xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 /*-
2  * Copyright (c) 2016-9 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include "opt_kern_tls.h"
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h>		/* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #ifdef KERN_TLS
52 #include <sys/ktls.h>
53 #endif
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #ifdef STATS
57 #include <sys/qmath.h>
58 #include <sys/tree.h>
59 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
60 #endif
61 #include <sys/refcount.h>
62 #include <sys/tree.h>
63 #include <sys/queue.h>
64 #include <sys/smp.h>
65 #include <sys/kthread.h>
66 #include <sys/kern_prefetch.h>
67 
68 #include <vm/uma.h>
69 
70 #include <net/route.h>
71 #include <net/vnet.h>
72 
73 #define TCPSTATES		/* for logging */
74 
75 #include <netinet/in.h>
76 #include <netinet/in_kdtrace.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
80 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
81 #include <netinet/ip_var.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet/tcp.h>
86 #define	TCPOUTFLAGS
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_log_buf.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_hpts.h>
93 #include <netinet/tcpip.h>
94 #include <netinet/cc/cc.h>
95 #include <netinet/tcp_fastopen.h>
96 #include <netinet/tcp_lro.h>
97 #ifdef TCPDEBUG
98 #include <netinet/tcp_debug.h>
99 #endif				/* TCPDEBUG */
100 #ifdef TCP_OFFLOAD
101 #include <netinet/tcp_offload.h>
102 #endif
103 #ifdef INET6
104 #include <netinet6/tcp6_var.h>
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
110 #include <netipsec/ipsec.h>
111 #include <netipsec/ipsec6.h>
112 #endif				/* IPSEC */
113 
114 #include <netinet/udp.h>
115 #include <netinet/udp_var.h>
116 #include <machine/in_cksum.h>
117 
118 #ifdef MAC
119 #include <security/mac/mac_framework.h>
120 #endif
121 #include "sack_filter.h"
122 #include "tcp_rack.h"
123 #include "rack_bbr_common.h"
124 
125 uma_zone_t rack_zone;
126 uma_zone_t rack_pcb_zone;
127 
128 #ifndef TICKS2SBT
129 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
130 #endif
131 
132 struct sysctl_ctx_list rack_sysctl_ctx;
133 struct sysctl_oid *rack_sysctl_root;
134 
135 #define CUM_ACKED 1
136 #define SACKED 2
137 
138 /*
139  * The RACK module incorporates a number of
140  * TCP ideas that have been put out into the IETF
141  * over the last few years:
142  * - Matt Mathis's Rate Halving which slowly drops
143  *    the congestion window so that the ack clock can
144  *    be maintained during a recovery.
145  * - Yuchung Cheng's RACK TCP (for which its named) that
146  *    will stop us using the number of dup acks and instead
147  *    use time as the gage of when we retransmit.
148  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
149  *    of Dukkipati et.al.
150  * RACK depends on SACK, so if an endpoint arrives that
151  * cannot do SACK the state machine below will shuttle the
152  * connection back to using the "default" TCP stack that is
153  * in FreeBSD.
154  *
155  * To implement RACK the original TCP stack was first decomposed
156  * into a functional state machine with individual states
157  * for each of the possible TCP connection states. The do_segement
158  * functions role in life is to mandate the connection supports SACK
159  * initially and then assure that the RACK state matches the conenction
160  * state before calling the states do_segment function. Each
161  * state is simplified due to the fact that the original do_segment
162  * has been decomposed and we *know* what state we are in (no
163  * switches on the state) and all tests for SACK are gone. This
164  * greatly simplifies what each state does.
165  *
166  * TCP output is also over-written with a new version since it
167  * must maintain the new rack scoreboard.
168  *
169  */
170 static int32_t rack_tlp_thresh = 1;
171 static int32_t rack_reorder_thresh = 2;
172 static int32_t rack_reorder_fade = 60000;	/* 0 - never fade, def 60,000
173 						 * - 60 seconds */
174 /* Attack threshold detections */
175 static uint32_t rack_highest_sack_thresh_seen = 0;
176 static uint32_t rack_highest_move_thresh_seen = 0;
177 
178 static int32_t rack_pkt_delay = 1;
179 static int32_t rack_min_pace_time = 0;
180 static int32_t rack_early_recovery = 1;
181 static int32_t rack_send_a_lot_in_prr = 1;
182 static int32_t rack_min_to = 1;	/* Number of ms minimum timeout */
183 static int32_t rack_verbose_logging = 0;
184 static int32_t rack_ignore_data_after_close = 1;
185 static int32_t use_rack_cheat = 1;
186 static int32_t rack_persist_min = 250;	/* 250ms */
187 static int32_t rack_persist_max = 1000;	/* 1 Second */
188 static int32_t rack_sack_not_required = 0;	/* set to one to allow non-sack to use rack */
189 static int32_t rack_hw_tls_max_seg = 0; /* 0 means use hw-tls single segment */
190 
191 /*
192  * Currently regular tcp has a rto_min of 30ms
193  * the backoff goes 12 times so that ends up
194  * being a total of 122.850 seconds before a
195  * connection is killed.
196  */
197 static int32_t rack_tlp_min = 10;
198 static int32_t rack_rto_min = 30;	/* 30ms same as main freebsd */
199 static int32_t rack_rto_max = 4000;	/* 4 seconds */
200 static const int32_t rack_free_cache = 2;
201 static int32_t rack_hptsi_segments = 40;
202 static int32_t rack_rate_sample_method = USE_RTT_LOW;
203 static int32_t rack_pace_every_seg = 0;
204 static int32_t rack_delayed_ack_time = 200;	/* 200ms */
205 static int32_t rack_slot_reduction = 4;
206 static int32_t rack_lower_cwnd_at_tlp = 0;
207 static int32_t rack_use_proportional_reduce = 0;
208 static int32_t rack_proportional_rate = 10;
209 static int32_t rack_tlp_max_resend = 2;
210 static int32_t rack_limited_retran = 0;
211 static int32_t rack_always_send_oldest = 0;
212 static int32_t rack_use_sack_filter = 1;
213 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
214 static int32_t rack_per_of_gp = 50;
215 
216 /* Rack specific counters */
217 counter_u64_t rack_badfr;
218 counter_u64_t rack_badfr_bytes;
219 counter_u64_t rack_rtm_prr_retran;
220 counter_u64_t rack_rtm_prr_newdata;
221 counter_u64_t rack_timestamp_mismatch;
222 counter_u64_t rack_reorder_seen;
223 counter_u64_t rack_paced_segments;
224 counter_u64_t rack_unpaced_segments;
225 counter_u64_t rack_calc_zero;
226 counter_u64_t rack_calc_nonzero;
227 counter_u64_t rack_saw_enobuf;
228 counter_u64_t rack_saw_enetunreach;
229 counter_u64_t rack_per_timer_hole;
230 
231 /* Tail loss probe counters */
232 counter_u64_t rack_tlp_tot;
233 counter_u64_t rack_tlp_newdata;
234 counter_u64_t rack_tlp_retran;
235 counter_u64_t rack_tlp_retran_bytes;
236 counter_u64_t rack_tlp_retran_fail;
237 counter_u64_t rack_to_tot;
238 counter_u64_t rack_to_arm_rack;
239 counter_u64_t rack_to_arm_tlp;
240 counter_u64_t rack_to_alloc;
241 counter_u64_t rack_to_alloc_hard;
242 counter_u64_t rack_to_alloc_emerg;
243 counter_u64_t rack_to_alloc_limited;
244 counter_u64_t rack_alloc_limited_conns;
245 counter_u64_t rack_split_limited;
246 
247 counter_u64_t rack_sack_proc_all;
248 counter_u64_t rack_sack_proc_short;
249 counter_u64_t rack_sack_proc_restart;
250 counter_u64_t rack_sack_attacks_detected;
251 counter_u64_t rack_sack_attacks_reversed;
252 counter_u64_t rack_sack_used_next_merge;
253 counter_u64_t rack_sack_splits;
254 counter_u64_t rack_sack_used_prev_merge;
255 counter_u64_t rack_sack_skipped_acked;
256 counter_u64_t rack_ack_total;
257 counter_u64_t rack_express_sack;
258 counter_u64_t rack_sack_total;
259 counter_u64_t rack_move_none;
260 counter_u64_t rack_move_some;
261 
262 counter_u64_t rack_used_tlpmethod;
263 counter_u64_t rack_used_tlpmethod2;
264 counter_u64_t rack_enter_tlp_calc;
265 counter_u64_t rack_input_idle_reduces;
266 counter_u64_t rack_collapsed_win;
267 counter_u64_t rack_tlp_does_nada;
268 
269 /* Counters for HW TLS */
270 counter_u64_t rack_tls_rwnd;
271 counter_u64_t rack_tls_cwnd;
272 counter_u64_t rack_tls_app;
273 counter_u64_t rack_tls_other;
274 counter_u64_t rack_tls_filled;
275 counter_u64_t rack_tls_rxt;
276 counter_u64_t rack_tls_tlp;
277 
278 /* Temp CPU counters */
279 counter_u64_t rack_find_high;
280 
281 counter_u64_t rack_progress_drops;
282 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
283 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
284 
285 static void
286 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
287 
288 static int
289 rack_process_ack(struct mbuf *m, struct tcphdr *th,
290     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
291     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
292 static int
293 rack_process_data(struct mbuf *m, struct tcphdr *th,
294     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
295     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
296 static void
297 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
298     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
299 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
300 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
301     uint8_t limit_type);
302 static struct rack_sendmap *
303 rack_check_recovery_mode(struct tcpcb *tp,
304     uint32_t tsused);
305 static void
306 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
307     uint32_t type);
308 static void rack_counter_destroy(void);
309 static int
310 rack_ctloutput(struct socket *so, struct sockopt *sopt,
311     struct inpcb *inp, struct tcpcb *tp);
312 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
313 static void
314 rack_do_segment(struct mbuf *m, struct tcphdr *th,
315     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
316     uint8_t iptos);
317 static void rack_dtor(void *mem, int32_t size, void *arg);
318 static void
319 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
320     uint32_t t, uint32_t cts);
321 static struct rack_sendmap *
322 rack_find_high_nonack(struct tcp_rack *rack,
323     struct rack_sendmap *rsm);
324 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
325 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
326 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
327 static int
328 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
329     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
330 static int32_t rack_handoff_ok(struct tcpcb *tp);
331 static int32_t rack_init(struct tcpcb *tp);
332 static void rack_init_sysctls(void);
333 static void
334 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
335     struct tcphdr *th);
336 static void
337 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
338     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
339     uint8_t pass, struct rack_sendmap *hintrsm);
340 static void
341 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
342     struct rack_sendmap *rsm);
343 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int num);
344 static int32_t rack_output(struct tcpcb *tp);
345 
346 static uint32_t
347 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
348     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
349     uint32_t cts, int *moved_two);
350 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
351 static void rack_remxt_tmr(struct tcpcb *tp);
352 static int
353 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
354     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
355 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
356 static int32_t rack_stopall(struct tcpcb *tp);
357 static void
358 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
359     uint32_t delta);
360 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
361 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
362 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
363 static uint32_t
364 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
365     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
366 static void
367 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
368     struct rack_sendmap *rsm, uint32_t ts);
369 static int
370 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
371     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
372 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
373 static int
374 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
375     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
376     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
377 static int
378 rack_do_closing(struct mbuf *m, struct tcphdr *th,
379     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
380     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
381 static int
382 rack_do_established(struct mbuf *m, struct tcphdr *th,
383     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
384     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
385 static int
386 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
387     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
388     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
389 static int
390 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
391     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
392     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
393 static int
394 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
395     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
396     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
397 static int
398 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
399     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
400     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
401 static int
402 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
403     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
404     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
405 static int
406 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
407     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
408     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
409 struct rack_sendmap *
410 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
411     uint32_t tsused);
412 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
413 static void
414      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
415 
416 int32_t rack_clear_counter=0;
417 
418 
419 static int
420 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
421 {
422 	uint32_t stat;
423 	int32_t error;
424 
425 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
426 	if (error || req->newptr == NULL)
427 		return error;
428 
429 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
430 	if (error)
431 		return (error);
432 	if (stat == 1) {
433 #ifdef INVARIANTS
434 		printf("Clearing RACK counters\n");
435 #endif
436 		counter_u64_zero(rack_badfr);
437 		counter_u64_zero(rack_badfr_bytes);
438 		counter_u64_zero(rack_rtm_prr_retran);
439 		counter_u64_zero(rack_rtm_prr_newdata);
440 		counter_u64_zero(rack_timestamp_mismatch);
441 		counter_u64_zero(rack_reorder_seen);
442 		counter_u64_zero(rack_tlp_tot);
443 		counter_u64_zero(rack_tlp_newdata);
444 		counter_u64_zero(rack_tlp_retran);
445 		counter_u64_zero(rack_tlp_retran_bytes);
446 		counter_u64_zero(rack_tlp_retran_fail);
447 		counter_u64_zero(rack_to_tot);
448 		counter_u64_zero(rack_to_arm_rack);
449 		counter_u64_zero(rack_to_arm_tlp);
450 		counter_u64_zero(rack_paced_segments);
451 		counter_u64_zero(rack_calc_zero);
452 		counter_u64_zero(rack_calc_nonzero);
453 		counter_u64_zero(rack_unpaced_segments);
454 		counter_u64_zero(rack_saw_enobuf);
455 		counter_u64_zero(rack_saw_enetunreach);
456 		counter_u64_zero(rack_per_timer_hole);
457 		counter_u64_zero(rack_to_alloc_hard);
458 		counter_u64_zero(rack_to_alloc_emerg);
459 		counter_u64_zero(rack_sack_proc_all);
460 		counter_u64_zero(rack_sack_proc_short);
461 		counter_u64_zero(rack_sack_proc_restart);
462 		counter_u64_zero(rack_to_alloc);
463 		counter_u64_zero(rack_to_alloc_limited);
464 		counter_u64_zero(rack_alloc_limited_conns);
465 		counter_u64_zero(rack_split_limited);
466 		counter_u64_zero(rack_find_high);
467 		counter_u64_zero(rack_tls_rwnd);
468 		counter_u64_zero(rack_tls_cwnd);
469 		counter_u64_zero(rack_tls_app);
470 		counter_u64_zero(rack_tls_other);
471 		counter_u64_zero(rack_tls_filled);
472 		counter_u64_zero(rack_tls_rxt);
473 		counter_u64_zero(rack_tls_tlp);
474 		counter_u64_zero(rack_sack_attacks_detected);
475 		counter_u64_zero(rack_sack_attacks_reversed);
476 		counter_u64_zero(rack_sack_used_next_merge);
477 		counter_u64_zero(rack_sack_used_prev_merge);
478 		counter_u64_zero(rack_sack_splits);
479 		counter_u64_zero(rack_sack_skipped_acked);
480 		counter_u64_zero(rack_ack_total);
481 		counter_u64_zero(rack_express_sack);
482 		counter_u64_zero(rack_sack_total);
483 		counter_u64_zero(rack_move_none);
484 		counter_u64_zero(rack_move_some);
485 		counter_u64_zero(rack_used_tlpmethod);
486 		counter_u64_zero(rack_used_tlpmethod2);
487 		counter_u64_zero(rack_enter_tlp_calc);
488 		counter_u64_zero(rack_progress_drops);
489 		counter_u64_zero(rack_tlp_does_nada);
490 		counter_u64_zero(rack_collapsed_win);
491 
492 	}
493 	rack_clear_counter = 0;
494 	return (0);
495 }
496 
497 
498 
499 static void
500 rack_init_sysctls(void)
501 {
502 	struct sysctl_oid *rack_counters;
503 	struct sysctl_oid *rack_attack;
504 
505 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
506 	    SYSCTL_CHILDREN(rack_sysctl_root),
507 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
508 	    &rack_rate_sample_method , USE_RTT_LOW,
509 	    "What method should we use for rate sampling 0=high, 1=low ");
510 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
511 	    SYSCTL_CHILDREN(rack_sysctl_root),
512 	    OID_AUTO, "hw_tlsmax", CTLFLAG_RW,
513 	    &rack_hw_tls_max_seg , 0,
514 	    "Do we have a multplier of TLS records we can send as a max (0=1 TLS record)? ");
515 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
516 	    SYSCTL_CHILDREN(rack_sysctl_root),
517 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
518 	    &rack_ignore_data_after_close, 0,
519 	    "Do we hold off sending a RST until all pending data is ack'd");
520 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
521 	    SYSCTL_CHILDREN(rack_sysctl_root),
522 	    OID_AUTO, "cheat_rxt", CTLFLAG_RW,
523 	    &use_rack_cheat, 1,
524 	    "Do we use the rxt cheat for rack?");
525 
526 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
527 	    SYSCTL_CHILDREN(rack_sysctl_root),
528 	    OID_AUTO, "persmin", CTLFLAG_RW,
529 	    &rack_persist_min, 250,
530 	    "What is the minimum time in milliseconds between persists");
531 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
532 	    SYSCTL_CHILDREN(rack_sysctl_root),
533 	    OID_AUTO, "persmax", CTLFLAG_RW,
534 	    &rack_persist_max, 1000,
535 	    "What is the largest delay in milliseconds between persists");
536 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
537 	    SYSCTL_CHILDREN(rack_sysctl_root),
538 	    OID_AUTO, "no_sack_needed", CTLFLAG_RW,
539 	    &rack_sack_not_required, 0,
540 	    "Do we allow rack to run on connections not supporting SACK?");
541 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
542 	    SYSCTL_CHILDREN(rack_sysctl_root),
543 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
544 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
545 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
546 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
547 	    SYSCTL_CHILDREN(rack_sysctl_root),
548 	    OID_AUTO, "gp_percentage", CTLFLAG_RW,
549 	    &rack_per_of_gp, 50,
550 	    "Do we pace to percentage of goodput (0=old method)?");
551 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
552 	    SYSCTL_CHILDREN(rack_sysctl_root),
553 	    OID_AUTO, "min_pace_time", CTLFLAG_RW,
554 	    &rack_min_pace_time, 0,
555 	    "Should we enforce a minimum pace time of 1ms");
556 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
557 	    SYSCTL_CHILDREN(rack_sysctl_root),
558 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
559 	    &rack_verbose_logging, 0,
560 	    "Should RACK black box logging be verbose");
561 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
562 	    SYSCTL_CHILDREN(rack_sysctl_root),
563 	    OID_AUTO, "sackfiltering", CTLFLAG_RW,
564 	    &rack_use_sack_filter, 1,
565 	    "Do we use sack filtering?");
566 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
567 	    SYSCTL_CHILDREN(rack_sysctl_root),
568 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
569 	    &rack_delayed_ack_time, 200,
570 	    "Delayed ack time (200ms)");
571 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
572 	    SYSCTL_CHILDREN(rack_sysctl_root),
573 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
574 	    &rack_tlp_min, 10,
575 	    "TLP minimum timeout per the specification (10ms)");
576 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
577 	    SYSCTL_CHILDREN(rack_sysctl_root),
578 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
579 	    &rack_always_send_oldest, 1,
580 	    "Should we always send the oldest TLP and RACK-TLP");
581 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
582 	    SYSCTL_CHILDREN(rack_sysctl_root),
583 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
584 	    &rack_limited_retran, 0,
585 	    "How many times can a rack timeout drive out sends");
586 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
587 	    SYSCTL_CHILDREN(rack_sysctl_root),
588 	    OID_AUTO, "minrto", CTLFLAG_RW,
589 	    &rack_rto_min, 0,
590 	    "Minimum RTO in ms -- set with caution below 1000 due to TLP");
591 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
592 	    SYSCTL_CHILDREN(rack_sysctl_root),
593 	    OID_AUTO, "maxrto", CTLFLAG_RW,
594 	    &rack_rto_max, 0,
595 	    "Maxiumum RTO in ms -- should be at least as large as min_rto");
596 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
597 	    SYSCTL_CHILDREN(rack_sysctl_root),
598 	    OID_AUTO, "tlp_retry", CTLFLAG_RW,
599 	    &rack_tlp_max_resend, 2,
600 	    "How many times does TLP retry a single segment or multiple with no ACK");
601 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
602 	    SYSCTL_CHILDREN(rack_sysctl_root),
603 	    OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
604 	    &rack_use_proportional_reduce, 0,
605 	    "Should we proportionaly reduce cwnd based on the number of losses ");
606 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
607 	    SYSCTL_CHILDREN(rack_sysctl_root),
608 	    OID_AUTO, "recovery_prop", CTLFLAG_RW,
609 	    &rack_proportional_rate, 10,
610 	    "What percent reduction per loss");
611 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
612 	    SYSCTL_CHILDREN(rack_sysctl_root),
613 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
614 	    &rack_lower_cwnd_at_tlp, 0,
615 	    "When a TLP completes a retran should we enter recovery?");
616 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
617 	    SYSCTL_CHILDREN(rack_sysctl_root),
618 	    OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
619 	    &rack_slot_reduction, 4,
620 	    "When setting a slot should we reduce by divisor");
621 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
622 	    SYSCTL_CHILDREN(rack_sysctl_root),
623 	    OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
624 	    &rack_pace_every_seg, 0,
625 	    "Should we use the original pacing mechanism that did not pace much?");
626 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
627 	    SYSCTL_CHILDREN(rack_sysctl_root),
628 	    OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
629 	    &rack_hptsi_segments, 40,
630 	    "Should we pace out only a limited size of segments");
631 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
632 	    SYSCTL_CHILDREN(rack_sysctl_root),
633 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
634 	    &rack_send_a_lot_in_prr, 1,
635 	    "Send a lot in prr");
636 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
637 	    SYSCTL_CHILDREN(rack_sysctl_root),
638 	    OID_AUTO, "minto", CTLFLAG_RW,
639 	    &rack_min_to, 1,
640 	    "Minimum rack timeout in milliseconds");
641 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
642 	    SYSCTL_CHILDREN(rack_sysctl_root),
643 	    OID_AUTO, "earlyrecovery", CTLFLAG_RW,
644 	    &rack_early_recovery, 1,
645 	    "Do we do early recovery with rack");
646 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
647 	    SYSCTL_CHILDREN(rack_sysctl_root),
648 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
649 	    &rack_reorder_thresh, 2,
650 	    "What factor for rack will be added when seeing reordering (shift right)");
651 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
652 	    SYSCTL_CHILDREN(rack_sysctl_root),
653 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
654 	    &rack_tlp_thresh, 1,
655 	    "what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
656 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
657 	    SYSCTL_CHILDREN(rack_sysctl_root),
658 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
659 	    &rack_reorder_fade, 0,
660 	    "Does reorder detection fade, if so how many ms (0 means never)");
661 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
662 	    SYSCTL_CHILDREN(rack_sysctl_root),
663 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
664 	    &rack_pkt_delay, 1,
665 	    "Extra RACK time (in ms) besides reordering thresh");
666 
667 	rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
668 	    SYSCTL_CHILDREN(rack_sysctl_root),
669 	    OID_AUTO,
670 	    "stats",
671 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
672 	    "Rack Counters");
673 	rack_badfr = counter_u64_alloc(M_WAITOK);
674 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
675 	    SYSCTL_CHILDREN(rack_counters),
676 	    OID_AUTO, "badfr", CTLFLAG_RD,
677 	    &rack_badfr, "Total number of bad FRs");
678 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
679 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
680 	    SYSCTL_CHILDREN(rack_counters),
681 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
682 	    &rack_badfr_bytes, "Total number of bad FRs");
683 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
684 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
685 	    SYSCTL_CHILDREN(rack_counters),
686 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
687 	    &rack_rtm_prr_retran,
688 	    "Total number of prr based retransmits");
689 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
690 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
691 	    SYSCTL_CHILDREN(rack_counters),
692 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
693 	    &rack_rtm_prr_newdata,
694 	    "Total number of prr based new transmits");
695 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
696 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
697 	    SYSCTL_CHILDREN(rack_counters),
698 	    OID_AUTO, "tsnf", CTLFLAG_RD,
699 	    &rack_timestamp_mismatch,
700 	    "Total number of timestamps that we could not find the reported ts");
701 	rack_find_high = counter_u64_alloc(M_WAITOK);
702 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
703 	    SYSCTL_CHILDREN(rack_counters),
704 	    OID_AUTO, "findhigh", CTLFLAG_RD,
705 	    &rack_find_high,
706 	    "Total number of FIN causing find-high");
707 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
708 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
709 	    SYSCTL_CHILDREN(rack_counters),
710 	    OID_AUTO, "reordering", CTLFLAG_RD,
711 	    &rack_reorder_seen,
712 	    "Total number of times we added delay due to reordering");
713 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
714 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
715 	    SYSCTL_CHILDREN(rack_counters),
716 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
717 	    &rack_tlp_tot,
718 	    "Total number of tail loss probe expirations");
719 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
720 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
721 	    SYSCTL_CHILDREN(rack_counters),
722 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
723 	    &rack_tlp_newdata,
724 	    "Total number of tail loss probe sending new data");
725 
726 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
727 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
728 	    SYSCTL_CHILDREN(rack_counters),
729 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
730 	    &rack_tlp_retran,
731 	    "Total number of tail loss probe sending retransmitted data");
732 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
733 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
734 	    SYSCTL_CHILDREN(rack_counters),
735 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
736 	    &rack_tlp_retran_bytes,
737 	    "Total bytes of tail loss probe sending retransmitted data");
738 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
739 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
740 	    SYSCTL_CHILDREN(rack_counters),
741 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
742 	    &rack_tlp_retran_fail,
743 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
744 	rack_to_tot = counter_u64_alloc(M_WAITOK);
745 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
746 	    SYSCTL_CHILDREN(rack_counters),
747 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
748 	    &rack_to_tot,
749 	    "Total number of times the rack to expired?");
750 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
751 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
752 	    SYSCTL_CHILDREN(rack_counters),
753 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
754 	    &rack_to_arm_rack,
755 	    "Total number of times the rack timer armed?");
756 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
757 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
758 	    SYSCTL_CHILDREN(rack_counters),
759 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
760 	    &rack_to_arm_tlp,
761 	    "Total number of times the tlp timer armed?");
762 
763 	rack_calc_zero = counter_u64_alloc(M_WAITOK);
764 	rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
765 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
766 	    SYSCTL_CHILDREN(rack_counters),
767 	    OID_AUTO, "calc_zero", CTLFLAG_RD,
768 	    &rack_calc_zero,
769 	    "Total number of times pacing time worked out to zero?");
770 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
771 	    SYSCTL_CHILDREN(rack_counters),
772 	    OID_AUTO, "calc_nonzero", CTLFLAG_RD,
773 	    &rack_calc_nonzero,
774 	    "Total number of times pacing time worked out to non-zero?");
775 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
776 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
777 	    SYSCTL_CHILDREN(rack_counters),
778 	    OID_AUTO, "paced", CTLFLAG_RD,
779 	    &rack_paced_segments,
780 	    "Total number of times a segment send caused hptsi");
781 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
782 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
783 	    SYSCTL_CHILDREN(rack_counters),
784 	    OID_AUTO, "unpaced", CTLFLAG_RD,
785 	    &rack_unpaced_segments,
786 	    "Total number of times a segment did not cause hptsi");
787 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
788 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
789 	    SYSCTL_CHILDREN(rack_counters),
790 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
791 	    &rack_saw_enobuf,
792 	    "Total number of times a segment did not cause hptsi");
793 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
794 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
795 	    SYSCTL_CHILDREN(rack_counters),
796 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
797 	    &rack_saw_enetunreach,
798 	    "Total number of times a segment did not cause hptsi");
799 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
800 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
801 	    SYSCTL_CHILDREN(rack_counters),
802 	    OID_AUTO, "allocs", CTLFLAG_RD,
803 	    &rack_to_alloc,
804 	    "Total allocations of tracking structures");
805 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
806 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
807 	    SYSCTL_CHILDREN(rack_counters),
808 	    OID_AUTO, "allochard", CTLFLAG_RD,
809 	    &rack_to_alloc_hard,
810 	    "Total allocations done with sleeping the hard way");
811 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
812 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
813 	    SYSCTL_CHILDREN(rack_counters),
814 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
815 	    &rack_to_alloc_emerg,
816 	    "Total allocations done from emergency cache");
817 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
818 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
819 	    SYSCTL_CHILDREN(rack_counters),
820 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
821 	    &rack_to_alloc_limited,
822 	    "Total allocations dropped due to limit");
823 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
824 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
825 	    SYSCTL_CHILDREN(rack_counters),
826 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
827 	    &rack_alloc_limited_conns,
828 	    "Connections with allocations dropped due to limit");
829 	rack_split_limited = counter_u64_alloc(M_WAITOK);
830 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
831 	    SYSCTL_CHILDREN(rack_counters),
832 	    OID_AUTO, "split_limited", CTLFLAG_RD,
833 	    &rack_split_limited,
834 	    "Split allocations dropped due to limit");
835 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
836 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
837 	    SYSCTL_CHILDREN(rack_counters),
838 	    OID_AUTO, "sack_long", CTLFLAG_RD,
839 	    &rack_sack_proc_all,
840 	    "Total times we had to walk whole list for sack processing");
841 
842 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
843 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
844 	    SYSCTL_CHILDREN(rack_counters),
845 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
846 	    &rack_sack_proc_restart,
847 	    "Total times we had to walk whole list due to a restart");
848 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
849 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
850 	    SYSCTL_CHILDREN(rack_counters),
851 	    OID_AUTO, "sack_short", CTLFLAG_RD,
852 	    &rack_sack_proc_short,
853 	    "Total times we took shortcut for sack processing");
854 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
855 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
856 	    SYSCTL_CHILDREN(rack_counters),
857 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
858 	    &rack_enter_tlp_calc,
859 	    "Total times we called calc-tlp");
860 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
861 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
862 	    SYSCTL_CHILDREN(rack_counters),
863 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
864 	    &rack_used_tlpmethod,
865 	    "Total number of runt sacks");
866 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
867 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
868 	    SYSCTL_CHILDREN(rack_counters),
869 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
870 	    &rack_used_tlpmethod2,
871 	    "Total number of times we hit TLP method 2");
872 	/* Sack Attacker detection stuff */
873 	rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
874 	    SYSCTL_CHILDREN(rack_sysctl_root),
875 	    OID_AUTO,
876 	    "sack_attack",
877 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
878 	    "Rack Sack Attack Counters and Controls");
879 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
880 	    SYSCTL_CHILDREN(rack_attack),
881 	    OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
882 	    &rack_highest_sack_thresh_seen, 0,
883 	    "Highest sack to ack ratio seen");
884 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
885 	    SYSCTL_CHILDREN(rack_attack),
886 	    OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
887 	    &rack_highest_move_thresh_seen, 0,
888 	    "Highest move to non-move ratio seen");
889 	rack_ack_total = counter_u64_alloc(M_WAITOK);
890 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
891 	    SYSCTL_CHILDREN(rack_attack),
892 	    OID_AUTO, "acktotal", CTLFLAG_RD,
893 	    &rack_ack_total,
894 	    "Total number of Ack's");
895 
896 	rack_express_sack = counter_u64_alloc(M_WAITOK);
897 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
898 	    SYSCTL_CHILDREN(rack_attack),
899 	    OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
900 	    &rack_express_sack,
901 	    "Total expresss number of Sack's");
902 	rack_sack_total = counter_u64_alloc(M_WAITOK);
903 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
904 	    SYSCTL_CHILDREN(rack_attack),
905 	    OID_AUTO, "sacktotal", CTLFLAG_RD,
906 	    &rack_sack_total,
907 	    "Total number of SACK's");
908 	rack_move_none = counter_u64_alloc(M_WAITOK);
909 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
910 	    SYSCTL_CHILDREN(rack_attack),
911 	    OID_AUTO, "move_none", CTLFLAG_RD,
912 	    &rack_move_none,
913 	    "Total number of SACK index reuse of postions under threshold");
914 	rack_move_some = counter_u64_alloc(M_WAITOK);
915 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
916 	    SYSCTL_CHILDREN(rack_attack),
917 	    OID_AUTO, "move_some", CTLFLAG_RD,
918 	    &rack_move_some,
919 	    "Total number of SACK index reuse of postions over threshold");
920 	rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
921 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
922 	    SYSCTL_CHILDREN(rack_attack),
923 	    OID_AUTO, "attacks", CTLFLAG_RD,
924 	    &rack_sack_attacks_detected,
925 	    "Total number of SACK attackers that had sack disabled");
926 	rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
927 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
928 	    SYSCTL_CHILDREN(rack_attack),
929 	    OID_AUTO, "reversed", CTLFLAG_RD,
930 	    &rack_sack_attacks_reversed,
931 	    "Total number of SACK attackers that were later determined false positive");
932 	rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
933 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
934 	    SYSCTL_CHILDREN(rack_attack),
935 	    OID_AUTO, "nextmerge", CTLFLAG_RD,
936 	    &rack_sack_used_next_merge,
937 	    "Total number of times we used the next merge");
938 	rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
939 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
940 	    SYSCTL_CHILDREN(rack_attack),
941 	    OID_AUTO, "prevmerge", CTLFLAG_RD,
942 	    &rack_sack_used_prev_merge,
943 	    "Total number of times we used the prev merge");
944 	rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
945 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
946 	    SYSCTL_CHILDREN(rack_attack),
947 	    OID_AUTO, "skipacked", CTLFLAG_RD,
948 	    &rack_sack_skipped_acked,
949 	    "Total number of times we skipped previously sacked");
950 	rack_sack_splits = counter_u64_alloc(M_WAITOK);
951 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
952 	    SYSCTL_CHILDREN(rack_attack),
953 	    OID_AUTO, "ofsplit", CTLFLAG_RD,
954 	    &rack_sack_splits,
955 	    "Total number of times we did the old fashion tree split");
956 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
957 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
958 	    SYSCTL_CHILDREN(rack_counters),
959 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
960 	    &rack_progress_drops,
961 	    "Total number of progress drops");
962 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
963 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
964 	    SYSCTL_CHILDREN(rack_counters),
965 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
966 	    &rack_input_idle_reduces,
967 	    "Total number of idle reductions on input");
968 	rack_collapsed_win = counter_u64_alloc(M_WAITOK);
969 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
970 	    SYSCTL_CHILDREN(rack_counters),
971 	    OID_AUTO, "collapsed_win", CTLFLAG_RD,
972 	    &rack_collapsed_win,
973 	    "Total number of collapsed windows");
974 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
975 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
976 	    SYSCTL_CHILDREN(rack_counters),
977 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
978 	    &rack_tlp_does_nada,
979 	    "Total number of nada tlp calls");
980 
981 	rack_tls_rwnd = counter_u64_alloc(M_WAITOK);
982 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
983 	    SYSCTL_CHILDREN(rack_counters),
984 	    OID_AUTO, "tls_rwnd", CTLFLAG_RD,
985 	    &rack_tls_rwnd,
986 	    "Total hdwr tls rwnd limited");
987 
988 	rack_tls_cwnd = counter_u64_alloc(M_WAITOK);
989 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
990 	    SYSCTL_CHILDREN(rack_counters),
991 	    OID_AUTO, "tls_cwnd", CTLFLAG_RD,
992 	    &rack_tls_cwnd,
993 	    "Total hdwr tls cwnd limited");
994 
995 	rack_tls_app = counter_u64_alloc(M_WAITOK);
996 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
997 	    SYSCTL_CHILDREN(rack_counters),
998 	    OID_AUTO, "tls_app", CTLFLAG_RD,
999 	    &rack_tls_app,
1000 	    "Total hdwr tls app limited");
1001 
1002 	rack_tls_other = counter_u64_alloc(M_WAITOK);
1003 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1004 	    SYSCTL_CHILDREN(rack_counters),
1005 	    OID_AUTO, "tls_other", CTLFLAG_RD,
1006 	    &rack_tls_other,
1007 	    "Total hdwr tls other limited");
1008 
1009 	rack_tls_filled = counter_u64_alloc(M_WAITOK);
1010 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1011 	    SYSCTL_CHILDREN(rack_counters),
1012 	    OID_AUTO, "tls_filled", CTLFLAG_RD,
1013 	    &rack_tls_filled,
1014 	    "Total hdwr tls filled");
1015 
1016 	rack_tls_rxt = counter_u64_alloc(M_WAITOK);
1017 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1018 	    SYSCTL_CHILDREN(rack_counters),
1019 	    OID_AUTO, "tls_rxt", CTLFLAG_RD,
1020 	    &rack_tls_rxt,
1021 	    "Total hdwr rxt");
1022 
1023 	rack_tls_tlp = counter_u64_alloc(M_WAITOK);
1024 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1025 	    SYSCTL_CHILDREN(rack_counters),
1026 	    OID_AUTO, "tls_tlp", CTLFLAG_RD,
1027 	    &rack_tls_tlp,
1028 	    "Total hdwr tls tlp");
1029 	rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1030 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1031 	    SYSCTL_CHILDREN(rack_counters),
1032 	    OID_AUTO, "timer_hole", CTLFLAG_RD,
1033 	    &rack_per_timer_hole,
1034 	    "Total persists start in timer hole");
1035 
1036 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1037 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1038 	    OID_AUTO, "outsize", CTLFLAG_RD,
1039 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1040 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1041 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1042 	    OID_AUTO, "opts", CTLFLAG_RD,
1043 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1044 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1045 	    SYSCTL_CHILDREN(rack_sysctl_root),
1046 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1047 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1048 }
1049 
1050 static __inline int
1051 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1052 {
1053 	if (SEQ_GEQ(b->r_start, a->r_start) &&
1054 	    SEQ_LT(b->r_start, a->r_end)) {
1055 		/*
1056 		 * The entry b is within the
1057 		 * block a. i.e.:
1058 		 * a --   |-------------|
1059 		 * b --   |----|
1060 		 * <or>
1061 		 * b --       |------|
1062 		 * <or>
1063 		 * b --       |-----------|
1064 		 */
1065 		return (0);
1066 	} else if (SEQ_GEQ(b->r_start, a->r_end)) {
1067 		/*
1068 		 * b falls as either the next
1069 		 * sequence block after a so a
1070 		 * is said to be smaller than b.
1071 		 * i.e:
1072 		 * a --   |------|
1073 		 * b --          |--------|
1074 		 * or
1075 		 * b --              |-----|
1076 		 */
1077 		return (1);
1078 	}
1079 	/*
1080 	 * Whats left is where a is
1081 	 * larger than b. i.e:
1082 	 * a --         |-------|
1083 	 * b --  |---|
1084 	 * or even possibly
1085 	 * b --   |--------------|
1086 	 */
1087 	return (-1);
1088 }
1089 
1090 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1091 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1092 
1093 static inline int32_t
1094 rack_progress_timeout_check(struct tcpcb *tp)
1095 {
1096 	if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
1097 		if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
1098 			/*
1099 			 * There is an assumption that the caller
1100 			 * will drop the connection so we will
1101 			 * increment the counters here.
1102 			 */
1103 			struct tcp_rack *rack;
1104 			rack = (struct tcp_rack *)tp->t_fb_ptr;
1105 			counter_u64_add(rack_progress_drops, 1);
1106 #ifdef NETFLIX_STATS
1107 			KMOD_TCPSTAT_INC(tcps_progdrops);
1108 #endif
1109 			rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
1110 			return (1);
1111 		}
1112 	}
1113 	return (0);
1114 }
1115 
1116 
1117 
1118 static void
1119 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
1120 {
1121 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1122 		union tcp_log_stackspecific log;
1123 		struct timeval tv;
1124 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1125 		log.u_bbr.flex1 = tsused;
1126 		log.u_bbr.flex2 = thresh;
1127 		log.u_bbr.flex3 = rsm->r_flags;
1128 		log.u_bbr.flex4 = rsm->r_dupack;
1129 		log.u_bbr.flex5 = rsm->r_start;
1130 		log.u_bbr.flex6 = rsm->r_end;
1131 		log.u_bbr.flex8 = mod;
1132 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1133 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1134 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1135 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1136 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1137 		    &rack->rc_inp->inp_socket->so_rcv,
1138 		    &rack->rc_inp->inp_socket->so_snd,
1139 		    BBR_LOG_SETTINGS_CHG, 0,
1140 		    0, &log, false, &tv);
1141 	}
1142 }
1143 
1144 
1145 
1146 static void
1147 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
1148 {
1149 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1150 		union tcp_log_stackspecific log;
1151 		struct timeval tv;
1152 
1153 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1154 		log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
1155 		log.u_bbr.flex2 = to;
1156 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1157 		log.u_bbr.flex4 = slot;
1158 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
1159 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1160 		log.u_bbr.flex7 = rack->rc_in_persist;
1161 		log.u_bbr.flex8 = which;
1162 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1163 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1164 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1165 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1166 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1167 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1168 		    &rack->rc_inp->inp_socket->so_rcv,
1169 		    &rack->rc_inp->inp_socket->so_snd,
1170 		    BBR_LOG_TIMERSTAR, 0,
1171 		    0, &log, false, &tv);
1172 	}
1173 }
1174 
1175 static void
1176 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int no)
1177 {
1178 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1179 		union tcp_log_stackspecific log;
1180 		struct timeval tv;
1181 
1182 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1183 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1184 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1185 		log.u_bbr.flex8 = to_num;
1186 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
1187 		log.u_bbr.flex2 = rack->rc_rack_rtt;
1188 		log.u_bbr.flex3 = no;
1189 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1190 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1191 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1192 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1193 		    &rack->rc_inp->inp_socket->so_rcv,
1194 		    &rack->rc_inp->inp_socket->so_snd,
1195 		    BBR_LOG_RTO, 0,
1196 		    0, &log, false, &tv);
1197 	}
1198 }
1199 
1200 static void
1201 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
1202     uint32_t o_srtt, uint32_t o_var)
1203 {
1204 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1205 		union tcp_log_stackspecific log;
1206 		struct timeval tv;
1207 
1208 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1209 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1210 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1211 		log.u_bbr.flex1 = t;
1212 		log.u_bbr.flex2 = o_srtt;
1213 		log.u_bbr.flex3 = o_var;
1214 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
1215 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
1216 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
1217 		log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
1218 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
1219 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1220 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1221 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1222 		TCP_LOG_EVENTP(tp, NULL,
1223 		    &rack->rc_inp->inp_socket->so_rcv,
1224 		    &rack->rc_inp->inp_socket->so_snd,
1225 		    BBR_LOG_BBRRTT, 0,
1226 		    0, &log, false, &tv);
1227 	}
1228 }
1229 
1230 static void
1231 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
1232 {
1233 	/*
1234 	 * Log the rtt sample we are
1235 	 * applying to the srtt algorithm in
1236 	 * useconds.
