 		goto send;
8927 	}
8928 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
8929 		pass = 10;
8930 		goto send;
8931 	}
8932 	/*
8933 	 * If our state indicates that FIN should be sent and we have not
8934 	 * yet done so, then we need to send.
8935 	 */
8936 	if ((flags & TH_FIN) &&
8937 	    (tp->snd_nxt == tp->snd_una)) {
8938 		pass = 11;
8939 		goto send;
8940 	}
8941 	/*
8942 	 * No reason to send a segment, just return.
8943 	 */
8944 just_return:
8945 	SOCKBUF_UNLOCK(sb);
8946 just_return_nolock:
8947 	if (tot_len_this_send == 0)
8948 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
8949 	if (slot) {
8950 		/* set the rack tcb into the slot N */
8951 		counter_u64_add(rack_paced_segments, 1);
8952 	} else if (tot_len_this_send) {
8953 		counter_u64_add(rack_unpaced_segments, 1);
8954 	}
8955 	/* Check if we need to go into persists or not */
8956 	if ((rack->rc_in_persist == 0) &&
8957 	    (tp->snd_max == tp->snd_una) &&
8958 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
8959 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
8960 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd) &&
8961 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) {
8962 		/* Yes lets make sure to move to persist before timer-start */
8963 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
8964 	}
8965 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
8966 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
8967 	tp->t_flags &= ~TF_FORCEDATA;
8968 	return (0);
8969 
8970 send:
8971 	if ((flags & TH_FIN) &&
8972 	    sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8973 		/*
8974 		 * We do not transmit a FIN
8975 		 * with data outstanding. We
8976 		 * need to make it so all data
8977 		 * is acked first.
8978 		 */
8979 		flags &= ~TH_FIN;
8980 	}
8981 	if (doing_tlp == 0) {
8982 		/*
8983 		 * Data not a TLP, and its not the rxt firing. If it is the
8984 		 * rxt firing, we want to leave the tlp_in_progress flag on
8985 		 * so we don't send another TLP. It has to be a rack timer
8986 		 * or normal send (response to acked data) to clear the tlp
8987 		 * in progress flag.
8988 		 */
8989 		rack->rc_tlp_in_progress = 0;
8990 	}
8991 	SOCKBUF_LOCK_ASSERT(sb);
8992 	if (len > 0) {
8993 		if (len >= ctf_fixed_maxseg(tp))
8994 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
8995 		else
8996 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
8997 	}
8998 	/*
8999 	 * Before ESTABLISHED, force sending of initial options unless TCP
9000 	 * set not to do any options. NOTE: we assume that the IP/TCP header
9001 	 * plus TCP options always fit in a single mbuf, leaving room for a
9002 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
9003 	 * + optlen <= MCLBYTES
9004 	 */
9005 	optlen = 0;
9006 #ifdef INET6
9007 	if (isipv6)
9008 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
9009 	else
9010 #endif
9011 		hdrlen = sizeof(struct tcpiphdr);
9012 
9013 	/*
9014 	 * Compute options for segment. We only have to care about SYN and
9015 	 * established connection segments.  Options for SYN-ACK segments
9016 	 * are handled in TCP syncache.
9017 	 */
9018 	to.to_flags = 0;
9019 	if ((tp->t_flags & TF_NOOPT) == 0) {
9020 		/* Maximum segment size. */
9021 		if (flags & TH_SYN) {
9022 			tp->snd_nxt = tp->iss;
9023 			to.to_mss = tcp_mssopt(&inp->inp_inc);
9024 #ifdef NETFLIX_TCPOUDP
9025 			if (tp->t_port)
9026 				to.to_mss -= V_tcp_udp_tunneling_overhead;
9027 #endif
9028 			to.to_flags |= TOF_MSS;
9029 
9030 			/*
9031 			 * On SYN or SYN|ACK transmits on TFO connections,
9032 			 * only include the TFO option if it is not a
9033 			 * retransmit, as the presence of the TFO option may
9034 			 * have caused the original SYN or SYN|ACK to have
9035 			 * been dropped by a middlebox.
9036 			 */
9037 			if (IS_FASTOPEN(tp->t_flags) &&
9038 			    (tp->t_rxtshift == 0)) {
9039 				if (tp->t_state == TCPS_SYN_RECEIVED) {
9040 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
9041 					to.to_tfo_cookie =
9042 					    (u_int8_t *)&tp->t_tfo_cookie.server;
9043 					to.to_flags |= TOF_FASTOPEN;
9044 					wanted_cookie = 1;
9045 				} else if (tp->t_state == TCPS_SYN_SENT) {
9046 					to.to_tfo_len =
9047 					    tp->t_tfo_client_cookie_len;
9048 					to.to_tfo_cookie =
9049 					    tp->t_tfo_cookie.client;
9050 					to.to_flags |= TOF_FASTOPEN;
9051 					wanted_cookie = 1;
9052 					/*
9053 					 * If we wind up having more data to
9054 					 * send with the SYN than can fit in
9055 					 * one segment, don't send any more
9056 					 * until the SYN|ACK comes back from
9057 					 * the other end.
9058 					 */
9059 					sendalot = 0;
9060 				}
9061 			}
9062 		}
9063 		/* Window scaling. */
9064 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
9065 			to.to_wscale = tp->request_r_scale;
9066 			to.to_flags |= TOF_SCALE;
9067 		}
9068 		/* Timestamps. */
9069 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
9070 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
9071 			to.to_tsval = cts + tp->ts_offset;
9072 			to.to_tsecr = tp->ts_recent;
9073 			to.to_flags |= TOF_TS;
9074 		}
9075 		/* Set receive buffer autosizing timestamp. */
9076 		if (tp->rfbuf_ts == 0 &&
9077 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
9078 			tp->rfbuf_ts = tcp_ts_getticks();
9079 		/* Selective ACK's. */
9080 		if (flags & TH_SYN)
9081 			to.to_flags |= TOF_SACKPERM;
9082 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9083 		    tp->rcv_numsacks > 0) {
9084 			to.to_flags |= TOF_SACK;
9085 			to.to_nsacks = tp->rcv_numsacks;
9086 			to.to_sacks = (u_char *)tp->sackblks;
9087 		}
9088 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9089 		/* TCP-MD5 (RFC2385). */
9090 		if (tp->t_flags & TF_SIGNATURE)
9091 			to.to_flags |= TOF_SIGNATURE;
9092 #endif				/* TCP_SIGNATURE */
9093 
9094 		/* Processing the options. */
9095 		hdrlen += optlen = tcp_addoptions(&to, opt);
9096 		/*
9097 		 * If we wanted a TFO option to be added, but it was unable
9098 		 * to fit, ensure no data is sent.
9099 		 */
9100 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
9101 		    !(to.to_flags & TOF_FASTOPEN))
9102 			len = 0;
9103 	}
9104 #ifdef NETFLIX_TCPOUDP
9105 	if (tp->t_port) {
9106 		if (V_tcp_udp_tunneling_port == 0) {
9107 			/* The port was removed?? */
9108 			SOCKBUF_UNLOCK(&so->so_snd);
9109 			return (EHOSTUNREACH);
9110 		}
9111 		hdrlen += sizeof(struct udphdr);
9112 	}
9113 #endif
9114 #ifdef INET6
9115 	if (isipv6)
9116 		ipoptlen = ip6_optlen(tp->t_inpcb);
9117 	else
9118 #endif
9119 	if (tp->t_inpcb->inp_options)
9120 		ipoptlen = tp->t_inpcb->inp_options->m_len -
9121 		    offsetof(struct ipoption, ipopt_list);
9122 	else
9123 		ipoptlen = 0;
9124 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
9125 	ipoptlen += ipsec_optlen;
9126 #endif
9127 
9128 #ifdef KERN_TLS
9129  	/* force TSO for so TLS offload can get mss */
9130  	if (sb->sb_flags & SB_TLS_IFNET) {
9131  		force_tso = 1;
9132  	}
9133 #endif
9134 	/*
9135 	 * Adjust data length if insertion of options will bump the packet
9136 	 * length beyond the t_maxseg length. Clear the FIN bit because we
9137 	 * cut off the tail of the segment.
