1 /*- 2 * Copyright (c) 2016-2020 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_ipsec.h" 33 #include "opt_tcpdebug.h" 34 #include "opt_ratelimit.h" 35 #include <sys/param.h> 36 #include <sys/arb.h> 37 #include <sys/module.h> 38 #include <sys/kernel.h> 39 #ifdef TCP_HHOOK 40 #include <sys/hhook.h> 41 #endif 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/mbuf.h> 47 #include <sys/proc.h> /* for proc0 declaration */ 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #ifdef STATS 53 #include <sys/qmath.h> 54 #include <sys/tree.h> 55 #include <sys/stats.h> /* Must come after qmath.h and tree.h */ 56 #else 57 #include <sys/tree.h> 58 #endif 59 #include <sys/refcount.h> 60 #include <sys/queue.h> 61 #include <sys/tim_filter.h> 62 #include <sys/smp.h> 63 #include <sys/kthread.h> 64 #include <sys/kern_prefetch.h> 65 #include <sys/protosw.h> 66 #ifdef TCP_ACCOUNTING 67 #include <sys/sched.h> 68 #include <machine/cpu.h> 69 #endif 70 #include <vm/uma.h> 71 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #define TCPSTATES /* for logging */ 77 78 #include <netinet/in.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_pcb.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 83 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 84 #include <netinet/ip_var.h> 85 #include <netinet/ip6.h> 86 #include <netinet6/in6_pcb.h> 87 #include <netinet6/ip6_var.h> 88 #include <netinet/tcp.h> 89 #define TCPOUTFLAGS 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_log_buf.h> 92 #include <netinet/tcp_seq.h> 93 #include <netinet/tcp_timer.h> 94 #include <netinet/tcp_var.h> 95 #include <netinet/tcp_hpts.h> 96 #include <netinet/tcp_ratelimit.h> 97 #include <netinet/tcp_accounting.h> 98 #include <netinet/tcpip.h> 99 #include <netinet/cc/cc.h> 100 #include <netinet/cc/cc_newreno.h> 101 #include <netinet/tcp_fastopen.h> 102 #include <netinet/tcp_lro.h> 103 #ifdef NETFLIX_SHARED_CWND 104 #include <netinet/tcp_shared_cwnd.h> 105 #endif 106 #ifdef TCPDEBUG 107 #include <netinet/tcp_debug.h> 108 #endif /* TCPDEBUG */ 109 #ifdef TCP_OFFLOAD 110 #include <netinet/tcp_offload.h> 111 #endif 112 #ifdef INET6 113 #include <netinet6/tcp6_var.h> 114 #endif 115 116 #include <netipsec/ipsec_support.h> 117 118 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 119 #include <netipsec/ipsec.h> 120 #include <netipsec/ipsec6.h> 121 #endif /* IPSEC */ 122 123 #include <netinet/udp.h> 124 #include <netinet/udp_var.h> 125 #include <machine/in_cksum.h> 126 127 #ifdef MAC 128 #include <security/mac/mac_framework.h> 129 #endif 130 #include "sack_filter.h" 131 #include "tcp_rack.h" 132 #include "rack_bbr_common.h" 133 134 uma_zone_t rack_zone; 135 uma_zone_t rack_pcb_zone; 136 137 #ifndef TICKS2SBT 138 #define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t))) 139 #endif 140 141 VNET_DECLARE(uint32_t, newreno_beta); 142 VNET_DECLARE(uint32_t, newreno_beta_ecn); 143 #define V_newreno_beta VNET(newreno_beta) 144 #define V_newreno_beta_ecn VNET(newreno_beta_ecn) 145 146 147 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block"); 148 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options"); 149 150 struct sysctl_ctx_list rack_sysctl_ctx; 151 struct sysctl_oid *rack_sysctl_root; 152 153 #define CUM_ACKED 1 154 #define SACKED 2 155 156 /* 157 * The RACK module incorporates a number of 158 * TCP ideas that have been put out into the IETF 159 * over the last few years: 160 * - Matt Mathis's Rate Halving which slowly drops 161 * the congestion window so that the ack clock can 162 * be maintained during a recovery. 163 * - Yuchung Cheng's RACK TCP (for which its named) that 164 * will stop us using the number of dup acks and instead 165 * use time as the gage of when we retransmit. 166 * - Reorder Detection of RFC4737 and the Tail-Loss probe draft 167 * of Dukkipati et.al. 168 * RACK depends on SACK, so if an endpoint arrives that 169 * cannot do SACK the state machine below will shuttle the 170 * connection back to using the "default" TCP stack that is 171 * in FreeBSD. 172 * 173 * To implement RACK the original TCP stack was first decomposed 174 * into a functional state machine with individual states 175 * for each of the possible TCP connection states. The do_segement 176 * functions role in life is to mandate the connection supports SACK 177 * initially and then assure that the RACK state matches the conenction 178 * state before calling the states do_segment function. Each 179 * state is simplified due to the fact that the original do_segment 180 * has been decomposed and we *know* what state we are in (no 181 * switches on the state) and all tests for SACK are gone. This 182 * greatly simplifies what each state does. 183 * 184 * TCP output is also over-written with a new version since it 185 * must maintain the new rack scoreboard. 186 * 187 */ 188 static int32_t rack_tlp_thresh = 1; 189 static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */ 190 static int32_t rack_tlp_use_greater = 1; 191 static int32_t rack_reorder_thresh = 2; 192 static int32_t rack_reorder_fade = 60000000; /* 0 - never fade, def 60,000,000 193 * - 60 seconds */ 194 static uint8_t rack_req_measurements = 1; 195 /* Attack threshold detections */ 196 static uint32_t rack_highest_sack_thresh_seen = 0; 197 static uint32_t rack_highest_move_thresh_seen = 0; 198 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */ 199 static int32_t rack_hw_pace_extra_slots = 2; /* 2 extra MSS time betweens */ 200 static int32_t rack_hw_rate_caps = 1; /* 1; */ 201 static int32_t rack_hw_rate_min = 0; /* 1500000;*/ 202 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */ 203 static int32_t rack_hw_up_only = 1; 204 static int32_t rack_stats_gets_ms_rtt = 1; 205 static int32_t rack_prr_addbackmax = 2; 206 207 static int32_t rack_pkt_delay = 1000; 208 static int32_t rack_send_a_lot_in_prr = 1; 209 static int32_t rack_min_to = 1000; /* Number of microsecond min timeout */ 210 static int32_t rack_verbose_logging = 0; 211 static int32_t rack_ignore_data_after_close = 1; 212 static int32_t rack_enable_shared_cwnd = 1; 213 static int32_t rack_use_cmp_acks = 1; 214 static int32_t rack_use_fsb = 1; 215 static int32_t rack_use_rfo = 1; 216 static int32_t rack_use_rsm_rfo = 1; 217 static int32_t rack_max_abc_post_recovery = 2; 218 static int32_t rack_client_low_buf = 0; 219 #ifdef TCP_ACCOUNTING 220 static int32_t rack_tcp_accounting = 0; 221 #endif 222 static int32_t rack_limits_scwnd = 1; 223 static int32_t rack_enable_mqueue_for_nonpaced = 0; 224 static int32_t rack_disable_prr = 0; 225 static int32_t use_rack_rr = 1; 226 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */ 227 static int32_t rack_persist_min = 250000; /* 250usec */ 228 static int32_t rack_persist_max = 2000000; /* 2 Second in usec's */ 229 static int32_t rack_sack_not_required = 1; /* set to one to allow non-sack to use rack */ 230 static int32_t rack_default_init_window = 0; /* Use system default */ 231 static int32_t rack_limit_time_with_srtt = 0; 232 static int32_t rack_autosndbuf_inc = 20; /* In percentage form */ 233 static int32_t rack_enobuf_hw_boost_mult = 2; /* How many times the hw rate we boost slot using time_between */ 234 static int32_t rack_enobuf_hw_max = 12000; /* 12 ms in usecs */ 235 static int32_t rack_enobuf_hw_min = 10000; /* 10 ms in usecs */ 236 static int32_t rack_hw_rwnd_factor = 2; /* How many max_segs the rwnd must be before we hold off sending */ 237 /* 238 * Currently regular tcp has a rto_min of 30ms 239 * the backoff goes 12 times so that ends up 240 * being a total of 122.850 seconds before a 241 * connection is killed. 242 */ 243 static uint32_t rack_def_data_window = 20; 244 static uint32_t rack_goal_bdp = 2; 245 static uint32_t rack_min_srtts = 1; 246 static uint32_t rack_min_measure_usec = 0; 247 static int32_t rack_tlp_min = 10000; /* 10ms */ 248 static int32_t rack_rto_min = 30000; /* 30,000 usec same as main freebsd */ 249 static int32_t rack_rto_max = 4000000; /* 4 seconds in usec's */ 250 static const int32_t rack_free_cache = 2; 251 static int32_t rack_hptsi_segments = 40; 252 static int32_t rack_rate_sample_method = USE_RTT_LOW; 253 static int32_t rack_pace_every_seg = 0; 254 static int32_t rack_delayed_ack_time = 40000; /* 40ms in usecs */ 255 static int32_t rack_slot_reduction = 4; 256 static int32_t rack_wma_divisor = 8; /* For WMA calculation */ 257 static int32_t rack_cwnd_block_ends_measure = 0; 258 static int32_t rack_rwnd_block_ends_measure = 0; 259 static int32_t rack_def_profile = 0; 260 261 static int32_t rack_lower_cwnd_at_tlp = 0; 262 static int32_t rack_limited_retran = 0; 263 static int32_t rack_always_send_oldest = 0; 264 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE; 265 266 static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */ 267 static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */ 268 static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */ 269 270 /* Probertt */ 271 static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */ 272 static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */ 273 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */ 274 static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */ 275 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */ 276 277 static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */ 278 static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */ 279 static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */ 280 static uint32_t rack_probertt_use_min_rtt_exit = 0; 281 static uint32_t rack_probe_rtt_sets_cwnd = 0; 282 static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */ 283 static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in usecs */ 284 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */ 285 static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */ 286 static uint32_t rack_min_probertt_hold = 40000; /* Equal to delayed ack time */ 287 static uint32_t rack_probertt_filter_life = 10000000; 288 static uint32_t rack_probertt_lower_within = 10; 289 static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds) to count as a lowering */ 290 static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */ 291 static int32_t rack_probertt_clear_is = 1; 292 static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */ 293 static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */ 294 295 /* Part of pacing */ 296 static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */ 297 298 /* Timely information */ 299 /* Combine these two gives the range of 'no change' to bw */ 300 /* ie the up/down provide the upper and lower bound */ 301 static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */ 302 static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */ 303 static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */ 304 static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */ 305 static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */ 306 static int32_t rack_gp_decrease_per = 20; /* 20% decrease in multipler */ 307 static int32_t rack_gp_increase_per = 2; /* 2% increase in multipler */ 308 static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */ 309 static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */ 310 static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */ 311 static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */ 312 static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */ 313 static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */ 314 static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */ 315 static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */ 316 static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */ 317 static int32_t rack_use_max_for_nobackoff = 0; 318 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */ 319 static int32_t rack_timely_no_stopping = 0; 320 static int32_t rack_down_raise_thresh = 100; 321 static int32_t rack_req_segs = 1; 322 static uint64_t rack_bw_rate_cap = 0; 323 324 /* Weird delayed ack mode */ 325 static int32_t rack_use_imac_dack = 0; 326 /* Rack specific counters */ 327 counter_u64_t rack_badfr; 328 counter_u64_t rack_badfr_bytes; 329 counter_u64_t rack_rtm_prr_retran; 330 counter_u64_t rack_rtm_prr_newdata; 331 counter_u64_t rack_timestamp_mismatch; 332 counter_u64_t rack_reorder_seen; 333 counter_u64_t rack_paced_segments; 334 counter_u64_t rack_unpaced_segments; 335 counter_u64_t rack_calc_zero; 336 counter_u64_t rack_calc_nonzero; 337 counter_u64_t rack_saw_enobuf; 338 counter_u64_t rack_saw_enobuf_hw; 339 counter_u64_t rack_saw_enetunreach; 340 counter_u64_t rack_per_timer_hole; 341 counter_u64_t rack_large_ackcmp; 342 counter_u64_t rack_small_ackcmp; 343 #ifdef INVARIANTS 344 counter_u64_t rack_adjust_map_bw; 345 #endif 346 /* Tail loss probe counters */ 347 counter_u64_t rack_tlp_tot; 348 counter_u64_t rack_tlp_newdata; 349 counter_u64_t rack_tlp_retran; 350 counter_u64_t rack_tlp_retran_bytes; 351 counter_u64_t rack_tlp_retran_fail; 352 counter_u64_t rack_to_tot; 353 counter_u64_t rack_to_arm_rack; 354 counter_u64_t rack_to_arm_tlp; 355 counter_u64_t rack_hot_alloc; 356 counter_u64_t rack_to_alloc; 357 counter_u64_t rack_to_alloc_hard; 358 counter_u64_t rack_to_alloc_emerg; 359 counter_u64_t rack_to_alloc_limited; 360 counter_u64_t rack_alloc_limited_conns; 361 counter_u64_t rack_split_limited; 362 363 #define MAX_NUM_OF_CNTS 13 364 counter_u64_t rack_proc_comp_ack[MAX_NUM_OF_CNTS]; 365 counter_u64_t rack_multi_single_eq; 366 counter_u64_t rack_proc_non_comp_ack; 367 368 counter_u64_t rack_fto_send; 369 counter_u64_t rack_fto_rsm_send; 370 counter_u64_t rack_nfto_resend; 371 counter_u64_t rack_non_fto_send; 372 counter_u64_t rack_extended_rfo; 373 374 counter_u64_t rack_sack_proc_all; 375 counter_u64_t rack_sack_proc_short; 376 counter_u64_t rack_sack_proc_restart; 377 counter_u64_t rack_sack_attacks_detected; 378 counter_u64_t rack_sack_attacks_reversed; 379 counter_u64_t rack_sack_used_next_merge; 380 counter_u64_t rack_sack_splits; 381 counter_u64_t rack_sack_used_prev_merge; 382 counter_u64_t rack_sack_skipped_acked; 383 counter_u64_t rack_ack_total; 384 counter_u64_t rack_express_sack; 385 counter_u64_t rack_sack_total; 386 counter_u64_t rack_move_none; 387 counter_u64_t rack_move_some; 388 389 counter_u64_t rack_used_tlpmethod; 390 counter_u64_t rack_used_tlpmethod2; 391 counter_u64_t rack_enter_tlp_calc; 392 counter_u64_t rack_input_idle_reduces; 393 counter_u64_t rack_collapsed_win; 394 counter_u64_t rack_tlp_does_nada; 395 counter_u64_t rack_try_scwnd; 396 counter_u64_t rack_hw_pace_init_fail; 397 counter_u64_t rack_hw_pace_lost; 398 counter_u64_t rack_sbsndptr_right; 399 counter_u64_t rack_sbsndptr_wrong; 400 401 /* Temp CPU counters */ 402 counter_u64_t rack_find_high; 403 404 counter_u64_t rack_progress_drops; 405 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE]; 406 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]; 407 408 409 #define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2))) 410 411 #define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax) do { \ 412 (tv) = (value) + TICKS_2_USEC(tcp_rexmit_slop); \ 413 if ((u_long)(tv) < (u_long)(tvmin)) \ 414 (tv) = (tvmin); \ 415 if ((u_long)(tv) > (u_long)(tvmax)) \ 416 (tv) = (tvmax); \ 417 } while (0) 418 419 static void 420 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line); 421 422 static int 423 rack_process_ack(struct mbuf *m, struct tcphdr *th, 424 struct socket *so, struct tcpcb *tp, struct tcpopt *to, 425 uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val); 426 static int 427 rack_process_data(struct mbuf *m, struct tcphdr *th, 428 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 429 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt); 430 static void 431 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, 432 uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery); 433 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack); 434 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack, 435 uint8_t limit_type); 436 static struct rack_sendmap * 437 rack_check_recovery_mode(struct tcpcb *tp, 438 uint32_t tsused); 439 static void 440 rack_cong_signal(struct tcpcb *tp, 441 uint32_t type, uint32_t ack); 442 static void rack_counter_destroy(void); 443 static int 444 rack_ctloutput(struct socket *so, struct sockopt *sopt, 445 struct inpcb *inp, struct tcpcb *tp); 446 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how); 447 static void 448 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override); 449 static void 450 rack_do_segment(struct mbuf *m, struct tcphdr *th, 451 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 452 uint8_t iptos); 453 static void rack_dtor(void *mem, int32_t size, void *arg); 454 static void 455 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 456 uint32_t flex1, uint32_t flex2, 457 uint32_t flex3, uint32_t flex4, 458 uint32_t flex5, uint32_t flex6, 459 uint16_t flex7, uint8_t mod); 460 static void 461 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 462 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, struct rack_sendmap *rsm); 463 static struct rack_sendmap * 464 rack_find_high_nonack(struct tcp_rack *rack, 465 struct rack_sendmap *rsm); 466 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack); 467 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm); 468 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged); 469 static int 470 rack_get_sockopt(struct socket *so, struct sockopt *sopt, 471 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack); 472 static void 473 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 474 tcp_seq th_ack, int line); 475 static uint32_t 476 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss); 477 static int32_t rack_handoff_ok(struct tcpcb *tp); 478 static int32_t rack_init(struct tcpcb *tp); 479 static void rack_init_sysctls(void); 480 static void 481 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, 482 struct tcphdr *th, int entered_rec, int dup_ack_struck); 483 static void 484 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 485 uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t ts, 486 struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff); 487 488 static void 489 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, 490 struct rack_sendmap *rsm); 491 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm); 492 static int32_t rack_output(struct tcpcb *tp); 493 494 static uint32_t 495 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, 496 struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, 497 uint32_t cts, int *moved_two); 498 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq); 499 static void rack_remxt_tmr(struct tcpcb *tp); 500 static int 501 rack_set_sockopt(struct socket *so, struct sockopt *sopt, 502 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack); 503 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack); 504 static int32_t rack_stopall(struct tcpcb *tp); 505 static void 506 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, 507 uint32_t delta); 508 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type); 509 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line); 510 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type); 511 static uint32_t 512 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 513 struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag); 514 static void 515 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 516 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag); 517 static int 518 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 519 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack); 520 static int32_t tcp_addrack(module_t mod, int32_t type, void *data); 521 static int 522 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, 523 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 524 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 525 static int 526 rack_do_closing(struct mbuf *m, struct tcphdr *th, 527 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 528 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 529 static int 530 rack_do_established(struct mbuf *m, struct tcphdr *th, 531 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 532 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 533 static int 534 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, 535 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 536 int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos); 537 static int 538 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, 539 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 540 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 541 static int 542 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, 543 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 544 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 545 static int 546 rack_do_lastack(struct mbuf *m, struct tcphdr *th, 547 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 548 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 549 static int 550 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, 551 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 552 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 553 static int 554 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, 555 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, 556 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); 557 struct rack_sendmap * 558 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, 559 uint32_t tsused); 560 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, 561 uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt); 562 static void 563 tcp_rack_partialack(struct tcpcb *tp); 564 static int 565 rack_set_profile(struct tcp_rack *rack, int prof); 566 static void 567 rack_apply_deferred_options(struct tcp_rack *rack); 568 569 int32_t rack_clear_counter=0; 570 571 static void 572 rack_set_cc_pacing(struct tcp_rack *rack) 573 { 574 struct sockopt sopt; 575 struct cc_newreno_opts opt; 576 struct newreno old, *ptr; 577 struct tcpcb *tp; 578 int error; 579 580 if (rack->rc_pacing_cc_set) 581 return; 582 583 tp = rack->rc_tp; 584 if (tp->cc_algo == NULL) { 585 /* Tcb is leaving */ 586 printf("No cc algorithm?\n"); 587 return; 588 } 589 rack->rc_pacing_cc_set = 1; 590 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 591 /* Not new-reno we can't play games with beta! */ 592 printf("cc_algo:%s is not NEWRENO:%s\n", 593 tp->cc_algo->name, CCALGONAME_NEWRENO); 594 goto out; 595 } 596 ptr = ((struct newreno *)tp->ccv->cc_data); 597 if (CC_ALGO(tp)->ctl_output == NULL) { 598 /* Huh, why does new_reno no longer have a set function? */ 599 printf("no ctl_output for algo:%s\n", tp->cc_algo->name); 600 goto out; 601 } 602 if (ptr == NULL) { 603 /* Just the default values */ 604 old.beta = V_newreno_beta_ecn; 605 old.beta_ecn = V_newreno_beta_ecn; 606 old.newreno_flags = 0; 607 } else { 608 old.beta = ptr->beta; 609 old.beta_ecn = ptr->beta_ecn; 610 old.newreno_flags = ptr->newreno_flags; 611 } 612 sopt.sopt_valsize = sizeof(struct cc_newreno_opts); 613 sopt.sopt_dir = SOPT_SET; 614 opt.name = CC_NEWRENO_BETA; 615 opt.val = rack->r_ctl.rc_saved_beta.beta; 616 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 617 if (error) { 618 printf("Error returned by ctl_output %d\n", error); 619 goto out; 620 } 621 /* 622 * Hack alert we need to set in our newreno_flags 623 * so that Abe behavior is also applied. 624 */ 625 ((struct newreno *)tp->ccv->cc_data)->newreno_flags = CC_NEWRENO_BETA_ECN; 626 opt.name = CC_NEWRENO_BETA_ECN; 627 opt.val = rack->r_ctl.rc_saved_beta.beta_ecn; 628 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 629 if (error) { 630 printf("Error returned by ctl_output %d\n", error); 631 goto out; 632 } 633 /* Save off the original values for restoral */ 634 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 635 out: 636 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 637 union tcp_log_stackspecific log; 638 struct timeval tv; 639 640 ptr = ((struct newreno *)tp->ccv->cc_data); 641 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 642 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 643 if (ptr) { 644 log.u_bbr.flex1 = ptr->beta; 645 log.u_bbr.flex2 = ptr->beta_ecn; 646 log.u_bbr.flex3 = ptr->newreno_flags; 647 } 648 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 649 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 650 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 651 log.u_bbr.flex7 = rack->gp_ready; 652 log.u_bbr.flex7 <<= 1; 653 log.u_bbr.flex7 |= rack->use_fixed_rate; 654 log.u_bbr.flex7 <<= 1; 655 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 656 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 657 log.u_bbr.flex8 = 3; 658 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error, 659 0, &log, false, NULL, NULL, 0, &tv); 660 } 661 } 662 663 static void 664 rack_undo_cc_pacing(struct tcp_rack *rack) 665 { 666 struct newreno old, *ptr; 667 struct tcpcb *tp; 668 669 if (rack->rc_pacing_cc_set == 0) 670 return; 671 tp = rack->rc_tp; 672 rack->rc_pacing_cc_set = 0; 673 if (tp->cc_algo == NULL) 674 /* Tcb is leaving */ 675 return; 676 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 677 /* Not new-reno nothing to do! */ 678 return; 679 } 680 ptr = ((struct newreno *)tp->ccv->cc_data); 681 if (ptr == NULL) { 682 /* 683 * This happens at rack_fini() if the 684 * cc module gets freed on us. In that 685 * case we loose our "new" settings but 686 * thats ok, since the tcb is going away anyway. 687 */ 688 return; 689 } 690 /* Grab out our set values */ 691 memcpy(&old, ptr, sizeof(struct newreno)); 692 /* Copy back in the original values */ 693 memcpy(ptr, &rack->r_ctl.rc_saved_beta, sizeof(struct newreno)); 694 /* Now save back the values we had set in (for when pacing is restored) */ 695 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno)); 696 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 697 union tcp_log_stackspecific log; 698 struct timeval tv; 699 700 ptr = ((struct newreno *)tp->ccv->cc_data); 701 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 702 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 703 log.u_bbr.flex1 = ptr->beta; 704 log.u_bbr.flex2 = ptr->beta_ecn; 705 log.u_bbr.flex3 = ptr->newreno_flags; 706 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta; 707 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn; 708 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags; 709 log.u_bbr.flex7 = rack->gp_ready; 710 log.u_bbr.flex7 <<= 1; 711 log.u_bbr.flex7 |= rack->use_fixed_rate; 712 log.u_bbr.flex7 <<= 1; 713 log.u_bbr.flex7 |= rack->rc_pacing_cc_set; 714 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 715 log.u_bbr.flex8 = 4; 716 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 717 0, &log, false, NULL, NULL, 0, &tv); 718 } 719 } 720 721 #ifdef NETFLIX_PEAKRATE 722 static inline void 723 rack_update_peakrate_thr(struct tcpcb *tp) 724 { 725 /* Keep in mind that t_maxpeakrate is in B/s. */ 726 uint64_t peak; 727 peak = uqmax((tp->t_maxseg * 2), 728 (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC)); 729 tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX); 730 } 731 #endif 732 733 static int 734 sysctl_rack_clear(SYSCTL_HANDLER_ARGS) 735 { 736 uint32_t stat; 737 int32_t error; 738 int i; 739 740 error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t)); 741 if (error || req->newptr == NULL) 742 return error; 743 744 error = SYSCTL_IN(req, &stat, sizeof(uint32_t)); 745 if (error) 746 return (error); 747 if (stat == 1) { 748 #ifdef INVARIANTS 749 printf("Clearing RACK counters\n"); 750 #endif 751 counter_u64_zero(rack_badfr); 752 counter_u64_zero(rack_badfr_bytes); 753 counter_u64_zero(rack_rtm_prr_retran); 754 counter_u64_zero(rack_rtm_prr_newdata); 755 counter_u64_zero(rack_timestamp_mismatch); 756 counter_u64_zero(rack_reorder_seen); 757 counter_u64_zero(rack_tlp_tot); 758 counter_u64_zero(rack_tlp_newdata); 759 counter_u64_zero(rack_tlp_retran); 760 counter_u64_zero(rack_tlp_retran_bytes); 761 counter_u64_zero(rack_tlp_retran_fail); 762 counter_u64_zero(rack_to_tot); 763 counter_u64_zero(rack_to_arm_rack); 764 counter_u64_zero(rack_to_arm_tlp); 765 counter_u64_zero(rack_paced_segments); 766 counter_u64_zero(rack_calc_zero); 767 counter_u64_zero(rack_calc_nonzero); 768 counter_u64_zero(rack_unpaced_segments); 769 counter_u64_zero(rack_saw_enobuf); 770 counter_u64_zero(rack_saw_enobuf_hw); 771 counter_u64_zero(rack_saw_enetunreach); 772 counter_u64_zero(rack_per_timer_hole); 773 counter_u64_zero(rack_large_ackcmp); 774 counter_u64_zero(rack_small_ackcmp); 775 #ifdef INVARIANTS 776 counter_u64_zero(rack_adjust_map_bw); 777 #endif 778 counter_u64_zero(rack_to_alloc_hard); 779 counter_u64_zero(rack_to_alloc_emerg); 780 counter_u64_zero(rack_sack_proc_all); 781 counter_u64_zero(rack_fto_send); 782 counter_u64_zero(rack_fto_rsm_send); 783 counter_u64_zero(rack_extended_rfo); 784 counter_u64_zero(rack_hw_pace_init_fail); 785 counter_u64_zero(rack_hw_pace_lost); 786 counter_u64_zero(rack_sbsndptr_wrong); 787 counter_u64_zero(rack_sbsndptr_right); 788 counter_u64_zero(rack_non_fto_send); 789 counter_u64_zero(rack_nfto_resend); 790 counter_u64_zero(rack_sack_proc_short); 791 counter_u64_zero(rack_sack_proc_restart); 792 counter_u64_zero(rack_to_alloc); 793 counter_u64_zero(rack_to_alloc_limited); 794 counter_u64_zero(rack_alloc_limited_conns); 795 counter_u64_zero(rack_split_limited); 796 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 797 counter_u64_zero(rack_proc_comp_ack[i]); 798 } 799 counter_u64_zero(rack_multi_single_eq); 800 counter_u64_zero(rack_proc_non_comp_ack); 801 counter_u64_zero(rack_find_high); 802 counter_u64_zero(rack_sack_attacks_detected); 803 counter_u64_zero(rack_sack_attacks_reversed); 804 counter_u64_zero(rack_sack_used_next_merge); 805 counter_u64_zero(rack_sack_used_prev_merge); 806 counter_u64_zero(rack_sack_splits); 807 counter_u64_zero(rack_sack_skipped_acked); 808 counter_u64_zero(rack_ack_total); 809 counter_u64_zero(rack_express_sack); 810 counter_u64_zero(rack_sack_total); 811 counter_u64_zero(rack_move_none); 812 counter_u64_zero(rack_move_some); 813 counter_u64_zero(rack_used_tlpmethod); 814 counter_u64_zero(rack_used_tlpmethod2); 815 counter_u64_zero(rack_enter_tlp_calc); 816 counter_u64_zero(rack_progress_drops); 817 counter_u64_zero(rack_tlp_does_nada); 818 counter_u64_zero(rack_try_scwnd); 819 counter_u64_zero(rack_collapsed_win); 820 } 821 rack_clear_counter = 0; 822 return (0); 823 } 824 825 static void 826 rack_init_sysctls(void) 827 { 828 int i; 829 struct sysctl_oid *rack_counters; 830 struct sysctl_oid *rack_attack; 831 struct sysctl_oid *rack_pacing; 832 struct sysctl_oid *rack_timely; 833 struct sysctl_oid *rack_timers; 834 struct sysctl_oid *rack_tlp; 835 struct sysctl_oid *rack_misc; 836 struct sysctl_oid *rack_measure; 837 struct sysctl_oid *rack_probertt; 838 struct sysctl_oid *rack_hw_pacing; 839 840 rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 841 SYSCTL_CHILDREN(rack_sysctl_root), 842 OID_AUTO, 843 "sack_attack", 844 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 845 "Rack Sack Attack Counters and Controls"); 846 rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 847 SYSCTL_CHILDREN(rack_sysctl_root), 848 OID_AUTO, 849 "stats", 850 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 851 "Rack Counters"); 852 SYSCTL_ADD_S32(&rack_sysctl_ctx, 853 SYSCTL_CHILDREN(rack_sysctl_root), 854 OID_AUTO, "rate_sample_method", CTLFLAG_RW, 855 &rack_rate_sample_method , USE_RTT_LOW, 856 "What method should we use for rate sampling 0=high, 1=low "); 857 /* Probe rtt related controls */ 858 rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 859 SYSCTL_CHILDREN(rack_sysctl_root), 860 OID_AUTO, 861 "probertt", 862 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 863 "ProbeRTT related Controls"); 864 SYSCTL_ADD_U16(&rack_sysctl_ctx, 865 SYSCTL_CHILDREN(rack_probertt), 866 OID_AUTO, "exit_per_hpb", CTLFLAG_RW, 867 &rack_atexit_prtt_hbp, 130, 868 "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%"); 869 SYSCTL_ADD_U16(&rack_sysctl_ctx, 870 SYSCTL_CHILDREN(rack_probertt), 871 OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW, 872 &rack_atexit_prtt, 130, 873 "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%"); 874 SYSCTL_ADD_U16(&rack_sysctl_ctx, 875 SYSCTL_CHILDREN(rack_probertt), 876 OID_AUTO, "gp_per_mul", CTLFLAG_RW, 877 &rack_per_of_gp_probertt, 60, 878 "What percentage of goodput do we pace at in probertt"); 879 SYSCTL_ADD_U16(&rack_sysctl_ctx, 880 SYSCTL_CHILDREN(rack_probertt), 881 OID_AUTO, "gp_per_reduce", CTLFLAG_RW, 882 &rack_per_of_gp_probertt_reduce, 10, 883 "What percentage of goodput do we reduce every gp_srtt"); 884 SYSCTL_ADD_U16(&rack_sysctl_ctx, 885 SYSCTL_CHILDREN(rack_probertt), 886 OID_AUTO, "gp_per_low", CTLFLAG_RW, 887 &rack_per_of_gp_lowthresh, 40, 888 "What percentage of goodput do we allow the multiplier to fall to"); 889 SYSCTL_ADD_U32(&rack_sysctl_ctx, 890 SYSCTL_CHILDREN(rack_probertt), 891 OID_AUTO, "time_between", CTLFLAG_RW, 892 & rack_time_between_probertt, 96000000, 893 "How many useconds between the lowest rtt falling must past before we enter probertt"); 894 SYSCTL_ADD_U32(&rack_sysctl_ctx, 895 SYSCTL_CHILDREN(rack_probertt), 896 OID_AUTO, "safety", CTLFLAG_RW, 897 &rack_probe_rtt_safety_val, 2000000, 898 "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)"); 899 SYSCTL_ADD_U32(&rack_sysctl_ctx, 900 SYSCTL_CHILDREN(rack_probertt), 901 OID_AUTO, "sets_cwnd", CTLFLAG_RW, 902 &rack_probe_rtt_sets_cwnd, 0, 903 "Do we set the cwnd too (if always_lower is on)"); 904 SYSCTL_ADD_U32(&rack_sysctl_ctx, 905 SYSCTL_CHILDREN(rack_probertt), 906 OID_AUTO, "maxdrainsrtts", CTLFLAG_RW, 907 &rack_max_drain_wait, 2, 908 "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal"); 909 SYSCTL_ADD_U32(&rack_sysctl_ctx, 910 SYSCTL_CHILDREN(rack_probertt), 911 OID_AUTO, "mustdrainsrtts", CTLFLAG_RW, 912 &rack_must_drain, 1, 913 "We must drain this many gp_srtt's waiting for flight to reach goal"); 914 SYSCTL_ADD_U32(&rack_sysctl_ctx, 915 SYSCTL_CHILDREN(rack_probertt), 916 OID_AUTO, "goal_use_min_entry", CTLFLAG_RW, 917 &rack_probertt_use_min_rtt_entry, 1, 918 "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry"); 919 SYSCTL_ADD_U32(&rack_sysctl_ctx, 920 SYSCTL_CHILDREN(rack_probertt), 921 OID_AUTO, "goal_use_min_exit", CTLFLAG_RW, 922 &rack_probertt_use_min_rtt_exit, 0, 923 "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt"); 924 SYSCTL_ADD_U32(&rack_sysctl_ctx, 925 SYSCTL_CHILDREN(rack_probertt), 926 OID_AUTO, "length_div", CTLFLAG_RW, 927 &rack_probertt_gpsrtt_cnt_div, 0, 928 "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)"); 929 SYSCTL_ADD_U32(&rack_sysctl_ctx, 930 SYSCTL_CHILDREN(rack_probertt), 931 OID_AUTO, "length_mul", CTLFLAG_RW, 932 &rack_probertt_gpsrtt_cnt_mul, 0, 933 "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)"); 934 SYSCTL_ADD_U32(&rack_sysctl_ctx, 935 SYSCTL_CHILDREN(rack_probertt), 936 OID_AUTO, "holdtim_at_target", CTLFLAG_RW, 937 &rack_min_probertt_hold, 200000, 938 "What is the minimum time we hold probertt at target"); 939 SYSCTL_ADD_U32(&rack_sysctl_ctx, 940 SYSCTL_CHILDREN(rack_probertt), 941 OID_AUTO, "filter_life", CTLFLAG_RW, 942 &rack_probertt_filter_life, 10000000, 943 "What is the time for the filters life in useconds"); 944 SYSCTL_ADD_U32(&rack_sysctl_ctx, 945 SYSCTL_CHILDREN(rack_probertt), 946 OID_AUTO, "lower_within", CTLFLAG_RW, 947 &rack_probertt_lower_within, 10, 948 "If the rtt goes lower within this percentage of the time, go into probe-rtt"); 949 SYSCTL_ADD_U32(&rack_sysctl_ctx, 950 SYSCTL_CHILDREN(rack_probertt), 951 OID_AUTO, "must_move", CTLFLAG_RW, 952 &rack_min_rtt_movement, 250, 953 "How much is the minimum movement in rtt to count as a drop for probertt purposes"); 954 SYSCTL_ADD_U32(&rack_sysctl_ctx, 955 SYSCTL_CHILDREN(rack_probertt), 956 OID_AUTO, "clear_is_cnts", CTLFLAG_RW, 957 &rack_probertt_clear_is, 1, 958 "Do we clear I/S counts on exiting probe-rtt"); 959 SYSCTL_ADD_S32(&rack_sysctl_ctx, 960 SYSCTL_CHILDREN(rack_probertt), 961 OID_AUTO, "hbp_extra_drain", CTLFLAG_RW, 962 &rack_max_drain_hbp, 1, 963 "How many extra drain gpsrtt's do we get in highly buffered paths"); 964 SYSCTL_ADD_S32(&rack_sysctl_ctx, 965 SYSCTL_CHILDREN(rack_probertt), 966 OID_AUTO, "hbp_threshold", CTLFLAG_RW, 967 &rack_hbp_thresh, 3, 968 "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold"); 969 /* Pacing related sysctls */ 970 rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 971 SYSCTL_CHILDREN(rack_sysctl_root), 972 OID_AUTO, 973 "pacing", 974 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 975 "Pacing related Controls"); 976 SYSCTL_ADD_S32(&rack_sysctl_ctx, 977 SYSCTL_CHILDREN(rack_pacing), 978 OID_AUTO, "max_pace_over", CTLFLAG_RW, 979 &rack_max_per_above, 30, 980 "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)"); 981 SYSCTL_ADD_S32(&rack_sysctl_ctx, 982 SYSCTL_CHILDREN(rack_pacing), 983 OID_AUTO, "pace_to_one", CTLFLAG_RW, 984 &rack_pace_one_seg, 0, 985 "Do we allow low b/w pacing of 1MSS instead of two"); 986 SYSCTL_ADD_S32(&rack_sysctl_ctx, 987 SYSCTL_CHILDREN(rack_pacing), 988 OID_AUTO, "limit_wsrtt", CTLFLAG_RW, 989 &rack_limit_time_with_srtt, 0, 990 "Do we limit pacing time based on srtt"); 991 SYSCTL_ADD_S32(&rack_sysctl_ctx, 992 SYSCTL_CHILDREN(rack_pacing), 993 OID_AUTO, "init_win", CTLFLAG_RW, 994 &rack_default_init_window, 0, 995 "Do we have a rack initial window 0 = system default"); 996 SYSCTL_ADD_U16(&rack_sysctl_ctx, 997 SYSCTL_CHILDREN(rack_pacing), 998 OID_AUTO, "gp_per_ss", CTLFLAG_RW, 999 &rack_per_of_gp_ss, 250, 1000 "If non zero, what percentage of goodput to pace at in slow start"); 1001 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1002 SYSCTL_CHILDREN(rack_pacing), 1003 OID_AUTO, "gp_per_ca", CTLFLAG_RW, 1004 &rack_per_of_gp_ca, 150, 1005 "If non zero, what percentage of goodput to pace at in congestion avoidance"); 1006 SYSCTL_ADD_U16(&rack_sysctl_ctx, 1007 SYSCTL_CHILDREN(rack_pacing), 1008 OID_AUTO, "gp_per_rec", CTLFLAG_RW, 1009 &rack_per_of_gp_rec, 200, 1010 "If non zero, what percentage of goodput to pace at in recovery"); 1011 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1012 SYSCTL_CHILDREN(rack_pacing), 1013 OID_AUTO, "pace_max_seg", CTLFLAG_RW, 1014 &rack_hptsi_segments, 40, 1015 "What size is the max for TSO segments in pacing and burst mitigation"); 1016 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1017 SYSCTL_CHILDREN(rack_pacing), 1018 OID_AUTO, "burst_reduces", CTLFLAG_RW, 1019 &rack_slot_reduction, 4, 1020 "When doing only burst mitigation what is the reduce divisor"); 1021 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1022 SYSCTL_CHILDREN(rack_sysctl_root), 1023 OID_AUTO, "use_pacing", CTLFLAG_RW, 1024 &rack_pace_every_seg, 0, 1025 "If set we use pacing, if clear we use only the original burst mitigation"); 1026 SYSCTL_ADD_U64(&rack_sysctl_ctx, 1027 SYSCTL_CHILDREN(rack_pacing), 1028 OID_AUTO, "rate_cap", CTLFLAG_RW, 1029 &rack_bw_rate_cap, 0, 1030 "If set we apply this value to the absolute rate cap used by pacing"); 1031 SYSCTL_ADD_U8(&rack_sysctl_ctx, 1032 SYSCTL_CHILDREN(rack_sysctl_root), 1033 OID_AUTO, "req_measure_cnt", CTLFLAG_RW, 1034 &rack_req_measurements, 1, 1035 "If doing dynamic pacing, how many measurements must be in before we start pacing?"); 1036 /* Hardware pacing */ 1037 rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1038 SYSCTL_CHILDREN(rack_sysctl_root), 1039 OID_AUTO, 1040 "hdwr_pacing", 1041 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1042 "Pacing related Controls"); 1043 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1044 SYSCTL_CHILDREN(rack_hw_pacing), 1045 OID_AUTO, "rwnd_factor", CTLFLAG_RW, 1046 &rack_hw_rwnd_factor, 2, 1047 "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?"); 1048 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1049 SYSCTL_CHILDREN(rack_hw_pacing), 1050 OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW, 1051 &rack_enobuf_hw_boost_mult, 2, 1052 "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?"); 1053 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1054 SYSCTL_CHILDREN(rack_hw_pacing), 1055 OID_AUTO, "pace_enobuf_max", CTLFLAG_RW, 1056 &rack_enobuf_hw_max, 2, 1057 "What is the max boost the pacing time if we see a ENOBUFS?"); 1058 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1059 SYSCTL_CHILDREN(rack_hw_pacing), 1060 OID_AUTO, "pace_enobuf_min", CTLFLAG_RW, 1061 &rack_enobuf_hw_min, 2, 1062 "What is the min boost the pacing time if we see a ENOBUFS?"); 1063 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1064 SYSCTL_CHILDREN(rack_hw_pacing), 1065 OID_AUTO, "enable", CTLFLAG_RW, 1066 &rack_enable_hw_pacing, 0, 1067 "Should RACK attempt to use hw pacing?"); 1068 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1069 SYSCTL_CHILDREN(rack_hw_pacing), 1070 OID_AUTO, "rate_cap", CTLFLAG_RW, 1071 &rack_hw_rate_caps, 1, 1072 "Does the highest hardware pacing rate cap the rate we will send at??"); 1073 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1074 SYSCTL_CHILDREN(rack_hw_pacing), 1075 OID_AUTO, "rate_min", CTLFLAG_RW, 1076 &rack_hw_rate_min, 0, 1077 "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?"); 1078 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1079 SYSCTL_CHILDREN(rack_hw_pacing), 1080 OID_AUTO, "rate_to_low", CTLFLAG_RW, 1081 &rack_hw_rate_to_low, 0, 1082 "If we fall below this rate, dis-engage hw pacing?"); 1083 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1084 SYSCTL_CHILDREN(rack_hw_pacing), 1085 OID_AUTO, "up_only", CTLFLAG_RW, 1086 &rack_hw_up_only, 1, 1087 "Do we allow hw pacing to lower the rate selected?"); 1088 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1089 SYSCTL_CHILDREN(rack_hw_pacing), 1090 OID_AUTO, "extra_mss_precise", CTLFLAG_RW, 1091 &rack_hw_pace_extra_slots, 2, 1092 "If the rates between software and hardware match precisely how many extra time_betweens do we get?"); 1093 rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1094 SYSCTL_CHILDREN(rack_sysctl_root), 1095 OID_AUTO, 1096 "timely", 1097 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1098 "Rack Timely RTT Controls"); 1099 /* Timely based GP dynmics */ 1100 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1101 SYSCTL_CHILDREN(rack_timely), 1102 OID_AUTO, "upper", CTLFLAG_RW, 1103 &rack_gp_per_bw_mul_up, 2, 1104 "Rack timely upper range for equal b/w (in percentage)"); 1105 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1106 SYSCTL_CHILDREN(rack_timely), 1107 OID_AUTO, "lower", CTLFLAG_RW, 1108 &rack_gp_per_bw_mul_down, 4, 1109 "Rack timely lower range for equal b/w (in percentage)"); 1110 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1111 SYSCTL_CHILDREN(rack_timely), 1112 OID_AUTO, "rtt_max_mul", CTLFLAG_RW, 1113 &rack_gp_rtt_maxmul, 3, 1114 "Rack timely multipler of lowest rtt for rtt_max"); 1115 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1116 SYSCTL_CHILDREN(rack_timely), 1117 OID_AUTO, "rtt_min_div", CTLFLAG_RW, 1118 &rack_gp_rtt_mindiv, 4, 1119 "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1120 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1121 SYSCTL_CHILDREN(rack_timely), 1122 OID_AUTO, "rtt_min_mul", CTLFLAG_RW, 1123 &rack_gp_rtt_minmul, 1, 1124 "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt"); 1125 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1126 SYSCTL_CHILDREN(rack_timely), 1127 OID_AUTO, "decrease", CTLFLAG_RW, 1128 &rack_gp_decrease_per, 20, 1129 "Rack timely decrease percentage of our GP multiplication factor"); 1130 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1131 SYSCTL_CHILDREN(rack_timely), 1132 OID_AUTO, "increase", CTLFLAG_RW, 1133 &rack_gp_increase_per, 2, 1134 "Rack timely increase perentage of our GP multiplication factor"); 1135 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1136 SYSCTL_CHILDREN(rack_timely), 1137 OID_AUTO, "lowerbound", CTLFLAG_RW, 1138 &rack_per_lower_bound, 50, 1139 "Rack timely lowest percentage we allow GP multiplier to fall to"); 1140 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1141 SYSCTL_CHILDREN(rack_timely), 1142 OID_AUTO, "upperboundss", CTLFLAG_RW, 1143 &rack_per_upper_bound_ss, 0, 1144 "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)"); 1145 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1146 SYSCTL_CHILDREN(rack_timely), 1147 OID_AUTO, "upperboundca", CTLFLAG_RW, 1148 &rack_per_upper_bound_ca, 0, 1149 "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)"); 1150 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1151 SYSCTL_CHILDREN(rack_timely), 1152 OID_AUTO, "dynamicgp", CTLFLAG_RW, 1153 &rack_do_dyn_mul, 0, 1154 "Rack timely do we enable dynmaic timely goodput by default"); 1155 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1156 SYSCTL_CHILDREN(rack_timely), 1157 OID_AUTO, "no_rec_red", CTLFLAG_RW, 1158 &rack_gp_no_rec_chg, 1, 1159 "Rack timely do we prohibit the recovery multiplier from being lowered"); 1160 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1161 SYSCTL_CHILDREN(rack_timely), 1162 OID_AUTO, "red_clear_cnt", CTLFLAG_RW, 1163 &rack_timely_dec_clear, 6, 1164 "Rack timely what threshold do we count to before another boost during b/w decent"); 1165 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1166 SYSCTL_CHILDREN(rack_timely), 1167 OID_AUTO, "max_push_rise", CTLFLAG_RW, 1168 &rack_timely_max_push_rise, 3, 1169 "Rack timely how many times do we push up with b/w increase"); 1170 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1171 SYSCTL_CHILDREN(rack_timely), 1172 OID_AUTO, "max_push_drop", CTLFLAG_RW, 1173 &rack_timely_max_push_drop, 3, 1174 "Rack timely how many times do we push back on b/w decent"); 1175 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1176 SYSCTL_CHILDREN(rack_timely), 1177 OID_AUTO, "min_segs", CTLFLAG_RW, 1178 &rack_timely_min_segs, 4, 1179 "Rack timely when setting the cwnd what is the min num segments"); 1180 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1181 SYSCTL_CHILDREN(rack_timely), 1182 OID_AUTO, "noback_max", CTLFLAG_RW, 1183 &rack_use_max_for_nobackoff, 0, 1184 "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min"); 1185 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1186 SYSCTL_CHILDREN(rack_timely), 1187 OID_AUTO, "interim_timely_only", CTLFLAG_RW, 1188 &rack_timely_int_timely_only, 0, 1189 "Rack timely when doing interim timely's do we only do timely (no b/w consideration)"); 1190 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1191 SYSCTL_CHILDREN(rack_timely), 1192 OID_AUTO, "nonstop", CTLFLAG_RW, 1193 &rack_timely_no_stopping, 0, 1194 "Rack timely don't stop increase"); 1195 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1196 SYSCTL_CHILDREN(rack_timely), 1197 OID_AUTO, "dec_raise_thresh", CTLFLAG_RW, 1198 &rack_down_raise_thresh, 100, 1199 "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)"); 1200 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1201 SYSCTL_CHILDREN(rack_timely), 1202 OID_AUTO, "bottom_drag_segs", CTLFLAG_RW, 1203 &rack_req_segs, 1, 1204 "Bottom dragging if not these many segments outstanding and room"); 1205 1206 /* TLP and Rack related parameters */ 1207 rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1208 SYSCTL_CHILDREN(rack_sysctl_root), 1209 OID_AUTO, 1210 "tlp", 1211 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1212 "TLP and Rack related Controls"); 1213 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1214 SYSCTL_CHILDREN(rack_tlp), 1215 OID_AUTO, "use_rrr", CTLFLAG_RW, 1216 &use_rack_rr, 1, 1217 "Do we use Rack Rapid Recovery"); 1218 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1219 SYSCTL_CHILDREN(rack_tlp), 1220 OID_AUTO, "post_rec_labc", CTLFLAG_RW, 1221 &rack_max_abc_post_recovery, 2, 1222 "Since we do early recovery, do we override the l_abc to a value, if so what?"); 1223 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1224 SYSCTL_CHILDREN(rack_tlp), 1225 OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW, 1226 &rack_non_rxt_use_cr, 0, 1227 "Do we use ss/ca rate if in recovery we are transmitting a new data chunk"); 1228 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1229 SYSCTL_CHILDREN(rack_tlp), 1230 OID_AUTO, "tlpmethod", CTLFLAG_RW, 1231 &rack_tlp_threshold_use, TLP_USE_TWO_ONE, 1232 "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2"); 1233 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1234 SYSCTL_CHILDREN(rack_tlp), 1235 OID_AUTO, "limit", CTLFLAG_RW, 1236 &rack_tlp_limit, 2, 1237 "How many TLP's can be sent without sending new data"); 1238 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1239 SYSCTL_CHILDREN(rack_tlp), 1240 OID_AUTO, "use_greater", CTLFLAG_RW, 1241 &rack_tlp_use_greater, 1, 1242 "Should we use the rack_rtt time if its greater than srtt"); 1243 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1244 SYSCTL_CHILDREN(rack_tlp), 1245 OID_AUTO, "tlpminto", CTLFLAG_RW, 1246 &rack_tlp_min, 10000, 1247 "TLP minimum timeout per the specification (in microseconds)"); 1248 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1249 SYSCTL_CHILDREN(rack_tlp), 1250 OID_AUTO, "send_oldest", CTLFLAG_RW, 1251 &rack_always_send_oldest, 0, 1252 "Should we always send the oldest TLP and RACK-TLP"); 1253 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1254 SYSCTL_CHILDREN(rack_tlp), 1255 OID_AUTO, "rack_tlimit", CTLFLAG_RW, 1256 &rack_limited_retran, 0, 1257 "How many times can a rack timeout drive out sends"); 1258 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1259 SYSCTL_CHILDREN(rack_tlp), 1260 OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW, 1261 &rack_lower_cwnd_at_tlp, 0, 1262 "When a TLP completes a retran should we enter recovery"); 1263 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1264 SYSCTL_CHILDREN(rack_tlp), 1265 OID_AUTO, "reorder_thresh", CTLFLAG_RW, 1266 &rack_reorder_thresh, 2, 1267 "What factor for rack will be added when seeing reordering (shift right)"); 1268 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1269 SYSCTL_CHILDREN(rack_tlp), 1270 OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW, 1271 &rack_tlp_thresh, 1, 1272 "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)"); 1273 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1274 SYSCTL_CHILDREN(rack_tlp), 1275 OID_AUTO, "reorder_fade", CTLFLAG_RW, 1276 &rack_reorder_fade, 60000000, 1277 "Does reorder detection fade, if so how many microseconds (0 means never)"); 1278 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1279 SYSCTL_CHILDREN(rack_tlp), 1280 OID_AUTO, "pktdelay", CTLFLAG_RW, 1281 &rack_pkt_delay, 1000, 1282 "Extra RACK time (in microseconds) besides reordering thresh"); 1283 1284 /* Timer related controls */ 1285 rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1286 SYSCTL_CHILDREN(rack_sysctl_root), 1287 OID_AUTO, 1288 "timers", 1289 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1290 "Timer related controls"); 1291 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1292 SYSCTL_CHILDREN(rack_timers), 1293 OID_AUTO, "persmin", CTLFLAG_RW, 1294 &rack_persist_min, 250000, 1295 "What is the minimum time in microseconds between persists"); 1296 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1297 SYSCTL_CHILDREN(rack_timers), 1298 OID_AUTO, "persmax", CTLFLAG_RW, 1299 &rack_persist_max, 2000000, 1300 "What is the largest delay in microseconds between persists"); 1301 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1302 SYSCTL_CHILDREN(rack_timers), 1303 OID_AUTO, "delayed_ack", CTLFLAG_RW, 1304 &rack_delayed_ack_time, 40000, 1305 "Delayed ack time (40ms in microseconds)"); 1306 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1307 SYSCTL_CHILDREN(rack_timers), 1308 OID_AUTO, "minrto", CTLFLAG_RW, 1309 &rack_rto_min, 30000, 1310 "Minimum RTO in microseconds -- set with caution below 1000 due to TLP"); 1311 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1312 SYSCTL_CHILDREN(rack_timers), 1313 OID_AUTO, "maxrto", CTLFLAG_RW, 1314 &rack_rto_max, 4000000, 1315 "Maxiumum RTO in microseconds -- should be at least as large as min_rto"); 1316 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1317 SYSCTL_CHILDREN(rack_timers), 1318 OID_AUTO, "minto", CTLFLAG_RW, 1319 &rack_min_to, 1000, 1320 "Minimum rack timeout in microseconds"); 1321 /* Measure controls */ 1322 rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1323 SYSCTL_CHILDREN(rack_sysctl_root), 1324 OID_AUTO, 1325 "measure", 1326 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1327 "Measure related controls"); 1328 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1329 SYSCTL_CHILDREN(rack_measure), 1330 OID_AUTO, "wma_divisor", CTLFLAG_RW, 1331 &rack_wma_divisor, 8, 1332 "When doing b/w calculation what is the divisor for the WMA"); 1333 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1334 SYSCTL_CHILDREN(rack_measure), 1335 OID_AUTO, "end_cwnd", CTLFLAG_RW, 1336 &rack_cwnd_block_ends_measure, 0, 1337 "Does a cwnd just-return end the measurement window (app limited)"); 1338 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1339 SYSCTL_CHILDREN(rack_measure), 1340 OID_AUTO, "end_rwnd", CTLFLAG_RW, 1341 &rack_rwnd_block_ends_measure, 0, 1342 "Does an rwnd just-return end the measurement window (app limited -- not persists)"); 1343 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1344 SYSCTL_CHILDREN(rack_measure), 1345 OID_AUTO, "min_target", CTLFLAG_RW, 1346 &rack_def_data_window, 20, 1347 "What is the minimum target window (in mss) for a GP measurements"); 1348 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1349 SYSCTL_CHILDREN(rack_measure), 1350 OID_AUTO, "goal_bdp", CTLFLAG_RW, 1351 &rack_goal_bdp, 2, 1352 "What is the goal BDP to measure"); 1353 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1354 SYSCTL_CHILDREN(rack_measure), 1355 OID_AUTO, "min_srtts", CTLFLAG_RW, 1356 &rack_min_srtts, 1, 1357 "What is the goal BDP to measure"); 1358 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1359 SYSCTL_CHILDREN(rack_measure), 1360 OID_AUTO, "min_measure_tim", CTLFLAG_RW, 1361 &rack_min_measure_usec, 0, 1362 "What is the Minimum time time for a measurement if 0, this is off"); 1363 /* Misc rack controls */ 1364 rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 1365 SYSCTL_CHILDREN(rack_sysctl_root), 1366 OID_AUTO, 1367 "misc", 1368 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1369 "Misc related controls"); 1370 #ifdef TCP_ACCOUNTING 1371 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1372 SYSCTL_CHILDREN(rack_misc), 1373 OID_AUTO, "tcp_acct", CTLFLAG_RW, 1374 &rack_tcp_accounting, 0, 1375 "Should we turn on TCP accounting for all rack sessions?"); 1376 #endif 1377 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1378 SYSCTL_CHILDREN(rack_misc), 1379 OID_AUTO, "prr_addback_max", CTLFLAG_RW, 1380 &rack_prr_addbackmax, 2, 1381 "What is the maximum number of MSS we allow to be added back if prr can't send all its data?"); 1382 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1383 SYSCTL_CHILDREN(rack_misc), 1384 OID_AUTO, "stats_gets_ms", CTLFLAG_RW, 1385 &rack_stats_gets_ms_rtt, 1, 1386 "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?"); 1387 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1388 SYSCTL_CHILDREN(rack_misc), 1389 OID_AUTO, "clientlowbuf", CTLFLAG_RW, 1390 &rack_client_low_buf, 0, 1391 "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?"); 1392 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1393 SYSCTL_CHILDREN(rack_misc), 1394 OID_AUTO, "defprofile", CTLFLAG_RW, 1395 &rack_def_profile, 0, 1396 "Should RACK use a default profile (0=no, num == profile num)?"); 1397 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1398 SYSCTL_CHILDREN(rack_misc), 1399 OID_AUTO, "cmpack", CTLFLAG_RW, 1400 &rack_use_cmp_acks, 1, 1401 "Should RACK have LRO send compressed acks"); 1402 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1403 SYSCTL_CHILDREN(rack_misc), 1404 OID_AUTO, "fsb", CTLFLAG_RW, 1405 &rack_use_fsb, 1, 1406 "Should RACK use the fast send block?"); 1407 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1408 SYSCTL_CHILDREN(rack_misc), 1409 OID_AUTO, "rfo", CTLFLAG_RW, 1410 &rack_use_rfo, 1, 1411 "Should RACK use rack_fast_output()?"); 1412 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1413 SYSCTL_CHILDREN(rack_misc), 1414 OID_AUTO, "rsmrfo", CTLFLAG_RW, 1415 &rack_use_rsm_rfo, 1, 1416 "Should RACK use rack_fast_rsm_output()?"); 1417 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1418 SYSCTL_CHILDREN(rack_misc), 1419 OID_AUTO, "shared_cwnd", CTLFLAG_RW, 1420 &rack_enable_shared_cwnd, 1, 1421 "Should RACK try to use the shared cwnd on connections where allowed"); 1422 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1423 SYSCTL_CHILDREN(rack_misc), 1424 OID_AUTO, "limits_on_scwnd", CTLFLAG_RW, 1425 &rack_limits_scwnd, 1, 1426 "Should RACK place low end time limits on the shared cwnd feature"); 1427 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1428 SYSCTL_CHILDREN(rack_misc), 1429 OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW, 1430 &rack_enable_mqueue_for_nonpaced, 0, 1431 "Should RACK use mbuf queuing for non-paced connections"); 1432 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1433 SYSCTL_CHILDREN(rack_misc), 1434 OID_AUTO, "iMac_dack", CTLFLAG_RW, 1435 &rack_use_imac_dack, 0, 1436 "Should RACK try to emulate iMac delayed ack"); 1437 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1438 SYSCTL_CHILDREN(rack_misc), 1439 OID_AUTO, "no_prr", CTLFLAG_RW, 1440 &rack_disable_prr, 0, 1441 "Should RACK not use prr and only pace (must have pacing on)"); 1442 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1443 SYSCTL_CHILDREN(rack_misc), 1444 OID_AUTO, "bb_verbose", CTLFLAG_RW, 1445 &rack_verbose_logging, 0, 1446 "Should RACK black box logging be verbose"); 1447 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1448 SYSCTL_CHILDREN(rack_misc), 1449 OID_AUTO, "data_after_close", CTLFLAG_RW, 1450 &rack_ignore_data_after_close, 1, 1451 "Do we hold off sending a RST until all pending data is ack'd"); 1452 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1453 SYSCTL_CHILDREN(rack_misc), 1454 OID_AUTO, "no_sack_needed", CTLFLAG_RW, 1455 &rack_sack_not_required, 1, 1456 "Do we allow rack to run on connections not supporting SACK"); 1457 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1458 SYSCTL_CHILDREN(rack_misc), 1459 OID_AUTO, "prr_sendalot", CTLFLAG_RW, 1460 &rack_send_a_lot_in_prr, 1, 1461 "Send a lot in prr"); 1462 SYSCTL_ADD_S32(&rack_sysctl_ctx, 1463 SYSCTL_CHILDREN(rack_misc), 1464 OID_AUTO, "autoscale", CTLFLAG_RW, 1465 &rack_autosndbuf_inc, 20, 1466 "What percentage should rack scale up its snd buffer by?"); 1467 /* Sack Attacker detection stuff */ 1468 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1469 SYSCTL_CHILDREN(rack_attack), 1470 OID_AUTO, "detect_highsackratio", CTLFLAG_RW, 1471 &rack_highest_sack_thresh_seen, 0, 1472 "Highest sack to ack ratio seen"); 1473 SYSCTL_ADD_U32(&rack_sysctl_ctx, 1474 SYSCTL_CHILDREN(rack_attack), 1475 OID_AUTO, "detect_highmoveratio", CTLFLAG_RW, 1476 &rack_highest_move_thresh_seen, 0, 1477 "Highest move to non-move ratio seen"); 1478 rack_ack_total = counter_u64_alloc(M_WAITOK); 1479 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1480 SYSCTL_CHILDREN(rack_attack), 1481 OID_AUTO, "acktotal", CTLFLAG_RD, 1482 &rack_ack_total, 1483 "Total number of Ack's"); 1484 rack_express_sack = counter_u64_alloc(M_WAITOK); 1485 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1486 SYSCTL_CHILDREN(rack_attack), 1487 OID_AUTO, "exp_sacktotal", CTLFLAG_RD, 1488 &rack_express_sack, 1489 "Total expresss number of Sack's"); 1490 rack_sack_total = counter_u64_alloc(M_WAITOK); 1491 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1492 SYSCTL_CHILDREN(rack_attack), 1493 OID_AUTO, "sacktotal", CTLFLAG_RD, 1494 &rack_sack_total, 1495 "Total number of SACKs"); 1496 rack_move_none = counter_u64_alloc(M_WAITOK); 1497 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1498 SYSCTL_CHILDREN(rack_attack), 1499 OID_AUTO, "move_none", CTLFLAG_RD, 1500 &rack_move_none, 1501 "Total number of SACK index reuse of postions under threshold"); 1502 rack_move_some = counter_u64_alloc(M_WAITOK); 1503 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1504 SYSCTL_CHILDREN(rack_attack), 1505 OID_AUTO, "move_some", CTLFLAG_RD, 1506 &rack_move_some, 1507 "Total number of SACK index reuse of postions over threshold"); 1508 rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK); 1509 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1510 SYSCTL_CHILDREN(rack_attack), 1511 OID_AUTO, "attacks", CTLFLAG_RD, 1512 &rack_sack_attacks_detected, 1513 "Total number of SACK attackers that had sack disabled"); 1514 rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK); 1515 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1516 SYSCTL_CHILDREN(rack_attack), 1517 OID_AUTO, "reversed", CTLFLAG_RD, 1518 &rack_sack_attacks_reversed, 1519 "Total number of SACK attackers that were later determined false positive"); 1520 rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK); 1521 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1522 SYSCTL_CHILDREN(rack_attack), 1523 OID_AUTO, "nextmerge", CTLFLAG_RD, 1524 &rack_sack_used_next_merge, 1525 "Total number of times we used the next merge"); 1526 rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK); 1527 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1528 SYSCTL_CHILDREN(rack_attack), 1529 OID_AUTO, "prevmerge", CTLFLAG_RD, 1530 &rack_sack_used_prev_merge, 1531 "Total number of times we used the prev merge"); 1532 /* Counters */ 1533 rack_fto_send = counter_u64_alloc(M_WAITOK); 1534 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1535 SYSCTL_CHILDREN(rack_counters), 1536 OID_AUTO, "fto_send", CTLFLAG_RD, 1537 &rack_fto_send, "Total number of rack_fast_output sends"); 1538 rack_fto_rsm_send = counter_u64_alloc(M_WAITOK); 1539 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1540 SYSCTL_CHILDREN(rack_counters), 1541 OID_AUTO, "fto_rsm_send", CTLFLAG_RD, 1542 &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends"); 1543 rack_nfto_resend = counter_u64_alloc(M_WAITOK); 1544 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1545 SYSCTL_CHILDREN(rack_counters), 1546 OID_AUTO, "nfto_resend", CTLFLAG_RD, 1547 &rack_nfto_resend, "Total number of rack_output retransmissions"); 1548 rack_non_fto_send = counter_u64_alloc(M_WAITOK); 1549 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1550 SYSCTL_CHILDREN(rack_counters), 1551 OID_AUTO, "nfto_send", CTLFLAG_RD, 1552 &rack_non_fto_send, "Total number of rack_output first sends"); 1553 rack_extended_rfo = counter_u64_alloc(M_WAITOK); 1554 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1555 SYSCTL_CHILDREN(rack_counters), 1556 OID_AUTO, "rfo_extended", CTLFLAG_RD, 1557 &rack_extended_rfo, "Total number of times we extended rfo"); 1558 1559 rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK); 1560 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1561 SYSCTL_CHILDREN(rack_counters), 1562 OID_AUTO, "hwpace_init_fail", CTLFLAG_RD, 1563 &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing"); 1564 rack_hw_pace_lost = counter_u64_alloc(M_WAITOK); 1565 1566 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1567 SYSCTL_CHILDREN(rack_counters), 1568 OID_AUTO, "hwpace_lost", CTLFLAG_RD, 1569 &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing"); 1570 1571 1572 1573 rack_badfr = counter_u64_alloc(M_WAITOK); 1574 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1575 SYSCTL_CHILDREN(rack_counters), 1576 OID_AUTO, "badfr", CTLFLAG_RD, 1577 &rack_badfr, "Total number of bad FRs"); 1578 rack_badfr_bytes = counter_u64_alloc(M_WAITOK); 1579 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1580 SYSCTL_CHILDREN(rack_counters), 1581 OID_AUTO, "badfr_bytes", CTLFLAG_RD, 1582 &rack_badfr_bytes, "Total number of bad FRs"); 1583 rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK); 1584 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1585 SYSCTL_CHILDREN(rack_counters), 1586 OID_AUTO, "prrsndret", CTLFLAG_RD, 1587 &rack_rtm_prr_retran, 1588 "Total number of prr based retransmits"); 1589 rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK); 1590 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1591 SYSCTL_CHILDREN(rack_counters), 1592 OID_AUTO, "prrsndnew", CTLFLAG_RD, 1593 &rack_rtm_prr_newdata, 1594 "Total number of prr based new transmits"); 1595 rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK); 1596 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1597 SYSCTL_CHILDREN(rack_counters), 1598 OID_AUTO, "tsnf", CTLFLAG_RD, 1599 &rack_timestamp_mismatch, 1600 "Total number of timestamps that we could not find the reported ts"); 1601 rack_find_high = counter_u64_alloc(M_WAITOK); 1602 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1603 SYSCTL_CHILDREN(rack_counters), 1604 OID_AUTO, "findhigh", CTLFLAG_RD, 1605 &rack_find_high, 1606 "Total number of FIN causing find-high"); 1607 rack_reorder_seen = counter_u64_alloc(M_WAITOK); 1608 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1609 SYSCTL_CHILDREN(rack_counters), 1610 OID_AUTO, "reordering", CTLFLAG_RD, 1611 &rack_reorder_seen, 1612 "Total number of times we added delay due to reordering"); 1613 rack_tlp_tot = counter_u64_alloc(M_WAITOK); 1614 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1615 SYSCTL_CHILDREN(rack_counters), 1616 OID_AUTO, "tlp_to_total", CTLFLAG_RD, 1617 &rack_tlp_tot, 1618 "Total number of tail loss probe expirations"); 1619 rack_tlp_newdata = counter_u64_alloc(M_WAITOK); 1620 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1621 SYSCTL_CHILDREN(rack_counters), 1622 OID_AUTO, "tlp_new", CTLFLAG_RD, 1623 &rack_tlp_newdata, 1624 "Total number of tail loss probe sending new data"); 1625 rack_tlp_retran = counter_u64_alloc(M_WAITOK); 1626 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1627 SYSCTL_CHILDREN(rack_counters), 1628 OID_AUTO, "tlp_retran", CTLFLAG_RD, 1629 &rack_tlp_retran, 1630 "Total number of tail loss probe sending retransmitted data"); 1631 rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK); 1632 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1633 SYSCTL_CHILDREN(rack_counters), 1634 OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD, 1635 &rack_tlp_retran_bytes, 1636 "Total bytes of tail loss probe sending retransmitted data"); 1637 rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK); 1638 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1639 SYSCTL_CHILDREN(rack_counters), 1640 OID_AUTO, "tlp_retran_fail", CTLFLAG_RD, 1641 &rack_tlp_retran_fail, 1642 "Total number of tail loss probe sending retransmitted data that failed (wait for t3)"); 1643 rack_to_tot = counter_u64_alloc(M_WAITOK); 1644 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1645 SYSCTL_CHILDREN(rack_counters), 1646 OID_AUTO, "rack_to_tot", CTLFLAG_RD, 1647 &rack_to_tot, 1648 "Total number of times the rack to expired"); 1649 rack_to_arm_rack = counter_u64_alloc(M_WAITOK); 1650 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1651 SYSCTL_CHILDREN(rack_counters), 1652 OID_AUTO, "arm_rack", CTLFLAG_RD, 1653 &rack_to_arm_rack, 1654 "Total number of times the rack timer armed"); 1655 rack_to_arm_tlp = counter_u64_alloc(M_WAITOK); 1656 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1657 SYSCTL_CHILDREN(rack_counters), 1658 OID_AUTO, "arm_tlp", CTLFLAG_RD, 1659 &rack_to_arm_tlp, 1660 "Total number of times the tlp timer armed"); 1661 rack_calc_zero = counter_u64_alloc(M_WAITOK); 1662 rack_calc_nonzero = counter_u64_alloc(M_WAITOK); 1663 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1664 SYSCTL_CHILDREN(rack_counters), 1665 OID_AUTO, "calc_zero", CTLFLAG_RD, 1666 &rack_calc_zero, 1667 "Total number of times pacing time worked out to zero"); 1668 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1669 SYSCTL_CHILDREN(rack_counters), 1670 OID_AUTO, "calc_nonzero", CTLFLAG_RD, 1671 &rack_calc_nonzero, 1672 "Total number of times pacing time worked out to non-zero"); 1673 rack_paced_segments = counter_u64_alloc(M_WAITOK); 1674 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1675 SYSCTL_CHILDREN(rack_counters), 1676 OID_AUTO, "paced", CTLFLAG_RD, 1677 &rack_paced_segments, 1678 "Total number of times a segment send caused hptsi"); 1679 rack_unpaced_segments = counter_u64_alloc(M_WAITOK); 1680 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1681 SYSCTL_CHILDREN(rack_counters), 1682 OID_AUTO, "unpaced", CTLFLAG_RD, 1683 &rack_unpaced_segments, 1684 "Total number of times a segment did not cause hptsi"); 1685 rack_saw_enobuf = counter_u64_alloc(M_WAITOK); 1686 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1687 SYSCTL_CHILDREN(rack_counters), 1688 OID_AUTO, "saw_enobufs", CTLFLAG_RD, 1689 &rack_saw_enobuf, 1690 "Total number of times a sends returned enobuf for non-hdwr paced connections"); 1691 rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK); 1692 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1693 SYSCTL_CHILDREN(rack_counters), 1694 OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD, 1695 &rack_saw_enobuf_hw, 1696 "Total number of times a send returned enobuf for hdwr paced connections"); 1697 rack_saw_enetunreach = counter_u64_alloc(M_WAITOK); 1698 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1699 SYSCTL_CHILDREN(rack_counters), 1700 OID_AUTO, "saw_enetunreach", CTLFLAG_RD, 1701 &rack_saw_enetunreach, 1702 "Total number of times a send received a enetunreachable"); 1703 rack_hot_alloc = counter_u64_alloc(M_WAITOK); 1704 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1705 SYSCTL_CHILDREN(rack_counters), 1706 OID_AUTO, "alloc_hot", CTLFLAG_RD, 1707 &rack_hot_alloc, 1708 "Total allocations from the top of our list"); 1709 rack_to_alloc = counter_u64_alloc(M_WAITOK); 1710 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1711 SYSCTL_CHILDREN(rack_counters), 1712 OID_AUTO, "allocs", CTLFLAG_RD, 1713 &rack_to_alloc, 1714 "Total allocations of tracking structures"); 1715 rack_to_alloc_hard = counter_u64_alloc(M_WAITOK); 1716 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1717 SYSCTL_CHILDREN(rack_counters), 1718 OID_AUTO, "allochard", CTLFLAG_RD, 1719 &rack_to_alloc_hard, 1720 "Total allocations done with sleeping the hard way"); 1721 rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK); 1722 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1723 SYSCTL_CHILDREN(rack_counters), 1724 OID_AUTO, "allocemerg", CTLFLAG_RD, 1725 &rack_to_alloc_emerg, 1726 "Total allocations done from emergency cache"); 1727 rack_to_alloc_limited = counter_u64_alloc(M_WAITOK); 1728 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1729 SYSCTL_CHILDREN(rack_counters), 1730 OID_AUTO, "alloc_limited", CTLFLAG_RD, 1731 &rack_to_alloc_limited, 1732 "Total allocations dropped due to limit"); 1733 rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK); 1734 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1735 SYSCTL_CHILDREN(rack_counters), 1736 OID_AUTO, "alloc_limited_conns", CTLFLAG_RD, 1737 &rack_alloc_limited_conns, 1738 "Connections with allocations dropped due to limit"); 1739 rack_split_limited = counter_u64_alloc(M_WAITOK); 1740 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1741 SYSCTL_CHILDREN(rack_counters), 1742 OID_AUTO, "split_limited", CTLFLAG_RD, 1743 &rack_split_limited, 1744 "Split allocations dropped due to limit"); 1745 1746 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 1747 char name[32]; 1748 sprintf(name, "cmp_ack_cnt_%d", i); 1749 rack_proc_comp_ack[i] = counter_u64_alloc(M_WAITOK); 1750 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1751 SYSCTL_CHILDREN(rack_counters), 1752 OID_AUTO, name, CTLFLAG_RD, 1753 &rack_proc_comp_ack[i], 1754 "Number of compressed acks we processed"); 1755 } 1756 rack_large_ackcmp = counter_u64_alloc(M_WAITOK); 1757 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1758 SYSCTL_CHILDREN(rack_counters), 1759 OID_AUTO, "cmp_large_mbufs", CTLFLAG_RD, 1760 &rack_large_ackcmp, 1761 "Number of TCP connections with large mbuf's for compressed acks"); 1762 rack_small_ackcmp = counter_u64_alloc(M_WAITOK); 1763 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1764 SYSCTL_CHILDREN(rack_counters), 1765 OID_AUTO, "cmp_small_mbufs", CTLFLAG_RD, 1766 &rack_small_ackcmp, 1767 "Number of TCP connections with small mbuf's for compressed acks"); 1768 #ifdef INVARIANTS 1769 rack_adjust_map_bw = counter_u64_alloc(M_WAITOK); 1770 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1771 SYSCTL_CHILDREN(rack_counters), 1772 OID_AUTO, "map_adjust_req", CTLFLAG_RD, 1773 &rack_adjust_map_bw, 1774 "Number of times we hit the case where the sb went up and down on a sendmap entry"); 1775 #endif 1776 rack_multi_single_eq = counter_u64_alloc(M_WAITOK); 1777 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1778 SYSCTL_CHILDREN(rack_counters), 1779 OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD, 1780 &rack_multi_single_eq, 1781 "Number of compressed acks total represented"); 1782 rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK); 1783 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1784 SYSCTL_CHILDREN(rack_counters), 1785 OID_AUTO, "cmp_ack_not", CTLFLAG_RD, 1786 &rack_proc_non_comp_ack, 1787 "Number of non compresseds acks that we processed"); 1788 1789 1790 rack_sack_proc_all = counter_u64_alloc(M_WAITOK); 1791 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1792 SYSCTL_CHILDREN(rack_counters), 1793 OID_AUTO, "sack_long", CTLFLAG_RD, 1794 &rack_sack_proc_all, 1795 "Total times we had to walk whole list for sack processing"); 1796 rack_sack_proc_restart = counter_u64_alloc(M_WAITOK); 1797 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1798 SYSCTL_CHILDREN(rack_counters), 1799 OID_AUTO, "sack_restart", CTLFLAG_RD, 1800 &rack_sack_proc_restart, 1801 "Total times we had to walk whole list due to a restart"); 1802 rack_sack_proc_short = counter_u64_alloc(M_WAITOK); 1803 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1804 SYSCTL_CHILDREN(rack_counters), 1805 OID_AUTO, "sack_short", CTLFLAG_RD, 1806 &rack_sack_proc_short, 1807 "Total times we took shortcut for sack processing"); 1808 rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK); 1809 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1810 SYSCTL_CHILDREN(rack_counters), 1811 OID_AUTO, "tlp_calc_entered", CTLFLAG_RD, 1812 &rack_enter_tlp_calc, 1813 "Total times we called calc-tlp"); 1814 rack_used_tlpmethod = counter_u64_alloc(M_WAITOK); 1815 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1816 SYSCTL_CHILDREN(rack_counters), 1817 OID_AUTO, "hit_tlp_method", CTLFLAG_RD, 1818 &rack_used_tlpmethod, 1819 "Total number of runt sacks"); 1820 rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK); 1821 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1822 SYSCTL_CHILDREN(rack_counters), 1823 OID_AUTO, "hit_tlp_method2", CTLFLAG_RD, 1824 &rack_used_tlpmethod2, 1825 "Total number of times we hit TLP method 2"); 1826 rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK); 1827 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1828 SYSCTL_CHILDREN(rack_attack), 1829 OID_AUTO, "skipacked", CTLFLAG_RD, 1830 &rack_sack_skipped_acked, 1831 "Total number of times we skipped previously sacked"); 1832 rack_sack_splits = counter_u64_alloc(M_WAITOK); 1833 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1834 SYSCTL_CHILDREN(rack_attack), 1835 OID_AUTO, "ofsplit", CTLFLAG_RD, 1836 &rack_sack_splits, 1837 "Total number of times we did the old fashion tree split"); 1838 rack_progress_drops = counter_u64_alloc(M_WAITOK); 1839 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1840 SYSCTL_CHILDREN(rack_counters), 1841 OID_AUTO, "prog_drops", CTLFLAG_RD, 1842 &rack_progress_drops, 1843 "Total number of progress drops"); 1844 rack_input_idle_reduces = counter_u64_alloc(M_WAITOK); 1845 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1846 SYSCTL_CHILDREN(rack_counters), 1847 OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD, 1848 &rack_input_idle_reduces, 1849 "Total number of idle reductions on input"); 1850 rack_collapsed_win = counter_u64_alloc(M_WAITOK); 1851 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1852 SYSCTL_CHILDREN(rack_counters), 1853 OID_AUTO, "collapsed_win", CTLFLAG_RD, 1854 &rack_collapsed_win, 1855 "Total number of collapsed windows"); 1856 rack_tlp_does_nada = counter_u64_alloc(M_WAITOK); 1857 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1858 SYSCTL_CHILDREN(rack_counters), 1859 OID_AUTO, "tlp_nada", CTLFLAG_RD, 1860 &rack_tlp_does_nada, 1861 "Total number of nada tlp calls"); 1862 rack_try_scwnd = counter_u64_alloc(M_WAITOK); 1863 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1864 SYSCTL_CHILDREN(rack_counters), 1865 OID_AUTO, "tried_scwnd", CTLFLAG_RD, 1866 &rack_try_scwnd, 1867 "Total number of scwnd attempts"); 1868 1869 rack_per_timer_hole = counter_u64_alloc(M_WAITOK); 1870 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1871 SYSCTL_CHILDREN(rack_counters), 1872 OID_AUTO, "timer_hole", CTLFLAG_RD, 1873 &rack_per_timer_hole, 1874 "Total persists start in timer hole"); 1875 1876 rack_sbsndptr_wrong = counter_u64_alloc(M_WAITOK); 1877 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1878 SYSCTL_CHILDREN(rack_counters), 1879 OID_AUTO, "sndptr_wrong", CTLFLAG_RD, 1880 &rack_sbsndptr_wrong, "Total number of times the saved sbsndptr was incorret"); 1881 rack_sbsndptr_right = counter_u64_alloc(M_WAITOK); 1882 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, 1883 SYSCTL_CHILDREN(rack_counters), 1884 OID_AUTO, "sndptr_right", CTLFLAG_RD, 1885 &rack_sbsndptr_right, "Total number of times the saved sbsndptr was corret"); 1886 1887 COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK); 1888 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1889 OID_AUTO, "outsize", CTLFLAG_RD, 1890 rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes"); 1891 COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK); 1892 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), 1893 OID_AUTO, "opts", CTLFLAG_RD, 1894 rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats"); 1895 SYSCTL_ADD_PROC(&rack_sysctl_ctx, 1896 SYSCTL_CHILDREN(rack_sysctl_root), 1897 OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1898 &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters"); 1899 } 1900 1901 static __inline int 1902 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a) 1903 { 1904 if (SEQ_GEQ(b->r_start, a->r_start) && 1905 SEQ_LT(b->r_start, a->r_end)) { 1906 /* 1907 * The entry b is within the 1908 * block a. i.e.: 1909 * a -- |-------------| 1910 * b -- |----| 1911 * <or> 1912 * b -- |------| 1913 * <or> 1914 * b -- |-----------| 1915 */ 1916 return (0); 1917 } else if (SEQ_GEQ(b->r_start, a->r_end)) { 1918 /* 1919 * b falls as either the next 1920 * sequence block after a so a 1921 * is said to be smaller than b. 1922 * i.e: 1923 * a -- |------| 1924 * b -- |--------| 1925 * or 1926 * b -- |-----| 1927 */ 1928 return (1); 1929 } 1930 /* 1931 * Whats left is where a is 1932 * larger than b. i.e: 1933 * a -- |-------| 1934 * b -- |---| 1935 * or even possibly 1936 * b -- |--------------| 1937 */ 1938 return (-1); 1939 } 1940 1941 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1942 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); 1943 1944 static uint32_t 1945 rc_init_window(struct tcp_rack *rack) 1946 { 1947 uint32_t win; 1948 1949 if (rack->rc_init_win == 0) { 1950 /* 1951 * Nothing set by the user, use the system stack 1952 * default. 1953 */ 1954 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp))); 1955 } 1956 win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win; 1957 return (win); 1958 } 1959 1960 static uint64_t 1961 rack_get_fixed_pacing_bw(struct tcp_rack *rack) 1962 { 1963 if (IN_FASTRECOVERY(rack->rc_tp->t_flags)) 1964 return (rack->r_ctl.rc_fixed_pacing_rate_rec); 1965 else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 1966 return (rack->r_ctl.rc_fixed_pacing_rate_ss); 1967 else 1968 return (rack->r_ctl.rc_fixed_pacing_rate_ca); 1969 } 1970 1971 static uint64_t 1972 rack_get_bw(struct tcp_rack *rack) 1973 { 1974 if (rack->use_fixed_rate) { 1975 /* Return the fixed pacing rate */ 1976 return (rack_get_fixed_pacing_bw(rack)); 1977 } 1978 if (rack->r_ctl.gp_bw == 0) { 1979 /* 1980 * We have yet no b/w measurement, 1981 * if we have a user set initial bw 1982 * return it. If we don't have that and 1983 * we have an srtt, use the tcp IW (10) to 1984 * calculate a fictional b/w over the SRTT 1985 * which is more or less a guess. Note 1986 * we don't use our IW from rack on purpose 1987 * so if we have like IW=30, we are not 1988 * calculating a "huge" b/w. 1989 */ 1990 uint64_t bw, srtt; 1991 if (rack->r_ctl.init_rate) 1992 return (rack->r_ctl.init_rate); 1993 1994 /* Has the user set a max peak rate? */ 1995 #ifdef NETFLIX_PEAKRATE 1996 if (rack->rc_tp->t_maxpeakrate) 1997 return (rack->rc_tp->t_maxpeakrate); 1998 #endif 1999 /* Ok lets come up with the IW guess, if we have a srtt */ 2000 if (rack->rc_tp->t_srtt == 0) { 2001 /* 2002 * Go with old pacing method 2003 * i.e. burst mitigation only. 2004 */ 2005 return (0); 2006 } 2007 /* Ok lets get the initial TCP win (not racks) */ 2008 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)); 2009 srtt = (uint64_t)rack->rc_tp->t_srtt; 2010 bw *= (uint64_t)USECS_IN_SECOND; 2011 bw /= srtt; 2012 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 2013 bw = rack->r_ctl.bw_rate_cap; 2014 return (bw); 2015 } else { 2016 uint64_t bw; 2017 2018 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 2019 /* Averaging is done, we can return the value */ 2020 bw = rack->r_ctl.gp_bw; 2021 } else { 2022 /* Still doing initial average must calculate */ 2023 bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements; 2024 } 2025 #ifdef NETFLIX_PEAKRATE 2026 if ((rack->rc_tp->t_maxpeakrate) && 2027 (bw > rack->rc_tp->t_maxpeakrate)) { 2028 /* The user has set a peak rate to pace at 2029 * don't allow us to pace faster than that. 2030 */ 2031 return (rack->rc_tp->t_maxpeakrate); 2032 } 2033 #endif 2034 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap)) 2035 bw = rack->r_ctl.bw_rate_cap; 2036 return (bw); 2037 } 2038 } 2039 2040 static uint16_t 2041 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm) 2042 { 2043 if (rack->use_fixed_rate) { 2044 return (100); 2045 } else if (rack->in_probe_rtt && (rsm == NULL)) 2046 return (rack->r_ctl.rack_per_of_gp_probertt); 2047 else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) && 2048 rack->r_ctl.rack_per_of_gp_rec)) { 2049 if (rsm) { 2050 /* a retransmission always use the recovery rate */ 2051 return (rack->r_ctl.rack_per_of_gp_rec); 2052 } else if (rack->rack_rec_nonrxt_use_cr) { 2053 /* Directed to use the configured rate */ 2054 goto configured_rate; 2055 } else if (rack->rack_no_prr && 2056 (rack->r_ctl.rack_per_of_gp_rec > 100)) { 2057 /* No PRR, lets just use the b/w estimate only */ 2058 return (100); 2059 } else { 2060 /* 2061 * Here we may have a non-retransmit but we 2062 * have no overrides, so just use the recovery 2063 * rate (prr is in effect). 