1237 	 */
1238 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1239 		union tcp_log_stackspecific log;
1240 		struct timeval tv;
1241 
1242 		/* Convert our ms to a microsecond */
1243 		memset(&log, 0, sizeof(log));
1244 		log.u_bbr.flex1 = rtt * 1000;
1245 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1246 		log.u_bbr.flex3 = rack->r_ctl.sack_count;
1247 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1248 		log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
1249 		log.u_bbr.flex8 = rack->sack_attack_disable;
1250 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1251 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1252 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1253 		    &rack->rc_inp->inp_socket->so_rcv,
1254 		    &rack->rc_inp->inp_socket->so_snd,
1255 		    TCP_LOG_RTT, 0,
1256 		    0, &log, false, &tv);
1257 	}
1258 }
1259 
1260 
1261 static inline void
1262 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
1263 {
1264 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1265 		union tcp_log_stackspecific log;
1266 		struct timeval tv;
1267 
1268 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1269 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1270 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1271 		log.u_bbr.flex1 = line;
1272 		log.u_bbr.flex2 = tick;
1273 		log.u_bbr.flex3 = tp->t_maxunacktime;
1274 		log.u_bbr.flex4 = tp->t_acktime;
1275 		log.u_bbr.flex8 = event;
1276 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1277 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1278 		TCP_LOG_EVENTP(tp, NULL,
1279 		    &rack->rc_inp->inp_socket->so_rcv,
1280 		    &rack->rc_inp->inp_socket->so_snd,
1281 		    BBR_LOG_PROGRESS, 0,
1282 		    0, &log, false, &tv);
1283 	}
1284 }
1285 
1286 static void
1287 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
1288 {
1289 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1290 		union tcp_log_stackspecific log;
1291 		struct timeval tv;
1292 
1293 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1294 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1295 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1296 		log.u_bbr.flex1 = slot;
1297 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
1298 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
1299 		log.u_bbr.flex8 = rack->rc_in_persist;
1300 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1301 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1302 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1303 		    &rack->rc_inp->inp_socket->so_rcv,
1304 		    &rack->rc_inp->inp_socket->so_snd,
1305 		    BBR_LOG_BBRSND, 0,
1306 		    0, &log, false, &tv);
1307 	}
1308 }
1309 
1310 static void
1311 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
1312 {
1313 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1314 		union tcp_log_stackspecific log;
1315 		struct timeval tv;
1316 
1317 		memset(&log, 0, sizeof(log));
1318 		log.u_bbr.flex1 = did_out;
1319 		log.u_bbr.flex2 = nxt_pkt;
1320 		log.u_bbr.flex3 = way_out;
1321 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1322 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1323 		log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
1324 		log.u_bbr.flex7 = rack->r_wanted_output;
1325 		log.u_bbr.flex8 = rack->rc_in_persist;
1326 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1327 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1328 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1329 		    &rack->rc_inp->inp_socket->so_rcv,
1330 		    &rack->rc_inp->inp_socket->so_snd,
1331 		    BBR_LOG_DOSEG_DONE, 0,
1332 		    0, &log, false, &tv);
1333 	}
1334 }
1335 
1336 static void
1337 rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm)
1338 {
1339 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1340 		union tcp_log_stackspecific log;
1341 		struct timeval tv;
1342 		uint32_t cts;
1343 
1344 		memset(&log, 0, sizeof(log));
1345 		cts = tcp_get_usecs(&tv);
1346 		log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
1347 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
1348 		log.u_bbr.flex4 = len;
1349 		log.u_bbr.flex5 = orig_len;
1350 		log.u_bbr.flex6 = rack->r_ctl.rc_sacked;
1351 		log.u_bbr.flex7 = mod;
1352 		log.u_bbr.flex8 = frm;
1353 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1354 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1355 		TCP_LOG_EVENTP(tp, NULL,
1356 		    &tp->t_inpcb->inp_socket->so_rcv,
1357 		    &tp->t_inpcb->inp_socket->so_snd,
1358 		    TCP_HDWR_TLS, 0,
1359 		    0, &log, false, &tv);
1360 	}
1361 }
1362 
1363 static void
1364 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
1365 {
1366 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1367 		union tcp_log_stackspecific log;
1368 		struct timeval tv;
1369 
1370 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1371 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1372 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1373 		log.u_bbr.flex1 = slot;
1374 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1375 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1376 		log.u_bbr.flex7 = hpts_calling;
1377 		log.u_bbr.flex8 = rack->rc_in_persist;
1378 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1379 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1380 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1381 		    &rack->rc_inp->inp_socket->so_rcv,
1382 		    &rack->rc_inp->inp_socket->so_snd,
1383 		    BBR_LOG_JUSTRET, 0,
1384 		    tlen, &log, false, &tv);
1385 	}
1386 }
1387 
1388 static void
1389 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
1390 {
1391 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1392 		union tcp_log_stackspecific log;
1393 		struct timeval tv;
1394 
1395 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1396 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1397 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1398 		log.u_bbr.flex1 = line;
1399 		log.u_bbr.flex2 = 0;
1400 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1401 		log.u_bbr.flex4 = 0;
1402 		log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1403 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1404 		log.u_bbr.flex8 = hpts_removed;
1405 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1406 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1407 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1408 		    &rack->rc_inp->inp_socket->so_rcv,
1409 		    &rack->rc_inp->inp_socket->so_snd,
1410 		    BBR_LOG_TIMERCANC, 0,
1411 		    0, &log, false, &tv);
1412 	}
1413 }
1414 
1415 static void
1416 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
1417 {
1418 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1419 		union tcp_log_stackspecific log;
1420 		struct timeval tv;
1421 
1422 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1423 		log.u_bbr.flex1 = timers;
1424 		log.u_bbr.flex2 = ret;
1425 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
1426 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1427 		log.u_bbr.flex5 = cts;
1428 		log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
1429 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1430 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1431 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1432 		    &rack->rc_inp->inp_socket->so_rcv,
1433 		    &rack->rc_inp->inp_socket->so_snd,
1434 		    BBR_LOG_TO_PROCESS, 0,
1435 		    0, &log, false, &tv);
1436 	}
1437 }
1438 
1439 static void
1440 rack_log_to_prr(struct tcp_rack *rack, int frm)
1441 {
1442 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1443 		union tcp_log_stackspecific log;
1444 		struct timeval tv;
1445 
1446 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1447 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
1448 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
1449 		log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
1450 		log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
1451 		log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
1452 		log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
1453 		log.u_bbr.flex8 = frm;
1454 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1455 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1456 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1457 		    &rack->rc_inp->inp_socket->so_rcv,
1458 		    &rack->rc_inp->inp_socket->so_snd,
1459 		    BBR_LOG_BBRUPD, 0,
1460 		    0, &log, false, &tv);
1461 	}
1462 }
1463 
1464 #ifdef NETFLIX_EXP_DETECTION
1465 static void
1466 rack_log_sad(struct tcp_rack *rack, int event)
1467 {
1468 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1469 		union tcp_log_stackspecific log;
1470 		struct timeval tv;
1471 
1472 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1473 		log.u_bbr.flex1 = rack->r_ctl.sack_count;
1474 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
1475 		log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
1476 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1477 		log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
1478 		log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
1479 		log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
1480 		log.u_bbr.lt_epoch = (tcp_force_detection << 8);
1481 		log.u_bbr.lt_epoch |= rack->do_detection;
1482 		log.u_bbr.applimited = tcp_map_minimum;
1483 		log.u_bbr.flex7 = rack->sack_attack_disable;
1484 		log.u_bbr.flex8 = event;
1485 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1486 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1487 		log.u_bbr.delivered = tcp_sad_decay_val;
1488 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1489 		    &rack->rc_inp->inp_socket->so_rcv,
1490 		    &rack->rc_inp->inp_socket->so_snd,
1491 		    TCP_SAD_DETECTION, 0,
1492 		    0, &log, false, &tv);
1493 	}
1494 }
1495 #endif
1496 
1497 static void
1498 rack_counter_destroy(void)
1499 {
1500 	counter_u64_free(rack_badfr);
1501 	counter_u64_free(rack_badfr_bytes);
1502 	counter_u64_free(rack_rtm_prr_retran);
1503 	counter_u64_free(rack_rtm_prr_newdata);
1504 	counter_u64_free(rack_timestamp_mismatch);
1505 	counter_u64_free(rack_reorder_seen);
1506 	counter_u64_free(rack_tlp_tot);
1507 	counter_u64_free(rack_tlp_newdata);
1508 	counter_u64_free(rack_tlp_retran);
1509 	counter_u64_free(rack_tlp_retran_bytes);
1510 	counter_u64_free(rack_tlp_retran_fail);
1511 	counter_u64_free(rack_to_tot);
1512 	counter_u64_free(rack_to_arm_rack);
1513 	counter_u64_free(rack_to_arm_tlp);
1514 	counter_u64_free(rack_paced_segments);
1515 	counter_u64_free(rack_unpaced_segments);
1516 	counter_u64_free(rack_saw_enobuf);
1517 	counter_u64_free(rack_saw_enetunreach);
1518 	counter_u64_free(rack_to_alloc_hard);
1519 	counter_u64_free(rack_to_alloc_emerg);
1520 	counter_u64_free(rack_sack_proc_all);
1521 	counter_u64_free(rack_sack_proc_short);
1522 	counter_u64_free(rack_sack_proc_restart);
1523 	counter_u64_free(rack_to_alloc);
1524 	counter_u64_free(rack_to_alloc_limited);
1525 	counter_u64_free(rack_alloc_limited_conns);
1526 	counter_u64_free(rack_split_limited);
1527 	counter_u64_free(rack_find_high);
1528 	counter_u64_free(rack_enter_tlp_calc);
1529 	counter_u64_free(rack_used_tlpmethod);
1530 	counter_u64_free(rack_used_tlpmethod2);
1531 	counter_u64_free(rack_progress_drops);
1532 	counter_u64_free(rack_input_idle_reduces);
1533 	counter_u64_free(rack_collapsed_win);
1534 	counter_u64_free(rack_tlp_does_nada);
1535 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
1536 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
1537 }
1538 
1539 static struct rack_sendmap *
1540 rack_alloc(struct tcp_rack *rack)
1541 {
1542 	struct rack_sendmap *rsm;
1543 
1544 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
1545 	if (rsm) {
1546 		rack->r_ctl.rc_num_maps_alloced++;
1547 		counter_u64_add(rack_to_alloc, 1);
1548 		return (rsm);
1549 	}
1550 	if (rack->rc_free_cnt) {
1551 		counter_u64_add(rack_to_alloc_emerg, 1);
1552 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
1553 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
1554 		rack->rc_free_cnt--;
1555 		return (rsm);
1556 	}
1557 	return (NULL);
1558 }
1559 
1560 static struct rack_sendmap *
1561 rack_alloc_full_limit(struct tcp_rack *rack)
1562 {
1563 	if ((V_tcp_map_entries_limit > 0) &&
1564 	    (rack->do_detection == 0) &&
1565 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
1566 		counter_u64_add(rack_to_alloc_limited, 1);
1567 		if (!rack->alloc_limit_reported) {
1568 			rack->alloc_limit_reported = 1;
1569 			counter_u64_add(rack_alloc_limited_conns, 1);
1570 		}
1571 		return (NULL);
1572 	}
1573 	return (rack_alloc(rack));
1574 }
1575 
1576 /* wrapper to allocate a sendmap entry, subject to a specific limit */
1577 static struct rack_sendmap *
1578 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
1579 {
1580 	struct rack_sendmap *rsm;
1581 
1582 	if (limit_type) {
1583 		/* currently there is only one limit type */
1584 		if (V_tcp_map_split_limit > 0 &&
1585 		    (rack->do_detection == 0) &&
1586 		    rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
1587 			counter_u64_add(rack_split_limited, 1);
1588 			if (!rack->alloc_limit_reported) {
1589 				rack->alloc_limit_reported = 1;
1590 				counter_u64_add(rack_alloc_limited_conns, 1);
1591 			}
1592 			return (NULL);
1593 		}
1594 	}
1595 
1596 	/* allocate and mark in the limit type, if set */
1597 	rsm = rack_alloc(rack);
1598 	if (rsm != NULL && limit_type) {
1599 		rsm->r_limit_type = limit_type;
1600 		rack->r_ctl.rc_num_split_allocs++;
1601 	}
1602 	return (rsm);
1603 }
1604 
1605 static void
1606 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
1607 {
1608 	if (rsm->r_limit_type) {
1609 		/* currently there is only one limit type */
1610 		rack->r_ctl.rc_num_split_allocs--;
1611 	}
1612 	if (rack->r_ctl.rc_tlpsend == rsm)
1613 		rack->r_ctl.rc_tlpsend = NULL;
1614 	if (rack->r_ctl.rc_sacklast == rsm)
1615 		rack->r_ctl.rc_sacklast = NULL;
1616 	if (rack->rc_free_cnt < rack_free_cache) {
1617 		memset(rsm, 0, sizeof(struct rack_sendmap));
1618 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
1619 		rsm->r_limit_type = 0;
1620 		rack->rc_free_cnt++;
1621 		return;
1622 	}
1623 	rack->r_ctl.rc_num_maps_alloced--;
1624 	uma_zfree(rack_zone, rsm);
1625 }
1626 
1627 /*
1628  * CC wrapper hook functions
1629  */
1630 static void
1631 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
1632     uint16_t type, int32_t recovery)
1633 {
1634 #ifdef STATS
1635 	int32_t gput;
1636 #endif
1637 
1638 	INP_WLOCK_ASSERT(tp->t_inpcb);
1639 	tp->ccv->nsegs = nsegs;
1640 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
1641 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
1642 		uint32_t max;
1643 
1644 		max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
1645 		if (tp->ccv->bytes_this_ack > max) {
1646 			tp->ccv->bytes_this_ack = max;
1647 		}
1648 	}
1649 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
1650 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
1651 	     (tp->snd_cwnd < (ctf_flight_size(tp, rack->r_ctl.rc_sacked) * 2))))
1652 		tp->ccv->flags |= CCF_CWND_LIMITED;
1653 	else
1654 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
1655 
1656 	if (type == CC_ACK) {
1657 #ifdef STATS
1658 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
1659 		    ((int32_t) tp->snd_cwnd) - tp->snd_wnd);
1660 		if ((tp->t_flags & TF_GPUTINPROG) &&
1661 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
1662 			gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
1663 			    max(1, tcp_ts_getticks() - tp->gput_ts);
1664 			/* We store it in bytes per ms (or kbytes per sec) */
1665 			rack->r_ctl.rc_gp_history[rack->r_ctl.rc_gp_hist_idx] = gput / 8;
1666 			rack->r_ctl.rc_gp_hist_idx++;
1667 			if (rack->r_ctl.rc_gp_hist_idx >= RACK_GP_HIST)
1668 				rack->r_ctl.rc_gp_hist_filled = 1;
1669 			rack->r_ctl.rc_gp_hist_idx %= RACK_GP_HIST;
1670 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
1671 			    gput);
1672 			/*
1673 			 * XXXLAS: This is a temporary hack, and should be
1674 			 * chained off VOI_TCP_GPUT when stats(9) grows an
1675 			 * API to deal with chained VOIs.
1676 			 */
1677 			if (tp->t_stats_gput_prev > 0)
1678 				stats_voi_update_abs_s32(tp->t_stats,
1679 				    VOI_TCP_GPUT_ND,
1680 				    ((gput - tp->t_stats_gput_prev) * 100) /
1681 				    tp->t_stats_gput_prev);
1682 			tp->t_flags &= ~TF_GPUTINPROG;
1683 			tp->t_stats_gput_prev = gput;
1684 #ifdef NETFLIX_PEAKRATE
1685 			if (tp->t_maxpeakrate) {
1686 				/*
1687 				 * We update t_peakrate_thr. This gives us roughly
1688 				 * one update per round trip time.
1689 				 */
1690 				tcp_update_peakrate_thr(tp);
1691 			}
1692 #endif
1693 		}
1694 #endif
1695 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1696 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
1697 			    nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
1698 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
1699 				tp->t_bytes_acked -= tp->snd_cwnd;
1700 				tp->ccv->flags |= CCF_ABC_SENTAWND;
1701 			}
1702 		} else {
1703 			tp->ccv->flags &= ~CCF_ABC_SENTAWND;
1704 			tp->t_bytes_acked = 0;
1705 		}
1706 	}
1707 	if (CC_ALGO(tp)->ack_received != NULL) {
1708 		/* XXXLAS: Find a way to live without this */
1709 		tp->ccv->curack = th->th_ack;
1710 		CC_ALGO(tp)->ack_received(tp->ccv, type);
1711 	}
1712 #ifdef STATS
1713 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
1714 #endif
1715 	if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
1716 		rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
1717 	}
1718 	/* we enforce max peak rate if it is set. */
1719 	if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
1720 		tp->snd_cwnd = tp->t_peakrate_thr;
1721 	}
1722 }
1723 
1724 static void
1725 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
1726 {
1727 	struct tcp_rack *rack;
1728 
1729 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1730 	INP_WLOCK_ASSERT(tp->t_inpcb);
1731 	if (rack->r_ctl.rc_prr_sndcnt > 0)
1732 		rack->r_wanted_output++;
1733 }
1734 
1735 static void
1736 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
1737 {
1738 	struct tcp_rack *rack;
1739 
1740 	INP_WLOCK_ASSERT(tp->t_inpcb);
1741 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1742 	if (CC_ALGO(tp)->post_recovery != NULL) {
1743 		tp->ccv->curack = th->th_ack;
1744 		CC_ALGO(tp)->post_recovery(tp->ccv);
1745 	}
1746 	/*
1747 	 * Here we can in theory adjust cwnd to be based on the number of
1748 	 * losses in the window (rack->r_ctl.rc_loss_count). This is done
1749 	 * based on the rack_use_proportional flag.
1750 	 */
1751 	if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
1752 		int32_t reduce;
1753 
1754 		reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
1755 		if (reduce > 50) {
1756 			reduce = 50;
1757 		}
1758 		tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
1759 	} else {
1760 		if (tp->snd_cwnd > tp->snd_ssthresh) {
1761 			/* Drop us down to the ssthresh (1/2 cwnd at loss) */
1762 			tp->snd_cwnd = tp->snd_ssthresh;
1763 		}
1764 	}
1765 	if (rack->r_ctl.rc_prr_sndcnt > 0) {
1766 		/* Suck the next prr cnt back into cwnd */
1767 		tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
1768 		rack->r_ctl.rc_prr_sndcnt = 0;
1769 		rack_log_to_prr(rack, 1);
1770 	}
1771 	tp->snd_recover = tp->snd_una;
1772 	EXIT_RECOVERY(tp->t_flags);
1773 
1774 
1775 }
1776 
1777 static void
1778 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
1779 {
1780 	struct tcp_rack *rack;
1781 
1782 	INP_WLOCK_ASSERT(tp->t_inpcb);
1783 
1784 	rack = (struct tcp_rack *)tp->t_fb_ptr;
1785 	switch (type) {
1786 	case CC_NDUPACK:
1787 		tp->t_flags &= ~TF_WASFRECOVERY;
1788 		tp->t_flags &= ~TF_WASCRECOVERY;
1789 		if (!IN_FASTRECOVERY(tp->t_flags)) {
1790 			rack->r_ctl.rc_tlp_rtx_out = 0;
1791 			rack->r_ctl.rc_prr_delivered = 0;
1792 			rack->r_ctl.rc_prr_out = 0;
1793 			rack->r_ctl.rc_loss_count = 0;
1794 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
1795 			rack_log_to_prr(rack, 2);
1796 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
1797 			tp->snd_recover = tp->snd_max;
1798 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1799 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1800 		}
1801 		break;
1802 	case CC_ECN:
1803 		if (!IN_CONGRECOVERY(tp->t_flags)) {
1804 			KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
1805 			tp->snd_recover = tp->snd_max;
1806 			if (tp->t_flags2 & TF2_ECN_PERMIT)
1807 				tp->t_flags2 |= TF2_ECN_SND_CWR;
1808 		}
1809 		break;
1810 	case CC_RTO:
1811 		tp->t_dupacks = 0;
1812 		tp->t_bytes_acked = 0;
1813 		EXIT_RECOVERY(tp->t_flags);
1814 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1815 		    ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
1816 		tp->snd_cwnd = ctf_fixed_maxseg(tp);
1817 		if (tp->t_flags2 & TF2_ECN_PERMIT)
1818 			tp->t_flags2 |= TF2_ECN_SND_CWR;
1819 		break;
1820 	case CC_RTO_ERR:
1821 		KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
1822 		/* RTO was unnecessary, so reset everything. */
1823 		tp->snd_cwnd = tp->snd_cwnd_prev;
1824 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1825 		tp->snd_recover = tp->snd_recover_prev;
1826 		if (tp->t_flags & TF_WASFRECOVERY) {
1827 			ENTER_FASTRECOVERY(tp->t_flags);
1828 			tp->t_flags &= ~TF_WASFRECOVERY;
1829 		}
1830 		if (tp->t_flags & TF_WASCRECOVERY) {
1831 			ENTER_CONGRECOVERY(tp->t_flags);
1832 			tp->t_flags &= ~TF_WASCRECOVERY;
1833 		}
1834 		tp->snd_nxt = tp->snd_max;
1835 		tp->t_badrxtwin = 0;
1836 		break;
1837 	}
1838 
1839 	if (CC_ALGO(tp)->cong_signal != NULL) {
1840 		if (th != NULL)
1841 			tp->ccv->curack = th->th_ack;
1842 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
1843 	}
1844 }
1845 
1846 
1847 
1848 static inline void
1849 rack_cc_after_idle(struct tcpcb *tp)
1850 {
1851 	uint32_t i_cwnd;
1852 
1853 	INP_WLOCK_ASSERT(tp->t_inpcb);
1854 
1855 #ifdef NETFLIX_STATS
1856 	KMOD_TCPSTAT_INC(tcps_idle_restarts);
1857 	if (tp->t_state == TCPS_ESTABLISHED)
1858 		KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
1859 #endif
1860 	if (CC_ALGO(tp)->after_idle != NULL)
1861 		CC_ALGO(tp)->after_idle(tp->ccv);
1862 
1863 	if (tp->snd_cwnd == 1)
1864 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
1865 	else
1866 		i_cwnd = tcp_compute_initwnd(tcp_maxseg(tp));
1867 
1868 	/*
1869 	 * Being idle is no differnt than the initial window. If the cc
1870 	 * clamps it down below the initial window raise it to the initial
1871 	 * window.
1872 	 */
1873 	if (tp->snd_cwnd < i_cwnd) {
1874 		tp->snd_cwnd = i_cwnd;
1875 	}
1876 }
1877 
1878 
1879 /*
1880  * Indicate whether this ack should be delayed.  We can delay the ack if
1881  * following conditions are met:
1882  *	- There is no delayed ack timer in progress.
1883  *	- Our last ack wasn't a 0-sized window. We never want to delay
1884  *	  the ack that opens up a 0-sized window.
1885  *	- LRO wasn't used for this segment. We make sure by checking that the
1886  *	  segment size is not larger than the MSS.
1887  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
1888  *	  connection.
1889  */
1890 #define DELAY_ACK(tp, tlen)			 \
1891 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
1892 	((tp->t_flags & TF_DELACK) == 0) && 	 \
1893 	(tlen <= tp->t_maxseg) &&		 \
1894 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
1895 
1896 static struct rack_sendmap *
1897 rack_find_lowest_rsm(struct tcp_rack *rack)
1898 {
1899 	struct rack_sendmap *rsm;
1900 
1901 	/*
1902 	 * Walk the time-order transmitted list looking for an rsm that is
1903 	 * not acked. This will be the one that was sent the longest time
1904 	 * ago that is still outstanding.
1905 	 */
1906 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
1907 		if (rsm->r_flags & RACK_ACKED) {
1908 			continue;
1909 		}
1910 		goto finish;
1911 	}
1912 finish:
1913 	return (rsm);
1914 }
1915 
1916 static struct rack_sendmap *
1917 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
1918 {
1919 	struct rack_sendmap *prsm;
1920 
1921 	/*
1922 	 * Walk the sequence order list backward until we hit and arrive at
1923 	 * the highest seq not acked. In theory when this is called it
1924 	 * should be the last segment (which it was not).
1925 	 */
1926 	counter_u64_add(rack_find_high, 1);
1927 	prsm = rsm;
1928 	RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
1929 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
1930 			continue;
1931 		}
1932 		return (prsm);
1933 	}
1934 	return (NULL);
1935 }
1936 
1937 
1938 static uint32_t
1939 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
1940 {
1941 	int32_t lro;
1942 	uint32_t thresh;
1943 
1944 	/*
1945 	 * lro is the flag we use to determine if we have seen reordering.
1946 	 * If it gets set we have seen reordering. The reorder logic either
1947 	 * works in one of two ways:
1948 	 *
1949 	 * If reorder-fade is configured, then we track the last time we saw
1950 	 * re-ordering occur. If we reach the point where enough time as
1951 	 * passed we no longer consider reordering has occuring.
1952 	 *
1953 	 * Or if reorder-face is 0, then once we see reordering we consider
1954 	 * the connection to alway be subject to reordering and just set lro
1955 	 * to 1.
1956 	 *
1957 	 * In the end if lro is non-zero we add the extra time for
1958 	 * reordering in.
1959 	 */
1960 	if (srtt == 0)
1961 		srtt = 1;
1962 	if (rack->r_ctl.rc_reorder_ts) {
1963 		if (rack->r_ctl.rc_reorder_fade) {
1964 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
1965 				lro = cts - rack->r_ctl.rc_reorder_ts;
1966 				if (lro == 0) {
1967 					/*
1968 					 * No time as passed since the last
1969 					 * reorder, mark it as reordering.
1970 					 */
1971 					lro = 1;
1972 				}
1973 			} else {
1974 				/* Negative time? */
1975 				lro = 0;
1976 			}
1977 			if (lro > rack->r_ctl.rc_reorder_fade) {
1978 				/* Turn off reordering seen too */
1979 				rack->r_ctl.rc_reorder_ts = 0;
1980 				lro = 0;
1981 			}
1982 		} else {
1983 			/* Reodering does not fade */
1984 			lro = 1;
1985 		}
1986 	} else {
1987 		lro = 0;
1988 	}
1989 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
1990 	if (lro) {
1991 		/* It must be set, if not you get 1/4 rtt */
1992 		if (rack->r_ctl.rc_reorder_shift)
1993 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
1994 		else
1995 			thresh += (srtt >> 2);
1996 	} else {
1997 		thresh += 1;
1998 	}
1999 	/* We don't let the rack timeout be above a RTO */
2000 	if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
2001 		thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
2002 	}
2003 	/* And we don't want it above the RTO max either */
2004 	if (thresh > rack_rto_max) {
2005 		thresh = rack_rto_max;
2006 	}
2007 	return (thresh);
2008 }
2009 
2010 static uint32_t
2011 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
2012 		     struct rack_sendmap *rsm, uint32_t srtt)
2013 {
2014 	struct rack_sendmap *prsm;
2015 	uint32_t thresh, len;
2016 	int maxseg;
2017 
2018 	if (srtt == 0)
2019 		srtt = 1;
2020 	if (rack->r_ctl.rc_tlp_threshold)
2021 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
2022 	else
2023 		thresh = (srtt * 2);
2024 
2025 	/* Get the previous sent packet, if any  */
2026 	maxseg = ctf_fixed_maxseg(tp);
2027 	counter_u64_add(rack_enter_tlp_calc, 1);
2028 	len = rsm->r_end - rsm->r_start;
2029 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
2030 		/* Exactly like the ID */
2031 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
2032 			uint32_t alt_thresh;
2033 			/*
2034 			 * Compensate for delayed-ack with the d-ack time.
2035 			 */
2036 			counter_u64_add(rack_used_tlpmethod, 1);
2037 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2038 			if (alt_thresh > thresh)
2039 				thresh = alt_thresh;
2040 		}
2041 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
2042 		/* 2.1 behavior */
2043 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
2044 		if (prsm && (len <= maxseg)) {
2045 			/*
2046 			 * Two packets outstanding, thresh should be (2*srtt) +
2047 			 * possible inter-packet delay (if any).
2048 			 */
2049 			uint32_t inter_gap = 0;
2050 			int idx, nidx;
2051 
2052 			counter_u64_add(rack_used_tlpmethod, 1);
2053 			idx = rsm->r_rtr_cnt - 1;
2054 			nidx = prsm->r_rtr_cnt - 1;
2055 			if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
2056 				/* Yes it was sent later (or at the same time) */
2057 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
2058 			}
2059 			thresh += inter_gap;
2060 		} else 	if (len <= maxseg) {
2061 			/*
2062 			 * Possibly compensate for delayed-ack.
2063 			 */
2064 			uint32_t alt_thresh;
2065 
2066 			counter_u64_add(rack_used_tlpmethod2, 1);
2067 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2068 			if (alt_thresh > thresh)
2069 				thresh = alt_thresh;
2070 		}
2071 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
2072 		/* 2.2 behavior */
2073 		if (len <= maxseg) {
2074 			uint32_t alt_thresh;
2075 			/*
2076 			 * Compensate for delayed-ack with the d-ack time.
2077 			 */
2078 			counter_u64_add(rack_used_tlpmethod, 1);
2079 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
2080 			if (alt_thresh > thresh)
2081 				thresh = alt_thresh;
2082 		}
2083 	}
2084  	/* Not above an RTO */
2085 	if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
2086 		thresh = TICKS_2_MSEC(tp->t_rxtcur);
2087 	}
2088 	/* Not above a RTO max */
2089 	if (thresh > rack_rto_max) {
2090 		thresh = rack_rto_max;
2091 	}
2092 	/* Apply user supplied min TLP */
2093 	if (thresh < rack_tlp_min) {
2094 		thresh = rack_tlp_min;
2095 	}
2096 	return (thresh);
2097 }
2098 
2099 static uint32_t
2100 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
2101 {
2102 	/*
2103 	 * We want the rack_rtt which is the
2104 	 * last rtt we measured. However if that
2105 	 * does not exist we fallback to the srtt (which
2106 	 * we probably will never do) and then as a last
2107 	 * resort we use RACK_INITIAL_RTO if no srtt is
2108 	 * yet set.
2109 	 */
2110 	if (rack->rc_rack_rtt)
2111 		return(rack->rc_rack_rtt);
2112 	else if (tp->t_srtt == 0)
2113 		return(RACK_INITIAL_RTO);
2114 	return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT));
2115 }
2116 
2117 static struct rack_sendmap *
2118 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
2119 {
2120 	/*
2121 	 * Check to see that we don't need to fall into recovery. We will
2122 	 * need to do so if our oldest transmit is past the time we should
2123 	 * have had an ack.
2124 	 */
2125 	struct tcp_rack *rack;
2126 	struct rack_sendmap *rsm;
2127 	int32_t idx;
2128 	uint32_t srtt, thresh;
2129 
2130 	rack = (struct tcp_rack *)tp->t_fb_ptr;
2131 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
2132 		return (NULL);
2133 	}
2134 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2135 	if (rsm == NULL)
2136 		return (NULL);
2137 
2138 	if (rsm->r_flags & RACK_ACKED) {
2139 		rsm = rack_find_lowest_rsm(rack);
2140 		if (rsm == NULL)
2141 			return (NULL);
2142 	}
2143 	idx = rsm->r_rtr_cnt - 1;
2144 	srtt = rack_grab_rtt(tp, rack);
2145 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
2146 	if (tsused < rsm->r_tim_lastsent[idx]) {
2147 		return (NULL);
2148 	}
2149 	if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
2150 		return (NULL);
2151 	}
2152 	/* Ok if we reach here we are over-due */
2153 	rack->r_ctl.rc_rsm_start = rsm->r_start;
2154 	rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
2155 	rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
2156 	rack_cong_signal(tp, NULL, CC_NDUPACK);
2157 	return (rsm);
2158 }
2159 
2160 static uint32_t
2161 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
2162 {
2163 	int32_t t;
2164 	int32_t tt;
2165 	uint32_t ret_val;
2166 
2167 	t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
2168 	TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
2169 	    rack_persist_min, rack_persist_max);
2170 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2171 		tp->t_rxtshift++;
2172 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
2173 	ret_val = (uint32_t)tt;
2174 	return (ret_val);
2175 }
2176 
2177 static uint32_t
2178 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
2179 {
2180 	/*
2181 	 * Start the FR timer, we do this based on getting the first one in
2182 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
2183 	 * events we need to stop the running timer (if its running) before
2184 	 * starting the new one.
2185 	 */
2186 	uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
2187 	uint32_t srtt_cur;
2188 	int32_t idx;
2189 	int32_t is_tlp_timer = 0;
2190 	struct rack_sendmap *rsm;
2191 
2192 	if (rack->t_timers_stopped) {
2193 		/* All timers have been stopped none are to run */
2194 		return (0);
2195 	}
2196 	if (rack->rc_in_persist) {
2197 		/* We can't start any timer in persists */
2198 		return (rack_get_persists_timer_val(tp, rack));
2199 	}
2200 	if ((tp->t_state < TCPS_ESTABLISHED) ||
2201 	    ((tp->t_flags & TF_SACK_PERMIT) == 0))
2202 		goto activate_rxt;
2203 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2204 	if ((rsm == NULL) || sup_rack) {
2205 		/* Nothing on the send map */
2206 activate_rxt:
2207 		time_since_sent = 0;
2208 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2209 		if (rsm) {
2210 			idx = rsm->r_rtr_cnt - 1;
2211 			if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2212 				tstmp_touse = rsm->r_tim_lastsent[idx];
2213 			else
2214 				tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2215 			if (TSTMP_GT(tstmp_touse, cts))
2216 			    time_since_sent = cts - tstmp_touse;
2217 		}
2218 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
2219 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
2220 			to = TICKS_2_MSEC(tp->t_rxtcur);
2221 			if (to > time_since_sent)
2222 				to -= time_since_sent;
2223 			else
2224 				to = rack->r_ctl.rc_min_to;
2225 			if (to == 0)
2226 				to = 1;
2227 			return (to);
2228 		}
2229 		return (0);
2230 	}
2231 	if (rsm->r_flags & RACK_ACKED) {
2232 		rsm = rack_find_lowest_rsm(rack);
2233 		if (rsm == NULL) {
2234 			/* No lowest? */
2235 			goto activate_rxt;
2236 		}
2237 	}
2238 	if (rack->sack_attack_disable) {
2239 		/*
2240 		 * We don't want to do
2241 		 * any TLP's if you are an attacker.
2242 		 * Though if you are doing what
2243 		 * is expected you may still have
2244 		 * SACK-PASSED marks.
2245 		 */
2246 		goto activate_rxt;
2247 	}
2248 	/* Convert from ms to usecs */
2249 	if (rsm->r_flags & RACK_SACK_PASSED) {
2250 		if ((tp->t_flags & TF_SENTFIN) &&
2251 		    ((tp->snd_max - tp->snd_una) == 1) &&
2252 		    (rsm->r_flags & RACK_HAS_FIN)) {
2253 			/*
2254 			 * We don't start a rack timer if all we have is a
2255 			 * FIN outstanding.
2256 			 */
2257 			goto activate_rxt;
2258 		}
2259 		if ((rack->use_rack_cheat == 0) &&
2260 		    (IN_RECOVERY(tp->t_flags)) &&
2261 		     (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
2262 			/*
2263 			 * We are not cheating, in recovery  and
2264 			 * not enough ack's to yet get our next
2265 			 * retransmission out.
2266 			 *
2267 			 * Note that classified attackers do not
2268 			 * get to use the rack-cheat.
2269 			 */
2270 			goto activate_tlp;
2271 		}
2272 		srtt = rack_grab_rtt(tp, rack);
2273 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
2274 		idx = rsm->r_rtr_cnt - 1;
2275 		exp = rsm->r_tim_lastsent[idx] + thresh;
2276 		if (SEQ_GEQ(exp, cts)) {
2277 			to = exp - cts;
2278 			if (to < rack->r_ctl.rc_min_to) {
2279 				to = rack->r_ctl.rc_min_to;
2280 			}
2281 		} else {
2282 			to = rack->r_ctl.rc_min_to;
2283 		}
2284 	} else {
2285 		/* Ok we need to do a TLP not RACK */
2286 activate_tlp:
2287 		if ((rack->rc_tlp_in_progress != 0) ||
2288 		    (rack->r_ctl.rc_tlp_rtx_out != 0)) {
2289 			/*
2290 			 * The previous send was a TLP or a tlp_rtx is in
2291 			 * process.
2292 			 */
2293 			goto activate_rxt;
2294 		}
2295 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
2296 		if (rsm == NULL) {
2297 			/* We found no rsm to TLP with. */
2298 			goto activate_rxt;
2299 		}
2300 		if (rsm->r_flags & RACK_HAS_FIN) {
2301 			/* If its a FIN we dont do TLP */
2302 			rsm = NULL;
2303 			goto activate_rxt;
2304 		}
2305 		idx = rsm->r_rtr_cnt - 1;
2306 		time_since_sent = 0;
2307 		if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
2308 			tstmp_touse = rsm->r_tim_lastsent[idx];
2309 		else
2310 			tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
2311 		if (TSTMP_GT(tstmp_touse, cts))
2312 		    time_since_sent = cts - tstmp_touse;
2313 		is_tlp_timer = 1;
2314 		if (tp->t_srtt) {
2315 			srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
2316 			srtt = TICKS_2_MSEC(srtt_cur);
2317 		} else
2318 			srtt = RACK_INITIAL_RTO;
2319 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
2320 		if (thresh > time_since_sent)
2321 			to = thresh - time_since_sent;
2322 		else
2323 			to = rack->r_ctl.rc_min_to;
2324 		if (to > TCPTV_REXMTMAX) {
2325 			/*
2326 			 * If the TLP time works out to larger than the max
2327 			 * RTO lets not do TLP.. just RTO.
2328 			 */
2329 			goto activate_rxt;
2330 		}
2331 		if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
2332 			/*
2333 			 * The tail is no longer the last one I did a probe
2334 			 * on
2335 			 */
2336 			rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2337 			rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2338 		}
2339 	}
2340 	if (is_tlp_timer == 0) {
2341 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
2342 	} else {
2343 		if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
2344 		    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2345 			/*
2346 			 * We have exceeded how many times we can retran the
2347 			 * current TLP timer, switch to the RTO timer.
2348 			 */
2349 			goto activate_rxt;
2350 		} else {
2351 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
2352 		}
2353 	}
2354 	if (to == 0)
2355 		to = 1;
2356 	return (to);
2357 }
2358 
2359 static void
2360 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2361 {
2362 	if (rack->rc_in_persist == 0) {
2363 		rack->r_ctl.rc_went_idle_time = cts;
2364 		rack_timer_cancel(tp, rack, cts, __LINE__);
2365 		tp->t_rxtshift = 0;
2366 		rack->rc_in_persist = 1;
2367 	}
2368 }
2369 
2370 static void
2371 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
2372 {
2373 	if (rack->rc_inp->inp_in_hpts)  {
2374 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
2375 		rack->r_ctl.rc_hpts_flags  = 0;
2376 	}
2377 	rack->rc_in_persist = 0;
2378 	rack->r_ctl.rc_went_idle_time = 0;
2379 	tp->t_flags &= ~TF_FORCEDATA;
2380 	tp->t_rxtshift = 0;
2381 }
2382 
2383 static void
2384 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
2385       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
2386 {
2387 	struct inpcb *inp;
2388 	uint32_t delayed_ack = 0;
2389 	uint32_t hpts_timeout;
2390 	uint8_t stopped;
2391 	uint32_t left = 0;
2392 
2393 	inp = tp->t_inpcb;
2394 	if (inp->inp_in_hpts) {
2395 		/* A previous call is already set up */
2396 		return;
2397 	}
2398 	if ((tp->t_state == TCPS_CLOSED) ||
2399 	    (tp->t_state == TCPS_LISTEN)) {
2400 		return;
2401 	}
2402 	stopped = rack->rc_tmr_stopped;
2403 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
2404 		left = rack->r_ctl.rc_timer_exp - cts;
2405 	}
2406 	rack->tlp_timer_up = 0;
2407 	rack->r_ctl.rc_timer_exp = 0;
2408 	if (rack->rc_inp->inp_in_hpts == 0) {
2409 		rack->r_ctl.rc_hpts_flags = 0;
2410 	}
2411 	if (slot) {
2412 		/* We are hptsi too */
2413 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
2414 	} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
2415 		/*
2416 		 * We are still left on the hpts when the to goes
2417 		 * it will be for output.
2418 		 */
2419 		if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts))
2420 			slot = rack->r_ctl.rc_last_output_to - cts;
2421 		else
2422 			slot = 1;
2423 	}
2424 	hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
2425 #ifdef NETFLIX_EXP_DETECTION
2426 	if (rack->sack_attack_disable &&
2427 	    (slot < USEC_TO_MSEC(tcp_sad_pacing_interval))) {
2428 		/*
2429 		 * We have a potential attacker on
2430 		 * the line. We have possibly some
2431 		 * (or now) pacing time set. We want to
2432 		 * slow down the processing of sacks by some
2433 		 * amount (if it is an attacker). Set the default
2434 		 * slot for attackers in place (unless the orginal
2435 		 * interval is longer). Its stored in
2436 		 * micro-seconds, so lets convert to msecs.
2437 		 */
2438 		slot = USEC_TO_MSEC(tcp_sad_pacing_interval);
2439 	}
2440 #endif
2441 	if (tp->t_flags & TF_DELACK) {
2442 		delayed_ack = TICKS_2_MSEC(tcp_delacktime);
2443 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
2444 	}
2445 	if (delayed_ack && ((hpts_timeout == 0) ||
2446 			    (delayed_ack < hpts_timeout)))
2447 		hpts_timeout = delayed_ack;
2448 	else
2449 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2450 	/*
2451 	 * If no timers are going to run and we will fall off the hptsi
2452 	 * wheel, we resort to a keep-alive timer if its configured.
2453 	 */
2454 	if ((hpts_timeout == 0) &&
2455 	    (slot == 0)) {
2456 		if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
2457 		    (tp->t_state <= TCPS_CLOSING)) {
2458 			/*
2459 			 * Ok we have no timer (persists, rack, tlp, rxt  or
2460 			 * del-ack), we don't have segments being paced. So
2461 			 * all that is left is the keepalive timer.
2462 			 */
2463 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2464 				/* Get the established keep-alive time */
2465 				hpts_timeout = TP_KEEPIDLE(tp);
2466 			} else {
2467 				/* Get the initial setup keep-alive time */
2468 				hpts_timeout = TP_KEEPINIT(tp);
2469 			}
2470 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
2471 		}
2472 	}
2473 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
2474 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
2475 		/*
2476 		 * RACK, TLP, persists and RXT timers all are restartable
2477 		 * based on actions input .. i.e we received a packet (ack
2478 		 * or sack) and that changes things (rw, or snd_una etc).
2479 		 * Thus we can restart them with a new value. For
2480 		 * keep-alive, delayed_ack we keep track of what was left
2481 		 * and restart the timer with a smaller value.
2482 		 */
2483 		if (left < hpts_timeout)
2484 			hpts_timeout = left;
2485 	}
2486 	if (hpts_timeout) {
2487 		/*
2488 		 * Hack alert for now we can't time-out over 2,147,483
2489 		 * seconds (a bit more than 596 hours), which is probably ok
2490 		 * :).
2491 		 */
2492 		if (hpts_timeout > 0x7ffffffe)
2493 			hpts_timeout = 0x7ffffffe;
2494 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
2495 	}
2496 	if (slot) {
2497 		rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2498 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)
2499 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2500 		else
2501 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2502 		rack->r_ctl.rc_last_output_to = cts + slot;
2503 		if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
2504 			if (rack->rc_inp->inp_in_hpts == 0)
2505 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
2506 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
2507 		} else {
2508 			/*
2509 			 * Arrange for the hpts to kick back in after the
2510 			 * t-o if the t-o does not cause a send.
2511 			 */
2512 			if (rack->rc_inp->inp_in_hpts == 0)
2513 				tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2514 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2515 		}
2516 	} else if (hpts_timeout) {
2517 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)  {
2518 			/* For a rack timer, don't wake us */
2519 			rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
2520 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
2521 		} else {
2522 			/* All other timers wake us up */
2523 			rack->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
2524 			inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
2525 		}
2526 		if (rack->rc_inp->inp_in_hpts == 0)
2527 			tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
2528 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
2529 	} else {
2530 		/* No timer starting */
2531 #ifdef INVARIANTS
2532 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
2533 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
2534 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
2535 		}
2536 #endif
2537 	}
2538 	rack->rc_tmr_stopped = 0;
2539 	if (slot)
2540 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
2541 }
2542 
2543 /*
2544  * RACK Timer, here we simply do logging and house keeping.
2545  * the normal rack_output() function will call the
2546  * appropriate thing to check if we need to do a RACK retransmit.
2547  * We return 1, saying don't proceed with rack_output only
2548  * when all timers have been stopped (destroyed PCB?).
2549  */
2550 static int
2551 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2552 {
2553 	/*
2554 	 * This timer simply provides an internal trigger to send out data.
2555 	 * The check_recovery_mode call will see if there are needed
2556 	 * retransmissions, if so we will enter fast-recovery. The output
2557 	 * call may or may not do the same thing depending on sysctl
2558 	 * settings.
2559 	 */
2560 	struct rack_sendmap *rsm;
2561 	int32_t recovery, ll;
2562 
2563 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2564 		return (1);
2565 	}
2566 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2567 		/* Its not time yet */
2568 		return (0);
2569 	}
2570 	recovery = IN_RECOVERY(tp->t_flags);
2571 	counter_u64_add(rack_to_tot, 1);
2572 	if (rack->r_state && (rack->r_state != tp->t_state))
2573 		rack_set_state(tp, rack);
2574 	rsm = rack_check_recovery_mode(tp, cts);
2575 	if (rsm)
2576 		ll = rsm->r_end - rsm->r_start;
2577 	else
2578 		ll = 0;
2579 	rack_log_to_event(rack, RACK_TO_FRM_RACK, ll);
2580 	if (rsm) {
2581 		uint32_t rtt;
2582 
2583 		rtt = rack->rc_rack_rtt;
2584 		if (rtt == 0)
2585 			rtt = 1;
2586 		if ((recovery == 0) &&
2587 		    (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
2588 			/*
2589 			 * The rack-timeout that enter's us into recovery
2590 			 * will force out one MSS and set us up so that we
2591 			 * can do one more send in 2*rtt (transitioning the
2592 			 * rack timeout into a rack-tlp).
2593 			 */
2594 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2595 			rack_log_to_prr(rack, 3);
2596 		} else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) &&
2597 			   rack->use_rack_cheat) {
2598 			/*
2599 			 * When a rack timer goes, if the rack cheat is
2600 			 * on, arrange it so we can send a full segment.
2601 			 */
2602 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
2603 			rack_log_to_prr(rack, 4);
2604 		}
2605 	} else {
2606 		/* This is a case that should happen rarely if ever */
2607 		counter_u64_add(rack_tlp_does_nada, 1);
2608 #ifdef TCP_BLACKBOX
2609 		tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2610 #endif
2611 		rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2612 	}
2613 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
2614 	return (0);
2615 }
2616 
2617 static __inline void
2618 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
2619 	       struct rack_sendmap *rsm, uint32_t start)
2620 {
2621 	int idx;
2622 
2623 	nrsm->r_start = start;
2624 	nrsm->r_end = rsm->r_end;
2625 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
2626 	nrsm->r_flags = rsm->r_flags;
2627 	nrsm->r_dupack = rsm->r_dupack;
2628 	nrsm->r_rtr_bytes = 0;
2629 	rsm->r_end = nrsm->r_start;
2630 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
2631 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
2632 	}
2633 }
2634 
2635 static struct rack_sendmap *
2636 rack_merge_rsm(struct tcp_rack *rack,
2637 	       struct rack_sendmap *l_rsm,
2638 	       struct rack_sendmap *r_rsm)
2639 {
2640 	/*
2641 	 * We are merging two ack'd RSM's,
2642 	 * the l_rsm is on the left (lower seq
2643 	 * values) and the r_rsm is on the right
2644 	 * (higher seq value). The simplest way
2645 	 * to merge these is to move the right
2646 	 * one into the left. I don't think there
2647 	 * is any reason we need to try to find
2648 	 * the oldest (or last oldest retransmitted).
2649 	 */
2650 	struct rack_sendmap *rm;
2651 
2652 	l_rsm->r_end = r_rsm->r_end;
2653 	if (l_rsm->r_dupack < r_rsm->r_dupack)
2654 		l_rsm->r_dupack = r_rsm->r_dupack;
2655 	if (r_rsm->r_rtr_bytes)
2656 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
2657 	if (r_rsm->r_in_tmap) {
2658 		/* This really should not happen */
2659 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
2660 		r_rsm->r_in_tmap = 0;
2661 	}
2662 	/* Now the flags */
2663 	if (r_rsm->r_flags & RACK_HAS_FIN)
2664 		l_rsm->r_flags |= RACK_HAS_FIN;
2665 	if (r_rsm->r_flags & RACK_TLP)
2666 		l_rsm->r_flags |= RACK_TLP;
2667 	if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
2668 		l_rsm->r_flags |= RACK_RWND_COLLAPSED;
2669 	rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
2670 #ifdef INVARIANTS
2671 	if (rm != r_rsm) {
2672 		panic("removing head in rack:%p rsm:%p rm:%p",
2673 		      rack, r_rsm, rm);
2674 	}
2675 #endif
2676 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
2677 		/* Transfer the split limit to the map we free */
2678 		r_rsm->r_limit_type = l_rsm->r_limit_type;
2679 		l_rsm->r_limit_type = 0;
2680 	}
2681 	rack_free(rack, r_rsm);
2682 	return(l_rsm);
2683 }
2684 
2685 /*
2686  * TLP Timer, here we simply setup what segment we want to
2687  * have the TLP expire on, the normal rack_output() will then
2688  * send it out.
