xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision 0a36787e4c1fa0cf77dcf83be0867178476e372b)
1 /*-
2  * Copyright (c) 2016-2020 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include "opt_kern_tls.h"
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h>		/* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/systm.h>
53 #ifdef STATS
54 #include <sys/qmath.h>
55 #include <sys/tree.h>
56 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
57 #else
58 #include <sys/tree.h>
59 #endif
60 #include <sys/refcount.h>
61 #include <sys/queue.h>
62 #include <sys/tim_filter.h>
63 #include <sys/smp.h>
64 #include <sys/kthread.h>
65 #include <sys/kern_prefetch.h>
66 #include <sys/protosw.h>
67 #ifdef TCP_ACCOUNTING
68 #include <sys/sched.h>
69 #include <machine/cpu.h>
70 #endif
71 #include <vm/uma.h>
72 
73 #include <net/route.h>
74 #include <net/route/nhop.h>
75 #include <net/vnet.h>
76 
77 #define TCPSTATES		/* for logging */
78 
79 #include <netinet/in.h>
80 #include <netinet/in_kdtrace.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
84 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
85 #include <netinet/ip_var.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/ip6_var.h>
89 #include <netinet/tcp.h>
90 #define	TCPOUTFLAGS
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_log_buf.h>
93 #include <netinet/tcp_seq.h>
94 #include <netinet/tcp_timer.h>
95 #include <netinet/tcp_var.h>
96 #include <netinet/tcp_hpts.h>
97 #include <netinet/tcp_ratelimit.h>
98 #include <netinet/tcp_accounting.h>
99 #include <netinet/tcpip.h>
100 #include <netinet/cc/cc.h>
101 #include <netinet/cc/cc_newreno.h>
102 #include <netinet/tcp_fastopen.h>
103 #include <netinet/tcp_lro.h>
104 #ifdef NETFLIX_SHARED_CWND
105 #include <netinet/tcp_shared_cwnd.h>
106 #endif
107 #ifdef TCPDEBUG
108 #include <netinet/tcp_debug.h>
109 #endif				/* TCPDEBUG */
110 #ifdef TCP_OFFLOAD
111 #include <netinet/tcp_offload.h>
112 #endif
113 #ifdef INET6
114 #include <netinet6/tcp6_var.h>
115 #endif
116 
117 #include <netipsec/ipsec_support.h>
118 
119 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
120 #include <netipsec/ipsec.h>
121 #include <netipsec/ipsec6.h>
122 #endif				/* IPSEC */
123 
124 #include <netinet/udp.h>
125 #include <netinet/udp_var.h>
126 #include <machine/in_cksum.h>
127 
128 #ifdef MAC
129 #include <security/mac/mac_framework.h>
130 #endif
131 #include "sack_filter.h"
132 #include "tcp_rack.h"
133 #include "rack_bbr_common.h"
134 
135 uma_zone_t rack_zone;
136 uma_zone_t rack_pcb_zone;
137 
138 #ifndef TICKS2SBT
139 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
140 #endif
141 
142 VNET_DECLARE(uint32_t, newreno_beta);
143 VNET_DECLARE(uint32_t, newreno_beta_ecn);
144 #define V_newreno_beta VNET(newreno_beta)
145 #define V_newreno_beta_ecn VNET(newreno_beta_ecn)
146 
147 
148 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block");
149 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options");
150 
151 struct sysctl_ctx_list rack_sysctl_ctx;
152 struct sysctl_oid *rack_sysctl_root;
153 
154 #define CUM_ACKED 1
155 #define SACKED 2
156 
157 /*
158  * The RACK module incorporates a number of
159  * TCP ideas that have been put out into the IETF
160  * over the last few years:
161  * - Matt Mathis's Rate Halving which slowly drops
162  *    the congestion window so that the ack clock can
163  *    be maintained during a recovery.
164  * - Yuchung Cheng's RACK TCP (for which its named) that
165  *    will stop us using the number of dup acks and instead
166  *    use time as the gage of when we retransmit.
167  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
168  *    of Dukkipati et.al.
169  * RACK depends on SACK, so if an endpoint arrives that
170  * cannot do SACK the state machine below will shuttle the
171  * connection back to using the "default" TCP stack that is
172  * in FreeBSD.
173  *
174  * To implement RACK the original TCP stack was first decomposed
175  * into a functional state machine with individual states
176  * for each of the possible TCP connection states. The do_segement
177  * functions role in life is to mandate the connection supports SACK
178  * initially and then assure that the RACK state matches the conenction
179  * state before calling the states do_segment function. Each
180  * state is simplified due to the fact that the original do_segment
181  * has been decomposed and we *know* what state we are in (no
182  * switches on the state) and all tests for SACK are gone. This
183  * greatly simplifies what each state does.
184  *
185  * TCP output is also over-written with a new version since it
186  * must maintain the new rack scoreboard.
187  *
188  */
189 static int32_t rack_tlp_thresh = 1;
190 static int32_t rack_tlp_limit = 2;	/* No more than 2 TLPs w-out new data */
191 static int32_t rack_tlp_use_greater = 1;
192 static int32_t rack_reorder_thresh = 2;
193 static int32_t rack_reorder_fade = 60000000;	/* 0 - never fade, def 60,000,000
194 						 * - 60 seconds */
195 static uint8_t rack_req_measurements = 1;
196 /* Attack threshold detections */
197 static uint32_t rack_highest_sack_thresh_seen = 0;
198 static uint32_t rack_highest_move_thresh_seen = 0;
199 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */
200 static int32_t rack_hw_pace_extra_slots = 2;	/* 2 extra MSS time betweens */
201 static int32_t rack_hw_rate_caps = 1; /* 1; */
202 static int32_t rack_hw_rate_min = 0; /* 1500000;*/
203 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */
204 static int32_t rack_hw_up_only = 1;
205 static int32_t rack_stats_gets_ms_rtt = 1;
206 static int32_t rack_prr_addbackmax = 2;
207 
208 static int32_t rack_pkt_delay = 1000;
209 static int32_t rack_send_a_lot_in_prr = 1;
210 static int32_t rack_min_to = 1000;	/* Number of microsecond  min timeout */
211 static int32_t rack_verbose_logging = 0;
212 static int32_t rack_ignore_data_after_close = 1;
213 static int32_t rack_enable_shared_cwnd = 1;
214 static int32_t rack_use_cmp_acks = 1;
215 static int32_t rack_use_fsb = 1;
216 static int32_t rack_use_rfo = 1;
217 static int32_t rack_use_rsm_rfo = 1;
218 static int32_t rack_max_abc_post_recovery = 2;
219 static int32_t rack_client_low_buf = 0;
220 #ifdef TCP_ACCOUNTING
221 static int32_t rack_tcp_accounting = 0;
222 #endif
223 static int32_t rack_limits_scwnd = 1;
224 static int32_t rack_enable_mqueue_for_nonpaced = 0;
225 static int32_t rack_disable_prr = 0;
226 static int32_t use_rack_rr = 1;
227 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */
228 static int32_t rack_persist_min = 250000;	/* 250usec */
229 static int32_t rack_persist_max = 2000000;	/* 2 Second in usec's */
230 static int32_t rack_sack_not_required = 1;	/* set to one to allow non-sack to use rack */
231 static int32_t rack_default_init_window = 0;	/* Use system default */
232 static int32_t rack_limit_time_with_srtt = 0;
233 static int32_t rack_autosndbuf_inc = 20;	/* In percentage form */
234 static int32_t rack_enobuf_hw_boost_mult = 2;	/* How many times the hw rate we boost slot using time_between */
235 static int32_t rack_enobuf_hw_max = 12000;	/* 12 ms in usecs */
236 static int32_t rack_enobuf_hw_min = 10000;	/* 10 ms in usecs */
237 static int32_t rack_hw_rwnd_factor = 2;		/* How many max_segs the rwnd must be before we hold off sending */
238 /*
239  * Currently regular tcp has a rto_min of 30ms
240  * the backoff goes 12 times so that ends up
241  * being a total of 122.850 seconds before a
242  * connection is killed.
243  */
244 static uint32_t rack_def_data_window = 20;
245 static uint32_t rack_goal_bdp = 2;
246 static uint32_t rack_min_srtts = 1;
247 static uint32_t rack_min_measure_usec = 0;
248 static int32_t rack_tlp_min = 10000;	/* 10ms */
249 static int32_t rack_rto_min = 30000;	/* 30,000 usec same as main freebsd */
250 static int32_t rack_rto_max = 4000000;	/* 4 seconds in usec's */
251 static const int32_t rack_free_cache = 2;
252 static int32_t rack_hptsi_segments = 40;
253 static int32_t rack_rate_sample_method = USE_RTT_LOW;
254 static int32_t rack_pace_every_seg = 0;
255 static int32_t rack_delayed_ack_time = 40000;	/* 40ms in usecs */
256 static int32_t rack_slot_reduction = 4;
257 static int32_t rack_wma_divisor = 8;		/* For WMA calculation */
258 static int32_t rack_cwnd_block_ends_measure = 0;
259 static int32_t rack_rwnd_block_ends_measure = 0;
260 static int32_t rack_def_profile = 0;
261 
262 static int32_t rack_lower_cwnd_at_tlp = 0;
263 static int32_t rack_limited_retran = 0;
264 static int32_t rack_always_send_oldest = 0;
265 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
266 
267 static uint16_t rack_per_of_gp_ss = 250;	/* 250 % slow-start */
268 static uint16_t rack_per_of_gp_ca = 200;	/* 200 % congestion-avoidance */
269 static uint16_t rack_per_of_gp_rec = 200;	/* 200 % of bw */
270 
271 /* Probertt */
272 static uint16_t rack_per_of_gp_probertt = 60;	/* 60% of bw */
273 static uint16_t rack_per_of_gp_lowthresh = 40;	/* 40% is bottom */
274 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */
275 static uint16_t rack_atexit_prtt_hbp = 130;	/* Clamp to 130% on exit prtt if highly buffered path */
276 static uint16_t rack_atexit_prtt = 130;	/* Clamp to 100% on exit prtt if non highly buffered path */
277 
278 static uint32_t rack_max_drain_wait = 2;	/* How man gp srtt's before we give up draining */
279 static uint32_t rack_must_drain = 1;		/* How many GP srtt's we *must* wait */
280 static uint32_t rack_probertt_use_min_rtt_entry = 1;	/* Use the min to calculate the goal else gp_srtt */
281 static uint32_t rack_probertt_use_min_rtt_exit = 0;
282 static uint32_t rack_probe_rtt_sets_cwnd = 0;
283 static uint32_t rack_probe_rtt_safety_val = 2000000;	/* No more than 2 sec in probe-rtt */
284 static uint32_t rack_time_between_probertt = 9600000;	/* 9.6 sec in usecs */
285 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0;	/* How many srtt periods does probe-rtt last top fraction */
286 static uint32_t rack_probertt_gpsrtt_cnt_div = 0;	/* How many srtt periods does probe-rtt last bottom fraction */
287 static uint32_t rack_min_probertt_hold = 40000;		/* Equal to delayed ack time */
288 static uint32_t rack_probertt_filter_life = 10000000;
289 static uint32_t rack_probertt_lower_within = 10;
290 static uint32_t rack_min_rtt_movement = 250000;	/* Must move at least 250ms (in microseconds)  to count as a lowering */
291 static int32_t rack_pace_one_seg = 0;		/* Shall we pace for less than 1.4Meg 1MSS at a time */
292 static int32_t rack_probertt_clear_is = 1;
293 static int32_t rack_max_drain_hbp = 1;		/* Extra drain times gpsrtt for highly buffered paths */
294 static int32_t rack_hbp_thresh = 3;		/* what is the divisor max_rtt/min_rtt to decided a hbp */
295 
296 /* Part of pacing */
297 static int32_t rack_max_per_above = 30;		/* When we go to increment stop if above 100+this% */
298 
299 /* Timely information */
300 /* Combine these two gives the range of 'no change' to bw */
301 /* ie the up/down provide the upper and lower bound */
302 static int32_t rack_gp_per_bw_mul_up = 2;	/* 2% */
303 static int32_t rack_gp_per_bw_mul_down = 4;	/* 4% */
304 static int32_t rack_gp_rtt_maxmul = 3;		/* 3 x maxmin */
305 static int32_t rack_gp_rtt_minmul = 1;		/* minrtt + (minrtt/mindiv) is lower rtt */
306 static int32_t rack_gp_rtt_mindiv = 4;		/* minrtt + (minrtt * minmul/mindiv) is lower rtt */
307 static int32_t rack_gp_decrease_per = 20;	/* 20% decrease in multipler */
308 static int32_t rack_gp_increase_per = 2;	/* 2% increase in multipler */
309 static int32_t rack_per_lower_bound = 50;	/* Don't allow to drop below this multiplier */
310 static int32_t rack_per_upper_bound_ss = 0;	/* Don't allow SS to grow above this */
311 static int32_t rack_per_upper_bound_ca = 0;	/* Don't allow CA to grow above this */
312 static int32_t rack_do_dyn_mul = 0;		/* Are the rack gp multipliers dynamic */
313 static int32_t rack_gp_no_rec_chg = 1;		/* Prohibit recovery from reducing it's multiplier */
314 static int32_t rack_timely_dec_clear = 6;	/* Do we clear decrement count at a value (6)? */
315 static int32_t rack_timely_max_push_rise = 3;	/* One round of pushing */
316 static int32_t rack_timely_max_push_drop = 3;	/* Three round of pushing */
317 static int32_t rack_timely_min_segs = 4;	/* 4 segment minimum */
318 static int32_t rack_use_max_for_nobackoff = 0;
319 static int32_t rack_timely_int_timely_only = 0;	/* do interim timely's only use the timely algo (no b/w changes)? */
320 static int32_t rack_timely_no_stopping = 0;
321 static int32_t rack_down_raise_thresh = 100;
322 static int32_t rack_req_segs = 1;
323 static uint64_t rack_bw_rate_cap = 0;
324 
325 /* Weird delayed ack mode */
326 static int32_t rack_use_imac_dack = 0;
327 /* Rack specific counters */
328 counter_u64_t rack_badfr;
329 counter_u64_t rack_badfr_bytes;
330 counter_u64_t rack_rtm_prr_retran;
331 counter_u64_t rack_rtm_prr_newdata;
332 counter_u64_t rack_timestamp_mismatch;
333 counter_u64_t rack_reorder_seen;
334 counter_u64_t rack_paced_segments;
335 counter_u64_t rack_unpaced_segments;
336 counter_u64_t rack_calc_zero;
337 counter_u64_t rack_calc_nonzero;
338 counter_u64_t rack_saw_enobuf;
339 counter_u64_t rack_saw_enobuf_hw;
340 counter_u64_t rack_saw_enetunreach;
341 counter_u64_t rack_per_timer_hole;
342 counter_u64_t rack_large_ackcmp;
343 counter_u64_t rack_small_ackcmp;
344 #ifdef INVARIANTS
345 counter_u64_t rack_adjust_map_bw;
346 #endif
347 /* Tail loss probe counters */
348 counter_u64_t rack_tlp_tot;
349 counter_u64_t rack_tlp_newdata;
350 counter_u64_t rack_tlp_retran;
351 counter_u64_t rack_tlp_retran_bytes;
352 counter_u64_t rack_tlp_retran_fail;
353 counter_u64_t rack_to_tot;
354 counter_u64_t rack_to_arm_rack;
355 counter_u64_t rack_to_arm_tlp;
356 counter_u64_t rack_hot_alloc;
357 counter_u64_t rack_to_alloc;
358 counter_u64_t rack_to_alloc_hard;
359 counter_u64_t rack_to_alloc_emerg;
360 counter_u64_t rack_to_alloc_limited;
361 counter_u64_t rack_alloc_limited_conns;
362 counter_u64_t rack_split_limited;
363 
364 #define MAX_NUM_OF_CNTS 13
365 counter_u64_t rack_proc_comp_ack[MAX_NUM_OF_CNTS];
366 counter_u64_t rack_multi_single_eq;
367 counter_u64_t rack_proc_non_comp_ack;
368 
369 counter_u64_t rack_fto_send;
370 counter_u64_t rack_fto_rsm_send;
371 counter_u64_t rack_nfto_resend;
372 counter_u64_t rack_non_fto_send;
373 counter_u64_t rack_extended_rfo;
374 
375 counter_u64_t rack_sack_proc_all;
376 counter_u64_t rack_sack_proc_short;
377 counter_u64_t rack_sack_proc_restart;
378 counter_u64_t rack_sack_attacks_detected;
379 counter_u64_t rack_sack_attacks_reversed;
380 counter_u64_t rack_sack_used_next_merge;
381 counter_u64_t rack_sack_splits;
382 counter_u64_t rack_sack_used_prev_merge;
383 counter_u64_t rack_sack_skipped_acked;
384 counter_u64_t rack_ack_total;
385 counter_u64_t rack_express_sack;
386 counter_u64_t rack_sack_total;
387 counter_u64_t rack_move_none;
388 counter_u64_t rack_move_some;
389 
390 counter_u64_t rack_used_tlpmethod;
391 counter_u64_t rack_used_tlpmethod2;
392 counter_u64_t rack_enter_tlp_calc;
393 counter_u64_t rack_input_idle_reduces;
394 counter_u64_t rack_collapsed_win;
395 counter_u64_t rack_tlp_does_nada;
396 counter_u64_t rack_try_scwnd;
397 counter_u64_t rack_hw_pace_init_fail;
398 counter_u64_t rack_hw_pace_lost;
399 counter_u64_t rack_sbsndptr_right;
400 counter_u64_t rack_sbsndptr_wrong;
401 
402 /* Temp CPU counters */
403 counter_u64_t rack_find_high;
404 
405 counter_u64_t rack_progress_drops;
406 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
407 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
408 
409 
410 #define	RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2)))
411 
412 #define	RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do {	\
413 	(tv) = (value) + slop;	 \
414 	if ((u_long)(tv) < (u_long)(tvmin)) \
415 		(tv) = (tvmin); \
416 	if ((u_long)(tv) > (u_long)(tvmax)) \
417 		(tv) = (tvmax); \
418 } while (0)
419 
420 static void
421 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
422 
423 static int
424 rack_process_ack(struct mbuf *m, struct tcphdr *th,
425     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
426     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
427 static int
428 rack_process_data(struct mbuf *m, struct tcphdr *th,
429     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
430     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
431 static void
432 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
433    uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery);
434 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
435 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
436     uint8_t limit_type);
437 static struct rack_sendmap *
438 rack_check_recovery_mode(struct tcpcb *tp,
439     uint32_t tsused);
440 static void
441 rack_cong_signal(struct tcpcb *tp,
442 		 uint32_t type, uint32_t ack);
443 static void rack_counter_destroy(void);
444 static int
445 rack_ctloutput(struct socket *so, struct sockopt *sopt,
446     struct inpcb *inp, struct tcpcb *tp);
447 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
448 static void
449 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override);
450 static void
451 rack_do_segment(struct mbuf *m, struct tcphdr *th,
452     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
453     uint8_t iptos);
454 static void rack_dtor(void *mem, int32_t size, void *arg);
455 static void
456 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
457     uint32_t flex1, uint32_t flex2,
458     uint32_t flex3, uint32_t flex4,
459     uint32_t flex5, uint32_t flex6,
460     uint16_t flex7, uint8_t mod);
461 
462 static void
463 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
464    uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line,
465    struct rack_sendmap *rsm, uint8_t quality);
466 static struct rack_sendmap *
467 rack_find_high_nonack(struct tcp_rack *rack,
468     struct rack_sendmap *rsm);
469 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
470 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
471 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
472 static int
473 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
474     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
475 static void
476 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
477 			    tcp_seq th_ack, int line, uint8_t quality);
478 static uint32_t
479 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss);
480 static int32_t rack_handoff_ok(struct tcpcb *tp);
481 static int32_t rack_init(struct tcpcb *tp);
482 static void rack_init_sysctls(void);
483 static void
484 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
485     struct tcphdr *th, int entered_rec, int dup_ack_struck);
486 static void
487 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
488     uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t ts,
489     struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls);
490 
491 static void
492 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
493     struct rack_sendmap *rsm);
494 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm);
495 static int32_t rack_output(struct tcpcb *tp);
496 
497 static uint32_t
498 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
499     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
500     uint32_t cts, int *moved_two);
501 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq);
502 static void rack_remxt_tmr(struct tcpcb *tp);
503 static int
504 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
505     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
506 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
507 static int32_t rack_stopall(struct tcpcb *tp);
508 static void
509 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
510     uint32_t delta);
511 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
512 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
513 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
514 static uint32_t
515 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
516     struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag);
517 static void
518 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
519     struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag);
520 static int
521 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
522     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack);
523 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
524 static int
525 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
526     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
527     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
528 static int
529 rack_do_closing(struct mbuf *m, struct tcphdr *th,
530     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
531     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
532 static int
533 rack_do_established(struct mbuf *m, struct tcphdr *th,
534     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
535     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
536 static int
537 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
538     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
539     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
540 static int
541 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
542     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
543     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
544 static int
545 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
546     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
547     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
548 static int
549 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
550     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
551     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
552 static int
553 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
554     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
555     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
556 static int
557 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
558     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
559     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
560 struct rack_sendmap *
561 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
562     uint32_t tsused);
563 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt,
564     uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt);
565 static void
566      tcp_rack_partialack(struct tcpcb *tp);
567 static int
568 rack_set_profile(struct tcp_rack *rack, int prof);
569 static void
570 rack_apply_deferred_options(struct tcp_rack *rack);
571 
572 int32_t rack_clear_counter=0;
573 
574 static void
575 rack_set_cc_pacing(struct tcp_rack *rack)
576 {
577 	struct sockopt sopt;
578 	struct cc_newreno_opts opt;
579 	struct newreno old, *ptr;
580 	struct tcpcb *tp;
581 	int error;
582 
583 	if (rack->rc_pacing_cc_set)
584 		return;
585 
586 	tp = rack->rc_tp;
587 	if (tp->cc_algo == NULL) {
588 		/* Tcb is leaving */
589 		printf("No cc algorithm?\n");
590 		return;
591 	}
592 	rack->rc_pacing_cc_set = 1;
593 	if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
594 		/* Not new-reno we can't play games with beta! */
595 		goto out;
596 	}
597 	ptr = ((struct newreno *)tp->ccv->cc_data);
598 	if (CC_ALGO(tp)->ctl_output == NULL)  {
599 		/* Huh, why does new_reno no longer have a set function? */
600 		printf("no ctl_output for algo:%s\n", tp->cc_algo->name);
601 		goto out;
602 	}
603 	if (ptr == NULL) {
604 		/* Just the default values */
605 		old.beta = V_newreno_beta_ecn;
606 		old.beta_ecn = V_newreno_beta_ecn;
607 		old.newreno_flags = 0;
608 	} else {
609 		old.beta = ptr->beta;
610 		old.beta_ecn = ptr->beta_ecn;
611 		old.newreno_flags = ptr->newreno_flags;
612 	}
613 	sopt.sopt_valsize = sizeof(struct cc_newreno_opts);
614 	sopt.sopt_dir = SOPT_SET;
615 	opt.name = CC_NEWRENO_BETA;
616 	opt.val = rack->r_ctl.rc_saved_beta.beta;
617 	error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
618 	if (error)  {
619 		printf("Error returned by ctl_output %d\n", error);
620 		goto out;
621 	}
622 	/*
623 	 * Hack alert we need to set in our newreno_flags
624 	 * so that Abe behavior is also applied.
625 	 */
626 	((struct newreno *)tp->ccv->cc_data)->newreno_flags = CC_NEWRENO_BETA_ECN;
627 	opt.name = CC_NEWRENO_BETA_ECN;
628 	opt.val = rack->r_ctl.rc_saved_beta.beta_ecn;
629 	error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
630 	if (error) {
631 		printf("Error returned by ctl_output %d\n", error);
632 		goto out;
633 	}
634 	/* Save off the original values for restoral */
635 	memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
636 out:
637 	if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
638 		union tcp_log_stackspecific log;
639 		struct timeval tv;
640 
641 		ptr = ((struct newreno *)tp->ccv->cc_data);
642 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
643 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
644 		if (ptr) {
645 			log.u_bbr.flex1 = ptr->beta;
646 			log.u_bbr.flex2 = ptr->beta_ecn;
647 			log.u_bbr.flex3 = ptr->newreno_flags;
648 		}
649 		log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
650 		log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn;
651 		log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags;
652 		log.u_bbr.flex7 = rack->gp_ready;
653 		log.u_bbr.flex7 <<= 1;
654 		log.u_bbr.flex7 |= rack->use_fixed_rate;
655 		log.u_bbr.flex7 <<= 1;
656 		log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
657 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
658 		log.u_bbr.flex8 = 3;
659 		tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error,
660 			       0, &log, false, NULL, NULL, 0, &tv);
661 	}
662 }
663 
664 static void
665 rack_undo_cc_pacing(struct tcp_rack *rack)
666 {
667 	struct newreno old, *ptr;
668 	struct tcpcb *tp;
669 
670 	if (rack->rc_pacing_cc_set == 0)
671 		return;
672 	tp = rack->rc_tp;
673 	rack->rc_pacing_cc_set = 0;
674 	if (tp->cc_algo == NULL)
675 		/* Tcb is leaving */
676 		return;
677 	if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
678 		/* Not new-reno nothing to do! */
679 		return;
680 	}
681 	ptr = ((struct newreno *)tp->ccv->cc_data);
682 	if (ptr == NULL) {
683 		/*
684 		 * This happens at rack_fini() if the
685 		 * cc module gets freed on us. In that
686 		 * case we loose our "new" settings but
687 		 * thats ok, since the tcb is going away anyway.
688 		 */
689 		return;
690 	}
691 	/* Grab out our set values */
692 	memcpy(&old, ptr, sizeof(struct newreno));
693 	/* Copy back in the original values */
694 	memcpy(ptr, &rack->r_ctl.rc_saved_beta, sizeof(struct newreno));
695 	/* Now save back the values we had set in (for when pacing is restored) */
696 	memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
697 	if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
698 		union tcp_log_stackspecific log;
699 		struct timeval tv;
700 
701 		ptr = ((struct newreno *)tp->ccv->cc_data);
702 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
703 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
704 		log.u_bbr.flex1 = ptr->beta;
705 		log.u_bbr.flex2 = ptr->beta_ecn;
706 		log.u_bbr.flex3 = ptr->newreno_flags;
707 		log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
708 		log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn;
709 		log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags;
710 		log.u_bbr.flex7 = rack->gp_ready;
711 		log.u_bbr.flex7 <<= 1;
712 		log.u_bbr.flex7 |= rack->use_fixed_rate;
713 		log.u_bbr.flex7 <<= 1;
714 		log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
715 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
716 		log.u_bbr.flex8 = 4;
717 		tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
718 			       0, &log, false, NULL, NULL, 0, &tv);
719 	}
720 }
721 
722 #ifdef NETFLIX_PEAKRATE
723 static inline void
724 rack_update_peakrate_thr(struct tcpcb *tp)
725 {
726 	/* Keep in mind that t_maxpeakrate is in B/s. */
727 	uint64_t peak;
728 	peak = uqmax((tp->t_maxseg * 2),
729 		     (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC));
730 	tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX);
731 }
732 #endif
733 
734 static int
735 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
736 {
737 	uint32_t stat;
738 	int32_t error;
739 	int i;
740 
741 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
742 	if (error || req->newptr == NULL)
743 		return error;
744 
745 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
746 	if (error)
747 		return (error);
748 	if (stat == 1) {
749 #ifdef INVARIANTS
750 		printf("Clearing RACK counters\n");
751 #endif
752 		counter_u64_zero(rack_badfr);
753 		counter_u64_zero(rack_badfr_bytes);
754 		counter_u64_zero(rack_rtm_prr_retran);
755 		counter_u64_zero(rack_rtm_prr_newdata);
756 		counter_u64_zero(rack_timestamp_mismatch);
757 		counter_u64_zero(rack_reorder_seen);
758 		counter_u64_zero(rack_tlp_tot);
759 		counter_u64_zero(rack_tlp_newdata);
760 		counter_u64_zero(rack_tlp_retran);
761 		counter_u64_zero(rack_tlp_retran_bytes);
762 		counter_u64_zero(rack_tlp_retran_fail);
763 		counter_u64_zero(rack_to_tot);
764 		counter_u64_zero(rack_to_arm_rack);
765 		counter_u64_zero(rack_to_arm_tlp);
766 		counter_u64_zero(rack_paced_segments);
767 		counter_u64_zero(rack_calc_zero);
768 		counter_u64_zero(rack_calc_nonzero);
769 		counter_u64_zero(rack_unpaced_segments);
770 		counter_u64_zero(rack_saw_enobuf);
771 		counter_u64_zero(rack_saw_enobuf_hw);
772 		counter_u64_zero(rack_saw_enetunreach);
773 		counter_u64_zero(rack_per_timer_hole);
774 		counter_u64_zero(rack_large_ackcmp);
775 		counter_u64_zero(rack_small_ackcmp);
776 #ifdef INVARIANTS
777 		counter_u64_zero(rack_adjust_map_bw);
778 #endif
779 		counter_u64_zero(rack_to_alloc_hard);
780 		counter_u64_zero(rack_to_alloc_emerg);
781 		counter_u64_zero(rack_sack_proc_all);
782 		counter_u64_zero(rack_fto_send);
783 		counter_u64_zero(rack_fto_rsm_send);
784 		counter_u64_zero(rack_extended_rfo);
785 		counter_u64_zero(rack_hw_pace_init_fail);
786 		counter_u64_zero(rack_hw_pace_lost);
787 		counter_u64_zero(rack_sbsndptr_wrong);
788 		counter_u64_zero(rack_sbsndptr_right);
789 		counter_u64_zero(rack_non_fto_send);
790 		counter_u64_zero(rack_nfto_resend);
791 		counter_u64_zero(rack_sack_proc_short);
792 		counter_u64_zero(rack_sack_proc_restart);
793 		counter_u64_zero(rack_to_alloc);
794 		counter_u64_zero(rack_to_alloc_limited);
795 		counter_u64_zero(rack_alloc_limited_conns);
796 		counter_u64_zero(rack_split_limited);
797 		for (i = 0; i < MAX_NUM_OF_CNTS; i++) {
798 			counter_u64_zero(rack_proc_comp_ack[i]);
799 		}
800 		counter_u64_zero(rack_multi_single_eq);
801 		counter_u64_zero(rack_proc_non_comp_ack);
802 		counter_u64_zero(rack_find_high);
803 		counter_u64_zero(rack_sack_attacks_detected);
804 		counter_u64_zero(rack_sack_attacks_reversed);
805 		counter_u64_zero(rack_sack_used_next_merge);
806 		counter_u64_zero(rack_sack_used_prev_merge);
807 		counter_u64_zero(rack_sack_splits);
808 		counter_u64_zero(rack_sack_skipped_acked);
809 		counter_u64_zero(rack_ack_total);
810 		counter_u64_zero(rack_express_sack);
811 		counter_u64_zero(rack_sack_total);
812 		counter_u64_zero(rack_move_none);
813 		counter_u64_zero(rack_move_some);
814 		counter_u64_zero(rack_used_tlpmethod);
815 		counter_u64_zero(rack_used_tlpmethod2);
816 		counter_u64_zero(rack_enter_tlp_calc);
817 		counter_u64_zero(rack_progress_drops);
818 		counter_u64_zero(rack_tlp_does_nada);
819 		counter_u64_zero(rack_try_scwnd);
820 		counter_u64_zero(rack_collapsed_win);
821 	}
822 	rack_clear_counter = 0;
823 	return (0);
824 }
825 
826 static void
827 rack_init_sysctls(void)
828 {
829 	int i;
830 	struct sysctl_oid *rack_counters;
831 	struct sysctl_oid *rack_attack;
832 	struct sysctl_oid *rack_pacing;
833 	struct sysctl_oid *rack_timely;
834 	struct sysctl_oid *rack_timers;
835 	struct sysctl_oid *rack_tlp;
836 	struct sysctl_oid *rack_misc;
837 	struct sysctl_oid *rack_measure;
838 	struct sysctl_oid *rack_probertt;
839 	struct sysctl_oid *rack_hw_pacing;
840 
841 	rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
842 	    SYSCTL_CHILDREN(rack_sysctl_root),
843 	    OID_AUTO,
844 	    "sack_attack",
845 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
846 	    "Rack Sack Attack Counters and Controls");
847 	rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
848 	    SYSCTL_CHILDREN(rack_sysctl_root),
849 	    OID_AUTO,
850 	    "stats",
851 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
852 	    "Rack Counters");
853 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
854 	    SYSCTL_CHILDREN(rack_sysctl_root),
855 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
856 	    &rack_rate_sample_method , USE_RTT_LOW,
857 	    "What method should we use for rate sampling 0=high, 1=low ");
858 	/* Probe rtt related controls */
859 	rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
860 	    SYSCTL_CHILDREN(rack_sysctl_root),
861 	    OID_AUTO,
862 	    "probertt",
863 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
864 	    "ProbeRTT related Controls");
865 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
866 	    SYSCTL_CHILDREN(rack_probertt),
867 	    OID_AUTO, "exit_per_hpb", CTLFLAG_RW,
868 	    &rack_atexit_prtt_hbp, 130,
869 	    "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%");
870 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
871 	    SYSCTL_CHILDREN(rack_probertt),
872 	    OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW,
873 	    &rack_atexit_prtt, 130,
874 	    "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%");
875 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
876 	    SYSCTL_CHILDREN(rack_probertt),
877 	    OID_AUTO, "gp_per_mul", CTLFLAG_RW,
878 	    &rack_per_of_gp_probertt, 60,
879 	    "What percentage of goodput do we pace at in probertt");
880 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
881 	    SYSCTL_CHILDREN(rack_probertt),
882 	    OID_AUTO, "gp_per_reduce", CTLFLAG_RW,
883 	    &rack_per_of_gp_probertt_reduce, 10,
884 	    "What percentage of goodput do we reduce every gp_srtt");
885 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
886 	    SYSCTL_CHILDREN(rack_probertt),
887 	    OID_AUTO, "gp_per_low", CTLFLAG_RW,
888 	    &rack_per_of_gp_lowthresh, 40,
889 	    "What percentage of goodput do we allow the multiplier to fall to");
890 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
891 	    SYSCTL_CHILDREN(rack_probertt),
892 	    OID_AUTO, "time_between", CTLFLAG_RW,
893 	    & rack_time_between_probertt, 96000000,
894 	    "How many useconds between the lowest rtt falling must past before we enter probertt");
895 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
896 	    SYSCTL_CHILDREN(rack_probertt),
897 	    OID_AUTO, "safety", CTLFLAG_RW,
898 	    &rack_probe_rtt_safety_val, 2000000,
899 	    "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)");
900 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
901 	    SYSCTL_CHILDREN(rack_probertt),
902 	    OID_AUTO, "sets_cwnd", CTLFLAG_RW,
903 	    &rack_probe_rtt_sets_cwnd, 0,
904 	    "Do we set the cwnd too (if always_lower is on)");
905 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
906 	    SYSCTL_CHILDREN(rack_probertt),
907 	    OID_AUTO, "maxdrainsrtts", CTLFLAG_RW,
908 	    &rack_max_drain_wait, 2,
909 	    "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal");
910 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
911 	    SYSCTL_CHILDREN(rack_probertt),
912 	    OID_AUTO, "mustdrainsrtts", CTLFLAG_RW,
913 	    &rack_must_drain, 1,
914 	    "We must drain this many gp_srtt's waiting for flight to reach goal");
915 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
916 	    SYSCTL_CHILDREN(rack_probertt),
917 	    OID_AUTO, "goal_use_min_entry", CTLFLAG_RW,
918 	    &rack_probertt_use_min_rtt_entry, 1,
919 	    "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry");
920 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
921 	    SYSCTL_CHILDREN(rack_probertt),
922 	    OID_AUTO, "goal_use_min_exit", CTLFLAG_RW,
923 	    &rack_probertt_use_min_rtt_exit, 0,
924 	    "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt");
925 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
926 	    SYSCTL_CHILDREN(rack_probertt),
927 	    OID_AUTO, "length_div", CTLFLAG_RW,
928 	    &rack_probertt_gpsrtt_cnt_div, 0,
929 	    "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)");
930 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
931 	    SYSCTL_CHILDREN(rack_probertt),
932 	    OID_AUTO, "length_mul", CTLFLAG_RW,
933 	    &rack_probertt_gpsrtt_cnt_mul, 0,
934 	    "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)");
935 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
936 	    SYSCTL_CHILDREN(rack_probertt),
937 	    OID_AUTO, "holdtim_at_target", CTLFLAG_RW,
938 	    &rack_min_probertt_hold, 200000,
939 	    "What is the minimum time we hold probertt at target");
940 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
941 	    SYSCTL_CHILDREN(rack_probertt),
942 	    OID_AUTO, "filter_life", CTLFLAG_RW,
943 	    &rack_probertt_filter_life, 10000000,
944 	    "What is the time for the filters life in useconds");
945 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
946 	    SYSCTL_CHILDREN(rack_probertt),
947 	    OID_AUTO, "lower_within", CTLFLAG_RW,
948 	    &rack_probertt_lower_within, 10,
949 	    "If the rtt goes lower within this percentage of the time, go into probe-rtt");
950 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
951 	    SYSCTL_CHILDREN(rack_probertt),
952 	    OID_AUTO, "must_move", CTLFLAG_RW,
953 	    &rack_min_rtt_movement, 250,
954 	    "How much is the minimum movement in rtt to count as a drop for probertt purposes");
955 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
956 	    SYSCTL_CHILDREN(rack_probertt),
957 	    OID_AUTO, "clear_is_cnts", CTLFLAG_RW,
958 	    &rack_probertt_clear_is, 1,
959 	    "Do we clear I/S counts on exiting probe-rtt");
960 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
961 	    SYSCTL_CHILDREN(rack_probertt),
962 	    OID_AUTO, "hbp_extra_drain", CTLFLAG_RW,
963 	    &rack_max_drain_hbp, 1,
964 	    "How many extra drain gpsrtt's do we get in highly buffered paths");
965 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
966 	    SYSCTL_CHILDREN(rack_probertt),
967 	    OID_AUTO, "hbp_threshold", CTLFLAG_RW,
968 	    &rack_hbp_thresh, 3,
969 	    "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold");
970 	/* Pacing related sysctls */
971 	rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
972 	    SYSCTL_CHILDREN(rack_sysctl_root),
973 	    OID_AUTO,
974 	    "pacing",
975 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
976 	    "Pacing related Controls");
977 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
978 	    SYSCTL_CHILDREN(rack_pacing),
979 	    OID_AUTO, "max_pace_over", CTLFLAG_RW,
980 	    &rack_max_per_above, 30,
981 	    "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)");
982 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
983 	    SYSCTL_CHILDREN(rack_pacing),
984 	    OID_AUTO, "pace_to_one", CTLFLAG_RW,
985 	    &rack_pace_one_seg, 0,
986 	    "Do we allow low b/w pacing of 1MSS instead of two");
987 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
988 	    SYSCTL_CHILDREN(rack_pacing),
989 	    OID_AUTO, "limit_wsrtt", CTLFLAG_RW,
990 	    &rack_limit_time_with_srtt, 0,
991 	    "Do we limit pacing time based on srtt");
992 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
993 	    SYSCTL_CHILDREN(rack_pacing),
994 	    OID_AUTO, "init_win", CTLFLAG_RW,
995 	    &rack_default_init_window, 0,
996 	    "Do we have a rack initial window 0 = system default");
997 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
998 	    SYSCTL_CHILDREN(rack_pacing),
999 	    OID_AUTO, "gp_per_ss", CTLFLAG_RW,
1000 	    &rack_per_of_gp_ss, 250,
1001 	    "If non zero, what percentage of goodput to pace at in slow start");
1002 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
1003 	    SYSCTL_CHILDREN(rack_pacing),
1004 	    OID_AUTO, "gp_per_ca", CTLFLAG_RW,
1005 	    &rack_per_of_gp_ca, 150,
1006 	    "If non zero, what percentage of goodput to pace at in congestion avoidance");
1007 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
1008 	    SYSCTL_CHILDREN(rack_pacing),
1009 	    OID_AUTO, "gp_per_rec", CTLFLAG_RW,
1010 	    &rack_per_of_gp_rec, 200,
1011 	    "If non zero, what percentage of goodput to pace at in recovery");
1012 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1013 	    SYSCTL_CHILDREN(rack_pacing),
1014 	    OID_AUTO, "pace_max_seg", CTLFLAG_RW,
1015 	    &rack_hptsi_segments, 40,
1016 	    "What size is the max for TSO segments in pacing and burst mitigation");
1017 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1018 	    SYSCTL_CHILDREN(rack_pacing),
1019 	    OID_AUTO, "burst_reduces", CTLFLAG_RW,
1020 	    &rack_slot_reduction, 4,
1021 	    "When doing only burst mitigation what is the reduce divisor");
1022 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1023 	    SYSCTL_CHILDREN(rack_sysctl_root),
1024 	    OID_AUTO, "use_pacing", CTLFLAG_RW,
1025 	    &rack_pace_every_seg, 0,
1026 	    "If set we use pacing, if clear we use only the original burst mitigation");
1027 	SYSCTL_ADD_U64(&rack_sysctl_ctx,
1028 	    SYSCTL_CHILDREN(rack_pacing),
1029 	    OID_AUTO, "rate_cap", CTLFLAG_RW,
1030 	    &rack_bw_rate_cap, 0,
1031 	    "If set we apply this value to the absolute rate cap used by pacing");
1032 	SYSCTL_ADD_U8(&rack_sysctl_ctx,
1033 	    SYSCTL_CHILDREN(rack_sysctl_root),
1034 	    OID_AUTO, "req_measure_cnt", CTLFLAG_RW,
1035 	    &rack_req_measurements, 1,
1036 	    "If doing dynamic pacing, how many measurements must be in before we start pacing?");
1037 	/* Hardware pacing */
1038 	rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1039 	    SYSCTL_CHILDREN(rack_sysctl_root),
1040 	    OID_AUTO,
1041 	    "hdwr_pacing",
1042 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1043 	    "Pacing related Controls");
1044 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1045 	    SYSCTL_CHILDREN(rack_hw_pacing),
1046 	    OID_AUTO, "rwnd_factor", CTLFLAG_RW,
1047 	    &rack_hw_rwnd_factor, 2,
1048 	    "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?");
1049 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1050 	    SYSCTL_CHILDREN(rack_hw_pacing),
1051 	    OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW,
1052 	    &rack_enobuf_hw_boost_mult, 2,
1053 	    "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?");
1054 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1055 	    SYSCTL_CHILDREN(rack_hw_pacing),
1056 	    OID_AUTO, "pace_enobuf_max", CTLFLAG_RW,
1057 	    &rack_enobuf_hw_max, 2,
1058 	    "What is the max boost the pacing time if we see a ENOBUFS?");
1059 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1060 	    SYSCTL_CHILDREN(rack_hw_pacing),
1061 	    OID_AUTO, "pace_enobuf_min", CTLFLAG_RW,
1062 	    &rack_enobuf_hw_min, 2,
1063 	    "What is the min boost the pacing time if we see a ENOBUFS?");
1064 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1065 	    SYSCTL_CHILDREN(rack_hw_pacing),
1066 	    OID_AUTO, "enable", CTLFLAG_RW,
1067 	    &rack_enable_hw_pacing, 0,
1068 	    "Should RACK attempt to use hw pacing?");
1069 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1070 	    SYSCTL_CHILDREN(rack_hw_pacing),
1071 	    OID_AUTO, "rate_cap", CTLFLAG_RW,
1072 	    &rack_hw_rate_caps, 1,
1073 	    "Does the highest hardware pacing rate cap the rate we will send at??");
1074 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1075 	    SYSCTL_CHILDREN(rack_hw_pacing),
1076 	    OID_AUTO, "rate_min", CTLFLAG_RW,
1077 	    &rack_hw_rate_min, 0,
1078 	    "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?");
1079 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1080 	    SYSCTL_CHILDREN(rack_hw_pacing),
1081 	    OID_AUTO, "rate_to_low", CTLFLAG_RW,
1082 	    &rack_hw_rate_to_low, 0,
1083 	    "If we fall below this rate, dis-engage hw pacing?");
1084 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1085 	    SYSCTL_CHILDREN(rack_hw_pacing),
1086 	    OID_AUTO, "up_only", CTLFLAG_RW,
1087 	    &rack_hw_up_only, 1,
1088 	    "Do we allow hw pacing to lower the rate selected?");
1089 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1090 	    SYSCTL_CHILDREN(rack_hw_pacing),
1091 	    OID_AUTO, "extra_mss_precise", CTLFLAG_RW,
1092 	    &rack_hw_pace_extra_slots, 2,
1093 	    "If the rates between software and hardware match precisely how many extra time_betweens do we get?");
1094 	rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1095 	    SYSCTL_CHILDREN(rack_sysctl_root),
1096 	    OID_AUTO,
1097 	    "timely",
1098 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1099 	    "Rack Timely RTT Controls");
1100 	/* Timely based GP dynmics */
1101 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1102 	    SYSCTL_CHILDREN(rack_timely),
1103 	    OID_AUTO, "upper", CTLFLAG_RW,
1104 	    &rack_gp_per_bw_mul_up, 2,
1105 	    "Rack timely upper range for equal b/w (in percentage)");
1106 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1107 	    SYSCTL_CHILDREN(rack_timely),
1108 	    OID_AUTO, "lower", CTLFLAG_RW,
1109 	    &rack_gp_per_bw_mul_down, 4,
1110 	    "Rack timely lower range for equal b/w (in percentage)");
1111 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1112 	    SYSCTL_CHILDREN(rack_timely),
1113 	    OID_AUTO, "rtt_max_mul", CTLFLAG_RW,
1114 	    &rack_gp_rtt_maxmul, 3,
1115 	    "Rack timely multipler of lowest rtt for rtt_max");
1116 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1117 	    SYSCTL_CHILDREN(rack_timely),
1118 	    OID_AUTO, "rtt_min_div", CTLFLAG_RW,
1119 	    &rack_gp_rtt_mindiv, 4,