2064 */ 2065 return (rack->r_ctl.rack_per_of_gp_rec); 2066 } 2067 } 2068 configured_rate: 2069 /* For the configured rate we look at our cwnd vs the ssthresh */ 2070 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) 2071 return (rack->r_ctl.rack_per_of_gp_ss); 2072 else 2073 return (rack->r_ctl.rack_per_of_gp_ca); 2074 } 2075 2076 static void 2077 rack_log_hdwr_pacing(struct tcp_rack *rack, 2078 uint64_t rate, uint64_t hw_rate, int line, 2079 int error, uint16_t mod) 2080 { 2081 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2082 union tcp_log_stackspecific log; 2083 struct timeval tv; 2084 const struct ifnet *ifp; 2085 2086 memset(&log, 0, sizeof(log)); 2087 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff); 2088 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff); 2089 if (rack->r_ctl.crte) { 2090 ifp = rack->r_ctl.crte->ptbl->rs_ifp; 2091 } else if (rack->rc_inp->inp_route.ro_nh && 2092 rack->rc_inp->inp_route.ro_nh->nh_ifp) { 2093 ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp; 2094 } else 2095 ifp = NULL; 2096 if (ifp) { 2097 log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff); 2098 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff); 2099 } 2100 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2101 log.u_bbr.bw_inuse = rate; 2102 log.u_bbr.flex5 = line; 2103 log.u_bbr.flex6 = error; 2104 log.u_bbr.flex7 = mod; 2105 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs; 2106 log.u_bbr.flex8 = rack->use_fixed_rate; 2107 log.u_bbr.flex8 <<= 1; 2108 log.u_bbr.flex8 |= rack->rack_hdrw_pacing; 2109 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 2110 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate; 2111 if (rack->r_ctl.crte) 2112 log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate; 2113 else 2114 log.u_bbr.cur_del_rate = 0; 2115 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req; 2116 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2117 &rack->rc_inp->inp_socket->so_rcv, 2118 &rack->rc_inp->inp_socket->so_snd, 2119 BBR_LOG_HDWR_PACE, 0, 2120 0, &log, false, &tv); 2121 } 2122 } 2123 2124 static uint64_t 2125 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped) 2126 { 2127 /* 2128 * We allow rack_per_of_gp_xx to dictate our bw rate we want. 2129 */ 2130 uint64_t bw_est, high_rate; 2131 uint64_t gain; 2132 2133 gain = (uint64_t)rack_get_output_gain(rack, rsm); 2134 bw_est = bw * gain; 2135 bw_est /= (uint64_t)100; 2136 /* Never fall below the minimum (def 64kbps) */ 2137 if (bw_est < RACK_MIN_BW) 2138 bw_est = RACK_MIN_BW; 2139 if (rack->r_rack_hw_rate_caps) { 2140 /* Rate caps are in place */ 2141 if (rack->r_ctl.crte != NULL) { 2142 /* We have a hdwr rate already */ 2143 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 2144 if (bw_est >= high_rate) { 2145 /* We are capping bw at the highest rate table entry */ 2146 rack_log_hdwr_pacing(rack, 2147 bw_est, high_rate, __LINE__, 2148 0, 3); 2149 bw_est = high_rate; 2150 if (capped) 2151 *capped = 1; 2152 } 2153 } else if ((rack->rack_hdrw_pacing == 0) && 2154 (rack->rack_hdw_pace_ena) && 2155 (rack->rack_attempt_hdwr_pace == 0) && 2156 (rack->rc_inp->inp_route.ro_nh != NULL) && 2157 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 2158 /* 2159 * Special case, we have not yet attempted hardware 2160 * pacing, and yet we may, when we do, find out if we are 2161 * above the highest rate. We need to know the maxbw for the interface 2162 * in question (if it supports ratelimiting). We get back 2163 * a 0, if the interface is not found in the RL lists. 2164 */ 2165 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 2166 if (high_rate) { 2167 /* Yep, we have a rate is it above this rate? */ 2168 if (bw_est > high_rate) { 2169 bw_est = high_rate; 2170 if (capped) 2171 *capped = 1; 2172 } 2173 } 2174 } 2175 } 2176 return (bw_est); 2177 } 2178 2179 static void 2180 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod) 2181 { 2182 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2183 union tcp_log_stackspecific log; 2184 struct timeval tv; 2185 2186 if ((mod != 1) && (rack_verbose_logging == 0)) { 2187 /* 2188 * We get 3 values currently for mod 2189 * 1 - We are retransmitting and this tells the reason. 2190 * 2 - We are clearing a dup-ack count. 2191 * 3 - We are incrementing a dup-ack count. 2192 * 2193 * The clear/increment are only logged 2194 * if you have BBverbose on. 2195 */ 2196 return; 2197 } 2198 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2199 log.u_bbr.flex1 = tsused; 2200 log.u_bbr.flex2 = thresh; 2201 log.u_bbr.flex3 = rsm->r_flags; 2202 log.u_bbr.flex4 = rsm->r_dupack; 2203 log.u_bbr.flex5 = rsm->r_start; 2204 log.u_bbr.flex6 = rsm->r_end; 2205 log.u_bbr.flex8 = mod; 2206 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2207 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2208 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2209 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2210 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2211 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2212 log.u_bbr.pacing_gain = rack->r_must_retran; 2213 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2214 &rack->rc_inp->inp_socket->so_rcv, 2215 &rack->rc_inp->inp_socket->so_snd, 2216 BBR_LOG_SETTINGS_CHG, 0, 2217 0, &log, false, &tv); 2218 } 2219 } 2220 2221 static void 2222 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which) 2223 { 2224 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2225 union tcp_log_stackspecific log; 2226 struct timeval tv; 2227 2228 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2229 log.u_bbr.flex1 = rack->rc_tp->t_srtt; 2230 log.u_bbr.flex2 = to; 2231 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags; 2232 log.u_bbr.flex4 = slot; 2233 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot; 2234 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2235 log.u_bbr.flex7 = rack->rc_in_persist; 2236 log.u_bbr.flex8 = which; 2237 if (rack->rack_no_prr) 2238 log.u_bbr.pkts_out = 0; 2239 else 2240 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 2241 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2242 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2243 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2244 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2245 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2246 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2247 log.u_bbr.pacing_gain = rack->r_must_retran; 2248 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift; 2249 log.u_bbr.lost = rack_rto_min; 2250 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2251 &rack->rc_inp->inp_socket->so_rcv, 2252 &rack->rc_inp->inp_socket->so_snd, 2253 BBR_LOG_TIMERSTAR, 0, 2254 0, &log, false, &tv); 2255 } 2256 } 2257 2258 static void 2259 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm) 2260 { 2261 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2262 union tcp_log_stackspecific log; 2263 struct timeval tv; 2264 2265 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2266 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2267 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2268 log.u_bbr.flex8 = to_num; 2269 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt; 2270 log.u_bbr.flex2 = rack->rc_rack_rtt; 2271 if (rsm == NULL) 2272 log.u_bbr.flex3 = 0; 2273 else 2274 log.u_bbr.flex3 = rsm->r_end - rsm->r_start; 2275 if (rack->rack_no_prr) 2276 log.u_bbr.flex5 = 0; 2277 else 2278 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2279 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2280 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2281 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2282 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2283 log.u_bbr.pacing_gain = rack->r_must_retran; 2284 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2285 &rack->rc_inp->inp_socket->so_rcv, 2286 &rack->rc_inp->inp_socket->so_snd, 2287 BBR_LOG_RTO, 0, 2288 0, &log, false, &tv); 2289 } 2290 } 2291 2292 static void 2293 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack, 2294 struct rack_sendmap *prev, 2295 struct rack_sendmap *rsm, 2296 struct rack_sendmap *next, 2297 int flag, uint32_t th_ack, int line) 2298 { 2299 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2300 union tcp_log_stackspecific log; 2301 struct timeval tv; 2302 2303 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2304 log.u_bbr.flex8 = flag; 2305 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2306 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2307 log.u_bbr.cur_del_rate = (uint64_t)prev; 2308 log.u_bbr.delRate = (uint64_t)rsm; 2309 log.u_bbr.rttProp = (uint64_t)next; 2310 log.u_bbr.flex7 = 0; 2311 if (prev) { 2312 log.u_bbr.flex1 = prev->r_start; 2313 log.u_bbr.flex2 = prev->r_end; 2314 log.u_bbr.flex7 |= 0x4; 2315 } 2316 if (rsm) { 2317 log.u_bbr.flex3 = rsm->r_start; 2318 log.u_bbr.flex4 = rsm->r_end; 2319 log.u_bbr.flex7 |= 0x2; 2320 } 2321 if (next) { 2322 log.u_bbr.flex5 = next->r_start; 2323 log.u_bbr.flex6 = next->r_end; 2324 log.u_bbr.flex7 |= 0x1; 2325 } 2326 log.u_bbr.applimited = line; 2327 log.u_bbr.pkts_out = th_ack; 2328 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2329 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2330 if (rack->rack_no_prr) 2331 log.u_bbr.lost = 0; 2332 else 2333 log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt; 2334 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2335 &rack->rc_inp->inp_socket->so_rcv, 2336 &rack->rc_inp->inp_socket->so_snd, 2337 TCP_LOG_MAPCHG, 0, 2338 0, &log, false, &tv); 2339 } 2340 } 2341 2342 static void 2343 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len, 2344 struct rack_sendmap *rsm, int conf) 2345 { 2346 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2347 union tcp_log_stackspecific log; 2348 struct timeval tv; 2349 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2350 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2351 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2352 log.u_bbr.flex1 = t; 2353 log.u_bbr.flex2 = len; 2354 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt; 2355 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest; 2356 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest; 2357 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2358 log.u_bbr.flex7 = conf; 2359 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot; 2360 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method; 2361 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2362 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt; 2363 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags; 2364 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2365 if (rsm) { 2366 log.u_bbr.pkt_epoch = rsm->r_start; 2367 log.u_bbr.lost = rsm->r_end; 2368 log.u_bbr.cwnd_gain = rsm->r_rtr_cnt; 2369 log.u_bbr.pacing_gain = rsm->r_flags; 2370 } else { 2371 /* Its a SYN */ 2372 log.u_bbr.pkt_epoch = rack->rc_tp->iss; 2373 log.u_bbr.lost = 0; 2374 log.u_bbr.cwnd_gain = 0; 2375 log.u_bbr.pacing_gain = 0; 2376 } 2377 /* Write out general bits of interest rrs here */ 2378 log.u_bbr.use_lt_bw = rack->rc_highly_buffered; 2379 log.u_bbr.use_lt_bw <<= 1; 2380 log.u_bbr.use_lt_bw |= rack->forced_ack; 2381 log.u_bbr.use_lt_bw <<= 1; 2382 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul; 2383 log.u_bbr.use_lt_bw <<= 1; 2384 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 2385 log.u_bbr.use_lt_bw <<= 1; 2386 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 2387 log.u_bbr.use_lt_bw <<= 1; 2388 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 2389 log.u_bbr.use_lt_bw <<= 1; 2390 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 2391 log.u_bbr.use_lt_bw <<= 1; 2392 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom; 2393 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight; 2394 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts; 2395 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered; 2396 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts; 2397 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt; 2398 log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 2399 log.u_bbr.bw_inuse <<= 32; 2400 if (rsm) 2401 log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]); 2402 TCP_LOG_EVENTP(tp, NULL, 2403 &rack->rc_inp->inp_socket->so_rcv, 2404 &rack->rc_inp->inp_socket->so_snd, 2405 BBR_LOG_BBRRTT, 0, 2406 0, &log, false, &tv); 2407 2408 2409 } 2410 } 2411 2412 static void 2413 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt) 2414 { 2415 /* 2416 * Log the rtt sample we are 2417 * applying to the srtt algorithm in 2418 * useconds. 2419 */ 2420 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2421 union tcp_log_stackspecific log; 2422 struct timeval tv; 2423 2424 /* Convert our ms to a microsecond */ 2425 memset(&log, 0, sizeof(log)); 2426 log.u_bbr.flex1 = rtt; 2427 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2428 log.u_bbr.flex3 = rack->r_ctl.sack_count; 2429 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2430 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra; 2431 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2432 log.u_bbr.flex7 = 1; 2433 log.u_bbr.flex8 = rack->sack_attack_disable; 2434 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2435 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2436 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2437 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2438 log.u_bbr.pacing_gain = rack->r_must_retran; 2439 /* 2440 * We capture in delRate the upper 32 bits as 2441 * the confidence level we had declared, and the 2442 * lower 32 bits as the actual RTT using the arrival 2443 * timestamp. 2444 */ 2445 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence; 2446 log.u_bbr.delRate <<= 32; 2447 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt; 2448 /* Lets capture all the things that make up t_rtxcur */ 2449 log.u_bbr.applimited = rack_rto_min; 2450 log.u_bbr.epoch = rack_rto_max; 2451 log.u_bbr.lt_epoch = rtt; 2452 log.u_bbr.lost = rack_rto_min; 2453 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop); 2454 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp); 2455 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec; 2456 log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC; 2457 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec; 2458 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2459 &rack->rc_inp->inp_socket->so_rcv, 2460 &rack->rc_inp->inp_socket->so_snd, 2461 TCP_LOG_RTT, 0, 2462 0, &log, false, &tv); 2463 } 2464 } 2465 2466 static void 2467 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where) 2468 { 2469 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 2470 union tcp_log_stackspecific log; 2471 struct timeval tv; 2472 2473 /* Convert our ms to a microsecond */ 2474 memset(&log, 0, sizeof(log)); 2475 log.u_bbr.flex1 = rtt; 2476 log.u_bbr.flex2 = send_time; 2477 log.u_bbr.flex3 = ack_time; 2478 log.u_bbr.flex4 = where; 2479 log.u_bbr.flex7 = 2; 2480 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2481 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2482 &rack->rc_inp->inp_socket->so_rcv, 2483 &rack->rc_inp->inp_socket->so_snd, 2484 TCP_LOG_RTT, 0, 2485 0, &log, false, &tv); 2486 } 2487 } 2488 2489 2490 2491 static inline void 2492 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line) 2493 { 2494 if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 2495 union tcp_log_stackspecific log; 2496 struct timeval tv; 2497 2498 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2499 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2500 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2501 log.u_bbr.flex1 = line; 2502 log.u_bbr.flex2 = tick; 2503 log.u_bbr.flex3 = tp->t_maxunacktime; 2504 log.u_bbr.flex4 = tp->t_acktime; 2505 log.u_bbr.flex8 = event; 2506 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2507 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2508 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2509 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2510 log.u_bbr.pacing_gain = rack->r_must_retran; 2511 TCP_LOG_EVENTP(tp, NULL, 2512 &rack->rc_inp->inp_socket->so_rcv, 2513 &rack->rc_inp->inp_socket->so_snd, 2514 BBR_LOG_PROGRESS, 0, 2515 0, &log, false, &tv); 2516 } 2517 } 2518 2519 static void 2520 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv) 2521 { 2522 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2523 union tcp_log_stackspecific log; 2524 2525 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2526 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2527 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2528 log.u_bbr.flex1 = slot; 2529 if (rack->rack_no_prr) 2530 log.u_bbr.flex2 = 0; 2531 else 2532 log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt; 2533 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags); 2534 log.u_bbr.flex8 = rack->rc_in_persist; 2535 log.u_bbr.timeStamp = cts; 2536 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2537 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2538 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2539 log.u_bbr.pacing_gain = rack->r_must_retran; 2540 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2541 &rack->rc_inp->inp_socket->so_rcv, 2542 &rack->rc_inp->inp_socket->so_snd, 2543 BBR_LOG_BBRSND, 0, 2544 0, &log, false, tv); 2545 } 2546 } 2547 2548 static void 2549 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs) 2550 { 2551 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2552 union tcp_log_stackspecific log; 2553 struct timeval tv; 2554 2555 memset(&log, 0, sizeof(log)); 2556 log.u_bbr.flex1 = did_out; 2557 log.u_bbr.flex2 = nxt_pkt; 2558 log.u_bbr.flex3 = way_out; 2559 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2560 if (rack->rack_no_prr) 2561 log.u_bbr.flex5 = 0; 2562 else 2563 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2564 log.u_bbr.flex6 = nsegs; 2565 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs; 2566 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data; /* Do we have ack-can-send set */ 2567 log.u_bbr.flex7 <<= 1; 2568 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */ 2569 log.u_bbr.flex7 <<= 1; 2570 log.u_bbr.flex7 |= rack->r_wanted_output; /* Do we want output */ 2571 log.u_bbr.flex8 = rack->rc_in_persist; 2572 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2573 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2574 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2575 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2576 log.u_bbr.use_lt_bw <<= 1; 2577 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2578 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2579 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2580 log.u_bbr.pacing_gain = rack->r_must_retran; 2581 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2582 &rack->rc_inp->inp_socket->so_rcv, 2583 &rack->rc_inp->inp_socket->so_snd, 2584 BBR_LOG_DOSEG_DONE, 0, 2585 0, &log, false, &tv); 2586 } 2587 } 2588 2589 static void 2590 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm) 2591 { 2592 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 2593 union tcp_log_stackspecific log; 2594 struct timeval tv; 2595 uint32_t cts; 2596 2597 memset(&log, 0, sizeof(log)); 2598 cts = tcp_get_usecs(&tv); 2599 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs; 2600 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 2601 log.u_bbr.flex4 = arg1; 2602 log.u_bbr.flex5 = arg2; 2603 log.u_bbr.flex6 = arg3; 2604 log.u_bbr.flex8 = frm; 2605 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2606 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2607 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2608 log.u_bbr.applimited = rack->r_ctl.rc_sacked; 2609 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2610 log.u_bbr.pacing_gain = rack->r_must_retran; 2611 TCP_LOG_EVENTP(tp, NULL, 2612 &tp->t_inpcb->inp_socket->so_rcv, 2613 &tp->t_inpcb->inp_socket->so_snd, 2614 TCP_HDWR_PACE_SIZE, 0, 2615 0, &log, false, &tv); 2616 } 2617 } 2618 2619 static void 2620 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, 2621 uint8_t hpts_calling, int reason, uint32_t cwnd_to_use) 2622 { 2623 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2624 union tcp_log_stackspecific log; 2625 struct timeval tv; 2626 2627 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2628 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2629 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2630 log.u_bbr.flex1 = slot; 2631 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags; 2632 log.u_bbr.flex4 = reason; 2633 if (rack->rack_no_prr) 2634 log.u_bbr.flex5 = 0; 2635 else 2636 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2637 log.u_bbr.flex7 = hpts_calling; 2638 log.u_bbr.flex8 = rack->rc_in_persist; 2639 log.u_bbr.lt_epoch = cwnd_to_use; 2640 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2641 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2642 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2643 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2644 log.u_bbr.pacing_gain = rack->r_must_retran; 2645 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2646 &rack->rc_inp->inp_socket->so_rcv, 2647 &rack->rc_inp->inp_socket->so_snd, 2648 BBR_LOG_JUSTRET, 0, 2649 tlen, &log, false, &tv); 2650 } 2651 } 2652 2653 static void 2654 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts, 2655 struct timeval *tv, uint32_t flags_on_entry) 2656 { 2657 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2658 union tcp_log_stackspecific log; 2659 2660 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2661 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 2662 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 2663 log.u_bbr.flex1 = line; 2664 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to; 2665 log.u_bbr.flex3 = flags_on_entry; 2666 log.u_bbr.flex4 = us_cts; 2667 if (rack->rack_no_prr) 2668 log.u_bbr.flex5 = 0; 2669 else 2670 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; 2671 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; 2672 log.u_bbr.flex7 = hpts_removed; 2673 log.u_bbr.flex8 = 1; 2674 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags; 2675 log.u_bbr.timeStamp = us_cts; 2676 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2677 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2678 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2679 log.u_bbr.pacing_gain = rack->r_must_retran; 2680 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2681 &rack->rc_inp->inp_socket->so_rcv, 2682 &rack->rc_inp->inp_socket->so_snd, 2683 BBR_LOG_TIMERCANC, 0, 2684 0, &log, false, tv); 2685 } 2686 } 2687 2688 static void 2689 rack_log_alt_to_to_cancel(struct tcp_rack *rack, 2690 uint32_t flex1, uint32_t flex2, 2691 uint32_t flex3, uint32_t flex4, 2692 uint32_t flex5, uint32_t flex6, 2693 uint16_t flex7, uint8_t mod) 2694 { 2695 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2696 union tcp_log_stackspecific log; 2697 struct timeval tv; 2698 2699 if (mod == 1) { 2700 /* No you can't use 1, its for the real to cancel */ 2701 return; 2702 } 2703 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2704 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2705 log.u_bbr.flex1 = flex1; 2706 log.u_bbr.flex2 = flex2; 2707 log.u_bbr.flex3 = flex3; 2708 log.u_bbr.flex4 = flex4; 2709 log.u_bbr.flex5 = flex5; 2710 log.u_bbr.flex6 = flex6; 2711 log.u_bbr.flex7 = flex7; 2712 log.u_bbr.flex8 = mod; 2713 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2714 &rack->rc_inp->inp_socket->so_rcv, 2715 &rack->rc_inp->inp_socket->so_snd, 2716 BBR_LOG_TIMERCANC, 0, 2717 0, &log, false, &tv); 2718 } 2719 } 2720 2721 static void 2722 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers) 2723 { 2724 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2725 union tcp_log_stackspecific log; 2726 struct timeval tv; 2727 2728 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2729 log.u_bbr.flex1 = timers; 2730 log.u_bbr.flex2 = ret; 2731 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp; 2732 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 2733 log.u_bbr.flex5 = cts; 2734 if (rack->rack_no_prr) 2735 log.u_bbr.flex6 = 0; 2736 else 2737 log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt; 2738 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto; 2739 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto; 2740 log.u_bbr.pacing_gain = rack->r_must_retran; 2741 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2742 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2743 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2744 &rack->rc_inp->inp_socket->so_rcv, 2745 &rack->rc_inp->inp_socket->so_snd, 2746 BBR_LOG_TO_PROCESS, 0, 2747 0, &log, false, &tv); 2748 } 2749 } 2750 2751 static void 2752 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd) 2753 { 2754 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2755 union tcp_log_stackspecific log; 2756 struct timeval tv; 2757 2758 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2759 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out; 2760 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs; 2761 if (rack->rack_no_prr) 2762 log.u_bbr.flex3 = 0; 2763 else 2764 log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt; 2765 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered; 2766 log.u_bbr.flex5 = rack->r_ctl.rc_sacked; 2767 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt; 2768 log.u_bbr.flex8 = frm; 2769 log.u_bbr.pkts_out = orig_cwnd; 2770 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2771 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2772 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 2773 log.u_bbr.use_lt_bw <<= 1; 2774 log.u_bbr.use_lt_bw |= rack->r_might_revert; 2775 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2776 &rack->rc_inp->inp_socket->so_rcv, 2777 &rack->rc_inp->inp_socket->so_snd, 2778 BBR_LOG_BBRUPD, 0, 2779 0, &log, false, &tv); 2780 } 2781 } 2782 2783 #ifdef NETFLIX_EXP_DETECTION 2784 static void 2785 rack_log_sad(struct tcp_rack *rack, int event) 2786 { 2787 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 2788 union tcp_log_stackspecific log; 2789 struct timeval tv; 2790 2791 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 2792 log.u_bbr.flex1 = rack->r_ctl.sack_count; 2793 log.u_bbr.flex2 = rack->r_ctl.ack_count; 2794 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra; 2795 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; 2796 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced; 2797 log.u_bbr.flex6 = tcp_sack_to_ack_thresh; 2798 log.u_bbr.pkts_out = tcp_sack_to_move_thresh; 2799 log.u_bbr.lt_epoch = (tcp_force_detection << 8); 2800 log.u_bbr.lt_epoch |= rack->do_detection; 2801 log.u_bbr.applimited = tcp_map_minimum; 2802 log.u_bbr.flex7 = rack->sack_attack_disable; 2803 log.u_bbr.flex8 = event; 2804 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2805 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 2806 log.u_bbr.delivered = tcp_sad_decay_val; 2807 TCP_LOG_EVENTP(rack->rc_tp, NULL, 2808 &rack->rc_inp->inp_socket->so_rcv, 2809 &rack->rc_inp->inp_socket->so_snd, 2810 TCP_SAD_DETECTION, 0, 2811 0, &log, false, &tv); 2812 } 2813 } 2814 #endif 2815 2816 static void 2817 rack_counter_destroy(void) 2818 { 2819 int i; 2820 2821 counter_u64_free(rack_fto_send); 2822 counter_u64_free(rack_fto_rsm_send); 2823 counter_u64_free(rack_nfto_resend); 2824 counter_u64_free(rack_hw_pace_init_fail); 2825 counter_u64_free(rack_hw_pace_lost); 2826 counter_u64_free(rack_non_fto_send); 2827 counter_u64_free(rack_extended_rfo); 2828 counter_u64_free(rack_ack_total); 2829 counter_u64_free(rack_express_sack); 2830 counter_u64_free(rack_sack_total); 2831 counter_u64_free(rack_move_none); 2832 counter_u64_free(rack_move_some); 2833 counter_u64_free(rack_sack_attacks_detected); 2834 counter_u64_free(rack_sack_attacks_reversed); 2835 counter_u64_free(rack_sack_used_next_merge); 2836 counter_u64_free(rack_sack_used_prev_merge); 2837 counter_u64_free(rack_badfr); 2838 counter_u64_free(rack_badfr_bytes); 2839 counter_u64_free(rack_rtm_prr_retran); 2840 counter_u64_free(rack_rtm_prr_newdata); 2841 counter_u64_free(rack_timestamp_mismatch); 2842 counter_u64_free(rack_find_high); 2843 counter_u64_free(rack_reorder_seen); 2844 counter_u64_free(rack_tlp_tot); 2845 counter_u64_free(rack_tlp_newdata); 2846 counter_u64_free(rack_tlp_retran); 2847 counter_u64_free(rack_tlp_retran_bytes); 2848 counter_u64_free(rack_tlp_retran_fail); 2849 counter_u64_free(rack_to_tot); 2850 counter_u64_free(rack_to_arm_rack); 2851 counter_u64_free(rack_to_arm_tlp); 2852 counter_u64_free(rack_calc_zero); 2853 counter_u64_free(rack_calc_nonzero); 2854 counter_u64_free(rack_paced_segments); 2855 counter_u64_free(rack_unpaced_segments); 2856 counter_u64_free(rack_saw_enobuf); 2857 counter_u64_free(rack_saw_enobuf_hw); 2858 counter_u64_free(rack_saw_enetunreach); 2859 counter_u64_free(rack_hot_alloc); 2860 counter_u64_free(rack_to_alloc); 2861 counter_u64_free(rack_to_alloc_hard); 2862 counter_u64_free(rack_to_alloc_emerg); 2863 counter_u64_free(rack_to_alloc_limited); 2864 counter_u64_free(rack_alloc_limited_conns); 2865 counter_u64_free(rack_split_limited); 2866 for (i = 0; i < MAX_NUM_OF_CNTS; i++) { 2867 counter_u64_free(rack_proc_comp_ack[i]); 2868 } 2869 counter_u64_free(rack_multi_single_eq); 2870 counter_u64_free(rack_proc_non_comp_ack); 2871 counter_u64_free(rack_sack_proc_all); 2872 counter_u64_free(rack_sack_proc_restart); 2873 counter_u64_free(rack_sack_proc_short); 2874 counter_u64_free(rack_enter_tlp_calc); 2875 counter_u64_free(rack_used_tlpmethod); 2876 counter_u64_free(rack_used_tlpmethod2); 2877 counter_u64_free(rack_sack_skipped_acked); 2878 counter_u64_free(rack_sack_splits); 2879 counter_u64_free(rack_progress_drops); 2880 counter_u64_free(rack_input_idle_reduces); 2881 counter_u64_free(rack_collapsed_win); 2882 counter_u64_free(rack_tlp_does_nada); 2883 counter_u64_free(rack_try_scwnd); 2884 counter_u64_free(rack_per_timer_hole); 2885 counter_u64_free(rack_large_ackcmp); 2886 counter_u64_free(rack_small_ackcmp); 2887 #ifdef INVARIANTS 2888 counter_u64_free(rack_adjust_map_bw); 2889 #endif 2890 COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE); 2891 COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE); 2892 } 2893 2894 static struct rack_sendmap * 2895 rack_alloc(struct tcp_rack *rack) 2896 { 2897 struct rack_sendmap *rsm; 2898 2899 /* 2900 * First get the top of the list it in 2901 * theory is the "hottest" rsm we have, 2902 * possibly just freed by ack processing. 2903 */ 2904 if (rack->rc_free_cnt > rack_free_cache) { 2905 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 2906 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2907 counter_u64_add(rack_hot_alloc, 1); 2908 rack->rc_free_cnt--; 2909 return (rsm); 2910 } 2911 /* 2912 * Once we get under our free cache we probably 2913 * no longer have a "hot" one available. Lets 2914 * get one from UMA. 2915 */ 2916 rsm = uma_zalloc(rack_zone, M_NOWAIT); 2917 if (rsm) { 2918 rack->r_ctl.rc_num_maps_alloced++; 2919 counter_u64_add(rack_to_alloc, 1); 2920 return (rsm); 2921 } 2922 /* 2923 * Dig in to our aux rsm's (the last two) since 2924 * UMA failed to get us one. 2925 */ 2926 if (rack->rc_free_cnt) { 2927 counter_u64_add(rack_to_alloc_emerg, 1); 2928 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 2929 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 2930 rack->rc_free_cnt--; 2931 return (rsm); 2932 } 2933 return (NULL); 2934 } 2935 2936 static struct rack_sendmap * 2937 rack_alloc_full_limit(struct tcp_rack *rack) 2938 { 2939 if ((V_tcp_map_entries_limit > 0) && 2940 (rack->do_detection == 0) && 2941 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 2942 counter_u64_add(rack_to_alloc_limited, 1); 2943 if (!rack->alloc_limit_reported) { 2944 rack->alloc_limit_reported = 1; 2945 counter_u64_add(rack_alloc_limited_conns, 1); 2946 } 2947 return (NULL); 2948 } 2949 return (rack_alloc(rack)); 2950 } 2951 2952 /* wrapper to allocate a sendmap entry, subject to a specific limit */ 2953 static struct rack_sendmap * 2954 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type) 2955 { 2956 struct rack_sendmap *rsm; 2957 2958 if (limit_type) { 2959 /* currently there is only one limit type */ 2960 if (V_tcp_map_split_limit > 0 && 2961 (rack->do_detection == 0) && 2962 rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) { 2963 counter_u64_add(rack_split_limited, 1); 2964 if (!rack->alloc_limit_reported) { 2965 rack->alloc_limit_reported = 1; 2966 counter_u64_add(rack_alloc_limited_conns, 1); 2967 } 2968 return (NULL); 2969 } 2970 } 2971 2972 /* allocate and mark in the limit type, if set */ 2973 rsm = rack_alloc(rack); 2974 if (rsm != NULL && limit_type) { 2975 rsm->r_limit_type = limit_type; 2976 rack->r_ctl.rc_num_split_allocs++; 2977 } 2978 return (rsm); 2979 } 2980 2981 static void 2982 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm) 2983 { 2984 if (rsm->r_flags & RACK_APP_LIMITED) { 2985 if (rack->r_ctl.rc_app_limited_cnt > 0) { 2986 rack->r_ctl.rc_app_limited_cnt--; 2987 } 2988 } 2989 if (rsm->r_limit_type) { 2990 /* currently there is only one limit type */ 2991 rack->r_ctl.rc_num_split_allocs--; 2992 } 2993 if (rsm == rack->r_ctl.rc_first_appl) { 2994 if (rack->r_ctl.rc_app_limited_cnt == 0) 2995 rack->r_ctl.rc_first_appl = NULL; 2996 else { 2997 /* Follow the next one out */ 2998 struct rack_sendmap fe; 2999 3000 fe.r_start = rsm->r_nseq_appl; 3001 rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 3002 } 3003 } 3004 if (rsm == rack->r_ctl.rc_resend) 3005 rack->r_ctl.rc_resend = NULL; 3006 if (rsm == rack->r_ctl.rc_rsm_at_retran) 3007 rack->r_ctl.rc_rsm_at_retran = NULL; 3008 if (rsm == rack->r_ctl.rc_end_appl) 3009 rack->r_ctl.rc_end_appl = NULL; 3010 if (rack->r_ctl.rc_tlpsend == rsm) 3011 rack->r_ctl.rc_tlpsend = NULL; 3012 if (rack->r_ctl.rc_sacklast == rsm) 3013 rack->r_ctl.rc_sacklast = NULL; 3014 memset(rsm, 0, sizeof(struct rack_sendmap)); 3015 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext); 3016 rack->rc_free_cnt++; 3017 } 3018 3019 static void 3020 rack_free_trim(struct tcp_rack *rack) 3021 { 3022 struct rack_sendmap *rsm; 3023 3024 /* 3025 * Free up all the tail entries until 3026 * we get our list down to the limit. 3027 */ 3028 while (rack->rc_free_cnt > rack_free_cache) { 3029 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head); 3030 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 3031 rack->rc_free_cnt--; 3032 uma_zfree(rack_zone, rsm); 3033 } 3034 } 3035 3036 3037 static uint32_t 3038 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack) 3039 { 3040 uint64_t srtt, bw, len, tim; 3041 uint32_t segsiz, def_len, minl; 3042 3043 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3044 def_len = rack_def_data_window * segsiz; 3045 if (rack->rc_gp_filled == 0) { 3046 /* 3047 * We have no measurement (IW is in flight?) so 3048 * we can only guess using our data_window sysctl 3049 * value (usually 100MSS). 3050 */ 3051 return (def_len); 3052 } 3053 /* 3054 * Now we have a number of factors to consider. 3055 * 3056 * 1) We have a desired BDP which is usually 3057 * at least 2. 3058 * 2) We have a minimum number of rtt's usually 1 SRTT 3059 * but we allow it too to be more. 3060 * 3) We want to make sure a measurement last N useconds (if 3061 * we have set rack_min_measure_usec. 3062 * 3063 * We handle the first concern here by trying to create a data 3064 * window of max(rack_def_data_window, DesiredBDP). The 3065 * second concern we handle in not letting the measurement 3066 * window end normally until at least the required SRTT's 3067 * have gone by which is done further below in 3068 * rack_enough_for_measurement(). Finally the third concern 3069 * we also handle here by calculating how long that time 3070 * would take at the current BW and then return the 3071 * max of our first calculation and that length. Note 3072 * that if rack_min_measure_usec is 0, we don't deal 3073 * with concern 3. Also for both Concern 1 and 3 an 3074 * application limited period could end the measurement 3075 * earlier. 3076 * 3077 * So lets calculate the BDP with the "known" b/w using 3078 * the SRTT has our rtt and then multiply it by the 3079 * goal. 3080 */ 3081 bw = rack_get_bw(rack); 3082 srtt = (uint64_t)tp->t_srtt; 3083 len = bw * srtt; 3084 len /= (uint64_t)HPTS_USEC_IN_SEC; 3085 len *= max(1, rack_goal_bdp); 3086 /* Now we need to round up to the nearest MSS */ 3087 len = roundup(len, segsiz); 3088 if (rack_min_measure_usec) { 3089 /* Now calculate our min length for this b/w */ 3090 tim = rack_min_measure_usec; 3091 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC; 3092 if (minl == 0) 3093 minl = 1; 3094 minl = roundup(minl, segsiz); 3095 if (len < minl) 3096 len = minl; 3097 } 3098 /* 3099 * Now if we have a very small window we want 3100 * to attempt to get the window that is 3101 * as small as possible. This happens on 3102 * low b/w connections and we don't want to 3103 * span huge numbers of rtt's between measurements. 3104 * 3105 * We basically include 2 over our "MIN window" so 3106 * that the measurement can be shortened (possibly) by 3107 * an ack'ed packet. 3108 */ 3109 if (len < def_len) 3110 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz))); 3111 else 3112 return (max((uint32_t)len, def_len)); 3113 3114 } 3115 3116 static int 3117 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack) 3118 { 3119 uint32_t tim, srtts, segsiz; 3120 3121 /* 3122 * Has enough time passed for the GP measurement to be valid? 3123 */ 3124 if ((tp->snd_max == tp->snd_una) || 3125 (th_ack == tp->snd_max)){ 3126 /* All is acked */ 3127 return (1); 3128 } 3129 if (SEQ_LT(th_ack, tp->gput_seq)) { 3130 /* Not enough bytes yet */ 3131 return (0); 3132 } 3133 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 3134 if (SEQ_LT(th_ack, tp->gput_ack) && 3135 ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 3136 /* Not enough bytes yet */ 3137 return (0); 3138 } 3139 if (rack->r_ctl.rc_first_appl && 3140 (rack->r_ctl.rc_first_appl->r_start == th_ack)) { 3141 /* 3142 * We are up to the app limited point 3143 * we have to measure irrespective of the time.. 3144 */ 3145 return (1); 3146 } 3147 /* Now what about time? */ 3148 srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts); 3149 tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts; 3150 if (tim >= srtts) { 3151 return (1); 3152 } 3153 /* Nope not even a full SRTT has passed */ 3154 return (0); 3155 } 3156 3157 static void 3158 rack_log_timely(struct tcp_rack *rack, 3159 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd, 3160 uint64_t up_bnd, int line, uint8_t method) 3161 { 3162 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3163 union tcp_log_stackspecific log; 3164 struct timeval tv; 3165 3166 memset(&log, 0, sizeof(log)); 3167 log.u_bbr.flex1 = logged; 3168 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt; 3169 log.u_bbr.flex2 <<= 4; 3170 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt; 3171 log.u_bbr.flex2 <<= 4; 3172 log.u_bbr.flex2 |= rack->rc_gp_incr; 3173 log.u_bbr.flex2 <<= 4; 3174 log.u_bbr.flex2 |= rack->rc_gp_bwred; 3175 log.u_bbr.flex3 = rack->rc_gp_incr; 3176 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3177 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca; 3178 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec; 3179 log.u_bbr.flex7 = rack->rc_gp_bwred; 3180 log.u_bbr.flex8 = method; 3181 log.u_bbr.cur_del_rate = cur_bw; 3182 log.u_bbr.delRate = low_bnd; 3183 log.u_bbr.bw_inuse = up_bnd; 3184 log.u_bbr.rttProp = rack_get_bw(rack); 3185 log.u_bbr.pkt_epoch = line; 3186 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3187 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3188 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3189 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3190 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3191 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom; 3192 log.u_bbr.cwnd_gain <<= 1; 3193 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec; 3194 log.u_bbr.cwnd_gain <<= 1; 3195 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 3196 log.u_bbr.cwnd_gain <<= 1; 3197 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 3198 log.u_bbr.lost = rack->r_ctl.rc_loss_count; 3199 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3200 &rack->rc_inp->inp_socket->so_rcv, 3201 &rack->rc_inp->inp_socket->so_snd, 3202 TCP_TIMELY_WORK, 0, 3203 0, &log, false, &tv); 3204 } 3205 } 3206 3207 static int 3208 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult) 3209 { 3210 /* 3211 * Before we increase we need to know if 3212 * the estimate just made was less than 3213 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est) 3214 * 3215 * If we already are pacing at a fast enough 3216 * rate to push us faster there is no sense of 3217 * increasing. 3218 * 3219 * We first caculate our actual pacing rate (ss or ca multipler 3220 * times our cur_bw). 3221 * 3222 * Then we take the last measured rate and multipy by our 3223 * maximum pacing overage to give us a max allowable rate. 3224 * 3225 * If our act_rate is smaller than our max_allowable rate 3226 * then we should increase. Else we should hold steady. 3227 * 3228 */ 3229 uint64_t act_rate, max_allow_rate; 3230 3231 if (rack_timely_no_stopping) 3232 return (1); 3233 3234 if ((cur_bw == 0) || (last_bw_est == 0)) { 3235 /* 3236 * Initial startup case or 3237 * everything is acked case. 3238 */ 3239 rack_log_timely(rack, mult, cur_bw, 0, 0, 3240 __LINE__, 9); 3241 return (1); 3242 } 3243 if (mult <= 100) { 3244 /* 3245 * We can always pace at or slightly above our rate. 3246 */ 3247 rack_log_timely(rack, mult, cur_bw, 0, 0, 3248 __LINE__, 9); 3249 return (1); 3250 } 3251 act_rate = cur_bw * (uint64_t)mult; 3252 act_rate /= 100; 3253 max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100); 3254 max_allow_rate /= 100; 3255 if (act_rate < max_allow_rate) { 3256 /* 3257 * Here the rate we are actually pacing at 3258 * is smaller than 10% above our last measurement. 3259 * This means we are pacing below what we would 3260 * like to try to achieve (plus some wiggle room). 3261 */ 3262 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3263 __LINE__, 9); 3264 return (1); 3265 } else { 3266 /* 3267 * Here we are already pacing at least rack_max_per_above(10%) 3268 * what we are getting back. This indicates most likely 3269 * that we are being limited (cwnd/rwnd/app) and can't 3270 * get any more b/w. There is no sense of trying to 3271 * raise up the pacing rate its not speeding us up 3272 * and we already are pacing faster than we are getting. 3273 */ 3274 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, 3275 __LINE__, 8); 3276 return (0); 3277 } 3278 } 3279 3280 static void 3281 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack) 3282 { 3283 /* 3284 * When we drag bottom, we want to assure 3285 * that no multiplier is below 1.0, if so 3286 * we want to restore it to at least that. 3287 */ 3288 if (rack->r_ctl.rack_per_of_gp_rec < 100) { 3289 /* This is unlikely we usually do not touch recovery */ 3290 rack->r_ctl.rack_per_of_gp_rec = 100; 3291 } 3292 if (rack->r_ctl.rack_per_of_gp_ca < 100) { 3293 rack->r_ctl.rack_per_of_gp_ca = 100; 3294 } 3295 if (rack->r_ctl.rack_per_of_gp_ss < 100) { 3296 rack->r_ctl.rack_per_of_gp_ss = 100; 3297 } 3298 } 3299 3300 static void 3301 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack) 3302 { 3303 if (rack->r_ctl.rack_per_of_gp_ca > 100) { 3304 rack->r_ctl.rack_per_of_gp_ca = 100; 3305 } 3306 if (rack->r_ctl.rack_per_of_gp_ss > 100) { 3307 rack->r_ctl.rack_per_of_gp_ss = 100; 3308 } 3309 } 3310 3311 static void 3312 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override) 3313 { 3314 int32_t calc, logged, plus; 3315 3316 logged = 0; 3317 3318 if (override) { 3319 /* 3320 * override is passed when we are 3321 * loosing b/w and making one last 3322 * gasp at trying to not loose out 3323 * to a new-reno flow. 3324 */ 3325 goto extra_boost; 3326 } 3327 /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */ 3328 if (rack->rc_gp_incr && 3329 ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) { 3330 /* 3331 * Reset and get 5 strokes more before the boost. Note 3332 * that the count is 0 based so we have to add one. 3333 */ 3334 extra_boost: 3335 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST; 3336 rack->rc_gp_timely_inc_cnt = 0; 3337 } else 3338 plus = (uint32_t)rack_gp_increase_per; 3339 /* Must be at least 1% increase for true timely increases */ 3340 if ((plus < 1) && 3341 ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0))) 3342 plus = 1; 3343 if (rack->rc_gp_saw_rec && 3344 (rack->rc_gp_no_rec_chg == 0) && 3345 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3346 rack->r_ctl.rack_per_of_gp_rec)) { 3347 /* We have been in recovery ding it too */ 3348 calc = rack->r_ctl.rack_per_of_gp_rec + plus; 3349 if (calc > 0xffff) 3350 calc = 0xffff; 3351 logged |= 1; 3352 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc; 3353 if (rack_per_upper_bound_ss && 3354 (rack->rc_dragged_bottom == 0) && 3355 (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss)) 3356 rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss; 3357 } 3358 if (rack->rc_gp_saw_ca && 3359 (rack->rc_gp_saw_ss == 0) && 3360 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3361 rack->r_ctl.rack_per_of_gp_ca)) { 3362 /* In CA */ 3363 calc = rack->r_ctl.rack_per_of_gp_ca + plus; 3364 if (calc > 0xffff) 3365 calc = 0xffff; 3366 logged |= 2; 3367 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc; 3368 if (rack_per_upper_bound_ca && 3369 (rack->rc_dragged_bottom == 0) && 3370 (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca)) 3371 rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca; 3372 } 3373 if (rack->rc_gp_saw_ss && 3374 rack_bw_can_be_raised(rack, cur_bw, last_bw_est, 3375 rack->r_ctl.rack_per_of_gp_ss)) { 3376 /* In SS */ 3377 calc = rack->r_ctl.rack_per_of_gp_ss + plus; 3378 if (calc > 0xffff) 3379 calc = 0xffff; 3380 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc; 3381 if (rack_per_upper_bound_ss && 3382 (rack->rc_dragged_bottom == 0) && 3383 (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss)) 3384 rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss; 3385 logged |= 4; 3386 } 3387 if (logged && 3388 (rack->rc_gp_incr == 0)){ 3389 /* Go into increment mode */ 3390 rack->rc_gp_incr = 1; 3391 rack->rc_gp_timely_inc_cnt = 0; 3392 } 3393 if (rack->rc_gp_incr && 3394 logged && 3395 (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) { 3396 rack->rc_gp_timely_inc_cnt++; 3397 } 3398 rack_log_timely(rack, logged, plus, 0, 0, 3399 __LINE__, 1); 3400 } 3401 3402 static uint32_t 3403 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff) 3404 { 3405 /* 3406 * norm_grad = rtt_diff / minrtt; 3407 * new_per = curper * (1 - B * norm_grad) 3408 * 3409 * B = rack_gp_decrease_per (default 10%) 3410 * rtt_dif = input var current rtt-diff 3411 * curper = input var current percentage 3412 * minrtt = from rack filter 3413 * 3414 */ 3415 uint64_t perf; 3416 3417 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3418 ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 * 3419 (((uint64_t)rtt_diff * (uint64_t)1000000)/ 3420 (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/ 3421 (uint64_t)1000000)) / 3422 (uint64_t)1000000); 3423 if (perf > curper) { 3424 /* TSNH */ 3425 perf = curper - 1; 3426 } 3427 return ((uint32_t)perf); 3428 } 3429 3430 static uint32_t 3431 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt) 3432 { 3433 /* 3434 * highrttthresh 3435 * result = curper * (1 - (B * ( 1 - ------ )) 3436 * gp_srtt 3437 * 3438 * B = rack_gp_decrease_per (default 10%) 3439 * highrttthresh = filter_min * rack_gp_rtt_maxmul 3440 */ 3441 uint64_t perf; 3442 uint32_t highrttthresh; 3443 3444 highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 3445 3446 perf = (((uint64_t)curper * ((uint64_t)1000000 - 3447 ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 - 3448 ((uint64_t)highrttthresh * (uint64_t)1000000) / 3449 (uint64_t)rtt)) / 100)) /(uint64_t)1000000); 3450 return (perf); 3451 } 3452 3453 static void 3454 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff) 3455 { 3456 uint64_t logvar, logvar2, logvar3; 3457 uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val; 3458 3459 if (rack->rc_gp_incr) { 3460 /* Turn off increment counting */ 3461 rack->rc_gp_incr = 0; 3462 rack->rc_gp_timely_inc_cnt = 0; 3463 } 3464 ss_red = ca_red = rec_red = 0; 3465 logged = 0; 3466 /* Calculate the reduction value */ 3467 if (rtt_diff < 0) { 3468 rtt_diff *= -1; 3469 } 3470 /* Must be at least 1% reduction */ 3471 if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) { 3472 /* We have been in recovery ding it too */ 3473 if (timely_says == 2) { 3474 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt); 3475 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3476 if (alt < new_per) 3477 val = alt; 3478 else 3479 val = new_per; 3480 } else 3481 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3482 if (rack->r_ctl.rack_per_of_gp_rec > val) { 3483 rec_red = (rack->r_ctl.rack_per_of_gp_rec - val); 3484 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val; 3485 } else { 3486 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3487 rec_red = 0; 3488 } 3489 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec) 3490 rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; 3491 logged |= 1; 3492 } 3493 if (rack->rc_gp_saw_ss) { 3494 /* Sent in SS */ 3495 if (timely_says == 2) { 3496 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt); 3497 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3498 if (alt < new_per) 3499 val = alt; 3500 else 3501 val = new_per; 3502 } else 3503 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff); 3504 if (rack->r_ctl.rack_per_of_gp_ss > new_per) { 3505 ss_red = rack->r_ctl.rack_per_of_gp_ss - val; 3506 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val; 3507 } else { 3508 ss_red = new_per; 3509 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3510 logvar = new_per; 3511 logvar <<= 32; 3512 logvar |= alt; 3513 logvar2 = (uint32_t)rtt; 3514 logvar2 <<= 32; 3515 logvar2 |= (uint32_t)rtt_diff; 3516 logvar3 = rack_gp_rtt_maxmul; 3517 logvar3 <<= 32; 3518 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3519 rack_log_timely(rack, timely_says, 3520 logvar2, logvar3, 3521 logvar, __LINE__, 10); 3522 } 3523 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss) 3524 rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; 3525 logged |= 4; 3526 } else if (rack->rc_gp_saw_ca) { 3527 /* Sent in CA */ 3528 if (timely_says == 2) { 3529 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt); 3530 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); 3531 if (alt < new_per) 3532 val = alt; 3533 else 3534 val = new_per; 3535 } else 3536 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff); 3537 if (rack->r_ctl.rack_per_of_gp_ca > val) { 3538 ca_red = rack->r_ctl.rack_per_of_gp_ca - val; 3539 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val; 3540 } else { 3541 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3542 ca_red = 0; 3543 logvar = new_per; 3544 logvar <<= 32; 3545 logvar |= alt; 3546 logvar2 = (uint32_t)rtt; 3547 logvar2 <<= 32; 3548 logvar2 |= (uint32_t)rtt_diff; 3549 logvar3 = rack_gp_rtt_maxmul; 3550 logvar3 <<= 32; 3551 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3552 rack_log_timely(rack, timely_says, 3553 logvar2, logvar3, 3554 logvar, __LINE__, 10); 3555 } 3556 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca) 3557 rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; 3558 logged |= 2; 3559 } 3560 if (rack->rc_gp_timely_dec_cnt < 0x7) { 3561 rack->rc_gp_timely_dec_cnt++; 3562 if (rack_timely_dec_clear && 3563 (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear)) 3564 rack->rc_gp_timely_dec_cnt = 0; 3565 } 3566 logvar = ss_red; 3567 logvar <<= 32; 3568 logvar |= ca_red; 3569 rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar, 3570 __LINE__, 2); 3571 } 3572 3573 static void 3574 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts, 3575 uint32_t rtt, uint32_t line, uint8_t reas) 3576 { 3577 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 3578 union tcp_log_stackspecific log; 3579 struct timeval tv; 3580 3581 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 3582 log.u_bbr.flex1 = line; 3583 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts; 3584 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts; 3585 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; 3586 log.u_bbr.flex5 = rtt; 3587 log.u_bbr.flex6 = rack->rc_highly_buffered; 3588 log.u_bbr.flex6 <<= 1; 3589 log.u_bbr.flex6 |= rack->forced_ack; 3590 log.u_bbr.flex6 <<= 1; 3591 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul; 3592 log.u_bbr.flex6 <<= 1; 3593 log.u_bbr.flex6 |= rack->in_probe_rtt; 3594 log.u_bbr.flex6 <<= 1; 3595 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt; 3596 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt; 3597 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca; 3598 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec; 3599 log.u_bbr.flex8 = reas; 3600 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 3601 log.u_bbr.delRate = rack_get_bw(rack); 3602 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt; 3603 log.u_bbr.cur_del_rate <<= 32; 3604 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt; 3605 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered; 3606 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; 3607 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 3608 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; 3609 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; 3610 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts; 3611 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight; 3612 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3613 log.u_bbr.rttProp = us_cts; 3614 log.u_bbr.rttProp <<= 32; 3615 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt; 3616 TCP_LOG_EVENTP(rack->rc_tp, NULL, 3617 &rack->rc_inp->inp_socket->so_rcv, 3618 &rack->rc_inp->inp_socket->so_snd, 3619 BBR_LOG_RTT_SHRINKS, 0, 3620 0, &log, false, &rack->r_ctl.act_rcv_time); 3621 } 3622 } 3623 3624 static void 3625 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt) 3626 { 3627 uint64_t bwdp; 3628 3629 bwdp = rack_get_bw(rack); 3630 bwdp *= (uint64_t)rtt; 3631 bwdp /= (uint64_t)HPTS_USEC_IN_SEC; 3632 rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz); 3633 if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) { 3634 /* 3635 * A window protocol must be able to have 4 packets 3636 * outstanding as the floor in order to function 3637 * (especially considering delayed ack :D). 3638 */ 3639 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs); 3640 } 3641 } 3642 3643 static void 3644 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts) 3645 { 3646 /** 3647 * ProbeRTT is a bit different in rack_pacing than in 3648 * BBR. It is like BBR in that it uses the lowering of 3649 * the RTT as a signal that we saw something new and 3650 * counts from there for how long between. But it is 3651 * different in that its quite simple. It does not 3652 * play with the cwnd and wait until we get down 3653 * to N segments outstanding and hold that for 3654 * 200ms. Instead it just sets the pacing reduction 3655 * rate to a set percentage (70 by default) and hold 3656 * that for a number of recent GP Srtt's. 3657 */ 3658 uint32_t segsiz; 3659 3660 if (rack->rc_gp_dyn_mul == 0) 3661 return; 3662 3663 if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) { 3664 /* We are idle */ 3665 return; 3666 } 3667 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3668 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3669 /* 3670 * Stop the goodput now, the idea here is 3671 * that future measurements with in_probe_rtt 3672 * won't register if they are not greater so 3673 * we want to get what info (if any) is available 3674 * now. 3675 */ 3676 rack_do_goodput_measurement(rack->rc_tp, rack, 3677 rack->rc_tp->snd_una, __LINE__); 3678 } 3679 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 3680 rack->r_ctl.rc_time_probertt_entered = us_cts; 3681 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3682 rack->r_ctl.rc_pace_min_segs); 3683 rack->in_probe_rtt = 1; 3684 rack->measure_saw_probe_rtt = 1; 3685 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3686 rack->r_ctl.rc_time_probertt_starts = 0; 3687 rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt; 3688 if (rack_probertt_use_min_rtt_entry) 3689 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3690 else 3691 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt); 3692 rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3693 __LINE__, RACK_RTTS_ENTERPROBE); 3694 } 3695 3696 static void 3697 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts) 3698 { 3699 struct rack_sendmap *rsm; 3700 uint32_t segsiz; 3701 3702 segsiz = min(ctf_fixed_maxseg(rack->rc_tp), 3703 rack->r_ctl.rc_pace_min_segs); 3704 rack->in_probe_rtt = 0; 3705 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && 3706 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { 3707 /* 3708 * Stop the goodput now, the idea here is 3709 * that future measurements with in_probe_rtt 3710 * won't register if they are not greater so 3711 * we want to get what info (if any) is available 3712 * now. 3713 */ 3714 rack_do_goodput_measurement(rack->rc_tp, rack, 3715 rack->rc_tp->snd_una, __LINE__); 3716 } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 3717 /* 3718 * We don't have enough data to make a measurement. 3719 * So lets just stop and start here after exiting 3720 * probe-rtt. We probably are not interested in 3721 * the results anyway. 3722 */ 3723 rack->rc_tp->t_flags &= ~TF_GPUTINPROG; 3724 } 3725 /* 3726 * Measurements through the current snd_max are going 3727 * to be limited by the slower pacing rate. 3728 * 3729 * We need to mark these as app-limited so we 3730 * don't collapse the b/w. 3731 */ 3732 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 3733 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 3734 if (rack->r_ctl.rc_app_limited_cnt == 0) 3735 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 3736 else { 3737 /* 3738 * Go out to the end app limited and mark 3739 * this new one as next and move the end_appl up 3740 * to this guy. 3741 */ 3742 if (rack->r_ctl.rc_end_appl) 3743 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 3744 rack->r_ctl.rc_end_appl = rsm; 3745 } 3746 rsm->r_flags |= RACK_APP_LIMITED; 3747 rack->r_ctl.rc_app_limited_cnt++; 3748 } 3749 /* 3750 * Now, we need to examine our pacing rate multipliers. 3751 * If its under 100%, we need to kick it back up to 3752 * 100%. We also don't let it be over our "max" above 3753 * the actual rate i.e. 100% + rack_clamp_atexit_prtt. 3754 * Note setting clamp_atexit_prtt to 0 has the effect 3755 * of setting CA/SS to 100% always at exit (which is 3756 * the default behavior). 3757 */ 3758 if (rack_probertt_clear_is) { 3759 rack->rc_gp_incr = 0; 3760 rack->rc_gp_bwred = 0; 3761 rack->rc_gp_timely_inc_cnt = 0; 3762 rack->rc_gp_timely_dec_cnt = 0; 3763 } 3764 /* Do we do any clamping at exit? */ 3765 if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) { 3766 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp; 3767 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp; 3768 } 3769 if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) { 3770 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt; 3771 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt; 3772 } 3773 /* 3774 * Lets set rtt_diff to 0, so that we will get a "boost" 3775 * after exiting. 3776 */ 3777 rack->r_ctl.rc_rtt_diff = 0; 3778 3779 /* Clear all flags so we start fresh */ 3780 rack->rc_tp->t_bytes_acked = 0; 3781 rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND; 3782 /* 3783 * If configured to, set the cwnd and ssthresh to 3784 * our targets. 3785 */ 3786 if (rack_probe_rtt_sets_cwnd) { 3787 uint64_t ebdp; 3788 uint32_t setto; 3789 3790 /* Set ssthresh so we get into CA once we hit our target */ 3791 if (rack_probertt_use_min_rtt_exit == 1) { 3792 /* Set to min rtt */ 3793 rack_set_prtt_target(rack, segsiz, 3794 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); 3795 } else if (rack_probertt_use_min_rtt_exit == 2) { 3796 /* Set to current gp rtt */ 3797 rack_set_prtt_target(rack, segsiz, 3798 rack->r_ctl.rc_gp_srtt); 3799 } else if (rack_probertt_use_min_rtt_exit == 3) { 3800 /* Set to entry gp rtt */ 3801 rack_set_prtt_target(rack, segsiz, 3802 rack->r_ctl.rc_entry_gp_rtt); 3803 } else { 3804 uint64_t sum; 3805 uint32_t setval; 3806 3807 sum = rack->r_ctl.rc_entry_gp_rtt; 3808 sum *= 10; 3809 sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt)); 3810 if (sum >= 20) { 3811 /* 3812 * A highly buffered path needs 3813 * cwnd space for timely to work. 3814 * Lets set things up as if 3815 * we are heading back here again. 3816 */ 3817 setval = rack->r_ctl.rc_entry_gp_rtt; 3818 } else if (sum >= 15) { 3819 /* 3820 * Lets take the smaller of the 3821 * two since we are just somewhat 3822 * buffered. 3823 */ 3824 setval = rack->r_ctl.rc_gp_srtt; 3825 if (setval > rack->r_ctl.rc_entry_gp_rtt) 3826 setval = rack->r_ctl.rc_entry_gp_rtt; 3827 } else { 3828 /* 3829 * Here we are not highly buffered 3830 * and should pick the min we can to 3831 * keep from causing loss. 3832 */ 3833 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 3834 } 3835 rack_set_prtt_target(rack, segsiz, 3836 setval); 3837 } 3838 if (rack_probe_rtt_sets_cwnd > 1) { 3839 /* There is a percentage here to boost */ 3840 ebdp = rack->r_ctl.rc_target_probertt_flight; 3841 ebdp *= rack_probe_rtt_sets_cwnd; 3842 ebdp /= 100; 3843 setto = rack->r_ctl.rc_target_probertt_flight + ebdp; 3844 } else 3845 setto = rack->r_ctl.rc_target_probertt_flight; 3846 rack->rc_tp->snd_cwnd = roundup(setto, segsiz); 3847 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) { 3848 /* Enforce a min */ 3849 rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs; 3850 } 3851 /* If we set in the cwnd also set the ssthresh point so we are in CA */ 3852 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1); 3853 } 3854 rack_log_rtt_shrinks(rack, us_cts, 3855 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3856 __LINE__, RACK_RTTS_EXITPROBE); 3857 /* Clear times last so log has all the info */ 3858 rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max; 3859 rack->r_ctl.rc_time_probertt_entered = us_cts; 3860 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 3861 rack->r_ctl.rc_time_of_last_probertt = us_cts; 3862 } 3863 3864 static void 3865 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts) 3866 { 3867 /* Check in on probe-rtt */ 3868 if (rack->rc_gp_filled == 0) { 3869 /* We do not do p-rtt unless we have gp measurements */ 3870 return; 3871 } 3872 if (rack->in_probe_rtt) { 3873 uint64_t no_overflow; 3874 uint32_t endtime, must_stay; 3875 3876 if (rack->r_ctl.rc_went_idle_time && 3877 ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) { 3878 /* 3879 * We went idle during prtt, just exit now. 3880 */ 3881 rack_exit_probertt(rack, us_cts); 3882 } else if (rack_probe_rtt_safety_val && 3883 TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) && 3884 ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) { 3885 /* 3886 * Probe RTT safety value triggered! 3887 */ 3888 rack_log_rtt_shrinks(rack, us_cts, 3889 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3890 __LINE__, RACK_RTTS_SAFETY); 3891 rack_exit_probertt(rack, us_cts); 3892 } 3893 /* Calculate the max we will wait */ 3894 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait); 3895 if (rack->rc_highly_buffered) 3896 endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp); 3897 /* Calculate the min we must wait */ 3898 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain); 3899 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) && 3900 TSTMP_LT(us_cts, endtime)) { 3901 uint32_t calc; 3902 /* Do we lower more? */ 3903 no_exit: 3904 if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered)) 3905 calc = us_cts - rack->r_ctl.rc_time_probertt_entered; 3906 else 3907 calc = 0; 3908 calc /= max(rack->r_ctl.rc_gp_srtt, 1); 3909 if (calc) { 3910 /* Maybe */ 3911 calc *= rack_per_of_gp_probertt_reduce; 3912 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc; 3913 /* Limit it too */ 3914 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh) 3915 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh; 3916 } 3917 /* We must reach target or the time set */ 3918 return; 3919 } 3920 if (rack->r_ctl.rc_time_probertt_starts == 0) { 3921 if ((TSTMP_LT(us_cts, must_stay) && 3922 rack->rc_highly_buffered) || 3923 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > 3924 rack->r_ctl.rc_target_probertt_flight)) { 3925 /* We are not past the must_stay time */ 3926 goto no_exit; 3927 } 3928 rack_log_rtt_shrinks(rack, us_cts, 3929 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 3930 __LINE__, RACK_RTTS_REACHTARGET); 3931 rack->r_ctl.rc_time_probertt_starts = us_cts; 3932 if (rack->r_ctl.rc_time_probertt_starts == 0) 3933 rack->r_ctl.rc_time_probertt_starts = 1; 3934 /* Restore back to our rate we want to pace at in prtt */ 3935 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 3936 } 3937 /* 3938 * Setup our end time, some number of gp_srtts plus 200ms. 3939 */ 3940 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt * 3941 (uint64_t)rack_probertt_gpsrtt_cnt_mul); 3942 if (rack_probertt_gpsrtt_cnt_div) 3943 endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div); 3944 else 3945 endtime = 0; 3946 endtime += rack_min_probertt_hold; 3947 endtime += rack->r_ctl.rc_time_probertt_starts; 3948 if (TSTMP_GEQ(us_cts, endtime)) { 3949 /* yes, exit probertt */ 3950 rack_exit_probertt(rack, us_cts); 3951 } 3952 3953 } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) { 3954 /* Go into probertt, its been too long since we went lower */ 3955 rack_enter_probertt(rack, us_cts); 3956 } 3957 } 3958 3959 static void 3960 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est, 3961 uint32_t rtt, int32_t rtt_diff) 3962 { 3963 uint64_t cur_bw, up_bnd, low_bnd, subfr; 3964 uint32_t losses; 3965 3966 if ((rack->rc_gp_dyn_mul == 0) || 3967 (rack->use_fixed_rate) || 3968 (rack->in_probe_rtt) || 3969 (rack->rc_always_pace == 0)) { 3970 /* No dynamic GP multipler in play */ 3971 return; 3972 } 3973 losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start; 3974 cur_bw = rack_get_bw(rack); 3975 /* Calculate our up and down range */ 3976 up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up; 3977 up_bnd /= 100; 3978 up_bnd += rack->r_ctl.last_gp_comp_bw; 3979 3980 subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down; 3981 subfr /= 100; 3982 low_bnd = rack->r_ctl.last_gp_comp_bw - subfr; 3983 if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) { 3984 /* 3985 * This is the case where our RTT is above 3986 * the max target and we have been configured 3987 * to just do timely no bonus up stuff in that case. 3988 * 3989 * There are two configurations, set to 1, and we 3990 * just do timely if we are over our max. If its 3991 * set above 1 then we slam the multipliers down 3992 * to 100 and then decrement per timely. 3993 */ 3994 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 3995 __LINE__, 3); 3996 if (rack->r_ctl.rc_no_push_at_mrtt > 1) 3997 rack_validate_multipliers_at_or_below_100(rack); 3998 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 3999 } else if ((last_bw_est < low_bnd) && !losses) { 4000 /* 4001 * We are decreasing this is a bit complicated this 4002 * means we are loosing ground. This could be 4003 * because another flow entered and we are competing 4004 * for b/w with it. This will push the RTT up which 4005 * makes timely unusable unless we want to get shoved 4006 * into a corner and just be backed off (the age 4007 * old problem with delay based CC). 4008 * 4009 * On the other hand if it was a route change we 4010 * would like to stay somewhat contained and not 4011 * blow out the buffers. 4012 */ 4013 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4014 __LINE__, 3); 4015 rack->r_ctl.last_gp_comp_bw = cur_bw; 4016 if (rack->rc_gp_bwred == 0) { 4017 /* Go into reduction counting */ 4018 rack->rc_gp_bwred = 1; 4019 rack->rc_gp_timely_dec_cnt = 0; 4020 } 4021 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) || 4022 (timely_says == 0)) { 4023 /* 4024 * Push another time with a faster pacing 4025 * to try to gain back (we include override to 4026 * get a full raise factor). 4027 */ 4028 if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) || 4029 (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) || 4030 (timely_says == 0) || 4031 (rack_down_raise_thresh == 0)) { 4032 /* 4033 * Do an override up in b/w if we were 4034 * below the threshold or if the threshold 4035 * is zero we always do the raise. 4036 */ 4037 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1); 4038 } else { 4039 /* Log it stays the same */ 4040 rack_log_timely(rack, 0, last_bw_est, low_bnd, 0, 4041 __LINE__, 11); 4042 } 4043 rack->rc_gp_timely_dec_cnt++; 4044 /* We are not incrementing really no-count */ 4045 rack->rc_gp_incr = 0; 4046 rack->rc_gp_timely_inc_cnt = 0; 4047 } else { 4048 /* 4049 * Lets just use the RTT 4050 * information and give up 4051 * pushing. 4052 */ 4053 goto use_timely; 4054 } 4055 } else if ((timely_says != 2) && 4056 !losses && 4057 (last_bw_est > up_bnd)) { 4058 /* 4059 * We are increasing b/w lets keep going, updating 4060 * our b/w and ignoring any timely input, unless 4061 * of course we are at our max raise (if there is one). 4062 */ 4063 4064 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4065 __LINE__, 3); 4066 rack->r_ctl.last_gp_comp_bw = cur_bw; 4067 if (rack->rc_gp_saw_ss && 4068 rack_per_upper_bound_ss && 4069 (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) { 4070 /* 4071 * In cases where we can't go higher 4072 * we should just use timely. 4073 */ 4074 goto use_timely; 4075 } 4076 if (rack->rc_gp_saw_ca && 4077 rack_per_upper_bound_ca && 4078 (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) { 4079 /* 4080 * In cases where we can't go higher 4081 * we should just use timely. 4082 */ 4083 goto use_timely; 4084 } 4085 rack->rc_gp_bwred = 0; 4086 rack->rc_gp_timely_dec_cnt = 0; 4087 /* You get a set number of pushes if timely is trying to reduce */ 4088 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) { 4089 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4090 } else { 4091 /* Log it stays the same */ 4092 rack_log_timely(rack, 0, last_bw_est, up_bnd, 0, 4093 __LINE__, 12); 4094 } 4095 return; 4096 } else { 4097 /* 4098 * We are staying between the lower and upper range bounds 4099 * so use timely to decide. 4100 */ 4101 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, 4102 __LINE__, 3); 4103 use_timely: 4104 if (timely_says) { 4105 rack->rc_gp_incr = 0; 4106 rack->rc_gp_timely_inc_cnt = 0; 4107 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) && 4108 !losses && 4109 (last_bw_est < low_bnd)) { 4110 /* We are loosing ground */ 4111 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4112 rack->rc_gp_timely_dec_cnt++; 4113 /* We are not incrementing really no-count */ 4114 rack->rc_gp_incr = 0; 4115 rack->rc_gp_timely_inc_cnt = 0; 4116 } else 4117 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); 4118 } else { 4119 rack->rc_gp_bwred = 0; 4120 rack->rc_gp_timely_dec_cnt = 0; 4121 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); 4122 } 4123 } 4124 } 4125 4126 static int32_t 4127 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt) 4128 { 4129 int32_t timely_says; 4130 uint64_t log_mult, log_rtt_a_diff; 4131 4132 log_rtt_a_diff = rtt; 4133 log_rtt_a_diff <<= 32; 4134 log_rtt_a_diff |= (uint32_t)rtt_diff; 4135 if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * 4136 rack_gp_rtt_maxmul)) { 4137 /* Reduce the b/w multipler */ 4138 timely_says = 2; 4139 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; 4140 log_mult <<= 32; 4141 log_mult |= prev_rtt; 4142 rack_log_timely(rack, timely_says, log_mult, 4143 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4144 log_rtt_a_diff, __LINE__, 4); 4145 } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4146 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4147 max(rack_gp_rtt_mindiv , 1)))) { 4148 /* Increase the b/w multipler */ 4149 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + 4150 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / 4151 max(rack_gp_rtt_mindiv , 1)); 4152 log_mult <<= 32; 4153 log_mult |= prev_rtt; 4154 timely_says = 0; 4155 rack_log_timely(rack, timely_says, log_mult , 4156 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), 4157 log_rtt_a_diff, __LINE__, 5); 4158 } else { 4159 /* 4160 * Use a gradient to find it the timely gradient 4161 * is: 4162 * grad = rc_rtt_diff / min_rtt; 4163 * 4164 * anything below or equal to 0 will be 4165 * a increase indication. Anything above 4166 * zero is a decrease. Note we take care 4167 * of the actual gradient calculation 4168 * in the reduction (its not needed for 4169 * increase). 4170 */ 4171 log_mult = prev_rtt; 4172 if (rtt_diff <= 0) { 4173 /* 4174 * Rttdiff is less than zero, increase the 4175 * b/w multipler (its 0 or negative) 4176 */ 4177 timely_says = 0; 4178 rack_log_timely(rack, timely_says, log_mult, 4179 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6); 4180 } else { 4181 /* Reduce the b/w multipler */ 4182 timely_says = 1; 4183 rack_log_timely(rack, timely_says, log_mult, 4184 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7); 4185 } 4186 } 4187 return (timely_says); 4188 } 4189 4190 static void 4191 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, 4192 tcp_seq th_ack, int line) 4193 { 4194 uint64_t tim, bytes_ps, ltim, stim, utim; 4195 uint32_t segsiz, bytes, reqbytes, us_cts; 4196 int32_t gput, new_rtt_diff, timely_says; 4197 uint64_t resid_bw, subpart = 0, addpart = 0, srtt; 4198 int did_add = 0; 4199 4200 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4201 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 4202 if (TSTMP_GEQ(us_cts, tp->gput_ts)) 4203 tim = us_cts - tp->gput_ts; 4204 else 4205 tim = 0; 4206 4207 if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts) 4208 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts; 4209 else 4210 stim = 0; 4211 /* 4212 * Use the larger of the send time or ack time. This prevents us 4213 * from being influenced by ack artifacts to come up with too 4214 * high of measurement. Note that since we are spanning over many more 4215 * bytes in most of our measurements hopefully that is less likely to 4216 * occur. 4217 */ 4218 if (tim > stim) 4219 utim = max(tim, 1); 4220 else 4221 utim = max(stim, 1); 4222 /* Lets get a msec time ltim too for the old stuff */ 4223 ltim = max(1, (utim / HPTS_USEC_IN_MSEC)); 4224 gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim; 4225 reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz)); 4226 if ((tim == 0) && (stim == 0)) { 4227 /* 4228 * Invalid measurement time, maybe 4229 * all on one ack/one send? 4230 */ 4231 bytes = 0; 4232 bytes_ps = 0; 4233 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4234 0, 0, 0, 10, __LINE__, NULL); 4235 goto skip_measurement; 4236 } 4237 if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) { 4238 /* We never made a us_rtt measurement? */ 4239 bytes = 0; 4240 bytes_ps = 0; 4241 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4242 0, 0, 0, 10, __LINE__, NULL); 4243 goto skip_measurement; 4244 } 4245 /* 4246 * Calculate the maximum possible b/w this connection 4247 * could have. We base our calculation on the lowest 4248 * rtt we have seen during the measurement and the 4249 * largest rwnd the client has given us in that time. This 4250 * forms a BDP that is the maximum that we could ever 4251 * get to the client. Anything larger is not valid. 4252 * 4253 * I originally had code here that rejected measurements 4254 * where the time was less than 1/2 the latest us_rtt. 4255 * But after thinking on that I realized its wrong since 4256 * say you had a 150Mbps or even 1Gbps link, and you 4257 * were a long way away.. example I am in Europe (100ms rtt) 4258 * talking to my 1Gbps link in S.C. Now measuring say 150,000 4259 * bytes my time would be 1.2ms, and yet my rtt would say 4260 * the measurement was invalid the time was < 50ms. The 4261 * same thing is true for 150Mb (8ms of time). 4262 * 4263 * A better way I realized is to look at what the maximum 4264 * the connection could possibly do. This is gated on 4265 * the lowest RTT we have seen and the highest rwnd. 4266 * We should in theory never exceed that, if we are 4267 * then something on the path is storing up packets 4268 * and then feeding them all at once to our endpoint 4269 * messing up our measurement. 4270 */ 4271 rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd; 4272 rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC; 4273 rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt; 4274 if (SEQ_LT(th_ack, tp->gput_seq)) { 4275 /* No measurement can be made */ 4276 bytes = 0; 4277 bytes_ps = 0; 4278 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4279 0, 0, 0, 10, __LINE__, NULL); 4280 goto skip_measurement; 4281 } else 4282 bytes = (th_ack - tp->gput_seq); 4283 bytes_ps = (uint64_t)bytes; 4284 /* 4285 * Don't measure a b/w for pacing unless we have gotten at least 4286 * an initial windows worth of data in this measurement interval. 4287 * 4288 * Small numbers of bytes get badly influenced by delayed ack and 4289 * other artifacts. Note we take the initial window or our 4290 * defined minimum GP (defaulting to 10 which hopefully is the 4291 * IW). 4292 */ 4293 if (rack->rc_gp_filled == 0) { 4294 /* 4295 * The initial estimate is special. We 4296 * have blasted out an IW worth of packets 4297 * without a real valid ack ts results. We 4298 * then setup the app_limited_needs_set flag, 4299 * this should get the first ack in (probably 2 4300 * MSS worth) to be recorded as the timestamp. 4301 * We thus allow a smaller number of bytes i.e. 4302 * IW - 2MSS. 4303 */ 4304 reqbytes -= (2 * segsiz); 4305 /* Also lets fill previous for our first measurement to be neutral */ 4306 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4307 } 4308 if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) { 4309 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4310 rack->r_ctl.rc_app_limited_cnt, 4311 0, 0, 10, __LINE__, NULL); 4312 goto skip_measurement; 4313 } 4314 /* 4315 * We now need to calculate the Timely like status so 4316 * we can update (possibly) the b/w multipliers. 4317 */ 4318 new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt; 4319 if (rack->rc_gp_filled == 0) { 4320 /* No previous reading */ 4321 rack->r_ctl.rc_rtt_diff = new_rtt_diff; 4322 } else { 4323 if (rack->measure_saw_probe_rtt == 0) { 4324 /* 4325 * We don't want a probertt to be counted 4326 * since it will be negative incorrectly. We 4327 * expect to be reducing the RTT when we 4328 * pace at a slower rate. 4329 */ 4330 rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8); 4331 rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8); 4332 } 4333 } 4334 timely_says = rack_make_timely_judgement(rack, 4335 rack->r_ctl.rc_gp_srtt, 4336 rack->r_ctl.rc_rtt_diff, 4337 rack->r_ctl.rc_prev_gp_srtt 4338 ); 4339 bytes_ps *= HPTS_USEC_IN_SEC; 4340 bytes_ps /= utim; 4341 if (bytes_ps > rack->r_ctl.last_max_bw) { 4342 /* 4343 * Something is on path playing 4344 * since this b/w is not possible based 4345 * on our BDP (highest rwnd and lowest rtt 4346 * we saw in the measurement window). 4347 * 4348 * Another option here would be to 4349 * instead skip the measurement. 4350 */ 4351 rack_log_pacing_delay_calc(rack, bytes, reqbytes, 4352 bytes_ps, rack->r_ctl.last_max_bw, 0, 4353 11, __LINE__, NULL); 4354 bytes_ps = rack->r_ctl.last_max_bw; 4355 } 4356 /* We store gp for b/w in bytes per second */ 4357 if (rack->rc_gp_filled == 0) { 4358 /* Initial measurment */ 4359 if (bytes_ps) { 4360 rack->r_ctl.gp_bw = bytes_ps; 4361 rack->rc_gp_filled = 1; 4362 rack->r_ctl.num_measurements = 1; 4363 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 4364 } else { 4365 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 4366 rack->r_ctl.rc_app_limited_cnt, 4367 0, 0, 10, __LINE__, NULL); 4368 } 4369 if (rack->rc_inp->inp_in_hpts && 4370 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 4371 /* 4372 * Ok we can't trust the pacer in this case 4373 * where we transition from un-paced to paced. 4374 * Or for that matter when the burst mitigation 4375 * was making a wild guess and got it wrong. 4376 * Stop the pacer and clear up all the aggregate 4377 * delays etc. 4378 */ 4379 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 4380 rack->r_ctl.rc_hpts_flags = 0; 4381 rack->r_ctl.rc_last_output_to = 0; 4382 } 4383 did_add = 2; 4384 } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) { 4385 /* Still a small number run an average */ 4386 rack->r_ctl.gp_bw += bytes_ps; 4387 addpart = rack->r_ctl.num_measurements; 4388 rack->r_ctl.num_measurements++; 4389 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) { 4390 /* We have collected enought to move forward */ 4391 rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements; 4392 } 4393 did_add = 3; 4394 } else { 4395 /* 4396 * We want to take 1/wma of the goodput and add in to 7/8th 4397 * of the old value weighted by the srtt. So if your measurement 4398 * period is say 2 SRTT's long you would get 1/4 as the 4399 * value, if it was like 1/2 SRTT then you would get 1/16th. 4400 * 4401 * But we must be careful not to take too much i.e. if the 4402 * srtt is say 20ms and the measurement is taken over 4403 * 400ms our weight would be 400/20 i.e. 20. On the 4404 * other hand if we get a measurement over 1ms with a 4405 * 10ms rtt we only want to take a much smaller portion. 4406 */ 4407 if (rack->r_ctl.num_measurements < 0xff) { 4408 rack->r_ctl.num_measurements++; 4409 } 4410 srtt = (uint64_t)tp->t_srtt; 4411 if (srtt == 0) { 4412 /* 4413 * Strange why did t_srtt go back to zero? 4414 */ 4415 if (rack->r_ctl.rc_rack_min_rtt) 4416 srtt = rack->r_ctl.rc_rack_min_rtt; 4417 else 4418 srtt = HPTS_USEC_IN_MSEC; 4419 } 4420 /* 4421 * XXXrrs: Note for reviewers, in playing with 4422 * dynamic pacing I discovered this GP calculation 4423 * as done originally leads to some undesired results. 4424 * Basically you can get longer measurements contributing 4425 * too much to the WMA. Thus I changed it if you are doing 4426 * dynamic adjustments to only do the aportioned adjustment 4427 * if we have a very small (time wise) measurement. Longer 4428 * measurements just get there weight (defaulting to 1/8) 4429 * add to the WMA. We may want to think about changing 4430 * this to always do that for both sides i.e. dynamic 4431 * and non-dynamic... but considering lots of folks 4432 * were playing with this I did not want to change the 4433 * calculation per.se. without your thoughts.. Lawerence? 4434 * Peter?? 4435 */ 4436 if (rack->rc_gp_dyn_mul == 0) { 4437 subpart = rack->r_ctl.gp_bw * utim; 4438 subpart /= (srtt * 8); 4439 if (subpart < (rack->r_ctl.gp_bw / 2)) { 4440 /* 4441 * The b/w update takes no more 4442 * away then 1/2 our running total 4443 * so factor it in. 4444 */ 4445 addpart = bytes_ps * utim; 4446 addpart /= (srtt * 8); 4447 } else { 4448 /* 4449 * Don't allow a single measurement 4450 * to account for more than 1/2 of the 4451 * WMA. This could happen on a retransmission 4452 * where utim becomes huge compared to 4453 * srtt (multiple retransmissions when using 4454 * the sending rate which factors in all the 4455 * transmissions from the first one). 4456 */ 4457 subpart = rack->r_ctl.gp_bw / 2; 4458 addpart = bytes_ps / 2; 4459 } 4460 resid_bw = rack->r_ctl.gp_bw - subpart; 4461 rack->r_ctl.gp_bw = resid_bw + addpart; 4462 did_add = 1; 4463 } else { 4464 if ((utim / srtt) <= 1) { 4465 /* 4466 * The b/w update was over a small period 4467 * of time. The idea here is to prevent a small 4468 * measurement time period from counting 4469 * too much. So we scale it based on the 4470 * time so it attributes less than 1/rack_wma_divisor 4471 * of its measurement. 4472 */ 4473 subpart = rack->r_ctl.gp_bw * utim; 4474 subpart /= (srtt * rack_wma_divisor); 4475 addpart = bytes_ps * utim; 4476 addpart /= (srtt * rack_wma_divisor); 4477 } else { 4478 /* 4479 * The scaled measurement was long 4480 * enough so lets just add in the 4481 * portion of the measurment i.e. 1/rack_wma_divisor 4482 */ 4483 subpart = rack->r_ctl.gp_bw / rack_wma_divisor; 4484 addpart = bytes_ps / rack_wma_divisor; 4485 } 4486 if ((rack->measure_saw_probe_rtt == 0) || 4487 (bytes_ps > rack->r_ctl.gp_bw)) { 4488 /* 4489 * For probe-rtt we only add it in 4490 * if its larger, all others we just 4491 * add in. 4492 */ 4493 did_add = 1; 4494 resid_bw = rack->r_ctl.gp_bw - subpart; 4495 rack->r_ctl.gp_bw = resid_bw + addpart; 4496 } 4497 } 4498 } 4499 if ((rack->gp_ready == 0) && 4500 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 4501 /* We have enough measurements now */ 4502 rack->gp_ready = 1; 4503 rack_set_cc_pacing(rack); 4504 if (rack->defer_options) 4505 rack_apply_deferred_options(rack); 4506 } 4507 rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim, 4508 rack_get_bw(rack), 22, did_add, NULL); 4509 /* We do not update any multipliers if we are in or have seen a probe-rtt */ 4510 if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set) 4511 rack_update_multiplier(rack, timely_says, bytes_ps, 4512 rack->r_ctl.rc_gp_srtt, 4513 rack->r_ctl.rc_rtt_diff); 4514 rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim, 4515 rack_get_bw(rack), 3, line, NULL); 4516 /* reset the gp srtt and setup the new prev */ 4517 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; 4518 /* Record the lost count for the next measurement */ 4519 rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count; 4520 /* 4521 * We restart our diffs based on the gpsrtt in the 4522 * measurement window. 