9138 	 */
9139 	if (len + optlen + ipoptlen > tp->t_maxseg) {
9140 		if (tso) {
9141 			uint32_t if_hw_tsomax;
9142 			uint32_t moff;
9143 			int32_t max_len;
9144 
9145 			/* extract TSO information */
9146 			if_hw_tsomax = tp->t_tsomax;
9147 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
9148 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
9149 			KASSERT(ipoptlen == 0,
9150 			    ("%s: TSO can't do IP options", __func__));
9151 
9152 			/*
9153 			 * Check if we should limit by maximum payload
9154 			 * length:
9155 			 */
9156 			if (if_hw_tsomax != 0) {
9157 				/* compute maximum TSO length */
9158 				max_len = (if_hw_tsomax - hdrlen -
9159 				    max_linkhdr);
9160 				if (max_len <= 0) {
9161 					len = 0;
9162 				} else if (len > max_len) {
9163 					sendalot = 1;
9164 					len = max_len;
9165 				}
9166 			}
9167 			/*
9168 			 * Prevent the last segment from being fractional
9169 			 * unless the send sockbuf can be emptied:
9170 			 */
9171 			max_len = (tp->t_maxseg - optlen);
9172 			if (((sb_offset + len) < sbavail(sb)) &&
9173 			    (hw_tls == 0)) {
9174 				moff = len % (u_int)max_len;
9175 				if (moff != 0) {
9176 					len -= moff;
9177 					sendalot = 1;
9178 				}
9179 			}
9180                         /*
9181 			 * In case there are too many small fragments don't
9182 			 * use TSO:
9183 			 */
9184 			if (len <= maxseg) {
9185 				len = max_len;
9186 				sendalot = 1;
9187 				tso = 0;
9188 			}
9189 			/*
9190 			 * Send the FIN in a separate segment after the bulk
9191 			 * sending is done. We don't trust the TSO
9192 			 * implementations to clear the FIN flag on all but
9193 			 * the last segment.
9194 			 */
9195 			if (tp->t_flags & TF_NEEDFIN)
9196 				sendalot = 1;
9197 
9198 		} else {
9199 			if (optlen + ipoptlen >= tp->t_maxseg) {
9200 				/*
9201 				 * Since we don't have enough space to put
9202 				 * the IP header chain and the TCP header in
9203 				 * one packet as required by RFC 7112, don't
9204 				 * send it. Also ensure that at least one
9205 				 * byte of the payload can be put into the
9206 				 * TCP segment.
9207 				 */
9208 				SOCKBUF_UNLOCK(&so->so_snd);
9209 				error = EMSGSIZE;
9210 				sack_rxmit = 0;
9211 				goto out;
9212 			}
9213 			len = tp->t_maxseg - optlen - ipoptlen;
9214 			sendalot = 1;
9215 		}
9216 	} else
9217 		tso = 0;
9218 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
9219 	    ("%s: len > IP_MAXPACKET", __func__));
9220 #ifdef DIAGNOSTIC
9221 #ifdef INET6
9222 	if (max_linkhdr + hdrlen > MCLBYTES)
9223 #else
9224 	if (max_linkhdr + hdrlen > MHLEN)
9225 #endif
9226 		panic("tcphdr too big");
9227 #endif
9228 
9229 	/*
9230 	 * This KASSERT is here to catch edge cases at a well defined place.
9231 	 * Before, those had triggered (random) panic conditions further
9232 	 * down.
9233 	 */
9234 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
9235 	if ((len == 0) &&
9236 	    (flags & TH_FIN) &&
9237 	    (sbused(sb))) {
9238 		/*
9239 		 * We have outstanding data, don't send a fin by itself!.
9240 		 */
9241 		goto just_return;
9242 	}
9243 	/*
9244 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
9245 	 * and initialize the header from the template for sends on this
9246 	 * connection.
9247 	 */
9248 	if (len) {
9249 		uint32_t max_val;
9250 		uint32_t moff;
9251 
9252 		if (rack->rc_pace_max_segs)
9253 			max_val = rack->rc_pace_max_segs * ctf_fixed_maxseg(tp);
9254 		else
9255 			max_val = len;
9256 		if (rack->r_ctl.rc_pace_max_segs < max_val)
9257 			max_val = rack->r_ctl.rc_pace_max_segs;
9258 		/*
9259 		 * We allow a limit on sending with hptsi.
9260 		 */
9261 		if (len > max_val) {
9262 			len = max_val;
9263 		}
9264 #ifdef INET6
9265 		if (MHLEN < hdrlen + max_linkhdr)
9266 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
9267 		else
9268 #endif
9269 			m = m_gethdr(M_NOWAIT, MT_DATA);
9270 
9271 		if (m == NULL) {
9272 			SOCKBUF_UNLOCK(sb);
9273 			error = ENOBUFS;
9274 			sack_rxmit = 0;
9275 			goto out;
9276 		}
9277 		m->m_data += max_linkhdr;
9278 		m->m_len = hdrlen;
9279 
9280 		/*
9281 		 * Start the m_copy functions from the closest mbuf to the
9282 		 * sb_offset in the socket buffer chain.
9283 		 */
9284 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
9285 		if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
9286 			m_copydata(mb, moff, (int)len,
9287 			    mtod(m, caddr_t)+hdrlen);
9288 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9289 				sbsndptr_adv(sb, mb, len);
9290 			m->m_len += len;
9291 		} else {
9292 			struct sockbuf *msb;
9293 
9294 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9295 				msb = NULL;
9296 			else
9297 				msb = sb;
9298 			m->m_next = tcp_m_copym(
9299 #ifdef NETFLIX_COPY_ARGS
9300 				tp,
9301 #endif
9302 				mb, moff, &len,
9303 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
9304 			    ((rsm == NULL) ? hw_tls : 0)
9305 #ifdef NETFLIX_COPY_ARGS
9306 				, &filled_all
9307 #endif
9308 				);
9309 			if (len <= (tp->t_maxseg - optlen)) {
9310 				/*
9311 				 * Must have ran out of mbufs for the copy
9312 				 * shorten it to no longer need tso. Lets
9313 				 * not put on sendalot since we are low on
9314 				 * mbufs.
9315 				 */
9316 				tso = 0;
9317 			}
9318 			if (m->m_next == NULL) {
9319 				SOCKBUF_UNLOCK(sb);
9320 				(void)m_free(m);
9321 				error = ENOBUFS;
9322 				sack_rxmit = 0;
9323 				goto out;
9324 			}
9325 		}
9326 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
9327 			KMOD_TCPSTAT_INC(tcps_sndprobe);
9328 #ifdef STATS
9329 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9330 				stats_voi_update_abs_u32(tp->t_stats,
9331 				    VOI_TCP_RETXPB, len);
9332 			else
9333 				stats_voi_update_abs_u64(tp->t_stats,
9334 				    VOI_TCP_TXPB, len);
9335 #endif
9336 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
9337 			if (rsm && (rsm->r_flags & RACK_TLP)) {
9338 				/*
9339 				 * TLP should not count in retran count, but
9340 				 * in its own bin
9341 				 */
9342 				counter_u64_add(rack_tlp_retran, 1);
9343 				counter_u64_add(rack_tlp_retran_bytes, len);
9344 			} else {
9345 				tp->t_sndrexmitpack++;
9346 				KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
9347 				KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
9348 			}
9349 #ifdef STATS
9350 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
9351 			    len);
9352 #endif
9353 		} else {
9354 			KMOD_TCPSTAT_INC(tcps_sndpack);
9355 			KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
9356 #ifdef STATS
9357 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
9358 			    len);
9359 #endif
9360 		}
9361 		/*
9362 		 * If we're sending everything we've got, set PUSH. (This
9363 		 * will keep happy those implementations which only give
9364 		 * data to the user when a buffer fills or a PUSH comes in.)