1120 	    "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt");
1121 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1122 	    SYSCTL_CHILDREN(rack_timely),
1123 	    OID_AUTO, "rtt_min_mul", CTLFLAG_RW,
1124 	    &rack_gp_rtt_minmul, 1,
1125 	    "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt");
1126 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1127 	    SYSCTL_CHILDREN(rack_timely),
1128 	    OID_AUTO, "decrease", CTLFLAG_RW,
1129 	    &rack_gp_decrease_per, 20,
1130 	    "Rack timely decrease percentage of our GP multiplication factor");
1131 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1132 	    SYSCTL_CHILDREN(rack_timely),
1133 	    OID_AUTO, "increase", CTLFLAG_RW,
1134 	    &rack_gp_increase_per, 2,
1135 	    "Rack timely increase perentage of our GP multiplication factor");
1136 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1137 	    SYSCTL_CHILDREN(rack_timely),
1138 	    OID_AUTO, "lowerbound", CTLFLAG_RW,
1139 	    &rack_per_lower_bound, 50,
1140 	    "Rack timely lowest percentage we allow GP multiplier to fall to");
1141 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1142 	    SYSCTL_CHILDREN(rack_timely),
1143 	    OID_AUTO, "upperboundss", CTLFLAG_RW,
1144 	    &rack_per_upper_bound_ss, 0,
1145 	    "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)");
1146 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1147 	    SYSCTL_CHILDREN(rack_timely),
1148 	    OID_AUTO, "upperboundca", CTLFLAG_RW,
1149 	    &rack_per_upper_bound_ca, 0,
1150 	    "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)");
1151 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1152 	    SYSCTL_CHILDREN(rack_timely),
1153 	    OID_AUTO, "dynamicgp", CTLFLAG_RW,
1154 	    &rack_do_dyn_mul, 0,
1155 	    "Rack timely do we enable dynmaic timely goodput by default");
1156 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1157 	    SYSCTL_CHILDREN(rack_timely),
1158 	    OID_AUTO, "no_rec_red", CTLFLAG_RW,
1159 	    &rack_gp_no_rec_chg, 1,
1160 	    "Rack timely do we prohibit the recovery multiplier from being lowered");
1161 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1162 	    SYSCTL_CHILDREN(rack_timely),
1163 	    OID_AUTO, "red_clear_cnt", CTLFLAG_RW,
1164 	    &rack_timely_dec_clear, 6,
1165 	    "Rack timely what threshold do we count to before another boost during b/w decent");
1166 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1167 	    SYSCTL_CHILDREN(rack_timely),
1168 	    OID_AUTO, "max_push_rise", CTLFLAG_RW,
1169 	    &rack_timely_max_push_rise, 3,
1170 	    "Rack timely how many times do we push up with b/w increase");
1171 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1172 	    SYSCTL_CHILDREN(rack_timely),
1173 	    OID_AUTO, "max_push_drop", CTLFLAG_RW,
1174 	    &rack_timely_max_push_drop, 3,
1175 	    "Rack timely how many times do we push back on b/w decent");
1176 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1177 	    SYSCTL_CHILDREN(rack_timely),
1178 	    OID_AUTO, "min_segs", CTLFLAG_RW,
1179 	    &rack_timely_min_segs, 4,
1180 	    "Rack timely when setting the cwnd what is the min num segments");
1181 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1182 	    SYSCTL_CHILDREN(rack_timely),
1183 	    OID_AUTO, "noback_max", CTLFLAG_RW,
1184 	    &rack_use_max_for_nobackoff, 0,
1185 	    "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min");
1186 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1187 	    SYSCTL_CHILDREN(rack_timely),
1188 	    OID_AUTO, "interim_timely_only", CTLFLAG_RW,
1189 	    &rack_timely_int_timely_only, 0,
1190 	    "Rack timely when doing interim timely's do we only do timely (no b/w consideration)");
1191 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1192 	    SYSCTL_CHILDREN(rack_timely),
1193 	    OID_AUTO, "nonstop", CTLFLAG_RW,
1194 	    &rack_timely_no_stopping, 0,
1195 	    "Rack timely don't stop increase");
1196 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1197 	    SYSCTL_CHILDREN(rack_timely),
1198 	    OID_AUTO, "dec_raise_thresh", CTLFLAG_RW,
1199 	    &rack_down_raise_thresh, 100,
1200 	    "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)");
1201 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1202 	    SYSCTL_CHILDREN(rack_timely),
1203 	    OID_AUTO, "bottom_drag_segs", CTLFLAG_RW,
1204 	    &rack_req_segs, 1,
1205 	    "Bottom dragging if not these many segments outstanding and room");
1206 
1207 	/* TLP and Rack related parameters */
1208 	rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1209 	    SYSCTL_CHILDREN(rack_sysctl_root),
1210 	    OID_AUTO,
1211 	    "tlp",
1212 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1213 	    "TLP and Rack related Controls");
1214 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1215 	    SYSCTL_CHILDREN(rack_tlp),
1216 	    OID_AUTO, "use_rrr", CTLFLAG_RW,
1217 	    &use_rack_rr, 1,
1218 	    "Do we use Rack Rapid Recovery");
1219 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1220 	    SYSCTL_CHILDREN(rack_tlp),
1221 	    OID_AUTO, "post_rec_labc", CTLFLAG_RW,
1222 	    &rack_max_abc_post_recovery, 2,
1223 	    "Since we do early recovery, do we override the l_abc to a value, if so what?");
1224 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1225 	    SYSCTL_CHILDREN(rack_tlp),
1226 	    OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW,
1227 	    &rack_non_rxt_use_cr, 0,
1228 	    "Do we use ss/ca rate if in recovery we are transmitting a new data chunk");
1229 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1230 	    SYSCTL_CHILDREN(rack_tlp),
1231 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
1232 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
1233 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
1234 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1235 	    SYSCTL_CHILDREN(rack_tlp),
1236 	    OID_AUTO, "limit", CTLFLAG_RW,
1237 	    &rack_tlp_limit, 2,
1238 	    "How many TLP's can be sent without sending new data");
1239 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1240 	    SYSCTL_CHILDREN(rack_tlp),
1241 	    OID_AUTO, "use_greater", CTLFLAG_RW,
1242 	    &rack_tlp_use_greater, 1,
1243 	    "Should we use the rack_rtt time if its greater than srtt");
1244 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1245 	    SYSCTL_CHILDREN(rack_tlp),
1246 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
1247 	    &rack_tlp_min, 10000,
1248 	    "TLP minimum timeout per the specification (in microseconds)");
1249 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1250 	    SYSCTL_CHILDREN(rack_tlp),
1251 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
1252 	    &rack_always_send_oldest, 0,
1253 	    "Should we always send the oldest TLP and RACK-TLP");
1254 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1255 	    SYSCTL_CHILDREN(rack_tlp),
1256 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
1257 	    &rack_limited_retran, 0,
1258 	    "How many times can a rack timeout drive out sends");
1259 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1260 	    SYSCTL_CHILDREN(rack_tlp),
1261 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
1262 	    &rack_lower_cwnd_at_tlp, 0,
1263 	    "When a TLP completes a retran should we enter recovery");
1264 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1265 	    SYSCTL_CHILDREN(rack_tlp),
1266 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
1267 	    &rack_reorder_thresh, 2,
1268 	    "What factor for rack will be added when seeing reordering (shift right)");
1269 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1270 	    SYSCTL_CHILDREN(rack_tlp),
1271 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
1272 	    &rack_tlp_thresh, 1,
1273 	    "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
1274 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1275 	    SYSCTL_CHILDREN(rack_tlp),
1276 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
1277 	    &rack_reorder_fade, 60000000,
1278 	    "Does reorder detection fade, if so how many microseconds (0 means never)");
1279 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1280 	    SYSCTL_CHILDREN(rack_tlp),
1281 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
1282 	    &rack_pkt_delay, 1000,
1283 	    "Extra RACK time (in microseconds) besides reordering thresh");
1284 
1285 	/* Timer related controls */
1286 	rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1287 	    SYSCTL_CHILDREN(rack_sysctl_root),
1288 	    OID_AUTO,
1289 	    "timers",
1290 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1291 	    "Timer related controls");
1292 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1293 	    SYSCTL_CHILDREN(rack_timers),
1294 	    OID_AUTO, "persmin", CTLFLAG_RW,
1295 	    &rack_persist_min, 250000,
1296 	    "What is the minimum time in microseconds between persists");
1297 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1298 	    SYSCTL_CHILDREN(rack_timers),
1299 	    OID_AUTO, "persmax", CTLFLAG_RW,
1300 	    &rack_persist_max, 2000000,
1301 	    "What is the largest delay in microseconds between persists");
1302 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1303 	    SYSCTL_CHILDREN(rack_timers),
1304 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
1305 	    &rack_delayed_ack_time, 40000,
1306 	    "Delayed ack time (40ms in microseconds)");
1307 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1308 	    SYSCTL_CHILDREN(rack_timers),
1309 	    OID_AUTO, "minrto", CTLFLAG_RW,
1310 	    &rack_rto_min, 30000,
1311 	    "Minimum RTO in microseconds -- set with caution below 1000 due to TLP");
1312 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1313 	    SYSCTL_CHILDREN(rack_timers),
1314 	    OID_AUTO, "maxrto", CTLFLAG_RW,
1315 	    &rack_rto_max, 4000000,
1316 	    "Maxiumum RTO in microseconds -- should be at least as large as min_rto");
1317 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1318 	    SYSCTL_CHILDREN(rack_timers),
1319 	    OID_AUTO, "minto", CTLFLAG_RW,
1320 	    &rack_min_to, 1000,
1321 	    "Minimum rack timeout in microseconds");
1322 	/* Measure controls */
1323 	rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1324 	    SYSCTL_CHILDREN(rack_sysctl_root),
1325 	    OID_AUTO,
1326 	    "measure",
1327 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1328 	    "Measure related controls");
1329 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1330 	    SYSCTL_CHILDREN(rack_measure),
1331 	    OID_AUTO, "wma_divisor", CTLFLAG_RW,
1332 	    &rack_wma_divisor, 8,
1333 	    "When doing b/w calculation what is the  divisor for the WMA");
1334 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1335 	    SYSCTL_CHILDREN(rack_measure),
1336 	    OID_AUTO, "end_cwnd", CTLFLAG_RW,
1337 	    &rack_cwnd_block_ends_measure, 0,
1338 	    "Does a cwnd just-return end the measurement window (app limited)");
1339 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1340 	    SYSCTL_CHILDREN(rack_measure),
1341 	    OID_AUTO, "end_rwnd", CTLFLAG_RW,
1342 	    &rack_rwnd_block_ends_measure, 0,
1343 	    "Does an rwnd just-return end the measurement window (app limited -- not persists)");
1344 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1345 	    SYSCTL_CHILDREN(rack_measure),
1346 	    OID_AUTO, "min_target", CTLFLAG_RW,
1347 	    &rack_def_data_window, 20,
1348 	    "What is the minimum target window (in mss) for a GP measurements");
1349 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1350 	    SYSCTL_CHILDREN(rack_measure),
1351 	    OID_AUTO, "goal_bdp", CTLFLAG_RW,
1352 	    &rack_goal_bdp, 2,
1353 	    "What is the goal BDP to measure");
1354 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1355 	    SYSCTL_CHILDREN(rack_measure),
1356 	    OID_AUTO, "min_srtts", CTLFLAG_RW,
1357 	    &rack_min_srtts, 1,
1358 	    "What is the goal BDP to measure");
1359 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1360 	    SYSCTL_CHILDREN(rack_measure),
1361 	    OID_AUTO, "min_measure_tim", CTLFLAG_RW,
1362 	    &rack_min_measure_usec, 0,
1363 	    "What is the Minimum time time for a measurement if 0, this is off");
1364 	/* Misc rack controls */
1365 	rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1366 	    SYSCTL_CHILDREN(rack_sysctl_root),
1367 	    OID_AUTO,
1368 	    "misc",
1369 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1370 	    "Misc related controls");
1371 #ifdef TCP_ACCOUNTING
1372 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1373 	    SYSCTL_CHILDREN(rack_misc),
1374 	    OID_AUTO, "tcp_acct", CTLFLAG_RW,
1375 	    &rack_tcp_accounting, 0,
1376 	    "Should we turn on TCP accounting for all rack sessions?");
1377 #endif
1378 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1379 	    SYSCTL_CHILDREN(rack_misc),
1380 	    OID_AUTO, "prr_addback_max", CTLFLAG_RW,
1381 	    &rack_prr_addbackmax, 2,
1382 	    "What is the maximum number of MSS we allow to be added back if prr can't send all its data?");
1383 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1384 	    SYSCTL_CHILDREN(rack_misc),
1385 	    OID_AUTO, "stats_gets_ms", CTLFLAG_RW,
1386 	    &rack_stats_gets_ms_rtt, 1,
1387 	    "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?");
1388 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1389 	    SYSCTL_CHILDREN(rack_misc),
1390 	    OID_AUTO, "clientlowbuf", CTLFLAG_RW,
1391 	    &rack_client_low_buf, 0,
1392 	    "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?");
1393 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1394 	    SYSCTL_CHILDREN(rack_misc),
1395 	    OID_AUTO, "defprofile", CTLFLAG_RW,
1396 	    &rack_def_profile, 0,
1397 	    "Should RACK use a default profile (0=no, num == profile num)?");
1398 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1399 	    SYSCTL_CHILDREN(rack_misc),
1400 	    OID_AUTO, "cmpack", CTLFLAG_RW,
1401 	    &rack_use_cmp_acks, 1,
1402 	    "Should RACK have LRO send compressed acks");
1403 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1404 	    SYSCTL_CHILDREN(rack_misc),
1405 	    OID_AUTO, "fsb", CTLFLAG_RW,
1406 	    &rack_use_fsb, 1,
1407 	    "Should RACK use the fast send block?");
1408 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1409 	    SYSCTL_CHILDREN(rack_misc),
1410 	    OID_AUTO, "rfo", CTLFLAG_RW,
1411 	    &rack_use_rfo, 1,
1412 	    "Should RACK use rack_fast_output()?");
1413 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1414 	    SYSCTL_CHILDREN(rack_misc),
1415 	    OID_AUTO, "rsmrfo", CTLFLAG_RW,
1416 	    &rack_use_rsm_rfo, 1,
1417 	    "Should RACK use rack_fast_rsm_output()?");
1418 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1419 	    SYSCTL_CHILDREN(rack_misc),
1420 	    OID_AUTO, "shared_cwnd", CTLFLAG_RW,
1421 	    &rack_enable_shared_cwnd, 1,
1422 	    "Should RACK try to use the shared cwnd on connections where allowed");
1423 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1424 	    SYSCTL_CHILDREN(rack_misc),
1425 	    OID_AUTO, "limits_on_scwnd", CTLFLAG_RW,
1426 	    &rack_limits_scwnd, 1,
1427 	    "Should RACK place low end time limits on the shared cwnd feature");
1428 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1429 	    SYSCTL_CHILDREN(rack_misc),
1430 	    OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW,
1431 	    &rack_enable_mqueue_for_nonpaced, 0,
1432 	    "Should RACK use mbuf queuing for non-paced connections");
1433 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1434 	    SYSCTL_CHILDREN(rack_misc),
1435 	    OID_AUTO, "iMac_dack", CTLFLAG_RW,
1436 	    &rack_use_imac_dack, 0,
1437 	    "Should RACK try to emulate iMac delayed ack");
1438 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1439 	    SYSCTL_CHILDREN(rack_misc),
1440 	    OID_AUTO, "no_prr", CTLFLAG_RW,
1441 	    &rack_disable_prr, 0,
1442 	    "Should RACK not use prr and only pace (must have pacing on)");
1443 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1444 	    SYSCTL_CHILDREN(rack_misc),
1445 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
1446 	    &rack_verbose_logging, 0,
1447 	    "Should RACK black box logging be verbose");
1448 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1449 	    SYSCTL_CHILDREN(rack_misc),
1450 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
1451 	    &rack_ignore_data_after_close, 1,
1452 	    "Do we hold off sending a RST until all pending data is ack'd");
1453 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1454 	    SYSCTL_CHILDREN(rack_misc),
1455 	    OID_AUTO, "no_sack_needed", CTLFLAG_RW,
1456 	    &rack_sack_not_required, 1,
1457 	    "Do we allow rack to run on connections not supporting SACK");
1458 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1459 	    SYSCTL_CHILDREN(rack_misc),
1460 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
1461 	    &rack_send_a_lot_in_prr, 1,
1462 	    "Send a lot in prr");
1463 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1464 	    SYSCTL_CHILDREN(rack_misc),
1465 	    OID_AUTO, "autoscale", CTLFLAG_RW,
1466 	    &rack_autosndbuf_inc, 20,
1467 	    "What percentage should rack scale up its snd buffer by?");
1468 	/* Sack Attacker detection stuff */
1469 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1470 	    SYSCTL_CHILDREN(rack_attack),
1471 	    OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
1472 	    &rack_highest_sack_thresh_seen, 0,
1473 	    "Highest sack to ack ratio seen");
1474 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1475 	    SYSCTL_CHILDREN(rack_attack),
1476 	    OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
1477 	    &rack_highest_move_thresh_seen, 0,
1478 	    "Highest move to non-move ratio seen");
1479 	rack_ack_total = counter_u64_alloc(M_WAITOK);
1480 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1481 	    SYSCTL_CHILDREN(rack_attack),
1482 	    OID_AUTO, "acktotal", CTLFLAG_RD,
1483 	    &rack_ack_total,
1484 	    "Total number of Ack's");
1485 	rack_express_sack = counter_u64_alloc(M_WAITOK);
1486 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1487 	    SYSCTL_CHILDREN(rack_attack),
1488 	    OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
1489 	    &rack_express_sack,
1490 	    "Total expresss number of Sack's");
1491 	rack_sack_total = counter_u64_alloc(M_WAITOK);
1492 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1493 	    SYSCTL_CHILDREN(rack_attack),
1494 	    OID_AUTO, "sacktotal", CTLFLAG_RD,
1495 	    &rack_sack_total,
1496 	    "Total number of SACKs");
1497 	rack_move_none = counter_u64_alloc(M_WAITOK);
1498 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1499 	    SYSCTL_CHILDREN(rack_attack),
1500 	    OID_AUTO, "move_none", CTLFLAG_RD,
1501 	    &rack_move_none,
1502 	    "Total number of SACK index reuse of postions under threshold");
1503 	rack_move_some = counter_u64_alloc(M_WAITOK);
1504 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1505 	    SYSCTL_CHILDREN(rack_attack),
1506 	    OID_AUTO, "move_some", CTLFLAG_RD,
1507 	    &rack_move_some,
1508 	    "Total number of SACK index reuse of postions over threshold");
1509 	rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
1510 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1511 	    SYSCTL_CHILDREN(rack_attack),
1512 	    OID_AUTO, "attacks", CTLFLAG_RD,
1513 	    &rack_sack_attacks_detected,
1514 	    "Total number of SACK attackers that had sack disabled");
1515 	rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
1516 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1517 	    SYSCTL_CHILDREN(rack_attack),
1518 	    OID_AUTO, "reversed", CTLFLAG_RD,
1519 	    &rack_sack_attacks_reversed,
1520 	    "Total number of SACK attackers that were later determined false positive");
1521 	rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
1522 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1523 	    SYSCTL_CHILDREN(rack_attack),
1524 	    OID_AUTO, "nextmerge", CTLFLAG_RD,
1525 	    &rack_sack_used_next_merge,
1526 	    "Total number of times we used the next merge");
1527 	rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
1528 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1529 	    SYSCTL_CHILDREN(rack_attack),
1530 	    OID_AUTO, "prevmerge", CTLFLAG_RD,
1531 	    &rack_sack_used_prev_merge,
1532 	    "Total number of times we used the prev merge");
1533 	/* Counters */
1534 	rack_fto_send = counter_u64_alloc(M_WAITOK);
1535 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1536 	    SYSCTL_CHILDREN(rack_counters),
1537 	    OID_AUTO, "fto_send", CTLFLAG_RD,
1538 	    &rack_fto_send, "Total number of rack_fast_output sends");
1539 	rack_fto_rsm_send = counter_u64_alloc(M_WAITOK);
1540 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1541 	    SYSCTL_CHILDREN(rack_counters),
1542 	    OID_AUTO, "fto_rsm_send", CTLFLAG_RD,
1543 	    &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends");
1544 	rack_nfto_resend = counter_u64_alloc(M_WAITOK);
1545 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1546 	    SYSCTL_CHILDREN(rack_counters),
1547 	    OID_AUTO, "nfto_resend", CTLFLAG_RD,
1548 	    &rack_nfto_resend, "Total number of rack_output retransmissions");
1549 	rack_non_fto_send = counter_u64_alloc(M_WAITOK);
1550 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1551 	    SYSCTL_CHILDREN(rack_counters),
1552 	    OID_AUTO, "nfto_send", CTLFLAG_RD,
1553 	    &rack_non_fto_send, "Total number of rack_output first sends");
1554 	rack_extended_rfo = counter_u64_alloc(M_WAITOK);
1555 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1556 	    SYSCTL_CHILDREN(rack_counters),
1557 	    OID_AUTO, "rfo_extended", CTLFLAG_RD,
1558 	    &rack_extended_rfo, "Total number of times we extended rfo");
1559 
1560 	rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK);
1561 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1562 	    SYSCTL_CHILDREN(rack_counters),
1563 	    OID_AUTO, "hwpace_init_fail", CTLFLAG_RD,
1564 	    &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing");
1565 	rack_hw_pace_lost = counter_u64_alloc(M_WAITOK);
1566 
1567 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1568 	    SYSCTL_CHILDREN(rack_counters),
1569 	    OID_AUTO, "hwpace_lost", CTLFLAG_RD,
1570 	    &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing");
1571 	rack_badfr = counter_u64_alloc(M_WAITOK);
1572 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1573 	    SYSCTL_CHILDREN(rack_counters),
1574 	    OID_AUTO, "badfr", CTLFLAG_RD,
1575 	    &rack_badfr, "Total number of bad FRs");
1576 	rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
1577 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1578 	    SYSCTL_CHILDREN(rack_counters),
1579 	    OID_AUTO, "badfr_bytes", CTLFLAG_RD,
1580 	    &rack_badfr_bytes, "Total number of bad FRs");
1581 	rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
1582 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1583 	    SYSCTL_CHILDREN(rack_counters),
1584 	    OID_AUTO, "prrsndret", CTLFLAG_RD,
1585 	    &rack_rtm_prr_retran,
1586 	    "Total number of prr based retransmits");
1587 	rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
1588 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1589 	    SYSCTL_CHILDREN(rack_counters),
1590 	    OID_AUTO, "prrsndnew", CTLFLAG_RD,
1591 	    &rack_rtm_prr_newdata,
1592 	    "Total number of prr based new transmits");
1593 	rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
1594 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1595 	    SYSCTL_CHILDREN(rack_counters),
1596 	    OID_AUTO, "tsnf", CTLFLAG_RD,
1597 	    &rack_timestamp_mismatch,
1598 	    "Total number of timestamps that we could not find the reported ts");
1599 	rack_find_high = counter_u64_alloc(M_WAITOK);
1600 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1601 	    SYSCTL_CHILDREN(rack_counters),
1602 	    OID_AUTO, "findhigh", CTLFLAG_RD,
1603 	    &rack_find_high,
1604 	    "Total number of FIN causing find-high");
1605 	rack_reorder_seen = counter_u64_alloc(M_WAITOK);
1606 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1607 	    SYSCTL_CHILDREN(rack_counters),
1608 	    OID_AUTO, "reordering", CTLFLAG_RD,
1609 	    &rack_reorder_seen,
1610 	    "Total number of times we added delay due to reordering");
1611 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
1612 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1613 	    SYSCTL_CHILDREN(rack_counters),
1614 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
1615 	    &rack_tlp_tot,
1616 	    "Total number of tail loss probe expirations");
1617 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
1618 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1619 	    SYSCTL_CHILDREN(rack_counters),
1620 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
1621 	    &rack_tlp_newdata,
1622 	    "Total number of tail loss probe sending new data");
1623 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
1624 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1625 	    SYSCTL_CHILDREN(rack_counters),
1626 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
1627 	    &rack_tlp_retran,
1628 	    "Total number of tail loss probe sending retransmitted data");
1629 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
1630 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1631 	    SYSCTL_CHILDREN(rack_counters),
1632 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
1633 	    &rack_tlp_retran_bytes,
1634 	    "Total bytes of tail loss probe sending retransmitted data");
1635 	rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
1636 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1637 	    SYSCTL_CHILDREN(rack_counters),
1638 	    OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
1639 	    &rack_tlp_retran_fail,
1640 	    "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
1641 	rack_to_tot = counter_u64_alloc(M_WAITOK);
1642 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1643 	    SYSCTL_CHILDREN(rack_counters),
1644 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
1645 	    &rack_to_tot,
1646 	    "Total number of times the rack to expired");
1647 	rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
1648 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1649 	    SYSCTL_CHILDREN(rack_counters),
1650 	    OID_AUTO, "arm_rack", CTLFLAG_RD,
1651 	    &rack_to_arm_rack,
1652 	    "Total number of times the rack timer armed");
1653 	rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
1654 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1655 	    SYSCTL_CHILDREN(rack_counters),
1656 	    OID_AUTO, "arm_tlp", CTLFLAG_RD,
1657 	    &rack_to_arm_tlp,
1658 	    "Total number of times the tlp timer armed");
1659 	rack_calc_zero = counter_u64_alloc(M_WAITOK);
1660 	rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
1661 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1662 	    SYSCTL_CHILDREN(rack_counters),
1663 	    OID_AUTO, "calc_zero", CTLFLAG_RD,
1664 	    &rack_calc_zero,
1665 	    "Total number of times pacing time worked out to zero");
1666 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1667 	    SYSCTL_CHILDREN(rack_counters),
1668 	    OID_AUTO, "calc_nonzero", CTLFLAG_RD,
1669 	    &rack_calc_nonzero,
1670 	    "Total number of times pacing time worked out to non-zero");
1671 	rack_paced_segments = counter_u64_alloc(M_WAITOK);
1672 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1673 	    SYSCTL_CHILDREN(rack_counters),
1674 	    OID_AUTO, "paced", CTLFLAG_RD,
1675 	    &rack_paced_segments,
1676 	    "Total number of times a segment send caused hptsi");
1677 	rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
1678 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1679 	    SYSCTL_CHILDREN(rack_counters),
1680 	    OID_AUTO, "unpaced", CTLFLAG_RD,
1681 	    &rack_unpaced_segments,
1682 	    "Total number of times a segment did not cause hptsi");
1683 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
1684 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1685 	    SYSCTL_CHILDREN(rack_counters),
1686 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
1687 	    &rack_saw_enobuf,
1688 	    "Total number of times a sends returned enobuf for non-hdwr paced connections");
1689 	rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK);
1690 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1691 	    SYSCTL_CHILDREN(rack_counters),
1692 	    OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD,
1693 	    &rack_saw_enobuf_hw,
1694 	    "Total number of times a send returned enobuf for hdwr paced connections");
1695 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
1696 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1697 	    SYSCTL_CHILDREN(rack_counters),
1698 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
1699 	    &rack_saw_enetunreach,
1700 	    "Total number of times a send received a enetunreachable");
1701 	rack_hot_alloc = counter_u64_alloc(M_WAITOK);
1702 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1703 	    SYSCTL_CHILDREN(rack_counters),
1704 	    OID_AUTO, "alloc_hot", CTLFLAG_RD,
1705 	    &rack_hot_alloc,
1706 	    "Total allocations from the top of our list");
1707 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
1708 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1709 	    SYSCTL_CHILDREN(rack_counters),
1710 	    OID_AUTO, "allocs", CTLFLAG_RD,
1711 	    &rack_to_alloc,
1712 	    "Total allocations of tracking structures");
1713 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
1714 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1715 	    SYSCTL_CHILDREN(rack_counters),
1716 	    OID_AUTO, "allochard", CTLFLAG_RD,
1717 	    &rack_to_alloc_hard,
1718 	    "Total allocations done with sleeping the hard way");
1719 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
1720 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1721 	    SYSCTL_CHILDREN(rack_counters),
1722 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
1723 	    &rack_to_alloc_emerg,
1724 	    "Total allocations done from emergency cache");
1725 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
1726 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1727 	    SYSCTL_CHILDREN(rack_counters),
1728 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
1729 	    &rack_to_alloc_limited,
1730 	    "Total allocations dropped due to limit");
1731 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
1732 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1733 	    SYSCTL_CHILDREN(rack_counters),
1734 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
1735 	    &rack_alloc_limited_conns,
1736 	    "Connections with allocations dropped due to limit");
1737 	rack_split_limited = counter_u64_alloc(M_WAITOK);
1738 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1739 	    SYSCTL_CHILDREN(rack_counters),
1740 	    OID_AUTO, "split_limited", CTLFLAG_RD,
1741 	    &rack_split_limited,
1742 	    "Split allocations dropped due to limit");
1743 
1744 	for (i = 0; i < MAX_NUM_OF_CNTS; i++) {
1745 		char name[32];
1746 		sprintf(name, "cmp_ack_cnt_%d", i);
1747 		rack_proc_comp_ack[i] = counter_u64_alloc(M_WAITOK);
1748 		SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1749 				       SYSCTL_CHILDREN(rack_counters),
1750 				       OID_AUTO, name, CTLFLAG_RD,
1751 				       &rack_proc_comp_ack[i],
1752 				       "Number of compressed acks we processed");
1753 	}
1754 	rack_large_ackcmp = counter_u64_alloc(M_WAITOK);
1755 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1756 	    SYSCTL_CHILDREN(rack_counters),
1757 	    OID_AUTO, "cmp_large_mbufs", CTLFLAG_RD,
1758 	    &rack_large_ackcmp,
1759 	    "Number of TCP connections with large mbuf's for compressed acks");
1760 	rack_small_ackcmp = counter_u64_alloc(M_WAITOK);
1761 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1762 	    SYSCTL_CHILDREN(rack_counters),
1763 	    OID_AUTO, "cmp_small_mbufs", CTLFLAG_RD,
1764 	    &rack_small_ackcmp,
1765 	    "Number of TCP connections with small mbuf's for compressed acks");
1766 #ifdef INVARIANTS
1767 	rack_adjust_map_bw = counter_u64_alloc(M_WAITOK);
1768 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1769 	    SYSCTL_CHILDREN(rack_counters),
1770 	    OID_AUTO, "map_adjust_req", CTLFLAG_RD,
1771 	    &rack_adjust_map_bw,
1772 	    "Number of times we hit the case where the sb went up and down on a sendmap entry");
1773 #endif
1774 	rack_multi_single_eq = counter_u64_alloc(M_WAITOK);
1775 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1776 	    SYSCTL_CHILDREN(rack_counters),
1777 	    OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD,
1778 	    &rack_multi_single_eq,
1779 	    "Number of compressed acks total represented");
1780 	rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK);
1781 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1782 	    SYSCTL_CHILDREN(rack_counters),
1783 	    OID_AUTO, "cmp_ack_not", CTLFLAG_RD,
1784 	    &rack_proc_non_comp_ack,
1785 	    "Number of non compresseds acks that we processed");
1786 
1787 
1788 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
1789 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1790 	    SYSCTL_CHILDREN(rack_counters),
1791 	    OID_AUTO, "sack_long", CTLFLAG_RD,
1792 	    &rack_sack_proc_all,
1793 	    "Total times we had to walk whole list for sack processing");
1794 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
1795 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1796 	    SYSCTL_CHILDREN(rack_counters),
1797 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
1798 	    &rack_sack_proc_restart,
1799 	    "Total times we had to walk whole list due to a restart");
1800 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
1801 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1802 	    SYSCTL_CHILDREN(rack_counters),
1803 	    OID_AUTO, "sack_short", CTLFLAG_RD,
1804 	    &rack_sack_proc_short,
1805 	    "Total times we took shortcut for sack processing");
1806 	rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
1807 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1808 	    SYSCTL_CHILDREN(rack_counters),
1809 	    OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
1810 	    &rack_enter_tlp_calc,
1811 	    "Total times we called calc-tlp");
1812 	rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
1813 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1814 	    SYSCTL_CHILDREN(rack_counters),
1815 	    OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
1816 	    &rack_used_tlpmethod,
1817 	    "Total number of runt sacks");
1818 	rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
1819 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1820 	    SYSCTL_CHILDREN(rack_counters),
1821 	    OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
1822 	    &rack_used_tlpmethod2,
1823 	    "Total number of times we hit TLP method 2");
1824 	rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
1825 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1826 	    SYSCTL_CHILDREN(rack_attack),
1827 	    OID_AUTO, "skipacked", CTLFLAG_RD,
1828 	    &rack_sack_skipped_acked,
1829 	    "Total number of times we skipped previously sacked");
1830 	rack_sack_splits = counter_u64_alloc(M_WAITOK);
1831 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1832 	    SYSCTL_CHILDREN(rack_attack),
1833 	    OID_AUTO, "ofsplit", CTLFLAG_RD,
1834 	    &rack_sack_splits,
1835 	    "Total number of times we did the old fashion tree split");
1836 	rack_progress_drops = counter_u64_alloc(M_WAITOK);
1837 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1838 	    SYSCTL_CHILDREN(rack_counters),
1839 	    OID_AUTO, "prog_drops", CTLFLAG_RD,
1840 	    &rack_progress_drops,
1841 	    "Total number of progress drops");
1842 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
1843 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1844 	    SYSCTL_CHILDREN(rack_counters),
1845 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
1846 	    &rack_input_idle_reduces,
1847 	    "Total number of idle reductions on input");
1848 	rack_collapsed_win = counter_u64_alloc(M_WAITOK);
1849 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1850 	    SYSCTL_CHILDREN(rack_counters),
1851 	    OID_AUTO, "collapsed_win", CTLFLAG_RD,
1852 	    &rack_collapsed_win,
1853 	    "Total number of collapsed windows");
1854 	rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
1855 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1856 	    SYSCTL_CHILDREN(rack_counters),
1857 	    OID_AUTO, "tlp_nada", CTLFLAG_RD,
1858 	    &rack_tlp_does_nada,
1859 	    "Total number of nada tlp calls");
1860 	rack_try_scwnd = counter_u64_alloc(M_WAITOK);
1861 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1862 	    SYSCTL_CHILDREN(rack_counters),
1863 	    OID_AUTO, "tried_scwnd", CTLFLAG_RD,
1864 	    &rack_try_scwnd,
1865 	    "Total number of scwnd attempts");
1866 
1867 	rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1868 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1869 	    SYSCTL_CHILDREN(rack_counters),
1870 	    OID_AUTO, "timer_hole", CTLFLAG_RD,
1871 	    &rack_per_timer_hole,
1872 	    "Total persists start in timer hole");
1873 
1874 	rack_sbsndptr_wrong = counter_u64_alloc(M_WAITOK);
1875 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1876 	    SYSCTL_CHILDREN(rack_counters),
1877 	    OID_AUTO, "sndptr_wrong", CTLFLAG_RD,
1878 	    &rack_sbsndptr_wrong, "Total number of times the saved sbsndptr was incorret");
1879 	rack_sbsndptr_right = counter_u64_alloc(M_WAITOK);
1880 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1881 	    SYSCTL_CHILDREN(rack_counters),
1882 	    OID_AUTO, "sndptr_right", CTLFLAG_RD,
1883 	    &rack_sbsndptr_right, "Total number of times the saved sbsndptr was corret");
1884 
1885 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1886 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1887 	    OID_AUTO, "outsize", CTLFLAG_RD,
1888 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1889 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1890 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1891 	    OID_AUTO, "opts", CTLFLAG_RD,
1892 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1893 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1894 	    SYSCTL_CHILDREN(rack_sysctl_root),
1895 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1896 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1897 }
1898 
1899 static __inline int
1900 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1901 {
1902 	if (SEQ_GEQ(b->r_start, a->r_start) &&
1903 	    SEQ_LT(b->r_start, a->r_end)) {
1904 		/*
1905 		 * The entry b is within the
1906 		 * block a. i.e.:
1907 		 * a --   |-------------|
1908 		 * b --   |----|
1909 		 * <or>
1910 		 * b --       |------|
1911 		 * <or>
1912 		 * b --       |-----------|
1913 		 */
1914 		return (0);
1915 	} else if (SEQ_GEQ(b->r_start, a->r_end)) {
1916 		/*
1917 		 * b falls as either the next
1918 		 * sequence block after a so a
1919 		 * is said to be smaller than b.
1920 		 * i.e:
1921 		 * a --   |------|
1922 		 * b --          |--------|
1923 		 * or
1924 		 * b --              |-----|
1925 		 */
1926 		return (1);
1927 	}
1928 	/*
1929 	 * Whats left is where a is
1930 	 * larger than b. i.e:
1931 	 * a --         |-------|
1932 	 * b --  |---|
1933 	 * or even possibly
1934 	 * b --   |--------------|
1935 	 */
1936 	return (-1);
1937 }
1938 
1939 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1940 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1941 
1942 static uint32_t
1943 rc_init_window(struct tcp_rack *rack)
1944 {
1945 	uint32_t win;
1946 
1947 	if (rack->rc_init_win == 0) {
1948 		/*
1949 		 * Nothing set by the user, use the system stack
1950 		 * default.
1951 		 */
1952 		return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)));
1953 	}
1954 	win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win;
1955 	return (win);
1956 }
1957 
1958 static uint64_t
1959 rack_get_fixed_pacing_bw(struct tcp_rack *rack)
1960 {
1961 	if (IN_FASTRECOVERY(rack->rc_tp->t_flags))
1962 		return (rack->r_ctl.rc_fixed_pacing_rate_rec);
1963 	else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1964 		return (rack->r_ctl.rc_fixed_pacing_rate_ss);
1965 	else
1966 		return (rack->r_ctl.rc_fixed_pacing_rate_ca);
1967 }
1968 
1969 static uint64_t
1970 rack_get_bw(struct tcp_rack *rack)
1971 {
1972 	if (rack->use_fixed_rate) {
1973 		/* Return the fixed pacing rate */
1974 		return (rack_get_fixed_pacing_bw(rack));
1975 	}
1976 	if (rack->r_ctl.gp_bw == 0) {
1977 		/*
1978 		 * We have yet no b/w measurement,
1979 		 * if we have a user set initial bw
1980 		 * return it. If we don't have that and
1981 		 * we have an srtt, use the tcp IW (10) to
1982 		 * calculate a fictional b/w over the SRTT
1983 		 * which is more or less a guess. Note
1984 		 * we don't use our IW from rack on purpose
1985 		 * so if we have like IW=30, we are not
1986 		 * calculating a "huge" b/w.
1987 		 */
1988 		uint64_t bw, srtt;
1989 		if (rack->r_ctl.init_rate)
1990 			return (rack->r_ctl.init_rate);
1991 
1992 		/* Has the user set a max peak rate? */
1993 #ifdef NETFLIX_PEAKRATE
1994 		if (rack->rc_tp->t_maxpeakrate)
1995 			return (rack->rc_tp->t_maxpeakrate);
1996 #endif
1997 		/* Ok lets come up with the IW guess, if we have a srtt */
1998 		if (rack->rc_tp->t_srtt == 0) {
1999 			/*
2000 			 * Go with old pacing method
2001 			 * i.e. burst mitigation only.
2002 			 */
2003 			return (0);
2004 		}
2005 		/* Ok lets get the initial TCP win (not racks) */
2006 		bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp));
2007 		srtt = (uint64_t)rack->rc_tp->t_srtt;
2008 		bw *= (uint64_t)USECS_IN_SECOND;
2009 		bw /= srtt;
2010 		if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
2011 			bw = rack->r_ctl.bw_rate_cap;
2012 		return (bw);
2013 	} else {
2014 		uint64_t bw;
2015 
2016 		if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
2017 			/* Averaging is done, we can return the value */
2018 			bw = rack->r_ctl.gp_bw;
2019 		} else {
2020 			/* Still doing initial average must calculate */
2021 			bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements;
2022 		}
2023 #ifdef NETFLIX_PEAKRATE
2024 		if ((rack->rc_tp->t_maxpeakrate) &&
2025 		    (bw > rack->rc_tp->t_maxpeakrate)) {
2026 			/* The user has set a peak rate to pace at
2027 			 * don't allow us to pace faster than that.
2028 			 */
2029 			return (rack->rc_tp->t_maxpeakrate);
2030 		}
2031 #endif
2032 		if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
2033 			bw = rack->r_ctl.bw_rate_cap;
2034 		return (bw);
2035 	}
2036 }
2037 
2038 static uint16_t
2039 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm)
2040 {
2041 	if (rack->use_fixed_rate) {
2042 		return (100);
2043 	} else if (rack->in_probe_rtt && (rsm == NULL))
2044 		return (rack->r_ctl.rack_per_of_gp_probertt);
2045 	else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
2046 		  rack->r_ctl.rack_per_of_gp_rec)) {
2047 		if (rsm) {
2048 			/* a retransmission always use the recovery rate */
2049 			return (rack->r_ctl.rack_per_of_gp_rec);
2050 		} else if (rack->rack_rec_nonrxt_use_cr) {
2051 			/* Directed to use the configured rate */
2052 			goto configured_rate;
2053 		} else if (rack->rack_no_prr &&
2054 			   (rack->r_ctl.rack_per_of_gp_rec > 100)) {
2055 			/* No PRR, lets just use the b/w estimate only */
2056 			return (100);
2057 		} else {
2058 			/*
2059 			 * Here we may have a non-retransmit but we
2060 			 * have no overrides, so just use the recovery
2061 			 * rate (prr is in effect).
2062 			 */
2063 			return (rack->r_ctl.rack_per_of_gp_rec);
2064 		}
2065 	}
2066 configured_rate:
2067 	/* For the configured rate we look at our cwnd vs the ssthresh */
2068 	if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
2069 		return (rack->r_ctl.rack_per_of_gp_ss);
2070 	else
2071 		return (rack->r_ctl.rack_per_of_gp_ca);
2072 }
2073 
2074 static void
2075 rack_log_hdwr_pacing(struct tcp_rack *rack,
2076 		     uint64_t rate, uint64_t hw_rate, int line,
2077 		     int error, uint16_t mod)
2078 {
2079 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2080 		union tcp_log_stackspecific log;
2081 		struct timeval tv;
2082 		const struct ifnet *ifp;
2083 
2084 		memset(&log, 0, sizeof(log));
2085 		log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff);
2086 		log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff);
2087 		if (rack->r_ctl.crte) {
2088 			ifp = rack->r_ctl.crte->ptbl->rs_ifp;
2089 		} else if (rack->rc_inp->inp_route.ro_nh &&
2090 			   rack->rc_inp->inp_route.ro_nh->nh_ifp) {
2091 			ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp;
2092 		} else
2093 			ifp = NULL;
2094 		if (ifp) {
2095 			log.u_bbr.flex3 = (((uint64_t)ifp  >> 32) & 0x00000000ffffffff);
2096 			log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff);
2097 		}
2098 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2099 		log.u_bbr.bw_inuse = rate;
2100 		log.u_bbr.flex5 = line;
2101 		log.u_bbr.flex6 = error;
2102 		log.u_bbr.flex7 = mod;
2103 		log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs;
2104 		log.u_bbr.flex8 = rack->use_fixed_rate;
2105 		log.u_bbr.flex8 <<= 1;
2106 		log.u_bbr.flex8 |= rack->rack_hdrw_pacing;
2107 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
2108 		log.u_bbr.delRate = rack->r_ctl.crte_prev_rate;
2109 		if (rack->r_ctl.crte)
2110 			log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate;
2111 		else
2112 			log.u_bbr.cur_del_rate = 0;
2113 		log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req;
2114 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2115 		    &rack->rc_inp->inp_socket->so_rcv,
2116 		    &rack->rc_inp->inp_socket->so_snd,
2117 		    BBR_LOG_HDWR_PACE, 0,
2118 		    0, &log, false, &tv);
2119 	}
2120 }
2121 
2122 static uint64_t
2123 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped)
2124 {
2125 	/*
2126 	 * We allow rack_per_of_gp_xx to dictate our bw rate we want.