4523 */ 4524 rack->rc_gp_rtt_set = 0; 4525 rack->rc_gp_saw_rec = 0; 4526 rack->rc_gp_saw_ca = 0; 4527 rack->rc_gp_saw_ss = 0; 4528 rack->rc_dragged_bottom = 0; 4529 skip_measurement: 4530 4531 #ifdef STATS 4532 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, 4533 gput); 4534 /* 4535 * XXXLAS: This is a temporary hack, and should be 4536 * chained off VOI_TCP_GPUT when stats(9) grows an 4537 * API to deal with chained VOIs. 4538 */ 4539 if (tp->t_stats_gput_prev > 0) 4540 stats_voi_update_abs_s32(tp->t_stats, 4541 VOI_TCP_GPUT_ND, 4542 ((gput - tp->t_stats_gput_prev) * 100) / 4543 tp->t_stats_gput_prev); 4544 #endif 4545 tp->t_flags &= ~TF_GPUTINPROG; 4546 tp->t_stats_gput_prev = gput; 4547 /* 4548 * Now are we app limited now and there is space from where we 4549 * were to where we want to go? 4550 * 4551 * We don't do the other case i.e. non-applimited here since 4552 * the next send will trigger us picking up the missing data. 4553 */ 4554 if (rack->r_ctl.rc_first_appl && 4555 TCPS_HAVEESTABLISHED(tp->t_state) && 4556 rack->r_ctl.rc_app_limited_cnt && 4557 (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) && 4558 ((rack->r_ctl.rc_first_appl->r_start - th_ack) > 4559 max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { 4560 /* 4561 * Yep there is enough outstanding to make a measurement here. 4562 */ 4563 struct rack_sendmap *rsm, fe; 4564 4565 tp->t_flags |= TF_GPUTINPROG; 4566 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 4567 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 4568 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 4569 rack->app_limited_needs_set = 0; 4570 tp->gput_seq = th_ack; 4571 if (rack->in_probe_rtt) 4572 rack->measure_saw_probe_rtt = 1; 4573 else if ((rack->measure_saw_probe_rtt) && 4574 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 4575 rack->measure_saw_probe_rtt = 0; 4576 if ((rack->r_ctl.rc_first_appl->r_start - th_ack) >= rack_get_measure_window(tp, rack)) { 4577 /* There is a full window to gain info from */ 4578 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 4579 } else { 4580 /* We can only measure up to the applimited point */ 4581 tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_start - th_ack); 4582 } 4583 /* 4584 * Now we need to find the timestamp of the send at tp->gput_seq 4585 * for the send based measurement. 4586 */ 4587 fe.r_start = tp->gput_seq; 4588 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 4589 if (rsm) { 4590 /* Ok send-based limit is set */ 4591 if (SEQ_LT(rsm->r_start, tp->gput_seq)) { 4592 /* 4593 * Move back to include the earlier part 4594 * so our ack time lines up right (this may 4595 * make an overlapping measurement but thats 4596 * ok). 4597 */ 4598 tp->gput_seq = rsm->r_start; 4599 } 4600 if (rsm->r_flags & RACK_ACKED) 4601 tp->gput_ts = (uint32_t)rsm->r_ack_arrival; 4602 else 4603 rack->app_limited_needs_set = 1; 4604 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 4605 } else { 4606 /* 4607 * If we don't find the rsm due to some 4608 * send-limit set the current time, which 4609 * basically disables the send-limit. 4610 */ 4611 struct timeval tv; 4612 4613 microuptime(&tv); 4614 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 4615 } 4616 rack_log_pacing_delay_calc(rack, 4617 tp->gput_seq, 4618 tp->gput_ack, 4619 (uint64_t)rsm, 4620 tp->gput_ts, 4621 rack->r_ctl.rc_app_limited_cnt, 4622 9, 4623 __LINE__, NULL); 4624 } 4625 } 4626 4627 /* 4628 * CC wrapper hook functions 4629 */ 4630 static void 4631 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs, 4632 uint16_t type, int32_t recovery) 4633 { 4634 uint32_t prior_cwnd, acked; 4635 struct tcp_log_buffer *lgb = NULL; 4636 uint8_t labc_to_use; 4637 4638 INP_WLOCK_ASSERT(tp->t_inpcb); 4639 tp->ccv->nsegs = nsegs; 4640 acked = tp->ccv->bytes_this_ack = (th_ack - tp->snd_una); 4641 if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) { 4642 uint32_t max; 4643 4644 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp); 4645 if (tp->ccv->bytes_this_ack > max) { 4646 tp->ccv->bytes_this_ack = max; 4647 } 4648 } 4649 #ifdef STATS 4650 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, 4651 ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd); 4652 #endif 4653 if ((tp->t_flags & TF_GPUTINPROG) && 4654 rack_enough_for_measurement(tp, rack, th_ack)) { 4655 /* Measure the Goodput */ 4656 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__); 4657 #ifdef NETFLIX_PEAKRATE 4658 if ((type == CC_ACK) && 4659 (tp->t_maxpeakrate)) { 4660 /* 4661 * We update t_peakrate_thr. This gives us roughly 4662 * one update per round trip time. Note 4663 * it will only be used if pace_always is off i.e 4664 * we don't do this for paced flows. 4665 */ 4666 rack_update_peakrate_thr(tp); 4667 } 4668 #endif 4669 } 4670 /* Which way our we limited, if not cwnd limited no advance in CA */ 4671 if (tp->snd_cwnd <= tp->snd_wnd) 4672 tp->ccv->flags |= CCF_CWND_LIMITED; 4673 else 4674 tp->ccv->flags &= ~CCF_CWND_LIMITED; 4675 if (tp->snd_cwnd > tp->snd_ssthresh) { 4676 tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, 4677 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp)); 4678 /* For the setting of a window past use the actual scwnd we are using */ 4679 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) { 4680 tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use; 4681 tp->ccv->flags |= CCF_ABC_SENTAWND; 4682 } 4683 } else { 4684 tp->ccv->flags &= ~CCF_ABC_SENTAWND; 4685 tp->t_bytes_acked = 0; 4686 } 4687 prior_cwnd = tp->snd_cwnd; 4688 if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec || 4689 (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf))) 4690 labc_to_use = rack->rc_labc; 4691 else 4692 labc_to_use = rack_max_abc_post_recovery; 4693 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4694 union tcp_log_stackspecific log; 4695 struct timeval tv; 4696 4697 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4698 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4699 log.u_bbr.flex1 = th_ack; 4700 log.u_bbr.flex2 = tp->ccv->flags; 4701 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4702 log.u_bbr.flex4 = tp->ccv->nsegs; 4703 log.u_bbr.flex5 = labc_to_use; 4704 log.u_bbr.flex6 = prior_cwnd; 4705 log.u_bbr.flex7 = V_tcp_do_newsack; 4706 log.u_bbr.flex8 = 1; 4707 lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4708 0, &log, false, NULL, NULL, 0, &tv); 4709 } 4710 if (CC_ALGO(tp)->ack_received != NULL) { 4711 /* XXXLAS: Find a way to live without this */ 4712 tp->ccv->curack = th_ack; 4713 tp->ccv->labc = labc_to_use; 4714 tp->ccv->flags |= CCF_USE_LOCAL_ABC; 4715 CC_ALGO(tp)->ack_received(tp->ccv, type); 4716 } 4717 if (lgb) { 4718 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd; 4719 } 4720 if (rack->r_must_retran) { 4721 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) { 4722 /* 4723 * We now are beyond the rxt point so lets disable 4724 * the flag. 4725 */ 4726 rack->r_ctl.rc_out_at_rto = 0; 4727 rack->r_must_retran = 0; 4728 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) { 4729 /* 4730 * Only decrement the rc_out_at_rto if the cwnd advances 4731 * at least a whole segment. Otherwise next time the peer 4732 * acks, we won't be able to send this generaly happens 4733 * when we are in Congestion Avoidance. 4734 */ 4735 if (acked <= rack->r_ctl.rc_out_at_rto){ 4736 rack->r_ctl.rc_out_at_rto -= acked; 4737 } else { 4738 rack->r_ctl.rc_out_at_rto = 0; 4739 } 4740 } 4741 } 4742 #ifdef STATS 4743 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use); 4744 #endif 4745 if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) { 4746 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use; 4747 } 4748 #ifdef NETFLIX_PEAKRATE 4749 /* we enforce max peak rate if it is set and we are not pacing */ 4750 if ((rack->rc_always_pace == 0) && 4751 tp->t_peakrate_thr && 4752 (tp->snd_cwnd > tp->t_peakrate_thr)) { 4753 tp->snd_cwnd = tp->t_peakrate_thr; 4754 } 4755 #endif 4756 } 4757 4758 static void 4759 tcp_rack_partialack(struct tcpcb *tp) 4760 { 4761 struct tcp_rack *rack; 4762 4763 rack = (struct tcp_rack *)tp->t_fb_ptr; 4764 INP_WLOCK_ASSERT(tp->t_inpcb); 4765 /* 4766 * If we are doing PRR and have enough 4767 * room to send <or> we are pacing and prr 4768 * is disabled we will want to see if we 4769 * can send data (by setting r_wanted_output to 4770 * true). 4771 */ 4772 if ((rack->r_ctl.rc_prr_sndcnt > 0) || 4773 rack->rack_no_prr) 4774 rack->r_wanted_output = 1; 4775 } 4776 4777 static void 4778 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack) 4779 { 4780 struct tcp_rack *rack; 4781 uint32_t orig_cwnd; 4782 4783 orig_cwnd = tp->snd_cwnd; 4784 INP_WLOCK_ASSERT(tp->t_inpcb); 4785 rack = (struct tcp_rack *)tp->t_fb_ptr; 4786 /* only alert CC if we alerted when we entered */ 4787 if (CC_ALGO(tp)->post_recovery != NULL) { 4788 tp->ccv->curack = th_ack; 4789 CC_ALGO(tp)->post_recovery(tp->ccv); 4790 if (tp->snd_cwnd < tp->snd_ssthresh) { 4791 /* 4792 * Rack has burst control and pacing 4793 * so lets not set this any lower than 4794 * snd_ssthresh per RFC-6582 (option 2). 4795 */ 4796 tp->snd_cwnd = tp->snd_ssthresh; 4797 } 4798 } 4799 if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) { 4800 union tcp_log_stackspecific log; 4801 struct timeval tv; 4802 4803 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 4804 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4805 log.u_bbr.flex1 = th_ack; 4806 log.u_bbr.flex2 = tp->ccv->flags; 4807 log.u_bbr.flex3 = tp->ccv->bytes_this_ack; 4808 log.u_bbr.flex4 = tp->ccv->nsegs; 4809 log.u_bbr.flex5 = V_tcp_abc_l_var; 4810 log.u_bbr.flex6 = orig_cwnd; 4811 log.u_bbr.flex7 = V_tcp_do_newsack; 4812 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; 4813 log.u_bbr.flex8 = 2; 4814 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0, 4815 0, &log, false, NULL, NULL, 0, &tv); 4816 } 4817 if ((rack->rack_no_prr == 0) && 4818 (rack->no_prr_addback == 0) && 4819 (rack->r_ctl.rc_prr_sndcnt > 0)) { 4820 /* 4821 * Suck the next prr cnt back into cwnd, but 4822 * only do that if we are not application limited. 4823 */ 4824 if (ctf_outstanding(tp) <= sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 4825 /* 4826 * We are allowed to add back to the cwnd the amount we did 4827 * not get out if: 4828 * a) no_prr_addback is off. 4829 * b) we are not app limited 4830 * c) we are doing prr 4831 * <and> 4832 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none). 4833 */ 4834 tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax), 4835 rack->r_ctl.rc_prr_sndcnt); 4836 } 4837 rack->r_ctl.rc_prr_sndcnt = 0; 4838 rack_log_to_prr(rack, 1, 0); 4839 } 4840 rack_log_to_prr(rack, 14, orig_cwnd); 4841 tp->snd_recover = tp->snd_una; 4842 EXIT_RECOVERY(tp->t_flags); 4843 } 4844 4845 static void 4846 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack) 4847 { 4848 struct tcp_rack *rack; 4849 uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd; 4850 4851 INP_WLOCK_ASSERT(tp->t_inpcb); 4852 #ifdef STATS 4853 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); 4854 #endif 4855 if (IN_RECOVERY(tp->t_flags) == 0) { 4856 in_rec_at_entry = 0; 4857 ssthresh_enter = tp->snd_ssthresh; 4858 cwnd_enter = tp->snd_cwnd; 4859 } else 4860 in_rec_at_entry = 1; 4861 rack = (struct tcp_rack *)tp->t_fb_ptr; 4862 switch (type) { 4863 case CC_NDUPACK: 4864 tp->t_flags &= ~TF_WASFRECOVERY; 4865 tp->t_flags &= ~TF_WASCRECOVERY; 4866 if (!IN_FASTRECOVERY(tp->t_flags)) { 4867 rack->r_ctl.rc_prr_delivered = 0; 4868 rack->r_ctl.rc_prr_out = 0; 4869 if (rack->rack_no_prr == 0) { 4870 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 4871 rack_log_to_prr(rack, 2, in_rec_at_entry); 4872 } 4873 rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una; 4874 tp->snd_recover = tp->snd_max; 4875 if (tp->t_flags2 & TF2_ECN_PERMIT) 4876 tp->t_flags2 |= TF2_ECN_SND_CWR; 4877 } 4878 break; 4879 case CC_ECN: 4880 if (!IN_CONGRECOVERY(tp->t_flags) || 4881 /* 4882 * Allow ECN reaction on ACK to CWR, if 4883 * that data segment was also CE marked. 4884 */ 4885 SEQ_GEQ(ack, tp->snd_recover)) { 4886 EXIT_CONGRECOVERY(tp->t_flags); 4887 KMOD_TCPSTAT_INC(tcps_ecn_rcwnd); 4888 tp->snd_recover = tp->snd_max + 1; 4889 if (tp->t_flags2 & TF2_ECN_PERMIT) 4890 tp->t_flags2 |= TF2_ECN_SND_CWR; 4891 } 4892 break; 4893 case CC_RTO: 4894 tp->t_dupacks = 0; 4895 tp->t_bytes_acked = 0; 4896 EXIT_RECOVERY(tp->t_flags); 4897 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 / 4898 ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp); 4899 orig_cwnd = tp->snd_cwnd; 4900 tp->snd_cwnd = ctf_fixed_maxseg(tp); 4901 rack_log_to_prr(rack, 16, orig_cwnd); 4902 if (tp->t_flags2 & TF2_ECN_PERMIT) 4903 tp->t_flags2 |= TF2_ECN_SND_CWR; 4904 break; 4905 case CC_RTO_ERR: 4906 KMOD_TCPSTAT_INC(tcps_sndrexmitbad); 4907 /* RTO was unnecessary, so reset everything. */ 4908 tp->snd_cwnd = tp->snd_cwnd_prev; 4909 tp->snd_ssthresh = tp->snd_ssthresh_prev; 4910 tp->snd_recover = tp->snd_recover_prev; 4911 if (tp->t_flags & TF_WASFRECOVERY) { 4912 ENTER_FASTRECOVERY(tp->t_flags); 4913 tp->t_flags &= ~TF_WASFRECOVERY; 4914 } 4915 if (tp->t_flags & TF_WASCRECOVERY) { 4916 ENTER_CONGRECOVERY(tp->t_flags); 4917 tp->t_flags &= ~TF_WASCRECOVERY; 4918 } 4919 tp->snd_nxt = tp->snd_max; 4920 tp->t_badrxtwin = 0; 4921 break; 4922 } 4923 if ((CC_ALGO(tp)->cong_signal != NULL) && 4924 (type != CC_RTO)){ 4925 tp->ccv->curack = ack; 4926 CC_ALGO(tp)->cong_signal(tp->ccv, type); 4927 } 4928 if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) { 4929 rack_log_to_prr(rack, 15, cwnd_enter); 4930 rack->r_ctl.dsack_byte_cnt = 0; 4931 rack->r_ctl.retran_during_recovery = 0; 4932 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter; 4933 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter; 4934 rack->r_ent_rec_ns = 1; 4935 } 4936 } 4937 4938 static inline void 4939 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp) 4940 { 4941 uint32_t i_cwnd; 4942 4943 INP_WLOCK_ASSERT(tp->t_inpcb); 4944 4945 #ifdef NETFLIX_STATS 4946 KMOD_TCPSTAT_INC(tcps_idle_restarts); 4947 if (tp->t_state == TCPS_ESTABLISHED) 4948 KMOD_TCPSTAT_INC(tcps_idle_estrestarts); 4949 #endif 4950 if (CC_ALGO(tp)->after_idle != NULL) 4951 CC_ALGO(tp)->after_idle(tp->ccv); 4952 4953 if (tp->snd_cwnd == 1) 4954 i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */ 4955 else 4956 i_cwnd = rc_init_window(rack); 4957 4958 /* 4959 * Being idle is no differnt than the initial window. If the cc 4960 * clamps it down below the initial window raise it to the initial 4961 * window. 4962 */ 4963 if (tp->snd_cwnd < i_cwnd) { 4964 tp->snd_cwnd = i_cwnd; 4965 } 4966 } 4967 4968 /* 4969 * Indicate whether this ack should be delayed. We can delay the ack if 4970 * following conditions are met: 4971 * - There is no delayed ack timer in progress. 4972 * - Our last ack wasn't a 0-sized window. We never want to delay 4973 * the ack that opens up a 0-sized window. 4974 * - LRO wasn't used for this segment. We make sure by checking that the 4975 * segment size is not larger than the MSS. 4976 * - Delayed acks are enabled or this is a half-synchronized T/TCP 4977 * connection. 4978 */ 4979 #define DELAY_ACK(tp, tlen) \ 4980 (((tp->t_flags & TF_RXWIN0SENT) == 0) && \ 4981 ((tp->t_flags & TF_DELACK) == 0) && \ 4982 (tlen <= tp->t_maxseg) && \ 4983 (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN))) 4984 4985 static struct rack_sendmap * 4986 rack_find_lowest_rsm(struct tcp_rack *rack) 4987 { 4988 struct rack_sendmap *rsm; 4989 4990 /* 4991 * Walk the time-order transmitted list looking for an rsm that is 4992 * not acked. This will be the one that was sent the longest time 4993 * ago that is still outstanding. 4994 */ 4995 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 4996 if (rsm->r_flags & RACK_ACKED) { 4997 continue; 4998 } 4999 goto finish; 5000 } 5001 finish: 5002 return (rsm); 5003 } 5004 5005 static struct rack_sendmap * 5006 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm) 5007 { 5008 struct rack_sendmap *prsm; 5009 5010 /* 5011 * Walk the sequence order list backward until we hit and arrive at 5012 * the highest seq not acked. In theory when this is called it 5013 * should be the last segment (which it was not). 5014 */ 5015 counter_u64_add(rack_find_high, 1); 5016 prsm = rsm; 5017 RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) { 5018 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) { 5019 continue; 5020 } 5021 return (prsm); 5022 } 5023 return (NULL); 5024 } 5025 5026 static uint32_t 5027 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts) 5028 { 5029 int32_t lro; 5030 uint32_t thresh; 5031 5032 /* 5033 * lro is the flag we use to determine if we have seen reordering. 5034 * If it gets set we have seen reordering. The reorder logic either 5035 * works in one of two ways: 5036 * 5037 * If reorder-fade is configured, then we track the last time we saw 5038 * re-ordering occur. If we reach the point where enough time as 5039 * passed we no longer consider reordering has occuring. 5040 * 5041 * Or if reorder-face is 0, then once we see reordering we consider 5042 * the connection to alway be subject to reordering and just set lro 5043 * to 1. 5044 * 5045 * In the end if lro is non-zero we add the extra time for 5046 * reordering in. 5047 */ 5048 if (srtt == 0) 5049 srtt = 1; 5050 if (rack->r_ctl.rc_reorder_ts) { 5051 if (rack->r_ctl.rc_reorder_fade) { 5052 if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) { 5053 lro = cts - rack->r_ctl.rc_reorder_ts; 5054 if (lro == 0) { 5055 /* 5056 * No time as passed since the last 5057 * reorder, mark it as reordering. 5058 */ 5059 lro = 1; 5060 } 5061 } else { 5062 /* Negative time? */ 5063 lro = 0; 5064 } 5065 if (lro > rack->r_ctl.rc_reorder_fade) { 5066 /* Turn off reordering seen too */ 5067 rack->r_ctl.rc_reorder_ts = 0; 5068 lro = 0; 5069 } 5070 } else { 5071 /* Reodering does not fade */ 5072 lro = 1; 5073 } 5074 } else { 5075 lro = 0; 5076 } 5077 thresh = srtt + rack->r_ctl.rc_pkt_delay; 5078 if (lro) { 5079 /* It must be set, if not you get 1/4 rtt */ 5080 if (rack->r_ctl.rc_reorder_shift) 5081 thresh += (srtt >> rack->r_ctl.rc_reorder_shift); 5082 else 5083 thresh += (srtt >> 2); 5084 } else { 5085 thresh += 1; 5086 } 5087 /* We don't let the rack timeout be above a RTO */ 5088 if (thresh > rack->rc_tp->t_rxtcur) { 5089 thresh = rack->rc_tp->t_rxtcur; 5090 } 5091 /* And we don't want it above the RTO max either */ 5092 if (thresh > rack_rto_max) { 5093 thresh = rack_rto_max; 5094 } 5095 return (thresh); 5096 } 5097 5098 static uint32_t 5099 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack, 5100 struct rack_sendmap *rsm, uint32_t srtt) 5101 { 5102 struct rack_sendmap *prsm; 5103 uint32_t thresh, len; 5104 int segsiz; 5105 5106 if (srtt == 0) 5107 srtt = 1; 5108 if (rack->r_ctl.rc_tlp_threshold) 5109 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold); 5110 else 5111 thresh = (srtt * 2); 5112 5113 /* Get the previous sent packet, if any */ 5114 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 5115 counter_u64_add(rack_enter_tlp_calc, 1); 5116 len = rsm->r_end - rsm->r_start; 5117 if (rack->rack_tlp_threshold_use == TLP_USE_ID) { 5118 /* Exactly like the ID */ 5119 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) { 5120 uint32_t alt_thresh; 5121 /* 5122 * Compensate for delayed-ack with the d-ack time. 5123 */ 5124 counter_u64_add(rack_used_tlpmethod, 1); 5125 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5126 if (alt_thresh > thresh) 5127 thresh = alt_thresh; 5128 } 5129 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) { 5130 /* 2.1 behavior */ 5131 prsm = TAILQ_PREV(rsm, rack_head, r_tnext); 5132 if (prsm && (len <= segsiz)) { 5133 /* 5134 * Two packets outstanding, thresh should be (2*srtt) + 5135 * possible inter-packet delay (if any). 5136 */ 5137 uint32_t inter_gap = 0; 5138 int idx, nidx; 5139 5140 counter_u64_add(rack_used_tlpmethod, 1); 5141 idx = rsm->r_rtr_cnt - 1; 5142 nidx = prsm->r_rtr_cnt - 1; 5143 if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) { 5144 /* Yes it was sent later (or at the same time) */ 5145 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx]; 5146 } 5147 thresh += inter_gap; 5148 } else if (len <= segsiz) { 5149 /* 5150 * Possibly compensate for delayed-ack. 5151 */ 5152 uint32_t alt_thresh; 5153 5154 counter_u64_add(rack_used_tlpmethod2, 1); 5155 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5156 if (alt_thresh > thresh) 5157 thresh = alt_thresh; 5158 } 5159 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) { 5160 /* 2.2 behavior */ 5161 if (len <= segsiz) { 5162 uint32_t alt_thresh; 5163 /* 5164 * Compensate for delayed-ack with the d-ack time. 5165 */ 5166 counter_u64_add(rack_used_tlpmethod, 1); 5167 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; 5168 if (alt_thresh > thresh) 5169 thresh = alt_thresh; 5170 } 5171 } 5172 /* Not above an RTO */ 5173 if (thresh > tp->t_rxtcur) { 5174 thresh = tp->t_rxtcur; 5175 } 5176 /* Not above a RTO max */ 5177 if (thresh > rack_rto_max) { 5178 thresh = rack_rto_max; 5179 } 5180 /* Apply user supplied min TLP */ 5181 if (thresh < rack_tlp_min) { 5182 thresh = rack_tlp_min; 5183 } 5184 return (thresh); 5185 } 5186 5187 static uint32_t 5188 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack) 5189 { 5190 /* 5191 * We want the rack_rtt which is the 5192 * last rtt we measured. However if that 5193 * does not exist we fallback to the srtt (which 5194 * we probably will never do) and then as a last 5195 * resort we use RACK_INITIAL_RTO if no srtt is 5196 * yet set. 5197 */ 5198 if (rack->rc_rack_rtt) 5199 return (rack->rc_rack_rtt); 5200 else if (tp->t_srtt == 0) 5201 return (RACK_INITIAL_RTO); 5202 return (tp->t_srtt); 5203 } 5204 5205 static struct rack_sendmap * 5206 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused) 5207 { 5208 /* 5209 * Check to see that we don't need to fall into recovery. We will 5210 * need to do so if our oldest transmit is past the time we should 5211 * have had an ack. 5212 */ 5213 struct tcp_rack *rack; 5214 struct rack_sendmap *rsm; 5215 int32_t idx; 5216 uint32_t srtt, thresh; 5217 5218 rack = (struct tcp_rack *)tp->t_fb_ptr; 5219 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 5220 return (NULL); 5221 } 5222 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5223 if (rsm == NULL) 5224 return (NULL); 5225 5226 if (rsm->r_flags & RACK_ACKED) { 5227 rsm = rack_find_lowest_rsm(rack); 5228 if (rsm == NULL) 5229 return (NULL); 5230 } 5231 idx = rsm->r_rtr_cnt - 1; 5232 srtt = rack_grab_rtt(tp, rack); 5233 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 5234 if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) { 5235 return (NULL); 5236 } 5237 if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) { 5238 return (NULL); 5239 } 5240 /* Ok if we reach here we are over-due and this guy can be sent */ 5241 if (IN_RECOVERY(tp->t_flags) == 0) { 5242 /* 5243 * For the one that enters us into recovery record undo 5244 * info. 5245 */ 5246 rack->r_ctl.rc_rsm_start = rsm->r_start; 5247 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 5248 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 5249 } 5250 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 5251 return (rsm); 5252 } 5253 5254 static uint32_t 5255 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack) 5256 { 5257 int32_t t; 5258 int32_t tt; 5259 uint32_t ret_val; 5260 5261 t = (tp->t_srtt + (tp->t_rttvar << 2)); 5262 RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift], 5263 rack_persist_min, rack_persist_max); 5264 if (tp->t_rxtshift < TCP_MAXRXTSHIFT) 5265 tp->t_rxtshift++; 5266 rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT; 5267 ret_val = (uint32_t)tt; 5268 return (ret_val); 5269 } 5270 5271 static uint32_t 5272 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack) 5273 { 5274 /* 5275 * Start the FR timer, we do this based on getting the first one in 5276 * the rc_tmap. Note that if its NULL we must stop the timer. in all 5277 * events we need to stop the running timer (if its running) before 5278 * starting the new one. 5279 */ 5280 uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse; 5281 uint32_t srtt_cur; 5282 int32_t idx; 5283 int32_t is_tlp_timer = 0; 5284 struct rack_sendmap *rsm; 5285 5286 if (rack->t_timers_stopped) { 5287 /* All timers have been stopped none are to run */ 5288 return (0); 5289 } 5290 if (rack->rc_in_persist) { 5291 /* We can't start any timer in persists */ 5292 return (rack_get_persists_timer_val(tp, rack)); 5293 } 5294 rack->rc_on_min_to = 0; 5295 if ((tp->t_state < TCPS_ESTABLISHED) || 5296 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 5297 goto activate_rxt; 5298 } 5299 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5300 if ((rsm == NULL) || sup_rack) { 5301 /* Nothing on the send map or no rack */ 5302 activate_rxt: 5303 time_since_sent = 0; 5304 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 5305 if (rsm) { 5306 /* 5307 * Should we discount the RTX timer any? 5308 * 5309 * We want to discount it the smallest amount. 5310 * If a timer (Rack/TLP or RXT) has gone off more 5311 * recently thats the discount we want to use (now - timer time). 5312 * If the retransmit of the oldest packet was more recent then 5313 * we want to use that (now - oldest-packet-last_transmit_time). 5314 * 5315 */ 5316 idx = rsm->r_rtr_cnt - 1; 5317 if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx]))) 5318 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5319 else 5320 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5321 if (TSTMP_GT(cts, tstmp_touse)) 5322 time_since_sent = cts - tstmp_touse; 5323 } 5324 if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { 5325 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT; 5326 to = tp->t_rxtcur; 5327 if (to > time_since_sent) 5328 to -= time_since_sent; 5329 else 5330 to = rack->r_ctl.rc_min_to; 5331 if (to == 0) 5332 to = 1; 5333 /* Special case for KEEPINIT */ 5334 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 5335 (TP_KEEPINIT(tp) != 0) && 5336 rsm) { 5337 /* 5338 * We have to put a ceiling on the rxt timer 5339 * of the keep-init timeout. 5340 */ 5341 uint32_t max_time, red; 5342 5343 max_time = TICKS_2_USEC(TP_KEEPINIT(tp)); 5344 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) { 5345 red = (cts - (uint32_t)rsm->r_tim_lastsent[0]); 5346 if (red < max_time) 5347 max_time -= red; 5348 else 5349 max_time = 1; 5350 } 5351 /* Reduce timeout to the keep value if needed */ 5352 if (max_time < to) 5353 to = max_time; 5354 } 5355 return (to); 5356 } 5357 return (0); 5358 } 5359 if (rsm->r_flags & RACK_ACKED) { 5360 rsm = rack_find_lowest_rsm(rack); 5361 if (rsm == NULL) { 5362 /* No lowest? */ 5363 goto activate_rxt; 5364 } 5365 } 5366 if (rack->sack_attack_disable) { 5367 /* 5368 * We don't want to do 5369 * any TLP's if you are an attacker. 5370 * Though if you are doing what 5371 * is expected you may still have 5372 * SACK-PASSED marks. 5373 */ 5374 goto activate_rxt; 5375 } 5376 /* Convert from ms to usecs */ 5377 if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 5378 if ((tp->t_flags & TF_SENTFIN) && 5379 ((tp->snd_max - tp->snd_una) == 1) && 5380 (rsm->r_flags & RACK_HAS_FIN)) { 5381 /* 5382 * We don't start a rack timer if all we have is a 5383 * FIN outstanding. 5384 */ 5385 goto activate_rxt; 5386 } 5387 if ((rack->use_rack_rr == 0) && 5388 (IN_FASTRECOVERY(tp->t_flags)) && 5389 (rack->rack_no_prr == 0) && 5390 (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) { 5391 /* 5392 * We are not cheating, in recovery and 5393 * not enough ack's to yet get our next 5394 * retransmission out. 5395 * 5396 * Note that classified attackers do not 5397 * get to use the rack-cheat. 5398 */ 5399 goto activate_tlp; 5400 } 5401 srtt = rack_grab_rtt(tp, rack); 5402 thresh = rack_calc_thresh_rack(rack, srtt, cts); 5403 idx = rsm->r_rtr_cnt - 1; 5404 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh; 5405 if (SEQ_GEQ(exp, cts)) { 5406 to = exp - cts; 5407 if (to < rack->r_ctl.rc_min_to) { 5408 to = rack->r_ctl.rc_min_to; 5409 if (rack->r_rr_config == 3) 5410 rack->rc_on_min_to = 1; 5411 } 5412 } else { 5413 to = rack->r_ctl.rc_min_to; 5414 if (rack->r_rr_config == 3) 5415 rack->rc_on_min_to = 1; 5416 } 5417 } else { 5418 /* Ok we need to do a TLP not RACK */ 5419 activate_tlp: 5420 if ((rack->rc_tlp_in_progress != 0) && 5421 (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) { 5422 /* 5423 * The previous send was a TLP and we have sent 5424 * N TLP's without sending new data. 5425 */ 5426 goto activate_rxt; 5427 } 5428 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 5429 if (rsm == NULL) { 5430 /* We found no rsm to TLP with. */ 5431 goto activate_rxt; 5432 } 5433 if (rsm->r_flags & RACK_HAS_FIN) { 5434 /* If its a FIN we dont do TLP */ 5435 rsm = NULL; 5436 goto activate_rxt; 5437 } 5438 idx = rsm->r_rtr_cnt - 1; 5439 time_since_sent = 0; 5440 if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time)) 5441 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx]; 5442 else 5443 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time; 5444 if (TSTMP_GT(cts, tstmp_touse)) 5445 time_since_sent = cts - tstmp_touse; 5446 is_tlp_timer = 1; 5447 if (tp->t_srtt) { 5448 if ((rack->rc_srtt_measure_made == 0) && 5449 (tp->t_srtt == 1)) { 5450 /* 5451 * If another stack as run and set srtt to 1, 5452 * then the srtt was 0, so lets use the initial. 5453 */ 5454 srtt = RACK_INITIAL_RTO; 5455 } else { 5456 srtt_cur = tp->t_srtt; 5457 srtt = srtt_cur; 5458 } 5459 } else 5460 srtt = RACK_INITIAL_RTO; 5461 /* 5462 * If the SRTT is not keeping up and the 5463 * rack RTT has spiked we want to use 5464 * the last RTT not the smoothed one. 5465 */ 5466 if (rack_tlp_use_greater && 5467 tp->t_srtt && 5468 (srtt < rack_grab_rtt(tp, rack))) { 5469 srtt = rack_grab_rtt(tp, rack); 5470 } 5471 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt); 5472 if (thresh > time_since_sent) { 5473 to = thresh - time_since_sent; 5474 } else { 5475 to = rack->r_ctl.rc_min_to; 5476 rack_log_alt_to_to_cancel(rack, 5477 thresh, /* flex1 */ 5478 time_since_sent, /* flex2 */ 5479 tstmp_touse, /* flex3 */ 5480 rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */ 5481 (uint32_t)rsm->r_tim_lastsent[idx], 5482 srtt, 5483 idx, 99); 5484 } 5485 if (to < rack_tlp_min) { 5486 to = rack_tlp_min; 5487 } 5488 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) { 5489 /* 5490 * If the TLP time works out to larger than the max 5491 * RTO lets not do TLP.. just RTO. 5492 */ 5493 goto activate_rxt; 5494 } 5495 } 5496 if (is_tlp_timer == 0) { 5497 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK; 5498 } else { 5499 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP; 5500 } 5501 if (to == 0) 5502 to = 1; 5503 return (to); 5504 } 5505 5506 static void 5507 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5508 { 5509 if (rack->rc_in_persist == 0) { 5510 if (tp->t_flags & TF_GPUTINPROG) { 5511 /* 5512 * Stop the goodput now, the calling of the 5513 * measurement function clears the flag. 5514 */ 5515 rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__); 5516 } 5517 #ifdef NETFLIX_SHARED_CWND 5518 if (rack->r_ctl.rc_scw) { 5519 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5520 rack->rack_scwnd_is_idle = 1; 5521 } 5522 #endif 5523 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 5524 if (rack->r_ctl.rc_went_idle_time == 0) 5525 rack->r_ctl.rc_went_idle_time = 1; 5526 rack_timer_cancel(tp, rack, cts, __LINE__); 5527 tp->t_rxtshift = 0; 5528 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5529 rack_rto_min, rack_rto_max); 5530 rack->rc_in_persist = 1; 5531 } 5532 } 5533 5534 static void 5535 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5536 { 5537 if (rack->rc_inp->inp_in_hpts) { 5538 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 5539 rack->r_ctl.rc_hpts_flags = 0; 5540 } 5541 #ifdef NETFLIX_SHARED_CWND 5542 if (rack->r_ctl.rc_scw) { 5543 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 5544 rack->rack_scwnd_is_idle = 0; 5545 } 5546 #endif 5547 if (rack->rc_gp_dyn_mul && 5548 (rack->use_fixed_rate == 0) && 5549 (rack->rc_always_pace)) { 5550 /* 5551 * Do we count this as if a probe-rtt just 5552 * finished? 5553 */ 5554 uint32_t time_idle, idle_min; 5555 5556 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time; 5557 idle_min = rack_min_probertt_hold; 5558 if (rack_probertt_gpsrtt_cnt_div) { 5559 uint64_t extra; 5560 extra = (uint64_t)rack->r_ctl.rc_gp_srtt * 5561 (uint64_t)rack_probertt_gpsrtt_cnt_mul; 5562 extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div; 5563 idle_min += (uint32_t)extra; 5564 } 5565 if (time_idle >= idle_min) { 5566 /* Yes, we count it as a probe-rtt. */ 5567 uint32_t us_cts; 5568 5569 us_cts = tcp_get_usecs(NULL); 5570 if (rack->in_probe_rtt == 0) { 5571 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 5572 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 5573 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 5574 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 5575 } else { 5576 rack_exit_probertt(rack, us_cts); 5577 } 5578 } 5579 } 5580 rack->rc_in_persist = 0; 5581 rack->r_ctl.rc_went_idle_time = 0; 5582 tp->t_rxtshift = 0; 5583 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 5584 rack_rto_min, rack_rto_max); 5585 rack->r_ctl.rc_agg_delayed = 0; 5586 rack->r_early = 0; 5587 rack->r_late = 0; 5588 rack->r_ctl.rc_agg_early = 0; 5589 } 5590 5591 static void 5592 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts, 5593 struct hpts_diag *diag, struct timeval *tv) 5594 { 5595 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5596 union tcp_log_stackspecific log; 5597 5598 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5599 log.u_bbr.flex1 = diag->p_nxt_slot; 5600 log.u_bbr.flex2 = diag->p_cur_slot; 5601 log.u_bbr.flex3 = diag->slot_req; 5602 log.u_bbr.flex4 = diag->inp_hptsslot; 5603 log.u_bbr.flex5 = diag->slot_remaining; 5604 log.u_bbr.flex6 = diag->need_new_to; 5605 log.u_bbr.flex7 = diag->p_hpts_active; 5606 log.u_bbr.flex8 = diag->p_on_min_sleep; 5607 /* Hijack other fields as needed */ 5608 log.u_bbr.epoch = diag->have_slept; 5609 log.u_bbr.lt_epoch = diag->yet_to_sleep; 5610 log.u_bbr.pkts_out = diag->co_ret; 5611 log.u_bbr.applimited = diag->hpts_sleep_time; 5612 log.u_bbr.delivered = diag->p_prev_slot; 5613 log.u_bbr.inflight = diag->p_runningtick; 5614 log.u_bbr.bw_inuse = diag->wheel_tick; 5615 log.u_bbr.rttProp = diag->wheel_cts; 5616 log.u_bbr.timeStamp = cts; 5617 log.u_bbr.delRate = diag->maxticks; 5618 log.u_bbr.cur_del_rate = diag->p_curtick; 5619 log.u_bbr.cur_del_rate <<= 32; 5620 log.u_bbr.cur_del_rate |= diag->p_lasttick; 5621 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5622 &rack->rc_inp->inp_socket->so_rcv, 5623 &rack->rc_inp->inp_socket->so_snd, 5624 BBR_LOG_HPTSDIAG, 0, 5625 0, &log, false, tv); 5626 } 5627 5628 } 5629 5630 static void 5631 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type) 5632 { 5633 if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 5634 union tcp_log_stackspecific log; 5635 struct timeval tv; 5636 5637 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 5638 log.u_bbr.flex1 = sb->sb_flags; 5639 log.u_bbr.flex2 = len; 5640 log.u_bbr.flex3 = sb->sb_state; 5641 log.u_bbr.flex8 = type; 5642 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 5643 TCP_LOG_EVENTP(rack->rc_tp, NULL, 5644 &rack->rc_inp->inp_socket->so_rcv, 5645 &rack->rc_inp->inp_socket->so_snd, 5646 TCP_LOG_SB_WAKE, 0, 5647 len, &log, false, &tv); 5648 } 5649 } 5650 5651 static void 5652 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, 5653 int32_t slot, uint32_t tot_len_this_send, int sup_rack) 5654 { 5655 struct hpts_diag diag; 5656 struct inpcb *inp; 5657 struct timeval tv; 5658 uint32_t delayed_ack = 0; 5659 uint32_t hpts_timeout; 5660 uint32_t entry_slot = slot; 5661 uint8_t stopped; 5662 uint32_t left = 0; 5663 uint32_t us_cts; 5664 5665 inp = tp->t_inpcb; 5666 if ((tp->t_state == TCPS_CLOSED) || 5667 (tp->t_state == TCPS_LISTEN)) { 5668 return; 5669 } 5670 if (inp->inp_in_hpts) { 5671 /* Already on the pacer */ 5672 return; 5673 } 5674 stopped = rack->rc_tmr_stopped; 5675 if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) { 5676 left = rack->r_ctl.rc_timer_exp - cts; 5677 } 5678 rack->r_ctl.rc_timer_exp = 0; 5679 rack->r_ctl.rc_hpts_flags = 0; 5680 us_cts = tcp_get_usecs(&tv); 5681 /* Now early/late accounting */ 5682 rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL); 5683 if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) { 5684 /* 5685 * We have a early carry over set, 5686 * we can always add more time so we 5687 * can always make this compensation. 5688 * 5689 * Note if ack's are allowed to wake us do not 5690 * penalize the next timer for being awoke 5691 * by an ack aka the rc_agg_early (non-paced mode). 5692 */ 5693 slot += rack->r_ctl.rc_agg_early; 5694 rack->r_early = 0; 5695 rack->r_ctl.rc_agg_early = 0; 5696 } 5697 if (rack->r_late) { 5698 /* 5699 * This is harder, we can 5700 * compensate some but it 5701 * really depends on what 5702 * the current pacing time is. 5703 */ 5704 if (rack->r_ctl.rc_agg_delayed >= slot) { 5705 /* 5706 * We can't compensate for it all. 5707 * And we have to have some time 5708 * on the clock. We always have a min 5709 * 10 slots (10 x 10 i.e. 100 usecs). 5710 */ 5711 if (slot <= HPTS_TICKS_PER_USEC) { 5712 /* We gain delay */ 5713 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_USEC - slot); 5714 slot = HPTS_TICKS_PER_USEC; 5715 } else { 5716 /* We take off some */ 5717 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_USEC); 5718 slot = HPTS_TICKS_PER_USEC; 5719 } 5720 } else { 5721 slot -= rack->r_ctl.rc_agg_delayed; 5722 rack->r_ctl.rc_agg_delayed = 0; 5723 /* Make sure we have 100 useconds at minimum */ 5724 if (slot < HPTS_TICKS_PER_USEC) { 5725 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_USEC - slot; 5726 slot = HPTS_TICKS_PER_USEC; 5727 } 5728 if (rack->r_ctl.rc_agg_delayed == 0) 5729 rack->r_late = 0; 5730 } 5731 } 5732 if (slot) { 5733 /* We are pacing too */ 5734 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT; 5735 } 5736 hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack); 5737 #ifdef NETFLIX_EXP_DETECTION 5738 if (rack->sack_attack_disable && 5739 (slot < tcp_sad_pacing_interval)) { 5740 /* 5741 * We have a potential attacker on 5742 * the line. We have possibly some 5743 * (or now) pacing time set. We want to 5744 * slow down the processing of sacks by some 5745 * amount (if it is an attacker). Set the default 5746 * slot for attackers in place (unless the orginal 5747 * interval is longer). Its stored in 5748 * micro-seconds, so lets convert to msecs. 5749 */ 5750 slot = tcp_sad_pacing_interval; 5751 } 5752 #endif 5753 if (tp->t_flags & TF_DELACK) { 5754 delayed_ack = TICKS_2_USEC(tcp_delacktime); 5755 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK; 5756 } 5757 if (delayed_ack && ((hpts_timeout == 0) || 5758 (delayed_ack < hpts_timeout))) 5759 hpts_timeout = delayed_ack; 5760 else 5761 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 5762 /* 5763 * If no timers are going to run and we will fall off the hptsi 5764 * wheel, we resort to a keep-alive timer if its configured. 5765 */ 5766 if ((hpts_timeout == 0) && 5767 (slot == 0)) { 5768 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 5769 (tp->t_state <= TCPS_CLOSING)) { 5770 /* 5771 * Ok we have no timer (persists, rack, tlp, rxt or 5772 * del-ack), we don't have segments being paced. So 5773 * all that is left is the keepalive timer. 5774 */ 5775 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 5776 /* Get the established keep-alive time */ 5777 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp)); 5778 } else { 5779 /* 5780 * Get the initial setup keep-alive time, 5781 * note that this is probably not going to 5782 * happen, since rack will be running a rxt timer 5783 * if a SYN of some sort is outstanding. It is 5784 * actually handled in rack_timeout_rxt(). 5785 */ 5786 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp)); 5787 } 5788 rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP; 5789 if (rack->in_probe_rtt) { 5790 /* 5791 * We want to instead not wake up a long time from 5792 * now but to wake up about the time we would 5793 * exit probe-rtt and initiate a keep-alive ack. 5794 * This will get us out of probe-rtt and update 5795 * our min-rtt. 5796 */ 5797 hpts_timeout = rack_min_probertt_hold; 5798 } 5799 } 5800 } 5801 if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) == 5802 (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) { 5803 /* 5804 * RACK, TLP, persists and RXT timers all are restartable 5805 * based on actions input .. i.e we received a packet (ack 5806 * or sack) and that changes things (rw, or snd_una etc). 5807 * Thus we can restart them with a new value. For 5808 * keep-alive, delayed_ack we keep track of what was left 5809 * and restart the timer with a smaller value. 5810 */ 5811 if (left < hpts_timeout) 5812 hpts_timeout = left; 5813 } 5814 if (hpts_timeout) { 5815 /* 5816 * Hack alert for now we can't time-out over 2,147,483 5817 * seconds (a bit more than 596 hours), which is probably ok 5818 * :). 5819 */ 5820 if (hpts_timeout > 0x7ffffffe) 5821 hpts_timeout = 0x7ffffffe; 5822 rack->r_ctl.rc_timer_exp = cts + hpts_timeout; 5823 } 5824 rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL); 5825 if ((rack->gp_ready == 0) && 5826 (rack->use_fixed_rate == 0) && 5827 (hpts_timeout < slot) && 5828 (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) { 5829 /* 5830 * We have no good estimate yet for the 5831 * old clunky burst mitigation or the 5832 * real pacing. And the tlp or rxt is smaller 5833 * than the pacing calculation. Lets not 5834 * pace that long since we know the calculation 5835 * so far is not accurate. 5836 */ 5837 slot = hpts_timeout; 5838 } 5839 rack->r_ctl.last_pacing_time = slot; 5840 /** 5841 * Turn off all the flags for queuing by default. The 5842 * flags have important meanings to what happens when 5843 * LRO interacts with the transport. Most likely (by default now) 5844 * mbuf_queueing and ack compression are on. So the transport 5845 * has a couple of flags that control what happens (if those 5846 * are not on then these flags won't have any effect since it 5847 * won't go through the queuing LRO path). 5848 * 5849 * INP_MBUF_QUEUE_READY - This flags says that I am busy 5850 * pacing output, so don't disturb. But 5851 * it also means LRO can wake me if there 5852 * is a SACK arrival. 5853 * 5854 * INP_DONT_SACK_QUEUE - This flag is used in conjunction 5855 * with the above flag (QUEUE_READY) and 5856 * when present it says don't even wake me 5857 * if a SACK arrives. 5858 * 5859 * The idea behind these flags is that if we are pacing we 5860 * set the MBUF_QUEUE_READY and only get woken up if 5861 * a SACK arrives (which could change things) or if 5862 * our pacing timer expires. If, however, we have a rack 5863 * timer running, then we don't even want a sack to wake 5864 * us since the rack timer has to expire before we can send. 5865 * 5866 * Other cases should usually have none of the flags set 5867 * so LRO can call into us. 5868 */ 5869 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 5870 if (slot) { 5871 rack->r_ctl.rc_last_output_to = us_cts + slot; 5872 /* 5873 * A pacing timer (slot) is being set, in 5874 * such a case we cannot send (we are blocked by 5875 * the timer). So lets tell LRO that it should not 5876 * wake us unless there is a SACK. Note this only 5877 * will be effective if mbuf queueing is on or 5878 * compressed acks are being processed. 5879 */ 5880 inp->inp_flags2 |= INP_MBUF_QUEUE_READY; 5881 /* 5882 * But wait if we have a Rack timer running 5883 * even a SACK should not disturb us (with 5884 * the exception of r_rr_config 3). 5885 */ 5886 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) && 5887 (rack->r_rr_config != 3)) 5888 inp->inp_flags2 |= INP_DONT_SACK_QUEUE; 5889 if (rack->rc_ack_can_sendout_data) { 5890 /* 5891 * Ahh but wait, this is that special case 5892 * where the pacing timer can be disturbed 5893 * backout the changes (used for non-paced 5894 * burst limiting). 5895 */ 5896 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); 5897 } 5898 if ((rack->use_rack_rr) && 5899 (rack->r_rr_config < 2) && 5900 ((hpts_timeout) && (hpts_timeout < slot))) { 5901 /* 5902 * Arrange for the hpts to kick back in after the 5903 * t-o if the t-o does not cause a send. 5904 */ 5905 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 5906 __LINE__, &diag); 5907 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 5908 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 5909 } else { 5910 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot), 5911 __LINE__, &diag); 5912 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 5913 rack_log_to_start(rack, cts, hpts_timeout, slot, 1); 5914 } 5915 } else if (hpts_timeout) { 5916 /* 5917 * With respect to inp_flags2 here, lets let any new acks wake 5918 * us up here. Since we are not pacing (no pacing timer), output 5919 * can happen so we should let it. If its a Rack timer, then any inbound 5920 * packet probably won't change the sending (we will be blocked) 5921 * but it may change the prr stats so letting it in (the set defaults 5922 * at the start of this block) are good enough. 5923 */ 5924 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout), 5925 __LINE__, &diag); 5926 rack_log_hpts_diag(rack, us_cts, &diag, &tv); 5927 rack_log_to_start(rack, cts, hpts_timeout, slot, 0); 5928 } else { 5929 /* No timer starting */ 5930 #ifdef INVARIANTS 5931 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 5932 panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?", 5933 tp, rack, tot_len_this_send, cts, slot, hpts_timeout); 5934 } 5935 #endif 5936 } 5937 rack->rc_tmr_stopped = 0; 5938 if (slot) 5939 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv); 5940 } 5941 5942 /* 5943 * RACK Timer, here we simply do logging and house keeping. 5944 * the normal rack_output() function will call the 5945 * appropriate thing to check if we need to do a RACK retransmit. 5946 * We return 1, saying don't proceed with rack_output only 5947 * when all timers have been stopped (destroyed PCB?). 5948 */ 5949 static int 5950 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 5951 { 5952 /* 5953 * This timer simply provides an internal trigger to send out data. 5954 * The check_recovery_mode call will see if there are needed 5955 * retransmissions, if so we will enter fast-recovery. The output 5956 * call may or may not do the same thing depending on sysctl 5957 * settings. 5958 */ 5959 struct rack_sendmap *rsm; 5960 5961 if (tp->t_timers->tt_flags & TT_STOPPED) { 5962 return (1); 5963 } 5964 counter_u64_add(rack_to_tot, 1); 5965 if (rack->r_state && (rack->r_state != tp->t_state)) 5966 rack_set_state(tp, rack); 5967 rack->rc_on_min_to = 0; 5968 rsm = rack_check_recovery_mode(tp, cts); 5969 rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm); 5970 if (rsm) { 5971 rack->r_ctl.rc_resend = rsm; 5972 rack->r_timer_override = 1; 5973 if (rack->use_rack_rr) { 5974 /* 5975 * Don't accumulate extra pacing delay 5976 * we are allowing the rack timer to 5977 * over-ride pacing i.e. rrr takes precedence 5978 * if the pacing interval is longer than the rrr 5979 * time (in other words we get the min pacing 5980 * time versus rrr pacing time). 5981 */ 5982 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 5983 } 5984 } 5985 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK; 5986 if (rsm == NULL) { 5987 /* restart a timer and return 1 */ 5988 rack_start_hpts_timer(rack, tp, cts, 5989 0, 0, 0); 5990 return (1); 5991 } 5992 return (0); 5993 } 5994 5995 static void 5996 rack_adjust_orig_mlen(struct rack_sendmap *rsm) 5997 { 5998 if (rsm->m->m_len > rsm->orig_m_len) { 5999 /* 6000 * Mbuf grew, caused by sbcompress, our offset does 6001 * not change. 6002 */ 6003 rsm->orig_m_len = rsm->m->m_len; 6004 } else if (rsm->m->m_len < rsm->orig_m_len) { 6005 /* 6006 * Mbuf shrank, trimmed off the top by an ack, our 6007 * offset changes. 6008 */ 6009 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len); 6010 rsm->orig_m_len = rsm->m->m_len; 6011 } 6012 } 6013 6014 static void 6015 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm) 6016 { 6017 struct mbuf *m; 6018 uint32_t soff; 6019 6020 if (src_rsm->orig_m_len != src_rsm->m->m_len) { 6021 /* Fix up the orig_m_len and possibly the mbuf offset */ 6022 rack_adjust_orig_mlen(src_rsm); 6023 } 6024 m = src_rsm->m; 6025 soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start); 6026 while (soff >= m->m_len) { 6027 /* Move out past this mbuf */ 6028 soff -= m->m_len; 6029 m = m->m_next; 6030 KASSERT((m != NULL), 6031 ("rsm:%p nrsm:%p hit at soff:%u null m", 6032 src_rsm, rsm, soff)); 6033 } 6034 rsm->m = m; 6035 rsm->soff = soff; 6036 rsm->orig_m_len = m->m_len; 6037 } 6038 6039 static __inline void 6040 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm, 6041 struct rack_sendmap *rsm, uint32_t start) 6042 { 6043 int idx; 6044 6045 nrsm->r_start = start; 6046 nrsm->r_end = rsm->r_end; 6047 nrsm->r_rtr_cnt = rsm->r_rtr_cnt; 6048 nrsm->r_flags = rsm->r_flags; 6049 nrsm->r_dupack = rsm->r_dupack; 6050 nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed; 6051 nrsm->r_rtr_bytes = 0; 6052 rsm->r_end = nrsm->r_start; 6053 nrsm->r_just_ret = rsm->r_just_ret; 6054 for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) { 6055 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx]; 6056 } 6057 /* Now if we have SYN flag we keep it on the left edge */ 6058 if (nrsm->r_flags & RACK_HAS_SYN) 6059 nrsm->r_flags &= ~RACK_HAS_SYN; 6060 /* Now if we have a FIN flag we keep it on the right edge */ 6061 if (nrsm->r_flags & RACK_HAS_FIN) 6062 nrsm->r_flags &= ~RACK_HAS_FIN; 6063 /* 6064 * Now we need to find nrsm's new location in the mbuf chain 6065 * we basically calculate a new offset, which is soff + 6066 * how much is left in original rsm. Then we walk out the mbuf 6067 * chain to find the righ postion, it may be the same mbuf 6068 * or maybe not. 6069 */ 6070 KASSERT(((rsm->m != NULL) || 6071 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))), 6072 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack)); 6073 if (rsm->m) 6074 rack_setup_offset_for_rsm(rsm, nrsm); 6075 } 6076 6077 static struct rack_sendmap * 6078 rack_merge_rsm(struct tcp_rack *rack, 6079 struct rack_sendmap *l_rsm, 6080 struct rack_sendmap *r_rsm) 6081 { 6082 /* 6083 * We are merging two ack'd RSM's, 6084 * the l_rsm is on the left (lower seq 6085 * values) and the r_rsm is on the right 6086 * (higher seq value). The simplest way 6087 * to merge these is to move the right 6088 * one into the left. I don't think there 6089 * is any reason we need to try to find 6090 * the oldest (or last oldest retransmitted). 6091 */ 6092 struct rack_sendmap *rm; 6093 6094 rack_log_map_chg(rack->rc_tp, rack, NULL, 6095 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__); 6096 l_rsm->r_end = r_rsm->r_end; 6097 if (l_rsm->r_dupack < r_rsm->r_dupack) 6098 l_rsm->r_dupack = r_rsm->r_dupack; 6099 if (r_rsm->r_rtr_bytes) 6100 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes; 6101 if (r_rsm->r_in_tmap) { 6102 /* This really should not happen */ 6103 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext); 6104 r_rsm->r_in_tmap = 0; 6105 } 6106 6107 /* Now the flags */ 6108 if (r_rsm->r_flags & RACK_HAS_FIN) 6109 l_rsm->r_flags |= RACK_HAS_FIN; 6110 if (r_rsm->r_flags & RACK_TLP) 6111 l_rsm->r_flags |= RACK_TLP; 6112 if (r_rsm->r_flags & RACK_RWND_COLLAPSED) 6113 l_rsm->r_flags |= RACK_RWND_COLLAPSED; 6114 if ((r_rsm->r_flags & RACK_APP_LIMITED) && 6115 ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) { 6116 /* 6117 * If both are app-limited then let the 6118 * free lower the count. If right is app 6119 * limited and left is not, transfer. 6120 */ 6121 l_rsm->r_flags |= RACK_APP_LIMITED; 6122 r_rsm->r_flags &= ~RACK_APP_LIMITED; 6123 if (r_rsm == rack->r_ctl.rc_first_appl) 6124 rack->r_ctl.rc_first_appl = l_rsm; 6125 } 6126 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm); 6127 #ifdef INVARIANTS 6128 if (rm != r_rsm) { 6129 panic("removing head in rack:%p rsm:%p rm:%p", 6130 rack, r_rsm, rm); 6131 } 6132 #endif 6133 if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) { 6134 /* Transfer the split limit to the map we free */ 6135 r_rsm->r_limit_type = l_rsm->r_limit_type; 6136 l_rsm->r_limit_type = 0; 6137 } 6138 rack_free(rack, r_rsm); 6139 return (l_rsm); 6140 } 6141 6142 /* 6143 * TLP Timer, here we simply setup what segment we want to 6144 * have the TLP expire on, the normal rack_output() will then 6145 * send it out. 6146 * 6147 * We return 1, saying don't proceed with rack_output only 6148 * when all timers have been stopped (destroyed PCB?). 6149 */ 6150 static int 6151 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6152 { 6153 /* 6154 * Tail Loss Probe. 6155 */ 6156 struct rack_sendmap *rsm = NULL; 6157 struct rack_sendmap *insret; 6158 struct socket *so; 6159 uint32_t amm; 6160 uint32_t out, avail; 6161 int collapsed_win = 0; 6162 6163 if (tp->t_timers->tt_flags & TT_STOPPED) { 6164 return (1); 6165 } 6166 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 6167 /* Its not time yet */ 6168 return (0); 6169 } 6170 if (ctf_progress_timeout_check(tp, true)) { 6171 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6172 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 6173 return (1); 6174 } 6175 /* 6176 * A TLP timer has expired. We have been idle for 2 rtts. So we now 6177 * need to figure out how to force a full MSS segment out. 6178 */ 6179 rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL); 6180 rack->r_ctl.retran_during_recovery = 0; 6181 rack->r_ctl.dsack_byte_cnt = 0; 6182 counter_u64_add(rack_tlp_tot, 1); 6183 if (rack->r_state && (rack->r_state != tp->t_state)) 6184 rack_set_state(tp, rack); 6185 so = tp->t_inpcb->inp_socket; 6186 avail = sbavail(&so->so_snd); 6187 out = tp->snd_max - tp->snd_una; 6188 if (out > tp->snd_wnd) { 6189 /* special case, we need a retransmission */ 6190 collapsed_win = 1; 6191 goto need_retran; 6192 } 6193 /* 6194 * Check our send oldest always settings, and if 6195 * there is an oldest to send jump to the need_retran. 6196 */ 6197 if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0)) 6198 goto need_retran; 6199 6200 if (avail > out) { 6201 /* New data is available */ 6202 amm = avail - out; 6203 if (amm > ctf_fixed_maxseg(tp)) { 6204 amm = ctf_fixed_maxseg(tp); 6205 if ((amm + out) > tp->snd_wnd) { 6206 /* We are rwnd limited */ 6207 goto need_retran; 6208 } 6209 } else if (amm < ctf_fixed_maxseg(tp)) { 6210 /* not enough to fill a MTU */ 6211 goto need_retran; 6212 } 6213 if (IN_FASTRECOVERY(tp->t_flags)) { 6214 /* Unlikely */ 6215 if (rack->rack_no_prr == 0) { 6216 if (out + amm <= tp->snd_wnd) { 6217 rack->r_ctl.rc_prr_sndcnt = amm; 6218 rack_log_to_prr(rack, 4, 0); 6219 } 6220 } else 6221 goto need_retran; 6222 } else { 6223 /* Set the send-new override */ 6224 if (out + amm <= tp->snd_wnd) 6225 rack->r_ctl.rc_tlp_new_data = amm; 6226 else 6227 goto need_retran; 6228 } 6229 rack->r_ctl.rc_tlpsend = NULL; 6230 counter_u64_add(rack_tlp_newdata, 1); 6231 goto send; 6232 } 6233 need_retran: 6234 /* 6235 * Ok we need to arrange the last un-acked segment to be re-sent, or 6236 * optionally the first un-acked segment. 6237 */ 6238 if (collapsed_win == 0) { 6239 if (rack_always_send_oldest) 6240 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 6241 else { 6242 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6243 if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) { 6244 rsm = rack_find_high_nonack(rack, rsm); 6245 } 6246 } 6247 if (rsm == NULL) { 6248 counter_u64_add(rack_tlp_does_nada, 1); 6249 #ifdef TCP_BLACKBOX 6250 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6251 #endif 6252 goto out; 6253 } 6254 } else { 6255 /* 6256 * We must find the last segment 6257 * that was acceptable by the client. 6258 */ 6259 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6260 if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) { 6261 /* Found one */ 6262 break; 6263 } 6264 } 6265 if (rsm == NULL) { 6266 /* None? if so send the first */ 6267 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6268 if (rsm == NULL) { 6269 counter_u64_add(rack_tlp_does_nada, 1); 6270 #ifdef TCP_BLACKBOX 6271 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); 6272 #endif 6273 goto out; 6274 } 6275 } 6276 } 6277 if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) { 6278 /* 6279 * We need to split this the last segment in two. 6280 */ 6281 struct rack_sendmap *nrsm; 6282 6283 nrsm = rack_alloc_full_limit(rack); 6284 if (nrsm == NULL) { 6285 /* 6286 * No memory to split, we will just exit and punt 6287 * off to the RXT timer. 6288 */ 6289 counter_u64_add(rack_tlp_does_nada, 1); 6290 goto out; 6291 } 6292 rack_clone_rsm(rack, nrsm, rsm, 6293 (rsm->r_end - ctf_fixed_maxseg(tp))); 6294 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 6295 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 6296 #ifdef INVARIANTS 6297 if (insret != NULL) { 6298 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 6299 nrsm, insret, rack, rsm); 6300 } 6301 #endif 6302 if (rsm->r_in_tmap) { 6303 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 6304 nrsm->r_in_tmap = 1; 6305 } 6306 rsm->r_flags &= (~RACK_HAS_FIN); 6307 rsm = nrsm; 6308 } 6309 rack->r_ctl.rc_tlpsend = rsm; 6310 send: 6311 rack->r_timer_override = 1; 6312 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6313 return (0); 6314 out: 6315 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; 6316 return (0); 6317 } 6318 6319 /* 6320 * Delayed ack Timer, here we simply need to setup the 6321 * ACK_NOW flag and remove the DELACK flag. From there 6322 * the output routine will send the ack out. 6323 * 6324 * We only return 1, saying don't proceed, if all timers 6325 * are stopped (destroyed PCB?). 6326 */ 6327 static int 6328 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6329 { 6330 if (tp->t_timers->tt_flags & TT_STOPPED) { 6331 return (1); 6332 } 6333 rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL); 6334 tp->t_flags &= ~TF_DELACK; 6335 tp->t_flags |= TF_ACKNOW; 6336 KMOD_TCPSTAT_INC(tcps_delack); 6337 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; 6338 return (0); 6339 } 6340 6341 /* 6342 * Persists timer, here we simply send the 6343 * same thing as a keepalive will. 6344 * the one byte send. 6345 * 6346 * We only return 1, saying don't proceed, if all timers 6347 * are stopped (destroyed PCB?). 6348 */ 6349 static int 6350 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6351 { 6352 struct tcptemp *t_template; 6353 struct inpcb *inp; 6354 int32_t retval = 1; 6355 6356 inp = tp->t_inpcb; 6357 6358 if (tp->t_timers->tt_flags & TT_STOPPED) { 6359 return (1); 6360 } 6361 if (rack->rc_in_persist == 0) 6362 return (0); 6363 if (ctf_progress_timeout_check(tp, false)) { 6364 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6365 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6366 tcp_set_inp_to_drop(inp, ETIMEDOUT); 6367 return (1); 6368 } 6369 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); 6370 /* 6371 * Persistence timer into zero window. Force a byte to be output, if 6372 * possible. 6373 */ 6374 KMOD_TCPSTAT_INC(tcps_persisttimeo); 6375 /* 6376 * Hack: if the peer is dead/unreachable, we do not time out if the 6377 * window is closed. After a full backoff, drop the connection if 6378 * the idle time (no responses to probes) reaches the maximum 6379 * backoff that we would use if retransmitting. 6380 */ 6381 if (tp->t_rxtshift == TCP_MAXRXTSHIFT && 6382 (ticks - tp->t_rcvtime >= tcp_maxpersistidle || 6383 TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) { 6384 KMOD_TCPSTAT_INC(tcps_persistdrop); 6385 retval = 1; 6386 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6387 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); 6388 goto out; 6389 } 6390 if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) && 6391 tp->snd_una == tp->snd_max) 6392 rack_exit_persist(tp, rack, cts); 6393 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT; 6394 /* 6395 * If the user has closed the socket then drop a persisting 6396 * connection after a much reduced timeout. 6397 */ 6398 if (tp->t_state > TCPS_CLOSE_WAIT && 6399 (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) { 6400 retval = 1; 6401 KMOD_TCPSTAT_INC(tcps_persistdrop); 6402 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); 6403 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); 6404 goto out; 6405 } 6406 t_template = tcpip_maketemplate(rack->rc_inp); 6407 if (t_template) { 6408 /* only set it if we were answered */ 6409 if (rack->forced_ack == 0) { 6410 rack->forced_ack = 1; 6411 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6412 } 6413 tcp_respond(tp, t_template->tt_ipgen, 6414 &t_template->tt_t, (struct mbuf *)NULL, 6415 tp->rcv_nxt, tp->snd_una - 1, 0); 6416 /* This sends an ack */ 6417 if (tp->t_flags & TF_DELACK) 6418 tp->t_flags &= ~TF_DELACK; 6419 free(t_template, M_TEMP); 6420 } 6421 if (tp->t_rxtshift < TCP_MAXRXTSHIFT) 6422 tp->t_rxtshift++; 6423 out: 6424 rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL); 6425 rack_start_hpts_timer(rack, tp, cts, 6426 0, 0, 0); 6427 return (retval); 6428 } 6429 6430 /* 6431 * If a keepalive goes off, we had no other timers 6432 * happening. We always return 1 here since this 6433 * routine either drops the connection or sends 6434 * out a segment with respond. 6435 */ 6436 static int 6437 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6438 { 6439 struct tcptemp *t_template; 6440 struct inpcb *inp; 6441 6442 if (tp->t_timers->tt_flags & TT_STOPPED) { 6443 return (1); 6444 } 6445 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP; 6446 inp = tp->t_inpcb; 6447 rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL); 6448 /* 6449 * Keep-alive timer went off; send something or drop connection if 6450 * idle for too long. 6451 */ 6452 KMOD_TCPSTAT_INC(tcps_keeptimeo); 6453 if (tp->t_state < TCPS_ESTABLISHED) 6454 goto dropit; 6455 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && 6456 tp->t_state <= TCPS_CLOSING) { 6457 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp)) 6458 goto dropit; 6459 /* 6460 * Send a packet designed to force a response if the peer is 6461 * up and reachable: either an ACK if the connection is 6462 * still alive, or an RST if the peer has closed the 6463 * connection due to timeout or reboot. Using sequence 6464 * number tp->snd_una-1 causes the transmitted zero-length 6465 * segment to lie outside the receive window; by the 6466 * protocol spec, this requires the correspondent TCP to 6467 * respond. 6468 */ 6469 KMOD_TCPSTAT_INC(tcps_keepprobe); 6470 t_template = tcpip_maketemplate(inp); 6471 if (t_template) { 6472 if (rack->forced_ack == 0) { 6473 rack->forced_ack = 1; 6474 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); 6475 } 6476 tcp_respond(tp, t_template->tt_ipgen, 6477 &t_template->tt_t, (struct mbuf *)NULL, 6478 tp->rcv_nxt, tp->snd_una - 1, 0); 6479 free(t_template, M_TEMP); 6480 } 6481 } 6482 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 6483 return (1); 6484 dropit: 6485 KMOD_TCPSTAT_INC(tcps_keepdrops); 6486 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6487 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); 6488 return (1); 6489 } 6490 6491 /* 6492 * Retransmit helper function, clear up all the ack 6493 * flags and take care of important book keeping. 6494 */ 6495 static void 6496 rack_remxt_tmr(struct tcpcb *tp) 6497 { 6498 /* 6499 * The retransmit timer went off, all sack'd blocks must be 6500 * un-acked. 6501 */ 6502 struct rack_sendmap *rsm, *trsm = NULL; 6503 struct tcp_rack *rack; 6504 6505 rack = (struct tcp_rack *)tp->t_fb_ptr; 6506 rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__); 6507 rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL); 6508 if (rack->r_state && (rack->r_state != tp->t_state)) 6509 rack_set_state(tp, rack); 6510 /* 6511 * Ideally we would like to be able to 6512 * mark SACK-PASS on anything not acked here. 6513 * 6514 * However, if we do that we would burst out 6515 * all that data 1ms apart. This would be unwise, 6516 * so for now we will just let the normal rxt timer 6517 * and tlp timer take care of it. 6518 * 6519 * Also we really need to stick them back in sequence 6520 * order. This way we send in the proper order and any 6521 * sacks that come floating in will "re-ack" the data. 6522 * To do this we zap the tmap with an INIT and then 6523 * walk through and place every rsm in the RB tree 6524 * back in its seq ordered place. 6525 */ 6526 TAILQ_INIT(&rack->r_ctl.rc_tmap); 6527 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 6528 rsm->r_dupack = 0; 6529 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 6530 /* We must re-add it back to the tlist */ 6531 if (trsm == NULL) { 6532 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 6533 } else { 6534 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext); 6535 } 6536 rsm->r_in_tmap = 1; 6537 trsm = rsm; 6538 if (rsm->r_flags & RACK_ACKED) 6539 rsm->r_flags |= RACK_WAS_ACKED; 6540 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS); 6541 } 6542 /* Clear the count (we just un-acked them) */ 6543 rack->r_ctl.rc_last_timeout_snduna = tp->snd_una; 6544 rack->r_ctl.rc_sacked = 0; 6545 rack->r_ctl.rc_sacklast = NULL; 6546 rack->r_ctl.rc_agg_delayed = 0; 6547 rack->r_early = 0; 6548 rack->r_ctl.rc_agg_early = 0; 6549 rack->r_late = 0; 6550 /* Clear the tlp rtx mark */ 6551 rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6552 if (rack->r_ctl.rc_resend != NULL) 6553 rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT; 6554 rack->r_ctl.rc_prr_sndcnt = 0; 6555 rack_log_to_prr(rack, 6, 0); 6556 rack->r_timer_override = 1; 6557 if ((((tp->t_flags & TF_SACK_PERMIT) == 0) 6558 #ifdef NETFLIX_EXP_DETECTION 6559 || (rack->sack_attack_disable != 0) 6560 #endif 6561 ) && ((tp->t_flags & TF_SENTFIN) == 0)) { 6562 /* 6563 * For non-sack customers new data 6564 * needs to go out as retransmits until 6565 * we retransmit up to snd_max. 6566 */ 6567 rack->r_must_retran = 1; 6568 rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp, 6569 rack->r_ctl.rc_sacked); 6570 } 6571 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 6572 } 6573 6574 static void 6575 rack_convert_rtts(struct tcpcb *tp) 6576 { 6577 if (tp->t_srtt > 1) { 6578 uint32_t val, frac; 6579 6580 val = tp->t_srtt >> TCP_RTT_SHIFT; 6581 frac = tp->t_srtt & 0x1f; 6582 tp->t_srtt = TICKS_2_USEC(val); 6583 /* 6584 * frac is the fractional part of the srtt (if any) 6585 * but its in ticks and every bit represents 6586 * 1/32nd of a hz. 6587 */ 6588 if (frac) { 6589 if (hz == 1000) { 6590 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6591 } else { 6592 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6593 } 6594 tp->t_srtt += frac; 6595 } 6596 } 6597 if (tp->t_rttvar) { 6598 uint32_t val, frac; 6599 6600 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 6601 frac = tp->t_rttvar & 0x1f; 6602 tp->t_rttvar = TICKS_2_USEC(val); 6603 /* 6604 * frac is the fractional part of the srtt (if any) 6605 * but its in ticks and every bit represents 6606 * 1/32nd of a hz. 6607 */ 6608 if (frac) { 6609 if (hz == 1000) { 6610 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 6611 } else { 6612 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 6613 } 6614 tp->t_rttvar += frac; 6615 } 6616 } 6617 tp->t_rxtcur = RACK_REXMTVAL(tp); 6618 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 6619 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop); 6620 } 6621 if (tp->t_rxtcur > rack_rto_max) { 6622 tp->t_rxtcur = rack_rto_max; 6623 } 6624 } 6625 6626 static void 6627 rack_cc_conn_init(struct tcpcb *tp) 6628 { 6629 struct tcp_rack *rack; 6630 uint32_t srtt; 6631 6632 rack = (struct tcp_rack *)tp->t_fb_ptr; 6633 srtt = tp->t_srtt; 6634 cc_conn_init(tp); 6635 /* 6636 * Now convert to rack's internal format, 6637 * if required. 6638 */ 6639 if ((srtt == 0) && (tp->t_srtt != 0)) 6640 rack_convert_rtts(tp); 6641 /* 6642 * We want a chance to stay in slowstart as 6643 * we create a connection. TCP spec says that 6644 * initially ssthresh is infinite. For our 6645 * purposes that is the snd_wnd. 6646 */ 6647 if (tp->snd_ssthresh < tp->snd_wnd) { 6648 tp->snd_ssthresh = tp->snd_wnd; 6649 } 6650 /* 6651 * We also want to assure a IW worth of 6652 * data can get inflight. 6653 */ 6654 if (rc_init_window(rack) < tp->snd_cwnd) 6655 tp->snd_cwnd = rc_init_window(rack); 6656 } 6657 6658 /* 6659 * Re-transmit timeout! If we drop the PCB we will return 1, otherwise 6660 * we will setup to retransmit the lowest seq number outstanding. 6661 */ 6662 static int 6663 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) 6664 { 6665 int32_t rexmt; 6666 struct inpcb *inp; 6667 int32_t retval = 0; 6668 bool isipv6; 6669 6670 inp = tp->t_inpcb; 6671 if (tp->t_timers->tt_flags & TT_STOPPED) { 6672 return (1); 6673 } 6674 if (ctf_progress_timeout_check(tp, false)) { 6675 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6676 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 6677 tcp_set_inp_to_drop(inp, ETIMEDOUT); 6678 return (1); 6679 } 6680 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT; 6681 rack->r_ctl.retran_during_recovery = 0; 6682 rack->r_ctl.dsack_byte_cnt = 0; 6683 if (IN_FASTRECOVERY(tp->t_flags)) 6684 tp->t_flags |= TF_WASFRECOVERY; 6685 else 6686 tp->t_flags &= ~TF_WASFRECOVERY; 6687 if (IN_CONGRECOVERY(tp->t_flags)) 6688 tp->t_flags |= TF_WASCRECOVERY; 6689 else 6690 tp->t_flags &= ~TF_WASCRECOVERY; 6691 if (TCPS_HAVEESTABLISHED(tp->t_state) && 6692 (tp->snd_una == tp->snd_max)) { 6693 /* Nothing outstanding .. nothing to do */ 6694 return (0); 6695 } 6696 /* 6697 * Rack can only run one timer at a time, so we cannot 6698 * run a KEEPINIT (gating SYN sending) and a retransmit 6699 * timer for the SYN. So if we are in a front state and 6700 * have a KEEPINIT timer we need to check the first transmit 6701 * against now to see if we have exceeded the KEEPINIT time 6702 * (if one is set). 6703 */ 6704 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) && 6705 (TP_KEEPINIT(tp) != 0)) { 6706 struct rack_sendmap *rsm; 6707 6708 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 6709 if (rsm) { 6710 /* Ok we have something outstanding to test keepinit with */ 6711 if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) && 6712 ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) { 6713 /* We have exceeded the KEEPINIT time */ 6714 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); 6715 goto drop_it; 6716 } 6717 } 6718 } 6719 /* 6720 * Retransmission timer went off. Message has not been acked within 6721 * retransmit interval. Back off to a longer retransmit interval 6722 * and retransmit one segment. 6723 */ 6724 rack_remxt_tmr(tp); 6725 if ((rack->r_ctl.rc_resend == NULL) || 6726 ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) { 6727 /* 6728 * If the rwnd collapsed on 6729 * the one we are retransmitting 6730 * it does not count against the 6731 * rxt count. 6732 */ 6733 tp->t_rxtshift++; 6734 } 6735 if (tp->t_rxtshift > TCP_MAXRXTSHIFT) { 6736 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); 6737 drop_it: 6738 tp->t_rxtshift = TCP_MAXRXTSHIFT; 6739 KMOD_TCPSTAT_INC(tcps_timeoutdrop); 6740 retval = 1; 6741 tcp_set_inp_to_drop(rack->rc_inp, 6742 (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT)); 6743 goto out; 6744 } 6745 if (tp->t_state == TCPS_SYN_SENT) { 6746 /* 6747 * If the SYN was retransmitted, indicate CWND to be limited 6748 * to 1 segment in cc_conn_init(). 6749 */ 6750 tp->snd_cwnd = 1; 6751 } else if (tp->t_rxtshift == 1) { 6752 /* 6753 * first retransmit; record ssthresh and cwnd so they can be 6754 * recovered if this turns out to be a "bad" retransmit. A 6755 * retransmit is considered "bad" if an ACK for this segment 6756 * is received within RTT/2 interval; the assumption here is 6757 * that the ACK was already in flight. See "On Estimating 6758 * End-to-End Network Path Properties" by Allman and Paxson 6759 * for more details. 6760 */ 6761 tp->snd_cwnd_prev = tp->snd_cwnd; 6762 tp->snd_ssthresh_prev = tp->snd_ssthresh; 6763 tp->snd_recover_prev = tp->snd_recover; 6764 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2); 6765 tp->t_flags |= TF_PREVVALID; 6766 } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0) 6767 tp->t_flags &= ~TF_PREVVALID; 6768 KMOD_TCPSTAT_INC(tcps_rexmttimeo); 6769 if ((tp->t_state == TCPS_SYN_SENT) || 6770 (tp->t_state == TCPS_SYN_RECEIVED)) 6771 rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]; 6772 else 6773 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift]; 6774 6775 RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt, 6776 max(rack_rto_min, rexmt), rack_rto_max); 6777 /* 6778 * We enter the path for PLMTUD if connection is established or, if 6779 * connection is FIN_WAIT_1 status, reason for the last is that if 6780 * amount of data we send is very small, we could send it in couple 6781 * of packets and process straight to FIN. In that case we won't 6782 * catch ESTABLISHED state. 6783 */ 6784 #ifdef INET6 6785 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false; 6786 #else 6787 isipv6 = false; 6788 #endif 6789 if (((V_tcp_pmtud_blackhole_detect == 1) || 6790 (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) || 6791 (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) && 6792 ((tp->t_state == TCPS_ESTABLISHED) || 6793 (tp->t_state == TCPS_FIN_WAIT_1))) { 6794 /* 6795 * Idea here is that at each stage of mtu probe (usually, 6796 * 1448 -> 1188 -> 524) should be given 2 chances to recover 6797 * before further clamping down. 'tp->t_rxtshift % 2 == 0' 6798 * should take care of that. 6799 */ 6800 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) == 6801 (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) && 6802 (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 && 6803 tp->t_rxtshift % 2 == 0)) { 6804 /* 6805 * Enter Path MTU Black-hole Detection mechanism: - 6806 * Disable Path MTU Discovery (IP "DF" bit). - 6807 * Reduce MTU to lower value than what we negotiated 6808 * with peer. 6809 */ 6810 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) { 6811 /* Record that we may have found a black hole. */ 6812 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE; 6813 /* Keep track of previous MSS. */ 6814 tp->t_pmtud_saved_maxseg = tp->t_maxseg; 6815 } 6816 6817 /* 6818 * Reduce the MSS to blackhole value or to the 6819 * default in an attempt to retransmit. 6820 */ 6821 #ifdef INET6 6822 if (isipv6 && 6823 tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) { 6824 /* Use the sysctl tuneable blackhole MSS. */ 6825 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss; 6826 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 6827 } else if (isipv6) { 6828 /* Use the default MSS. */ 6829 tp->t_maxseg = V_tcp_v6mssdflt; 6830 /* 6831 * Disable Path MTU Discovery when we switch 6832 * to minmss. 6833 */ 6834 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 6835 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 6836 } 6837 #endif 6838 #if defined(INET6) && defined(INET) 6839 else 6840 #endif 6841 #ifdef INET 6842 if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) { 6843 /* Use the sysctl tuneable blackhole MSS. */ 6844 tp->t_maxseg = V_tcp_pmtud_blackhole_mss; 6845 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); 6846 } else { 6847 /* Use the default MSS. */ 6848 tp->t_maxseg = V_tcp_mssdflt; 6849 /* 6850 * Disable Path MTU Discovery when we switch 6851 * to minmss. 6852 */ 6853 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 6854 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); 6855 } 6856 #endif 6857 } else { 6858 /* 6859 * If further retransmissions are still unsuccessful 6860 * with a lowered MTU, maybe this isn't a blackhole 6861 * and we restore the previous MSS and blackhole 6862 * detection flags. The limit '6' is determined by 6863 * giving each probe stage (1448, 1188, 524) 2 6864 * chances to recover. 6865 */ 6866 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) && 6867 (tp->t_rxtshift >= 6)) { 6868 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 6869 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE; 6870 tp->t_maxseg = tp->t_pmtud_saved_maxseg; 6871 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed); 6872 } 6873 } 6874 } 6875 /* 6876 * Disable RFC1323 and SACK if we haven't got any response to 6877 * our third SYN to work-around some broken terminal servers 6878 * (most of which have hopefully been retired) that have bad VJ 6879 * header compression code which trashes TCP segments containing 6880 * unknown-to-them TCP options. 6881 */ 6882 if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) && 6883 (tp->t_rxtshift == 3)) 6884 tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT); 6885 /* 6886 * If we backed off this far, our srtt estimate is probably bogus. 6887 * Clobber it so we'll take the next rtt measurement as our srtt; 6888 * move the current srtt into rttvar to keep the current retransmit 6889 * times until then. 6890 */ 6891 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { 6892 #ifdef INET6 6893 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 6894 in6_losing(tp->t_inpcb); 6895 else 6896 #endif 6897 in_losing(tp->t_inpcb); 6898 tp->t_rttvar += tp->t_srtt; 6899 tp->t_srtt = 0; 6900 } 6901 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 6902 tp->snd_recover = tp->snd_max; 6903 tp->t_flags |= TF_ACKNOW; 6904 tp->t_rtttime = 0; 6905 rack_cong_signal(tp, CC_RTO, tp->snd_una); 6906 out: 6907 return (retval); 6908 } 6909 6910 static int 6911 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling) 6912 { 6913 int32_t ret = 0; 6914 int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK); 6915 6916 if (timers == 0) { 6917 return (0); 6918 } 6919 if (tp->t_state == TCPS_LISTEN) { 6920 /* no timers on listen sockets */ 6921 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) 6922 return (0); 6923 return (1); 6924 } 6925 if ((timers & PACE_TMR_RACK) && 6926 rack->rc_on_min_to) { 6927 /* 6928 * For the rack timer when we 6929 * are on a min-timeout (which means rrr_conf = 3) 6930 * we don't want to check the timer. It may 6931 * be going off for a pace and thats ok we 6932 * want to send the retransmit (if its ready). 6933 * 6934 * If its on a normal rack timer (non-min) then 6935 * we will check if its expired. 6936 */ 6937 goto skip_time_check; 6938 } 6939 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { 6940 uint32_t left; 6941 6942 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 6943 ret = -1; 6944 rack_log_to_processing(rack, cts, ret, 0); 6945 return (0); 6946 } 6947 if (hpts_calling == 0) { 6948 /* 6949 * A user send or queued mbuf (sack) has called us? We 6950 * return 0 and let the pacing guards 6951 * deal with it if they should or 6952 * should not cause a send. 6953 */ 6954 ret = -2; 6955 rack_log_to_processing(rack, cts, ret, 0); 6956 return (0); 6957 } 6958 /* 6959 * Ok our timer went off early and we are not paced false 6960 * alarm, go back to sleep. 6961 */ 6962 ret = -3; 6963 left = rack->r_ctl.rc_timer_exp - cts; 6964 tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left)); 6965 rack_log_to_processing(rack, cts, ret, left); 6966 return (1); 6967 } 6968 skip_time_check: 6969 rack->rc_tmr_stopped = 0; 6970 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK; 6971 if (timers & PACE_TMR_DELACK) { 6972 ret = rack_timeout_delack(tp, rack, cts); 6973 } else if (timers & PACE_TMR_RACK) { 6974 rack->r_ctl.rc_tlp_rxt_last_time = cts; 6975 rack->r_fast_output = 0; 6976 ret = rack_timeout_rack(tp, rack, cts); 6977 } else if (timers & PACE_TMR_TLP) { 6978 rack->r_ctl.rc_tlp_rxt_last_time = cts; 6979 ret = rack_timeout_tlp(tp, rack, cts); 6980 } else if (timers & PACE_TMR_RXT) { 6981 rack->r_ctl.rc_tlp_rxt_last_time = cts; 6982 rack->r_fast_output = 0; 6983 ret = rack_timeout_rxt(tp, rack, cts); 6984 } else if (timers & PACE_TMR_PERSIT) { 6985 ret = rack_timeout_persist(tp, rack, cts); 6986 } else if (timers & PACE_TMR_KEEP) { 6987 ret = rack_timeout_keepalive(tp, rack, cts); 6988 } 6989 rack_log_to_processing(rack, cts, ret, timers); 6990 return (ret); 6991 } 6992 6993 static void 6994 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line) 6995 { 6996 struct timeval tv; 6997 uint32_t us_cts, flags_on_entry; 6998 uint8_t hpts_removed = 0; 6999 7000 flags_on_entry = rack->r_ctl.rc_hpts_flags; 7001 us_cts = tcp_get_usecs(&tv); 7002 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 7003 ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) || 7004 ((tp->snd_max - tp->snd_una) == 0))) { 7005 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 7006 hpts_removed = 1; 7007 /* If we were not delayed cancel out the flag. */ 7008 if ((tp->snd_max - tp->snd_una) == 0) 7009 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 7010 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7011 } 7012 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 7013 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 7014 if (rack->rc_inp->inp_in_hpts && 7015 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) { 7016 /* 7017 * Canceling timer's when we have no output being 7018 * paced. We also must remove ourselves from the 7019 * hpts. 7020 */ 7021 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 7022 hpts_removed = 1; 7023 } 7024 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK); 7025 } 7026 if (hpts_removed == 0) 7027 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); 7028 } 7029 7030 static void 7031 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type) 7032 { 7033 return; 7034 } 7035 7036 static int 7037 rack_stopall(struct tcpcb *tp) 7038 { 7039 struct tcp_rack *rack; 7040 rack = (struct tcp_rack *)tp->t_fb_ptr; 7041 rack->t_timers_stopped = 1; 7042 return (0); 7043 } 7044 7045 static void 7046 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta) 7047 { 7048 return; 7049 } 7050 7051 static int 7052 rack_timer_active(struct tcpcb *tp, uint32_t timer_type) 7053 { 7054 return (0); 7055 } 7056 7057 static void 7058 rack_stop_all_timers(struct tcpcb *tp) 7059 { 7060 struct tcp_rack *rack; 7061 7062 /* 7063 * Assure no timers are running. 7064 */ 7065 if (tcp_timer_active(tp, TT_PERSIST)) { 7066 /* We enter in persists, set the flag appropriately */ 7067 rack = (struct tcp_rack *)tp->t_fb_ptr; 7068 rack->rc_in_persist = 1; 7069 } 7070 tcp_timer_suspend(tp, TT_PERSIST); 7071 tcp_timer_suspend(tp, TT_REXMT); 7072 tcp_timer_suspend(tp, TT_KEEP); 7073 tcp_timer_suspend(tp, TT_DELACK); 7074 } 7075 7076 static void 7077 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, 7078 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag) 7079 { 7080 int32_t idx; 7081 uint16_t stripped_flags; 7082 7083 rsm->r_rtr_cnt++; 7084 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7085 rsm->r_dupack = 0; 7086 if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) { 7087 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS; 7088 rsm->r_flags |= RACK_OVERMAX; 7089 } 7090 if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) { 7091 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start); 7092 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start); 7093 } 7094 idx = rsm->r_rtr_cnt - 1; 7095 rsm->r_tim_lastsent[idx] = ts; 7096 stripped_flags = rsm->r_flags & ~(RACK_SENT_SP|RACK_SENT_FP); 7097 if (rsm->r_flags & RACK_ACKED) { 7098 /* Problably MTU discovery messing with us */ 7099 rsm->r_flags &= ~RACK_ACKED; 7100 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 7101 } 7102 if (rsm->r_in_tmap) { 7103 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7104 rsm->r_in_tmap = 0; 7105 } 7106 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7107 rsm->r_in_tmap = 1; 7108 if (rsm->r_flags & RACK_SACK_PASSED) { 7109 /* We have retransmitted due to the SACK pass */ 7110 rsm->r_flags &= ~RACK_SACK_PASSED; 7111 rsm->r_flags |= RACK_WAS_SACKPASS; 7112 } 7113 } 7114 7115 static uint32_t 7116 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, 7117 struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag) 7118 { 7119 /* 7120 * We (re-)transmitted starting at rsm->r_start for some length 7121 * (possibly less than r_end. 7122 */ 7123 struct rack_sendmap *nrsm, *insret; 7124 uint32_t c_end; 7125 int32_t len; 7126 7127 len = *lenp; 7128 c_end = rsm->r_start + len; 7129 if (SEQ_GEQ(c_end, rsm->r_end)) { 7130 /* 7131 * We retransmitted the whole piece or more than the whole 7132 * slopping into the next rsm. 7133 */ 7134 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7135 if (c_end == rsm->r_end) { 7136 *lenp = 0; 7137 return (0); 7138 } else { 7139 int32_t act_len; 7140 7141 /* Hangs over the end return whats left */ 7142 act_len = rsm->r_end - rsm->r_start; 7143 *lenp = (len - act_len); 7144 return (rsm->r_end); 7145 } 7146 /* We don't get out of this block. */ 7147 } 7148 /* 7149 * Here we retransmitted less than the whole thing which means we 7150 * have to split this into what was transmitted and what was not. 7151 */ 7152 nrsm = rack_alloc_full_limit(rack); 7153 if (nrsm == NULL) { 7154 /* 7155 * We can't get memory, so lets not proceed. 