2689  *
2690  * We return 1, saying don't proceed with rack_output only
2691  * when all timers have been stopped (destroyed PCB?).
2692  */
2693 static int
2694 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2695 {
2696 	/*
2697 	 * Tail Loss Probe.
2698 	 */
2699 	struct rack_sendmap *rsm = NULL;
2700 	struct rack_sendmap *insret;
2701 	struct socket *so;
2702 	uint32_t amm, old_prr_snd = 0;
2703 	uint32_t out, avail;
2704 	int collapsed_win = 0;
2705 
2706 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2707 		return (1);
2708 	}
2709 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
2710 		/* Its not time yet */
2711 		return (0);
2712 	}
2713 	if (rack_progress_timeout_check(tp)) {
2714 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
2715 		return (1);
2716 	}
2717 	/*
2718 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
2719 	 * need to figure out how to force a full MSS segment out.
2720 	 */
2721 	rack_log_to_event(rack, RACK_TO_FRM_TLP, 0);
2722 	counter_u64_add(rack_tlp_tot, 1);
2723 	if (rack->r_state && (rack->r_state != tp->t_state))
2724 		rack_set_state(tp, rack);
2725 	so = tp->t_inpcb->inp_socket;
2726 #ifdef KERN_TLS
2727 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
2728 		/*
2729 		 * For hardware TLS we do *not* want to send
2730 		 * new data, lets instead just do a retransmission.
2731 		 */
2732 		goto need_retran;
2733 	}
2734 #endif
2735 	avail = sbavail(&so->so_snd);
2736 	out = tp->snd_max - tp->snd_una;
2737 	rack->tlp_timer_up = 1;
2738 	if (out > tp->snd_wnd) {
2739 		/* special case, we need a retransmission */
2740 		collapsed_win = 1;
2741 		goto need_retran;
2742 	}
2743 	/*
2744 	 * If we are in recovery we can jazz out a segment if new data is
2745 	 * present simply by setting rc_prr_sndcnt to a segment.
2746 	 */
2747 	if ((avail > out) &&
2748 	    ((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
2749 		/* New data is available */
2750 		amm = avail - out;
2751 		if (amm > ctf_fixed_maxseg(tp)) {
2752 			amm = ctf_fixed_maxseg(tp);
2753 		} else if ((amm < ctf_fixed_maxseg(tp)) && ((tp->t_flags & TF_NODELAY) == 0)) {
2754 			/* not enough to fill a MTU and no-delay is off */
2755 			goto need_retran;
2756 		}
2757 		if (IN_RECOVERY(tp->t_flags)) {
2758 			/* Unlikely */
2759 			old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
2760 			if (out + amm <= tp->snd_wnd) {
2761 				rack->r_ctl.rc_prr_sndcnt = amm;
2762 				rack_log_to_prr(rack, 4);
2763 			} else
2764 				goto need_retran;
2765 		} else {
2766 			/* Set the send-new override */
2767 			if (out + amm <= tp->snd_wnd)
2768 				rack->r_ctl.rc_tlp_new_data = amm;
2769 			else
2770 				goto need_retran;
2771 		}
2772 		rack->r_ctl.rc_tlp_seg_send_cnt = 0;
2773 		rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
2774 		rack->r_ctl.rc_tlpsend = NULL;
2775 		counter_u64_add(rack_tlp_newdata, 1);
2776 		goto send;
2777 	}
2778 need_retran:
2779 	/*
2780 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
2781 	 * optionally the first un-acked segment.
2782 	 */
2783 	if (collapsed_win == 0) {
2784 		if (rack_always_send_oldest)
2785 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
2786 		else {
2787 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2788 			if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
2789 				rsm = rack_find_high_nonack(rack, rsm);
2790 			}
2791 		}
2792 		if (rsm == NULL) {
2793 			counter_u64_add(rack_tlp_does_nada, 1);
2794 #ifdef TCP_BLACKBOX
2795 			tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2796 #endif
2797 			goto out;
2798 		}
2799 	} else {
2800 		/*
2801 		 * We must find the last segment
2802 		 * that was acceptable by the client.
2803 		 */
2804 		RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
2805 			if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
2806 				/* Found one */
2807 				break;
2808 			}
2809 		}
2810 		if (rsm == NULL) {
2811 			/* None? if so send the first */
2812 			rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2813 			if (rsm == NULL) {
2814 				counter_u64_add(rack_tlp_does_nada, 1);
2815 #ifdef TCP_BLACKBOX
2816 				tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
2817 #endif
2818 				goto out;
2819 			}
2820 		}
2821 	}
2822 	if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
2823 		/*
2824 		 * We need to split this the last segment in two.
2825 		 */
2826 		struct rack_sendmap *nrsm;
2827 
2828 
2829 		nrsm = rack_alloc_full_limit(rack);
2830 		if (nrsm == NULL) {
2831 			/*
2832 			 * No memory to split, we will just exit and punt
2833 			 * off to the RXT timer.
2834 			 */
2835 			counter_u64_add(rack_tlp_does_nada, 1);
2836 			goto out;
2837 		}
2838 		rack_clone_rsm(rack, nrsm, rsm,
2839 			       (rsm->r_end - ctf_fixed_maxseg(tp)));
2840 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
2841 #ifdef INVARIANTS
2842 		if (insret != NULL) {
2843 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
2844 			      nrsm, insret, rack, rsm);
2845 		}
2846 #endif
2847 		if (rsm->r_in_tmap) {
2848 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
2849 			nrsm->r_in_tmap = 1;
2850 		}
2851 		rsm->r_flags &= (~RACK_HAS_FIN);
2852 		rsm = nrsm;
2853 	}
2854 	rack->r_ctl.rc_tlpsend = rsm;
2855 	rack->r_ctl.rc_tlp_rtx_out = 1;
2856 	if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
2857 		rack->r_ctl.rc_tlp_seg_send_cnt++;
2858 		tp->t_rxtshift++;
2859 	} else {
2860 		rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
2861 		rack->r_ctl.rc_tlp_seg_send_cnt = 1;
2862 	}
2863 send:
2864 	rack->r_ctl.rc_tlp_send_cnt++;
2865 	if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
2866 		/*
2867 		 * Can't [re]/transmit a segment we have not heard from the
2868 		 * peer in max times. We need the retransmit timer to take
2869 		 * over.
2870 		 */
2871 	restore:
2872 		rack->r_ctl.rc_tlpsend = NULL;
2873 		if (rsm)
2874 			rsm->r_flags &= ~RACK_TLP;
2875 		rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
2876 		rack_log_to_prr(rack, 5);
2877 		counter_u64_add(rack_tlp_retran_fail, 1);
2878 		goto out;
2879 	} else if (rsm) {
2880 		rsm->r_flags |= RACK_TLP;
2881 	}
2882 	if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
2883 	    (rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
2884 		/*
2885 		 * We don't want to send a single segment more than the max
2886 		 * either.
2887 		 */
2888 		goto restore;
2889 	}
2890 	rack->r_timer_override = 1;
2891 	rack->r_tlp_running = 1;
2892 	rack->rc_tlp_in_progress = 1;
2893 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2894 	return (0);
2895 out:
2896 	rack->tlp_timer_up = 0;
2897 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
2898 	return (0);
2899 }
2900 
2901 /*
2902  * Delayed ack Timer, here we simply need to setup the
2903  * ACK_NOW flag and remove the DELACK flag. From there
2904  * the output routine will send the ack out.
2905  *
2906  * We only return 1, saying don't proceed, if all timers
2907  * are stopped (destroyed PCB?).
2908  */
2909 static int
2910 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2911 {
2912 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2913 		return (1);
2914 	}
2915 	rack_log_to_event(rack, RACK_TO_FRM_DELACK, 0);
2916 	tp->t_flags &= ~TF_DELACK;
2917 	tp->t_flags |= TF_ACKNOW;
2918 	KMOD_TCPSTAT_INC(tcps_delack);
2919 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
2920 	return (0);
2921 }
2922 
2923 /*
2924  * Persists timer, here we simply need to setup the
2925  * FORCE-DATA flag the output routine will send
2926  * the one byte send.
2927  *
2928  * We only return 1, saying don't proceed, if all timers
2929  * are stopped (destroyed PCB?).
2930  */
2931 static int
2932 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
2933 {
2934 	struct tcptemp *t_template;
2935 	struct inpcb *inp;
2936 	int32_t retval = 1;
2937 
2938 	inp = tp->t_inpcb;
2939 
2940 	if (tp->t_timers->tt_flags & TT_STOPPED) {
2941 		return (1);
2942 	}
2943 	if (rack->rc_in_persist == 0)
2944 		return (0);
2945 	if (rack_progress_timeout_check(tp)) {
2946 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
2947 		return (1);
2948 	}
2949 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
2950 	/*
2951 	 * Persistence timer into zero window. Force a byte to be output, if
2952 	 * possible.
2953 	 */
2954 	KMOD_TCPSTAT_INC(tcps_persisttimeo);
2955 	/*
2956 	 * Hack: if the peer is dead/unreachable, we do not time out if the
2957 	 * window is closed.  After a full backoff, drop the connection if
2958 	 * the idle time (no responses to probes) reaches the maximum
2959 	 * backoff that we would use if retransmitting.
2960 	 */
2961 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
2962 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
2963 	    ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
2964 		KMOD_TCPSTAT_INC(tcps_persistdrop);
2965 		retval = 1;
2966 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2967 		goto out;
2968 	}
2969 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
2970 	    tp->snd_una == tp->snd_max)
2971 		rack_exit_persist(tp, rack);
2972 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
2973 	/*
2974 	 * If the user has closed the socket then drop a persisting
2975 	 * connection after a much reduced timeout.
2976 	 */
2977 	if (tp->t_state > TCPS_CLOSE_WAIT &&
2978 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
2979 		retval = 1;
2980 		KMOD_TCPSTAT_INC(tcps_persistdrop);
2981 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
2982 		goto out;
2983 	}
2984 	t_template = tcpip_maketemplate(rack->rc_inp);
2985 	if (t_template) {
2986 		tcp_respond(tp, t_template->tt_ipgen,
2987 			    &t_template->tt_t, (struct mbuf *)NULL,
2988 			    tp->rcv_nxt, tp->snd_una - 1, 0);
2989 		/* This sends an ack */
2990 		if (tp->t_flags & TF_DELACK)
2991 			tp->t_flags &= ~TF_DELACK;
2992 		free(t_template, M_TEMP);
2993 	}
2994 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
2995 		tp->t_rxtshift++;
2996 out:
2997 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST, 0);
2998 	rack_start_hpts_timer(rack, tp, cts,
2999 			      0, 0, 0);
3000 	return (retval);
3001 }
3002 
3003 /*
3004  * If a keepalive goes off, we had no other timers
3005  * happening. We always return 1 here since this
3006  * routine either drops the connection or sends
3007  * out a segment with respond.
3008  */
3009 static int
3010 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3011 {
3012 	struct tcptemp *t_template;
3013 	struct inpcb *inp;
3014 
3015 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3016 		return (1);
3017 	}
3018 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
3019 	inp = tp->t_inpcb;
3020 	rack_log_to_event(rack, RACK_TO_FRM_KEEP, 0);
3021 	/*
3022 	 * Keep-alive timer went off; send something or drop connection if
3023 	 * idle for too long.
3024 	 */
3025 	KMOD_TCPSTAT_INC(tcps_keeptimeo);
3026 	if (tp->t_state < TCPS_ESTABLISHED)
3027 		goto dropit;
3028 	if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
3029 	    tp->t_state <= TCPS_CLOSING) {
3030 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
3031 			goto dropit;
3032 		/*
3033 		 * Send a packet designed to force a response if the peer is
3034 		 * up and reachable: either an ACK if the connection is
3035 		 * still alive, or an RST if the peer has closed the
3036 		 * connection due to timeout or reboot. Using sequence
3037 		 * number tp->snd_una-1 causes the transmitted zero-length
3038 		 * segment to lie outside the receive window; by the
3039 		 * protocol spec, this requires the correspondent TCP to
3040 		 * respond.
3041 		 */
3042 		KMOD_TCPSTAT_INC(tcps_keepprobe);
3043 		t_template = tcpip_maketemplate(inp);
3044 		if (t_template) {
3045 			tcp_respond(tp, t_template->tt_ipgen,
3046 			    &t_template->tt_t, (struct mbuf *)NULL,
3047 			    tp->rcv_nxt, tp->snd_una - 1, 0);
3048 			free(t_template, M_TEMP);
3049 		}
3050 	}
3051 	rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
3052 	return (1);
3053 dropit:
3054 	KMOD_TCPSTAT_INC(tcps_keepdrops);
3055 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
3056 	return (1);
3057 }
3058 
3059 /*
3060  * Retransmit helper function, clear up all the ack
3061  * flags and take care of important book keeping.
3062  */
3063 static void
3064 rack_remxt_tmr(struct tcpcb *tp)
3065 {
3066 	/*
3067 	 * The retransmit timer went off, all sack'd blocks must be
3068 	 * un-acked.
3069 	 */
3070 	struct rack_sendmap *rsm, *trsm = NULL;
3071 	struct tcp_rack *rack;
3072 	int32_t cnt = 0;
3073 
3074 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3075 	rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
3076 	rack_log_to_event(rack, RACK_TO_FRM_TMR, 0);
3077 	if (rack->r_state && (rack->r_state != tp->t_state))
3078 		rack_set_state(tp, rack);
3079 	/*
3080 	 * Ideally we would like to be able to
3081 	 * mark SACK-PASS on anything not acked here.
3082 	 * However, if we do that we would burst out
3083 	 * all that data 1ms apart. This would be unwise,
3084 	 * so for now we will just let the normal rxt timer
3085 	 * and tlp timer take care of it.
3086 	 */
3087 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3088 		if (rsm->r_flags & RACK_ACKED) {
3089 			cnt++;
3090 			rsm->r_dupack = 0;
3091 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3092 			if (rsm->r_in_tmap == 0) {
3093 				/* We must re-add it back to the tlist */
3094 				if (trsm == NULL) {
3095 					TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3096 				} else {
3097 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
3098 				}
3099 				rsm->r_in_tmap = 1;
3100 			}
3101 		}
3102 		trsm = rsm;
3103 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
3104 	}
3105 	/* Clear the count (we just un-acked them) */
3106 	rack->r_ctl.rc_sacked = 0;
3107 	/* Clear the tlp rtx mark */
3108 	rack->r_ctl.rc_tlp_rtx_out = 0;
3109 	rack->r_ctl.rc_tlp_seg_send_cnt = 0;
3110 	rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3111 	rack->r_ctl.rc_prr_sndcnt = 0;
3112 	rack_log_to_prr(rack, 6);
3113 	rack->r_timer_override = 1;
3114 }
3115 
3116 /*
3117  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
3118  * we will setup to retransmit the lowest seq number outstanding.
3119  */
3120 static int
3121 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
3122 {
3123 	int32_t rexmt;
3124 	struct inpcb *inp;
3125 	int32_t retval = 0;
3126 	bool isipv6;
3127 
3128 	inp = tp->t_inpcb;
3129 	if (tp->t_timers->tt_flags & TT_STOPPED) {
3130 		return (1);
3131 	}
3132 	if (rack_progress_timeout_check(tp)) {
3133 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
3134 		return (1);
3135 	}
3136 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
3137 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
3138 	    (tp->snd_una == tp->snd_max)) {
3139 		/* Nothing outstanding .. nothing to do */
3140 		return (0);
3141 	}
3142 	/*
3143 	 * Retransmission timer went off.  Message has not been acked within
3144 	 * retransmit interval.  Back off to a longer retransmit interval
3145 	 * and retransmit one segment.
3146 	 */
3147 	rack_remxt_tmr(tp);
3148 	if ((rack->r_ctl.rc_resend == NULL) ||
3149 	    ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
3150 		/*
3151 		 * If the rwnd collapsed on
3152 		 * the one we are retransmitting
3153 		 * it does not count against the
3154 		 * rxt count.
3155 		 */
3156 		tp->t_rxtshift++;
3157 	}
3158 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
3159 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
3160 		KMOD_TCPSTAT_INC(tcps_timeoutdrop);
3161 		retval = 1;
3162 		tcp_set_inp_to_drop(rack->rc_inp,
3163 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
3164 		goto out;
3165 	}
3166 	if (tp->t_state == TCPS_SYN_SENT) {
3167 		/*
3168 		 * If the SYN was retransmitted, indicate CWND to be limited
3169 		 * to 1 segment in cc_conn_init().
3170 		 */
3171 		tp->snd_cwnd = 1;
3172 	} else if (tp->t_rxtshift == 1) {
3173 		/*
3174 		 * first retransmit; record ssthresh and cwnd so they can be
3175 		 * recovered if this turns out to be a "bad" retransmit. A
3176 		 * retransmit is considered "bad" if an ACK for this segment
3177 		 * is received within RTT/2 interval; the assumption here is
3178 		 * that the ACK was already in flight.  See "On Estimating
3179 		 * End-to-End Network Path Properties" by Allman and Paxson
3180 		 * for more details.
3181 		 */
3182 		tp->snd_cwnd_prev = tp->snd_cwnd;
3183 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
3184 		tp->snd_recover_prev = tp->snd_recover;
3185 		if (IN_FASTRECOVERY(tp->t_flags))
3186 			tp->t_flags |= TF_WASFRECOVERY;
3187 		else
3188 			tp->t_flags &= ~TF_WASFRECOVERY;
3189 		if (IN_CONGRECOVERY(tp->t_flags))
3190 			tp->t_flags |= TF_WASCRECOVERY;
3191 		else
3192 			tp->t_flags &= ~TF_WASCRECOVERY;
3193 		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
3194 		tp->t_flags |= TF_PREVVALID;
3195 	} else
3196 		tp->t_flags &= ~TF_PREVVALID;
3197 	KMOD_TCPSTAT_INC(tcps_rexmttimeo);
3198 	if ((tp->t_state == TCPS_SYN_SENT) ||
3199 	    (tp->t_state == TCPS_SYN_RECEIVED))
3200 		rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]);
3201 	else
3202 		rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
3203 	TCPT_RANGESET(tp->t_rxtcur, rexmt,
3204 	   max(MSEC_2_TICKS(rack_rto_min), rexmt),
3205 	   MSEC_2_TICKS(rack_rto_max));
3206 	/*
3207 	 * We enter the path for PLMTUD if connection is established or, if
3208 	 * connection is FIN_WAIT_1 status, reason for the last is that if
3209 	 * amount of data we send is very small, we could send it in couple
3210 	 * of packets and process straight to FIN. In that case we won't
3211 	 * catch ESTABLISHED state.
3212 	 */
3213 #ifdef INET6
3214 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false;
3215 #else
3216 	isipv6 = false;
3217 #endif
3218 	if (((V_tcp_pmtud_blackhole_detect == 1) ||
3219 	    (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
3220 	    (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
3221 	    ((tp->t_state == TCPS_ESTABLISHED) ||
3222 	    (tp->t_state == TCPS_FIN_WAIT_1))) {
3223 
3224 		/*
3225 		 * Idea here is that at each stage of mtu probe (usually,
3226 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
3227 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
3228 		 * should take care of that.
3229 		 */
3230 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
3231 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
3232 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
3233 		    tp->t_rxtshift % 2 == 0)) {
3234 			/*
3235 			 * Enter Path MTU Black-hole Detection mechanism: -
3236 			 * Disable Path MTU Discovery (IP "DF" bit). -
3237 			 * Reduce MTU to lower value than what we negotiated
3238 			 * with peer.
3239 			 */
3240 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
3241 				/* Record that we may have found a black hole. */
3242 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
3243 				/* Keep track of previous MSS. */
3244 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
3245 			}
3246 
3247 			/*
3248 			 * Reduce the MSS to blackhole value or to the
3249 			 * default in an attempt to retransmit.
3250 			 */
3251 #ifdef INET6
3252 			if (isipv6 &&
3253 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
3254 				/* Use the sysctl tuneable blackhole MSS. */
3255 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
3256 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3257 			} else if (isipv6) {
3258 				/* Use the default MSS. */
3259 				tp->t_maxseg = V_tcp_v6mssdflt;
3260 				/*
3261 				 * Disable Path MTU Discovery when we switch
3262 				 * to minmss.
3263 				 */
3264 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3265 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3266 			}
3267 #endif
3268 #if defined(INET6) && defined(INET)
3269 			else
3270 #endif
3271 #ifdef INET
3272 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
3273 				/* Use the sysctl tuneable blackhole MSS. */
3274 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
3275 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
3276 			} else {
3277 				/* Use the default MSS. */
3278 				tp->t_maxseg = V_tcp_mssdflt;
3279 				/*
3280 				 * Disable Path MTU Discovery when we switch
3281 				 * to minmss.
3282 				 */
3283 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
3284 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
3285 			}
3286 #endif
3287 		} else {
3288 			/*
3289 			 * If further retransmissions are still unsuccessful
3290 			 * with a lowered MTU, maybe this isn't a blackhole
3291 			 * and we restore the previous MSS and blackhole
3292 			 * detection flags. The limit '6' is determined by
3293 			 * giving each probe stage (1448, 1188, 524) 2
3294 			 * chances to recover.
3295 			 */
3296 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
3297 			    (tp->t_rxtshift >= 6)) {
3298 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
3299 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
3300 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
3301 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
3302 			}
3303 		}
3304 	}
3305 	/*
3306 	 * If we backed off this far, our srtt estimate is probably bogus.
3307 	 * Clobber it so we'll take the next rtt measurement as our srtt;
3308 	 * move the current srtt into rttvar to keep the current retransmit
3309 	 * times until then.
3310 	 */
3311 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
3312 #ifdef INET6
3313 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
3314 			in6_losing(tp->t_inpcb);
3315 		else
3316 #endif
3317 			in_losing(tp->t_inpcb);
3318 		tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
3319 		tp->t_srtt = 0;
3320 	}
3321 	if (rack_use_sack_filter)
3322 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
3323 	tp->snd_recover = tp->snd_max;
3324 	tp->t_flags |= TF_ACKNOW;
3325 	tp->t_rtttime = 0;
3326 	rack_cong_signal(tp, NULL, CC_RTO);
3327 out:
3328 	return (retval);
3329 }
3330 
3331 static int
3332 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
3333 {
3334 	int32_t ret = 0;
3335 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
3336 
3337 	if (timers == 0) {
3338 		return (0);
3339 	}
3340 	if (tp->t_state == TCPS_LISTEN) {
3341 		/* no timers on listen sockets */
3342 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
3343 			return (0);
3344 		return (1);
3345 	}
3346 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
3347 		uint32_t left;
3348 
3349 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
3350 			ret = -1;
3351 			rack_log_to_processing(rack, cts, ret, 0);
3352 			return (0);
3353 		}
3354 		if (hpts_calling == 0) {
3355 			ret = -2;
3356 			rack_log_to_processing(rack, cts, ret, 0);
3357 			return (0);
3358 		}
3359 		/*
3360 		 * Ok our timer went off early and we are not paced false
3361 		 * alarm, go back to sleep.
3362 		 */
3363 		ret = -3;
3364 		left = rack->r_ctl.rc_timer_exp - cts;
3365 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
3366 		rack_log_to_processing(rack, cts, ret, left);
3367 		rack->rc_last_pto_set = 0;
3368 		return (1);
3369 	}
3370 	rack->rc_tmr_stopped = 0;
3371 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
3372 	if (timers & PACE_TMR_DELACK) {
3373 		ret = rack_timeout_delack(tp, rack, cts);
3374 	} else if (timers & PACE_TMR_RACK) {
3375 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3376 		ret = rack_timeout_rack(tp, rack, cts);
3377 	} else if (timers & PACE_TMR_TLP) {
3378 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3379 		ret = rack_timeout_tlp(tp, rack, cts);
3380 	} else if (timers & PACE_TMR_RXT) {
3381 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
3382 		ret = rack_timeout_rxt(tp, rack, cts);
3383 	} else if (timers & PACE_TMR_PERSIT) {
3384 		ret = rack_timeout_persist(tp, rack, cts);
3385 	} else if (timers & PACE_TMR_KEEP) {
3386 		ret = rack_timeout_keepalive(tp, rack, cts);
3387 	}
3388 	rack_log_to_processing(rack, cts, ret, timers);
3389 	return (ret);
3390 }
3391 
3392 static void
3393 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
3394 {
3395 	uint8_t hpts_removed = 0;
3396 
3397 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
3398 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
3399 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3400 		hpts_removed = 1;
3401 	}
3402 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
3403 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
3404 		if (rack->rc_inp->inp_in_hpts &&
3405 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
3406 			/*
3407 			 * Canceling timer's when we have no output being
3408 			 * paced. We also must remove ourselves from the
3409 			 * hpts.
3410 			 */
3411 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3412 			hpts_removed = 1;
3413 		}
3414 		rack_log_to_cancel(rack, hpts_removed, line);
3415 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
3416 	}
3417 }
3418 
3419 static void
3420 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
3421 {
3422 	return;
3423 }
3424 
3425 static int
3426 rack_stopall(struct tcpcb *tp)
3427 {
3428 	struct tcp_rack *rack;
3429 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3430 	rack->t_timers_stopped = 1;
3431 	return (0);
3432 }
3433 
3434 static void
3435 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
3436 {
3437 	return;
3438 }
3439 
3440 static int
3441 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
3442 {
3443 	return (0);
3444 }
3445 
3446 static void
3447 rack_stop_all_timers(struct tcpcb *tp)
3448 {
3449 	struct tcp_rack *rack;
3450 
3451 	/*
3452 	 * Assure no timers are running.
3453 	 */
3454 	if (tcp_timer_active(tp, TT_PERSIST)) {
3455 		/* We enter in persists, set the flag appropriately */
3456 		rack = (struct tcp_rack *)tp->t_fb_ptr;
3457 		rack->rc_in_persist = 1;
3458 	}
3459 	tcp_timer_suspend(tp, TT_PERSIST);
3460 	tcp_timer_suspend(tp, TT_REXMT);
3461 	tcp_timer_suspend(tp, TT_KEEP);
3462 	tcp_timer_suspend(tp, TT_DELACK);
3463 }
3464 
3465 static void
3466 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
3467     struct rack_sendmap *rsm, uint32_t ts)
3468 {
3469 	int32_t idx;
3470 
3471 	rsm->r_rtr_cnt++;
3472 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3473 	rsm->r_dupack = 0;
3474 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
3475 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
3476 		rsm->r_flags |= RACK_OVERMAX;
3477 	}
3478 	if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
3479 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
3480 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
3481 	}
3482 	idx = rsm->r_rtr_cnt - 1;
3483 	rsm->r_tim_lastsent[idx] = ts;
3484 	if (rsm->r_flags & RACK_ACKED) {
3485 		/* Problably MTU discovery messing with us */
3486 		rsm->r_flags &= ~RACK_ACKED;
3487 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
3488 	}
3489 	if (rsm->r_in_tmap) {
3490 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3491 		rsm->r_in_tmap = 0;
3492 	}
3493 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3494 	rsm->r_in_tmap = 1;
3495 	if (rsm->r_flags & RACK_SACK_PASSED) {
3496 		/* We have retransmitted due to the SACK pass */
3497 		rsm->r_flags &= ~RACK_SACK_PASSED;
3498 		rsm->r_flags |= RACK_WAS_SACKPASS;
3499 	}
3500 }
3501 
3502 
3503 static uint32_t
3504 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
3505     struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp)
3506 {
3507 	/*
3508 	 * We (re-)transmitted starting at rsm->r_start for some length
3509 	 * (possibly less than r_end.
3510 	 */
3511 	struct rack_sendmap *nrsm, *insret;
3512 	uint32_t c_end;
3513 	int32_t len;
3514 
3515 	len = *lenp;
3516 	c_end = rsm->r_start + len;
3517 	if (SEQ_GEQ(c_end, rsm->r_end)) {
3518 		/*
3519 		 * We retransmitted the whole piece or more than the whole
3520 		 * slopping into the next rsm.
3521 		 */
3522 		rack_update_rsm(tp, rack, rsm, ts);
3523 		if (c_end == rsm->r_end) {
3524 			*lenp = 0;
3525 			return (0);
3526 		} else {
3527 			int32_t act_len;
3528 
3529 			/* Hangs over the end return whats left */
3530 			act_len = rsm->r_end - rsm->r_start;
3531 			*lenp = (len - act_len);
3532 			return (rsm->r_end);
3533 		}
3534 		/* We don't get out of this block. */
3535 	}
3536 	/*
3537 	 * Here we retransmitted less than the whole thing which means we
3538 	 * have to split this into what was transmitted and what was not.
3539 	 */
3540 	nrsm = rack_alloc_full_limit(rack);
3541 	if (nrsm == NULL) {
3542 		/*
3543 		 * We can't get memory, so lets not proceed.
3544 		 */
3545 		*lenp = 0;
3546 		return (0);
3547 	}
3548 	/*
3549 	 * So here we are going to take the original rsm and make it what we
3550 	 * retransmitted. nrsm will be the tail portion we did not
3551 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
3552 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
3553 	 * 1, 6 and the new piece will be 6, 11.
3554 	 */
3555 	rack_clone_rsm(rack, nrsm, rsm, c_end);
3556 	nrsm->r_dupack = 0;
3557 	rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
3558 	insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3559 #ifdef INVARIANTS
3560 	if (insret != NULL) {
3561 		panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3562 		      nrsm, insret, rack, rsm);
3563 	}
3564 #endif
3565 	if (rsm->r_in_tmap) {
3566 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3567 		nrsm->r_in_tmap = 1;
3568 	}
3569 	rsm->r_flags &= (~RACK_HAS_FIN);
3570 	rack_update_rsm(tp, rack, rsm, ts);
3571 	*lenp = 0;
3572 	return (0);
3573 }
3574 
3575 
3576 static void
3577 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
3578     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
3579     uint8_t pass, struct rack_sendmap *hintrsm)
3580 {
3581 	struct tcp_rack *rack;
3582 	struct rack_sendmap *rsm, *nrsm, *insret, fe;
3583 	register uint32_t snd_max, snd_una;
3584 
3585 	/*
3586 	 * Add to the RACK log of packets in flight or retransmitted. If
3587 	 * there is a TS option we will use the TS echoed, if not we will
3588 	 * grab a TS.
3589 	 *
3590 	 * Retransmissions will increment the count and move the ts to its
3591 	 * proper place. Note that if options do not include TS's then we
3592 	 * won't be able to effectively use the ACK for an RTT on a retran.
3593 	 *
3594 	 * Notes about r_start and r_end. Lets consider a send starting at
3595 	 * sequence 1 for 10 bytes. In such an example the r_start would be
3596 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
3597 	 * This means that r_end is actually the first sequence for the next
3598 	 * slot (11).
3599 	 *
3600 	 */
3601 	/*
3602 	 * If err is set what do we do XXXrrs? should we not add the thing?
3603 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
3604 	 * i.e. proceed with add ** do this for now.
3605 	 */
3606 	INP_WLOCK_ASSERT(tp->t_inpcb);
3607 	if (err)
3608 		/*
3609 		 * We don't log errors -- we could but snd_max does not
3610 		 * advance in this case either.
3611 		 */
3612 		return;
3613 
3614 	if (th_flags & TH_RST) {
3615 		/*
3616 		 * We don't log resets and we return immediately from
3617 		 * sending
3618 		 */
3619 		return;
3620 	}
3621 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3622 	snd_una = tp->snd_una;
3623 	if (SEQ_LEQ((seq_out + len), snd_una)) {
3624 		/* Are sending an old segment to induce an ack (keep-alive)? */
3625 		return;
3626 	}
3627 	if (SEQ_LT(seq_out, snd_una)) {
3628 		/* huh? should we panic? */
3629 		uint32_t end;
3630 
3631 		end = seq_out + len;
3632 		seq_out = snd_una;
3633 		if (SEQ_GEQ(end, seq_out))
3634 			len = end - seq_out;
3635 		else
3636 			len = 0;
3637 	}
3638 	snd_max = tp->snd_max;
3639 	if (th_flags & (TH_SYN | TH_FIN)) {
3640 		/*
3641 		 * The call to rack_log_output is made before bumping
3642 		 * snd_max. This means we can record one extra byte on a SYN
3643 		 * or FIN if seq_out is adding more on and a FIN is present
3644 		 * (and we are not resending).
3645 		 */
3646 		if (th_flags & TH_SYN)
3647 			len++;
3648 		if (th_flags & TH_FIN)
3649 			len++;
3650 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
3651 			/*
3652 			 * The add/update as not been done for the FIN/SYN
3653 			 * yet.
3654 			 */
3655 			snd_max = tp->snd_nxt;
3656 		}
3657 	}
3658 	if (len == 0) {
3659 		/* We don't log zero window probes */
3660 		return;
3661 	}
3662 	rack->r_ctl.rc_time_last_sent = ts;
3663 	if (IN_RECOVERY(tp->t_flags)) {
3664 		rack->r_ctl.rc_prr_out += len;
3665 	}
3666 	/* First question is it a retransmission or new? */
3667 	if (seq_out == snd_max) {
3668 		/* Its new */
3669 again:
3670 		rsm = rack_alloc(rack);
3671 		if (rsm == NULL) {
3672 			/*
3673 			 * Hmm out of memory and the tcb got destroyed while
3674 			 * we tried to wait.
3675 			 */
3676 			return;
3677 		}
3678 		if (th_flags & TH_FIN) {
3679 			rsm->r_flags = RACK_HAS_FIN;
3680 		} else {
3681 			rsm->r_flags = 0;
3682 		}
3683 		rsm->r_tim_lastsent[0] = ts;
3684 		rsm->r_rtr_cnt = 1;
3685 		rsm->r_rtr_bytes = 0;
3686 		if (th_flags & TH_SYN) {
3687 			/* The data space is one beyond snd_una */
3688 			rsm->r_start = seq_out + 1;
3689 			rsm->r_end = rsm->r_start + (len - 1);
3690 		} else {
3691 			/* Normal case */
3692 			rsm->r_start = seq_out;
3693 			rsm->r_end = rsm->r_start + len;
3694 		}
3695 		rsm->r_dupack = 0;
3696 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
3697 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
3698 #ifdef INVARIANTS
3699 		if (insret != NULL) {
3700 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3701 			      nrsm, insret, rack, rsm);
3702 		}
3703 #endif
3704 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
3705 		rsm->r_in_tmap = 1;
3706 		return;
3707 	}
3708 	/*
3709 	 * If we reach here its a retransmission and we need to find it.
3710 	 */
3711 	memset(&fe, 0, sizeof(fe));
3712 more:
3713 	if (hintrsm && (hintrsm->r_start == seq_out)) {
3714 		rsm = hintrsm;
3715 		hintrsm = NULL;
3716 	} else {
3717 		/* No hints sorry */
3718 		rsm = NULL;
3719 	}
3720 	if ((rsm) && (rsm->r_start == seq_out)) {
3721 		seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3722 		if (len == 0) {
3723 			return;
3724 		} else {
3725 			goto more;
3726 		}
3727 	}
3728 	/* Ok it was not the last pointer go through it the hard way. */
3729 refind:
3730 	fe.r_start = seq_out;
3731 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3732 	if (rsm) {
3733 		if (rsm->r_start == seq_out) {
3734 			seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
3735 			if (len == 0) {
3736 				return;
3737 			} else {
3738 				goto refind;
3739 			}
3740 		}
3741 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
3742 			/* Transmitted within this piece */
3743 			/*
3744 			 * Ok we must split off the front and then let the
3745 			 * update do the rest
3746 			 */
3747 			nrsm = rack_alloc_full_limit(rack);
3748 			if (nrsm == NULL) {
3749 				rack_update_rsm(tp, rack, rsm, ts);
3750 				return;
3751 			}
3752 			/*
3753 			 * copy rsm to nrsm and then trim the front of rsm
3754 			 * to not include this part.
3755 			 */
3756 			rack_clone_rsm(rack, nrsm, rsm, seq_out);
3757 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
3758 #ifdef INVARIANTS
3759 			if (insret != NULL) {
3760 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
3761 				      nrsm, insret, rack, rsm);
3762 			}
3763 #endif
3764 			if (rsm->r_in_tmap) {
3765 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
3766 				nrsm->r_in_tmap = 1;
3767 			}
3768 			rsm->r_flags &= (~RACK_HAS_FIN);
3769 			seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
3770 			if (len == 0) {
3771 				return;
3772 			} else if (len > 0)
3773 				goto refind;
3774 		}
3775 	}
3776 	/*
3777 	 * Hmm not found in map did they retransmit both old and on into the
3778 	 * new?
3779 	 */
3780 	if (seq_out == tp->snd_max) {
3781 		goto again;
3782 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
3783 #ifdef INVARIANTS
3784 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
3785 		    seq_out, len, tp->snd_una, tp->snd_max);
3786 		printf("Starting Dump of all rack entries\n");
3787 		RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
3788 			printf("rsm:%p start:%u end:%u\n",
3789 			    rsm, rsm->r_start, rsm->r_end);
3790 		}
3791 		printf("Dump complete\n");
3792 		panic("seq_out not found rack:%p tp:%p",
3793 		    rack, tp);
3794 #endif
3795 	} else {
3796 #ifdef INVARIANTS
3797 		/*
3798 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
3799 		 * flag)
3800 		 */
3801 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
3802 		    seq_out, len, tp->snd_max, tp);
3803 #endif
3804 	}
3805 }
3806 
3807 /*
3808  * Record one of the RTT updates from an ack into
3809  * our sample structure.
3810  */
3811 static void
3812 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
3813 {
3814 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3815 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
3816 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
3817 	}
3818 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
3819 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
3820 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
3821 	}
3822 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
3823 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
3824 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
3825 }
3826 
3827 /*
3828  * Collect new round-trip time estimate
3829  * and update averages and current timeout.
3830  */
3831 static void
3832 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
3833 {
3834 	int32_t delta;
3835 	uint32_t o_srtt, o_var;
3836 	int32_t rtt;
3837 
3838 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
3839 		/* No valid sample */
3840 		return;
3841 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
3842 		/* We are to use the lowest RTT seen in a single ack */
3843 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
3844 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
3845 		/* We are to use the highest RTT seen in a single ack */
3846 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
3847 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
3848 		/* We are to use the average RTT seen in a single ack */
3849 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
3850 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
3851 	} else {
3852 #ifdef INVARIANTS
3853 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
3854 #endif
3855 		return;
3856 	}
3857 	if (rtt == 0)
3858 		rtt = 1;
3859 	rack_log_rtt_sample(rack, rtt);
3860 	o_srtt = tp->t_srtt;
3861 	o_var = tp->t_rttvar;
3862 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3863 	if (tp->t_srtt != 0) {
3864 		/*
3865 		 * srtt is stored as fixed point with 5 bits after the
3866 		 * binary point (i.e., scaled by 8).  The following magic is
3867 		 * equivalent to the smoothing algorithm in rfc793 with an
3868 		 * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
3869 		 * Adjust rtt to origin 0.
3870 		 */
3871 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3872 		    - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3873 
3874 		tp->t_srtt += delta;
3875 		if (tp->t_srtt <= 0)
3876 			tp->t_srtt = 1;
3877 
3878 		/*
3879 		 * We accumulate a smoothed rtt variance (actually, a
3880 		 * smoothed mean difference), then set the retransmit timer
3881 		 * to smoothed rtt + 4 times the smoothed variance. rttvar
3882 		 * is stored as fixed point with 4 bits after the binary
3883 		 * point (scaled by 16).  The following is equivalent to
3884 		 * rfc793 smoothing with an alpha of .75 (rttvar =
3885 		 * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
3886 		 * wired-in beta.
3887 		 */
3888 		if (delta < 0)
3889 			delta = -delta;
3890 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3891 		tp->t_rttvar += delta;
3892 		if (tp->t_rttvar <= 0)
3893 			tp->t_rttvar = 1;
3894 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3895 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3896 	} else {
3897 		/*
3898 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
3899 		 * variance to half the rtt (so our first retransmit happens
3900 		 * at 3*rtt).
3901 		 */
3902 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3903 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3904 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3905 	}
3906 	KMOD_TCPSTAT_INC(tcps_rttupdated);
3907 	rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
3908 	tp->t_rttupdated++;
3909 #ifdef STATS
3910 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
3911 #endif
3912 	tp->t_rxtshift = 0;
3913 
3914 	/*
3915 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
3916 	 * way we do the smoothing, srtt and rttvar will each average +1/2
3917 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
3918 	 * tick of rounding and 1 extra tick because of +-1/2 tick
3919 	 * uncertainty in the firing of the timer.  The bias will give us
3920 	 * exactly the 1.5 tick we need.  But, because the bias is
3921 	 * statistical, we have to test that we don't drop below the minimum
3922 	 * feasible timer (which is 2 ticks).
3923 	 */
3924 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3925 	   max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
3926 	tp->t_softerror = 0;
3927 }
3928 
3929 static void
3930 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
3931     uint32_t t, uint32_t cts)
3932 {
3933 	/*
3934 	 * For this RSM, we acknowledged the data from a previous
3935 	 * transmission, not the last one we made. This means we did a false
3936 	 * retransmit.
3937 	 */
3938 	struct tcp_rack *rack;
3939 
3940 	if (rsm->r_flags & RACK_HAS_FIN) {
3941 		/*
3942 		 * The sending of the FIN often is multiple sent when we
3943 		 * have everything outstanding ack'd. We ignore this case
3944 		 * since its over now.
3945 		 */
3946 		return;
3947 	}
3948 	if (rsm->r_flags & RACK_TLP) {
3949 		/*
3950 		 * We expect TLP's to have this occur.
3951 		 */
3952 		return;
3953 	}
3954 	rack = (struct tcp_rack *)tp->t_fb_ptr;
3955 	/* should we undo cc changes and exit recovery? */
3956 	if (IN_RECOVERY(tp->t_flags)) {
3957 		if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
3958 			/*
3959 			 * Undo what we ratched down and exit recovery if
3960 			 * possible
3961 			 */
3962 			EXIT_RECOVERY(tp->t_flags);
3963 			tp->snd_recover = tp->snd_una;
3964 			if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
3965 				tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
3966 			if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
3967 				tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
3968 		}
3969 	}
3970 	if (rsm->r_flags & RACK_WAS_SACKPASS) {
3971 		/*
3972 		 * We retransmitted based on a sack and the earlier
3973 		 * retransmission ack'd it - re-ordering is occuring.
3974 		 */
3975 		counter_u64_add(rack_reorder_seen, 1);
3976 		rack->r_ctl.rc_reorder_ts = cts;
3977 	}
3978 	counter_u64_add(rack_badfr, 1);
3979 	counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
3980 }
3981 
3982 
3983 static int
3984 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
3985     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
3986 {
3987 	int32_t i;
3988 	uint32_t t;
3989 
3990 	if (rsm->r_flags & RACK_ACKED)
3991 		/* Already done */
3992 		return (0);
3993 
3994 
3995 	if ((rsm->r_rtr_cnt == 1) ||
3996 	    ((ack_type == CUM_ACKED) &&
3997 	    (to->to_flags & TOF_TS) &&
3998 	    (to->to_tsecr) &&
3999 	    (rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
4000 	    ) {
4001 		/*
4002 		 * We will only find a matching timestamp if its cum-acked.
4003 		 * But if its only one retransmission its for-sure matching
4004 		 * :-)
4005 		 */
4006 		t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4007 		if ((int)t <= 0)
4008 			t = 1;
4009 		if (!tp->t_rttlow || tp->t_rttlow > t)
4010 			tp->t_rttlow = t;
4011 		if (!rack->r_ctl.rc_rack_min_rtt ||
4012 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4013 			rack->r_ctl.rc_rack_min_rtt = t;
4014 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
4015 				rack->r_ctl.rc_rack_min_rtt = 1;
4016 			}
4017 		}
4018 		tcp_rack_xmit_timer(rack, t + 1);
4019 		if ((rsm->r_flags & RACK_TLP) &&
4020 		    (!IN_RECOVERY(tp->t_flags))) {
4021 			/* Segment was a TLP and our retrans matched */
4022 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
4023 				rack->r_ctl.rc_rsm_start = tp->snd_max;
4024 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4025 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4026 				rack_cong_signal(tp, NULL, CC_NDUPACK);
4027 				/*
4028 				 * When we enter recovery we need to assure
4029 				 * we send one packet.
4030 				 */
4031 				rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4032 				rack_log_to_prr(rack, 7);
4033 			}
4034 		}
4035 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4036 			/* New more recent rack_tmit_time */
4037 			rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4038 			rack->rc_rack_rtt = t;
4039 		}
4040 		return (1);
4041 	}
4042 	/*
4043 	 * We clear the soft/rxtshift since we got an ack.
4044 	 * There is no assurance we will call the commit() function
4045 	 * so we need to clear these to avoid incorrect handling.
4046 	 */
4047 	tp->t_rxtshift = 0;
4048 	tp->t_softerror = 0;
4049 	if ((to->to_flags & TOF_TS) &&
4050 	    (ack_type == CUM_ACKED) &&
4051 	    (to->to_tsecr) &&
4052 	    ((rsm->r_flags & RACK_OVERMAX) == 0)) {
4053 		/*
4054 		 * Now which timestamp does it match? In this block the ACK
4055 		 * must be coming from a previous transmission.