2127 	 */
2128 	uint64_t bw_est, high_rate;
2129 	uint64_t gain;
2130 
2131 	gain = (uint64_t)rack_get_output_gain(rack, rsm);
2132 	bw_est = bw * gain;
2133 	bw_est /= (uint64_t)100;
2134 	/* Never fall below the minimum (def 64kbps) */
2135 	if (bw_est < RACK_MIN_BW)
2136 		bw_est = RACK_MIN_BW;
2137 	if (rack->r_rack_hw_rate_caps) {
2138 		/* Rate caps are in place */
2139 		if (rack->r_ctl.crte != NULL) {
2140 			/* We have a hdwr rate already */
2141 			high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
2142 			if (bw_est >= high_rate) {
2143 				/* We are capping bw at the highest rate table entry */
2144 				rack_log_hdwr_pacing(rack,
2145 						     bw_est, high_rate, __LINE__,
2146 						     0, 3);
2147 				bw_est = high_rate;
2148 				if (capped)
2149 					*capped = 1;
2150 			}
2151 		} else if ((rack->rack_hdrw_pacing == 0) &&
2152 			   (rack->rack_hdw_pace_ena) &&
2153 			   (rack->rack_attempt_hdwr_pace == 0) &&
2154 			   (rack->rc_inp->inp_route.ro_nh != NULL) &&
2155 			   (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
2156 			/*
2157 			 * Special case, we have not yet attempted hardware
2158 			 * pacing, and yet we may, when we do, find out if we are
2159 			 * above the highest rate. We need to know the maxbw for the interface
2160 			 * in question (if it supports ratelimiting). We get back
2161 			 * a 0, if the interface is not found in the RL lists.
2162 			 */
2163 			high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
2164 			if (high_rate) {
2165 				/* Yep, we have a rate is it above this rate? */
2166 				if (bw_est > high_rate) {
2167 					bw_est = high_rate;
2168 					if (capped)
2169 						*capped = 1;
2170 				}
2171 			}
2172 		}
2173 	}
2174 	return (bw_est);
2175 }
2176 
2177 static void
2178 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
2179 {
2180 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2181 		union tcp_log_stackspecific log;
2182 		struct timeval tv;
2183 
2184 		if ((mod != 1) && (rack_verbose_logging == 0)) {
2185 			/*
2186 			 * We get 3 values currently for mod
2187 			 * 1 - We are retransmitting and this tells the reason.
2188 			 * 2 - We are clearing a dup-ack count.
2189 			 * 3 - We are incrementing a dup-ack count.
2190 			 *
2191 			 * The clear/increment are only logged
2192 			 * if you have BBverbose on.
2193 			 */
2194 			return;
2195 		}
2196 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2197 		log.u_bbr.flex1 = tsused;
2198 		log.u_bbr.flex2 = thresh;
2199 		log.u_bbr.flex3 = rsm->r_flags;
2200 		log.u_bbr.flex4 = rsm->r_dupack;
2201 		log.u_bbr.flex5 = rsm->r_start;
2202 		log.u_bbr.flex6 = rsm->r_end;
2203 		log.u_bbr.flex8 = mod;
2204 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2205 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2206 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2207 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2208 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2209 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2210 		log.u_bbr.pacing_gain = rack->r_must_retran;
2211 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2212 		    &rack->rc_inp->inp_socket->so_rcv,
2213 		    &rack->rc_inp->inp_socket->so_snd,
2214 		    BBR_LOG_SETTINGS_CHG, 0,
2215 		    0, &log, false, &tv);
2216 	}
2217 }
2218 
2219 static void
2220 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
2221 {
2222 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2223 		union tcp_log_stackspecific log;
2224 		struct timeval tv;
2225 
2226 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2227 		log.u_bbr.flex1 = rack->rc_tp->t_srtt;
2228 		log.u_bbr.flex2 = to;
2229 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
2230 		log.u_bbr.flex4 = slot;
2231 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
2232 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2233 		log.u_bbr.flex7 = rack->rc_in_persist;
2234 		log.u_bbr.flex8 = which;
2235 		if (rack->rack_no_prr)
2236 			log.u_bbr.pkts_out = 0;
2237 		else
2238 			log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
2239 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2240 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2241 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2242 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2243 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2244 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2245 		log.u_bbr.pacing_gain = rack->r_must_retran;
2246 		log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift;
2247 		log.u_bbr.lost = rack_rto_min;
2248 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2249 		    &rack->rc_inp->inp_socket->so_rcv,
2250 		    &rack->rc_inp->inp_socket->so_snd,
2251 		    BBR_LOG_TIMERSTAR, 0,
2252 		    0, &log, false, &tv);
2253 	}
2254 }
2255 
2256 static void
2257 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm)
2258 {
2259 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2260 		union tcp_log_stackspecific log;
2261 		struct timeval tv;
2262 
2263 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2264 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2265 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2266 		log.u_bbr.flex8 = to_num;
2267 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
2268 		log.u_bbr.flex2 = rack->rc_rack_rtt;
2269 		if (rsm == NULL)
2270 			log.u_bbr.flex3 = 0;
2271 		else
2272 			log.u_bbr.flex3 = rsm->r_end - rsm->r_start;
2273 		if (rack->rack_no_prr)
2274 			log.u_bbr.flex5 = 0;
2275 		else
2276 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2277 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2278 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2279 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2280 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2281 		log.u_bbr.pacing_gain = rack->r_must_retran;
2282 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2283 		    &rack->rc_inp->inp_socket->so_rcv,
2284 		    &rack->rc_inp->inp_socket->so_snd,
2285 		    BBR_LOG_RTO, 0,
2286 		    0, &log, false, &tv);
2287 	}
2288 }
2289 
2290 static void
2291 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack,
2292 		 struct rack_sendmap *prev,
2293 		 struct rack_sendmap *rsm,
2294 		 struct rack_sendmap *next,
2295 		 int flag, uint32_t th_ack, int line)
2296 {
2297 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
2298 		union tcp_log_stackspecific log;
2299 		struct timeval tv;
2300 
2301 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2302 		log.u_bbr.flex8 = flag;
2303 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2304 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2305 		log.u_bbr.cur_del_rate = (uint64_t)prev;
2306 		log.u_bbr.delRate = (uint64_t)rsm;
2307 		log.u_bbr.rttProp = (uint64_t)next;
2308 		log.u_bbr.flex7 = 0;
2309 		if (prev) {
2310 			log.u_bbr.flex1 = prev->r_start;
2311 			log.u_bbr.flex2 = prev->r_end;
2312 			log.u_bbr.flex7 |= 0x4;
2313 		}
2314 		if (rsm) {
2315 			log.u_bbr.flex3 = rsm->r_start;
2316 			log.u_bbr.flex4 = rsm->r_end;
2317 			log.u_bbr.flex7 |= 0x2;
2318 		}
2319 		if (next) {
2320 			log.u_bbr.flex5 = next->r_start;
2321 			log.u_bbr.flex6 = next->r_end;
2322 			log.u_bbr.flex7 |= 0x1;
2323 		}
2324 		log.u_bbr.applimited = line;
2325 		log.u_bbr.pkts_out = th_ack;
2326 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2327 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2328 		if (rack->rack_no_prr)
2329 			log.u_bbr.lost = 0;
2330 		else
2331 			log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt;
2332 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2333 		    &rack->rc_inp->inp_socket->so_rcv,
2334 		    &rack->rc_inp->inp_socket->so_snd,
2335 		    TCP_LOG_MAPCHG, 0,
2336 		    0, &log, false, &tv);
2337 	}
2338 }
2339 
2340 static void
2341 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len,
2342 		 struct rack_sendmap *rsm, int conf)
2343 {
2344 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2345 		union tcp_log_stackspecific log;
2346 		struct timeval tv;
2347 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2348 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2349 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2350 		log.u_bbr.flex1 = t;
2351 		log.u_bbr.flex2 = len;
2352 		log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt;
2353 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
2354 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
2355 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2356 		log.u_bbr.flex7 = conf;
2357 		log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot;
2358 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
2359 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2360 		log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2361 		log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags;
2362 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2363 		if (rsm) {
2364 			log.u_bbr.pkt_epoch = rsm->r_start;
2365 			log.u_bbr.lost = rsm->r_end;
2366 			log.u_bbr.cwnd_gain = rsm->r_rtr_cnt;
2367 			log.u_bbr.pacing_gain = rsm->r_flags;
2368 		} else {
2369 			/* Its a SYN */
2370 			log.u_bbr.pkt_epoch = rack->rc_tp->iss;
2371 			log.u_bbr.lost = 0;
2372 			log.u_bbr.cwnd_gain = 0;
2373 			log.u_bbr.pacing_gain = 0;
2374 		}
2375 		/* Write out general bits of interest rrs here */
2376 		log.u_bbr.use_lt_bw = rack->rc_highly_buffered;
2377 		log.u_bbr.use_lt_bw <<= 1;
2378 		log.u_bbr.use_lt_bw |= rack->forced_ack;
2379 		log.u_bbr.use_lt_bw <<= 1;
2380 		log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul;
2381 		log.u_bbr.use_lt_bw <<= 1;
2382 		log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
2383 		log.u_bbr.use_lt_bw <<= 1;
2384 		log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
2385 		log.u_bbr.use_lt_bw <<= 1;
2386 		log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
2387 		log.u_bbr.use_lt_bw <<= 1;
2388 		log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
2389 		log.u_bbr.use_lt_bw <<= 1;
2390 		log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom;
2391 		log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight;
2392 		log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts;
2393 		log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered;
2394 		log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts;
2395 		log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt;
2396 		log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
2397 		log.u_bbr.bw_inuse <<= 32;
2398 		if (rsm)
2399 			log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]);
2400 		TCP_LOG_EVENTP(tp, NULL,
2401 		    &rack->rc_inp->inp_socket->so_rcv,
2402 		    &rack->rc_inp->inp_socket->so_snd,
2403 		    BBR_LOG_BBRRTT, 0,
2404 		    0, &log, false, &tv);
2405 
2406 
2407 	}
2408 }
2409 
2410 static void
2411 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
2412 {
2413 	/*
2414 	 * Log the rtt sample we are
2415 	 * applying to the srtt algorithm in
2416 	 * useconds.
2417 	 */
2418 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2419 		union tcp_log_stackspecific log;
2420 		struct timeval tv;
2421 
2422 		/* Convert our ms to a microsecond */
2423 		memset(&log, 0, sizeof(log));
2424 		log.u_bbr.flex1 = rtt;
2425 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
2426 		log.u_bbr.flex3 = rack->r_ctl.sack_count;
2427 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2428 		log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
2429 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2430 		log.u_bbr.flex7 = 1;
2431 		log.u_bbr.flex8 = rack->sack_attack_disable;
2432 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2433 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2434 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2435 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2436 		log.u_bbr.pacing_gain = rack->r_must_retran;
2437 		/*
2438 		 * We capture in delRate the upper 32 bits as
2439 		 * the confidence level we had declared, and the
2440 		 * lower 32 bits as the actual RTT using the arrival
2441 		 * timestamp.
2442 		 */
2443 		log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence;
2444 		log.u_bbr.delRate <<= 32;
2445 		log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt;
2446 		/* Lets capture all the things that make up t_rtxcur */
2447 		log.u_bbr.applimited = rack_rto_min;
2448 		log.u_bbr.epoch = rack_rto_max;
2449 		log.u_bbr.lt_epoch = rack->r_ctl.timer_slop;
2450 		log.u_bbr.lost = rack_rto_min;
2451 		log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop);
2452 		log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp);
2453 		log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec;
2454 		log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC;
2455 		log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec;
2456 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2457 		    &rack->rc_inp->inp_socket->so_rcv,
2458 		    &rack->rc_inp->inp_socket->so_snd,
2459 		    TCP_LOG_RTT, 0,
2460 		    0, &log, false, &tv);
2461 	}
2462 }
2463 
2464 static void
2465 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where)
2466 {
2467 	if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
2468 		union tcp_log_stackspecific log;
2469 		struct timeval tv;
2470 
2471 		/* Convert our ms to a microsecond */
2472 		memset(&log, 0, sizeof(log));
2473 		log.u_bbr.flex1 = rtt;
2474 		log.u_bbr.flex2 = send_time;
2475 		log.u_bbr.flex3 = ack_time;
2476 		log.u_bbr.flex4 = where;
2477 		log.u_bbr.flex7 = 2;
2478 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2479 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2480 		    &rack->rc_inp->inp_socket->so_rcv,
2481 		    &rack->rc_inp->inp_socket->so_snd,
2482 		    TCP_LOG_RTT, 0,
2483 		    0, &log, false, &tv);
2484 	}
2485 }
2486 
2487 
2488 
2489 static inline void
2490 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
2491 {
2492 	if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
2493 		union tcp_log_stackspecific log;
2494 		struct timeval tv;
2495 
2496 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2497 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2498 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2499 		log.u_bbr.flex1 = line;
2500 		log.u_bbr.flex2 = tick;
2501 		log.u_bbr.flex3 = tp->t_maxunacktime;
2502 		log.u_bbr.flex4 = tp->t_acktime;
2503 		log.u_bbr.flex8 = event;
2504 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2505 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2506 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2507 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2508 		log.u_bbr.pacing_gain = rack->r_must_retran;
2509 		TCP_LOG_EVENTP(tp, NULL,
2510 		    &rack->rc_inp->inp_socket->so_rcv,
2511 		    &rack->rc_inp->inp_socket->so_snd,
2512 		    BBR_LOG_PROGRESS, 0,
2513 		    0, &log, false, &tv);
2514 	}
2515 }
2516 
2517 static void
2518 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv)
2519 {
2520 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2521 		union tcp_log_stackspecific log;
2522 
2523 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2524 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2525 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2526 		log.u_bbr.flex1 = slot;
2527 		if (rack->rack_no_prr)
2528 			log.u_bbr.flex2 = 0;
2529 		else
2530 			log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
2531 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
2532 		log.u_bbr.flex8 = rack->rc_in_persist;
2533 		log.u_bbr.timeStamp = cts;
2534 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2535 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2536 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2537 		log.u_bbr.pacing_gain = rack->r_must_retran;
2538 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2539 		    &rack->rc_inp->inp_socket->so_rcv,
2540 		    &rack->rc_inp->inp_socket->so_snd,
2541 		    BBR_LOG_BBRSND, 0,
2542 		    0, &log, false, tv);
2543 	}
2544 }
2545 
2546 static void
2547 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs)
2548 {
2549 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2550 		union tcp_log_stackspecific log;
2551 		struct timeval tv;
2552 
2553 		memset(&log, 0, sizeof(log));
2554 		log.u_bbr.flex1 = did_out;
2555 		log.u_bbr.flex2 = nxt_pkt;
2556 		log.u_bbr.flex3 = way_out;
2557 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2558 		if (rack->rack_no_prr)
2559 			log.u_bbr.flex5 = 0;
2560 		else
2561 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2562 		log.u_bbr.flex6 = nsegs;
2563 		log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
2564 		log.u_bbr.flex7 = rack->rc_ack_can_sendout_data;	/* Do we have ack-can-send set */
2565 		log.u_bbr.flex7 <<= 1;
2566 		log.u_bbr.flex7 |= rack->r_fast_output;	/* is fast output primed */
2567 		log.u_bbr.flex7 <<= 1;
2568 		log.u_bbr.flex7 |= rack->r_wanted_output;	/* Do we want output */
2569 		log.u_bbr.flex8 = rack->rc_in_persist;
2570 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2571 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2572 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2573 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2574 		log.u_bbr.use_lt_bw <<= 1;
2575 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
2576 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2577 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2578 		log.u_bbr.pacing_gain = rack->r_must_retran;
2579 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2580 		    &rack->rc_inp->inp_socket->so_rcv,
2581 		    &rack->rc_inp->inp_socket->so_snd,
2582 		    BBR_LOG_DOSEG_DONE, 0,
2583 		    0, &log, false, &tv);
2584 	}
2585 }
2586 
2587 static void
2588 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm)
2589 {
2590 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2591 		union tcp_log_stackspecific log;
2592 		struct timeval tv;
2593 		uint32_t cts;
2594 
2595 		memset(&log, 0, sizeof(log));
2596 		cts = tcp_get_usecs(&tv);
2597 		log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
2598 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
2599 		log.u_bbr.flex4 = arg1;
2600 		log.u_bbr.flex5 = arg2;
2601 		log.u_bbr.flex6 = arg3;
2602 		log.u_bbr.flex8 = frm;
2603 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2604 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2605 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2606 		log.u_bbr.applimited = rack->r_ctl.rc_sacked;
2607 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2608 		log.u_bbr.pacing_gain = rack->r_must_retran;
2609 		TCP_LOG_EVENTP(tp, NULL,
2610 		    &tp->t_inpcb->inp_socket->so_rcv,
2611 		    &tp->t_inpcb->inp_socket->so_snd,
2612 		    TCP_HDWR_PACE_SIZE, 0,
2613 		    0, &log, false, &tv);
2614 	}
2615 }
2616 
2617 static void
2618 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot,
2619 			  uint8_t hpts_calling, int reason, uint32_t cwnd_to_use)
2620 {
2621 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2622 		union tcp_log_stackspecific log;
2623 		struct timeval tv;
2624 
2625 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2626 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2627 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2628 		log.u_bbr.flex1 = slot;
2629 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
2630 		log.u_bbr.flex4 = reason;
2631 		if (rack->rack_no_prr)
2632 			log.u_bbr.flex5 = 0;
2633 		else
2634 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2635 		log.u_bbr.flex7 = hpts_calling;
2636 		log.u_bbr.flex8 = rack->rc_in_persist;
2637 		log.u_bbr.lt_epoch = cwnd_to_use;
2638 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2639 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2640 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2641 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2642 		log.u_bbr.pacing_gain = rack->r_must_retran;
2643 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2644 		    &rack->rc_inp->inp_socket->so_rcv,
2645 		    &rack->rc_inp->inp_socket->so_snd,
2646 		    BBR_LOG_JUSTRET, 0,
2647 		    tlen, &log, false, &tv);
2648 	}
2649 }
2650 
2651 static void
2652 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts,
2653 		   struct timeval *tv, uint32_t flags_on_entry)
2654 {
2655 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2656 		union tcp_log_stackspecific log;
2657 
2658 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2659 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2660 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2661 		log.u_bbr.flex1 = line;
2662 		log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to;
2663 		log.u_bbr.flex3 = flags_on_entry;
2664 		log.u_bbr.flex4 = us_cts;
2665 		if (rack->rack_no_prr)
2666 			log.u_bbr.flex5 = 0;
2667 		else
2668 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2669 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2670 		log.u_bbr.flex7 = hpts_removed;
2671 		log.u_bbr.flex8 = 1;
2672 		log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags;
2673 		log.u_bbr.timeStamp = us_cts;
2674 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2675 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2676 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2677 		log.u_bbr.pacing_gain = rack->r_must_retran;
2678 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2679 		    &rack->rc_inp->inp_socket->so_rcv,
2680 		    &rack->rc_inp->inp_socket->so_snd,
2681 		    BBR_LOG_TIMERCANC, 0,
2682 		    0, &log, false, tv);
2683 	}
2684 }
2685 
2686 static void
2687 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
2688 			  uint32_t flex1, uint32_t flex2,
2689 			  uint32_t flex3, uint32_t flex4,
2690 			  uint32_t flex5, uint32_t flex6,
2691 			  uint16_t flex7, uint8_t mod)
2692 {
2693 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2694 		union tcp_log_stackspecific log;
2695 		struct timeval tv;
2696 
2697 		if (mod == 1) {
2698 			/* No you can't use 1, its for the real to cancel */
2699 			return;
2700 		}
2701 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2702 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2703 		log.u_bbr.flex1 = flex1;
2704 		log.u_bbr.flex2 = flex2;
2705 		log.u_bbr.flex3 = flex3;
2706 		log.u_bbr.flex4 = flex4;
2707 		log.u_bbr.flex5 = flex5;
2708 		log.u_bbr.flex6 = flex6;
2709 		log.u_bbr.flex7 = flex7;
2710 		log.u_bbr.flex8 = mod;
2711 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2712 		    &rack->rc_inp->inp_socket->so_rcv,
2713 		    &rack->rc_inp->inp_socket->so_snd,
2714 		    BBR_LOG_TIMERCANC, 0,
2715 		    0, &log, false, &tv);
2716 	}
2717 }
2718 
2719 static void
2720 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
2721 {
2722 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2723 		union tcp_log_stackspecific log;
2724 		struct timeval tv;
2725 
2726 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2727 		log.u_bbr.flex1 = timers;
2728 		log.u_bbr.flex2 = ret;
2729 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
2730 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2731 		log.u_bbr.flex5 = cts;
2732 		if (rack->rack_no_prr)
2733 			log.u_bbr.flex6 = 0;
2734 		else
2735 			log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
2736 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2737 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2738 		log.u_bbr.pacing_gain = rack->r_must_retran;
2739 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2740 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2741 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2742 		    &rack->rc_inp->inp_socket->so_rcv,
2743 		    &rack->rc_inp->inp_socket->so_snd,
2744 		    BBR_LOG_TO_PROCESS, 0,
2745 		    0, &log, false, &tv);
2746 	}
2747 }
2748 
2749 static void
2750 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd)
2751 {
2752 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2753 		union tcp_log_stackspecific log;
2754 		struct timeval tv;
2755 
2756 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2757 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
2758 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
2759 		if (rack->rack_no_prr)
2760 			log.u_bbr.flex3 = 0;
2761 		else
2762 			log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
2763 		log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
2764 		log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
2765 		log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
2766 		log.u_bbr.flex8 = frm;
2767 		log.u_bbr.pkts_out = orig_cwnd;
2768 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2769 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2770 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2771 		log.u_bbr.use_lt_bw <<= 1;
2772 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
2773 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2774 		    &rack->rc_inp->inp_socket->so_rcv,
2775 		    &rack->rc_inp->inp_socket->so_snd,
2776 		    BBR_LOG_BBRUPD, 0,
2777 		    0, &log, false, &tv);
2778 	}
2779 }
2780 
2781 #ifdef NETFLIX_EXP_DETECTION
2782 static void
2783 rack_log_sad(struct tcp_rack *rack, int event)
2784 {
2785 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2786 		union tcp_log_stackspecific log;
2787 		struct timeval tv;
2788 
2789 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2790 		log.u_bbr.flex1 = rack->r_ctl.sack_count;
2791 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
2792 		log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
2793 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2794 		log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
2795 		log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
2796 		log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
2797 		log.u_bbr.lt_epoch = (tcp_force_detection << 8);
2798 		log.u_bbr.lt_epoch |= rack->do_detection;
2799 		log.u_bbr.applimited = tcp_map_minimum;
2800 		log.u_bbr.flex7 = rack->sack_attack_disable;
2801 		log.u_bbr.flex8 = event;
2802 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2803 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2804 		log.u_bbr.delivered = tcp_sad_decay_val;
2805 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2806 		    &rack->rc_inp->inp_socket->so_rcv,
2807 		    &rack->rc_inp->inp_socket->so_snd,
2808 		    TCP_SAD_DETECTION, 0,
2809 		    0, &log, false, &tv);
2810 	}
2811 }
2812 #endif
2813 
2814 static void
2815 rack_counter_destroy(void)
2816 {
2817 	int i;
2818 
2819 	counter_u64_free(rack_fto_send);
2820 	counter_u64_free(rack_fto_rsm_send);
2821 	counter_u64_free(rack_nfto_resend);
2822 	counter_u64_free(rack_hw_pace_init_fail);
2823 	counter_u64_free(rack_hw_pace_lost);
2824 	counter_u64_free(rack_non_fto_send);
2825 	counter_u64_free(rack_extended_rfo);
2826 	counter_u64_free(rack_ack_total);
2827 	counter_u64_free(rack_express_sack);
2828 	counter_u64_free(rack_sack_total);
2829 	counter_u64_free(rack_move_none);
2830 	counter_u64_free(rack_move_some);
2831 	counter_u64_free(rack_sack_attacks_detected);
2832 	counter_u64_free(rack_sack_attacks_reversed);
2833 	counter_u64_free(rack_sack_used_next_merge);
2834 	counter_u64_free(rack_sack_used_prev_merge);
2835 	counter_u64_free(rack_badfr);
2836 	counter_u64_free(rack_badfr_bytes);
2837 	counter_u64_free(rack_rtm_prr_retran);
2838 	counter_u64_free(rack_rtm_prr_newdata);
2839 	counter_u64_free(rack_timestamp_mismatch);
2840 	counter_u64_free(rack_find_high);
2841 	counter_u64_free(rack_reorder_seen);
2842 	counter_u64_free(rack_tlp_tot);
2843 	counter_u64_free(rack_tlp_newdata);
2844 	counter_u64_free(rack_tlp_retran);
2845 	counter_u64_free(rack_tlp_retran_bytes);
2846 	counter_u64_free(rack_tlp_retran_fail);
2847 	counter_u64_free(rack_to_tot);
2848 	counter_u64_free(rack_to_arm_rack);
2849 	counter_u64_free(rack_to_arm_tlp);
2850 	counter_u64_free(rack_calc_zero);
2851 	counter_u64_free(rack_calc_nonzero);
2852 	counter_u64_free(rack_paced_segments);
2853 	counter_u64_free(rack_unpaced_segments);
2854 	counter_u64_free(rack_saw_enobuf);
2855 	counter_u64_free(rack_saw_enobuf_hw);
2856 	counter_u64_free(rack_saw_enetunreach);
2857 	counter_u64_free(rack_hot_alloc);
2858 	counter_u64_free(rack_to_alloc);
2859 	counter_u64_free(rack_to_alloc_hard);
2860 	counter_u64_free(rack_to_alloc_emerg);
2861 	counter_u64_free(rack_to_alloc_limited);
2862 	counter_u64_free(rack_alloc_limited_conns);
2863 	counter_u64_free(rack_split_limited);
2864 	for (i = 0; i < MAX_NUM_OF_CNTS; i++) {
2865 		counter_u64_free(rack_proc_comp_ack[i]);
2866 	}
2867 	counter_u64_free(rack_multi_single_eq);
2868 	counter_u64_free(rack_proc_non_comp_ack);
2869 	counter_u64_free(rack_sack_proc_all);
2870 	counter_u64_free(rack_sack_proc_restart);
2871 	counter_u64_free(rack_sack_proc_short);
2872 	counter_u64_free(rack_enter_tlp_calc);
2873 	counter_u64_free(rack_used_tlpmethod);
2874 	counter_u64_free(rack_used_tlpmethod2);
2875 	counter_u64_free(rack_sack_skipped_acked);
2876 	counter_u64_free(rack_sack_splits);
2877 	counter_u64_free(rack_progress_drops);
2878 	counter_u64_free(rack_input_idle_reduces);
2879 	counter_u64_free(rack_collapsed_win);
2880 	counter_u64_free(rack_tlp_does_nada);
2881 	counter_u64_free(rack_try_scwnd);
2882 	counter_u64_free(rack_per_timer_hole);
2883 	counter_u64_free(rack_large_ackcmp);
2884 	counter_u64_free(rack_small_ackcmp);
2885 #ifdef INVARIANTS
2886 	counter_u64_free(rack_adjust_map_bw);
2887 #endif
2888 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
2889 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
2890 }
2891 
2892 static struct rack_sendmap *
2893 rack_alloc(struct tcp_rack *rack)
2894 {
2895 	struct rack_sendmap *rsm;
2896 
2897 	/*
2898 	 * First get the top of the list it in
2899 	 * theory is the "hottest" rsm we have,
2900 	 * possibly just freed by ack processing.
2901 	 */
2902 	if (rack->rc_free_cnt > rack_free_cache) {
2903 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2904 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2905 		counter_u64_add(rack_hot_alloc, 1);
2906 		rack->rc_free_cnt--;
2907 		return (rsm);
2908 	}
2909 	/*
2910 	 * Once we get under our free cache we probably
2911 	 * no longer have a "hot" one available. Lets
2912 	 * get one from UMA.
2913 	 */
2914 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
2915 	if (rsm) {
2916 		rack->r_ctl.rc_num_maps_alloced++;
2917 		counter_u64_add(rack_to_alloc, 1);
2918 		return (rsm);
2919 	}
2920 	/*
2921 	 * Dig in to our aux rsm's (the last two) since
2922 	 * UMA failed to get us one.
2923 	 */
2924 	if (rack->rc_free_cnt) {
2925 		counter_u64_add(rack_to_alloc_emerg, 1);
2926 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2927 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2928 		rack->rc_free_cnt--;
2929 		return (rsm);
2930 	}
2931 	return (NULL);
2932 }
2933 
2934 static struct rack_sendmap *
2935 rack_alloc_full_limit(struct tcp_rack *rack)
2936 {
2937 	if ((V_tcp_map_entries_limit > 0) &&
2938 	    (rack->do_detection == 0) &&
2939 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
2940 		counter_u64_add(rack_to_alloc_limited, 1);
2941 		if (!rack->alloc_limit_reported) {
2942 			rack->alloc_limit_reported = 1;
2943 			counter_u64_add(rack_alloc_limited_conns, 1);
2944 		}
2945 		return (NULL);
2946 	}
2947 	return (rack_alloc(rack));
2948 }
2949 
2950 /* wrapper to allocate a sendmap entry, subject to a specific limit */
2951 static struct rack_sendmap *
2952 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
2953 {
2954 	struct rack_sendmap *rsm;
2955 
2956 	if (limit_type) {
2957 		/* currently there is only one limit type */
2958 		if (V_tcp_map_split_limit > 0 &&
2959 		    (rack->do_detection == 0) &&
2960 		    rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
2961 			counter_u64_add(rack_split_limited, 1);
2962 			if (!rack->alloc_limit_reported) {
2963 				rack->alloc_limit_reported = 1;
2964 				counter_u64_add(rack_alloc_limited_conns, 1);
2965 			}
2966 			return (NULL);
2967 		}
2968 	}
2969 
2970 	/* allocate and mark in the limit type, if set */
2971 	rsm = rack_alloc(rack);
2972 	if (rsm != NULL && limit_type) {
2973 		rsm->r_limit_type = limit_type;
2974 		rack->r_ctl.rc_num_split_allocs++;
2975 	}
2976 	return (rsm);
2977 }
2978 
2979 static void
2980 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
2981 {
2982 	if (rsm->r_flags & RACK_APP_LIMITED) {
2983 		if (rack->r_ctl.rc_app_limited_cnt > 0) {
2984 			rack->r_ctl.rc_app_limited_cnt--;
2985 		}
2986 	}
2987 	if (rsm->r_limit_type) {
2988 		/* currently there is only one limit type */
2989 		rack->r_ctl.rc_num_split_allocs--;
2990 	}
2991 	if (rsm == rack->r_ctl.rc_first_appl) {
2992 		if (rack->r_ctl.rc_app_limited_cnt == 0)
2993 			rack->r_ctl.rc_first_appl = NULL;
2994 		else {
2995 			/* Follow the next one out */
2996 			struct rack_sendmap fe;
2997 
2998 			fe.r_start = rsm->r_nseq_appl;
2999 			rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3000 		}
3001 	}
3002 	if (rsm == rack->r_ctl.rc_resend)
3003 		rack->r_ctl.rc_resend = NULL;
3004 	if (rsm == rack->r_ctl.rc_rsm_at_retran)
3005 		rack->r_ctl.rc_rsm_at_retran = NULL;
3006 	if (rsm == rack->r_ctl.rc_end_appl)
3007 		rack->r_ctl.rc_end_appl = NULL;
3008 	if (rack->r_ctl.rc_tlpsend == rsm)
3009 		rack->r_ctl.rc_tlpsend = NULL;
3010 	if (rack->r_ctl.rc_sacklast == rsm)
3011 		rack->r_ctl.rc_sacklast = NULL;
3012 	memset(rsm, 0, sizeof(struct rack_sendmap));
3013 	TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext);
3014 	rack->rc_free_cnt++;
3015 }
3016 
3017 static void
3018 rack_free_trim(struct tcp_rack *rack)
3019 {
3020 	struct rack_sendmap *rsm;
3021 
3022 	/*
3023 	 * Free up all the tail entries until
3024 	 * we get our list down to the limit.
3025 	 */
3026 	while (rack->rc_free_cnt > rack_free_cache) {
3027 		rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head);
3028 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
3029 		rack->rc_free_cnt--;
3030 		uma_zfree(rack_zone, rsm);
3031 	}
3032 }
3033 
3034 
3035 static uint32_t
3036 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack)
3037 {
3038 	uint64_t srtt, bw, len, tim;
3039 	uint32_t segsiz, def_len, minl;
3040 
3041 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
3042 	def_len = rack_def_data_window * segsiz;
3043 	if (rack->rc_gp_filled == 0) {
3044 		/*
3045 		 * We have no measurement (IW is in flight?) so
3046 		 * we can only guess using our data_window sysctl
3047 		 * value (usually 20MSS).
3048 		 */
3049 		return (def_len);
3050 	}
3051 	/*
3052 	 * Now we have a number of factors to consider.
3053 	 *
3054 	 * 1) We have a desired BDP which is usually
3055 	 *    at least 2.
3056 	 * 2) We have a minimum number of rtt's usually 1 SRTT
3057 	 *    but we allow it too to be more.
3058 	 * 3) We want to make sure a measurement last N useconds (if
3059 	 *    we have set rack_min_measure_usec.
3060 	 *
3061 	 * We handle the first concern here by trying to create a data
3062 	 * window of max(rack_def_data_window, DesiredBDP). The
3063 	 * second concern we handle in not letting the measurement
3064 	 * window end normally until at least the required SRTT's
3065 	 * have gone by which is done further below in
3066 	 * rack_enough_for_measurement(). Finally the third concern
3067 	 * we also handle here by calculating how long that time
3068 	 * would take at the current BW and then return the
3069 	 * max of our first calculation and that length. Note
3070 	 * that if rack_min_measure_usec is 0, we don't deal
3071 	 * with concern 3. Also for both Concern 1 and 3 an
3072 	 * application limited period could end the measurement
3073 	 * earlier.
3074 	 *
3075 	 * So lets calculate the BDP with the "known" b/w using
3076 	 * the SRTT has our rtt and then multiply it by the
3077 	 * goal.
3078 	 */
3079 	bw = rack_get_bw(rack);
3080 	srtt = (uint64_t)tp->t_srtt;
3081 	len = bw * srtt;
3082 	len /= (uint64_t)HPTS_USEC_IN_SEC;
3083 	len *= max(1, rack_goal_bdp);
3084 	/* Now we need to round up to the nearest MSS */
3085 	len = roundup(len, segsiz);
3086 	if (rack_min_measure_usec) {
3087 		/* Now calculate our min length for this b/w */
3088 		tim = rack_min_measure_usec;
3089 		minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC;
3090 		if (minl == 0)
3091 			minl = 1;
3092 		minl = roundup(minl, segsiz);
3093 		if (len < minl)
3094 			len = minl;
3095 	}
3096 	/*
3097 	 * Now if we have a very small window we want
3098 	 * to attempt to get the window that is
3099 	 * as small as possible. This happens on
3100 	 * low b/w connections and we don't want to
3101 	 * span huge numbers of rtt's between measurements.
3102 	 *
3103 	 * We basically include 2 over our "MIN window" so
3104 	 * that the measurement can be shortened (possibly) by
3105 	 * an ack'ed packet.
3106 	 */
3107 	if (len < def_len)
3108 		return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz)));
3109 	else
3110 		return (max((uint32_t)len, def_len));
3111 
3112 }
3113 
3114 static int
3115 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality)
3116 {
3117 	uint32_t tim, srtts, segsiz;
3118 
3119 	/*
3120 	 * Has enough time passed for the GP measurement to be valid?
3121 	 */
3122 	if ((tp->snd_max == tp->snd_una) ||
3123 	    (th_ack == tp->snd_max)){
3124 		/* All is acked */
3125 		*quality = RACK_QUALITY_ALLACKED;
3126 		return (1);
3127 	}
3128 	if (SEQ_LT(th_ack, tp->gput_seq)) {
3129 		/* Not enough bytes yet */
3130 		return (0);
3131 	}
3132 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
3133 	if (SEQ_LT(th_ack, tp->gput_ack) &&
3134 	    ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
3135 		/* Not enough bytes yet */
3136 		return (0);
3137 	}
3138 	if (rack->r_ctl.rc_first_appl &&
3139 	    (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) {
3140 		/*
3141 		 * We are up to the app limited send point
3142 		 * we have to measure irrespective of the time..
3143 		 */
3144 		*quality = RACK_QUALITY_APPLIMITED;
3145 		return (1);
3146 	}
3147 	/* Now what about time? */
3148 	srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts);
3149 	tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts;
3150 	if (tim >= srtts) {
3151 		*quality = RACK_QUALITY_HIGH;
3152 		return (1);
3153 	}
3154 	/* Nope not even a full SRTT has passed */
3155 	return (0);
3156 }
3157 
3158 static void
3159 rack_log_timely(struct tcp_rack *rack,
3160 		uint32_t logged, uint64_t cur_bw, uint64_t low_bnd,
3161 		uint64_t up_bnd, int line, uint8_t method)
3162 {
3163 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3164 		union tcp_log_stackspecific log;
3165 		struct timeval tv;
3166 
3167 		memset(&log, 0, sizeof(log));
3168 		log.u_bbr.flex1 = logged;
3169 		log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt;
3170 		log.u_bbr.flex2 <<= 4;
3171 		log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt;
3172 		log.u_bbr.flex2 <<= 4;
3173 		log.u_bbr.flex2 |= rack->rc_gp_incr;
3174 		log.u_bbr.flex2 <<= 4;
3175 		log.u_bbr.flex2 |= rack->rc_gp_bwred;
3176 		log.u_bbr.flex3 = rack->rc_gp_incr;
3177 		log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3178 		log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca;
3179 		log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec;
3180 		log.u_bbr.flex7 = rack->rc_gp_bwred;
3181 		log.u_bbr.flex8 = method;
3182 		log.u_bbr.cur_del_rate = cur_bw;
3183 		log.u_bbr.delRate = low_bnd;
3184 		log.u_bbr.bw_inuse = up_bnd;
3185 		log.u_bbr.rttProp = rack_get_bw(rack);
3186 		log.u_bbr.pkt_epoch = line;
3187 		log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3188 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3189 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3190 		log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3191 		log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3192 		log.u_bbr.cwnd_gain = rack->rc_dragged_bottom;
3193 		log.u_bbr.cwnd_gain <<= 1;
3194 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec;
3195 		log.u_bbr.cwnd_gain <<= 1;
3196 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
3197 		log.u_bbr.cwnd_gain <<= 1;
3198 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
3199 		log.u_bbr.lost = rack->r_ctl.rc_loss_count;
3200 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
3201 		    &rack->rc_inp->inp_socket->so_rcv,
3202 		    &rack->rc_inp->inp_socket->so_snd,
3203 		    TCP_TIMELY_WORK, 0,
3204 		    0, &log, false, &tv);
3205 	}
3206 }
3207 
3208 static int
3209 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult)
3210 {
3211 	/*
3212 	 * Before we increase we need to know if
3213 	 * the estimate just made was less than
3214 	 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est)
3215 	 *
3216 	 * If we already are pacing at a fast enough
3217 	 * rate to push us faster there is no sense of
3218 	 * increasing.
3219 	 *
3220 	 * We first caculate our actual pacing rate (ss or ca multipler
3221 	 * times our cur_bw).
3222 	 *
3223 	 * Then we take the last measured rate and multipy by our
3224 	 * maximum pacing overage to give us a max allowable rate.
3225 	 *
3226 	 * If our act_rate is smaller than our max_allowable rate
3227 	 * then we should increase. Else we should hold steady.
3228 	 *
3229 	 */
3230 	uint64_t act_rate, max_allow_rate;
3231 
3232 	if (rack_timely_no_stopping)
3233 		return (1);
3234 
3235 	if ((cur_bw == 0) || (last_bw_est == 0)) {
3236 		/*
3237 		 * Initial startup case or
3238 		 * everything is acked case.
3239 		 */
3240 		rack_log_timely(rack,  mult, cur_bw, 0, 0,
3241 				__LINE__, 9);
3242 		return (1);
3243 	}
3244 	if (mult <= 100) {
3245 		/*
3246 		 * We can always pace at or slightly above our rate.
3247 		 */
3248 		rack_log_timely(rack,  mult, cur_bw, 0, 0,
3249 				__LINE__, 9);
3250 		return (1);
3251 	}
3252 	act_rate = cur_bw * (uint64_t)mult;
3253 	act_rate /= 100;
3254 	max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100);
3255 	max_allow_rate /= 100;
3256 	if (act_rate < max_allow_rate) {
3257 		/*
3258 		 * Here the rate we are actually pacing at
3259 		 * is smaller than 10% above our last measurement.
3260 		 * This means we are pacing below what we would
3261 		 * like to try to achieve (plus some wiggle room).
3262 		 */
3263 		rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
3264 				__LINE__, 9);
3265 		return (1);
3266 	} else {
3267 		/*
3268 		 * Here we are already pacing at least rack_max_per_above(10%)
3269 		 * what we are getting back. This indicates most likely
3270 		 * that we are being limited (cwnd/rwnd/app) and can't
3271 		 * get any more b/w. There is no sense of trying to
3272 		 * raise up the pacing rate its not speeding us up
3273 		 * and we already are pacing faster than we are getting.
3274 		 */
3275 		rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
3276 				__LINE__, 8);
3277 		return (0);
3278 	}
3279 }
3280 
3281 static void
3282 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack)
3283 {
3284 	/*
3285 	 * When we drag bottom, we want to assure
3286 	 * that no multiplier is below 1.0, if so
3287 	 * we want to restore it to at least that.
3288 	 */
3289 	if (rack->r_ctl.rack_per_of_gp_rec  < 100) {
3290 		/* This is unlikely we usually do not touch recovery */
3291 		rack->r_ctl.rack_per_of_gp_rec = 100;
3292 	}
3293 	if (rack->r_ctl.rack_per_of_gp_ca < 100) {
3294 		rack->r_ctl.rack_per_of_gp_ca = 100;
3295 	}
3296 	if (rack->r_ctl.rack_per_of_gp_ss < 100) {
3297 		rack->r_ctl.rack_per_of_gp_ss = 100;
3298 	}
3299 }
3300 
3301 static void
3302 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack)
3303 {
3304 	if (rack->r_ctl.rack_per_of_gp_ca > 100) {
3305 		rack->r_ctl.rack_per_of_gp_ca = 100;
3306 	}
3307 	if (rack->r_ctl.rack_per_of_gp_ss > 100) {
3308 		rack->r_ctl.rack_per_of_gp_ss = 100;
3309 	}
3310 }
3311 
3312 static void
3313 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override)
3314 {
3315 	int32_t  calc, logged, plus;
3316 
3317 	logged = 0;
3318 
3319 	if (override) {
3320 		/*
3321 		 * override is passed when we are
3322 		 * loosing b/w and making one last
3323 		 * gasp at trying to not loose out
3324 		 * to a new-reno flow.
3325 		 */
3326 		goto extra_boost;
3327 	}
3328 	/* In classic timely we boost by 5x if we have 5 increases in a row, lets not */
3329 	if (rack->rc_gp_incr &&
3330 	    ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) {
3331 		/*
3332 		 * Reset and get 5 strokes more before the boost. Note
3333 		 * that the count is 0 based so we have to add one.