7156 */ 7157 *lenp = 0; 7158 return (0); 7159 } 7160 /* 7161 * So here we are going to take the original rsm and make it what we 7162 * retransmitted. nrsm will be the tail portion we did not 7163 * retransmit. For example say the chunk was 1, 11 (10 bytes). And 7164 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to 7165 * 1, 6 and the new piece will be 6, 11. 7166 */ 7167 rack_clone_rsm(rack, nrsm, rsm, c_end); 7168 nrsm->r_dupack = 0; 7169 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 7170 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7171 #ifdef INVARIANTS 7172 if (insret != NULL) { 7173 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7174 nrsm, insret, rack, rsm); 7175 } 7176 #endif 7177 if (rsm->r_in_tmap) { 7178 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7179 nrsm->r_in_tmap = 1; 7180 } 7181 rsm->r_flags &= (~RACK_HAS_FIN); 7182 rack_update_rsm(tp, rack, rsm, ts, add_flag); 7183 /* Log a split of rsm into rsm and nrsm */ 7184 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7185 *lenp = 0; 7186 return (0); 7187 } 7188 7189 static void 7190 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, 7191 uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t cts, 7192 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff) 7193 { 7194 struct tcp_rack *rack; 7195 struct rack_sendmap *rsm, *nrsm, *insret, fe; 7196 register uint32_t snd_max, snd_una; 7197 7198 /* 7199 * Add to the RACK log of packets in flight or retransmitted. If 7200 * there is a TS option we will use the TS echoed, if not we will 7201 * grab a TS. 7202 * 7203 * Retransmissions will increment the count and move the ts to its 7204 * proper place. Note that if options do not include TS's then we 7205 * won't be able to effectively use the ACK for an RTT on a retran. 7206 * 7207 * Notes about r_start and r_end. Lets consider a send starting at 7208 * sequence 1 for 10 bytes. In such an example the r_start would be 7209 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11. 7210 * This means that r_end is actually the first sequence for the next 7211 * slot (11). 7212 * 7213 */ 7214 /* 7215 * If err is set what do we do XXXrrs? should we not add the thing? 7216 * -- i.e. return if err != 0 or should we pretend we sent it? -- 7217 * i.e. proceed with add ** do this for now. 7218 */ 7219 INP_WLOCK_ASSERT(tp->t_inpcb); 7220 if (err) 7221 /* 7222 * We don't log errors -- we could but snd_max does not 7223 * advance in this case either. 7224 */ 7225 return; 7226 7227 if (th_flags & TH_RST) { 7228 /* 7229 * We don't log resets and we return immediately from 7230 * sending 7231 */ 7232 return; 7233 } 7234 rack = (struct tcp_rack *)tp->t_fb_ptr; 7235 snd_una = tp->snd_una; 7236 snd_max = tp->snd_max; 7237 if (th_flags & (TH_SYN | TH_FIN)) { 7238 /* 7239 * The call to rack_log_output is made before bumping 7240 * snd_max. This means we can record one extra byte on a SYN 7241 * or FIN if seq_out is adding more on and a FIN is present 7242 * (and we are not resending). 7243 */ 7244 if ((th_flags & TH_SYN) && (seq_out == tp->iss)) 7245 len++; 7246 if (th_flags & TH_FIN) 7247 len++; 7248 if (SEQ_LT(snd_max, tp->snd_nxt)) { 7249 /* 7250 * The add/update as not been done for the FIN/SYN 7251 * yet. 7252 */ 7253 snd_max = tp->snd_nxt; 7254 } 7255 } 7256 if (SEQ_LEQ((seq_out + len), snd_una)) { 7257 /* Are sending an old segment to induce an ack (keep-alive)? */ 7258 return; 7259 } 7260 if (SEQ_LT(seq_out, snd_una)) { 7261 /* huh? should we panic? */ 7262 uint32_t end; 7263 7264 end = seq_out + len; 7265 seq_out = snd_una; 7266 if (SEQ_GEQ(end, seq_out)) 7267 len = end - seq_out; 7268 else 7269 len = 0; 7270 } 7271 if (len == 0) { 7272 /* We don't log zero window probes */ 7273 return; 7274 } 7275 rack->r_ctl.rc_time_last_sent = cts; 7276 if (IN_FASTRECOVERY(tp->t_flags)) { 7277 rack->r_ctl.rc_prr_out += len; 7278 } 7279 /* First question is it a retransmission or new? */ 7280 if (seq_out == snd_max) { 7281 /* Its new */ 7282 again: 7283 rsm = rack_alloc(rack); 7284 if (rsm == NULL) { 7285 /* 7286 * Hmm out of memory and the tcb got destroyed while 7287 * we tried to wait. 7288 */ 7289 return; 7290 } 7291 if (th_flags & TH_FIN) { 7292 rsm->r_flags = RACK_HAS_FIN|add_flag; 7293 } else { 7294 rsm->r_flags = add_flag; 7295 } 7296 rsm->r_tim_lastsent[0] = cts; 7297 rsm->r_rtr_cnt = 1; 7298 rsm->r_rtr_bytes = 0; 7299 if (th_flags & TH_SYN) { 7300 /* The data space is one beyond snd_una */ 7301 rsm->r_flags |= RACK_HAS_SYN; 7302 } 7303 rsm->r_start = seq_out; 7304 rsm->r_end = rsm->r_start + len; 7305 rsm->r_dupack = 0; 7306 /* 7307 * save off the mbuf location that 7308 * sndmbuf_noadv returned (which is 7309 * where we started copying from).. 7310 */ 7311 rsm->m = s_mb; 7312 rsm->soff = s_moff; 7313 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */ 7314 if (rsm->m) { 7315 if (rsm->m->m_len <= rsm->soff) { 7316 /* 7317 * XXXrrs Question, will this happen? 7318 * 7319 * If sbsndptr is set at the correct place 7320 * then s_moff should always be somewhere 7321 * within rsm->m. But if the sbsndptr was 7322 * off then that won't be true. If it occurs 7323 * we need to walkout to the correct location. 7324 */ 7325 struct mbuf *lm; 7326 7327 lm = rsm->m; 7328 while (lm->m_len <= rsm->soff) { 7329 rsm->soff -= lm->m_len; 7330 lm = lm->m_next; 7331 KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u", 7332 __func__, rack, s_moff, s_mb, rsm->soff)); 7333 } 7334 rsm->m = lm; 7335 counter_u64_add(rack_sbsndptr_wrong, 1); 7336 } else 7337 counter_u64_add(rack_sbsndptr_right, 1); 7338 rsm->orig_m_len = rsm->m->m_len; 7339 } else 7340 rsm->orig_m_len = 0; 7341 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 7342 /* Log a new rsm */ 7343 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__); 7344 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7345 #ifdef INVARIANTS 7346 if (insret != NULL) { 7347 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7348 nrsm, insret, rack, rsm); 7349 } 7350 #endif 7351 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 7352 rsm->r_in_tmap = 1; 7353 /* 7354 * Special case detection, is there just a single 7355 * packet outstanding when we are not in recovery? 7356 * 7357 * If this is true mark it so. 7358 */ 7359 if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 7360 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) { 7361 struct rack_sendmap *prsm; 7362 7363 prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 7364 if (prsm) 7365 prsm->r_one_out_nr = 1; 7366 } 7367 return; 7368 } 7369 /* 7370 * If we reach here its a retransmission and we need to find it. 7371 */ 7372 memset(&fe, 0, sizeof(fe)); 7373 more: 7374 if (hintrsm && (hintrsm->r_start == seq_out)) { 7375 rsm = hintrsm; 7376 hintrsm = NULL; 7377 } else { 7378 /* No hints sorry */ 7379 rsm = NULL; 7380 } 7381 if ((rsm) && (rsm->r_start == seq_out)) { 7382 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7383 if (len == 0) { 7384 return; 7385 } else { 7386 goto more; 7387 } 7388 } 7389 /* Ok it was not the last pointer go through it the hard way. */ 7390 refind: 7391 fe.r_start = seq_out; 7392 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 7393 if (rsm) { 7394 if (rsm->r_start == seq_out) { 7395 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag); 7396 if (len == 0) { 7397 return; 7398 } else { 7399 goto refind; 7400 } 7401 } 7402 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) { 7403 /* Transmitted within this piece */ 7404 /* 7405 * Ok we must split off the front and then let the 7406 * update do the rest 7407 */ 7408 nrsm = rack_alloc_full_limit(rack); 7409 if (nrsm == NULL) { 7410 rack_update_rsm(tp, rack, rsm, cts, add_flag); 7411 return; 7412 } 7413 /* 7414 * copy rsm to nrsm and then trim the front of rsm 7415 * to not include this part. 7416 */ 7417 rack_clone_rsm(rack, nrsm, rsm, seq_out); 7418 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 7419 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__); 7420 #ifdef INVARIANTS 7421 if (insret != NULL) { 7422 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 7423 nrsm, insret, rack, rsm); 7424 } 7425 #endif 7426 if (rsm->r_in_tmap) { 7427 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 7428 nrsm->r_in_tmap = 1; 7429 } 7430 rsm->r_flags &= (~RACK_HAS_FIN); 7431 seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag); 7432 if (len == 0) { 7433 return; 7434 } else if (len > 0) 7435 goto refind; 7436 } 7437 } 7438 /* 7439 * Hmm not found in map did they retransmit both old and on into the 7440 * new? 7441 */ 7442 if (seq_out == tp->snd_max) { 7443 goto again; 7444 } else if (SEQ_LT(seq_out, tp->snd_max)) { 7445 #ifdef INVARIANTS 7446 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n", 7447 seq_out, len, tp->snd_una, tp->snd_max); 7448 printf("Starting Dump of all rack entries\n"); 7449 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 7450 printf("rsm:%p start:%u end:%u\n", 7451 rsm, rsm->r_start, rsm->r_end); 7452 } 7453 printf("Dump complete\n"); 7454 panic("seq_out not found rack:%p tp:%p", 7455 rack, tp); 7456 #endif 7457 } else { 7458 #ifdef INVARIANTS 7459 /* 7460 * Hmm beyond sndmax? (only if we are using the new rtt-pack 7461 * flag) 7462 */ 7463 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p", 7464 seq_out, len, tp->snd_max, tp); 7465 #endif 7466 } 7467 } 7468 7469 /* 7470 * Record one of the RTT updates from an ack into 7471 * our sample structure. 7472 */ 7473 7474 static void 7475 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt, 7476 int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt) 7477 { 7478 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7479 (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) { 7480 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt; 7481 } 7482 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7483 (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) { 7484 rack->r_ctl.rack_rs.rs_rtt_highest = rtt; 7485 } 7486 if (rack->rc_tp->t_flags & TF_GPUTINPROG) { 7487 if (us_rtt < rack->r_ctl.rc_gp_lowrtt) 7488 rack->r_ctl.rc_gp_lowrtt = us_rtt; 7489 if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd) 7490 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 7491 } 7492 if ((confidence == 1) && 7493 ((rsm == NULL) || 7494 (rsm->r_just_ret) || 7495 (rsm->r_one_out_nr && 7496 len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) { 7497 /* 7498 * If the rsm had a just return 7499 * hit it then we can't trust the 7500 * rtt measurement for buffer deterimination 7501 * Note that a confidence of 2, indicates 7502 * SACK'd which overrides the r_just_ret or 7503 * the r_one_out_nr. If it was a CUM-ACK and 7504 * we had only two outstanding, but get an 7505 * ack for only 1. Then that also lowers our 7506 * confidence. 7507 */ 7508 confidence = 0; 7509 } 7510 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || 7511 (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) { 7512 if (rack->r_ctl.rack_rs.confidence == 0) { 7513 /* 7514 * We take anything with no current confidence 7515 * saved. 7516 */ 7517 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7518 rack->r_ctl.rack_rs.confidence = confidence; 7519 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7520 } else if (confidence || rack->r_ctl.rack_rs.confidence) { 7521 /* 7522 * Once we have a confident number, 7523 * we can update it with a smaller 7524 * value since this confident number 7525 * may include the DSACK time until 7526 * the next segment (the second one) arrived. 7527 */ 7528 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; 7529 rack->r_ctl.rack_rs.confidence = confidence; 7530 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; 7531 } 7532 } 7533 rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence); 7534 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID; 7535 rack->r_ctl.rack_rs.rs_rtt_tot += rtt; 7536 rack->r_ctl.rack_rs.rs_rtt_cnt++; 7537 } 7538 7539 /* 7540 * Collect new round-trip time estimate 7541 * and update averages and current timeout. 7542 */ 7543 static void 7544 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp) 7545 { 7546 int32_t delta; 7547 uint32_t o_srtt, o_var; 7548 int32_t hrtt_up = 0; 7549 int32_t rtt; 7550 7551 if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) 7552 /* No valid sample */ 7553 return; 7554 if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) { 7555 /* We are to use the lowest RTT seen in a single ack */ 7556 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 7557 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) { 7558 /* We are to use the highest RTT seen in a single ack */ 7559 rtt = rack->r_ctl.rack_rs.rs_rtt_highest; 7560 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) { 7561 /* We are to use the average RTT seen in a single ack */ 7562 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot / 7563 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt); 7564 } else { 7565 #ifdef INVARIANTS 7566 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method); 7567 #endif 7568 return; 7569 } 7570 if (rtt == 0) 7571 rtt = 1; 7572 if (rack->rc_gp_rtt_set == 0) { 7573 /* 7574 * With no RTT we have to accept 7575 * even one we are not confident of. 7576 */ 7577 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt; 7578 rack->rc_gp_rtt_set = 1; 7579 } else if (rack->r_ctl.rack_rs.confidence) { 7580 /* update the running gp srtt */ 7581 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8); 7582 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8; 7583 } 7584 if (rack->r_ctl.rack_rs.confidence) { 7585 /* 7586 * record the low and high for highly buffered path computation, 7587 * we only do this if we are confident (not a retransmission). 7588 */ 7589 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) { 7590 rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7591 hrtt_up = 1; 7592 } 7593 if (rack->rc_highly_buffered == 0) { 7594 /* 7595 * Currently once we declare a path has 7596 * highly buffered there is no going 7597 * back, which may be a problem... 7598 */ 7599 if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) { 7600 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt, 7601 rack->r_ctl.rc_highest_us_rtt, 7602 rack->r_ctl.rc_lowest_us_rtt, 7603 RACK_RTTS_SEEHBP); 7604 rack->rc_highly_buffered = 1; 7605 } 7606 } 7607 } 7608 if ((rack->r_ctl.rack_rs.confidence) || 7609 (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) { 7610 /* 7611 * If we are highly confident of it <or> it was 7612 * never retransmitted we accept it as the last us_rtt. 7613 */ 7614 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7615 /* The lowest rtt can be set if its was not retransmited */ 7616 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) { 7617 rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; 7618 if (rack->r_ctl.rc_lowest_us_rtt == 0) 7619 rack->r_ctl.rc_lowest_us_rtt = 1; 7620 } 7621 } 7622 o_srtt = tp->t_srtt; 7623 o_var = tp->t_rttvar; 7624 rack = (struct tcp_rack *)tp->t_fb_ptr; 7625 if (tp->t_srtt != 0) { 7626 /* 7627 * We keep a simple srtt in microseconds, like our rtt 7628 * measurement. We don't need to do any tricks with shifting 7629 * etc. Instead we just add in 1/8th of the new measurement 7630 * and subtract out 1/8 of the old srtt. We do the same with 7631 * the variance after finding the absolute value of the 7632 * difference between this sample and the current srtt. 7633 */ 7634 delta = tp->t_srtt - rtt; 7635 /* Take off 1/8th of the current sRTT */ 7636 tp->t_srtt -= (tp->t_srtt >> 3); 7637 /* Add in 1/8th of the new RTT just measured */ 7638 tp->t_srtt += (rtt >> 3); 7639 if (tp->t_srtt <= 0) 7640 tp->t_srtt = 1; 7641 /* Now lets make the absolute value of the variance */ 7642 if (delta < 0) 7643 delta = -delta; 7644 /* Subtract out 1/8th */ 7645 tp->t_rttvar -= (tp->t_rttvar >> 3); 7646 /* Add in 1/8th of the new variance we just saw */ 7647 tp->t_rttvar += (delta >> 3); 7648 if (tp->t_rttvar <= 0) 7649 tp->t_rttvar = 1; 7650 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) 7651 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7652 } else { 7653 /* 7654 * No rtt measurement yet - use the unsmoothed rtt. Set the 7655 * variance to half the rtt (so our first retransmit happens 7656 * at 3*rtt). 7657 */ 7658 tp->t_srtt = rtt; 7659 tp->t_rttvar = rtt >> 1; 7660 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 7661 } 7662 rack->rc_srtt_measure_made = 1; 7663 KMOD_TCPSTAT_INC(tcps_rttupdated); 7664 tp->t_rttupdated++; 7665 #ifdef STATS 7666 if (rack_stats_gets_ms_rtt == 0) { 7667 /* Send in the microsecond rtt used for rxt timeout purposes */ 7668 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt)); 7669 } else if (rack_stats_gets_ms_rtt == 1) { 7670 /* Send in the millisecond rtt used for rxt timeout purposes */ 7671 int32_t ms_rtt; 7672 7673 /* Round up */ 7674 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7675 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7676 } else if (rack_stats_gets_ms_rtt == 2) { 7677 /* Send in the millisecond rtt has close to the path RTT as we can get */ 7678 int32_t ms_rtt; 7679 7680 /* Round up */ 7681 ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC; 7682 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt)); 7683 } else { 7684 /* Send in the microsecond rtt has close to the path RTT as we can get */ 7685 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt)); 7686 } 7687 7688 #endif 7689 /* 7690 * the retransmit should happen at rtt + 4 * rttvar. Because of the 7691 * way we do the smoothing, srtt and rttvar will each average +1/2 7692 * tick of bias. When we compute the retransmit timer, we want 1/2 7693 * tick of rounding and 1 extra tick because of +-1/2 tick 7694 * uncertainty in the firing of the timer. The bias will give us 7695 * exactly the 1.5 tick we need. But, because the bias is 7696 * statistical, we have to test that we don't drop below the minimum 7697 * feasible timer (which is 2 ticks). 7698 */ 7699 tp->t_rxtshift = 0; 7700 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 7701 max(rack_rto_min, rtt + 2), rack_rto_max); 7702 rack_log_rtt_sample(rack, rtt); 7703 tp->t_softerror = 0; 7704 } 7705 7706 7707 static void 7708 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts) 7709 { 7710 /* 7711 * Apply to filter the inbound us-rtt at us_cts. 7712 */ 7713 uint32_t old_rtt; 7714 7715 old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); 7716 apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt, 7717 us_rtt, us_cts); 7718 if (rack->r_ctl.last_pacing_time && 7719 rack->rc_gp_dyn_mul && 7720 (rack->r_ctl.last_pacing_time > us_rtt)) 7721 rack->pacing_longer_than_rtt = 1; 7722 else 7723 rack->pacing_longer_than_rtt = 0; 7724 if (old_rtt > us_rtt) { 7725 /* We just hit a new lower rtt time */ 7726 rack_log_rtt_shrinks(rack, us_cts, old_rtt, 7727 __LINE__, RACK_RTTS_NEWRTT); 7728 /* 7729 * Only count it if its lower than what we saw within our 7730 * calculated range. 7731 */ 7732 if ((old_rtt - us_rtt) > rack_min_rtt_movement) { 7733 if (rack_probertt_lower_within && 7734 rack->rc_gp_dyn_mul && 7735 (rack->use_fixed_rate == 0) && 7736 (rack->rc_always_pace)) { 7737 /* 7738 * We are seeing a new lower rtt very close 7739 * to the time that we would have entered probe-rtt. 7740 * This is probably due to the fact that a peer flow 7741 * has entered probe-rtt. Lets go in now too. 7742 */ 7743 uint32_t val; 7744 7745 val = rack_probertt_lower_within * rack_time_between_probertt; 7746 val /= 100; 7747 if ((rack->in_probe_rtt == 0) && 7748 ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) { 7749 rack_enter_probertt(rack, us_cts); 7750 } 7751 } 7752 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 7753 } 7754 } 7755 } 7756 7757 static int 7758 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, 7759 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack) 7760 { 7761 int32_t i, all; 7762 uint32_t t, len_acked; 7763 7764 if ((rsm->r_flags & RACK_ACKED) || 7765 (rsm->r_flags & RACK_WAS_ACKED)) 7766 /* Already done */ 7767 return (0); 7768 if (rsm->r_no_rtt_allowed) { 7769 /* Not allowed */ 7770 return (0); 7771 } 7772 if (ack_type == CUM_ACKED) { 7773 if (SEQ_GT(th_ack, rsm->r_end)) { 7774 len_acked = rsm->r_end - rsm->r_start; 7775 all = 1; 7776 } else { 7777 len_acked = th_ack - rsm->r_start; 7778 all = 0; 7779 } 7780 } else { 7781 len_acked = rsm->r_end - rsm->r_start; 7782 all = 0; 7783 } 7784 if (rsm->r_rtr_cnt == 1) { 7785 uint32_t us_rtt; 7786 7787 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 7788 if ((int)t <= 0) 7789 t = 1; 7790 if (!tp->t_rttlow || tp->t_rttlow > t) 7791 tp->t_rttlow = t; 7792 if (!rack->r_ctl.rc_rack_min_rtt || 7793 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 7794 rack->r_ctl.rc_rack_min_rtt = t; 7795 if (rack->r_ctl.rc_rack_min_rtt == 0) { 7796 rack->r_ctl.rc_rack_min_rtt = 1; 7797 } 7798 } 7799 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) 7800 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 7801 else 7802 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 7803 if (us_rtt == 0) 7804 us_rtt = 1; 7805 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); 7806 if (ack_type == SACKED) { 7807 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1); 7808 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt); 7809 } else { 7810 /* 7811 * We need to setup what our confidence 7812 * is in this ack. 7813 * 7814 * If the rsm was app limited and it is 7815 * less than a mss in length (the end 7816 * of the send) then we have a gap. If we 7817 * were app limited but say we were sending 7818 * multiple MSS's then we are more confident 7819 * int it. 7820 * 7821 * When we are not app-limited then we see if 7822 * the rsm is being included in the current 7823 * measurement, we tell this by the app_limited_needs_set 7824 * flag. 7825 * 7826 * Note that being cwnd blocked is not applimited 7827 * as well as the pacing delay between packets which 7828 * are sending only 1 or 2 MSS's also will show up 7829 * in the RTT. We probably need to examine this algorithm 7830 * a bit more and enhance it to account for the delay 7831 * between rsm's. We could do that by saving off the 7832 * pacing delay of each rsm (in an rsm) and then 7833 * factoring that in somehow though for now I am 7834 * not sure how :) 7835 */ 7836 int calc_conf = 0; 7837 7838 if (rsm->r_flags & RACK_APP_LIMITED) { 7839 if (all && (len_acked <= ctf_fixed_maxseg(tp))) 7840 calc_conf = 0; 7841 else 7842 calc_conf = 1; 7843 } else if (rack->app_limited_needs_set == 0) { 7844 calc_conf = 1; 7845 } else { 7846 calc_conf = 0; 7847 } 7848 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2); 7849 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 7850 calc_conf, rsm, rsm->r_rtr_cnt); 7851 } 7852 if ((rsm->r_flags & RACK_TLP) && 7853 (!IN_FASTRECOVERY(tp->t_flags))) { 7854 /* Segment was a TLP and our retrans matched */ 7855 if (rack->r_ctl.rc_tlp_cwnd_reduce) { 7856 rack->r_ctl.rc_rsm_start = tp->snd_max; 7857 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 7858 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 7859 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 7860 } 7861 } 7862 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 7863 /* New more recent rack_tmit_time */ 7864 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 7865 rack->rc_rack_rtt = t; 7866 } 7867 return (1); 7868 } 7869 /* 7870 * We clear the soft/rxtshift since we got an ack. 7871 * There is no assurance we will call the commit() function 7872 * so we need to clear these to avoid incorrect handling. 7873 */ 7874 tp->t_rxtshift = 0; 7875 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 7876 rack_rto_min, rack_rto_max); 7877 tp->t_softerror = 0; 7878 if (to && (to->to_flags & TOF_TS) && 7879 (ack_type == CUM_ACKED) && 7880 (to->to_tsecr) && 7881 ((rsm->r_flags & RACK_OVERMAX) == 0)) { 7882 /* 7883 * Now which timestamp does it match? In this block the ACK 7884 * must be coming from a previous transmission. 7885 */ 7886 for (i = 0; i < rsm->r_rtr_cnt; i++) { 7887 if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) { 7888 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 7889 if ((int)t <= 0) 7890 t = 1; 7891 if ((i + 1) < rsm->r_rtr_cnt) { 7892 /* 7893 * The peer ack'd from our previous 7894 * transmission. We have a spurious 7895 * retransmission and thus we dont 7896 * want to update our rack_rtt. 7897 */ 7898 return (0); 7899 } 7900 if (!tp->t_rttlow || tp->t_rttlow > t) 7901 tp->t_rttlow = t; 7902 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 7903 rack->r_ctl.rc_rack_min_rtt = t; 7904 if (rack->r_ctl.rc_rack_min_rtt == 0) { 7905 rack->r_ctl.rc_rack_min_rtt = 1; 7906 } 7907 } 7908 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, 7909 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { 7910 /* New more recent rack_tmit_time */ 7911 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; 7912 rack->rc_rack_rtt = t; 7913 } 7914 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3); 7915 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm, 7916 rsm->r_rtr_cnt); 7917 return (1); 7918 } 7919 } 7920 goto ts_not_found; 7921 } else { 7922 /* 7923 * Ok its a SACK block that we retransmitted. or a windows 7924 * machine without timestamps. We can tell nothing from the 7925 * time-stamp since its not there or the time the peer last 7926 * recieved a segment that moved forward its cum-ack point. 7927 */ 7928 ts_not_found: 7929 i = rsm->r_rtr_cnt - 1; 7930 t = cts - (uint32_t)rsm->r_tim_lastsent[i]; 7931 if ((int)t <= 0) 7932 t = 1; 7933 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 7934 /* 7935 * We retransmitted and the ack came back in less 7936 * than the smallest rtt we have observed. We most 7937 * likely did an improper retransmit as outlined in 7938 * 6.2 Step 2 point 2 in the rack-draft so we 7939 * don't want to update our rack_rtt. We in 7940 * theory (in future) might want to think about reverting our 7941 * cwnd state but we won't for now. 7942 */ 7943 return (0); 7944 } else if (rack->r_ctl.rc_rack_min_rtt) { 7945 /* 7946 * We retransmitted it and the retransmit did the 7947 * job. 7948 */ 7949 if (!rack->r_ctl.rc_rack_min_rtt || 7950 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { 7951 rack->r_ctl.rc_rack_min_rtt = t; 7952 if (rack->r_ctl.rc_rack_min_rtt == 0) { 7953 rack->r_ctl.rc_rack_min_rtt = 1; 7954 } 7955 } 7956 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) { 7957 /* New more recent rack_tmit_time */ 7958 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i]; 7959 rack->rc_rack_rtt = t; 7960 } 7961 return (1); 7962 } 7963 } 7964 return (0); 7965 } 7966 7967 /* 7968 * Mark the SACK_PASSED flag on all entries prior to rsm send wise. 7969 */ 7970 static void 7971 rack_log_sack_passed(struct tcpcb *tp, 7972 struct tcp_rack *rack, struct rack_sendmap *rsm) 7973 { 7974 struct rack_sendmap *nrsm; 7975 7976 nrsm = rsm; 7977 TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap, 7978 rack_head, r_tnext) { 7979 if (nrsm == rsm) { 7980 /* Skip orginal segment he is acked */ 7981 continue; 7982 } 7983 if (nrsm->r_flags & RACK_ACKED) { 7984 /* 7985 * Skip ack'd segments, though we 7986 * should not see these, since tmap 7987 * should not have ack'd segments. 7988 */ 7989 continue; 7990 } 7991 if (nrsm->r_flags & RACK_SACK_PASSED) { 7992 /* 7993 * We found one that is already marked 7994 * passed, we have been here before and 7995 * so all others below this are marked. 7996 */ 7997 break; 7998 } 7999 nrsm->r_flags |= RACK_SACK_PASSED; 8000 nrsm->r_flags &= ~RACK_WAS_SACKPASS; 8001 } 8002 } 8003 8004 static void 8005 rack_need_set_test(struct tcpcb *tp, 8006 struct tcp_rack *rack, 8007 struct rack_sendmap *rsm, 8008 tcp_seq th_ack, 8009 int line, 8010 int use_which) 8011 { 8012 8013 if ((tp->t_flags & TF_GPUTINPROG) && 8014 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8015 /* 8016 * We were app limited, and this ack 8017 * butts up or goes beyond the point where we want 8018 * to start our next measurement. We need 8019 * to record the new gput_ts as here and 8020 * possibly update the start sequence. 8021 */ 8022 uint32_t seq, ts; 8023 8024 if (rsm->r_rtr_cnt > 1) { 8025 /* 8026 * This is a retransmit, can we 8027 * really make any assessment at this 8028 * point? We are not really sure of 8029 * the timestamp, is it this or the 8030 * previous transmission? 8031 * 8032 * Lets wait for something better that 8033 * is not retransmitted. 8034 */ 8035 return; 8036 } 8037 seq = tp->gput_seq; 8038 ts = tp->gput_ts; 8039 rack->app_limited_needs_set = 0; 8040 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 8041 /* Do we start at a new end? */ 8042 if ((use_which == RACK_USE_BEG) && 8043 SEQ_GEQ(rsm->r_start, tp->gput_seq)) { 8044 /* 8045 * When we get an ACK that just eats 8046 * up some of the rsm, we set RACK_USE_BEG 8047 * since whats at r_start (i.e. th_ack) 8048 * is left unacked and thats where the 8049 * measurement not starts. 8050 */ 8051 tp->gput_seq = rsm->r_start; 8052 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8053 } 8054 if ((use_which == RACK_USE_END) && 8055 SEQ_GEQ(rsm->r_end, tp->gput_seq)) { 8056 /* 8057 * We use the end when the cumack 8058 * is moving forward and completely 8059 * deleting the rsm passed so basically 8060 * r_end holds th_ack. 8061 * 8062 * For SACK's we also want to use the end 8063 * since this piece just got sacked and 8064 * we want to target anything after that 8065 * in our measurement. 8066 */ 8067 tp->gput_seq = rsm->r_end; 8068 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8069 } 8070 if (use_which == RACK_USE_END_OR_THACK) { 8071 /* 8072 * special case for ack moving forward, 8073 * not a sack, we need to move all the 8074 * way up to where this ack cum-ack moves 8075 * to. 8076 */ 8077 if (SEQ_GT(th_ack, rsm->r_end)) 8078 tp->gput_seq = th_ack; 8079 else 8080 tp->gput_seq = rsm->r_end; 8081 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8082 } 8083 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) { 8084 /* 8085 * We moved beyond this guy's range, re-calculate 8086 * the new end point. 8087 */ 8088 if (rack->rc_gp_filled == 0) { 8089 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 8090 } else { 8091 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 8092 } 8093 } 8094 /* 8095 * We are moving the goal post, we may be able to clear the 8096 * measure_saw_probe_rtt flag. 8097 */ 8098 if ((rack->in_probe_rtt == 0) && 8099 (rack->measure_saw_probe_rtt) && 8100 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 8101 rack->measure_saw_probe_rtt = 0; 8102 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts, 8103 seq, tp->gput_seq, 0, 5, line, NULL); 8104 if (rack->rc_gp_filled && 8105 ((tp->gput_ack - tp->gput_seq) < 8106 max(rc_init_window(rack), (MIN_GP_WIN * 8107 ctf_fixed_maxseg(tp))))) { 8108 uint32_t ideal_amount; 8109 8110 ideal_amount = rack_get_measure_window(tp, rack); 8111 if (ideal_amount > sbavail(&tp->t_inpcb->inp_socket->so_snd)) { 8112 /* 8113 * There is no sense of continuing this measurement 8114 * because its too small to gain us anything we 8115 * trust. Skip it and that way we can start a new 8116 * measurement quicker. 8117 */ 8118 tp->t_flags &= ~TF_GPUTINPROG; 8119 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 8120 0, 0, 0, 6, __LINE__, NULL); 8121 } else { 8122 /* 8123 * Reset the window further out. 8124 */ 8125 tp->gput_ack = tp->gput_seq + ideal_amount; 8126 } 8127 } 8128 } 8129 } 8130 8131 static uint32_t 8132 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, 8133 struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two) 8134 { 8135 uint32_t start, end, changed = 0; 8136 struct rack_sendmap stack_map; 8137 struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next; 8138 int32_t used_ref = 1; 8139 int moved = 0; 8140 8141 start = sack->start; 8142 end = sack->end; 8143 rsm = *prsm; 8144 memset(&fe, 0, sizeof(fe)); 8145 do_rest_ofb: 8146 if ((rsm == NULL) || 8147 (SEQ_LT(end, rsm->r_start)) || 8148 (SEQ_GEQ(start, rsm->r_end)) || 8149 (SEQ_LT(start, rsm->r_start))) { 8150 /* 8151 * We are not in the right spot, 8152 * find the correct spot in the tree. 8153 */ 8154 used_ref = 0; 8155 fe.r_start = start; 8156 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 8157 moved++; 8158 } 8159 if (rsm == NULL) { 8160 /* TSNH */ 8161 goto out; 8162 } 8163 /* Ok we have an ACK for some piece of this rsm */ 8164 if (rsm->r_start != start) { 8165 if ((rsm->r_flags & RACK_ACKED) == 0) { 8166 /** 8167 * Need to split this in two pieces the before and after, 8168 * the before remains in the map, the after must be 8169 * added. In other words we have: 8170 * rsm |--------------| 8171 * sackblk |-------> 8172 * rsm will become 8173 * rsm |---| 8174 * and nrsm will be the sacked piece 8175 * nrsm |----------| 8176 * 8177 * But before we start down that path lets 8178 * see if the sack spans over on top of 8179 * the next guy and it is already sacked. 8180 */ 8181 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8182 if (next && (next->r_flags & RACK_ACKED) && 8183 SEQ_GEQ(end, next->r_start)) { 8184 /** 8185 * So the next one is already acked, and 8186 * we can thus by hookery use our stack_map 8187 * to reflect the piece being sacked and 8188 * then adjust the two tree entries moving 8189 * the start and ends around. So we start like: 8190 * rsm |------------| (not-acked) 8191 * next |-----------| (acked) 8192 * sackblk |--------> 8193 * We want to end like so: 8194 * rsm |------| (not-acked) 8195 * next |-----------------| (acked) 8196 * nrsm |-----| 8197 * Where nrsm is a temporary stack piece we 8198 * use to update all the gizmos. 8199 */ 8200 /* Copy up our fudge block */ 8201 nrsm = &stack_map; 8202 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8203 /* Now adjust our tree blocks */ 8204 rsm->r_end = start; 8205 next->r_start = start; 8206 /* Now we must adjust back where next->m is */ 8207 rack_setup_offset_for_rsm(rsm, next); 8208 8209 /* We don't need to adjust rsm, it did not change */ 8210 /* Clear out the dup ack count of the remainder */ 8211 rsm->r_dupack = 0; 8212 rsm->r_just_ret = 0; 8213 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8214 /* Now lets make sure our fudge block is right */ 8215 nrsm->r_start = start; 8216 /* Now lets update all the stats and such */ 8217 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8218 if (rack->app_limited_needs_set) 8219 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8220 changed += (nrsm->r_end - nrsm->r_start); 8221 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8222 if (nrsm->r_flags & RACK_SACK_PASSED) { 8223 counter_u64_add(rack_reorder_seen, 1); 8224 rack->r_ctl.rc_reorder_ts = cts; 8225 } 8226 /* 8227 * Now we want to go up from rsm (the 8228 * one left un-acked) to the next one 8229 * in the tmap. We do this so when 8230 * we walk backwards we include marking 8231 * sack-passed on rsm (The one passed in 8232 * is skipped since it is generally called 8233 * on something sacked before removing it 8234 * from the tmap). 8235 */ 8236 if (rsm->r_in_tmap) { 8237 nrsm = TAILQ_NEXT(rsm, r_tnext); 8238 /* 8239 * Now that we have the next 8240 * one walk backwards from there. 8241 */ 8242 if (nrsm && nrsm->r_in_tmap) 8243 rack_log_sack_passed(tp, rack, nrsm); 8244 } 8245 /* Now are we done? */ 8246 if (SEQ_LT(end, next->r_end) || 8247 (end == next->r_end)) { 8248 /* Done with block */ 8249 goto out; 8250 } 8251 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__); 8252 counter_u64_add(rack_sack_used_next_merge, 1); 8253 /* Postion for the next block */ 8254 start = next->r_end; 8255 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next); 8256 if (rsm == NULL) 8257 goto out; 8258 } else { 8259 /** 8260 * We can't use any hookery here, so we 8261 * need to split the map. We enter like 8262 * so: 8263 * rsm |--------| 8264 * sackblk |-----> 8265 * We will add the new block nrsm and 8266 * that will be the new portion, and then 8267 * fall through after reseting rsm. So we 8268 * split and look like this: 8269 * rsm |----| 8270 * sackblk |-----> 8271 * nrsm |---| 8272 * We then fall through reseting 8273 * rsm to nrsm, so the next block 8274 * picks it up. 8275 */ 8276 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8277 if (nrsm == NULL) { 8278 /* 8279 * failed XXXrrs what can we do but loose the sack 8280 * info? 8281 */ 8282 goto out; 8283 } 8284 counter_u64_add(rack_sack_splits, 1); 8285 rack_clone_rsm(rack, nrsm, rsm, start); 8286 rsm->r_just_ret = 0; 8287 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8288 #ifdef INVARIANTS 8289 if (insret != NULL) { 8290 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8291 nrsm, insret, rack, rsm); 8292 } 8293 #endif 8294 if (rsm->r_in_tmap) { 8295 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8296 nrsm->r_in_tmap = 1; 8297 } 8298 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__); 8299 rsm->r_flags &= (~RACK_HAS_FIN); 8300 /* Position us to point to the new nrsm that starts the sack blk */ 8301 rsm = nrsm; 8302 } 8303 } else { 8304 /* Already sacked this piece */ 8305 counter_u64_add(rack_sack_skipped_acked, 1); 8306 moved++; 8307 if (end == rsm->r_end) { 8308 /* Done with block */ 8309 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8310 goto out; 8311 } else if (SEQ_LT(end, rsm->r_end)) { 8312 /* A partial sack to a already sacked block */ 8313 moved++; 8314 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8315 goto out; 8316 } else { 8317 /* 8318 * The end goes beyond this guy 8319 * repostion the start to the 8320 * next block. 8321 */ 8322 start = rsm->r_end; 8323 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8324 if (rsm == NULL) 8325 goto out; 8326 } 8327 } 8328 } 8329 if (SEQ_GEQ(end, rsm->r_end)) { 8330 /** 8331 * The end of this block is either beyond this guy or right 8332 * at this guy. I.e.: 8333 * rsm --- |-----| 8334 * end |-----| 8335 * <or> 8336 * end |---------| 8337 */ 8338 if ((rsm->r_flags & RACK_ACKED) == 0) { 8339 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8340 changed += (rsm->r_end - rsm->r_start); 8341 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8342 if (rsm->r_in_tmap) /* should be true */ 8343 rack_log_sack_passed(tp, rack, rsm); 8344 /* Is Reordering occuring? */ 8345 if (rsm->r_flags & RACK_SACK_PASSED) { 8346 rsm->r_flags &= ~RACK_SACK_PASSED; 8347 counter_u64_add(rack_reorder_seen, 1); 8348 rack->r_ctl.rc_reorder_ts = cts; 8349 } 8350 if (rack->app_limited_needs_set) 8351 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8352 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8353 rsm->r_flags |= RACK_ACKED; 8354 rsm->r_flags &= ~RACK_TLP; 8355 if (rsm->r_in_tmap) { 8356 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8357 rsm->r_in_tmap = 0; 8358 } 8359 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__); 8360 } else { 8361 counter_u64_add(rack_sack_skipped_acked, 1); 8362 moved++; 8363 } 8364 if (end == rsm->r_end) { 8365 /* This block only - done, setup for next */ 8366 goto out; 8367 } 8368 /* 8369 * There is more not coverend by this rsm move on 8370 * to the next block in the RB tree. 8371 */ 8372 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8373 start = rsm->r_end; 8374 rsm = nrsm; 8375 if (rsm == NULL) 8376 goto out; 8377 goto do_rest_ofb; 8378 } 8379 /** 8380 * The end of this sack block is smaller than 8381 * our rsm i.e.: 8382 * rsm --- |-----| 8383 * end |--| 8384 */ 8385 if ((rsm->r_flags & RACK_ACKED) == 0) { 8386 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8387 if (prev && (prev->r_flags & RACK_ACKED)) { 8388 /** 8389 * Goal, we want the right remainder of rsm to shrink 8390 * in place and span from (rsm->r_start = end) to rsm->r_end. 8391 * We want to expand prev to go all the way 8392 * to prev->r_end <- end. 8393 * so in the tree we have before: 8394 * prev |--------| (acked) 8395 * rsm |-------| (non-acked) 8396 * sackblk |-| 8397 * We churn it so we end up with 8398 * prev |----------| (acked) 8399 * rsm |-----| (non-acked) 8400 * nrsm |-| (temporary) 8401 */ 8402 nrsm = &stack_map; 8403 memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); 8404 prev->r_end = end; 8405 rsm->r_start = end; 8406 /* Now adjust nrsm (stack copy) to be 8407 * the one that is the small 8408 * piece that was "sacked". 8409 */ 8410 nrsm->r_end = end; 8411 rsm->r_dupack = 0; 8412 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8413 /* 8414 * Now that the rsm has had its start moved forward 8415 * lets go ahead and get its new place in the world. 8416 */ 8417 rack_setup_offset_for_rsm(prev, rsm); 8418 /* 8419 * Now nrsm is our new little piece 8420 * that is acked (which was merged 8421 * to prev). Update the rtt and changed 8422 * based on that. Also check for reordering. 8423 */ 8424 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); 8425 if (rack->app_limited_needs_set) 8426 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); 8427 changed += (nrsm->r_end - nrsm->r_start); 8428 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); 8429 if (nrsm->r_flags & RACK_SACK_PASSED) { 8430 counter_u64_add(rack_reorder_seen, 1); 8431 rack->r_ctl.rc_reorder_ts = cts; 8432 } 8433 rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__); 8434 rsm = prev; 8435 counter_u64_add(rack_sack_used_prev_merge, 1); 8436 } else { 8437 /** 8438 * This is the case where our previous 8439 * block is not acked either, so we must 8440 * split the block in two. 8441 */ 8442 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 8443 if (nrsm == NULL) { 8444 /* failed rrs what can we do but loose the sack info? */ 8445 goto out; 8446 } 8447 /** 8448 * In this case nrsm becomes 8449 * nrsm->r_start = end; 8450 * nrsm->r_end = rsm->r_end; 8451 * which is un-acked. 8452 * <and> 8453 * rsm->r_end = nrsm->r_start; 8454 * i.e. the remaining un-acked 8455 * piece is left on the left 8456 * hand side. 8457 * 8458 * So we start like this 8459 * rsm |----------| (not acked) 8460 * sackblk |---| 8461 * build it so we have 8462 * rsm |---| (acked) 8463 * nrsm |------| (not acked) 8464 */ 8465 counter_u64_add(rack_sack_splits, 1); 8466 rack_clone_rsm(rack, nrsm, rsm, end); 8467 rsm->r_flags &= (~RACK_HAS_FIN); 8468 rsm->r_just_ret = 0; 8469 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 8470 #ifdef INVARIANTS 8471 if (insret != NULL) { 8472 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 8473 nrsm, insret, rack, rsm); 8474 } 8475 #endif 8476 if (rsm->r_in_tmap) { 8477 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 8478 nrsm->r_in_tmap = 1; 8479 } 8480 nrsm->r_dupack = 0; 8481 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); 8482 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); 8483 changed += (rsm->r_end - rsm->r_start); 8484 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); 8485 if (rsm->r_in_tmap) /* should be true */ 8486 rack_log_sack_passed(tp, rack, rsm); 8487 /* Is Reordering occuring? */ 8488 if (rsm->r_flags & RACK_SACK_PASSED) { 8489 rsm->r_flags &= ~RACK_SACK_PASSED; 8490 counter_u64_add(rack_reorder_seen, 1); 8491 rack->r_ctl.rc_reorder_ts = cts; 8492 } 8493 if (rack->app_limited_needs_set) 8494 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); 8495 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8496 rsm->r_flags |= RACK_ACKED; 8497 rsm->r_flags &= ~RACK_TLP; 8498 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__); 8499 if (rsm->r_in_tmap) { 8500 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8501 rsm->r_in_tmap = 0; 8502 } 8503 } 8504 } else if (start != end){ 8505 /* 8506 * The block was already acked. 8507 */ 8508 counter_u64_add(rack_sack_skipped_acked, 1); 8509 moved++; 8510 } 8511 out: 8512 if (rsm && (rsm->r_flags & RACK_ACKED)) { 8513 /* 8514 * Now can we merge where we worked 8515 * with either the previous or 8516 * next block? 8517 */ 8518 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8519 while (next) { 8520 if (next->r_flags & RACK_ACKED) { 8521 /* yep this and next can be merged */ 8522 rsm = rack_merge_rsm(rack, rsm, next); 8523 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8524 } else 8525 break; 8526 } 8527 /* Now what about the previous? */ 8528 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8529 while (prev) { 8530 if (prev->r_flags & RACK_ACKED) { 8531 /* yep the previous and this can be merged */ 8532 rsm = rack_merge_rsm(rack, prev, rsm); 8533 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8534 } else 8535 break; 8536 } 8537 } 8538 if (used_ref == 0) { 8539 counter_u64_add(rack_sack_proc_all, 1); 8540 } else { 8541 counter_u64_add(rack_sack_proc_short, 1); 8542 } 8543 /* Save off the next one for quick reference. */ 8544 if (rsm) 8545 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8546 else 8547 nrsm = NULL; 8548 *prsm = rack->r_ctl.rc_sacklast = nrsm; 8549 /* Pass back the moved. */ 8550 *moved_two = moved; 8551 return (changed); 8552 } 8553 8554 static void inline 8555 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack) 8556 { 8557 struct rack_sendmap *tmap; 8558 8559 tmap = NULL; 8560 while (rsm && (rsm->r_flags & RACK_ACKED)) { 8561 /* Its no longer sacked, mark it so */ 8562 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 8563 #ifdef INVARIANTS 8564 if (rsm->r_in_tmap) { 8565 panic("rack:%p rsm:%p flags:0x%x in tmap?", 8566 rack, rsm, rsm->r_flags); 8567 } 8568 #endif 8569 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS); 8570 /* Rebuild it into our tmap */ 8571 if (tmap == NULL) { 8572 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8573 tmap = rsm; 8574 } else { 8575 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext); 8576 tmap = rsm; 8577 } 8578 tmap->r_in_tmap = 1; 8579 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8580 } 8581 /* 8582 * Now lets possibly clear the sack filter so we start 8583 * recognizing sacks that cover this area. 8584 */ 8585 sack_filter_clear(&rack->r_ctl.rack_sf, th_ack); 8586 8587 } 8588 8589 static void 8590 rack_do_decay(struct tcp_rack *rack) 8591 { 8592 struct timeval res; 8593 8594 #define timersub(tvp, uvp, vvp) \ 8595 do { \ 8596 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 8597 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 8598 if ((vvp)->tv_usec < 0) { \ 8599 (vvp)->tv_sec--; \ 8600 (vvp)->tv_usec += 1000000; \ 8601 } \ 8602 } while (0) 8603 8604 timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res); 8605 #undef timersub 8606 8607 rack->r_ctl.input_pkt++; 8608 if ((rack->rc_in_persist) || 8609 (res.tv_sec >= 1) || 8610 (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) { 8611 /* 8612 * Check for decay of non-SAD, 8613 * we want all SAD detection metrics to 8614 * decay 1/4 per second (or more) passed. 8615 */ 8616 uint32_t pkt_delta; 8617 8618 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt; 8619 /* Update our saved tracking values */ 8620 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt; 8621 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 8622 /* Now do we escape without decay? */ 8623 #ifdef NETFLIX_EXP_DETECTION 8624 if (rack->rc_in_persist || 8625 (rack->rc_tp->snd_max == rack->rc_tp->snd_una) || 8626 (pkt_delta < tcp_sad_low_pps)){ 8627 /* 8628 * We don't decay idle connections 8629 * or ones that have a low input pps. 8630 */ 8631 return; 8632 } 8633 /* Decay the counters */ 8634 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count, 8635 tcp_sad_decay_val); 8636 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count, 8637 tcp_sad_decay_val); 8638 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra, 8639 tcp_sad_decay_val); 8640 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move, 8641 tcp_sad_decay_val); 8642 #endif 8643 } 8644 } 8645 8646 static void 8647 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to) 8648 { 8649 struct rack_sendmap *rsm, *rm; 8650 8651 /* 8652 * The ACK point is advancing to th_ack, we must drop off 8653 * the packets in the rack log and calculate any eligble 8654 * RTT's. 8655 */ 8656 rack->r_wanted_output = 1; 8657 more: 8658 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 8659 if (rsm == NULL) { 8660 if ((th_ack - 1) == tp->iss) { 8661 /* 8662 * For the SYN incoming case we will not 8663 * have called tcp_output for the sending of 8664 * the SYN, so there will be no map. All 8665 * other cases should probably be a panic. 8666 */ 8667 return; 8668 } 8669 if (tp->t_flags & TF_SENTFIN) { 8670 /* if we sent a FIN we often will not have map */ 8671 return; 8672 } 8673 #ifdef INVARIANTS 8674 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n", 8675 tp, 8676 tp->t_state, th_ack, rack, 8677 tp->snd_una, tp->snd_max, tp->snd_nxt); 8678 #endif 8679 return; 8680 } 8681 if (SEQ_LT(th_ack, rsm->r_start)) { 8682 /* Huh map is missing this */ 8683 #ifdef INVARIANTS 8684 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n", 8685 rsm->r_start, 8686 th_ack, tp->t_state, rack->r_state); 8687 #endif 8688 return; 8689 } 8690 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack); 8691 /* Now do we consume the whole thing? */ 8692 if (SEQ_GEQ(th_ack, rsm->r_end)) { 8693 /* Its all consumed. */ 8694 uint32_t left; 8695 uint8_t newly_acked; 8696 8697 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__); 8698 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; 8699 rsm->r_rtr_bytes = 0; 8700 /* Record the time of highest cumack sent */ 8701 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8702 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 8703 #ifdef INVARIANTS 8704 if (rm != rsm) { 8705 panic("removing head in rack:%p rsm:%p rm:%p", 8706 rack, rsm, rm); 8707 } 8708 #endif 8709 if (rsm->r_in_tmap) { 8710 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); 8711 rsm->r_in_tmap = 0; 8712 } 8713 newly_acked = 1; 8714 if (rsm->r_flags & RACK_ACKED) { 8715 /* 8716 * It was acked on the scoreboard -- remove 8717 * it from total 8718 */ 8719 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); 8720 newly_acked = 0; 8721 } else if (rsm->r_flags & RACK_SACK_PASSED) { 8722 /* 8723 * There are segments ACKED on the 8724 * scoreboard further up. We are seeing 8725 * reordering. 8726 */ 8727 rsm->r_flags &= ~RACK_SACK_PASSED; 8728 counter_u64_add(rack_reorder_seen, 1); 8729 rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 8730 rsm->r_flags |= RACK_ACKED; 8731 rack->r_ctl.rc_reorder_ts = cts; 8732 if (rack->r_ent_rec_ns) { 8733 /* 8734 * We have sent no more, and we saw an sack 8735 * then ack arrive. 8736 */ 8737 rack->r_might_revert = 1; 8738 } 8739 } 8740 if ((rsm->r_flags & RACK_TO_REXT) && 8741 (tp->t_flags & TF_RCVD_TSTMP) && 8742 (to->to_flags & TOF_TS) && 8743 (tp->t_flags & TF_PREVVALID)) { 8744 /* 8745 * We can use the timestamp to see 8746 * if this retransmission was from the 8747 * first transmit. If so we made a mistake. 8748 */ 8749 tp->t_flags &= ~TF_PREVVALID; 8750 if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) { 8751 /* The first transmit is what this ack is for */ 8752 rack_cong_signal(tp, CC_RTO_ERR, th_ack); 8753 } 8754 } 8755 left = th_ack - rsm->r_end; 8756 if (rack->app_limited_needs_set && newly_acked) 8757 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK); 8758 /* Free back to zone */ 8759 rack_free(rack, rsm); 8760 if (left) { 8761 goto more; 8762 } 8763 /* Check for reneging */ 8764 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 8765 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) { 8766 /* 8767 * The peer has moved snd_una up to 8768 * the edge of this send, i.e. one 8769 * that it had previously acked. The only 8770 * way that can be true if the peer threw 8771 * away data (space issues) that it had 8772 * previously sacked (else it would have 8773 * given us snd_una up to (rsm->r_end). 8774 * We need to undo the acked markings here. 8775 * 8776 * Note we have to look to make sure th_ack is 8777 * our rsm->r_start in case we get an old ack 8778 * where th_ack is behind snd_una. 8779 */ 8780 rack_peer_reneges(rack, rsm, th_ack); 8781 } 8782 return; 8783 } 8784 if (rsm->r_flags & RACK_ACKED) { 8785 /* 8786 * It was acked on the scoreboard -- remove it from 8787 * total for the part being cum-acked. 8788 */ 8789 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start); 8790 } 8791 /* 8792 * Clear the dup ack count for 8793 * the piece that remains. 8794 */ 8795 rsm->r_dupack = 0; 8796 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); 8797 if (rsm->r_rtr_bytes) { 8798 /* 8799 * It was retransmitted adjust the 8800 * sack holes for what was acked. 8801 */ 8802 int ack_am; 8803 8804 ack_am = (th_ack - rsm->r_start); 8805 if (ack_am >= rsm->r_rtr_bytes) { 8806 rack->r_ctl.rc_holes_rxt -= ack_am; 8807 rsm->r_rtr_bytes -= ack_am; 8808 } 8809 } 8810 /* 8811 * Update where the piece starts and record 8812 * the time of send of highest cumack sent. 8813 */ 8814 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]; 8815 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__); 8816 /* Now we need to move our offset forward too */ 8817 if (rsm->orig_m_len != rsm->m->m_len) { 8818 /* Fix up the orig_m_len and possibly the mbuf offset */ 8819 rack_adjust_orig_mlen(rsm); 8820 } 8821 rsm->soff += (th_ack - rsm->r_start); 8822 rsm->r_start = th_ack; 8823 /* Now do we need to move the mbuf fwd too? */ 8824 while (rsm->soff >= rsm->m->m_len) { 8825 rsm->soff -= rsm->m->m_len; 8826 rsm->m = rsm->m->m_next; 8827 KASSERT((rsm->m != NULL), 8828 (" nrsm:%p hit at soff:%u null m", 8829 rsm, rsm->soff)); 8830 } 8831 rsm->orig_m_len = rsm->m->m_len; 8832 if (rack->app_limited_needs_set) 8833 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG); 8834 } 8835 8836 static void 8837 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack) 8838 { 8839 struct rack_sendmap *rsm; 8840 int sack_pass_fnd = 0; 8841 8842 if (rack->r_might_revert) { 8843 /* 8844 * Ok we have reordering, have not sent anything, we 8845 * might want to revert the congestion state if nothing 8846 * further has SACK_PASSED on it. Lets check. 8847 * 8848 * We also get here when we have DSACKs come in for 8849 * all the data that we FR'd. Note that a rxt or tlp 8850 * timer clears this from happening. 8851 */ 8852 8853 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { 8854 if (rsm->r_flags & RACK_SACK_PASSED) { 8855 sack_pass_fnd = 1; 8856 break; 8857 } 8858 } 8859 if (sack_pass_fnd == 0) { 8860 /* 8861 * We went into recovery 8862 * incorrectly due to reordering! 8863 */ 8864 int orig_cwnd; 8865 8866 rack->r_ent_rec_ns = 0; 8867 orig_cwnd = tp->snd_cwnd; 8868 tp->snd_cwnd = rack->r_ctl.rc_cwnd_at_erec; 8869 tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec; 8870 tp->snd_recover = tp->snd_una; 8871 rack_log_to_prr(rack, 14, orig_cwnd); 8872 EXIT_RECOVERY(tp->t_flags); 8873 } 8874 rack->r_might_revert = 0; 8875 } 8876 } 8877 8878 #ifdef NETFLIX_EXP_DETECTION 8879 static void 8880 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack, uint32_t bytes_this_ack, uint32_t segsiz) 8881 { 8882 if ((rack->do_detection || tcp_force_detection) && 8883 tcp_sack_to_ack_thresh && 8884 tcp_sack_to_move_thresh && 8885 ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) { 8886 /* 8887 * We have thresholds set to find 8888 * possible attackers and disable sack. 8889 * Check them. 8890 */ 8891 uint64_t ackratio, moveratio, movetotal; 8892 8893 /* Log detecting */ 8894 rack_log_sad(rack, 1); 8895 ackratio = (uint64_t)(rack->r_ctl.sack_count); 8896 ackratio *= (uint64_t)(1000); 8897 if (rack->r_ctl.ack_count) 8898 ackratio /= (uint64_t)(rack->r_ctl.ack_count); 8899 else { 8900 /* We really should not hit here */ 8901 ackratio = 1000; 8902 } 8903 if ((rack->sack_attack_disable == 0) && 8904 (ackratio > rack_highest_sack_thresh_seen)) 8905 rack_highest_sack_thresh_seen = (uint32_t)ackratio; 8906 movetotal = rack->r_ctl.sack_moved_extra; 8907 movetotal += rack->r_ctl.sack_noextra_move; 8908 moveratio = rack->r_ctl.sack_moved_extra; 8909 moveratio *= (uint64_t)1000; 8910 if (movetotal) 8911 moveratio /= movetotal; 8912 else { 8913 /* No moves, thats pretty good */ 8914 moveratio = 0; 8915 } 8916 if ((rack->sack_attack_disable == 0) && 8917 (moveratio > rack_highest_move_thresh_seen)) 8918 rack_highest_move_thresh_seen = (uint32_t)moveratio; 8919 if (rack->sack_attack_disable == 0) { 8920 if ((ackratio > tcp_sack_to_ack_thresh) && 8921 (moveratio > tcp_sack_to_move_thresh)) { 8922 /* Disable sack processing */ 8923 rack->sack_attack_disable = 1; 8924 if (rack->r_rep_attack == 0) { 8925 rack->r_rep_attack = 1; 8926 counter_u64_add(rack_sack_attacks_detected, 1); 8927 } 8928 if (tcp_attack_on_turns_on_logging) { 8929 /* 8930 * Turn on logging, used for debugging 8931 * false positives. 8932 */ 8933 rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging; 8934 } 8935 /* Clamp the cwnd at flight size */ 8936 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd; 8937 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 8938 rack_log_sad(rack, 2); 8939 } 8940 } else { 8941 /* We are sack-disabled check for false positives */ 8942 if ((ackratio <= tcp_restoral_thresh) || 8943 (rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) { 8944 rack->sack_attack_disable = 0; 8945 rack_log_sad(rack, 3); 8946 /* Restart counting */ 8947 rack->r_ctl.sack_count = 0; 8948 rack->r_ctl.sack_moved_extra = 0; 8949 rack->r_ctl.sack_noextra_move = 1; 8950 rack->r_ctl.ack_count = max(1, 8951 (bytes_this_ack / segsiz)); 8952 8953 if (rack->r_rep_reverse == 0) { 8954 rack->r_rep_reverse = 1; 8955 counter_u64_add(rack_sack_attacks_reversed, 1); 8956 } 8957 /* Restore the cwnd */ 8958 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd) 8959 rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd; 8960 } 8961 } 8962 } 8963 } 8964 #endif 8965 8966 static void 8967 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end) 8968 { 8969 8970 uint32_t am; 8971 8972 if (SEQ_GT(end, start)) 8973 am = end - start; 8974 else 8975 am = 0; 8976 /* 8977 * We keep track of how many DSACK blocks we get 8978 * after a recovery incident. 8979 */ 8980 rack->r_ctl.dsack_byte_cnt += am; 8981 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) && 8982 rack->r_ctl.retran_during_recovery && 8983 (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) { 8984 /* 8985 * False recovery most likely culprit is reordering. If 8986 * nothing else is missing we need to revert. 8987 */ 8988 rack->r_might_revert = 1; 8989 rack_handle_might_revert(rack->rc_tp, rack); 8990 rack->r_might_revert = 0; 8991 rack->r_ctl.retran_during_recovery = 0; 8992 rack->r_ctl.dsack_byte_cnt = 0; 8993 } 8994 } 8995 8996 static void 8997 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack) 8998 { 8999 /* Deal with changed and PRR here (in recovery only) */ 9000 uint32_t pipe, snd_una; 9001 9002 rack->r_ctl.rc_prr_delivered += changed; 9003 9004 if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) { 9005 /* 9006 * It is all outstanding, we are application limited 9007 * and thus we don't need more room to send anything. 9008 * Note we use tp->snd_una here and not th_ack because 9009 * the data as yet not been cut from the sb. 9010 */ 9011 rack->r_ctl.rc_prr_sndcnt = 0; 9012 return; 9013 } 9014 /* Compute prr_sndcnt */ 9015 if (SEQ_GT(tp->snd_una, th_ack)) { 9016 snd_una = tp->snd_una; 9017 } else { 9018 snd_una = th_ack; 9019 } 9020 pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt; 9021 if (pipe > tp->snd_ssthresh) { 9022 long sndcnt; 9023 9024 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh; 9025 if (rack->r_ctl.rc_prr_recovery_fs > 0) 9026 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs; 9027 else { 9028 rack->r_ctl.rc_prr_sndcnt = 0; 9029 rack_log_to_prr(rack, 9, 0); 9030 sndcnt = 0; 9031 } 9032 sndcnt++; 9033 if (sndcnt > (long)rack->r_ctl.rc_prr_out) 9034 sndcnt -= rack->r_ctl.rc_prr_out; 9035 else 9036 sndcnt = 0; 9037 rack->r_ctl.rc_prr_sndcnt = sndcnt; 9038 rack_log_to_prr(rack, 10, 0); 9039 } else { 9040 uint32_t limit; 9041 9042 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out) 9043 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out); 9044 else 9045 limit = 0; 9046 if (changed > limit) 9047 limit = changed; 9048 limit += ctf_fixed_maxseg(tp); 9049 if (tp->snd_ssthresh > pipe) { 9050 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit); 9051 rack_log_to_prr(rack, 11, 0); 9052 } else { 9053 rack->r_ctl.rc_prr_sndcnt = min(0, limit); 9054 rack_log_to_prr(rack, 12, 0); 9055 } 9056 } 9057 } 9058 9059 static void 9060 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck) 9061 { 9062 uint32_t changed; 9063 struct tcp_rack *rack; 9064 struct rack_sendmap *rsm; 9065 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1]; 9066 register uint32_t th_ack; 9067 int32_t i, j, k, num_sack_blks = 0; 9068 uint32_t cts, acked, ack_point, sack_changed = 0; 9069 int loop_start = 0, moved_two = 0; 9070 uint32_t tsused; 9071 9072 9073 INP_WLOCK_ASSERT(tp->t_inpcb); 9074 if (th->th_flags & TH_RST) { 9075 /* We don't log resets */ 9076 return; 9077 } 9078 rack = (struct tcp_rack *)tp->t_fb_ptr; 9079 cts = tcp_get_usecs(NULL); 9080 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9081 changed = 0; 9082 th_ack = th->th_ack; 9083 if (rack->sack_attack_disable == 0) 9084 rack_do_decay(rack); 9085 if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) { 9086 /* 9087 * You only get credit for 9088 * MSS and greater (and you get extra 9089 * credit for larger cum-ack moves). 9090 */ 9091 int ac; 9092 9093 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp); 9094 rack->r_ctl.ack_count += ac; 9095 counter_u64_add(rack_ack_total, ac); 9096 } 9097 if (rack->r_ctl.ack_count > 0xfff00000) { 9098 /* 9099 * reduce the number to keep us under 9100 * a uint32_t. 9101 */ 9102 rack->r_ctl.ack_count /= 2; 9103 rack->r_ctl.sack_count /= 2; 9104 } 9105 if (SEQ_GT(th_ack, tp->snd_una)) { 9106 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__); 9107 tp->t_acktime = ticks; 9108 } 9109 if (rsm && SEQ_GT(th_ack, rsm->r_start)) 9110 changed = th_ack - rsm->r_start; 9111 if (changed) { 9112 rack_process_to_cumack(tp, rack, th_ack, cts, to); 9113 } 9114 if ((to->to_flags & TOF_SACK) == 0) { 9115 /* We are done nothing left and no sack. */ 9116 rack_handle_might_revert(tp, rack); 9117 /* 9118 * For cases where we struck a dup-ack 9119 * with no SACK, add to the changes so 9120 * PRR will work right. 9121 */ 9122 if (dup_ack_struck && (changed == 0)) { 9123 changed += ctf_fixed_maxseg(rack->rc_tp); 9124 } 9125 goto out; 9126 } 9127 /* Sack block processing */ 9128 if (SEQ_GT(th_ack, tp->snd_una)) 9129 ack_point = th_ack; 9130 else 9131 ack_point = tp->snd_una; 9132 for (i = 0; i < to->to_nsacks; i++) { 9133 bcopy((to->to_sacks + i * TCPOLEN_SACK), 9134 &sack, sizeof(sack)); 9135 sack.start = ntohl(sack.start); 9136 sack.end = ntohl(sack.end); 9137 if (SEQ_GT(sack.end, sack.start) && 9138 SEQ_GT(sack.start, ack_point) && 9139 SEQ_LT(sack.start, tp->snd_max) && 9140 SEQ_GT(sack.end, ack_point) && 9141 SEQ_LEQ(sack.end, tp->snd_max)) { 9142 sack_blocks[num_sack_blks] = sack; 9143 num_sack_blks++; 9144 #ifdef NETFLIX_STATS 9145 } else if (SEQ_LEQ(sack.start, th_ack) && 9146 SEQ_LEQ(sack.end, th_ack)) { 9147 /* 9148 * Its a D-SACK block. 9149 */ 9150 tcp_record_dsack(sack.start, sack.end); 9151 #endif 9152 rack_note_dsack(rack, sack.start, sack.end); 9153 } 9154 } 9155 /* 9156 * Sort the SACK blocks so we can update the rack scoreboard with 9157 * just one pass. 9158 */ 9159 num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, 9160 num_sack_blks, th->th_ack); 9161 ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks); 9162 if (num_sack_blks == 0) { 9163 /* Nothing to sack (DSACKs?) */ 9164 goto out_with_totals; 9165 } 9166 if (num_sack_blks < 2) { 9167 /* Only one, we don't need to sort */ 9168 goto do_sack_work; 9169 } 9170 /* Sort the sacks */ 9171 for (i = 0; i < num_sack_blks; i++) { 9172 for (j = i + 1; j < num_sack_blks; j++) { 9173 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) { 9174 sack = sack_blocks[i]; 9175 sack_blocks[i] = sack_blocks[j]; 9176 sack_blocks[j] = sack; 9177 } 9178 } 9179 } 9180 /* 9181 * Now are any of the sack block ends the same (yes some 9182 * implementations send these)? 9183 */ 9184 again: 9185 if (num_sack_blks == 0) 9186 goto out_with_totals; 9187 if (num_sack_blks > 1) { 9188 for (i = 0; i < num_sack_blks; i++) { 9189 for (j = i + 1; j < num_sack_blks; j++) { 9190 if (sack_blocks[i].end == sack_blocks[j].end) { 9191 /* 9192 * Ok these two have the same end we 9193 * want the smallest end and then 9194 * throw away the larger and start 9195 * again. 9196 */ 9197 if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) { 9198 /* 9199 * The second block covers 9200 * more area use that 9201 */ 9202 sack_blocks[i].start = sack_blocks[j].start; 9203 } 9204 /* 9205 * Now collapse out the dup-sack and 9206 * lower the count 9207 */ 9208 for (k = (j + 1); k < num_sack_blks; k++) { 9209 sack_blocks[j].start = sack_blocks[k].start; 9210 sack_blocks[j].end = sack_blocks[k].end; 9211 j++; 9212 } 9213 num_sack_blks--; 9214 goto again; 9215 } 9216 } 9217 } 9218 } 9219 do_sack_work: 9220 /* 9221 * First lets look to see if 9222 * we have retransmitted and 9223 * can use the transmit next? 9224 */ 9225 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 9226 if (rsm && 9227 SEQ_GT(sack_blocks[0].end, rsm->r_start) && 9228 SEQ_LT(sack_blocks[0].start, rsm->r_end)) { 9229 /* 9230 * We probably did the FR and the next 9231 * SACK in continues as we would expect. 9232 */ 9233 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two); 9234 if (acked) { 9235 rack->r_wanted_output = 1; 9236 changed += acked; 9237 sack_changed += acked; 9238 } 9239 if (num_sack_blks == 1) { 9240 /* 9241 * This is what we would expect from 9242 * a normal implementation to happen 9243 * after we have retransmitted the FR, 9244 * i.e the sack-filter pushes down 9245 * to 1 block and the next to be retransmitted 9246 * is the sequence in the sack block (has more 9247 * are acked). Count this as ACK'd data to boost 9248 * up the chances of recovering any false positives. 9249 */ 9250 rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp)); 9251 counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp))); 9252 counter_u64_add(rack_express_sack, 1); 9253 if (rack->r_ctl.ack_count > 0xfff00000) { 9254 /* 9255 * reduce the number to keep us under 9256 * a uint32_t. 9257 */ 9258 rack->r_ctl.ack_count /= 2; 9259 rack->r_ctl.sack_count /= 2; 9260 } 9261 goto out_with_totals; 9262 } else { 9263 /* 9264 * Start the loop through the 9265 * rest of blocks, past the first block. 9266 */ 9267 moved_two = 0; 9268 loop_start = 1; 9269 } 9270 } 9271 /* Its a sack of some sort */ 9272 rack->r_ctl.sack_count++; 9273 if (rack->r_ctl.sack_count > 0xfff00000) { 9274 /* 9275 * reduce the number to keep us under 9276 * a uint32_t. 9277 */ 9278 rack->r_ctl.ack_count /= 2; 9279 rack->r_ctl.sack_count /= 2; 9280 } 9281 counter_u64_add(rack_sack_total, 1); 9282 if (rack->sack_attack_disable) { 9283 /* An attacker disablement is in place */ 9284 if (num_sack_blks > 1) { 9285 rack->r_ctl.sack_count += (num_sack_blks - 1); 9286 rack->r_ctl.sack_moved_extra++; 9287 counter_u64_add(rack_move_some, 1); 9288 if (rack->r_ctl.sack_moved_extra > 0xfff00000) { 9289 rack->r_ctl.sack_moved_extra /= 2; 9290 rack->r_ctl.sack_noextra_move /= 2; 9291 } 9292 } 9293 goto out; 9294 } 9295 rsm = rack->r_ctl.rc_sacklast; 9296 for (i = loop_start; i < num_sack_blks; i++) { 9297 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two); 9298 if (acked) { 9299 rack->r_wanted_output = 1; 9300 changed += acked; 9301 sack_changed += acked; 9302 } 9303 if (moved_two) { 9304 /* 9305 * If we did not get a SACK for at least a MSS and 9306 * had to move at all, or if we moved more than our 9307 * threshold, it counts against the "extra" move. 9308 */ 9309 rack->r_ctl.sack_moved_extra += moved_two; 9310 counter_u64_add(rack_move_some, 1); 9311 } else { 9312 /* 9313 * else we did not have to move 9314 * any more than we would expect. 9315 */ 9316 rack->r_ctl.sack_noextra_move++; 9317 counter_u64_add(rack_move_none, 1); 9318 } 9319 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) { 9320 /* 9321 * If the SACK was not a full MSS then 9322 * we add to sack_count the number of 9323 * MSS's (or possibly more than 9324 * a MSS if its a TSO send) we had to skip by. 9325 */ 9326 rack->r_ctl.sack_count += moved_two; 9327 counter_u64_add(rack_sack_total, moved_two); 9328 } 9329 /* 9330 * Now we need to setup for the next 9331 * round. First we make sure we won't 9332 * exceed the size of our uint32_t on 9333 * the various counts, and then clear out 9334 * moved_two. 9335 */ 9336 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) || 9337 (rack->r_ctl.sack_noextra_move > 0xfff00000)) { 9338 rack->r_ctl.sack_moved_extra /= 2; 9339 rack->r_ctl.sack_noextra_move /= 2; 9340 } 9341 if (rack->r_ctl.sack_count > 0xfff00000) { 9342 rack->r_ctl.ack_count /= 2; 9343 rack->r_ctl.sack_count /= 2; 9344 } 9345 moved_two = 0; 9346 } 9347 out_with_totals: 9348 if (num_sack_blks > 1) { 9349 /* 9350 * You get an extra stroke if 9351 * you have more than one sack-blk, this 9352 * could be where we are skipping forward 9353 * and the sack-filter is still working, or 9354 * it could be an attacker constantly 9355 * moving us. 9356 */ 9357 rack->r_ctl.sack_moved_extra++; 9358 counter_u64_add(rack_move_some, 1); 9359 } 9360 out: 9361 #ifdef NETFLIX_EXP_DETECTION 9362 rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp)); 9363 #endif 9364 if (changed) { 9365 /* Something changed cancel the rack timer */ 9366 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 9367 } 9368 tsused = tcp_get_usecs(NULL); 9369 rsm = tcp_rack_output(tp, rack, tsused); 9370 if ((!IN_FASTRECOVERY(tp->t_flags)) && 9371 rsm) { 9372 /* Enter recovery */ 9373 rack->r_ctl.rc_rsm_start = rsm->r_start; 9374 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 9375 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 9376 entered_recovery = 1; 9377 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 9378 /* 9379 * When we enter recovery we need to assure we send 9380 * one packet. 9381 */ 9382 if (rack->rack_no_prr == 0) { 9383 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); 9384 rack_log_to_prr(rack, 8, 0); 9385 } 9386 rack->r_timer_override = 1; 9387 rack->r_early = 0; 9388 rack->r_ctl.rc_agg_early = 0; 9389 } else if (IN_FASTRECOVERY(tp->t_flags) && 9390 rsm && 9391 (rack->r_rr_config == 3)) { 9392 /* 9393 * Assure we can output and we get no 9394 * remembered pace time except the retransmit. 9395 */ 9396 rack->r_timer_override = 1; 9397 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 9398 rack->r_ctl.rc_resend = rsm; 9399 } 9400 if (IN_FASTRECOVERY(tp->t_flags) && 9401 (rack->rack_no_prr == 0) && 9402 (entered_recovery == 0)) { 9403 rack_update_prr(tp, rack, changed, th_ack); 9404 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) && 9405 ((rack->rc_inp->inp_in_hpts == 0) && 9406 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) { 9407 /* 9408 * If you are pacing output you don't want 9409 * to override. 9410 */ 9411 rack->r_early = 0; 9412 rack->r_ctl.rc_agg_early = 0; 9413 rack->r_timer_override = 1; 9414 } 9415 } 9416 } 9417 9418 static void 9419 rack_strike_dupack(struct tcp_rack *rack) 9420 { 9421 struct rack_sendmap *rsm; 9422 9423 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 9424 while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 9425 rsm = TAILQ_NEXT(rsm, r_tnext); 9426 } 9427 if (rsm && (rsm->r_dupack < 0xff)) { 9428 rsm->r_dupack++; 9429 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) { 9430 struct timeval tv; 9431 uint32_t cts; 9432 /* 9433 * Here we see if we need to retransmit. For 9434 * a SACK type connection if enough time has passed 9435 * we will get a return of the rsm. For a non-sack 9436 * connection we will get the rsm returned if the 9437 * dupack value is 3 or more. 9438 */ 9439 cts = tcp_get_usecs(&tv); 9440 rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts); 9441 if (rack->r_ctl.rc_resend != NULL) { 9442 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) { 9443 rack_cong_signal(rack->rc_tp, CC_NDUPACK, 9444 rack->rc_tp->snd_una); 9445 } 9446 rack->r_wanted_output = 1; 9447 rack->r_timer_override = 1; 9448 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3); 9449 } 9450 } else { 9451 rack_log_retran_reason(rack, rsm, __LINE__, 0, 3); 9452 } 9453 } 9454 } 9455 9456 static void 9457 rack_check_bottom_drag(struct tcpcb *tp, 9458 struct tcp_rack *rack, 9459 struct socket *so, int32_t acked) 9460 { 9461 uint32_t segsiz, minseg; 9462 9463 segsiz = ctf_fixed_maxseg(tp); 9464 minseg = segsiz; 9465 9466 if (tp->snd_max == tp->snd_una) { 9467 /* 9468 * We are doing dynamic pacing and we are way 9469 * under. Basically everything got acked while 9470 * we were still waiting on the pacer to expire. 9471 * 9472 * This means we need to boost the b/w in 9473 * addition to any earlier boosting of 9474 * the multipler. 9475 */ 9476 rack->rc_dragged_bottom = 1; 9477 rack_validate_multipliers_at_or_above100(rack); 9478 /* 9479 * Lets use the segment bytes acked plus 9480 * the lowest RTT seen as the basis to 9481 * form a b/w estimate. This will be off 9482 * due to the fact that the true estimate 9483 * should be around 1/2 the time of the RTT 9484 * but we can settle for that. 9485 */ 9486 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) && 9487 acked) { 9488 uint64_t bw, calc_bw, rtt; 9489 9490 rtt = rack->r_ctl.rack_rs.rs_us_rtt; 9491 if (rtt == 0) { 9492 /* no us sample is there a ms one? */ 9493 if (rack->r_ctl.rack_rs.rs_rtt_lowest) { 9494 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; 9495 } else { 9496 goto no_measurement; 9497 } 9498 } 9499 bw = acked; 9500 calc_bw = bw * 1000000; 9501 calc_bw /= rtt; 9502 if (rack->r_ctl.last_max_bw && 9503 (rack->r_ctl.last_max_bw < calc_bw)) { 9504 /* 9505 * If we have a last calculated max bw 9506 * enforce it. 9507 */ 9508 calc_bw = rack->r_ctl.last_max_bw; 9509 } 9510 /* now plop it in */ 9511 if (rack->rc_gp_filled == 0) { 9512 if (calc_bw > ONE_POINT_TWO_MEG) { 9513 /* 9514 * If we have no measurement 9515 * don't let us set in more than 9516 * 1.2Mbps. If we are still too 9517 * low after pacing with this we 9518 * will hopefully have a max b/w 9519 * available to sanity check things. 9520 */ 9521 calc_bw = ONE_POINT_TWO_MEG; 9522 } 9523 rack->r_ctl.rc_rtt_diff = 0; 9524 rack->r_ctl.gp_bw = calc_bw; 9525 rack->rc_gp_filled = 1; 9526 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 9527 rack->r_ctl.num_measurements = RACK_REQ_AVG; 9528 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 9529 } else if (calc_bw > rack->r_ctl.gp_bw) { 9530 rack->r_ctl.rc_rtt_diff = 0; 9531 if (rack->r_ctl.num_measurements < RACK_REQ_AVG) 9532 rack->r_ctl.num_measurements = RACK_REQ_AVG; 9533 rack->r_ctl.gp_bw = calc_bw; 9534 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 9535 } else 9536 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9537 if ((rack->gp_ready == 0) && 9538 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) { 9539 /* We have enough measurements now */ 9540 rack->gp_ready = 1; 9541 rack_set_cc_pacing(rack); 9542 if (rack->defer_options) 9543 rack_apply_deferred_options(rack); 9544 } 9545 /* 9546 * For acks over 1mss we do a extra boost to simulate 9547 * where we would get 2 acks (we want 110 for the mul). 9548 */ 9549 if (acked > segsiz) 9550 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9551 } else { 9552 /* 9553 * zero rtt possibly?, settle for just an old increase. 9554 */ 9555 no_measurement: 9556 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9557 } 9558 } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) && 9559 (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)), 9560 minseg)) && 9561 (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) && 9562 (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) && 9563 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <= 9564 (segsiz * rack_req_segs))) { 9565 /* 9566 * We are doing dynamic GP pacing and 9567 * we have everything except 1MSS or less 9568 * bytes left out. We are still pacing away. 9569 * And there is data that could be sent, This 9570 * means we are inserting delayed ack time in 9571 * our measurements because we are pacing too slow. 9572 */ 9573 rack_validate_multipliers_at_or_above100(rack); 9574 rack->rc_dragged_bottom = 1; 9575 rack_increase_bw_mul(rack, -1, 0, 0, 1); 9576 } 9577 } 9578 9579 9580 9581 static void 9582 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount) 9583 { 9584 /* 9585 * The fast output path is enabled and we 9586 * have moved the cumack forward. Lets see if 9587 * we can expand forward the fast path length by 9588 * that amount. What we would ideally like to 9589 * do is increase the number of bytes in the 9590 * fast path block (left_to_send) by the 9591 * acked amount. However we have to gate that 9592 * by two factors: 9593 * 1) The amount outstanding and the rwnd of the peer 9594 * (i.e. we don't want to exceed the rwnd of the peer). 9595 * <and> 9596 * 2) The amount of data left in the socket buffer (i.e. 9597 * we can't send beyond what is in the buffer). 9598 * 9599 * Note that this does not take into account any increase 9600 * in the cwnd. We will only extend the fast path by 9601 * what was acked. 9602 */ 9603 uint32_t new_total, gating_val; 9604 9605 new_total = acked_amount + rack->r_ctl.fsb.left_to_send; 9606 gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)), 9607 (tp->snd_wnd - (tp->snd_max - tp->snd_una))); 9608 if (new_total <= gating_val) { 9609 /* We can increase left_to_send by the acked amount */ 9610 counter_u64_add(rack_extended_rfo, 1); 9611 rack->r_ctl.fsb.left_to_send = new_total; 9612 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))), 9613 ("rack:%p left_to_send:%u sbavail:%u out:%u", 9614 rack, rack->r_ctl.fsb.left_to_send, 9615 sbavail(&rack->rc_inp->inp_socket->so_snd), 9616 (tp->snd_max - tp->snd_una))); 9617 9618 } 9619 } 9620 9621 static void 9622 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una) 9623 { 9624 /* 9625 * Here any sendmap entry that points to the 9626 * beginning mbuf must be adjusted to the correct 9627 * offset. This must be called with: 9628 * 1) The socket buffer locked 9629 * 2) snd_una adjusted to its new postion. 9630 * 9631 * Note that (2) implies rack_ack_received has also 9632 * been called. 9633 * 9634 * We grab the first mbuf in the socket buffer and 9635 * then go through the front of the sendmap, recalculating 9636 * the stored offset for any sendmap entry that has 9637 * that mbuf. We must use the sb functions to do this 9638 * since its possible an add was done has well as 9639 * the subtraction we may have just completed. This should 9640 * not be a penalty though, since we just referenced the sb 9641 * to go in and trim off the mbufs that we freed (of course 9642 * there will be a penalty for the sendmap references though). 9643 */ 9644 struct mbuf *m; 9645 struct rack_sendmap *rsm; 9646 9647 SOCKBUF_LOCK_ASSERT(sb); 9648 m = sb->sb_mb; 9649 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 9650 if ((rsm == NULL) || (m == NULL)) { 9651 /* Nothing outstanding */ 9652 return; 9653 } 9654 while (rsm->m == m) { 9655 /* one to adjust */ 9656 #ifdef INVARIANTS 9657 struct mbuf *tm; 9658 uint32_t soff; 9659 9660 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff); 9661 if (rsm->orig_m_len != m->m_len) { 9662 rack_adjust_orig_mlen(rsm); 9663 } 9664 if (rsm->soff != soff) { 9665 /* 9666 * This is not a fatal error, we anticipate it 9667 * might happen (the else code), so we count it here 9668 * so that under invariant we can see that it really 9669 * does happen. 9670 */ 9671 counter_u64_add(rack_adjust_map_bw, 1); 9672 } 9673 rsm->m = tm; 9674 rsm->soff = soff; 9675 rsm->orig_m_len = rsm->m->m_len; 9676 #else 9677 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff); 9678 rsm->orig_m_len = rsm->m->m_len; 9679 #endif 9680 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 9681 rsm); 9682 if (rsm == NULL) 9683 break; 9684 } 9685 } 9686 9687 /* 9688 * Return value of 1, we do not need to call rack_process_data(). 9689 * return value of 0, rack_process_data can be called. 9690 * For ret_val if its 0 the TCP is locked, if its non-zero 9691 * its unlocked and probably unsafe to touch the TCB. 9692 */ 9693 static int 9694 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, 9695 struct tcpcb *tp, struct tcpopt *to, 9696 uint32_t tiwin, int32_t tlen, 9697 int32_t * ofia, int32_t thflags, int32_t *ret_val) 9698 { 9699 int32_t ourfinisacked = 0; 9700 int32_t nsegs, acked_amount; 9701 int32_t acked; 9702 struct mbuf *mfree; 9703 struct tcp_rack *rack; 9704 int32_t under_pacing = 0; 9705 int32_t recovery = 0; 9706 9707 rack = (struct tcp_rack *)tp->t_fb_ptr; 9708 if (SEQ_GT(th->th_ack, tp->snd_max)) { 9709 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, 9710 &rack->r_ctl.challenge_ack_ts, 9711 &rack->r_ctl.challenge_ack_cnt); 9712 rack->r_wanted_output = 1; 9713 return (1); 9714 } 9715 if (rack->gp_ready && 9716 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 9717 under_pacing = 1; 9718 } 9719 if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) { 9720 int in_rec, dup_ack_struck = 0; 9721 9722 in_rec = IN_FASTRECOVERY(tp->t_flags); 9723 if (rack->rc_in_persist) { 9724 tp->t_rxtshift = 0; 9725 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 9726 rack_rto_min, rack_rto_max); 9727 } 9728 if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd)) { 9729 rack_strike_dupack(rack); 9730 dup_ack_struck = 1; 9731 } 9732 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck); 9733 } 9734 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 9735 /* 9736 * Old ack, behind (or duplicate to) the last one rcv'd 9737 * Note: We mark reordering is occuring if its 9738 * less than and we have not closed our window. 9739 */ 9740 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) { 9741 counter_u64_add(rack_reorder_seen, 1); 9742 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 9743 } 9744 return (0); 9745 } 9746 /* 9747 * If we reach this point, ACK is not a duplicate, i.e., it ACKs 9748 * something we sent. 9749 */ 9750 if (tp->t_flags & TF_NEEDSYN) { 9751 /* 9752 * T/TCP: Connection was half-synchronized, and our SYN has 9753 * been ACK'd (so connection is now fully synchronized). Go 9754 * to non-starred state, increment snd_una for ACK of SYN, 9755 * and check if we can do window scaling. 9756 */ 9757 tp->t_flags &= ~TF_NEEDSYN; 9758 tp->snd_una++; 9759 /* Do window scaling? */ 9760 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 9761 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 9762 tp->rcv_scale = tp->request_r_scale; 9763 /* Send window already scaled. */ 9764 } 9765 } 9766 nsegs = max(1, m->m_pkthdr.lro_nsegs); 9767 INP_WLOCK_ASSERT(tp->t_inpcb); 9768 9769 acked = BYTES_THIS_ACK(tp, th); 9770 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 9771 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 9772 /* 9773 * If we just performed our first retransmit, and the ACK arrives 9774 * within our recovery window, then it was a mistake to do the 9775 * retransmit in the first place. Recover our original cwnd and 9776 * ssthresh, and proceed to transmit where we left off. 9777 */ 9778 if ((tp->t_flags & TF_PREVVALID) && 9779 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 9780 tp->t_flags &= ~TF_PREVVALID; 9781 if (tp->t_rxtshift == 1 && 9782 (int)(ticks - tp->t_badrxtwin) < 0) 9783 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack); 9784 } 9785 if (acked) { 9786 /* assure we are not backed off */ 9787 tp->t_rxtshift = 0; 9788 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 9789 rack_rto_min, rack_rto_max); 9790 rack->rc_tlp_in_progress = 0; 9791 rack->r_ctl.rc_tlp_cnt_out = 0; 9792 /* 9793 * If it is the RXT timer we want to 9794 * stop it, so we can restart a TLP. 9795 */ 9796 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 9797 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 9798 #ifdef NETFLIX_HTTP_LOGGING 9799 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 9800 #endif 9801 } 9802 /* 9803 * If we have a timestamp reply, update smoothed round trip time. If 9804 * no timestamp is present but transmit timer is running and timed 9805 * sequence number was acked, update smoothed round trip time. Since 9806 * we now have an rtt measurement, cancel the timer backoff (cf., 9807 * Phil Karn's retransmit alg.). Recompute the initial retransmit 9808 * timer. 