9365 		 */
9366 		if (sb_offset + len == sbused(sb) &&
9367 		    sbused(sb) &&
9368 		    !(flags & TH_SYN))
9369 			flags |= TH_PUSH;
9370 
9371 		/*
9372 		 * Are we doing pacing, if so we must calculate the slot. We
9373 		 * only do hptsi in ESTABLISHED and with no RESET being
9374 		 * sent where we have data to send.
9375 		 */
9376 		if (((tp->t_state == TCPS_ESTABLISHED) ||
9377 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
9378 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
9379 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
9380 		    ((flags & TH_FIN) == 0))) &&
9381 		    ((flags & TH_RST) == 0)) {
9382 			/* Get our pacing rate */
9383 			tot_len_this_send += len;
9384 			slot = rack_get_pacing_delay(rack, tp, tot_len_this_send);
9385 		}
9386 		SOCKBUF_UNLOCK(sb);
9387 	} else {
9388 		SOCKBUF_UNLOCK(sb);
9389 		if (tp->t_flags & TF_ACKNOW)
9390 			KMOD_TCPSTAT_INC(tcps_sndacks);
9391 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
9392 			KMOD_TCPSTAT_INC(tcps_sndctrl);
9393 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
9394 			KMOD_TCPSTAT_INC(tcps_sndurg);
9395 		else
9396 			KMOD_TCPSTAT_INC(tcps_sndwinup);
9397 
9398 		m = m_gethdr(M_NOWAIT, MT_DATA);
9399 		if (m == NULL) {
9400 			error = ENOBUFS;
9401 			sack_rxmit = 0;
9402 			goto out;
9403 		}
9404 #ifdef INET6
9405 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
9406 		    MHLEN >= hdrlen) {
9407 			M_ALIGN(m, hdrlen);
9408 		} else
9409 #endif
9410 			m->m_data += max_linkhdr;
9411 		m->m_len = hdrlen;
9412 	}
9413 	SOCKBUF_UNLOCK_ASSERT(sb);
9414 	m->m_pkthdr.rcvif = (struct ifnet *)0;
9415 #ifdef MAC
9416 	mac_inpcb_create_mbuf(inp, m);
9417 #endif
9418 #ifdef INET6
9419 	if (isipv6) {
9420 		ip6 = mtod(m, struct ip6_hdr *);
9421 #ifdef NETFLIX_TCPOUDP
9422 		if (tp->t_port) {
9423 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
9424 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9425 			udp->uh_dport = tp->t_port;
9426 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
9427 			udp->uh_ulen = htons(ulen);
9428 			th = (struct tcphdr *)(udp + 1);
9429 		} else
9430 #endif
9431 			th = (struct tcphdr *)(ip6 + 1);
9432 		tcpip_fillheaders(inp,
9433 #ifdef NETFLIX_TCPOUDP
9434 				  tp->t_port,
9435 #endif
9436 				  ip6, th);
9437 	} else
9438 #endif				/* INET6 */
9439 	{
9440 		ip = mtod(m, struct ip *);
9441 #ifdef TCPDEBUG
9442 		ipov = (struct ipovly *)ip;
9443 #endif
9444 #ifdef NETFLIX_TCPOUDP
9445 		if (tp->t_port) {
9446 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
9447 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9448 			udp->uh_dport = tp->t_port;
9449 			ulen = hdrlen + len - sizeof(struct ip);
9450 			udp->uh_ulen = htons(ulen);
9451 			th = (struct tcphdr *)(udp + 1);
9452 		} else
9453 #endif
9454 			th = (struct tcphdr *)(ip + 1);
9455 		tcpip_fillheaders(inp,
9456 #ifdef NETFLIX_TCPOUDP
9457 				  tp->t_port,
9458 #endif
9459 				  ip, th);
9460 	}
9461 	/*
9462 	 * Fill in fields, remembering maximum advertised window for use in
9463 	 * delaying messages about window sizes. If resending a FIN, be sure
9464 	 * not to use a new sequence number.
9465 	 */
9466 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
9467 	    tp->snd_nxt == tp->snd_max)
9468 		tp->snd_nxt--;
9469 	/*
9470 	 * If we are starting a connection, send ECN setup SYN packet. If we
9471 	 * are on a retransmit, we may resend those bits a number of times
9472 	 * as per RFC 3168.
9473 	 */
9474 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
9475 		if (tp->t_rxtshift >= 1) {
9476 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
9477 				flags |= TH_ECE | TH_CWR;
9478 		} else
9479 			flags |= TH_ECE | TH_CWR;
9480 	}
9481 	if (tp->t_state == TCPS_ESTABLISHED &&
9482 	    (tp->t_flags2 & TF2_ECN_PERMIT)) {
9483 		/*
9484 		 * If the peer has ECN, mark data packets with ECN capable
9485 		 * transmission (ECT). Ignore pure ack packets,
9486 		 * retransmissions and window probes.
9487 		 */
9488 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
9489 		    (sack_rxmit == 0) &&
9490 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
9491 #ifdef INET6
9492 			if (isipv6)
9493 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
9494 			else
9495 #endif
9496 				ip->ip_tos |= IPTOS_ECN_ECT0;
9497 			KMOD_TCPSTAT_INC(tcps_ecn_ect0);
9498 		}
9499 		/*
9500 		 * Reply with proper ECN notifications.
9501 		 */
9502 		if (tp->t_flags2 & TF2_ECN_SND_CWR) {
9503 			flags |= TH_CWR;
9504 			tp->t_flags2 &= ~TF2_ECN_SND_CWR;
9505 		}
9506 		if (tp->t_flags2 & TF2_ECN_SND_ECE)
9507 			flags |= TH_ECE;
9508 	}
9509 	/*
9510 	 * If we are doing retransmissions, then snd_nxt will not reflect
9511 	 * the first unsent octet.  For ACK only packets, we do not want the
9512 	 * sequence number of the retransmitted packet, we want the sequence
9513 	 * number of the next unsent octet.  So, if there is no data (and no
9514 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
9515 	 * ti_seq.  But if we are in persist state, snd_max might reflect
9516 	 * one byte beyond the right edge of the window, so use snd_nxt in
9517 	 * that case, since we know we aren't doing a retransmission.
9518 	 * (retransmit and persist are mutually exclusive...)
9519 	 */
9520 	if (sack_rxmit == 0) {
9521 		if (len || (flags & (TH_SYN | TH_FIN)) ||
9522 		    rack->rc_in_persist) {
9523 			th->th_seq = htonl(tp->snd_nxt);
9524 			rack_seq = tp->snd_nxt;
9525 		} else if (flags & TH_RST) {
9526 			/*
9527 			 * For a Reset send the last cum ack in sequence
9528 			 * (this like any other choice may still generate a
9529 			 * challenge ack, if a ack-update packet is in
9530 			 * flight).