3334 		 */
3335 extra_boost:
3336 		plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST;
3337 		rack->rc_gp_timely_inc_cnt = 0;
3338 	} else
3339 		plus = (uint32_t)rack_gp_increase_per;
3340 	/* Must be at least 1% increase for true timely increases */
3341 	if ((plus < 1) &&
3342 	    ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0)))
3343 		plus = 1;
3344 	if (rack->rc_gp_saw_rec &&
3345 	    (rack->rc_gp_no_rec_chg == 0) &&
3346 	    rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3347 				  rack->r_ctl.rack_per_of_gp_rec)) {
3348 		/* We have been in recovery ding it too */
3349 		calc = rack->r_ctl.rack_per_of_gp_rec + plus;
3350 		if (calc > 0xffff)
3351 			calc = 0xffff;
3352 		logged |= 1;
3353 		rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc;
3354 		if (rack_per_upper_bound_ss &&
3355 		    (rack->rc_dragged_bottom == 0) &&
3356 		    (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss))
3357 			rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss;
3358 	}
3359 	if (rack->rc_gp_saw_ca &&
3360 	    (rack->rc_gp_saw_ss == 0) &&
3361 	    rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3362 				  rack->r_ctl.rack_per_of_gp_ca)) {
3363 		/* In CA */
3364 		calc = rack->r_ctl.rack_per_of_gp_ca + plus;
3365 		if (calc > 0xffff)
3366 			calc = 0xffff;
3367 		logged |= 2;
3368 		rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc;
3369 		if (rack_per_upper_bound_ca &&
3370 		    (rack->rc_dragged_bottom == 0) &&
3371 		    (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca))
3372 			rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca;
3373 	}
3374 	if (rack->rc_gp_saw_ss &&
3375 	    rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3376 				  rack->r_ctl.rack_per_of_gp_ss)) {
3377 		/* In SS */
3378 		calc = rack->r_ctl.rack_per_of_gp_ss + plus;
3379 		if (calc > 0xffff)
3380 			calc = 0xffff;
3381 		rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc;
3382 		if (rack_per_upper_bound_ss &&
3383 		    (rack->rc_dragged_bottom == 0) &&
3384 		    (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss))
3385 			rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss;
3386 		logged |= 4;
3387 	}
3388 	if (logged &&
3389 	    (rack->rc_gp_incr == 0)){
3390 		/* Go into increment mode */
3391 		rack->rc_gp_incr = 1;
3392 		rack->rc_gp_timely_inc_cnt = 0;
3393 	}
3394 	if (rack->rc_gp_incr &&
3395 	    logged &&
3396 	    (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) {
3397 		rack->rc_gp_timely_inc_cnt++;
3398 	}
3399 	rack_log_timely(rack,  logged, plus, 0, 0,
3400 			__LINE__, 1);
3401 }
3402 
3403 static uint32_t
3404 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff)
3405 {
3406 	/*
3407 	 * norm_grad = rtt_diff / minrtt;
3408 	 * new_per = curper * (1 - B * norm_grad)
3409 	 *
3410 	 * B = rack_gp_decrease_per (default 10%)
3411 	 * rtt_dif = input var current rtt-diff
3412 	 * curper = input var current percentage
3413 	 * minrtt = from rack filter
3414 	 *
3415 	 */
3416 	uint64_t perf;
3417 
3418 	perf = (((uint64_t)curper * ((uint64_t)1000000 -
3419 		    ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 *
3420 		     (((uint64_t)rtt_diff * (uint64_t)1000000)/
3421 		      (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/
3422 		     (uint64_t)1000000)) /
3423 		(uint64_t)1000000);
3424 	if (perf > curper) {
3425 		/* TSNH */
3426 		perf = curper - 1;
3427 	}
3428 	return ((uint32_t)perf);
3429 }
3430 
3431 static uint32_t
3432 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt)
3433 {
3434 	/*
3435 	 *                                   highrttthresh
3436 	 * result = curper * (1 - (B * ( 1 -  ------          ))
3437 	 *                                     gp_srtt
3438 	 *
3439 	 * B = rack_gp_decrease_per (default 10%)
3440 	 * highrttthresh = filter_min * rack_gp_rtt_maxmul
3441 	 */
3442 	uint64_t perf;
3443 	uint32_t highrttthresh;
3444 
3445 	highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3446 
3447 	perf = (((uint64_t)curper * ((uint64_t)1000000 -
3448 				     ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 -
3449 					((uint64_t)highrttthresh * (uint64_t)1000000) /
3450 						    (uint64_t)rtt)) / 100)) /(uint64_t)1000000);
3451 	return (perf);
3452 }
3453 
3454 static void
3455 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff)
3456 {
3457 	uint64_t logvar, logvar2, logvar3;
3458 	uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val;
3459 
3460 	if (rack->rc_gp_incr) {
3461 		/* Turn off increment counting */
3462 		rack->rc_gp_incr = 0;
3463 		rack->rc_gp_timely_inc_cnt = 0;
3464 	}
3465 	ss_red = ca_red = rec_red = 0;
3466 	logged = 0;
3467 	/* Calculate the reduction value */
3468 	if (rtt_diff < 0) {
3469 		rtt_diff *= -1;
3470 	}
3471 	/* Must be at least 1% reduction */
3472 	if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) {
3473 		/* We have been in recovery ding it too */
3474 		if (timely_says == 2) {
3475 			new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt);
3476 			alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3477 			if (alt < new_per)
3478 				val = alt;
3479 			else
3480 				val = new_per;
3481 		} else
3482 			 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3483 		if (rack->r_ctl.rack_per_of_gp_rec > val) {
3484 			rec_red = (rack->r_ctl.rack_per_of_gp_rec - val);
3485 			rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val;
3486 		} else {
3487 			rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3488 			rec_red = 0;
3489 		}
3490 		if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec)
3491 			rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3492 		logged |= 1;
3493 	}
3494 	if (rack->rc_gp_saw_ss) {
3495 		/* Sent in SS */
3496 		if (timely_says == 2) {
3497 			new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt);
3498 			alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3499 			if (alt < new_per)
3500 				val = alt;
3501 			else
3502 				val = new_per;
3503 		} else
3504 			val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff);
3505 		if (rack->r_ctl.rack_per_of_gp_ss > new_per) {
3506 			ss_red = rack->r_ctl.rack_per_of_gp_ss - val;
3507 			rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val;
3508 		} else {
3509 			ss_red = new_per;
3510 			rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3511 			logvar = new_per;
3512 			logvar <<= 32;
3513 			logvar |= alt;
3514 			logvar2 = (uint32_t)rtt;
3515 			logvar2 <<= 32;
3516 			logvar2 |= (uint32_t)rtt_diff;
3517 			logvar3 = rack_gp_rtt_maxmul;
3518 			logvar3 <<= 32;
3519 			logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3520 			rack_log_timely(rack, timely_says,
3521 					logvar2, logvar3,
3522 					logvar, __LINE__, 10);
3523 		}
3524 		if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss)
3525 			rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3526 		logged |= 4;
3527 	} else if (rack->rc_gp_saw_ca) {
3528 		/* Sent in CA */
3529 		if (timely_says == 2) {
3530 			new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt);
3531 			alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3532 			if (alt < new_per)
3533 				val = alt;
3534 			else
3535 				val = new_per;
3536 		} else
3537 			val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff);
3538 		if (rack->r_ctl.rack_per_of_gp_ca > val) {
3539 			ca_red = rack->r_ctl.rack_per_of_gp_ca - val;
3540 			rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val;
3541 		} else {
3542 			rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3543 			ca_red = 0;
3544 			logvar = new_per;
3545 			logvar <<= 32;
3546 			logvar |= alt;
3547 			logvar2 = (uint32_t)rtt;
3548 			logvar2 <<= 32;
3549 			logvar2 |= (uint32_t)rtt_diff;
3550 			logvar3 = rack_gp_rtt_maxmul;
3551 			logvar3 <<= 32;
3552 			logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3553 			rack_log_timely(rack, timely_says,
3554 					logvar2, logvar3,
3555 					logvar, __LINE__, 10);
3556 		}
3557 		if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca)
3558 			rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3559 		logged |= 2;
3560 	}
3561 	if (rack->rc_gp_timely_dec_cnt < 0x7) {
3562 		rack->rc_gp_timely_dec_cnt++;
3563 		if (rack_timely_dec_clear &&
3564 		    (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear))
3565 			rack->rc_gp_timely_dec_cnt = 0;
3566 	}
3567 	logvar = ss_red;
3568 	logvar <<= 32;
3569 	logvar |= ca_red;
3570 	rack_log_timely(rack,  logged, rec_red, rack_per_lower_bound, logvar,
3571 			__LINE__, 2);
3572 }
3573 
3574 static void
3575 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts,
3576 		     uint32_t rtt, uint32_t line, uint8_t reas)
3577 {
3578 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3579 		union tcp_log_stackspecific log;
3580 		struct timeval tv;
3581 
3582 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
3583 		log.u_bbr.flex1 = line;
3584 		log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts;
3585 		log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts;
3586 		log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3587 		log.u_bbr.flex5 = rtt;
3588 		log.u_bbr.flex6 = rack->rc_highly_buffered;
3589 		log.u_bbr.flex6 <<= 1;
3590 		log.u_bbr.flex6 |= rack->forced_ack;
3591 		log.u_bbr.flex6 <<= 1;
3592 		log.u_bbr.flex6 |= rack->rc_gp_dyn_mul;
3593 		log.u_bbr.flex6 <<= 1;
3594 		log.u_bbr.flex6 |= rack->in_probe_rtt;
3595 		log.u_bbr.flex6 <<= 1;
3596 		log.u_bbr.flex6 |= rack->measure_saw_probe_rtt;
3597 		log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt;
3598 		log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca;
3599 		log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec;
3600 		log.u_bbr.flex8 = reas;
3601 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3602 		log.u_bbr.delRate = rack_get_bw(rack);
3603 		log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt;
3604 		log.u_bbr.cur_del_rate <<= 32;
3605 		log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt;
3606 		log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered;
3607 		log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3608 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3609 		log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3610 		log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3611 		log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts;
3612 		log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight;
3613 		log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3614 		log.u_bbr.rttProp = us_cts;
3615 		log.u_bbr.rttProp <<= 32;
3616 		log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt;
3617 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
3618 		    &rack->rc_inp->inp_socket->so_rcv,
3619 		    &rack->rc_inp->inp_socket->so_snd,
3620 		    BBR_LOG_RTT_SHRINKS, 0,
3621 		    0, &log, false, &rack->r_ctl.act_rcv_time);
3622 	}
3623 }
3624 
3625 static void
3626 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt)
3627 {
3628 	uint64_t bwdp;
3629 
3630 	bwdp = rack_get_bw(rack);
3631 	bwdp *= (uint64_t)rtt;
3632 	bwdp /= (uint64_t)HPTS_USEC_IN_SEC;
3633 	rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz);
3634 	if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) {
3635 		/*
3636 		 * A window protocol must be able to have 4 packets
3637 		 * outstanding as the floor in order to function
3638 		 * (especially considering delayed ack :D).
3639 		 */
3640 		rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs);
3641 	}
3642 }
3643 
3644 static void
3645 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts)
3646 {
3647 	/**
3648 	 * ProbeRTT is a bit different in rack_pacing than in
3649 	 * BBR. It is like BBR in that it uses the lowering of
3650 	 * the RTT as a signal that we saw something new and
3651 	 * counts from there for how long between. But it is
3652 	 * different in that its quite simple. It does not
3653 	 * play with the cwnd and wait until we get down
3654 	 * to N segments outstanding and hold that for
3655 	 * 200ms. Instead it just sets the pacing reduction
3656 	 * rate to a set percentage (70 by default) and hold
3657 	 * that for a number of recent GP Srtt's.
3658 	 */
3659 	uint32_t segsiz;
3660 
3661 	if (rack->rc_gp_dyn_mul == 0)
3662 		return;
3663 
3664 	if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) {
3665 		/* We are idle */
3666 		return;
3667 	}
3668 	if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3669 	    SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3670 		/*
3671 		 * Stop the goodput now, the idea here is
3672 		 * that future measurements with in_probe_rtt
3673 		 * won't register if they are not greater so
3674 		 * we want to get what info (if any) is available
3675 		 * now.
3676 		 */
3677 		rack_do_goodput_measurement(rack->rc_tp, rack,
3678 					    rack->rc_tp->snd_una, __LINE__,
3679 					    RACK_QUALITY_PROBERTT);
3680 	}
3681 	rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3682 	rack->r_ctl.rc_time_probertt_entered = us_cts;
3683 	segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3684 		     rack->r_ctl.rc_pace_min_segs);
3685 	rack->in_probe_rtt = 1;
3686 	rack->measure_saw_probe_rtt = 1;
3687 	rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3688 	rack->r_ctl.rc_time_probertt_starts = 0;
3689 	rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt;
3690 	if (rack_probertt_use_min_rtt_entry)
3691 		rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3692 	else
3693 		rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt);
3694 	rack_log_rtt_shrinks(rack,  us_cts,  get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3695 			     __LINE__, RACK_RTTS_ENTERPROBE);
3696 }
3697 
3698 static void
3699 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts)
3700 {
3701 	struct rack_sendmap *rsm;
3702 	uint32_t segsiz;
3703 
3704 	segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3705 		     rack->r_ctl.rc_pace_min_segs);
3706 	rack->in_probe_rtt = 0;
3707 	if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3708 	    SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3709 		/*
3710 		 * Stop the goodput now, the idea here is
3711 		 * that future measurements with in_probe_rtt
3712 		 * won't register if they are not greater so
3713 		 * we want to get what info (if any) is available
3714 		 * now.
3715 		 */
3716 		rack_do_goodput_measurement(rack->rc_tp, rack,
3717 					    rack->rc_tp->snd_una, __LINE__,
3718 					    RACK_QUALITY_PROBERTT);
3719 	} else if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
3720 		/*
3721 		 * We don't have enough data to make a measurement.
3722 		 * So lets just stop and start here after exiting
3723 		 * probe-rtt. We probably are not interested in
3724 		 * the results anyway.
3725 		 */
3726 		rack->rc_tp->t_flags &= ~TF_GPUTINPROG;
3727 	}
3728 	/*
3729 	 * Measurements through the current snd_max are going
3730 	 * to be limited by the slower pacing rate.
3731 	 *
3732 	 * We need to mark these as app-limited so we
3733 	 * don't collapse the b/w.
3734 	 */
3735 	rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3736 	if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
3737 		if (rack->r_ctl.rc_app_limited_cnt == 0)
3738 			rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
3739 		else {
3740 			/*
3741 			 * Go out to the end app limited and mark
3742 			 * this new one as next and move the end_appl up
3743 			 * to this guy.
3744 			 */
3745 			if (rack->r_ctl.rc_end_appl)
3746 				rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
3747 			rack->r_ctl.rc_end_appl = rsm;
3748 		}
3749 		rsm->r_flags |= RACK_APP_LIMITED;
3750 		rack->r_ctl.rc_app_limited_cnt++;
3751 	}
3752 	/*
3753 	 * Now, we need to examine our pacing rate multipliers.
3754 	 * If its under 100%, we need to kick it back up to
3755 	 * 100%. We also don't let it be over our "max" above
3756 	 * the actual rate i.e. 100% + rack_clamp_atexit_prtt.
3757 	 * Note setting clamp_atexit_prtt to 0 has the effect
3758 	 * of setting CA/SS to 100% always at exit (which is
3759 	 * the default behavior).
3760 	 */
3761 	if (rack_probertt_clear_is) {
3762 		rack->rc_gp_incr = 0;
3763 		rack->rc_gp_bwred = 0;
3764 		rack->rc_gp_timely_inc_cnt = 0;
3765 		rack->rc_gp_timely_dec_cnt = 0;
3766 	}
3767 	/* Do we do any clamping at exit? */
3768 	if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) {
3769 		rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp;
3770 		rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp;
3771 	}
3772 	if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) {
3773 		rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt;
3774 		rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt;
3775 	}
3776 	/*
3777 	 * Lets set rtt_diff to 0, so that we will get a "boost"
3778 	 * after exiting.
3779 	 */
3780 	rack->r_ctl.rc_rtt_diff = 0;
3781 
3782 	/* Clear all flags so we start fresh */
3783 	rack->rc_tp->t_bytes_acked = 0;
3784 	rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND;
3785 	/*
3786 	 * If configured to, set the cwnd and ssthresh to
3787 	 * our targets.
3788 	 */
3789 	if (rack_probe_rtt_sets_cwnd) {
3790 		uint64_t ebdp;
3791 		uint32_t setto;
3792 
3793 		/* Set ssthresh so we get into CA once we hit our target */
3794 		if (rack_probertt_use_min_rtt_exit == 1) {
3795 			/* Set to min rtt */
3796 			rack_set_prtt_target(rack, segsiz,
3797 					     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3798 		} else if (rack_probertt_use_min_rtt_exit == 2) {
3799 			/* Set to current gp rtt */
3800 			rack_set_prtt_target(rack, segsiz,
3801 					     rack->r_ctl.rc_gp_srtt);
3802 		} else if (rack_probertt_use_min_rtt_exit == 3) {
3803 			/* Set to entry gp rtt */
3804 			rack_set_prtt_target(rack, segsiz,
3805 					     rack->r_ctl.rc_entry_gp_rtt);
3806 		} else {
3807 			uint64_t sum;
3808 			uint32_t setval;
3809 
3810 			sum = rack->r_ctl.rc_entry_gp_rtt;
3811 			sum *= 10;
3812 			sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt));
3813 			if (sum >= 20) {
3814 				/*
3815 				 * A highly buffered path needs
3816 				 * cwnd space for timely to work.
3817 				 * Lets set things up as if
3818 				 * we are heading back here again.
3819 				 */
3820 				setval = rack->r_ctl.rc_entry_gp_rtt;
3821 			} else if (sum >= 15) {
3822 				/*
3823 				 * Lets take the smaller of the
3824 				 * two since we are just somewhat
3825 				 * buffered.
3826 				 */
3827 				setval = rack->r_ctl.rc_gp_srtt;
3828 				if (setval > rack->r_ctl.rc_entry_gp_rtt)
3829 					setval = rack->r_ctl.rc_entry_gp_rtt;
3830 			} else {
3831 				/*
3832 				 * Here we are not highly buffered
3833 				 * and should pick the min we can to
3834 				 * keep from causing loss.
3835 				 */
3836 				setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3837 			}
3838 			rack_set_prtt_target(rack, segsiz,
3839 					     setval);
3840 		}
3841 		if (rack_probe_rtt_sets_cwnd > 1) {
3842 			/* There is a percentage here to boost */
3843 			ebdp = rack->r_ctl.rc_target_probertt_flight;
3844 			ebdp *= rack_probe_rtt_sets_cwnd;
3845 			ebdp /= 100;
3846 			setto = rack->r_ctl.rc_target_probertt_flight + ebdp;
3847 		} else
3848 			setto = rack->r_ctl.rc_target_probertt_flight;
3849 		rack->rc_tp->snd_cwnd = roundup(setto, segsiz);
3850 		if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) {
3851 			/* Enforce a min */
3852 			rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs;
3853 		}
3854 		/* If we set in the cwnd also set the ssthresh point so we are in CA */
3855 		rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1);
3856 	}
3857 	rack_log_rtt_shrinks(rack,  us_cts,
3858 			     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3859 			     __LINE__, RACK_RTTS_EXITPROBE);
3860 	/* Clear times last so log has all the info */
3861 	rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max;
3862 	rack->r_ctl.rc_time_probertt_entered = us_cts;
3863 	rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3864 	rack->r_ctl.rc_time_of_last_probertt = us_cts;
3865 }
3866 
3867 static void
3868 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts)
3869 {
3870 	/* Check in on probe-rtt */
3871 	if (rack->rc_gp_filled == 0) {
3872 		/* We do not do p-rtt unless we have gp measurements */
3873 		return;
3874 	}
3875 	if (rack->in_probe_rtt) {
3876 		uint64_t no_overflow;
3877 		uint32_t endtime, must_stay;
3878 
3879 		if (rack->r_ctl.rc_went_idle_time &&
3880 		    ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) {
3881 			/*
3882 			 * We went idle during prtt, just exit now.
3883 			 */
3884 			rack_exit_probertt(rack, us_cts);
3885 		} else if (rack_probe_rtt_safety_val &&
3886 		    TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) &&
3887 		    ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) {
3888 			/*
3889 			 * Probe RTT safety value triggered!
3890 			 */
3891 			rack_log_rtt_shrinks(rack,  us_cts,
3892 					     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3893 					     __LINE__, RACK_RTTS_SAFETY);
3894 			rack_exit_probertt(rack, us_cts);
3895 		}
3896 		/* Calculate the max we will wait */
3897 		endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait);
3898 		if (rack->rc_highly_buffered)
3899 			endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp);
3900 		/* Calculate the min we must wait */
3901 		must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain);
3902 		if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) &&
3903 		    TSTMP_LT(us_cts, endtime)) {
3904 			uint32_t calc;
3905 			/* Do we lower more? */
3906 no_exit:
3907 			if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered))
3908 				calc = us_cts - rack->r_ctl.rc_time_probertt_entered;
3909 			else
3910 				calc = 0;
3911 			calc /= max(rack->r_ctl.rc_gp_srtt, 1);
3912 			if (calc) {
3913 				/* Maybe */
3914 				calc *= rack_per_of_gp_probertt_reduce;
3915 				rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc;
3916 				/* Limit it too */
3917 				if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh)
3918 					rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh;
3919 			}
3920 			/* We must reach target or the time set */
3921 			return;
3922 		}
3923 		if (rack->r_ctl.rc_time_probertt_starts == 0) {
3924 			if ((TSTMP_LT(us_cts, must_stay) &&
3925 			     rack->rc_highly_buffered) ||
3926 			     (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) >
3927 			      rack->r_ctl.rc_target_probertt_flight)) {
3928 				/* We are not past the must_stay time */
3929 				goto no_exit;
3930 			}
3931 			rack_log_rtt_shrinks(rack,  us_cts,
3932 					     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3933 					     __LINE__, RACK_RTTS_REACHTARGET);
3934 			rack->r_ctl.rc_time_probertt_starts = us_cts;
3935 			if (rack->r_ctl.rc_time_probertt_starts == 0)
3936 				rack->r_ctl.rc_time_probertt_starts = 1;
3937 			/* Restore back to our rate we want to pace at in prtt */
3938 			rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3939 		}
3940 		/*
3941 		 * Setup our end time, some number of gp_srtts plus 200ms.
3942 		 */
3943 		no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt *
3944 			       (uint64_t)rack_probertt_gpsrtt_cnt_mul);
3945 		if (rack_probertt_gpsrtt_cnt_div)
3946 			endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div);
3947 		else
3948 			endtime = 0;
3949 		endtime += rack_min_probertt_hold;
3950 		endtime += rack->r_ctl.rc_time_probertt_starts;
3951 		if (TSTMP_GEQ(us_cts,  endtime)) {
3952 			/* yes, exit probertt */
3953 			rack_exit_probertt(rack, us_cts);
3954 		}
3955 
3956 	} else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) {
3957 		/* Go into probertt, its been too long since we went lower */
3958 		rack_enter_probertt(rack, us_cts);
3959 	}
3960 }
3961 
3962 static void
3963 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est,
3964 		       uint32_t rtt, int32_t rtt_diff)
3965 {
3966 	uint64_t cur_bw, up_bnd, low_bnd, subfr;
3967 	uint32_t losses;
3968 
3969 	if ((rack->rc_gp_dyn_mul == 0) ||
3970 	    (rack->use_fixed_rate) ||
3971 	    (rack->in_probe_rtt) ||
3972 	    (rack->rc_always_pace == 0)) {
3973 		/* No dynamic GP multipler in play */
3974 		return;
3975 	}
3976 	losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start;
3977 	cur_bw = rack_get_bw(rack);
3978 	/* Calculate our up and down range */
3979 	up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up;
3980 	up_bnd /= 100;
3981 	up_bnd += rack->r_ctl.last_gp_comp_bw;
3982 
3983 	subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down;
3984 	subfr /= 100;
3985 	low_bnd = rack->r_ctl.last_gp_comp_bw - subfr;
3986 	if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) {
3987 		/*
3988 		 * This is the case where our RTT is above
3989 		 * the max target and we have been configured
3990 		 * to just do timely no bonus up stuff in that case.
3991 		 *
3992 		 * There are two configurations, set to 1, and we
3993 		 * just do timely if we are over our max. If its
3994 		 * set above 1 then we slam the multipliers down
3995 		 * to 100 and then decrement per timely.
3996 		 */
3997 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3998 				__LINE__, 3);
3999 		if (rack->r_ctl.rc_no_push_at_mrtt > 1)
4000 			rack_validate_multipliers_at_or_below_100(rack);
4001 		rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
4002 	} else if ((last_bw_est < low_bnd) && !losses) {
4003 		/*
4004 		 * We are decreasing this is a bit complicated this
4005 		 * means we are loosing ground. This could be
4006 		 * because another flow entered and we are competing
4007 		 * for b/w with it. This will push the RTT up which
4008 		 * makes timely unusable unless we want to get shoved
4009 		 * into a corner and just be backed off (the age
4010 		 * old problem with delay based CC).
4011 		 *
4012 		 * On the other hand if it was a route change we
4013 		 * would like to stay somewhat contained and not
4014 		 * blow out the buffers.
4015 		 */
4016 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
4017 				__LINE__, 3);
4018 		rack->r_ctl.last_gp_comp_bw = cur_bw;
4019 		if (rack->rc_gp_bwred == 0) {
4020 			/* Go into reduction counting */
4021 			rack->rc_gp_bwred = 1;
4022 			rack->rc_gp_timely_dec_cnt = 0;
4023 		}
4024 		if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) ||
4025 		    (timely_says == 0)) {
4026 			/*
4027 			 * Push another time with a faster pacing
4028 			 * to try to gain back (we include override to
4029 			 * get a full raise factor).
4030 			 */
4031 			if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) ||
4032 			    (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) ||
4033 			    (timely_says == 0) ||
4034 			    (rack_down_raise_thresh == 0)) {
4035 				/*
4036 				 * Do an override up in b/w if we were
4037 				 * below the threshold or if the threshold
4038 				 * is zero we always do the raise.
4039 				 */
4040 				rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1);
4041 			} else {
4042 				/* Log it stays the same */
4043 				rack_log_timely(rack,  0, last_bw_est, low_bnd, 0,
4044 						__LINE__, 11);
4045 			}
4046 			rack->rc_gp_timely_dec_cnt++;
4047 			/* We are not incrementing really no-count */
4048 			rack->rc_gp_incr = 0;
4049 			rack->rc_gp_timely_inc_cnt = 0;
4050 		} else {
4051 			/*
4052 			 * Lets just use the RTT
4053 			 * information and give up
4054 			 * pushing.
4055 			 */
4056 			goto use_timely;
4057 		}
4058 	} else if ((timely_says != 2) &&
4059 		    !losses &&
4060 		    (last_bw_est > up_bnd)) {
4061 		/*
4062 		 * We are increasing b/w lets keep going, updating
4063 		 * our b/w and ignoring any timely input, unless
4064 		 * of course we are at our max raise (if there is one).
4065 		 */
4066 
4067 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
4068 				__LINE__, 3);
4069 		rack->r_ctl.last_gp_comp_bw = cur_bw;
4070 		if (rack->rc_gp_saw_ss &&
4071 		    rack_per_upper_bound_ss &&
4072 		     (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) {
4073 			    /*
4074 			     * In cases where we can't go higher
4075 			     * we should just use timely.
4076 			     */
4077 			    goto use_timely;
4078 		}
4079 		if (rack->rc_gp_saw_ca &&
4080 		    rack_per_upper_bound_ca &&
4081 		    (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) {
4082 			    /*
4083 			     * In cases where we can't go higher
4084 			     * we should just use timely.
4085 			     */
4086 			    goto use_timely;
4087 		}
4088 		rack->rc_gp_bwred = 0;
4089 		rack->rc_gp_timely_dec_cnt = 0;
4090 		/* You get a set number of pushes if timely is trying to reduce */
4091 		if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) {
4092 			rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
4093 		} else {
4094 			/* Log it stays the same */
4095 			rack_log_timely(rack,  0, last_bw_est, up_bnd, 0,
4096 			    __LINE__, 12);
4097 		}
4098 		return;
4099 	} else {
4100 		/*
4101 		 * We are staying between the lower and upper range bounds
4102 		 * so use timely to decide.
4103 		 */
4104 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
4105 				__LINE__, 3);
4106 use_timely:
4107 		if (timely_says) {
4108 			rack->rc_gp_incr = 0;
4109 			rack->rc_gp_timely_inc_cnt = 0;
4110 			if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) &&
4111 			    !losses &&
4112 			    (last_bw_est < low_bnd)) {
4113 				/* We are loosing ground */
4114 				rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
4115 				rack->rc_gp_timely_dec_cnt++;
4116 				/* We are not incrementing really no-count */
4117 				rack->rc_gp_incr = 0;
4118 				rack->rc_gp_timely_inc_cnt = 0;
4119 			} else
4120 				rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
4121 		} else {
4122 			rack->rc_gp_bwred = 0;
4123 			rack->rc_gp_timely_dec_cnt = 0;
4124 			rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
4125 		}
4126 	}
4127 }
4128 
4129 static int32_t
4130 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt)
4131 {
4132 	int32_t timely_says;
4133 	uint64_t log_mult, log_rtt_a_diff;
4134 
4135 	log_rtt_a_diff = rtt;
4136 	log_rtt_a_diff <<= 32;
4137 	log_rtt_a_diff |= (uint32_t)rtt_diff;
4138 	if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) *
4139 		    rack_gp_rtt_maxmul)) {
4140 		/* Reduce the b/w multipler */
4141 		timely_says = 2;
4142 		log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
4143 		log_mult <<= 32;
4144 		log_mult |= prev_rtt;
4145 		rack_log_timely(rack,  timely_says, log_mult,
4146 				get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
4147 				log_rtt_a_diff, __LINE__, 4);
4148 	} else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
4149 			   ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
4150 			    max(rack_gp_rtt_mindiv , 1)))) {
4151 		/* Increase the b/w multipler */
4152 		log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
4153 			((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
4154 			 max(rack_gp_rtt_mindiv , 1));
4155 		log_mult <<= 32;
4156 		log_mult |= prev_rtt;
4157 		timely_says = 0;
4158 		rack_log_timely(rack,  timely_says, log_mult ,
4159 				get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
4160 				log_rtt_a_diff, __LINE__, 5);
4161 	} else {
4162 		/*
4163 		 * Use a gradient to find it the timely gradient
4164 		 * is:
4165 		 * grad = rc_rtt_diff / min_rtt;
4166 		 *
4167 		 * anything below or equal to 0 will be
4168 		 * a increase indication. Anything above
4169 		 * zero is a decrease. Note we take care
4170 		 * of the actual gradient calculation
4171 		 * in the reduction (its not needed for
4172 		 * increase).
4173 		 */
4174 		log_mult = prev_rtt;
4175 		if (rtt_diff <= 0) {
4176 			/*
4177 			 * Rttdiff is less than zero, increase the
4178 			 * b/w multipler (its 0 or negative)
4179 			 */
4180 			timely_says = 0;
4181 			rack_log_timely(rack,  timely_says, log_mult,
4182 					get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6);
4183 		} else {
4184 			/* Reduce the b/w multipler */
4185 			timely_says = 1;
4186 			rack_log_timely(rack,  timely_says, log_mult,
4187 					get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7);
4188 		}
4189 	}
4190 	return (timely_says);
4191 }
4192 
4193 static void
4194 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
4195 			    tcp_seq th_ack, int line, uint8_t quality)
4196 {
4197 	uint64_t tim, bytes_ps, ltim, stim, utim;
4198 	uint32_t segsiz, bytes, reqbytes, us_cts;
4199 	int32_t gput, new_rtt_diff, timely_says;
4200 	uint64_t  resid_bw, subpart = 0, addpart = 0, srtt;
4201 	int did_add = 0;
4202 
4203 	us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4204 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
4205 	if (TSTMP_GEQ(us_cts, tp->gput_ts))
4206 		tim = us_cts - tp->gput_ts;
4207 	else
4208 		tim = 0;
4209 	if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts)
4210 		stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts;
4211 	else
4212 		stim = 0;
4213 	/*
4214 	 * Use the larger of the send time or ack time. This prevents us
4215 	 * from being influenced by ack artifacts to come up with too
4216 	 * high of measurement. Note that since we are spanning over many more
4217 	 * bytes in most of our measurements hopefully that is less likely to
4218 	 * occur.
4219 	 */
4220 	if (tim > stim)
4221 		utim = max(tim, 1);
4222 	else
4223 		utim = max(stim, 1);
4224 	/* Lets get a msec time ltim too for the old stuff */
4225 	ltim = max(1, (utim / HPTS_USEC_IN_MSEC));
4226 	gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim;
4227 	reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz));
4228 	if ((tim == 0) && (stim == 0)) {
4229 		/*
4230 		 * Invalid measurement time, maybe
4231 		 * all on one ack/one send?
4232 		 */
4233 		bytes = 0;
4234 		bytes_ps = 0;
4235 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4236 					   0, 0, 0, 10, __LINE__, NULL, quality);
4237 		goto skip_measurement;
4238 	}
4239 	if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) {
4240 		/* We never made a us_rtt measurement? */
4241 		bytes = 0;
4242 		bytes_ps = 0;
4243 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4244 					   0, 0, 0, 10, __LINE__, NULL, quality);
4245 		goto skip_measurement;
4246 	}
4247 	/*
4248 	 * Calculate the maximum possible b/w this connection
4249 	 * could have. We base our calculation on the lowest
4250 	 * rtt we have seen during the measurement and the
4251 	 * largest rwnd the client has given us in that time. This
4252 	 * forms a BDP that is the maximum that we could ever
4253 	 * get to the client. Anything larger is not valid.
4254 	 *
4255 	 * I originally had code here that rejected measurements
4256 	 * where the time was less than 1/2 the latest us_rtt.
4257 	 * But after thinking on that I realized its wrong since
4258 	 * say you had a 150Mbps or even 1Gbps link, and you
4259 	 * were a long way away.. example I am in Europe (100ms rtt)
4260 	 * talking to my 1Gbps link in S.C. Now measuring say 150,000
4261 	 * bytes my time would be 1.2ms, and yet my rtt would say
4262 	 * the measurement was invalid the time was < 50ms. The
4263 	 * same thing is true for 150Mb (8ms of time).
4264 	 *
4265 	 * A better way I realized is to look at what the maximum
4266 	 * the connection could possibly do. This is gated on
4267 	 * the lowest RTT we have seen and the highest rwnd.
4268 	 * We should in theory never exceed that, if we are
4269 	 * then something on the path is storing up packets
4270 	 * and then feeding them all at once to our endpoint
4271 	 * messing up our measurement.
4272 	 */
4273 	rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd;
4274 	rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC;
4275 	rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt;
4276 	if (SEQ_LT(th_ack, tp->gput_seq)) {
4277 		/* No measurement can be made */
4278 		bytes = 0;
4279 		bytes_ps = 0;
4280 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4281 					   0, 0, 0, 10, __LINE__, NULL, quality);
4282 		goto skip_measurement;
4283 	} else
4284 		bytes = (th_ack - tp->gput_seq);
4285 	bytes_ps = (uint64_t)bytes;
4286 	/*
4287 	 * Don't measure a b/w for pacing unless we have gotten at least
4288 	 * an initial windows worth of data in this measurement interval.
4289 	 *
4290 	 * Small numbers of bytes get badly influenced by delayed ack and
4291 	 * other artifacts. Note we take the initial window or our
4292 	 * defined minimum GP (defaulting to 10 which hopefully is the
4293 	 * IW).
4294 	 */
4295 	if (rack->rc_gp_filled == 0) {
4296 		/*
4297 		 * The initial estimate is special. We
4298 		 * have blasted out an IW worth of packets
4299 		 * without a real valid ack ts results. We
4300 		 * then setup the app_limited_needs_set flag,
4301 		 * this should get the first ack in (probably 2
4302 		 * MSS worth) to be recorded as the timestamp.
4303 		 * We thus allow a smaller number of bytes i.e.
4304 		 * IW - 2MSS.
4305 		 */
4306 		reqbytes -= (2 * segsiz);
4307 		/* Also lets fill previous for our first measurement to be neutral */
4308 		rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4309 	}
4310 	if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) {
4311 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4312 					   rack->r_ctl.rc_app_limited_cnt,
4313 					   0, 0, 10, __LINE__, NULL, quality);
4314 		goto skip_measurement;
4315 	}
4316 	/*
4317 	 * We now need to calculate the Timely like status so
4318 	 * we can update (possibly) the b/w multipliers.
4319 	 */
4320 	new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt;
4321 	if (rack->rc_gp_filled == 0) {
4322 		/* No previous reading */
4323 		rack->r_ctl.rc_rtt_diff = new_rtt_diff;
4324 	} else {
4325 		if (rack->measure_saw_probe_rtt == 0) {
4326 			/*
4327 			 * We don't want a probertt to be counted
4328 			 * since it will be negative incorrectly. We
4329 			 * expect to be reducing the RTT when we
4330 			 * pace at a slower rate.
4331 			 */
4332 			rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8);
4333 			rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8);
4334 		}
4335 	}
4336 	timely_says = rack_make_timely_judgement(rack,
4337 		rack->r_ctl.rc_gp_srtt,
4338 		rack->r_ctl.rc_rtt_diff,
4339 	        rack->r_ctl.rc_prev_gp_srtt
4340 		);
4341 	bytes_ps *= HPTS_USEC_IN_SEC;
4342 	bytes_ps /= utim;
4343 	if (bytes_ps > rack->r_ctl.last_max_bw) {
4344 		/*
4345 		 * Something is on path playing
4346 		 * since this b/w is not possible based
4347 		 * on our BDP (highest rwnd and lowest rtt
4348 		 * we saw in the measurement window).
4349 		 *
4350 		 * Another option here would be to
4351 		 * instead skip the measurement.
4352 		 */
4353 		rack_log_pacing_delay_calc(rack, bytes, reqbytes,
4354 					   bytes_ps, rack->r_ctl.last_max_bw, 0,
4355 					   11, __LINE__, NULL, quality);
4356 		bytes_ps = rack->r_ctl.last_max_bw;
4357 	}
4358 	/* We store gp for b/w in bytes per second */
4359 	if (rack->rc_gp_filled == 0) {
4360 		/* Initial measurment */
4361 		if (bytes_ps) {
4362 			rack->r_ctl.gp_bw = bytes_ps;
4363 			rack->rc_gp_filled = 1;
4364 			rack->r_ctl.num_measurements = 1;
4365 			rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
4366 		} else {
4367 			rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4368 						   rack->r_ctl.rc_app_limited_cnt,
4369 						   0, 0, 10, __LINE__, NULL, quality);
4370 		}
4371 		if (rack->rc_inp->inp_in_hpts &&
4372 		    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
4373 			/*
4374 			 * Ok we can't trust the pacer in this case
4375 			 * where we transition from un-paced to paced.
4376 			 * Or for that matter when the burst mitigation
4377 			 * was making a wild guess and got it wrong.
4378 			 * Stop the pacer and clear up all the aggregate
4379 			 * delays etc.
4380 			 */
4381 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
4382 			rack->r_ctl.rc_hpts_flags = 0;
4383 			rack->r_ctl.rc_last_output_to = 0;
4384 		}
4385 		did_add = 2;
4386 	} else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) {
4387 		/* Still a small number run an average */
4388 		rack->r_ctl.gp_bw += bytes_ps;
4389 		addpart = rack->r_ctl.num_measurements;
4390 		rack->r_ctl.num_measurements++;
4391 		if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
4392 			/* We have collected enought to move forward */
4393 			rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements;
4394 		}
4395 		did_add = 3;
4396 	} else {
4397 		/*
4398 		 * We want to take 1/wma of the goodput and add in to 7/8th
4399 		 * of the old value weighted by the srtt. So if your measurement
4400 		 * period is say 2 SRTT's long you would get 1/4 as the
4401 		 * value, if it was like 1/2 SRTT then you would get 1/16th.
4402 		 *
4403 		 * But we must be careful not to take too much i.e. if the
4404 		 * srtt is say 20ms and the measurement is taken over
4405 		 * 400ms our weight would be 400/20 i.e. 20. On the
4406 		 * other hand if we get a measurement over 1ms with a
4407 		 * 10ms rtt we only want to take a much smaller portion.
4408 		 */
4409 		if (rack->r_ctl.num_measurements < 0xff) {
4410 			rack->r_ctl.num_measurements++;
4411 		}
4412 		srtt = (uint64_t)tp->t_srtt;
4413 		if (srtt == 0) {
4414 			/*
4415 			 * Strange why did t_srtt go back to zero?
4416 			 */
4417 			if (rack->r_ctl.rc_rack_min_rtt)
4418 				srtt = rack->r_ctl.rc_rack_min_rtt;
4419 			else
4420 				srtt = HPTS_USEC_IN_MSEC;
4421 		}
4422 		/*
4423 		 * XXXrrs: Note for reviewers, in playing with
4424 		 * dynamic pacing I discovered this GP calculation
4425 		 * as done originally leads to some undesired results.
4426 		 * Basically you can get longer measurements contributing
4427 		 * too much to the WMA. Thus I changed it if you are doing
4428 		 * dynamic adjustments to only do the aportioned adjustment
4429 		 * if we have a very small (time wise) measurement. Longer
4430 		 * measurements just get there weight (defaulting to 1/8)
4431 		 * add to the WMA. We may want to think about changing
4432 		 * this to always do that for both sides i.e. dynamic
4433 		 * and non-dynamic... but considering lots of folks
4434 		 * were playing with this I did not want to change the
4435 		 * calculation per.se. without your thoughts.. Lawerence?
4436 		 * Peter??
4437 		 */
4438 		if (rack->rc_gp_dyn_mul == 0) {
4439 			subpart = rack->r_ctl.gp_bw * utim;
4440 			subpart /= (srtt * 8);
4441 			if (subpart < (rack->r_ctl.gp_bw / 2)) {
4442 				/*
4443 				 * The b/w update takes no more
4444 				 * away then 1/2 our running total
4445 				 * so factor it in.
4446 				 */
4447 				addpart = bytes_ps * utim;
4448 				addpart /= (srtt * 8);
4449 			} else {
4450 				/*
4451 				 * Don't allow a single measurement
4452 				 * to account for more than 1/2 of the
4453 				 * WMA. This could happen on a retransmission
4454 				 * where utim becomes huge compared to
4455 				 * srtt (multiple retransmissions when using
4456 				 * the sending rate which factors in all the
4457 				 * transmissions from the first one).
4458 				 */
4459 				subpart = rack->r_ctl.gp_bw / 2;
4460 				addpart = bytes_ps / 2;
4461 			}
4462 			resid_bw = rack->r_ctl.gp_bw - subpart;
4463 			rack->r_ctl.gp_bw = resid_bw + addpart;
4464 			did_add = 1;
4465 		} else {
4466 			if ((utim / srtt) <= 1) {
4467 				/*
4468 				 * The b/w update was over a small period
4469 				 * of time. The idea here is to prevent a small
4470 				 * measurement time period from counting
4471 				 * too much. So we scale it based on the
4472 				 * time so it attributes less than 1/rack_wma_divisor
4473 				 * of its measurement.
4474 				 */
4475 				subpart = rack->r_ctl.gp_bw * utim;
4476 				subpart /= (srtt * rack_wma_divisor);
4477 				addpart = bytes_ps * utim;
4478 				addpart /= (srtt * rack_wma_divisor);
4479 			} else {
4480 				/*
4481 				 * The scaled measurement was long
4482 				 * enough so lets just add in the
4483 				 * portion of the measurment i.e. 1/rack_wma_divisor
4484 				 */
4485 				subpart = rack->r_ctl.gp_bw / rack_wma_divisor;
4486 				addpart = bytes_ps / rack_wma_divisor;
4487 			}
4488 			if ((rack->measure_saw_probe_rtt == 0) ||
4489 		            (bytes_ps > rack->r_ctl.gp_bw)) {
4490 				/*
4491 				 * For probe-rtt we only add it in
4492 				 * if its larger, all others we just
4493 				 * add in.
4494 				 */
4495 				did_add = 1;
4496 				resid_bw = rack->r_ctl.gp_bw - subpart;
4497 				rack->r_ctl.gp_bw = resid_bw + addpart;
4498 			}
4499 		}
4500 	}
4501 	if ((rack->gp_ready == 0) &&
4502 	    (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
4503 		/* We have enough measurements now */
4504 		rack->gp_ready = 1;
4505 		rack_set_cc_pacing(rack);
4506 		if (rack->defer_options)
4507 			rack_apply_deferred_options(rack);
4508 	}
4509 	rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim,
4510 				   rack_get_bw(rack), 22, did_add, NULL, quality);
4511 	/* We do not update any multipliers if we are in or have seen a probe-rtt */
4512 	if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set)
4513 		rack_update_multiplier(rack, timely_says, bytes_ps,
4514 				       rack->r_ctl.rc_gp_srtt,
4515 				       rack->r_ctl.rc_rtt_diff);
4516 	rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim,
4517 				   rack_get_bw(rack), 3, line, NULL, quality);
4518 	/* reset the gp srtt and setup the new prev */
4519 	rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4520 	/* Record the lost count for the next measurement */
4521 	rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count;
4522 	/*
4523 	 * We restart our diffs based on the gpsrtt in the
4524 	 * measurement window.