4056 		 */
4057 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
4058 			if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
4059 				t = cts - rsm->r_tim_lastsent[i];
4060 				if ((int)t <= 0)
4061 					t = 1;
4062 				if ((i + 1) < rsm->r_rtr_cnt) {
4063 					/* Likely */
4064 					rack_earlier_retran(tp, rsm, t, cts);
4065 				}
4066 				if (!tp->t_rttlow || tp->t_rttlow > t)
4067 					tp->t_rttlow = t;
4068 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4069 					rack->r_ctl.rc_rack_min_rtt = t;
4070 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
4071 						rack->r_ctl.rc_rack_min_rtt = 1;
4072 					}
4073 				}
4074                                 /*
4075 				 * Note the following calls to
4076 				 * tcp_rack_xmit_timer() are being commented
4077 				 * out for now. They give us no more accuracy
4078 				 * and often lead to a wrong choice. We have
4079 				 * enough samples that have not been
4080 				 * retransmitted. I leave the commented out
4081 				 * code in here in case in the future we
4082 				 * decide to add it back (though I can't forsee
4083 				 * doing that). That way we will easily see
4084 				 * where they need to be placed.
4085 				 */
4086 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
4087 				    rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
4088 					/* New more recent rack_tmit_time */
4089 					rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
4090 					rack->rc_rack_rtt = t;
4091 				}
4092 				return (1);
4093 			}
4094 		}
4095 		goto ts_not_found;
4096 	} else {
4097 		/*
4098 		 * Ok its a SACK block that we retransmitted. or a windows
4099 		 * machine without timestamps. We can tell nothing from the
4100 		 * time-stamp since its not there or the time the peer last
4101 		 * recieved a segment that moved forward its cum-ack point.
4102 		 */
4103 ts_not_found:
4104 		i = rsm->r_rtr_cnt - 1;
4105 		t = cts - rsm->r_tim_lastsent[i];
4106 		if ((int)t <= 0)
4107 			t = 1;
4108 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4109 			/*
4110 			 * We retransmitted and the ack came back in less
4111 			 * than the smallest rtt we have observed. We most
4112 			 * likey did an improper retransmit as outlined in
4113 			 * 4.2 Step 3 point 2 in the rack-draft.
4114 			 */
4115 			i = rsm->r_rtr_cnt - 2;
4116 			t = cts - rsm->r_tim_lastsent[i];
4117 			rack_earlier_retran(tp, rsm, t, cts);
4118 		} else if (rack->r_ctl.rc_rack_min_rtt) {
4119 			/*
4120 			 * We retransmitted it and the retransmit did the
4121 			 * job.
4122 			 */
4123 			if (!rack->r_ctl.rc_rack_min_rtt ||
4124 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
4125 				rack->r_ctl.rc_rack_min_rtt = t;
4126 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
4127 					rack->r_ctl.rc_rack_min_rtt = 1;
4128 				}
4129 			}
4130 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
4131 				/* New more recent rack_tmit_time */
4132 				rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
4133 				rack->rc_rack_rtt = t;
4134 			}
4135 			return (1);
4136 		}
4137 	}
4138 	return (0);
4139 }
4140 
4141 /*
4142  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
4143  */
4144 static void
4145 rack_log_sack_passed(struct tcpcb *tp,
4146     struct tcp_rack *rack, struct rack_sendmap *rsm)
4147 {
4148 	struct rack_sendmap *nrsm;
4149 
4150 	nrsm = rsm;
4151 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
4152 	    rack_head, r_tnext) {
4153 		if (nrsm == rsm) {
4154 			/* Skip orginal segment he is acked */
4155 			continue;
4156 		}
4157 		if (nrsm->r_flags & RACK_ACKED) {
4158 			/*
4159 			 * Skip ack'd segments, though we
4160 			 * should not see these, since tmap
4161 			 * should not have ack'd segments.
4162 			 */
4163 			continue;
4164 		}
4165 		if (nrsm->r_flags & RACK_SACK_PASSED) {
4166 			/*
4167 			 * We found one that is already marked
4168 			 * passed, we have been here before and
4169 			 * so all others below this are marked.
4170 			 */
4171 			break;
4172 		}
4173 		nrsm->r_flags |= RACK_SACK_PASSED;
4174 		nrsm->r_flags &= ~RACK_WAS_SACKPASS;
4175 	}
4176 }
4177 
4178 static uint32_t
4179 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
4180 		   struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
4181 {
4182 	uint32_t start, end, changed = 0;
4183 	struct rack_sendmap stack_map;
4184 	struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
4185 	int32_t used_ref = 1;
4186 	int moved = 0;
4187 
4188 	start = sack->start;
4189 	end = sack->end;
4190 	rsm = *prsm;
4191 	memset(&fe, 0, sizeof(fe));
4192 do_rest_ofb:
4193 	if ((rsm == NULL) ||
4194 	    (SEQ_LT(end, rsm->r_start)) ||
4195 	    (SEQ_GEQ(start, rsm->r_end)) ||
4196 	    (SEQ_LT(start, rsm->r_start))) {
4197 		/*
4198 		 * We are not in the right spot,
4199 		 * find the correct spot in the tree.
4200 		 */
4201 		used_ref = 0;
4202 		fe.r_start = start;
4203 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4204 		moved++;
4205 	}
4206 	if (rsm == NULL) {
4207 		/* TSNH */
4208 		goto out;
4209 	}
4210 	/* Ok we have an ACK for some piece of this rsm */
4211 	if (rsm->r_start != start) {
4212 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4213 			/**
4214 			 * Need to split this in two pieces the before and after,
4215 			 * the before remains in the map, the after must be
4216 			 * added. In other words we have:
4217 			 * rsm        |--------------|
4218 			 * sackblk        |------->
4219 			 * rsm will become
4220 			 *     rsm    |---|
4221 			 * and nrsm will be  the sacked piece
4222 			 *     nrsm       |----------|
4223 			 *
4224 			 * But before we start down that path lets
4225 			 * see if the sack spans over on top of
4226 			 * the next guy and it is already sacked.
4227 			 */
4228 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4229 			if (next && (next->r_flags & RACK_ACKED) &&
4230 			    SEQ_GEQ(end, next->r_start)) {
4231 				/**
4232 				 * So the next one is already acked, and
4233 				 * we can thus by hookery use our stack_map
4234 				 * to reflect the piece being sacked and
4235 				 * then adjust the two tree entries moving
4236 				 * the start and ends around. So we start like:
4237 				 *  rsm     |------------|             (not-acked)
4238 				 *  next                 |-----------| (acked)
4239 				 *  sackblk        |-------->
4240 				 *  We want to end like so:
4241 				 *  rsm     |------|                   (not-acked)
4242 				 *  next           |-----------------| (acked)
4243 				 *  nrsm           |-----|
4244 				 * Where nrsm is a temporary stack piece we
4245 				 * use to update all the gizmos.
4246 				 */
4247 				/* Copy up our fudge block */
4248 				nrsm = &stack_map;
4249 				memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4250 				/* Now adjust our tree blocks */
4251 				rsm->r_end = start;
4252 				next->r_start = start;
4253 				/* Clear out the dup ack count of the remainder */
4254 				rsm->r_dupack = 0;
4255 				rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4256 				/* Now lets make sure our fudge block is right */
4257 				nrsm->r_start = start;
4258 				/* Now lets update all the stats and such */
4259 				rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4260 				changed += (nrsm->r_end - nrsm->r_start);
4261 				rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4262 				if (nrsm->r_flags & RACK_SACK_PASSED) {
4263 					counter_u64_add(rack_reorder_seen, 1);
4264 					rack->r_ctl.rc_reorder_ts = cts;
4265 				}
4266 				/*
4267 				 * Now we want to go up from rsm (the
4268 				 * one left un-acked) to the next one
4269 				 * in the tmap. We do this so when
4270 				 * we walk backwards we include marking
4271 				 * sack-passed on rsm (The one passed in
4272 				 * is skipped since it is generally called
4273 				 * on something sacked before removing it
4274 				 * from the tmap).
4275 				 */
4276 				if (rsm->r_in_tmap) {
4277 					nrsm = TAILQ_NEXT(rsm, r_tnext);
4278 					/*
4279 					 * Now that we have the next
4280 					 * one walk backwards from there.
4281 					 */
4282 					if (nrsm && nrsm->r_in_tmap)
4283 						rack_log_sack_passed(tp, rack, nrsm);
4284 				}
4285 				/* Now are we done? */
4286 				if (SEQ_LT(end, next->r_end) ||
4287 				    (end == next->r_end)) {
4288 					/* Done with block */
4289 					goto out;
4290 				}
4291 				counter_u64_add(rack_sack_used_next_merge, 1);
4292 				/* Postion for the next block */
4293 				start = next->r_end;
4294 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
4295 				if (rsm == NULL)
4296 					goto out;
4297 			} else {
4298 				/**
4299 				 * We can't use any hookery here, so we
4300 				 * need to split the map. We enter like
4301 				 * so:
4302 				 *  rsm      |--------|
4303 				 *  sackblk       |----->
4304 				 * We will add the new block nrsm and
4305 				 * that will be the new portion, and then
4306 				 * fall through after reseting rsm. So we
4307 				 * split and look like this:
4308 				 *  rsm      |----|
4309 				 *  sackblk       |----->
4310 				 *  nrsm          |---|
4311 				 * We then fall through reseting
4312 				 * rsm to nrsm, so the next block
4313 				 * picks it up.
4314 				 */
4315 				nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4316 				if (nrsm == NULL) {
4317 					/*
4318 					 * failed XXXrrs what can we do but loose the sack
4319 					 * info?
4320 					 */
4321 					goto out;
4322 				}
4323 				counter_u64_add(rack_sack_splits, 1);
4324 				rack_clone_rsm(rack, nrsm, rsm, start);
4325 				insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4326 #ifdef INVARIANTS
4327 				if (insret != NULL) {
4328 					panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4329 					      nrsm, insret, rack, rsm);
4330 				}
4331 #endif
4332 				if (rsm->r_in_tmap) {
4333 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4334 					nrsm->r_in_tmap = 1;
4335 				}
4336 				rsm->r_flags &= (~RACK_HAS_FIN);
4337 				/* Position us to point to the new nrsm that starts the sack blk */
4338 				rsm = nrsm;
4339 			}
4340 		} else {
4341 			/* Already sacked this piece */
4342 			counter_u64_add(rack_sack_skipped_acked, 1);
4343 			moved++;
4344 			if (end == rsm->r_end) {
4345 				/* Done with block */
4346 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4347 				goto out;
4348 			} else if (SEQ_LT(end, rsm->r_end)) {
4349 				/* A partial sack to a already sacked block */
4350 				moved++;
4351 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4352 				goto out;
4353 			} else {
4354 				/*
4355 				 * The end goes beyond this guy
4356 				 * repostion the start to the
4357 				 * next block.
4358 				 */
4359 				start = rsm->r_end;
4360 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4361 				if (rsm == NULL)
4362 					goto out;
4363 			}
4364 		}
4365 	}
4366 	if (SEQ_GEQ(end, rsm->r_end)) {
4367 		/**
4368 		 * The end of this block is either beyond this guy or right
4369 		 * at this guy. I.e.:
4370 		 *  rsm ---                 |-----|
4371 		 *  end                     |-----|
4372 		 *  <or>
4373 		 *  end                     |---------|
4374 		 */
4375 		if (rsm->r_flags & RACK_TLP)
4376 			rack->r_ctl.rc_tlp_rtx_out = 0;
4377 		if ((rsm->r_flags & RACK_ACKED) == 0) {
4378 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4379 			changed += (rsm->r_end - rsm->r_start);
4380 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4381 			if (rsm->r_in_tmap) /* should be true */
4382 				rack_log_sack_passed(tp, rack, rsm);
4383 			/* Is Reordering occuring? */
4384 			if (rsm->r_flags & RACK_SACK_PASSED) {
4385 				rsm->r_flags &= ~RACK_SACK_PASSED;
4386 				counter_u64_add(rack_reorder_seen, 1);
4387 				rack->r_ctl.rc_reorder_ts = cts;
4388 			}
4389 			rsm->r_flags |= RACK_ACKED;
4390 			rsm->r_flags &= ~RACK_TLP;
4391 			if (rsm->r_in_tmap) {
4392 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4393 				rsm->r_in_tmap = 0;
4394 			}
4395 		} else {
4396 			counter_u64_add(rack_sack_skipped_acked, 1);
4397 			moved++;
4398 		}
4399 		if (end == rsm->r_end) {
4400 			/* This block only - done, setup for next  */
4401 			goto out;
4402 		}
4403 		/*
4404 		 * There is more not coverend by this rsm move on
4405 		 * to the next block in the RB tree.
4406 		 */
4407 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4408 		start = rsm->r_end;
4409 		rsm = nrsm;
4410 		if (rsm == NULL)
4411 			goto out;
4412 		goto do_rest_ofb;
4413 	}
4414 	/**
4415 	 * The end of this sack block is smaller than
4416 	 * our rsm i.e.:
4417 	 *  rsm ---                 |-----|
4418 	 *  end                     |--|
4419 	 */
4420 	if ((rsm->r_flags & RACK_ACKED) == 0) {
4421 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4422 		if (prev && (prev->r_flags & RACK_ACKED)) {
4423 			/**
4424 			 * Goal, we want the right remainder of rsm to shrink
4425 			 * in place and span from (rsm->r_start = end) to rsm->r_end.
4426 			 * We want to expand prev to go all the way
4427 			 * to prev->r_end <- end.
4428 			 * so in the tree we have before:
4429 			 *   prev     |--------|         (acked)
4430 			 *   rsm               |-------| (non-acked)
4431 			 *   sackblk           |-|
4432 			 * We churn it so we end up with
4433 			 *   prev     |----------|       (acked)
4434 			 *   rsm                 |-----| (non-acked)
4435 			 *   nrsm              |-| (temporary)
4436 			 */
4437 			nrsm = &stack_map;
4438 			memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
4439 			prev->r_end = end;
4440 			rsm->r_start = end;
4441 			/* Now adjust nrsm (stack copy) to be
4442 			 * the one that is the small
4443 			 * piece that was "sacked".
4444 			 */
4445 			nrsm->r_end = end;
4446 			rsm->r_dupack = 0;
4447 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4448 			/*
4449 			 * Now nrsm is our new little piece
4450 			 * that is acked (which was merged
4451 			 * to prev). Update the rtt and changed
4452 			 * based on that. Also check for reordering.
4453 			 */
4454 			rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
4455 			changed += (nrsm->r_end - nrsm->r_start);
4456 			rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
4457 			if (nrsm->r_flags & RACK_SACK_PASSED) {
4458 				counter_u64_add(rack_reorder_seen, 1);
4459 				rack->r_ctl.rc_reorder_ts = cts;
4460 			}
4461 			rsm = prev;
4462 			counter_u64_add(rack_sack_used_prev_merge, 1);
4463 		} else {
4464 			/**
4465 			 * This is the case where our previous
4466 			 * block is not acked either, so we must
4467 			 * split the block in two.
4468 			 */
4469 			nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
4470 			if (nrsm == NULL) {
4471 				/* failed rrs what can we do but loose the sack info? */
4472 				goto out;
4473 			}
4474 			/**
4475 			 * In this case nrsm becomes
4476 			 * nrsm->r_start = end;
4477 			 * nrsm->r_end = rsm->r_end;
4478 			 * which is un-acked.
4479 			 * <and>
4480 			 * rsm->r_end = nrsm->r_start;
4481 			 * i.e. the remaining un-acked
4482 			 * piece is left on the left
4483 			 * hand side.
4484 			 *
4485 			 * So we start like this
4486 			 * rsm      |----------| (not acked)
4487 			 * sackblk  |---|
4488 			 * build it so we have
4489 			 * rsm      |---|         (acked)
4490 			 * nrsm         |------|  (not acked)
4491 			 */
4492 			counter_u64_add(rack_sack_splits, 1);
4493 			rack_clone_rsm(rack, nrsm, rsm, end);
4494 			rsm->r_flags &= (~RACK_HAS_FIN);
4495 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
4496 #ifdef INVARIANTS
4497 			if (insret != NULL) {
4498 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
4499 				      nrsm, insret, rack, rsm);
4500 			}
4501 #endif
4502 			if (rsm->r_in_tmap) {
4503 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
4504 				nrsm->r_in_tmap = 1;
4505 			}
4506 			nrsm->r_dupack = 0;
4507 			rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
4508 			if (rsm->r_flags & RACK_TLP)
4509 				rack->r_ctl.rc_tlp_rtx_out = 0;
4510 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
4511 			changed += (rsm->r_end - rsm->r_start);
4512 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
4513 			if (rsm->r_in_tmap) /* should be true */
4514 				rack_log_sack_passed(tp, rack, rsm);
4515 			/* Is Reordering occuring? */
4516 			if (rsm->r_flags & RACK_SACK_PASSED) {
4517 				rsm->r_flags &= ~RACK_SACK_PASSED;
4518 				counter_u64_add(rack_reorder_seen, 1);
4519 				rack->r_ctl.rc_reorder_ts = cts;
4520 			}
4521 			rsm->r_flags |= RACK_ACKED;
4522 			rsm->r_flags &= ~RACK_TLP;
4523 			if (rsm->r_in_tmap) {
4524 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4525 				rsm->r_in_tmap = 0;
4526 			}
4527 		}
4528 	} else if (start != end){
4529 		/*
4530 		 * The block was already acked.
4531 		 */
4532 		counter_u64_add(rack_sack_skipped_acked, 1);
4533 		moved++;
4534 	}
4535 out:
4536 	if (rsm && (rsm->r_flags & RACK_ACKED)) {
4537 		/*
4538 		 * Now can we merge where we worked
4539 		 * with either the previous or
4540 		 * next block?
4541 		 */
4542 		next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4543 		while (next) {
4544 		    if (next->r_flags & RACK_ACKED) {
4545 			/* yep this and next can be merged */
4546 			rsm = rack_merge_rsm(rack, rsm, next);
4547 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4548 		    } else
4549 			    break;
4550 		}
4551 		/* Now what about the previous? */
4552 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4553 		while (prev) {
4554 		    if (prev->r_flags & RACK_ACKED) {
4555 			/* yep the previous and this can be merged */
4556 			rsm = rack_merge_rsm(rack, prev, rsm);
4557 			prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4558 		    } else
4559 			    break;
4560 		}
4561 	}
4562 	if (used_ref == 0) {
4563 		counter_u64_add(rack_sack_proc_all, 1);
4564 	} else {
4565 		counter_u64_add(rack_sack_proc_short, 1);
4566 	}
4567 	/* Save off the next one for quick reference. */
4568 	if (rsm)
4569 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4570 	else
4571 		nrsm = NULL;
4572 	*prsm = rack->r_ctl.rc_sacklast = nrsm;
4573 	/* Pass back the moved. */
4574 	*moved_two = moved;
4575 	return (changed);
4576 }
4577 
4578 static void inline
4579 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
4580 {
4581 	struct rack_sendmap *tmap;
4582 
4583 	tmap = NULL;
4584 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
4585 		/* Its no longer sacked, mark it so */
4586 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4587 #ifdef INVARIANTS
4588 		if (rsm->r_in_tmap) {
4589 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
4590 			      rack, rsm, rsm->r_flags);
4591 		}
4592 #endif
4593 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
4594 		/* Rebuild it into our tmap */
4595 		if (tmap == NULL) {
4596 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4597 			tmap = rsm;
4598 		} else {
4599 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
4600 			tmap = rsm;
4601 		}
4602 		tmap->r_in_tmap = 1;
4603 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4604 	}
4605 	/*
4606 	 * Now lets possibly clear the sack filter so we start
4607 	 * recognizing sacks that cover this area.
4608 	 */
4609 	if (rack_use_sack_filter)
4610 		sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
4611 
4612 }
4613 
4614 static void
4615 rack_do_decay(struct tcp_rack *rack)
4616 {
4617 #ifdef NETFLIX_EXP_DETECTION
4618 	struct timeval res;
4619 
4620 #define	timersub(tvp, uvp, vvp)						\
4621 	do {								\
4622 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
4623 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
4624 		if ((vvp)->tv_usec < 0) {				\
4625 			(vvp)->tv_sec--;				\
4626 			(vvp)->tv_usec += 1000000;			\
4627 		}							\
4628 	} while (0)
4629 
4630 	timersub(&rack->r_ctl.rc_last_ack, &rack->r_ctl.rc_last_time_decay, &res);
4631 #undef timersub
4632 
4633 	rack->r_ctl.input_pkt++;
4634 	if ((rack->rc_in_persist) ||
4635 	    (res.tv_sec >= 1) ||
4636 	    (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
4637 		/*
4638 		 * Check for decay of non-SAD,
4639 		 * we want all SAD detection metrics to
4640 		 * decay 1/4 per second (or more) passed.
4641 		 */
4642 		uint32_t pkt_delta;
4643 
4644 		pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
4645 		/* Update our saved tracking values */
4646 		rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
4647 		rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
4648 		/* Now do we escape without decay? */
4649 		if (rack->rc_in_persist ||
4650 		    (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
4651 		    (pkt_delta < tcp_sad_low_pps)){
4652 			/*
4653 			 * We don't decay idle connections
4654 			 * or ones that have a low input pps.
4655 			 */
4656 			return;
4657 		}
4658 		/* Decay the counters */
4659 		rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
4660 							tcp_sad_decay_val);
4661 		rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
4662 							 tcp_sad_decay_val);
4663 		rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
4664 							       tcp_sad_decay_val);
4665 		rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
4666 								tcp_sad_decay_val);
4667 	}
4668 #endif
4669 }
4670 
4671 static void
4672 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4673 {
4674 	uint32_t changed, entered_recovery = 0;
4675 	struct tcp_rack *rack;
4676 	struct rack_sendmap *rsm, *rm;
4677 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
4678 	register uint32_t th_ack;
4679 	int32_t i, j, k, num_sack_blks = 0;
4680 	uint32_t cts, acked, ack_point, sack_changed = 0;
4681 	int loop_start = 0, moved_two = 0;
4682 
4683 	INP_WLOCK_ASSERT(tp->t_inpcb);
4684 	if (th->th_flags & TH_RST) {
4685 		/* We don't log resets */
4686 		return;
4687 	}
4688 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4689 	cts = tcp_ts_getticks();
4690 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4691 	changed = 0;
4692 	th_ack = th->th_ack;
4693 	if (rack->sack_attack_disable == 0)
4694 		rack_do_decay(rack);
4695 	if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
4696 		/*
4697 		 * You only get credit for
4698 		 * MSS and greater (and you get extra
4699 		 * credit for larger cum-ack moves).
4700 		 */
4701 		int ac;
4702 
4703 		ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
4704 		rack->r_ctl.ack_count += ac;
4705 		counter_u64_add(rack_ack_total, ac);
4706 	}
4707 	if (rack->r_ctl.ack_count > 0xfff00000) {
4708 		/*
4709 		 * reduce the number to keep us under
4710 		 * a uint32_t.
4711 		 */
4712 		rack->r_ctl.ack_count /= 2;
4713 		rack->r_ctl.sack_count /= 2;
4714 	}
4715 	if (SEQ_GT(th_ack, tp->snd_una)) {
4716 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
4717 		tp->t_acktime = ticks;
4718 	}
4719 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
4720 		changed = th_ack - rsm->r_start;
4721 	if (changed) {
4722 		/*
4723 		 * The ACK point is advancing to th_ack, we must drop off
4724 		 * the packets in the rack log and calculate any eligble
4725 		 * RTT's.
4726 		 */
4727 		rack->r_wanted_output++;
4728 	more:
4729 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4730 		if (rsm == NULL) {
4731 			if ((th_ack - 1) == tp->iss) {
4732 				/*
4733 				 * For the SYN incoming case we will not
4734 				 * have called tcp_output for the sending of
4735 				 * the SYN, so there will be no map. All
4736 				 * other cases should probably be a panic.
4737 				 */
4738 				goto proc_sack;
4739 			}
4740 			if (tp->t_flags & TF_SENTFIN) {
4741 				/* if we send a FIN we will not hav a map */
4742 				goto proc_sack;
4743 			}
4744 #ifdef INVARIANTS
4745 			panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
4746 			      tp,
4747 			      th, tp->t_state, rack,
4748 			      tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
4749 #endif
4750 			goto proc_sack;
4751 		}
4752 		if (SEQ_LT(th_ack, rsm->r_start)) {
4753 			/* Huh map is missing this */
4754 #ifdef INVARIANTS
4755 			printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
4756 			       rsm->r_start,
4757 			       th_ack, tp->t_state, rack->r_state);
4758 #endif
4759 			goto proc_sack;
4760 		}
4761 		rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
4762 		/* Now do we consume the whole thing? */
4763 		if (SEQ_GEQ(th_ack, rsm->r_end)) {
4764 			/* Its all consumed. */
4765 			uint32_t left;
4766 
4767 			rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
4768 			rsm->r_rtr_bytes = 0;
4769 			if (rsm->r_flags & RACK_TLP)
4770 				rack->r_ctl.rc_tlp_rtx_out = 0;
4771 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
4772 #ifdef INVARIANTS
4773 			if (rm != rsm) {
4774 				panic("removing head in rack:%p rsm:%p rm:%p",
4775 				      rack, rsm, rm);
4776 			}
4777 #endif
4778 			if (rsm->r_in_tmap) {
4779 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
4780 				rsm->r_in_tmap = 0;
4781 			}
4782 			if (rsm->r_flags & RACK_ACKED) {
4783 				/*
4784 				 * It was acked on the scoreboard -- remove
4785 				 * it from total
4786 				 */
4787 				rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
4788 			} else if (rsm->r_flags & RACK_SACK_PASSED) {
4789 				/*
4790 				 * There are segments ACKED on the
4791 				 * scoreboard further up. We are seeing
4792 				 * reordering.
4793 				 */
4794 				rsm->r_flags &= ~RACK_SACK_PASSED;
4795 				counter_u64_add(rack_reorder_seen, 1);
4796 				rsm->r_flags |= RACK_ACKED;
4797 				rack->r_ctl.rc_reorder_ts = cts;
4798 			}
4799 			left = th_ack - rsm->r_end;
4800 			if (rsm->r_rtr_cnt > 1) {
4801 				/*
4802 				 * Technically we should make r_rtr_cnt be
4803 				 * monotonicly increasing and just mod it to
4804 				 * the timestamp it is replacing.. that way
4805 				 * we would have the last 3 retransmits. Now
4806 				 * rc_loss_count will be wrong if we
4807 				 * retransmit something more than 2 times in
4808 				 * recovery :(
4809 				 */
4810 				rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
4811 			}
4812 			/* Free back to zone */
4813 			rack_free(rack, rsm);
4814 			if (left) {
4815 				goto more;
4816 			}
4817 			goto proc_sack;
4818 		}
4819 		if (rsm->r_flags & RACK_ACKED) {
4820 			/*
4821 			 * It was acked on the scoreboard -- remove it from
4822 			 * total for the part being cum-acked.
4823 			 */
4824 			rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
4825 		}
4826 		/*
4827 		 * Clear the dup ack count for
4828 		 * the piece that remains.
4829 		 */
4830 		rsm->r_dupack = 0;
4831 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
4832 		if (rsm->r_rtr_bytes) {
4833 			/*
4834 			 * It was retransmitted adjust the
4835 			 * sack holes for what was acked.
4836 			 */
4837 			int ack_am;
4838 
4839 			ack_am = (th_ack - rsm->r_start);
4840 			if (ack_am >= rsm->r_rtr_bytes) {
4841 				rack->r_ctl.rc_holes_rxt -= ack_am;
4842 				rsm->r_rtr_bytes -= ack_am;
4843 			}
4844 		}
4845 		/* Update where the piece starts */
4846 		rsm->r_start = th_ack;
4847 	}
4848 proc_sack:
4849 	/* Check for reneging */
4850 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
4851 	if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
4852 		/*
4853 		 * The peer has moved snd_una up to
4854 		 * the edge of this send, i.e. one
4855 		 * that it had previously acked. The only
4856 		 * way that can be true if the peer threw
4857 		 * away data (space issues) that it had
4858 		 * previously sacked (else it would have
4859 		 * given us snd_una up to (rsm->r_end).
4860 		 * We need to undo the acked markings here.
4861 		 *
4862 		 * Note we have to look to make sure th_ack is
4863 		 * our rsm->r_start in case we get an old ack
4864 		 * where th_ack is behind snd_una.
4865 		 */
4866 		rack_peer_reneges(rack, rsm, th->th_ack);
4867 	}
4868 	if ((to->to_flags & TOF_SACK) == 0) {
4869 		/* We are done nothing left */
4870 		goto out;
4871 	}
4872 	/* Sack block processing */
4873 	if (SEQ_GT(th_ack, tp->snd_una))
4874 		ack_point = th_ack;
4875 	else
4876 		ack_point = tp->snd_una;
4877 	for (i = 0; i < to->to_nsacks; i++) {
4878 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
4879 		      &sack, sizeof(sack));
4880 		sack.start = ntohl(sack.start);
4881 		sack.end = ntohl(sack.end);
4882 		if (SEQ_GT(sack.end, sack.start) &&
4883 		    SEQ_GT(sack.start, ack_point) &&
4884 		    SEQ_LT(sack.start, tp->snd_max) &&
4885 		    SEQ_GT(sack.end, ack_point) &&
4886 		    SEQ_LEQ(sack.end, tp->snd_max)) {
4887 			sack_blocks[num_sack_blks] = sack;
4888 			num_sack_blks++;
4889 #ifdef NETFLIX_STATS
4890 		} else if (SEQ_LEQ(sack.start, th_ack) &&
4891 			   SEQ_LEQ(sack.end, th_ack)) {
4892 			/*
4893 			 * Its a D-SACK block.
4894 			 */
4895 			tcp_record_dsack(sack.start, sack.end);
4896 #endif
4897 		}
4898 
4899 	}
4900 	/*
4901 	 * Sort the SACK blocks so we can update the rack scoreboard with
4902 	 * just one pass.
4903 	 */
4904 	if (rack_use_sack_filter) {
4905 		num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
4906 						 num_sack_blks, th->th_ack);
4907 		ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
4908 	}
4909 	if (num_sack_blks == 0)  {
4910 		/* Nothing to sack (DSACKs?) */
4911 		goto out_with_totals;
4912 	}
4913 	if (num_sack_blks < 2) {
4914 		/* Only one, we don't need to sort */
4915 		goto do_sack_work;
4916 	}
4917 	/* Sort the sacks */
4918 	for (i = 0; i < num_sack_blks; i++) {
4919 		for (j = i + 1; j < num_sack_blks; j++) {
4920 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
4921 				sack = sack_blocks[i];
4922 				sack_blocks[i] = sack_blocks[j];
4923 				sack_blocks[j] = sack;
4924 			}
4925 		}
4926 	}
4927 	/*
4928 	 * Now are any of the sack block ends the same (yes some
4929 	 * implementations send these)?
4930 	 */
4931 again:
4932 	if (num_sack_blks == 0)
4933 		goto out_with_totals;
4934 	if (num_sack_blks > 1) {
4935 		for (i = 0; i < num_sack_blks; i++) {
4936 			for (j = i + 1; j < num_sack_blks; j++) {
4937 				if (sack_blocks[i].end == sack_blocks[j].end) {
4938 					/*
4939 					 * Ok these two have the same end we
4940 					 * want the smallest end and then
4941 					 * throw away the larger and start
4942 					 * again.
4943 					 */
4944 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
4945 						/*
4946 						 * The second block covers
4947 						 * more area use that
4948 						 */
4949 						sack_blocks[i].start = sack_blocks[j].start;
4950 					}
4951 					/*
4952 					 * Now collapse out the dup-sack and
4953 					 * lower the count
4954 					 */
4955 					for (k = (j + 1); k < num_sack_blks; k++) {
4956 						sack_blocks[j].start = sack_blocks[k].start;
4957 						sack_blocks[j].end = sack_blocks[k].end;
4958 						j++;
4959 					}
4960 					num_sack_blks--;
4961 					goto again;
4962 				}
4963 			}
4964 		}
4965 	}
4966 do_sack_work:
4967 	/*
4968 	 * First lets look to see if
4969 	 * we have retransmitted and
4970 	 * can use the transmit next?
4971 	 */
4972 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4973 	if (rsm &&
4974 	    SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
4975 	    SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
4976 		/*
4977 		 * We probably did the FR and the next
4978 		 * SACK in continues as we would expect.
4979 		 */
4980 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
4981 		if (acked) {
4982 			rack->r_wanted_output++;
4983 			changed += acked;
4984 			sack_changed += acked;
4985 		}
4986 		if (num_sack_blks == 1) {
4987 			/*
4988 			 * This is what we would expect from
4989 			 * a normal implementation to happen
4990 			 * after we have retransmitted the FR,
4991 			 * i.e the sack-filter pushes down
4992 			 * to 1 block and the next to be retransmitted
4993 			 * is the sequence in the sack block (has more
4994 			 * are acked). Count this as ACK'd data to boost
4995 			 * up the chances of recovering any false positives.
4996 			 */
4997 			rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
4998 			counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
4999 			counter_u64_add(rack_express_sack, 1);
5000 			if (rack->r_ctl.ack_count > 0xfff00000) {
5001 				/*
5002 				 * reduce the number to keep us under
5003 				 * a uint32_t.
5004 				 */
5005 				rack->r_ctl.ack_count /= 2;
5006 				rack->r_ctl.sack_count /= 2;
5007 			}
5008 			goto out_with_totals;
5009 		} else {
5010 			/*
5011 			 * Start the loop through the
5012 			 * rest of blocks, past the first block.
5013 			 */
5014 			moved_two = 0;
5015 			loop_start = 1;
5016 		}
5017 	}
5018 	/* Its a sack of some sort */
5019 	rack->r_ctl.sack_count++;
5020 	if (rack->r_ctl.sack_count > 0xfff00000) {
5021 		/*
5022 		 * reduce the number to keep us under
5023 		 * a uint32_t.
5024 		 */
5025 		rack->r_ctl.ack_count /= 2;
5026 		rack->r_ctl.sack_count /= 2;
5027 	}
5028 	counter_u64_add(rack_sack_total, 1);
5029 	if (rack->sack_attack_disable) {
5030 		/* An attacker disablement is in place */
5031 		if (num_sack_blks > 1) {
5032 			rack->r_ctl.sack_count += (num_sack_blks - 1);
5033 			rack->r_ctl.sack_moved_extra++;
5034 			counter_u64_add(rack_move_some, 1);
5035 			if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
5036 				rack->r_ctl.sack_moved_extra /= 2;
5037 				rack->r_ctl.sack_noextra_move /= 2;
5038 			}
5039 		}
5040 		goto out;
5041 	}
5042 	rsm = rack->r_ctl.rc_sacklast;
5043 	for (i = loop_start; i < num_sack_blks; i++) {
5044 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
5045 		if (acked) {
5046 			rack->r_wanted_output++;
5047 			changed += acked;
5048 			sack_changed += acked;
5049 		}
5050 		if (moved_two) {
5051 			/*
5052 			 * If we did not get a SACK for at least a MSS and
5053 			 * had to move at all, or if we moved more than our
5054 			 * threshold, it counts against the "extra" move.
5055 			 */
5056 			rack->r_ctl.sack_moved_extra += moved_two;
5057 			counter_u64_add(rack_move_some, 1);
5058 		} else {
5059 			/*
5060 			 * else we did not have to move
5061 			 * any more than we would expect.
5062 			 */
5063 			rack->r_ctl.sack_noextra_move++;
5064 			counter_u64_add(rack_move_none, 1);
5065 		}
5066 		if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
5067 			/*
5068 			 * If the SACK was not a full MSS then
5069 			 * we add to sack_count the number of
5070 			 * MSS's (or possibly more than
5071 			 * a MSS if its a TSO send) we had to skip by.
5072 			 */
5073 			rack->r_ctl.sack_count += moved_two;
5074 			counter_u64_add(rack_sack_total, moved_two);
5075 		}
5076 		/*
5077 		 * Now we need to setup for the next
5078 		 * round. First we make sure we won't
5079 		 * exceed the size of our uint32_t on
5080 		 * the various counts, and then clear out
5081 		 * moved_two.
5082 		 */
5083 		if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
5084 		    (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
5085 			rack->r_ctl.sack_moved_extra /= 2;
5086 			rack->r_ctl.sack_noextra_move /= 2;
5087 		}
5088 		if (rack->r_ctl.sack_count > 0xfff00000) {
5089 			rack->r_ctl.ack_count /= 2;
5090 			rack->r_ctl.sack_count /= 2;
5091 		}
5092 		moved_two = 0;
5093 	}
5094 out_with_totals:
5095 	if (num_sack_blks > 1) {
5096 		/*
5097 		 * You get an extra stroke if
5098 		 * you have more than one sack-blk, this
5099 		 * could be where we are skipping forward
5100 		 * and the sack-filter is still working, or
5101 		 * it could be an attacker constantly
5102 		 * moving us.
5103 		 */
5104 		rack->r_ctl.sack_moved_extra++;
5105 		counter_u64_add(rack_move_some, 1);
5106 	}
5107 out:
5108 #ifdef NETFLIX_EXP_DETECTION
5109 	if ((rack->do_detection || tcp_force_detection) &&
5110 	    tcp_sack_to_ack_thresh &&
5111 	    tcp_sack_to_move_thresh &&
5112 	    ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
5113 		/*
5114 		 * We have thresholds set to find
5115 		 * possible attackers and disable sack.
5116 		 * Check them.
5117 		 */
5118 		uint64_t ackratio, moveratio, movetotal;
5119 
5120 		/* Log detecting */
5121 		rack_log_sad(rack, 1);
5122 		ackratio = (uint64_t)(rack->r_ctl.sack_count);
5123 		ackratio *= (uint64_t)(1000);
5124 		if (rack->r_ctl.ack_count)
5125 			ackratio /= (uint64_t)(rack->r_ctl.ack_count);
5126 		else {
5127 			/* We really should not hit here */
5128 			ackratio = 1000;
5129 		}
5130 		if ((rack->sack_attack_disable  == 0) &&
5131 		    (ackratio > rack_highest_sack_thresh_seen))
5132 			rack_highest_sack_thresh_seen = (uint32_t)ackratio;
5133 		movetotal = rack->r_ctl.sack_moved_extra;
5134 		movetotal += rack->r_ctl.sack_noextra_move;
5135 		moveratio = rack->r_ctl.sack_moved_extra;
5136 		moveratio *= (uint64_t)1000;
5137 		if (movetotal)
5138 			moveratio /= movetotal;
5139 		else {
5140 			/* No moves, thats pretty good */
5141 			moveratio = 0;
5142 		}
5143 		if ((rack->sack_attack_disable == 0) &&
5144 		    (moveratio > rack_highest_move_thresh_seen))
5145 			rack_highest_move_thresh_seen = (uint32_t)moveratio;
5146 		if (rack->sack_attack_disable == 0) {
5147 			if ((ackratio > tcp_sack_to_ack_thresh) &&
5148 			    (moveratio > tcp_sack_to_move_thresh)) {
5149 				/* Disable sack processing */
5150 				rack->sack_attack_disable = 1;
5151 				if (rack->r_rep_attack == 0) {
5152 					rack->r_rep_attack = 1;
5153 					counter_u64_add(rack_sack_attacks_detected, 1);
5154 				}
5155 				if (tcp_attack_on_turns_on_logging) {
5156 					/*
5157 					 * Turn on logging, used for debugging
5158 					 * false positives.
5159 					 */
5160 					rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
5161 				}
5162 				/* Clamp the cwnd at flight size */
5163 				rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
5164 				rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
5165 				rack_log_sad(rack, 2);
5166 			}
5167 		} else {
5168 			/* We are sack-disabled check for false positives */
5169 			if ((ackratio <= tcp_restoral_thresh) ||
5170 			    (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
5171 				rack->sack_attack_disable  = 0;
5172 				rack_log_sad(rack, 3);
5173 				/* Restart counting */
5174 				rack->r_ctl.sack_count = 0;
5175 				rack->r_ctl.sack_moved_extra = 0;
5176 				rack->r_ctl.sack_noextra_move = 1;
5177 				rack->r_ctl.ack_count = max(1,
5178 				      (BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp)));
5179 
5180 				if (rack->r_rep_reverse == 0) {
5181 					rack->r_rep_reverse = 1;
5182 					counter_u64_add(rack_sack_attacks_reversed, 1);
5183 				}
5184 				/* Restore the cwnd */
5185 				if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
5186 					rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
5187 			}
5188 		}
5189 	}
5190 #endif
5191 	if (changed) {
5192 		/* Something changed cancel the rack timer */
5193 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5194 	}
5195 	if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
5196 		/*
5197 		 * Ok we have a high probability that we need to go in to
5198 		 * recovery since we have data sack'd
5199 		 */
5200 		struct rack_sendmap *rsm;
5201 		uint32_t tsused;
5202 
5203 		tsused = tcp_ts_getticks();
5204 		rsm = tcp_rack_output(tp, rack, tsused);
5205 		if (rsm) {
5206 			/* Enter recovery */
5207 			rack->r_ctl.rc_rsm_start = rsm->r_start;
5208 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
5209 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
5210 			entered_recovery = 1;
5211 			rack_cong_signal(tp, NULL, CC_NDUPACK);
5212 			/*
5213 			 * When we enter recovery we need to assure we send
5214 			 * one packet.
5215 			 */
5216 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
5217 			rack_log_to_prr(rack, 8);
5218 			rack->r_timer_override = 1;
5219 		}
5220 	}
5221 	if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
5222 		/* Deal with changed and PRR here (in recovery only) */
5223 		uint32_t pipe, snd_una;
5224 
5225 		rack->r_ctl.rc_prr_delivered += changed;
5226 		/* Compute prr_sndcnt */
5227 		if (SEQ_GT(tp->snd_una, th_ack)) {
5228 			snd_una = tp->snd_una;
5229 		} else {
5230 			snd_una = th_ack;
5231 		}
5232 		pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
5233 		if (pipe > tp->snd_ssthresh) {
5234 			long sndcnt;
5235 
5236 			sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
5237 			if (rack->r_ctl.rc_prr_recovery_fs > 0)
5238 				sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
5239 			else {
5240 				rack->r_ctl.rc_prr_sndcnt = 0;
5241 				rack_log_to_prr(rack, 9);
5242 				sndcnt = 0;
5243 			}
5244 			sndcnt++;
5245 			if (sndcnt > (long)rack->r_ctl.rc_prr_out)
5246 				sndcnt -= rack->r_ctl.rc_prr_out;
5247 			else
5248 				sndcnt = 0;
5249 			rack->r_ctl.rc_prr_sndcnt = sndcnt;
5250 			rack_log_to_prr(rack, 10);
5251 		} else {
5252 			uint32_t limit;
5253 
5254 			if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
5255 				limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
5256 			else
5257 				limit = 0;
5258 			if (changed > limit)
5259 				limit = changed;
5260 			limit += ctf_fixed_maxseg(tp);
5261 			if (tp->snd_ssthresh > pipe) {
5262 				rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
5263 				rack_log_to_prr(rack, 11);
5264 			} else {
5265 				rack->r_ctl.rc_prr_sndcnt = min(0, limit);
5266 				rack_log_to_prr(rack, 12);
5267 			}
5268 		}
5269 		if (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) {
5270 			rack->r_timer_override = 1;
5271 		}
5272 	}
5273 }
5274 
5275 static void
5276 rack_strike_dupack(struct tcp_rack *rack)
5277 {
5278 	struct rack_sendmap *rsm;
5279 
5280 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5281 	if (rsm && (rsm->r_dupack < 0xff)) {
5282 		rsm->r_dupack++;
5283 		if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
5284 			rack->r_wanted_output = 1;
5285 			rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
5286 		} else {
5287 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
5288 		}
5289 	}
5290 }
5291 
5292 /*
5293  * Return value of 1, we do not need to call rack_process_data().
5294  * return value of 0, rack_process_data can be called.
5295  * For ret_val if its 0 the TCP is locked, if its non-zero
5296  * its unlocked and probably unsafe to touch the TCB.
5297  */
5298 static int
5299 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
5300     struct tcpcb *tp, struct tcpopt *to,
5301     uint32_t tiwin, int32_t tlen,
5302     int32_t * ofia, int32_t thflags, int32_t * ret_val)
5303 {
5304 	int32_t ourfinisacked = 0;
5305 	int32_t nsegs, acked_amount;
5306 	int32_t acked;
5307 	struct mbuf *mfree;
5308 	struct tcp_rack *rack;
5309 	int32_t recovery = 0;
5310 
5311 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5312 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
5313 		ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
5314 		rack->r_wanted_output++;
5315 		return (1);
5316 	}
5317 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
5318 		if (rack->rc_in_persist)
5319 			tp->t_rxtshift = 0;
5320 		if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
5321 			rack_strike_dupack(rack);
5322 		rack_log_ack(tp, to, th);
5323 	}
5324 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
5325 		/*
5326 		 * Old ack, behind (or duplicate to) the last one rcv'd
5327 		 * Note: Should mark reordering is occuring! We should also
5328 		 * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
5329 		 * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
5330 		 * retran and> ack 3
5331 		 */
5332 		return (0);
5333 	}
5334 	/*
5335 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
5336 	 * something we sent.
5337 	 */
5338 	if (tp->t_flags & TF_NEEDSYN) {
5339 		/*
5340 		 * T/TCP: Connection was half-synchronized, and our SYN has
5341 		 * been ACK'd (so connection is now fully synchronized).  Go
5342 		 * to non-starred state, increment snd_una for ACK of SYN,
5343 		 * and check if we can do window scaling.
5344 		 */
5345 		tp->t_flags &= ~TF_NEEDSYN;
5346 		tp->snd_una++;
5347 		/* Do window scaling? */
5348 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
5349 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
5350 			tp->rcv_scale = tp->request_r_scale;
5351 			/* Send window already scaled. */
5352 		}
5353 	}
5354 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5355 	INP_WLOCK_ASSERT(tp->t_inpcb);
5356 
5357 	acked = BYTES_THIS_ACK(tp, th);
5358 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
5359 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
5360 
5361 	/*
5362 	 * If we just performed our first retransmit, and the ACK arrives
5363 	 * within our recovery window, then it was a mistake to do the
5364 	 * retransmit in the first place.  Recover our original cwnd and
5365 	 * ssthresh, and proceed to transmit where we left off.