9531 			 */
9532 			th->th_seq = htonl(tp->snd_una);
9533 			rack_seq = tp->snd_una;
9534 		} else {
9535 			th->th_seq = htonl(tp->snd_max);
9536 			rack_seq = tp->snd_max;
9537 		}
9538 	} else {
9539 		th->th_seq = htonl(rsm->r_start);
9540 		rack_seq = rsm->r_start;
9541 	}
9542 	th->th_ack = htonl(tp->rcv_nxt);
9543 	if (optlen) {
9544 		bcopy(opt, th + 1, optlen);
9545 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
9546 	}
9547 	th->th_flags = flags;
9548 	/*
9549 	 * Calculate receive window.  Don't shrink window, but avoid silly
9550 	 * window syndrome.
9551 	 * If a RST segment is sent, advertise a window of zero.
9552 	 */
9553 	if (flags & TH_RST) {
9554 		recwin = 0;
9555 	} else {
9556 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
9557 		    recwin < (long)ctf_fixed_maxseg(tp))
9558 			recwin = 0;
9559 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
9560 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
9561 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
9562 		if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
9563 			recwin = (long)TCP_MAXWIN << tp->rcv_scale;
9564 	}
9565 
9566 	/*
9567 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
9568 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
9569 	 * handled in syncache.
9570 	 */
9571 	if (flags & TH_SYN)
9572 		th->th_win = htons((u_short)
9573 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
9574 	else
9575 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
9576 	/*
9577 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
9578 	 * window.  This may cause the remote transmitter to stall.  This
9579 	 * flag tells soreceive() to disable delayed acknowledgements when
9580 	 * draining the buffer.  This can occur if the receiver is
9581 	 * attempting to read more data than can be buffered prior to
9582 	 * transmitting on the connection.
9583 	 */
9584 	if (th->th_win == 0) {
9585 		tp->t_sndzerowin++;
9586 		tp->t_flags |= TF_RXWIN0SENT;
9587 	} else
9588 		tp->t_flags &= ~TF_RXWIN0SENT;
9589 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
9590 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
9591 		th->th_flags |= TH_URG;
9592 	} else
9593 		/*
9594 		 * If no urgent pointer to send, then we pull the urgent
9595 		 * pointer to the left edge of the send window so that it
9596 		 * doesn't drift into the send window on sequence number
9597 		 * wraparound.
9598 		 */
9599 		tp->snd_up = tp->snd_una;	/* drag it along */
9600 
9601 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9602 	if (to.to_flags & TOF_SIGNATURE) {
9603 		/*
9604 		 * Calculate MD5 signature and put it into the place
9605 		 * determined before.
9606 		 * NOTE: since TCP options buffer doesn't point into
9607 		 * mbuf's data, calculate offset and use it.
9608 		 */
9609 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
9610 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
9611 			/*
9612 			 * Do not send segment if the calculation of MD5
9613 			 * digest has failed.
9614 			 */
9615 			goto out;
9616 		}
9617 	}
9618 #endif
9619 
9620 	/*
9621 	 * Put TCP length in extended header, and then checksum extended
9622 	 * header and data.
9623 	 */
9624 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
9625 #ifdef INET6
9626 	if (isipv6) {
9627 		/*
9628 		 * ip6_plen is not need to be filled now, and will be filled
9629 		 * in ip6_output.
9630 		 */
9631 		if (tp->t_port) {
9632 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
9633 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9634 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
9635 			th->th_sum = htons(0);
9636 			UDPSTAT_INC(udps_opackets);
9637 		} else {
9638 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
9639 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9640 			th->th_sum = in6_cksum_pseudo(ip6,
9641 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
9642 			    0);
9643 		}
9644 	}
9645 #endif
9646 #if defined(INET6) && defined(INET)
9647 	else
9648 #endif
9649 #ifdef INET
9650 	{
9651 		if (tp->t_port) {
9652 			m->m_pkthdr.csum_flags = CSUM_UDP;
9653 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9654 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
9655 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
9656 			th->th_sum = htons(0);
9657 			UDPSTAT_INC(udps_opackets);
9658 		} else {
9659 			m->m_pkthdr.csum_flags = CSUM_TCP;
9660 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9661 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
9662 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
9663 			    IPPROTO_TCP + len + optlen));
9664 		}
9665 		/* IP version must be set here for ipv4/ipv6 checking later */
9666 		KASSERT(ip->ip_v == IPVERSION,
9667 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
9668 	}
9669 #endif
9670 	/*
9671 	 * Enable TSO and specify the size of the segments. The TCP pseudo
9672 	 * header checksum is always provided. XXX: Fixme: This is currently
9673 	 * not the case for IPv6.
9674 	 */
9675 	if (tso || force_tso) {
9676 		KASSERT(force_tso || len > tp->t_maxseg - optlen,
9677 		    ("%s: len <= tso_segsz", __func__));
9678 		m->m_pkthdr.csum_flags |= CSUM_TSO;
9679 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
9680 	}
9681 	KASSERT(len + hdrlen == m_length(m, NULL),
9682 	    ("%s: mbuf chain different than expected: %d + %u != %u",
9683 	    __func__, len, hdrlen, m_length(m, NULL)));
9684 
9685 #ifdef TCP_HHOOK
9686 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
9687 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
9688 #endif
9689 #ifdef TCPDEBUG
9690 	/*
9691 	 * Trace.
9692 	 */
9693 	if (so->so_options & SO_DEBUG) {
9694 		u_short save = 0;
9695 
9696 #ifdef INET6
9697 		if (!isipv6)
9698 #endif
9699 		{
9700 			save = ipov->ih_len;
9701 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
9702 			      * (th->th_off << 2) */ );
9703 		}
9704 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
9705 #ifdef INET6
9706 		if (!isipv6)
9707 #endif
9708 			ipov->ih_len = save;
9709 	}
9710 #endif				/* TCPDEBUG */
9711 
9712 	/* We're getting ready to send; log now. */
9713 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
9714 		union tcp_log_stackspecific log;
9715 		struct timeval tv;
9716 
9717 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
9718 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
9719 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
9720 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
9721 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
9722 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
9723 		log.u_bbr.flex4 = orig_len;
9724 		if (filled_all)
9725 			log.u_bbr.flex5 = 0x80000000;
9726 		else
9727 			log.u_bbr.flex5 = 0;
9728 		if (rsm || sack_rxmit) {
9729 			log.u_bbr.flex8 = 1;
9730 		} else {
9731 			log.u_bbr.flex8 = 0;
9732 		}
9733 		log.u_bbr.pkts_out = tp->t_maxseg;
9734 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
9735 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9736 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
9737 		    len, &log, false, NULL, NULL, 0, &tv);
9738 	} else
9739 		lgb = NULL;
9740 
9741 	/*
9742 	 * Fill in IP length and desired time to live and send to IP level.
9743 	 * There should be a better way to handle ttl and tos; we could keep
9744 	 * them in the template, but need a way to checksum without them.
9745 	 */
9746 	/*
9747 	 * m->m_pkthdr.len should have been set before cksum calcuration,
9748 	 * because in6_cksum() need it.
9749 	 */
9750 #ifdef INET6
9751 	if (isipv6) {
9752 		/*
9753 		 * we separately set hoplimit for every segment, since the
9754 		 * user might want to change the value via setsockopt. Also,
9755 		 * desired default hop limit might be changed via Neighbor
9756 		 * Discovery.
9757 		 */
9758 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
9759 
9760 		/*
9761 		 * Set the packet size here for the benefit of DTrace
9762 		 * probes. ip6_output() will set it properly; it's supposed
9763 		 * to include the option header lengths as well.