4525 	 */
4526 	rack->rc_gp_rtt_set = 0;
4527 	rack->rc_gp_saw_rec = 0;
4528 	rack->rc_gp_saw_ca = 0;
4529 	rack->rc_gp_saw_ss = 0;
4530 	rack->rc_dragged_bottom = 0;
4531 skip_measurement:
4532 
4533 #ifdef STATS
4534 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
4535 				 gput);
4536 	/*
4537 	 * XXXLAS: This is a temporary hack, and should be
4538 	 * chained off VOI_TCP_GPUT when stats(9) grows an
4539 	 * API to deal with chained VOIs.
4540 	 */
4541 	if (tp->t_stats_gput_prev > 0)
4542 		stats_voi_update_abs_s32(tp->t_stats,
4543 					 VOI_TCP_GPUT_ND,
4544 					 ((gput - tp->t_stats_gput_prev) * 100) /
4545 					 tp->t_stats_gput_prev);
4546 #endif
4547 	tp->t_flags &= ~TF_GPUTINPROG;
4548 	tp->t_stats_gput_prev = gput;
4549 	/*
4550 	 * Now are we app limited now and there is space from where we
4551 	 * were to where we want to go?
4552 	 *
4553 	 * We don't do the other case i.e. non-applimited here since
4554 	 * the next send will trigger us picking up the missing data.
4555 	 */
4556 	if (rack->r_ctl.rc_first_appl &&
4557 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
4558 	    rack->r_ctl.rc_app_limited_cnt &&
4559 	    (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) &&
4560 	    ((rack->r_ctl.rc_first_appl->r_end - th_ack) >
4561 	     max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
4562 		/*
4563 		 * Yep there is enough outstanding to make a measurement here.
4564 		 */
4565 		struct rack_sendmap *rsm, fe;
4566 
4567 		rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
4568 		rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
4569 		tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4570 		rack->app_limited_needs_set = 0;
4571 		tp->gput_seq = th_ack;
4572 		if (rack->in_probe_rtt)
4573 			rack->measure_saw_probe_rtt = 1;
4574 		else if ((rack->measure_saw_probe_rtt) &&
4575 			 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
4576 			rack->measure_saw_probe_rtt = 0;
4577 		if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) {
4578 			/* There is a full window to gain info from */
4579 			tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
4580 		} else {
4581 			/* We can only measure up to the applimited point */
4582 			tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack);
4583 			if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
4584 				/*
4585 				 * We don't have enough to make a measurement.
4586 				 */
4587 				tp->t_flags &= ~TF_GPUTINPROG;
4588 				rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
4589 							   0, 0, 0, 6, __LINE__, NULL, quality);
4590 				return;
4591 			}
4592 		}
4593 		if (tp->t_state >= TCPS_FIN_WAIT_1) {
4594 			/*
4595 			 * We will get no more data into the SB
4596 			 * this means we need to have the data available
4597 			 * before we start a measurement.
4598 			 */
4599 			if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < (tp->gput_ack - tp->gput_seq)) {
4600 				/* Nope not enough data. */
4601 				return;
4602 			}
4603 		}
4604 		tp->t_flags |= TF_GPUTINPROG;
4605 		/*
4606 		 * Now we need to find the timestamp of the send at tp->gput_seq
4607 		 * for the send based measurement.
4608 		 */
4609 		fe.r_start = tp->gput_seq;
4610 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4611 		if (rsm) {
4612 			/* Ok send-based limit is set */
4613 			if (SEQ_LT(rsm->r_start, tp->gput_seq)) {
4614 				/*
4615 				 * Move back to include the earlier part
4616 				 * so our ack time lines up right (this may
4617 				 * make an overlapping measurement but thats
4618 				 * ok).
4619 				 */
4620 				tp->gput_seq = rsm->r_start;
4621 			}
4622 			if (rsm->r_flags & RACK_ACKED)
4623 				tp->gput_ts = (uint32_t)rsm->r_ack_arrival;
4624 			else
4625 				rack->app_limited_needs_set = 1;
4626 			rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
4627 		} else {
4628 			/*
4629 			 * If we don't find the rsm due to some
4630 			 * send-limit set the current time, which
4631 			 * basically disables the send-limit.
4632 			 */
4633 			struct timeval tv;
4634 
4635 			microuptime(&tv);
4636 			rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
4637 		}
4638 		rack_log_pacing_delay_calc(rack,
4639 					   tp->gput_seq,
4640 					   tp->gput_ack,
4641 					   (uint64_t)rsm,
4642 					   tp->gput_ts,
4643 					   rack->r_ctl.rc_app_limited_cnt,
4644 					   9,
4645 					   __LINE__, NULL, quality);
4646 	}
4647 }
4648 
4649 /*
4650  * CC wrapper hook functions
4651  */
4652 static void
4653 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs,
4654     uint16_t type, int32_t recovery)
4655 {
4656 	uint32_t prior_cwnd, acked;
4657 	struct tcp_log_buffer *lgb = NULL;
4658 	uint8_t labc_to_use, quality;
4659 
4660 	INP_WLOCK_ASSERT(tp->t_inpcb);
4661 	tp->ccv->nsegs = nsegs;
4662 	acked = tp->ccv->bytes_this_ack = (th_ack - tp->snd_una);
4663 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
4664 		uint32_t max;
4665 
4666 		max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
4667 		if (tp->ccv->bytes_this_ack > max) {
4668 			tp->ccv->bytes_this_ack = max;
4669 		}
4670 	}
4671 #ifdef STATS
4672 	stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
4673 	    ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd);
4674 #endif
4675 	quality = RACK_QUALITY_NONE;
4676 	if ((tp->t_flags & TF_GPUTINPROG) &&
4677 	    rack_enough_for_measurement(tp, rack, th_ack, &quality)) {
4678 		/* Measure the Goodput */
4679 		rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality);
4680 #ifdef NETFLIX_PEAKRATE
4681 		if ((type == CC_ACK) &&
4682 		    (tp->t_maxpeakrate)) {
4683 			/*
4684 			 * We update t_peakrate_thr. This gives us roughly
4685 			 * one update per round trip time. Note
4686 			 * it will only be used if pace_always is off i.e
4687 			 * we don't do this for paced flows.
4688 			 */
4689 			rack_update_peakrate_thr(tp);
4690 		}
4691 #endif
4692 	}
4693 	/* Which way our we limited, if not cwnd limited no advance in CA */
4694 	if (tp->snd_cwnd <= tp->snd_wnd)
4695 		tp->ccv->flags |= CCF_CWND_LIMITED;
4696 	else
4697 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
4698 	if (tp->snd_cwnd > tp->snd_ssthresh) {
4699 		tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
4700 			 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
4701 		/* For the setting of a window past use the actual scwnd we are using */
4702 		if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) {
4703 			tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use;
4704 			tp->ccv->flags |= CCF_ABC_SENTAWND;
4705 		}
4706 	} else {
4707 		tp->ccv->flags &= ~CCF_ABC_SENTAWND;
4708 		tp->t_bytes_acked = 0;
4709 	}
4710 	prior_cwnd = tp->snd_cwnd;
4711 	if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec ||
4712 	    (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf)))
4713 		labc_to_use = rack->rc_labc;
4714 	else
4715 		labc_to_use = rack_max_abc_post_recovery;
4716 	if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
4717 		union tcp_log_stackspecific log;
4718 		struct timeval tv;
4719 
4720 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4721 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4722 		log.u_bbr.flex1 = th_ack;
4723 		log.u_bbr.flex2 = tp->ccv->flags;
4724 		log.u_bbr.flex3 = tp->ccv->bytes_this_ack;
4725 		log.u_bbr.flex4 = tp->ccv->nsegs;
4726 		log.u_bbr.flex5 = labc_to_use;
4727 		log.u_bbr.flex6 = prior_cwnd;
4728 		log.u_bbr.flex7 = V_tcp_do_newsack;
4729 		log.u_bbr.flex8 = 1;
4730 		lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4731 				     0, &log, false, NULL, NULL, 0, &tv);
4732 	}
4733 	if (CC_ALGO(tp)->ack_received != NULL) {
4734 		/* XXXLAS: Find a way to live without this */
4735 		tp->ccv->curack = th_ack;
4736 		tp->ccv->labc = labc_to_use;
4737 		tp->ccv->flags |= CCF_USE_LOCAL_ABC;
4738 		CC_ALGO(tp)->ack_received(tp->ccv, type);
4739 	}
4740 	if (lgb) {
4741 		lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd;
4742 	}
4743 	if (rack->r_must_retran) {
4744 		if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) {
4745 			/*
4746 			 * We now are beyond the rxt point so lets disable
4747 			 * the flag.
4748 			 */
4749 			rack->r_ctl.rc_out_at_rto = 0;
4750 			rack->r_must_retran = 0;
4751 		} else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) {
4752 			/*
4753 			 * Only decrement the rc_out_at_rto if the cwnd advances
4754 			 * at least a whole segment. Otherwise next time the peer
4755 			 * acks, we won't be able to send this generaly happens
4756 			 * when we are in Congestion Avoidance.
4757 			 */
4758 			if (acked <= rack->r_ctl.rc_out_at_rto){
4759 				rack->r_ctl.rc_out_at_rto -= acked;
4760 			} else {
4761 				rack->r_ctl.rc_out_at_rto = 0;
4762 			}
4763 		}
4764 	}
4765 #ifdef STATS
4766 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use);
4767 #endif
4768 	if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) {
4769 		rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use;
4770 	}
4771 #ifdef NETFLIX_PEAKRATE
4772 	/* we enforce max peak rate if it is set and we are not pacing */
4773 	if ((rack->rc_always_pace == 0) &&
4774 	    tp->t_peakrate_thr &&
4775 	    (tp->snd_cwnd > tp->t_peakrate_thr)) {
4776 		tp->snd_cwnd = tp->t_peakrate_thr;
4777 	}
4778 #endif
4779 }
4780 
4781 static void
4782 tcp_rack_partialack(struct tcpcb *tp)
4783 {
4784 	struct tcp_rack *rack;
4785 
4786 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4787 	INP_WLOCK_ASSERT(tp->t_inpcb);
4788 	/*
4789 	 * If we are doing PRR and have enough
4790 	 * room to send <or> we are pacing and prr
4791 	 * is disabled we will want to see if we
4792 	 * can send data (by setting r_wanted_output to
4793 	 * true).
4794 	 */
4795 	if ((rack->r_ctl.rc_prr_sndcnt > 0) ||
4796 	    rack->rack_no_prr)
4797 		rack->r_wanted_output = 1;
4798 }
4799 
4800 static void
4801 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack)
4802 {
4803 	struct tcp_rack *rack;
4804 	uint32_t orig_cwnd;
4805 
4806 	orig_cwnd = tp->snd_cwnd;
4807 	INP_WLOCK_ASSERT(tp->t_inpcb);
4808 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4809 	/* only alert CC if we alerted when we entered */
4810 	if (CC_ALGO(tp)->post_recovery != NULL) {
4811 		tp->ccv->curack = th_ack;
4812 		CC_ALGO(tp)->post_recovery(tp->ccv);
4813 		if (tp->snd_cwnd < tp->snd_ssthresh) {
4814 			/*
4815 			 * Rack has burst control and pacing
4816 			 * so lets not set this any lower than
4817 			 * snd_ssthresh per RFC-6582 (option 2).
4818 			 */
4819 			tp->snd_cwnd = tp->snd_ssthresh;
4820 		}
4821 	}
4822 	if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
4823 		union tcp_log_stackspecific log;
4824 		struct timeval tv;
4825 
4826 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4827 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4828 		log.u_bbr.flex1 = th_ack;
4829 		log.u_bbr.flex2 = tp->ccv->flags;
4830 		log.u_bbr.flex3 = tp->ccv->bytes_this_ack;
4831 		log.u_bbr.flex4 = tp->ccv->nsegs;
4832 		log.u_bbr.flex5 = V_tcp_abc_l_var;
4833 		log.u_bbr.flex6 = orig_cwnd;
4834 		log.u_bbr.flex7 = V_tcp_do_newsack;
4835 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
4836 		log.u_bbr.flex8 = 2;
4837 		tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4838 			       0, &log, false, NULL, NULL, 0, &tv);
4839 	}
4840 	if ((rack->rack_no_prr == 0) &&
4841 	    (rack->no_prr_addback == 0) &&
4842 	    (rack->r_ctl.rc_prr_sndcnt > 0)) {
4843 		/*
4844 		 * Suck the next prr cnt back into cwnd, but
4845 		 * only do that if we are not application limited.
4846 		 */
4847 		if (ctf_outstanding(tp) <= sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
4848 			/*
4849 			 * We are allowed to add back to the cwnd the amount we did
4850 			 * not get out if:
4851 			 * a) no_prr_addback is off.
4852 			 * b) we are not app limited
4853 			 * c) we are doing prr
4854 			 * <and>
4855 			 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none).
4856 			 */
4857 			tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax),
4858 					    rack->r_ctl.rc_prr_sndcnt);
4859 		}
4860 		rack->r_ctl.rc_prr_sndcnt = 0;
4861 		rack_log_to_prr(rack, 1, 0);
4862 	}
4863 	rack_log_to_prr(rack, 14, orig_cwnd);
4864 	tp->snd_recover = tp->snd_una;
4865 	EXIT_RECOVERY(tp->t_flags);
4866 }
4867 
4868 static void
4869 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack)
4870 {
4871 	struct tcp_rack *rack;
4872 	uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd;
4873 
4874 	INP_WLOCK_ASSERT(tp->t_inpcb);
4875 #ifdef STATS
4876 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
4877 #endif
4878 	if (IN_RECOVERY(tp->t_flags) == 0) {
4879 		in_rec_at_entry = 0;
4880 		ssthresh_enter = tp->snd_ssthresh;
4881 		cwnd_enter = tp->snd_cwnd;
4882 	} else
4883 		in_rec_at_entry = 1;
4884 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4885 	switch (type) {
4886 	case CC_NDUPACK:
4887 		tp->t_flags &= ~TF_WASFRECOVERY;
4888 		tp->t_flags &= ~TF_WASCRECOVERY;
4889 		if (!IN_FASTRECOVERY(tp->t_flags)) {
4890 			rack->r_ctl.rc_prr_delivered = 0;
4891 			rack->r_ctl.rc_prr_out = 0;
4892 			if (rack->rack_no_prr == 0) {
4893 				rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4894 				rack_log_to_prr(rack, 2, in_rec_at_entry);
4895 			}
4896 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
4897 			tp->snd_recover = tp->snd_max;
4898 			if (tp->t_flags2 & TF2_ECN_PERMIT)
4899 				tp->t_flags2 |= TF2_ECN_SND_CWR;
4900 		}
4901 		break;
4902 	case CC_ECN:
4903 		if (!IN_CONGRECOVERY(tp->t_flags) ||
4904 		    /*
4905 		     * Allow ECN reaction on ACK to CWR, if
4906 		     * that data segment was also CE marked.
4907 		     */
4908 		    SEQ_GEQ(ack, tp->snd_recover)) {
4909 			EXIT_CONGRECOVERY(tp->t_flags);
4910 			KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
4911 			tp->snd_recover = tp->snd_max + 1;
4912 			if (tp->t_flags2 & TF2_ECN_PERMIT)
4913 				tp->t_flags2 |= TF2_ECN_SND_CWR;
4914 		}
4915 		break;
4916 	case CC_RTO:
4917 		tp->t_dupacks = 0;
4918 		tp->t_bytes_acked = 0;
4919 		EXIT_RECOVERY(tp->t_flags);
4920 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 /
4921 		    ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
4922 		orig_cwnd = tp->snd_cwnd;
4923 		tp->snd_cwnd = ctf_fixed_maxseg(tp);
4924 		rack_log_to_prr(rack, 16, orig_cwnd);
4925 		if (tp->t_flags2 & TF2_ECN_PERMIT)
4926 			tp->t_flags2 |= TF2_ECN_SND_CWR;
4927 		break;
4928 	case CC_RTO_ERR:
4929 		KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
4930 		/* RTO was unnecessary, so reset everything. */
4931 		tp->snd_cwnd = tp->snd_cwnd_prev;
4932 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
4933 		tp->snd_recover = tp->snd_recover_prev;
4934 		if (tp->t_flags & TF_WASFRECOVERY) {
4935 			ENTER_FASTRECOVERY(tp->t_flags);
4936 			tp->t_flags &= ~TF_WASFRECOVERY;
4937 		}
4938 		if (tp->t_flags & TF_WASCRECOVERY) {
4939 			ENTER_CONGRECOVERY(tp->t_flags);
4940 			tp->t_flags &= ~TF_WASCRECOVERY;
4941 		}
4942 		tp->snd_nxt = tp->snd_max;
4943 		tp->t_badrxtwin = 0;
4944 		break;
4945 	}
4946 	if ((CC_ALGO(tp)->cong_signal != NULL)  &&
4947 	    (type != CC_RTO)){
4948 		tp->ccv->curack = ack;
4949 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
4950 	}
4951 	if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) {
4952 		rack_log_to_prr(rack, 15, cwnd_enter);
4953 		rack->r_ctl.dsack_byte_cnt = 0;
4954 		rack->r_ctl.retran_during_recovery = 0;
4955 		rack->r_ctl.rc_cwnd_at_erec = cwnd_enter;
4956 		rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter;
4957 		rack->r_ent_rec_ns = 1;
4958 	}
4959 }
4960 
4961 static inline void
4962 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp)
4963 {
4964 	uint32_t i_cwnd;
4965 
4966 	INP_WLOCK_ASSERT(tp->t_inpcb);
4967 
4968 #ifdef NETFLIX_STATS
4969 	KMOD_TCPSTAT_INC(tcps_idle_restarts);
4970 	if (tp->t_state == TCPS_ESTABLISHED)
4971 		KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
4972 #endif
4973 	if (CC_ALGO(tp)->after_idle != NULL)
4974 		CC_ALGO(tp)->after_idle(tp->ccv);
4975 
4976 	if (tp->snd_cwnd == 1)
4977 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
4978 	else
4979 		i_cwnd = rc_init_window(rack);
4980 
4981 	/*
4982 	 * Being idle is no differnt than the initial window. If the cc
4983 	 * clamps it down below the initial window raise it to the initial
4984 	 * window.
4985 	 */
4986 	if (tp->snd_cwnd < i_cwnd) {
4987 		tp->snd_cwnd = i_cwnd;
4988 	}
4989 }
4990 
4991 /*
4992  * Indicate whether this ack should be delayed.  We can delay the ack if
4993  * following conditions are met:
4994  *	- There is no delayed ack timer in progress.
4995  *	- Our last ack wasn't a 0-sized window. We never want to delay
4996  *	  the ack that opens up a 0-sized window.
4997  *	- LRO wasn't used for this segment. We make sure by checking that the
4998  *	  segment size is not larger than the MSS.
4999  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
5000  *	  connection.
5001  */
5002 #define DELAY_ACK(tp, tlen)			 \
5003 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
5004 	((tp->t_flags & TF_DELACK) == 0) &&	 \
5005 	(tlen <= tp->t_maxseg) &&		 \
5006 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
5007 
5008 static struct rack_sendmap *
5009 rack_find_lowest_rsm(struct tcp_rack *rack)
5010 {
5011 	struct rack_sendmap *rsm;
5012 
5013 	/*
5014 	 * Walk the time-order transmitted list looking for an rsm that is
5015 	 * not acked. This will be the one that was sent the longest time
5016 	 * ago that is still outstanding.
5017 	 */
5018 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
5019 		if (rsm->r_flags & RACK_ACKED) {
5020 			continue;
5021 		}
5022 		goto finish;
5023 	}
5024 finish:
5025 	return (rsm);
5026 }
5027 
5028 static struct rack_sendmap *
5029 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
5030 {
5031 	struct rack_sendmap *prsm;
5032 
5033 	/*
5034 	 * Walk the sequence order list backward until we hit and arrive at
5035 	 * the highest seq not acked. In theory when this is called it
5036 	 * should be the last segment (which it was not).
5037 	 */
5038 	counter_u64_add(rack_find_high, 1);
5039 	prsm = rsm;
5040 	RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
5041 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
5042 			continue;
5043 		}
5044 		return (prsm);
5045 	}
5046 	return (NULL);
5047 }
5048 
5049 static uint32_t
5050 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
5051 {
5052 	int32_t lro;
5053 	uint32_t thresh;
5054 
5055 	/*
5056 	 * lro is the flag we use to determine if we have seen reordering.
5057 	 * If it gets set we have seen reordering. The reorder logic either
5058 	 * works in one of two ways:
5059 	 *
5060 	 * If reorder-fade is configured, then we track the last time we saw
5061 	 * re-ordering occur. If we reach the point where enough time as
5062 	 * passed we no longer consider reordering has occuring.
5063 	 *
5064 	 * Or if reorder-face is 0, then once we see reordering we consider
5065 	 * the connection to alway be subject to reordering and just set lro
5066 	 * to 1.
5067 	 *
5068 	 * In the end if lro is non-zero we add the extra time for
5069 	 * reordering in.
5070 	 */
5071 	if (srtt == 0)
5072 		srtt = 1;
5073 	if (rack->r_ctl.rc_reorder_ts) {
5074 		if (rack->r_ctl.rc_reorder_fade) {
5075 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
5076 				lro = cts - rack->r_ctl.rc_reorder_ts;
5077 				if (lro == 0) {
5078 					/*
5079 					 * No time as passed since the last
5080 					 * reorder, mark it as reordering.
5081 					 */
5082 					lro = 1;
5083 				}
5084 			} else {
5085 				/* Negative time? */
5086 				lro = 0;
5087 			}
5088 			if (lro > rack->r_ctl.rc_reorder_fade) {
5089 				/* Turn off reordering seen too */
5090 				rack->r_ctl.rc_reorder_ts = 0;
5091 				lro = 0;
5092 			}
5093 		} else {
5094 			/* Reodering does not fade */
5095 			lro = 1;
5096 		}
5097 	} else {
5098 		lro = 0;
5099 	}
5100 	thresh = srtt + rack->r_ctl.rc_pkt_delay;
5101 	if (lro) {
5102 		/* It must be set, if not you get 1/4 rtt */
5103 		if (rack->r_ctl.rc_reorder_shift)
5104 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
5105 		else
5106 			thresh += (srtt >> 2);
5107 	} else {
5108 		thresh += 1;
5109 	}
5110 	/* We don't let the rack timeout be above a RTO */
5111 	if (thresh > rack->rc_tp->t_rxtcur) {
5112 		thresh = rack->rc_tp->t_rxtcur;
5113 	}
5114 	/* And we don't want it above the RTO max either */
5115 	if (thresh > rack_rto_max) {
5116 		thresh = rack_rto_max;
5117 	}
5118 	return (thresh);
5119 }
5120 
5121 static uint32_t
5122 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
5123 		     struct rack_sendmap *rsm, uint32_t srtt)
5124 {
5125 	struct rack_sendmap *prsm;
5126 	uint32_t thresh, len;
5127 	int segsiz;
5128 
5129 	if (srtt == 0)
5130 		srtt = 1;
5131 	if (rack->r_ctl.rc_tlp_threshold)
5132 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
5133 	else
5134 		thresh = (srtt * 2);
5135 
5136 	/* Get the previous sent packet, if any */
5137 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
5138 	counter_u64_add(rack_enter_tlp_calc, 1);
5139 	len = rsm->r_end - rsm->r_start;
5140 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
5141 		/* Exactly like the ID */
5142 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) {
5143 			uint32_t alt_thresh;
5144 			/*
5145 			 * Compensate for delayed-ack with the d-ack time.
5146 			 */
5147 			counter_u64_add(rack_used_tlpmethod, 1);
5148 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5149 			if (alt_thresh > thresh)
5150 				thresh = alt_thresh;
5151 		}
5152 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
5153 		/* 2.1 behavior */
5154 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
5155 		if (prsm && (len <= segsiz)) {
5156 			/*
5157 			 * Two packets outstanding, thresh should be (2*srtt) +
5158 			 * possible inter-packet delay (if any).
5159 			 */
5160 			uint32_t inter_gap = 0;
5161 			int idx, nidx;
5162 
5163 			counter_u64_add(rack_used_tlpmethod, 1);
5164 			idx = rsm->r_rtr_cnt - 1;
5165 			nidx = prsm->r_rtr_cnt - 1;
5166 			if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) {
5167 				/* Yes it was sent later (or at the same time) */
5168 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
5169 			}
5170 			thresh += inter_gap;
5171 		} else if (len <= segsiz) {
5172 			/*
5173 			 * Possibly compensate for delayed-ack.
5174 			 */
5175 			uint32_t alt_thresh;
5176 
5177 			counter_u64_add(rack_used_tlpmethod2, 1);
5178 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5179 			if (alt_thresh > thresh)
5180 				thresh = alt_thresh;
5181 		}
5182 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
5183 		/* 2.2 behavior */
5184 		if (len <= segsiz) {
5185 			uint32_t alt_thresh;
5186 			/*
5187 			 * Compensate for delayed-ack with the d-ack time.
5188 			 */
5189 			counter_u64_add(rack_used_tlpmethod, 1);
5190 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5191 			if (alt_thresh > thresh)
5192 				thresh = alt_thresh;
5193 		}
5194 	}
5195 	/* Not above an RTO */
5196 	if (thresh > tp->t_rxtcur) {
5197 		thresh = tp->t_rxtcur;
5198 	}
5199 	/* Not above a RTO max */
5200 	if (thresh > rack_rto_max) {
5201 		thresh = rack_rto_max;
5202 	}
5203 	/* Apply user supplied min TLP */
5204 	if (thresh < rack_tlp_min) {
5205 		thresh = rack_tlp_min;
5206 	}
5207 	return (thresh);
5208 }
5209 
5210 static uint32_t
5211 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
5212 {
5213 	/*
5214 	 * We want the rack_rtt which is the
5215 	 * last rtt we measured. However if that
5216 	 * does not exist we fallback to the srtt (which
5217 	 * we probably will never do) and then as a last
5218 	 * resort we use RACK_INITIAL_RTO if no srtt is
5219 	 * yet set.
5220 	 */
5221 	if (rack->rc_rack_rtt)
5222 		return (rack->rc_rack_rtt);
5223 	else if (tp->t_srtt == 0)
5224 		return (RACK_INITIAL_RTO);
5225 	return (tp->t_srtt);
5226 }
5227 
5228 static struct rack_sendmap *
5229 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
5230 {
5231 	/*
5232 	 * Check to see that we don't need to fall into recovery. We will
5233 	 * need to do so if our oldest transmit is past the time we should
5234 	 * have had an ack.
5235 	 */
5236 	struct tcp_rack *rack;
5237 	struct rack_sendmap *rsm;
5238 	int32_t idx;
5239 	uint32_t srtt, thresh;
5240 
5241 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5242 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
5243 		return (NULL);
5244 	}
5245 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5246 	if (rsm == NULL)
5247 		return (NULL);
5248 
5249 	if (rsm->r_flags & RACK_ACKED) {
5250 		rsm = rack_find_lowest_rsm(rack);
5251 		if (rsm == NULL)
5252 			return (NULL);
5253 	}
5254 	idx = rsm->r_rtr_cnt - 1;
5255 	srtt = rack_grab_rtt(tp, rack);
5256 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
5257 	if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) {
5258 		return (NULL);
5259 	}
5260 	if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) {
5261 		return (NULL);
5262 	}
5263 	/* Ok if we reach here we are over-due and this guy can be sent */
5264 	if (IN_RECOVERY(tp->t_flags) == 0) {
5265 		/*
5266 		 * For the one that enters us into recovery record undo
5267 		 * info.
5268 		 */
5269 		rack->r_ctl.rc_rsm_start = rsm->r_start;
5270 		rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
5271 		rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
5272 	}
5273 	rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
5274 	return (rsm);
5275 }
5276 
5277 static uint32_t
5278 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
5279 {
5280 	int32_t t;
5281 	int32_t tt;
5282 	uint32_t ret_val;
5283 
5284 	t = (tp->t_srtt + (tp->t_rttvar << 2));
5285 	RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
5286  	    rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop);
5287 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
5288 		tp->t_rxtshift++;
5289 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
5290 	ret_val = (uint32_t)tt;
5291 	return (ret_val);
5292 }
5293 
5294 static uint32_t
5295 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
5296 {
5297 	/*
5298 	 * Start the FR timer, we do this based on getting the first one in
5299 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
5300 	 * events we need to stop the running timer (if its running) before
5301 	 * starting the new one.
5302 	 */
5303 	uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
5304 	uint32_t srtt_cur;
5305 	int32_t idx;
5306 	int32_t is_tlp_timer = 0;
5307 	struct rack_sendmap *rsm;
5308 
5309 	if (rack->t_timers_stopped) {
5310 		/* All timers have been stopped none are to run */
5311 		return (0);
5312 	}
5313 	if (rack->rc_in_persist) {
5314 		/* We can't start any timer in persists */
5315 		return (rack_get_persists_timer_val(tp, rack));
5316 	}
5317 	rack->rc_on_min_to = 0;
5318 	if ((tp->t_state < TCPS_ESTABLISHED) ||
5319 	    ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
5320 		goto activate_rxt;
5321 	}
5322 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5323 	if ((rsm == NULL) || sup_rack) {
5324 		/* Nothing on the send map or no rack */
5325 activate_rxt:
5326 		time_since_sent = 0;
5327 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5328 		if (rsm) {
5329 			/*
5330 			 * Should we discount the RTX timer any?
5331 			 *
5332 			 * We want to discount it the smallest amount.
5333 			 * If a timer (Rack/TLP or RXT) has gone off more
5334 			 * recently thats the discount we want to use (now - timer time).
5335 			 * If the retransmit of the oldest packet was more recent then
5336 			 * we want to use that (now - oldest-packet-last_transmit_time).
5337 			 *
5338 			 */
5339 			idx = rsm->r_rtr_cnt - 1;
5340 			if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx])))
5341 				tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5342 			else
5343 				tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5344 			if (TSTMP_GT(cts, tstmp_touse))
5345 			    time_since_sent = cts - tstmp_touse;
5346 		}
5347 		if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
5348 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
5349 			to = tp->t_rxtcur;
5350 			if (to > time_since_sent)
5351 				to -= time_since_sent;
5352 			else
5353 				to = rack->r_ctl.rc_min_to;
5354 			if (to == 0)
5355 				to = 1;
5356 			/* Special case for KEEPINIT */
5357 			if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
5358 			    (TP_KEEPINIT(tp) != 0) &&
5359 			    rsm) {
5360 				/*
5361 				 * We have to put a ceiling on the rxt timer
5362 				 * of the keep-init timeout.
5363 				 */
5364 				uint32_t max_time, red;
5365 
5366 				max_time = TICKS_2_USEC(TP_KEEPINIT(tp));
5367 				if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) {
5368 					red = (cts - (uint32_t)rsm->r_tim_lastsent[0]);
5369 					if (red < max_time)
5370 						max_time -= red;
5371 					else
5372 						max_time = 1;
5373 				}
5374 				/* Reduce timeout to the keep value if needed */
5375 				if (max_time < to)
5376 					to = max_time;
5377 			}
5378 			return (to);
5379 		}
5380 		return (0);
5381 	}
5382 	if (rsm->r_flags & RACK_ACKED) {
5383 		rsm = rack_find_lowest_rsm(rack);
5384 		if (rsm == NULL) {
5385 			/* No lowest? */
5386 			goto activate_rxt;
5387 		}
5388 	}
5389 	if (rack->sack_attack_disable) {
5390 		/*
5391 		 * We don't want to do
5392 		 * any TLP's if you are an attacker.
5393 		 * Though if you are doing what
5394 		 * is expected you may still have
5395 		 * SACK-PASSED marks.
5396 		 */
5397 		goto activate_rxt;
5398 	}
5399 	/* Convert from ms to usecs */
5400 	if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
5401 		if ((tp->t_flags & TF_SENTFIN) &&
5402 		    ((tp->snd_max - tp->snd_una) == 1) &&
5403 		    (rsm->r_flags & RACK_HAS_FIN)) {
5404 			/*
5405 			 * We don't start a rack timer if all we have is a
5406 			 * FIN outstanding.
5407 			 */
5408 			goto activate_rxt;
5409 		}
5410 		if ((rack->use_rack_rr == 0) &&
5411 		    (IN_FASTRECOVERY(tp->t_flags)) &&
5412 		    (rack->rack_no_prr == 0) &&
5413 		     (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
5414 			/*
5415 			 * We are not cheating, in recovery  and
5416 			 * not enough ack's to yet get our next
5417 			 * retransmission out.
5418 			 *
5419 			 * Note that classified attackers do not
5420 			 * get to use the rack-cheat.
5421 			 */
5422 			goto activate_tlp;
5423 		}
5424 		srtt = rack_grab_rtt(tp, rack);
5425 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
5426 		idx = rsm->r_rtr_cnt - 1;
5427 		exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh;
5428 		if (SEQ_GEQ(exp, cts)) {
5429 			to = exp - cts;
5430 			if (to < rack->r_ctl.rc_min_to) {
5431 				to = rack->r_ctl.rc_min_to;
5432 				if (rack->r_rr_config == 3)
5433 					rack->rc_on_min_to = 1;
5434 			}
5435 		} else {
5436 			to = rack->r_ctl.rc_min_to;
5437 			if (rack->r_rr_config == 3)
5438 				rack->rc_on_min_to = 1;
5439 		}
5440 	} else {
5441 		/* Ok we need to do a TLP not RACK */
5442 activate_tlp:
5443 		if ((rack->rc_tlp_in_progress != 0) &&
5444 		    (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) {
5445 			/*
5446 			 * The previous send was a TLP and we have sent
5447 			 * N TLP's without sending new data.
5448 			 */
5449 			goto activate_rxt;
5450 		}
5451 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
5452 		if (rsm == NULL) {
5453 			/* We found no rsm to TLP with. */
5454 			goto activate_rxt;
5455 		}
5456 		if (rsm->r_flags & RACK_HAS_FIN) {
5457 			/* If its a FIN we dont do TLP */
5458 			rsm = NULL;
5459 			goto activate_rxt;
5460 		}
5461 		idx = rsm->r_rtr_cnt - 1;
5462 		time_since_sent = 0;
5463 		if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time))
5464 			tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5465 		else
5466 			tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5467 		if (TSTMP_GT(cts, tstmp_touse))
5468 		    time_since_sent = cts - tstmp_touse;
5469 		is_tlp_timer = 1;
5470 		if (tp->t_srtt) {
5471 			if ((rack->rc_srtt_measure_made == 0) &&
5472 			    (tp->t_srtt == 1)) {
5473 				/*
5474 				 * If another stack as run and set srtt to 1,
5475 				 * then the srtt was 0, so lets use the initial.
5476 				 */
5477 				srtt = RACK_INITIAL_RTO;
5478 			} else {
5479 				srtt_cur = tp->t_srtt;
5480 				srtt = srtt_cur;
5481 			}
5482 		} else
5483 			srtt = RACK_INITIAL_RTO;
5484 		/*
5485 		 * If the SRTT is not keeping up and the
5486 		 * rack RTT has spiked we want to use
5487 		 * the last RTT not the smoothed one.
5488 		 */
5489 		if (rack_tlp_use_greater &&
5490 		    tp->t_srtt &&
5491 		    (srtt < rack_grab_rtt(tp, rack))) {
5492 			srtt = rack_grab_rtt(tp, rack);
5493 		}
5494 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
5495 		if (thresh > time_since_sent) {
5496 			to = thresh - time_since_sent;
5497 		} else {
5498 			to = rack->r_ctl.rc_min_to;
5499 			rack_log_alt_to_to_cancel(rack,
5500 						  thresh,		/* flex1 */
5501 						  time_since_sent,	/* flex2 */
5502 						  tstmp_touse,		/* flex3 */
5503 						  rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */
5504 						  (uint32_t)rsm->r_tim_lastsent[idx],
5505 						  srtt,
5506 						  idx, 99);
5507 		}
5508 		if (to < rack_tlp_min) {
5509 			to = rack_tlp_min;
5510 		}
5511 		if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) {
5512 			/*
5513 			 * If the TLP time works out to larger than the max
5514 			 * RTO lets not do TLP.. just RTO.
5515 			 */
5516 			goto activate_rxt;
5517 		}
5518 	}
5519 	if (is_tlp_timer == 0) {
5520 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
5521 	} else {
5522 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
5523 	}
5524 	if (to == 0)
5525 		to = 1;
5526 	return (to);
5527 }
5528 
5529 static void
5530 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5531 {
5532 	if (rack->rc_in_persist == 0) {
5533 		if (tp->t_flags & TF_GPUTINPROG) {
5534 			/*
5535 			 * Stop the goodput now, the calling of the
5536 			 * measurement function clears the flag.
5537 			 */
5538 			rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__,
5539 						    RACK_QUALITY_PERSIST);
5540 		}
5541 #ifdef NETFLIX_SHARED_CWND
5542 		if (rack->r_ctl.rc_scw) {
5543 			tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5544 			rack->rack_scwnd_is_idle = 1;
5545 		}
5546 #endif
5547 		rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
5548 		if (rack->r_ctl.rc_went_idle_time == 0)
5549 			rack->r_ctl.rc_went_idle_time = 1;
5550 		rack_timer_cancel(tp, rack, cts, __LINE__);
5551 		tp->t_rxtshift = 0;
5552 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5553 			      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5554 		rack->rc_in_persist = 1;
5555 	}
5556 }
5557 
5558 static void
5559 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5560 {
5561 	if (rack->rc_inp->inp_in_hpts) {
5562 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
5563 		rack->r_ctl.rc_hpts_flags = 0;
5564 	}
5565 #ifdef NETFLIX_SHARED_CWND
5566 	if (rack->r_ctl.rc_scw) {
5567 		tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5568 		rack->rack_scwnd_is_idle = 0;
5569 	}
5570 #endif
5571 	if (rack->rc_gp_dyn_mul &&
5572 	    (rack->use_fixed_rate == 0) &&
5573 	    (rack->rc_always_pace)) {
5574 		/*
5575 		 * Do we count this as if a probe-rtt just
5576 		 * finished?
5577 		 */
5578 		uint32_t time_idle, idle_min;
5579 
5580 		time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time;
5581 		idle_min = rack_min_probertt_hold;
5582 		if (rack_probertt_gpsrtt_cnt_div) {
5583 			uint64_t extra;
5584 			extra = (uint64_t)rack->r_ctl.rc_gp_srtt *
5585 				(uint64_t)rack_probertt_gpsrtt_cnt_mul;
5586 			extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div;
5587 			idle_min += (uint32_t)extra;
5588 		}
5589 		if (time_idle >= idle_min) {
5590 			/* Yes, we count it as a probe-rtt. */
5591 			uint32_t us_cts;
5592 
5593 			us_cts = tcp_get_usecs(NULL);
5594 			if (rack->in_probe_rtt == 0) {
5595 				rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
5596 				rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
5597 				rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
5598 				rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
5599 			} else {
5600 				rack_exit_probertt(rack, us_cts);
5601 			}
5602 		}
5603 	}
5604 	rack->rc_in_persist = 0;
5605 	rack->r_ctl.rc_went_idle_time = 0;
5606 	tp->t_rxtshift = 0;
5607 	RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5608 	   rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5609 	rack->r_ctl.rc_agg_delayed = 0;
5610 	rack->r_early = 0;
5611 	rack->r_late = 0;
5612 	rack->r_ctl.rc_agg_early = 0;
5613 }
5614 
5615 static void
5616 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts,
5617 		   struct hpts_diag *diag, struct timeval *tv)
5618 {
5619 	if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
5620 		union tcp_log_stackspecific log;
5621 
5622 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5623 		log.u_bbr.flex1 = diag->p_nxt_slot;
5624 		log.u_bbr.flex2 = diag->p_cur_slot;
5625 		log.u_bbr.flex3 = diag->slot_req;
5626 		log.u_bbr.flex4 = diag->inp_hptsslot;
5627 		log.u_bbr.flex5 = diag->slot_remaining;
5628 		log.u_bbr.flex6 = diag->need_new_to;
5629 		log.u_bbr.flex7 = diag->p_hpts_active;
5630 		log.u_bbr.flex8 = diag->p_on_min_sleep;
5631 		/* Hijack other fields as needed */
5632 		log.u_bbr.epoch = diag->have_slept;
5633 		log.u_bbr.lt_epoch = diag->yet_to_sleep;
5634 		log.u_bbr.pkts_out = diag->co_ret;
5635 		log.u_bbr.applimited = diag->hpts_sleep_time;
5636 		log.u_bbr.delivered = diag->p_prev_slot;
5637 		log.u_bbr.inflight = diag->p_runningslot;
5638 		log.u_bbr.bw_inuse = diag->wheel_slot;
5639 		log.u_bbr.rttProp = diag->wheel_cts;
5640 		log.u_bbr.timeStamp = cts;
5641 		log.u_bbr.delRate = diag->maxslots;
5642 		log.u_bbr.cur_del_rate = diag->p_curtick;
5643 		log.u_bbr.cur_del_rate <<= 32;
5644 		log.u_bbr.cur_del_rate |= diag->p_lasttick;
5645 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
5646 		    &rack->rc_inp->inp_socket->so_rcv,
5647 		    &rack->rc_inp->inp_socket->so_snd,
5648 		    BBR_LOG_HPTSDIAG, 0,
5649 		    0, &log, false, tv);
5650 	}
5651 
5652 }
5653 
5654 static void
5655 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type)
5656 {
5657 	if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
5658 		union tcp_log_stackspecific log;
5659 		struct timeval tv;
5660 
5661 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5662 		log.u_bbr.flex1 = sb->sb_flags;
5663 		log.u_bbr.flex2 = len;
5664 		log.u_bbr.flex3 = sb->sb_state;
5665 		log.u_bbr.flex8 = type;
5666 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
5667 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
5668 		    &rack->rc_inp->inp_socket->so_rcv,
5669 		    &rack->rc_inp->inp_socket->so_snd,
5670 		    TCP_LOG_SB_WAKE, 0,
5671 		    len, &log, false, &tv);
5672 	}
5673 }
5674 
5675 static void
5676 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
5677       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
5678 {
5679 	struct hpts_diag diag;
5680 	struct inpcb *inp;
5681 	struct timeval tv;
5682 	uint32_t delayed_ack = 0;
5683 	uint32_t hpts_timeout;
5684 	uint32_t entry_slot = slot;
5685 	uint8_t stopped;
5686 	uint32_t left = 0;
5687 	uint32_t us_cts;
5688 
5689 	inp = tp->t_inpcb;
5690 	if ((tp->t_state == TCPS_CLOSED) ||
5691 	    (tp->t_state == TCPS_LISTEN)) {
5692 		return;
5693 	}
5694 	if (inp->inp_in_hpts) {
5695 		/* Already on the pacer */
5696 		return;
5697 	}
5698 	stopped = rack->rc_tmr_stopped;
5699 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
5700 		left = rack->r_ctl.rc_timer_exp - cts;
5701 	}
5702 	rack->r_ctl.rc_timer_exp = 0;
5703 	rack->r_ctl.rc_hpts_flags = 0;
5704 	us_cts = tcp_get_usecs(&tv);
5705 	/* Now early/late accounting */
5706 	rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0);
5707 	if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) {
5708 		/*
5709 		 * We have a early carry over set,
5710 		 * we can always add more time so we
5711 		 * can always make this compensation.
5712 		 *
5713 		 * Note if ack's are allowed to wake us do not
5714 		 * penalize the next timer for being awoke
5715 		 * by an ack aka the rc_agg_early (non-paced mode).
5716 		 */
5717 		slot += rack->r_ctl.rc_agg_early;
5718 		rack->r_early = 0;
5719 		rack->r_ctl.rc_agg_early = 0;
5720 	}
5721 	if (rack->r_late) {
5722 		/*
5723 		 * This is harder, we can
5724 		 * compensate some but it
5725 		 * really depends on what
5726 		 * the current pacing time is.
5727 		 */
5728 		if (rack->r_ctl.rc_agg_delayed >= slot) {
5729 			/*
5730 			 * We can't compensate for it all.
5731 			 * And we have to have some time
5732 			 * on the clock. We always have a min
5733 			 * 10 slots (10 x 10 i.e. 100 usecs).