5366 	 */
5367 	if (tp->t_flags & TF_PREVVALID) {
5368 		tp->t_flags &= ~TF_PREVVALID;
5369 		if (tp->t_rxtshift == 1 &&
5370 		    (int)(ticks - tp->t_badrxtwin) < 0)
5371 			rack_cong_signal(tp, th, CC_RTO_ERR);
5372 	}
5373 	/*
5374 	 * If we have a timestamp reply, update smoothed round trip time. If
5375 	 * no timestamp is present but transmit timer is running and timed
5376 	 * sequence number was acked, update smoothed round trip time. Since
5377 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
5378 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
5379 	 * timer.
5380 	 *
5381 	 * Some boxes send broken timestamp replies during the SYN+ACK
5382 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
5383 	 * and blow up the retransmit timer.
5384 	 */
5385 	/*
5386 	 * If all outstanding data is acked, stop retransmit timer and
5387 	 * remember to restart (more output or persist). If there is more
5388 	 * data to be acked, restart retransmit timer, using current
5389 	 * (possibly backed-off) value.
5390 	 */
5391 	if (th->th_ack == tp->snd_max) {
5392 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5393 		rack->r_wanted_output++;
5394 	}
5395 	if (acked == 0) {
5396 		if (ofia)
5397 			*ofia = ourfinisacked;
5398 		return (0);
5399 	}
5400 	if (rack->r_ctl.rc_early_recovery) {
5401 		if (IN_RECOVERY(tp->t_flags)) {
5402 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5403 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5404 				tcp_rack_partialack(tp, th);
5405 			} else {
5406 				rack_post_recovery(tp, th);
5407 				recovery = 1;
5408 			}
5409 		}
5410 	}
5411 	/*
5412 	 * Let the congestion control algorithm update congestion control
5413 	 * related information. This typically means increasing the
5414 	 * congestion window.
5415 	 */
5416 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
5417 	SOCKBUF_LOCK(&so->so_snd);
5418 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
5419 	tp->snd_wnd -= acked_amount;
5420 	mfree = sbcut_locked(&so->so_snd, acked_amount);
5421 	if ((sbused(&so->so_snd) == 0) &&
5422 	    (acked > acked_amount) &&
5423 	    (tp->t_state >= TCPS_FIN_WAIT_1)) {
5424 		ourfinisacked = 1;
5425 	}
5426 	/* NB: sowwakeup_locked() does an implicit unlock. */
5427 	sowwakeup_locked(so);
5428 	m_freem(mfree);
5429 	if (rack->r_ctl.rc_early_recovery == 0) {
5430 		if (IN_RECOVERY(tp->t_flags)) {
5431 			if (SEQ_LT(th->th_ack, tp->snd_recover) &&
5432 			    (SEQ_LT(th->th_ack, tp->snd_max))) {
5433 				tcp_rack_partialack(tp, th);
5434 			} else {
5435 				rack_post_recovery(tp, th);
5436 			}
5437 		}
5438 	}
5439 	tp->snd_una = th->th_ack;
5440 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
5441 		tp->snd_recover = tp->snd_una;
5442 
5443 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
5444 		tp->snd_nxt = tp->snd_una;
5445 	}
5446 	if (tp->snd_una == tp->snd_max) {
5447 		/* Nothing left outstanding */
5448 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
5449 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
5450 			tp->t_acktime = 0;
5451 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
5452 		/* Set need output so persist might get set */
5453 		rack->r_wanted_output++;
5454 		if (rack_use_sack_filter)
5455 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5456 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
5457 		    (sbavail(&so->so_snd) == 0) &&
5458 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
5459 			/*
5460 			 * The socket was gone and the
5461 			 * peer sent data, time to
5462 			 * reset him.
5463 			 */
5464 			*ret_val = 1;
5465 			tp = tcp_close(tp);
5466 			ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
5467 			return (1);
5468 		}
5469 	}
5470 	if (ofia)
5471 		*ofia = ourfinisacked;
5472 	return (0);
5473 }
5474 
5475 static void
5476 rack_collapsed_window(struct tcp_rack *rack)
5477 {
5478 	/*
5479 	 * Now we must walk the
5480 	 * send map and divide the
5481 	 * ones left stranded. These
5482 	 * guys can't cause us to abort
5483 	 * the connection and are really
5484 	 * "unsent". However if a buggy
5485 	 * client actually did keep some
5486 	 * of the data i.e. collapsed the win
5487 	 * and refused to ack and then opened
5488 	 * the win and acked that data. We would
5489 	 * get into an ack war, the simplier
5490 	 * method then of just pretending we
5491 	 * did not send those segments something
5492 	 * won't work.
5493 	 */
5494 	struct rack_sendmap *rsm, *nrsm, fe, *insret;
5495 	tcp_seq max_seq;
5496 	uint32_t maxseg;
5497 
5498 	max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
5499 	maxseg = ctf_fixed_maxseg(rack->rc_tp);
5500 	memset(&fe, 0, sizeof(fe));
5501 	fe.r_start = max_seq;
5502 	/* Find the first seq past or at maxseq */
5503 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
5504 	if (rsm == NULL) {
5505 		/* Nothing to do strange */
5506 		rack->rc_has_collapsed = 0;
5507 		return;
5508 	}
5509 	/*
5510 	 * Now do we need to split at
5511 	 * the collapse point?
5512 	 */
5513 	if (SEQ_GT(max_seq, rsm->r_start)) {
5514 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
5515 		if (nrsm == NULL) {
5516 			/* We can't get a rsm, mark all? */
5517 			nrsm = rsm;
5518 			goto no_split;
5519 		}
5520 		/* Clone it */
5521 		rack_clone_rsm(rack, nrsm, rsm, max_seq);
5522 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
5523 #ifdef INVARIANTS
5524 		if (insret != NULL) {
5525 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
5526 			      nrsm, insret, rack, rsm);
5527 		}
5528 #endif
5529 		if (rsm->r_in_tmap) {
5530 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
5531 			nrsm->r_in_tmap = 1;
5532 		}
5533 		/*
5534 		 * Set in the new RSM as the
5535 		 * collapsed starting point
5536 		 */
5537 		rsm = nrsm;
5538 	}
5539 no_split:
5540 	counter_u64_add(rack_collapsed_win, 1);
5541 	RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
5542 		nrsm->r_flags |= RACK_RWND_COLLAPSED;
5543 		rack->rc_has_collapsed = 1;
5544 	}
5545 }
5546 
5547 static void
5548 rack_un_collapse_window(struct tcp_rack *rack)
5549 {
5550 	struct rack_sendmap *rsm;
5551 
5552 	RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
5553 		if (rsm->r_flags & RACK_RWND_COLLAPSED)
5554 			rsm->r_flags &= ~RACK_RWND_COLLAPSED;
5555 		else
5556 			break;
5557 	}
5558 	rack->rc_has_collapsed = 0;
5559 }
5560 
5561 /*
5562  * Return value of 1, the TCB is unlocked and most
5563  * likely gone, return value of 0, the TCP is still
5564  * locked.
5565  */
5566 static int
5567 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
5568     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
5569     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
5570 {
5571 	/*
5572 	 * Update window information. Don't look at window if no ACK: TAC's
5573 	 * send garbage on first SYN.
5574 	 */
5575 	int32_t nsegs;
5576 	int32_t tfo_syn;
5577 	struct tcp_rack *rack;
5578 
5579 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5580 	INP_WLOCK_ASSERT(tp->t_inpcb);
5581 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5582 	if ((thflags & TH_ACK) &&
5583 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
5584 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
5585 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
5586 		/* keep track of pure window updates */
5587 		if (tlen == 0 &&
5588 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
5589 			KMOD_TCPSTAT_INC(tcps_rcvwinupd);
5590 		tp->snd_wnd = tiwin;
5591 		tp->snd_wl1 = th->th_seq;
5592 		tp->snd_wl2 = th->th_ack;
5593 		if (tp->snd_wnd > tp->max_sndwnd)
5594 			tp->max_sndwnd = tp->snd_wnd;
5595 		rack->r_wanted_output++;
5596 	} else if (thflags & TH_ACK) {
5597 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
5598 			tp->snd_wnd = tiwin;
5599 			tp->snd_wl1 = th->th_seq;
5600 			tp->snd_wl2 = th->th_ack;
5601 		}
5602 	}
5603 	if (tp->snd_wnd < ctf_outstanding(tp))
5604 		/* The peer collapsed the window */
5605 		rack_collapsed_window(rack);
5606 	else if (rack->rc_has_collapsed)
5607 		rack_un_collapse_window(rack);
5608 	/* Was persist timer active and now we have window space? */
5609 	if ((rack->rc_in_persist != 0) &&
5610 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
5611 				rack->r_ctl.rc_pace_min_segs))) {
5612 		rack_exit_persist(tp, rack);
5613 		tp->snd_nxt = tp->snd_max;
5614 		/* Make sure we output to start the timer */
5615 		rack->r_wanted_output++;
5616 	}
5617 	/* Do we enter persists? */
5618 	if ((rack->rc_in_persist == 0) &&
5619 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
5620 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
5621 	    (tp->snd_max == tp->snd_una) &&
5622 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
5623 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
5624 		/*
5625 		 * Here the rwnd is less than
5626 		 * the pacing size, we are established,
5627 		 * nothing is outstanding, and there is
5628 		 * data to send. Enter persists.
5629 		 */
5630 		tp->snd_nxt = tp->snd_una;
5631 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
5632 	}
5633 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
5634 		m_freem(m);
5635 		return (0);
5636 	}
5637 	/*
5638 	 * Process segments with URG.
5639 	 */
5640 	if ((thflags & TH_URG) && th->th_urp &&
5641 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5642 		/*
5643 		 * This is a kludge, but if we receive and accept random
5644 		 * urgent pointers, we'll crash in soreceive.  It's hard to
5645 		 * imagine someone actually wanting to send this much urgent
5646 		 * data.
5647 		 */
5648 		SOCKBUF_LOCK(&so->so_rcv);
5649 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
5650 			th->th_urp = 0;	/* XXX */
5651 			thflags &= ~TH_URG;	/* XXX */
5652 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
5653 			goto dodata;	/* XXX */
5654 		}
5655 		/*
5656 		 * If this segment advances the known urgent pointer, then
5657 		 * mark the data stream.  This should not happen in
5658 		 * CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
5659 		 * FIN has been received from the remote side. In these
5660 		 * states we ignore the URG.
5661 		 *
5662 		 * According to RFC961 (Assigned Protocols), the urgent
5663 		 * pointer points to the last octet of urgent data.  We
5664 		 * continue, however, to consider it to indicate the first
5665 		 * octet of data past the urgent section as the original
5666 		 * spec states (in one of two places).
5667 		 */
5668 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
5669 			tp->rcv_up = th->th_seq + th->th_urp;
5670 			so->so_oobmark = sbavail(&so->so_rcv) +
5671 			    (tp->rcv_up - tp->rcv_nxt) - 1;
5672 			if (so->so_oobmark == 0)
5673 				so->so_rcv.sb_state |= SBS_RCVATMARK;
5674 			sohasoutofband(so);
5675 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
5676 		}
5677 		SOCKBUF_UNLOCK(&so->so_rcv);
5678 		/*
5679 		 * Remove out of band data so doesn't get presented to user.
5680 		 * This can happen independent of advancing the URG pointer,
5681 		 * but if two URG's are pending at once, some out-of-band
5682 		 * data may creep in... ick.
5683 		 */
5684 		if (th->th_urp <= (uint32_t) tlen &&
5685 		    !(so->so_options & SO_OOBINLINE)) {
5686 			/* hdr drop is delayed */
5687 			tcp_pulloutofband(so, th, m, drop_hdrlen);
5688 		}
5689 	} else {
5690 		/*
5691 		 * If no out of band data is expected, pull receive urgent
5692 		 * pointer along with the receive window.
5693 		 */
5694 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
5695 			tp->rcv_up = tp->rcv_nxt;
5696 	}
5697 dodata:				/* XXX */
5698 	INP_WLOCK_ASSERT(tp->t_inpcb);
5699 
5700 	/*
5701 	 * Process the segment text, merging it into the TCP sequencing
5702 	 * queue, and arranging for acknowledgment of receipt if necessary.
5703 	 * This process logically involves adjusting tp->rcv_wnd as data is
5704 	 * presented to the user (this happens in tcp_usrreq.c, case
5705 	 * PRU_RCVD).  If a FIN has already been received on this connection
5706 	 * then we just ignore the text.
5707 	 */
5708 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
5709 		   IS_FASTOPEN(tp->t_flags));
5710 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
5711 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5712 		tcp_seq save_start = th->th_seq;
5713 		tcp_seq save_rnxt  = tp->rcv_nxt;
5714 		int     save_tlen  = tlen;
5715 
5716 		m_adj(m, drop_hdrlen);	/* delayed header drop */
5717 		/*
5718 		 * Insert segment which includes th into TCP reassembly
5719 		 * queue with control block tp.  Set thflags to whether
5720 		 * reassembly now includes a segment with FIN.  This handles
5721 		 * the common case inline (segment is the next to be
5722 		 * received on an established connection, and the queue is
5723 		 * empty), avoiding linkage into and removal from the queue
5724 		 * and repetition of various conversions. Set DELACK for
5725 		 * segments received in order, but ack immediately when
5726 		 * segments are out of order (so fast retransmit can work).
5727 		 */
5728 		if (th->th_seq == tp->rcv_nxt &&
5729 		    SEGQ_EMPTY(tp) &&
5730 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
5731 		    tfo_syn)) {
5732 #ifdef NETFLIX_SB_LIMITS
5733 			u_int mcnt, appended;
5734 
5735 			if (so->so_rcv.sb_shlim) {
5736 				mcnt = m_memcnt(m);
5737 				appended = 0;
5738 				if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5739 				    CFO_NOSLEEP, NULL) == false) {
5740 					counter_u64_add(tcp_sb_shlim_fails, 1);
5741 					m_freem(m);
5742 					return (0);
5743 				}
5744 			}
5745 #endif
5746 			if (DELAY_ACK(tp, tlen) || tfo_syn) {
5747 				rack_timer_cancel(tp, rack,
5748 				    rack->r_ctl.rc_rcvtime, __LINE__);
5749 				tp->t_flags |= TF_DELACK;
5750 			} else {
5751 				rack->r_wanted_output++;
5752 				tp->t_flags |= TF_ACKNOW;
5753 			}
5754 			tp->rcv_nxt += tlen;
5755 			thflags = th->th_flags & TH_FIN;
5756 			KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
5757 			KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
5758 			SOCKBUF_LOCK(&so->so_rcv);
5759 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5760 				m_freem(m);
5761 			} else
5762 #ifdef NETFLIX_SB_LIMITS
5763 				appended =
5764 #endif
5765 					sbappendstream_locked(&so->so_rcv, m, 0);
5766 			/* NB: sorwakeup_locked() does an implicit unlock. */
5767 			sorwakeup_locked(so);
5768 #ifdef NETFLIX_SB_LIMITS
5769 			if (so->so_rcv.sb_shlim && appended != mcnt)
5770 				counter_fo_release(so->so_rcv.sb_shlim,
5771 				    mcnt - appended);
5772 #endif
5773 		} else {
5774 			/*
5775 			 * XXX: Due to the header drop above "th" is
5776 			 * theoretically invalid by now.  Fortunately
5777 			 * m_adj() doesn't actually frees any mbufs when
5778 			 * trimming from the head.
5779 			 */
5780 			tcp_seq temp = save_start;
5781 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
5782 			tp->t_flags |= TF_ACKNOW;
5783 		}
5784 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
5785 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
5786 				/*
5787 				 * DSACK actually handled in the fastpath
5788 				 * above.
5789 				 */
5790 				tcp_update_sack_list(tp, save_start,
5791 				    save_start + save_tlen);
5792 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
5793 				if ((tp->rcv_numsacks >= 1) &&
5794 				    (tp->sackblks[0].end == save_start)) {
5795 					/*
5796 					 * Partial overlap, recorded at todrop
5797 					 * above.
5798 					 */
5799 					tcp_update_sack_list(tp,
5800 					    tp->sackblks[0].start,
5801 					    tp->sackblks[0].end);
5802 				} else {
5803 					tcp_update_dsack_list(tp, save_start,
5804 					    save_start + save_tlen);
5805 				}
5806 			} else if (tlen >= save_tlen) {
5807 				/* Update of sackblks. */
5808 				tcp_update_dsack_list(tp, save_start,
5809 				    save_start + save_tlen);
5810 			} else if (tlen > 0) {
5811 				tcp_update_dsack_list(tp, save_start,
5812 				    save_start + tlen);
5813 			}
5814 		}
5815 	} else {
5816 		m_freem(m);
5817 		thflags &= ~TH_FIN;
5818 	}
5819 
5820 	/*
5821 	 * If FIN is received ACK the FIN and let the user know that the
5822 	 * connection is closing.
5823 	 */
5824 	if (thflags & TH_FIN) {
5825 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
5826 			socantrcvmore(so);
5827 			/*
5828 			 * If connection is half-synchronized (ie NEEDSYN
5829 			 * flag on) then delay ACK, so it may be piggybacked
5830 			 * when SYN is sent. Otherwise, since we received a
5831 			 * FIN then no more input can be expected, send ACK
5832 			 * now.
5833 			 */
5834 			if (tp->t_flags & TF_NEEDSYN) {
5835 				rack_timer_cancel(tp, rack,
5836 				    rack->r_ctl.rc_rcvtime, __LINE__);
5837 				tp->t_flags |= TF_DELACK;
5838 			} else {
5839 				tp->t_flags |= TF_ACKNOW;
5840 			}
5841 			tp->rcv_nxt++;
5842 		}
5843 		switch (tp->t_state) {
5844 
5845 			/*
5846 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
5847 			 * CLOSE_WAIT state.
5848 			 */
5849 		case TCPS_SYN_RECEIVED:
5850 			tp->t_starttime = ticks;
5851 			/* FALLTHROUGH */
5852 		case TCPS_ESTABLISHED:
5853 			rack_timer_cancel(tp, rack,
5854 			    rack->r_ctl.rc_rcvtime, __LINE__);
5855 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
5856 			break;
5857 
5858 			/*
5859 			 * If still in FIN_WAIT_1 STATE FIN has not been
5860 			 * acked so enter the CLOSING state.
5861 			 */
5862 		case TCPS_FIN_WAIT_1:
5863 			rack_timer_cancel(tp, rack,
5864 			    rack->r_ctl.rc_rcvtime, __LINE__);
5865 			tcp_state_change(tp, TCPS_CLOSING);
5866 			break;
5867 
5868 			/*
5869 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
5870 			 * starting the time-wait timer, turning off the
5871 			 * other standard timers.
5872 			 */
5873 		case TCPS_FIN_WAIT_2:
5874 			rack_timer_cancel(tp, rack,
5875 			    rack->r_ctl.rc_rcvtime, __LINE__);
5876 			tcp_twstart(tp);
5877 			return (1);
5878 		}
5879 	}
5880 	/*
5881 	 * Return any desired output.
5882 	 */
5883 	if ((tp->t_flags & TF_ACKNOW) ||
5884 	    (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
5885 		rack->r_wanted_output++;
5886 	}
5887 	INP_WLOCK_ASSERT(tp->t_inpcb);
5888 	return (0);
5889 }
5890 
5891 /*
5892  * Here nothing is really faster, its just that we
5893  * have broken out the fast-data path also just like
5894  * the fast-ack.
5895  */
5896 static int
5897 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
5898     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
5899     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
5900 {
5901 	int32_t nsegs;
5902 	int32_t newsize = 0;	/* automatic sockbuf scaling */
5903 	struct tcp_rack *rack;
5904 #ifdef NETFLIX_SB_LIMITS
5905 	u_int mcnt, appended;
5906 #endif
5907 #ifdef TCPDEBUG
5908 	/*
5909 	 * The size of tcp_saveipgen must be the size of the max ip header,
5910 	 * now IPv6.
5911 	 */
5912 	u_char tcp_saveipgen[IP6_HDR_LEN];
5913 	struct tcphdr tcp_savetcp;
5914 	short ostate = 0;
5915 
5916 #endif
5917 	/*
5918 	 * If last ACK falls within this segment's sequence numbers, record
5919 	 * the timestamp. NOTE that the test is modified according to the
5920 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
5921 	 */
5922 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
5923 		return (0);
5924 	}
5925 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
5926 		return (0);
5927 	}
5928 	if (tiwin && tiwin != tp->snd_wnd) {
5929 		return (0);
5930 	}
5931 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
5932 		return (0);
5933 	}
5934 	if (__predict_false((to->to_flags & TOF_TS) &&
5935 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
5936 		return (0);
5937 	}
5938 	if (__predict_false((th->th_ack != tp->snd_una))) {
5939 		return (0);
5940 	}
5941 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
5942 		return (0);
5943 	}
5944 	if ((to->to_flags & TOF_TS) != 0 &&
5945 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
5946 		tp->ts_recent_age = tcp_ts_getticks();
5947 		tp->ts_recent = to->to_tsval;
5948 	}
5949 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5950 	/*
5951 	 * This is a pure, in-sequence data packet with nothing on the
5952 	 * reassembly queue and we have enough buffer space to take it.
5953 	 */
5954 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
5955 
5956 #ifdef NETFLIX_SB_LIMITS
5957 	if (so->so_rcv.sb_shlim) {
5958 		mcnt = m_memcnt(m);
5959 		appended = 0;
5960 		if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
5961 		    CFO_NOSLEEP, NULL) == false) {
5962 			counter_u64_add(tcp_sb_shlim_fails, 1);
5963 			m_freem(m);
5964 			return (1);
5965 		}
5966 	}
5967 #endif
5968 	/* Clean receiver SACK report if present */
5969 	if (tp->rcv_numsacks)
5970 		tcp_clean_sackreport(tp);
5971 	KMOD_TCPSTAT_INC(tcps_preddat);
5972 	tp->rcv_nxt += tlen;
5973 	/*
5974 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
5975 	 */
5976 	tp->snd_wl1 = th->th_seq;
5977 	/*
5978 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
5979 	 */
5980 	tp->rcv_up = tp->rcv_nxt;
5981 	KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
5982 	KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
5983 #ifdef TCPDEBUG
5984 	if (so->so_options & SO_DEBUG)
5985 		tcp_trace(TA_INPUT, ostate, tp,
5986 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
5987 #endif
5988 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
5989 
5990 	/* Add data to socket buffer. */
5991 	SOCKBUF_LOCK(&so->so_rcv);
5992 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
5993 		m_freem(m);
5994 	} else {
5995 		/*
5996 		 * Set new socket buffer size. Give up when limit is
5997 		 * reached.
5998 		 */
5999 		if (newsize)
6000 			if (!sbreserve_locked(&so->so_rcv,
6001 			    newsize, so, NULL))
6002 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
6003 		m_adj(m, drop_hdrlen);	/* delayed header drop */
6004 #ifdef NETFLIX_SB_LIMITS
6005 		appended =
6006 #endif
6007 			sbappendstream_locked(&so->so_rcv, m, 0);
6008 		ctf_calc_rwin(so, tp);
6009 	}
6010 	/* NB: sorwakeup_locked() does an implicit unlock. */
6011 	sorwakeup_locked(so);
6012 #ifdef NETFLIX_SB_LIMITS
6013 	if (so->so_rcv.sb_shlim && mcnt != appended)
6014 		counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
6015 #endif
6016 	if (DELAY_ACK(tp, tlen)) {
6017 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6018 		tp->t_flags |= TF_DELACK;
6019 	} else {
6020 		tp->t_flags |= TF_ACKNOW;
6021 		rack->r_wanted_output++;
6022 	}
6023 	if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
6024 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6025 	return (1);
6026 }
6027 
6028 /*
6029  * This subfunction is used to try to highly optimize the
6030  * fast path. We again allow window updates that are
6031  * in sequence to remain in the fast-path. We also add
6032  * in the __predict's to attempt to help the compiler.
6033  * Note that if we return a 0, then we can *not* process
6034  * it and the caller should push the packet into the
6035  * slow-path.
6036  */
6037 static int
6038 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
6039     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6040     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts, uint8_t iptos)
6041 {
6042 	int32_t acked;
6043 	int32_t nsegs;
6044 
6045 #ifdef TCPDEBUG
6046 	/*
6047 	 * The size of tcp_saveipgen must be the size of the max ip header,
6048 	 * now IPv6.
6049 	 */
6050 	u_char tcp_saveipgen[IP6_HDR_LEN];
6051 	struct tcphdr tcp_savetcp;
6052 	short ostate = 0;
6053 
6054 #endif
6055 	struct tcp_rack *rack;
6056 
6057 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
6058 		/* Old ack, behind (or duplicate to) the last one rcv'd */
6059 		return (0);
6060 	}
6061 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
6062 		/* Above what we have sent? */
6063 		return (0);
6064 	}
6065 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
6066 		/* We are retransmitting */
6067 		return (0);
6068 	}
6069 	if (__predict_false(tiwin == 0)) {
6070 		/* zero window */
6071 		return (0);
6072 	}
6073 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
6074 		/* We need a SYN or a FIN, unlikely.. */
6075 		return (0);
6076 	}
6077 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
6078 		/* Timestamp is behind .. old ack with seq wrap? */
6079 		return (0);
6080 	}
6081 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
6082 		/* Still recovering */
6083 		return (0);
6084 	}
6085 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6086 	if (rack->r_ctl.rc_sacked) {
6087 		/* We have sack holes on our scoreboard */
6088 		return (0);
6089 	}
6090 	/* Ok if we reach here, we can process a fast-ack */
6091 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
6092 	rack_log_ack(tp, to, th);
6093 	/*
6094 	 * We made progress, clear the tlp
6095 	 * out flag so we could start a TLP
6096 	 * again.
6097 	 */
6098 	rack->r_ctl.rc_tlp_rtx_out = 0;
6099 	/* Did the window get updated? */
6100 	if (tiwin != tp->snd_wnd) {
6101 		tp->snd_wnd = tiwin;
6102 		tp->snd_wl1 = th->th_seq;
6103 		if (tp->snd_wnd > tp->max_sndwnd)
6104 			tp->max_sndwnd = tp->snd_wnd;
6105 	}
6106 	/* Do we exit persists? */
6107 	if ((rack->rc_in_persist != 0) &&
6108 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
6109 			       rack->r_ctl.rc_pace_min_segs))) {
6110 		rack_exit_persist(tp, rack);
6111 	}
6112 	/* Do we enter persists? */
6113 	if ((rack->rc_in_persist == 0) &&
6114 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
6115 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
6116 	    (tp->snd_max == tp->snd_una) &&
6117 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
6118 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
6119 		/*
6120 		 * Here the rwnd is less than
6121 		 * the pacing size, we are established,
6122 		 * nothing is outstanding, and there is
6123 		 * data to send. Enter persists.
6124 		 */
6125 		tp->snd_nxt = tp->snd_una;
6126 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
6127 	}
6128 	/*
6129 	 * If last ACK falls within this segment's sequence numbers, record
6130 	 * the timestamp. NOTE that the test is modified according to the
6131 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
6132 	 */
6133 	if ((to->to_flags & TOF_TS) != 0 &&
6134 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
6135 		tp->ts_recent_age = tcp_ts_getticks();
6136 		tp->ts_recent = to->to_tsval;
6137 	}
6138 	/*
6139 	 * This is a pure ack for outstanding data.
6140 	 */
6141 	KMOD_TCPSTAT_INC(tcps_predack);
6142 
6143 	/*
6144 	 * "bad retransmit" recovery.
6145 	 */
6146 	if (tp->t_flags & TF_PREVVALID) {
6147 		tp->t_flags &= ~TF_PREVVALID;
6148 		if (tp->t_rxtshift == 1 &&
6149 		    (int)(ticks - tp->t_badrxtwin) < 0)
6150 			rack_cong_signal(tp, th, CC_RTO_ERR);
6151 	}
6152 	/*
6153 	 * Recalculate the transmit timer / rtt.
6154 	 *
6155 	 * Some boxes send broken timestamp replies during the SYN+ACK
6156 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
6157 	 * and blow up the retransmit timer.
6158 	 */
6159 	acked = BYTES_THIS_ACK(tp, th);
6160 
6161 #ifdef TCP_HHOOK
6162 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
6163 	hhook_run_tcp_est_in(tp, th, to);
6164 #endif
6165 
6166 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
6167 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
6168 	sbdrop(&so->so_snd, acked);
6169 	/*
6170 	 * Let the congestion control algorithm update congestion control
6171 	 * related information. This typically means increasing the
6172 	 * congestion window.
6173 	 */
6174 	rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
6175 
6176 	tp->snd_una = th->th_ack;
6177 	if (tp->snd_wnd < ctf_outstanding(tp)) {
6178 		/* The peer collapsed the window */
6179 		rack_collapsed_window(rack);
6180 	} else if (rack->rc_has_collapsed)
6181 		rack_un_collapse_window(rack);
6182 
6183 	/*
6184 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
6185 	 */
6186 	tp->snd_wl2 = th->th_ack;
6187 	tp->t_dupacks = 0;
6188 	m_freem(m);
6189 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
6190 
6191 	/*
6192 	 * If all outstanding data are acked, stop retransmit timer,
6193 	 * otherwise restart timer using current (possibly backed-off)
6194 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
6195 	 * If data are ready to send, let tcp_output decide between more
6196 	 * output or persist.
6197 	 */
6198 #ifdef TCPDEBUG
6199 	if (so->so_options & SO_DEBUG)
6200 		tcp_trace(TA_INPUT, ostate, tp,
6201 		    (void *)tcp_saveipgen,
6202 		    &tcp_savetcp, 0);
6203 #endif
6204 	if (tp->snd_una == tp->snd_max) {
6205 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
6206 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
6207 			tp->t_acktime = 0;
6208 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
6209 	}
6210 	/* Wake up the socket if we have room to write more */
6211 	sowwakeup(so);
6212 	if (sbavail(&so->so_snd)) {
6213 		rack->r_wanted_output++;
6214 	}
6215 	return (1);
6216 }
6217 
6218 /*
6219  * Return value of 1, the TCB is unlocked and most
6220  * likely gone, return value of 0, the TCP is still
6221  * locked.
6222  */
6223 static int
6224 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
6225     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6226     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t tos)
6227 {
6228 	int32_t ret_val = 0;
6229 	int32_t todrop;
6230 	int32_t ourfinisacked = 0;
6231 	struct tcp_rack *rack;
6232 
6233 	ctf_calc_rwin(so, tp);
6234 	/*
6235 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
6236 	 * SYN, drop the input. if seg contains a RST, then drop the
6237 	 * connection. if seg does not contain SYN, then drop it. Otherwise
6238 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
6239 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
6240 	 * contains an ECE and ECN support is enabled, the stream is ECN
6241 	 * capable. if SYN has been acked change to ESTABLISHED else
6242 	 * SYN_RCVD state arrange for segment to be acked (eventually)
6243 	 * continue processing rest of data/controls, beginning with URG
6244 	 */
6245 	if ((thflags & TH_ACK) &&
6246 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
6247 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6248 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6249 		return (1);
6250 	}
6251 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
6252 		TCP_PROBE5(connect__refused, NULL, tp,
6253 		    mtod(m, const char *), tp, th);
6254 		tp = tcp_drop(tp, ECONNREFUSED);
6255 		ctf_do_drop(m, tp);
6256 		return (1);
6257 	}
6258 	if (thflags & TH_RST) {
6259 		ctf_do_drop(m, tp);
6260 		return (1);
6261 	}
6262 	if (!(thflags & TH_SYN)) {
6263 		ctf_do_drop(m, tp);
6264 		return (1);
6265 	}
6266 	tp->irs = th->th_seq;
6267 	tcp_rcvseqinit(tp);
6268 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6269 	if (thflags & TH_ACK) {
6270 		int tfo_partial = 0;
6271 
6272 		KMOD_TCPSTAT_INC(tcps_connects);
6273 		soisconnected(so);
6274 #ifdef MAC
6275 		mac_socketpeer_set_from_mbuf(m, so);
6276 #endif
6277 		/* Do window scaling on this connection? */
6278 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6279 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6280 			tp->rcv_scale = tp->request_r_scale;
6281 		}
6282 		tp->rcv_adv += min(tp->rcv_wnd,
6283 		    TCP_MAXWIN << tp->rcv_scale);
6284 		/*
6285 		 * If not all the data that was sent in the TFO SYN
6286 		 * has been acked, resend the remainder right away.
6287 		 */
6288 		if (IS_FASTOPEN(tp->t_flags) &&
6289 		    (tp->snd_una != tp->snd_max)) {
6290 			tp->snd_nxt = th->th_ack;
6291 			tfo_partial = 1;
6292 		}
6293 		/*
6294 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
6295 		 * will be turned on later.
6296 		 */
6297 		if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
6298 			rack_timer_cancel(tp, rack,
6299 					  rack->r_ctl.rc_rcvtime, __LINE__);
6300 			tp->t_flags |= TF_DELACK;
6301 		} else {
6302 			rack->r_wanted_output++;
6303 			tp->t_flags |= TF_ACKNOW;
6304 		}
6305 
6306 		if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
6307 		    (V_tcp_do_ecn == 1)) {
6308 			tp->t_flags2 |= TF2_ECN_PERMIT;
6309 			KMOD_TCPSTAT_INC(tcps_ecn_shs);
6310 		}
6311 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
6312 			/*
6313 			 * We advance snd_una for the
6314 			 * fast open case. If th_ack is
6315 			 * acknowledging data beyond
6316 			 * snd_una we can't just call
6317 			 * ack-processing since the
6318 			 * data stream in our send-map
6319 			 * will start at snd_una + 1 (one
6320 			 * beyond the SYN). If its just
6321 			 * equal we don't need to do that
6322 			 * and there is no send_map.
6323 			 */
6324 			tp->snd_una++;
6325 		}
6326 		/*
6327 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
6328 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
6329 		 */
6330 		tp->t_starttime = ticks;
6331 		if (tp->t_flags & TF_NEEDFIN) {
6332 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
6333 			tp->t_flags &= ~TF_NEEDFIN;
6334 			thflags &= ~TH_SYN;
6335 		} else {
6336 			tcp_state_change(tp, TCPS_ESTABLISHED);
6337 			TCP_PROBE5(connect__established, NULL, tp,
6338 			    mtod(m, const char *), tp, th);
6339 			cc_conn_init(tp);
6340 		}
6341 	} else {
6342 		/*
6343 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
6344 		 * open.  If segment contains CC option and there is a
6345 		 * cached CC, apply TAO test. If it succeeds, connection is *
6346 		 * half-synchronized. Otherwise, do 3-way handshake:
6347 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
6348 		 * there was no CC option, clear cached CC value.
6349 		 */
6350 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
6351 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
6352 	}
6353 	INP_WLOCK_ASSERT(tp->t_inpcb);
6354 	/*
6355 	 * Advance th->th_seq to correspond to first data byte. If data,
6356 	 * trim to stay within window, dropping FIN if necessary.
6357 	 */
6358 	th->th_seq++;
6359 	if (tlen > tp->rcv_wnd) {
6360 		todrop = tlen - tp->rcv_wnd;
6361 		m_adj(m, -todrop);
6362 		tlen = tp->rcv_wnd;
6363 		thflags &= ~TH_FIN;
6364 		KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
6365 		KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
6366 	}
6367 	tp->snd_wl1 = th->th_seq - 1;
6368 	tp->rcv_up = th->th_seq;
6369 	/*
6370 	 * Client side of transaction: already sent SYN and data. If the
6371 	 * remote host used T/TCP to validate the SYN, our data will be
6372 	 * ACK'd; if so, enter normal data segment processing in the middle
6373 	 * of step 5, ack processing. Otherwise, goto step 6.
6374 	 */
6375 	if (thflags & TH_ACK) {
6376 		/* For syn-sent we need to possibly update the rtt */
6377 		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6378 			uint32_t t;
6379 
6380 			t = tcp_ts_getticks() - to->to_tsecr;
6381 			if (!tp->t_rttlow || tp->t_rttlow > t)
6382 				tp->t_rttlow = t;
6383 			tcp_rack_xmit_timer(rack, t + 1);
6384 			tcp_rack_xmit_timer_commit(rack, tp);
6385 		}
6386 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
6387 			return (ret_val);
6388 		/* We may have changed to FIN_WAIT_1 above */
6389 		if (tp->t_state == TCPS_FIN_WAIT_1) {
6390 			/*
6391 			 * In FIN_WAIT_1 STATE in addition to the processing
6392 			 * for the ESTABLISHED state if our FIN is now
6393 			 * acknowledged then enter FIN_WAIT_2.
6394 			 */
6395 			if (ourfinisacked) {
6396 				/*
6397 				 * If we can't receive any more data, then
6398 				 * closing user can proceed. Starting the
6399 				 * timer is contrary to the specification,
6400 				 * but if we don't get a FIN we'll hang
6401 				 * forever.
6402 				 *
6403 				 * XXXjl: we should release the tp also, and
6404 				 * use a compressed state.
6405 				 */
6406 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6407 					soisdisconnected(so);
6408 					tcp_timer_activate(tp, TT_2MSL,
6409 					    (tcp_fast_finwait2_recycle ?
6410 					    tcp_finwait2_timeout :
6411 					    TP_MAXIDLE(tp)));
6412 				}
6413 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
6414 			}
6415 		}
6416 	}
6417 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6418 	   tiwin, thflags, nxt_pkt));
6419 }
6420 
6421 /*
6422  * Return value of 1, the TCB is unlocked and most
6423  * likely gone, return value of 0, the TCP is still
6424  * locked.
6425  */
6426 static int
6427 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
6428     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6429     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6430 {
6431 	struct tcp_rack *rack;
6432 	int32_t ret_val = 0;
6433 	int32_t ourfinisacked = 0;
6434 
6435 	ctf_calc_rwin(so, tp);
6436 	if ((thflags & TH_ACK) &&
6437 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
6438 	    SEQ_GT(th->th_ack, tp->snd_max))) {
6439 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6440 		return (1);
6441 	}
6442 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6443 	if (IS_FASTOPEN(tp->t_flags)) {
6444 		/*
6445 		 * When a TFO connection is in SYN_RECEIVED, the
6446 		 * only valid packets are the initial SYN, a
6447 		 * retransmit/copy of the initial SYN (possibly with
6448 		 * a subset of the original data), a valid ACK, a
6449 		 * FIN, or a RST.
6450 		 */
6451 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
6452 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6453 			return (1);
6454 		} else if (thflags & TH_SYN) {
6455 			/* non-initial SYN is ignored */
6456 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
6457 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
6458 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
6459 				ctf_do_drop(m, NULL);
6460 				return (0);
6461 			}
6462 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
6463 			ctf_do_drop(m, NULL);
6464 			return (0);
6465 		}
6466 	}
6467 	if ((thflags & TH_RST) ||
6468 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6469 		return (ctf_process_rst(m, th, so, tp));
6470 	/*
6471 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6472 	 * it's less than ts_recent, drop it.
6473 	 */
6474 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6475 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6476 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6477 			return (ret_val);
6478 	}
6479 	/*
6480 	 * In the SYN-RECEIVED state, validate that the packet belongs to
6481 	 * this connection before trimming the data to fit the receive
6482 	 * window.  Check the sequence number versus IRS since we know the
6483 	 * sequence numbers haven't wrapped.  This is a partial fix for the
6484 	 * "LAND" DoS attack.
6485 	 */
6486 	if (SEQ_LT(th->th_seq, tp->irs)) {
6487 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6488 		return (1);
6489 	}
6490 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6491 		return (ret_val);
6492 	}
6493 	/*
6494 	 * If last ACK falls within this segment's sequence numbers, record
6495 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6496 	 * from the latest proposal of the tcplw@cray.com list (Braden
6497 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6498 	 * with our earlier PAWS tests, so this check should be solely
6499 	 * predicated on the sequence space of this segment. 3) That we
6500 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6501 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6502 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6503 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6504 	 * p.869. In such cases, we can still calculate the RTT correctly
6505 	 * when RCV.NXT == Last.ACK.Sent.
6506 	 */
6507 	if ((to->to_flags & TOF_TS) != 0 &&
6508 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6509 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6510 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6511 		tp->ts_recent_age = tcp_ts_getticks();
6512 		tp->ts_recent = to->to_tsval;
6513 	}
6514 	tp->snd_wnd = tiwin;
6515 	/*
6516 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6517 	 * is on (half-synchronized state), then queue data for later
6518 	 * processing; else drop segment and return.
6519 	 */
6520 	if ((thflags & TH_ACK) == 0) {
6521 		if (IS_FASTOPEN(tp->t_flags)) {
6522 			cc_conn_init(tp);
6523 		}
6524 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6525 		    tiwin, thflags, nxt_pkt));
6526 	}
6527 	KMOD_TCPSTAT_INC(tcps_connects);
6528 	soisconnected(so);
6529 	/* Do window scaling? */
6530 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
6531 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
6532 		tp->rcv_scale = tp->request_r_scale;
6533 	}
6534 	/*
6535 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
6536 	 * FIN-WAIT-1
6537 	 */
6538 	tp->t_starttime = ticks;
6539 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
6540 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
6541 		tp->t_tfo_pending = NULL;
6542 
6543 		/*
6544 		 * Account for the ACK of our SYN prior to
6545 		 * regular ACK processing below.
6546 		 */
6547 		tp->snd_una++;
6548 	}
6549 	if (tp->t_flags & TF_NEEDFIN) {
6550 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
6551 		tp->t_flags &= ~TF_NEEDFIN;
6552 	} else {
6553 		tcp_state_change(tp, TCPS_ESTABLISHED);
6554 		TCP_PROBE5(accept__established, NULL, tp,
6555 		    mtod(m, const char *), tp, th);
6556 		/*
6557 		 * TFO connections call cc_conn_init() during SYN
6558 		 * processing.  Calling it again here for such connections
6559 		 * is not harmless as it would undo the snd_cwnd reduction
6560 		 * that occurs when a TFO SYN|ACK is retransmitted.
6561 		 */
6562 		if (!IS_FASTOPEN(tp->t_flags))
6563 			cc_conn_init(tp);
6564 	}
6565 	/*
6566 	 * If segment contains data or ACK, will call tcp_reass() later; if
6567 	 * not, do so now to pass queued data to user.
6568 	 */
6569 	if (tlen == 0 && (thflags & TH_FIN) == 0)
6570 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
6571 		    (struct mbuf *)0);
6572 	tp->snd_wl1 = th->th_seq - 1;
6573 	/* For syn-recv we need to possibly update the rtt */
6574 	if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
6575 		uint32_t t;
6576 
6577 		t = tcp_ts_getticks() - to->to_tsecr;
6578 		if (!tp->t_rttlow || tp->t_rttlow > t)
6579 			tp->t_rttlow = t;
6580 		tcp_rack_xmit_timer(rack, t + 1);
6581 		tcp_rack_xmit_timer_commit(rack, tp);
6582 	}
6583 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6584 		return (ret_val);
6585 	}
6586 	if (tp->t_state == TCPS_FIN_WAIT_1) {
6587 		/* We could have went to FIN_WAIT_1 (or EST) above */
6588 		/*
6589 		 * In FIN_WAIT_1 STATE in addition to the processing for the
6590 		 * ESTABLISHED state if our FIN is now acknowledged then
6591 		 * enter FIN_WAIT_2.
6592 		 */
6593 		if (ourfinisacked) {
6594 			/*
6595 			 * If we can't receive any more data, then closing
6596 			 * user can proceed. Starting the timer is contrary
6597 			 * to the specification, but if we don't get a FIN
6598 			 * we'll hang forever.
6599 			 *
6600 			 * XXXjl: we should release the tp also, and use a
6601 			 * compressed state.
6602 			 */
6603 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6604 				soisdisconnected(so);
6605 				tcp_timer_activate(tp, TT_2MSL,
6606 				    (tcp_fast_finwait2_recycle ?
6607 				    tcp_finwait2_timeout :
6608 				    TP_MAXIDLE(tp)));
6609 			}
6610 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
6611 		}
6612 	}
6613 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6614 	    tiwin, thflags, nxt_pkt));
6615 }
6616 
6617 /*
6618  * Return value of 1, the TCB is unlocked and most
6619  * likely gone, return value of 0, the TCP is still
6620  * locked.
6621  */
6622 static int
6623 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
6624     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6625     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6626 {
6627 	int32_t ret_val = 0;
6628 
6629 	/*
6630 	 * Header prediction: check for the two common cases of a
6631 	 * uni-directional data xfer.  If the packet has no control flags,
6632 	 * is in-sequence, the window didn't change and we're not
6633 	 * retransmitting, it's a candidate.  If the length is zero and the
6634 	 * ack moved forward, we're the sender side of the xfer.  Just free
6635 	 * the data acked & wake any higher level process that was blocked
6636 	 * waiting for space.  If the length is non-zero and the ack didn't
6637 	 * move, we're the receiver side.  If we're getting packets in-order
6638 	 * (the reassembly queue is empty), add the data toc The socket
6639 	 * buffer and note that we need a delayed ack. Make sure that the
6640 	 * hidden state-flags are also off. Since we check for
6641 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
6642 	 */
6643 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
6644 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
6645 	    __predict_true(SEGQ_EMPTY(tp)) &&
6646 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
6647 		struct tcp_rack *rack;
6648 
6649 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6650 		if (tlen == 0) {
6651 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
6652 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime, iptos)) {
6653 				return (0);
6654 			}
6655 		} else {
6656 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
6657 			    tiwin, nxt_pkt, iptos)) {
6658 				return (0);
6659 			}
6660 		}
6661 	}
6662 	ctf_calc_rwin(so, tp);
6663 
6664 	if ((thflags & TH_RST) ||
6665 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6666 		return (ctf_process_rst(m, th, so, tp));
6667 
6668 	/*
6669 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6670 	 * synchronized state.
6671 	 */
6672 	if (thflags & TH_SYN) {
6673 		ctf_challenge_ack(m, th, tp, &ret_val);
6674 		return (ret_val);
6675 	}
6676 	/*
6677 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6678 	 * it's less than ts_recent, drop it.