9764 		 */
9765 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
9766 
9767 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
9768 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9769 		else
9770 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9771 
9772 		if (tp->t_state == TCPS_SYN_SENT)
9773 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
9774 
9775 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
9776 		/* TODO: IPv6 IP6TOS_ECT bit on */
9777 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
9778 		    &inp->inp_route6,
9779 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
9780 		    NULL, NULL, inp);
9781 
9782 		if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL)
9783 			mtu = inp->inp_route6.ro_nh->nh_mtu;
9784 	}
9785 #endif				/* INET6 */
9786 #if defined(INET) && defined(INET6)
9787 	else
9788 #endif
9789 #ifdef INET
9790 	{
9791 		ip->ip_len = htons(m->m_pkthdr.len);
9792 #ifdef INET6
9793 		if (inp->inp_vflag & INP_IPV6PROTO)
9794 			ip->ip_ttl = in6_selecthlim(inp, NULL);
9795 #endif				/* INET6 */
9796 		/*
9797 		 * If we do path MTU discovery, then we set DF on every
9798 		 * packet. This might not be the best thing to do according
9799 		 * to RFC3390 Section 2. However the tcp hostcache migitates
9800 		 * the problem so it affects only the first tcp connection
9801 		 * with a host.
9802 		 *
9803 		 * NB: Don't set DF on small MTU/MSS to have a safe
9804 		 * fallback.
9805 		 */
9806 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
9807 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9808 			if (tp->t_port == 0 || len < V_tcp_minmss) {
9809 				ip->ip_off |= htons(IP_DF);
9810 			}
9811 		} else {
9812 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9813 		}
9814 
9815 		if (tp->t_state == TCPS_SYN_SENT)
9816 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
9817 
9818 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
9819 
9820 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
9821 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
9822 		    inp);
9823 		if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL)
9824 			mtu = inp->inp_route.ro_nh->nh_mtu;
9825 	}
9826 #endif				/* INET */
9827 
9828 out:
9829 	if (lgb) {
9830 		lgb->tlb_errno = error;
9831 		lgb = NULL;
9832 	}
9833 	/*
9834 	 * In transmit state, time the transmission and arrange for the
9835 	 * retransmit.  In persist state, just set snd_max.
9836 	 */
9837 	if (error == 0) {
9838 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9839 		    (tp->t_flags & TF_SACK_PERMIT) &&
9840 		    tp->rcv_numsacks > 0)
9841 			tcp_clean_dsack_blocks(tp);
9842 		if (len == 0)
9843 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
9844 		else if (len == 1) {
9845 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
9846 		} else if (len > 1) {
9847 			int idx;
9848 
9849 			idx = (len / ctf_fixed_maxseg(tp)) + 3;
9850 			if (idx >= TCP_MSS_ACCT_ATIMER)
9851 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
9852 			else
9853 				counter_u64_add(rack_out_size[idx], 1);
9854 		}
9855 		if (hw_tls && len > 0) {
9856 			if (filled_all) {
9857 				counter_u64_add(rack_tls_filled, 1);
9858 				rack_log_type_hrdwtso(tp, rack, len, 0, orig_len, 1);
9859 			} else {
9860 				if (rsm) {
9861 					counter_u64_add(rack_tls_rxt, 1);
9862 					rack_log_type_hrdwtso(tp, rack, len, 2, orig_len, 1);
9863 				} else if (doing_tlp) {
9864 					counter_u64_add(rack_tls_tlp, 1);
9865 					rack_log_type_hrdwtso(tp, rack, len, 3, orig_len, 1);
9866 				} else if ( (ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > sbavail(sb)) {
9867 					counter_u64_add(rack_tls_app, 1);
9868 					rack_log_type_hrdwtso(tp, rack, len, 4, orig_len, 1);
9869 				} else if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) + rack->r_ctl.rc_pace_min_segs) > tp->snd_cwnd) {
9870 					counter_u64_add(rack_tls_cwnd, 1);
9871 					rack_log_type_hrdwtso(tp, rack, len, 5, orig_len, 1);
9872 				} else if ((ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > tp->snd_wnd) {
9873 					counter_u64_add(rack_tls_rwnd, 1);
9874 					rack_log_type_hrdwtso(tp, rack, len, 6, orig_len, 1);
9875 				} else {
9876 					rack_log_type_hrdwtso(tp, rack, len, 7, orig_len, 1);
9877 					counter_u64_add(rack_tls_other, 1);
9878 				}
9879 			}
9880 		}
9881 	}
9882 	if (sub_from_prr && (error == 0)) {
9883 		if (rack->r_ctl.rc_prr_sndcnt >= len)
9884 			rack->r_ctl.rc_prr_sndcnt -= len;
9885 		else
9886 			rack->r_ctl.rc_prr_sndcnt = 0;
9887 	}
9888 	sub_from_prr = 0;
9889 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
9890 	    pass, rsm);
9891 	if ((error == 0) &&
9892 	    (len > 0) &&
9893 	    (tp->snd_una == tp->snd_max))
9894 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
9895 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
9896 	    (rack->rc_in_persist == 0)) {
9897 		tcp_seq startseq = tp->snd_nxt;
9898 
9899 		/*
9900 		 * Advance snd_nxt over sequence space of this segment.
9901 		 */
9902 		if (error)
9903 			/* We don't log or do anything with errors */
9904 			goto nomore;
9905 
9906 		if (flags & (TH_SYN | TH_FIN)) {
9907 			if (flags & TH_SYN)
9908 				tp->snd_nxt++;
9909 			if (flags & TH_FIN) {
9910 				tp->snd_nxt++;
9911 				tp->t_flags |= TF_SENTFIN;
9912 			}
9913 		}
9914 		/* In the ENOBUFS case we do *not* update snd_max */
9915 		if (sack_rxmit)
9916 			goto nomore;
9917 
9918 		tp->snd_nxt += len;
9919 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
9920 			if (tp->snd_una == tp->snd_max) {
9921 				/*
9922 				 * Update the time we just added data since
9923 				 * none was outstanding.
9924 				 */
9925 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9926 				tp->t_acktime = ticks;
9927 			}
9928 			tp->snd_max = tp->snd_nxt;
9929 			/*
9930 			 * Time this transmission if not a retransmission and
9931 			 * not currently timing anything.
9932 			 * This is only relevant in case of switching back to
9933 			 * the base stack.
9934 			 */
9935 			if (tp->t_rtttime == 0) {
9936 				tp->t_rtttime = ticks;
9937 				tp->t_rtseq = startseq;
9938 				KMOD_TCPSTAT_INC(tcps_segstimed);
9939 			}
9940 #ifdef STATS
9941 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
9942 				tp->t_flags |= TF_GPUTINPROG;
9943 				tp->gput_seq = startseq;
9944 				tp->gput_ack = startseq +
9945 				    ulmin(sbavail(sb) - sb_offset, sendwin);
9946 				tp->gput_ts = tcp_ts_getticks();
9947 			}
9948 #endif
9949 		}
9950 	} else {
9951 		/*
9952 		 * Persist case, update snd_max but since we are in persist
9953 		 * mode (no window) we do not update snd_nxt.
9954 		 */
9955 		int32_t xlen = len;
9956 
9957 		if (error)
9958 			goto nomore;
9959 
9960 		if (flags & TH_SYN)
9961 			++xlen;
9962 		if (flags & TH_FIN) {
9963 			++xlen;
9964 			tp->t_flags |= TF_SENTFIN;
9965 		}
9966 		/* In the ENOBUFS case we do *not* update snd_max */
9967 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
9968 			if (tp->snd_una == tp->snd_max) {
9969 				/*
9970 				 * Update the time we just added data since
9971 				 * none was outstanding.