9809 * 9810 * Some boxes send broken timestamp replies during the SYN+ACK 9811 * phase, ignore timestamps of 0 or we could calculate a huge RTT 9812 * and blow up the retransmit timer. 9813 */ 9814 /* 9815 * If all outstanding data is acked, stop retransmit timer and 9816 * remember to restart (more output or persist). If there is more 9817 * data to be acked, restart retransmit timer, using current 9818 * (possibly backed-off) value. 9819 */ 9820 if (acked == 0) { 9821 if (ofia) 9822 *ofia = ourfinisacked; 9823 return (0); 9824 } 9825 if (IN_RECOVERY(tp->t_flags)) { 9826 if (SEQ_LT(th->th_ack, tp->snd_recover) && 9827 (SEQ_LT(th->th_ack, tp->snd_max))) { 9828 tcp_rack_partialack(tp); 9829 } else { 9830 rack_post_recovery(tp, th->th_ack); 9831 recovery = 1; 9832 } 9833 } 9834 /* 9835 * Let the congestion control algorithm update congestion control 9836 * related information. This typically means increasing the 9837 * congestion window. 9838 */ 9839 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery); 9840 SOCKBUF_LOCK(&so->so_snd); 9841 acked_amount = min(acked, (int)sbavail(&so->so_snd)); 9842 tp->snd_wnd -= acked_amount; 9843 mfree = sbcut_locked(&so->so_snd, acked_amount); 9844 if ((sbused(&so->so_snd) == 0) && 9845 (acked > acked_amount) && 9846 (tp->t_state >= TCPS_FIN_WAIT_1) && 9847 (tp->t_flags & TF_SENTFIN)) { 9848 /* 9849 * We must be sure our fin 9850 * was sent and acked (we can be 9851 * in FIN_WAIT_1 without having 9852 * sent the fin). 9853 */ 9854 ourfinisacked = 1; 9855 } 9856 tp->snd_una = th->th_ack; 9857 if (acked_amount && sbavail(&so->so_snd)) 9858 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 9859 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 9860 SOCKBUF_UNLOCK(&so->so_snd); 9861 tp->t_flags |= TF_WAKESOW; 9862 m_freem(mfree); 9863 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 9864 tp->snd_recover = tp->snd_una; 9865 9866 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { 9867 tp->snd_nxt = tp->snd_una; 9868 } 9869 if (under_pacing && 9870 (rack->use_fixed_rate == 0) && 9871 (rack->in_probe_rtt == 0) && 9872 rack->rc_gp_dyn_mul && 9873 rack->rc_always_pace) { 9874 /* Check if we are dragging bottom */ 9875 rack_check_bottom_drag(tp, rack, so, acked); 9876 } 9877 if (tp->snd_una == tp->snd_max) { 9878 /* Nothing left outstanding */ 9879 tp->t_flags &= ~TF_PREVVALID; 9880 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 9881 rack->r_ctl.retran_during_recovery = 0; 9882 rack->r_ctl.dsack_byte_cnt = 0; 9883 if (rack->r_ctl.rc_went_idle_time == 0) 9884 rack->r_ctl.rc_went_idle_time = 1; 9885 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 9886 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 9887 tp->t_acktime = 0; 9888 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 9889 /* Set need output so persist might get set */ 9890 rack->r_wanted_output = 1; 9891 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 9892 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 9893 (sbavail(&so->so_snd) == 0) && 9894 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 9895 /* 9896 * The socket was gone and the 9897 * peer sent data (now or in the past), time to 9898 * reset him. 9899 */ 9900 *ret_val = 1; 9901 /* tcp_close will kill the inp pre-log the Reset */ 9902 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 9903 tp = tcp_close(tp); 9904 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen); 9905 return (1); 9906 } 9907 } 9908 if (ofia) 9909 *ofia = ourfinisacked; 9910 return (0); 9911 } 9912 9913 static void 9914 rack_collapsed_window(struct tcp_rack *rack) 9915 { 9916 /* 9917 * Now we must walk the 9918 * send map and divide the 9919 * ones left stranded. These 9920 * guys can't cause us to abort 9921 * the connection and are really 9922 * "unsent". However if a buggy 9923 * client actually did keep some 9924 * of the data i.e. collapsed the win 9925 * and refused to ack and then opened 9926 * the win and acked that data. We would 9927 * get into an ack war, the simplier 9928 * method then of just pretending we 9929 * did not send those segments something 9930 * won't work. 9931 */ 9932 struct rack_sendmap *rsm, *nrsm, fe, *insret; 9933 tcp_seq max_seq; 9934 9935 max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd; 9936 memset(&fe, 0, sizeof(fe)); 9937 fe.r_start = max_seq; 9938 /* Find the first seq past or at maxseq */ 9939 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 9940 if (rsm == NULL) { 9941 /* Nothing to do strange */ 9942 rack->rc_has_collapsed = 0; 9943 return; 9944 } 9945 /* 9946 * Now do we need to split at 9947 * the collapse point? 9948 */ 9949 if (SEQ_GT(max_seq, rsm->r_start)) { 9950 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); 9951 if (nrsm == NULL) { 9952 /* We can't get a rsm, mark all? */ 9953 nrsm = rsm; 9954 goto no_split; 9955 } 9956 /* Clone it */ 9957 rack_clone_rsm(rack, nrsm, rsm, max_seq); 9958 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); 9959 #ifdef INVARIANTS 9960 if (insret != NULL) { 9961 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", 9962 nrsm, insret, rack, rsm); 9963 } 9964 #endif 9965 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, max_seq, __LINE__); 9966 if (rsm->r_in_tmap) { 9967 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); 9968 nrsm->r_in_tmap = 1; 9969 } 9970 /* 9971 * Set in the new RSM as the 9972 * collapsed starting point 9973 */ 9974 rsm = nrsm; 9975 } 9976 no_split: 9977 counter_u64_add(rack_collapsed_win, 1); 9978 RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) { 9979 nrsm->r_flags |= RACK_RWND_COLLAPSED; 9980 } 9981 rack->rc_has_collapsed = 1; 9982 } 9983 9984 static void 9985 rack_un_collapse_window(struct tcp_rack *rack) 9986 { 9987 struct rack_sendmap *rsm; 9988 9989 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { 9990 if (rsm->r_flags & RACK_RWND_COLLAPSED) 9991 rsm->r_flags &= ~RACK_RWND_COLLAPSED; 9992 else 9993 break; 9994 } 9995 rack->rc_has_collapsed = 0; 9996 } 9997 9998 static void 9999 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack, 10000 int32_t tlen, int32_t tfo_syn) 10001 { 10002 if (DELAY_ACK(tp, tlen) || tfo_syn) { 10003 if (rack->rc_dack_mode && 10004 (tlen > 500) && 10005 (rack->rc_dack_toggle == 1)) { 10006 goto no_delayed_ack; 10007 } 10008 rack_timer_cancel(tp, rack, 10009 rack->r_ctl.rc_rcvtime, __LINE__); 10010 tp->t_flags |= TF_DELACK; 10011 } else { 10012 no_delayed_ack: 10013 rack->r_wanted_output = 1; 10014 tp->t_flags |= TF_ACKNOW; 10015 if (rack->rc_dack_mode) { 10016 if (tp->t_flags & TF_DELACK) 10017 rack->rc_dack_toggle = 1; 10018 else 10019 rack->rc_dack_toggle = 0; 10020 } 10021 } 10022 } 10023 10024 static void 10025 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack) 10026 { 10027 /* 10028 * If fast output is in progress, lets validate that 10029 * the new window did not shrink on us and make it 10030 * so fast output should end. 10031 */ 10032 if (rack->r_fast_output) { 10033 uint32_t out; 10034 10035 /* 10036 * Calculate what we will send if left as is 10037 * and compare that to our send window. 10038 */ 10039 out = ctf_outstanding(tp); 10040 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) { 10041 /* ok we have an issue */ 10042 if (out >= tp->snd_wnd) { 10043 /* Turn off fast output the window is met or collapsed */ 10044 rack->r_fast_output = 0; 10045 } else { 10046 /* we have some room left */ 10047 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out; 10048 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) { 10049 /* If not at least 1 full segment never mind */ 10050 rack->r_fast_output = 0; 10051 } 10052 } 10053 } 10054 } 10055 } 10056 10057 /* 10058 * Return value of 1, the TCB is unlocked and most 10059 * likely gone, return value of 0, the TCP is still 10060 * locked. 10061 */ 10062 static int 10063 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, 10064 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, 10065 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) 10066 { 10067 /* 10068 * Update window information. Don't look at window if no ACK: TAC's 10069 * send garbage on first SYN. 10070 */ 10071 int32_t nsegs; 10072 int32_t tfo_syn; 10073 struct tcp_rack *rack; 10074 10075 rack = (struct tcp_rack *)tp->t_fb_ptr; 10076 INP_WLOCK_ASSERT(tp->t_inpcb); 10077 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10078 if ((thflags & TH_ACK) && 10079 (SEQ_LT(tp->snd_wl1, th->th_seq) || 10080 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 10081 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 10082 /* keep track of pure window updates */ 10083 if (tlen == 0 && 10084 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 10085 KMOD_TCPSTAT_INC(tcps_rcvwinupd); 10086 tp->snd_wnd = tiwin; 10087 rack_validate_fo_sendwin_up(tp, rack); 10088 tp->snd_wl1 = th->th_seq; 10089 tp->snd_wl2 = th->th_ack; 10090 if (tp->snd_wnd > tp->max_sndwnd) 10091 tp->max_sndwnd = tp->snd_wnd; 10092 rack->r_wanted_output = 1; 10093 } else if (thflags & TH_ACK) { 10094 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) { 10095 tp->snd_wnd = tiwin; 10096 rack_validate_fo_sendwin_up(tp, rack); 10097 tp->snd_wl1 = th->th_seq; 10098 tp->snd_wl2 = th->th_ack; 10099 } 10100 } 10101 if (tp->snd_wnd < ctf_outstanding(tp)) 10102 /* The peer collapsed the window */ 10103 rack_collapsed_window(rack); 10104 else if (rack->rc_has_collapsed) 10105 rack_un_collapse_window(rack); 10106 /* Was persist timer active and now we have window space? */ 10107 if ((rack->rc_in_persist != 0) && 10108 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 10109 rack->r_ctl.rc_pace_min_segs))) { 10110 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10111 tp->snd_nxt = tp->snd_max; 10112 /* Make sure we output to start the timer */ 10113 rack->r_wanted_output = 1; 10114 } 10115 /* Do we enter persists? */ 10116 if ((rack->rc_in_persist == 0) && 10117 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 10118 TCPS_HAVEESTABLISHED(tp->t_state) && 10119 (tp->snd_max == tp->snd_una) && 10120 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 10121 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 10122 /* 10123 * Here the rwnd is less than 10124 * the pacing size, we are established, 10125 * nothing is outstanding, and there is 10126 * data to send. Enter persists. 10127 */ 10128 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10129 } 10130 if (tp->t_flags2 & TF2_DROP_AF_DATA) { 10131 m_freem(m); 10132 return (0); 10133 } 10134 /* 10135 * don't process the URG bit, ignore them drag 10136 * along the up. 10137 */ 10138 tp->rcv_up = tp->rcv_nxt; 10139 INP_WLOCK_ASSERT(tp->t_inpcb); 10140 10141 /* 10142 * Process the segment text, merging it into the TCP sequencing 10143 * queue, and arranging for acknowledgment of receipt if necessary. 10144 * This process logically involves adjusting tp->rcv_wnd as data is 10145 * presented to the user (this happens in tcp_usrreq.c, case 10146 * PRU_RCVD). If a FIN has already been received on this connection 10147 * then we just ignore the text. 10148 */ 10149 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && 10150 IS_FASTOPEN(tp->t_flags)); 10151 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && 10152 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10153 tcp_seq save_start = th->th_seq; 10154 tcp_seq save_rnxt = tp->rcv_nxt; 10155 int save_tlen = tlen; 10156 10157 m_adj(m, drop_hdrlen); /* delayed header drop */ 10158 /* 10159 * Insert segment which includes th into TCP reassembly 10160 * queue with control block tp. Set thflags to whether 10161 * reassembly now includes a segment with FIN. This handles 10162 * the common case inline (segment is the next to be 10163 * received on an established connection, and the queue is 10164 * empty), avoiding linkage into and removal from the queue 10165 * and repetition of various conversions. Set DELACK for 10166 * segments received in order, but ack immediately when 10167 * segments are out of order (so fast retransmit can work). 10168 */ 10169 if (th->th_seq == tp->rcv_nxt && 10170 SEGQ_EMPTY(tp) && 10171 (TCPS_HAVEESTABLISHED(tp->t_state) || 10172 tfo_syn)) { 10173 #ifdef NETFLIX_SB_LIMITS 10174 u_int mcnt, appended; 10175 10176 if (so->so_rcv.sb_shlim) { 10177 mcnt = m_memcnt(m); 10178 appended = 0; 10179 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 10180 CFO_NOSLEEP, NULL) == false) { 10181 counter_u64_add(tcp_sb_shlim_fails, 1); 10182 m_freem(m); 10183 return (0); 10184 } 10185 } 10186 #endif 10187 rack_handle_delayed_ack(tp, rack, tlen, tfo_syn); 10188 tp->rcv_nxt += tlen; 10189 if (tlen && 10190 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 10191 (tp->t_fbyte_in == 0)) { 10192 tp->t_fbyte_in = ticks; 10193 if (tp->t_fbyte_in == 0) 10194 tp->t_fbyte_in = 1; 10195 if (tp->t_fbyte_out && tp->t_fbyte_in) 10196 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 10197 } 10198 thflags = th->th_flags & TH_FIN; 10199 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 10200 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 10201 SOCKBUF_LOCK(&so->so_rcv); 10202 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10203 m_freem(m); 10204 } else 10205 #ifdef NETFLIX_SB_LIMITS 10206 appended = 10207 #endif 10208 sbappendstream_locked(&so->so_rcv, m, 0); 10209 10210 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 10211 SOCKBUF_UNLOCK(&so->so_rcv); 10212 tp->t_flags |= TF_WAKESOR; 10213 #ifdef NETFLIX_SB_LIMITS 10214 if (so->so_rcv.sb_shlim && appended != mcnt) 10215 counter_fo_release(so->so_rcv.sb_shlim, 10216 mcnt - appended); 10217 #endif 10218 } else { 10219 /* 10220 * XXX: Due to the header drop above "th" is 10221 * theoretically invalid by now. Fortunately 10222 * m_adj() doesn't actually frees any mbufs when 10223 * trimming from the head. 10224 */ 10225 tcp_seq temp = save_start; 10226 10227 thflags = tcp_reass(tp, th, &temp, &tlen, m); 10228 tp->t_flags |= TF_ACKNOW; 10229 } 10230 if ((tp->t_flags & TF_SACK_PERMIT) && 10231 (save_tlen > 0) && 10232 TCPS_HAVEESTABLISHED(tp->t_state)) { 10233 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { 10234 /* 10235 * DSACK actually handled in the fastpath 10236 * above. 10237 */ 10238 RACK_OPTS_INC(tcp_sack_path_1); 10239 tcp_update_sack_list(tp, save_start, 10240 save_start + save_tlen); 10241 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { 10242 if ((tp->rcv_numsacks >= 1) && 10243 (tp->sackblks[0].end == save_start)) { 10244 /* 10245 * Partial overlap, recorded at todrop 10246 * above. 10247 */ 10248 RACK_OPTS_INC(tcp_sack_path_2a); 10249 tcp_update_sack_list(tp, 10250 tp->sackblks[0].start, 10251 tp->sackblks[0].end); 10252 } else { 10253 RACK_OPTS_INC(tcp_sack_path_2b); 10254 tcp_update_dsack_list(tp, save_start, 10255 save_start + save_tlen); 10256 } 10257 } else if (tlen >= save_tlen) { 10258 /* Update of sackblks. */ 10259 RACK_OPTS_INC(tcp_sack_path_3); 10260 tcp_update_dsack_list(tp, save_start, 10261 save_start + save_tlen); 10262 } else if (tlen > 0) { 10263 RACK_OPTS_INC(tcp_sack_path_4); 10264 tcp_update_dsack_list(tp, save_start, 10265 save_start + tlen); 10266 } 10267 } 10268 } else { 10269 m_freem(m); 10270 thflags &= ~TH_FIN; 10271 } 10272 10273 /* 10274 * If FIN is received ACK the FIN and let the user know that the 10275 * connection is closing. 10276 */ 10277 if (thflags & TH_FIN) { 10278 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 10279 socantrcvmore(so); 10280 /* The socket upcall is handled by socantrcvmore. */ 10281 tp->t_flags &= ~TF_WAKESOR; 10282 /* 10283 * If connection is half-synchronized (ie NEEDSYN 10284 * flag on) then delay ACK, so it may be piggybacked 10285 * when SYN is sent. Otherwise, since we received a 10286 * FIN then no more input can be expected, send ACK 10287 * now. 10288 */ 10289 if (tp->t_flags & TF_NEEDSYN) { 10290 rack_timer_cancel(tp, rack, 10291 rack->r_ctl.rc_rcvtime, __LINE__); 10292 tp->t_flags |= TF_DELACK; 10293 } else { 10294 tp->t_flags |= TF_ACKNOW; 10295 } 10296 tp->rcv_nxt++; 10297 } 10298 switch (tp->t_state) { 10299 /* 10300 * In SYN_RECEIVED and ESTABLISHED STATES enter the 10301 * CLOSE_WAIT state. 10302 */ 10303 case TCPS_SYN_RECEIVED: 10304 tp->t_starttime = ticks; 10305 /* FALLTHROUGH */ 10306 case TCPS_ESTABLISHED: 10307 rack_timer_cancel(tp, rack, 10308 rack->r_ctl.rc_rcvtime, __LINE__); 10309 tcp_state_change(tp, TCPS_CLOSE_WAIT); 10310 break; 10311 10312 /* 10313 * If still in FIN_WAIT_1 STATE FIN has not been 10314 * acked so enter the CLOSING state. 10315 */ 10316 case TCPS_FIN_WAIT_1: 10317 rack_timer_cancel(tp, rack, 10318 rack->r_ctl.rc_rcvtime, __LINE__); 10319 tcp_state_change(tp, TCPS_CLOSING); 10320 break; 10321 10322 /* 10323 * In FIN_WAIT_2 state enter the TIME_WAIT state, 10324 * starting the time-wait timer, turning off the 10325 * other standard timers. 10326 */ 10327 case TCPS_FIN_WAIT_2: 10328 rack_timer_cancel(tp, rack, 10329 rack->r_ctl.rc_rcvtime, __LINE__); 10330 tcp_twstart(tp); 10331 return (1); 10332 } 10333 } 10334 /* 10335 * Return any desired output. 10336 */ 10337 if ((tp->t_flags & TF_ACKNOW) || 10338 (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) { 10339 rack->r_wanted_output = 1; 10340 } 10341 INP_WLOCK_ASSERT(tp->t_inpcb); 10342 return (0); 10343 } 10344 10345 /* 10346 * Here nothing is really faster, its just that we 10347 * have broken out the fast-data path also just like 10348 * the fast-ack. 10349 */ 10350 static int 10351 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, 10352 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10353 uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos) 10354 { 10355 int32_t nsegs; 10356 int32_t newsize = 0; /* automatic sockbuf scaling */ 10357 struct tcp_rack *rack; 10358 #ifdef NETFLIX_SB_LIMITS 10359 u_int mcnt, appended; 10360 #endif 10361 #ifdef TCPDEBUG 10362 /* 10363 * The size of tcp_saveipgen must be the size of the max ip header, 10364 * now IPv6. 10365 */ 10366 u_char tcp_saveipgen[IP6_HDR_LEN]; 10367 struct tcphdr tcp_savetcp; 10368 short ostate = 0; 10369 10370 #endif 10371 /* 10372 * If last ACK falls within this segment's sequence numbers, record 10373 * the timestamp. NOTE that the test is modified according to the 10374 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 10375 */ 10376 if (__predict_false(th->th_seq != tp->rcv_nxt)) { 10377 return (0); 10378 } 10379 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 10380 return (0); 10381 } 10382 if (tiwin && tiwin != tp->snd_wnd) { 10383 return (0); 10384 } 10385 if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) { 10386 return (0); 10387 } 10388 if (__predict_false((to->to_flags & TOF_TS) && 10389 (TSTMP_LT(to->to_tsval, tp->ts_recent)))) { 10390 return (0); 10391 } 10392 if (__predict_false((th->th_ack != tp->snd_una))) { 10393 return (0); 10394 } 10395 if (__predict_false(tlen > sbspace(&so->so_rcv))) { 10396 return (0); 10397 } 10398 if ((to->to_flags & TOF_TS) != 0 && 10399 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 10400 tp->ts_recent_age = tcp_ts_getticks(); 10401 tp->ts_recent = to->to_tsval; 10402 } 10403 rack = (struct tcp_rack *)tp->t_fb_ptr; 10404 /* 10405 * This is a pure, in-sequence data packet with nothing on the 10406 * reassembly queue and we have enough buffer space to take it. 10407 */ 10408 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10409 10410 #ifdef NETFLIX_SB_LIMITS 10411 if (so->so_rcv.sb_shlim) { 10412 mcnt = m_memcnt(m); 10413 appended = 0; 10414 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, 10415 CFO_NOSLEEP, NULL) == false) { 10416 counter_u64_add(tcp_sb_shlim_fails, 1); 10417 m_freem(m); 10418 return (1); 10419 } 10420 } 10421 #endif 10422 /* Clean receiver SACK report if present */ 10423 if (tp->rcv_numsacks) 10424 tcp_clean_sackreport(tp); 10425 KMOD_TCPSTAT_INC(tcps_preddat); 10426 tp->rcv_nxt += tlen; 10427 if (tlen && 10428 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 10429 (tp->t_fbyte_in == 0)) { 10430 tp->t_fbyte_in = ticks; 10431 if (tp->t_fbyte_in == 0) 10432 tp->t_fbyte_in = 1; 10433 if (tp->t_fbyte_out && tp->t_fbyte_in) 10434 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 10435 } 10436 /* 10437 * Pull snd_wl1 up to prevent seq wrap relative to th_seq. 10438 */ 10439 tp->snd_wl1 = th->th_seq; 10440 /* 10441 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt. 10442 */ 10443 tp->rcv_up = tp->rcv_nxt; 10444 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); 10445 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); 10446 #ifdef TCPDEBUG 10447 if (so->so_options & SO_DEBUG) 10448 tcp_trace(TA_INPUT, ostate, tp, 10449 (void *)tcp_saveipgen, &tcp_savetcp, 0); 10450 #endif 10451 newsize = tcp_autorcvbuf(m, th, so, tp, tlen); 10452 10453 /* Add data to socket buffer. */ 10454 SOCKBUF_LOCK(&so->so_rcv); 10455 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10456 m_freem(m); 10457 } else { 10458 /* 10459 * Set new socket buffer size. Give up when limit is 10460 * reached. 10461 */ 10462 if (newsize) 10463 if (!sbreserve_locked(&so->so_rcv, 10464 newsize, so, NULL)) 10465 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 10466 m_adj(m, drop_hdrlen); /* delayed header drop */ 10467 #ifdef NETFLIX_SB_LIMITS 10468 appended = 10469 #endif 10470 sbappendstream_locked(&so->so_rcv, m, 0); 10471 ctf_calc_rwin(so, tp); 10472 } 10473 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1); 10474 SOCKBUF_UNLOCK(&so->so_rcv); 10475 tp->t_flags |= TF_WAKESOR; 10476 #ifdef NETFLIX_SB_LIMITS 10477 if (so->so_rcv.sb_shlim && mcnt != appended) 10478 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); 10479 #endif 10480 rack_handle_delayed_ack(tp, rack, tlen, 0); 10481 if (tp->snd_una == tp->snd_max) 10482 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 10483 return (1); 10484 } 10485 10486 /* 10487 * This subfunction is used to try to highly optimize the 10488 * fast path. We again allow window updates that are 10489 * in sequence to remain in the fast-path. We also add 10490 * in the __predict's to attempt to help the compiler. 10491 * Note that if we return a 0, then we can *not* process 10492 * it and the caller should push the packet into the 10493 * slow-path. 10494 */ 10495 static int 10496 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 10497 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10498 uint32_t tiwin, int32_t nxt_pkt, uint32_t cts) 10499 { 10500 int32_t acked; 10501 int32_t nsegs; 10502 #ifdef TCPDEBUG 10503 /* 10504 * The size of tcp_saveipgen must be the size of the max ip header, 10505 * now IPv6. 10506 */ 10507 u_char tcp_saveipgen[IP6_HDR_LEN]; 10508 struct tcphdr tcp_savetcp; 10509 short ostate = 0; 10510 #endif 10511 int32_t under_pacing = 0; 10512 struct tcp_rack *rack; 10513 10514 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { 10515 /* Old ack, behind (or duplicate to) the last one rcv'd */ 10516 return (0); 10517 } 10518 if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) { 10519 /* Above what we have sent? */ 10520 return (0); 10521 } 10522 if (__predict_false(tp->snd_nxt != tp->snd_max)) { 10523 /* We are retransmitting */ 10524 return (0); 10525 } 10526 if (__predict_false(tiwin == 0)) { 10527 /* zero window */ 10528 return (0); 10529 } 10530 if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) { 10531 /* We need a SYN or a FIN, unlikely.. */ 10532 return (0); 10533 } 10534 if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) { 10535 /* Timestamp is behind .. old ack with seq wrap? */ 10536 return (0); 10537 } 10538 if (__predict_false(IN_RECOVERY(tp->t_flags))) { 10539 /* Still recovering */ 10540 return (0); 10541 } 10542 rack = (struct tcp_rack *)tp->t_fb_ptr; 10543 if (rack->r_ctl.rc_sacked) { 10544 /* We have sack holes on our scoreboard */ 10545 return (0); 10546 } 10547 /* Ok if we reach here, we can process a fast-ack */ 10548 if (rack->gp_ready && 10549 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 10550 under_pacing = 1; 10551 } 10552 nsegs = max(1, m->m_pkthdr.lro_nsegs); 10553 rack_log_ack(tp, to, th, 0, 0); 10554 /* Did the window get updated? */ 10555 if (tiwin != tp->snd_wnd) { 10556 tp->snd_wnd = tiwin; 10557 rack_validate_fo_sendwin_up(tp, rack); 10558 tp->snd_wl1 = th->th_seq; 10559 if (tp->snd_wnd > tp->max_sndwnd) 10560 tp->max_sndwnd = tp->snd_wnd; 10561 } 10562 /* Do we exit persists? */ 10563 if ((rack->rc_in_persist != 0) && 10564 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 10565 rack->r_ctl.rc_pace_min_segs))) { 10566 rack_exit_persist(tp, rack, cts); 10567 } 10568 /* Do we enter persists? */ 10569 if ((rack->rc_in_persist == 0) && 10570 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 10571 TCPS_HAVEESTABLISHED(tp->t_state) && 10572 (tp->snd_max == tp->snd_una) && 10573 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 10574 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 10575 /* 10576 * Here the rwnd is less than 10577 * the pacing size, we are established, 10578 * nothing is outstanding, and there is 10579 * data to send. Enter persists. 10580 */ 10581 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 10582 } 10583 /* 10584 * If last ACK falls within this segment's sequence numbers, record 10585 * the timestamp. NOTE that the test is modified according to the 10586 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). 10587 */ 10588 if ((to->to_flags & TOF_TS) != 0 && 10589 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 10590 tp->ts_recent_age = tcp_ts_getticks(); 10591 tp->ts_recent = to->to_tsval; 10592 } 10593 /* 10594 * This is a pure ack for outstanding data. 10595 */ 10596 KMOD_TCPSTAT_INC(tcps_predack); 10597 10598 /* 10599 * "bad retransmit" recovery. 10600 */ 10601 if ((tp->t_flags & TF_PREVVALID) && 10602 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 10603 tp->t_flags &= ~TF_PREVVALID; 10604 if (tp->t_rxtshift == 1 && 10605 (int)(ticks - tp->t_badrxtwin) < 0) 10606 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack); 10607 } 10608 /* 10609 * Recalculate the transmit timer / rtt. 10610 * 10611 * Some boxes send broken timestamp replies during the SYN+ACK 10612 * phase, ignore timestamps of 0 or we could calculate a huge RTT 10613 * and blow up the retransmit timer. 10614 */ 10615 acked = BYTES_THIS_ACK(tp, th); 10616 10617 #ifdef TCP_HHOOK 10618 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 10619 hhook_run_tcp_est_in(tp, th, to); 10620 #endif 10621 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); 10622 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 10623 if (acked) { 10624 struct mbuf *mfree; 10625 10626 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0); 10627 SOCKBUF_LOCK(&so->so_snd); 10628 mfree = sbcut_locked(&so->so_snd, acked); 10629 tp->snd_una = th->th_ack; 10630 /* Note we want to hold the sb lock through the sendmap adjust */ 10631 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 10632 /* Wake up the socket if we have room to write more */ 10633 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 10634 SOCKBUF_UNLOCK(&so->so_snd); 10635 tp->t_flags |= TF_WAKESOW; 10636 m_freem(mfree); 10637 tp->t_rxtshift = 0; 10638 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 10639 rack_rto_min, rack_rto_max); 10640 rack->rc_tlp_in_progress = 0; 10641 rack->r_ctl.rc_tlp_cnt_out = 0; 10642 /* 10643 * If it is the RXT timer we want to 10644 * stop it, so we can restart a TLP. 10645 */ 10646 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 10647 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10648 #ifdef NETFLIX_HTTP_LOGGING 10649 tcp_http_check_for_comp(rack->rc_tp, th->th_ack); 10650 #endif 10651 } 10652 /* 10653 * Let the congestion control algorithm update congestion control 10654 * related information. This typically means increasing the 10655 * congestion window. 10656 */ 10657 if (tp->snd_wnd < ctf_outstanding(tp)) { 10658 /* The peer collapsed the window */ 10659 rack_collapsed_window(rack); 10660 } else if (rack->rc_has_collapsed) 10661 rack_un_collapse_window(rack); 10662 10663 /* 10664 * Pull snd_wl2 up to prevent seq wrap relative to th_ack. 10665 */ 10666 tp->snd_wl2 = th->th_ack; 10667 tp->t_dupacks = 0; 10668 m_freem(m); 10669 /* ND6_HINT(tp); *//* Some progress has been made. */ 10670 10671 /* 10672 * If all outstanding data are acked, stop retransmit timer, 10673 * otherwise restart timer using current (possibly backed-off) 10674 * value. If process is waiting for space, wakeup/selwakeup/signal. 10675 * If data are ready to send, let tcp_output decide between more 10676 * output or persist. 10677 */ 10678 #ifdef TCPDEBUG 10679 if (so->so_options & SO_DEBUG) 10680 tcp_trace(TA_INPUT, ostate, tp, 10681 (void *)tcp_saveipgen, 10682 &tcp_savetcp, 0); 10683 #endif 10684 if (under_pacing && 10685 (rack->use_fixed_rate == 0) && 10686 (rack->in_probe_rtt == 0) && 10687 rack->rc_gp_dyn_mul && 10688 rack->rc_always_pace) { 10689 /* Check if we are dragging bottom */ 10690 rack_check_bottom_drag(tp, rack, so, acked); 10691 } 10692 if (tp->snd_una == tp->snd_max) { 10693 tp->t_flags &= ~TF_PREVVALID; 10694 rack->r_ctl.retran_during_recovery = 0; 10695 rack->r_ctl.dsack_byte_cnt = 0; 10696 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 10697 if (rack->r_ctl.rc_went_idle_time == 0) 10698 rack->r_ctl.rc_went_idle_time = 1; 10699 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 10700 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 10701 tp->t_acktime = 0; 10702 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 10703 } 10704 if (acked && rack->r_fast_output) 10705 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked); 10706 if (sbavail(&so->so_snd)) { 10707 rack->r_wanted_output = 1; 10708 } 10709 return (1); 10710 } 10711 10712 /* 10713 * Return value of 1, the TCB is unlocked and most 10714 * likely gone, return value of 0, the TCP is still 10715 * locked. 10716 */ 10717 static int 10718 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, 10719 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10720 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 10721 { 10722 int32_t ret_val = 0; 10723 int32_t todrop; 10724 int32_t ourfinisacked = 0; 10725 struct tcp_rack *rack; 10726 10727 ctf_calc_rwin(so, tp); 10728 /* 10729 * If the state is SYN_SENT: if seg contains an ACK, but not for our 10730 * SYN, drop the input. if seg contains a RST, then drop the 10731 * connection. if seg does not contain SYN, then drop it. Otherwise 10732 * this is an acceptable SYN segment initialize tp->rcv_nxt and 10733 * tp->irs if seg contains ack then advance tp->snd_una if seg 10734 * contains an ECE and ECN support is enabled, the stream is ECN 10735 * capable. if SYN has been acked change to ESTABLISHED else 10736 * SYN_RCVD state arrange for segment to be acked (eventually) 10737 * continue processing rest of data/controls. 10738 */ 10739 if ((thflags & TH_ACK) && 10740 (SEQ_LEQ(th->th_ack, tp->iss) || 10741 SEQ_GT(th->th_ack, tp->snd_max))) { 10742 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 10743 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 10744 return (1); 10745 } 10746 if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) { 10747 TCP_PROBE5(connect__refused, NULL, tp, 10748 mtod(m, const char *), tp, th); 10749 tp = tcp_drop(tp, ECONNREFUSED); 10750 ctf_do_drop(m, tp); 10751 return (1); 10752 } 10753 if (thflags & TH_RST) { 10754 ctf_do_drop(m, tp); 10755 return (1); 10756 } 10757 if (!(thflags & TH_SYN)) { 10758 ctf_do_drop(m, tp); 10759 return (1); 10760 } 10761 tp->irs = th->th_seq; 10762 tcp_rcvseqinit(tp); 10763 rack = (struct tcp_rack *)tp->t_fb_ptr; 10764 if (thflags & TH_ACK) { 10765 int tfo_partial = 0; 10766 10767 KMOD_TCPSTAT_INC(tcps_connects); 10768 soisconnected(so); 10769 #ifdef MAC 10770 mac_socketpeer_set_from_mbuf(m, so); 10771 #endif 10772 /* Do window scaling on this connection? */ 10773 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 10774 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 10775 tp->rcv_scale = tp->request_r_scale; 10776 } 10777 tp->rcv_adv += min(tp->rcv_wnd, 10778 TCP_MAXWIN << tp->rcv_scale); 10779 /* 10780 * If not all the data that was sent in the TFO SYN 10781 * has been acked, resend the remainder right away. 10782 */ 10783 if (IS_FASTOPEN(tp->t_flags) && 10784 (tp->snd_una != tp->snd_max)) { 10785 tp->snd_nxt = th->th_ack; 10786 tfo_partial = 1; 10787 } 10788 /* 10789 * If there's data, delay ACK; if there's also a FIN ACKNOW 10790 * will be turned on later. 10791 */ 10792 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) { 10793 rack_timer_cancel(tp, rack, 10794 rack->r_ctl.rc_rcvtime, __LINE__); 10795 tp->t_flags |= TF_DELACK; 10796 } else { 10797 rack->r_wanted_output = 1; 10798 tp->t_flags |= TF_ACKNOW; 10799 rack->rc_dack_toggle = 0; 10800 } 10801 if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) && 10802 (V_tcp_do_ecn == 1)) { 10803 tp->t_flags2 |= TF2_ECN_PERMIT; 10804 KMOD_TCPSTAT_INC(tcps_ecn_shs); 10805 } 10806 if (SEQ_GT(th->th_ack, tp->snd_una)) { 10807 /* 10808 * We advance snd_una for the 10809 * fast open case. If th_ack is 10810 * acknowledging data beyond 10811 * snd_una we can't just call 10812 * ack-processing since the 10813 * data stream in our send-map 10814 * will start at snd_una + 1 (one 10815 * beyond the SYN). If its just 10816 * equal we don't need to do that 10817 * and there is no send_map. 10818 */ 10819 tp->snd_una++; 10820 } 10821 /* 10822 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions: 10823 * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1 10824 */ 10825 tp->t_starttime = ticks; 10826 if (tp->t_flags & TF_NEEDFIN) { 10827 tcp_state_change(tp, TCPS_FIN_WAIT_1); 10828 tp->t_flags &= ~TF_NEEDFIN; 10829 thflags &= ~TH_SYN; 10830 } else { 10831 tcp_state_change(tp, TCPS_ESTABLISHED); 10832 TCP_PROBE5(connect__established, NULL, tp, 10833 mtod(m, const char *), tp, th); 10834 rack_cc_conn_init(tp); 10835 } 10836 } else { 10837 /* 10838 * Received initial SYN in SYN-SENT[*] state => simultaneous 10839 * open. If segment contains CC option and there is a 10840 * cached CC, apply TAO test. If it succeeds, connection is * 10841 * half-synchronized. Otherwise, do 3-way handshake: 10842 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If 10843 * there was no CC option, clear cached CC value. 10844 */ 10845 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 10846 tcp_state_change(tp, TCPS_SYN_RECEIVED); 10847 } 10848 INP_WLOCK_ASSERT(tp->t_inpcb); 10849 /* 10850 * Advance th->th_seq to correspond to first data byte. If data, 10851 * trim to stay within window, dropping FIN if necessary. 10852 */ 10853 th->th_seq++; 10854 if (tlen > tp->rcv_wnd) { 10855 todrop = tlen - tp->rcv_wnd; 10856 m_adj(m, -todrop); 10857 tlen = tp->rcv_wnd; 10858 thflags &= ~TH_FIN; 10859 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin); 10860 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 10861 } 10862 tp->snd_wl1 = th->th_seq - 1; 10863 tp->rcv_up = th->th_seq; 10864 /* 10865 * Client side of transaction: already sent SYN and data. If the 10866 * remote host used T/TCP to validate the SYN, our data will be 10867 * ACK'd; if so, enter normal data segment processing in the middle 10868 * of step 5, ack processing. Otherwise, goto step 6. 10869 */ 10870 if (thflags & TH_ACK) { 10871 /* For syn-sent we need to possibly update the rtt */ 10872 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 10873 uint32_t t, mcts; 10874 10875 mcts = tcp_ts_getticks(); 10876 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 10877 if (!tp->t_rttlow || tp->t_rttlow > t) 10878 tp->t_rttlow = t; 10879 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4); 10880 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 10881 tcp_rack_xmit_timer_commit(rack, tp); 10882 } 10883 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) 10884 return (ret_val); 10885 /* We may have changed to FIN_WAIT_1 above */ 10886 if (tp->t_state == TCPS_FIN_WAIT_1) { 10887 /* 10888 * In FIN_WAIT_1 STATE in addition to the processing 10889 * for the ESTABLISHED state if our FIN is now 10890 * acknowledged then enter FIN_WAIT_2. 10891 */ 10892 if (ourfinisacked) { 10893 /* 10894 * If we can't receive any more data, then 10895 * closing user can proceed. Starting the 10896 * timer is contrary to the specification, 10897 * but if we don't get a FIN we'll hang 10898 * forever. 10899 * 10900 * XXXjl: we should release the tp also, and 10901 * use a compressed state. 10902 */ 10903 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 10904 soisdisconnected(so); 10905 tcp_timer_activate(tp, TT_2MSL, 10906 (tcp_fast_finwait2_recycle ? 10907 tcp_finwait2_timeout : 10908 TP_MAXIDLE(tp))); 10909 } 10910 tcp_state_change(tp, TCPS_FIN_WAIT_2); 10911 } 10912 } 10913 } 10914 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 10915 tiwin, thflags, nxt_pkt)); 10916 } 10917 10918 /* 10919 * Return value of 1, the TCB is unlocked and most 10920 * likely gone, return value of 0, the TCP is still 10921 * locked. 10922 */ 10923 static int 10924 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, 10925 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 10926 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 10927 { 10928 struct tcp_rack *rack; 10929 int32_t ret_val = 0; 10930 int32_t ourfinisacked = 0; 10931 10932 ctf_calc_rwin(so, tp); 10933 if ((thflags & TH_ACK) && 10934 (SEQ_LEQ(th->th_ack, tp->snd_una) || 10935 SEQ_GT(th->th_ack, tp->snd_max))) { 10936 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 10937 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 10938 return (1); 10939 } 10940 rack = (struct tcp_rack *)tp->t_fb_ptr; 10941 if (IS_FASTOPEN(tp->t_flags)) { 10942 /* 10943 * When a TFO connection is in SYN_RECEIVED, the 10944 * only valid packets are the initial SYN, a 10945 * retransmit/copy of the initial SYN (possibly with 10946 * a subset of the original data), a valid ACK, a 10947 * FIN, or a RST. 10948 */ 10949 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) { 10950 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 10951 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 10952 return (1); 10953 } else if (thflags & TH_SYN) { 10954 /* non-initial SYN is ignored */ 10955 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) || 10956 (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) || 10957 (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) { 10958 ctf_do_drop(m, NULL); 10959 return (0); 10960 } 10961 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) { 10962 ctf_do_drop(m, NULL); 10963 return (0); 10964 } 10965 } 10966 if ((thflags & TH_RST) || 10967 (tp->t_fin_is_rst && (thflags & TH_FIN))) 10968 return (ctf_process_rst(m, th, so, tp)); 10969 /* 10970 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 10971 * it's less than ts_recent, drop it. 10972 */ 10973 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 10974 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 10975 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 10976 return (ret_val); 10977 } 10978 /* 10979 * In the SYN-RECEIVED state, validate that the packet belongs to 10980 * this connection before trimming the data to fit the receive 10981 * window. Check the sequence number versus IRS since we know the 10982 * sequence numbers haven't wrapped. This is a partial fix for the 10983 * "LAND" DoS attack. 10984 */ 10985 if (SEQ_LT(th->th_seq, tp->irs)) { 10986 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 10987 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 10988 return (1); 10989 } 10990 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 10991 &rack->r_ctl.challenge_ack_ts, 10992 &rack->r_ctl.challenge_ack_cnt)) { 10993 return (ret_val); 10994 } 10995 /* 10996 * If last ACK falls within this segment's sequence numbers, record 10997 * its timestamp. NOTE: 1) That the test incorporates suggestions 10998 * from the latest proposal of the tcplw@cray.com list (Braden 10999 * 1993/04/26). 2) That updating only on newer timestamps interferes 11000 * with our earlier PAWS tests, so this check should be solely 11001 * predicated on the sequence space of this segment. 3) That we 11002 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11003 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11004 * SEG.Len, This modified check allows us to overcome RFC1323's 11005 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11006 * p.869. In such cases, we can still calculate the RTT correctly 11007 * when RCV.NXT == Last.ACK.Sent. 11008 */ 11009 if ((to->to_flags & TOF_TS) != 0 && 11010 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11011 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11012 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11013 tp->ts_recent_age = tcp_ts_getticks(); 11014 tp->ts_recent = to->to_tsval; 11015 } 11016 tp->snd_wnd = tiwin; 11017 rack_validate_fo_sendwin_up(tp, rack); 11018 /* 11019 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11020 * is on (half-synchronized state), then queue data for later 11021 * processing; else drop segment and return. 11022 */ 11023 if ((thflags & TH_ACK) == 0) { 11024 if (IS_FASTOPEN(tp->t_flags)) { 11025 rack_cc_conn_init(tp); 11026 } 11027 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11028 tiwin, thflags, nxt_pkt)); 11029 } 11030 KMOD_TCPSTAT_INC(tcps_connects); 11031 soisconnected(so); 11032 /* Do window scaling? */ 11033 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 11034 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 11035 tp->rcv_scale = tp->request_r_scale; 11036 } 11037 /* 11038 * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* -> 11039 * FIN-WAIT-1 11040 */ 11041 tp->t_starttime = ticks; 11042 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { 11043 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 11044 tp->t_tfo_pending = NULL; 11045 } 11046 if (tp->t_flags & TF_NEEDFIN) { 11047 tcp_state_change(tp, TCPS_FIN_WAIT_1); 11048 tp->t_flags &= ~TF_NEEDFIN; 11049 } else { 11050 tcp_state_change(tp, TCPS_ESTABLISHED); 11051 TCP_PROBE5(accept__established, NULL, tp, 11052 mtod(m, const char *), tp, th); 11053 /* 11054 * TFO connections call cc_conn_init() during SYN 11055 * processing. Calling it again here for such connections 11056 * is not harmless as it would undo the snd_cwnd reduction 11057 * that occurs when a TFO SYN|ACK is retransmitted. 11058 */ 11059 if (!IS_FASTOPEN(tp->t_flags)) 11060 rack_cc_conn_init(tp); 11061 } 11062 /* 11063 * Account for the ACK of our SYN prior to 11064 * regular ACK processing below, except for 11065 * simultaneous SYN, which is handled later. 11066 */ 11067 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) 11068 tp->snd_una++; 11069 /* 11070 * If segment contains data or ACK, will call tcp_reass() later; if 11071 * not, do so now to pass queued data to user. 11072 */ 11073 if (tlen == 0 && (thflags & TH_FIN) == 0) 11074 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, 11075 (struct mbuf *)0); 11076 tp->snd_wl1 = th->th_seq - 1; 11077 /* For syn-recv we need to possibly update the rtt */ 11078 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { 11079 uint32_t t, mcts; 11080 11081 mcts = tcp_ts_getticks(); 11082 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC; 11083 if (!tp->t_rttlow || tp->t_rttlow > t) 11084 tp->t_rttlow = t; 11085 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5); 11086 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2); 11087 tcp_rack_xmit_timer_commit(rack, tp); 11088 } 11089 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11090 return (ret_val); 11091 } 11092 if (tp->t_state == TCPS_FIN_WAIT_1) { 11093 /* We could have went to FIN_WAIT_1 (or EST) above */ 11094 /* 11095 * In FIN_WAIT_1 STATE in addition to the processing for the 11096 * ESTABLISHED state if our FIN is now acknowledged then 11097 * enter FIN_WAIT_2. 11098 */ 11099 if (ourfinisacked) { 11100 /* 11101 * If we can't receive any more data, then closing 11102 * user can proceed. Starting the timer is contrary 11103 * to the specification, but if we don't get a FIN 11104 * we'll hang forever. 11105 * 11106 * XXXjl: we should release the tp also, and use a 11107 * compressed state. 11108 */ 11109 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11110 soisdisconnected(so); 11111 tcp_timer_activate(tp, TT_2MSL, 11112 (tcp_fast_finwait2_recycle ? 11113 tcp_finwait2_timeout : 11114 TP_MAXIDLE(tp))); 11115 } 11116 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11117 } 11118 } 11119 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11120 tiwin, thflags, nxt_pkt)); 11121 } 11122 11123 /* 11124 * Return value of 1, the TCB is unlocked and most 11125 * likely gone, return value of 0, the TCP is still 11126 * locked. 11127 */ 11128 static int 11129 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, 11130 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11131 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11132 { 11133 int32_t ret_val = 0; 11134 struct tcp_rack *rack; 11135 11136 /* 11137 * Header prediction: check for the two common cases of a 11138 * uni-directional data xfer. If the packet has no control flags, 11139 * is in-sequence, the window didn't change and we're not 11140 * retransmitting, it's a candidate. If the length is zero and the 11141 * ack moved forward, we're the sender side of the xfer. Just free 11142 * the data acked & wake any higher level process that was blocked 11143 * waiting for space. If the length is non-zero and the ack didn't 11144 * move, we're the receiver side. If we're getting packets in-order 11145 * (the reassembly queue is empty), add the data toc The socket 11146 * buffer and note that we need a delayed ack. Make sure that the 11147 * hidden state-flags are also off. Since we check for 11148 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN. 11149 */ 11150 rack = (struct tcp_rack *)tp->t_fb_ptr; 11151 if (__predict_true(((to->to_flags & TOF_SACK) == 0)) && 11152 __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) && 11153 __predict_true(SEGQ_EMPTY(tp)) && 11154 __predict_true(th->th_seq == tp->rcv_nxt)) { 11155 if (tlen == 0) { 11156 if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen, 11157 tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) { 11158 return (0); 11159 } 11160 } else { 11161 if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen, 11162 tiwin, nxt_pkt, iptos)) { 11163 return (0); 11164 } 11165 } 11166 } 11167 ctf_calc_rwin(so, tp); 11168 11169 if ((thflags & TH_RST) || 11170 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11171 return (ctf_process_rst(m, th, so, tp)); 11172 11173 /* 11174 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11175 * synchronized state. 11176 */ 11177 if (thflags & TH_SYN) { 11178 ctf_challenge_ack(m, th, tp, &ret_val); 11179 return (ret_val); 11180 } 11181 /* 11182 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11183 * it's less than ts_recent, drop it. 11184 */ 11185 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11186 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11187 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11188 return (ret_val); 11189 } 11190 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11191 &rack->r_ctl.challenge_ack_ts, 11192 &rack->r_ctl.challenge_ack_cnt)) { 11193 return (ret_val); 11194 } 11195 /* 11196 * If last ACK falls within this segment's sequence numbers, record 11197 * its timestamp. NOTE: 1) That the test incorporates suggestions 11198 * from the latest proposal of the tcplw@cray.com list (Braden 11199 * 1993/04/26). 2) That updating only on newer timestamps interferes 11200 * with our earlier PAWS tests, so this check should be solely 11201 * predicated on the sequence space of this segment. 3) That we 11202 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11203 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11204 * SEG.Len, This modified check allows us to overcome RFC1323's 11205 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11206 * p.869. In such cases, we can still calculate the RTT correctly 11207 * when RCV.NXT == Last.ACK.Sent. 11208 */ 11209 if ((to->to_flags & TOF_TS) != 0 && 11210 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11211 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11212 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11213 tp->ts_recent_age = tcp_ts_getticks(); 11214 tp->ts_recent = to->to_tsval; 11215 } 11216 /* 11217 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11218 * is on (half-synchronized state), then queue data for later 11219 * processing; else drop segment and return. 11220 */ 11221 if ((thflags & TH_ACK) == 0) { 11222 if (tp->t_flags & TF_NEEDSYN) { 11223 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11224 tiwin, thflags, nxt_pkt)); 11225 11226 } else if (tp->t_flags & TF_ACKNOW) { 11227 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11228 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11229 return (ret_val); 11230 } else { 11231 ctf_do_drop(m, NULL); 11232 return (0); 11233 } 11234 } 11235 /* 11236 * Ack processing. 11237 */ 11238 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11239 return (ret_val); 11240 } 11241 if (sbavail(&so->so_snd)) { 11242 if (ctf_progress_timeout_check(tp, true)) { 11243 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); 11244 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11245 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11246 return (1); 11247 } 11248 } 11249 /* State changes only happen in rack_process_data() */ 11250 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11251 tiwin, thflags, nxt_pkt)); 11252 } 11253 11254 /* 11255 * Return value of 1, the TCB is unlocked and most 11256 * likely gone, return value of 0, the TCP is still 11257 * locked. 11258 */ 11259 static int 11260 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, 11261 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11262 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11263 { 11264 int32_t ret_val = 0; 11265 struct tcp_rack *rack; 11266 11267 rack = (struct tcp_rack *)tp->t_fb_ptr; 11268 ctf_calc_rwin(so, tp); 11269 if ((thflags & TH_RST) || 11270 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11271 return (ctf_process_rst(m, th, so, tp)); 11272 /* 11273 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11274 * synchronized state. 11275 */ 11276 if (thflags & TH_SYN) { 11277 ctf_challenge_ack(m, th, tp, &ret_val); 11278 return (ret_val); 11279 } 11280 /* 11281 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11282 * it's less than ts_recent, drop it. 11283 */ 11284 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11285 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11286 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11287 return (ret_val); 11288 } 11289 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11290 &rack->r_ctl.challenge_ack_ts, 11291 &rack->r_ctl.challenge_ack_cnt)) { 11292 return (ret_val); 11293 } 11294 /* 11295 * If last ACK falls within this segment's sequence numbers, record 11296 * its timestamp. NOTE: 1) That the test incorporates suggestions 11297 * from the latest proposal of the tcplw@cray.com list (Braden 11298 * 1993/04/26). 2) That updating only on newer timestamps interferes 11299 * with our earlier PAWS tests, so this check should be solely 11300 * predicated on the sequence space of this segment. 3) That we 11301 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11302 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11303 * SEG.Len, This modified check allows us to overcome RFC1323's 11304 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11305 * p.869. In such cases, we can still calculate the RTT correctly 11306 * when RCV.NXT == Last.ACK.Sent. 11307 */ 11308 if ((to->to_flags & TOF_TS) != 0 && 11309 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11310 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11311 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11312 tp->ts_recent_age = tcp_ts_getticks(); 11313 tp->ts_recent = to->to_tsval; 11314 } 11315 /* 11316 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11317 * is on (half-synchronized state), then queue data for later 11318 * processing; else drop segment and return. 11319 */ 11320 if ((thflags & TH_ACK) == 0) { 11321 if (tp->t_flags & TF_NEEDSYN) { 11322 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11323 tiwin, thflags, nxt_pkt)); 11324 11325 } else if (tp->t_flags & TF_ACKNOW) { 11326 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11327 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11328 return (ret_val); 11329 } else { 11330 ctf_do_drop(m, NULL); 11331 return (0); 11332 } 11333 } 11334 /* 11335 * Ack processing. 11336 */ 11337 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { 11338 return (ret_val); 11339 } 11340 if (sbavail(&so->so_snd)) { 11341 if (ctf_progress_timeout_check(tp, true)) { 11342 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11343 tp, tick, PROGRESS_DROP, __LINE__); 11344 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11345 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11346 return (1); 11347 } 11348 } 11349 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11350 tiwin, thflags, nxt_pkt)); 11351 } 11352 11353 static int 11354 rack_check_data_after_close(struct mbuf *m, 11355 struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so) 11356 { 11357 struct tcp_rack *rack; 11358 11359 rack = (struct tcp_rack *)tp->t_fb_ptr; 11360 if (rack->rc_allow_data_af_clo == 0) { 11361 close_now: 11362 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11363 /* tcp_close will kill the inp pre-log the Reset */ 11364 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 11365 tp = tcp_close(tp); 11366 KMOD_TCPSTAT_INC(tcps_rcvafterclose); 11367 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen)); 11368 return (1); 11369 } 11370 if (sbavail(&so->so_snd) == 0) 11371 goto close_now; 11372 /* Ok we allow data that is ignored and a followup reset */ 11373 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 11374 tp->rcv_nxt = th->th_seq + *tlen; 11375 tp->t_flags2 |= TF2_DROP_AF_DATA; 11376 rack->r_wanted_output = 1; 11377 *tlen = 0; 11378 return (0); 11379 } 11380 11381 /* 11382 * Return value of 1, the TCB is unlocked and most 11383 * likely gone, return value of 0, the TCP is still 11384 * locked. 11385 */ 11386 static int 11387 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, 11388 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11389 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11390 { 11391 int32_t ret_val = 0; 11392 int32_t ourfinisacked = 0; 11393 struct tcp_rack *rack; 11394 11395 rack = (struct tcp_rack *)tp->t_fb_ptr; 11396 ctf_calc_rwin(so, tp); 11397 11398 if ((thflags & TH_RST) || 11399 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11400 return (ctf_process_rst(m, th, so, tp)); 11401 /* 11402 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11403 * synchronized state. 11404 */ 11405 if (thflags & TH_SYN) { 11406 ctf_challenge_ack(m, th, tp, &ret_val); 11407 return (ret_val); 11408 } 11409 /* 11410 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11411 * it's less than ts_recent, drop it. 11412 */ 11413 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11414 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11415 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11416 return (ret_val); 11417 } 11418 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11419 &rack->r_ctl.challenge_ack_ts, 11420 &rack->r_ctl.challenge_ack_cnt)) { 11421 return (ret_val); 11422 } 11423 /* 11424 * If new data are received on a connection after the user processes 11425 * are gone, then RST the other end. 11426 */ 11427 if ((so->so_state & SS_NOFDREF) && tlen) { 11428 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 11429 return (1); 11430 } 11431 /* 11432 * If last ACK falls within this segment's sequence numbers, record 11433 * its timestamp. NOTE: 1) That the test incorporates suggestions 11434 * from the latest proposal of the tcplw@cray.com list (Braden 11435 * 1993/04/26). 2) That updating only on newer timestamps interferes 11436 * with our earlier PAWS tests, so this check should be solely 11437 * predicated on the sequence space of this segment. 3) That we 11438 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11439 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11440 * SEG.Len, This modified check allows us to overcome RFC1323's 11441 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11442 * p.869. In such cases, we can still calculate the RTT correctly 11443 * when RCV.NXT == Last.ACK.Sent. 11444 */ 11445 if ((to->to_flags & TOF_TS) != 0 && 11446 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11447 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11448 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11449 tp->ts_recent_age = tcp_ts_getticks(); 11450 tp->ts_recent = to->to_tsval; 11451 } 11452 /* 11453 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11454 * is on (half-synchronized state), then queue data for later 11455 * processing; else drop segment and return. 11456 */ 11457 if ((thflags & TH_ACK) == 0) { 11458 if (tp->t_flags & TF_NEEDSYN) { 11459 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11460 tiwin, thflags, nxt_pkt)); 11461 } else if (tp->t_flags & TF_ACKNOW) { 11462 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11463 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11464 return (ret_val); 11465 } else { 11466 ctf_do_drop(m, NULL); 11467 return (0); 11468 } 11469 } 11470 /* 11471 * Ack processing. 11472 */ 11473 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11474 return (ret_val); 11475 } 11476 if (ourfinisacked) { 11477 /* 11478 * If we can't receive any more data, then closing user can 11479 * proceed. Starting the timer is contrary to the 11480 * specification, but if we don't get a FIN we'll hang 11481 * forever. 11482 * 11483 * XXXjl: we should release the tp also, and use a 11484 * compressed state. 11485 */ 11486 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 11487 soisdisconnected(so); 11488 tcp_timer_activate(tp, TT_2MSL, 11489 (tcp_fast_finwait2_recycle ? 11490 tcp_finwait2_timeout : 11491 TP_MAXIDLE(tp))); 11492 } 11493 tcp_state_change(tp, TCPS_FIN_WAIT_2); 11494 } 11495 if (sbavail(&so->so_snd)) { 11496 if (ctf_progress_timeout_check(tp, true)) { 11497 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11498 tp, tick, PROGRESS_DROP, __LINE__); 11499 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11500 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11501 return (1); 11502 } 11503 } 11504 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11505 tiwin, thflags, nxt_pkt)); 11506 } 11507 11508 /* 11509 * Return value of 1, the TCB is unlocked and most 11510 * likely gone, return value of 0, the TCP is still 11511 * locked. 11512 */ 11513 static int 11514 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, 11515 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11516 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11517 { 11518 int32_t ret_val = 0; 11519 int32_t ourfinisacked = 0; 11520 struct tcp_rack *rack; 11521 11522 rack = (struct tcp_rack *)tp->t_fb_ptr; 11523 ctf_calc_rwin(so, tp); 11524 11525 if ((thflags & TH_RST) || 11526 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11527 return (ctf_process_rst(m, th, so, tp)); 11528 /* 11529 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11530 * synchronized state. 11531 */ 11532 if (thflags & TH_SYN) { 11533 ctf_challenge_ack(m, th, tp, &ret_val); 11534 return (ret_val); 11535 } 11536 /* 11537 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11538 * it's less than ts_recent, drop it. 11539 */ 11540 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11541 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11542 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11543 return (ret_val); 11544 } 11545 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11546 &rack->r_ctl.challenge_ack_ts, 11547 &rack->r_ctl.challenge_ack_cnt)) { 11548 return (ret_val); 11549 } 11550 /* 11551 * If new data are received on a connection after the user processes 11552 * are gone, then RST the other end. 11553 */ 11554 if ((so->so_state & SS_NOFDREF) && tlen) { 11555 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 11556 return (1); 11557 } 11558 /* 11559 * If last ACK falls within this segment's sequence numbers, record 11560 * its timestamp. NOTE: 1) That the test incorporates suggestions 11561 * from the latest proposal of the tcplw@cray.com list (Braden 11562 * 1993/04/26). 2) That updating only on newer timestamps interferes 11563 * with our earlier PAWS tests, so this check should be solely 11564 * predicated on the sequence space of this segment. 3) That we 11565 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11566 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11567 * SEG.Len, This modified check allows us to overcome RFC1323's 11568 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11569 * p.869. In such cases, we can still calculate the RTT correctly 11570 * when RCV.NXT == Last.ACK.Sent. 11571 */ 11572 if ((to->to_flags & TOF_TS) != 0 && 11573 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11574 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11575 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11576 tp->ts_recent_age = tcp_ts_getticks(); 11577 tp->ts_recent = to->to_tsval; 11578 } 11579 /* 11580 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11581 * is on (half-synchronized state), then queue data for later 11582 * processing; else drop segment and return. 11583 */ 11584 if ((thflags & TH_ACK) == 0) { 11585 if (tp->t_flags & TF_NEEDSYN) { 11586 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11587 tiwin, thflags, nxt_pkt)); 11588 } else if (tp->t_flags & TF_ACKNOW) { 11589 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11590 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11591 return (ret_val); 11592 } else { 11593 ctf_do_drop(m, NULL); 11594 return (0); 11595 } 11596 } 11597 /* 11598 * Ack processing. 11599 */ 11600 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11601 return (ret_val); 11602 } 11603 if (ourfinisacked) { 11604 tcp_twstart(tp); 11605 m_freem(m); 11606 return (1); 11607 } 11608 if (sbavail(&so->so_snd)) { 11609 if (ctf_progress_timeout_check(tp, true)) { 11610 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11611 tp, tick, PROGRESS_DROP, __LINE__); 11612 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11613 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11614 return (1); 11615 } 11616 } 11617 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11618 tiwin, thflags, nxt_pkt)); 11619 } 11620 11621 /* 11622 * Return value of 1, the TCB is unlocked and most 11623 * likely gone, return value of 0, the TCP is still 11624 * locked. 11625 */ 11626 static int 11627 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, 11628 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11629 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11630 { 11631 int32_t ret_val = 0; 11632 int32_t ourfinisacked = 0; 11633 struct tcp_rack *rack; 11634 11635 rack = (struct tcp_rack *)tp->t_fb_ptr; 11636 ctf_calc_rwin(so, tp); 11637 11638 if ((thflags & TH_RST) || 11639 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11640 return (ctf_process_rst(m, th, so, tp)); 11641 /* 11642 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11643 * synchronized state. 11644 */ 11645 if (thflags & TH_SYN) { 11646 ctf_challenge_ack(m, th, tp, &ret_val); 11647 return (ret_val); 11648 } 11649 /* 11650 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11651 * it's less than ts_recent, drop it. 11652 */ 11653 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11654 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11655 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11656 return (ret_val); 11657 } 11658 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11659 &rack->r_ctl.challenge_ack_ts, 11660 &rack->r_ctl.challenge_ack_cnt)) { 11661 return (ret_val); 11662 } 11663 /* 11664 * If new data are received on a connection after the user processes 11665 * are gone, then RST the other end. 11666 */ 11667 if ((so->so_state & SS_NOFDREF) && tlen) { 11668 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 11669 return (1); 11670 } 11671 /* 11672 * If last ACK falls within this segment's sequence numbers, record 11673 * its timestamp. NOTE: 1) That the test incorporates suggestions 11674 * from the latest proposal of the tcplw@cray.com list (Braden 11675 * 1993/04/26). 2) That updating only on newer timestamps interferes 11676 * with our earlier PAWS tests, so this check should be solely 11677 * predicated on the sequence space of this segment. 3) That we 11678 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11679 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11680 * SEG.Len, This modified check allows us to overcome RFC1323's 11681 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11682 * p.869. In such cases, we can still calculate the RTT correctly 11683 * when RCV.NXT == Last.ACK.Sent. 11684 */ 11685 if ((to->to_flags & TOF_TS) != 0 && 11686 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11687 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11688 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11689 tp->ts_recent_age = tcp_ts_getticks(); 11690 tp->ts_recent = to->to_tsval; 11691 } 11692 /* 11693 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11694 * is on (half-synchronized state), then queue data for later 11695 * processing; else drop segment and return. 11696 */ 11697 if ((thflags & TH_ACK) == 0) { 11698 if (tp->t_flags & TF_NEEDSYN) { 11699 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11700 tiwin, thflags, nxt_pkt)); 11701 } else if (tp->t_flags & TF_ACKNOW) { 11702 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11703 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11704 return (ret_val); 11705 } else { 11706 ctf_do_drop(m, NULL); 11707 return (0); 11708 } 11709 } 11710 /* 11711 * case TCPS_LAST_ACK: Ack processing. 11712 */ 11713 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11714 return (ret_val); 11715 } 11716 if (ourfinisacked) { 11717 tp = tcp_close(tp); 11718 ctf_do_drop(m, tp); 11719 return (1); 11720 } 11721 if (sbavail(&so->so_snd)) { 11722 if (ctf_progress_timeout_check(tp, true)) { 11723 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11724 tp, tick, PROGRESS_DROP, __LINE__); 11725 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11726 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11727 return (1); 11728 } 11729 } 11730 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11731 tiwin, thflags, nxt_pkt)); 11732 } 11733 11734 /* 11735 * Return value of 1, the TCB is unlocked and most 11736 * likely gone, return value of 0, the TCP is still 11737 * locked. 11738 */ 11739 static int 11740 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, 11741 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, 11742 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) 11743 { 11744 int32_t ret_val = 0; 11745 int32_t ourfinisacked = 0; 11746 struct tcp_rack *rack; 11747 11748 rack = (struct tcp_rack *)tp->t_fb_ptr; 11749 ctf_calc_rwin(so, tp); 11750 11751 /* Reset receive buffer auto scaling when not in bulk receive mode. */ 11752 if ((thflags & TH_RST) || 11753 (tp->t_fin_is_rst && (thflags & TH_FIN))) 11754 return (ctf_process_rst(m, th, so, tp)); 11755 /* 11756 * RFC5961 Section 4.2 Send challenge ACK for any SYN in 11757 * synchronized state. 11758 */ 11759 if (thflags & TH_SYN) { 11760 ctf_challenge_ack(m, th, tp, &ret_val); 11761 return (ret_val); 11762 } 11763 /* 11764 * RFC 1323 PAWS: If we have a timestamp reply on this segment and 11765 * it's less than ts_recent, drop it. 11766 */ 11767 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && 11768 TSTMP_LT(to->to_tsval, tp->ts_recent)) { 11769 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) 11770 return (ret_val); 11771 } 11772 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val, 11773 &rack->r_ctl.challenge_ack_ts, 11774 &rack->r_ctl.challenge_ack_cnt)) { 11775 return (ret_val); 11776 } 11777 /* 11778 * If new data are received on a connection after the user processes 11779 * are gone, then RST the other end. 11780 */ 11781 if ((so->so_state & SS_NOFDREF) && 11782 tlen) { 11783 if (rack_check_data_after_close(m, tp, &tlen, th, so)) 11784 return (1); 11785 } 11786 /* 11787 * If last ACK falls within this segment's sequence numbers, record 11788 * its timestamp. NOTE: 1) That the test incorporates suggestions 11789 * from the latest proposal of the tcplw@cray.com list (Braden 11790 * 1993/04/26). 2) That updating only on newer timestamps interferes 11791 * with our earlier PAWS tests, so this check should be solely 11792 * predicated on the sequence space of this segment. 3) That we 11793 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ 11794 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + 11795 * SEG.Len, This modified check allows us to overcome RFC1323's 11796 * limitations as described in Stevens TCP/IP Illustrated Vol. 2 11797 * p.869. In such cases, we can still calculate the RTT correctly 11798 * when RCV.NXT == Last.ACK.Sent. 11799 */ 11800 if ((to->to_flags & TOF_TS) != 0 && 11801 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 11802 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 11803 ((thflags & (TH_SYN | TH_FIN)) != 0))) { 11804 tp->ts_recent_age = tcp_ts_getticks(); 11805 tp->ts_recent = to->to_tsval; 11806 } 11807 /* 11808 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag 11809 * is on (half-synchronized state), then queue data for later 11810 * processing; else drop segment and return. 11811 */ 11812 if ((thflags & TH_ACK) == 0) { 11813 if (tp->t_flags & TF_NEEDSYN) { 11814 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11815 tiwin, thflags, nxt_pkt)); 11816 } else if (tp->t_flags & TF_ACKNOW) { 11817 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); 11818 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; 11819 return (ret_val); 11820 } else { 11821 ctf_do_drop(m, NULL); 11822 return (0); 11823 } 11824 } 11825 /* 11826 * Ack processing. 11827 */ 11828 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { 11829 return (ret_val); 11830 } 11831 if (sbavail(&so->so_snd)) { 11832 if (ctf_progress_timeout_check(tp, true)) { 11833 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 11834 tp, tick, PROGRESS_DROP, __LINE__); 11835 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 11836 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 11837 return (1); 11838 } 11839 } 11840 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, 11841 tiwin, thflags, nxt_pkt)); 11842 } 11843 11844 static void inline 11845 rack_clear_rate_sample(struct tcp_rack *rack) 11846 { 11847 rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY; 11848 rack->r_ctl.rack_rs.rs_rtt_cnt = 0; 11849 rack->r_ctl.rack_rs.rs_rtt_tot = 0; 11850 } 11851 11852 static void 11853 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override) 11854 { 11855 uint64_t bw_est, rate_wanted; 11856 int chged = 0; 11857 uint32_t user_max, orig_min, orig_max; 11858 11859 orig_min = rack->r_ctl.rc_pace_min_segs; 11860 orig_max = rack->r_ctl.rc_pace_max_segs; 11861 user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs; 11862 if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs) 11863 chged = 1; 11864 rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp); 11865 if (rack->use_fixed_rate || rack->rc_force_max_seg) { 11866 if (user_max != rack->r_ctl.rc_pace_max_segs) 11867 chged = 1; 11868 } 11869 if (rack->rc_force_max_seg) { 11870 rack->r_ctl.rc_pace_max_segs = user_max; 11871 } else if (rack->use_fixed_rate) { 11872 bw_est = rack_get_bw(rack); 11873 if ((rack->r_ctl.crte == NULL) || 11874 (bw_est != rack->r_ctl.crte->rate)) { 11875 rack->r_ctl.rc_pace_max_segs = user_max; 11876 } else { 11877 /* We are pacing right at the hardware rate */ 11878 uint32_t segsiz; 11879 11880 segsiz = min(ctf_fixed_maxseg(tp), 11881 rack->r_ctl.rc_pace_min_segs); 11882 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size( 11883 tp, bw_est, segsiz, 0, 11884 rack->r_ctl.crte, NULL); 11885 } 11886 } else if (rack->rc_always_pace) { 11887 if (rack->r_ctl.gp_bw || 11888 #ifdef NETFLIX_PEAKRATE 11889 rack->rc_tp->t_maxpeakrate || 11890 #endif 11891 rack->r_ctl.init_rate) { 11892 /* We have a rate of some sort set */ 11893 uint32_t orig; 11894 11895 bw_est = rack_get_bw(rack); 11896 orig = rack->r_ctl.rc_pace_max_segs; 11897 if (fill_override) 11898 rate_wanted = *fill_override; 11899 else 11900 rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL); 11901 if (rate_wanted) { 11902 /* We have something */ 11903 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, 11904 rate_wanted, 11905 ctf_fixed_maxseg(rack->rc_tp)); 11906 } else 11907 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs; 11908 if (orig != rack->r_ctl.rc_pace_max_segs) 11909 chged = 1; 11910 } else if ((rack->r_ctl.gp_bw == 0) && 11911 (rack->r_ctl.rc_pace_max_segs == 0)) { 11912 /* 11913 * If we have nothing limit us to bursting 11914 * out IW sized pieces. 11915 */ 11916 chged = 1; 11917 rack->r_ctl.rc_pace_max_segs = rc_init_window(rack); 11918 } 11919 } 11920 if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) { 11921 chged = 1; 11922 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES; 11923 } 11924 if (chged) 11925 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2); 11926 } 11927 11928 11929 static void 11930 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack) 11931 { 11932 #ifdef INET6 11933 struct ip6_hdr *ip6 = NULL; 11934 #endif 11935 #ifdef INET 11936 struct ip *ip = NULL; 11937 #endif 11938 struct udphdr *udp = NULL; 11939 11940 /* Ok lets fill in the fast block, it can only be used with no IP options! */ 11941 #ifdef INET6 11942 if (rack->r_is_v6) { 11943 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 11944 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 11945 if (tp->t_port) { 11946 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 11947 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr)); 11948 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 11949 udp->uh_dport = tp->t_port; 11950 rack->r_ctl.fsb.udp = udp; 11951 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 11952 } else 11953 { 11954 rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1); 11955 rack->r_ctl.fsb.udp = NULL; 11956 } 11957 tcpip_fillheaders(rack->rc_inp, 11958 tp->t_port, 11959 ip6, rack->r_ctl.fsb.th); 11960 } else 11961 #endif /* INET6 */ 11962 { 11963 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr); 11964 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 11965 if (tp->t_port) { 11966 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr); 11967 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip)); 11968 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 11969 udp->uh_dport = tp->t_port; 11970 rack->r_ctl.fsb.udp = udp; 11971 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1); 11972 } else 11973 { 11974 rack->r_ctl.fsb.udp = NULL; 11975 rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1); 11976 } 11977 tcpip_fillheaders(rack->rc_inp, 11978 tp->t_port, 11979 ip, rack->r_ctl.fsb.th); 11980 } 11981 rack->r_fsb_inited = 1; 11982 } 11983 11984 static int 11985 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack) 11986 { 11987 /* 11988 * Allocate the larger of spaces V6 if available else just 11989 * V4 and include udphdr (overbook) 11990 */ 11991 #ifdef INET6 11992 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr); 11993 #else 11994 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr); 11995 #endif 11996 rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len, 11997 M_TCPFSB, M_NOWAIT|M_ZERO); 11998 if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) { 11999 return (ENOMEM); 12000 } 12001 rack->r_fsb_inited = 0; 12002 return (0); 12003 } 12004 12005 static int 12006 rack_init(struct tcpcb *tp) 12007 { 12008 struct tcp_rack *rack = NULL; 12009 struct rack_sendmap *insret; 12010 uint32_t iwin, snt, us_cts; 12011 int err; 12012 12013 tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT); 12014 if (tp->t_fb_ptr == NULL) { 12015 /* 12016 * We need to allocate memory but cant. The INP and INP_INFO 12017 * locks and they are recusive (happens during setup. So a 12018 * scheme to drop the locks fails :( 12019 * 12020 */ 12021 return (ENOMEM); 12022 } 12023 memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack)); 12024 12025 rack = (struct tcp_rack *)tp->t_fb_ptr; 12026 RB_INIT(&rack->r_ctl.rc_mtree); 12027 TAILQ_INIT(&rack->r_ctl.rc_free); 12028 TAILQ_INIT(&rack->r_ctl.rc_tmap); 12029 rack->rc_tp = tp; 12030 rack->rc_inp = tp->t_inpcb; 12031 /* Set the flag */ 12032 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 12033 /* Probably not needed but lets be sure */ 12034 rack_clear_rate_sample(rack); 12035 /* 12036 * Save off the default values, socket options will poke 12037 * at these if pacing is not on or we have not yet 12038 * reached where pacing is on (gp_ready/fixed enabled). 12039 * When they get set into the CC module (when gp_ready 12040 * is enabled or we enable fixed) then we will set these 12041 * values into the CC and place in here the old values 12042 * so we have a restoral. Then we will set the flag 12043 * rc_pacing_cc_set. That way whenever we turn off pacing 12044 * or switch off this stack, we will know to go restore 12045 * the saved values. 12046 */ 12047 rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn; 12048 rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn; 12049 /* We want abe like behavior as well */ 12050 rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN; 12051 rack->r_ctl.rc_reorder_fade = rack_reorder_fade; 12052 rack->rc_allow_data_af_clo = rack_ignore_data_after_close; 12053 rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh; 12054 if (use_rack_rr) 12055 rack->use_rack_rr = 1; 12056 if (V_tcp_delack_enabled) 12057 tp->t_delayed_ack = 1; 12058 else 12059 tp->t_delayed_ack = 0; 12060 #ifdef TCP_ACCOUNTING 12061 if (rack_tcp_accounting) { 12062 tp->t_flags2 |= TF2_TCP_ACCOUNTING; 12063 } 12064 #endif 12065 if (rack_enable_shared_cwnd) 12066 rack->rack_enable_scwnd = 1; 12067 rack->rc_user_set_max_segs = rack_hptsi_segments; 12068 rack->rc_force_max_seg = 0; 12069 if (rack_use_imac_dack) 12070 rack->rc_dack_mode = 1; 12071 TAILQ_INIT(&rack->r_ctl.opt_list); 12072 rack->r_ctl.rc_reorder_shift = rack_reorder_thresh; 12073 rack->r_ctl.rc_pkt_delay = rack_pkt_delay; 12074 rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp; 12075 rack->r_ctl.rc_lowest_us_rtt = 0xffffffff; 12076 rack->r_ctl.rc_highest_us_rtt = 0; 12077 rack->r_ctl.bw_rate_cap = rack_bw_rate_cap; 12078 if (rack_use_cmp_acks) 12079 rack->r_use_cmp_ack = 1; 12080 if (rack_disable_prr) 12081 rack->rack_no_prr = 1; 12082 if (rack_gp_no_rec_chg) 12083 rack->rc_gp_no_rec_chg = 1; 12084 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 12085 rack->rc_always_pace = 1; 12086 if (rack->use_fixed_rate || rack->gp_ready) 12087 rack_set_cc_pacing(rack); 12088 } else 12089 rack->rc_always_pace = 0; 12090 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) 12091 rack->r_mbuf_queue = 1; 12092 else 12093 rack->r_mbuf_queue = 0; 12094 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 12095 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 12096 else 12097 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 12098 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12099 if (rack_limits_scwnd) 12100 rack->r_limit_scw = 1; 12101 else 12102 rack->r_limit_scw = 0; 12103 rack->rc_labc = V_tcp_abc_l_var; 12104 rack->r_ctl.rc_high_rwnd = tp->snd_wnd; 12105 rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 12106 rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method; 12107 rack->rack_tlp_threshold_use = rack_tlp_threshold_use; 12108 rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr; 12109 rack->r_ctl.rc_min_to = rack_min_to; 12110 microuptime(&rack->r_ctl.act_rcv_time); 12111 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; 12112 rack->r_running_late = 0; 12113 rack->r_running_early = 0; 12114 rack->rc_init_win = rack_default_init_window; 12115 rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss; 12116 if (rack_hw_up_only) 12117 rack->r_up_only = 1; 12118 if (rack_do_dyn_mul) { 12119 /* When dynamic adjustment is on CA needs to start at 100% */ 12120 rack->rc_gp_dyn_mul = 1; 12121 if (rack_do_dyn_mul >= 100) 12122 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 12123 } else 12124 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 12125 rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec; 12126 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; 12127 rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time); 12128 setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN, 12129 rack_probertt_filter_life); 12130 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 12131 rack->r_ctl.rc_lower_rtt_us_cts = us_cts; 12132 rack->r_ctl.rc_time_of_last_probertt = us_cts; 12133 rack->r_ctl.challenge_ack_ts = tcp_ts_getticks(); 12134 rack->r_ctl.rc_time_probertt_starts = 0; 12135 /* We require at least one measurement, even if the sysctl is 0 */ 12136 if (rack_req_measurements) 12137 rack->r_ctl.req_measurements = rack_req_measurements; 12138 else 12139 rack->r_ctl.req_measurements = 1; 12140 if (rack_enable_hw_pacing) 12141 rack->rack_hdw_pace_ena = 1; 12142 if (rack_hw_rate_caps) 12143 rack->r_rack_hw_rate_caps = 1; 12144 /* Do we force on detection? */ 12145 #ifdef NETFLIX_EXP_DETECTION 12146 if (tcp_force_detection) 12147 rack->do_detection = 1; 12148 else 12149 #endif 12150 rack->do_detection = 0; 12151 if (rack_non_rxt_use_cr) 12152 rack->rack_rec_nonrxt_use_cr = 1; 12153 err = rack_init_fsb(tp, rack); 12154 if (err) { 12155 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12156 tp->t_fb_ptr = NULL; 12157 return (err); 12158 } 12159 if (tp->snd_una != tp->snd_max) { 12160 /* Create a send map for the current outstanding data */ 12161 struct rack_sendmap *rsm; 12162 12163 rsm = rack_alloc(rack); 12164 if (rsm == NULL) { 12165 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12166 tp->t_fb_ptr = NULL; 12167 return (ENOMEM); 12168 } 12169 rsm->r_no_rtt_allowed = 1; 12170 rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time); 12171 rsm->r_rtr_cnt = 1; 12172 rsm->r_rtr_bytes = 0; 12173 if (tp->t_flags & TF_SENTFIN) { 12174 rsm->r_end = tp->snd_max - 1; 12175 rsm->r_flags |= RACK_HAS_FIN; 12176 } else { 12177 rsm->r_end = tp->snd_max; 12178 } 12179 if (tp->snd_una == tp->iss) { 12180 /* The data space is one beyond snd_una */ 12181 rsm->r_flags |= RACK_HAS_SYN; 12182 rsm->r_start = tp->iss; 12183 rsm->r_end = rsm->r_start + (tp->snd_max - tp->snd_una); 12184 } else 12185 rsm->r_start = tp->snd_una; 12186 rsm->r_dupack = 0; 12187 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) { 12188 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff); 12189 rsm->orig_m_len = rsm->m->m_len; 12190 } else { 12191 /* 12192 * This can happen if we have a stand-alone FIN or 12193 * SYN. 12194 */ 12195 rsm->m = NULL; 12196 rsm->orig_m_len = 0; 12197 rsm->soff = 0; 12198 } 12199 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12200 #ifdef INVARIANTS 12201 if (insret != NULL) { 12202 panic("Insert in rb tree fails ret:%p rack:%p rsm:%p", 12203 insret, rack, rsm); 12204 } 12205 #endif 12206 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); 12207 rsm->r_in_tmap = 1; 12208 } 12209 /* 12210 * Timers in Rack are kept in microseconds so lets 12211 * convert any initial incoming variables 12212 * from ticks into usecs. Note that we 12213 * also change the values of t_srtt and t_rttvar, if 12214 * they are non-zero. They are kept with a 5 12215 * bit decimal so we have to carefully convert 12216 * these to get the full precision. 12217 */ 12218 rack_convert_rtts(tp); 12219 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 12220 if (rack_def_profile) 12221 rack_set_profile(rack, rack_def_profile); 12222 /* Cancel the GP measurement in progress */ 12223 tp->t_flags &= ~TF_GPUTINPROG; 12224 if (SEQ_GT(tp->snd_max, tp->iss)) 12225 snt = tp->snd_max - tp->iss; 12226 else 12227 snt = 0; 12228 iwin = rc_init_window(rack); 12229 if (snt < iwin) { 12230 /* We are not past the initial window 12231 * so we need to make sure cwnd is 12232 * correct. 