5734 			 */
5735 			if (slot <= HPTS_TICKS_PER_SLOT) {
5736 				/* We gain delay */
5737 				rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot);
5738 				slot = HPTS_TICKS_PER_SLOT;
5739 			} else {
5740 				/* We take off some */
5741 				rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT);
5742 				slot = HPTS_TICKS_PER_SLOT;
5743 			}
5744 		} else {
5745 			slot -= rack->r_ctl.rc_agg_delayed;
5746 			rack->r_ctl.rc_agg_delayed = 0;
5747 			/* Make sure we have 100 useconds at minimum */
5748 			if (slot < HPTS_TICKS_PER_SLOT) {
5749 				rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_SLOT - slot;
5750 				slot = HPTS_TICKS_PER_SLOT;
5751 			}
5752 			if (rack->r_ctl.rc_agg_delayed == 0)
5753 				rack->r_late = 0;
5754 		}
5755 	}
5756 	if (slot) {
5757 		/* We are pacing too */
5758 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
5759 	}
5760 	hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
5761 #ifdef NETFLIX_EXP_DETECTION
5762 	if (rack->sack_attack_disable &&
5763 	    (slot < tcp_sad_pacing_interval)) {
5764 		/*
5765 		 * We have a potential attacker on
5766 		 * the line. We have possibly some
5767 		 * (or now) pacing time set. We want to
5768 		 * slow down the processing of sacks by some
5769 		 * amount (if it is an attacker). Set the default
5770 		 * slot for attackers in place (unless the orginal
5771 		 * interval is longer). Its stored in
5772 		 * micro-seconds, so lets convert to msecs.
5773 		 */
5774 		slot = tcp_sad_pacing_interval;
5775 	}
5776 #endif
5777 	if (tp->t_flags & TF_DELACK) {
5778 		delayed_ack = TICKS_2_USEC(tcp_delacktime);
5779 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
5780 	}
5781 	if (delayed_ack && ((hpts_timeout == 0) ||
5782 			    (delayed_ack < hpts_timeout)))
5783 		hpts_timeout = delayed_ack;
5784 	else
5785 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
5786 	/*
5787 	 * If no timers are going to run and we will fall off the hptsi
5788 	 * wheel, we resort to a keep-alive timer if its configured.
5789 	 */
5790 	if ((hpts_timeout == 0) &&
5791 	    (slot == 0)) {
5792 		if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
5793 		    (tp->t_state <= TCPS_CLOSING)) {
5794 			/*
5795 			 * Ok we have no timer (persists, rack, tlp, rxt  or
5796 			 * del-ack), we don't have segments being paced. So
5797 			 * all that is left is the keepalive timer.
5798 			 */
5799 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
5800 				/* Get the established keep-alive time */
5801 				hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp));
5802 			} else {
5803 				/*
5804 				 * Get the initial setup keep-alive time,
5805 				 * note that this is probably not going to
5806 				 * happen, since rack will be running a rxt timer
5807 				 * if a SYN of some sort is outstanding. It is
5808 				 * actually handled in rack_timeout_rxt().
5809 				 */
5810 				hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp));
5811 			}
5812 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
5813 			if (rack->in_probe_rtt) {
5814 				/*
5815 				 * We want to instead not wake up a long time from
5816 				 * now but to wake up about the time we would
5817 				 * exit probe-rtt and initiate a keep-alive ack.
5818 				 * This will get us out of probe-rtt and update
5819 				 * our min-rtt.
5820 				 */
5821 				hpts_timeout = rack_min_probertt_hold;
5822 			}
5823 		}
5824 	}
5825 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
5826 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
5827 		/*
5828 		 * RACK, TLP, persists and RXT timers all are restartable
5829 		 * based on actions input .. i.e we received a packet (ack
5830 		 * or sack) and that changes things (rw, or snd_una etc).
5831 		 * Thus we can restart them with a new value. For
5832 		 * keep-alive, delayed_ack we keep track of what was left
5833 		 * and restart the timer with a smaller value.
5834 		 */
5835 		if (left < hpts_timeout)
5836 			hpts_timeout = left;
5837 	}
5838 	if (hpts_timeout) {
5839 		/*
5840 		 * Hack alert for now we can't time-out over 2,147,483
5841 		 * seconds (a bit more than 596 hours), which is probably ok
5842 		 * :).
5843 		 */
5844 		if (hpts_timeout > 0x7ffffffe)
5845 			hpts_timeout = 0x7ffffffe;
5846 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
5847 	}
5848 	rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0);
5849 	if ((rack->gp_ready == 0) &&
5850 	    (rack->use_fixed_rate == 0) &&
5851 	    (hpts_timeout < slot) &&
5852 	    (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) {
5853 		/*
5854 		 * We have no good estimate yet for the
5855 		 * old clunky burst mitigation or the
5856 		 * real pacing. And the tlp or rxt is smaller
5857 		 * than the pacing calculation. Lets not
5858 		 * pace that long since we know the calculation
5859 		 * so far is not accurate.
5860 		 */
5861 		slot = hpts_timeout;
5862 	}
5863 	rack->r_ctl.last_pacing_time = slot;
5864 	/**
5865 	 * Turn off all the flags for queuing by default. The
5866 	 * flags have important meanings to what happens when
5867 	 * LRO interacts with the transport. Most likely (by default now)
5868 	 * mbuf_queueing and ack compression are on. So the transport
5869 	 * has a couple of flags that control what happens (if those
5870 	 * are not on then these flags won't have any effect since it
5871 	 * won't go through the queuing LRO path).
5872 	 *
5873 	 * INP_MBUF_QUEUE_READY - This flags says that I am busy
5874 	 *                        pacing output, so don't disturb. But
5875 	 *                        it also means LRO can wake me if there
5876 	 *                        is a SACK arrival.
5877 	 *
5878 	 * INP_DONT_SACK_QUEUE - This flag is used in conjunction
5879 	 *                       with the above flag (QUEUE_READY) and
5880 	 *                       when present it says don't even wake me
5881 	 *                       if a SACK arrives.
5882 	 *
5883 	 * The idea behind these flags is that if we are pacing we
5884 	 * set the MBUF_QUEUE_READY and only get woken up if
5885 	 * a SACK arrives (which could change things) or if
5886 	 * our pacing timer expires. If, however, we have a rack
5887 	 * timer running, then we don't even want a sack to wake
5888 	 * us since the rack timer has to expire before we can send.
5889 	 *
5890 	 * Other cases should usually have none of the flags set
5891 	 * so LRO can call into us.
5892 	 */
5893 	inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5894 	if (slot) {
5895 		rack->r_ctl.rc_last_output_to = us_cts + slot;
5896 		/*
5897 		 * A pacing timer (slot) is being set, in
5898 		 * such a case we cannot send (we are blocked by
5899 		 * the timer). So lets tell LRO that it should not
5900 		 * wake us unless there is a SACK. Note this only
5901 		 * will be effective if mbuf queueing is on or
5902 		 * compressed acks are being processed.
5903 		 */
5904 		inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
5905 		/*
5906 		 * But wait if we have a Rack timer running
5907 		 * even a SACK should not disturb us (with
5908 		 * the exception of r_rr_config 3).
5909 		 */
5910 		if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
5911 		    (rack->r_rr_config != 3))
5912 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
5913 		if (rack->rc_ack_can_sendout_data) {
5914 			/*
5915 			 * Ahh but wait, this is that special case
5916 			 * where the pacing timer can be disturbed
5917 			 * backout the changes (used for non-paced
5918 			 * burst limiting).
5919 			 */
5920 			inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5921 		}
5922 		if ((rack->use_rack_rr) &&
5923 		    (rack->r_rr_config < 2) &&
5924 		    ((hpts_timeout) && (hpts_timeout < slot))) {
5925 			/*
5926 			 * Arrange for the hpts to kick back in after the
5927 			 * t-o if the t-o does not cause a send.
5928 			 */
5929 			(void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout),
5930 						   __LINE__, &diag);
5931 			rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5932 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5933 		} else {
5934 			(void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot),
5935 						   __LINE__, &diag);
5936 			rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5937 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
5938 		}
5939 	} else if (hpts_timeout) {
5940 		/*
5941 		 * With respect to inp_flags2 here, lets let any new acks wake
5942 		 * us up here. Since we are not pacing (no pacing timer), output
5943 		 * can happen so we should let it. If its a Rack timer, then any inbound
5944 		 * packet probably won't change the sending (we will be blocked)
5945 		 * but it may change the prr stats so letting it in (the set defaults
5946 		 * at the start of this block) are good enough.
5947 		 */
5948 		(void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout),
5949 					   __LINE__, &diag);
5950 		rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5951 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5952 	} else {
5953 		/* No timer starting */
5954 #ifdef INVARIANTS
5955 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
5956 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
5957 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
5958 		}
5959 #endif
5960 	}
5961 	rack->rc_tmr_stopped = 0;
5962 	if (slot)
5963 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv);
5964 }
5965 
5966 /*
5967  * RACK Timer, here we simply do logging and house keeping.
5968  * the normal rack_output() function will call the
5969  * appropriate thing to check if we need to do a RACK retransmit.
5970  * We return 1, saying don't proceed with rack_output only
5971  * when all timers have been stopped (destroyed PCB?).
5972  */
5973 static int
5974 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5975 {
5976 	/*
5977 	 * This timer simply provides an internal trigger to send out data.
5978 	 * The check_recovery_mode call will see if there are needed
5979 	 * retransmissions, if so we will enter fast-recovery. The output
5980 	 * call may or may not do the same thing depending on sysctl
5981 	 * settings.
5982 	 */
5983 	struct rack_sendmap *rsm;
5984 
5985 	if (tp->t_timers->tt_flags & TT_STOPPED) {
5986 		return (1);
5987 	}
5988 	counter_u64_add(rack_to_tot, 1);
5989 	if (rack->r_state && (rack->r_state != tp->t_state))
5990 		rack_set_state(tp, rack);
5991 	rack->rc_on_min_to = 0;
5992 	rsm = rack_check_recovery_mode(tp, cts);
5993 	rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm);
5994 	if (rsm) {
5995 		rack->r_ctl.rc_resend = rsm;
5996 		rack->r_timer_override = 1;
5997 		if (rack->use_rack_rr) {
5998 			/*
5999 			 * Don't accumulate extra pacing delay
6000 			 * we are allowing the rack timer to
6001 			 * over-ride pacing i.e. rrr takes precedence
6002 			 * if the pacing interval is longer than the rrr
6003 			 * time (in other words we get the min pacing
6004 			 * time versus rrr pacing time).
6005 			 */
6006 			rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
6007 		}
6008 	}
6009 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
6010 	if (rsm == NULL) {
6011 		/* restart a timer and return 1 */
6012 		rack_start_hpts_timer(rack, tp, cts,
6013 				      0, 0, 0);
6014 		return (1);
6015 	}
6016 	return (0);
6017 }
6018 
6019 static void
6020 rack_adjust_orig_mlen(struct rack_sendmap *rsm)
6021 {
6022 	if (rsm->m->m_len > rsm->orig_m_len) {
6023 		/*
6024 		 * Mbuf grew, caused by sbcompress, our offset does
6025 		 * not change.
6026 		 */
6027 		rsm->orig_m_len = rsm->m->m_len;
6028 	} else if (rsm->m->m_len < rsm->orig_m_len) {
6029 		/*
6030 		 * Mbuf shrank, trimmed off the top by an ack, our
6031 		 * offset changes.
6032 		 */
6033 		rsm->soff -= (rsm->orig_m_len - rsm->m->m_len);
6034 		rsm->orig_m_len = rsm->m->m_len;
6035 	}
6036 }
6037 
6038 static void
6039 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm)
6040 {
6041 	struct mbuf *m;
6042 	uint32_t soff;
6043 
6044 	if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) {
6045 		/* Fix up the orig_m_len and possibly the mbuf offset */
6046 		rack_adjust_orig_mlen(src_rsm);
6047 	}
6048 	m = src_rsm->m;
6049 	soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start);
6050 	while (soff >= m->m_len) {
6051 		/* Move out past this mbuf */
6052 		soff -= m->m_len;
6053 		m = m->m_next;
6054 		KASSERT((m != NULL),
6055 			("rsm:%p nrsm:%p hit at soff:%u null m",
6056 			 src_rsm, rsm, soff));
6057 	}
6058 	rsm->m = m;
6059 	rsm->soff = soff;
6060 	rsm->orig_m_len = m->m_len;
6061 }
6062 
6063 static __inline void
6064 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
6065 	       struct rack_sendmap *rsm, uint32_t start)
6066 {
6067 	int idx;
6068 
6069 	nrsm->r_start = start;
6070 	nrsm->r_end = rsm->r_end;
6071 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
6072 	nrsm->r_flags = rsm->r_flags;
6073 	nrsm->r_dupack = rsm->r_dupack;
6074 	nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed;
6075 	nrsm->r_rtr_bytes = 0;
6076 	rsm->r_end = nrsm->r_start;
6077 	nrsm->r_just_ret = rsm->r_just_ret;
6078 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
6079 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
6080 	}
6081 	/* Now if we have SYN flag we keep it on the left edge */
6082 	if (nrsm->r_flags & RACK_HAS_SYN)
6083 		nrsm->r_flags &= ~RACK_HAS_SYN;
6084 	/* Now if we have a FIN flag we keep it on the right edge */
6085 	if (rsm->r_flags & RACK_HAS_FIN)
6086 		rsm->r_flags &= ~RACK_HAS_FIN;
6087 	/* Push bit must go to the right edge as well */
6088 	if (rsm->r_flags & RACK_HAD_PUSH)
6089 		rsm->r_flags &= ~RACK_HAD_PUSH;
6090 	/* Clone over the state of the hw_tls flag */
6091 	nrsm->r_hw_tls = rsm->r_hw_tls;
6092 	/*
6093 	 * Now we need to find nrsm's new location in the mbuf chain
6094 	 * we basically calculate a new offset, which is soff +
6095 	 * how much is left in original rsm. Then we walk out the mbuf
6096 	 * chain to find the righ postion, it may be the same mbuf
6097 	 * or maybe not.
6098 	 */
6099 	KASSERT(((rsm->m != NULL) ||
6100 		 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))),
6101 		("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack));
6102 	if (rsm->m)
6103 		rack_setup_offset_for_rsm(rsm, nrsm);
6104 }
6105 
6106 static struct rack_sendmap *
6107 rack_merge_rsm(struct tcp_rack *rack,
6108 	       struct rack_sendmap *l_rsm,
6109 	       struct rack_sendmap *r_rsm)
6110 {
6111 	/*
6112 	 * We are merging two ack'd RSM's,
6113 	 * the l_rsm is on the left (lower seq
6114 	 * values) and the r_rsm is on the right
6115 	 * (higher seq value). The simplest way
6116 	 * to merge these is to move the right
6117 	 * one into the left. I don't think there
6118 	 * is any reason we need to try to find
6119 	 * the oldest (or last oldest retransmitted).
6120 	 */
6121 	struct rack_sendmap *rm;
6122 
6123 	rack_log_map_chg(rack->rc_tp, rack, NULL,
6124 			 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__);
6125 	l_rsm->r_end = r_rsm->r_end;
6126 	if (l_rsm->r_dupack < r_rsm->r_dupack)
6127 		l_rsm->r_dupack = r_rsm->r_dupack;
6128 	if (r_rsm->r_rtr_bytes)
6129 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
6130 	if (r_rsm->r_in_tmap) {
6131 		/* This really should not happen */
6132 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
6133 		r_rsm->r_in_tmap = 0;
6134 	}
6135 
6136 	/* Now the flags */
6137 	if (r_rsm->r_flags & RACK_HAS_FIN)
6138 		l_rsm->r_flags |= RACK_HAS_FIN;
6139 	if (r_rsm->r_flags & RACK_TLP)
6140 		l_rsm->r_flags |= RACK_TLP;
6141 	if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
6142 		l_rsm->r_flags |= RACK_RWND_COLLAPSED;
6143 	if ((r_rsm->r_flags & RACK_APP_LIMITED)  &&
6144 	    ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) {
6145 		/*
6146 		 * If both are app-limited then let the
6147 		 * free lower the count. If right is app
6148 		 * limited and left is not, transfer.
6149 		 */
6150 		l_rsm->r_flags |= RACK_APP_LIMITED;
6151 		r_rsm->r_flags &= ~RACK_APP_LIMITED;
6152 		if (r_rsm == rack->r_ctl.rc_first_appl)
6153 			rack->r_ctl.rc_first_appl = l_rsm;
6154 	}
6155 	rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6156 #ifdef INVARIANTS
6157 	if (rm != r_rsm) {
6158 		panic("removing head in rack:%p rsm:%p rm:%p",
6159 		      rack, r_rsm, rm);
6160 	}
6161 #endif
6162 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
6163 		/* Transfer the split limit to the map we free */
6164 		r_rsm->r_limit_type = l_rsm->r_limit_type;
6165 		l_rsm->r_limit_type = 0;
6166 	}
6167 	rack_free(rack, r_rsm);
6168 	return (l_rsm);
6169 }
6170 
6171 /*
6172  * TLP Timer, here we simply setup what segment we want to
6173  * have the TLP expire on, the normal rack_output() will then
6174  * send it out.
6175  *
6176  * We return 1, saying don't proceed with rack_output only
6177  * when all timers have been stopped (destroyed PCB?).
6178  */
6179 static int
6180 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp)
6181 {
6182 	/*
6183 	 * Tail Loss Probe.
6184 	 */
6185 	struct rack_sendmap *rsm = NULL;
6186 	struct rack_sendmap *insret;
6187 	struct socket *so;
6188 	uint32_t amm;
6189 	uint32_t out, avail;
6190 	int collapsed_win = 0;
6191 
6192 	if (tp->t_timers->tt_flags & TT_STOPPED) {
6193 		return (1);
6194 	}
6195 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6196 		/* Its not time yet */
6197 		return (0);
6198 	}
6199 	if (ctf_progress_timeout_check(tp, true)) {
6200 		rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6201 		tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6202 		return (1);
6203 	}
6204 	/*
6205 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
6206 	 * need to figure out how to force a full MSS segment out.
6207 	 */
6208 	rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL);
6209 	rack->r_ctl.retran_during_recovery = 0;
6210 	rack->r_ctl.dsack_byte_cnt = 0;
6211 	counter_u64_add(rack_tlp_tot, 1);
6212 	if (rack->r_state && (rack->r_state != tp->t_state))
6213 		rack_set_state(tp, rack);
6214 	so = tp->t_inpcb->inp_socket;
6215 	avail = sbavail(&so->so_snd);
6216 	out = tp->snd_max - tp->snd_una;
6217 	if (out > tp->snd_wnd) {
6218 		/* special case, we need a retransmission */
6219 		collapsed_win = 1;
6220 		goto need_retran;
6221 	}
6222 	if ((tp->t_flags & TF_GPUTINPROG) &&
6223 	    (rack->r_ctl.rc_tlp_cnt_out == 1)) {
6224 		/*
6225 		 * If this is the second in a row
6226 		 * TLP and we are doing a measurement
6227 		 * its time to abandon the measurement.
6228 		 * Something is likely broken on
6229 		 * the clients network and measuring a
6230 		 * broken network does us no good.
6231 		 */
6232 		tp->t_flags &= ~TF_GPUTINPROG;
6233 		rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6234 					   rack->r_ctl.rc_gp_srtt /*flex1*/,
6235 					   tp->gput_seq,
6236 					   0, 0, 18, __LINE__, NULL, 0);
6237 	}
6238 	/*
6239 	 * Check our send oldest always settings, and if
6240 	 * there is an oldest to send jump to the need_retran.
6241 	 */
6242 	if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0))
6243 		goto need_retran;
6244 
6245 	if (avail > out) {
6246 		/* New data is available */
6247 		amm = avail - out;
6248 		if (amm > ctf_fixed_maxseg(tp)) {
6249 			amm = ctf_fixed_maxseg(tp);
6250 			if ((amm + out) > tp->snd_wnd) {
6251 				/* We are rwnd limited */
6252 				goto need_retran;
6253 			}
6254 		} else if (amm < ctf_fixed_maxseg(tp)) {
6255 			/* not enough to fill a MTU */
6256 			goto need_retran;
6257 		}
6258 		if (IN_FASTRECOVERY(tp->t_flags)) {
6259 			/* Unlikely */
6260 			if (rack->rack_no_prr == 0) {
6261 				if (out + amm <= tp->snd_wnd) {
6262 					rack->r_ctl.rc_prr_sndcnt = amm;
6263 					rack->r_ctl.rc_tlp_new_data = amm;
6264 					rack_log_to_prr(rack, 4, 0);
6265 				}
6266 			} else
6267 				goto need_retran;
6268 		} else {
6269 			/* Set the send-new override */
6270 			if (out + amm <= tp->snd_wnd)
6271 				rack->r_ctl.rc_tlp_new_data = amm;
6272 			else
6273 				goto need_retran;
6274 		}
6275 		rack->r_ctl.rc_tlpsend = NULL;
6276 		counter_u64_add(rack_tlp_newdata, 1);
6277 		goto send;
6278 	}
6279 need_retran:
6280 	/*
6281 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
6282 	 * optionally the first un-acked segment.
6283 	 */
6284 	if (collapsed_win == 0) {
6285 		if (rack_always_send_oldest)
6286 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6287 		else {
6288 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6289 			if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
6290 				rsm = rack_find_high_nonack(rack, rsm);
6291 			}
6292 		}
6293 		if (rsm == NULL) {
6294 			counter_u64_add(rack_tlp_does_nada, 1);
6295 #ifdef TCP_BLACKBOX
6296 			tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6297 #endif
6298 			goto out;
6299 		}
6300 	} else {
6301 		/*
6302 		 * We must find the last segment
6303 		 * that was acceptable by the client.
6304 		 */
6305 		RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6306 			if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
6307 				/* Found one */
6308 				break;
6309 			}
6310 		}
6311 		if (rsm == NULL) {
6312 			/* None? if so send the first */
6313 			rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6314 			if (rsm == NULL) {
6315 				counter_u64_add(rack_tlp_does_nada, 1);
6316 #ifdef TCP_BLACKBOX
6317 				tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6318 #endif
6319 				goto out;
6320 			}
6321 		}
6322 	}
6323 	if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
6324 		/*
6325 		 * We need to split this the last segment in two.
6326 		 */
6327 		struct rack_sendmap *nrsm;
6328 
6329 		nrsm = rack_alloc_full_limit(rack);
6330 		if (nrsm == NULL) {
6331 			/*
6332 			 * No memory to split, we will just exit and punt
6333 			 * off to the RXT timer.
6334 			 */
6335 			counter_u64_add(rack_tlp_does_nada, 1);
6336 			goto out;
6337 		}
6338 		rack_clone_rsm(rack, nrsm, rsm,
6339 			       (rsm->r_end - ctf_fixed_maxseg(tp)));
6340 		rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
6341 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6342 #ifdef INVARIANTS
6343 		if (insret != NULL) {
6344 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6345 			      nrsm, insret, rack, rsm);
6346 		}
6347 #endif
6348 		if (rsm->r_in_tmap) {
6349 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
6350 			nrsm->r_in_tmap = 1;
6351 		}
6352 		rsm->r_flags &= (~RACK_HAS_FIN);
6353 		rsm = nrsm;
6354 	}
6355 	rack->r_ctl.rc_tlpsend = rsm;
6356 send:
6357 	/* Make sure output path knows we are doing a TLP */
6358 	*doing_tlp = 1;
6359 	rack->r_timer_override = 1;
6360 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6361 	return (0);
6362 out:
6363 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6364 	return (0);
6365 }
6366 
6367 /*
6368  * Delayed ack Timer, here we simply need to setup the
6369  * ACK_NOW flag and remove the DELACK flag. From there
6370  * the output routine will send the ack out.
6371  *
6372  * We only return 1, saying don't proceed, if all timers
6373  * are stopped (destroyed PCB?).
6374  */
6375 static int
6376 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6377 {
6378 	if (tp->t_timers->tt_flags & TT_STOPPED) {
6379 		return (1);
6380 	}
6381 	rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL);
6382 	tp->t_flags &= ~TF_DELACK;
6383 	tp->t_flags |= TF_ACKNOW;
6384 	KMOD_TCPSTAT_INC(tcps_delack);
6385 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
6386 	return (0);
6387 }
6388 
6389 /*
6390  * Persists timer, here we simply send the
6391  * same thing as a keepalive will.
6392  * the one byte send.
6393  *
6394  * We only return 1, saying don't proceed, if all timers
6395  * are stopped (destroyed PCB?).
6396  */
6397 static int
6398 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6399 {
6400 	struct tcptemp *t_template;
6401 	struct inpcb *inp;
6402 	int32_t retval = 1;
6403 
6404 	inp = tp->t_inpcb;
6405 
6406 	if (tp->t_timers->tt_flags & TT_STOPPED) {
6407 		return (1);
6408 	}
6409 	if (rack->rc_in_persist == 0)
6410 		return (0);
6411 	if (ctf_progress_timeout_check(tp, false)) {
6412 		tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6413 		rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6414 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
6415 		return (1);
6416 	}
6417 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
6418 	/*
6419 	 * Persistence timer into zero window. Force a byte to be output, if
6420 	 * possible.
6421 	 */
6422 	KMOD_TCPSTAT_INC(tcps_persisttimeo);
6423 	/*
6424 	 * Hack: if the peer is dead/unreachable, we do not time out if the
6425 	 * window is closed.  After a full backoff, drop the connection if
6426 	 * the idle time (no responses to probes) reaches the maximum
6427 	 * backoff that we would use if retransmitting.
6428 	 */
6429 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
6430 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
6431 	     TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) {
6432 		KMOD_TCPSTAT_INC(tcps_persistdrop);
6433 		retval = 1;
6434 		tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6435 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
6436 		goto out;
6437 	}
6438 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
6439 	    tp->snd_una == tp->snd_max)
6440 		rack_exit_persist(tp, rack, cts);
6441 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
6442 	/*
6443 	 * If the user has closed the socket then drop a persisting
6444 	 * connection after a much reduced timeout.
6445 	 */
6446 	if (tp->t_state > TCPS_CLOSE_WAIT &&
6447 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
6448 		retval = 1;
6449 		KMOD_TCPSTAT_INC(tcps_persistdrop);
6450 		tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6451 		tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
6452 		goto out;
6453 	}
6454 	t_template = tcpip_maketemplate(rack->rc_inp);
6455 	if (t_template) {
6456 		/* only set it if we were answered */
6457 		if (rack->forced_ack == 0) {
6458 			rack->forced_ack = 1;
6459 			rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6460 		}
6461 		tcp_respond(tp, t_template->tt_ipgen,
6462 			    &t_template->tt_t, (struct mbuf *)NULL,
6463 			    tp->rcv_nxt, tp->snd_una - 1, 0);
6464 		/* This sends an ack */
6465 		if (tp->t_flags & TF_DELACK)
6466 			tp->t_flags &= ~TF_DELACK;
6467 		free(t_template, M_TEMP);
6468 	}
6469 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
6470 		tp->t_rxtshift++;
6471 out:
6472 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL);
6473 	rack_start_hpts_timer(rack, tp, cts,
6474 			      0, 0, 0);
6475 	return (retval);
6476 }
6477 
6478 /*
6479  * If a keepalive goes off, we had no other timers
6480  * happening. We always return 1 here since this
6481  * routine either drops the connection or sends
6482  * out a segment with respond.
6483  */
6484 static int
6485 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6486 {
6487 	struct tcptemp *t_template;
6488 	struct inpcb *inp;
6489 
6490 	if (tp->t_timers->tt_flags & TT_STOPPED) {
6491 		return (1);
6492 	}
6493 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
6494 	inp = tp->t_inpcb;
6495 	rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL);
6496 	/*
6497 	 * Keep-alive timer went off; send something or drop connection if
6498 	 * idle for too long.
6499 	 */
6500 	KMOD_TCPSTAT_INC(tcps_keeptimeo);
6501 	if (tp->t_state < TCPS_ESTABLISHED)
6502 		goto dropit;
6503 	if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
6504 	    tp->t_state <= TCPS_CLOSING) {
6505 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
6506 			goto dropit;
6507 		/*
6508 		 * Send a packet designed to force a response if the peer is
6509 		 * up and reachable: either an ACK if the connection is
6510 		 * still alive, or an RST if the peer has closed the
6511 		 * connection due to timeout or reboot. Using sequence
6512 		 * number tp->snd_una-1 causes the transmitted zero-length
6513 		 * segment to lie outside the receive window; by the
6514 		 * protocol spec, this requires the correspondent TCP to
6515 		 * respond.
6516 		 */
6517 		KMOD_TCPSTAT_INC(tcps_keepprobe);
6518 		t_template = tcpip_maketemplate(inp);
6519 		if (t_template) {
6520 			if (rack->forced_ack == 0) {
6521 				rack->forced_ack = 1;
6522 				rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6523 			}
6524 			tcp_respond(tp, t_template->tt_ipgen,
6525 			    &t_template->tt_t, (struct mbuf *)NULL,
6526 			    tp->rcv_nxt, tp->snd_una - 1, 0);
6527 			free(t_template, M_TEMP);
6528 		}
6529 	}
6530 	rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
6531 	return (1);
6532 dropit:
6533 	KMOD_TCPSTAT_INC(tcps_keepdrops);
6534 	tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6535 	tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
6536 	return (1);
6537 }
6538 
6539 /*
6540  * Retransmit helper function, clear up all the ack
6541  * flags and take care of important book keeping.
6542  */
6543 static void
6544 rack_remxt_tmr(struct tcpcb *tp)
6545 {
6546 	/*
6547 	 * The retransmit timer went off, all sack'd blocks must be
6548 	 * un-acked.
6549 	 */
6550 	struct rack_sendmap *rsm, *trsm = NULL;
6551 	struct tcp_rack *rack;
6552 
6553 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6554 	rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__);
6555 	rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL);
6556 	if (rack->r_state && (rack->r_state != tp->t_state))
6557 		rack_set_state(tp, rack);
6558 	/*
6559 	 * Ideally we would like to be able to
6560 	 * mark SACK-PASS on anything not acked here.
6561 	 *
6562 	 * However, if we do that we would burst out
6563 	 * all that data 1ms apart. This would be unwise,
6564 	 * so for now we will just let the normal rxt timer
6565 	 * and tlp timer take care of it.
6566 	 *
6567 	 * Also we really need to stick them back in sequence
6568 	 * order. This way we send in the proper order and any
6569 	 * sacks that come floating in will "re-ack" the data.
6570 	 * To do this we zap the tmap with an INIT and then
6571 	 * walk through and place every rsm in the RB tree
6572 	 * back in its seq ordered place.
6573 	 */
6574 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
6575 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6576 		rsm->r_dupack = 0;
6577 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
6578 		/* We must re-add it back to the tlist */
6579 		if (trsm == NULL) {
6580 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6581 		} else {
6582 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
6583 		}
6584 		rsm->r_in_tmap = 1;
6585 		trsm = rsm;
6586 		if (rsm->r_flags & RACK_ACKED)
6587 			rsm->r_flags |= RACK_WAS_ACKED;
6588 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
6589 	}
6590 	/* Clear the count (we just un-acked them) */
6591 	rack->r_ctl.rc_last_timeout_snduna = tp->snd_una;
6592 	rack->r_ctl.rc_sacked = 0;
6593 	rack->r_ctl.rc_sacklast = NULL;
6594 	rack->r_ctl.rc_agg_delayed = 0;
6595 	rack->r_early = 0;
6596 	rack->r_ctl.rc_agg_early = 0;
6597 	rack->r_late = 0;
6598 	/* Clear the tlp rtx mark */
6599 	rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6600 	if (rack->r_ctl.rc_resend != NULL)
6601 		rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT;
6602 	rack->r_ctl.rc_prr_sndcnt = 0;
6603 	rack_log_to_prr(rack, 6, 0);
6604 	rack->r_timer_override = 1;
6605 	if ((((tp->t_flags & TF_SACK_PERMIT) == 0)
6606 #ifdef NETFLIX_EXP_DETECTION
6607 	    || (rack->sack_attack_disable != 0)
6608 #endif
6609 		    ) && ((tp->t_flags & TF_SENTFIN) == 0)) {
6610 		/*
6611 		 * For non-sack customers new data
6612 		 * needs to go out as retransmits until
6613 		 * we retransmit up to snd_max.
6614 		 */
6615 		rack->r_must_retran = 1;
6616 		rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp,
6617 						rack->r_ctl.rc_sacked);
6618 	}
6619 	rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
6620 }
6621 
6622 static void
6623 rack_convert_rtts(struct tcpcb *tp)
6624 {
6625 	if (tp->t_srtt > 1) {
6626 		uint32_t val, frac;
6627 
6628 		val = tp->t_srtt >> TCP_RTT_SHIFT;
6629 		frac = tp->t_srtt & 0x1f;
6630 		tp->t_srtt = TICKS_2_USEC(val);
6631 		/*
6632 		 * frac is the fractional part of the srtt (if any)
6633 		 * but its in ticks and every bit represents
6634 		 * 1/32nd of a hz.
6635 		 */
6636 		if (frac) {
6637 			if (hz == 1000) {
6638 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6639 			} else {
6640 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6641 			}
6642 			tp->t_srtt += frac;
6643 		}
6644 	}
6645 	if (tp->t_rttvar) {
6646 		uint32_t val, frac;
6647 
6648 		val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
6649 		frac = tp->t_rttvar & 0x1f;
6650 		tp->t_rttvar = TICKS_2_USEC(val);
6651 		/*
6652 		 * frac is the fractional part of the srtt (if any)
6653 		 * but its in ticks and every bit represents
6654 		 * 1/32nd of a hz.
6655 		 */
6656 		if (frac) {
6657 			if (hz == 1000) {
6658 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6659 			} else {
6660 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6661 			}
6662 			tp->t_rttvar += frac;
6663 		}
6664 	}
6665 	tp->t_rxtcur = RACK_REXMTVAL(tp);
6666 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
6667 		tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop);
6668 	}
6669 	if (tp->t_rxtcur > rack_rto_max) {
6670 		tp->t_rxtcur = rack_rto_max;
6671 	}
6672 }
6673 
6674 static void
6675 rack_cc_conn_init(struct tcpcb *tp)
6676 {
6677 	struct tcp_rack *rack;
6678 	uint32_t srtt;
6679 
6680 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6681 	srtt = tp->t_srtt;
6682 	cc_conn_init(tp);
6683 	/*
6684 	 * Now convert to rack's internal format,
6685 	 * if required.
6686 	 */
6687 	if ((srtt == 0) && (tp->t_srtt != 0))
6688 		rack_convert_rtts(tp);
6689 	/*
6690 	 * We want a chance to stay in slowstart as
6691 	 * we create a connection. TCP spec says that
6692 	 * initially ssthresh is infinite. For our
6693 	 * purposes that is the snd_wnd.
6694 	 */
6695 	if (tp->snd_ssthresh < tp->snd_wnd) {
6696 		tp->snd_ssthresh = tp->snd_wnd;
6697 	}
6698 	/*
6699 	 * We also want to assure a IW worth of
6700 	 * data can get inflight.
6701 	 */
6702 	if (rc_init_window(rack) < tp->snd_cwnd)
6703 		tp->snd_cwnd = rc_init_window(rack);
6704 }
6705 
6706 /*
6707  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
6708  * we will setup to retransmit the lowest seq number outstanding.
6709  */
6710 static int
6711 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6712 {
6713 	int32_t rexmt;
6714 	struct inpcb *inp;
6715 	int32_t retval = 0;
6716 	bool isipv6;
6717 
6718 	inp = tp->t_inpcb;
6719 	if (tp->t_timers->tt_flags & TT_STOPPED) {
6720 		return (1);
6721 	}
6722 	if ((tp->t_flags & TF_GPUTINPROG) &&
6723 	    (tp->t_rxtshift)) {
6724 		/*
6725 		 * We have had a second timeout
6726 		 * measurements on successive rxt's are not profitable.
6727 		 * It is unlikely to be of any use (the network is
6728 		 * broken or the client went away).
6729 		 */
6730 		tp->t_flags &= ~TF_GPUTINPROG;
6731 		rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6732 					   rack->r_ctl.rc_gp_srtt /*flex1*/,
6733 					   tp->gput_seq,
6734 					   0, 0, 18, __LINE__, NULL, 0);
6735 	}
6736 	if (ctf_progress_timeout_check(tp, false)) {
6737 		tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6738 		rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6739 		tcp_set_inp_to_drop(inp, ETIMEDOUT);
6740 		return (1);
6741 	}
6742 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
6743 	rack->r_ctl.retran_during_recovery = 0;
6744 	rack->r_ctl.dsack_byte_cnt = 0;
6745 	if (IN_FASTRECOVERY(tp->t_flags))
6746 		tp->t_flags |= TF_WASFRECOVERY;
6747 	else
6748 		tp->t_flags &= ~TF_WASFRECOVERY;
6749 	if (IN_CONGRECOVERY(tp->t_flags))
6750 		tp->t_flags |= TF_WASCRECOVERY;
6751 	else
6752 		tp->t_flags &= ~TF_WASCRECOVERY;
6753 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
6754 	    (tp->snd_una == tp->snd_max)) {
6755 		/* Nothing outstanding .. nothing to do */
6756 		return (0);
6757 	}
6758 	/*
6759 	 * Rack can only run one timer  at a time, so we cannot
6760 	 * run a KEEPINIT (gating SYN sending) and a retransmit
6761 	 * timer for the SYN. So if we are in a front state and
6762 	 * have a KEEPINIT timer we need to check the first transmit
6763 	 * against now to see if we have exceeded the KEEPINIT time
6764 	 * (if one is set).
6765 	 */
6766 	if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
6767 	    (TP_KEEPINIT(tp) != 0)) {
6768 		struct rack_sendmap *rsm;
6769 
6770 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6771 		if (rsm) {
6772 			/* Ok we have something outstanding to test keepinit with */
6773 			if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) &&
6774 			    ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) {
6775 				/* We have exceeded the KEEPINIT time */
6776 				tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6777 				goto drop_it;
6778 			}
6779 		}
6780 	}
6781 	/*
6782 	 * Retransmission timer went off.  Message has not been acked within
6783 	 * retransmit interval.  Back off to a longer retransmit interval
6784 	 * and retransmit one segment.
6785 	 */
6786 	rack_remxt_tmr(tp);
6787 	if ((rack->r_ctl.rc_resend == NULL) ||
6788 	    ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
6789 		/*
6790 		 * If the rwnd collapsed on
6791 		 * the one we are retransmitting
6792 		 * it does not count against the
6793 		 * rxt count.
6794 		 */
6795 		tp->t_rxtshift++;
6796 	}
6797 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
6798 		tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6799 drop_it:
6800 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
6801 		KMOD_TCPSTAT_INC(tcps_timeoutdrop);
6802 		retval = 1;
6803 		tcp_set_inp_to_drop(rack->rc_inp,
6804 		    (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
6805 		goto out;
6806 	}
6807 	if (tp->t_state == TCPS_SYN_SENT) {
6808 		/*
6809 		 * If the SYN was retransmitted, indicate CWND to be limited
6810 		 * to 1 segment in cc_conn_init().
6811 		 */
6812 		tp->snd_cwnd = 1;
6813 	} else if (tp->t_rxtshift == 1) {
6814 		/*
6815 		 * first retransmit; record ssthresh and cwnd so they can be
6816 		 * recovered if this turns out to be a "bad" retransmit. A
6817 		 * retransmit is considered "bad" if an ACK for this segment
6818 		 * is received within RTT/2 interval; the assumption here is
6819 		 * that the ACK was already in flight.  See "On Estimating
6820 		 * End-to-End Network Path Properties" by Allman and Paxson
6821 		 * for more details.
6822 		 */
6823 		tp->snd_cwnd_prev = tp->snd_cwnd;
6824 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
6825 		tp->snd_recover_prev = tp->snd_recover;
6826 		tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2);
6827 		tp->t_flags |= TF_PREVVALID;
6828 	} else if ((tp->t_flags & TF_RCVD_TSTMP) == 0)
6829 		tp->t_flags &= ~TF_PREVVALID;
6830 	KMOD_TCPSTAT_INC(tcps_rexmttimeo);
6831 	if ((tp->t_state == TCPS_SYN_SENT) ||
6832 	    (tp->t_state == TCPS_SYN_RECEIVED))
6833 		rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift];
6834 	else
6835 		rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift];
6836 
6837 	RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt,
6838 	   max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop);
6839 	/*
6840 	 * We enter the path for PLMTUD if connection is established or, if
6841 	 * connection is FIN_WAIT_1 status, reason for the last is that if
6842 	 * amount of data we send is very small, we could send it in couple
6843 	 * of packets and process straight to FIN. In that case we won't
6844 	 * catch ESTABLISHED state.
6845 	 */
6846 #ifdef INET6
6847 	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false;
6848 #else
6849 	isipv6 = false;
6850 #endif
6851 	if (((V_tcp_pmtud_blackhole_detect == 1) ||
6852 	    (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
6853 	    (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
6854 	    ((tp->t_state == TCPS_ESTABLISHED) ||
6855 	    (tp->t_state == TCPS_FIN_WAIT_1))) {
6856 		/*
6857 		 * Idea here is that at each stage of mtu probe (usually,
6858 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
6859 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
6860 		 * should take care of that.
6861 		 */
6862 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
6863 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
6864 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
6865 		    tp->t_rxtshift % 2 == 0)) {
6866 			/*
6867 			 * Enter Path MTU Black-hole Detection mechanism: -
6868 			 * Disable Path MTU Discovery (IP "DF" bit). -
6869 			 * Reduce MTU to lower value than what we negotiated
6870 			 * with peer.
6871 			 */
6872 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
6873 				/* Record that we may have found a black hole. */
6874 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
6875 				/* Keep track of previous MSS. */
6876 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
6877 			}
6878 
6879 			/*
6880 			 * Reduce the MSS to blackhole value or to the
6881 			 * default in an attempt to retransmit.
6882 			 */
6883 #ifdef INET6
6884 			if (isipv6 &&
6885 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
6886 				/* Use the sysctl tuneable blackhole MSS. */
6887 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
6888 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6889 			} else if (isipv6) {
6890 				/* Use the default MSS. */
6891 				tp->t_maxseg = V_tcp_v6mssdflt;
6892 				/*
6893 				 * Disable Path MTU Discovery when we switch
6894 				 * to minmss.
6895 				 */
6896 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6897 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6898 			}
6899 #endif
6900 #if defined(INET6) && defined(INET)
6901 			else
6902 #endif
6903 #ifdef INET
6904 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
6905 				/* Use the sysctl tuneable blackhole MSS. */
6906 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
6907 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6908 			} else {
6909 				/* Use the default MSS. */
6910 				tp->t_maxseg = V_tcp_mssdflt;
6911 				/*
6912 				 * Disable Path MTU Discovery when we switch
6913 				 * to minmss.
6914 				 */
6915 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6916 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6917 			}
6918 #endif
6919 		} else {
6920 			/*
6921 			 * If further retransmissions are still unsuccessful
6922 			 * with a lowered MTU, maybe this isn't a blackhole
6923 			 * and we restore the previous MSS and blackhole
6924 			 * detection flags. The limit '6' is determined by
6925 			 * giving each probe stage (1448, 1188, 524) 2
6926 			 * chances to recover.
6927 			 */
6928 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
6929 			    (tp->t_rxtshift >= 6)) {
6930 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
6931 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
6932 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
6933 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
6934 			}
6935 		}
6936 	}
6937 	/*
6938 	 * Disable RFC1323 and SACK if we haven't got any response to
6939 	 * our third SYN to work-around some broken terminal servers
6940 	 * (most of which have hopefully been retired) that have bad VJ
6941 	 * header compression code which trashes TCP segments containing
6942 	 * unknown-to-them TCP options.
6943 	 */
6944 	if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
6945 	    (tp->t_rxtshift == 3))
6946 		tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT);
6947 	/*
6948 	 * If we backed off this far, our srtt estimate is probably bogus.
6949 	 * Clobber it so we'll take the next rtt measurement as our srtt;
6950 	 * move the current srtt into rttvar to keep the current retransmit
6951 	 * times until then.
6952 	 */
6953 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
6954 #ifdef INET6
6955 		if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
6956 			in6_losing(tp->t_inpcb);
6957 		else
6958 #endif
6959 			in_losing(tp->t_inpcb);
6960 		tp->t_rttvar += tp->t_srtt;
6961 		tp->t_srtt = 0;
6962 	}
6963 	sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6964 	tp->snd_recover = tp->snd_max;
6965 	tp->t_flags |= TF_ACKNOW;
6966 	tp->t_rtttime = 0;
6967 	rack_cong_signal(tp, CC_RTO, tp->snd_una);
6968 out:
6969 	return (retval);
6970 }
6971 
6972 static int
6973 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp)
6974 {
6975 	int32_t ret = 0;
6976 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
6977 
6978 	if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
6979 	    (tp->t_flags & TF_GPUTINPROG)) {
6980 		/*
6981 		 * We have a goodput in progress
6982 		 * and we have entered a late state.
6983 		 * Do we have enough data in the sb
6984 		 * to handle the GPUT request?