9972 				 */
9973 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9974 				tp->t_acktime = ticks;
9975 			}
9976 			tp->snd_max = tp->snd_nxt + len;
9977 		}
9978 	}
9979 nomore:
9980 	if (error) {
9981 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
9982 		/*
9983 		 * Failures do not advance the seq counter above. For the
9984 		 * case of ENOBUFS we will fall out and retry in 1ms with
9985 		 * the hpts. Everything else will just have to retransmit
9986 		 * with the timer.
9987 		 *
9988 		 * In any case, we do not want to loop around for another
9989 		 * send without a good reason.
9990 		 */
9991 		sendalot = 0;
9992 		switch (error) {
9993 		case EPERM:
9994 			tp->t_flags &= ~TF_FORCEDATA;
9995 			tp->t_softerror = error;
9996 			return (error);
9997 		case ENOBUFS:
9998 			if (slot == 0) {
9999 				/*
10000 				 * Pace us right away to retry in a some
10001 				 * time
10002 				 */
10003 				slot = 1 + rack->rc_enobuf;
10004 				if (rack->rc_enobuf < 255)
10005 					rack->rc_enobuf++;
10006 				if (slot > (rack->rc_rack_rtt / 2)) {
10007 					slot = rack->rc_rack_rtt / 2;
10008 				}
10009 				if (slot < 10)
10010 					slot = 10;
10011 			}
10012 			counter_u64_add(rack_saw_enobuf, 1);
10013 			error = 0;
10014 			goto enobufs;
10015 		case EMSGSIZE:
10016 			/*
10017 			 * For some reason the interface we used initially
10018 			 * to send segments changed to another or lowered
10019 			 * its MTU. If TSO was active we either got an
10020 			 * interface without TSO capabilits or TSO was
10021 			 * turned off. If we obtained mtu from ip_output()
10022 			 * then update it and try again.
10023 			 */
10024 			if (tso)
10025 				tp->t_flags &= ~TF_TSO;
10026 			if (mtu != 0) {
10027 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
10028 				goto again;
10029 			}
10030 			slot = 10;
10031 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10032 			tp->t_flags &= ~TF_FORCEDATA;
10033 			return (error);
10034 		case ENETUNREACH:
10035 			counter_u64_add(rack_saw_enetunreach, 1);
10036 		case EHOSTDOWN:
10037 		case EHOSTUNREACH:
10038 		case ENETDOWN:
10039 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
10040 				tp->t_softerror = error;
10041 			}
10042 			/* FALLTHROUGH */
10043 		default:
10044 			slot = 10;
10045 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10046 			tp->t_flags &= ~TF_FORCEDATA;
10047 			return (error);
10048 		}
10049 	} else {
10050 		rack->rc_enobuf = 0;
10051 	}
10052 	KMOD_TCPSTAT_INC(tcps_sndtotal);
10053 
10054 	/*
10055 	 * Data sent (as far as we can tell). If this advertises a larger
10056 	 * window than any other segment, then remember the size of the
10057 	 * advertised window. Any pending ACK has now been sent.
10058 	 */
10059 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
10060 		tp->rcv_adv = tp->rcv_nxt + recwin;
10061 	tp->last_ack_sent = tp->rcv_nxt;
10062 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
10063 enobufs:
10064 	rack->r_tlp_running = 0;
10065 	if (flags & TH_RST) {
10066 		/*
10067 		 * We don't send again after sending a RST.
10068 		 */
10069 		slot = 0;
10070 		sendalot = 0;
10071 	}
10072 	if (rsm && (slot == 0)) {
10073 		/*
10074 		 * Dup ack retransmission possibly, so
10075 		 * lets assure we have at least min rack
10076 		 * time, if its a rack resend then the rack
10077 		 * to will also be set to this.
10078 		 */
10079 		slot = rack->r_ctl.rc_min_to;
10080 	}
10081 	if (slot) {
10082 		/* set the rack tcb into the slot N */
10083 		counter_u64_add(rack_paced_segments, 1);
10084 	} else if (sendalot) {
10085 		if (len)
10086 			counter_u64_add(rack_unpaced_segments, 1);
10087 		sack_rxmit = 0;
10088 		tp->t_flags &= ~TF_FORCEDATA;
10089 		goto again;
10090 	} else if (len) {
10091 		counter_u64_add(rack_unpaced_segments, 1);
10092 	}
10093 	tp->t_flags &= ~TF_FORCEDATA;
10094 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
10095 	return (error);
10096 }
10097 
10098 /*
10099  * rack_ctloutput() must drop the inpcb lock before performing copyin on
10100  * socket option arguments.  When it re-acquires the lock after the copy, it
10101  * has to revalidate that the connection is still valid for the socket
10102  * option.
10103  */
10104 static int
10105 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
10106     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10107 {
10108 	struct epoch_tracker et;
10109 	int32_t error = 0, optval;
10110 
10111 	switch (sopt->sopt_name) {
10112 	case TCP_RACK_PROP_RATE:
10113 	case TCP_RACK_PROP:
10114 	case TCP_RACK_TLP_REDUCE:
10115 	case TCP_RACK_EARLY_RECOV:
10116 	case TCP_RACK_PACE_ALWAYS:
10117 	case TCP_DELACK:
10118 	case TCP_RACK_PACE_REDUCE:
10119 	case TCP_RACK_PACE_MAX_SEG:
10120 	case TCP_RACK_PRR_SENDALOT:
10121 	case TCP_RACK_MIN_TO:
10122 	case TCP_RACK_EARLY_SEG:
10123 	case TCP_RACK_REORD_THRESH:
10124 	case TCP_RACK_REORD_FADE:
10125 	case TCP_RACK_TLP_THRESH:
10126 	case TCP_RACK_PKT_DELAY:
10127 	case TCP_RACK_TLP_USE:
10128 	case TCP_RACK_TLP_INC_VAR:
10129 	case TCP_RACK_IDLE_REDUCE_HIGH:
10130 	case TCP_RACK_MIN_PACE:
10131 	case TCP_RACK_GP_INCREASE:
10132 	case TCP_BBR_RACK_RTT_USE:
10133 	case TCP_BBR_USE_RACK_CHEAT:
10134 	case TCP_RACK_DO_DETECTION:
10135 	case TCP_DATA_AFTER_CLOSE:
10136 		break;
10137 	default:
10138 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10139 		break;
10140 	}
10141 	INP_WUNLOCK(inp);
10142 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
10143 	if (error)
10144 		return (error);
10145 	INP_WLOCK(inp);
10146 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
10147 		INP_WUNLOCK(inp);
10148 		return (ECONNRESET);
10149 	}
10150 	tp = intotcpcb(inp);
10151 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10152 	switch (sopt->sopt_name) {