12233 */ 12234 if (tp->snd_cwnd < iwin) 12235 tp->snd_cwnd = iwin; 12236 /* 12237 * If we are within the initial window 12238 * we want ssthresh to be unlimited. Setting 12239 * it to the rwnd (which the default stack does 12240 * and older racks) is not really a good idea 12241 * since we want to be in SS and grow both the 12242 * cwnd and the rwnd (via dynamic rwnd growth). If 12243 * we set it to the rwnd then as the peer grows its 12244 * rwnd we will be stuck in CA and never hit SS. 12245 * 12246 * Its far better to raise it up high (this takes the 12247 * risk that there as been a loss already, probably 12248 * we should have an indicator in all stacks of loss 12249 * but we don't), but considering the normal use this 12250 * is a risk worth taking. The consequences of not 12251 * hitting SS are far worse than going one more time 12252 * into it early on (before we have sent even a IW). 12253 * It is highly unlikely that we will have had a loss 12254 * before getting the IW out. 12255 */ 12256 tp->snd_ssthresh = 0xffffffff; 12257 } 12258 rack_stop_all_timers(tp); 12259 /* Lets setup the fsb block */ 12260 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 12261 rack_log_rtt_shrinks(rack, us_cts, tp->t_rxtcur, 12262 __LINE__, RACK_RTTS_INIT); 12263 return (0); 12264 } 12265 12266 static int 12267 rack_handoff_ok(struct tcpcb *tp) 12268 { 12269 if ((tp->t_state == TCPS_CLOSED) || 12270 (tp->t_state == TCPS_LISTEN)) { 12271 /* Sure no problem though it may not stick */ 12272 return (0); 12273 } 12274 if ((tp->t_state == TCPS_SYN_SENT) || 12275 (tp->t_state == TCPS_SYN_RECEIVED)) { 12276 /* 12277 * We really don't know if you support sack, 12278 * you have to get to ESTAB or beyond to tell. 12279 */ 12280 return (EAGAIN); 12281 } 12282 if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) { 12283 /* 12284 * Rack will only send a FIN after all data is acknowledged. 12285 * So in this case we have more data outstanding. We can't 12286 * switch stacks until either all data and only the FIN 12287 * is left (in which case rack_init() now knows how 12288 * to deal with that) <or> all is acknowledged and we 12289 * are only left with incoming data, though why you 12290 * would want to switch to rack after all data is acknowledged 12291 * I have no idea (rrs)! 12292 */ 12293 return (EAGAIN); 12294 } 12295 if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){ 12296 return (0); 12297 } 12298 /* 12299 * If we reach here we don't do SACK on this connection so we can 12300 * never do rack. 12301 */ 12302 return (EINVAL); 12303 } 12304 12305 12306 static void 12307 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged) 12308 { 12309 int ack_cmp = 0; 12310 12311 if (tp->t_fb_ptr) { 12312 struct tcp_rack *rack; 12313 struct rack_sendmap *rsm, *nrsm, *rm; 12314 12315 rack = (struct tcp_rack *)tp->t_fb_ptr; 12316 if (tp->t_in_pkt) { 12317 /* 12318 * Since we are switching we need to process any 12319 * inbound packets in case a compressed ack is 12320 * in queue or the new stack does not support 12321 * mbuf queuing. These packets in theory should 12322 * have been handled by the old stack anyway. 12323 */ 12324 if ((rack->rc_inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)) || 12325 (rack->rc_inp->inp_flags2 & INP_FREED)) { 12326 /* Kill all the packets */ 12327 struct mbuf *save, *m; 12328 12329 m = tp->t_in_pkt; 12330 tp->t_in_pkt = NULL; 12331 tp->t_tail_pkt = NULL; 12332 while (m) { 12333 save = m->m_nextpkt; 12334 m->m_nextpkt = NULL; 12335 m_freem(m); 12336 m = save; 12337 } 12338 } else { 12339 /* Process all the packets */ 12340 ctf_do_queued_segments(rack->rc_inp->inp_socket, rack->rc_tp, 0); 12341 } 12342 if ((tp->t_inpcb) && 12343 (tp->t_inpcb->inp_flags2 & INP_MBUF_ACKCMP)) 12344 ack_cmp = 1; 12345 if (ack_cmp) { 12346 /* Total if we used large or small (if ack-cmp was used). */ 12347 if (rack->rc_inp->inp_flags2 & INP_MBUF_L_ACKS) 12348 counter_u64_add(rack_large_ackcmp, 1); 12349 else 12350 counter_u64_add(rack_small_ackcmp, 1); 12351 } 12352 } 12353 tp->t_flags &= ~TF_FORCEDATA; 12354 #ifdef NETFLIX_SHARED_CWND 12355 if (rack->r_ctl.rc_scw) { 12356 uint32_t limit; 12357 12358 if (rack->r_limit_scw) 12359 limit = max(1, rack->r_ctl.rc_lowest_us_rtt); 12360 else 12361 limit = 0; 12362 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw, 12363 rack->r_ctl.rc_scw_index, 12364 limit); 12365 rack->r_ctl.rc_scw = NULL; 12366 } 12367 #endif 12368 if (rack->r_ctl.fsb.tcp_ip_hdr) { 12369 free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB); 12370 rack->r_ctl.fsb.tcp_ip_hdr = NULL; 12371 rack->r_ctl.fsb.th = NULL; 12372 } 12373 /* Convert back to ticks, with */ 12374 if (tp->t_srtt > 1) { 12375 uint32_t val, frac; 12376 12377 val = USEC_2_TICKS(tp->t_srtt); 12378 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 12379 tp->t_srtt = val << TCP_RTT_SHIFT; 12380 /* 12381 * frac is the fractional part here is left 12382 * over from converting to hz and shifting. 12383 * We need to convert this to the 5 bit 12384 * remainder. 12385 */ 12386 if (frac) { 12387 if (hz == 1000) { 12388 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 12389 } else { 12390 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 12391 } 12392 tp->t_srtt += frac; 12393 } 12394 } 12395 if (tp->t_rttvar) { 12396 uint32_t val, frac; 12397 12398 val = USEC_2_TICKS(tp->t_rttvar); 12399 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 12400 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 12401 /* 12402 * frac is the fractional part here is left 12403 * over from converting to hz and shifting. 12404 * We need to convert this to the 5 bit 12405 * remainder. 12406 */ 12407 if (frac) { 12408 if (hz == 1000) { 12409 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 12410 } else { 12411 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 12412 } 12413 tp->t_rttvar += frac; 12414 } 12415 } 12416 tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur); 12417 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 12418 if (rack->rc_always_pace) { 12419 tcp_decrement_paced_conn(); 12420 rack_undo_cc_pacing(rack); 12421 rack->rc_always_pace = 0; 12422 } 12423 /* Clean up any options if they were not applied */ 12424 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) { 12425 struct deferred_opt_list *dol; 12426 12427 dol = TAILQ_FIRST(&rack->r_ctl.opt_list); 12428 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 12429 free(dol, M_TCPDO); 12430 } 12431 /* rack does not use force data but other stacks may clear it */ 12432 if (rack->r_ctl.crte != NULL) { 12433 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 12434 rack->rack_hdrw_pacing = 0; 12435 rack->r_ctl.crte = NULL; 12436 } 12437 #ifdef TCP_BLACKBOX 12438 tcp_log_flowend(tp); 12439 #endif 12440 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) { 12441 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); 12442 #ifdef INVARIANTS 12443 if (rm != rsm) { 12444 panic("At fini, rack:%p rsm:%p rm:%p", 12445 rack, rsm, rm); 12446 } 12447 #endif 12448 uma_zfree(rack_zone, rsm); 12449 } 12450 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 12451 while (rsm) { 12452 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); 12453 uma_zfree(rack_zone, rsm); 12454 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); 12455 } 12456 rack->rc_free_cnt = 0; 12457 uma_zfree(rack_pcb_zone, tp->t_fb_ptr); 12458 tp->t_fb_ptr = NULL; 12459 } 12460 if (tp->t_inpcb) { 12461 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 12462 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY; 12463 tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE; 12464 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_ACKCMP; 12465 /* Cancel the GP measurement in progress */ 12466 tp->t_flags &= ~TF_GPUTINPROG; 12467 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_L_ACKS; 12468 } 12469 /* Make sure snd_nxt is correctly set */ 12470 tp->snd_nxt = tp->snd_max; 12471 } 12472 12473 static void 12474 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack) 12475 { 12476 switch (tp->t_state) { 12477 case TCPS_SYN_SENT: 12478 rack->r_state = TCPS_SYN_SENT; 12479 rack->r_substate = rack_do_syn_sent; 12480 break; 12481 case TCPS_SYN_RECEIVED: 12482 rack->r_state = TCPS_SYN_RECEIVED; 12483 rack->r_substate = rack_do_syn_recv; 12484 break; 12485 case TCPS_ESTABLISHED: 12486 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12487 rack->r_state = TCPS_ESTABLISHED; 12488 rack->r_substate = rack_do_established; 12489 break; 12490 case TCPS_CLOSE_WAIT: 12491 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12492 rack->r_state = TCPS_CLOSE_WAIT; 12493 rack->r_substate = rack_do_close_wait; 12494 break; 12495 case TCPS_FIN_WAIT_1: 12496 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12497 rack->r_state = TCPS_FIN_WAIT_1; 12498 rack->r_substate = rack_do_fin_wait_1; 12499 break; 12500 case TCPS_CLOSING: 12501 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12502 rack->r_state = TCPS_CLOSING; 12503 rack->r_substate = rack_do_closing; 12504 break; 12505 case TCPS_LAST_ACK: 12506 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12507 rack->r_state = TCPS_LAST_ACK; 12508 rack->r_substate = rack_do_lastack; 12509 break; 12510 case TCPS_FIN_WAIT_2: 12511 rack_set_pace_segments(tp, rack, __LINE__, NULL); 12512 rack->r_state = TCPS_FIN_WAIT_2; 12513 rack->r_substate = rack_do_fin_wait_2; 12514 break; 12515 case TCPS_LISTEN: 12516 case TCPS_CLOSED: 12517 case TCPS_TIME_WAIT: 12518 default: 12519 break; 12520 }; 12521 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 12522 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 12523 12524 } 12525 12526 static void 12527 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb) 12528 { 12529 /* 12530 * We received an ack, and then did not 12531 * call send or were bounced out due to the 12532 * hpts was running. Now a timer is up as well, is 12533 * it the right timer? 12534 */ 12535 struct rack_sendmap *rsm; 12536 int tmr_up; 12537 12538 tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; 12539 if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT)) 12540 return; 12541 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 12542 if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) && 12543 (tmr_up == PACE_TMR_RXT)) { 12544 /* Should be an RXT */ 12545 return; 12546 } 12547 if (rsm == NULL) { 12548 /* Nothing outstanding? */ 12549 if (tp->t_flags & TF_DELACK) { 12550 if (tmr_up == PACE_TMR_DELACK) 12551 /* We are supposed to have delayed ack up and we do */ 12552 return; 12553 } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) { 12554 /* 12555 * if we hit enobufs then we would expect the possiblity 12556 * of nothing outstanding and the RXT up (and the hptsi timer). 12557 */ 12558 return; 12559 } else if (((V_tcp_always_keepalive || 12560 rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 12561 (tp->t_state <= TCPS_CLOSING)) && 12562 (tmr_up == PACE_TMR_KEEP) && 12563 (tp->snd_max == tp->snd_una)) { 12564 /* We should have keep alive up and we do */ 12565 return; 12566 } 12567 } 12568 if (SEQ_GT(tp->snd_max, tp->snd_una) && 12569 ((tmr_up == PACE_TMR_TLP) || 12570 (tmr_up == PACE_TMR_RACK) || 12571 (tmr_up == PACE_TMR_RXT))) { 12572 /* 12573 * Either a Rack, TLP or RXT is fine if we 12574 * have outstanding data. 12575 */ 12576 return; 12577 } else if (tmr_up == PACE_TMR_DELACK) { 12578 /* 12579 * If the delayed ack was going to go off 12580 * before the rtx/tlp/rack timer were going to 12581 * expire, then that would be the timer in control. 12582 * Note we don't check the time here trusting the 12583 * code is correct. 12584 */ 12585 return; 12586 } 12587 /* 12588 * Ok the timer originally started is not what we want now. 12589 * We will force the hpts to be stopped if any, and restart 12590 * with the slot set to what was in the saved slot. 12591 */ 12592 if (rack->rc_inp->inp_in_hpts) { 12593 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 12594 uint32_t us_cts; 12595 12596 us_cts = tcp_get_usecs(NULL); 12597 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 12598 rack->r_early = 1; 12599 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 12600 } 12601 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 12602 } 12603 tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT); 12604 } 12605 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 12606 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 12607 } 12608 12609 12610 static void 12611 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq) 12612 { 12613 tp->snd_wnd = tiwin; 12614 rack_validate_fo_sendwin_up(tp, rack); 12615 tp->snd_wl1 = seq; 12616 tp->snd_wl2 = ack; 12617 if (tp->snd_wnd > tp->max_sndwnd) 12618 tp->max_sndwnd = tp->snd_wnd; 12619 if (tp->snd_wnd < (tp->snd_max - high_seq)) { 12620 /* The peer collapsed the window */ 12621 rack_collapsed_window(rack); 12622 } else if (rack->rc_has_collapsed) 12623 rack_un_collapse_window(rack); 12624 /* Do we exit persists? */ 12625 if ((rack->rc_in_persist != 0) && 12626 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), 12627 rack->r_ctl.rc_pace_min_segs))) { 12628 rack_exit_persist(tp, rack, cts); 12629 } 12630 /* Do we enter persists? */ 12631 if ((rack->rc_in_persist == 0) && 12632 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && 12633 TCPS_HAVEESTABLISHED(tp->t_state) && 12634 (tp->snd_max == tp->snd_una) && 12635 sbavail(&tp->t_inpcb->inp_socket->so_snd) && 12636 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { 12637 /* 12638 * Here the rwnd is less than 12639 * the pacing size, we are established, 12640 * nothing is outstanding, and there is 12641 * data to send. Enter persists. 12642 */ 12643 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 12644 } 12645 } 12646 12647 static void 12648 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq) 12649 { 12650 12651 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 12652 union tcp_log_stackspecific log; 12653 struct timeval ltv; 12654 char tcp_hdr_buf[60]; 12655 struct tcphdr *th; 12656 struct timespec ts; 12657 uint32_t orig_snd_una; 12658 uint8_t xx = 0; 12659 12660 #ifdef NETFLIX_HTTP_LOGGING 12661 struct http_sendfile_track *http_req; 12662 12663 if (SEQ_GT(ae->ack, tp->snd_una)) { 12664 http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1)); 12665 } else { 12666 http_req = tcp_http_find_req_for_seq(tp, ae->ack); 12667 } 12668 #endif 12669 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 12670 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 12671 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 12672 if (rack->rack_no_prr == 0) 12673 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 12674 else 12675 log.u_bbr.flex1 = 0; 12676 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 12677 log.u_bbr.use_lt_bw <<= 1; 12678 log.u_bbr.use_lt_bw |= rack->r_might_revert; 12679 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 12680 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 12681 log.u_bbr.pkts_out = tp->t_maxseg; 12682 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 12683 log.u_bbr.flex7 = 1; 12684 log.u_bbr.lost = ae->flags; 12685 log.u_bbr.cwnd_gain = ackval; 12686 log.u_bbr.pacing_gain = 0x2; 12687 if (ae->flags & TSTMP_HDWR) { 12688 /* Record the hardware timestamp if present */ 12689 log.u_bbr.flex3 = M_TSTMP; 12690 ts.tv_sec = ae->timestamp / 1000000000; 12691 ts.tv_nsec = ae->timestamp % 1000000000; 12692 ltv.tv_sec = ts.tv_sec; 12693 ltv.tv_usec = ts.tv_nsec / 1000; 12694 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 12695 } else if (ae->flags & TSTMP_LRO) { 12696 /* Record the LRO the arrival timestamp */ 12697 log.u_bbr.flex3 = M_TSTMP_LRO; 12698 ts.tv_sec = ae->timestamp / 1000000000; 12699 ts.tv_nsec = ae->timestamp % 1000000000; 12700 ltv.tv_sec = ts.tv_sec; 12701 ltv.tv_usec = ts.tv_nsec / 1000; 12702 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 12703 } 12704 log.u_bbr.timeStamp = tcp_get_usecs(<v); 12705 /* Log the rcv time */ 12706 log.u_bbr.delRate = ae->timestamp; 12707 #ifdef NETFLIX_HTTP_LOGGING 12708 log.u_bbr.applimited = tp->t_http_closed; 12709 log.u_bbr.applimited <<= 8; 12710 log.u_bbr.applimited |= tp->t_http_open; 12711 log.u_bbr.applimited <<= 8; 12712 log.u_bbr.applimited |= tp->t_http_req; 12713 if (http_req) { 12714 /* Copy out any client req info */ 12715 /* seconds */ 12716 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 12717 /* useconds */ 12718 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 12719 log.u_bbr.rttProp = http_req->timestamp; 12720 log.u_bbr.cur_del_rate = http_req->start; 12721 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 12722 log.u_bbr.flex8 |= 1; 12723 } else { 12724 log.u_bbr.flex8 |= 2; 12725 log.u_bbr.bw_inuse = http_req->end; 12726 } 12727 log.u_bbr.flex6 = http_req->start_seq; 12728 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 12729 log.u_bbr.flex8 |= 4; 12730 log.u_bbr.epoch = http_req->end_seq; 12731 } 12732 } 12733 #endif 12734 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf)); 12735 th = (struct tcphdr *)tcp_hdr_buf; 12736 th->th_seq = ae->seq; 12737 th->th_ack = ae->ack; 12738 th->th_win = ae->win; 12739 /* Now fill in the ports */ 12740 th->th_sport = tp->t_inpcb->inp_fport; 12741 th->th_dport = tp->t_inpcb->inp_lport; 12742 th->th_flags = ae->flags & 0xff; 12743 /* Now do we have a timestamp option? */ 12744 if (ae->flags & HAS_TSTMP) { 12745 u_char *cp; 12746 uint32_t val; 12747 12748 th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2); 12749 cp = (u_char *)(th + 1); 12750 *cp = TCPOPT_NOP; 12751 cp++; 12752 *cp = TCPOPT_NOP; 12753 cp++; 12754 *cp = TCPOPT_TIMESTAMP; 12755 cp++; 12756 *cp = TCPOLEN_TIMESTAMP; 12757 cp++; 12758 val = htonl(ae->ts_value); 12759 bcopy((char *)&val, 12760 (char *)cp, sizeof(uint32_t)); 12761 val = htonl(ae->ts_echo); 12762 bcopy((char *)&val, 12763 (char *)(cp + 4), sizeof(uint32_t)); 12764 } else 12765 th->th_off = (sizeof(struct tcphdr) >> 2); 12766 12767 /* 12768 * For sane logging we need to play a little trick. 12769 * If the ack were fully processed we would have moved 12770 * snd_una to high_seq, but since compressed acks are 12771 * processed in two phases, at this point (logging) snd_una 12772 * won't be advanced. So we would see multiple acks showing 12773 * the advancement. We can prevent that by "pretending" that 12774 * snd_una was advanced and then un-advancing it so that the 12775 * logging code has the right value for tlb_snd_una. 12776 */ 12777 if (tp->snd_una != high_seq) { 12778 orig_snd_una = tp->snd_una; 12779 tp->snd_una = high_seq; 12780 xx = 1; 12781 } else 12782 xx = 0; 12783 TCP_LOG_EVENTP(tp, th, 12784 &tp->t_inpcb->inp_socket->so_rcv, 12785 &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_IN, 0, 12786 0, &log, true, <v); 12787 if (xx) { 12788 tp->snd_una = orig_snd_una; 12789 } 12790 } 12791 12792 } 12793 12794 static int 12795 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv) 12796 { 12797 /* 12798 * Handle a "special" compressed ack mbuf. Each incoming 12799 * ack has only four possible dispositions: 12800 * 12801 * A) It moves the cum-ack forward 12802 * B) It is behind the cum-ack. 12803 * C) It is a window-update ack. 12804 * D) It is a dup-ack. 12805 * 12806 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES 12807 * in the incoming mbuf. We also need to still pay attention 12808 * to nxt_pkt since there may be another packet after this 12809 * one. 12810 */ 12811 #ifdef TCP_ACCOUNTING 12812 uint64_t ts_val; 12813 uint64_t rdstc; 12814 #endif 12815 int segsiz; 12816 struct timespec ts; 12817 struct tcp_rack *rack; 12818 struct tcp_ackent *ae; 12819 uint32_t tiwin, us_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack; 12820 int cnt, i, did_out, ourfinisacked = 0; 12821 int win_up_req = 0; 12822 struct tcpopt to_holder, *to = NULL; 12823 int nsegs = 0; 12824 int under_pacing = 1; 12825 int recovery = 0; 12826 int idx; 12827 #ifdef TCP_ACCOUNTING 12828 sched_pin(); 12829 #endif 12830 rack = (struct tcp_rack *)tp->t_fb_ptr; 12831 if (rack->gp_ready && 12832 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) 12833 under_pacing = 0; 12834 else 12835 under_pacing = 1; 12836 12837 if (rack->r_state != tp->t_state) 12838 rack_set_state(tp, rack); 12839 to = &to_holder; 12840 to->to_flags = 0; 12841 KASSERT((m->m_len >= sizeof(struct tcp_ackent)), 12842 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len)); 12843 cnt = m->m_len / sizeof(struct tcp_ackent); 12844 idx = cnt / 5; 12845 if (idx >= MAX_NUM_OF_CNTS) 12846 idx = MAX_NUM_OF_CNTS - 1; 12847 counter_u64_add(rack_proc_comp_ack[idx], 1); 12848 counter_u64_add(rack_multi_single_eq, cnt); 12849 high_seq = tp->snd_una; 12850 the_win = tp->snd_wnd; 12851 win_seq = tp->snd_wl1; 12852 win_upd_ack = tp->snd_wl2; 12853 cts = us_cts = tcp_tv_to_usectick(tv); 12854 segsiz = ctf_fixed_maxseg(tp); 12855 if ((rack->rc_gp_dyn_mul) && 12856 (rack->use_fixed_rate == 0) && 12857 (rack->rc_always_pace)) { 12858 /* Check in on probertt */ 12859 rack_check_probe_rtt(rack, us_cts); 12860 } 12861 for (i = 0; i < cnt; i++) { 12862 #ifdef TCP_ACCOUNTING 12863 ts_val = get_cyclecount(); 12864 #endif 12865 rack_clear_rate_sample(rack); 12866 ae = ((mtod(m, struct tcp_ackent *)) + i); 12867 /* Setup the window */ 12868 tiwin = ae->win << tp->snd_scale; 12869 /* figure out the type of ack */ 12870 if (SEQ_LT(ae->ack, high_seq)) { 12871 /* Case B*/ 12872 ae->ack_val_set = ACK_BEHIND; 12873 } else if (SEQ_GT(ae->ack, high_seq)) { 12874 /* Case A */ 12875 ae->ack_val_set = ACK_CUMACK; 12876 } else if (tiwin == the_win) { 12877 /* Case D */ 12878 ae->ack_val_set = ACK_DUPACK; 12879 } else { 12880 /* Case C */ 12881 ae->ack_val_set = ACK_RWND; 12882 } 12883 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq); 12884 /* Validate timestamp */ 12885 if (ae->flags & HAS_TSTMP) { 12886 /* Setup for a timestamp */ 12887 to->to_flags = TOF_TS; 12888 ae->ts_echo -= tp->ts_offset; 12889 to->to_tsecr = ae->ts_echo; 12890 to->to_tsval = ae->ts_value; 12891 /* 12892 * If echoed timestamp is later than the current time, fall back to 12893 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 12894 * were used when this connection was established. 12895 */ 12896 if (TSTMP_GT(ae->ts_echo, cts)) 12897 ae->ts_echo = 0; 12898 if (tp->ts_recent && 12899 TSTMP_LT(ae->ts_value, tp->ts_recent)) { 12900 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) { 12901 #ifdef TCP_ACCOUNTING 12902 rdstc = get_cyclecount(); 12903 if (rdstc > ts_val) { 12904 counter_u64_add(tcp_proc_time[ae->ack_val_set] , 12905 (rdstc - ts_val)); 12906 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 12907 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 12908 } 12909 } 12910 #endif 12911 continue; 12912 } 12913 } 12914 if (SEQ_LEQ(ae->seq, tp->last_ack_sent) && 12915 SEQ_LEQ(tp->last_ack_sent, ae->seq)) { 12916 tp->ts_recent_age = tcp_ts_getticks(); 12917 tp->ts_recent = ae->ts_value; 12918 } 12919 } else { 12920 /* Setup for a no options */ 12921 to->to_flags = 0; 12922 } 12923 /* Update the rcv time and perform idle reduction possibly */ 12924 if (tp->t_idle_reduce && 12925 (tp->snd_max == tp->snd_una) && 12926 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 12927 counter_u64_add(rack_input_idle_reduces, 1); 12928 rack_cc_after_idle(rack, tp); 12929 } 12930 tp->t_rcvtime = ticks; 12931 /* Now what about ECN? */ 12932 if (tp->t_flags2 & TF2_ECN_PERMIT) { 12933 if (ae->flags & TH_CWR) { 12934 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 12935 tp->t_flags |= TF_ACKNOW; 12936 } 12937 switch (ae->codepoint & IPTOS_ECN_MASK) { 12938 case IPTOS_ECN_CE: 12939 tp->t_flags2 |= TF2_ECN_SND_ECE; 12940 KMOD_TCPSTAT_INC(tcps_ecn_ce); 12941 break; 12942 case IPTOS_ECN_ECT0: 12943 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 12944 break; 12945 case IPTOS_ECN_ECT1: 12946 KMOD_TCPSTAT_INC(tcps_ecn_ect1); 12947 break; 12948 } 12949 12950 /* Process a packet differently from RFC3168. */ 12951 cc_ecnpkt_handler_flags(tp, ae->flags, ae->codepoint); 12952 /* Congestion experienced. */ 12953 if (ae->flags & TH_ECE) { 12954 rack_cong_signal(tp, CC_ECN, ae->ack); 12955 } 12956 } 12957 #ifdef TCP_ACCOUNTING 12958 /* Count for the specific type of ack in */ 12959 counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1); 12960 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 12961 tp->tcp_cnt_counters[ae->ack_val_set]++; 12962 } 12963 #endif 12964 /* 12965 * Note how we could move up these in the determination 12966 * above, but we don't so that way the timestamp checks (and ECN) 12967 * is done first before we do any processing on the ACK. 12968 * The non-compressed path through the code has this 12969 * weakness (noted by @jtl) that it actually does some 12970 * processing before verifying the timestamp information. 12971 * We don't take that path here which is why we set 12972 * the ack_val_set first, do the timestamp and ecn 12973 * processing, and then look at what we have setup. 12974 */ 12975 if (ae->ack_val_set == ACK_BEHIND) { 12976 /* 12977 * Case B flag reordering, if window is not closed 12978 * or it could be a keep-alive or persists 12979 */ 12980 if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) { 12981 counter_u64_add(rack_reorder_seen, 1); 12982 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 12983 } 12984 } else if (ae->ack_val_set == ACK_DUPACK) { 12985 /* Case D */ 12986 12987 rack_strike_dupack(rack); 12988 } else if (ae->ack_val_set == ACK_RWND) { 12989 /* Case C */ 12990 12991 win_up_req = 1; 12992 win_upd_ack = ae->ack; 12993 win_seq = ae->seq; 12994 the_win = tiwin; 12995 } else { 12996 /* Case A */ 12997 12998 if (SEQ_GT(ae->ack, tp->snd_max)) { 12999 /* 13000 * We just send an ack since the incoming 13001 * ack is beyond the largest seq we sent. 13002 */ 13003 if ((tp->t_flags & TF_ACKNOW) == 0) { 13004 ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt); 13005 if (tp->t_flags && TF_ACKNOW) 13006 rack->r_wanted_output = 1; 13007 } 13008 } else { 13009 nsegs++; 13010 /* If the window changed setup to update */ 13011 if (tiwin != tp->snd_wnd) { 13012 win_up_req = 1; 13013 win_upd_ack = ae->ack; 13014 win_seq = ae->seq; 13015 the_win = tiwin; 13016 } 13017 #ifdef TCP_ACCOUNTING 13018 /* Account for the acks */ 13019 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13020 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz); 13021 } 13022 counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN], 13023 (((ae->ack - high_seq) + segsiz - 1) / segsiz)); 13024 #endif 13025 high_seq = ae->ack; 13026 /* Setup our act_rcv_time */ 13027 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) { 13028 ts.tv_sec = ae->timestamp / 1000000000; 13029 ts.tv_nsec = ae->timestamp % 1000000000; 13030 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 13031 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 13032 } else { 13033 rack->r_ctl.act_rcv_time = *tv; 13034 } 13035 rack_process_to_cumack(tp, rack, ae->ack, cts, to); 13036 } 13037 } 13038 /* And lets be sure to commit the rtt measurements for this ack */ 13039 tcp_rack_xmit_timer_commit(rack, tp); 13040 #ifdef TCP_ACCOUNTING 13041 rdstc = get_cyclecount(); 13042 if (rdstc > ts_val) { 13043 counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val)); 13044 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13045 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val); 13046 if (ae->ack_val_set == ACK_CUMACK) 13047 tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val); 13048 } 13049 } 13050 #endif 13051 } 13052 #ifdef TCP_ACCOUNTING 13053 ts_val = get_cyclecount(); 13054 #endif 13055 acked_amount = acked = (high_seq - tp->snd_una); 13056 if (win_up_req) { 13057 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq); 13058 } 13059 if (acked) { 13060 if (rack->sack_attack_disable == 0) 13061 rack_do_decay(rack); 13062 if (acked >= segsiz) { 13063 /* 13064 * You only get credit for 13065 * MSS and greater (and you get extra 13066 * credit for larger cum-ack moves). 13067 */ 13068 int ac; 13069 13070 ac = acked / segsiz; 13071 rack->r_ctl.ack_count += ac; 13072 counter_u64_add(rack_ack_total, ac); 13073 } 13074 if (rack->r_ctl.ack_count > 0xfff00000) { 13075 /* 13076 * reduce the number to keep us under 13077 * a uint32_t. 13078 */ 13079 rack->r_ctl.ack_count /= 2; 13080 rack->r_ctl.sack_count /= 2; 13081 } 13082 if (tp->t_flags & TF_NEEDSYN) { 13083 /* 13084 * T/TCP: Connection was half-synchronized, and our SYN has 13085 * been ACK'd (so connection is now fully synchronized). Go 13086 * to non-starred state, increment snd_una for ACK of SYN, 13087 * and check if we can do window scaling. 13088 */ 13089 tp->t_flags &= ~TF_NEEDSYN; 13090 tp->snd_una++; 13091 acked_amount = acked = (high_seq - tp->snd_una); 13092 } 13093 if (acked > sbavail(&so->so_snd)) 13094 acked_amount = sbavail(&so->so_snd); 13095 #ifdef NETFLIX_EXP_DETECTION 13096 /* 13097 * We only care on a cum-ack move if we are in a sack-disabled 13098 * state. We have already added in to the ack_count, and we never 13099 * would disable on a cum-ack move, so we only care to do the 13100 * detection if it may "undo" it, i.e. we were in disabled already. 13101 */ 13102 if (rack->sack_attack_disable) 13103 rack_do_detection(tp, rack, acked_amount, segsiz); 13104 #endif 13105 if (IN_FASTRECOVERY(tp->t_flags) && 13106 (rack->rack_no_prr == 0)) 13107 rack_update_prr(tp, rack, acked_amount, high_seq); 13108 if (IN_RECOVERY(tp->t_flags)) { 13109 if (SEQ_LT(high_seq, tp->snd_recover) && 13110 (SEQ_LT(high_seq, tp->snd_max))) { 13111 tcp_rack_partialack(tp); 13112 } else { 13113 rack_post_recovery(tp, high_seq); 13114 recovery = 1; 13115 } 13116 } 13117 /* Handle the rack-log-ack part (sendmap) */ 13118 if ((sbused(&so->so_snd) == 0) && 13119 (acked > acked_amount) && 13120 (tp->t_state >= TCPS_FIN_WAIT_1) && 13121 (tp->t_flags & TF_SENTFIN)) { 13122 /* 13123 * We must be sure our fin 13124 * was sent and acked (we can be 13125 * in FIN_WAIT_1 without having 13126 * sent the fin). 13127 */ 13128 ourfinisacked = 1; 13129 /* 13130 * Lets make sure snd_una is updated 13131 * since most likely acked_amount = 0 (it 13132 * should be). 13133 */ 13134 tp->snd_una = high_seq; 13135 } 13136 /* Did we make a RTO error? */ 13137 if ((tp->t_flags & TF_PREVVALID) && 13138 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) { 13139 tp->t_flags &= ~TF_PREVVALID; 13140 if (tp->t_rxtshift == 1 && 13141 (int)(ticks - tp->t_badrxtwin) < 0) 13142 rack_cong_signal(tp, CC_RTO_ERR, high_seq); 13143 } 13144 /* Handle the data in the socket buffer */ 13145 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1); 13146 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); 13147 if (acked_amount > 0) { 13148 struct mbuf *mfree; 13149 13150 rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery); 13151 SOCKBUF_LOCK(&so->so_snd); 13152 mfree = sbcut_locked(&so->so_snd, acked); 13153 tp->snd_una = high_seq; 13154 /* Note we want to hold the sb lock through the sendmap adjust */ 13155 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una); 13156 /* Wake up the socket if we have room to write more */ 13157 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2); 13158 SOCKBUF_UNLOCK(&so->so_snd); 13159 tp->t_flags |= TF_WAKESOW; 13160 m_freem(mfree); 13161 } 13162 /* update progress */ 13163 tp->t_acktime = ticks; 13164 rack_log_progress_event(rack, tp, tp->t_acktime, 13165 PROGRESS_UPDATE, __LINE__); 13166 /* Clear out shifts and such */ 13167 tp->t_rxtshift = 0; 13168 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp), 13169 rack_rto_min, rack_rto_max); 13170 rack->rc_tlp_in_progress = 0; 13171 rack->r_ctl.rc_tlp_cnt_out = 0; 13172 /* Send recover and snd_nxt must be dragged along */ 13173 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 13174 tp->snd_recover = tp->snd_una; 13175 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 13176 tp->snd_nxt = tp->snd_una; 13177 /* 13178 * If the RXT timer is running we want to 13179 * stop it, so we can restart a TLP (or new RXT). 13180 */ 13181 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) 13182 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13183 #ifdef NETFLIX_HTTP_LOGGING 13184 tcp_http_check_for_comp(rack->rc_tp, high_seq); 13185 #endif 13186 tp->snd_wl2 = high_seq; 13187 tp->t_dupacks = 0; 13188 if (under_pacing && 13189 (rack->use_fixed_rate == 0) && 13190 (rack->in_probe_rtt == 0) && 13191 rack->rc_gp_dyn_mul && 13192 rack->rc_always_pace) { 13193 /* Check if we are dragging bottom */ 13194 rack_check_bottom_drag(tp, rack, so, acked); 13195 } 13196 if (tp->snd_una == tp->snd_max) { 13197 tp->t_flags &= ~TF_PREVVALID; 13198 rack->r_ctl.retran_during_recovery = 0; 13199 rack->r_ctl.dsack_byte_cnt = 0; 13200 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); 13201 if (rack->r_ctl.rc_went_idle_time == 0) 13202 rack->r_ctl.rc_went_idle_time = 1; 13203 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); 13204 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) 13205 tp->t_acktime = 0; 13206 /* Set so we might enter persists... */ 13207 rack->r_wanted_output = 1; 13208 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13209 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 13210 if ((tp->t_state >= TCPS_FIN_WAIT_1) && 13211 (sbavail(&so->so_snd) == 0) && 13212 (tp->t_flags2 & TF2_DROP_AF_DATA)) { 13213 /* 13214 * The socket was gone and the 13215 * peer sent data (not now in the past), time to 13216 * reset him. 13217 */ 13218 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); 13219 /* tcp_close will kill the inp pre-log the Reset */ 13220 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 13221 #ifdef TCP_ACCOUNTING 13222 rdstc = get_cyclecount(); 13223 if (rdstc > ts_val) { 13224 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13225 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13226 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13227 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13228 } 13229 } 13230 #endif 13231 m_freem(m); 13232 tp = tcp_close(tp); 13233 if (tp == NULL) { 13234 #ifdef TCP_ACCOUNTING 13235 sched_unpin(); 13236 #endif 13237 return (1); 13238 } 13239 /* 13240 * We would normally do drop-with-reset which would 13241 * send back a reset. We can't since we don't have 13242 * all the needed bits. Instead lets arrange for 13243 * a call to tcp_output(). That way since we 13244 * are in the closed state we will generate a reset. 13245 * 13246 * Note if tcp_accounting is on we don't unpin since 13247 * we do that after the goto label. 13248 */ 13249 goto send_out_a_rst; 13250 } 13251 if ((sbused(&so->so_snd) == 0) && 13252 (tp->t_state >= TCPS_FIN_WAIT_1) && 13253 (tp->t_flags & TF_SENTFIN)) { 13254 /* 13255 * If we can't receive any more data, then closing user can 13256 * proceed. Starting the timer is contrary to the 13257 * specification, but if we don't get a FIN we'll hang 13258 * forever. 13259 * 13260 */ 13261 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13262 soisdisconnected(so); 13263 tcp_timer_activate(tp, TT_2MSL, 13264 (tcp_fast_finwait2_recycle ? 13265 tcp_finwait2_timeout : 13266 TP_MAXIDLE(tp))); 13267 } 13268 if (ourfinisacked == 0) { 13269 /* 13270 * We don't change to fin-wait-2 if we have our fin acked 13271 * which means we are probably in TCPS_CLOSING. 13272 */ 13273 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13274 } 13275 } 13276 } 13277 /* Wake up the socket if we have room to write more */ 13278 if (sbavail(&so->so_snd)) { 13279 rack->r_wanted_output = 1; 13280 if (ctf_progress_timeout_check(tp, true)) { 13281 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, 13282 tp, tick, PROGRESS_DROP, __LINE__); 13283 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); 13284 /* 13285 * We cheat here and don't send a RST, we should send one 13286 * when the pacer drops the connection. 13287 */ 13288 #ifdef TCP_ACCOUNTING 13289 rdstc = get_cyclecount(); 13290 if (rdstc > ts_val) { 13291 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13292 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13293 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13294 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13295 } 13296 } 13297 sched_unpin(); 13298 #endif 13299 INP_WUNLOCK(rack->rc_inp); 13300 m_freem(m); 13301 return (1); 13302 } 13303 } 13304 if (ourfinisacked) { 13305 switch(tp->t_state) { 13306 case TCPS_CLOSING: 13307 #ifdef TCP_ACCOUNTING 13308 rdstc = get_cyclecount(); 13309 if (rdstc > ts_val) { 13310 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13311 (rdstc - ts_val)); 13312 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13313 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13314 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13315 } 13316 } 13317 sched_unpin(); 13318 #endif 13319 tcp_twstart(tp); 13320 m_freem(m); 13321 return (1); 13322 break; 13323 case TCPS_LAST_ACK: 13324 #ifdef TCP_ACCOUNTING 13325 rdstc = get_cyclecount(); 13326 if (rdstc > ts_val) { 13327 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13328 (rdstc - ts_val)); 13329 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13330 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13331 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13332 } 13333 } 13334 sched_unpin(); 13335 #endif 13336 tp = tcp_close(tp); 13337 ctf_do_drop(m, tp); 13338 return (1); 13339 break; 13340 case TCPS_FIN_WAIT_1: 13341 #ifdef TCP_ACCOUNTING 13342 rdstc = get_cyclecount(); 13343 if (rdstc > ts_val) { 13344 counter_u64_add(tcp_proc_time[ACK_CUMACK] , 13345 (rdstc - ts_val)); 13346 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13347 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13348 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13349 } 13350 } 13351 #endif 13352 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 13353 soisdisconnected(so); 13354 tcp_timer_activate(tp, TT_2MSL, 13355 (tcp_fast_finwait2_recycle ? 13356 tcp_finwait2_timeout : 13357 TP_MAXIDLE(tp))); 13358 } 13359 tcp_state_change(tp, TCPS_FIN_WAIT_2); 13360 break; 13361 default: 13362 break; 13363 } 13364 } 13365 if (rack->r_fast_output) { 13366 /* 13367 * We re doing fast output.. can we expand that? 13368 */ 13369 rack_gain_for_fastoutput(rack, tp, so, acked_amount); 13370 } 13371 #ifdef TCP_ACCOUNTING 13372 rdstc = get_cyclecount(); 13373 if (rdstc > ts_val) { 13374 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val)); 13375 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13376 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val); 13377 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val); 13378 } 13379 } 13380 13381 } else if (win_up_req) { 13382 rdstc = get_cyclecount(); 13383 if (rdstc > ts_val) { 13384 counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val)); 13385 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13386 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val); 13387 } 13388 } 13389 #endif 13390 } 13391 /* Now is there a next packet, if so we are done */ 13392 m_freem(m); 13393 did_out = 0; 13394 if (nxt_pkt) { 13395 #ifdef TCP_ACCOUNTING 13396 sched_unpin(); 13397 #endif 13398 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs); 13399 return (0); 13400 } 13401 rack_handle_might_revert(tp, rack); 13402 ctf_calc_rwin(so, tp); 13403 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 13404 send_out_a_rst: 13405 (void)tp->t_fb->tfb_tcp_output(tp); 13406 did_out = 1; 13407 } 13408 rack_free_trim(rack); 13409 #ifdef TCP_ACCOUNTING 13410 sched_unpin(); 13411 #endif 13412 rack_timer_audit(tp, rack, &so->so_snd); 13413 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs); 13414 return (0); 13415 } 13416 13417 13418 static int 13419 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so, 13420 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, 13421 int32_t nxt_pkt, struct timeval *tv) 13422 { 13423 #ifdef TCP_ACCOUNTING 13424 uint64_t ts_val; 13425 #endif 13426 int32_t thflags, retval, did_out = 0; 13427 int32_t way_out = 0; 13428 uint32_t cts; 13429 uint32_t tiwin; 13430 struct timespec ts; 13431 struct tcpopt to; 13432 struct tcp_rack *rack; 13433 struct rack_sendmap *rsm; 13434 int32_t prev_state = 0; 13435 #ifdef TCP_ACCOUNTING 13436 int ack_val_set = 0xf; 13437 #endif 13438 uint32_t us_cts; 13439 /* 13440 * tv passed from common code is from either M_TSTMP_LRO or 13441 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present. 13442 */ 13443 if (m->m_flags & M_ACKCMP) { 13444 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv)); 13445 } 13446 if (m->m_flags & M_ACKCMP) { 13447 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp); 13448 } 13449 counter_u64_add(rack_proc_non_comp_ack, 1); 13450 thflags = th->th_flags; 13451 #ifdef TCP_ACCOUNTING 13452 sched_pin(); 13453 if (thflags & TH_ACK) 13454 ts_val = get_cyclecount(); 13455 #endif 13456 cts = tcp_tv_to_usectick(tv); 13457 rack = (struct tcp_rack *)tp->t_fb_ptr; 13458 13459 if ((m->m_flags & M_TSTMP) || 13460 (m->m_flags & M_TSTMP_LRO)) { 13461 mbuf_tstmp2timespec(m, &ts); 13462 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; 13463 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; 13464 } else 13465 rack->r_ctl.act_rcv_time = *tv; 13466 kern_prefetch(rack, &prev_state); 13467 prev_state = 0; 13468 /* 13469 * Unscale the window into a 32-bit value. For the SYN_SENT state 13470 * the scale is zero. 13471 */ 13472 tiwin = th->th_win << tp->snd_scale; 13473 /* 13474 * Parse options on any incoming segment. 13475 */ 13476 memset(&to, 0, sizeof(to)); 13477 tcp_dooptions(&to, (u_char *)(th + 1), 13478 (th->th_off << 2) - sizeof(struct tcphdr), 13479 (thflags & TH_SYN) ? TO_SYN : 0); 13480 #ifdef TCP_ACCOUNTING 13481 if (thflags & TH_ACK) { 13482 /* 13483 * We have a tradeoff here. We can either do what we are 13484 * doing i.e. pinning to this CPU and then doing the accounting 13485 * <or> we could do a critical enter, setup the rdtsc and cpu 13486 * as in below, and then validate we are on the same CPU on 13487 * exit. I have choosen to not do the critical enter since 13488 * that often will gain you a context switch, and instead lock 13489 * us (line above this if) to the same CPU with sched_pin(). This 13490 * means we may be context switched out for a higher priority 13491 * interupt but we won't be moved to another CPU. 13492 * 13493 * If this occurs (which it won't very often since we most likely 13494 * are running this code in interupt context and only a higher 13495 * priority will bump us ... clock?) we will falsely add in 13496 * to the time the interupt processing time plus the ack processing 13497 * time. This is ok since its a rare event. 13498 */ 13499 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin, 13500 ctf_fixed_maxseg(tp)); 13501 } 13502 #endif 13503 NET_EPOCH_ASSERT(); 13504 INP_WLOCK_ASSERT(tp->t_inpcb); 13505 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 13506 __func__)); 13507 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 13508 __func__)); 13509 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 13510 union tcp_log_stackspecific log; 13511 struct timeval ltv; 13512 #ifdef NETFLIX_HTTP_LOGGING 13513 struct http_sendfile_track *http_req; 13514 13515 if (SEQ_GT(th->th_ack, tp->snd_una)) { 13516 http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1)); 13517 } else { 13518 http_req = tcp_http_find_req_for_seq(tp, th->th_ack); 13519 } 13520 #endif 13521 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 13522 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 13523 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 13524 if (rack->rack_no_prr == 0) 13525 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 13526 else 13527 log.u_bbr.flex1 = 0; 13528 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns; 13529 log.u_bbr.use_lt_bw <<= 1; 13530 log.u_bbr.use_lt_bw |= rack->r_might_revert; 13531 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; 13532 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 13533 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; 13534 log.u_bbr.flex3 = m->m_flags; 13535 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; 13536 log.u_bbr.lost = thflags; 13537 log.u_bbr.pacing_gain = 0x1; 13538 #ifdef TCP_ACCOUNTING 13539 log.u_bbr.cwnd_gain = ack_val_set; 13540 #endif 13541 log.u_bbr.flex7 = 2; 13542 if (m->m_flags & M_TSTMP) { 13543 /* Record the hardware timestamp if present */ 13544 mbuf_tstmp2timespec(m, &ts); 13545 ltv.tv_sec = ts.tv_sec; 13546 ltv.tv_usec = ts.tv_nsec / 1000; 13547 log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); 13548 } else if (m->m_flags & M_TSTMP_LRO) { 13549 /* Record the LRO the arrival timestamp */ 13550 mbuf_tstmp2timespec(m, &ts); 13551 ltv.tv_sec = ts.tv_sec; 13552 ltv.tv_usec = ts.tv_nsec / 1000; 13553 log.u_bbr.flex5 = tcp_tv_to_usectick(<v); 13554 } 13555 log.u_bbr.timeStamp = tcp_get_usecs(<v); 13556 /* Log the rcv time */ 13557 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp; 13558 #ifdef NETFLIX_HTTP_LOGGING 13559 log.u_bbr.applimited = tp->t_http_closed; 13560 log.u_bbr.applimited <<= 8; 13561 log.u_bbr.applimited |= tp->t_http_open; 13562 log.u_bbr.applimited <<= 8; 13563 log.u_bbr.applimited |= tp->t_http_req; 13564 if (http_req) { 13565 /* Copy out any client req info */ 13566 /* seconds */ 13567 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); 13568 /* useconds */ 13569 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); 13570 log.u_bbr.rttProp = http_req->timestamp; 13571 log.u_bbr.cur_del_rate = http_req->start; 13572 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { 13573 log.u_bbr.flex8 |= 1; 13574 } else { 13575 log.u_bbr.flex8 |= 2; 13576 log.u_bbr.bw_inuse = http_req->end; 13577 } 13578 log.u_bbr.flex6 = http_req->start_seq; 13579 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { 13580 log.u_bbr.flex8 |= 4; 13581 log.u_bbr.epoch = http_req->end_seq; 13582 } 13583 } 13584 #endif 13585 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, 13586 tlen, &log, true, <v); 13587 } 13588 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { 13589 way_out = 4; 13590 retval = 0; 13591 goto done_with_input; 13592 } 13593 /* 13594 * If a segment with the ACK-bit set arrives in the SYN-SENT state 13595 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9. 13596 */ 13597 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && 13598 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { 13599 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 13600 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); 13601 #ifdef TCP_ACCOUNTING 13602 sched_unpin(); 13603 #endif 13604 return (1); 13605 } 13606 13607 /* 13608 * Parse options on any incoming segment. 13609 */ 13610 tcp_dooptions(&to, (u_char *)(th + 1), 13611 (th->th_off << 2) - sizeof(struct tcphdr), 13612 (thflags & TH_SYN) ? TO_SYN : 0); 13613 13614 /* 13615 * If timestamps were negotiated during SYN/ACK and a 13616 * segment without a timestamp is received, silently drop 13617 * the segment, unless it is a RST segment or missing timestamps are 13618 * tolerated. 13619 * See section 3.2 of RFC 7323. 13620 */ 13621 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) && 13622 ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) { 13623 way_out = 5; 13624 retval = 0; 13625 goto done_with_input; 13626 } 13627 13628 /* 13629 * Segment received on connection. Reset idle time and keep-alive 13630 * timer. XXX: This should be done after segment validation to 13631 * ignore broken/spoofed segs. 13632 */ 13633 if (tp->t_idle_reduce && 13634 (tp->snd_max == tp->snd_una) && 13635 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { 13636 counter_u64_add(rack_input_idle_reduces, 1); 13637 rack_cc_after_idle(rack, tp); 13638 } 13639 tp->t_rcvtime = ticks; 13640 #ifdef STATS 13641 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); 13642 #endif 13643 if (tiwin > rack->r_ctl.rc_high_rwnd) 13644 rack->r_ctl.rc_high_rwnd = tiwin; 13645 /* 13646 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move 13647 * this to occur after we've validated the segment. 13648 */ 13649 if (tp->t_flags2 & TF2_ECN_PERMIT) { 13650 if (thflags & TH_CWR) { 13651 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 13652 tp->t_flags |= TF_ACKNOW; 13653 } 13654 switch (iptos & IPTOS_ECN_MASK) { 13655 case IPTOS_ECN_CE: 13656 tp->t_flags2 |= TF2_ECN_SND_ECE; 13657 KMOD_TCPSTAT_INC(tcps_ecn_ce); 13658 break; 13659 case IPTOS_ECN_ECT0: 13660 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 13661 break; 13662 case IPTOS_ECN_ECT1: 13663 KMOD_TCPSTAT_INC(tcps_ecn_ect1); 13664 break; 13665 } 13666 13667 /* Process a packet differently from RFC3168. */ 13668 cc_ecnpkt_handler(tp, th, iptos); 13669 13670 /* Congestion experienced. */ 13671 if (thflags & TH_ECE) { 13672 rack_cong_signal(tp, CC_ECN, th->th_ack); 13673 } 13674 } 13675 13676 /* 13677 * If echoed timestamp is later than the current time, fall back to 13678 * non RFC1323 RTT calculation. Normalize timestamp if syncookies 13679 * were used when this connection was established. 13680 */ 13681 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 13682 to.to_tsecr -= tp->ts_offset; 13683 if (TSTMP_GT(to.to_tsecr, cts)) 13684 to.to_tsecr = 0; 13685 } 13686 13687 /* 13688 * If its the first time in we need to take care of options and 13689 * verify we can do SACK for rack! 13690 */ 13691 if (rack->r_state == 0) { 13692 /* Should be init'd by rack_init() */ 13693 KASSERT(rack->rc_inp != NULL, 13694 ("%s: rack->rc_inp unexpectedly NULL", __func__)); 13695 if (rack->rc_inp == NULL) { 13696 rack->rc_inp = tp->t_inpcb; 13697 } 13698 13699 /* 13700 * Process options only when we get SYN/ACK back. The SYN 13701 * case for incoming connections is handled in tcp_syncache. 13702 * According to RFC1323 the window field in a SYN (i.e., a 13703 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX 13704 * this is traditional behavior, may need to be cleaned up. 13705 */ 13706 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 13707 /* Handle parallel SYN for ECN */ 13708 if (!(thflags & TH_ACK) && 13709 ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) && 13710 ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) { 13711 tp->t_flags2 |= TF2_ECN_PERMIT; 13712 tp->t_flags2 |= TF2_ECN_SND_ECE; 13713 TCPSTAT_INC(tcps_ecn_shs); 13714 } 13715 if ((to.to_flags & TOF_SCALE) && 13716 (tp->t_flags & TF_REQ_SCALE)) { 13717 tp->t_flags |= TF_RCVD_SCALE; 13718 tp->snd_scale = to.to_wscale; 13719 } else 13720 tp->t_flags &= ~TF_REQ_SCALE; 13721 /* 13722 * Initial send window. It will be updated with the 13723 * next incoming segment to the scaled value. 13724 */ 13725 tp->snd_wnd = th->th_win; 13726 rack_validate_fo_sendwin_up(tp, rack); 13727 if ((to.to_flags & TOF_TS) && 13728 (tp->t_flags & TF_REQ_TSTMP)) { 13729 tp->t_flags |= TF_RCVD_TSTMP; 13730 tp->ts_recent = to.to_tsval; 13731 tp->ts_recent_age = cts; 13732 } else 13733 tp->t_flags &= ~TF_REQ_TSTMP; 13734 if (to.to_flags & TOF_MSS) { 13735 tcp_mss(tp, to.to_mss); 13736 } 13737 if ((tp->t_flags & TF_SACK_PERMIT) && 13738 (to.to_flags & TOF_SACKPERM) == 0) 13739 tp->t_flags &= ~TF_SACK_PERMIT; 13740 if (IS_FASTOPEN(tp->t_flags)) { 13741 if (to.to_flags & TOF_FASTOPEN) { 13742 uint16_t mss; 13743 13744 if (to.to_flags & TOF_MSS) 13745 mss = to.to_mss; 13746 else 13747 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 13748 mss = TCP6_MSS; 13749 else 13750 mss = TCP_MSS; 13751 tcp_fastopen_update_cache(tp, mss, 13752 to.to_tfo_len, to.to_tfo_cookie); 13753 } else 13754 tcp_fastopen_disable_path(tp); 13755 } 13756 } 13757 /* 13758 * At this point we are at the initial call. Here we decide 13759 * if we are doing RACK or not. We do this by seeing if 13760 * TF_SACK_PERMIT is set and the sack-not-required is clear. 13761 * The code now does do dup-ack counting so if you don't 13762 * switch back you won't get rack & TLP, but you will still 13763 * get this stack. 13764 */ 13765 13766 if ((rack_sack_not_required == 0) && 13767 ((tp->t_flags & TF_SACK_PERMIT) == 0)) { 13768 tcp_switch_back_to_default(tp); 13769 (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen, 13770 tlen, iptos); 13771 #ifdef TCP_ACCOUNTING 13772 sched_unpin(); 13773 #endif 13774 return (1); 13775 } 13776 tcp_set_hpts(tp->t_inpcb); 13777 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack); 13778 } 13779 if (thflags & TH_FIN) 13780 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN); 13781 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 13782 if ((rack->rc_gp_dyn_mul) && 13783 (rack->use_fixed_rate == 0) && 13784 (rack->rc_always_pace)) { 13785 /* Check in on probertt */ 13786 rack_check_probe_rtt(rack, us_cts); 13787 } 13788 if (rack->forced_ack) { 13789 uint32_t us_rtt; 13790 13791 /* 13792 * A persist or keep-alive was forced out, update our 13793 * min rtt time. Note we do not worry about lost 13794 * retransmissions since KEEP-ALIVES and persists 13795 * are usually way long on times of sending (though 13796 * if we were really paranoid or worried we could 13797 * at least use timestamps if available to validate). 13798 */ 13799 rack->forced_ack = 0; 13800 us_rtt = us_cts - rack->r_ctl.forced_ack_ts; 13801 if (us_rtt == 0) 13802 us_rtt = 1; 13803 rack_log_rtt_upd(tp, rack, us_rtt, 0, NULL, 3); 13804 rack_apply_updated_usrtt(rack, us_rtt, us_cts); 13805 } 13806 /* 13807 * This is the one exception case where we set the rack state 13808 * always. All other times (timers etc) we must have a rack-state 13809 * set (so we assure we have done the checks above for SACK). 13810 */ 13811 rack->r_ctl.rc_rcvtime = cts; 13812 if (rack->r_state != tp->t_state) 13813 rack_set_state(tp, rack); 13814 if (SEQ_GT(th->th_ack, tp->snd_una) && 13815 (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL) 13816 kern_prefetch(rsm, &prev_state); 13817 prev_state = rack->r_state; 13818 rack_clear_rate_sample(rack); 13819 retval = (*rack->r_substate) (m, th, so, 13820 tp, &to, drop_hdrlen, 13821 tlen, tiwin, thflags, nxt_pkt, iptos); 13822 #ifdef INVARIANTS 13823 if ((retval == 0) && 13824 (tp->t_inpcb == NULL)) { 13825 panic("retval:%d tp:%p t_inpcb:NULL state:%d", 13826 retval, tp, prev_state); 13827 } 13828 #endif 13829 if (retval == 0) { 13830 /* 13831 * If retval is 1 the tcb is unlocked and most likely the tp 13832 * is gone. 13833 */ 13834 INP_WLOCK_ASSERT(tp->t_inpcb); 13835 if ((rack->rc_gp_dyn_mul) && 13836 (rack->rc_always_pace) && 13837 (rack->use_fixed_rate == 0) && 13838 rack->in_probe_rtt && 13839 (rack->r_ctl.rc_time_probertt_starts == 0)) { 13840 /* 13841 * If we are going for target, lets recheck before 13842 * we output. 13843 */ 13844 rack_check_probe_rtt(rack, us_cts); 13845 } 13846 if (rack->set_pacing_done_a_iw == 0) { 13847 /* How much has been acked? */ 13848 if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) { 13849 /* We have enough to set in the pacing segment size */ 13850 rack->set_pacing_done_a_iw = 1; 13851 rack_set_pace_segments(tp, rack, __LINE__, NULL); 13852 } 13853 } 13854 tcp_rack_xmit_timer_commit(rack, tp); 13855 #ifdef TCP_ACCOUNTING 13856 /* 13857 * If we set the ack_val_se to what ack processing we are doing 13858 * we also want to track how many cycles we burned. Note 13859 * the bits after tcp_output we let be "free". This is because 13860 * we are also tracking the tcp_output times as well. Note the 13861 * use of 0xf here since we only have 11 counter (0 - 0xa) and 13862 * 0xf cannot be returned and is what we initialize it too to 13863 * indicate we are not doing the tabulations. 13864 */ 13865 if (ack_val_set != 0xf) { 13866 uint64_t crtsc; 13867 13868 crtsc = get_cyclecount(); 13869 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 13870 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 13871 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val); 13872 } 13873 } 13874 #endif 13875 if (nxt_pkt == 0) { 13876 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) { 13877 do_output_now: 13878 did_out = 1; 13879 (void)tp->t_fb->tfb_tcp_output(tp); 13880 } 13881 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 13882 rack_free_trim(rack); 13883 } 13884 if ((nxt_pkt == 0) && 13885 ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) && 13886 (SEQ_GT(tp->snd_max, tp->snd_una) || 13887 (tp->t_flags & TF_DELACK) || 13888 ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && 13889 (tp->t_state <= TCPS_CLOSING)))) { 13890 /* We could not send (probably in the hpts but stopped the timer earlier)? */ 13891 if ((tp->snd_max == tp->snd_una) && 13892 ((tp->t_flags & TF_DELACK) == 0) && 13893 (rack->rc_inp->inp_in_hpts) && 13894 (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { 13895 /* keep alive not needed if we are hptsi output yet */ 13896 ; 13897 } else { 13898 int late = 0; 13899 if (rack->rc_inp->inp_in_hpts) { 13900 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { 13901 us_cts = tcp_get_usecs(NULL); 13902 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { 13903 rack->r_early = 1; 13904 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); 13905 } else 13906 late = 1; 13907 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 13908 } 13909 tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT); 13910 } 13911 if (late && (did_out == 0)) { 13912 /* 13913 * We are late in the sending 13914 * and we did not call the output 13915 * (this probably should not happen). 13916 */ 13917 goto do_output_now; 13918 } 13919 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0); 13920 } 13921 way_out = 1; 13922 } else if (nxt_pkt == 0) { 13923 /* Do we have the correct timer running? */ 13924 rack_timer_audit(tp, rack, &so->so_snd); 13925 way_out = 2; 13926 } 13927 done_with_input: 13928 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, m->m_pkthdr.lro_nsegs)); 13929 if (did_out) 13930 rack->r_wanted_output = 0; 13931 #ifdef INVARIANTS 13932 if (tp->t_inpcb == NULL) { 13933 panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d", 13934 did_out, 13935 retval, tp, prev_state); 13936 } 13937 #endif 13938 #ifdef TCP_ACCOUNTING 13939 } else { 13940 /* 13941 * Track the time (see above). 13942 */ 13943 if (ack_val_set != 0xf) { 13944 uint64_t crtsc; 13945 13946 crtsc = get_cyclecount(); 13947 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val)); 13948 /* 13949 * Note we *DO NOT* increment the per-tcb counters since 13950 * in the else the TP may be gone!! 13951 */ 13952 } 13953 #endif 13954 } 13955 #ifdef TCP_ACCOUNTING 13956 sched_unpin(); 13957 #endif 13958 return (retval); 13959 } 13960 13961 void 13962 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, 13963 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos) 13964 { 13965 struct timeval tv; 13966 13967 /* First lets see if we have old packets */ 13968 if (tp->t_in_pkt) { 13969 if (ctf_do_queued_segments(so, tp, 1)) { 13970 m_freem(m); 13971 return; 13972 } 13973 } 13974 if (m->m_flags & M_TSTMP_LRO) { 13975 tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000; 13976 tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000; 13977 } else { 13978 /* Should not be should we kassert instead? */ 13979 tcp_get_usecs(&tv); 13980 } 13981 if (rack_do_segment_nounlock(m, th, so, tp, 13982 drop_hdrlen, tlen, iptos, 0, &tv) == 0) { 13983 tcp_handle_wakeup(tp, so); 13984 INP_WUNLOCK(tp->t_inpcb); 13985 } 13986 } 13987 13988 struct rack_sendmap * 13989 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused) 13990 { 13991 struct rack_sendmap *rsm = NULL; 13992 int32_t idx; 13993 uint32_t srtt = 0, thresh = 0, ts_low = 0; 13994 13995 /* Return the next guy to be re-transmitted */ 13996 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { 13997 return (NULL); 13998 } 13999 if (tp->t_flags & TF_SENTFIN) { 14000 /* retran the end FIN? */ 14001 return (NULL); 14002 } 14003 /* ok lets look at this one */ 14004 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 14005 if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) { 14006 goto check_it; 14007 } 14008 rsm = rack_find_lowest_rsm(rack); 14009 if (rsm == NULL) { 14010 return (NULL); 14011 } 14012 check_it: 14013 if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) && 14014 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { 14015 /* 14016 * No sack so we automatically do the 3 strikes and 14017 * retransmit (no rack timer would be started). 14018 */ 14019 14020 return (rsm); 14021 } 14022 if (rsm->r_flags & RACK_ACKED) { 14023 return (NULL); 14024 } 14025 if (((rsm->r_flags & RACK_SACK_PASSED) == 0) && 14026 (rsm->r_dupack < DUP_ACK_THRESHOLD)) { 14027 /* Its not yet ready */ 14028 return (NULL); 14029 } 14030 srtt = rack_grab_rtt(tp, rack); 14031 idx = rsm->r_rtr_cnt - 1; 14032 ts_low = (uint32_t)rsm->r_tim_lastsent[idx]; 14033 thresh = rack_calc_thresh_rack(rack, srtt, tsused); 14034 if ((tsused == ts_low) || 14035 (TSTMP_LT(tsused, ts_low))) { 14036 /* No time since sending */ 14037 return (NULL); 14038 } 14039 if ((tsused - ts_low) < thresh) { 14040 /* It has not been long enough yet */ 14041 return (NULL); 14042 } 14043 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || 14044 ((rsm->r_flags & RACK_SACK_PASSED) && 14045 (rack->sack_attack_disable == 0))) { 14046 /* 14047 * We have passed the dup-ack threshold <or> 14048 * a SACK has indicated this is missing. 14049 * Note that if you are a declared attacker 14050 * it is only the dup-ack threshold that 14051 * will cause retransmits. 14052 */ 14053 /* log retransmit reason */ 14054 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1); 14055 rack->r_fast_output = 0; 14056 return (rsm); 14057 } 14058 return (NULL); 14059 } 14060 14061 static void 14062 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, 14063 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, 14064 int line, struct rack_sendmap *rsm) 14065 { 14066 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { 14067 union tcp_log_stackspecific log; 14068 struct timeval tv; 14069 14070 memset(&log, 0, sizeof(log)); 14071 log.u_bbr.flex1 = slot; 14072 log.u_bbr.flex2 = len; 14073 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs; 14074 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs; 14075 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss; 14076 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca; 14077 log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data; 14078 log.u_bbr.use_lt_bw <<= 1; 14079 log.u_bbr.use_lt_bw |= rack->r_late; 14080 log.u_bbr.use_lt_bw <<= 1; 14081 log.u_bbr.use_lt_bw |= rack->r_early; 14082 log.u_bbr.use_lt_bw <<= 1; 14083 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; 14084 log.u_bbr.use_lt_bw <<= 1; 14085 log.u_bbr.use_lt_bw |= rack->rc_gp_filled; 14086 log.u_bbr.use_lt_bw <<= 1; 14087 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; 14088 log.u_bbr.use_lt_bw <<= 1; 14089 log.u_bbr.use_lt_bw |= rack->in_probe_rtt; 14090 log.u_bbr.use_lt_bw <<= 1; 14091 log.u_bbr.use_lt_bw |= rack->gp_ready; 14092 log.u_bbr.pkt_epoch = line; 14093 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed; 14094 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early; 14095 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec; 14096 log.u_bbr.bw_inuse = bw_est; 14097 log.u_bbr.delRate = bw; 14098 if (rack->r_ctl.gp_bw == 0) 14099 log.u_bbr.cur_del_rate = 0; 14100 else 14101 log.u_bbr.cur_del_rate = rack_get_bw(rack); 14102 log.u_bbr.rttProp = len_time; 14103 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt; 14104 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit; 14105 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 14106 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) { 14107 /* We are in slow start */ 14108 log.u_bbr.flex7 = 1; 14109 } else { 14110 /* we are on congestion avoidance */ 14111 log.u_bbr.flex7 = 0; 14112 } 14113 log.u_bbr.flex8 = method; 14114 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14115 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14116 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec; 14117 log.u_bbr.cwnd_gain <<= 1; 14118 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; 14119 log.u_bbr.cwnd_gain <<= 1; 14120 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; 14121 TCP_LOG_EVENTP(rack->rc_tp, NULL, 14122 &rack->rc_inp->inp_socket->so_rcv, 14123 &rack->rc_inp->inp_socket->so_snd, 14124 BBR_LOG_HPTSI_CALC, 0, 14125 0, &log, false, &tv); 14126 } 14127 } 14128 14129 static uint32_t 14130 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss) 14131 { 14132 uint32_t new_tso, user_max; 14133 14134 user_max = rack->rc_user_set_max_segs * mss; 14135 if (rack->rc_force_max_seg) { 14136 return (user_max); 14137 } 14138 if (rack->use_fixed_rate && 14139 ((rack->r_ctl.crte == NULL) || 14140 (bw != rack->r_ctl.crte->rate))) { 14141 /* Use the user mss since we are not exactly matched */ 14142 return (user_max); 14143 } 14144 new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL); 14145 if (new_tso > user_max) 14146 new_tso = user_max; 14147 return (new_tso); 14148 } 14149 14150 static int32_t 14151 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced) 14152 { 14153 uint64_t lentim, fill_bw; 14154 14155 /* Lets first see if we are full, if so continue with normal rate */ 14156 rack->r_via_fill_cw = 0; 14157 if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use) 14158 return (slot); 14159 if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd) 14160 return (slot); 14161 if (rack->r_ctl.rc_last_us_rtt == 0) 14162 return (slot); 14163 if (rack->rc_pace_fill_if_rttin_range && 14164 (rack->r_ctl.rc_last_us_rtt >= 14165 (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) { 14166 /* The rtt is huge, N * smallest, lets not fill */ 14167 return (slot); 14168 } 14169 /* 14170 * first lets calculate the b/w based on the last us-rtt 14171 * and the sndwnd. 14172 */ 14173 fill_bw = rack->r_ctl.cwnd_to_use; 14174 /* Take the rwnd if its smaller */ 14175 if (fill_bw > rack->rc_tp->snd_wnd) 14176 fill_bw = rack->rc_tp->snd_wnd; 14177 if (rack->r_fill_less_agg) { 14178 /* 14179 * Now take away the inflight (this will reduce our 14180 * aggressiveness and yeah, if we get that much out in 1RTT 14181 * we will have had acks come back and still be behind). 14182 */ 14183 fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14184 } 14185 /* Now lets make it into a b/w */ 14186 fill_bw *= (uint64_t)HPTS_USEC_IN_SEC; 14187 fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt; 14188 /* We are below the min b/w */ 14189 if (non_paced) 14190 *rate_wanted = fill_bw; 14191 if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted)) 14192 return (slot); 14193 if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap)) 14194 fill_bw = rack->r_ctl.bw_rate_cap; 14195 rack->r_via_fill_cw = 1; 14196 if (rack->r_rack_hw_rate_caps && 14197 (rack->r_ctl.crte != NULL)) { 14198 uint64_t high_rate; 14199 14200 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte); 14201 if (fill_bw > high_rate) { 14202 /* We are capping bw at the highest rate table entry */ 14203 if (*rate_wanted > high_rate) { 14204 /* The original rate was also capped */ 14205 rack->r_via_fill_cw = 0; 14206 } 14207 rack_log_hdwr_pacing(rack, 14208 fill_bw, high_rate, __LINE__, 14209 0, 3); 14210 fill_bw = high_rate; 14211 if (capped) 14212 *capped = 1; 14213 } 14214 } else if ((rack->r_ctl.crte == NULL) && 14215 (rack->rack_hdrw_pacing == 0) && 14216 (rack->rack_hdw_pace_ena) && 14217 rack->r_rack_hw_rate_caps && 14218 (rack->rack_attempt_hdwr_pace == 0) && 14219 (rack->rc_inp->inp_route.ro_nh != NULL) && 14220 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 14221 /* 14222 * Ok we may have a first attempt that is greater than our top rate 14223 * lets check. 14224 */ 14225 uint64_t high_rate; 14226 14227 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp); 14228 if (high_rate) { 14229 if (fill_bw > high_rate) { 14230 fill_bw = high_rate; 14231 if (capped) 14232 *capped = 1; 14233 } 14234 } 14235 } 14236 /* 14237 * Ok fill_bw holds our mythical b/w to fill the cwnd 14238 * in a rtt, what does that time wise equate too? 14239 */ 14240 lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC; 14241 lentim /= fill_bw; 14242 *rate_wanted = fill_bw; 14243 if (non_paced || (lentim < slot)) { 14244 rack_log_pacing_delay_calc(rack, len, slot, fill_bw, 14245 0, lentim, 12, __LINE__, NULL); 14246 return ((int32_t)lentim); 14247 } else 14248 return (slot); 14249 } 14250 14251 static int32_t 14252 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz) 14253 { 14254 struct rack_sendmap *lrsm; 14255 int32_t slot = 0; 14256 int can_start_hw_pacing = 1; 14257 int err; 14258 14259 if (rack->rc_always_pace == 0) { 14260 /* 14261 * We use the most optimistic possible cwnd/srtt for 14262 * sending calculations. This will make our 14263 * calculation anticipate getting more through 14264 * quicker then possible. But thats ok we don't want 14265 * the peer to have a gap in data sending. 14266 */ 14267 uint32_t srtt, cwnd, tr_perms = 0; 14268 int32_t reduce = 0; 14269 14270 old_method: 14271 /* 14272 * We keep no precise pacing with the old method 14273 * instead we use the pacer to mitigate bursts. 14274 */ 14275 if (rack->r_ctl.rc_rack_min_rtt) 14276 srtt = rack->r_ctl.rc_rack_min_rtt; 14277 else 14278 srtt = max(tp->t_srtt, 1); 14279 if (rack->r_ctl.rc_rack_largest_cwnd) 14280 cwnd = rack->r_ctl.rc_rack_largest_cwnd; 14281 else 14282 cwnd = rack->r_ctl.cwnd_to_use; 14283 /* Inflate cwnd by 1000 so srtt of usecs is in ms */ 14284 tr_perms = (cwnd * 1000) / srtt; 14285 if (tr_perms == 0) { 14286 tr_perms = ctf_fixed_maxseg(tp); 14287 } 14288 /* 14289 * Calculate how long this will take to drain, if 14290 * the calculation comes out to zero, thats ok we 14291 * will use send_a_lot to possibly spin around for 14292 * more increasing tot_len_this_send to the point 14293 * that its going to require a pace, or we hit the 14294 * cwnd. Which in that case we are just waiting for 14295 * a ACK. 14296 */ 14297 slot = len / tr_perms; 14298 /* Now do we reduce the time so we don't run dry? */ 14299 if (slot && rack_slot_reduction) { 14300 reduce = (slot / rack_slot_reduction); 14301 if (reduce < slot) { 14302 slot -= reduce; 14303 } else 14304 slot = 0; 14305 } 14306 slot *= HPTS_USEC_IN_MSEC; 14307 if (rsm == NULL) { 14308 /* 14309 * We always consider ourselves app limited with old style 14310 * that are not retransmits. This could be the initial 14311 * measurement, but thats ok its all setup and specially 14312 * handled. If another send leaks out, then that too will 14313 * be mark app-limited. 14314 */ 14315 lrsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 14316 if (lrsm && ((lrsm->r_flags & RACK_APP_LIMITED) == 0)) { 14317 rack->r_ctl.rc_first_appl = lrsm; 14318 lrsm->r_flags |= RACK_APP_LIMITED; 14319 rack->r_ctl.rc_app_limited_cnt++; 14320 } 14321 } 14322 if (rack->rc_pace_to_cwnd) { 14323 uint64_t rate_wanted = 0; 14324 14325 slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1); 14326 rack->rc_ack_can_sendout_data = 1; 14327 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL); 14328 } else 14329 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL); 14330 } else { 14331 uint64_t bw_est, res, lentim, rate_wanted; 14332 uint32_t orig_val, srtt, segs, oh; 14333 int capped = 0; 14334 int prev_fill; 14335 14336 if ((rack->r_rr_config == 1) && rsm) { 14337 return (rack->r_ctl.rc_min_to); 14338 } 14339 if (rack->use_fixed_rate) { 14340 rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack); 14341 } else if ((rack->r_ctl.init_rate == 0) && 14342 #ifdef NETFLIX_PEAKRATE 14343 (rack->rc_tp->t_maxpeakrate == 0) && 14344 #endif 14345 (rack->r_ctl.gp_bw == 0)) { 14346 /* no way to yet do an estimate */ 14347 bw_est = rate_wanted = 0; 14348 } else { 14349 bw_est = rack_get_bw(rack); 14350 rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped); 14351 } 14352 if ((bw_est == 0) || (rate_wanted == 0) || 14353 ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) { 14354 /* 14355 * No way yet to make a b/w estimate or 14356 * our raise is set incorrectly. 14357 */ 14358 goto old_method; 14359 } 14360 /* We need to account for all the overheads */ 14361 segs = (len + segsiz - 1) / segsiz; 14362 /* 14363 * We need the diff between 1514 bytes (e-mtu with e-hdr) 14364 * and how much data we put in each packet. Yes this 14365 * means we may be off if we are larger than 1500 bytes 14366 * or smaller. But this just makes us more conservative. 14367 */ 14368 if (rack_hw_rate_min && 14369 (bw_est < rack_hw_rate_min)) 14370 can_start_hw_pacing = 0; 14371 if (ETHERNET_SEGMENT_SIZE > segsiz) 14372 oh = ETHERNET_SEGMENT_SIZE - segsiz; 14373 else 14374 oh = 0; 14375 segs *= oh; 14376 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC; 14377 res = lentim / rate_wanted; 14378 slot = (uint32_t)res; 14379 orig_val = rack->r_ctl.rc_pace_max_segs; 14380 if (rack->r_ctl.crte == NULL) { 14381 /* 14382 * Only do this if we are not hardware pacing 14383 * since if we are doing hw-pacing below we will 14384 * set make a call after setting up or changing 14385 * the rate. 14386 */ 14387 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 14388 } else if (rack->rc_inp->inp_snd_tag == NULL) { 14389 /* 14390 * We lost our rate somehow, this can happen 14391 * if the interface changed underneath us. 14392 */ 14393 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 14394 rack->r_ctl.crte = NULL; 14395 /* Lets re-allow attempting to setup pacing */ 14396 rack->rack_hdrw_pacing = 0; 14397 rack->rack_attempt_hdwr_pace = 0; 14398 rack_log_hdwr_pacing(rack, 14399 rate_wanted, bw_est, __LINE__, 14400 0, 6); 14401 } 14402 /* Did we change the TSO size, if so log it */ 14403 if (rack->r_ctl.rc_pace_max_segs != orig_val) 14404 rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL); 14405 prev_fill = rack->r_via_fill_cw; 14406 if ((rack->rc_pace_to_cwnd) && 14407 (capped == 0) && 14408 (rack->use_fixed_rate == 0) && 14409 (rack->in_probe_rtt == 0) && 14410 (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) { 14411 /* 14412 * We want to pace at our rate *or* faster to 14413 * fill the cwnd to the max if its not full. 14414 */ 14415 slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0); 14416 } 14417 if ((rack->rc_inp->inp_route.ro_nh != NULL) && 14418 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { 14419 if ((rack->rack_hdw_pace_ena) && 14420 (can_start_hw_pacing > 0) && 14421 (rack->rack_hdrw_pacing == 0) && 14422 (rack->rack_attempt_hdwr_pace == 0)) { 14423 /* 14424 * Lets attempt to turn on hardware pacing 14425 * if we can. 14426 */ 14427 rack->rack_attempt_hdwr_pace = 1; 14428 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp, 14429 rack->rc_inp->inp_route.ro_nh->nh_ifp, 14430 rate_wanted, 14431 RS_PACING_GEQ, 14432 &err, &rack->r_ctl.crte_prev_rate); 14433 if (rack->r_ctl.crte) { 14434 rack->rack_hdrw_pacing = 1; 14435 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz, 14436 0, rack->r_ctl.crte, 14437 NULL); 14438 rack_log_hdwr_pacing(rack, 14439 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 14440 err, 0); 14441 rack->r_ctl.last_hw_bw_req = rate_wanted; 14442 } else { 14443 counter_u64_add(rack_hw_pace_init_fail, 1); 14444 } 14445 } else if (rack->rack_hdrw_pacing && 14446 (rack->r_ctl.last_hw_bw_req != rate_wanted)) { 14447 /* Do we need to adjust our rate? */ 14448 const struct tcp_hwrate_limit_table *nrte; 14449 14450 if (rack->r_up_only && 14451 (rate_wanted < rack->r_ctl.crte->rate)) { 14452 /** 14453 * We have four possible states here 14454 * having to do with the previous time 14455 * and this time. 14456 * previous | this-time 14457 * A) 0 | 0 -- fill_cw not in the picture 14458 * B) 1 | 0 -- we were doing a fill-cw but now are not 14459 * C) 1 | 1 -- all rates from fill_cw 14460 * D) 0 | 1 -- we were doing non-fill and now we are filling 14461 * 14462 * For case A, C and D we don't allow a drop. But for 14463 * case B where we now our on our steady rate we do 14464 * allow a drop. 14465 * 14466 */ 14467 if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0))) 14468 goto done_w_hdwr; 14469 } 14470 if ((rate_wanted > rack->r_ctl.crte->rate) || 14471 (rate_wanted <= rack->r_ctl.crte_prev_rate)) { 14472 if (rack_hw_rate_to_low && 14473 (bw_est < rack_hw_rate_to_low)) { 14474 /* 14475 * The pacing rate is too low for hardware, but 14476 * do allow hardware pacing to be restarted. 14477 */ 14478 rack_log_hdwr_pacing(rack, 14479 bw_est, rack->r_ctl.crte->rate, __LINE__, 14480 0, 5); 14481 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp); 14482 rack->r_ctl.crte = NULL; 14483 rack->rack_attempt_hdwr_pace = 0; 14484 rack->rack_hdrw_pacing = 0; 14485 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 14486 goto done_w_hdwr; 14487 } 14488 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte, 14489 rack->rc_tp, 14490 rack->rc_inp->inp_route.ro_nh->nh_ifp, 14491 rate_wanted, 14492 RS_PACING_GEQ, 14493 &err, &rack->r_ctl.crte_prev_rate); 14494 if (nrte == NULL) { 14495 /* Lost the rate */ 14496 rack->rack_hdrw_pacing = 0; 14497 rack->r_ctl.crte = NULL; 14498 rack_log_hdwr_pacing(rack, 14499 rate_wanted, 0, __LINE__, 14500 err, 1); 14501 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 14502 counter_u64_add(rack_hw_pace_lost, 1); 14503 } else if (nrte != rack->r_ctl.crte) { 14504 rack->r_ctl.crte = nrte; 14505 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, 14506 segsiz, 0, 14507 rack->r_ctl.crte, 14508 NULL); 14509 rack_log_hdwr_pacing(rack, 14510 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 14511 err, 2); 14512 rack->r_ctl.last_hw_bw_req = rate_wanted; 14513 } 14514 } else { 14515 /* We just need to adjust the segment size */ 14516 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted); 14517 rack_log_hdwr_pacing(rack, 14518 rate_wanted, rack->r_ctl.crte->rate, __LINE__, 14519 0, 4); 14520 rack->r_ctl.last_hw_bw_req = rate_wanted; 14521 } 14522 } 14523 } 14524 if ((rack->r_ctl.crte != NULL) && 14525 (rack->r_ctl.crte->rate == rate_wanted)) { 14526 /* 14527 * We need to add a extra if the rates 14528 * are exactly matched. The idea is 14529 * we want the software to make sure the 14530 * queue is empty before adding more, this 14531 * gives us N MSS extra pace times where 14532 * N is our sysctl 14533 */ 14534 slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots); 14535 } 14536 done_w_hdwr: 14537 if (rack_limit_time_with_srtt && 14538 (rack->use_fixed_rate == 0) && 14539 #ifdef NETFLIX_PEAKRATE 14540 (rack->rc_tp->t_maxpeakrate == 0) && 14541 #endif 14542 (rack->rack_hdrw_pacing == 0)) { 14543 /* 14544 * Sanity check, we do not allow the pacing delay 14545 * to be longer than the SRTT of the path. If it is 14546 * a slow path, then adding a packet should increase 14547 * the RTT and compensate for this i.e. the srtt will 14548 * be greater so the allowed pacing time will be greater. 14549 * 14550 * Note this restriction is not for where a peak rate 14551 * is set, we are doing fixed pacing or hardware pacing. 14552 */ 14553 if (rack->rc_tp->t_srtt) 14554 srtt = rack->rc_tp->t_srtt; 14555 else 14556 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */ 14557 if (srtt < slot) { 14558 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL); 14559 slot = srtt; 14560 } 14561 } 14562 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm); 14563 } 14564 if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) { 14565 /* 14566 * If this rate is seeing enobufs when it 14567 * goes to send then either the nic is out 14568 * of gas or we are mis-estimating the time 14569 * somehow and not letting the queue empty 14570 * completely. Lets add to the pacing time. 14571 */ 14572 int hw_boost_delay; 14573 14574 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult; 14575 if (hw_boost_delay > rack_enobuf_hw_max) 14576 hw_boost_delay = rack_enobuf_hw_max; 14577 else if (hw_boost_delay < rack_enobuf_hw_min) 14578 hw_boost_delay = rack_enobuf_hw_min; 14579 slot += hw_boost_delay; 14580 } 14581 if (slot) 14582 counter_u64_add(rack_calc_nonzero, 1); 14583 else 14584 counter_u64_add(rack_calc_zero, 1); 14585 return (slot); 14586 } 14587 14588 static void 14589 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack, 14590 tcp_seq startseq, uint32_t sb_offset) 14591 { 14592 struct rack_sendmap *my_rsm = NULL; 14593 struct rack_sendmap fe; 14594 14595 if (tp->t_state < TCPS_ESTABLISHED) { 14596 /* 14597 * We don't start any measurements if we are 14598 * not at least established. 14599 */ 14600 return; 14601 } 14602 tp->t_flags |= TF_GPUTINPROG; 14603 rack->r_ctl.rc_gp_lowrtt = 0xffffffff; 14604 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; 14605 tp->gput_seq = startseq; 14606 rack->app_limited_needs_set = 0; 14607 if (rack->in_probe_rtt) 14608 rack->measure_saw_probe_rtt = 1; 14609 else if ((rack->measure_saw_probe_rtt) && 14610 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) 14611 rack->measure_saw_probe_rtt = 0; 14612 if (rack->rc_gp_filled) 14613 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); 14614 else { 14615 /* Special case initial measurement */ 14616 struct timeval tv; 14617 14618 tp->gput_ts = tcp_get_usecs(&tv); 14619 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 14620 } 14621 /* 14622 * We take a guess out into the future, 14623 * if we have no measurement and no 14624 * initial rate, we measure the first 14625 * initial-windows worth of data to 14626 * speed up getting some GP measurement and 14627 * thus start pacing. 14628 */ 14629 if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) { 14630 rack->app_limited_needs_set = 1; 14631 tp->gput_ack = startseq + max(rc_init_window(rack), 14632 (MIN_GP_WIN * ctf_fixed_maxseg(tp))); 14633 rack_log_pacing_delay_calc(rack, 14634 tp->gput_seq, 14635 tp->gput_ack, 14636 0, 14637 tp->gput_ts, 14638 rack->r_ctl.rc_app_limited_cnt, 14639 9, 14640 __LINE__, NULL); 14641 return; 14642 } 14643 if (sb_offset) { 14644 /* 14645 * We are out somewhere in the sb 14646 * can we use the already outstanding data? 14647 */ 14648 14649 if (rack->r_ctl.rc_app_limited_cnt == 0) { 14650 /* 14651 * Yes first one is good and in this case 14652 * the tp->gput_ts is correctly set based on 14653 * the last ack that arrived (no need to 14654 * set things up when an ack comes in). 14655 */ 14656 my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 14657 if ((my_rsm == NULL) || 14658 (my_rsm->r_rtr_cnt != 1)) { 14659 /* retransmission? */ 14660 goto use_latest; 14661 } 14662 } else { 14663 if (rack->r_ctl.rc_first_appl == NULL) { 14664 /* 14665 * If rc_first_appl is NULL 14666 * then the cnt should be 0. 14667 * This is probably an error, maybe 14668 * a KASSERT would be approprate. 14669 */ 14670 goto use_latest; 14671 } 14672 /* 14673 * If we have a marker pointer to the last one that is 14674 * app limited we can use that, but we need to set 14675 * things up so that when it gets ack'ed we record 14676 * the ack time (if its not already acked). 14677 */ 14678 rack->app_limited_needs_set = 1; 14679 /* 14680 * We want to get to the rsm that is either 14681 * next with space i.e. over 1 MSS or the one 14682 * after that (after the app-limited). 14683 */ 14684 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 14685 rack->r_ctl.rc_first_appl); 14686 if (my_rsm) { 14687 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp)) 14688 /* Have to use the next one */ 14689 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, 14690 my_rsm); 14691 else { 14692 /* Use after the first MSS of it is acked */ 14693 tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp); 14694 goto start_set; 14695 } 14696 } 14697 if ((my_rsm == NULL) || 14698 (my_rsm->r_rtr_cnt != 1)) { 14699 /* 14700 * Either its a retransmit or 14701 * the last is the app-limited one. 14702 */ 14703 goto use_latest; 14704 } 14705 } 14706 tp->gput_seq = my_rsm->r_start; 14707 start_set: 14708 if (my_rsm->r_flags & RACK_ACKED) { 14709 /* 14710 * This one has been acked use the arrival ack time 14711 */ 14712 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 14713 rack->app_limited_needs_set = 0; 14714 } 14715 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 14716 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); 14717 rack_log_pacing_delay_calc(rack, 14718 tp->gput_seq, 14719 tp->gput_ack, 14720 (uint64_t)my_rsm, 14721 tp->gput_ts, 14722 rack->r_ctl.rc_app_limited_cnt, 14723 9, 14724 __LINE__, NULL); 14725 return; 14726 } 14727 14728 use_latest: 14729 /* 14730 * We don't know how long we may have been 14731 * idle or if this is the first-send. Lets 14732 * setup the flag so we will trim off 14733 * the first ack'd data so we get a true 14734 * measurement. 