6679 	 */
6680 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6681 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6682 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6683 			return (ret_val);
6684 	}
6685 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6686 		return (ret_val);
6687 	}
6688 	/*
6689 	 * If last ACK falls within this segment's sequence numbers, record
6690 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6691 	 * from the latest proposal of the tcplw@cray.com list (Braden
6692 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6693 	 * with our earlier PAWS tests, so this check should be solely
6694 	 * predicated on the sequence space of this segment. 3) That we
6695 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6696 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6697 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6698 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6699 	 * p.869. In such cases, we can still calculate the RTT correctly
6700 	 * when RCV.NXT == Last.ACK.Sent.
6701 	 */
6702 	if ((to->to_flags & TOF_TS) != 0 &&
6703 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6704 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6705 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6706 		tp->ts_recent_age = tcp_ts_getticks();
6707 		tp->ts_recent = to->to_tsval;
6708 	}
6709 	/*
6710 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6711 	 * is on (half-synchronized state), then queue data for later
6712 	 * processing; else drop segment and return.
6713 	 */
6714 	if ((thflags & TH_ACK) == 0) {
6715 		if (tp->t_flags & TF_NEEDSYN) {
6716 
6717 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6718 			    tiwin, thflags, nxt_pkt));
6719 
6720 		} else if (tp->t_flags & TF_ACKNOW) {
6721 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6722 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6723 			return (ret_val);
6724 		} else {
6725 			ctf_do_drop(m, NULL);
6726 			return (0);
6727 		}
6728 	}
6729 	/*
6730 	 * Ack processing.
6731 	 */
6732 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6733 		return (ret_val);
6734 	}
6735 	if (sbavail(&so->so_snd)) {
6736 		if (rack_progress_timeout_check(tp)) {
6737 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6738 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6739 			return (1);
6740 		}
6741 	}
6742 	/* State changes only happen in rack_process_data() */
6743 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6744 	    tiwin, thflags, nxt_pkt));
6745 }
6746 
6747 /*
6748  * Return value of 1, the TCB is unlocked and most
6749  * likely gone, return value of 0, the TCP is still
6750  * locked.
6751  */
6752 static int
6753 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
6754     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6755     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6756 {
6757 	int32_t ret_val = 0;
6758 
6759 	ctf_calc_rwin(so, tp);
6760 	if ((thflags & TH_RST) ||
6761 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6762 		return (ctf_process_rst(m, th, so, tp));
6763 	/*
6764 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6765 	 * synchronized state.
6766 	 */
6767 	if (thflags & TH_SYN) {
6768 		ctf_challenge_ack(m, th, tp, &ret_val);
6769 		return (ret_val);
6770 	}
6771 	/*
6772 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6773 	 * it's less than ts_recent, drop it.
6774 	 */
6775 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6776 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6777 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6778 			return (ret_val);
6779 	}
6780 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6781 		return (ret_val);
6782 	}
6783 	/*
6784 	 * If last ACK falls within this segment's sequence numbers, record
6785 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6786 	 * from the latest proposal of the tcplw@cray.com list (Braden
6787 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6788 	 * with our earlier PAWS tests, so this check should be solely
6789 	 * predicated on the sequence space of this segment. 3) That we
6790 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6791 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6792 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6793 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6794 	 * p.869. In such cases, we can still calculate the RTT correctly
6795 	 * when RCV.NXT == Last.ACK.Sent.
6796 	 */
6797 	if ((to->to_flags & TOF_TS) != 0 &&
6798 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6799 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6800 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6801 		tp->ts_recent_age = tcp_ts_getticks();
6802 		tp->ts_recent = to->to_tsval;
6803 	}
6804 	/*
6805 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6806 	 * is on (half-synchronized state), then queue data for later
6807 	 * processing; else drop segment and return.
6808 	 */
6809 	if ((thflags & TH_ACK) == 0) {
6810 		if (tp->t_flags & TF_NEEDSYN) {
6811 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6812 			    tiwin, thflags, nxt_pkt));
6813 
6814 		} else if (tp->t_flags & TF_ACKNOW) {
6815 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6816 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6817 			return (ret_val);
6818 		} else {
6819 			ctf_do_drop(m, NULL);
6820 			return (0);
6821 		}
6822 	}
6823 	/*
6824 	 * Ack processing.
6825 	 */
6826 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
6827 		return (ret_val);
6828 	}
6829 	if (sbavail(&so->so_snd)) {
6830 		if (rack_progress_timeout_check(tp)) {
6831 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6832 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6833 			return (1);
6834 		}
6835 	}
6836 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6837 	    tiwin, thflags, nxt_pkt));
6838 }
6839 
6840 static int
6841 rack_check_data_after_close(struct mbuf *m,
6842     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
6843 {
6844 	struct tcp_rack *rack;
6845 
6846 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6847 	if (rack->rc_allow_data_af_clo == 0) {
6848 	close_now:
6849 		tp = tcp_close(tp);
6850 		KMOD_TCPSTAT_INC(tcps_rcvafterclose);
6851 		ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
6852 		return (1);
6853 	}
6854 	if (sbavail(&so->so_snd) == 0)
6855 		goto close_now;
6856 	/* Ok we allow data that is ignored and a followup reset */
6857 	tp->rcv_nxt = th->th_seq + *tlen;
6858 	tp->t_flags2 |= TF2_DROP_AF_DATA;
6859 	rack->r_wanted_output = 1;
6860 	*tlen = 0;
6861 	return (0);
6862 }
6863 
6864 /*
6865  * Return value of 1, the TCB is unlocked and most
6866  * likely gone, return value of 0, the TCP is still
6867  * locked.
6868  */
6869 static int
6870 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
6871     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6872     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6873 {
6874 	int32_t ret_val = 0;
6875 	int32_t ourfinisacked = 0;
6876 
6877 	ctf_calc_rwin(so, tp);
6878 
6879 	if ((thflags & TH_RST) ||
6880 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
6881 		return (ctf_process_rst(m, th, so, tp));
6882 	/*
6883 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
6884 	 * synchronized state.
6885 	 */
6886 	if (thflags & TH_SYN) {
6887 		ctf_challenge_ack(m, th, tp, &ret_val);
6888 		return (ret_val);
6889 	}
6890 	/*
6891 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
6892 	 * it's less than ts_recent, drop it.
6893 	 */
6894 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
6895 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
6896 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
6897 			return (ret_val);
6898 	}
6899 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
6900 		return (ret_val);
6901 	}
6902 	/*
6903 	 * If new data are received on a connection after the user processes
6904 	 * are gone, then RST the other end.
6905 	 */
6906 	if ((so->so_state & SS_NOFDREF) && tlen) {
6907 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
6908 			return (1);
6909 	}
6910 	/*
6911 	 * If last ACK falls within this segment's sequence numbers, record
6912 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
6913 	 * from the latest proposal of the tcplw@cray.com list (Braden
6914 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
6915 	 * with our earlier PAWS tests, so this check should be solely
6916 	 * predicated on the sequence space of this segment. 3) That we
6917 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
6918 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
6919 	 * SEG.Len, This modified check allows us to overcome RFC1323's
6920 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
6921 	 * p.869. In such cases, we can still calculate the RTT correctly
6922 	 * when RCV.NXT == Last.ACK.Sent.
6923 	 */
6924 	if ((to->to_flags & TOF_TS) != 0 &&
6925 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
6926 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
6927 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
6928 		tp->ts_recent_age = tcp_ts_getticks();
6929 		tp->ts_recent = to->to_tsval;
6930 	}
6931 	/*
6932 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
6933 	 * is on (half-synchronized state), then queue data for later
6934 	 * processing; else drop segment and return.
6935 	 */
6936 	if ((thflags & TH_ACK) == 0) {
6937 		if (tp->t_flags & TF_NEEDSYN) {
6938 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6939 			    tiwin, thflags, nxt_pkt));
6940 		} else if (tp->t_flags & TF_ACKNOW) {
6941 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
6942 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
6943 			return (ret_val);
6944 		} else {
6945 			ctf_do_drop(m, NULL);
6946 			return (0);
6947 		}
6948 	}
6949 	/*
6950 	 * Ack processing.
6951 	 */
6952 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
6953 		return (ret_val);
6954 	}
6955 	if (ourfinisacked) {
6956 		/*
6957 		 * If we can't receive any more data, then closing user can
6958 		 * proceed. Starting the timer is contrary to the
6959 		 * specification, but if we don't get a FIN we'll hang
6960 		 * forever.
6961 		 *
6962 		 * XXXjl: we should release the tp also, and use a
6963 		 * compressed state.
6964 		 */
6965 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
6966 			soisdisconnected(so);
6967 			tcp_timer_activate(tp, TT_2MSL,
6968 			    (tcp_fast_finwait2_recycle ?
6969 			    tcp_finwait2_timeout :
6970 			    TP_MAXIDLE(tp)));
6971 		}
6972 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
6973 	}
6974 	if (sbavail(&so->so_snd)) {
6975 		if (rack_progress_timeout_check(tp)) {
6976 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6977 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
6978 			return (1);
6979 		}
6980 	}
6981 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
6982 	    tiwin, thflags, nxt_pkt));
6983 }
6984 
6985 /*
6986  * Return value of 1, the TCB is unlocked and most
6987  * likely gone, return value of 0, the TCP is still
6988  * locked.
6989  */
6990 static int
6991 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
6992     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
6993     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
6994 {
6995 	int32_t ret_val = 0;
6996 	int32_t ourfinisacked = 0;
6997 
6998 	ctf_calc_rwin(so, tp);
6999 
7000 	if ((thflags & TH_RST) ||
7001 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7002 		return (ctf_process_rst(m, th, so, tp));
7003 	/*
7004 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7005 	 * synchronized state.
7006 	 */
7007 	if (thflags & TH_SYN) {
7008 		ctf_challenge_ack(m, th, tp, &ret_val);
7009 		return (ret_val);
7010 	}
7011 	/*
7012 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7013 	 * it's less than ts_recent, drop it.
7014 	 */
7015 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7016 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7017 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7018 			return (ret_val);
7019 	}
7020 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7021 		return (ret_val);
7022 	}
7023 	/*
7024 	 * If new data are received on a connection after the user processes
7025 	 * are gone, then RST the other end.
7026 	 */
7027 	if ((so->so_state & SS_NOFDREF) && tlen) {
7028 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7029 			return (1);
7030 	}
7031 	/*
7032 	 * If last ACK falls within this segment's sequence numbers, record
7033 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7034 	 * from the latest proposal of the tcplw@cray.com list (Braden
7035 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7036 	 * with our earlier PAWS tests, so this check should be solely
7037 	 * predicated on the sequence space of this segment. 3) That we
7038 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7039 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7040 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7041 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7042 	 * p.869. In such cases, we can still calculate the RTT correctly
7043 	 * when RCV.NXT == Last.ACK.Sent.
7044 	 */
7045 	if ((to->to_flags & TOF_TS) != 0 &&
7046 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7047 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7048 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7049 		tp->ts_recent_age = tcp_ts_getticks();
7050 		tp->ts_recent = to->to_tsval;
7051 	}
7052 	/*
7053 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7054 	 * is on (half-synchronized state), then queue data for later
7055 	 * processing; else drop segment and return.
7056 	 */
7057 	if ((thflags & TH_ACK) == 0) {
7058 		if (tp->t_flags & TF_NEEDSYN) {
7059 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7060 			    tiwin, thflags, nxt_pkt));
7061 		} else if (tp->t_flags & TF_ACKNOW) {
7062 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7063 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7064 			return (ret_val);
7065 		} else {
7066 			ctf_do_drop(m, NULL);
7067 			return (0);
7068 		}
7069 	}
7070 	/*
7071 	 * Ack processing.
7072 	 */
7073 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7074 		return (ret_val);
7075 	}
7076 	if (ourfinisacked) {
7077 		tcp_twstart(tp);
7078 		m_freem(m);
7079 		return (1);
7080 	}
7081 	if (sbavail(&so->so_snd)) {
7082 		if (rack_progress_timeout_check(tp)) {
7083 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7084 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7085 			return (1);
7086 		}
7087 	}
7088 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7089 	    tiwin, thflags, nxt_pkt));
7090 }
7091 
7092 /*
7093  * Return value of 1, the TCB is unlocked and most
7094  * likely gone, return value of 0, the TCP is still
7095  * locked.
7096  */
7097 static int
7098 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
7099     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7100     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7101 {
7102 	int32_t ret_val = 0;
7103 	int32_t ourfinisacked = 0;
7104 
7105 	ctf_calc_rwin(so, tp);
7106 
7107 	if ((thflags & TH_RST) ||
7108 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7109 		return (ctf_process_rst(m, th, so, tp));
7110 	/*
7111 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7112 	 * synchronized state.
7113 	 */
7114 	if (thflags & TH_SYN) {
7115 		ctf_challenge_ack(m, th, tp, &ret_val);
7116 		return (ret_val);
7117 	}
7118 	/*
7119 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7120 	 * it's less than ts_recent, drop it.
7121 	 */
7122 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7123 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7124 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7125 			return (ret_val);
7126 	}
7127 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7128 		return (ret_val);
7129 	}
7130 	/*
7131 	 * If new data are received on a connection after the user processes
7132 	 * are gone, then RST the other end.
7133 	 */
7134 	if ((so->so_state & SS_NOFDREF) && tlen) {
7135 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7136 			return (1);
7137 	}
7138 	/*
7139 	 * If last ACK falls within this segment's sequence numbers, record
7140 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7141 	 * from the latest proposal of the tcplw@cray.com list (Braden
7142 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7143 	 * with our earlier PAWS tests, so this check should be solely
7144 	 * predicated on the sequence space of this segment. 3) That we
7145 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7146 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7147 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7148 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7149 	 * p.869. In such cases, we can still calculate the RTT correctly
7150 	 * when RCV.NXT == Last.ACK.Sent.
7151 	 */
7152 	if ((to->to_flags & TOF_TS) != 0 &&
7153 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7154 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7155 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7156 		tp->ts_recent_age = tcp_ts_getticks();
7157 		tp->ts_recent = to->to_tsval;
7158 	}
7159 	/*
7160 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7161 	 * is on (half-synchronized state), then queue data for later
7162 	 * processing; else drop segment and return.
7163 	 */
7164 	if ((thflags & TH_ACK) == 0) {
7165 		if (tp->t_flags & TF_NEEDSYN) {
7166 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7167 			    tiwin, thflags, nxt_pkt));
7168 		} else if (tp->t_flags & TF_ACKNOW) {
7169 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7170 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7171 			return (ret_val);
7172 		} else {
7173 			ctf_do_drop(m, NULL);
7174 			return (0);
7175 		}
7176 	}
7177 	/*
7178 	 * case TCPS_LAST_ACK: Ack processing.
7179 	 */
7180 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7181 		return (ret_val);
7182 	}
7183 	if (ourfinisacked) {
7184 		tp = tcp_close(tp);
7185 		ctf_do_drop(m, tp);
7186 		return (1);
7187 	}
7188 	if (sbavail(&so->so_snd)) {
7189 		if (rack_progress_timeout_check(tp)) {
7190 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7191 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7192 			return (1);
7193 		}
7194 	}
7195 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7196 	    tiwin, thflags, nxt_pkt));
7197 }
7198 
7199 
7200 /*
7201  * Return value of 1, the TCB is unlocked and most
7202  * likely gone, return value of 0, the TCP is still
7203  * locked.
7204  */
7205 static int
7206 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
7207     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
7208     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
7209 {
7210 	int32_t ret_val = 0;
7211 	int32_t ourfinisacked = 0;
7212 
7213 	ctf_calc_rwin(so, tp);
7214 
7215 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
7216 	if ((thflags & TH_RST) ||
7217 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
7218 		return (ctf_process_rst(m, th, so, tp));
7219 	/*
7220 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
7221 	 * synchronized state.
7222 	 */
7223 	if (thflags & TH_SYN) {
7224 		ctf_challenge_ack(m, th, tp, &ret_val);
7225 		return (ret_val);
7226 	}
7227 	/*
7228 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
7229 	 * it's less than ts_recent, drop it.
7230 	 */
7231 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
7232 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
7233 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
7234 			return (ret_val);
7235 	}
7236 	if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
7237 		return (ret_val);
7238 	}
7239 	/*
7240 	 * If new data are received on a connection after the user processes
7241 	 * are gone, then RST the other end.
7242 	 */
7243 	if ((so->so_state & SS_NOFDREF) &&
7244 	    tlen) {
7245 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
7246 			return (1);
7247 	}
7248 	/*
7249 	 * If last ACK falls within this segment's sequence numbers, record
7250 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
7251 	 * from the latest proposal of the tcplw@cray.com list (Braden
7252 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
7253 	 * with our earlier PAWS tests, so this check should be solely
7254 	 * predicated on the sequence space of this segment. 3) That we
7255 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
7256 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
7257 	 * SEG.Len, This modified check allows us to overcome RFC1323's
7258 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
7259 	 * p.869. In such cases, we can still calculate the RTT correctly
7260 	 * when RCV.NXT == Last.ACK.Sent.
7261 	 */
7262 	if ((to->to_flags & TOF_TS) != 0 &&
7263 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
7264 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
7265 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
7266 		tp->ts_recent_age = tcp_ts_getticks();
7267 		tp->ts_recent = to->to_tsval;
7268 	}
7269 	/*
7270 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
7271 	 * is on (half-synchronized state), then queue data for later
7272 	 * processing; else drop segment and return.
7273 	 */
7274 	if ((thflags & TH_ACK) == 0) {
7275 		if (tp->t_flags & TF_NEEDSYN) {
7276 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7277 			    tiwin, thflags, nxt_pkt));
7278 		} else if (tp->t_flags & TF_ACKNOW) {
7279 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
7280 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
7281 			return (ret_val);
7282 		} else {
7283 			ctf_do_drop(m, NULL);
7284 			return (0);
7285 		}
7286 	}
7287 	/*
7288 	 * Ack processing.
7289 	 */
7290 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
7291 		return (ret_val);
7292 	}
7293 	if (sbavail(&so->so_snd)) {
7294 		if (rack_progress_timeout_check(tp)) {
7295 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
7296 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7297 			return (1);
7298 		}
7299 	}
7300 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
7301 	    tiwin, thflags, nxt_pkt));
7302 }
7303 
7304 
7305 static void inline
7306 rack_clear_rate_sample(struct tcp_rack *rack)
7307 {
7308 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
7309 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
7310 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
7311 }
7312 
7313 static void
7314 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack)
7315 {
7316 	uint32_t tls_seg = 0;
7317 
7318 #ifdef KERN_TLS
7319 	if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
7320 		tls_seg = ctf_get_opt_tls_size(rack->rc_inp->inp_socket, rack->rc_tp->snd_wnd);
7321 		rack->r_ctl.rc_pace_min_segs = tls_seg;
7322 	} else
7323 #endif
7324 		rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
7325 	rack->r_ctl.rc_pace_max_segs = ctf_fixed_maxseg(tp) * rack->rc_pace_max_segs;
7326 	if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES)
7327 		rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
7328 #ifdef KERN_TLS
7329 	if (tls_seg != 0) {
7330 		if (rack_hw_tls_max_seg > 1) {
7331 			rack->r_ctl.rc_pace_max_segs /= tls_seg;
7332 			if (rack_hw_tls_max_seg < rack->r_ctl.rc_pace_max_segs)
7333 				rack->r_ctl.rc_pace_max_segs = rack_hw_tls_max_seg;
7334 		} else {
7335 			rack->r_ctl.rc_pace_max_segs = 1;
7336 		}
7337 		if (rack->r_ctl.rc_pace_max_segs == 0)
7338 			rack->r_ctl.rc_pace_max_segs = 1;
7339 		rack->r_ctl.rc_pace_max_segs *= tls_seg;
7340 	}
7341 #endif
7342 	rack_log_type_hrdwtso(tp, rack, tls_seg, rack->rc_inp->inp_socket->so_snd.sb_flags, 0, 2);
7343 }
7344 
7345 static int
7346 rack_init(struct tcpcb *tp)
7347 {
7348 	struct tcp_rack *rack = NULL;
7349 	struct rack_sendmap *insret;
7350 
7351 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
7352 	if (tp->t_fb_ptr == NULL) {
7353 		/*
7354 		 * We need to allocate memory but cant. The INP and INP_INFO
7355 		 * locks and they are recusive (happens during setup. So a
7356 		 * scheme to drop the locks fails :(
7357 		 *
7358 		 */
7359 		return (ENOMEM);
7360 	}
7361 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
7362 
7363 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7364 	RB_INIT(&rack->r_ctl.rc_mtree);
7365 	TAILQ_INIT(&rack->r_ctl.rc_free);
7366 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
7367 	rack->rc_tp = tp;
7368 	if (tp->t_inpcb) {
7369 		rack->rc_inp = tp->t_inpcb;
7370 	}
7371 	tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
7372 	/* Probably not needed but lets be sure */
7373 	rack_clear_rate_sample(rack);
7374 	rack->r_cpu = 0;
7375 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
7376 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
7377 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
7378 	rack->rc_pace_reduce = rack_slot_reduction;
7379 	if (use_rack_cheat)
7380 		rack->use_rack_cheat = 1;
7381 	if (V_tcp_delack_enabled)
7382 		tp->t_delayed_ack = 1;
7383 	else
7384 		tp->t_delayed_ack = 0;
7385 	rack->rc_pace_max_segs = rack_hptsi_segments;
7386 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
7387 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
7388 	rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
7389 	rack->r_enforce_min_pace = rack_min_pace_time;
7390 	rack->r_ctl.rc_prop_rate = rack_proportional_rate;
7391 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
7392 	rack->r_ctl.rc_early_recovery = rack_early_recovery;
7393 	rack->rc_always_pace = rack_pace_every_seg;
7394 	rack_set_pace_segments(tp, rack);
7395 	rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
7396 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
7397 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
7398 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
7399 	rack->r_ctl.rc_min_to = rack_min_to;
7400 	rack->rack_per_of_gp = rack_per_of_gp;
7401 	microuptime(&rack->r_ctl.rc_last_ack);
7402 	rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
7403 	rack->r_ctl.rc_tlp_rxt_last_time = tcp_ts_getticks();
7404 	/* Do we force on detection? */
7405 #ifdef NETFLIX_EXP_DETECTION
7406 	if (tcp_force_detection)
7407 		rack->do_detection = 1;
7408 	else
7409 #endif
7410 		rack->do_detection = 0;
7411 	if (tp->snd_una != tp->snd_max) {
7412 		/* Create a send map for the current outstanding data */
7413 		struct rack_sendmap *rsm;
7414 
7415 		rsm = rack_alloc(rack);
7416 		if (rsm == NULL) {
7417 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7418 			tp->t_fb_ptr = NULL;
7419 			return (ENOMEM);
7420 		}
7421 		rsm->r_flags = RACK_OVERMAX;
7422 		rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time;
7423 		rsm->r_rtr_cnt = 1;
7424 		rsm->r_rtr_bytes = 0;
7425 		rsm->r_start = tp->snd_una;
7426 		rsm->r_end = tp->snd_max;
7427 		rsm->r_dupack = 0;
7428 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7429 #ifdef INVARIANTS
7430 		if (insret != NULL) {
7431 			panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
7432 			      insret, rack, rsm);
7433 		}
7434 #endif
7435 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7436 		rsm->r_in_tmap = 1;
7437 	}
7438 	rack_stop_all_timers(tp);
7439 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7440 	return (0);
7441 }
7442 
7443 static int
7444 rack_handoff_ok(struct tcpcb *tp)
7445 {
7446 	if ((tp->t_state == TCPS_CLOSED) ||
7447 	    (tp->t_state == TCPS_LISTEN)) {
7448 		/* Sure no problem though it may not stick */
7449 		return (0);
7450 	}
7451 	if ((tp->t_state == TCPS_SYN_SENT) ||
7452 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
7453 		/*
7454 		 * We really don't know you have to get to ESTAB or beyond
7455 		 * to tell.
7456 		 */
7457 		return (EAGAIN);
7458 	}
7459 	if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
7460 		return (0);
7461 	}
7462 	/*
7463 	 * If we reach here we don't do SACK on this connection so we can
7464 	 * never do rack.
7465 	 */
7466 	return (EINVAL);
7467 }
7468 
7469 static void
7470 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
7471 {
7472 	if (tp->t_fb_ptr) {
7473 		struct tcp_rack *rack;
7474 		struct rack_sendmap *rsm, *nrsm, *rm;
7475 		if (tp->t_inpcb) {
7476 			tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
7477 			tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
7478 		}
7479 		rack = (struct tcp_rack *)tp->t_fb_ptr;
7480 #ifdef TCP_BLACKBOX
7481 		tcp_log_flowend(tp);
7482 #endif
7483 		RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
7484 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7485 #ifdef INVARIANTS
7486 			if (rm != rsm) {
7487 				panic("At fini, rack:%p rsm:%p rm:%p",
7488 				      rack, rsm, rm);
7489 			}
7490 #endif
7491 			uma_zfree(rack_zone, rsm);
7492 		}
7493 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7494 		while (rsm) {
7495 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
7496 			uma_zfree(rack_zone, rsm);
7497 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
7498 		}
7499 		rack->rc_free_cnt = 0;
7500 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
7501 		tp->t_fb_ptr = NULL;
7502 	}
7503 	/* Make sure snd_nxt is correctly set */
7504 	tp->snd_nxt = tp->snd_max;
7505 }
7506 
7507 
7508 static void
7509 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
7510 {
7511 	switch (tp->t_state) {
7512 	case TCPS_SYN_SENT:
7513 		rack->r_state = TCPS_SYN_SENT;
7514 		rack->r_substate = rack_do_syn_sent;
7515 		break;
7516 	case TCPS_SYN_RECEIVED:
7517 		rack->r_state = TCPS_SYN_RECEIVED;
7518 		rack->r_substate = rack_do_syn_recv;
7519 		break;
7520 	case TCPS_ESTABLISHED:
7521 		rack_set_pace_segments(tp, rack);
7522 		rack->r_state = TCPS_ESTABLISHED;
7523 		rack->r_substate = rack_do_established;
7524 		break;
7525 	case TCPS_CLOSE_WAIT:
7526 		rack->r_state = TCPS_CLOSE_WAIT;
7527 		rack->r_substate = rack_do_close_wait;
7528 		break;
7529 	case TCPS_FIN_WAIT_1:
7530 		rack->r_state = TCPS_FIN_WAIT_1;
7531 		rack->r_substate = rack_do_fin_wait_1;
7532 		break;
7533 	case TCPS_CLOSING:
7534 		rack->r_state = TCPS_CLOSING;
7535 		rack->r_substate = rack_do_closing;
7536 		break;
7537 	case TCPS_LAST_ACK:
7538 		rack->r_state = TCPS_LAST_ACK;
7539 		rack->r_substate = rack_do_lastack;
7540 		break;
7541 	case TCPS_FIN_WAIT_2:
7542 		rack->r_state = TCPS_FIN_WAIT_2;
7543 		rack->r_substate = rack_do_fin_wait_2;
7544 		break;
7545 	case TCPS_LISTEN:
7546 	case TCPS_CLOSED:
7547 	case TCPS_TIME_WAIT:
7548 	default:
7549 		break;
7550 	};
7551 }
7552 
7553 
7554 static void
7555 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
7556 {
7557 	/*
7558 	 * We received an ack, and then did not
7559 	 * call send or were bounced out due to the
7560 	 * hpts was running. Now a timer is up as well, is
7561 	 * it the right timer?
7562 	 */
7563 	struct rack_sendmap *rsm;
7564 	int tmr_up;
7565 
7566 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
7567 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
7568 		return;
7569 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7570 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
7571 	    (tmr_up == PACE_TMR_RXT)) {
7572 		/* Should be an RXT */
7573 		return;
7574 	}
7575 	if (rsm == NULL) {
7576 		/* Nothing outstanding? */
7577 		if (tp->t_flags & TF_DELACK) {
7578 			if (tmr_up == PACE_TMR_DELACK)
7579 				/* We are supposed to have delayed ack up and we do */
7580 				return;
7581 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
7582 			/*
7583 			 * if we hit enobufs then we would expect the possiblity
7584 			 * of nothing outstanding and the RXT up (and the hptsi timer).
7585 			 */
7586 			return;
7587 		} else if (((V_tcp_always_keepalive ||
7588 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7589 			    (tp->t_state <= TCPS_CLOSING)) &&
7590 			   (tmr_up == PACE_TMR_KEEP) &&
7591 			   (tp->snd_max == tp->snd_una)) {
7592 			/* We should have keep alive up and we do */
7593 			return;
7594 		}
7595 	}
7596 	if (SEQ_GT(tp->snd_max, tp->snd_una) &&
7597 		   ((tmr_up == PACE_TMR_TLP) ||
7598 		    (tmr_up == PACE_TMR_RACK) ||
7599 		    (tmr_up == PACE_TMR_RXT))) {
7600 		/*
7601 		 * Either a Rack, TLP or RXT is fine if  we
7602 		 * have outstanding data.
7603 		 */
7604 		return;
7605 	} else if (tmr_up == PACE_TMR_DELACK) {
7606 		/*
7607 		 * If the delayed ack was going to go off
7608 		 * before the rtx/tlp/rack timer were going to
7609 		 * expire, then that would be the timer in control.
7610 		 * Note we don't check the time here trusting the
7611 		 * code is correct.
7612 		 */
7613 		return;
7614 	}
7615 	/*
7616 	 * Ok the timer originally started is not what we want now.
7617 	 * We will force the hpts to be stopped if any, and restart
7618 	 * with the slot set to what was in the saved slot.
7619 	 */
7620 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
7621 	rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7622 }
7623 
7624 static int
7625 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
7626     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
7627     int32_t nxt_pkt, struct timeval *tv)
7628 {
7629 	int32_t thflags, retval, did_out = 0;
7630 	int32_t way_out = 0;
7631 	uint32_t cts;
7632 	uint32_t tiwin;
7633 	struct tcpopt to;
7634 	struct tcp_rack *rack;
7635 	struct rack_sendmap *rsm;
7636 	int32_t prev_state = 0;
7637 
7638 	if (m->m_flags & M_TSTMP_LRO) {
7639 		tv->tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7640 		tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7641 	}
7642 	cts = tcp_tv_to_mssectick(tv);
7643 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7644 
7645 	kern_prefetch(rack, &prev_state);
7646 	prev_state = 0;
7647 	thflags = th->th_flags;
7648 
7649 	NET_EPOCH_ASSERT();
7650 	INP_WLOCK_ASSERT(tp->t_inpcb);
7651 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
7652 	    __func__));
7653 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
7654 	    __func__));
7655 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
7656 		union tcp_log_stackspecific log;
7657 		struct timeval tv;
7658 
7659 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
7660 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
7661 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
7662 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
7663 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
7664 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
7665 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
7666 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
7667 		TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
7668 		    tlen, &log, true, &tv);
7669 	}
7670 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
7671 		way_out = 4;
7672 		retval = 0;
7673 		goto done_with_input;
7674 	}
7675 	/*
7676 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
7677 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
7678 	 */
7679 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
7680 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
7681 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
7682 		return(1);
7683 	}
7684 	/*
7685 	 * Segment received on connection. Reset idle time and keep-alive
7686 	 * timer. XXX: This should be done after segment validation to
7687 	 * ignore broken/spoofed segs.
7688 	 */
7689 	if  (tp->t_idle_reduce &&
7690 	     (tp->snd_max == tp->snd_una) &&
7691 	     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
7692 		counter_u64_add(rack_input_idle_reduces, 1);
7693 		rack_cc_after_idle(tp);
7694 	}
7695 	tp->t_rcvtime = ticks;
7696 
7697 	/*
7698 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
7699 	 * the scale is zero.
7700 	 */
7701 	tiwin = th->th_win << tp->snd_scale;
7702 #ifdef STATS
7703 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
7704 #endif
7705 	if (tiwin > rack->r_ctl.rc_high_rwnd)
7706 		rack->r_ctl.rc_high_rwnd = tiwin;
7707 	/*
7708 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
7709 	 * this to occur after we've validated the segment.
7710 	 */
7711 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
7712 		if (thflags & TH_CWR) {
7713 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
7714 			tp->t_flags |= TF_ACKNOW;
7715 		}
7716 		switch (iptos & IPTOS_ECN_MASK) {
7717 		case IPTOS_ECN_CE:
7718 			tp->t_flags2 |= TF2_ECN_SND_ECE;
7719 			KMOD_TCPSTAT_INC(tcps_ecn_ce);
7720 			break;
7721 		case IPTOS_ECN_ECT0:
7722 			KMOD_TCPSTAT_INC(tcps_ecn_ect0);
7723 			break;
7724 		case IPTOS_ECN_ECT1:
7725 			KMOD_TCPSTAT_INC(tcps_ecn_ect1);
7726 			break;
7727 		}
7728 
7729 		/* Process a packet differently from RFC3168. */
7730 		cc_ecnpkt_handler(tp, th, iptos);
7731 
7732 		/* Congestion experienced. */
7733 		if (thflags & TH_ECE) {
7734 			rack_cong_signal(tp, th, CC_ECN);
7735 		}
7736 	}
7737 	/*
7738 	 * Parse options on any incoming segment.
7739 	 */
7740 	tcp_dooptions(&to, (u_char *)(th + 1),
7741 	    (th->th_off << 2) - sizeof(struct tcphdr),
7742 	    (thflags & TH_SYN) ? TO_SYN : 0);
7743 
7744 	/*
7745 	 * If echoed timestamp is later than the current time, fall back to
7746 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
7747 	 * were used when this connection was established.
7748 	 */
7749 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
7750 		to.to_tsecr -= tp->ts_offset;
7751 		if (TSTMP_GT(to.to_tsecr, cts))
7752 			to.to_tsecr = 0;
7753 	}
7754 	/*
7755 	 * If its the first time in we need to take care of options and
7756 	 * verify we can do SACK for rack!
7757 	 */
7758 	if (rack->r_state == 0) {
7759 		/* Should be init'd by rack_init() */
7760 		KASSERT(rack->rc_inp != NULL,
7761 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
7762 		if (rack->rc_inp == NULL) {
7763 			rack->rc_inp = tp->t_inpcb;
7764 		}
7765 
7766 		/*
7767 		 * Process options only when we get SYN/ACK back. The SYN
7768 		 * case for incoming connections is handled in tcp_syncache.
7769 		 * According to RFC1323 the window field in a SYN (i.e., a
7770 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
7771 		 * this is traditional behavior, may need to be cleaned up.
7772 		 */
7773 		rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
7774 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
7775 			if ((to.to_flags & TOF_SCALE) &&
7776 			    (tp->t_flags & TF_REQ_SCALE)) {
7777 				tp->t_flags |= TF_RCVD_SCALE;
7778 				tp->snd_scale = to.to_wscale;
7779 			}
7780 			/*
7781 			 * Initial send window.  It will be updated with the
7782 			 * next incoming segment to the scaled value.
7783 			 */
7784 			tp->snd_wnd = th->th_win;
7785 			if (to.to_flags & TOF_TS) {
7786 				tp->t_flags |= TF_RCVD_TSTMP;
7787 				tp->ts_recent = to.to_tsval;
7788 				tp->ts_recent_age = cts;
7789 			}
7790 			if (to.to_flags & TOF_MSS)
7791 				tcp_mss(tp, to.to_mss);
7792 			if ((tp->t_flags & TF_SACK_PERMIT) &&
7793 			    (to.to_flags & TOF_SACKPERM) == 0)
7794 				tp->t_flags &= ~TF_SACK_PERMIT;
7795 			if (IS_FASTOPEN(tp->t_flags)) {
7796 				if (to.to_flags & TOF_FASTOPEN) {
7797 					uint16_t mss;
7798 
7799 					if (to.to_flags & TOF_MSS)
7800 						mss = to.to_mss;
7801 					else
7802 						if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
7803 							mss = TCP6_MSS;
7804 						else
7805 							mss = TCP_MSS;
7806 					tcp_fastopen_update_cache(tp, mss,
7807 					    to.to_tfo_len, to.to_tfo_cookie);
7808 				} else
7809 					tcp_fastopen_disable_path(tp);
7810 			}
7811 		}
7812 		/*
7813 		 * At this point we are at the initial call. Here we decide
7814 		 * if we are doing RACK or not. We do this by seeing if
7815 		 * TF_SACK_PERMIT is set, if not rack is *not* possible and
7816 		 * we switch to the default code.
7817 		 */
7818 		if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
7819 			tcp_switch_back_to_default(tp);
7820 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
7821 			    tlen, iptos);
7822 			return (1);
7823 		}
7824 		/* Set the flag */
7825 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
7826 		tcp_set_hpts(tp->t_inpcb);
7827 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
7828 	}
7829 	/*
7830 	 * This is the one exception case where we set the rack state
7831 	 * always. All other times (timers etc) we must have a rack-state
7832 	 * set (so we assure we have done the checks above for SACK).
7833 	 */
7834 	memcpy(&rack->r_ctl.rc_last_ack, tv, sizeof(struct timeval));
7835 	rack->r_ctl.rc_rcvtime = cts;
7836 	if (rack->r_state != tp->t_state)
7837 		rack_set_state(tp, rack);
7838 	if (SEQ_GT(th->th_ack, tp->snd_una) &&
7839 	    (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
7840 		kern_prefetch(rsm, &prev_state);
7841 	prev_state = rack->r_state;
7842 	rack->r_ctl.rc_tlp_send_cnt = 0;
7843 	rack_clear_rate_sample(rack);
7844 	retval = (*rack->r_substate) (m, th, so,
7845 	    tp, &to, drop_hdrlen,
7846 	    tlen, tiwin, thflags, nxt_pkt, iptos);
7847 #ifdef INVARIANTS
7848 	if ((retval == 0) &&
7849 	    (tp->t_inpcb == NULL)) {
7850 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
7851 		    retval, tp, prev_state);
7852 	}
7853 #endif
7854 	if (retval == 0) {
7855 		/*
7856 		 * If retval is 1 the tcb is unlocked and most likely the tp
7857 		 * is gone.
7858 		 */
7859 		INP_WLOCK_ASSERT(tp->t_inpcb);
7860 		if (rack->set_pacing_done_a_iw == 0) {
7861 			/* How much has been acked? */
7862 			if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
7863 				/* We have enough to set in the pacing segment size */
7864 				rack->set_pacing_done_a_iw = 1;
7865 				rack_set_pace_segments(tp, rack);
7866 			}
7867 		}
7868 		tcp_rack_xmit_timer_commit(rack, tp);
7869 		if ((nxt_pkt == 0) || (IN_RECOVERY(tp->t_flags))) {
7870 			if (rack->r_wanted_output != 0) {
7871 				did_out = 1;
7872 				(void)tp->t_fb->tfb_tcp_output(tp);
7873 			}
7874 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
7875 		}
7876 		if ((nxt_pkt == 0) &&
7877 		    ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
7878 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
7879 		     (tp->t_flags & TF_DELACK) ||
7880 		     ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
7881 		      (tp->t_state <= TCPS_CLOSING)))) {
7882 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
7883 			if ((tp->snd_max == tp->snd_una) &&
7884 			    ((tp->t_flags & TF_DELACK) == 0) &&
7885 			    (rack->rc_inp->inp_in_hpts) &&
7886 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
7887 				/* keep alive not needed if we are hptsi output yet */
7888 				;
7889 			} else {
7890 				if (rack->rc_inp->inp_in_hpts) {
7891 					tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7892 					counter_u64_add(rack_per_timer_hole, 1);
7893 				}
7894 				rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
7895 			}
7896 			way_out = 1;
7897 		} else if (nxt_pkt == 0) {
7898 			/* Do we have the correct timer running? */
7899 			rack_timer_audit(tp, rack, &so->so_snd);
7900 			way_out = 2;
7901 		}
7902 	done_with_input:
7903 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
7904 		if (did_out)
7905 			rack->r_wanted_output = 0;
7906 #ifdef INVARIANTS
7907 		if (tp->t_inpcb == NULL) {
7908 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
7909 			      did_out,
7910 			      retval, tp, prev_state);
7911 		}
7912 #endif
7913 	}
7914 	return (retval);
7915 }
7916 
7917 void
7918 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
7919     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
7920 {
7921 	struct timeval tv;
7922 
7923 	/* First lets see if we have old packets */
7924 	if (tp->t_in_pkt) {
7925 		if (ctf_do_queued_segments(so, tp, 1)) {
7926 			m_freem(m);
7927 			return;
7928 		}
7929 	}
7930 	if (m->m_flags & M_TSTMP_LRO) {
7931 		tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
7932 		tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
7933 	} else {
7934 		/* Should not be should we kassert instead? */
7935 		tcp_get_usecs(&tv);
7936 	}
7937 	if(rack_do_segment_nounlock(m, th, so, tp,
7938 				    drop_hdrlen, tlen, iptos, 0, &tv) == 0)
7939 		INP_WUNLOCK(tp->t_inpcb);
7940 }
7941 
7942 struct rack_sendmap *
7943 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
7944 {
7945 	struct rack_sendmap *rsm = NULL;
7946 	int32_t idx;
7947 	uint32_t srtt = 0, thresh = 0, ts_low = 0;
7948 
7949 	/* Return the next guy to be re-transmitted */
7950 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
7951 		return (NULL);
7952 	}
7953 	if (tp->t_flags & TF_SENTFIN) {
7954 		/* retran the end FIN? */
7955 		return (NULL);
7956 	}
7957 	/* ok lets look at this one */
7958 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7959 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
7960 		goto check_it;
7961 	}
7962 	rsm = rack_find_lowest_rsm(rack);
7963 	if (rsm == NULL) {
7964 		return (NULL);
7965 	}
7966 check_it:
7967 	if (rsm->r_flags & RACK_ACKED) {
7968 		return (NULL);
7969 	}
7970 	if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
7971 		/* Its not yet ready */
7972 		return (NULL);
7973 	}
7974 	srtt = rack_grab_rtt(tp, rack);
7975 	idx = rsm->r_rtr_cnt - 1;
7976 	ts_low = rsm->r_tim_lastsent[idx];
7977 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
7978 	if ((tsused == ts_low) ||
7979 	    (TSTMP_LT(tsused, ts_low))) {
7980 		/* No time since sending */
7981 		return (NULL);
7982 	}
7983 	if ((tsused - ts_low) < thresh) {
7984 		/* It has not been long enough yet */
7985 		return (NULL);
7986 	}
7987 	if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
7988 	    ((rsm->r_flags & RACK_SACK_PASSED) &&
7989 	     (rack->sack_attack_disable == 0))) {
7990 		/*
7991 		 * We have passed the dup-ack threshold <or>
7992 		 * a SACK has indicated this is missing.
7993 		 * Note that if you are a declared attacker
7994 		 * it is only the dup-ack threshold that
7995 		 * will cause retransmits.
7996 		 */
7997 		/* log retransmit reason */
7998 		rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
7999 		return (rsm);
8000 	}
8001 	return (NULL);
8002 }
8003 
8004 static int32_t
8005 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len)
8006 {
8007 	int32_t slot = 0;
8008 
8009 	if ((rack->rack_per_of_gp == 0) ||
8010 	    (rack->rc_always_pace == 0)) {
8011 		/*
8012 		 * We use the most optimistic possible cwnd/srtt for
8013 		 * sending calculations. This will make our
8014 		 * calculation anticipate getting more through
8015 		 * quicker then possible. But thats ok we don't want
8016 		 * the peer to have a gap in data sending.
8017 		 */
8018 		uint32_t srtt, cwnd, tr_perms = 0;
8019 
8020 old_method:
8021 		if (rack->r_ctl.rc_rack_min_rtt)
8022 			srtt = rack->r_ctl.rc_rack_min_rtt;
8023 		else
8024 			srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
8025 		if (rack->r_ctl.rc_rack_largest_cwnd)
8026 			cwnd = rack->r_ctl.rc_rack_largest_cwnd;
8027 		else
8028 			cwnd = tp->snd_cwnd;
8029 		tr_perms = cwnd / srtt;
8030 		if (tr_perms == 0) {
8031 			tr_perms = ctf_fixed_maxseg(tp);
8032 		}
8033 		/*
8034 		 * Calculate how long this will take to drain, if
8035 		 * the calculation comes out to zero, thats ok we
8036 		 * will use send_a_lot to possibly spin around for
8037 		 * more increasing tot_len_this_send to the point
8038 		 * that its going to require a pace, or we hit the
8039 		 * cwnd. Which in that case we are just waiting for
8040 		 * a ACK.
8041 		 */
8042 		slot = len / tr_perms;
8043 		/* Now do we reduce the time so we don't run dry? */
8044 		if (slot && rack->rc_pace_reduce) {
8045 			int32_t reduce;
8046 
8047 			reduce = (slot / rack->rc_pace_reduce);
8048 			if (reduce < slot) {
8049 				slot -= reduce;
8050 			} else
8051 				slot = 0;
8052 		}
8053 	} else {
8054 		int cnt;
8055 		uint64_t bw_est, bw_raise, res, lentim;
8056 
8057 		bw_est = 0;
8058 		for (cnt=0; cnt<RACK_GP_HIST; cnt++) {
8059 			if ((rack->r_ctl.rc_gp_hist_filled == 0) &&
8060 			    (rack->r_ctl.rc_gp_history[cnt] == 0))
8061 				break;
8062 			bw_est += rack->r_ctl.rc_gp_history[cnt];
8063 		}
8064 		if (bw_est == 0) {
8065 			/*
8066 			 * No way yet to make a b/w estimate
8067 			 * (no goodput est yet).
8068 			 */
8069 			goto old_method;
8070 		}
8071 		/* Covert to bytes per second */
8072 		bw_est *= MSEC_IN_SECOND;
8073 		/*
8074 		 * Now ratchet it up by our percentage. Note
8075 		 * that the minimum you can do is 1 which would
8076 		 * get you 101% of the average last N goodput estimates.
8077 		 * The max you can do is 256 which would yeild you
8078 		 * 356% of the last N goodput estimates.