10153 	case TCP_RACK_DO_DETECTION:
10154 		RACK_OPTS_INC(tcp_rack_do_detection);
10155 		if (optval == 0)
10156 			rack->do_detection = 0;
10157 		else
10158 			rack->do_detection = 1;
10159 		break;
10160 	case TCP_RACK_PROP_RATE:
10161 		if ((optval <= 0) || (optval >= 100)) {
10162 			error = EINVAL;
10163 			break;
10164 		}
10165 		RACK_OPTS_INC(tcp_rack_prop_rate);
10166 		rack->r_ctl.rc_prop_rate = optval;
10167 		break;
10168 	case TCP_RACK_TLP_USE:
10169 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
10170 			error = EINVAL;
10171 			break;
10172 		}
10173 		RACK_OPTS_INC(tcp_tlp_use);
10174 		rack->rack_tlp_threshold_use = optval;
10175 		break;
10176 	case TCP_RACK_PROP:
10177 		/* RACK proportional rate reduction (bool) */
10178 		RACK_OPTS_INC(tcp_rack_prop);
10179 		rack->r_ctl.rc_prop_reduce = optval;
10180 		break;
10181 	case TCP_RACK_TLP_REDUCE:
10182 		/* RACK TLP cwnd reduction (bool) */
10183 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
10184 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
10185 		break;
10186 	case TCP_RACK_EARLY_RECOV:
10187 		/* Should recovery happen early (bool) */
10188 		RACK_OPTS_INC(tcp_rack_early_recov);
10189 		rack->r_ctl.rc_early_recovery = optval;
10190 		break;
10191 	case TCP_RACK_PACE_ALWAYS:
10192 		/* Use the always pace method (bool)  */
10193 		RACK_OPTS_INC(tcp_rack_pace_always);
10194 		if (optval > 0)
10195 			rack->rc_always_pace = 1;
10196 		else
10197 			rack->rc_always_pace = 0;
10198 		break;
10199 	case TCP_RACK_PACE_REDUCE:
10200 		/* RACK Hptsi reduction factor (divisor) */
10201 		RACK_OPTS_INC(tcp_rack_pace_reduce);
10202 		if (optval)
10203 			/* Must be non-zero */
10204 			rack->rc_pace_reduce = optval;
10205 		else
10206 			error = EINVAL;
10207 		break;
10208 	case TCP_RACK_PACE_MAX_SEG:
10209 		/* Max segments in a pace */
10210 		RACK_OPTS_INC(tcp_rack_max_seg);
10211 		rack->rc_pace_max_segs = optval;
10212 		rack_set_pace_segments(tp, rack);
10213 		break;
10214 	case TCP_RACK_PRR_SENDALOT:
10215 		/* Allow PRR to send more than one seg */
10216 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
10217 		rack->r_ctl.rc_prr_sendalot = optval;
10218 		break;
10219 	case TCP_RACK_MIN_TO:
10220 		/* Minimum time between rack t-o's in ms */
10221 		RACK_OPTS_INC(tcp_rack_min_to);
10222 		rack->r_ctl.rc_min_to = optval;
10223 		break;
10224 	case TCP_RACK_EARLY_SEG:
10225 		/* If early recovery max segments */
10226 		RACK_OPTS_INC(tcp_rack_early_seg);
10227 		rack->r_ctl.rc_early_recovery_segs = optval;
10228 		break;
10229 	case TCP_RACK_REORD_THRESH:
10230 		/* RACK reorder threshold (shift amount) */
10231 		RACK_OPTS_INC(tcp_rack_reord_thresh);
10232 		if ((optval > 0) && (optval < 31))
10233 			rack->r_ctl.rc_reorder_shift = optval;
10234 		else
10235 			error = EINVAL;
10236 		break;
10237 	case TCP_RACK_REORD_FADE:
10238 		/* Does reordering fade after ms time */
10239 		RACK_OPTS_INC(tcp_rack_reord_fade);
10240 		rack->r_ctl.rc_reorder_fade = optval;
10241 		break;
10242 	case TCP_RACK_TLP_THRESH:
10243 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10244 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
10245 		if (optval)
10246 			rack->r_ctl.rc_tlp_threshold = optval;
10247 		else
10248 			error = EINVAL;
10249 		break;
10250 	case TCP_BBR_USE_RACK_CHEAT:
10251 		RACK_OPTS_INC(tcp_rack_cheat);
10252 		if (optval)
10253 			rack->use_rack_cheat = 1;
10254 		else
10255 			rack->use_rack_cheat = 0;
10256 		break;
10257 	case TCP_RACK_PKT_DELAY:
10258 		/* RACK added ms i.e. rack-rtt + reord + N */
10259 		RACK_OPTS_INC(tcp_rack_pkt_delay);
10260 		rack->r_ctl.rc_pkt_delay = optval;
10261 		break;
10262 	case TCP_RACK_TLP_INC_VAR:
10263 		/* Does TLP include rtt variance in t-o */
10264 		error = EINVAL;
10265 		break;
10266 	case TCP_RACK_IDLE_REDUCE_HIGH:
10267 		error = EINVAL;
10268 		break;
10269 	case TCP_DELACK:
10270 		if (optval == 0)
10271 			tp->t_delayed_ack = 0;
10272 		else
10273 			tp->t_delayed_ack = 1;
10274 		if (tp->t_flags & TF_DELACK) {
10275 			tp->t_flags &= ~TF_DELACK;
10276 			tp->t_flags |= TF_ACKNOW;
10277 			NET_EPOCH_ENTER(et);
10278 			rack_output(tp);
10279 			NET_EPOCH_EXIT(et);
10280 		}
10281 		break;
10282 	case TCP_RACK_MIN_PACE:
10283 		RACK_OPTS_INC(tcp_rack_min_pace);
10284 		if (optval > 3)
10285 			rack->r_enforce_min_pace = 3;
10286 		else
10287 			rack->r_enforce_min_pace = optval;
10288 		break;
10289 	case TCP_RACK_GP_INCREASE:
10290 		if ((optval >= 0) &&
10291 		    (optval <= 256))
10292 			rack->rack_per_of_gp = optval;
10293 		else
10294 			error = EINVAL;
10295 
10296 		break;
10297 	case TCP_BBR_RACK_RTT_USE:
10298 		if ((optval != USE_RTT_HIGH) &&
10299 		    (optval != USE_RTT_LOW) &&
10300 		    (optval != USE_RTT_AVG))
10301 			error = EINVAL;
10302 		else
10303 			rack->r_ctl.rc_rate_sample_method = optval;
10304 		break;
10305 	case TCP_DATA_AFTER_CLOSE:
10306 		if (optval)
10307 			rack->rc_allow_data_af_clo = 1;
10308 		else
10309 			rack->rc_allow_data_af_clo = 0;
10310 		break;
10311 	default:
10312 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10313 		break;
10314 	}
10315 #ifdef NETFLIX_STATS
10316 	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
10317 #endif
10318 	INP_WUNLOCK(inp);
10319 	return (error);
10320 }
10321 
10322 static int
10323 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
10324     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10325 {
10326 	int32_t error, optval;
10327 
10328 	/*
10329 	 * Because all our options are either boolean or an int, we can just
10330 	 * pull everything into optval and then unlock and copy. If we ever
10331 	 * add a option that is not a int, then this will have quite an
10332 	 * impact to this routine.