14735 */ 14736 rack->app_limited_needs_set = 1; 14737 tp->gput_ack = startseq + rack_get_measure_window(tp, rack); 14738 /* Find this guy so we can pull the send time */ 14739 fe.r_start = startseq; 14740 my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); 14741 if (my_rsm) { 14742 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)]; 14743 if (my_rsm->r_flags & RACK_ACKED) { 14744 /* 14745 * Unlikely since its probably what was 14746 * just transmitted (but I am paranoid). 14747 */ 14748 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival; 14749 rack->app_limited_needs_set = 0; 14750 } 14751 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) { 14752 /* This also is unlikely */ 14753 tp->gput_seq = my_rsm->r_start; 14754 } 14755 } else { 14756 /* 14757 * TSNH unless we have some send-map limit, 14758 * and even at that it should not be hitting 14759 * that limit (we should have stopped sending). 14760 */ 14761 struct timeval tv; 14762 14763 microuptime(&tv); 14764 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv); 14765 } 14766 rack_log_pacing_delay_calc(rack, 14767 tp->gput_seq, 14768 tp->gput_ack, 14769 (uint64_t)my_rsm, 14770 tp->gput_ts, 14771 rack->r_ctl.rc_app_limited_cnt, 14772 9, __LINE__, NULL); 14773 } 14774 14775 static inline uint32_t 14776 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use, 14777 uint32_t avail, int32_t sb_offset) 14778 { 14779 uint32_t len; 14780 uint32_t sendwin; 14781 14782 if (tp->snd_wnd > cwnd_to_use) 14783 sendwin = cwnd_to_use; 14784 else 14785 sendwin = tp->snd_wnd; 14786 if (ctf_outstanding(tp) >= tp->snd_wnd) { 14787 /* We never want to go over our peers rcv-window */ 14788 len = 0; 14789 } else { 14790 uint32_t flight; 14791 14792 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); 14793 if (flight >= sendwin) { 14794 /* 14795 * We have in flight what we are allowed by cwnd (if 14796 * it was rwnd blocking it would have hit above out 14797 * >= tp->snd_wnd). 14798 */ 14799 return (0); 14800 } 14801 len = sendwin - flight; 14802 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) { 14803 /* We would send too much (beyond the rwnd) */ 14804 len = tp->snd_wnd - ctf_outstanding(tp); 14805 } 14806 if ((len + sb_offset) > avail) { 14807 /* 14808 * We don't have that much in the SB, how much is 14809 * there? 14810 */ 14811 len = avail - sb_offset; 14812 } 14813 } 14814 return (len); 14815 } 14816 14817 static void 14818 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags, 14819 unsigned ipoptlen, int32_t orig_len, int32_t len, int error, 14820 int rsm_is_null, int optlen, int line, uint16_t mode) 14821 { 14822 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 14823 union tcp_log_stackspecific log; 14824 struct timeval tv; 14825 14826 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 14827 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 14828 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 14829 log.u_bbr.flex1 = error; 14830 log.u_bbr.flex2 = flags; 14831 log.u_bbr.flex3 = rsm_is_null; 14832 log.u_bbr.flex4 = ipoptlen; 14833 log.u_bbr.flex5 = tp->rcv_numsacks; 14834 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 14835 log.u_bbr.flex7 = optlen; 14836 log.u_bbr.flex8 = rack->r_fsb_inited; 14837 log.u_bbr.applimited = rack->r_fast_output; 14838 log.u_bbr.bw_inuse = rack_get_bw(rack); 14839 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 14840 log.u_bbr.cwnd_gain = mode; 14841 log.u_bbr.pkts_out = orig_len; 14842 log.u_bbr.lt_epoch = len; 14843 log.u_bbr.delivered = line; 14844 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 14845 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 14846 tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0, 14847 len, &log, false, NULL, NULL, 0, &tv); 14848 } 14849 } 14850 14851 14852 static struct mbuf * 14853 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen, 14854 struct rack_fast_send_blk *fsb, 14855 int32_t seglimit, int32_t segsize) 14856 { 14857 #ifdef KERN_TLS 14858 struct ktls_session *tls, *ntls; 14859 struct mbuf *start; 14860 #endif 14861 struct mbuf *m, *n, **np, *smb; 14862 struct mbuf *top; 14863 int32_t off, soff; 14864 int32_t len = *plen; 14865 int32_t fragsize; 14866 int32_t len_cp = 0; 14867 uint32_t mlen, frags; 14868 14869 soff = off = the_off; 14870 smb = m = the_m; 14871 np = ⊤ 14872 top = NULL; 14873 #ifdef KERN_TLS 14874 if (hw_tls && (m->m_flags & M_EXTPG)) 14875 tls = m->m_epg_tls; 14876 else 14877 tls = NULL; 14878 start = m; 14879 #endif 14880 while (len > 0) { 14881 if (m == NULL) { 14882 *plen = len_cp; 14883 break; 14884 } 14885 #ifdef KERN_TLS 14886 if (hw_tls) { 14887 if (m->m_flags & M_EXTPG) 14888 ntls = m->m_epg_tls; 14889 else 14890 ntls = NULL; 14891 14892 /* 14893 * Avoid mixing TLS records with handshake 14894 * data or TLS records from different 14895 * sessions. 14896 */ 14897 if (tls != ntls) { 14898 MPASS(m != start); 14899 *plen = len_cp; 14900 break; 14901 } 14902 } 14903 #endif 14904 mlen = min(len, m->m_len - off); 14905 if (seglimit) { 14906 /* 14907 * For M_EXTPG mbufs, add 3 segments 14908 * + 1 in case we are crossing page boundaries 14909 * + 2 in case the TLS hdr/trailer are used 14910 * It is cheaper to just add the segments 14911 * than it is to take the cache miss to look 14912 * at the mbuf ext_pgs state in detail. 14913 */ 14914 if (m->m_flags & M_EXTPG) { 14915 fragsize = min(segsize, PAGE_SIZE); 14916 frags = 3; 14917 } else { 14918 fragsize = segsize; 14919 frags = 0; 14920 } 14921 14922 /* Break if we really can't fit anymore. */ 14923 if ((frags + 1) >= seglimit) { 14924 *plen = len_cp; 14925 break; 14926 } 14927 14928 /* 14929 * Reduce size if you can't copy the whole 14930 * mbuf. If we can't copy the whole mbuf, also 14931 * adjust len so the loop will end after this 14932 * mbuf. 14933 */ 14934 if ((frags + howmany(mlen, fragsize)) >= seglimit) { 14935 mlen = (seglimit - frags - 1) * fragsize; 14936 len = mlen; 14937 *plen = len_cp + len; 14938 } 14939 frags += howmany(mlen, fragsize); 14940 if (frags == 0) 14941 frags++; 14942 seglimit -= frags; 14943 KASSERT(seglimit > 0, 14944 ("%s: seglimit went too low", __func__)); 14945 } 14946 n = m_get(M_NOWAIT, m->m_type); 14947 *np = n; 14948 if (n == NULL) 14949 goto nospace; 14950 n->m_len = mlen; 14951 soff += mlen; 14952 len_cp += n->m_len; 14953 if (m->m_flags & (M_EXT|M_EXTPG)) { 14954 n->m_data = m->m_data + off; 14955 mb_dupcl(n, m); 14956 } else { 14957 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 14958 (u_int)n->m_len); 14959 } 14960 len -= n->m_len; 14961 off = 0; 14962 m = m->m_next; 14963 np = &n->m_next; 14964 if (len || (soff == smb->m_len)) { 14965 /* 14966 * We have more so we move forward or 14967 * we have consumed the entire mbuf and 14968 * len has fell to 0. 14969 */ 14970 soff = 0; 14971 smb = m; 14972 } 14973 14974 } 14975 if (fsb != NULL) { 14976 fsb->m = smb; 14977 fsb->off = soff; 14978 if (smb) { 14979 /* 14980 * Save off the size of the mbuf. We do 14981 * this so that we can recognize when it 14982 * has been trimmed by sbcut() as acks 14983 * come in. 14984 */ 14985 fsb->o_m_len = smb->m_len; 14986 } else { 14987 /* 14988 * This is the case where the next mbuf went to NULL. This 14989 * means with this copy we have sent everything in the sb. 14990 * In theory we could clear the fast_output flag, but lets 14991 * not since its possible that we could get more added 14992 * and acks that call the extend function which would let 14993 * us send more. 14994 */ 14995 fsb->o_m_len = 0; 14996 } 14997 } 14998 return (top); 14999 nospace: 15000 if (top) 15001 m_freem(top); 15002 return (NULL); 15003 15004 } 15005 15006 /* 15007 * This is a copy of m_copym(), taking the TSO segment size/limit 15008 * constraints into account, and advancing the sndptr as it goes. 15009 */ 15010 static struct mbuf * 15011 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen, 15012 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff) 15013 { 15014 struct mbuf *m, *n; 15015 int32_t soff; 15016 15017 soff = rack->r_ctl.fsb.off; 15018 m = rack->r_ctl.fsb.m; 15019 if (rack->r_ctl.fsb.o_m_len != m->m_len) { 15020 /* 15021 * The mbuf had the front of it chopped off by an ack 15022 * we need to adjust the soff/off by that difference. 15023 */ 15024 uint32_t delta; 15025 15026 delta = rack->r_ctl.fsb.o_m_len - m->m_len; 15027 soff -= delta; 15028 } 15029 KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff)); 15030 KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen)); 15031 KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?", 15032 __FUNCTION__, 15033 rack, *plen, m, m->m_len)); 15034 /* Save off the right location before we copy and advance */ 15035 *s_soff = soff; 15036 *s_mb = rack->r_ctl.fsb.m; 15037 n = rack_fo_base_copym(m, soff, plen, 15038 &rack->r_ctl.fsb, 15039 seglimit, segsize); 15040 return (n); 15041 } 15042 15043 static int 15044 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, 15045 uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len) 15046 { 15047 /* 15048 * Enter the fast retransmit path. We are given that a sched_pin is 15049 * in place (if accounting is compliled in) and the cycle count taken 15050 * at the entry is in the ts_val. The concept her is that the rsm 15051 * now holds the mbuf offsets and such so we can directly transmit 15052 * without a lot of overhead, the len field is already set for 15053 * us to prohibit us from sending too much (usually its 1MSS). 15054 */ 15055 struct ip *ip = NULL; 15056 struct udphdr *udp = NULL; 15057 struct tcphdr *th = NULL; 15058 struct mbuf *m = NULL; 15059 struct inpcb *inp; 15060 uint8_t *cpto; 15061 struct tcp_log_buffer *lgb; 15062 #ifdef TCP_ACCOUNTING 15063 uint64_t crtsc; 15064 int cnt_thru = 1; 15065 #endif 15066 int doing_tlp = 0; 15067 struct tcpopt to; 15068 u_char opt[TCP_MAXOLEN]; 15069 uint32_t hdrlen, optlen; 15070 int32_t slot, segsiz, max_val, tso = 0, error, flags, ulen = 0; 15071 uint32_t us_cts; 15072 uint32_t if_hw_tsomaxsegcount = 0, startseq; 15073 uint32_t if_hw_tsomaxsegsize; 15074 #ifdef INET6 15075 struct ip6_hdr *ip6 = NULL; 15076 15077 if (rack->r_is_v6) { 15078 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 15079 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 15080 } else 15081 #endif /* INET6 */ 15082 { 15083 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 15084 hdrlen = sizeof(struct tcpiphdr); 15085 } 15086 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 15087 goto failed; 15088 } 15089 if (rsm->r_flags & RACK_TLP) 15090 doing_tlp = 1; 15091 startseq = rsm->r_start; 15092 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 15093 inp = rack->rc_inp; 15094 to.to_flags = 0; 15095 flags = tcp_outflags[tp->t_state]; 15096 if (flags & (TH_SYN|TH_RST)) { 15097 goto failed; 15098 } 15099 if (rsm->r_flags & RACK_HAS_FIN) { 15100 /* We can't send a FIN here */ 15101 goto failed; 15102 } 15103 if (flags & TH_FIN) { 15104 /* We never send a FIN */ 15105 flags &= ~TH_FIN; 15106 } 15107 if (tp->t_flags & TF_RCVD_TSTMP) { 15108 to.to_tsval = ms_cts + tp->ts_offset; 15109 to.to_tsecr = tp->ts_recent; 15110 to.to_flags = TOF_TS; 15111 } 15112 optlen = tcp_addoptions(&to, opt); 15113 hdrlen += optlen; 15114 udp = rack->r_ctl.fsb.udp; 15115 if (udp) 15116 hdrlen += sizeof(struct udphdr); 15117 if (rack->r_ctl.rc_pace_max_segs) 15118 max_val = rack->r_ctl.rc_pace_max_segs; 15119 else if (rack->rc_user_set_max_segs) 15120 max_val = rack->rc_user_set_max_segs * segsiz; 15121 else 15122 max_val = len; 15123 if ((tp->t_flags & TF_TSO) && 15124 V_tcp_do_tso && 15125 (len > segsiz) && 15126 (tp->t_port == 0)) 15127 tso = 1; 15128 #ifdef INET6 15129 if (MHLEN < hdrlen + max_linkhdr) 15130 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 15131 else 15132 #endif 15133 m = m_gethdr(M_NOWAIT, MT_DATA); 15134 if (m == NULL) 15135 goto failed; 15136 m->m_data += max_linkhdr; 15137 m->m_len = hdrlen; 15138 th = rack->r_ctl.fsb.th; 15139 /* Establish the len to send */ 15140 if (len > max_val) 15141 len = max_val; 15142 if ((tso) && (len + optlen > tp->t_maxseg)) { 15143 uint32_t if_hw_tsomax; 15144 int32_t max_len; 15145 15146 /* extract TSO information */ 15147 if_hw_tsomax = tp->t_tsomax; 15148 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 15149 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 15150 /* 15151 * Check if we should limit by maximum payload 15152 * length: 15153 */ 15154 if (if_hw_tsomax != 0) { 15155 /* compute maximum TSO length */ 15156 max_len = (if_hw_tsomax - hdrlen - 15157 max_linkhdr); 15158 if (max_len <= 0) { 15159 goto failed; 15160 } else if (len > max_len) { 15161 len = max_len; 15162 } 15163 } 15164 if (len <= segsiz) { 15165 /* 15166 * In case there are too many small fragments don't 15167 * use TSO: 15168 */ 15169 tso = 0; 15170 } 15171 } else { 15172 tso = 0; 15173 } 15174 if ((tso == 0) && (len > segsiz)) 15175 len = segsiz; 15176 us_cts = tcp_get_usecs(tv); 15177 if ((len == 0) || 15178 (len <= MHLEN - hdrlen - max_linkhdr)) { 15179 goto failed; 15180 } 15181 th->th_seq = htonl(rsm->r_start); 15182 th->th_ack = htonl(tp->rcv_nxt); 15183 if(rsm->r_flags & RACK_HAD_PUSH) 15184 flags |= TH_PUSH; 15185 th->th_flags = flags; 15186 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 15187 if (th->th_win == 0) { 15188 tp->t_sndzerowin++; 15189 tp->t_flags |= TF_RXWIN0SENT; 15190 } else 15191 tp->t_flags &= ~TF_RXWIN0SENT; 15192 if (rsm->r_flags & RACK_TLP) { 15193 /* 15194 * TLP should not count in retran count, but 15195 * in its own bin 15196 */ 15197 counter_u64_add(rack_tlp_retran, 1); 15198 counter_u64_add(rack_tlp_retran_bytes, len); 15199 } else { 15200 tp->t_sndrexmitpack++; 15201 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 15202 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 15203 } 15204 #ifdef STATS 15205 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 15206 len); 15207 #endif 15208 if (rsm->m == NULL) 15209 goto failed; 15210 if (rsm->orig_m_len != rsm->m->m_len) { 15211 /* Fix up the orig_m_len and possibly the mbuf offset */ 15212 rack_adjust_orig_mlen(rsm); 15213 } 15214 m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize); 15215 if (len <= segsiz) { 15216 /* 15217 * Must have ran out of mbufs for the copy 15218 * shorten it to no longer need tso. Lets 15219 * not put on sendalot since we are low on 15220 * mbufs. 15221 */ 15222 tso = 0; 15223 } 15224 if ((m->m_next == NULL) || (len <= 0)){ 15225 goto failed; 15226 } 15227 if (udp) { 15228 if (rack->r_is_v6) 15229 ulen = hdrlen + len - sizeof(struct ip6_hdr); 15230 else 15231 ulen = hdrlen + len - sizeof(struct ip); 15232 udp->uh_ulen = htons(ulen); 15233 } 15234 m->m_pkthdr.rcvif = (struct ifnet *)0; 15235 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 15236 #ifdef INET6 15237 if (rack->r_is_v6) { 15238 if (tp->t_port) { 15239 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 15240 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15241 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 15242 th->th_sum = htons(0); 15243 UDPSTAT_INC(udps_opackets); 15244 } else { 15245 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 15246 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15247 th->th_sum = in6_cksum_pseudo(ip6, 15248 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 15249 0); 15250 } 15251 } 15252 #endif 15253 #if defined(INET6) && defined(INET) 15254 else 15255 #endif 15256 #ifdef INET 15257 { 15258 if (tp->t_port) { 15259 m->m_pkthdr.csum_flags = CSUM_UDP; 15260 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15261 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 15262 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 15263 th->th_sum = htons(0); 15264 UDPSTAT_INC(udps_opackets); 15265 } else { 15266 m->m_pkthdr.csum_flags = CSUM_TCP; 15267 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15268 th->th_sum = in_pseudo(ip->ip_src.s_addr, 15269 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 15270 IPPROTO_TCP + len + optlen)); 15271 } 15272 /* IP version must be set here for ipv4/ipv6 checking later */ 15273 KASSERT(ip->ip_v == IPVERSION, 15274 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 15275 } 15276 #endif 15277 if (tso) { 15278 KASSERT(len > tp->t_maxseg - optlen, 15279 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 15280 m->m_pkthdr.csum_flags |= CSUM_TSO; 15281 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 15282 } 15283 #ifdef INET6 15284 if (rack->r_is_v6) { 15285 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 15286 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 15287 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 15288 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15289 else 15290 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15291 } 15292 #endif 15293 #if defined(INET) && defined(INET6) 15294 else 15295 #endif 15296 #ifdef INET 15297 { 15298 ip->ip_len = htons(m->m_pkthdr.len); 15299 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 15300 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 15301 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15302 if (tp->t_port == 0 || len < V_tcp_minmss) { 15303 ip->ip_off |= htons(IP_DF); 15304 } 15305 } else { 15306 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15307 } 15308 } 15309 #endif 15310 /* Time to copy in our header */ 15311 cpto = mtod(m, uint8_t *); 15312 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 15313 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 15314 if (optlen) { 15315 bcopy(opt, th + 1, optlen); 15316 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 15317 } else { 15318 th->th_off = sizeof(struct tcphdr) >> 2; 15319 } 15320 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 15321 union tcp_log_stackspecific log; 15322 15323 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15324 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 15325 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 15326 if (rack->rack_no_prr) 15327 log.u_bbr.flex1 = 0; 15328 else 15329 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 15330 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 15331 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 15332 log.u_bbr.flex4 = max_val; 15333 log.u_bbr.flex5 = 0; 15334 /* Save off the early/late values */ 15335 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 15336 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 15337 log.u_bbr.bw_inuse = rack_get_bw(rack); 15338 log.u_bbr.flex8 = 1; 15339 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 15340 log.u_bbr.flex7 = 55; 15341 log.u_bbr.pkts_out = tp->t_maxseg; 15342 log.u_bbr.timeStamp = cts; 15343 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 15344 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 15345 log.u_bbr.delivered = 0; 15346 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 15347 len, &log, false, NULL, NULL, 0, tv); 15348 } else 15349 lgb = NULL; 15350 #ifdef INET6 15351 if (rack->r_is_v6) { 15352 error = ip6_output(m, NULL, 15353 &inp->inp_route6, 15354 0, NULL, NULL, inp); 15355 } 15356 #endif 15357 #if defined(INET) && defined(INET6) 15358 else 15359 #endif 15360 #ifdef INET 15361 { 15362 error = ip_output(m, NULL, 15363 &inp->inp_route, 15364 0, 0, inp); 15365 } 15366 #endif 15367 m = NULL; 15368 if (lgb) { 15369 lgb->tlb_errno = error; 15370 lgb = NULL; 15371 } 15372 if (error) { 15373 goto failed; 15374 } 15375 rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv), 15376 rsm, RACK_SENT_FP, rsm->m, rsm->soff); 15377 if (doing_tlp && (rack->fast_rsm_hack == 0)) { 15378 rack->rc_tlp_in_progress = 1; 15379 rack->r_ctl.rc_tlp_cnt_out++; 15380 } 15381 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 15382 rack->forced_ack = 0; /* If we send something zap the FA flag */ 15383 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 15384 rack->r_ctl.retran_during_recovery += len; 15385 { 15386 int idx; 15387 15388 idx = (len / segsiz) + 3; 15389 if (idx >= TCP_MSS_ACCT_ATIMER) 15390 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 15391 else 15392 counter_u64_add(rack_out_size[idx], 1); 15393 } 15394 if (tp->t_rtttime == 0) { 15395 tp->t_rtttime = ticks; 15396 tp->t_rtseq = startseq; 15397 KMOD_TCPSTAT_INC(tcps_segstimed); 15398 } 15399 counter_u64_add(rack_fto_rsm_send, 1); 15400 if (error && (error == ENOBUFS)) { 15401 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 15402 if (rack->rc_enobuf < 0x7f) 15403 rack->rc_enobuf++; 15404 if (slot < (10 * HPTS_USEC_IN_MSEC)) 15405 slot = 10 * HPTS_USEC_IN_MSEC; 15406 } else 15407 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz); 15408 if ((slot == 0) || 15409 (rack->rc_always_pace == 0) || 15410 (rack->r_rr_config == 1)) { 15411 /* 15412 * We have no pacing set or we 15413 * are using old-style rack or 15414 * we are overriden to use the old 1ms pacing. 15415 */ 15416 slot = rack->r_ctl.rc_min_to; 15417 } 15418 rack_start_hpts_timer(rack, tp, cts, slot, len, 0); 15419 if (rack->r_must_retran) { 15420 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 15421 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 15422 /* 15423 * We have retransmitted all we need. 15424 */ 15425 rack->r_must_retran = 0; 15426 rack->r_ctl.rc_out_at_rto = 0; 15427 } 15428 } 15429 #ifdef TCP_ACCOUNTING 15430 crtsc = get_cyclecount(); 15431 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 15432 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 15433 } 15434 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 15435 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 15436 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 15437 } 15438 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 15439 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 15440 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz); 15441 } 15442 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz)); 15443 sched_unpin(); 15444 #endif 15445 return (0); 15446 failed: 15447 if (m) 15448 m_free(m); 15449 return (-1); 15450 } 15451 15452 static void 15453 rack_sndbuf_autoscale(struct tcp_rack *rack) 15454 { 15455 /* 15456 * Automatic sizing of send socket buffer. Often the send buffer 15457 * size is not optimally adjusted to the actual network conditions 15458 * at hand (delay bandwidth product). Setting the buffer size too 15459 * small limits throughput on links with high bandwidth and high 15460 * delay (eg. trans-continental/oceanic links). Setting the 15461 * buffer size too big consumes too much real kernel memory, 15462 * especially with many connections on busy servers. 15463 * 15464 * The criteria to step up the send buffer one notch are: 15465 * 1. receive window of remote host is larger than send buffer 15466 * (with a fudge factor of 5/4th); 15467 * 2. send buffer is filled to 7/8th with data (so we actually 15468 * have data to make use of it); 15469 * 3. send buffer fill has not hit maximal automatic size; 15470 * 4. our send window (slow start and cogestion controlled) is 15471 * larger than sent but unacknowledged data in send buffer. 15472 * 15473 * Note that the rack version moves things much faster since 15474 * we want to avoid hitting cache lines in the rack_fast_output() 15475 * path so this is called much less often and thus moves 15476 * the SB forward by a percentage. 15477 */ 15478 struct socket *so; 15479 struct tcpcb *tp; 15480 uint32_t sendwin, scaleup; 15481 15482 tp = rack->rc_tp; 15483 so = rack->rc_inp->inp_socket; 15484 sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd); 15485 if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) { 15486 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat && 15487 sbused(&so->so_snd) >= 15488 (so->so_snd.sb_hiwat / 8 * 7) && 15489 sbused(&so->so_snd) < V_tcp_autosndbuf_max && 15490 sendwin >= (sbused(&so->so_snd) - 15491 (tp->snd_nxt - tp->snd_una))) { 15492 if (rack_autosndbuf_inc) 15493 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100; 15494 else 15495 scaleup = V_tcp_autosndbuf_inc; 15496 if (scaleup < V_tcp_autosndbuf_inc) 15497 scaleup = V_tcp_autosndbuf_inc; 15498 scaleup += so->so_snd.sb_hiwat; 15499 if (scaleup > V_tcp_autosndbuf_max) 15500 scaleup = V_tcp_autosndbuf_max; 15501 if (!sbreserve_locked(&so->so_snd, scaleup, so, curthread)) 15502 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 15503 } 15504 } 15505 } 15506 15507 static int 15508 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val, 15509 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err) 15510 { 15511 /* 15512 * Enter to do fast output. We are given that the sched_pin is 15513 * in place (if accounting is compiled in) and the cycle count taken 15514 * at entry is in place in ts_val. The idea here is that 15515 * we know how many more bytes needs to be sent (presumably either 15516 * during pacing or to fill the cwnd and that was greater than 15517 * the max-burst). We have how much to send and all the info we 15518 * need to just send. 15519 */ 15520 struct ip *ip = NULL; 15521 struct udphdr *udp = NULL; 15522 struct tcphdr *th = NULL; 15523 struct mbuf *m, *s_mb; 15524 struct inpcb *inp; 15525 uint8_t *cpto; 15526 struct tcp_log_buffer *lgb; 15527 #ifdef TCP_ACCOUNTING 15528 uint64_t crtsc; 15529 #endif 15530 struct tcpopt to; 15531 u_char opt[TCP_MAXOLEN]; 15532 uint32_t hdrlen, optlen; 15533 int cnt_thru = 1; 15534 int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, flags, ulen = 0; 15535 uint32_t us_cts, s_soff; 15536 uint32_t if_hw_tsomaxsegcount = 0, startseq; 15537 uint32_t if_hw_tsomaxsegsize; 15538 uint16_t add_flag = RACK_SENT_FP; 15539 #ifdef INET6 15540 struct ip6_hdr *ip6 = NULL; 15541 15542 if (rack->r_is_v6) { 15543 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 15544 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 15545 } else 15546 #endif /* INET6 */ 15547 { 15548 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 15549 hdrlen = sizeof(struct tcpiphdr); 15550 } 15551 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) { 15552 m = NULL; 15553 goto failed; 15554 } 15555 startseq = tp->snd_max; 15556 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 15557 inp = rack->rc_inp; 15558 len = rack->r_ctl.fsb.left_to_send; 15559 to.to_flags = 0; 15560 flags = rack->r_ctl.fsb.tcp_flags; 15561 if (tp->t_flags & TF_RCVD_TSTMP) { 15562 to.to_tsval = ms_cts + tp->ts_offset; 15563 to.to_tsecr = tp->ts_recent; 15564 to.to_flags = TOF_TS; 15565 } 15566 optlen = tcp_addoptions(&to, opt); 15567 hdrlen += optlen; 15568 udp = rack->r_ctl.fsb.udp; 15569 if (udp) 15570 hdrlen += sizeof(struct udphdr); 15571 if (rack->r_ctl.rc_pace_max_segs) 15572 max_val = rack->r_ctl.rc_pace_max_segs; 15573 else if (rack->rc_user_set_max_segs) 15574 max_val = rack->rc_user_set_max_segs * segsiz; 15575 else 15576 max_val = len; 15577 if ((tp->t_flags & TF_TSO) && 15578 V_tcp_do_tso && 15579 (len > segsiz) && 15580 (tp->t_port == 0)) 15581 tso = 1; 15582 again: 15583 #ifdef INET6 15584 if (MHLEN < hdrlen + max_linkhdr) 15585 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 15586 else 15587 #endif 15588 m = m_gethdr(M_NOWAIT, MT_DATA); 15589 if (m == NULL) 15590 goto failed; 15591 m->m_data += max_linkhdr; 15592 m->m_len = hdrlen; 15593 th = rack->r_ctl.fsb.th; 15594 /* Establish the len to send */ 15595 if (len > max_val) 15596 len = max_val; 15597 if ((tso) && (len + optlen > tp->t_maxseg)) { 15598 uint32_t if_hw_tsomax; 15599 int32_t max_len; 15600 15601 /* extract TSO information */ 15602 if_hw_tsomax = tp->t_tsomax; 15603 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 15604 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 15605 /* 15606 * Check if we should limit by maximum payload 15607 * length: 15608 */ 15609 if (if_hw_tsomax != 0) { 15610 /* compute maximum TSO length */ 15611 max_len = (if_hw_tsomax - hdrlen - 15612 max_linkhdr); 15613 if (max_len <= 0) { 15614 goto failed; 15615 } else if (len > max_len) { 15616 len = max_len; 15617 } 15618 } 15619 if (len <= segsiz) { 15620 /* 15621 * In case there are too many small fragments don't 15622 * use TSO: 15623 */ 15624 tso = 0; 15625 } 15626 } else { 15627 tso = 0; 15628 } 15629 if ((tso == 0) && (len > segsiz)) 15630 len = segsiz; 15631 us_cts = tcp_get_usecs(tv); 15632 if ((len == 0) || 15633 (len <= MHLEN - hdrlen - max_linkhdr)) { 15634 goto failed; 15635 } 15636 sb_offset = tp->snd_max - tp->snd_una; 15637 th->th_seq = htonl(tp->snd_max); 15638 th->th_ack = htonl(tp->rcv_nxt); 15639 th->th_flags = flags; 15640 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale)); 15641 if (th->th_win == 0) { 15642 tp->t_sndzerowin++; 15643 tp->t_flags |= TF_RXWIN0SENT; 15644 } else 15645 tp->t_flags &= ~TF_RXWIN0SENT; 15646 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 15647 KMOD_TCPSTAT_INC(tcps_sndpack); 15648 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 15649 #ifdef STATS 15650 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 15651 len); 15652 #endif 15653 if (rack->r_ctl.fsb.m == NULL) 15654 goto failed; 15655 15656 /* s_mb and s_soff are saved for rack_log_output */ 15657 m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, &s_mb, &s_soff); 15658 if (len <= segsiz) { 15659 /* 15660 * Must have ran out of mbufs for the copy 15661 * shorten it to no longer need tso. Lets 15662 * not put on sendalot since we are low on 15663 * mbufs. 15664 */ 15665 tso = 0; 15666 } 15667 if (rack->r_ctl.fsb.rfo_apply_push && 15668 (len == rack->r_ctl.fsb.left_to_send)) { 15669 th->th_flags |= TH_PUSH; 15670 add_flag |= RACK_HAD_PUSH; 15671 } 15672 if ((m->m_next == NULL) || (len <= 0)){ 15673 goto failed; 15674 } 15675 if (udp) { 15676 if (rack->r_is_v6) 15677 ulen = hdrlen + len - sizeof(struct ip6_hdr); 15678 else 15679 ulen = hdrlen + len - sizeof(struct ip); 15680 udp->uh_ulen = htons(ulen); 15681 } 15682 m->m_pkthdr.rcvif = (struct ifnet *)0; 15683 if (tp->t_state == TCPS_ESTABLISHED && 15684 (tp->t_flags2 & TF2_ECN_PERMIT)) { 15685 /* 15686 * If the peer has ECN, mark data packets with ECN capable 15687 * transmission (ECT). Ignore pure ack packets, 15688 * retransmissions. 15689 */ 15690 if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max)) { 15691 #ifdef INET6 15692 if (rack->r_is_v6) 15693 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); 15694 else 15695 #endif 15696 ip->ip_tos |= IPTOS_ECN_ECT0; 15697 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 15698 /* 15699 * Reply with proper ECN notifications. 15700 * Only set CWR on new data segments. 15701 */ 15702 if (tp->t_flags2 & TF2_ECN_SND_CWR) { 15703 flags |= TH_CWR; 15704 tp->t_flags2 &= ~TF2_ECN_SND_CWR; 15705 } 15706 } 15707 if (tp->t_flags2 & TF2_ECN_SND_ECE) 15708 flags |= TH_ECE; 15709 } 15710 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 15711 #ifdef INET6 15712 if (rack->r_is_v6) { 15713 if (tp->t_port) { 15714 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 15715 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15716 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 15717 th->th_sum = htons(0); 15718 UDPSTAT_INC(udps_opackets); 15719 } else { 15720 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 15721 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15722 th->th_sum = in6_cksum_pseudo(ip6, 15723 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 15724 0); 15725 } 15726 } 15727 #endif 15728 #if defined(INET6) && defined(INET) 15729 else 15730 #endif 15731 #ifdef INET 15732 { 15733 if (tp->t_port) { 15734 m->m_pkthdr.csum_flags = CSUM_UDP; 15735 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 15736 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 15737 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 15738 th->th_sum = htons(0); 15739 UDPSTAT_INC(udps_opackets); 15740 } else { 15741 m->m_pkthdr.csum_flags = CSUM_TCP; 15742 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 15743 th->th_sum = in_pseudo(ip->ip_src.s_addr, 15744 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 15745 IPPROTO_TCP + len + optlen)); 15746 } 15747 /* IP version must be set here for ipv4/ipv6 checking later */ 15748 KASSERT(ip->ip_v == IPVERSION, 15749 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 15750 } 15751 #endif 15752 if (tso) { 15753 KASSERT(len > tp->t_maxseg - optlen, 15754 ("%s: len <= tso_segsz tp:%p", __func__, tp)); 15755 m->m_pkthdr.csum_flags |= CSUM_TSO; 15756 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 15757 } 15758 #ifdef INET6 15759 if (rack->r_is_v6) { 15760 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit; 15761 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 15762 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 15763 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15764 else 15765 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15766 } 15767 #endif 15768 #if defined(INET) && defined(INET6) 15769 else 15770 #endif 15771 #ifdef INET 15772 { 15773 ip->ip_len = htons(m->m_pkthdr.len); 15774 ip->ip_ttl = rack->r_ctl.fsb.hoplimit; 15775 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 15776 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 15777 if (tp->t_port == 0 || len < V_tcp_minmss) { 15778 ip->ip_off |= htons(IP_DF); 15779 } 15780 } else { 15781 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 15782 } 15783 } 15784 #endif 15785 /* Time to copy in our header */ 15786 cpto = mtod(m, uint8_t *); 15787 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 15788 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 15789 if (optlen) { 15790 bcopy(opt, th + 1, optlen); 15791 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 15792 } else { 15793 th->th_off = sizeof(struct tcphdr) >> 2; 15794 } 15795 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 15796 union tcp_log_stackspecific log; 15797 15798 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 15799 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 15800 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 15801 if (rack->rack_no_prr) 15802 log.u_bbr.flex1 = 0; 15803 else 15804 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 15805 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 15806 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 15807 log.u_bbr.flex4 = max_val; 15808 log.u_bbr.flex5 = 0; 15809 /* Save off the early/late values */ 15810 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 15811 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 15812 log.u_bbr.bw_inuse = rack_get_bw(rack); 15813 log.u_bbr.flex8 = 0; 15814 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL); 15815 log.u_bbr.flex7 = 44; 15816 log.u_bbr.pkts_out = tp->t_maxseg; 15817 log.u_bbr.timeStamp = cts; 15818 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 15819 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use; 15820 log.u_bbr.delivered = 0; 15821 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK, 15822 len, &log, false, NULL, NULL, 0, tv); 15823 } else 15824 lgb = NULL; 15825 #ifdef INET6 15826 if (rack->r_is_v6) { 15827 error = ip6_output(m, NULL, 15828 &inp->inp_route6, 15829 0, NULL, NULL, inp); 15830 } 15831 #endif 15832 #if defined(INET) && defined(INET6) 15833 else 15834 #endif 15835 #ifdef INET 15836 { 15837 error = ip_output(m, NULL, 15838 &inp->inp_route, 15839 0, 0, inp); 15840 } 15841 #endif 15842 if (lgb) { 15843 lgb->tlb_errno = error; 15844 lgb = NULL; 15845 } 15846 if (error) { 15847 *send_err = error; 15848 m = NULL; 15849 goto failed; 15850 } 15851 rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv), 15852 NULL, add_flag, s_mb, s_soff); 15853 m = NULL; 15854 if (tp->snd_una == tp->snd_max) { 15855 rack->r_ctl.rc_tlp_rxt_last_time = cts; 15856 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 15857 tp->t_acktime = ticks; 15858 } 15859 rack->forced_ack = 0; /* If we send something zap the FA flag */ 15860 tot_len += len; 15861 if ((tp->t_flags & TF_GPUTINPROG) == 0) 15862 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset); 15863 tp->snd_max += len; 15864 tp->snd_nxt = tp->snd_max; 15865 { 15866 int idx; 15867 15868 idx = (len / segsiz) + 3; 15869 if (idx >= TCP_MSS_ACCT_ATIMER) 15870 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 15871 else 15872 counter_u64_add(rack_out_size[idx], 1); 15873 } 15874 if (len <= rack->r_ctl.fsb.left_to_send) 15875 rack->r_ctl.fsb.left_to_send -= len; 15876 else 15877 rack->r_ctl.fsb.left_to_send = 0; 15878 if (rack->r_ctl.fsb.left_to_send < segsiz) { 15879 rack->r_fast_output = 0; 15880 rack->r_ctl.fsb.left_to_send = 0; 15881 /* At the end of fast_output scale up the sb */ 15882 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd); 15883 rack_sndbuf_autoscale(rack); 15884 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd); 15885 } 15886 if (tp->t_rtttime == 0) { 15887 tp->t_rtttime = ticks; 15888 tp->t_rtseq = startseq; 15889 KMOD_TCPSTAT_INC(tcps_segstimed); 15890 } 15891 if ((rack->r_ctl.fsb.left_to_send >= segsiz) && 15892 (max_val > len) && 15893 (tso == 0)) { 15894 max_val -= len; 15895 len = segsiz; 15896 th = rack->r_ctl.fsb.th; 15897 cnt_thru++; 15898 goto again; 15899 } 15900 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 15901 counter_u64_add(rack_fto_send, 1); 15902 slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz); 15903 rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0); 15904 #ifdef TCP_ACCOUNTING 15905 crtsc = get_cyclecount(); 15906 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 15907 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru; 15908 } 15909 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru); 15910 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 15911 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 15912 } 15913 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 15914 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 15915 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz); 15916 } 15917 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz)); 15918 sched_unpin(); 15919 #endif 15920 return (0); 15921 failed: 15922 if (m) 15923 m_free(m); 15924 rack->r_fast_output = 0; 15925 return (-1); 15926 } 15927 15928 static int 15929 rack_output(struct tcpcb *tp) 15930 { 15931 struct socket *so; 15932 uint32_t recwin; 15933 uint32_t sb_offset, s_moff = 0; 15934 int32_t len, flags, error = 0; 15935 struct mbuf *m, *s_mb = NULL; 15936 struct mbuf *mb; 15937 uint32_t if_hw_tsomaxsegcount = 0; 15938 uint32_t if_hw_tsomaxsegsize; 15939 int32_t segsiz, minseg; 15940 long tot_len_this_send = 0; 15941 #ifdef INET 15942 struct ip *ip = NULL; 15943 #endif 15944 #ifdef TCPDEBUG 15945 struct ipovly *ipov = NULL; 15946 #endif 15947 struct udphdr *udp = NULL; 15948 struct tcp_rack *rack; 15949 struct tcphdr *th; 15950 uint8_t pass = 0; 15951 uint8_t mark = 0; 15952 uint8_t wanted_cookie = 0; 15953 u_char opt[TCP_MAXOLEN]; 15954 unsigned ipoptlen, optlen, hdrlen, ulen=0; 15955 uint32_t rack_seq; 15956 15957 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 15958 unsigned ipsec_optlen = 0; 15959 15960 #endif 15961 int32_t idle, sendalot; 15962 int32_t sub_from_prr = 0; 15963 volatile int32_t sack_rxmit; 15964 struct rack_sendmap *rsm = NULL; 15965 int32_t tso, mtu; 15966 struct tcpopt to; 15967 int32_t slot = 0; 15968 int32_t sup_rack = 0; 15969 uint32_t cts, ms_cts, delayed, early; 15970 uint16_t add_flag = RACK_SENT_SP; 15971 uint8_t hpts_calling, doing_tlp = 0; 15972 uint32_t cwnd_to_use, pace_max_seg; 15973 int32_t do_a_prefetch = 0; 15974 int32_t prefetch_rsm = 0; 15975 int32_t orig_len = 0; 15976 struct timeval tv; 15977 int32_t prefetch_so_done = 0; 15978 struct tcp_log_buffer *lgb; 15979 struct inpcb *inp; 15980 struct sockbuf *sb; 15981 uint64_t ts_val = 0; 15982 #ifdef TCP_ACCOUNTING 15983 uint64_t crtsc; 15984 #endif 15985 #ifdef INET6 15986 struct ip6_hdr *ip6 = NULL; 15987 int32_t isipv6; 15988 #endif 15989 uint8_t filled_all = 0; 15990 bool hw_tls = false; 15991 15992 /* setup and take the cache hits here */ 15993 rack = (struct tcp_rack *)tp->t_fb_ptr; 15994 #ifdef TCP_ACCOUNTING 15995 sched_pin(); 15996 ts_val = get_cyclecount(); 15997 #endif 15998 hpts_calling = rack->rc_inp->inp_hpts_calls; 15999 NET_EPOCH_ASSERT(); 16000 INP_WLOCK_ASSERT(rack->rc_inp); 16001 #ifdef TCP_OFFLOAD 16002 if (tp->t_flags & TF_TOE) { 16003 #ifdef TCP_ACCOUNTING 16004 sched_unpin(); 16005 #endif 16006 return (tcp_offload_output(tp)); 16007 } 16008 #endif 16009 /* 16010 * For TFO connections in SYN_RECEIVED, only allow the initial 16011 * SYN|ACK and those sent by the retransmit timer. 16012 */ 16013 if (IS_FASTOPEN(tp->t_flags) && 16014 (tp->t_state == TCPS_SYN_RECEIVED) && 16015 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */ 16016 (rack->r_ctl.rc_resend == NULL)) { /* not a retransmit */ 16017 #ifdef TCP_ACCOUNTING 16018 sched_unpin(); 16019 #endif 16020 return (0); 16021 } 16022 #ifdef INET6 16023 if (rack->r_state) { 16024 /* Use the cache line loaded if possible */ 16025 isipv6 = rack->r_is_v6; 16026 } else { 16027 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0; 16028 } 16029 #endif 16030 early = 0; 16031 cts = tcp_get_usecs(&tv); 16032 ms_cts = tcp_tv_to_mssectick(&tv); 16033 if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) && 16034 rack->rc_inp->inp_in_hpts) { 16035 /* 16036 * We are on the hpts for some timer but not hptsi output. 16037 * Remove from the hpts unconditionally. 16038 */ 16039 rack_timer_cancel(tp, rack, cts, __LINE__); 16040 } 16041 /* Are we pacing and late? */ 16042 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16043 TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) { 16044 /* We are delayed */ 16045 delayed = cts - rack->r_ctl.rc_last_output_to; 16046 } else { 16047 delayed = 0; 16048 } 16049 /* Do the timers, which may override the pacer */ 16050 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { 16051 if (rack_process_timers(tp, rack, cts, hpts_calling)) { 16052 counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1); 16053 #ifdef TCP_ACCOUNTING 16054 sched_unpin(); 16055 #endif 16056 return (0); 16057 } 16058 } 16059 if (rack->rc_in_persist) { 16060 if (rack->rc_inp->inp_in_hpts == 0) { 16061 /* Timer is not running */ 16062 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); 16063 } 16064 #ifdef TCP_ACCOUNTING 16065 sched_unpin(); 16066 #endif 16067 return (0); 16068 } 16069 if ((rack->r_timer_override) || 16070 (rack->rc_ack_can_sendout_data) || 16071 (delayed) || 16072 (tp->t_state < TCPS_ESTABLISHED)) { 16073 rack->rc_ack_can_sendout_data = 0; 16074 if (rack->rc_inp->inp_in_hpts) 16075 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); 16076 } else if (rack->rc_inp->inp_in_hpts) { 16077 /* 16078 * On the hpts you can't pass even if ACKNOW is on, we will 16079 * when the hpts fires. 16080 */ 16081 #ifdef TCP_ACCOUNTING 16082 crtsc = get_cyclecount(); 16083 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16084 tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val); 16085 } 16086 counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val)); 16087 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 16088 tp->tcp_cnt_counters[SND_BLOCKED]++; 16089 } 16090 counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1); 16091 sched_unpin(); 16092 #endif 16093 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1); 16094 return (0); 16095 } 16096 rack->rc_inp->inp_hpts_calls = 0; 16097 /* Finish out both pacing early and late accounting */ 16098 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && 16099 TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) { 16100 early = rack->r_ctl.rc_last_output_to - cts; 16101 } else 16102 early = 0; 16103 if (delayed) { 16104 rack->r_ctl.rc_agg_delayed += delayed; 16105 rack->r_late = 1; 16106 } else if (early) { 16107 rack->r_ctl.rc_agg_early += early; 16108 rack->r_early = 1; 16109 } 16110 /* Now that early/late accounting is done turn off the flag */ 16111 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; 16112 rack->r_wanted_output = 0; 16113 rack->r_timer_override = 0; 16114 if ((tp->t_state != rack->r_state) && 16115 TCPS_HAVEESTABLISHED(tp->t_state)) { 16116 rack_set_state(tp, rack); 16117 } 16118 if ((rack->r_fast_output) && 16119 (tp->rcv_numsacks == 0)) { 16120 int ret; 16121 16122 error = 0; 16123 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 16124 if (ret >= 0) 16125 return(ret); 16126 else if (error) { 16127 inp = rack->rc_inp; 16128 so = inp->inp_socket; 16129 sb = &so->so_snd; 16130 goto nomore; 16131 } 16132 } 16133 inp = rack->rc_inp; 16134 /* 16135 * For TFO connections in SYN_SENT or SYN_RECEIVED, 16136 * only allow the initial SYN or SYN|ACK and those sent 16137 * by the retransmit timer. 16138 */ 16139 if (IS_FASTOPEN(tp->t_flags) && 16140 ((tp->t_state == TCPS_SYN_RECEIVED) || 16141 (tp->t_state == TCPS_SYN_SENT)) && 16142 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */ 16143 (tp->t_rxtshift == 0)) { /* not a retransmit */ 16144 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 16145 so = inp->inp_socket; 16146 sb = &so->so_snd; 16147 goto just_return_nolock; 16148 } 16149 /* 16150 * Determine length of data that should be transmitted, and flags 16151 * that will be used. If there is some data or critical controls 16152 * (SYN, RST) to send, then transmit; otherwise, investigate 16153 * further. 16154 */ 16155 idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); 16156 if (tp->t_idle_reduce) { 16157 if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) 16158 rack_cc_after_idle(rack, tp); 16159 } 16160 tp->t_flags &= ~TF_LASTIDLE; 16161 if (idle) { 16162 if (tp->t_flags & TF_MORETOCOME) { 16163 tp->t_flags |= TF_LASTIDLE; 16164 idle = 0; 16165 } 16166 } 16167 if ((tp->snd_una == tp->snd_max) && 16168 rack->r_ctl.rc_went_idle_time && 16169 TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) { 16170 idle = cts - rack->r_ctl.rc_went_idle_time; 16171 if (idle > rack_min_probertt_hold) { 16172 /* Count as a probe rtt */ 16173 if (rack->in_probe_rtt == 0) { 16174 rack->r_ctl.rc_lower_rtt_us_cts = cts; 16175 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; 16176 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; 16177 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; 16178 } else { 16179 rack_exit_probertt(rack, cts); 16180 } 16181 } 16182 idle = 0; 16183 } 16184 if (rack_use_fsb && (rack->r_fsb_inited == 0)) 16185 rack_init_fsb_block(tp, rack); 16186 again: 16187 /* 16188 * If we've recently taken a timeout, snd_max will be greater than 16189 * snd_nxt. There may be SACK information that allows us to avoid 16190 * resending already delivered data. Adjust snd_nxt accordingly. 16191 */ 16192 sendalot = 0; 16193 cts = tcp_get_usecs(&tv); 16194 ms_cts = tcp_tv_to_mssectick(&tv); 16195 tso = 0; 16196 mtu = 0; 16197 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); 16198 minseg = segsiz; 16199 if (rack->r_ctl.rc_pace_max_segs == 0) 16200 pace_max_seg = rack->rc_user_set_max_segs * segsiz; 16201 else 16202 pace_max_seg = rack->r_ctl.rc_pace_max_segs; 16203 sb_offset = tp->snd_max - tp->snd_una; 16204 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; 16205 flags = tcp_outflags[tp->t_state]; 16206 while (rack->rc_free_cnt < rack_free_cache) { 16207 rsm = rack_alloc(rack); 16208 if (rsm == NULL) { 16209 if (inp->inp_hpts_calls) 16210 /* Retry in a ms */ 16211 slot = (1 * HPTS_USEC_IN_MSEC); 16212 so = inp->inp_socket; 16213 sb = &so->so_snd; 16214 goto just_return_nolock; 16215 } 16216 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext); 16217 rack->rc_free_cnt++; 16218 rsm = NULL; 16219 } 16220 if (inp->inp_hpts_calls) 16221 inp->inp_hpts_calls = 0; 16222 sack_rxmit = 0; 16223 len = 0; 16224 rsm = NULL; 16225 if (flags & TH_RST) { 16226 SOCKBUF_LOCK(&inp->inp_socket->so_snd); 16227 so = inp->inp_socket; 16228 sb = &so->so_snd; 16229 goto send; 16230 } 16231 if (rack->r_ctl.rc_resend) { 16232 /* Retransmit timer */ 16233 rsm = rack->r_ctl.rc_resend; 16234 rack->r_ctl.rc_resend = NULL; 16235 rsm->r_flags &= ~RACK_TLP; 16236 len = rsm->r_end - rsm->r_start; 16237 sack_rxmit = 1; 16238 sendalot = 0; 16239 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 16240 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 16241 __func__, __LINE__, 16242 rsm->r_start, tp->snd_una, tp, rack, rsm)); 16243 sb_offset = rsm->r_start - tp->snd_una; 16244 if (len >= segsiz) 16245 len = segsiz; 16246 } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) { 16247 /* We have a retransmit that takes precedence */ 16248 rsm->r_flags &= ~RACK_TLP; 16249 if ((!IN_FASTRECOVERY(tp->t_flags)) && 16250 ((tp->t_flags & TF_WASFRECOVERY) == 0)) { 16251 /* Enter recovery if not induced by a time-out */ 16252 rack->r_ctl.rc_rsm_start = rsm->r_start; 16253 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; 16254 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; 16255 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una); 16256 } 16257 #ifdef INVARIANTS 16258 if (SEQ_LT(rsm->r_start, tp->snd_una)) { 16259 panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n", 16260 tp, rack, rsm, rsm->r_start, tp->snd_una); 16261 } 16262 #endif 16263 len = rsm->r_end - rsm->r_start; 16264 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 16265 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 16266 __func__, __LINE__, 16267 rsm->r_start, tp->snd_una, tp, rack, rsm)); 16268 sb_offset = rsm->r_start - tp->snd_una; 16269 sendalot = 0; 16270 if (len >= segsiz) 16271 len = segsiz; 16272 if (len > 0) { 16273 sack_rxmit = 1; 16274 KMOD_TCPSTAT_INC(tcps_sack_rexmits); 16275 KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes, 16276 min(len, segsiz)); 16277 counter_u64_add(rack_rtm_prr_retran, 1); 16278 } 16279 } else if (rack->r_ctl.rc_tlpsend) { 16280 /* Tail loss probe */ 16281 long cwin; 16282 long tlen; 16283 16284 doing_tlp = 1; 16285 /* 16286 * Check if we can do a TLP with a RACK'd packet 16287 * this can happen if we are not doing the rack 16288 * cheat and we skipped to a TLP and it 16289 * went off. 16290 */ 16291 rsm = rack->r_ctl.rc_tlpsend; 16292 rsm->r_flags |= RACK_TLP; 16293 16294 rack->r_ctl.rc_tlpsend = NULL; 16295 sack_rxmit = 1; 16296 tlen = rsm->r_end - rsm->r_start; 16297 if (tlen > segsiz) 16298 tlen = segsiz; 16299 tp->t_sndtlppack++; 16300 tp->t_sndtlpbyte += tlen; 16301 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), 16302 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", 16303 __func__, __LINE__, 16304 rsm->r_start, tp->snd_una, tp, rack, rsm)); 16305 sb_offset = rsm->r_start - tp->snd_una; 16306 cwin = min(tp->snd_wnd, tlen); 16307 len = cwin; 16308 } 16309 if (rack->r_must_retran && 16310 (rsm == NULL)) { 16311 /* 16312 * Non-Sack and we had a RTO or MTU change, we 16313 * need to retransmit until we reach 16314 * the former snd_max (rack->r_ctl.rc_snd_max_at_rto). 16315 */ 16316 if (SEQ_GT(tp->snd_max, tp->snd_una)) { 16317 int sendwin, flight; 16318 16319 sendwin = min(tp->snd_wnd, tp->snd_cwnd); 16320 flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto); 16321 if (flight >= sendwin) { 16322 so = inp->inp_socket; 16323 sb = &so->so_snd; 16324 goto just_return_nolock; 16325 } 16326 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); 16327 KASSERT(rsm != NULL, ("rsm is NULL rack:%p r_must_retran set", rack)); 16328 if (rsm == NULL) { 16329 /* TSNH */ 16330 rack->r_must_retran = 0; 16331 rack->r_ctl.rc_out_at_rto = 0; 16332 rack->r_must_retran = 0; 16333 so = inp->inp_socket; 16334 sb = &so->so_snd; 16335 goto just_return_nolock; 16336 } 16337 sack_rxmit = 1; 16338 len = rsm->r_end - rsm->r_start; 16339 sendalot = 0; 16340 sb_offset = rsm->r_start - tp->snd_una; 16341 if (len >= segsiz) 16342 len = segsiz; 16343 } else { 16344 /* We must be done if there is nothing outstanding */ 16345 rack->r_must_retran = 0; 16346 rack->r_ctl.rc_out_at_rto = 0; 16347 } 16348 } 16349 /* 16350 * Enforce a connection sendmap count limit if set 16351 * as long as we are not retransmiting. 16352 */ 16353 if ((rsm == NULL) && 16354 (rack->do_detection == 0) && 16355 (V_tcp_map_entries_limit > 0) && 16356 (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { 16357 counter_u64_add(rack_to_alloc_limited, 1); 16358 if (!rack->alloc_limit_reported) { 16359 rack->alloc_limit_reported = 1; 16360 counter_u64_add(rack_alloc_limited_conns, 1); 16361 } 16362 so = inp->inp_socket; 16363 sb = &so->so_snd; 16364 goto just_return_nolock; 16365 } 16366 if (rsm && (rsm->r_flags & RACK_HAS_FIN)) { 16367 /* we are retransmitting the fin */ 16368 len--; 16369 if (len) { 16370 /* 16371 * When retransmitting data do *not* include the 16372 * FIN. This could happen from a TLP probe. 16373 */ 16374 flags &= ~TH_FIN; 16375 } 16376 } 16377 #ifdef INVARIANTS 16378 /* For debugging */ 16379 rack->r_ctl.rc_rsm_at_retran = rsm; 16380 #endif 16381 if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo && 16382 ((rsm->r_flags & RACK_HAS_FIN) == 0)) { 16383 int ret; 16384 16385 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len); 16386 if (ret == 0) 16387 return (0); 16388 } 16389 so = inp->inp_socket; 16390 sb = &so->so_snd; 16391 if (do_a_prefetch == 0) { 16392 kern_prefetch(sb, &do_a_prefetch); 16393 do_a_prefetch = 1; 16394 } 16395 #ifdef NETFLIX_SHARED_CWND 16396 if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) && 16397 rack->rack_enable_scwnd) { 16398 /* We are doing cwnd sharing */ 16399 if (rack->gp_ready && 16400 (rack->rack_attempted_scwnd == 0) && 16401 (rack->r_ctl.rc_scw == NULL) && 16402 tp->t_lib) { 16403 /* The pcbid is in, lets make an attempt */ 16404 counter_u64_add(rack_try_scwnd, 1); 16405 rack->rack_attempted_scwnd = 1; 16406 rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp, 16407 &rack->r_ctl.rc_scw_index, 16408 segsiz); 16409 } 16410 if (rack->r_ctl.rc_scw && 16411 (rack->rack_scwnd_is_idle == 1) && 16412 sbavail(&so->so_snd)) { 16413 /* we are no longer out of data */ 16414 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 16415 rack->rack_scwnd_is_idle = 0; 16416 } 16417 if (rack->r_ctl.rc_scw) { 16418 /* First lets update and get the cwnd */ 16419 rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw, 16420 rack->r_ctl.rc_scw_index, 16421 tp->snd_cwnd, tp->snd_wnd, segsiz); 16422 } 16423 } 16424 #endif 16425 /* 16426 * Get standard flags, and add SYN or FIN if requested by 'hidden' 16427 * state flags. 16428 */ 16429 if (tp->t_flags & TF_NEEDFIN) 16430 flags |= TH_FIN; 16431 if (tp->t_flags & TF_NEEDSYN) 16432 flags |= TH_SYN; 16433 if ((sack_rxmit == 0) && (prefetch_rsm == 0)) { 16434 void *end_rsm; 16435 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); 16436 if (end_rsm) 16437 kern_prefetch(end_rsm, &prefetch_rsm); 16438 prefetch_rsm = 1; 16439 } 16440 SOCKBUF_LOCK(sb); 16441 /* 16442 * If snd_nxt == snd_max and we have transmitted a FIN, the 16443 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a 16444 * negative length. This can also occur when TCP opens up its 16445 * congestion window while receiving additional duplicate acks after 16446 * fast-retransmit because TCP will reset snd_nxt to snd_max after 16447 * the fast-retransmit. 16448 * 16449 * In the normal retransmit-FIN-only case, however, snd_nxt will be 16450 * set to snd_una, the sb_offset will be 0, and the length may wind 16451 * up 0. 16452 * 16453 * If sack_rxmit is true we are retransmitting from the scoreboard 16454 * in which case len is already set. 16455 */ 16456 if ((sack_rxmit == 0) && 16457 (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) { 16458 uint32_t avail; 16459 16460 avail = sbavail(sb); 16461 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail) 16462 sb_offset = tp->snd_nxt - tp->snd_una; 16463 else 16464 sb_offset = 0; 16465 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) { 16466 if (rack->r_ctl.rc_tlp_new_data) { 16467 /* TLP is forcing out new data */ 16468 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) { 16469 rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset); 16470 } 16471 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) { 16472 if (tp->snd_wnd > sb_offset) 16473 len = tp->snd_wnd - sb_offset; 16474 else 16475 len = 0; 16476 } else { 16477 len = rack->r_ctl.rc_tlp_new_data; 16478 } 16479 rack->r_ctl.rc_tlp_new_data = 0; 16480 doing_tlp = 1; 16481 } else { 16482 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset); 16483 } 16484 if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) { 16485 /* 16486 * For prr=off, we need to send only 1 MSS 16487 * at a time. We do this because another sack could 16488 * be arriving that causes us to send retransmits and 16489 * we don't want to be on a long pace due to a larger send 16490 * that keeps us from sending out the retransmit. 16491 */ 16492 len = segsiz; 16493 } 16494 } else { 16495 uint32_t outstanding; 16496 /* 16497 * We are inside of a Fast recovery episode, this 16498 * is caused by a SACK or 3 dup acks. At this point 16499 * we have sent all the retransmissions and we rely 16500 * on PRR to dictate what we will send in the form of 16501 * new data. 16502 */ 16503 16504 outstanding = tp->snd_max - tp->snd_una; 16505 if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) { 16506 if (tp->snd_wnd > outstanding) { 16507 len = tp->snd_wnd - outstanding; 16508 /* Check to see if we have the data */ 16509 if ((sb_offset + len) > avail) { 16510 /* It does not all fit */ 16511 if (avail > sb_offset) 16512 len = avail - sb_offset; 16513 else 16514 len = 0; 16515 } 16516 } else { 16517 len = 0; 16518 } 16519 } else if (avail > sb_offset) { 16520 len = avail - sb_offset; 16521 } else { 16522 len = 0; 16523 } 16524 if (len > 0) { 16525 if (len > rack->r_ctl.rc_prr_sndcnt) { 16526 len = rack->r_ctl.rc_prr_sndcnt; 16527 } 16528 if (len > 0) { 16529 sub_from_prr = 1; 16530 counter_u64_add(rack_rtm_prr_newdata, 1); 16531 } 16532 } 16533 if (len > segsiz) { 16534 /* 16535 * We should never send more than a MSS when 16536 * retransmitting or sending new data in prr 16537 * mode unless the override flag is on. Most 16538 * likely the PRR algorithm is not going to 16539 * let us send a lot as well :-) 16540 */ 16541 if (rack->r_ctl.rc_prr_sendalot == 0) { 16542 len = segsiz; 16543 } 16544 } else if (len < segsiz) { 16545 /* 16546 * Do we send any? The idea here is if the 16547 * send empty's the socket buffer we want to 16548 * do it. However if not then lets just wait 16549 * for our prr_sndcnt to get bigger. 16550 */ 16551 long leftinsb; 16552 16553 leftinsb = sbavail(sb) - sb_offset; 16554 if (leftinsb > len) { 16555 /* This send does not empty the sb */ 16556 len = 0; 16557 } 16558 } 16559 } 16560 } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) { 16561 /* 16562 * If you have not established 16563 * and are not doing FAST OPEN 16564 * no data please. 16565 */ 16566 if ((sack_rxmit == 0) && 16567 (!IS_FASTOPEN(tp->t_flags))){ 16568 len = 0; 16569 sb_offset = 0; 16570 } 16571 } 16572 if (prefetch_so_done == 0) { 16573 kern_prefetch(so, &prefetch_so_done); 16574 prefetch_so_done = 1; 16575 } 16576 /* 16577 * Lop off SYN bit if it has already been sent. However, if this is 16578 * SYN-SENT state and if segment contains data and if we don't know 16579 * that foreign host supports TAO, suppress sending segment. 16580 */ 16581 if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) && 16582 ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) { 16583 /* 16584 * When sending additional segments following a TFO SYN|ACK, 16585 * do not include the SYN bit. 16586 */ 16587 if (IS_FASTOPEN(tp->t_flags) && 16588 (tp->t_state == TCPS_SYN_RECEIVED)) 16589 flags &= ~TH_SYN; 16590 } 16591 /* 16592 * Be careful not to send data and/or FIN on SYN segments. This 16593 * measure is needed to prevent interoperability problems with not 16594 * fully conformant TCP implementations. 16595 */ 16596 if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) { 16597 len = 0; 16598 flags &= ~TH_FIN; 16599 } 16600 /* 16601 * On TFO sockets, ensure no data is sent in the following cases: 16602 * 16603 * - When retransmitting SYN|ACK on a passively-created socket 16604 * 16605 * - When retransmitting SYN on an actively created socket 16606 * 16607 * - When sending a zero-length cookie (cookie request) on an 16608 * actively created socket 16609 * 16610 * - When the socket is in the CLOSED state (RST is being sent) 16611 */ 16612 if (IS_FASTOPEN(tp->t_flags) && 16613 (((flags & TH_SYN) && (tp->t_rxtshift > 0)) || 16614 ((tp->t_state == TCPS_SYN_SENT) && 16615 (tp->t_tfo_client_cookie_len == 0)) || 16616 (flags & TH_RST))) { 16617 sack_rxmit = 0; 16618 len = 0; 16619 } 16620 /* Without fast-open there should never be data sent on a SYN */ 16621 if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) { 16622 tp->snd_nxt = tp->iss; 16623 len = 0; 16624 } 16625 if ((len > segsiz) && (tcp_dsack_block_exists(tp))) { 16626 /* We only send 1 MSS if we have a DSACK block */ 16627 add_flag |= RACK_SENT_W_DSACK; 16628 len = segsiz; 16629 } 16630 orig_len = len; 16631 if (len <= 0) { 16632 /* 16633 * If FIN has been sent but not acked, but we haven't been 16634 * called to retransmit, len will be < 0. Otherwise, window 16635 * shrank after we sent into it. If window shrank to 0, 16636 * cancel pending retransmit, pull snd_nxt back to (closed) 16637 * window, and set the persist timer if it isn't already 16638 * going. If the window didn't close completely, just wait 16639 * for an ACK. 16640 * 16641 * We also do a general check here to ensure that we will 16642 * set the persist timer when we have data to send, but a 16643 * 0-byte window. This makes sure the persist timer is set 16644 * even if the packet hits one of the "goto send" lines 16645 * below. 16646 */ 16647 len = 0; 16648 if ((tp->snd_wnd == 0) && 16649 (TCPS_HAVEESTABLISHED(tp->t_state)) && 16650 (tp->snd_una == tp->snd_max) && 16651 (sb_offset < (int)sbavail(sb))) { 16652 rack_enter_persist(tp, rack, cts); 16653 } 16654 } else if ((rsm == NULL) && 16655 (doing_tlp == 0) && 16656 (len < pace_max_seg)) { 16657 /* 16658 * We are not sending a maximum sized segment for 16659 * some reason. Should we not send anything (think 16660 * sws or persists)? 16661 */ 16662 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 16663 (TCPS_HAVEESTABLISHED(tp->t_state)) && 16664 (len < minseg) && 16665 (len < (int)(sbavail(sb) - sb_offset))) { 16666 /* 16667 * Here the rwnd is less than 16668 * the minimum pacing size, this is not a retransmit, 16669 * we are established and 16670 * the send is not the last in the socket buffer 16671 * we send nothing, and we may enter persists 16672 * if nothing is outstanding. 16673 */ 16674 len = 0; 16675 if (tp->snd_max == tp->snd_una) { 16676 /* 16677 * Nothing out we can 16678 * go into persists. 16679 */ 16680 rack_enter_persist(tp, rack, cts); 16681 } 16682 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) && 16683 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 16684 (len < (int)(sbavail(sb) - sb_offset)) && 16685 (len < minseg)) { 16686 /* 16687 * Here we are not retransmitting, and 16688 * the cwnd is not so small that we could 16689 * not send at least a min size (rxt timer 16690 * not having gone off), We have 2 segments or 16691 * more already in flight, its not the tail end 16692 * of the socket buffer and the cwnd is blocking 16693 * us from sending out a minimum pacing segment size. 16694 * Lets not send anything. 16695 */ 16696 len = 0; 16697 } else if (((tp->snd_wnd - ctf_outstanding(tp)) < 16698 min((rack->r_ctl.rc_high_rwnd/2), minseg)) && 16699 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && 16700 (len < (int)(sbavail(sb) - sb_offset)) && 16701 (TCPS_HAVEESTABLISHED(tp->t_state))) { 16702 /* 16703 * Here we have a send window but we have 16704 * filled it up and we can't send another pacing segment. 16705 * We also have in flight more than 2 segments 16706 * and we are not completing the sb i.e. we allow 16707 * the last bytes of the sb to go out even if 16708 * its not a full pacing segment. 16709 */ 16710 len = 0; 16711 } else if ((rack->r_ctl.crte != NULL) && 16712 (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) && 16713 (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) && 16714 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) && 16715 (len < (int)(sbavail(sb) - sb_offset))) { 16716 /* 16717 * Here we are doing hardware pacing, this is not a TLP, 16718 * we are not sending a pace max segment size, there is rwnd 16719 * room to send at least N pace_max_seg, the cwnd is greater 16720 * than or equal to a full pacing segments plus 4 mss and we have 2 or 16721 * more segments in flight and its not the tail of the socket buffer. 16722 * 16723 * We don't want to send instead we need to get more ack's in to 16724 * allow us to send a full pacing segment. Normally, if we are pacing 16725 * about the right speed, we should have finished our pacing 16726 * send as most of the acks have come back if we are at the 16727 * right rate. This is a bit fuzzy since return path delay 16728 * can delay the acks, which is why we want to make sure we 16729 * have cwnd space to have a bit more than a max pace segments in flight. 16730 * 16731 * If we have not gotten our acks back we are pacing at too high a 16732 * rate delaying will not hurt and will bring our GP estimate down by 16733 * injecting the delay. If we don't do this we will send 16734 * 2 MSS out in response to the acks being clocked in which 16735 * defeats the point of hw-pacing (i.e. to help us get 16736 * larger TSO's out). 16737 */ 16738 len = 0; 16739 16740 } 16741 16742 } 16743 /* len will be >= 0 after this point. */ 16744 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 16745 rack_sndbuf_autoscale(rack); 16746 /* 16747 * Decide if we can use TCP Segmentation Offloading (if supported by 16748 * hardware). 16749 * 16750 * TSO may only be used if we are in a pure bulk sending state. The 16751 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP 16752 * options prevent using TSO. With TSO the TCP header is the same 16753 * (except for the sequence number) for all generated packets. This 16754 * makes it impossible to transmit any options which vary per 16755 * generated segment or packet. 16756 * 16757 * IPv4 handling has a clear separation of ip options and ip header 16758 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does 16759 * the right thing below to provide length of just ip options and thus 16760 * checking for ipoptlen is enough to decide if ip options are present. 16761 */ 16762 ipoptlen = 0; 16763 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 16764 /* 16765 * Pre-calculate here as we save another lookup into the darknesses 16766 * of IPsec that way and can actually decide if TSO is ok. 16767 */ 16768 #ifdef INET6 16769 if (isipv6 && IPSEC_ENABLED(ipv6)) 16770 ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb); 16771 #ifdef INET 16772 else 16773 #endif 16774 #endif /* INET6 */ 16775 #ifdef INET 16776 if (IPSEC_ENABLED(ipv4)) 16777 ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb); 16778 #endif /* INET */ 16779 #endif 16780 16781 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 16782 ipoptlen += ipsec_optlen; 16783 #endif 16784 if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz && 16785 (tp->t_port == 0) && 16786 ((tp->t_flags & TF_SIGNATURE) == 0) && 16787 tp->rcv_numsacks == 0 && sack_rxmit == 0 && 16788 ipoptlen == 0) 16789 tso = 1; 16790 { 16791 uint32_t outstanding; 16792 16793 outstanding = tp->snd_max - tp->snd_una; 16794 if (tp->t_flags & TF_SENTFIN) { 16795 /* 16796 * If we sent a fin, snd_max is 1 higher than 16797 * snd_una 16798 */ 16799 outstanding--; 16800 } 16801 if (sack_rxmit) { 16802 if ((rsm->r_flags & RACK_HAS_FIN) == 0) 16803 flags &= ~TH_FIN; 16804 } else { 16805 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + 16806 sbused(sb))) 16807 flags &= ~TH_FIN; 16808 } 16809 } 16810 recwin = lmin(lmax(sbspace(&so->so_rcv), 0), 16811 (long)TCP_MAXWIN << tp->rcv_scale); 16812 16813 /* 16814 * Sender silly window avoidance. We transmit under the following 16815 * conditions when len is non-zero: 16816 * 16817 * - We have a full segment (or more with TSO) - This is the last 16818 * buffer in a write()/send() and we are either idle or running 16819 * NODELAY - we've timed out (e.g. persist timer) - we have more 16820 * then 1/2 the maximum send window's worth of data (receiver may be 16821 * limited the window size) - we need to retransmit 16822 */ 16823 if (len) { 16824 if (len >= segsiz) { 16825 goto send; 16826 } 16827 /* 16828 * NOTE! on localhost connections an 'ack' from the remote 16829 * end may occur synchronously with the output and cause us 16830 * to flush a buffer queued with moretocome. XXX 16831 * 16832 */ 16833 if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */ 16834 (idle || (tp->t_flags & TF_NODELAY)) && 16835 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 16836 (tp->t_flags & TF_NOPUSH) == 0) { 16837 pass = 2; 16838 goto send; 16839 } 16840 if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */ 16841 pass = 22; 16842 goto send; 16843 } 16844 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { 16845 pass = 4; 16846 goto send; 16847 } 16848 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */ 16849 pass = 5; 16850 goto send; 16851 } 16852 if (sack_rxmit) { 16853 pass = 6; 16854 goto send; 16855 } 16856 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) && 16857 (ctf_outstanding(tp) < (segsiz * 2))) { 16858 /* 16859 * We have less than two MSS outstanding (delayed ack) 16860 * and our rwnd will not let us send a full sized 16861 * MSS. Lets go ahead and let this small segment 16862 * out because we want to try to have at least two 16863 * packets inflight to not be caught by delayed ack. 16864 */ 16865 pass = 12; 16866 goto send; 16867 } 16868 } 16869 /* 16870 * Sending of standalone window updates. 16871 * 16872 * Window updates are important when we close our window due to a 16873 * full socket buffer and are opening it again after the application 16874 * reads data from it. Once the window has opened again and the 16875 * remote end starts to send again the ACK clock takes over and 16876 * provides the most current window information. 16877 * 16878 * We must avoid the silly window syndrome whereas every read from 16879 * the receive buffer, no matter how small, causes a window update 16880 * to be sent. We also should avoid sending a flurry of window 16881 * updates when the socket buffer had queued a lot of data and the 16882 * application is doing small reads. 16883 * 16884 * Prevent a flurry of pointless window updates by only sending an 16885 * update when we can increase the advertized window by more than 16886 * 1/4th of the socket buffer capacity. When the buffer is getting 16887 * full or is very small be more aggressive and send an update 16888 * whenever we can increase by two mss sized segments. In all other 16889 * situations the ACK's to new incoming data will carry further 16890 * window increases. 16891 * 16892 * Don't send an independent window update if a delayed ACK is 16893 * pending (it will get piggy-backed on it) or the remote side 16894 * already has done a half-close and won't send more data. Skip 16895 * this if the connection is in T/TCP half-open state. 16896 */ 16897 if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) && 16898 !(tp->t_flags & TF_DELACK) && 16899 !TCPS_HAVERCVDFIN(tp->t_state)) { 16900 /* 16901 * "adv" is the amount we could increase the window, taking 16902 * into account that we are limited by TCP_MAXWIN << 16903 * tp->rcv_scale. 16904 */ 16905 int32_t adv; 16906 int oldwin; 16907 16908 adv = recwin; 16909 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { 16910 oldwin = (tp->rcv_adv - tp->rcv_nxt); 16911 if (adv > oldwin) 16912 adv -= oldwin; 16913 else { 16914 /* We can't increase the window */ 16915 adv = 0; 16916 } 16917 } else 16918 oldwin = 0; 16919 16920 /* 16921 * If the new window size ends up being the same as or less 16922 * than the old size when it is scaled, then don't force 16923 * a window update. 16924 */ 16925 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale) 16926 goto dontupdate; 16927 16928 if (adv >= (int32_t)(2 * segsiz) && 16929 (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) || 16930 recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) || 16931 so->so_rcv.sb_hiwat <= 8 * segsiz)) { 16932 pass = 7; 16933 goto send; 16934 } 16935 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) { 16936 pass = 23; 16937 goto send; 16938 } 16939 } 16940 dontupdate: 16941 16942 /* 16943 * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW 16944 * is also a catch-all for the retransmit timer timeout case. 16945 */ 16946 if (tp->t_flags & TF_ACKNOW) { 16947 pass = 8; 16948 goto send; 16949 } 16950 if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) { 16951 pass = 9; 16952 goto send; 16953 } 16954 /* 16955 * If our state indicates that FIN should be sent and we have not 16956 * yet done so, then we need to send. 16957 */ 16958 if ((flags & TH_FIN) && 16959 (tp->snd_nxt == tp->snd_una)) { 16960 pass = 11; 16961 goto send; 16962 } 16963 /* 16964 * No reason to send a segment, just return. 16965 */ 16966 just_return: 16967 SOCKBUF_UNLOCK(sb); 16968 just_return_nolock: 16969 { 16970 int app_limited = CTF_JR_SENT_DATA; 16971 16972 if (tot_len_this_send > 0) { 16973 /* Make sure snd_nxt is up to max */ 16974 rack->r_ctl.fsb.recwin = recwin; 16975 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz); 16976 if ((error == 0) && 16977 rack_use_rfo && 16978 ((flags & (TH_SYN|TH_FIN)) == 0) && 16979 (ipoptlen == 0) && 16980 (tp->snd_nxt == tp->snd_max) && 16981 (tp->rcv_numsacks == 0) && 16982 rack->r_fsb_inited && 16983 TCPS_HAVEESTABLISHED(tp->t_state) && 16984 (rack->r_must_retran == 0) && 16985 ((tp->t_flags & TF_NEEDFIN) == 0) && 16986 (len > 0) && (orig_len > 0) && 16987 (orig_len > len) && 16988 ((orig_len - len) >= segsiz) && 16989 ((optlen == 0) || 16990 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 16991 /* We can send at least one more MSS using our fsb */ 16992 16993 rack->r_fast_output = 1; 16994 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 16995 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 16996 rack->r_ctl.fsb.tcp_flags = flags; 16997 rack->r_ctl.fsb.left_to_send = orig_len - len; 16998 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 16999 ("rack:%p left_to_send:%u sbavail:%u out:%u", 17000 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 17001 (tp->snd_max - tp->snd_una))); 17002 if (rack->r_ctl.fsb.left_to_send < segsiz) 17003 rack->r_fast_output = 0; 17004 else { 17005 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 17006 rack->r_ctl.fsb.rfo_apply_push = 1; 17007 else 17008 rack->r_ctl.fsb.rfo_apply_push = 0; 17009 } 17010 } else 17011 rack->r_fast_output = 0; 17012 17013 17014 rack_log_fsb(rack, tp, so, flags, 17015 ipoptlen, orig_len, len, 0, 17016 1, optlen, __LINE__, 1); 17017 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 17018 tp->snd_nxt = tp->snd_max; 17019 } else { 17020 int end_window = 0; 17021 uint32_t seq = tp->gput_ack; 17022 17023 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17024 if (rsm) { 17025 /* 17026 * Mark the last sent that we just-returned (hinting 17027 * that delayed ack may play a role in any rtt measurement). 17028 */ 17029 rsm->r_just_ret = 1; 17030 } 17031 counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1); 17032 rack->r_ctl.rc_agg_delayed = 0; 17033 rack->r_early = 0; 17034 rack->r_late = 0; 17035 rack->r_ctl.rc_agg_early = 0; 17036 if ((ctf_outstanding(tp) + 17037 min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), 17038 minseg)) >= tp->snd_wnd) { 17039 /* We are limited by the rwnd */ 17040 app_limited = CTF_JR_RWND_LIMITED; 17041 if (IN_FASTRECOVERY(tp->t_flags)) 17042 rack->r_ctl.rc_prr_sndcnt = 0; 17043 } else if (ctf_outstanding(tp) >= sbavail(sb)) { 17044 /* We are limited by whats available -- app limited */ 17045 app_limited = CTF_JR_APP_LIMITED; 17046 if (IN_FASTRECOVERY(tp->t_flags)) 17047 rack->r_ctl.rc_prr_sndcnt = 0; 17048 } else if ((idle == 0) && 17049 ((tp->t_flags & TF_NODELAY) == 0) && 17050 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && 17051 (len < segsiz)) { 17052 /* 17053 * No delay is not on and the 17054 * user is sending less than 1MSS. This 17055 * brings out SWS avoidance so we 17056 * don't send. Another app-limited case. 17057 */ 17058 app_limited = CTF_JR_APP_LIMITED; 17059 } else if (tp->t_flags & TF_NOPUSH) { 17060 /* 17061 * The user has requested no push of 17062 * the last segment and we are 17063 * at the last segment. Another app 17064 * limited case. 17065 */ 17066 app_limited = CTF_JR_APP_LIMITED; 17067 } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) { 17068 /* Its the cwnd */ 17069 app_limited = CTF_JR_CWND_LIMITED; 17070 } else if (IN_FASTRECOVERY(tp->t_flags) && 17071 (rack->rack_no_prr == 0) && 17072 (rack->r_ctl.rc_prr_sndcnt < segsiz)) { 17073 app_limited = CTF_JR_PRR; 17074 } else { 17075 /* Now why here are we not sending? */ 17076 #ifdef NOW 17077 #ifdef INVARIANTS 17078 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use); 17079 #endif 17080 #endif 17081 app_limited = CTF_JR_ASSESSING; 17082 } 17083 /* 17084 * App limited in some fashion, for our pacing GP 17085 * measurements we don't want any gap (even cwnd). 17086 * Close down the measurement window. 17087 */ 17088 if (rack_cwnd_block_ends_measure && 17089 ((app_limited == CTF_JR_CWND_LIMITED) || 17090 (app_limited == CTF_JR_PRR))) { 17091 /* 17092 * The reason we are not sending is 17093 * the cwnd (or prr). We have been configured 17094 * to end the measurement window in 17095 * this case. 17096 */ 17097 end_window = 1; 17098 } else if (rack_rwnd_block_ends_measure && 17099 (app_limited == CTF_JR_RWND_LIMITED)) { 17100 /* 17101 * We are rwnd limited and have been 17102 * configured to end the measurement 17103 * window in this case. 17104 */ 17105 end_window = 1; 17106 } else if (app_limited == CTF_JR_APP_LIMITED) { 17107 /* 17108 * A true application limited period, we have 17109 * ran out of data. 17110 */ 17111 end_window = 1; 17112 } else if (app_limited == CTF_JR_ASSESSING) { 17113 /* 17114 * In the assessing case we hit the end of 17115 * the if/else and had no known reason 17116 * This will panic us under invariants.. 17117 * 17118 * If we get this out in logs we need to 17119 * investagate which reason we missed. 17120 */ 17121 end_window = 1; 17122 } 17123 if (end_window) { 17124 uint8_t log = 0; 17125 17126 if ((tp->t_flags & TF_GPUTINPROG) && 17127 SEQ_GT(tp->gput_ack, tp->snd_max)) { 17128 /* Mark the last packet has app limited */ 17129 tp->gput_ack = tp->snd_max; 17130 log = 1; 17131 } 17132 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); 17133 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { 17134 if (rack->r_ctl.rc_app_limited_cnt == 0) 17135 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; 17136 else { 17137 /* 17138 * Go out to the end app limited and mark 17139 * this new one as next and move the end_appl up 17140 * to this guy. 17141 */ 17142 if (rack->r_ctl.rc_end_appl) 17143 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; 17144 rack->r_ctl.rc_end_appl = rsm; 17145 } 17146 rsm->r_flags |= RACK_APP_LIMITED; 17147 rack->r_ctl.rc_app_limited_cnt++; 17148 } 17149 if (log) 17150 rack_log_pacing_delay_calc(rack, 17151 rack->r_ctl.rc_app_limited_cnt, seq, 17152 tp->gput_ack, 0, 0, 4, __LINE__, NULL); 17153 } 17154 } 17155 if (slot) { 17156 /* set the rack tcb into the slot N */ 17157 counter_u64_add(rack_paced_segments, 1); 17158 } else if (tot_len_this_send) { 17159 counter_u64_add(rack_unpaced_segments, 1); 17160 } 17161 /* Check if we need to go into persists or not */ 17162 if ((tp->snd_max == tp->snd_una) && 17163 TCPS_HAVEESTABLISHED(tp->t_state) && 17164 sbavail(sb) && 17165 (sbavail(sb) > tp->snd_wnd) && 17166 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) { 17167 /* Yes lets make sure to move to persist before timer-start */ 17168 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); 17169 } 17170 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack); 17171 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use); 17172 } 17173 #ifdef NETFLIX_SHARED_CWND 17174 if ((sbavail(sb) == 0) && 17175 rack->r_ctl.rc_scw) { 17176 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); 17177 rack->rack_scwnd_is_idle = 1; 17178 } 17179 #endif 17180 #ifdef TCP_ACCOUNTING 17181 if (tot_len_this_send > 0) { 17182 crtsc = get_cyclecount(); 17183 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17184 tp->tcp_cnt_counters[SND_OUT_DATA]++; 17185 } 17186 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 17187 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17188 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val); 17189 } 17190 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val)); 17191 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17192 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz); 17193 } 17194 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz)); 17195 } else { 17196 crtsc = get_cyclecount(); 17197 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17198 tp->tcp_cnt_counters[SND_LIMITED]++; 17199 } 17200 counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1); 17201 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17202 tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val); 17203 } 17204 counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val)); 17205 } 17206 sched_unpin(); 17207 #endif 17208 return (0); 17209 17210 send: 17211 if (rsm || sack_rxmit) 17212 counter_u64_add(rack_nfto_resend, 1); 17213 else 17214 counter_u64_add(rack_non_fto_send, 1); 17215 if ((flags & TH_FIN) && 17216 sbavail(sb)) { 17217 /* 17218 * We do not transmit a FIN 17219 * with data outstanding. We 17220 * need to make it so all data 17221 * is acked first. 17222 */ 17223 flags &= ~TH_FIN; 17224 } 17225 /* Enforce stack imposed max seg size if we have one */ 17226 if (rack->r_ctl.rc_pace_max_segs && 17227 (len > rack->r_ctl.rc_pace_max_segs)) { 17228 mark = 1; 17229 len = rack->r_ctl.rc_pace_max_segs; 17230 } 17231 SOCKBUF_LOCK_ASSERT(sb); 17232 if (len > 0) { 17233 if (len >= segsiz) 17234 tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT; 17235 else 17236 tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT; 17237 } 17238 /* 17239 * Before ESTABLISHED, force sending of initial options unless TCP 17240 * set not to do any options. NOTE: we assume that the IP/TCP header 17241 * plus TCP options always fit in a single mbuf, leaving room for a 17242 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr) 17243 * + optlen <= MCLBYTES 17244 */ 17245 optlen = 0; 17246 #ifdef INET6 17247 if (isipv6) 17248 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 17249 else 17250 #endif 17251 hdrlen = sizeof(struct tcpiphdr); 17252 17253 /* 17254 * Compute options for segment. We only have to care about SYN and 17255 * established connection segments. Options for SYN-ACK segments 17256 * are handled in TCP syncache. 17257 */ 17258 to.to_flags = 0; 17259 if ((tp->t_flags & TF_NOOPT) == 0) { 17260 /* Maximum segment size. */ 17261 if (flags & TH_SYN) { 17262 tp->snd_nxt = tp->iss; 17263 to.to_mss = tcp_mssopt(&inp->inp_inc); 17264 if (tp->t_port) 17265 to.to_mss -= V_tcp_udp_tunneling_overhead; 17266 to.to_flags |= TOF_MSS; 17267 17268 /* 17269 * On SYN or SYN|ACK transmits on TFO connections, 17270 * only include the TFO option if it is not a 17271 * retransmit, as the presence of the TFO option may 17272 * have caused the original SYN or SYN|ACK to have 17273 * been dropped by a middlebox. 17274 */ 17275 if (IS_FASTOPEN(tp->t_flags) && 17276 (tp->t_rxtshift == 0)) { 17277 if (tp->t_state == TCPS_SYN_RECEIVED) { 17278 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; 17279 to.to_tfo_cookie = 17280 (u_int8_t *)&tp->t_tfo_cookie.server; 17281 to.to_flags |= TOF_FASTOPEN; 17282 wanted_cookie = 1; 17283 } else if (tp->t_state == TCPS_SYN_SENT) { 17284 to.to_tfo_len = 17285 tp->t_tfo_client_cookie_len; 17286 to.to_tfo_cookie = 17287 tp->t_tfo_cookie.client; 17288 to.to_flags |= TOF_FASTOPEN; 17289 wanted_cookie = 1; 17290 /* 17291 * If we wind up having more data to 17292 * send with the SYN than can fit in 17293 * one segment, don't send any more 17294 * until the SYN|ACK comes back from 17295 * the other end. 17296 */ 17297 sendalot = 0; 17298 } 17299 } 17300 } 17301 /* Window scaling. */ 17302 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) { 17303 to.to_wscale = tp->request_r_scale; 17304 to.to_flags |= TOF_SCALE; 17305 } 17306 /* Timestamps. */ 17307 if ((tp->t_flags & TF_RCVD_TSTMP) || 17308 ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) { 17309 to.to_tsval = ms_cts + tp->ts_offset; 17310 to.to_tsecr = tp->ts_recent; 17311 to.to_flags |= TOF_TS; 17312 } 17313 /* Set receive buffer autosizing timestamp. */ 17314 if (tp->rfbuf_ts == 0 && 17315 (so->so_rcv.sb_flags & SB_AUTOSIZE)) 17316 tp->rfbuf_ts = tcp_ts_getticks(); 17317 /* Selective ACK's. */ 17318 if (tp->t_flags & TF_SACK_PERMIT) { 17319 if (flags & TH_SYN) 17320 to.to_flags |= TOF_SACKPERM; 17321 else if (TCPS_HAVEESTABLISHED(tp->t_state) && 17322 tp->rcv_numsacks > 0) { 17323 to.to_flags |= TOF_SACK; 17324 to.to_nsacks = tp->rcv_numsacks; 17325 to.to_sacks = (u_char *)tp->sackblks; 17326 } 17327 } 17328 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 17329 /* TCP-MD5 (RFC2385). */ 17330 if (tp->t_flags & TF_SIGNATURE) 17331 to.to_flags |= TOF_SIGNATURE; 17332 #endif /* TCP_SIGNATURE */ 17333 17334 /* Processing the options. */ 17335 hdrlen += optlen = tcp_addoptions(&to, opt); 17336 /* 17337 * If we wanted a TFO option to be added, but it was unable 17338 * to fit, ensure no data is sent. 17339 */ 17340 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie && 17341 !