8079 		 */
8080 		bw_raise = bw_est * (uint64_t)rack->rack_per_of_gp;
8081 		bw_est += bw_raise;
8082 		/* average by the number we added */
8083 		bw_est /= cnt;
8084 		/* Now calculate a rate based on this b/w */
8085 		lentim = (uint64_t) len * (uint64_t)MSEC_IN_SECOND;
8086 		res = lentim / bw_est;
8087 		slot = (uint32_t)res;
8088 	}
8089 	if (rack->r_enforce_min_pace &&
8090 	    (slot == 0)) {
8091 		/* We are enforcing a minimum pace time of 1ms */
8092 		slot = rack->r_enforce_min_pace;
8093 	}
8094 	if (slot)
8095 		counter_u64_add(rack_calc_nonzero, 1);
8096 	else
8097 		counter_u64_add(rack_calc_zero, 1);
8098 	return (slot);
8099 }
8100 
8101 static int
8102 rack_output(struct tcpcb *tp)
8103 {
8104 	struct socket *so;
8105 	uint32_t recwin, sendwin;
8106 	uint32_t sb_offset;
8107 	int32_t len, flags, error = 0;
8108 	struct mbuf *m;
8109 	struct mbuf *mb;
8110 	uint32_t if_hw_tsomaxsegcount = 0;
8111 	uint32_t if_hw_tsomaxsegsize = 0;
8112 	int32_t maxseg;
8113 	long tot_len_this_send = 0;
8114 	struct ip *ip = NULL;
8115 #ifdef TCPDEBUG
8116 	struct ipovly *ipov = NULL;
8117 #endif
8118 	struct udphdr *udp = NULL;
8119 	struct tcp_rack *rack;
8120 	struct tcphdr *th;
8121 	uint8_t pass = 0;
8122 	uint8_t wanted_cookie = 0;
8123 	u_char opt[TCP_MAXOLEN];
8124 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
8125 	uint32_t rack_seq;
8126 
8127 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8128 	unsigned ipsec_optlen = 0;
8129 
8130 #endif
8131 	int32_t idle, sendalot;
8132 	int32_t sub_from_prr = 0;
8133 	volatile int32_t sack_rxmit;
8134 	struct rack_sendmap *rsm = NULL;
8135 	int32_t tso, mtu;
8136 	struct tcpopt to;
8137 	int32_t slot = 0;
8138 	int32_t sup_rack = 0;
8139 	uint32_t cts;
8140 	uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0;
8141 	int32_t do_a_prefetch;
8142 	int32_t prefetch_rsm = 0;
8143 	int force_tso = 0;
8144 	int32_t orig_len;
8145 	int32_t prefetch_so_done = 0;
8146 	struct tcp_log_buffer *lgb = NULL;
8147 	struct inpcb *inp;
8148 	struct sockbuf *sb;
8149 #ifdef INET6
8150 	struct ip6_hdr *ip6 = NULL;
8151 	int32_t isipv6;
8152 #endif
8153 	uint8_t filled_all = 0;
8154 	bool hw_tls = false;
8155 
8156 	/* setup and take the cache hits here */
8157 	rack = (struct tcp_rack *)tp->t_fb_ptr;
8158 	inp = rack->rc_inp;
8159 	so = inp->inp_socket;
8160 	sb = &so->so_snd;
8161 	kern_prefetch(sb, &do_a_prefetch);
8162 	do_a_prefetch = 1;
8163 
8164 #ifdef KERN_TLS
8165 	hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0;
8166 #endif
8167 
8168 	NET_EPOCH_ASSERT();
8169 	INP_WLOCK_ASSERT(inp);
8170 
8171 #ifdef TCP_OFFLOAD
8172 	if (tp->t_flags & TF_TOE)
8173 		return (tcp_offload_output(tp));
8174 #endif
8175 	maxseg = ctf_fixed_maxseg(tp);
8176 	/*
8177 	 * For TFO connections in SYN_RECEIVED, only allow the initial
8178 	 * SYN|ACK and those sent by the retransmit timer.
8179 	 */
8180 	if (IS_FASTOPEN(tp->t_flags) &&
8181 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
8182 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
8183 	    (rack->r_ctl.rc_resend == NULL))         /* not a retransmit */
8184 		return (0);
8185 #ifdef INET6
8186 	if (rack->r_state) {
8187 		/* Use the cache line loaded if possible */
8188 		isipv6 = rack->r_is_v6;
8189 	} else {
8190 		isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
8191 	}
8192 #endif
8193 	cts = tcp_ts_getticks();
8194 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
8195 	    inp->inp_in_hpts) {
8196 		/*
8197 		 * We are on the hpts for some timer but not hptsi output.
8198 		 * Remove from the hpts unconditionally.
8199 		 */
8200 		rack_timer_cancel(tp, rack, cts, __LINE__);
8201 	}
8202 	/* Mark that we have called rack_output(). */
8203 	if ((rack->r_timer_override) ||
8204 	    (tp->t_flags & TF_FORCEDATA) ||
8205 	    (tp->t_state < TCPS_ESTABLISHED)) {
8206 		if (tp->t_inpcb->inp_in_hpts)
8207 			tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
8208 	} else if (tp->t_inpcb->inp_in_hpts) {
8209 		/*
8210 		 * On the hpts you can't pass even if ACKNOW is on, we will
8211 		 * when the hpts fires.
8212 		 */
8213 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
8214 		return (0);
8215 	}
8216 	hpts_calling = inp->inp_hpts_calls;
8217 	inp->inp_hpts_calls = 0;
8218 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
8219 		if (rack_process_timers(tp, rack, cts, hpts_calling)) {
8220 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
8221 			return (0);
8222 		}
8223 	}
8224 	rack->r_wanted_output = 0;
8225 	rack->r_timer_override = 0;
8226 	/*
8227 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
8228 	 * only allow the initial SYN or SYN|ACK and those sent
8229 	 * by the retransmit timer.
8230 	 */
8231 	if (IS_FASTOPEN(tp->t_flags) &&
8232 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
8233 	     (tp->t_state == TCPS_SYN_SENT)) &&
8234 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
8235 	    (tp->t_rxtshift == 0))              /* not a retransmit */
8236 		return (0);
8237 	/*
8238 	 * Determine length of data that should be transmitted, and flags
8239 	 * that will be used. If there is some data or critical controls
8240 	 * (SYN, RST) to send, then transmit; otherwise, investigate
8241 	 * further.
8242 	 */
8243 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
8244 	if (tp->t_idle_reduce) {
8245 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
8246 			rack_cc_after_idle(tp);
8247 	}
8248 	tp->t_flags &= ~TF_LASTIDLE;
8249 	if (idle) {
8250 		if (tp->t_flags & TF_MORETOCOME) {
8251 			tp->t_flags |= TF_LASTIDLE;
8252 			idle = 0;
8253 		}
8254 	}
8255 again:
8256 	/*
8257 	 * If we've recently taken a timeout, snd_max will be greater than
8258 	 * snd_nxt.  There may be SACK information that allows us to avoid
8259 	 * resending already delivered data.  Adjust snd_nxt accordingly.
8260 	 */
8261 	sendalot = 0;
8262 	cts = tcp_ts_getticks();
8263 	tso = 0;
8264 	mtu = 0;
8265 	sb_offset = tp->snd_max - tp->snd_una;
8266 	sendwin = min(tp->snd_wnd, tp->snd_cwnd);
8267 
8268 	flags = tcp_outflags[tp->t_state];
8269 	while (rack->rc_free_cnt < rack_free_cache) {
8270 		rsm = rack_alloc(rack);
8271 		if (rsm == NULL) {
8272 			if (inp->inp_hpts_calls)
8273 				/* Retry in a ms */
8274 				slot = 1;
8275 			goto just_return_nolock;
8276 		}
8277 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
8278 		rack->rc_free_cnt++;
8279 		rsm = NULL;
8280 	}
8281 	if (inp->inp_hpts_calls)
8282 		inp->inp_hpts_calls = 0;
8283 	sack_rxmit = 0;
8284 	len = 0;
8285 	rsm = NULL;
8286 	if (flags & TH_RST) {
8287 		SOCKBUF_LOCK(sb);
8288 		goto send;
8289 	}
8290 	if (rack->r_ctl.rc_tlpsend) {
8291 		/* Tail loss probe */
8292 		long cwin;
8293 		long tlen;
8294 
8295 		doing_tlp = 1;
8296 		/*
8297 		 * Check if we can do a TLP with a RACK'd packet
8298 		 * this can happen if we are not doing the rack
8299 		 * cheat and we skipped to a TLP and it
8300 		 * went off.
8301 		 */
8302 		rsm = tcp_rack_output(tp, rack, cts);
8303 		if (rsm == NULL)
8304 			rsm = rack->r_ctl.rc_tlpsend;
8305 		rack->r_ctl.rc_tlpsend = NULL;
8306 		sack_rxmit = 1;
8307 		tlen = rsm->r_end - rsm->r_start;
8308 		if (tlen > ctf_fixed_maxseg(tp))
8309 			tlen = ctf_fixed_maxseg(tp);
8310 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8311 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8312 		    __func__, __LINE__,
8313 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8314 		sb_offset = rsm->r_start - tp->snd_una;
8315 		cwin = min(tp->snd_wnd, tlen);
8316 		len = cwin;
8317 	} else if (rack->r_ctl.rc_resend) {
8318 		/* Retransmit timer */
8319 		rsm = rack->r_ctl.rc_resend;
8320 		rack->r_ctl.rc_resend = NULL;
8321 		len = rsm->r_end - rsm->r_start;
8322 		sack_rxmit = 1;
8323 		sendalot = 0;
8324 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8325 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8326 		    __func__, __LINE__,
8327 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8328 		sb_offset = rsm->r_start - tp->snd_una;
8329 		if (len >= ctf_fixed_maxseg(tp)) {
8330 			len = ctf_fixed_maxseg(tp);
8331 		}
8332 	} else if ((rack->rc_in_persist == 0) &&
8333 	    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
8334 		int maxseg;
8335 
8336 		maxseg = ctf_fixed_maxseg(tp);
8337 		if ((!IN_RECOVERY(tp->t_flags)) &&
8338 		    ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
8339 			/* Enter recovery if not induced by a time-out */
8340 			rack->r_ctl.rc_rsm_start = rsm->r_start;
8341 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
8342 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
8343 			rack_cong_signal(tp, NULL, CC_NDUPACK);
8344 			/*
8345 			 * When we enter recovery we need to assure we send
8346 			 * one packet.
8347 			 */
8348 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
8349 			rack_log_to_prr(rack, 13);
8350 		}
8351 #ifdef INVARIANTS
8352 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
8353 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
8354 			    tp, rack, rsm, rsm->r_start, tp->snd_una);
8355 		}
8356 #endif
8357 		len = rsm->r_end - rsm->r_start;
8358 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
8359 		    ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
8360 		    __func__, __LINE__,
8361 		    rsm->r_start, tp->snd_una, tp, rack, rsm));
8362 		sb_offset = rsm->r_start - tp->snd_una;
8363 		/* Can we send it within the PRR boundary? */
8364 		if ((rack->use_rack_cheat == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) {
8365 			/* It does not fit */
8366 			if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) &&
8367 			    (rack->r_ctl.rc_prr_sndcnt < maxseg)) {
8368 				/*
8369 				 * prr is less than a segment, we
8370 				 * have more acks due in besides
8371 				 * what we need to resend. Lets not send
8372 				 * to avoid sending small pieces of
8373 				 * what we need to retransmit.
8374 				 */
8375 				len = 0;
8376 				goto just_return_nolock;
8377 			}
8378 			len = rack->r_ctl.rc_prr_sndcnt;
8379 		}
8380 		sendalot = 0;
8381 		if (len >= maxseg) {
8382 			len = maxseg;
8383 		}
8384 		if (len > 0) {
8385 			sub_from_prr = 1;
8386 			sack_rxmit = 1;
8387 			KMOD_TCPSTAT_INC(tcps_sack_rexmits);
8388 			KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
8389 			    min(len, ctf_fixed_maxseg(tp)));
8390 			counter_u64_add(rack_rtm_prr_retran, 1);
8391 		}
8392 	}
8393 	/*
8394 	 * Enforce a connection sendmap count limit if set
8395 	 * as long as we are not retransmiting.
8396 	 */
8397 	if ((rsm == NULL) &&
8398 	    (rack->do_detection == 0) &&
8399 	    (V_tcp_map_entries_limit > 0) &&
8400 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
8401 		counter_u64_add(rack_to_alloc_limited, 1);
8402 		if (!rack->alloc_limit_reported) {
8403 			rack->alloc_limit_reported = 1;
8404 			counter_u64_add(rack_alloc_limited_conns, 1);
8405 		}
8406 		goto just_return_nolock;
8407 	}
8408 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
8409 		/* we are retransmitting the fin */
8410 		len--;
8411 		if (len) {
8412 			/*
8413 			 * When retransmitting data do *not* include the
8414 			 * FIN. This could happen from a TLP probe.
8415 			 */
8416 			flags &= ~TH_FIN;
8417 		}
8418 	}
8419 #ifdef INVARIANTS
8420 	/* For debugging */
8421 	rack->r_ctl.rc_rsm_at_retran = rsm;
8422 #endif
8423 	/*
8424 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
8425 	 * state flags.
8426 	 */
8427 	if (tp->t_flags & TF_NEEDFIN)
8428 		flags |= TH_FIN;
8429 	if (tp->t_flags & TF_NEEDSYN)
8430 		flags |= TH_SYN;
8431 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
8432 		void *end_rsm;
8433 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
8434 		if (end_rsm)
8435 			kern_prefetch(end_rsm, &prefetch_rsm);
8436 		prefetch_rsm = 1;
8437 	}
8438 	SOCKBUF_LOCK(sb);
8439 	/*
8440 	 * If in persist timeout with window of 0, send 1 byte. Otherwise,
8441 	 * if window is small but nonzero and time TF_SENTFIN expired, we
8442 	 * will send what we can and go to transmit state.
8443 	 */
8444 	if (tp->t_flags & TF_FORCEDATA) {
8445 		if (sendwin == 0) {
8446 			/*
8447 			 * If we still have some data to send, then clear
8448 			 * the FIN bit.  Usually this would happen below
8449 			 * when it realizes that we aren't sending all the
8450 			 * data.  However, if we have exactly 1 byte of
8451 			 * unsent data, then it won't clear the FIN bit
8452 			 * below, and if we are in persist state, we wind up
8453 			 * sending the packet without recording that we sent
8454 			 * the FIN bit.
8455 			 *
8456 			 * We can't just blindly clear the FIN bit, because
8457 			 * if we don't have any more data to send then the
8458 			 * probe will be the FIN itself.
8459 			 */
8460 			if (sb_offset < sbused(sb))
8461 				flags &= ~TH_FIN;
8462 			sendwin = 1;
8463 		} else {
8464 			if ((rack->rc_in_persist != 0) &&
8465  			    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
8466 					       rack->r_ctl.rc_pace_min_segs)))
8467 				rack_exit_persist(tp, rack);
8468 			/*
8469 			 * If we are dropping persist mode then we need to
8470 			 * correct snd_nxt/snd_max and off.
8471 			 */
8472 			tp->snd_nxt = tp->snd_max;
8473 			sb_offset = tp->snd_nxt - tp->snd_una;
8474 		}
8475 	}
8476 	/*
8477 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
8478 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
8479 	 * negative length.  This can also occur when TCP opens up its
8480 	 * congestion window while receiving additional duplicate acks after
8481 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
8482 	 * the fast-retransmit.
8483 	 *
8484 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
8485 	 * set to snd_una, the sb_offset will be 0, and the length may wind
8486 	 * up 0.
8487 	 *
8488 	 * If sack_rxmit is true we are retransmitting from the scoreboard
8489 	 * in which case len is already set.
8490 	 */
8491 	if (sack_rxmit == 0) {
8492 		uint32_t avail;
8493 
8494 		avail = sbavail(sb);
8495 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
8496 			sb_offset = tp->snd_nxt - tp->snd_una;
8497 		else
8498 			sb_offset = 0;
8499 		if (IN_RECOVERY(tp->t_flags) == 0) {
8500 			if (rack->r_ctl.rc_tlp_new_data) {
8501 				/* TLP is forcing out new data */
8502 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
8503 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
8504 				}
8505 				if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
8506 					len = tp->snd_wnd;
8507 				else
8508 					len = rack->r_ctl.rc_tlp_new_data;
8509 				rack->r_ctl.rc_tlp_new_data = 0;
8510 				new_data_tlp = doing_tlp = 1;
8511 			} else {
8512 				if (sendwin > avail) {
8513 					/* use the available */
8514 					if (avail > sb_offset) {
8515 						len = (int32_t)(avail - sb_offset);
8516 					} else {
8517 						len = 0;
8518 					}
8519 				} else {
8520 					if (sendwin > sb_offset) {
8521 						len = (int32_t)(sendwin - sb_offset);
8522 					} else {
8523 						len = 0;
8524 					}
8525 				}
8526 			}
8527 		} else {
8528 			uint32_t outstanding;
8529 
8530 			/*
8531 			 * We are inside of a SACK recovery episode and are
8532 			 * sending new data, having retransmitted all the
8533 			 * data possible so far in the scoreboard.
8534 			 */
8535 			outstanding = tp->snd_max - tp->snd_una;
8536 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
8537 				if (tp->snd_wnd > outstanding) {
8538 					len = tp->snd_wnd - outstanding;
8539 					/* Check to see if we have the data */
8540 					if (((sb_offset + len) > avail) &&
8541 					    (avail > sb_offset))
8542 						len = avail - sb_offset;
8543 					else
8544 						len = 0;
8545 				} else
8546 					len = 0;
8547 			} else if (avail > sb_offset)
8548 				len = avail - sb_offset;
8549 			else
8550 				len = 0;
8551 			if (len > 0) {
8552 				if (len > rack->r_ctl.rc_prr_sndcnt)
8553 					len = rack->r_ctl.rc_prr_sndcnt;
8554 				if (len > 0) {
8555 					sub_from_prr = 1;
8556 					counter_u64_add(rack_rtm_prr_newdata, 1);
8557 				}
8558 			}
8559 			if (len > ctf_fixed_maxseg(tp)) {
8560 				/*
8561 				 * We should never send more than a MSS when
8562 				 * retransmitting or sending new data in prr
8563 				 * mode unless the override flag is on. Most
8564 				 * likely the PRR algorithm is not going to
8565 				 * let us send a lot as well :-)
8566 				 */
8567 				if (rack->r_ctl.rc_prr_sendalot == 0)
8568 					len = ctf_fixed_maxseg(tp);
8569 			} else if (len < ctf_fixed_maxseg(tp)) {
8570 				/*
8571 				 * Do we send any? The idea here is if the
8572 				 * send empty's the socket buffer we want to
8573 				 * do it. However if not then lets just wait
8574 				 * for our prr_sndcnt to get bigger.
8575 				 */
8576 				long leftinsb;
8577 
8578 				leftinsb = sbavail(sb) - sb_offset;
8579 				if (leftinsb > len) {
8580 					/* This send does not empty the sb */
8581 					len = 0;
8582 				}
8583 			}
8584 		}
8585 	}
8586 	if (prefetch_so_done == 0) {
8587 		kern_prefetch(so, &prefetch_so_done);
8588 		prefetch_so_done = 1;
8589 	}
8590 	/*
8591 	 * Lop off SYN bit if it has already been sent.  However, if this is
8592 	 * SYN-SENT state and if segment contains data and if we don't know
8593 	 * that foreign host supports TAO, suppress sending segment.
8594 	 */
8595 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
8596 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
8597 		if (tp->t_state != TCPS_SYN_RECEIVED)
8598 			flags &= ~TH_SYN;
8599 		/*
8600 		 * When sending additional segments following a TFO SYN|ACK,
8601 		 * do not include the SYN bit.
8602 		 */
8603 		if (IS_FASTOPEN(tp->t_flags) &&
8604 		    (tp->t_state == TCPS_SYN_RECEIVED))
8605 			flags &= ~TH_SYN;
8606 		sb_offset--, len++;
8607 	}
8608 	/*
8609 	 * Be careful not to send data and/or FIN on SYN segments. This
8610 	 * measure is needed to prevent interoperability problems with not
8611 	 * fully conformant TCP implementations.
8612 	 */
8613 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
8614 		len = 0;
8615 		flags &= ~TH_FIN;
8616 	}
8617 	/*
8618 	 * On TFO sockets, ensure no data is sent in the following cases:
8619 	 *
8620 	 *  - When retransmitting SYN|ACK on a passively-created socket
8621 	 *
8622 	 *  - When retransmitting SYN on an actively created socket
8623 	 *
8624 	 *  - When sending a zero-length cookie (cookie request) on an
8625 	 *    actively created socket
8626 	 *
8627 	 *  - When the socket is in the CLOSED state (RST is being sent)
8628 	 */
8629 	if (IS_FASTOPEN(tp->t_flags) &&
8630 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
8631 	     ((tp->t_state == TCPS_SYN_SENT) &&
8632 	      (tp->t_tfo_client_cookie_len == 0)) ||
8633 	     (flags & TH_RST))) {
8634 		sack_rxmit = 0;
8635 		len = 0;
8636 	}
8637 	/* Without fast-open there should never be data sent on a SYN */
8638 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
8639 		len = 0;
8640 	orig_len = len;
8641 	if (len <= 0) {
8642 		/*
8643 		 * If FIN has been sent but not acked, but we haven't been
8644 		 * called to retransmit, len will be < 0.  Otherwise, window
8645 		 * shrank after we sent into it.  If window shrank to 0,
8646 		 * cancel pending retransmit, pull snd_nxt back to (closed)
8647 		 * window, and set the persist timer if it isn't already
8648 		 * going.  If the window didn't close completely, just wait
8649 		 * for an ACK.
8650 		 *
8651 		 * We also do a general check here to ensure that we will
8652 		 * set the persist timer when we have data to send, but a
8653 		 * 0-byte window. This makes sure the persist timer is set
8654 		 * even if the packet hits one of the "goto send" lines
8655 		 * below.
8656 		 */
8657 		len = 0;
8658 		if ((tp->snd_wnd == 0) &&
8659 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8660 		    (tp->snd_una == tp->snd_max) &&
8661 		    (sb_offset < (int)sbavail(sb))) {
8662 			tp->snd_nxt = tp->snd_una;
8663 			rack_enter_persist(tp, rack, cts);
8664 		}
8665 	} else if ((rsm == NULL) &&
8666 		   ((doing_tlp == 0) || (new_data_tlp == 1)) &&
8667 		   (len < rack->r_ctl.rc_pace_max_segs)) {
8668 		/*
8669 		 * We are not sending a full segment for
8670 		 * some reason. Should we not send anything (think
8671 		 * sws or persists)?
8672 		 */
8673 		if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8674 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
8675 		    (len < (int)(sbavail(sb) - sb_offset))) {
8676 			/*
8677 			 * Here the rwnd is less than
8678 			 * the pacing size, this is not a retransmit,
8679 			 * we are established and
8680 			 * the send is not the last in the socket buffer
8681 			 * we send nothing, and may enter persists.
8682 			 */
8683 			len = 0;
8684 			if (tp->snd_max == tp->snd_una) {
8685 				/*
8686 				 * Nothing out we can
8687 				 * go into persists.
8688 				 */
8689 				rack_enter_persist(tp, rack, cts);
8690 				tp->snd_nxt = tp->snd_una;
8691 			}
8692 		} else if ((tp->snd_cwnd >= max(rack->r_ctl.rc_pace_min_segs, (maxseg * 4))) &&
8693 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8694 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8695 			   (len < rack->r_ctl.rc_pace_min_segs)) {
8696 			/*
8697 			 * Here we are not retransmitting, and
8698 			 * the cwnd is not so small that we could
8699 			 * not send at least a min size (rxt timer
8700 			 * not having gone off), We have 2 segments or
8701 			 * more already in flight, its not the tail end
8702 			 * of the socket buffer  and the cwnd is blocking
8703 			 * us from sending out a minimum pacing segment size.
8704 			 * Lets not send anything.
8705 			 */
8706 			len = 0;
8707 		} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
8708 			    min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8709 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
8710 			   (len < (int)(sbavail(sb) - sb_offset)) &&
8711 			   (TCPS_HAVEESTABLISHED(tp->t_state))) {
8712 			/*
8713 			 * Here we have a send window but we have
8714 			 * filled it up and we can't send another pacing segment.
8715 			 * We also have in flight more than 2 segments
8716 			 * and we are not completing the sb i.e. we allow
8717 			 * the last bytes of the sb to go out even if
8718 			 * its not a full pacing segment.
8719 			 */
8720 			len = 0;
8721 		}
8722 	}
8723 	/* len will be >= 0 after this point. */
8724 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
8725 	tcp_sndbuf_autoscale(tp, so, sendwin);
8726 	/*
8727 	 * Decide if we can use TCP Segmentation Offloading (if supported by
8728 	 * hardware).
8729 	 *
8730 	 * TSO may only be used if we are in a pure bulk sending state.  The
8731 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
8732 	 * options prevent using TSO.  With TSO the TCP header is the same
8733 	 * (except for the sequence number) for all generated packets.  This
8734 	 * makes it impossible to transmit any options which vary per
8735 	 * generated segment or packet.
8736 	 *
8737 	 * IPv4 handling has a clear separation of ip options and ip header
8738 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
8739 	 * the right thing below to provide length of just ip options and thus
8740 	 * checking for ipoptlen is enough to decide if ip options are present.
8741 	 */
8742 
8743 #ifdef INET6
8744 	if (isipv6)
8745 		ipoptlen = ip6_optlen(tp->t_inpcb);
8746 	else
8747 #endif
8748 		if (tp->t_inpcb->inp_options)
8749 			ipoptlen = tp->t_inpcb->inp_options->m_len -
8750 			    offsetof(struct ipoption, ipopt_list);
8751 		else
8752 			ipoptlen = 0;
8753 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8754 	/*
8755 	 * Pre-calculate here as we save another lookup into the darknesses
8756 	 * of IPsec that way and can actually decide if TSO is ok.
8757 	 */
8758 #ifdef INET6
8759 	if (isipv6 && IPSEC_ENABLED(ipv6))
8760 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
8761 #ifdef INET
8762 	else
8763 #endif
8764 #endif				/* INET6 */
8765 #ifdef INET
8766 	if (IPSEC_ENABLED(ipv4))
8767 		ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
8768 #endif				/* INET */
8769 #endif
8770 
8771 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
8772 	ipoptlen += ipsec_optlen;
8773 #endif
8774 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > ctf_fixed_maxseg(tp) &&
8775 	    (tp->t_port == 0) &&
8776 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
8777 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
8778 	    ipoptlen == 0)
8779 		tso = 1;
8780 	{
8781 		uint32_t outstanding;
8782 
8783 		outstanding = tp->snd_max - tp->snd_una;
8784 		if (tp->t_flags & TF_SENTFIN) {
8785 			/*
8786 			 * If we sent a fin, snd_max is 1 higher than
8787 			 * snd_una
8788 			 */
8789 			outstanding--;
8790 		}
8791 		if (sack_rxmit) {
8792 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
8793 				flags &= ~TH_FIN;
8794 		} else {
8795 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
8796 			    sbused(sb)))
8797 				flags &= ~TH_FIN;
8798 		}
8799 	}
8800 	recwin = sbspace(&so->so_rcv);
8801 
8802 	/*
8803 	 * Sender silly window avoidance.   We transmit under the following
8804 	 * conditions when len is non-zero:
8805 	 *
8806 	 * - We have a full segment (or more with TSO) - This is the last
8807 	 * buffer in a write()/send() and we are either idle or running
8808 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
8809 	 * then 1/2 the maximum send window's worth of data (receiver may be
8810 	 * limited the window size) - we need to retransmit
8811 	 */
8812 	if (len) {
8813 		if (len >= ctf_fixed_maxseg(tp)) {
8814 			pass = 1;
8815 			goto send;
8816 		}
8817 		/*
8818 		 * NOTE! on localhost connections an 'ack' from the remote
8819 		 * end may occur synchronously with the output and cause us
8820 		 * to flush a buffer queued with moretocome.  XXX
8821 		 *
8822 		 */
8823 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
8824 		    (idle || (tp->t_flags & TF_NODELAY)) &&
8825 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
8826 		    (tp->t_flags & TF_NOPUSH) == 0) {
8827 			pass = 2;
8828 			goto send;
8829 		}
8830 		if (tp->t_flags & TF_FORCEDATA) {	/* typ. timeout case */
8831 			pass = 3;
8832 			goto send;
8833 		}
8834 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
8835 			goto send;
8836 		}
8837 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
8838 			pass = 4;
8839 			goto send;
8840 		}
8841 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
8842 			pass = 5;
8843 			goto send;
8844 		}
8845 		if (sack_rxmit) {
8846 			pass = 6;
8847 			goto send;
8848 		}
8849 	}
8850 	/*
8851 	 * Sending of standalone window updates.
8852 	 *
8853 	 * Window updates are important when we close our window due to a
8854 	 * full socket buffer and are opening it again after the application
8855 	 * reads data from it.  Once the window has opened again and the
8856 	 * remote end starts to send again the ACK clock takes over and
8857 	 * provides the most current window information.
8858 	 *
8859 	 * We must avoid the silly window syndrome whereas every read from
8860 	 * the receive buffer, no matter how small, causes a window update
8861 	 * to be sent.  We also should avoid sending a flurry of window
8862 	 * updates when the socket buffer had queued a lot of data and the
8863 	 * application is doing small reads.
8864 	 *
8865 	 * Prevent a flurry of pointless window updates by only sending an
8866 	 * update when we can increase the advertized window by more than
8867 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
8868 	 * full or is very small be more aggressive and send an update
8869 	 * whenever we can increase by two mss sized segments. In all other
8870 	 * situations the ACK's to new incoming data will carry further
8871 	 * window increases.
8872 	 *
8873 	 * Don't send an independent window update if a delayed ACK is
8874 	 * pending (it will get piggy-backed on it) or the remote side
8875 	 * already has done a half-close and won't send more data.  Skip
8876 	 * this if the connection is in T/TCP half-open state.
8877 	 */
8878 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
8879 	    !(tp->t_flags & TF_DELACK) &&
8880 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
8881 		/*
8882 		 * "adv" is the amount we could increase the window, taking
8883 		 * into account that we are limited by TCP_MAXWIN <<
8884 		 * tp->rcv_scale.
8885 		 */
8886 		int32_t adv;
8887 		int oldwin;
8888 
8889 		adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
8890 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
8891 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
8892 			adv -= oldwin;
8893 		} else
8894 			oldwin = 0;
8895 
8896 		/*
8897 		 * If the new window size ends up being the same as the old
8898 		 * size when it is scaled, then don't force a window update.
8899 		 */
8900 		if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
8901 			goto dontupdate;
8902 
8903 		if (adv >= (int32_t)(2 * ctf_fixed_maxseg(tp)) &&
8904 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
8905 		    recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
8906 		     so->so_rcv.sb_hiwat <= 8 * ctf_fixed_maxseg(tp))) {
8907 			pass = 7;
8908 			goto send;
8909 		}
8910 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
8911 			goto send;
8912 	}
8913 dontupdate:
8914 
8915 	/*
8916 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
8917 	 * is also a catch-all for the retransmit timer timeout case.
8918 	 */
8919 	if (tp->t_flags & TF_ACKNOW) {
8920 		pass = 8;
8921 		goto send;
8922 	}
8923 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
8924 		pass = 9;
8925 		goto send;
8926 	}
8927 	if (SEQ_GT(tp->snd_up, tp->snd_una)) {
8928 		pass = 10;
8929 		goto send;
8930 	}
8931 	/*
8932 	 * If our state indicates that FIN should be sent and we have not
8933 	 * yet done so, then we need to send.
8934 	 */
8935 	if ((flags & TH_FIN) &&
8936 	    (tp->snd_nxt == tp->snd_una)) {
8937 		pass = 11;
8938 		goto send;
8939 	}
8940 	/*
8941 	 * No reason to send a segment, just return.
8942 	 */
8943 just_return:
8944 	SOCKBUF_UNLOCK(sb);
8945 just_return_nolock:
8946 	if (tot_len_this_send == 0)
8947 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
8948 	if (slot) {
8949 		/* set the rack tcb into the slot N */
8950 		counter_u64_add(rack_paced_segments, 1);
8951 	} else if (tot_len_this_send) {
8952 		counter_u64_add(rack_unpaced_segments, 1);
8953 	}
8954 	/* Check if we need to go into persists or not */
8955 	if ((rack->rc_in_persist == 0) &&
8956 	    (tp->snd_max == tp->snd_una) &&
8957 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
8958 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
8959 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd) &&
8960 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) {
8961 		/* Yes lets make sure to move to persist before timer-start */
8962 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
8963 	}
8964 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
8965 	rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
8966 	tp->t_flags &= ~TF_FORCEDATA;
8967 	return (0);
8968 
8969 send:
8970 	if ((flags & TH_FIN) &&
8971 	    sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8972 		/*
8973 		 * We do not transmit a FIN
8974 		 * with data outstanding. We
8975 		 * need to make it so all data
8976 		 * is acked first.
8977 		 */
8978 		flags &= ~TH_FIN;
8979 	}
8980 	if (doing_tlp == 0) {
8981 		/*
8982 		 * Data not a TLP, and its not the rxt firing. If it is the
8983 		 * rxt firing, we want to leave the tlp_in_progress flag on
8984 		 * so we don't send another TLP. It has to be a rack timer
8985 		 * or normal send (response to acked data) to clear the tlp
8986 		 * in progress flag.
8987 		 */
8988 		rack->rc_tlp_in_progress = 0;
8989 	}
8990 	SOCKBUF_LOCK_ASSERT(sb);
8991 	if (len > 0) {
8992 		if (len >= ctf_fixed_maxseg(tp))
8993 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
8994 		else
8995 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
8996 	}
8997 	/*
8998 	 * Before ESTABLISHED, force sending of initial options unless TCP
8999 	 * set not to do any options. NOTE: we assume that the IP/TCP header
9000 	 * plus TCP options always fit in a single mbuf, leaving room for a
9001 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
9002 	 * + optlen <= MCLBYTES
9003 	 */
9004 	optlen = 0;
9005 #ifdef INET6
9006 	if (isipv6)
9007 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
9008 	else
9009 #endif
9010 		hdrlen = sizeof(struct tcpiphdr);
9011 
9012 	/*
9013 	 * Compute options for segment. We only have to care about SYN and
9014 	 * established connection segments.  Options for SYN-ACK segments
9015 	 * are handled in TCP syncache.
9016 	 */
9017 	to.to_flags = 0;
9018 	if ((tp->t_flags & TF_NOOPT) == 0) {
9019 		/* Maximum segment size. */
9020 		if (flags & TH_SYN) {
9021 			tp->snd_nxt = tp->iss;
9022 			to.to_mss = tcp_mssopt(&inp->inp_inc);
9023 #ifdef NETFLIX_TCPOUDP
9024 			if (tp->t_port)
9025 				to.to_mss -= V_tcp_udp_tunneling_overhead;
9026 #endif
9027 			to.to_flags |= TOF_MSS;
9028 
9029 			/*
9030 			 * On SYN or SYN|ACK transmits on TFO connections,
9031 			 * only include the TFO option if it is not a
9032 			 * retransmit, as the presence of the TFO option may
9033 			 * have caused the original SYN or SYN|ACK to have
9034 			 * been dropped by a middlebox.
9035 			 */
9036 			if (IS_FASTOPEN(tp->t_flags) &&
9037 			    (tp->t_rxtshift == 0)) {
9038 				if (tp->t_state == TCPS_SYN_RECEIVED) {
9039 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
9040 					to.to_tfo_cookie =
9041 					    (u_int8_t *)&tp->t_tfo_cookie.server;
9042 					to.to_flags |= TOF_FASTOPEN;
9043 					wanted_cookie = 1;
9044 				} else if (tp->t_state == TCPS_SYN_SENT) {
9045 					to.to_tfo_len =
9046 					    tp->t_tfo_client_cookie_len;
9047 					to.to_tfo_cookie =
9048 					    tp->t_tfo_cookie.client;
9049 					to.to_flags |= TOF_FASTOPEN;
9050 					wanted_cookie = 1;
9051 					/*
9052 					 * If we wind up having more data to
9053 					 * send with the SYN than can fit in
9054 					 * one segment, don't send any more
9055 					 * until the SYN|ACK comes back from
9056 					 * the other end.
9057 					 */
9058 					sendalot = 0;
9059 				}
9060 			}
9061 		}
9062 		/* Window scaling. */
9063 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
9064 			to.to_wscale = tp->request_r_scale;
9065 			to.to_flags |= TOF_SCALE;
9066 		}
9067 		/* Timestamps. */
9068 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
9069 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
9070 			to.to_tsval = cts + tp->ts_offset;
9071 			to.to_tsecr = tp->ts_recent;
9072 			to.to_flags |= TOF_TS;
9073 		}
9074 		/* Set receive buffer autosizing timestamp. */
9075 		if (tp->rfbuf_ts == 0 &&
9076 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
9077 			tp->rfbuf_ts = tcp_ts_getticks();
9078 		/* Selective ACK's. */
9079 		if (flags & TH_SYN)
9080 			to.to_flags |= TOF_SACKPERM;
9081 		else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9082 		    tp->rcv_numsacks > 0) {
9083 			to.to_flags |= TOF_SACK;
9084 			to.to_nsacks = tp->rcv_numsacks;
9085 			to.to_sacks = (u_char *)tp->sackblks;
9086 		}
9087 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9088 		/* TCP-MD5 (RFC2385). */
9089 		if (tp->t_flags & TF_SIGNATURE)
9090 			to.to_flags |= TOF_SIGNATURE;
9091 #endif				/* TCP_SIGNATURE */
9092 
9093 		/* Processing the options. */
9094 		hdrlen += optlen = tcp_addoptions(&to, opt);
9095 		/*
9096 		 * If we wanted a TFO option to be added, but it was unable
9097 		 * to fit, ensure no data is sent.
9098 		 */
9099 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
9100 		    !(to.to_flags & TOF_FASTOPEN))
9101 			len = 0;
9102 	}
9103 #ifdef NETFLIX_TCPOUDP
9104 	if (tp->t_port) {
9105 		if (V_tcp_udp_tunneling_port == 0) {
9106 			/* The port was removed?? */
9107 			SOCKBUF_UNLOCK(&so->so_snd);
9108 			return (EHOSTUNREACH);
9109 		}
9110 		hdrlen += sizeof(struct udphdr);
9111 	}
9112 #endif
9113 #ifdef INET6
9114 	if (isipv6)
9115 		ipoptlen = ip6_optlen(tp->t_inpcb);
9116 	else
9117 #endif
9118 	if (tp->t_inpcb->inp_options)
9119 		ipoptlen = tp->t_inpcb->inp_options->m_len -
9120 		    offsetof(struct ipoption, ipopt_list);
9121 	else
9122 		ipoptlen = 0;
9123 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
9124 	ipoptlen += ipsec_optlen;
9125 #endif
9126 
9127 #ifdef KERN_TLS
9128  	/* force TSO for so TLS offload can get mss */
9129  	if (sb->sb_flags & SB_TLS_IFNET) {
9130  		force_tso = 1;
9131  	}
9132 #endif
9133 	/*
9134 	 * Adjust data length if insertion of options will bump the packet
9135 	 * length beyond the t_maxseg length. Clear the FIN bit because we
9136 	 * cut off the tail of the segment.
9137 	 */
9138 	if (len + optlen + ipoptlen > tp->t_maxseg) {
9139 		if (tso) {
9140 			uint32_t if_hw_tsomax;
9141 			uint32_t moff;
9142 			int32_t max_len;
9143 
9144 			/* extract TSO information */
9145 			if_hw_tsomax = tp->t_tsomax;
9146 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
9147 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
9148 			KASSERT(ipoptlen == 0,
9149 			    ("%s: TSO can't do IP options", __func__));
9150 
9151 			/*
9152 			 * Check if we should limit by maximum payload
9153 			 * length:
9154 			 */
9155 			if (if_hw_tsomax != 0) {
9156 				/* compute maximum TSO length */
9157 				max_len = (if_hw_tsomax - hdrlen -
9158 				    max_linkhdr);
9159 				if (max_len <= 0) {
9160 					len = 0;
9161 				} else if (len > max_len) {
9162 					sendalot = 1;
9163 					len = max_len;
9164 				}
9165 			}
9166 			/*
9167 			 * Prevent the last segment from being fractional
9168 			 * unless the send sockbuf can be emptied:
9169 			 */
9170 			max_len = (tp->t_maxseg - optlen);
9171 			if (((sb_offset + len) < sbavail(sb)) &&
9172 			    (hw_tls == 0)) {
9173 				moff = len % (u_int)max_len;
9174 				if (moff != 0) {
9175 					len -= moff;
9176 					sendalot = 1;
9177 				}
9178 			}
9179                         /*
9180 			 * In case there are too many small fragments don't
9181 			 * use TSO:
9182 			 */
9183 			if (len <= maxseg) {
9184 				len = max_len;
9185 				sendalot = 1;
9186 				tso = 0;
9187 			}
9188 			/*
9189 			 * Send the FIN in a separate segment after the bulk
9190 			 * sending is done. We don't trust the TSO
9191 			 * implementations to clear the FIN flag on all but
9192 			 * the last segment.
9193 			 */
9194 			if (tp->t_flags & TF_NEEDFIN)
9195 				sendalot = 1;
9196 
9197 		} else {
9198 			if (optlen + ipoptlen >= tp->t_maxseg) {
9199 				/*
9200 				 * Since we don't have enough space to put
9201 				 * the IP header chain and the TCP header in
9202 				 * one packet as required by RFC 7112, don't
9203 				 * send it. Also ensure that at least one
9204 				 * byte of the payload can be put into the
9205 				 * TCP segment.
9206 				 */
9207 				SOCKBUF_UNLOCK(&so->so_snd);
9208 				error = EMSGSIZE;
9209 				sack_rxmit = 0;
9210 				goto out;
9211 			}
9212 			len = tp->t_maxseg - optlen - ipoptlen;
9213 			sendalot = 1;
9214 		}
9215 	} else
9216 		tso = 0;
9217 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
9218 	    ("%s: len > IP_MAXPACKET", __func__));
9219 #ifdef DIAGNOSTIC
9220 #ifdef INET6
9221 	if (max_linkhdr + hdrlen > MCLBYTES)
9222 #else
9223 	if (max_linkhdr + hdrlen > MHLEN)
9224 #endif
9225 		panic("tcphdr too big");
9226 #endif
9227 
9228 	/*
9229 	 * This KASSERT is here to catch edge cases at a well defined place.
9230 	 * Before, those had triggered (random) panic conditions further
9231 	 * down.
9232 	 */
9233 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
9234 	if ((len == 0) &&
9235 	    (flags & TH_FIN) &&
9236 	    (sbused(sb))) {
9237 		/*
9238 		 * We have outstanding data, don't send a fin by itself!.
9239 		 */
9240 		goto just_return;
9241 	}
9242 	/*
9243 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
9244 	 * and initialize the header from the template for sends on this
9245 	 * connection.
9246 	 */
9247 	if (len) {
9248 		uint32_t max_val;
9249 		uint32_t moff;
9250 
9251 		if (rack->rc_pace_max_segs)
9252 			max_val = rack->rc_pace_max_segs * ctf_fixed_maxseg(tp);
9253 		else
9254 			max_val = len;
9255 		if (rack->r_ctl.rc_pace_max_segs < max_val)
9256 			max_val = rack->r_ctl.rc_pace_max_segs;
9257 		/*
9258 		 * We allow a limit on sending with hptsi.
9259 		 */
9260 		if (len > max_val) {
9261 			len = max_val;
9262 		}
9263 #ifdef INET6
9264 		if (MHLEN < hdrlen + max_linkhdr)
9265 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
9266 		else
9267 #endif
9268 			m = m_gethdr(M_NOWAIT, MT_DATA);
9269 
9270 		if (m == NULL) {
9271 			SOCKBUF_UNLOCK(sb);
9272 			error = ENOBUFS;
9273 			sack_rxmit = 0;
9274 			goto out;
9275 		}
9276 		m->m_data += max_linkhdr;
9277 		m->m_len = hdrlen;
9278 
9279 		/*
9280 		 * Start the m_copy functions from the closest mbuf to the
9281 		 * sb_offset in the socket buffer chain.
9282 		 */
9283 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
9284 		if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
9285 			m_copydata(mb, moff, (int)len,
9286 			    mtod(m, caddr_t)+hdrlen);
9287 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9288 				sbsndptr_adv(sb, mb, len);
9289 			m->m_len += len;
9290 		} else {
9291 			struct sockbuf *msb;
9292 
9293 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9294 				msb = NULL;
9295 			else
9296 				msb = sb;
9297 			m->m_next = tcp_m_copym(
9298 #ifdef NETFLIX_COPY_ARGS
9299 				tp,
9300 #endif
9301 				mb, moff, &len,
9302 			    if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
9303 			    ((rsm == NULL) ? hw_tls : 0)
9304 #ifdef NETFLIX_COPY_ARGS
9305 				, &filled_all
9306 #endif
9307 				);
9308 			if (len <= (tp->t_maxseg - optlen)) {
9309 				/*
9310 				 * Must have ran out of mbufs for the copy
9311 				 * shorten it to no longer need tso. Lets
9312 				 * not put on sendalot since we are low on
9313 				 * mbufs.