10333 	 */
10334 	error = 0;
10335 	switch (sopt->sopt_name) {
10336 	case TCP_RACK_DO_DETECTION:
10337 		optval = rack->do_detection;
10338 		break;
10339 
10340 	case TCP_RACK_PROP_RATE:
10341 		optval = rack->r_ctl.rc_prop_rate;
10342 		break;
10343 	case TCP_RACK_PROP:
10344 		/* RACK proportional rate reduction (bool) */
10345 		optval = rack->r_ctl.rc_prop_reduce;
10346 		break;
10347 	case TCP_RACK_TLP_REDUCE:
10348 		/* RACK TLP cwnd reduction (bool) */
10349 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
10350 		break;
10351 	case TCP_RACK_EARLY_RECOV:
10352 		/* Should recovery happen early (bool) */
10353 		optval = rack->r_ctl.rc_early_recovery;
10354 		break;
10355 	case TCP_RACK_PACE_REDUCE:
10356 		/* RACK Hptsi reduction factor (divisor) */
10357 		optval = rack->rc_pace_reduce;
10358 		break;
10359 	case TCP_RACK_PACE_MAX_SEG:
10360 		/* Max segments in a pace */
10361 		optval = rack->rc_pace_max_segs;
10362 		break;
10363 	case TCP_RACK_PACE_ALWAYS:
10364 		/* Use the always pace method */
10365 		optval = rack->rc_always_pace;
10366 		break;
10367 	case TCP_RACK_PRR_SENDALOT:
10368 		/* Allow PRR to send more than one seg */
10369 		optval = rack->r_ctl.rc_prr_sendalot;
10370 		break;
10371 	case TCP_RACK_MIN_TO:
10372 		/* Minimum time between rack t-o's in ms */
10373 		optval = rack->r_ctl.rc_min_to;
10374 		break;
10375 	case TCP_RACK_EARLY_SEG:
10376 		/* If early recovery max segments */
10377 		optval = rack->r_ctl.rc_early_recovery_segs;
10378 		break;
10379 	case TCP_RACK_REORD_THRESH:
10380 		/* RACK reorder threshold (shift amount) */
10381 		optval = rack->r_ctl.rc_reorder_shift;
10382 		break;
10383 	case TCP_RACK_REORD_FADE:
10384 		/* Does reordering fade after ms time */
10385 		optval = rack->r_ctl.rc_reorder_fade;
10386 		break;
10387 	case TCP_BBR_USE_RACK_CHEAT:
10388 		/* Do we use the rack cheat for rxt */
10389 		optval = rack->use_rack_cheat;
10390 		break;
10391 	case TCP_RACK_TLP_THRESH:
10392 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10393 		optval = rack->r_ctl.rc_tlp_threshold;
10394 		break;
10395 	case TCP_RACK_PKT_DELAY:
10396 		/* RACK added ms i.e. rack-rtt + reord + N */
10397 		optval = rack->r_ctl.rc_pkt_delay;
10398 		break;
10399 	case TCP_RACK_TLP_USE:
10400 		optval = rack->rack_tlp_threshold_use;
10401 		break;
10402 	case TCP_RACK_TLP_INC_VAR:
10403 		/* Does TLP include rtt variance in t-o */
10404 		error = EINVAL;
10405 		break;
10406 	case TCP_RACK_IDLE_REDUCE_HIGH:
10407 		error = EINVAL;
10408 		break;
10409 	case TCP_RACK_MIN_PACE:
10410 		optval = rack->r_enforce_min_pace;
10411 		break;
10412 	case TCP_RACK_GP_INCREASE:
10413 		optval = rack->rack_per_of_gp;
10414 		break;
10415 	case TCP_BBR_RACK_RTT_USE:
10416 		optval = rack->r_ctl.rc_rate_sample_method;
10417 		break;
10418 	case TCP_DELACK:
10419 		optval = tp->t_delayed_ack;
10420 		break;
10421 	case TCP_DATA_AFTER_CLOSE:
10422 		optval = rack->rc_allow_data_af_clo;
10423 		break;
10424 	default:
10425 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10426 		break;
10427 	}
10428 	INP_WUNLOCK(inp);
10429 	if (error == 0) {
10430 		error = sooptcopyout(sopt, &optval, sizeof optval);
10431 	}
10432 	return (error);
10433 }
10434 
10435 static int
10436 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
10437 {
10438 	int32_t error = EINVAL;
10439 	struct tcp_rack *rack;
10440 
10441 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10442 	if (rack == NULL) {
10443 		/* Huh? */
10444 		goto out;
10445 	}
10446 	if (sopt->sopt_dir == SOPT_SET) {
10447 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
10448 	} else if (sopt->sopt_dir == SOPT_GET) {
10449 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
10450 	}
10451 out:
10452 	INP_WUNLOCK(inp);
10453 	return (error);
10454 }
10455 
10456 
10457 static struct tcp_function_block __tcp_rack = {
10458 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
10459 	.tfb_tcp_output = rack_output,
10460 	.tfb_do_queued_segments = ctf_do_queued_segments,
10461 	.tfb_do_segment_nounlock = rack_do_segment_nounlock,
10462 	.tfb_tcp_do_segment = rack_do_segment,
10463 	.tfb_tcp_ctloutput = rack_ctloutput,
10464 	.tfb_tcp_fb_init = rack_init,
10465 	.tfb_tcp_fb_fini = rack_fini,
10466 	.tfb_tcp_timer_stop_all = rack_stopall,
10467 	.tfb_tcp_timer_activate = rack_timer_activate,
10468 	.tfb_tcp_timer_active = rack_timer_active,
10469 	.tfb_tcp_timer_stop = rack_timer_stop,
10470 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
10471 	.tfb_tcp_handoff_ok = rack_handoff_ok
10472 };
10473 
10474 static const char *rack_stack_names[] = {
10475 	__XSTRING(STACKNAME),
10476 #ifdef STACKALIAS
10477 	__XSTRING(STACKALIAS),
10478 #endif
10479 };
10480 
10481 static int
10482 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
10483 {
10484 	memset(mem, 0, size);
10485 	return (0);
10486 }
10487 
10488 static void
10489 rack_dtor(void *mem, int32_t size, void *arg)
10490 {
10491 
10492 }
10493 
10494 static bool rack_mod_inited = false;
10495 
10496 static int
10497 tcp_addrack(module_t mod, int32_t type, void *data)
10498 {
10499 	int32_t err = 0;
10500 	int num_stacks;
10501 
10502 	switch (type) {
10503 	case MOD_LOAD:
10504 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
10505 		    sizeof(struct rack_sendmap),
10506 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
10507 
10508 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
10509 		    sizeof(struct tcp_rack),
10510 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
10511 
10512 		sysctl_ctx_init(&rack_sysctl_ctx);
10513 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
10514 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
10515 		    OID_AUTO,
10516 #ifdef STACKALIAS
10517 		    __XSTRING(STACKALIAS),
10518 #else
10519 		    __XSTRING(STACKNAME),
10520 #endif
10521 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
10522 		    "");
10523 		if (rack_sysctl_root == NULL) {
10524 			printf("Failed to add sysctl node\n");
10525 			err = EFAULT;
10526 			goto free_uma;
10527 		}
10528 		rack_init_sysctls();
10529 		num_stacks = nitems(rack_stack_names);
10530 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
10531 		    rack_stack_names, &num_stacks);
10532 		if (err) {
10533 			printf("Failed to register %s stack name for "
10534 			    "%s module\n", rack_stack_names[num_stacks],
10535 			    __XSTRING(MODNAME));
10536 			sysctl_ctx_free(&rack_sysctl_ctx);
10537 free_uma:
10538 			uma_zdestroy(rack_zone);
10539 			uma_zdestroy(rack_pcb_zone);
10540 			rack_counter_destroy();
10541 			printf("Failed to register rack module -- err:%d\n", err);
10542 			return (err);
10543 		}
10544 		tcp_lro_reg_mbufq();
10545 		rack_mod_inited = true;
10546 		break;
10547 	case MOD_QUIESCE:
10548 		err = deregister_tcp_functions(&__tcp_rack, true, false);
10549 		break;
10550 	case MOD_UNLOAD:
10551 		err = deregister_tcp_functions(&__tcp_rack, false, true);
10552 		if (err == EBUSY)
10553 			break;
10554 		if (rack_mod_inited) {
10555 			uma_zdestroy(rack_zone);
10556 			uma_zdestroy(rack_pcb_zone);
10557 			sysctl_ctx_free(&rack_sysctl_ctx);
10558 			rack_counter_destroy();
10559 			rack_mod_inited = false;
10560 		}
10561 		tcp_lro_dereg_mbufq();
10562 		err = 0;
10563 		break;
10564 	default:
10565 		return (EOPNOTSUPP);
10566 	}
10567 	return (err);
10568 }
10569 
10570 static moduledata_t tcp_rack = {
10571 	.name = __XSTRING(MODNAME),
10572 	.evhand = tcp_addrack,
10573 	.priv = 0
10574 };
10575 
10576 MODULE_VERSION(MODNAME, 1);
10577 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
10578 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
10579