(to.to_flags & TOF_FASTOPEN)) 17342 len = 0; 17343 } 17344 if (tp->t_port) { 17345 if (V_tcp_udp_tunneling_port == 0) { 17346 /* The port was removed?? */ 17347 SOCKBUF_UNLOCK(&so->so_snd); 17348 #ifdef TCP_ACCOUNTING 17349 crtsc = get_cyclecount(); 17350 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17351 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 17352 } 17353 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 17354 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 17355 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 17356 } 17357 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 17358 sched_unpin(); 17359 #endif 17360 return (EHOSTUNREACH); 17361 } 17362 hdrlen += sizeof(struct udphdr); 17363 } 17364 #ifdef INET6 17365 if (isipv6) 17366 ipoptlen = ip6_optlen(tp->t_inpcb); 17367 else 17368 #endif 17369 if (tp->t_inpcb->inp_options) 17370 ipoptlen = tp->t_inpcb->inp_options->m_len - 17371 offsetof(struct ipoption, ipopt_list); 17372 else 17373 ipoptlen = 0; 17374 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 17375 ipoptlen += ipsec_optlen; 17376 #endif 17377 17378 /* 17379 * Adjust data length if insertion of options will bump the packet 17380 * length beyond the t_maxseg length. Clear the FIN bit because we 17381 * cut off the tail of the segment. 17382 */ 17383 if (len + optlen + ipoptlen > tp->t_maxseg) { 17384 if (tso) { 17385 uint32_t if_hw_tsomax; 17386 uint32_t moff; 17387 int32_t max_len; 17388 17389 /* extract TSO information */ 17390 if_hw_tsomax = tp->t_tsomax; 17391 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; 17392 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; 17393 KASSERT(ipoptlen == 0, 17394 ("%s: TSO can't do IP options", __func__)); 17395 17396 /* 17397 * Check if we should limit by maximum payload 17398 * length: 17399 */ 17400 if (if_hw_tsomax != 0) { 17401 /* compute maximum TSO length */ 17402 max_len = (if_hw_tsomax - hdrlen - 17403 max_linkhdr); 17404 if (max_len <= 0) { 17405 len = 0; 17406 } else if (len > max_len) { 17407 sendalot = 1; 17408 len = max_len; 17409 mark = 2; 17410 } 17411 } 17412 /* 17413 * Prevent the last segment from being fractional 17414 * unless the send sockbuf can be emptied: 17415 */ 17416 max_len = (tp->t_maxseg - optlen); 17417 if ((sb_offset + len) < sbavail(sb)) { 17418 moff = len % (u_int)max_len; 17419 if (moff != 0) { 17420 mark = 3; 17421 len -= moff; 17422 } 17423 } 17424 /* 17425 * In case there are too many small fragments don't 17426 * use TSO: 17427 */ 17428 if (len <= segsiz) { 17429 mark = 4; 17430 tso = 0; 17431 } 17432 /* 17433 * Send the FIN in a separate segment after the bulk 17434 * sending is done. We don't trust the TSO 17435 * implementations to clear the FIN flag on all but 17436 * the last segment. 17437 */ 17438 if (tp->t_flags & TF_NEEDFIN) { 17439 sendalot = 4; 17440 } 17441 } else { 17442 mark = 5; 17443 if (optlen + ipoptlen >= tp->t_maxseg) { 17444 /* 17445 * Since we don't have enough space to put 17446 * the IP header chain and the TCP header in 17447 * one packet as required by RFC 7112, don't 17448 * send it. Also ensure that at least one 17449 * byte of the payload can be put into the 17450 * TCP segment. 17451 */ 17452 SOCKBUF_UNLOCK(&so->so_snd); 17453 error = EMSGSIZE; 17454 sack_rxmit = 0; 17455 goto out; 17456 } 17457 len = tp->t_maxseg - optlen - ipoptlen; 17458 sendalot = 5; 17459 } 17460 } else { 17461 tso = 0; 17462 mark = 6; 17463 } 17464 KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET, 17465 ("%s: len > IP_MAXPACKET", __func__)); 17466 #ifdef DIAGNOSTIC 17467 #ifdef INET6 17468 if (max_linkhdr + hdrlen > MCLBYTES) 17469 #else 17470 if (max_linkhdr + hdrlen > MHLEN) 17471 #endif 17472 panic("tcphdr too big"); 17473 #endif 17474 17475 /* 17476 * This KASSERT is here to catch edge cases at a well defined place. 17477 * Before, those had triggered (random) panic conditions further 17478 * down. 17479 */ 17480 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); 17481 if ((len == 0) && 17482 (flags & TH_FIN) && 17483 (sbused(sb))) { 17484 /* 17485 * We have outstanding data, don't send a fin by itself!. 17486 */ 17487 goto just_return; 17488 } 17489 /* 17490 * Grab a header mbuf, attaching a copy of data to be transmitted, 17491 * and initialize the header from the template for sends on this 17492 * connection. 17493 */ 17494 hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0; 17495 if (len) { 17496 uint32_t max_val; 17497 uint32_t moff; 17498 17499 if (rack->r_ctl.rc_pace_max_segs) 17500 max_val = rack->r_ctl.rc_pace_max_segs; 17501 else if (rack->rc_user_set_max_segs) 17502 max_val = rack->rc_user_set_max_segs * segsiz; 17503 else 17504 max_val = len; 17505 /* 17506 * We allow a limit on sending with hptsi. 17507 */ 17508 if (len > max_val) { 17509 mark = 7; 17510 len = max_val; 17511 } 17512 #ifdef INET6 17513 if (MHLEN < hdrlen + max_linkhdr) 17514 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 17515 else 17516 #endif 17517 m = m_gethdr(M_NOWAIT, MT_DATA); 17518 17519 if (m == NULL) { 17520 SOCKBUF_UNLOCK(sb); 17521 error = ENOBUFS; 17522 sack_rxmit = 0; 17523 goto out; 17524 } 17525 m->m_data += max_linkhdr; 17526 m->m_len = hdrlen; 17527 17528 /* 17529 * Start the m_copy functions from the closest mbuf to the 17530 * sb_offset in the socket buffer chain. 17531 */ 17532 mb = sbsndptr_noadv(sb, sb_offset, &moff); 17533 s_mb = mb; 17534 s_moff = moff; 17535 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) { 17536 m_copydata(mb, moff, (int)len, 17537 mtod(m, caddr_t)+hdrlen); 17538 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 17539 sbsndptr_adv(sb, mb, len); 17540 m->m_len += len; 17541 } else { 17542 struct sockbuf *msb; 17543 17544 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) 17545 msb = NULL; 17546 else 17547 msb = sb; 17548 m->m_next = tcp_m_copym( 17549 mb, moff, &len, 17550 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb, 17551 ((rsm == NULL) ? hw_tls : 0) 17552 #ifdef NETFLIX_COPY_ARGS 17553 , &filled_all 17554 #endif 17555 ); 17556 if (len <= (tp->t_maxseg - optlen)) { 17557 /* 17558 * Must have ran out of mbufs for the copy 17559 * shorten it to no longer need tso. Lets 17560 * not put on sendalot since we are low on 17561 * mbufs. 17562 */ 17563 tso = 0; 17564 } 17565 if (m->m_next == NULL) { 17566 SOCKBUF_UNLOCK(sb); 17567 (void)m_free(m); 17568 error = ENOBUFS; 17569 sack_rxmit = 0; 17570 goto out; 17571 } 17572 } 17573 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { 17574 if (rsm && (rsm->r_flags & RACK_TLP)) { 17575 /* 17576 * TLP should not count in retran count, but 17577 * in its own bin 17578 */ 17579 counter_u64_add(rack_tlp_retran, 1); 17580 counter_u64_add(rack_tlp_retran_bytes, len); 17581 } else { 17582 tp->t_sndrexmitpack++; 17583 KMOD_TCPSTAT_INC(tcps_sndrexmitpack); 17584 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); 17585 } 17586 #ifdef STATS 17587 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, 17588 len); 17589 #endif 17590 } else { 17591 KMOD_TCPSTAT_INC(tcps_sndpack); 17592 KMOD_TCPSTAT_ADD(tcps_sndbyte, len); 17593 #ifdef STATS 17594 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, 17595 len); 17596 #endif 17597 } 17598 /* 17599 * If we're sending everything we've got, set PUSH. (This 17600 * will keep happy those implementations which only give 17601 * data to the user when a buffer fills or a PUSH comes in.) 17602 */ 17603 if (sb_offset + len == sbused(sb) && 17604 sbused(sb) && 17605 !(flags & TH_SYN)) { 17606 flags |= TH_PUSH; 17607 add_flag |= RACK_HAD_PUSH; 17608 } 17609 17610 SOCKBUF_UNLOCK(sb); 17611 } else { 17612 SOCKBUF_UNLOCK(sb); 17613 if (tp->t_flags & TF_ACKNOW) 17614 KMOD_TCPSTAT_INC(tcps_sndacks); 17615 else if (flags & (TH_SYN | TH_FIN | TH_RST)) 17616 KMOD_TCPSTAT_INC(tcps_sndctrl); 17617 else 17618 KMOD_TCPSTAT_INC(tcps_sndwinup); 17619 17620 m = m_gethdr(M_NOWAIT, MT_DATA); 17621 if (m == NULL) { 17622 error = ENOBUFS; 17623 sack_rxmit = 0; 17624 goto out; 17625 } 17626 #ifdef INET6 17627 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) && 17628 MHLEN >= hdrlen) { 17629 M_ALIGN(m, hdrlen); 17630 } else 17631 #endif 17632 m->m_data += max_linkhdr; 17633 m->m_len = hdrlen; 17634 } 17635 SOCKBUF_UNLOCK_ASSERT(sb); 17636 m->m_pkthdr.rcvif = (struct ifnet *)0; 17637 #ifdef MAC 17638 mac_inpcb_create_mbuf(inp, m); 17639 #endif 17640 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 17641 #ifdef INET6 17642 if (isipv6) 17643 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr; 17644 else 17645 #endif /* INET6 */ 17646 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr; 17647 th = rack->r_ctl.fsb.th; 17648 udp = rack->r_ctl.fsb.udp; 17649 if (udp) { 17650 if (isipv6) 17651 ulen = hdrlen + len - sizeof(struct ip6_hdr); 17652 else 17653 ulen = hdrlen + len - sizeof(struct ip); 17654 udp->uh_ulen = htons(ulen); 17655 } 17656 } else { 17657 #ifdef INET6 17658 if (isipv6) { 17659 ip6 = mtod(m, struct ip6_hdr *); 17660 if (tp->t_port) { 17661 udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr)); 17662 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 17663 udp->uh_dport = tp->t_port; 17664 ulen = hdrlen + len - sizeof(struct ip6_hdr); 17665 udp->uh_ulen = htons(ulen); 17666 th = (struct tcphdr *)(udp + 1); 17667 } else 17668 th = (struct tcphdr *)(ip6 + 1); 17669 tcpip_fillheaders(inp, tp->t_port, ip6, th); 17670 } else 17671 #endif /* INET6 */ 17672 { 17673 ip = mtod(m, struct ip *); 17674 #ifdef TCPDEBUG 17675 ipov = (struct ipovly *)ip; 17676 #endif 17677 if (tp->t_port) { 17678 udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip)); 17679 udp->uh_sport = htons(V_tcp_udp_tunneling_port); 17680 udp->uh_dport = tp->t_port; 17681 ulen = hdrlen + len - sizeof(struct ip); 17682 udp->uh_ulen = htons(ulen); 17683 th = (struct tcphdr *)(udp + 1); 17684 } else 17685 th = (struct tcphdr *)(ip + 1); 17686 tcpip_fillheaders(inp, tp->t_port, ip, th); 17687 } 17688 } 17689 /* 17690 * Fill in fields, remembering maximum advertised window for use in 17691 * delaying messages about window sizes. If resending a FIN, be sure 17692 * not to use a new sequence number. 17693 */ 17694 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN && 17695 tp->snd_nxt == tp->snd_max) 17696 tp->snd_nxt--; 17697 /* 17698 * If we are starting a connection, send ECN setup SYN packet. If we 17699 * are on a retransmit, we may resend those bits a number of times 17700 * as per RFC 3168. 17701 */ 17702 if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) { 17703 if (tp->t_rxtshift >= 1) { 17704 if (tp->t_rxtshift <= V_tcp_ecn_maxretries) 17705 flags |= TH_ECE | TH_CWR; 17706 } else 17707 flags |= TH_ECE | TH_CWR; 17708 } 17709 /* Handle parallel SYN for ECN */ 17710 if ((tp->t_state == TCPS_SYN_RECEIVED) && 17711 (tp->t_flags2 & TF2_ECN_SND_ECE)) { 17712 flags |= TH_ECE; 17713 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 17714 } 17715 if (TCPS_HAVEESTABLISHED(tp->t_state) && 17716 (tp->t_flags2 & TF2_ECN_PERMIT)) { 17717 /* 17718 * If the peer has ECN, mark data packets with ECN capable 17719 * transmission (ECT). Ignore pure ack packets, 17720 * retransmissions. 17721 */ 17722 if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) && 17723 (sack_rxmit == 0)) { 17724 #ifdef INET6 17725 if (isipv6) 17726 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); 17727 else 17728 #endif 17729 ip->ip_tos |= IPTOS_ECN_ECT0; 17730 KMOD_TCPSTAT_INC(tcps_ecn_ect0); 17731 /* 17732 * Reply with proper ECN notifications. 17733 * Only set CWR on new data segments. 17734 */ 17735 if (tp->t_flags2 & TF2_ECN_SND_CWR) { 17736 flags |= TH_CWR; 17737 tp->t_flags2 &= ~TF2_ECN_SND_CWR; 17738 } 17739 } 17740 if (tp->t_flags2 & TF2_ECN_SND_ECE) 17741 flags |= TH_ECE; 17742 } 17743 /* 17744 * If we are doing retransmissions, then snd_nxt will not reflect 17745 * the first unsent octet. For ACK only packets, we do not want the 17746 * sequence number of the retransmitted packet, we want the sequence 17747 * number of the next unsent octet. So, if there is no data (and no 17748 * SYN or FIN), use snd_max instead of snd_nxt when filling in 17749 * ti_seq. But if we are in persist state, snd_max might reflect 17750 * one byte beyond the right edge of the window, so use snd_nxt in 17751 * that case, since we know we aren't doing a retransmission. 17752 * (retransmit and persist are mutually exclusive...) 17753 */ 17754 if (sack_rxmit == 0) { 17755 if (len || (flags & (TH_SYN | TH_FIN))) { 17756 th->th_seq = htonl(tp->snd_nxt); 17757 rack_seq = tp->snd_nxt; 17758 } else { 17759 th->th_seq = htonl(tp->snd_max); 17760 rack_seq = tp->snd_max; 17761 } 17762 } else { 17763 th->th_seq = htonl(rsm->r_start); 17764 rack_seq = rsm->r_start; 17765 } 17766 th->th_ack = htonl(tp->rcv_nxt); 17767 th->th_flags = flags; 17768 /* 17769 * Calculate receive window. Don't shrink window, but avoid silly 17770 * window syndrome. 17771 * If a RST segment is sent, advertise a window of zero. 17772 */ 17773 if (flags & TH_RST) { 17774 recwin = 0; 17775 } else { 17776 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) && 17777 recwin < (long)segsiz) { 17778 recwin = 0; 17779 } 17780 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) && 17781 recwin < (long)(tp->rcv_adv - tp->rcv_nxt)) 17782 recwin = (long)(tp->rcv_adv - tp->rcv_nxt); 17783 } 17784 17785 /* 17786 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or 17787 * <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is 17788 * handled in syncache. 17789 */ 17790 if (flags & TH_SYN) 17791 th->th_win = htons((u_short) 17792 (min(sbspace(&so->so_rcv), TCP_MAXWIN))); 17793 else { 17794 /* Avoid shrinking window with window scaling. */ 17795 recwin = roundup2(recwin, 1 << tp->rcv_scale); 17796 th->th_win = htons((u_short)(recwin >> tp->rcv_scale)); 17797 } 17798 /* 17799 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0 17800 * window. This may cause the remote transmitter to stall. This 17801 * flag tells soreceive() to disable delayed acknowledgements when 17802 * draining the buffer. This can occur if the receiver is 17803 * attempting to read more data than can be buffered prior to 17804 * transmitting on the connection. 17805 */ 17806 if (th->th_win == 0) { 17807 tp->t_sndzerowin++; 17808 tp->t_flags |= TF_RXWIN0SENT; 17809 } else 17810 tp->t_flags &= ~TF_RXWIN0SENT; 17811 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ 17812 /* Now are we using fsb?, if so copy the template data to the mbuf */ 17813 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) { 17814 uint8_t *cpto; 17815 17816 cpto = mtod(m, uint8_t *); 17817 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len); 17818 /* 17819 * We have just copied in: 17820 * IP/IP6 17821 * <optional udphdr> 17822 * tcphdr (no options) 17823 * 17824 * We need to grab the correct pointers into the mbuf 17825 * for both the tcp header, and possibly the udp header (if tunneling). 17826 * We do this by using the offset in the copy buffer and adding it 17827 * to the mbuf base pointer (cpto). 17828 */ 17829 #ifdef INET6 17830 if (isipv6) 17831 ip6 = mtod(m, struct ip6_hdr *); 17832 else 17833 #endif /* INET6 */ 17834 ip = mtod(m, struct ip *); 17835 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr)); 17836 /* If we have a udp header lets set it into the mbuf as well */ 17837 if (udp) 17838 udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr)); 17839 } 17840 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 17841 if (to.to_flags & TOF_SIGNATURE) { 17842 /* 17843 * Calculate MD5 signature and put it into the place 17844 * determined before. 17845 * NOTE: since TCP options buffer doesn't point into 17846 * mbuf's data, calculate offset and use it. 17847 */ 17848 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, 17849 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { 17850 /* 17851 * Do not send segment if the calculation of MD5 17852 * digest has failed. 17853 */ 17854 goto out; 17855 } 17856 } 17857 #endif 17858 if (optlen) { 17859 bcopy(opt, th + 1, optlen); 17860 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 17861 } 17862 /* 17863 * Put TCP length in extended header, and then checksum extended 17864 * header and data. 17865 */ 17866 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ 17867 #ifdef INET6 17868 if (isipv6) { 17869 /* 17870 * ip6_plen is not need to be filled now, and will be filled 17871 * in ip6_output. 17872 */ 17873 if (tp->t_port) { 17874 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 17875 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 17876 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 17877 th->th_sum = htons(0); 17878 UDPSTAT_INC(udps_opackets); 17879 } else { 17880 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 17881 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 17882 th->th_sum = in6_cksum_pseudo(ip6, 17883 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 17884 0); 17885 } 17886 } 17887 #endif 17888 #if defined(INET6) && defined(INET) 17889 else 17890 #endif 17891 #ifdef INET 17892 { 17893 if (tp->t_port) { 17894 m->m_pkthdr.csum_flags = CSUM_UDP; 17895 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 17896 udp->uh_sum = in_pseudo(ip->ip_src.s_addr, 17897 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); 17898 th->th_sum = htons(0); 17899 UDPSTAT_INC(udps_opackets); 17900 } else { 17901 m->m_pkthdr.csum_flags = CSUM_TCP; 17902 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 17903 th->th_sum = in_pseudo(ip->ip_src.s_addr, 17904 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + 17905 IPPROTO_TCP + len + optlen)); 17906 } 17907 /* IP version must be set here for ipv4/ipv6 checking later */ 17908 KASSERT(ip->ip_v == IPVERSION, 17909 ("%s: IP version incorrect: %d", __func__, ip->ip_v)); 17910 } 17911 #endif 17912 /* 17913 * Enable TSO and specify the size of the segments. The TCP pseudo 17914 * header checksum is always provided. XXX: Fixme: This is currently 17915 * not the case for IPv6. 17916 */ 17917 if (tso) { 17918 KASSERT(len > tp->t_maxseg - optlen, 17919 ("%s: len <= tso_segsz", __func__)); 17920 m->m_pkthdr.csum_flags |= CSUM_TSO; 17921 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; 17922 } 17923 KASSERT(len + hdrlen == m_length(m, NULL), 17924 ("%s: mbuf chain different than expected: %d + %u != %u", 17925 __func__, len, hdrlen, m_length(m, NULL))); 17926 17927 #ifdef TCP_HHOOK 17928 /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */ 17929 hhook_run_tcp_est_out(tp, th, &to, len, tso); 17930 #endif 17931 /* We're getting ready to send; log now. */ 17932 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 17933 union tcp_log_stackspecific log; 17934 17935 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 17936 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; 17937 log.u_bbr.ininput = rack->rc_inp->inp_in_input; 17938 if (rack->rack_no_prr) 17939 log.u_bbr.flex1 = 0; 17940 else 17941 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; 17942 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; 17943 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; 17944 log.u_bbr.flex4 = orig_len; 17945 if (filled_all) 17946 log.u_bbr.flex5 = 0x80000000; 17947 else 17948 log.u_bbr.flex5 = 0; 17949 /* Save off the early/late values */ 17950 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; 17951 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; 17952 log.u_bbr.bw_inuse = rack_get_bw(rack); 17953 if (rsm || sack_rxmit) { 17954 if (doing_tlp) 17955 log.u_bbr.flex8 = 2; 17956 else 17957 log.u_bbr.flex8 = 1; 17958 } else { 17959 log.u_bbr.flex8 = 0; 17960 } 17961 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); 17962 log.u_bbr.flex7 = mark; 17963 log.u_bbr.flex7 <<= 8; 17964 log.u_bbr.flex7 |= pass; 17965 log.u_bbr.pkts_out = tp->t_maxseg; 17966 log.u_bbr.timeStamp = cts; 17967 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); 17968 log.u_bbr.lt_epoch = cwnd_to_use; 17969 log.u_bbr.delivered = sendalot; 17970 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK, 17971 len, &log, false, NULL, NULL, 0, &tv); 17972 } else 17973 lgb = NULL; 17974 17975 /* 17976 * Fill in IP length and desired time to live and send to IP level. 17977 * There should be a better way to handle ttl and tos; we could keep 17978 * them in the template, but need a way to checksum without them. 17979 */ 17980 /* 17981 * m->m_pkthdr.len should have been set before cksum calcuration, 17982 * because in6_cksum() need it. 17983 */ 17984 #ifdef INET6 17985 if (isipv6) { 17986 /* 17987 * we separately set hoplimit for every segment, since the 17988 * user might want to change the value via setsockopt. Also, 17989 * desired default hop limit might be changed via Neighbor 17990 * Discovery. 17991 */ 17992 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL); 17993 17994 /* 17995 * Set the packet size here for the benefit of DTrace 17996 * probes. ip6_output() will set it properly; it's supposed 17997 * to include the option header lengths as well. 17998 */ 17999 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); 18000 18001 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) 18002 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18003 else 18004 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18005 18006 if (tp->t_state == TCPS_SYN_SENT) 18007 TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th); 18008 18009 TCP_PROBE5(send, NULL, tp, ip6, tp, th); 18010 /* TODO: IPv6 IP6TOS_ECT bit on */ 18011 error = ip6_output(m, 18012 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18013 inp->in6p_outputopts, 18014 #else 18015 NULL, 18016 #endif 18017 &inp->inp_route6, 18018 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 18019 NULL, NULL, inp); 18020 18021 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL) 18022 mtu = inp->inp_route6.ro_nh->nh_mtu; 18023 } 18024 #endif /* INET6 */ 18025 #if defined(INET) && defined(INET6) 18026 else 18027 #endif 18028 #ifdef INET 18029 { 18030 ip->ip_len = htons(m->m_pkthdr.len); 18031 #ifdef INET6 18032 if (inp->inp_vflag & INP_IPV6PROTO) 18033 ip->ip_ttl = in6_selecthlim(inp, NULL); 18034 #endif /* INET6 */ 18035 rack->r_ctl.fsb.hoplimit = ip->ip_ttl; 18036 /* 18037 * If we do path MTU discovery, then we set DF on every 18038 * packet. This might not be the best thing to do according 18039 * to RFC3390 Section 2. However the tcp hostcache migitates 18040 * the problem so it affects only the first tcp connection 18041 * with a host. 18042 * 18043 * NB: Don't set DF on small MTU/MSS to have a safe 18044 * fallback. 18045 */ 18046 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { 18047 tp->t_flags2 |= TF2_PLPMTU_PMTUD; 18048 if (tp->t_port == 0 || len < V_tcp_minmss) { 18049 ip->ip_off |= htons(IP_DF); 18050 } 18051 } else { 18052 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; 18053 } 18054 18055 if (tp->t_state == TCPS_SYN_SENT) 18056 TCP_PROBE5(connect__request, NULL, tp, ip, tp, th); 18057 18058 TCP_PROBE5(send, NULL, tp, ip, tp, th); 18059 18060 error = ip_output(m, 18061 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 18062 inp->inp_options, 18063 #else 18064 NULL, 18065 #endif 18066 &inp->inp_route, 18067 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0, 18068 inp); 18069 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL) 18070 mtu = inp->inp_route.ro_nh->nh_mtu; 18071 } 18072 #endif /* INET */ 18073 18074 out: 18075 if (lgb) { 18076 lgb->tlb_errno = error; 18077 lgb = NULL; 18078 } 18079 /* 18080 * In transmit state, time the transmission and arrange for the 18081 * retransmit. In persist state, just set snd_max. 18082 */ 18083 if (error == 0) { 18084 rack->forced_ack = 0; /* If we send something zap the FA flag */ 18085 if (rsm && (doing_tlp == 0)) { 18086 /* Set we retransmitted */ 18087 rack->rc_gp_saw_rec = 1; 18088 } else { 18089 if (cwnd_to_use > tp->snd_ssthresh) { 18090 /* Set we sent in CA */ 18091 rack->rc_gp_saw_ca = 1; 18092 } else { 18093 /* Set we sent in SS */ 18094 rack->rc_gp_saw_ss = 1; 18095 } 18096 } 18097 if (TCPS_HAVEESTABLISHED(tp->t_state) && 18098 (tp->t_flags & TF_SACK_PERMIT) && 18099 tp->rcv_numsacks > 0) 18100 tcp_clean_dsack_blocks(tp); 18101 tot_len_this_send += len; 18102 if (len == 0) 18103 counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1); 18104 else if (len == 1) { 18105 counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1); 18106 } else if (len > 1) { 18107 int idx; 18108 18109 idx = (len / segsiz) + 3; 18110 if (idx >= TCP_MSS_ACCT_ATIMER) 18111 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); 18112 else 18113 counter_u64_add(rack_out_size[idx], 1); 18114 } 18115 } 18116 if ((rack->rack_no_prr == 0) && 18117 sub_from_prr && 18118 (error == 0)) { 18119 if (rack->r_ctl.rc_prr_sndcnt >= len) 18120 rack->r_ctl.rc_prr_sndcnt -= len; 18121 else 18122 rack->r_ctl.rc_prr_sndcnt = 0; 18123 } 18124 sub_from_prr = 0; 18125 if (doing_tlp && (rsm == NULL)) { 18126 /* New send doing a TLP */ 18127 add_flag |= RACK_TLP; 18128 tp->t_sndtlppack++; 18129 tp->t_sndtlpbyte += len; 18130 } 18131 rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, 18132 rack_to_usec_ts(&tv), 18133 rsm, add_flag, s_mb, s_moff); 18134 18135 18136 if ((error == 0) && 18137 (len > 0) && 18138 (tp->snd_una == tp->snd_max)) 18139 rack->r_ctl.rc_tlp_rxt_last_time = cts; 18140 { 18141 tcp_seq startseq = tp->snd_nxt; 18142 18143 /* Track our lost count */ 18144 if (rsm && (doing_tlp == 0)) 18145 rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start; 18146 /* 18147 * Advance snd_nxt over sequence space of this segment. 18148 */ 18149 if (error) 18150 /* We don't log or do anything with errors */ 18151 goto nomore; 18152 if (doing_tlp == 0) { 18153 if (rsm == NULL) { 18154 /* 18155 * Not a retransmission of some 18156 * sort, new data is going out so 18157 * clear our TLP count and flag. 18158 */ 18159 rack->rc_tlp_in_progress = 0; 18160 rack->r_ctl.rc_tlp_cnt_out = 0; 18161 } 18162 } else { 18163 /* 18164 * We have just sent a TLP, mark that it is true 18165 * and make sure our in progress is set so we 18166 * continue to check the count. 18167 */ 18168 rack->rc_tlp_in_progress = 1; 18169 rack->r_ctl.rc_tlp_cnt_out++; 18170 } 18171 if (flags & (TH_SYN | TH_FIN)) { 18172 if (flags & TH_SYN) 18173 tp->snd_nxt++; 18174 if (flags & TH_FIN) { 18175 tp->snd_nxt++; 18176 tp->t_flags |= TF_SENTFIN; 18177 } 18178 } 18179 /* In the ENOBUFS case we do *not* update snd_max */ 18180 if (sack_rxmit) 18181 goto nomore; 18182 18183 tp->snd_nxt += len; 18184 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { 18185 if (tp->snd_una == tp->snd_max) { 18186 /* 18187 * Update the time we just added data since 18188 * none was outstanding. 18189 */ 18190 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); 18191 tp->t_acktime = ticks; 18192 } 18193 tp->snd_max = tp->snd_nxt; 18194 /* 18195 * Time this transmission if not a retransmission and 18196 * not currently timing anything. 18197 * This is only relevant in case of switching back to 18198 * the base stack. 18199 */ 18200 if (tp->t_rtttime == 0) { 18201 tp->t_rtttime = ticks; 18202 tp->t_rtseq = startseq; 18203 KMOD_TCPSTAT_INC(tcps_segstimed); 18204 } 18205 if (len && 18206 ((tp->t_flags & TF_GPUTINPROG) == 0)) 18207 rack_start_gp_measurement(tp, rack, startseq, sb_offset); 18208 } 18209 /* 18210 * If we are doing FO we need to update the mbuf position and subtract 18211 * this happens when the peer sends us duplicate information and 18212 * we thus want to send a DSACK. 18213 * 18214 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO 18215 * turned off? If not then we are going to echo multiple DSACK blocks 18216 * out (with the TSO), which we should not be doing. 18217 */ 18218 if (rack->r_fast_output && len) { 18219 if (rack->r_ctl.fsb.left_to_send > len) 18220 rack->r_ctl.fsb.left_to_send -= len; 18221 else 18222 rack->r_ctl.fsb.left_to_send = 0; 18223 if (rack->r_ctl.fsb.left_to_send < segsiz) 18224 rack->r_fast_output = 0; 18225 if (rack->r_fast_output) { 18226 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 18227 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 18228 } 18229 } 18230 } 18231 nomore: 18232 if (error) { 18233 rack->r_ctl.rc_agg_delayed = 0; 18234 rack->r_early = 0; 18235 rack->r_late = 0; 18236 rack->r_ctl.rc_agg_early = 0; 18237 SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */ 18238 /* 18239 * Failures do not advance the seq counter above. For the 18240 * case of ENOBUFS we will fall out and retry in 1ms with 18241 * the hpts. Everything else will just have to retransmit 18242 * with the timer. 18243 * 18244 * In any case, we do not want to loop around for another 18245 * send without a good reason. 18246 */ 18247 sendalot = 0; 18248 switch (error) { 18249 case EPERM: 18250 tp->t_softerror = error; 18251 #ifdef TCP_ACCOUNTING 18252 crtsc = get_cyclecount(); 18253 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18254 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 18255 } 18256 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 18257 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18258 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 18259 } 18260 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 18261 sched_unpin(); 18262 #endif 18263 return (error); 18264 case ENOBUFS: 18265 /* 18266 * Pace us right away to retry in a some 18267 * time 18268 */ 18269 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); 18270 if (rack->rc_enobuf < 0x7f) 18271 rack->rc_enobuf++; 18272 if (slot < (10 * HPTS_USEC_IN_MSEC)) 18273 slot = 10 * HPTS_USEC_IN_MSEC; 18274 if (rack->r_ctl.crte != NULL) { 18275 counter_u64_add(rack_saw_enobuf_hw, 1); 18276 tcp_rl_log_enobuf(rack->r_ctl.crte); 18277 } 18278 counter_u64_add(rack_saw_enobuf, 1); 18279 goto enobufs; 18280 case EMSGSIZE: 18281 /* 18282 * For some reason the interface we used initially 18283 * to send segments changed to another or lowered 18284 * its MTU. If TSO was active we either got an 18285 * interface without TSO capabilits or TSO was 18286 * turned off. If we obtained mtu from ip_output() 18287 * then update it and try again. 18288 */ 18289 if (tso) 18290 tp->t_flags &= ~TF_TSO; 18291 if (mtu != 0) { 18292 tcp_mss_update(tp, -1, mtu, NULL, NULL); 18293 goto again; 18294 } 18295 slot = 10 * HPTS_USEC_IN_MSEC; 18296 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 18297 #ifdef TCP_ACCOUNTING 18298 crtsc = get_cyclecount(); 18299 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18300 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 18301 } 18302 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 18303 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18304 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 18305 } 18306 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 18307 sched_unpin(); 18308 #endif 18309 return (error); 18310 case ENETUNREACH: 18311 counter_u64_add(rack_saw_enetunreach, 1); 18312 case EHOSTDOWN: 18313 case EHOSTUNREACH: 18314 case ENETDOWN: 18315 if (TCPS_HAVERCVDSYN(tp->t_state)) { 18316 tp->t_softerror = error; 18317 } 18318 /* FALLTHROUGH */ 18319 default: 18320 slot = 10 * HPTS_USEC_IN_MSEC; 18321 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); 18322 #ifdef TCP_ACCOUNTING 18323 crtsc = get_cyclecount(); 18324 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18325 tp->tcp_cnt_counters[SND_OUT_FAIL]++; 18326 } 18327 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1); 18328 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18329 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val); 18330 } 18331 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val)); 18332 sched_unpin(); 18333 #endif 18334 return (error); 18335 } 18336 } else { 18337 rack->rc_enobuf = 0; 18338 if (IN_FASTRECOVERY(tp->t_flags) && rsm) 18339 rack->r_ctl.retran_during_recovery += len; 18340 } 18341 KMOD_TCPSTAT_INC(tcps_sndtotal); 18342 18343 /* 18344 * Data sent (as far as we can tell). If this advertises a larger 18345 * window than any other segment, then remember the size of the 18346 * advertised window. Any pending ACK has now been sent. 18347 */ 18348 if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv)) 18349 tp->rcv_adv = tp->rcv_nxt + recwin; 18350 18351 tp->last_ack_sent = tp->rcv_nxt; 18352 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); 18353 enobufs: 18354 if (sendalot) { 18355 /* Do we need to turn off sendalot? */ 18356 if (rack->r_ctl.rc_pace_max_segs && 18357 (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) { 18358 /* We hit our max. */ 18359 sendalot = 0; 18360 } else if ((rack->rc_user_set_max_segs) && 18361 (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) { 18362 /* We hit the user defined max */ 18363 sendalot = 0; 18364 } 18365 } 18366 if ((error == 0) && (flags & TH_FIN)) 18367 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN); 18368 if (flags & TH_RST) { 18369 /* 18370 * We don't send again after sending a RST. 18371 */ 18372 slot = 0; 18373 sendalot = 0; 18374 if (error == 0) 18375 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 18376 } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) { 18377 /* 18378 * Get our pacing rate, if an error 18379 * occurred in sending (ENOBUF) we would 18380 * hit the else if with slot preset. Other 18381 * errors return. 18382 */ 18383 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz); 18384 } 18385 if (rsm && 18386 (rsm->r_flags & RACK_HAS_SYN) == 0 && 18387 rack->use_rack_rr) { 18388 /* Its a retransmit and we use the rack cheat? */ 18389 if ((slot == 0) || 18390 (rack->rc_always_pace == 0) || 18391 (rack->r_rr_config == 1)) { 18392 /* 18393 * We have no pacing set or we 18394 * are using old-style rack or 18395 * we are overriden to use the old 1ms pacing. 18396 */ 18397 slot = rack->r_ctl.rc_min_to; 18398 } 18399 } 18400 /* We have sent clear the flag */ 18401 rack->r_ent_rec_ns = 0; 18402 if (rack->r_must_retran) { 18403 if (rsm) { 18404 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start); 18405 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) { 18406 /* 18407 * We have retransmitted all. 18408 */ 18409 rack->r_must_retran = 0; 18410 rack->r_ctl.rc_out_at_rto = 0; 18411 } 18412 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 18413 /* 18414 * Sending new data will also kill 18415 * the loop. 18416 */ 18417 rack->r_must_retran = 0; 18418 rack->r_ctl.rc_out_at_rto = 0; 18419 } 18420 } 18421 rack->r_ctl.fsb.recwin = recwin; 18422 if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) && 18423 SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) { 18424 /* 18425 * We hit an RTO and now have past snd_max at the RTO 18426 * clear all the WAS flags. 18427 */ 18428 tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY); 18429 } 18430 if (slot) { 18431 /* set the rack tcb into the slot N */ 18432 counter_u64_add(rack_paced_segments, 1); 18433 if ((error == 0) && 18434 rack_use_rfo && 18435 ((flags & (TH_SYN|TH_FIN)) == 0) && 18436 (rsm == NULL) && 18437 (tp->snd_nxt == tp->snd_max) && 18438 (ipoptlen == 0) && 18439 (tp->rcv_numsacks == 0) && 18440 rack->r_fsb_inited && 18441 TCPS_HAVEESTABLISHED(tp->t_state) && 18442 (rack->r_must_retran == 0) && 18443 ((tp->t_flags & TF_NEEDFIN) == 0) && 18444 (len > 0) && (orig_len > 0) && 18445 (orig_len > len) && 18446 ((orig_len - len) >= segsiz) && 18447 ((optlen == 0) || 18448 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 18449 /* We can send at least one more MSS using our fsb */ 18450 18451 rack->r_fast_output = 1; 18452 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 18453 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 18454 rack->r_ctl.fsb.tcp_flags = flags; 18455 rack->r_ctl.fsb.left_to_send = orig_len - len; 18456 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 18457 ("rack:%p left_to_send:%u sbavail:%u out:%u", 18458 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 18459 (tp->snd_max - tp->snd_una))); 18460 if (rack->r_ctl.fsb.left_to_send < segsiz) 18461 rack->r_fast_output = 0; 18462 else { 18463 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 18464 rack->r_ctl.fsb.rfo_apply_push = 1; 18465 else 18466 rack->r_ctl.fsb.rfo_apply_push = 0; 18467 } 18468 } else 18469 rack->r_fast_output = 0; 18470 rack_log_fsb(rack, tp, so, flags, 18471 ipoptlen, orig_len, len, error, 18472 (rsm == NULL), optlen, __LINE__, 2); 18473 } else if (sendalot) { 18474 int ret; 18475 18476 if (len) 18477 counter_u64_add(rack_unpaced_segments, 1); 18478 sack_rxmit = 0; 18479 if ((error == 0) && 18480 rack_use_rfo && 18481 ((flags & (TH_SYN|TH_FIN)) == 0) && 18482 (rsm == NULL) && 18483 (ipoptlen == 0) && 18484 (tp->rcv_numsacks == 0) && 18485 (tp->snd_nxt == tp->snd_max) && 18486 (rack->r_must_retran == 0) && 18487 rack->r_fsb_inited && 18488 TCPS_HAVEESTABLISHED(tp->t_state) && 18489 ((tp->t_flags & TF_NEEDFIN) == 0) && 18490 (len > 0) && (orig_len > 0) && 18491 (orig_len > len) && 18492 ((orig_len - len) >= segsiz) && 18493 ((optlen == 0) || 18494 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) { 18495 /* we can use fast_output for more */ 18496 18497 rack->r_fast_output = 1; 18498 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off); 18499 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len; 18500 rack->r_ctl.fsb.tcp_flags = flags; 18501 rack->r_ctl.fsb.left_to_send = orig_len - len; 18502 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))), 18503 ("rack:%p left_to_send:%u sbavail:%u out:%u", 18504 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb), 18505 (tp->snd_max - tp->snd_una))); 18506 if (rack->r_ctl.fsb.left_to_send < segsiz) { 18507 rack->r_fast_output = 0; 18508 } 18509 if (rack->r_fast_output) { 18510 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una))) 18511 rack->r_ctl.fsb.rfo_apply_push = 1; 18512 else 18513 rack->r_ctl.fsb.rfo_apply_push = 0; 18514 rack_log_fsb(rack, tp, so, flags, 18515 ipoptlen, orig_len, len, error, 18516 (rsm == NULL), optlen, __LINE__, 3); 18517 error = 0; 18518 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error); 18519 if (ret >= 0) 18520 return (ret); 18521 else if (error) 18522 goto nomore; 18523 18524 } 18525 } 18526 goto again; 18527 } else if (len) { 18528 counter_u64_add(rack_unpaced_segments, 1); 18529 } 18530 /* Assure when we leave that snd_nxt will point to top */ 18531 if (SEQ_GT(tp->snd_max, tp->snd_nxt)) 18532 tp->snd_nxt = tp->snd_max; 18533 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0); 18534 #ifdef TCP_ACCOUNTING 18535 crtsc = get_cyclecount() - ts_val; 18536 if (tot_len_this_send) { 18537 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18538 tp->tcp_cnt_counters[SND_OUT_DATA]++; 18539 } 18540 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1); 18541 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18542 tp->tcp_proc_time[SND_OUT_DATA] += crtsc; 18543 } 18544 counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc); 18545 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18546 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz); 18547 } 18548 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz)); 18549 } else { 18550 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18551 tp->tcp_cnt_counters[SND_OUT_ACK]++; 18552 } 18553 counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1); 18554 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 18555 tp->tcp_proc_time[SND_OUT_ACK] += crtsc; 18556 } 18557 counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc); 18558 } 18559 sched_unpin(); 18560 #endif 18561 if (error == ENOBUFS) 18562 error = 0; 18563 return (error); 18564 } 18565 18566 static void 18567 rack_update_seg(struct tcp_rack *rack) 18568 { 18569 uint32_t orig_val; 18570 18571 orig_val = rack->r_ctl.rc_pace_max_segs; 18572 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL); 18573 if (orig_val != rack->r_ctl.rc_pace_max_segs) 18574 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL); 18575 } 18576 18577 static void 18578 rack_mtu_change(struct tcpcb *tp) 18579 { 18580 /* 18581 * The MSS may have changed 18582 */ 18583 struct tcp_rack *rack; 18584 18585 rack = (struct tcp_rack *)tp->t_fb_ptr; 18586 if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) { 18587 /* 18588 * The MTU has changed we need to resend everything 18589 * since all we have sent is lost. We first fix 18590 * up the mtu though. 18591 */ 18592 rack_set_pace_segments(tp, rack, __LINE__, NULL); 18593 /* We treat this like a full retransmit timeout without the cwnd adjustment */ 18594 rack_remxt_tmr(tp); 18595 rack->r_fast_output = 0; 18596 rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp, 18597 rack->r_ctl.rc_sacked); 18598 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max; 18599 rack->r_must_retran = 1; 18600 18601 } 18602 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); 18603 /* We don't use snd_nxt to retransmit */ 18604 tp->snd_nxt = tp->snd_max; 18605 } 18606 18607 static int 18608 rack_set_profile(struct tcp_rack *rack, int prof) 18609 { 18610 int err = EINVAL; 18611 if (prof == 1) { 18612 /* pace_always=1 */ 18613 if (rack->rc_always_pace == 0) { 18614 if (tcp_can_enable_pacing() == 0) 18615 return (EBUSY); 18616 } 18617 rack->rc_always_pace = 1; 18618 if (rack->use_fixed_rate || rack->gp_ready) 18619 rack_set_cc_pacing(rack); 18620 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 18621 rack->rack_attempt_hdwr_pace = 0; 18622 /* cmpack=1 */ 18623 if (rack_use_cmp_acks) 18624 rack->r_use_cmp_ack = 1; 18625 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 18626 rack->r_use_cmp_ack) 18627 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 18628 /* scwnd=1 */ 18629 rack->rack_enable_scwnd = 1; 18630 /* dynamic=100 */ 18631 rack->rc_gp_dyn_mul = 1; 18632 /* gp_inc_ca */ 18633 rack->r_ctl.rack_per_of_gp_ca = 100; 18634 /* rrr_conf=3 */ 18635 rack->r_rr_config = 3; 18636 /* npush=2 */ 18637 rack->r_ctl.rc_no_push_at_mrtt = 2; 18638 /* fillcw=1 */ 18639 rack->rc_pace_to_cwnd = 1; 18640 rack->rc_pace_fill_if_rttin_range = 0; 18641 rack->rtt_limit_mul = 0; 18642 /* noprr=1 */ 18643 rack->rack_no_prr = 1; 18644 /* lscwnd=1 */ 18645 rack->r_limit_scw = 1; 18646 /* gp_inc_rec */ 18647 rack->r_ctl.rack_per_of_gp_rec = 90; 18648 err = 0; 18649 18650 } else if (prof == 3) { 18651 /* Same as profile one execept fill_cw becomes 2 (less aggressive set) */ 18652 /* pace_always=1 */ 18653 if (rack->rc_always_pace == 0) { 18654 if (tcp_can_enable_pacing() == 0) 18655 return (EBUSY); 18656 } 18657 rack->rc_always_pace = 1; 18658 if (rack->use_fixed_rate || rack->gp_ready) 18659 rack_set_cc_pacing(rack); 18660 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 18661 rack->rack_attempt_hdwr_pace = 0; 18662 /* cmpack=1 */ 18663 if (rack_use_cmp_acks) 18664 rack->r_use_cmp_ack = 1; 18665 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) && 18666 rack->r_use_cmp_ack) 18667 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 18668 /* scwnd=1 */ 18669 rack->rack_enable_scwnd = 1; 18670 /* dynamic=100 */ 18671 rack->rc_gp_dyn_mul = 1; 18672 /* gp_inc_ca */ 18673 rack->r_ctl.rack_per_of_gp_ca = 100; 18674 /* rrr_conf=3 */ 18675 rack->r_rr_config = 3; 18676 /* npush=2 */ 18677 rack->r_ctl.rc_no_push_at_mrtt = 2; 18678 /* fillcw=2 */ 18679 rack->rc_pace_to_cwnd = 1; 18680 rack->r_fill_less_agg = 1; 18681 rack->rc_pace_fill_if_rttin_range = 0; 18682 rack->rtt_limit_mul = 0; 18683 /* noprr=1 */ 18684 rack->rack_no_prr = 1; 18685 /* lscwnd=1 */ 18686 rack->r_limit_scw = 1; 18687 /* gp_inc_rec */ 18688 rack->r_ctl.rack_per_of_gp_rec = 90; 18689 err = 0; 18690 18691 18692 } else if (prof == 2) { 18693 /* cmpack=1 */ 18694 if (rack->rc_always_pace == 0) { 18695 if (tcp_can_enable_pacing() == 0) 18696 return (EBUSY); 18697 } 18698 rack->rc_always_pace = 1; 18699 if (rack->use_fixed_rate || rack->gp_ready) 18700 rack_set_cc_pacing(rack); 18701 rack->r_use_cmp_ack = 1; 18702 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 18703 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 18704 /* pace_always=1 */ 18705 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 18706 /* scwnd=1 */ 18707 rack->rack_enable_scwnd = 1; 18708 /* dynamic=100 */ 18709 rack->rc_gp_dyn_mul = 1; 18710 rack->r_ctl.rack_per_of_gp_ca = 100; 18711 /* rrr_conf=3 */ 18712 rack->r_rr_config = 3; 18713 /* npush=2 */ 18714 rack->r_ctl.rc_no_push_at_mrtt = 2; 18715 /* fillcw=1 */ 18716 rack->rc_pace_to_cwnd = 1; 18717 rack->rc_pace_fill_if_rttin_range = 0; 18718 rack->rtt_limit_mul = 0; 18719 /* noprr=1 */ 18720 rack->rack_no_prr = 1; 18721 /* lscwnd=0 */ 18722 rack->r_limit_scw = 0; 18723 err = 0; 18724 } else if (prof == 0) { 18725 /* This changes things back to the default settings */ 18726 err = 0; 18727 if (rack->rc_always_pace) { 18728 tcp_decrement_paced_conn(); 18729 rack_undo_cc_pacing(rack); 18730 rack->rc_always_pace = 0; 18731 } 18732 if (rack_pace_every_seg && tcp_can_enable_pacing()) { 18733 rack->rc_always_pace = 1; 18734 if (rack->use_fixed_rate || rack->gp_ready) 18735 rack_set_cc_pacing(rack); 18736 } else 18737 rack->rc_always_pace = 0; 18738 if (rack_use_cmp_acks) 18739 rack->r_use_cmp_ack = 1; 18740 else 18741 rack->r_use_cmp_ack = 0; 18742 if (rack_disable_prr) 18743 rack->rack_no_prr = 1; 18744 else 18745 rack->rack_no_prr = 0; 18746 if (rack_gp_no_rec_chg) 18747 rack->rc_gp_no_rec_chg = 1; 18748 else 18749 rack->rc_gp_no_rec_chg = 0; 18750 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) { 18751 rack->r_mbuf_queue = 1; 18752 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state)) 18753 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 18754 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ; 18755 } else { 18756 rack->r_mbuf_queue = 0; 18757 rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 18758 } 18759 if (rack_enable_shared_cwnd) 18760 rack->rack_enable_scwnd = 1; 18761 else 18762 rack->rack_enable_scwnd = 0; 18763 if (rack_do_dyn_mul) { 18764 /* When dynamic adjustment is on CA needs to start at 100% */ 18765 rack->rc_gp_dyn_mul = 1; 18766 if (rack_do_dyn_mul >= 100) 18767 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; 18768 } else { 18769 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; 18770 rack->rc_gp_dyn_mul = 0; 18771 } 18772 rack->r_rr_config = 0; 18773 rack->r_ctl.rc_no_push_at_mrtt = 0; 18774 rack->rc_pace_to_cwnd = 0; 18775 rack->rc_pace_fill_if_rttin_range = 0; 18776 rack->rtt_limit_mul = 0; 18777 18778 if (rack_enable_hw_pacing) 18779 rack->rack_hdw_pace_ena = 1; 18780 else 18781 rack->rack_hdw_pace_ena = 0; 18782 if (rack_disable_prr) 18783 rack->rack_no_prr = 1; 18784 else 18785 rack->rack_no_prr = 0; 18786 if (rack_limits_scwnd) 18787 rack->r_limit_scw = 1; 18788 else 18789 rack->r_limit_scw = 0; 18790 err = 0; 18791 } 18792 return (err); 18793 } 18794 18795 static int 18796 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval) 18797 { 18798 struct deferred_opt_list *dol; 18799 18800 dol = malloc(sizeof(struct deferred_opt_list), 18801 M_TCPFSB, M_NOWAIT|M_ZERO); 18802 if (dol == NULL) { 18803 /* 18804 * No space yikes -- fail out.. 18805 */ 18806 return (0); 18807 } 18808 dol->optname = sopt_name; 18809 dol->optval = loptval; 18810 TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next); 18811 return (1); 18812 } 18813 18814 static int 18815 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name, 18816 uint32_t optval, uint64_t loptval) 18817 { 18818 struct epoch_tracker et; 18819 struct sockopt sopt; 18820 struct cc_newreno_opts opt; 18821 uint64_t val; 18822 int error = 0; 18823 uint16_t ca, ss; 18824 18825 switch (sopt_name) { 18826 18827 case TCP_RACK_PACING_BETA: 18828 RACK_OPTS_INC(tcp_rack_beta); 18829 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 18830 /* This only works for newreno. */ 18831 error = EINVAL; 18832 break; 18833 } 18834 if (rack->rc_pacing_cc_set) { 18835 /* 18836 * Set them into the real CC module 18837 * whats in the rack pcb is the old values 18838 * to be used on restoral/ 18839 */ 18840 sopt.sopt_dir = SOPT_SET; 18841 opt.name = CC_NEWRENO_BETA; 18842 opt.val = optval; 18843 if (CC_ALGO(tp)->ctl_output != NULL) 18844 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 18845 else { 18846 error = ENOENT; 18847 break; 18848 } 18849 } else { 18850 /* 18851 * Not pacing yet so set it into our local 18852 * rack pcb storage. 18853 */ 18854 rack->r_ctl.rc_saved_beta.beta = optval; 18855 } 18856 break; 18857 case TCP_RACK_PACING_BETA_ECN: 18858 RACK_OPTS_INC(tcp_rack_beta_ecn); 18859 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) { 18860 /* This only works for newreno. */ 18861 error = EINVAL; 18862 break; 18863 } 18864 if (rack->rc_pacing_cc_set) { 18865 /* 18866 * Set them into the real CC module 18867 * whats in the rack pcb is the old values 18868 * to be used on restoral/ 18869 */ 18870 sopt.sopt_dir = SOPT_SET; 18871 opt.name = CC_NEWRENO_BETA_ECN; 18872 opt.val = optval; 18873 if (CC_ALGO(tp)->ctl_output != NULL) 18874 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt); 18875 else 18876 error = ENOENT; 18877 } else { 18878 /* 18879 * Not pacing yet so set it into our local 18880 * rack pcb storage. 18881 */ 18882 rack->r_ctl.rc_saved_beta.beta_ecn = optval; 18883 rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN; 18884 } 18885 break; 18886 case TCP_DEFER_OPTIONS: 18887 RACK_OPTS_INC(tcp_defer_opt); 18888 if (optval) { 18889 if (rack->gp_ready) { 18890 /* Too late */ 18891 error = EINVAL; 18892 break; 18893 } 18894 rack->defer_options = 1; 18895 } else 18896 rack->defer_options = 0; 18897 break; 18898 case TCP_RACK_MEASURE_CNT: 18899 RACK_OPTS_INC(tcp_rack_measure_cnt); 18900 if (optval && (optval <= 0xff)) { 18901 rack->r_ctl.req_measurements = optval; 18902 } else 18903 error = EINVAL; 18904 break; 18905 case TCP_REC_ABC_VAL: 18906 RACK_OPTS_INC(tcp_rec_abc_val); 18907 if (optval > 0) 18908 rack->r_use_labc_for_rec = 1; 18909 else 18910 rack->r_use_labc_for_rec = 0; 18911 break; 18912 case TCP_RACK_ABC_VAL: 18913 RACK_OPTS_INC(tcp_rack_abc_val); 18914 if ((optval > 0) && (optval < 255)) 18915 rack->rc_labc = optval; 18916 else 18917 error = EINVAL; 18918 break; 18919 case TCP_HDWR_UP_ONLY: 18920 RACK_OPTS_INC(tcp_pacing_up_only); 18921 if (optval) 18922 rack->r_up_only = 1; 18923 else 18924 rack->r_up_only = 0; 18925 break; 18926 case TCP_PACING_RATE_CAP: 18927 RACK_OPTS_INC(tcp_pacing_rate_cap); 18928 rack->r_ctl.bw_rate_cap = loptval; 18929 break; 18930 case TCP_RACK_PROFILE: 18931 RACK_OPTS_INC(tcp_profile); 18932 error = rack_set_profile(rack, optval); 18933 break; 18934 case TCP_USE_CMP_ACKS: 18935 RACK_OPTS_INC(tcp_use_cmp_acks); 18936 if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) { 18937 /* You can't turn it off once its on! */ 18938 error = EINVAL; 18939 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) { 18940 rack->r_use_cmp_ack = 1; 18941 rack->r_mbuf_queue = 1; 18942 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 18943 } 18944 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state)) 18945 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP; 18946 break; 18947 case TCP_SHARED_CWND_TIME_LIMIT: 18948 RACK_OPTS_INC(tcp_lscwnd); 18949 if (optval) 18950 rack->r_limit_scw = 1; 18951 else 18952 rack->r_limit_scw = 0; 18953 break; 18954 case TCP_RACK_PACE_TO_FILL: 18955 RACK_OPTS_INC(tcp_fillcw); 18956 if (optval == 0) 18957 rack->rc_pace_to_cwnd = 0; 18958 else { 18959 rack->rc_pace_to_cwnd = 1; 18960 if (optval > 1) 18961 rack->r_fill_less_agg = 1; 18962 } 18963 if ((optval >= rack_gp_rtt_maxmul) && 18964 rack_gp_rtt_maxmul && 18965 (optval < 0xf)) { 18966 rack->rc_pace_fill_if_rttin_range = 1; 18967 rack->rtt_limit_mul = optval; 18968 } else { 18969 rack->rc_pace_fill_if_rttin_range = 0; 18970 rack->rtt_limit_mul = 0; 18971 } 18972 break; 18973 case TCP_RACK_NO_PUSH_AT_MAX: 18974 RACK_OPTS_INC(tcp_npush); 18975 if (optval == 0) 18976 rack->r_ctl.rc_no_push_at_mrtt = 0; 18977 else if (optval < 0xff) 18978 rack->r_ctl.rc_no_push_at_mrtt = optval; 18979 else 18980 error = EINVAL; 18981 break; 18982 case TCP_SHARED_CWND_ENABLE: 18983 RACK_OPTS_INC(tcp_rack_scwnd); 18984 if (optval == 0) 18985 rack->rack_enable_scwnd = 0; 18986 else 18987 rack->rack_enable_scwnd = 1; 18988 break; 18989 case TCP_RACK_MBUF_QUEUE: 18990 /* Now do we use the LRO mbuf-queue feature */ 18991 RACK_OPTS_INC(tcp_rack_mbufq); 18992 if (optval || rack->r_use_cmp_ack) 18993 rack->r_mbuf_queue = 1; 18994 else 18995 rack->r_mbuf_queue = 0; 18996 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 18997 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 18998 else 18999 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19000 break; 19001 case TCP_RACK_NONRXT_CFG_RATE: 19002 RACK_OPTS_INC(tcp_rack_cfg_rate); 19003 if (optval == 0) 19004 rack->rack_rec_nonrxt_use_cr = 0; 19005 else 19006 rack->rack_rec_nonrxt_use_cr = 1; 19007 break; 19008 case TCP_NO_PRR: 19009 RACK_OPTS_INC(tcp_rack_noprr); 19010 if (optval == 0) 19011 rack->rack_no_prr = 0; 19012 else if (optval == 1) 19013 rack->rack_no_prr = 1; 19014 else if (optval == 2) 19015 rack->no_prr_addback = 1; 19016 else 19017 error = EINVAL; 19018 break; 19019 case TCP_TIMELY_DYN_ADJ: 19020 RACK_OPTS_INC(tcp_timely_dyn); 19021 if (optval == 0) 19022 rack->rc_gp_dyn_mul = 0; 19023 else { 19024 rack->rc_gp_dyn_mul = 1; 19025 if (optval >= 100) { 19026 /* 19027 * If the user sets something 100 or more 19028 * its the gp_ca value. 19029 */ 19030 rack->r_ctl.rack_per_of_gp_ca = optval; 19031 } 19032 } 19033 break; 19034 case TCP_RACK_DO_DETECTION: 19035 RACK_OPTS_INC(tcp_rack_do_detection); 19036 if (optval == 0) 19037 rack->do_detection = 0; 19038 else 19039 rack->do_detection = 1; 19040 break; 19041 case TCP_RACK_TLP_USE: 19042 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) { 19043 error = EINVAL; 19044 break; 19045 } 19046 RACK_OPTS_INC(tcp_tlp_use); 19047 rack->rack_tlp_threshold_use = optval; 19048 break; 19049 case TCP_RACK_TLP_REDUCE: 19050 /* RACK TLP cwnd reduction (bool) */ 19051 RACK_OPTS_INC(tcp_rack_tlp_reduce); 19052 rack->r_ctl.rc_tlp_cwnd_reduce = optval; 19053 break; 19054 /* Pacing related ones */ 19055 case TCP_RACK_PACE_ALWAYS: 19056 /* 19057 * zero is old rack method, 1 is new 19058 * method using a pacing rate. 19059 */ 19060 RACK_OPTS_INC(tcp_rack_pace_always); 19061 if (optval > 0) { 19062 if (rack->rc_always_pace) { 19063 error = EALREADY; 19064 break; 19065 } else if (tcp_can_enable_pacing()) { 19066 rack->rc_always_pace = 1; 19067 if (rack->use_fixed_rate || rack->gp_ready) 19068 rack_set_cc_pacing(rack); 19069 } 19070 else { 19071 error = ENOSPC; 19072 break; 19073 } 19074 } else { 19075 if (rack->rc_always_pace) { 19076 tcp_decrement_paced_conn(); 19077 rack->rc_always_pace = 0; 19078 rack_undo_cc_pacing(rack); 19079 } 19080 } 19081 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack) 19082 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; 19083 else 19084 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; 19085 /* A rate may be set irate or other, if so set seg size */ 19086 rack_update_seg(rack); 19087 break; 19088 case TCP_BBR_RACK_INIT_RATE: 19089 RACK_OPTS_INC(tcp_initial_rate); 19090 val = optval; 19091 /* Change from kbits per second to bytes per second */ 19092 val *= 1000; 19093 val /= 8; 19094 rack->r_ctl.init_rate = val; 19095 if (rack->rc_init_win != rack_default_init_window) { 19096 uint32_t win, snt; 19097 19098 /* 19099 * Options don't always get applied 19100 * in the order you think. So in order 19101 * to assure we update a cwnd we need 19102 * to check and see if we are still 19103 * where we should raise the cwnd. 19104 */ 19105 win = rc_init_window(rack); 19106 if (SEQ_GT(tp->snd_max, tp->iss)) 19107 snt = tp->snd_max - tp->iss; 19108 else 19109 snt = 0; 19110 if ((snt < win) && 19111 (tp->snd_cwnd < win)) 19112 tp->snd_cwnd = win; 19113 } 19114 if (rack->rc_always_pace) 19115 rack_update_seg(rack); 19116 break; 19117 case TCP_BBR_IWINTSO: 19118 RACK_OPTS_INC(tcp_initial_win); 19119 if (optval && (optval <= 0xff)) { 19120 uint32_t win, snt; 19121 19122 rack->rc_init_win = optval; 19123 win = rc_init_window(rack); 19124 if (SEQ_GT(tp->snd_max, tp->iss)) 19125 snt = tp->snd_max - tp->iss; 19126 else 19127 snt = 0; 19128 if ((snt < win) && 19129 (tp->t_srtt | 19130 #ifdef NETFLIX_PEAKRATE 19131 tp->t_maxpeakrate | 19132 #endif 19133 rack->r_ctl.init_rate)) { 19134 /* 19135 * We are not past the initial window 19136 * and we have some bases for pacing, 19137 * so we need to possibly adjust up 19138 * the cwnd. Note even if we don't set 19139 * the cwnd, its still ok to raise the rc_init_win 19140 * which can be used coming out of idle when we 19141 * would have a rate. 19142 */ 19143 if (tp->snd_cwnd < win) 19144 tp->snd_cwnd = win; 19145 } 19146 if (rack->rc_always_pace) 19147 rack_update_seg(rack); 19148 } else 19149 error = EINVAL; 19150 break; 19151 case TCP_RACK_FORCE_MSEG: 19152 RACK_OPTS_INC(tcp_rack_force_max_seg); 19153 if (optval) 19154 rack->rc_force_max_seg = 1; 19155 else 19156 rack->rc_force_max_seg = 0; 19157 break; 19158 case TCP_RACK_PACE_MAX_SEG: 19159 /* Max segments size in a pace in bytes */ 19160 RACK_OPTS_INC(tcp_rack_max_seg); 19161 rack->rc_user_set_max_segs = optval; 19162 rack_set_pace_segments(tp, rack, __LINE__, NULL); 19163 break; 19164 case TCP_RACK_PACE_RATE_REC: 19165 /* Set the fixed pacing rate in Bytes per second ca */ 19166 RACK_OPTS_INC(tcp_rack_pace_rate_rec); 19167 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 19168 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 19169 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 19170 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 19171 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 19172 rack->use_fixed_rate = 1; 19173 if (rack->rc_always_pace) 19174 rack_set_cc_pacing(rack); 19175 rack_log_pacing_delay_calc(rack, 19176 rack->r_ctl.rc_fixed_pacing_rate_ss, 19177 rack->r_ctl.rc_fixed_pacing_rate_ca, 19178 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 19179 __LINE__, NULL); 19180 break; 19181 19182 case TCP_RACK_PACE_RATE_SS: 19183 /* Set the fixed pacing rate in Bytes per second ca */ 19184 RACK_OPTS_INC(tcp_rack_pace_rate_ss); 19185 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 19186 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) 19187 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 19188 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 19189 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 19190 rack->use_fixed_rate = 1; 19191 if (rack->rc_always_pace) 19192 rack_set_cc_pacing(rack); 19193 rack_log_pacing_delay_calc(rack, 19194 rack->r_ctl.rc_fixed_pacing_rate_ss, 19195 rack->r_ctl.rc_fixed_pacing_rate_ca, 19196 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 19197 __LINE__, NULL); 19198 break; 19199 19200 case TCP_RACK_PACE_RATE_CA: 19201 /* Set the fixed pacing rate in Bytes per second ca */ 19202 RACK_OPTS_INC(tcp_rack_pace_rate_ca); 19203 rack->r_ctl.rc_fixed_pacing_rate_ca = optval; 19204 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) 19205 rack->r_ctl.rc_fixed_pacing_rate_ss = optval; 19206 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) 19207 rack->r_ctl.rc_fixed_pacing_rate_rec = optval; 19208 rack->use_fixed_rate = 1; 19209 if (rack->rc_always_pace) 19210 rack_set_cc_pacing(rack); 19211 rack_log_pacing_delay_calc(rack, 19212 rack->r_ctl.rc_fixed_pacing_rate_ss, 19213 rack->r_ctl.rc_fixed_pacing_rate_ca, 19214 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, 19215 __LINE__, NULL); 19216 break; 19217 case TCP_RACK_GP_INCREASE_REC: 19218 RACK_OPTS_INC(tcp_gp_inc_rec); 19219 rack->r_ctl.rack_per_of_gp_rec = optval; 19220 rack_log_pacing_delay_calc(rack, 19221 rack->r_ctl.rack_per_of_gp_ss, 19222 rack->r_ctl.rack_per_of_gp_ca, 19223 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 19224 __LINE__, NULL); 19225 break; 19226 case TCP_RACK_GP_INCREASE_CA: 19227 RACK_OPTS_INC(tcp_gp_inc_ca); 19228 ca = optval; 19229 if (ca < 100) { 19230 /* 19231 * We don't allow any reduction 19232 * over the GP b/w. 19233 */ 19234 error = EINVAL; 19235 break; 19236 } 19237 rack->r_ctl.rack_per_of_gp_ca = ca; 19238 rack_log_pacing_delay_calc(rack, 19239 rack->r_ctl.rack_per_of_gp_ss, 19240 rack->r_ctl.rack_per_of_gp_ca, 19241 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 19242 __LINE__, NULL); 19243 break; 19244 case TCP_RACK_GP_INCREASE_SS: 19245 RACK_OPTS_INC(tcp_gp_inc_ss); 19246 ss = optval; 19247 if (ss < 100) { 19248 /* 19249 * We don't allow any reduction 19250 * over the GP b/w. 19251 */ 19252 error = EINVAL; 19253 break; 19254 } 19255 rack->r_ctl.rack_per_of_gp_ss = ss; 19256 rack_log_pacing_delay_calc(rack, 19257 rack->r_ctl.rack_per_of_gp_ss, 19258 rack->r_ctl.rack_per_of_gp_ca, 19259 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, 19260 __LINE__, NULL); 19261 break; 19262 case TCP_RACK_RR_CONF: 19263 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate); 19264 if (optval && optval <= 3) 19265 rack->r_rr_config = optval; 19266 else 19267 rack->r_rr_config = 0; 19268 break; 19269 case TCP_HDWR_RATE_CAP: 19270 RACK_OPTS_INC(tcp_hdwr_rate_cap); 19271 if (optval) { 19272 if (rack->r_rack_hw_rate_caps == 0) 19273 rack->r_rack_hw_rate_caps = 1; 19274 else 19275 error = EALREADY; 19276 } else { 19277 rack->r_rack_hw_rate_caps = 0; 19278 } 19279 break; 19280 case TCP_BBR_HDWR_PACE: 19281 RACK_OPTS_INC(tcp_hdwr_pacing); 19282 if (optval){ 19283 if (rack->rack_hdrw_pacing == 0) { 19284 rack->rack_hdw_pace_ena = 1; 19285 rack->rack_attempt_hdwr_pace = 0; 19286 } else 19287 error = EALREADY; 19288 } else { 19289 rack->rack_hdw_pace_ena = 0; 19290 #ifdef RATELIMIT 19291 if (rack->r_ctl.crte != NULL) { 19292 rack->rack_hdrw_pacing = 0; 19293 rack->rack_attempt_hdwr_pace = 0; 19294 tcp_rel_pacing_rate(rack->r_ctl.crte, tp); 19295 rack->r_ctl.crte = NULL; 19296 } 19297 #endif 19298 } 19299 break; 19300 /* End Pacing related ones */ 19301 case TCP_RACK_PRR_SENDALOT: 19302 /* Allow PRR to send more than one seg */ 19303 RACK_OPTS_INC(tcp_rack_prr_sendalot); 19304 rack->r_ctl.rc_prr_sendalot = optval; 19305 break; 19306 case TCP_RACK_MIN_TO: 19307 /* Minimum time between rack t-o's in ms */ 19308 RACK_OPTS_INC(tcp_rack_min_to); 19309 rack->r_ctl.rc_min_to = optval; 19310 break; 19311 case TCP_RACK_EARLY_SEG: 19312 /* If early recovery max segments */ 19313 RACK_OPTS_INC(tcp_rack_early_seg); 19314 rack->r_ctl.rc_early_recovery_segs = optval; 19315 break; 19316 case TCP_RACK_REORD_THRESH: 19317 /* RACK reorder threshold (shift amount) */ 19318 RACK_OPTS_INC(tcp_rack_reord_thresh); 19319 if ((optval > 0) && (optval < 31)) 19320 rack->r_ctl.rc_reorder_shift = optval; 19321 else 19322 error = EINVAL; 19323 break; 19324 case TCP_RACK_REORD_FADE: 19325 /* Does reordering fade after ms time */ 19326 RACK_OPTS_INC(tcp_rack_reord_fade); 19327 rack->r_ctl.rc_reorder_fade = optval; 19328 break; 19329 case TCP_RACK_TLP_THRESH: 19330 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 19331 RACK_OPTS_INC(tcp_rack_tlp_thresh); 19332 if (optval) 19333 rack->r_ctl.rc_tlp_threshold = optval; 19334 else 19335 error = EINVAL; 19336 break; 19337 case TCP_BBR_USE_RACK_RR: 19338 RACK_OPTS_INC(tcp_rack_rr); 19339 if (optval) 19340 rack->use_rack_rr = 1; 19341 else 19342 rack->use_rack_rr = 0; 19343 break; 19344 case TCP_FAST_RSM_HACK: 19345 RACK_OPTS_INC(tcp_rack_fastrsm_hack); 19346 if (optval) 19347 rack->fast_rsm_hack = 1; 19348 else 19349 rack->fast_rsm_hack = 0; 19350 break; 19351 case TCP_RACK_PKT_DELAY: 19352 /* RACK added ms i.e. rack-rtt + reord + N */ 19353 RACK_OPTS_INC(tcp_rack_pkt_delay); 19354 rack->r_ctl.rc_pkt_delay = optval; 19355 break; 19356 case TCP_DELACK: 19357 RACK_OPTS_INC(tcp_rack_delayed_ack); 19358 if (optval == 0) 19359 tp->t_delayed_ack = 0; 19360 else 19361 tp->t_delayed_ack = 1; 19362 if (tp->t_flags & TF_DELACK) { 19363 tp->t_flags &= ~TF_DELACK; 19364 tp->t_flags |= TF_ACKNOW; 19365 NET_EPOCH_ENTER(et); 19366 rack_output(tp); 19367 NET_EPOCH_EXIT(et); 19368 } 19369 break; 19370 19371 case TCP_BBR_RACK_RTT_USE: 19372 RACK_OPTS_INC(tcp_rack_rtt_use); 19373 if ((optval != USE_RTT_HIGH) && 19374 (optval != USE_RTT_LOW) && 19375 (optval != USE_RTT_AVG)) 19376 error = EINVAL; 19377 else 19378 rack->r_ctl.rc_rate_sample_method = optval; 19379 break; 19380 case TCP_DATA_AFTER_CLOSE: 19381 RACK_OPTS_INC(tcp_data_after_close); 19382 if (optval) 19383 rack->rc_allow_data_af_clo = 1; 19384 else 19385 rack->rc_allow_data_af_clo = 0; 19386 break; 19387 default: 19388 break; 19389 } 19390 #ifdef NETFLIX_STATS 19391 tcp_log_socket_option(tp, sopt_name, optval, error); 19392 #endif 19393 return (error); 19394 } 19395 19396 19397 static void 19398 rack_apply_deferred_options(struct tcp_rack *rack) 19399 { 19400 struct deferred_opt_list *dol, *sdol; 19401 uint32_t s_optval; 19402 19403 TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) { 19404 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next); 19405 /* Disadvantage of deferal is you loose the error return */ 19406 s_optval = (uint32_t)dol->optval; 19407 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval); 19408 free(dol, M_TCPDO); 19409 } 19410 } 19411 19412 /* 19413 * rack_ctloutput() must drop the inpcb lock before performing copyin on 19414 * socket option arguments. When it re-acquires the lock after the copy, it 19415 * has to revalidate that the connection is still valid for the socket 19416 * option. 19417 */ 19418 static int 19419 rack_set_sockopt(struct socket *so, struct sockopt *sopt, 19420 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack) 19421 { 19422 uint64_t loptval; 19423 int32_t error = 0, optval; 19424 19425 switch (sopt->sopt_name) { 19426 case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */ 19427 /* Pacing related ones */ 19428 case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */ 19429 case TCP_BBR_RACK_INIT_RATE: /* URL:irate */ 19430 case TCP_BBR_IWINTSO: /* URL:tso_iwin */ 19431 case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */ 19432 case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */ 19433 case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */ 19434 case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/ 19435 case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */ 19436 case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */ 19437 case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */ 19438 case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */ 19439 case TCP_RACK_RR_CONF: /* URL:rrr_conf */ 19440 case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */ 19441 case TCP_HDWR_RATE_CAP: /* URL: hdwrcap boolean */ 19442 case TCP_PACING_RATE_CAP: /* URL:cap-- used by side-channel */ 19443 case TCP_HDWR_UP_ONLY: /* URL:uponly -- hardware pacing boolean */ 19444 /* End pacing related */ 19445 case TCP_FAST_RSM_HACK: /* URL:frsm_hack */ 19446 case TCP_DELACK: /* URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */ 19447 case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */ 19448 case TCP_RACK_MIN_TO: /* URL:min_to */ 19449 case TCP_RACK_EARLY_SEG: /* URL:early_seg */ 19450 case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */ 19451 case TCP_RACK_REORD_FADE: /* URL:reord_fade */ 19452 case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */ 19453 case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */ 19454 case TCP_RACK_TLP_USE: /* URL:tlp_use */ 19455 case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */ 19456 case TCP_BBR_USE_RACK_RR: /* URL:rackrr */ 19457 case TCP_RACK_DO_DETECTION: /* URL:detect */ 19458 case TCP_NO_PRR: /* URL:noprr */ 19459 case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */ 19460 case TCP_DATA_AFTER_CLOSE: /* no URL */ 19461 case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */ 19462 case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */ 19463 case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */ 19464 case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */ 19465 case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */ 19466 case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */ 19467 case TCP_RACK_PROFILE: /* URL:profile */ 19468 case TCP_USE_CMP_ACKS: /* URL:cmpack */ 19469 case TCP_RACK_ABC_VAL: /* URL:labc */ 19470 case TCP_REC_ABC_VAL: /* URL:reclabc */ 19471 case TCP_RACK_MEASURE_CNT: /* URL:measurecnt */ 19472 case TCP_DEFER_OPTIONS: /* URL:defer */ 19473 case TCP_RACK_PACING_BETA: /* URL:pacing_beta */ 19474 case TCP_RACK_PACING_BETA_ECN: /* URL:pacing_beta_ecn */ 19475 break; 19476 default: 19477 /* Filter off all unknown options to the base stack */ 19478 return (tcp_default_ctloutput(so, sopt, inp, tp)); 19479 break; 19480 } 19481 INP_WUNLOCK(inp); 19482 if (sopt->sopt_name == TCP_PACING_RATE_CAP) { 19483 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval)); 19484 /* 19485 * We truncate it down to 32 bits for the socket-option trace this 19486 * means rates > 34Gbps won't show right, but thats probably ok. 19487 */ 19488 optval = (uint32_t)loptval; 19489 } else { 19490 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); 19491 /* Save it in 64 bit form too */ 19492 loptval = optval; 19493 } 19494 if (error) 19495 return (error); 19496 INP_WLOCK(inp); 19497 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 19498 INP_WUNLOCK(inp); 19499 return (ECONNRESET); 19500 } 19501 if (rack->defer_options && (rack->gp_ready == 0) && 19502 (sopt->sopt_name != TCP_DEFER_OPTIONS) && 19503 (sopt->sopt_name != TCP_RACK_PACING_BETA) && 19504 (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) && 19505 (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) { 19506 /* Options are beind deferred */ 19507 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) { 19508 INP_WUNLOCK(inp); 19509 return (0); 19510 } else { 19511 /* No memory to defer, fail */ 19512 INP_WUNLOCK(inp); 19513 return (ENOMEM); 19514 } 19515 } 19516 error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval); 19517 INP_WUNLOCK(inp); 19518 return (error); 19519 } 19520 19521 static void 19522 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti) 19523 { 19524 19525 INP_WLOCK_ASSERT(tp->t_inpcb); 19526 bzero(ti, sizeof(*ti)); 19527 19528 ti->tcpi_state = tp->t_state; 19529 if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) 19530 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; 19531 if (tp->t_flags & TF_SACK_PERMIT) 19532 ti->tcpi_options |= TCPI_OPT_SACK; 19533 if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { 19534 ti->tcpi_options |= TCPI_OPT_WSCALE; 19535 ti->tcpi_snd_wscale = tp->snd_scale; 19536 ti->tcpi_rcv_wscale = tp->rcv_scale; 19537 } 19538 if (tp->t_flags2 & TF2_ECN_PERMIT) 19539 ti->tcpi_options |= TCPI_OPT_ECN; 19540 if (tp->t_flags & TF_FASTOPEN) 19541 ti->tcpi_options |= TCPI_OPT_TFO; 19542 /* still kept in ticks is t_rcvtime */ 19543 ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick; 19544 /* Since we hold everything in precise useconds this is easy */ 19545 ti->tcpi_rtt = tp->t_srtt; 19546 ti->tcpi_rttvar = tp->t_rttvar; 19547 ti->tcpi_rto = tp->t_rxtcur; 19548 ti->tcpi_snd_ssthresh = tp->snd_ssthresh; 19549 ti->tcpi_snd_cwnd = tp->snd_cwnd; 19550 /* 19551 * FreeBSD-specific extension fields for tcp_info. 19552 */ 19553 ti->tcpi_rcv_space = tp->rcv_wnd; 19554 ti->tcpi_rcv_nxt = tp->rcv_nxt; 19555 ti->tcpi_snd_wnd = tp->snd_wnd; 19556 ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */ 19557 ti->tcpi_snd_nxt = tp->snd_nxt; 19558 ti->tcpi_snd_mss = tp->t_maxseg; 19559 ti->tcpi_rcv_mss = tp->t_maxseg; 19560 ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack; 19561 ti->tcpi_rcv_ooopack = tp->t_rcvoopack; 19562 ti->tcpi_snd_zerowin = tp->t_sndzerowin; 19563 #ifdef NETFLIX_STATS 19564 ti->tcpi_total_tlp = tp->t_sndtlppack; 19565 ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte; 19566 memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo)); 19567 #endif 19568 #ifdef TCP_OFFLOAD 19569 if (tp->t_flags & TF_TOE) { 19570 ti->tcpi_options |= TCPI_OPT_TOE; 19571 tcp_offload_tcp_info(tp, ti); 19572 } 19573 #endif 19574 } 19575 19576 static int 19577 rack_get_sockopt(struct socket *so, struct sockopt *sopt, 19578 struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack) 19579 { 19580 int32_t error, optval; 19581 uint64_t val, loptval; 19582 struct tcp_info ti; 19583 /* 19584 * Because all our options are either boolean or an int, we can just 19585 * pull everything into optval and then unlock and copy. If we ever 19586 * add a option that is not a int, then this will have quite an 19587 * impact to this routine. 19588 */ 19589 error = 0; 19590 switch (sopt->sopt_name) { 19591 case TCP_INFO: 19592 /* First get the info filled */ 19593 rack_fill_info(tp, &ti); 19594 /* Fix up the rtt related fields if needed */ 19595 INP_WUNLOCK(inp); 19596 error = sooptcopyout(sopt, &ti, sizeof ti); 19597 return (error); 19598 /* 19599 * Beta is the congestion control value for NewReno that influences how 19600 * much of a backoff happens when loss is detected. It is normally set 19601 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value 19602 * when you exit recovery. 19603 */ 19604 case TCP_RACK_PACING_BETA: 19605 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 19606 error = EINVAL; 19607 else if (rack->rc_pacing_cc_set == 0) 19608 optval = rack->r_ctl.rc_saved_beta.beta; 19609 else { 19610 /* 19611 * Reach out into the CC data and report back what 19612 * I have previously set. Yeah it looks hackish but 19613 * we don't want to report the saved values. 19614 */ 19615 if (tp->ccv->cc_data) 19616 optval = ((struct newreno *)tp->ccv->cc_data)->beta; 19617 else 19618 error = EINVAL; 19619 } 19620 break; 19621 /* 19622 * Beta_ecn is the congestion control value for NewReno that influences how 19623 * much of a backoff happens when a ECN mark is detected. It is normally set 19624 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when 19625 * you exit recovery. Note that classic ECN has a beta of 50, it is only 19626 * ABE Ecn that uses this "less" value, but we do too with pacing :) 19627 */ 19628 19629 case TCP_RACK_PACING_BETA_ECN: 19630 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) 19631 error = EINVAL; 19632 else if (rack->rc_pacing_cc_set == 0) 19633 optval = rack->r_ctl.rc_saved_beta.beta_ecn; 19634 else { 19635 /* 19636 * Reach out into the CC data and report back what 19637 * I have previously set. Yeah it looks hackish but 19638 * we don't want to report the saved values. 19639 */ 19640 if (tp->ccv->cc_data) 19641 optval = ((struct newreno *)tp->ccv->cc_data)->beta_ecn; 19642 else 19643 error = EINVAL; 19644 } 19645 break; 19646 case TCP_FAST_RSM_HACK: 19647 optval = rack->fast_rsm_hack; 19648 break; 19649 case TCP_DEFER_OPTIONS: 19650 optval = rack->defer_options; 19651 break; 19652 case TCP_RACK_MEASURE_CNT: 19653 optval = rack->r_ctl.req_measurements; 19654 break; 19655 case TCP_REC_ABC_VAL: 19656 optval = rack->r_use_labc_for_rec; 19657 break; 19658 case TCP_RACK_ABC_VAL: 19659 optval = rack->rc_labc; 19660 break; 19661 case TCP_HDWR_UP_ONLY: 19662 optval= rack->r_up_only; 19663 break; 19664 case TCP_PACING_RATE_CAP: 19665 loptval = rack->r_ctl.bw_rate_cap; 19666 break; 19667 case TCP_RACK_PROFILE: 19668 /* You cannot retrieve a profile, its write only */ 19669 error = EINVAL; 19670 break; 19671 case TCP_USE_CMP_ACKS: 19672 optval = rack->r_use_cmp_ack; 19673 break; 19674 case TCP_RACK_PACE_TO_FILL: 19675 optval = rack->rc_pace_to_cwnd; 19676 if (optval && rack->r_fill_less_agg) 19677 optval++; 19678 break; 19679 case TCP_RACK_NO_PUSH_AT_MAX: 19680 optval = rack->r_ctl.rc_no_push_at_mrtt; 19681 break; 19682 case TCP_SHARED_CWND_ENABLE: 19683 optval = rack->rack_enable_scwnd; 19684 break; 19685 case TCP_RACK_NONRXT_CFG_RATE: 19686 optval = rack->rack_rec_nonrxt_use_cr; 19687 break; 19688 case TCP_NO_PRR: 19689 if (rack->rack_no_prr == 1) 19690 optval = 1; 19691 else if (rack->no_prr_addback == 1) 19692 optval = 2; 19693 else 19694 optval = 0; 19695 break; 19696 case TCP_RACK_DO_DETECTION: 19697 optval = rack->do_detection; 19698 break; 19699 case TCP_RACK_MBUF_QUEUE: 19700 /* Now do we use the LRO mbuf-queue feature */ 19701 optval = rack->r_mbuf_queue; 19702 break; 19703 case TCP_TIMELY_DYN_ADJ: 19704 optval = rack->rc_gp_dyn_mul; 19705 break; 19706 case TCP_BBR_IWINTSO: 19707 optval = rack->rc_init_win; 19708 break; 19709 case TCP_RACK_TLP_REDUCE: 19710 /* RACK TLP cwnd reduction (bool) */ 19711 optval = rack->r_ctl.rc_tlp_cwnd_reduce; 19712 break; 19713 case TCP_BBR_RACK_INIT_RATE: 19714 val = rack->r_ctl.init_rate; 19715 /* convert to kbits per sec */ 19716 val *= 8; 19717 val /= 1000; 19718 optval = (uint32_t)val; 19719 break; 19720 case TCP_RACK_FORCE_MSEG: 19721 optval = rack->rc_force_max_seg; 19722 break; 19723 case TCP_RACK_PACE_MAX_SEG: 19724 /* Max segments in a pace */ 19725 optval = rack->rc_user_set_max_segs; 19726 break; 19727 case TCP_RACK_PACE_ALWAYS: 19728 /* Use the always pace method */ 19729 optval = rack->rc_always_pace; 19730 break; 19731 case TCP_RACK_PRR_SENDALOT: 19732 /* Allow PRR to send more than one seg */ 19733 optval = rack->r_ctl.rc_prr_sendalot; 19734 break; 19735 case TCP_RACK_MIN_TO: 19736 /* Minimum time between rack t-o's in ms */ 19737 optval = rack->r_ctl.rc_min_to; 19738 break; 19739 case TCP_RACK_EARLY_SEG: 19740 /* If early recovery max segments */ 19741 optval = rack->r_ctl.rc_early_recovery_segs; 19742 break; 19743 case TCP_RACK_REORD_THRESH: 19744 /* RACK reorder threshold (shift amount) */ 19745 optval = rack->r_ctl.rc_reorder_shift; 19746 break; 19747 case TCP_RACK_REORD_FADE: 19748 /* Does reordering fade after ms time */ 19749 optval = rack->r_ctl.rc_reorder_fade; 19750 break; 19751 case TCP_BBR_USE_RACK_RR: 19752 /* Do we use the rack cheat for rxt */ 19753 optval = rack->use_rack_rr; 19754 break; 19755 case TCP_RACK_RR_CONF: 19756 optval = rack->r_rr_config; 19757 break; 19758 case TCP_HDWR_RATE_CAP: 19759 optval = rack->r_rack_hw_rate_caps; 19760 break; 19761 case TCP_BBR_HDWR_PACE: 19762 optval = rack->rack_hdw_pace_ena; 19763 break; 19764 case TCP_RACK_TLP_THRESH: 19765 /* RACK TLP theshold i.e. srtt+(srtt/N) */ 19766 optval = rack->r_ctl.rc_tlp_threshold; 19767 break; 19768 case TCP_RACK_PKT_DELAY: 19769 /* RACK added ms i.e. rack-rtt + reord + N */ 19770 optval = rack->r_ctl.rc_pkt_delay; 19771 break; 19772 case TCP_RACK_TLP_USE: 19773 optval = rack->rack_tlp_threshold_use; 19774 break; 19775 case TCP_RACK_PACE_RATE_CA: 19776 optval = rack->r_ctl.rc_fixed_pacing_rate_ca; 19777 break; 19778 case TCP_RACK_PACE_RATE_SS: 19779 optval = rack->r_ctl.rc_fixed_pacing_rate_ss; 19780 break; 19781 case TCP_RACK_PACE_RATE_REC: 19782 optval = rack->r_ctl.rc_fixed_pacing_rate_rec; 19783 break; 19784 case TCP_RACK_GP_INCREASE_SS: 19785 optval = rack->r_ctl.rack_per_of_gp_ca; 19786 break; 19787 case TCP_RACK_GP_INCREASE_CA: 19788 optval = rack->r_ctl.rack_per_of_gp_ss; 19789 break; 19790 case TCP_BBR_RACK_RTT_USE: 19791 optval = rack->r_ctl.rc_rate_sample_method; 19792 break; 19793 case TCP_DELACK: 19794 optval = tp->t_delayed_ack; 19795 break; 19796 case TCP_DATA_AFTER_CLOSE: 19797 optval = rack->rc_allow_data_af_clo; 19798 break; 19799 case TCP_SHARED_CWND_TIME_LIMIT: 19800 optval = rack->r_limit_scw; 19801 break; 19802 default: 19803 return (tcp_default_ctloutput(so, sopt, inp, tp)); 19804 break; 19805 } 19806 INP_WUNLOCK(inp); 19807 if (error == 0) { 19808 if (TCP_PACING_RATE_CAP) 19809 error = sooptcopyout(sopt, &loptval, sizeof loptval); 19810 else 19811 error = sooptcopyout(sopt, &optval, sizeof optval); 19812 } 19813 return (error); 19814 } 19815 19816 static int 19817 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp) 19818 { 19819 int32_t error = EINVAL; 19820 struct tcp_rack *rack; 19821 19822 rack = (struct tcp_rack *)tp->t_fb_ptr; 19823 if (rack == NULL) { 19824 /* Huh? */ 19825 goto out; 19826 } 19827 if (sopt->sopt_dir == SOPT_SET) { 19828 return (rack_set_sockopt(so, sopt, inp, tp, rack)); 19829 } else if (sopt->sopt_dir == SOPT_GET) { 19830 return (rack_get_sockopt(so, sopt, inp, tp, rack)); 19831 } 19832 out: 19833 INP_WUNLOCK(inp); 19834 return (error); 19835 } 19836 19837 static int 19838 rack_pru_options(struct tcpcb *tp, int flags) 19839 { 19840 if (flags & PRUS_OOB) 19841 return (EOPNOTSUPP); 19842 return (0); 19843 } 19844 19845 static struct tcp_function_block __tcp_rack = { 19846 .tfb_tcp_block_name = __XSTRING(STACKNAME), 19847 .tfb_tcp_output = rack_output, 19848 .tfb_do_queued_segments = ctf_do_queued_segments, 19849 .tfb_do_segment_nounlock = rack_do_segment_nounlock, 19850 .tfb_tcp_do_segment = rack_do_segment, 19851 .tfb_tcp_ctloutput = rack_ctloutput, 19852 .tfb_tcp_fb_init = rack_init, 19853 .tfb_tcp_fb_fini = rack_fini, 19854 .tfb_tcp_timer_stop_all = rack_stopall, 19855 .tfb_tcp_timer_activate = rack_timer_activate, 19856 .tfb_tcp_timer_active = rack_timer_active, 19857 .tfb_tcp_timer_stop = rack_timer_stop, 19858 .tfb_tcp_rexmit_tmr = rack_remxt_tmr, 19859 .tfb_tcp_handoff_ok = rack_handoff_ok, 19860 .tfb_tcp_mtu_chg = rack_mtu_change, 19861 .tfb_pru_options = rack_pru_options, 19862 19863 }; 19864 19865 static const char *rack_stack_names[] = { 19866 __XSTRING(STACKNAME), 19867 #ifdef STACKALIAS 19868 __XSTRING(STACKALIAS), 19869 #endif 19870 }; 19871 19872 static int 19873 rack_ctor(void *mem, int32_t size, void *arg, int32_t how) 19874 { 19875 memset(mem, 0, size); 19876 return (0); 19877 } 19878 19879 static void 19880 rack_dtor(void *mem, int32_t size, void *arg) 19881 { 19882 19883 } 19884 19885 static bool rack_mod_inited = false; 19886 19887 static int 19888 tcp_addrack(module_t mod, int32_t type, void *data) 19889 { 19890 int32_t err = 0; 19891 int num_stacks; 19892 19893 switch (type) { 19894 case MOD_LOAD: 19895 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map", 19896 sizeof(struct rack_sendmap), 19897 rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 19898 19899 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb", 19900 sizeof(struct tcp_rack), 19901 rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 19902 19903 sysctl_ctx_init(&rack_sysctl_ctx); 19904 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx, 19905 SYSCTL_STATIC_CHILDREN(_net_inet_tcp), 19906 OID_AUTO, 19907 #ifdef STACKALIAS 19908 __XSTRING(STACKALIAS), 19909 #else 19910 __XSTRING(STACKNAME), 19911 #endif 19912 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 19913 ""); 19914 if (rack_sysctl_root == NULL) { 19915 printf("Failed to add sysctl node\n"); 19916 err = EFAULT; 19917 goto free_uma; 19918 } 19919 rack_init_sysctls(); 19920 num_stacks = nitems(rack_stack_names); 19921 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK, 19922 rack_stack_names, &num_stacks); 19923 if (err) { 19924 printf("Failed to register %s stack name for " 19925 "%s module\n", rack_stack_names[num_stacks], 19926 __XSTRING(MODNAME)); 19927 sysctl_ctx_free(&rack_sysctl_ctx); 19928 free_uma: 19929 uma_zdestroy(rack_zone); 19930 uma_zdestroy(rack_pcb_zone); 19931 rack_counter_destroy(); 19932 printf("Failed to register rack module -- err:%d\n", err); 19933 return (err); 19934 } 19935 tcp_lro_reg_mbufq(); 19936 rack_mod_inited = true; 19937 break; 19938 case MOD_QUIESCE: 19939 err = deregister_tcp_functions(&__tcp_rack, true, false); 19940 break; 19941 case MOD_UNLOAD: 19942 err = deregister_tcp_functions(&__tcp_rack, false, true); 19943 if (err == EBUSY) 19944 break; 19945 if (rack_mod_inited) { 19946 uma_zdestroy(rack_zone); 19947 uma_zdestroy(rack_pcb_zone); 19948 sysctl_ctx_free(&rack_sysctl_ctx); 19949 rack_counter_destroy(); 19950 rack_mod_inited = false; 19951 } 19952 tcp_lro_dereg_mbufq(); 19953 err = 0; 19954 break; 19955 default: 19956 return (EOPNOTSUPP); 19957 } 19958 return (err); 19959 } 19960 19961 static moduledata_t tcp_rack = { 19962 .name = __XSTRING(MODNAME), 19963 .evhand = tcp_addrack, 19964 .priv = 0 19965 }; 19966 19967 MODULE_VERSION(MODNAME, 1); 19968 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); 19969 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1); 19970