9314 				 */
9315 				tso = 0;
9316 			}
9317 			if (m->m_next == NULL) {
9318 				SOCKBUF_UNLOCK(sb);
9319 				(void)m_free(m);
9320 				error = ENOBUFS;
9321 				sack_rxmit = 0;
9322 				goto out;
9323 			}
9324 		}
9325 		if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
9326 			KMOD_TCPSTAT_INC(tcps_sndprobe);
9327 #ifdef STATS
9328 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
9329 				stats_voi_update_abs_u32(tp->t_stats,
9330 				    VOI_TCP_RETXPB, len);
9331 			else
9332 				stats_voi_update_abs_u64(tp->t_stats,
9333 				    VOI_TCP_TXPB, len);
9334 #endif
9335 		} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
9336 			if (rsm && (rsm->r_flags & RACK_TLP)) {
9337 				/*
9338 				 * TLP should not count in retran count, but
9339 				 * in its own bin
9340 				 */
9341 				counter_u64_add(rack_tlp_retran, 1);
9342 				counter_u64_add(rack_tlp_retran_bytes, len);
9343 			} else {
9344 				tp->t_sndrexmitpack++;
9345 				KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
9346 				KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
9347 			}
9348 #ifdef STATS
9349 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
9350 			    len);
9351 #endif
9352 		} else {
9353 			KMOD_TCPSTAT_INC(tcps_sndpack);
9354 			KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
9355 #ifdef STATS
9356 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
9357 			    len);
9358 #endif
9359 		}
9360 		/*
9361 		 * If we're sending everything we've got, set PUSH. (This
9362 		 * will keep happy those implementations which only give
9363 		 * data to the user when a buffer fills or a PUSH comes in.)
9364 		 */
9365 		if (sb_offset + len == sbused(sb) &&
9366 		    sbused(sb) &&
9367 		    !(flags & TH_SYN))
9368 			flags |= TH_PUSH;
9369 
9370 		/*
9371 		 * Are we doing pacing, if so we must calculate the slot. We
9372 		 * only do hptsi in ESTABLISHED and with no RESET being
9373 		 * sent where we have data to send.
9374 		 */
9375 		if (((tp->t_state == TCPS_ESTABLISHED) ||
9376 		    (tp->t_state == TCPS_CLOSE_WAIT) ||
9377 		    ((tp->t_state == TCPS_FIN_WAIT_1) &&
9378 		    ((tp->t_flags & TF_SENTFIN) == 0) &&
9379 		    ((flags & TH_FIN) == 0))) &&
9380 		    ((flags & TH_RST) == 0)) {
9381 			/* Get our pacing rate */
9382 			tot_len_this_send += len;
9383 			slot = rack_get_pacing_delay(rack, tp, tot_len_this_send);
9384 		}
9385 		SOCKBUF_UNLOCK(sb);
9386 	} else {
9387 		SOCKBUF_UNLOCK(sb);
9388 		if (tp->t_flags & TF_ACKNOW)
9389 			KMOD_TCPSTAT_INC(tcps_sndacks);
9390 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
9391 			KMOD_TCPSTAT_INC(tcps_sndctrl);
9392 		else if (SEQ_GT(tp->snd_up, tp->snd_una))
9393 			KMOD_TCPSTAT_INC(tcps_sndurg);
9394 		else
9395 			KMOD_TCPSTAT_INC(tcps_sndwinup);
9396 
9397 		m = m_gethdr(M_NOWAIT, MT_DATA);
9398 		if (m == NULL) {
9399 			error = ENOBUFS;
9400 			sack_rxmit = 0;
9401 			goto out;
9402 		}
9403 #ifdef INET6
9404 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
9405 		    MHLEN >= hdrlen) {
9406 			M_ALIGN(m, hdrlen);
9407 		} else
9408 #endif
9409 			m->m_data += max_linkhdr;
9410 		m->m_len = hdrlen;
9411 	}
9412 	SOCKBUF_UNLOCK_ASSERT(sb);
9413 	m->m_pkthdr.rcvif = (struct ifnet *)0;
9414 #ifdef MAC
9415 	mac_inpcb_create_mbuf(inp, m);
9416 #endif
9417 #ifdef INET6
9418 	if (isipv6) {
9419 		ip6 = mtod(m, struct ip6_hdr *);
9420 #ifdef NETFLIX_TCPOUDP
9421 		if (tp->t_port) {
9422 			udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
9423 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9424 			udp->uh_dport = tp->t_port;
9425 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
9426 			udp->uh_ulen = htons(ulen);
9427 			th = (struct tcphdr *)(udp + 1);
9428 		} else
9429 #endif
9430 			th = (struct tcphdr *)(ip6 + 1);
9431 		tcpip_fillheaders(inp,
9432 #ifdef NETFLIX_TCPOUDP
9433 				  tp->t_port,
9434 #endif
9435 				  ip6, th);
9436 	} else
9437 #endif				/* INET6 */
9438 	{
9439 		ip = mtod(m, struct ip *);
9440 #ifdef TCPDEBUG
9441 		ipov = (struct ipovly *)ip;
9442 #endif
9443 #ifdef NETFLIX_TCPOUDP
9444 		if (tp->t_port) {
9445 			udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
9446 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
9447 			udp->uh_dport = tp->t_port;
9448 			ulen = hdrlen + len - sizeof(struct ip);
9449 			udp->uh_ulen = htons(ulen);
9450 			th = (struct tcphdr *)(udp + 1);
9451 		} else
9452 #endif
9453 			th = (struct tcphdr *)(ip + 1);
9454 		tcpip_fillheaders(inp,
9455 #ifdef NETFLIX_TCPOUDP
9456 				  tp->t_port,
9457 #endif
9458 				  ip, th);
9459 	}
9460 	/*
9461 	 * Fill in fields, remembering maximum advertised window for use in
9462 	 * delaying messages about window sizes. If resending a FIN, be sure
9463 	 * not to use a new sequence number.
9464 	 */
9465 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
9466 	    tp->snd_nxt == tp->snd_max)
9467 		tp->snd_nxt--;
9468 	/*
9469 	 * If we are starting a connection, send ECN setup SYN packet. If we
9470 	 * are on a retransmit, we may resend those bits a number of times
9471 	 * as per RFC 3168.
9472 	 */
9473 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
9474 		if (tp->t_rxtshift >= 1) {
9475 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
9476 				flags |= TH_ECE | TH_CWR;
9477 		} else
9478 			flags |= TH_ECE | TH_CWR;
9479 	}
9480 	if (tp->t_state == TCPS_ESTABLISHED &&
9481 	    (tp->t_flags2 & TF2_ECN_PERMIT)) {
9482 		/*
9483 		 * If the peer has ECN, mark data packets with ECN capable
9484 		 * transmission (ECT). Ignore pure ack packets,
9485 		 * retransmissions and window probes.
9486 		 */
9487 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
9488 		    (sack_rxmit == 0) &&
9489 		    !((tp->t_flags & TF_FORCEDATA) && len == 1)) {
9490 #ifdef INET6
9491 			if (isipv6)
9492 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
9493 			else
9494 #endif
9495 				ip->ip_tos |= IPTOS_ECN_ECT0;
9496 			KMOD_TCPSTAT_INC(tcps_ecn_ect0);
9497 		}
9498 		/*
9499 		 * Reply with proper ECN notifications.
9500 		 */
9501 		if (tp->t_flags2 & TF2_ECN_SND_CWR) {
9502 			flags |= TH_CWR;
9503 			tp->t_flags2 &= ~TF2_ECN_SND_CWR;
9504 		}
9505 		if (tp->t_flags2 & TF2_ECN_SND_ECE)
9506 			flags |= TH_ECE;
9507 	}
9508 	/*
9509 	 * If we are doing retransmissions, then snd_nxt will not reflect
9510 	 * the first unsent octet.  For ACK only packets, we do not want the
9511 	 * sequence number of the retransmitted packet, we want the sequence
9512 	 * number of the next unsent octet.  So, if there is no data (and no
9513 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
9514 	 * ti_seq.  But if we are in persist state, snd_max might reflect
9515 	 * one byte beyond the right edge of the window, so use snd_nxt in
9516 	 * that case, since we know we aren't doing a retransmission.
9517 	 * (retransmit and persist are mutually exclusive...)
9518 	 */
9519 	if (sack_rxmit == 0) {
9520 		if (len || (flags & (TH_SYN | TH_FIN)) ||
9521 		    rack->rc_in_persist) {
9522 			th->th_seq = htonl(tp->snd_nxt);
9523 			rack_seq = tp->snd_nxt;
9524 		} else if (flags & TH_RST) {
9525 			/*
9526 			 * For a Reset send the last cum ack in sequence
9527 			 * (this like any other choice may still generate a
9528 			 * challenge ack, if a ack-update packet is in
9529 			 * flight).
9530 			 */
9531 			th->th_seq = htonl(tp->snd_una);
9532 			rack_seq = tp->snd_una;
9533 		} else {
9534 			th->th_seq = htonl(tp->snd_max);
9535 			rack_seq = tp->snd_max;
9536 		}
9537 	} else {
9538 		th->th_seq = htonl(rsm->r_start);
9539 		rack_seq = rsm->r_start;
9540 	}
9541 	th->th_ack = htonl(tp->rcv_nxt);
9542 	if (optlen) {
9543 		bcopy(opt, th + 1, optlen);
9544 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
9545 	}
9546 	th->th_flags = flags;
9547 	/*
9548 	 * Calculate receive window.  Don't shrink window, but avoid silly
9549 	 * window syndrome.
9550 	 * If a RST segment is sent, advertise a window of zero.
9551 	 */
9552 	if (flags & TH_RST) {
9553 		recwin = 0;
9554 	} else {
9555 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
9556 		    recwin < (long)ctf_fixed_maxseg(tp))
9557 			recwin = 0;
9558 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
9559 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
9560 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
9561 		if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
9562 			recwin = (long)TCP_MAXWIN << tp->rcv_scale;
9563 	}
9564 
9565 	/*
9566 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
9567 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
9568 	 * handled in syncache.
9569 	 */
9570 	if (flags & TH_SYN)
9571 		th->th_win = htons((u_short)
9572 		    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
9573 	else
9574 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
9575 	/*
9576 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
9577 	 * window.  This may cause the remote transmitter to stall.  This
9578 	 * flag tells soreceive() to disable delayed acknowledgements when
9579 	 * draining the buffer.  This can occur if the receiver is
9580 	 * attempting to read more data than can be buffered prior to
9581 	 * transmitting on the connection.
9582 	 */
9583 	if (th->th_win == 0) {
9584 		tp->t_sndzerowin++;
9585 		tp->t_flags |= TF_RXWIN0SENT;
9586 	} else
9587 		tp->t_flags &= ~TF_RXWIN0SENT;
9588 	if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
9589 		th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
9590 		th->th_flags |= TH_URG;
9591 	} else
9592 		/*
9593 		 * If no urgent pointer to send, then we pull the urgent
9594 		 * pointer to the left edge of the send window so that it
9595 		 * doesn't drift into the send window on sequence number
9596 		 * wraparound.
9597 		 */
9598 		tp->snd_up = tp->snd_una;	/* drag it along */
9599 
9600 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
9601 	if (to.to_flags & TOF_SIGNATURE) {
9602 		/*
9603 		 * Calculate MD5 signature and put it into the place
9604 		 * determined before.
9605 		 * NOTE: since TCP options buffer doesn't point into
9606 		 * mbuf's data, calculate offset and use it.
9607 		 */
9608 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
9609 		    (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
9610 			/*
9611 			 * Do not send segment if the calculation of MD5
9612 			 * digest has failed.
9613 			 */
9614 			goto out;
9615 		}
9616 	}
9617 #endif
9618 
9619 	/*
9620 	 * Put TCP length in extended header, and then checksum extended
9621 	 * header and data.
9622 	 */
9623 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
9624 #ifdef INET6
9625 	if (isipv6) {
9626 		/*
9627 		 * ip6_plen is not need to be filled now, and will be filled
9628 		 * in ip6_output.
9629 		 */
9630 		if (tp->t_port) {
9631 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
9632 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9633 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
9634 			th->th_sum = htons(0);
9635 			UDPSTAT_INC(udps_opackets);
9636 		} else {
9637 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
9638 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9639 			th->th_sum = in6_cksum_pseudo(ip6,
9640 			    sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
9641 			    0);
9642 		}
9643 	}
9644 #endif
9645 #if defined(INET6) && defined(INET)
9646 	else
9647 #endif
9648 #ifdef INET
9649 	{
9650 		if (tp->t_port) {
9651 			m->m_pkthdr.csum_flags = CSUM_UDP;
9652 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
9653 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
9654 			   ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
9655 			th->th_sum = htons(0);
9656 			UDPSTAT_INC(udps_opackets);
9657 		} else {
9658 			m->m_pkthdr.csum_flags = CSUM_TCP;
9659 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
9660 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
9661 			    ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
9662 			    IPPROTO_TCP + len + optlen));
9663 		}
9664 		/* IP version must be set here for ipv4/ipv6 checking later */
9665 		KASSERT(ip->ip_v == IPVERSION,
9666 		    ("%s: IP version incorrect: %d", __func__, ip->ip_v));
9667 	}
9668 #endif
9669 	/*
9670 	 * Enable TSO and specify the size of the segments. The TCP pseudo
9671 	 * header checksum is always provided. XXX: Fixme: This is currently
9672 	 * not the case for IPv6.
9673 	 */
9674 	if (tso || force_tso) {
9675 		KASSERT(force_tso || len > tp->t_maxseg - optlen,
9676 		    ("%s: len <= tso_segsz", __func__));
9677 		m->m_pkthdr.csum_flags |= CSUM_TSO;
9678 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
9679 	}
9680 	KASSERT(len + hdrlen == m_length(m, NULL),
9681 	    ("%s: mbuf chain different than expected: %d + %u != %u",
9682 	    __func__, len, hdrlen, m_length(m, NULL)));
9683 
9684 #ifdef TCP_HHOOK
9685 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
9686 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
9687 #endif
9688 #ifdef TCPDEBUG
9689 	/*
9690 	 * Trace.
9691 	 */
9692 	if (so->so_options & SO_DEBUG) {
9693 		u_short save = 0;
9694 
9695 #ifdef INET6
9696 		if (!isipv6)
9697 #endif
9698 		{
9699 			save = ipov->ih_len;
9700 			ipov->ih_len = htons(m->m_pkthdr.len	/* - hdrlen +
9701 			      * (th->th_off << 2) */ );
9702 		}
9703 		tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
9704 #ifdef INET6
9705 		if (!isipv6)
9706 #endif
9707 			ipov->ih_len = save;
9708 	}
9709 #endif				/* TCPDEBUG */
9710 
9711 	/* We're getting ready to send; log now. */
9712 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
9713 		union tcp_log_stackspecific log;
9714 		struct timeval tv;
9715 
9716 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
9717 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
9718 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
9719 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
9720 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
9721 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
9722 		log.u_bbr.flex4 = orig_len;
9723 		if (filled_all)
9724 			log.u_bbr.flex5 = 0x80000000;
9725 		else
9726 			log.u_bbr.flex5 = 0;
9727 		if (rsm || sack_rxmit) {
9728 			log.u_bbr.flex8 = 1;
9729 		} else {
9730 			log.u_bbr.flex8 = 0;
9731 		}
9732 		log.u_bbr.pkts_out = tp->t_maxseg;
9733 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
9734 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9735 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
9736 		    len, &log, false, NULL, NULL, 0, &tv);
9737 	} else
9738 		lgb = NULL;
9739 
9740 	/*
9741 	 * Fill in IP length and desired time to live and send to IP level.
9742 	 * There should be a better way to handle ttl and tos; we could keep
9743 	 * them in the template, but need a way to checksum without them.
9744 	 */
9745 	/*
9746 	 * m->m_pkthdr.len should have been set before cksum calcuration,
9747 	 * because in6_cksum() need it.
9748 	 */
9749 #ifdef INET6
9750 	if (isipv6) {
9751 		/*
9752 		 * we separately set hoplimit for every segment, since the
9753 		 * user might want to change the value via setsockopt. Also,
9754 		 * desired default hop limit might be changed via Neighbor
9755 		 * Discovery.
9756 		 */
9757 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
9758 
9759 		/*
9760 		 * Set the packet size here for the benefit of DTrace
9761 		 * probes. ip6_output() will set it properly; it's supposed
9762 		 * to include the option header lengths as well.
9763 		 */
9764 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
9765 
9766 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
9767 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9768 		else
9769 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9770 
9771 		if (tp->t_state == TCPS_SYN_SENT)
9772 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
9773 
9774 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
9775 		/* TODO: IPv6 IP6TOS_ECT bit on */
9776 		error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
9777 		    &inp->inp_route6,
9778 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
9779 		    NULL, NULL, inp);
9780 
9781 		if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
9782 			mtu = inp->inp_route6.ro_rt->rt_mtu;
9783 	}
9784 #endif				/* INET6 */
9785 #if defined(INET) && defined(INET6)
9786 	else
9787 #endif
9788 #ifdef INET
9789 	{
9790 		ip->ip_len = htons(m->m_pkthdr.len);
9791 #ifdef INET6
9792 		if (inp->inp_vflag & INP_IPV6PROTO)
9793 			ip->ip_ttl = in6_selecthlim(inp, NULL);
9794 #endif				/* INET6 */
9795 		/*
9796 		 * If we do path MTU discovery, then we set DF on every
9797 		 * packet. This might not be the best thing to do according
9798 		 * to RFC3390 Section 2. However the tcp hostcache migitates
9799 		 * the problem so it affects only the first tcp connection
9800 		 * with a host.
9801 		 *
9802 		 * NB: Don't set DF on small MTU/MSS to have a safe
9803 		 * fallback.
9804 		 */
9805 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
9806 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
9807 			if (tp->t_port == 0 || len < V_tcp_minmss) {
9808 				ip->ip_off |= htons(IP_DF);
9809 			}
9810 		} else {
9811 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
9812 		}
9813 
9814 		if (tp->t_state == TCPS_SYN_SENT)
9815 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
9816 
9817 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
9818 
9819 		error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
9820 		    ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
9821 		    inp);
9822 		if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
9823 			mtu = inp->inp_route.ro_rt->rt_mtu;
9824 	}
9825 #endif				/* INET */
9826 
9827 out:
9828 	if (lgb) {
9829 		lgb->tlb_errno = error;
9830 		lgb = NULL;
9831 	}
9832 	/*
9833 	 * In transmit state, time the transmission and arrange for the
9834 	 * retransmit.  In persist state, just set snd_max.
9835 	 */
9836 	if (error == 0) {
9837 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
9838 		    (tp->t_flags & TF_SACK_PERMIT) &&
9839 		    tp->rcv_numsacks > 0)
9840 			tcp_clean_dsack_blocks(tp);
9841 		if (len == 0)
9842 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
9843 		else if (len == 1) {
9844 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
9845 		} else if (len > 1) {
9846 			int idx;
9847 
9848 			idx = (len / ctf_fixed_maxseg(tp)) + 3;
9849 			if (idx >= TCP_MSS_ACCT_ATIMER)
9850 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
9851 			else
9852 				counter_u64_add(rack_out_size[idx], 1);
9853 		}
9854 		if (hw_tls && len > 0) {
9855 			if (filled_all) {
9856 				counter_u64_add(rack_tls_filled, 1);
9857 				rack_log_type_hrdwtso(tp, rack, len, 0, orig_len, 1);
9858 			} else {
9859 				if (rsm) {
9860 					counter_u64_add(rack_tls_rxt, 1);
9861 					rack_log_type_hrdwtso(tp, rack, len, 2, orig_len, 1);
9862 				} else if (doing_tlp) {
9863 					counter_u64_add(rack_tls_tlp, 1);
9864 					rack_log_type_hrdwtso(tp, rack, len, 3, orig_len, 1);
9865 				} else if ( (ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > sbavail(sb)) {
9866 					counter_u64_add(rack_tls_app, 1);
9867 					rack_log_type_hrdwtso(tp, rack, len, 4, orig_len, 1);
9868 				} else if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) + rack->r_ctl.rc_pace_min_segs) > tp->snd_cwnd) {
9869 					counter_u64_add(rack_tls_cwnd, 1);
9870 					rack_log_type_hrdwtso(tp, rack, len, 5, orig_len, 1);
9871 				} else if ((ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > tp->snd_wnd) {
9872 					counter_u64_add(rack_tls_rwnd, 1);
9873 					rack_log_type_hrdwtso(tp, rack, len, 6, orig_len, 1);
9874 				} else {
9875 					rack_log_type_hrdwtso(tp, rack, len, 7, orig_len, 1);
9876 					counter_u64_add(rack_tls_other, 1);
9877 				}
9878 			}
9879 		}
9880 	}
9881 	if (sub_from_prr && (error == 0)) {
9882 		if (rack->r_ctl.rc_prr_sndcnt >= len)
9883 			rack->r_ctl.rc_prr_sndcnt -= len;
9884 		else
9885 			rack->r_ctl.rc_prr_sndcnt = 0;
9886 	}
9887 	sub_from_prr = 0;
9888 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
9889 	    pass, rsm);
9890 	if ((error == 0) &&
9891 	    (len > 0) &&
9892 	    (tp->snd_una == tp->snd_max))
9893 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
9894 	if ((tp->t_flags & TF_FORCEDATA) == 0 ||
9895 	    (rack->rc_in_persist == 0)) {
9896 		tcp_seq startseq = tp->snd_nxt;
9897 
9898 		/*
9899 		 * Advance snd_nxt over sequence space of this segment.
9900 		 */
9901 		if (error)
9902 			/* We don't log or do anything with errors */
9903 			goto nomore;
9904 
9905 		if (flags & (TH_SYN | TH_FIN)) {
9906 			if (flags & TH_SYN)
9907 				tp->snd_nxt++;
9908 			if (flags & TH_FIN) {
9909 				tp->snd_nxt++;
9910 				tp->t_flags |= TF_SENTFIN;
9911 			}
9912 		}
9913 		/* In the ENOBUFS case we do *not* update snd_max */
9914 		if (sack_rxmit)
9915 			goto nomore;
9916 
9917 		tp->snd_nxt += len;
9918 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
9919 			if (tp->snd_una == tp->snd_max) {
9920 				/*
9921 				 * Update the time we just added data since
9922 				 * none was outstanding.
9923 				 */
9924 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9925 				tp->t_acktime = ticks;
9926 			}
9927 			tp->snd_max = tp->snd_nxt;
9928 			/*
9929 			 * Time this transmission if not a retransmission and
9930 			 * not currently timing anything.
9931 			 * This is only relevant in case of switching back to
9932 			 * the base stack.
9933 			 */
9934 			if (tp->t_rtttime == 0) {
9935 				tp->t_rtttime = ticks;
9936 				tp->t_rtseq = startseq;
9937 				KMOD_TCPSTAT_INC(tcps_segstimed);
9938 			}
9939 #ifdef STATS
9940 			if (!(tp->t_flags & TF_GPUTINPROG) && len) {
9941 				tp->t_flags |= TF_GPUTINPROG;
9942 				tp->gput_seq = startseq;
9943 				tp->gput_ack = startseq +
9944 				    ulmin(sbavail(sb) - sb_offset, sendwin);
9945 				tp->gput_ts = tcp_ts_getticks();
9946 			}
9947 #endif
9948 		}
9949 	} else {
9950 		/*
9951 		 * Persist case, update snd_max but since we are in persist
9952 		 * mode (no window) we do not update snd_nxt.
9953 		 */
9954 		int32_t xlen = len;
9955 
9956 		if (error)
9957 			goto nomore;
9958 
9959 		if (flags & TH_SYN)
9960 			++xlen;
9961 		if (flags & TH_FIN) {
9962 			++xlen;
9963 			tp->t_flags |= TF_SENTFIN;
9964 		}
9965 		/* In the ENOBUFS case we do *not* update snd_max */
9966 		if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
9967 			if (tp->snd_una == tp->snd_max) {
9968 				/*
9969 				 * Update the time we just added data since
9970 				 * none was outstanding.
9971 				 */
9972 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
9973 				tp->t_acktime = ticks;
9974 			}
9975 			tp->snd_max = tp->snd_nxt + len;
9976 		}
9977 	}
9978 nomore:
9979 	if (error) {
9980 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
9981 		/*
9982 		 * Failures do not advance the seq counter above. For the
9983 		 * case of ENOBUFS we will fall out and retry in 1ms with
9984 		 * the hpts. Everything else will just have to retransmit
9985 		 * with the timer.
9986 		 *
9987 		 * In any case, we do not want to loop around for another
9988 		 * send without a good reason.
9989 		 */
9990 		sendalot = 0;
9991 		switch (error) {
9992 		case EPERM:
9993 			tp->t_flags &= ~TF_FORCEDATA;
9994 			tp->t_softerror = error;
9995 			return (error);
9996 		case ENOBUFS:
9997 			if (slot == 0) {
9998 				/*
9999 				 * Pace us right away to retry in a some
10000 				 * time
10001 				 */
10002 				slot = 1 + rack->rc_enobuf;
10003 				if (rack->rc_enobuf < 255)
10004 					rack->rc_enobuf++;
10005 				if (slot > (rack->rc_rack_rtt / 2)) {
10006 					slot = rack->rc_rack_rtt / 2;
10007 				}
10008 				if (slot < 10)
10009 					slot = 10;
10010 			}
10011 			counter_u64_add(rack_saw_enobuf, 1);
10012 			error = 0;
10013 			goto enobufs;
10014 		case EMSGSIZE:
10015 			/*
10016 			 * For some reason the interface we used initially
10017 			 * to send segments changed to another or lowered
10018 			 * its MTU. If TSO was active we either got an
10019 			 * interface without TSO capabilits or TSO was
10020 			 * turned off. If we obtained mtu from ip_output()
10021 			 * then update it and try again.
10022 			 */
10023 			if (tso)
10024 				tp->t_flags &= ~TF_TSO;
10025 			if (mtu != 0) {
10026 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
10027 				goto again;
10028 			}
10029 			slot = 10;
10030 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10031 			tp->t_flags &= ~TF_FORCEDATA;
10032 			return (error);
10033 		case ENETUNREACH:
10034 			counter_u64_add(rack_saw_enetunreach, 1);
10035 		case EHOSTDOWN:
10036 		case EHOSTUNREACH:
10037 		case ENETDOWN:
10038 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
10039 				tp->t_softerror = error;
10040 			}
10041 			/* FALLTHROUGH */
10042 		default:
10043 			slot = 10;
10044 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
10045 			tp->t_flags &= ~TF_FORCEDATA;
10046 			return (error);
10047 		}
10048 	} else {
10049 		rack->rc_enobuf = 0;
10050 	}
10051 	KMOD_TCPSTAT_INC(tcps_sndtotal);
10052 
10053 	/*
10054 	 * Data sent (as far as we can tell). If this advertises a larger
10055 	 * window than any other segment, then remember the size of the
10056 	 * advertised window. Any pending ACK has now been sent.
10057 	 */
10058 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
10059 		tp->rcv_adv = tp->rcv_nxt + recwin;
10060 	tp->last_ack_sent = tp->rcv_nxt;
10061 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
10062 enobufs:
10063 	rack->r_tlp_running = 0;
10064 	if (flags & TH_RST) {
10065 		/*
10066 		 * We don't send again after sending a RST.
10067 		 */
10068 		slot = 0;
10069 		sendalot = 0;
10070 	}
10071 	if (rsm && (slot == 0)) {
10072 		/*
10073 		 * Dup ack retransmission possibly, so
10074 		 * lets assure we have at least min rack
10075 		 * time, if its a rack resend then the rack
10076 		 * to will also be set to this.
10077 		 */
10078 		slot = rack->r_ctl.rc_min_to;
10079 	}
10080 	if (slot) {
10081 		/* set the rack tcb into the slot N */
10082 		counter_u64_add(rack_paced_segments, 1);
10083 	} else if (sendalot) {
10084 		if (len)
10085 			counter_u64_add(rack_unpaced_segments, 1);
10086 		sack_rxmit = 0;
10087 		tp->t_flags &= ~TF_FORCEDATA;
10088 		goto again;
10089 	} else if (len) {
10090 		counter_u64_add(rack_unpaced_segments, 1);
10091 	}
10092 	tp->t_flags &= ~TF_FORCEDATA;
10093 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
10094 	return (error);
10095 }
10096 
10097 /*
10098  * rack_ctloutput() must drop the inpcb lock before performing copyin on
10099  * socket option arguments.  When it re-acquires the lock after the copy, it
10100  * has to revalidate that the connection is still valid for the socket
10101  * option.
10102  */
10103 static int
10104 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
10105     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10106 {
10107 	struct epoch_tracker et;
10108 	int32_t error = 0, optval;
10109 
10110 	switch (sopt->sopt_name) {
10111 	case TCP_RACK_PROP_RATE:
10112 	case TCP_RACK_PROP:
10113 	case TCP_RACK_TLP_REDUCE:
10114 	case TCP_RACK_EARLY_RECOV:
10115 	case TCP_RACK_PACE_ALWAYS:
10116 	case TCP_DELACK:
10117 	case TCP_RACK_PACE_REDUCE:
10118 	case TCP_RACK_PACE_MAX_SEG:
10119 	case TCP_RACK_PRR_SENDALOT:
10120 	case TCP_RACK_MIN_TO:
10121 	case TCP_RACK_EARLY_SEG:
10122 	case TCP_RACK_REORD_THRESH:
10123 	case TCP_RACK_REORD_FADE:
10124 	case TCP_RACK_TLP_THRESH:
10125 	case TCP_RACK_PKT_DELAY:
10126 	case TCP_RACK_TLP_USE:
10127 	case TCP_RACK_TLP_INC_VAR:
10128 	case TCP_RACK_IDLE_REDUCE_HIGH:
10129 	case TCP_RACK_MIN_PACE:
10130 	case TCP_RACK_GP_INCREASE:
10131 	case TCP_BBR_RACK_RTT_USE:
10132 	case TCP_BBR_USE_RACK_CHEAT:
10133 	case TCP_RACK_DO_DETECTION:
10134 	case TCP_DATA_AFTER_CLOSE:
10135 		break;
10136 	default:
10137 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10138 		break;
10139 	}
10140 	INP_WUNLOCK(inp);
10141 	error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
10142 	if (error)
10143 		return (error);
10144 	INP_WLOCK(inp);
10145 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
10146 		INP_WUNLOCK(inp);
10147 		return (ECONNRESET);
10148 	}
10149 	tp = intotcpcb(inp);
10150 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10151 	switch (sopt->sopt_name) {
10152 	case TCP_RACK_DO_DETECTION:
10153 		RACK_OPTS_INC(tcp_rack_do_detection);
10154 		if (optval == 0)
10155 			rack->do_detection = 0;
10156 		else
10157 			rack->do_detection = 1;
10158 		break;
10159 	case TCP_RACK_PROP_RATE:
10160 		if ((optval <= 0) || (optval >= 100)) {
10161 			error = EINVAL;
10162 			break;
10163 		}
10164 		RACK_OPTS_INC(tcp_rack_prop_rate);
10165 		rack->r_ctl.rc_prop_rate = optval;
10166 		break;
10167 	case TCP_RACK_TLP_USE:
10168 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
10169 			error = EINVAL;
10170 			break;
10171 		}
10172 		RACK_OPTS_INC(tcp_tlp_use);
10173 		rack->rack_tlp_threshold_use = optval;
10174 		break;
10175 	case TCP_RACK_PROP:
10176 		/* RACK proportional rate reduction (bool) */
10177 		RACK_OPTS_INC(tcp_rack_prop);
10178 		rack->r_ctl.rc_prop_reduce = optval;
10179 		break;
10180 	case TCP_RACK_TLP_REDUCE:
10181 		/* RACK TLP cwnd reduction (bool) */
10182 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
10183 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
10184 		break;
10185 	case TCP_RACK_EARLY_RECOV:
10186 		/* Should recovery happen early (bool) */
10187 		RACK_OPTS_INC(tcp_rack_early_recov);
10188 		rack->r_ctl.rc_early_recovery = optval;
10189 		break;
10190 	case TCP_RACK_PACE_ALWAYS:
10191 		/* Use the always pace method (bool)  */
10192 		RACK_OPTS_INC(tcp_rack_pace_always);
10193 		if (optval > 0)
10194 			rack->rc_always_pace = 1;
10195 		else
10196 			rack->rc_always_pace = 0;
10197 		break;
10198 	case TCP_RACK_PACE_REDUCE:
10199 		/* RACK Hptsi reduction factor (divisor) */
10200 		RACK_OPTS_INC(tcp_rack_pace_reduce);
10201 		if (optval)
10202 			/* Must be non-zero */
10203 			rack->rc_pace_reduce = optval;
10204 		else
10205 			error = EINVAL;
10206 		break;
10207 	case TCP_RACK_PACE_MAX_SEG:
10208 		/* Max segments in a pace */
10209 		RACK_OPTS_INC(tcp_rack_max_seg);
10210 		rack->rc_pace_max_segs = optval;
10211 		rack_set_pace_segments(tp, rack);
10212 		break;
10213 	case TCP_RACK_PRR_SENDALOT:
10214 		/* Allow PRR to send more than one seg */
10215 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
10216 		rack->r_ctl.rc_prr_sendalot = optval;
10217 		break;
10218 	case TCP_RACK_MIN_TO:
10219 		/* Minimum time between rack t-o's in ms */
10220 		RACK_OPTS_INC(tcp_rack_min_to);
10221 		rack->r_ctl.rc_min_to = optval;
10222 		break;
10223 	case TCP_RACK_EARLY_SEG:
10224 		/* If early recovery max segments */
10225 		RACK_OPTS_INC(tcp_rack_early_seg);
10226 		rack->r_ctl.rc_early_recovery_segs = optval;
10227 		break;
10228 	case TCP_RACK_REORD_THRESH:
10229 		/* RACK reorder threshold (shift amount) */
10230 		RACK_OPTS_INC(tcp_rack_reord_thresh);
10231 		if ((optval > 0) && (optval < 31))
10232 			rack->r_ctl.rc_reorder_shift = optval;
10233 		else
10234 			error = EINVAL;
10235 		break;
10236 	case TCP_RACK_REORD_FADE:
10237 		/* Does reordering fade after ms time */
10238 		RACK_OPTS_INC(tcp_rack_reord_fade);
10239 		rack->r_ctl.rc_reorder_fade = optval;
10240 		break;
10241 	case TCP_RACK_TLP_THRESH:
10242 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10243 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
10244 		if (optval)
10245 			rack->r_ctl.rc_tlp_threshold = optval;
10246 		else
10247 			error = EINVAL;
10248 		break;
10249 	case TCP_BBR_USE_RACK_CHEAT:
10250 		RACK_OPTS_INC(tcp_rack_cheat);
10251 		if (optval)
10252 			rack->use_rack_cheat = 1;
10253 		else
10254 			rack->use_rack_cheat = 0;
10255 		break;
10256 	case TCP_RACK_PKT_DELAY:
10257 		/* RACK added ms i.e. rack-rtt + reord + N */
10258 		RACK_OPTS_INC(tcp_rack_pkt_delay);
10259 		rack->r_ctl.rc_pkt_delay = optval;
10260 		break;
10261 	case TCP_RACK_TLP_INC_VAR:
10262 		/* Does TLP include rtt variance in t-o */
10263 		error = EINVAL;
10264 		break;
10265 	case TCP_RACK_IDLE_REDUCE_HIGH:
10266 		error = EINVAL;
10267 		break;
10268 	case TCP_DELACK:
10269 		if (optval == 0)
10270 			tp->t_delayed_ack = 0;
10271 		else
10272 			tp->t_delayed_ack = 1;
10273 		if (tp->t_flags & TF_DELACK) {
10274 			tp->t_flags &= ~TF_DELACK;
10275 			tp->t_flags |= TF_ACKNOW;
10276 			NET_EPOCH_ENTER(et);
10277 			rack_output(tp);
10278 			NET_EPOCH_EXIT(et);
10279 		}
10280 		break;
10281 	case TCP_RACK_MIN_PACE:
10282 		RACK_OPTS_INC(tcp_rack_min_pace);
10283 		if (optval > 3)
10284 			rack->r_enforce_min_pace = 3;
10285 		else
10286 			rack->r_enforce_min_pace = optval;
10287 		break;
10288 	case TCP_RACK_GP_INCREASE:
10289 		if ((optval >= 0) &&
10290 		    (optval <= 256))
10291 			rack->rack_per_of_gp = optval;
10292 		else
10293 			error = EINVAL;
10294 
10295 		break;
10296 	case TCP_BBR_RACK_RTT_USE:
10297 		if ((optval != USE_RTT_HIGH) &&
10298 		    (optval != USE_RTT_LOW) &&
10299 		    (optval != USE_RTT_AVG))
10300 			error = EINVAL;
10301 		else
10302 			rack->r_ctl.rc_rate_sample_method = optval;
10303 		break;
10304 	case TCP_DATA_AFTER_CLOSE:
10305 		if (optval)
10306 			rack->rc_allow_data_af_clo = 1;
10307 		else
10308 			rack->rc_allow_data_af_clo = 0;
10309 		break;
10310 	default:
10311 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10312 		break;
10313 	}
10314 #ifdef NETFLIX_STATS
10315 	tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
10316 #endif
10317 	INP_WUNLOCK(inp);
10318 	return (error);
10319 }
10320 
10321 static int
10322 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
10323     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
10324 {
10325 	int32_t error, optval;
10326 
10327 	/*
10328 	 * Because all our options are either boolean or an int, we can just
10329 	 * pull everything into optval and then unlock and copy. If we ever
10330 	 * add a option that is not a int, then this will have quite an
10331 	 * impact to this routine.
10332 	 */
10333 	error = 0;
10334 	switch (sopt->sopt_name) {
10335 	case TCP_RACK_DO_DETECTION:
10336 		optval = rack->do_detection;
10337 		break;
10338 
10339 	case TCP_RACK_PROP_RATE:
10340 		optval = rack->r_ctl.rc_prop_rate;
10341 		break;
10342 	case TCP_RACK_PROP:
10343 		/* RACK proportional rate reduction (bool) */
10344 		optval = rack->r_ctl.rc_prop_reduce;
10345 		break;
10346 	case TCP_RACK_TLP_REDUCE:
10347 		/* RACK TLP cwnd reduction (bool) */
10348 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
10349 		break;
10350 	case TCP_RACK_EARLY_RECOV:
10351 		/* Should recovery happen early (bool) */
10352 		optval = rack->r_ctl.rc_early_recovery;
10353 		break;
10354 	case TCP_RACK_PACE_REDUCE:
10355 		/* RACK Hptsi reduction factor (divisor) */
10356 		optval = rack->rc_pace_reduce;
10357 		break;
10358 	case TCP_RACK_PACE_MAX_SEG:
10359 		/* Max segments in a pace */
10360 		optval = rack->rc_pace_max_segs;
10361 		break;
10362 	case TCP_RACK_PACE_ALWAYS:
10363 		/* Use the always pace method */
10364 		optval = rack->rc_always_pace;
10365 		break;
10366 	case TCP_RACK_PRR_SENDALOT:
10367 		/* Allow PRR to send more than one seg */
10368 		optval = rack->r_ctl.rc_prr_sendalot;
10369 		break;
10370 	case TCP_RACK_MIN_TO:
10371 		/* Minimum time between rack t-o's in ms */
10372 		optval = rack->r_ctl.rc_min_to;
10373 		break;
10374 	case TCP_RACK_EARLY_SEG:
10375 		/* If early recovery max segments */
10376 		optval = rack->r_ctl.rc_early_recovery_segs;
10377 		break;
10378 	case TCP_RACK_REORD_THRESH:
10379 		/* RACK reorder threshold (shift amount) */
10380 		optval = rack->r_ctl.rc_reorder_shift;
10381 		break;
10382 	case TCP_RACK_REORD_FADE:
10383 		/* Does reordering fade after ms time */
10384 		optval = rack->r_ctl.rc_reorder_fade;
10385 		break;
10386 	case TCP_BBR_USE_RACK_CHEAT:
10387 		/* Do we use the rack cheat for rxt */
10388 		optval = rack->use_rack_cheat;
10389 		break;
10390 	case TCP_RACK_TLP_THRESH:
10391 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
10392 		optval = rack->r_ctl.rc_tlp_threshold;
10393 		break;
10394 	case TCP_RACK_PKT_DELAY:
10395 		/* RACK added ms i.e. rack-rtt + reord + N */
10396 		optval = rack->r_ctl.rc_pkt_delay;
10397 		break;
10398 	case TCP_RACK_TLP_USE:
10399 		optval = rack->rack_tlp_threshold_use;
10400 		break;
10401 	case TCP_RACK_TLP_INC_VAR:
10402 		/* Does TLP include rtt variance in t-o */
10403 		error = EINVAL;
10404 		break;
10405 	case TCP_RACK_IDLE_REDUCE_HIGH:
10406 		error = EINVAL;
10407 		break;
10408 	case TCP_RACK_MIN_PACE:
10409 		optval = rack->r_enforce_min_pace;
10410 		break;
10411 	case TCP_RACK_GP_INCREASE:
10412 		optval = rack->rack_per_of_gp;
10413 		break;
10414 	case TCP_BBR_RACK_RTT_USE:
10415 		optval = rack->r_ctl.rc_rate_sample_method;
10416 		break;
10417 	case TCP_DELACK:
10418 		optval = tp->t_delayed_ack;
10419 		break;
10420 	case TCP_DATA_AFTER_CLOSE:
10421 		optval = rack->rc_allow_data_af_clo;
10422 		break;
10423 	default:
10424 		return (tcp_default_ctloutput(so, sopt, inp, tp));
10425 		break;
10426 	}
10427 	INP_WUNLOCK(inp);
10428 	if (error == 0) {
10429 		error = sooptcopyout(sopt, &optval, sizeof optval);
10430 	}
10431 	return (error);
10432 }
10433 
10434 static int
10435 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
10436 {
10437 	int32_t error = EINVAL;
10438 	struct tcp_rack *rack;
10439 
10440 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10441 	if (rack == NULL) {
10442 		/* Huh? */
10443 		goto out;
10444 	}
10445 	if (sopt->sopt_dir == SOPT_SET) {
10446 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
10447 	} else if (sopt->sopt_dir == SOPT_GET) {
10448 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
10449 	}
10450 out:
10451 	INP_WUNLOCK(inp);
10452 	return (error);
10453 }
10454 
10455 
10456 static struct tcp_function_block __tcp_rack = {
10457 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
10458 	.tfb_tcp_output = rack_output,
10459 	.tfb_do_queued_segments = ctf_do_queued_segments,
10460 	.tfb_do_segment_nounlock = rack_do_segment_nounlock,
10461 	.tfb_tcp_do_segment = rack_do_segment,
10462 	.tfb_tcp_ctloutput = rack_ctloutput,
10463 	.tfb_tcp_fb_init = rack_init,
10464 	.tfb_tcp_fb_fini = rack_fini,
10465 	.tfb_tcp_timer_stop_all = rack_stopall,
10466 	.tfb_tcp_timer_activate = rack_timer_activate,
10467 	.tfb_tcp_timer_active = rack_timer_active,
10468 	.tfb_tcp_timer_stop = rack_timer_stop,
10469 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
10470 	.tfb_tcp_handoff_ok = rack_handoff_ok
10471 };
10472 
10473 static const char *rack_stack_names[] = {
10474 	__XSTRING(STACKNAME),
10475 #ifdef STACKALIAS
10476 	__XSTRING(STACKALIAS),
10477 #endif
10478 };
10479 
10480 static int
10481 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
10482 {
10483 	memset(mem, 0, size);
10484 	return (0);
10485 }
10486 
10487 static void
10488 rack_dtor(void *mem, int32_t size, void *arg)
10489 {
10490 
10491 }
10492 
10493 static bool rack_mod_inited = false;
10494 
10495 static int
10496 tcp_addrack(module_t mod, int32_t type, void *data)
10497 {
10498 	int32_t err = 0;
10499 	int num_stacks;
10500 
10501 	switch (type) {
10502 	case MOD_LOAD:
10503 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
10504 		    sizeof(struct rack_sendmap),
10505 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
10506 
10507 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
10508 		    sizeof(struct tcp_rack),
10509 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
10510 
10511 		sysctl_ctx_init(&rack_sysctl_ctx);
10512 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
10513 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
10514 		    OID_AUTO,
10515 #ifdef STACKALIAS
10516 		    __XSTRING(STACKALIAS),
10517 #else
10518 		    __XSTRING(STACKNAME),
10519 #endif
10520 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
10521 		    "");
10522 		if (rack_sysctl_root == NULL) {
10523 			printf("Failed to add sysctl node\n");
10524 			err = EFAULT;
10525 			goto free_uma;
10526 		}
10527 		rack_init_sysctls();
10528 		num_stacks = nitems(rack_stack_names);
10529 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
10530 		    rack_stack_names, &num_stacks);
10531 		if (err) {
10532 			printf("Failed to register %s stack name for "
10533 			    "%s module\n", rack_stack_names[num_stacks],
10534 			    __XSTRING(MODNAME));
10535 			sysctl_ctx_free(&rack_sysctl_ctx);
10536 free_uma:
10537 			uma_zdestroy(rack_zone);
10538 			uma_zdestroy(rack_pcb_zone);
10539 			rack_counter_destroy();
10540 			printf("Failed to register rack module -- err:%d\n", err);
10541 			return (err);
10542 		}
10543 		tcp_lro_reg_mbufq();
10544 		rack_mod_inited = true;
10545 		break;
10546 	case MOD_QUIESCE:
10547 		err = deregister_tcp_functions(&__tcp_rack, true, false);
10548 		break;
10549 	case MOD_UNLOAD:
10550 		err = deregister_tcp_functions(&__tcp_rack, false, true);
10551 		if (err == EBUSY)
10552 			break;
10553 		if (rack_mod_inited) {
10554 			uma_zdestroy(rack_zone);
10555 			uma_zdestroy(rack_pcb_zone);
10556 			sysctl_ctx_free(&rack_sysctl_ctx);
10557 			rack_counter_destroy();
10558 			rack_mod_inited = false;
10559 		}
10560 		tcp_lro_dereg_mbufq();
10561 		err = 0;
10562 		break;
10563 	default:
10564 		return (EOPNOTSUPP);
10565 	}
10566 	return (err);
10567 }
10568 
10569 static moduledata_t tcp_rack = {
10570 	.name = __XSTRING(MODNAME),
10571 	.evhand = tcp_addrack,
10572 	.priv = 0
10573 };
10574 
10575 MODULE_VERSION(MODNAME, 1);
10576 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
10577 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
10578