6985 		 */
6986 		uint32_t bytes;
6987 
6988 		bytes = tp->gput_ack - tp->gput_seq;
6989 		if (SEQ_GT(tp->gput_seq, tp->snd_una))
6990 			bytes += tp->gput_seq - tp->snd_una;
6991 		if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
6992 			/*
6993 			 * There are not enough bytes in the socket
6994 			 * buffer that have been sent to cover this
6995 			 * measurement. Cancel it.
6996 			 */
6997 			rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6998 						   rack->r_ctl.rc_gp_srtt /*flex1*/,
6999 						   tp->gput_seq,
7000 						   0, 0, 18, __LINE__, NULL, 0);
7001 			tp->t_flags &= ~TF_GPUTINPROG;
7002 		}
7003 	}
7004 	if (timers == 0) {
7005 		return (0);
7006 	}
7007 	if (tp->t_state == TCPS_LISTEN) {
7008 		/* no timers on listen sockets */
7009 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
7010 			return (0);
7011 		return (1);
7012 	}
7013 	if ((timers & PACE_TMR_RACK) &&
7014 	    rack->rc_on_min_to) {
7015 		/*
7016 		 * For the rack timer when we
7017 		 * are on a min-timeout (which means rrr_conf = 3)
7018 		 * we don't want to check the timer. It may
7019 		 * be going off for a pace and thats ok we
7020 		 * want to send the retransmit (if its ready).
7021 		 *
7022 		 * If its on a normal rack timer (non-min) then
7023 		 * we will check if its expired.
7024 		 */
7025 		goto skip_time_check;
7026 	}
7027 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
7028 		uint32_t left;
7029 
7030 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
7031 			ret = -1;
7032 			rack_log_to_processing(rack, cts, ret, 0);
7033 			return (0);
7034 		}
7035 		if (hpts_calling == 0) {
7036 			/*
7037 			 * A user send or queued mbuf (sack) has called us? We
7038 			 * return 0 and let the pacing guards
7039 			 * deal with it if they should or
7040 			 * should not cause a send.
7041 			 */
7042 			ret = -2;
7043 			rack_log_to_processing(rack, cts, ret, 0);
7044 			return (0);
7045 		}
7046 		/*
7047 		 * Ok our timer went off early and we are not paced false
7048 		 * alarm, go back to sleep.
7049 		 */
7050 		ret = -3;
7051 		left = rack->r_ctl.rc_timer_exp - cts;
7052 		tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
7053 		rack_log_to_processing(rack, cts, ret, left);
7054 		return (1);
7055 	}
7056 skip_time_check:
7057 	rack->rc_tmr_stopped = 0;
7058 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
7059 	if (timers & PACE_TMR_DELACK) {
7060 		ret = rack_timeout_delack(tp, rack, cts);
7061 	} else if (timers & PACE_TMR_RACK) {
7062 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
7063 		rack->r_fast_output = 0;
7064 		ret = rack_timeout_rack(tp, rack, cts);
7065 	} else if (timers & PACE_TMR_TLP) {
7066 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
7067 		ret = rack_timeout_tlp(tp, rack, cts, doing_tlp);
7068 	} else if (timers & PACE_TMR_RXT) {
7069 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
7070 		rack->r_fast_output = 0;
7071 		ret = rack_timeout_rxt(tp, rack, cts);
7072 	} else if (timers & PACE_TMR_PERSIT) {
7073 		ret = rack_timeout_persist(tp, rack, cts);
7074 	} else if (timers & PACE_TMR_KEEP) {
7075 		ret = rack_timeout_keepalive(tp, rack, cts);
7076 	}
7077 	rack_log_to_processing(rack, cts, ret, timers);
7078 	return (ret);
7079 }
7080 
7081 static void
7082 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
7083 {
7084 	struct timeval tv;
7085 	uint32_t us_cts, flags_on_entry;
7086 	uint8_t hpts_removed = 0;
7087 
7088 	flags_on_entry = rack->r_ctl.rc_hpts_flags;
7089 	us_cts = tcp_get_usecs(&tv);
7090 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
7091 	    ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) ||
7092 	     ((tp->snd_max - tp->snd_una) == 0))) {
7093 		tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7094 		hpts_removed = 1;
7095 		/* If we were not delayed cancel out the flag. */
7096 		if ((tp->snd_max - tp->snd_una) == 0)
7097 			rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
7098 		rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
7099 	}
7100 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
7101 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
7102 		if (rack->rc_inp->inp_in_hpts &&
7103 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
7104 			/*
7105 			 * Canceling timer's when we have no output being
7106 			 * paced. We also must remove ourselves from the
7107 			 * hpts.
7108 			 */
7109 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7110 			hpts_removed = 1;
7111 		}
7112 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
7113 	}
7114 	if (hpts_removed == 0)
7115 		rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
7116 }
7117 
7118 static void
7119 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
7120 {
7121 	return;
7122 }
7123 
7124 static int
7125 rack_stopall(struct tcpcb *tp)
7126 {
7127 	struct tcp_rack *rack;
7128 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7129 	rack->t_timers_stopped = 1;
7130 	return (0);
7131 }
7132 
7133 static void
7134 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
7135 {
7136 	return;
7137 }
7138 
7139 static int
7140 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
7141 {
7142 	return (0);
7143 }
7144 
7145 static void
7146 rack_stop_all_timers(struct tcpcb *tp)
7147 {
7148 	struct tcp_rack *rack;
7149 
7150 	/*
7151 	 * Assure no timers are running.
7152 	 */
7153 	if (tcp_timer_active(tp, TT_PERSIST)) {
7154 		/* We enter in persists, set the flag appropriately */
7155 		rack = (struct tcp_rack *)tp->t_fb_ptr;
7156 		rack->rc_in_persist = 1;
7157 	}
7158 	tcp_timer_suspend(tp, TT_PERSIST);
7159 	tcp_timer_suspend(tp, TT_REXMT);
7160 	tcp_timer_suspend(tp, TT_KEEP);
7161 	tcp_timer_suspend(tp, TT_DELACK);
7162 }
7163 
7164 static void
7165 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
7166     struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag)
7167 {
7168 	int32_t idx;
7169 	uint16_t stripped_flags;
7170 
7171 	rsm->r_rtr_cnt++;
7172 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7173 	rsm->r_dupack = 0;
7174 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
7175 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
7176 		rsm->r_flags |= RACK_OVERMAX;
7177 	}
7178 	if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) {
7179 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
7180 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
7181 	}
7182 	idx = rsm->r_rtr_cnt - 1;
7183 	rsm->r_tim_lastsent[idx] = ts;
7184 	stripped_flags = rsm->r_flags & ~(RACK_SENT_SP|RACK_SENT_FP);
7185 	if (rsm->r_flags & RACK_ACKED) {
7186 		/* Problably MTU discovery messing with us */
7187 		rsm->r_flags &= ~RACK_ACKED;
7188 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
7189 	}
7190 	if (rsm->r_in_tmap) {
7191 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7192 		rsm->r_in_tmap = 0;
7193 	}
7194 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7195 	rsm->r_in_tmap = 1;
7196 	if (rsm->r_flags & RACK_SACK_PASSED) {
7197 		/* We have retransmitted due to the SACK pass */
7198 		rsm->r_flags &= ~RACK_SACK_PASSED;
7199 		rsm->r_flags |= RACK_WAS_SACKPASS;
7200 	}
7201 }
7202 
7203 static uint32_t
7204 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
7205     struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag)
7206 {
7207 	/*
7208 	 * We (re-)transmitted starting at rsm->r_start for some length
7209 	 * (possibly less than r_end.
7210 	 */
7211 	struct rack_sendmap *nrsm, *insret;
7212 	uint32_t c_end;
7213 	int32_t len;
7214 
7215 	len = *lenp;
7216 	c_end = rsm->r_start + len;
7217 	if (SEQ_GEQ(c_end, rsm->r_end)) {
7218 		/*
7219 		 * We retransmitted the whole piece or more than the whole
7220 		 * slopping into the next rsm.
7221 		 */
7222 		rack_update_rsm(tp, rack, rsm, ts, add_flag);
7223 		if (c_end == rsm->r_end) {
7224 			*lenp = 0;
7225 			return (0);
7226 		} else {
7227 			int32_t act_len;
7228 
7229 			/* Hangs over the end return whats left */
7230 			act_len = rsm->r_end - rsm->r_start;
7231 			*lenp = (len - act_len);
7232 			return (rsm->r_end);
7233 		}
7234 		/* We don't get out of this block. */
7235 	}
7236 	/*
7237 	 * Here we retransmitted less than the whole thing which means we
7238 	 * have to split this into what was transmitted and what was not.
7239 	 */
7240 	nrsm = rack_alloc_full_limit(rack);
7241 	if (nrsm == NULL) {
7242 		/*
7243 		 * We can't get memory, so lets not proceed.
7244 		 */
7245 		*lenp = 0;
7246 		return (0);
7247 	}
7248 	/*
7249 	 * So here we are going to take the original rsm and make it what we
7250 	 * retransmitted. nrsm will be the tail portion we did not
7251 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
7252 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
7253 	 * 1, 6 and the new piece will be 6, 11.
7254 	 */
7255 	rack_clone_rsm(rack, nrsm, rsm, c_end);
7256 	nrsm->r_dupack = 0;
7257 	rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
7258 	insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7259 #ifdef INVARIANTS
7260 	if (insret != NULL) {
7261 		panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7262 		      nrsm, insret, rack, rsm);
7263 	}
7264 #endif
7265 	if (rsm->r_in_tmap) {
7266 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7267 		nrsm->r_in_tmap = 1;
7268 	}
7269 	rsm->r_flags &= (~RACK_HAS_FIN);
7270 	rack_update_rsm(tp, rack, rsm, ts, add_flag);
7271 	/* Log a split of rsm into rsm and nrsm */
7272 	rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7273 	*lenp = 0;
7274 	return (0);
7275 }
7276 
7277 static void
7278 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
7279 		uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t cts,
7280 		struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff, int hw_tls)
7281 {
7282 	struct tcp_rack *rack;
7283 	struct rack_sendmap *rsm, *nrsm, *insret, fe;
7284 	register uint32_t snd_max, snd_una;
7285 
7286 	/*
7287 	 * Add to the RACK log of packets in flight or retransmitted. If
7288 	 * there is a TS option we will use the TS echoed, if not we will
7289 	 * grab a TS.
7290 	 *
7291 	 * Retransmissions will increment the count and move the ts to its
7292 	 * proper place. Note that if options do not include TS's then we
7293 	 * won't be able to effectively use the ACK for an RTT on a retran.
7294 	 *
7295 	 * Notes about r_start and r_end. Lets consider a send starting at
7296 	 * sequence 1 for 10 bytes. In such an example the r_start would be
7297 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
7298 	 * This means that r_end is actually the first sequence for the next
7299 	 * slot (11).
7300 	 *
7301 	 */
7302 	/*
7303 	 * If err is set what do we do XXXrrs? should we not add the thing?
7304 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
7305 	 * i.e. proceed with add ** do this for now.
7306 	 */
7307 	INP_WLOCK_ASSERT(tp->t_inpcb);
7308 	if (err)
7309 		/*
7310 		 * We don't log errors -- we could but snd_max does not
7311 		 * advance in this case either.
7312 		 */
7313 		return;
7314 
7315 	if (th_flags & TH_RST) {
7316 		/*
7317 		 * We don't log resets and we return immediately from
7318 		 * sending
7319 		 */
7320 		return;
7321 	}
7322 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7323 	snd_una = tp->snd_una;
7324 	snd_max = tp->snd_max;
7325 	if (th_flags & (TH_SYN | TH_FIN)) {
7326 		/*
7327 		 * The call to rack_log_output is made before bumping
7328 		 * snd_max. This means we can record one extra byte on a SYN
7329 		 * or FIN if seq_out is adding more on and a FIN is present
7330 		 * (and we are not resending).
7331 		 */
7332 		if ((th_flags & TH_SYN) && (seq_out == tp->iss))
7333 			len++;
7334 		if (th_flags & TH_FIN)
7335 			len++;
7336 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
7337 			/*
7338 			 * The add/update as not been done for the FIN/SYN
7339 			 * yet.
7340 			 */
7341 			snd_max = tp->snd_nxt;
7342 		}
7343 	}
7344 	if (SEQ_LEQ((seq_out + len), snd_una)) {
7345 		/* Are sending an old segment to induce an ack (keep-alive)? */
7346 		return;
7347 	}
7348 	if (SEQ_LT(seq_out, snd_una)) {
7349 		/* huh? should we panic? */
7350 		uint32_t end;
7351 
7352 		end = seq_out + len;
7353 		seq_out = snd_una;
7354 		if (SEQ_GEQ(end, seq_out))
7355 			len = end - seq_out;
7356 		else
7357 			len = 0;
7358 	}
7359 	if (len == 0) {
7360 		/* We don't log zero window probes */
7361 		return;
7362 	}
7363 	rack->r_ctl.rc_time_last_sent = cts;
7364 	if (IN_FASTRECOVERY(tp->t_flags)) {
7365 		rack->r_ctl.rc_prr_out += len;
7366 	}
7367 	/* First question is it a retransmission or new? */
7368 	if (seq_out == snd_max) {
7369 		/* Its new */
7370 again:
7371 		rsm = rack_alloc(rack);
7372 		if (rsm == NULL) {
7373 			/*
7374 			 * Hmm out of memory and the tcb got destroyed while
7375 			 * we tried to wait.
7376 			 */
7377 			return;
7378 		}
7379 		if (th_flags & TH_FIN) {
7380 			rsm->r_flags = RACK_HAS_FIN|add_flag;
7381 		} else {
7382 			rsm->r_flags = add_flag;
7383 		}
7384 		if (hw_tls)
7385 			rsm->r_hw_tls = 1;
7386 		rsm->r_tim_lastsent[0] = cts;
7387 		rsm->r_rtr_cnt = 1;
7388 		rsm->r_rtr_bytes = 0;
7389 		if (th_flags & TH_SYN) {
7390 			/* The data space is one beyond snd_una */
7391 			rsm->r_flags |= RACK_HAS_SYN;
7392 		}
7393 		rsm->r_start = seq_out;
7394 		rsm->r_end = rsm->r_start + len;
7395 		rsm->r_dupack = 0;
7396 		/*
7397 		 * save off the mbuf location that
7398 		 * sndmbuf_noadv returned (which is
7399 		 * where we started copying from)..
7400 		 */
7401 		rsm->m = s_mb;
7402 		rsm->soff = s_moff;
7403 		/* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */
7404 		if (rsm->m) {
7405 			if (rsm->m->m_len <= rsm->soff) {
7406 				/*
7407 				 * XXXrrs Question, will this happen?
7408 				 *
7409 				 * If sbsndptr is set at the correct place
7410 				 * then s_moff should always be somewhere
7411 				 * within rsm->m. But if the sbsndptr was
7412 				 * off then that won't be true. If it occurs
7413 				 * we need to walkout to the correct location.
7414 				 */
7415 				struct mbuf *lm;
7416 
7417 				lm = rsm->m;
7418 				while (lm->m_len <= rsm->soff) {
7419 					rsm->soff -= lm->m_len;
7420 					lm = lm->m_next;
7421 					KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u",
7422 							     __func__, rack, s_moff, s_mb, rsm->soff));
7423 				}
7424 				rsm->m = lm;
7425 				counter_u64_add(rack_sbsndptr_wrong, 1);
7426 			} else
7427 				counter_u64_add(rack_sbsndptr_right, 1);
7428 			rsm->orig_m_len = rsm->m->m_len;
7429 		} else
7430 			rsm->orig_m_len = 0;
7431 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7432 		/* Log a new rsm */
7433 		rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__);
7434 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7435 #ifdef INVARIANTS
7436 		if (insret != NULL) {
7437 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7438 			      nrsm, insret, rack, rsm);
7439 		}
7440 #endif
7441 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7442 		rsm->r_in_tmap = 1;
7443 		/*
7444 		 * Special case detection, is there just a single
7445 		 * packet outstanding when we are not in recovery?
7446 		 *
7447 		 * If this is true mark it so.
7448 		 */
7449 		if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
7450 		    (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) {
7451 			struct rack_sendmap *prsm;
7452 
7453 			prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7454 			if (prsm)
7455 				prsm->r_one_out_nr = 1;
7456 		}
7457 		return;
7458 	}
7459 	/*
7460 	 * If we reach here its a retransmission and we need to find it.
7461 	 */
7462 	memset(&fe, 0, sizeof(fe));
7463 more:
7464 	if (hintrsm && (hintrsm->r_start == seq_out)) {
7465 		rsm = hintrsm;
7466 		hintrsm = NULL;
7467 	} else {
7468 		/* No hints sorry */
7469 		rsm = NULL;
7470 	}
7471 	if ((rsm) && (rsm->r_start == seq_out)) {
7472 		seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7473 		if (len == 0) {
7474 			return;
7475 		} else {
7476 			goto more;
7477 		}
7478 	}
7479 	/* Ok it was not the last pointer go through it the hard way. */
7480 refind:
7481 	fe.r_start = seq_out;
7482 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
7483 	if (rsm) {
7484 		if (rsm->r_start == seq_out) {
7485 			seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7486 			if (len == 0) {
7487 				return;
7488 			} else {
7489 				goto refind;
7490 			}
7491 		}
7492 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
7493 			/* Transmitted within this piece */
7494 			/*
7495 			 * Ok we must split off the front and then let the
7496 			 * update do the rest
7497 			 */
7498 			nrsm = rack_alloc_full_limit(rack);
7499 			if (nrsm == NULL) {
7500 				rack_update_rsm(tp, rack, rsm, cts, add_flag);
7501 				return;
7502 			}
7503 			/*
7504 			 * copy rsm to nrsm and then trim the front of rsm
7505 			 * to not include this part.
7506 			 */
7507 			rack_clone_rsm(rack, nrsm, rsm, seq_out);
7508 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7509 			rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7510 #ifdef INVARIANTS
7511 			if (insret != NULL) {
7512 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7513 				      nrsm, insret, rack, rsm);
7514 			}
7515 #endif
7516 			if (rsm->r_in_tmap) {
7517 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7518 				nrsm->r_in_tmap = 1;
7519 			}
7520 			rsm->r_flags &= (~RACK_HAS_FIN);
7521 			seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag);
7522 			if (len == 0) {
7523 				return;
7524 			} else if (len > 0)
7525 				goto refind;
7526 		}
7527 	}
7528 	/*
7529 	 * Hmm not found in map did they retransmit both old and on into the
7530 	 * new?
7531 	 */
7532 	if (seq_out == tp->snd_max) {
7533 		goto again;
7534 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
7535 #ifdef INVARIANTS
7536 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
7537 		       seq_out, len, tp->snd_una, tp->snd_max);
7538 		printf("Starting Dump of all rack entries\n");
7539 		RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
7540 			printf("rsm:%p start:%u end:%u\n",
7541 			       rsm, rsm->r_start, rsm->r_end);
7542 		}
7543 		printf("Dump complete\n");
7544 		panic("seq_out not found rack:%p tp:%p",
7545 		      rack, tp);
7546 #endif
7547 	} else {
7548 #ifdef INVARIANTS
7549 		/*
7550 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
7551 		 * flag)
7552 		 */
7553 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
7554 		      seq_out, len, tp->snd_max, tp);
7555 #endif
7556 	}
7557 }
7558 
7559 /*
7560  * Record one of the RTT updates from an ack into
7561  * our sample structure.
7562  */
7563 
7564 static void
7565 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt,
7566 		    int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt)
7567 {
7568 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7569 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
7570 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
7571 	}
7572 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7573 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
7574 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
7575 	}
7576 	if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
7577 	    if (us_rtt < rack->r_ctl.rc_gp_lowrtt)
7578 		rack->r_ctl.rc_gp_lowrtt = us_rtt;
7579 	    if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd)
7580 		    rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
7581 	}
7582 	if ((confidence == 1) &&
7583 	    ((rsm == NULL) ||
7584 	     (rsm->r_just_ret) ||
7585 	     (rsm->r_one_out_nr &&
7586 	      len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) {
7587 		/*
7588 		 * If the rsm had a just return
7589 		 * hit it then we can't trust the
7590 		 * rtt measurement for buffer deterimination
7591 		 * Note that a confidence of 2, indicates
7592 		 * SACK'd which overrides the r_just_ret or
7593 		 * the r_one_out_nr. If it was a CUM-ACK and
7594 		 * we had only two outstanding, but get an
7595 		 * ack for only 1. Then that also lowers our
7596 		 * confidence.
7597 		 */
7598 		confidence = 0;
7599 	}
7600 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7601 	    (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) {
7602 		if (rack->r_ctl.rack_rs.confidence == 0) {
7603 			/*
7604 			 * We take anything with no current confidence
7605 			 * saved.
7606 			 */
7607 			rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7608 			rack->r_ctl.rack_rs.confidence = confidence;
7609 			rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7610 		} else if (confidence || rack->r_ctl.rack_rs.confidence) {
7611 			/*
7612 			 * Once we have a confident number,
7613 			 * we can update it with a smaller
7614 			 * value since this confident number
7615 			 * may include the DSACK time until
7616 			 * the next segment (the second one) arrived.
7617 			 */
7618 			rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7619 			rack->r_ctl.rack_rs.confidence = confidence;
7620 			rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7621 		}
7622 	}
7623 	rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence);
7624 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
7625 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
7626 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
7627 }
7628 
7629 /*
7630  * Collect new round-trip time estimate
7631  * and update averages and current timeout.
7632  */
7633 static void
7634 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
7635 {
7636 	int32_t delta;
7637 	uint32_t o_srtt, o_var;
7638 	int32_t hrtt_up = 0;
7639 	int32_t rtt;
7640 
7641 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
7642 		/* No valid sample */
7643 		return;
7644 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
7645 		/* We are to use the lowest RTT seen in a single ack */
7646 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
7647 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
7648 		/* We are to use the highest RTT seen in a single ack */
7649 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
7650 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
7651 		/* We are to use the average RTT seen in a single ack */
7652 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
7653 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
7654 	} else {
7655 #ifdef INVARIANTS
7656 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
7657 #endif
7658 		return;
7659 	}
7660 	if (rtt == 0)
7661 		rtt = 1;
7662 	if (rack->rc_gp_rtt_set == 0) {
7663 		/*
7664 		 * With no RTT we have to accept
7665 		 * even one we are not confident of.
7666 		 */
7667 		rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt;
7668 		rack->rc_gp_rtt_set = 1;
7669 	} else if (rack->r_ctl.rack_rs.confidence) {
7670 		/* update the running gp srtt */
7671 		rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8);
7672 		rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8;
7673 	}
7674 	if (rack->r_ctl.rack_rs.confidence) {
7675 		/*
7676 		 * record the low and high for highly buffered path computation,
7677 		 * we only do this if we are confident (not a retransmission).
7678 		 */
7679 		if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) {
7680 			rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7681 			hrtt_up = 1;
7682 		}
7683 		if (rack->rc_highly_buffered == 0) {
7684 			/*
7685 			 * Currently once we declare a path has
7686 			 * highly buffered there is no going
7687 			 * back, which may be a problem...
7688 			 */
7689 			if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) {
7690 				rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt,
7691 						     rack->r_ctl.rc_highest_us_rtt,
7692 						     rack->r_ctl.rc_lowest_us_rtt,
7693 						     RACK_RTTS_SEEHBP);
7694 				rack->rc_highly_buffered = 1;
7695 			}
7696 		}
7697 	}
7698 	if ((rack->r_ctl.rack_rs.confidence) ||
7699 	    (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) {
7700 		/*
7701 		 * If we are highly confident of it <or> it was
7702 		 * never retransmitted we accept it as the last us_rtt.
7703 		 */
7704 		rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7705 		/* The lowest rtt can be set if its was not retransmited */
7706 		if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) {
7707 			rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7708 			if (rack->r_ctl.rc_lowest_us_rtt == 0)
7709 				rack->r_ctl.rc_lowest_us_rtt = 1;
7710 		}
7711 	}
7712 	o_srtt = tp->t_srtt;
7713 	o_var = tp->t_rttvar;
7714 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7715 	if (tp->t_srtt != 0) {
7716 		/*
7717 		 * We keep a simple srtt in microseconds, like our rtt
7718 		 * measurement. We don't need to do any tricks with shifting
7719 		 * etc. Instead we just add in 1/8th of the new measurement
7720 		 * and subtract out 1/8 of the old srtt. We do the same with
7721 		 * the variance after finding the absolute value of the
7722 		 * difference between this sample and the current srtt.
7723 		 */
7724 		delta = tp->t_srtt - rtt;
7725 		/* Take off 1/8th of the current sRTT */
7726 		tp->t_srtt -= (tp->t_srtt >> 3);
7727 		/* Add in 1/8th of the new RTT just measured */
7728 		tp->t_srtt += (rtt >> 3);
7729 		if (tp->t_srtt <= 0)
7730 			tp->t_srtt = 1;
7731 		/* Now lets make the absolute value of the variance */
7732 		if (delta < 0)
7733 			delta = -delta;
7734 		/* Subtract out 1/8th */
7735 		tp->t_rttvar -= (tp->t_rttvar >> 3);
7736 		/* Add in 1/8th of the new variance we just saw */
7737 		tp->t_rttvar += (delta >> 3);
7738 		if (tp->t_rttvar <= 0)
7739 			tp->t_rttvar = 1;
7740 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
7741 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
7742 	} else {
7743 		/*
7744 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
7745 		 * variance to half the rtt (so our first retransmit happens
7746 		 * at 3*rtt).
7747 		 */
7748 		tp->t_srtt = rtt;
7749 		tp->t_rttvar = rtt >> 1;
7750 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
7751 	}
7752 	rack->rc_srtt_measure_made = 1;
7753 	KMOD_TCPSTAT_INC(tcps_rttupdated);
7754 	tp->t_rttupdated++;
7755 #ifdef STATS
7756 	if (rack_stats_gets_ms_rtt == 0) {
7757 		/* Send in the microsecond rtt used for rxt timeout purposes */
7758 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
7759 	} else if (rack_stats_gets_ms_rtt == 1) {
7760 		/* Send in the millisecond rtt used for rxt timeout purposes */
7761 		int32_t ms_rtt;
7762 
7763 		/* Round up */
7764 		ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7765 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7766 	} else if (rack_stats_gets_ms_rtt == 2) {
7767 		/* Send in the millisecond rtt has close to the path RTT as we can get  */
7768 		int32_t ms_rtt;
7769 
7770 		/* Round up */
7771 		ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7772 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7773 	}  else {
7774 		/* Send in the microsecond rtt has close to the path RTT as we can get  */
7775 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt));
7776 	}
7777 
7778 #endif
7779 	/*
7780 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
7781 	 * way we do the smoothing, srtt and rttvar will each average +1/2
7782 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
7783 	 * tick of rounding and 1 extra tick because of +-1/2 tick
7784 	 * uncertainty in the firing of the timer.  The bias will give us
7785 	 * exactly the 1.5 tick we need.  But, because the bias is
7786 	 * statistical, we have to test that we don't drop below the minimum
7787 	 * feasible timer (which is 2 ticks).
7788 	 */
7789 	tp->t_rxtshift = 0;
7790 	RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7791 		      max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop);
7792 	rack_log_rtt_sample(rack, rtt);
7793 	tp->t_softerror = 0;
7794 }
7795 
7796 
7797 static void
7798 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts)
7799 {
7800 	/*
7801 	 * Apply to filter the inbound us-rtt at us_cts.
7802 	 */
7803 	uint32_t old_rtt;
7804 
7805 	old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
7806 	apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt,
7807 			       us_rtt, us_cts);
7808 	if (rack->r_ctl.last_pacing_time &&
7809 	    rack->rc_gp_dyn_mul &&
7810 	    (rack->r_ctl.last_pacing_time > us_rtt))
7811 		rack->pacing_longer_than_rtt = 1;
7812 	else
7813 		rack->pacing_longer_than_rtt = 0;
7814 	if (old_rtt > us_rtt) {
7815 		/* We just hit a new lower rtt time */
7816 		rack_log_rtt_shrinks(rack,  us_cts,  old_rtt,
7817 				     __LINE__, RACK_RTTS_NEWRTT);
7818 		/*
7819 		 * Only count it if its lower than what we saw within our
7820 		 * calculated range.
7821 		 */
7822 		if ((old_rtt - us_rtt) > rack_min_rtt_movement) {
7823 			if (rack_probertt_lower_within &&
7824 			    rack->rc_gp_dyn_mul &&
7825 			    (rack->use_fixed_rate == 0) &&
7826 			    (rack->rc_always_pace)) {
7827 				/*
7828 				 * We are seeing a new lower rtt very close
7829 				 * to the time that we would have entered probe-rtt.
7830 				 * This is probably due to the fact that a peer flow
7831 				 * has entered probe-rtt. Lets go in now too.
7832 				 */
7833 				uint32_t val;
7834 
7835 				val = rack_probertt_lower_within * rack_time_between_probertt;
7836 				val /= 100;
7837 				if ((rack->in_probe_rtt == 0)  &&
7838 				    ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val)))	{
7839 					rack_enter_probertt(rack, us_cts);
7840 				}
7841 			}
7842 			rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
7843 		}
7844 	}
7845 }
7846 
7847 static int
7848 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
7849     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack)
7850 {
7851 	int32_t i, all;
7852 	uint32_t t, len_acked;
7853 
7854 	if ((rsm->r_flags & RACK_ACKED) ||
7855 	    (rsm->r_flags & RACK_WAS_ACKED))
7856 		/* Already done */
7857 		return (0);
7858 	if (rsm->r_no_rtt_allowed) {
7859 		/* Not allowed */
7860 		return (0);
7861 	}
7862 	if (ack_type == CUM_ACKED) {
7863 		if (SEQ_GT(th_ack, rsm->r_end)) {
7864 			len_acked = rsm->r_end - rsm->r_start;
7865 			all = 1;
7866 		} else {
7867 			len_acked = th_ack - rsm->r_start;
7868 			all = 0;
7869 		}
7870 	} else {
7871 		len_acked = rsm->r_end - rsm->r_start;
7872 		all = 0;
7873 	}
7874 	if (rsm->r_rtr_cnt == 1) {
7875 		uint32_t us_rtt;
7876 
7877 		t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7878 		if ((int)t <= 0)
7879 			t = 1;
7880 		if (!tp->t_rttlow || tp->t_rttlow > t)
7881 			tp->t_rttlow = t;
7882 		if (!rack->r_ctl.rc_rack_min_rtt ||
7883 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7884 			rack->r_ctl.rc_rack_min_rtt = t;
7885 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
7886 				rack->r_ctl.rc_rack_min_rtt = 1;
7887 			}
7888 		}
7889 		if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]))
7890 			us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7891 		else
7892 			us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7893 		if (us_rtt == 0)
7894 			us_rtt = 1;
7895 		rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time));
7896 		if (ack_type == SACKED) {
7897 			rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1);
7898 			tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt);
7899 		} else {
7900 			/*
7901 			 * We need to setup what our confidence
7902 			 * is in this ack.
7903 			 *
7904 			 * If the rsm was app limited and it is
7905 			 * less than a mss in length (the end
7906 			 * of the send) then we have a gap. If we
7907 			 * were app limited but say we were sending
7908 			 * multiple MSS's then we are more confident
7909 			 * int it.
7910 			 *
7911 			 * When we are not app-limited then we see if
7912 			 * the rsm is being included in the current
7913 			 * measurement, we tell this by the app_limited_needs_set
7914 			 * flag.
7915 			 *
7916 			 * Note that being cwnd blocked is not applimited
7917 			 * as well as the pacing delay between packets which
7918 			 * are sending only 1 or 2 MSS's also will show up
7919 			 * in the RTT. We probably need to examine this algorithm
7920 			 * a bit more and enhance it to account for the delay
7921 			 * between rsm's. We could do that by saving off the
7922 			 * pacing delay of each rsm (in an rsm) and then
7923 			 * factoring that in somehow though for now I am
7924 			 * not sure how :)
7925 			 */
7926 			int calc_conf = 0;
7927 
7928 			if (rsm->r_flags & RACK_APP_LIMITED) {
7929 				if (all && (len_acked <= ctf_fixed_maxseg(tp)))
7930 					calc_conf = 0;
7931 				else
7932 					calc_conf = 1;
7933 			} else if (rack->app_limited_needs_set == 0) {
7934 				calc_conf = 1;
7935 			} else {
7936 				calc_conf = 0;
7937 			}
7938 			rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2);
7939 			tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt,
7940 					    calc_conf, rsm, rsm->r_rtr_cnt);
7941 		}
7942 		if ((rsm->r_flags & RACK_TLP) &&
7943 		    (!IN_FASTRECOVERY(tp->t_flags))) {
7944 			/* Segment was a TLP and our retrans matched */
7945 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
7946 				rack->r_ctl.rc_rsm_start = tp->snd_max;
7947 				rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
7948 				rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
7949 				rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
7950 			}
7951 		}
7952 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7953 			/* New more recent rack_tmit_time */
7954 			rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7955 			rack->rc_rack_rtt = t;
7956 		}
7957 		return (1);
7958 	}
7959 	/*
7960 	 * We clear the soft/rxtshift since we got an ack.
7961 	 * There is no assurance we will call the commit() function
7962 	 * so we need to clear these to avoid incorrect handling.
7963 	 */
7964 	tp->t_rxtshift = 0;
7965 	RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7966 		      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
7967 	tp->t_softerror = 0;
7968 	if (to && (to->to_flags & TOF_TS) &&
7969 	    (ack_type == CUM_ACKED) &&
7970 	    (to->to_tsecr) &&
7971 	    ((rsm->r_flags & RACK_OVERMAX) == 0)) {
7972 		/*
7973 		 * Now which timestamp does it match? In this block the ACK
7974 		 * must be coming from a previous transmission.
7975 		 */
7976 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
7977 			if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) {
7978 				t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7979 				if ((int)t <= 0)
7980 					t = 1;
7981 				if ((i + 1) < rsm->r_rtr_cnt) {
7982 					/*
7983 					 * The peer ack'd from our previous
7984 					 * transmission. We have a spurious
7985 					 * retransmission and thus we dont
7986 					 * want to update our rack_rtt.
7987 					 */
7988 					return (0);
7989 				}
7990 				if (!tp->t_rttlow || tp->t_rttlow > t)
7991 					tp->t_rttlow = t;
7992 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7993 					rack->r_ctl.rc_rack_min_rtt = t;
7994 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
7995 						rack->r_ctl.rc_rack_min_rtt = 1;
7996 					}
7997 				}
7998 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
7999 					   (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
8000 					/* New more recent rack_tmit_time */
8001 					rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
8002 					rack->rc_rack_rtt = t;
8003 				}
8004 				rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3);
8005 				tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm,
8006 						    rsm->r_rtr_cnt);
8007 				return (1);
8008 			}
8009 		}
8010 		goto ts_not_found;
8011 	} else {
8012 		/*
8013 		 * Ok its a SACK block that we retransmitted. or a windows
8014 		 * machine without timestamps. We can tell nothing from the
8015 		 * time-stamp since its not there or the time the peer last
8016 		 * recieved a segment that moved forward its cum-ack point.
8017 		 */
8018 ts_not_found:
8019 		i = rsm->r_rtr_cnt - 1;
8020 		t = cts - (uint32_t)rsm->r_tim_lastsent[i];
8021 		if ((int)t <= 0)
8022 			t = 1;
8023 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
8024 			/*
8025 			 * We retransmitted and the ack came back in less
8026 			 * than the smallest rtt we have observed. We most
8027 			 * likely did an improper retransmit as outlined in
8028 			 * 6.2 Step 2 point 2 in the rack-draft so we
8029 			 * don't want to update our rack_rtt. We in
8030 			 * theory (in future) might want to think about reverting our
8031 			 * cwnd state but we won't for now.
8032 			 */
8033 			return (0);
8034 		} else if (rack->r_ctl.rc_rack_min_rtt) {
8035 			/*
8036 			 * We retransmitted it and the retransmit did the
8037 			 * job.
8038 			 */
8039 			if (!rack->r_ctl.rc_rack_min_rtt ||
8040 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
8041 				rack->r_ctl.rc_rack_min_rtt = t;
8042 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
8043 					rack->r_ctl.rc_rack_min_rtt = 1;
8044 				}
8045 			}
8046 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) {
8047 				/* New more recent rack_tmit_time */
8048 				rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i];
8049 				rack->rc_rack_rtt = t;
8050 			}
8051 			return (1);
8052 		}
8053 	}
8054 	return (0);
8055 }
8056 
8057 /*
8058  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
8059  */
8060 static void
8061 rack_log_sack_passed(struct tcpcb *tp,
8062     struct tcp_rack *rack, struct rack_sendmap *rsm)
8063 {
8064 	struct rack_sendmap *nrsm;
8065 
8066 	nrsm = rsm;
8067 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
8068 	    rack_head, r_tnext) {
8069 		if (nrsm == rsm) {
8070 			/* Skip orginal segment he is acked */
8071 			continue;
8072 		}
8073 		if (nrsm->r_flags & RACK_ACKED) {
8074 			/*
8075 			 * Skip ack'd segments, though we
8076 			 * should not see these, since tmap
8077 			 * should not have ack'd segments.
8078 			 */
8079 			continue;
8080 		}
8081 		if (nrsm->r_flags & RACK_SACK_PASSED) {
8082 			/*
8083 			 * We found one that is already marked
8084 			 * passed, we have been here before and
8085 			 * so all others below this are marked.
8086 			 */
8087 			break;
8088 		}
8089 		nrsm->r_flags |= RACK_SACK_PASSED;
8090 		nrsm->r_flags &= ~RACK_WAS_SACKPASS;
8091 	}
8092 }
8093 
8094 static void
8095 rack_need_set_test(struct tcpcb *tp,
8096 		   struct tcp_rack *rack,
8097 		   struct rack_sendmap *rsm,
8098 		   tcp_seq th_ack,
8099 		   int line,
8100 		   int use_which)
8101 {
8102 
8103 	if ((tp->t_flags & TF_GPUTINPROG) &&
8104 	    SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8105 		/*
8106 		 * We were app limited, and this ack
8107 		 * butts up or goes beyond the point where we want
8108 		 * to start our next measurement. We need
8109 		 * to record the new gput_ts as here and
8110 		 * possibly update the start sequence.
8111 		 */
8112 		uint32_t seq, ts;
8113 
8114 		if (rsm->r_rtr_cnt > 1) {
8115 			/*
8116 			 * This is a retransmit, can we
8117 			 * really make any assessment at this
8118 			 * point?  We are not really sure of
8119 			 * the timestamp, is it this or the
8120 			 * previous transmission?
8121 			 *
8122 			 * Lets wait for something better that
8123 			 * is not retransmitted.
8124 			 */
8125 			return;
8126 		}
8127 		seq = tp->gput_seq;
8128 		ts = tp->gput_ts;
8129 		rack->app_limited_needs_set = 0;
8130 		tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
8131 		/* Do we start at a new end? */
8132 		if ((use_which == RACK_USE_BEG) &&
8133 		    SEQ_GEQ(rsm->r_start, tp->gput_seq)) {
8134 			/*
8135 			 * When we get an ACK that just eats
8136 			 * up some of the rsm, we set RACK_USE_BEG
8137 			 * since whats at r_start (i.e. th_ack)
8138 			 * is left unacked and thats where the
8139 			 * measurement not starts.
8140 			 */
8141 			tp->gput_seq = rsm->r_start;
8142 			rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8143 		}
8144 		if ((use_which == RACK_USE_END) &&
8145 		    SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8146 			    /*
8147 			     * We use the end when the cumack
8148 			     * is moving forward and completely
8149 			     * deleting the rsm passed so basically
8150 			     * r_end holds th_ack.
8151 			     *
8152 			     * For SACK's we also want to use the end
8153 			     * since this piece just got sacked and
8154 			     * we want to target anything after that
8155 			     * in our measurement.
8156 			     */
8157 			    tp->gput_seq = rsm->r_end;
8158 			    rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8159 		}
8160 		if (use_which == RACK_USE_END_OR_THACK) {
8161 			/*
8162 			 * special case for ack moving forward,
8163 			 * not a sack, we need to move all the
8164 			 * way up to where this ack cum-ack moves
8165 			 * to.
8166 			 */
8167 			if (SEQ_GT(th_ack, rsm->r_end))
8168 				tp->gput_seq = th_ack;
8169 			else
8170 				tp->gput_seq = rsm->r_end;
8171 			rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8172 		}
8173 		if (SEQ_GT(tp->gput_seq, tp->gput_ack)) {
8174 			/*
8175 			 * We moved beyond this guy's range, re-calculate
8176 			 * the new end point.
8177 			 */
8178 			if (rack->rc_gp_filled == 0) {
8179 				tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
8180 			} else {
8181 				tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
8182 			}
8183 		}
8184 		/*
8185 		 * We are moving the goal post, we may be able to clear the
8186 		 * measure_saw_probe_rtt flag.
8187 		 */
8188 		if ((rack->in_probe_rtt == 0) &&
8189 		    (rack->measure_saw_probe_rtt) &&
8190 		    (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
8191 			rack->measure_saw_probe_rtt = 0;
8192 		rack_log_pacing_delay_calc(rack, ts, tp->gput_ts,
8193 					   seq, tp->gput_seq, 0, 5, line, NULL, 0);
8194 		if (rack->rc_gp_filled &&
8195 		    ((tp->gput_ack - tp->gput_seq) <
8196 		     max(rc_init_window(rack), (MIN_GP_WIN *
8197 						ctf_fixed_maxseg(tp))))) {
8198 			uint32_t ideal_amount;
8199 
8200 			ideal_amount = rack_get_measure_window(tp, rack);
8201 			if (ideal_amount > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8202 				/*
8203 				 * There is no sense of continuing this measurement
8204 				 * because its too small to gain us anything we
8205 				 * trust. Skip it and that way we can start a new
8206 				 * measurement quicker.
8207 				 */
8208 				tp->t_flags &= ~TF_GPUTINPROG;
8209 				rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
8210 							   0, 0, 0, 6, __LINE__, NULL, 0);
8211 			} else {
8212 				/*
8213 				 * Reset the window further out.
8214 				 */
8215 				tp->gput_ack = tp->gput_seq + ideal_amount;
8216 			}
8217 		}
8218 	}
8219 }
8220 
8221 static uint32_t
8222 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
8223 		   struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
8224 {
8225 	uint32_t start, end, changed = 0;
8226 	struct rack_sendmap stack_map;
8227 	struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
8228 	int32_t used_ref = 1;
8229 	int moved = 0;
8230 
8231 	start = sack->start;
8232 	end = sack->end;
8233 	rsm = *prsm;
8234 	memset(&fe, 0, sizeof(fe));
8235 do_rest_ofb:
8236 	if ((rsm == NULL) ||
8237 	    (SEQ_LT(end, rsm->r_start)) ||
8238 	    (SEQ_GEQ(start, rsm->r_end)) ||
8239 	    (SEQ_LT(start, rsm->r_start))) {
8240 		/*
8241 		 * We are not in the right spot,
8242 		 * find the correct spot in the tree.
8243 		 */
8244 		used_ref = 0;
8245 		fe.r_start = start;
8246 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
8247 		moved++;
8248 	}
8249 	if (rsm == NULL) {
8250 		/* TSNH */
8251 		goto out;
8252 	}
8253 	/* Ok we have an ACK for some piece of this rsm */
8254 	if (rsm->r_start != start) {
8255 		if ((rsm->r_flags & RACK_ACKED) == 0) {
8256 			/**
8257 			 * Need to split this in two pieces the before and after,
8258 			 * the before remains in the map, the after must be
8259 			 * added. In other words we have:
8260 			 * rsm        |--------------|
8261 			 * sackblk        |------->
8262 			 * rsm will become
8263 			 *     rsm    |---|
8264 			 * and nrsm will be  the sacked piece
8265 			 *     nrsm       |----------|
8266 			 *
8267 			 * But before we start down that path lets
8268 			 * see if the sack spans over on top of
8269 			 * the next guy and it is already sacked.
8270 			 */
8271 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8272 			if (next && (next->r_flags & RACK_ACKED) &&
8273 			    SEQ_GEQ(end, next->r_start)) {
8274 				/**
8275 				 * So the next one is already acked, and
8276 				 * we can thus by hookery use our stack_map
8277 				 * to reflect the piece being sacked and
8278 				 * then adjust the two tree entries moving
8279 				 * the start and ends around. So we start like:
8280 				 *  rsm     |------------|             (not-acked)
8281 				 *  next                 |-----------| (acked)
8282 				 *  sackblk        |-------->
8283 				 *  We want to end like so:
8284 				 *  rsm     |------|                   (not-acked)
8285 				 *  next           |-----------------| (acked)
8286 				 *  nrsm           |-----|
8287 				 * Where nrsm is a temporary stack piece we
8288 				 * use to update all the gizmos.
8289 				 */
8290 				/* Copy up our fudge block */
8291 				nrsm = &stack_map;
8292 				memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8293 				/* Now adjust our tree blocks */
8294 				rsm->r_end = start;
8295 				next->r_start = start;
8296 				/* Now we must adjust back where next->m is */
8297 				rack_setup_offset_for_rsm(rsm, next);
8298 
8299 				/* We don't need to adjust rsm, it did not change */
8300 				/* Clear out the dup ack count of the remainder */
8301 				rsm->r_dupack = 0;
8302 				rsm->r_just_ret = 0;
8303 				rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8304 				/* Now lets make sure our fudge block is right */
8305 				nrsm->r_start = start;
8306 				/* Now lets update all the stats and such */
8307 				rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8308 				if (rack->app_limited_needs_set)
8309 					rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8310 				changed += (nrsm->r_end - nrsm->r_start);
8311 				rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8312 				if (nrsm->r_flags & RACK_SACK_PASSED) {
8313 					counter_u64_add(rack_reorder_seen, 1);
8314 					rack->r_ctl.rc_reorder_ts = cts;
8315 				}
8316 				/*
8317 				 * Now we want to go up from rsm (the
8318 				 * one left un-acked) to the next one
8319 				 * in the tmap. We do this so when
8320 				 * we walk backwards we include marking
8321 				 * sack-passed on rsm (The one passed in
8322 				 * is skipped since it is generally called
8323 				 * on something sacked before removing it
8324 				 * from the tmap).
8325 				 */
8326 				if (rsm->r_in_tmap) {
8327 					nrsm = TAILQ_NEXT(rsm, r_tnext);
8328 					/*
8329 					 * Now that we have the next
8330 					 * one walk backwards from there.
8331 					 */
8332 					if (nrsm && nrsm->r_in_tmap)
8333 						rack_log_sack_passed(tp, rack, nrsm);
8334 				}
8335 				/* Now are we done? */
8336 				if (SEQ_LT(end, next->r_end) ||
8337 				    (end == next->r_end)) {
8338 					/* Done with block */
8339 					goto out;
8340 				}
8341 				rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__);
8342 				counter_u64_add(rack_sack_used_next_merge, 1);
8343 				/* Postion for the next block */
8344 				start = next->r_end;
8345 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
8346 				if (rsm == NULL)
8347 					goto out;
8348 			} else {
8349 				/**
8350 				 * We can't use any hookery here, so we
8351 				 * need to split the map. We enter like
8352 				 * so:
8353 				 *  rsm      |--------|
8354 				 *  sackblk       |----->
8355 				 * We will add the new block nrsm and
8356 				 * that will be the new portion, and then
8357 				 * fall through after reseting rsm. So we
8358 				 * split and look like this:
8359 				 *  rsm      |----|
8360 				 *  sackblk       |----->
8361 				 *  nrsm          |---|
8362 				 * We then fall through reseting
8363 				 * rsm to nrsm, so the next block
8364 				 * picks it up.
8365 				 */
8366 				nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8367 				if (nrsm == NULL) {
8368 					/*
8369 					 * failed XXXrrs what can we do but loose the sack
8370 					 * info?
8371 					 */
8372 					goto out;
8373 				}
8374 				counter_u64_add(rack_sack_splits, 1);
8375 				rack_clone_rsm(rack, nrsm, rsm, start);
8376 				rsm->r_just_ret = 0;
8377 				insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8378 #ifdef INVARIANTS
8379 				if (insret != NULL) {
8380 					panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8381 					      nrsm, insret, rack, rsm);
8382 				}
8383 #endif
8384 				if (rsm->r_in_tmap) {
8385 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8386 					nrsm->r_in_tmap = 1;
8387 				}
8388 				rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__);
8389 				rsm->r_flags &= (~RACK_HAS_FIN);
8390 				/* Position us to point to the new nrsm that starts the sack blk */
8391 				rsm = nrsm;
8392 			}
8393 		} else {
8394 			/* Already sacked this piece */
8395 			counter_u64_add(rack_sack_skipped_acked, 1);
8396 			moved++;
8397 			if (end == rsm->r_end) {
8398 				/* Done with block */
8399 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8400 				goto out;
8401 			} else if (SEQ_LT(end, rsm->r_end)) {
8402 				/* A partial sack to a already sacked block */
8403 				moved++;
8404 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8405 				goto out;
8406 			} else {
8407 				/*
8408 				 * The end goes beyond this guy
8409 				 * repostion the start to the
8410 				 * next block.
8411 				 */
8412 				start = rsm->r_end;
8413 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8414 				if (rsm == NULL)
8415 					goto out;
8416 			}
8417 		}
8418 	}
8419 	if (SEQ_GEQ(end, rsm->r_end)) {
8420 		/**
8421 		 * The end of this block is either beyond this guy or right
8422 		 * at this guy. I.e.:
8423 		 *  rsm ---                 |-----|
8424 		 *  end                     |-----|
8425 		 *  <or>
8426 		 *  end                     |---------|
8427 		 */
8428 		if ((rsm->r_flags & RACK_ACKED) == 0) {
8429 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8430 			changed += (rsm->r_end - rsm->r_start);
8431 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8432 			if (rsm->r_in_tmap) /* should be true */
8433 				rack_log_sack_passed(tp, rack, rsm);
8434 			/* Is Reordering occuring? */
8435 			if (rsm->r_flags & RACK_SACK_PASSED) {
8436 				rsm->r_flags &= ~RACK_SACK_PASSED;
8437 				counter_u64_add(rack_reorder_seen, 1);
8438 				rack->r_ctl.rc_reorder_ts = cts;
8439 			}
8440 			if (rack->app_limited_needs_set)
8441 				rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8442 			rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8443 			rsm->r_flags |= RACK_ACKED;
8444 			rsm->r_flags &= ~RACK_TLP;
8445 			if (rsm->r_in_tmap) {
8446 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8447 				rsm->r_in_tmap = 0;
8448 			}
8449 			rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__);
8450 		} else {
8451 			counter_u64_add(rack_sack_skipped_acked, 1);
8452 			moved++;
8453 		}
8454 		if (end == rsm->r_end) {
8455 			/* This block only - done, setup for next */
8456 			goto out;
8457 		}
8458 		/*
8459 		 * There is more not coverend by this rsm move on
8460 		 * to the next block in the RB tree.
8461 		 */
8462 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8463 		start = rsm->r_end;
8464 		rsm = nrsm;
8465 		if (rsm == NULL)
8466 			goto out;
8467 		goto do_rest_ofb;
8468 	}
8469 	/**
8470 	 * The end of this sack block is smaller than
8471 	 * our rsm i.e.:
8472 	 *  rsm ---                 |-----|
8473 	 *  end                     |--|
8474 	 */
8475 	if ((rsm->r_flags & RACK_ACKED) == 0) {
8476 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8477 		if (prev && (prev->r_flags & RACK_ACKED)) {
8478 			/**
8479 			 * Goal, we want the right remainder of rsm to shrink
8480 			 * in place and span from (rsm->r_start = end) to rsm->r_end.
8481 			 * We want to expand prev to go all the way
8482 			 * to prev->r_end <- end.
8483 			 * so in the tree we have before:
8484 			 *   prev     |--------|         (acked)
8485 			 *   rsm               |-------| (non-acked)
8486 			 *   sackblk           |-|
8487 			 * We churn it so we end up with
8488 			 *   prev     |----------|       (acked)
8489 			 *   rsm                 |-----| (non-acked)
8490 			 *   nrsm              |-| (temporary)
8491 			 */
8492 			nrsm = &stack_map;
8493 			memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8494 			prev->r_end = end;
8495 			rsm->r_start = end;
8496 			/* Now adjust nrsm (stack copy) to be
8497 			 * the one that is the small
8498 			 * piece that was "sacked".
8499 			 */
8500 			nrsm->r_end = end;
8501 			rsm->r_dupack = 0;
8502 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8503 			/*
8504 			 * Now that the rsm has had its start moved forward
8505 			 * lets go ahead and get its new place in the world.
8506 			 */
8507 			rack_setup_offset_for_rsm(prev, rsm);
8508 			/*
8509 			 * Now nrsm is our new little piece
8510 			 * that is acked (which was merged
8511 			 * to prev). Update the rtt and changed
8512 			 * based on that. Also check for reordering.
8513 			 */
8514 			rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8515 			if (rack->app_limited_needs_set)
8516 				rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8517 			changed += (nrsm->r_end - nrsm->r_start);
8518 			rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8519 			if (nrsm->r_flags & RACK_SACK_PASSED) {
8520 				counter_u64_add(rack_reorder_seen, 1);
8521 				rack->r_ctl.rc_reorder_ts = cts;
8522 			}
8523 			rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__);
8524 			rsm = prev;
8525 			counter_u64_add(rack_sack_used_prev_merge, 1);
8526 		} else {
8527 			/**
8528 			 * This is the case where our previous
8529 			 * block is not acked either, so we must
8530 			 * split the block in two.
8531 			 */
8532 			nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8533 			if (nrsm == NULL) {
8534 				/* failed rrs what can we do but loose the sack info? */
8535 				goto out;
8536 			}
8537 			/**
8538 			 * In this case nrsm becomes
8539 			 * nrsm->r_start = end;
8540 			 * nrsm->r_end = rsm->r_end;
8541 			 * which is un-acked.
8542 			 * <and>
8543 			 * rsm->r_end = nrsm->r_start;
8544 			 * i.e. the remaining un-acked
8545 			 * piece is left on the left
8546 			 * hand side.
8547 			 *
8548 			 * So we start like this
8549 			 * rsm      |----------| (not acked)
8550 			 * sackblk  |---|
8551 			 * build it so we have
8552 			 * rsm      |---|         (acked)
8553 			 * nrsm         |------|  (not acked)
8554 			 */
8555 			counter_u64_add(rack_sack_splits, 1);
8556 			rack_clone_rsm(rack, nrsm, rsm, end);
8557 			rsm->r_flags &= (~RACK_HAS_FIN);
8558 			rsm->r_just_ret = 0;
8559 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8560 #ifdef INVARIANTS
8561 			if (insret != NULL) {
8562 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8563 				      nrsm, insret, rack, rsm);
8564 			}
8565 #endif
8566 			if (rsm->r_in_tmap) {
8567 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8568 				nrsm->r_in_tmap = 1;
8569 			}
8570 			nrsm->r_dupack = 0;
8571 			rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
8572 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8573 			changed += (rsm->r_end - rsm->r_start);
8574 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8575 			if (rsm->r_in_tmap) /* should be true */
8576 				rack_log_sack_passed(tp, rack, rsm);
8577 			/* Is Reordering occuring? */
8578 			if (rsm->r_flags & RACK_SACK_PASSED) {
8579 				rsm->r_flags &= ~RACK_SACK_PASSED;
8580 				counter_u64_add(rack_reorder_seen, 1);
8581 				rack->r_ctl.rc_reorder_ts = cts;
8582 			}
8583 			if (rack->app_limited_needs_set)
8584 				rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8585 			rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8586 			rsm->r_flags |= RACK_ACKED;
8587 			rsm->r_flags &= ~RACK_TLP;
8588 			rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__);
8589 			if (rsm->r_in_tmap) {
8590 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8591 				rsm->r_in_tmap = 0;
8592 			}
8593 		}
8594 	} else if (start != end){
8595 		/*
8596 		 * The block was already acked.
8597 		 */
8598 		counter_u64_add(rack_sack_skipped_acked, 1);
8599 		moved++;
8600 	}
8601 out:
8602 	if (rsm && (rsm->r_flags & RACK_ACKED)) {
8603 		/*
8604 		 * Now can we merge where we worked
8605 		 * with either the previous or
8606 		 * next block?
8607 		 */
8608 		next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8609 		while (next) {
8610 		    if (next->r_flags & RACK_ACKED) {
8611 			/* yep this and next can be merged */
8612 			rsm = rack_merge_rsm(rack, rsm, next);
8613 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8614 		    } else
8615 			    break;
8616 		}
8617 		/* Now what about the previous? */
8618 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8619 		while (prev) {
8620 		    if (prev->r_flags & RACK_ACKED) {
8621 			/* yep the previous and this can be merged */
8622 			rsm = rack_merge_rsm(rack, prev, rsm);
8623 			prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8624 		    } else
8625 			    break;
8626 		}
8627 	}
8628 	if (used_ref == 0) {
8629 		counter_u64_add(rack_sack_proc_all, 1);
8630 	} else {
8631 		counter_u64_add(rack_sack_proc_short, 1);
8632 	}
8633 	/* Save off the next one for quick reference. */
8634 	if (rsm)
8635 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8636 	else
8637 		nrsm = NULL;
8638 	*prsm = rack->r_ctl.rc_sacklast = nrsm;
8639 	/* Pass back the moved. */
8640 	*moved_two = moved;
8641 	return (changed);
8642 }
8643 
8644 static void inline
8645 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
8646 {
8647 	struct rack_sendmap *tmap;
8648 
8649 	tmap = NULL;
8650 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
8651 		/* Its no longer sacked, mark it so */
8652 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8653 #ifdef INVARIANTS
8654 		if (rsm->r_in_tmap) {
8655 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
8656 			      rack, rsm, rsm->r_flags);
8657 		}
8658 #endif
8659 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
8660 		/* Rebuild it into our tmap */
8661 		if (tmap == NULL) {
8662 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8663 			tmap = rsm;
8664 		} else {
8665 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
8666 			tmap = rsm;
8667 		}
8668 		tmap->r_in_tmap = 1;
8669 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8670 	}
8671 	/*
8672 	 * Now lets possibly clear the sack filter so we start
8673 	 * recognizing sacks that cover this area.
8674 	 */
8675 	sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
8676 
8677 }
8678 
8679 static void
8680 rack_do_decay(struct tcp_rack *rack)
8681 {
8682 	struct timeval res;
8683 
8684 #define	timersub(tvp, uvp, vvp)						\
8685 	do {								\
8686 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
8687 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
8688 		if ((vvp)->tv_usec < 0) {				\
8689 			(vvp)->tv_sec--;				\
8690 			(vvp)->tv_usec += 1000000;			\
8691 		}							\
8692 	} while (0)
8693 
8694 	timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res);
8695 #undef timersub
8696 
8697 	rack->r_ctl.input_pkt++;
8698 	if ((rack->rc_in_persist) ||
8699 	    (res.tv_sec >= 1) ||
8700 	    (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
8701 		/*
8702 		 * Check for decay of non-SAD,
8703 		 * we want all SAD detection metrics to
8704 		 * decay 1/4 per second (or more) passed.
8705 		 */
8706 		uint32_t pkt_delta;
8707 
8708 		pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
8709 		/* Update our saved tracking values */
8710 		rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
8711 		rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
8712 		/* Now do we escape without decay? */
8713 #ifdef NETFLIX_EXP_DETECTION
8714 		if (rack->rc_in_persist ||
8715 		    (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
8716 		    (pkt_delta < tcp_sad_low_pps)){
8717 			/*
8718 			 * We don't decay idle connections
8719 			 * or ones that have a low input pps.
8720 			 */
8721 			return;
8722 		}
8723 		/* Decay the counters */
8724 		rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
8725 							tcp_sad_decay_val);
8726 		rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
8727 							 tcp_sad_decay_val);
8728 		rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
8729 							       tcp_sad_decay_val);
8730 		rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
8731 								tcp_sad_decay_val);
8732 #endif
8733 	}
8734 }
8735 
8736 static void
8737 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to)
8738 {
8739 	struct rack_sendmap *rsm, *rm;
8740 
8741 	/*
8742 	 * The ACK point is advancing to th_ack, we must drop off
8743 	 * the packets in the rack log and calculate any eligble
8744 	 * RTT's.
8745 	 */
8746 	rack->r_wanted_output = 1;
8747 more:
8748 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
8749 	if (rsm == NULL) {
8750 		if ((th_ack - 1) == tp->iss) {
8751 			/*
8752 			 * For the SYN incoming case we will not
8753 			 * have called tcp_output for the sending of
8754 			 * the SYN, so there will be no map. All
8755 			 * other cases should probably be a panic.
8756 			 */
8757 			return;
8758 		}
8759 		if (tp->t_flags & TF_SENTFIN) {
8760 			/* if we sent a FIN we often will not have map */
8761 			return;
8762 		}
8763 #ifdef INVARIANTS
8764 		panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n",
8765 		      tp,
8766 		      tp->t_state, th_ack, rack,
8767 		      tp->snd_una, tp->snd_max, tp->snd_nxt);
8768 #endif
8769 		return;
8770 	}
8771 	if (SEQ_LT(th_ack, rsm->r_start)) {
8772 		/* Huh map is missing this */
8773 #ifdef INVARIANTS
8774 		printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
8775 		       rsm->r_start,
8776 		       th_ack, tp->t_state, rack->r_state);
8777 #endif
8778 		return;
8779 	}
8780 	rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack);
8781 	/* Now do we consume the whole thing? */
8782 	if (SEQ_GEQ(th_ack, rsm->r_end)) {
8783 		/* Its all consumed. */
8784 		uint32_t left;
8785 		uint8_t newly_acked;
8786 
8787 		rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__);
8788 		rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
8789 		rsm->r_rtr_bytes = 0;
8790 		/* Record the time of highest cumack sent */
8791 		rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8792 		rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8793 #ifdef INVARIANTS
8794 		if (rm != rsm) {
8795 			panic("removing head in rack:%p rsm:%p rm:%p",
8796 			      rack, rsm, rm);
8797 		}
8798 #endif
8799 		if (rsm->r_in_tmap) {
8800 			TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8801 			rsm->r_in_tmap = 0;
8802 		}
8803 		newly_acked = 1;
8804 		if (rsm->r_flags & RACK_ACKED) {
8805 			/*
8806 			 * It was acked on the scoreboard -- remove
8807 			 * it from total
8808 			 */
8809 			rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8810 			newly_acked = 0;
8811 		} else if (rsm->r_flags & RACK_SACK_PASSED) {
8812 			/*
8813 			 * There are segments ACKED on the
8814 			 * scoreboard further up. We are seeing
8815 			 * reordering.
8816 			 */
8817 			rsm->r_flags &= ~RACK_SACK_PASSED;
8818 			counter_u64_add(rack_reorder_seen, 1);
8819 			rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8820 			rsm->r_flags |= RACK_ACKED;
8821 			rack->r_ctl.rc_reorder_ts = cts;
8822 			if (rack->r_ent_rec_ns) {
8823 				/*
8824 				 * We have sent no more, and we saw an sack
8825 				 * then ack arrive.
8826 				 */
8827 				rack->r_might_revert = 1;
8828 			}
8829 		}
8830 		if ((rsm->r_flags & RACK_TO_REXT) &&
8831 		    (tp->t_flags & TF_RCVD_TSTMP) &&
8832 		    (to->to_flags & TOF_TS) &&
8833 		    (tp->t_flags & TF_PREVVALID)) {
8834 			/*
8835 			 * We can use the timestamp to see
8836 			 * if this retransmission was from the
8837 			 * first transmit. If so we made a mistake.
8838 			 */
8839 			tp->t_flags &= ~TF_PREVVALID;
8840 			if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) {
8841 				/* The first transmit is what this ack is for */
8842 				rack_cong_signal(tp, CC_RTO_ERR, th_ack);
8843 			}
8844 		}
8845 		left = th_ack - rsm->r_end;
8846 		if (rack->app_limited_needs_set && newly_acked)
8847 			rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK);
8848 		/* Free back to zone */
8849 		rack_free(rack, rsm);
8850 		if (left) {
8851 			goto more;
8852 		}
8853 		/* Check for reneging */
8854 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
8855 		if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
8856 			/*
8857 			 * The peer has moved snd_una up to
8858 			 * the edge of this send, i.e. one
8859 			 * that it had previously acked. The only
8860 			 * way that can be true if the peer threw
8861 			 * away data (space issues) that it had
8862 			 * previously sacked (else it would have
8863 			 * given us snd_una up to (rsm->r_end).
8864 			 * We need to undo the acked markings here.
8865 			 *
8866 			 * Note we have to look to make sure th_ack is
8867 			 * our rsm->r_start in case we get an old ack
8868 			 * where th_ack is behind snd_una.
8869 			 */
8870 			rack_peer_reneges(rack, rsm, th_ack);
8871 		}
8872 		return;
8873 	}
8874 	if (rsm->r_flags & RACK_ACKED) {
8875 		/*
8876 		 * It was acked on the scoreboard -- remove it from
8877 		 * total for the part being cum-acked.
8878 		 */
8879 		rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
8880 	}
8881 	/*
8882 	 * Clear the dup ack count for
8883 	 * the piece that remains.
8884 	 */
8885 	rsm->r_dupack = 0;
8886 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8887 	if (rsm->r_rtr_bytes) {
8888 		/*
8889 		 * It was retransmitted adjust the
8890 		 * sack holes for what was acked.
8891 		 */
8892 		int ack_am;
8893 
8894 		ack_am = (th_ack - rsm->r_start);
8895 		if (ack_am >= rsm->r_rtr_bytes) {
8896 			rack->r_ctl.rc_holes_rxt -= ack_am;
8897 			rsm->r_rtr_bytes -= ack_am;
8898 		}
8899 	}
8900 	/*
8901 	 * Update where the piece starts and record
8902 	 * the time of send of highest cumack sent.
8903 	 */
8904 	rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8905 	rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__);
8906 	/* Now we need to move our offset forward too */
8907 	if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) {
8908 		/* Fix up the orig_m_len and possibly the mbuf offset */
8909 		rack_adjust_orig_mlen(rsm);
8910 	}
8911 	rsm->soff += (th_ack - rsm->r_start);
8912 	rsm->r_start = th_ack;
8913 	/* Now do we need to move the mbuf fwd too? */
8914 	if (rsm->m) {
8915 		while (rsm->soff >= rsm->m->m_len) {
8916 			rsm->soff -= rsm->m->m_len;
8917 			rsm->m = rsm->m->m_next;
8918 			KASSERT((rsm->m != NULL),
8919 				(" nrsm:%p hit at soff:%u null m",
8920 				 rsm, rsm->soff));
8921 		}
8922 		rsm->orig_m_len = rsm->m->m_len;
8923 	}
8924 	if (rack->app_limited_needs_set)
8925 		rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG);
8926 }
8927 
8928 static void
8929 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack)
8930 {
8931 	struct rack_sendmap *rsm;
8932 	int sack_pass_fnd = 0;
8933 
8934 	if (rack->r_might_revert) {
8935 		/*
8936 		 * Ok we have reordering, have not sent anything, we
8937 		 * might want to revert the congestion state if nothing
8938 		 * further has SACK_PASSED on it. Lets check.
8939 		 *
8940 		 * We also get here when we have DSACKs come in for
8941 		 * all the data that we FR'd. Note that a rxt or tlp
8942 		 * timer clears this from happening.
8943 		 */
8944 
8945 		TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
8946 			if (rsm->r_flags & RACK_SACK_PASSED) {
8947 				sack_pass_fnd = 1;
8948 				break;
8949 			}
8950 		}
8951 		if (sack_pass_fnd == 0) {
8952 			/*
8953 			 * We went into recovery
8954 			 * incorrectly due to reordering!
8955 			 */
8956 			int orig_cwnd;
8957 
8958 			rack->r_ent_rec_ns = 0;
8959 			orig_cwnd = tp->snd_cwnd;
8960 			tp->snd_cwnd = rack->r_ctl.rc_cwnd_at_erec;
8961 			tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec;
8962 			tp->snd_recover = tp->snd_una;
8963 			rack_log_to_prr(rack, 14, orig_cwnd);
8964 			EXIT_RECOVERY(tp->t_flags);
8965 		}
8966 		rack->r_might_revert = 0;
8967 	}
8968 }
8969 
8970 #ifdef NETFLIX_EXP_DETECTION
8971 static void
8972 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack,  uint32_t bytes_this_ack, uint32_t segsiz)
8973 {
8974 	if ((rack->do_detection || tcp_force_detection) &&
8975 	    tcp_sack_to_ack_thresh &&
8976 	    tcp_sack_to_move_thresh &&
8977 	    ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
8978 		/*
8979 		 * We have thresholds set to find
8980 		 * possible attackers and disable sack.
8981 		 * Check them.
8982 		 */
8983 		uint64_t ackratio, moveratio, movetotal;
8984 
8985 		/* Log detecting */
8986 		rack_log_sad(rack, 1);
8987 		ackratio = (uint64_t)(rack->r_ctl.sack_count);
8988 		ackratio *= (uint64_t)(1000);
8989 		if (rack->r_ctl.ack_count)
8990 			ackratio /= (uint64_t)(rack->r_ctl.ack_count);
8991 		else {
8992 			/* We really should not hit here */
8993 			ackratio = 1000;
8994 		}
8995 		if ((rack->sack_attack_disable == 0) &&
8996 		    (ackratio > rack_highest_sack_thresh_seen))
8997 			rack_highest_sack_thresh_seen = (uint32_t)ackratio;
8998 		movetotal = rack->r_ctl.sack_moved_extra;
8999 		movetotal += rack->r_ctl.sack_noextra_move;
9000 		moveratio = rack->r_ctl.sack_moved_extra;
9001 		moveratio *= (uint64_t)1000;
9002 		if (movetotal)
9003 			moveratio /= movetotal;
9004 		else {
9005 			/* No moves, thats pretty good */
9006 			moveratio = 0;
9007 		}
9008 		if ((rack->sack_attack_disable == 0) &&
9009 		    (moveratio > rack_highest_move_thresh_seen))
9010 			rack_highest_move_thresh_seen = (uint32_t)moveratio;
9011 		if (rack->sack_attack_disable == 0) {
9012 			if ((ackratio > tcp_sack_to_ack_thresh) &&
9013 			    (moveratio > tcp_sack_to_move_thresh)) {
9014 				/* Disable sack processing */
9015 				rack->sack_attack_disable = 1;
9016 				if (rack->r_rep_attack == 0) {
9017 					rack->r_rep_attack = 1;
9018 					counter_u64_add(rack_sack_attacks_detected, 1);
9019 				}
9020 				if (tcp_attack_on_turns_on_logging) {
9021 					/*
9022 					 * Turn on logging, used for debugging
9023 					 * false positives.
9024 					 */
9025 					rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
9026 				}
9027 				/* Clamp the cwnd at flight size */
9028 				rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
9029 				rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9030 				rack_log_sad(rack, 2);
9031 			}
9032 		} else {
9033 			/* We are sack-disabled check for false positives */
9034 			if ((ackratio <= tcp_restoral_thresh) ||
9035 			    (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
9036 				rack->sack_attack_disable = 0;
9037 				rack_log_sad(rack, 3);
9038 				/* Restart counting */
9039 				rack->r_ctl.sack_count = 0;
9040 				rack->r_ctl.sack_moved_extra = 0;
9041 				rack->r_ctl.sack_noextra_move = 1;
9042 				rack->r_ctl.ack_count = max(1,
9043 				      (bytes_this_ack / segsiz));
9044 
9045 				if (rack->r_rep_reverse == 0) {
9046 					rack->r_rep_reverse = 1;
9047 					counter_u64_add(rack_sack_attacks_reversed, 1);
9048 				}
9049 				/* Restore the cwnd */
9050 				if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
9051 					rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
9052 			}
9053 		}
9054 	}
9055 }
9056 #endif
9057 
9058 static void
9059 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end)
9060 {
9061 
9062 	uint32_t am;
9063 
9064 	if (SEQ_GT(end, start))
9065 		am = end - start;
9066 	else
9067 		am = 0;
9068 	/*
9069 	 * We keep track of how many DSACK blocks we get
9070 	 * after a recovery incident.
9071 	 */
9072 	rack->r_ctl.dsack_byte_cnt += am;
9073 	if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
9074 	    rack->r_ctl.retran_during_recovery &&
9075 	    (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) {
9076 		/*
9077 		 * False recovery most likely culprit is reordering. If
9078 		 * nothing else is missing we need to revert.
9079 		 */
9080 		rack->r_might_revert = 1;
9081 		rack_handle_might_revert(rack->rc_tp, rack);
9082 		rack->r_might_revert = 0;
9083 		rack->r_ctl.retran_during_recovery = 0;
9084 		rack->r_ctl.dsack_byte_cnt = 0;
9085 	}
9086 }
9087 
9088 static void
9089 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack)
9090 {
9091 	/* Deal with changed and PRR here (in recovery only) */
9092 	uint32_t pipe, snd_una;
9093 
9094 	rack->r_ctl.rc_prr_delivered += changed;
9095 
9096 	if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) {
9097 		/*
9098 		 * It is all outstanding, we are application limited
9099 		 * and thus we don't need more room to send anything.
9100 		 * Note we use tp->snd_una here and not th_ack because
9101 		 * the data as yet not been cut from the sb.
9102 		 */
9103 		rack->r_ctl.rc_prr_sndcnt = 0;
9104 		return;
9105 	}
9106 	/* Compute prr_sndcnt */
9107 	if (SEQ_GT(tp->snd_una, th_ack)) {
9108 		snd_una = tp->snd_una;
9109 	} else {
9110 		snd_una = th_ack;
9111 	}
9112 	pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
9113 	if (pipe > tp->snd_ssthresh) {
9114 		long sndcnt;
9115 
9116 		sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
9117 		if (rack->r_ctl.rc_prr_recovery_fs > 0)
9118 			sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
9119 		else {
9120 			rack->r_ctl.rc_prr_sndcnt = 0;
9121 			rack_log_to_prr(rack, 9, 0);
9122 			sndcnt = 0;
9123 		}
9124 		sndcnt++;
9125 		if (sndcnt > (long)rack->r_ctl.rc_prr_out)
9126 			sndcnt -= rack->r_ctl.rc_prr_out;
9127 		else
9128 			sndcnt = 0;
9129 		rack->r_ctl.rc_prr_sndcnt = sndcnt;
9130 		rack_log_to_prr(rack, 10, 0);
9131 	} else {
9132 		uint32_t limit;
9133 
9134 		if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
9135 			limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
9136 		else
9137 			limit = 0;
9138 		if (changed > limit)
9139 			limit = changed;
9140 		limit += ctf_fixed_maxseg(tp);
9141 		if (tp->snd_ssthresh > pipe) {
9142 			rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
9143 			rack_log_to_prr(rack, 11, 0);
9144 		} else {
9145 			rack->r_ctl.rc_prr_sndcnt = min(0, limit);
9146 			rack_log_to_prr(rack, 12, 0);
9147 		}
9148 	}
9149 }
9150 
9151 static void
9152 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck)
9153 {
9154 	uint32_t changed;
9155 	struct tcp_rack *rack;
9156 	struct rack_sendmap *rsm;
9157 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
9158 	register uint32_t th_ack;
9159 	int32_t i, j, k, num_sack_blks = 0;
9160 	uint32_t cts, acked, ack_point, sack_changed = 0;
9161 	int loop_start = 0, moved_two = 0;
9162 	uint32_t tsused;
9163 
9164 
9165 	INP_WLOCK_ASSERT(tp->t_inpcb);
9166 	if (th->th_flags & TH_RST) {
9167 		/* We don't log resets */
9168 		return;
9169 	}
9170 	rack = (struct tcp_rack *)tp->t_fb_ptr;
9171 	cts = tcp_get_usecs(NULL);
9172 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9173 	changed = 0;
9174 	th_ack = th->th_ack;
9175 	if (rack->sack_attack_disable == 0)
9176 		rack_do_decay(rack);
9177 	if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
9178 		/*
9179 		 * You only get credit for
9180 		 * MSS and greater (and you get extra
9181 		 * credit for larger cum-ack moves).
9182 		 */
9183 		int ac;
9184 
9185 		ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
9186 		rack->r_ctl.ack_count += ac;
9187 		counter_u64_add(rack_ack_total, ac);
9188 	}
9189 	if (rack->r_ctl.ack_count > 0xfff00000) {
9190 		/*
9191 		 * reduce the number to keep us under
9192 		 * a uint32_t.
9193 		 */
9194 		rack->r_ctl.ack_count /= 2;
9195 		rack->r_ctl.sack_count /= 2;
9196 	}
9197 	if (SEQ_GT(th_ack, tp->snd_una)) {
9198 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
9199 		tp->t_acktime = ticks;
9200 	}
9201 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
9202 		changed = th_ack - rsm->r_start;
9203 	if (changed) {
9204 		rack_process_to_cumack(tp, rack, th_ack, cts, to);
9205 	}
9206 	if ((to->to_flags & TOF_SACK) == 0) {
9207 		/* We are done nothing left and no sack. */
9208 		rack_handle_might_revert(tp, rack);
9209 		/*
9210 		 * For cases where we struck a dup-ack
9211 		 * with no SACK, add to the changes so
9212 		 * PRR will work right.
9213 		 */
9214 		if (dup_ack_struck && (changed == 0)) {
9215 			changed += ctf_fixed_maxseg(rack->rc_tp);
9216 		}
9217 		goto out;
9218 	}
9219 	/* Sack block processing */
9220 	if (SEQ_GT(th_ack, tp->snd_una))
9221 		ack_point = th_ack;
9222 	else
9223 		ack_point = tp->snd_una;
9224 	for (i = 0; i < to->to_nsacks; i++) {
9225 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
9226 		      &sack, sizeof(sack));
9227 		sack.start = ntohl(sack.start);
9228 		sack.end = ntohl(sack.end);
9229 		if (SEQ_GT(sack.end, sack.start) &&
9230 		    SEQ_GT(sack.start, ack_point) &&
9231 		    SEQ_LT(sack.start, tp->snd_max) &&
9232 		    SEQ_GT(sack.end, ack_point) &&
9233 		    SEQ_LEQ(sack.end, tp->snd_max)) {
9234 			sack_blocks[num_sack_blks] = sack;
9235 			num_sack_blks++;
9236 #ifdef NETFLIX_STATS
9237 		} else if (SEQ_LEQ(sack.start, th_ack) &&
9238 			   SEQ_LEQ(sack.end, th_ack)) {
9239 			/*
9240 			 * Its a D-SACK block.
9241 			 */
9242 			tcp_record_dsack(sack.start, sack.end);
9243 #endif
9244 			rack_note_dsack(rack, sack.start, sack.end);
9245 		}
9246 	}
9247 	/*
9248 	 * Sort the SACK blocks so we can update the rack scoreboard with
9249 	 * just one pass.
9250 	 */
9251 	num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
9252 					 num_sack_blks, th->th_ack);
9253 	ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
9254 	if (num_sack_blks == 0) {
9255 		/* Nothing to sack (DSACKs?) */
9256 		goto out_with_totals;
9257 	}
9258 	if (num_sack_blks < 2) {
9259 		/* Only one, we don't need to sort */
9260 		goto do_sack_work;
9261 	}
9262 	/* Sort the sacks */
9263 	for (i = 0; i < num_sack_blks; i++) {
9264 		for (j = i + 1; j < num_sack_blks; j++) {
9265 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
9266 				sack = sack_blocks[i];
9267 				sack_blocks[i] = sack_blocks[j];
9268 				sack_blocks[j] = sack;
9269 			}
9270 		}
9271 	}
9272 	/*
9273 	 * Now are any of the sack block ends the same (yes some
9274 	 * implementations send these)?
9275 	 */
9276 again:
9277 	if (num_sack_blks == 0)
9278 		goto out_with_totals;
9279 	if (num_sack_blks > 1) {
9280 		for (i = 0; i < num_sack_blks; i++) {
9281 			for (j = i + 1; j < num_sack_blks; j++) {
9282 				if (sack_blocks[i].end == sack_blocks[j].end) {
9283 					/*
9284 					 * Ok these two have the same end we
9285 					 * want the smallest end and then
9286 					 * throw away the larger and start
9287 					 * again.
9288 					 */
9289 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
9290 						/*
9291 						 * The second block covers
9292 						 * more area use that
9293 						 */
9294 						sack_blocks[i].start = sack_blocks[j].start;
9295 					}
9296 					/*
9297 					 * Now collapse out the dup-sack and
9298 					 * lower the count
9299 					 */
9300 					for (k = (j + 1); k < num_sack_blks; k++) {
9301 						sack_blocks[j].start = sack_blocks[k].start;
9302 						sack_blocks[j].end = sack_blocks[k].end;
9303 						j++;
9304 					}
9305 					num_sack_blks--;
9306 					goto again;
9307 				}
9308 			}
9309 		}
9310 	}
9311 do_sack_work:
9312 	/*
9313 	 * First lets look to see if
9314 	 * we have retransmitted and
9315 	 * can use the transmit next?
9316 	 */
9317 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9318 	if (rsm &&
9319 	    SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
9320 	    SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
9321 		/*
9322 		 * We probably did the FR and the next
9323 		 * SACK in continues as we would expect.
9324 		 */
9325 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
9326 		if (acked) {
9327 			rack->r_wanted_output = 1;
9328 			changed += acked;
9329 			sack_changed += acked;
9330 		}
9331 		if (num_sack_blks == 1) {
9332 			/*
9333 			 * This is what we would expect from
9334 			 * a normal implementation to happen
9335 			 * after we have retransmitted the FR,
9336 			 * i.e the sack-filter pushes down
9337 			 * to 1 block and the next to be retransmitted
9338 			 * is the sequence in the sack block (has more
9339 			 * are acked). Count this as ACK'd data to boost
9340 			 * up the chances of recovering any false positives.
9341 			 */
9342 			rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
9343 			counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
9344 			counter_u64_add(rack_express_sack, 1);
9345 			if (rack->r_ctl.ack_count > 0xfff00000) {
9346 				/*
9347 				 * reduce the number to keep us under
9348 				 * a uint32_t.
9349 				 */
9350 				rack->r_ctl.ack_count /= 2;
9351 				rack->r_ctl.sack_count /= 2;
9352 			}
9353 			goto out_with_totals;
9354 		} else {
9355 			/*
9356 			 * Start the loop through the
9357 			 * rest of blocks, past the first block.
9358 			 */
9359 			moved_two = 0;
9360 			loop_start = 1;
9361 		}
9362 	}
9363 	/* Its a sack of some sort */
9364 	rack->r_ctl.sack_count++;
9365 	if (rack->r_ctl.sack_count > 0xfff00000) {
9366 		/*
9367 		 * reduce the number to keep us under
9368 		 * a uint32_t.
9369 		 */
9370 		rack->r_ctl.ack_count /= 2;
9371 		rack->r_ctl.sack_count /= 2;
9372 	}
9373 	counter_u64_add(rack_sack_total, 1);
9374 	if (rack->sack_attack_disable) {
9375 		/* An attacker disablement is in place */
9376 		if (num_sack_blks > 1) {
9377 			rack->r_ctl.sack_count += (num_sack_blks - 1);
9378 			rack->r_ctl.sack_moved_extra++;
9379 			counter_u64_add(rack_move_some, 1);
9380 			if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
9381 				rack->r_ctl.sack_moved_extra /= 2;
9382 				rack->r_ctl.sack_noextra_move /= 2;
9383 			}
9384 		}
9385 		goto out;
9386 	}
9387 	rsm = rack->r_ctl.rc_sacklast;
9388 	for (i = loop_start; i < num_sack_blks; i++) {
9389 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
9390 		if (acked) {
9391 			rack->r_wanted_output = 1;
9392 			changed += acked;
9393 			sack_changed += acked;
9394 		}
9395 		if (moved_two) {
9396 			/*
9397 			 * If we did not get a SACK for at least a MSS and
9398 			 * had to move at all, or if we moved more than our
9399 			 * threshold, it counts against the "extra" move.
9400 			 */
9401 			rack->r_ctl.sack_moved_extra += moved_two;
9402 			counter_u64_add(rack_move_some, 1);
9403 		} else {
9404 			/*
9405 			 * else we did not have to move
9406 			 * any more than we would expect.
9407 			 */
9408 			rack->r_ctl.sack_noextra_move++;
9409 			counter_u64_add(rack_move_none, 1);
9410 		}
9411 		if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
9412 			/*
9413 			 * If the SACK was not a full MSS then
9414 			 * we add to sack_count the number of
9415 			 * MSS's (or possibly more than
9416 			 * a MSS if its a TSO send) we had to skip by.
9417 			 */
9418 			rack->r_ctl.sack_count += moved_two;
9419 			counter_u64_add(rack_sack_total, moved_two);
9420 		}
9421 		/*
9422 		 * Now we need to setup for the next
9423 		 * round. First we make sure we won't
9424 		 * exceed the size of our uint32_t on
9425 		 * the various counts, and then clear out
9426 		 * moved_two.
9427 		 */
9428 		if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
9429 		    (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
9430 			rack->r_ctl.sack_moved_extra /= 2;
9431 			rack->r_ctl.sack_noextra_move /= 2;
9432 		}
9433 		if (rack->r_ctl.sack_count > 0xfff00000) {
9434 			rack->r_ctl.ack_count /= 2;
9435 			rack->r_ctl.sack_count /= 2;
9436 		}
9437 		moved_two = 0;
9438 	}
9439 out_with_totals:
9440 	if (num_sack_blks > 1) {
9441 		/*
9442 		 * You get an extra stroke if
9443 		 * you have more than one sack-blk, this
9444 		 * could be where we are skipping forward
9445 		 * and the sack-filter is still working, or
9446 		 * it could be an attacker constantly
9447 		 * moving us.
9448 		 */
9449 		rack->r_ctl.sack_moved_extra++;
9450 		counter_u64_add(rack_move_some, 1);
9451 	}
9452 out:
9453 #ifdef NETFLIX_EXP_DETECTION
9454 	rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp));
9455 #endif
9456 	if (changed) {
9457 		/* Something changed cancel the rack timer */
9458 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9459 	}
9460 	tsused = tcp_get_usecs(NULL);
9461 	rsm = tcp_rack_output(tp, rack, tsused);
9462 	if ((!IN_FASTRECOVERY(tp->t_flags)) &&
9463 	    rsm) {
9464 		/* Enter recovery */
9465 		rack->r_ctl.rc_rsm_start = rsm->r_start;
9466 		rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
9467 		rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
9468 		entered_recovery = 1;
9469 		rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
9470 		/*
9471 		 * When we enter recovery we need to assure we send
9472 		 * one packet.
9473 		 */
9474 		if (rack->rack_no_prr == 0) {
9475 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
9476 			rack_log_to_prr(rack, 8, 0);
9477 		}
9478 		rack->r_timer_override = 1;
9479 		rack->r_early = 0;
9480 		rack->r_ctl.rc_agg_early = 0;
9481 	} else if (IN_FASTRECOVERY(tp->t_flags) &&
9482 		   rsm &&
9483 		   (rack->r_rr_config == 3)) {
9484 		/*
9485 		 * Assure we can output and we get no
9486 		 * remembered pace time except the retransmit.
9487 		 */
9488 		rack->r_timer_override = 1;
9489 		rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
9490 		rack->r_ctl.rc_resend = rsm;
9491 	}
9492 	if (IN_FASTRECOVERY(tp->t_flags) &&
9493 	    (rack->rack_no_prr == 0) &&
9494 	    (entered_recovery == 0)) {
9495 		rack_update_prr(tp, rack, changed, th_ack);
9496 		if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) &&
9497 		     ((rack->rc_inp->inp_in_hpts == 0) &&
9498 		      ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) {
9499 			/*
9500 			 * If you are pacing output you don't want
9501 			 * to override.
9502 			 */
9503 			rack->r_early = 0;
9504 			rack->r_ctl.rc_agg_early = 0;
9505 			rack->r_timer_override = 1;
9506 		}
9507 	}
9508 }
9509 
9510 static void
9511 rack_strike_dupack(struct tcp_rack *rack)
9512 {
9513 	struct rack_sendmap *rsm;
9514 
9515 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9516 	while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
9517 		rsm = TAILQ_NEXT(rsm, r_tnext);
9518 	}
9519 	if (rsm && (rsm->r_dupack < 0xff)) {
9520 		rsm->r_dupack++;
9521 		if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
9522 			struct timeval tv;
9523 			uint32_t cts;
9524 			/*
9525 			 * Here we see if we need to retransmit. For
9526 			 * a SACK type connection if enough time has passed
9527 			 * we will get a return of the rsm. For a non-sack
9528 			 * connection we will get the rsm returned if the
9529 			 * dupack value is 3 or more.
9530 			 */
9531 			cts = tcp_get_usecs(&tv);
9532 			rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts);
9533 			if (rack->r_ctl.rc_resend != NULL) {
9534 				if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) {
9535 					rack_cong_signal(rack->rc_tp, CC_NDUPACK,
9536 							 rack->rc_tp->snd_una);
9537 				}
9538 				rack->r_wanted_output = 1;
9539 				rack->r_timer_override = 1;
9540 				rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
9541 			}
9542 		} else {
9543 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
9544 		}
9545 	}
9546 }
9547 
9548 static void
9549 rack_check_bottom_drag(struct tcpcb *tp,
9550 		       struct tcp_rack *rack,
9551 		       struct socket *so, int32_t acked)
9552 {
9553 	uint32_t segsiz, minseg;
9554 
9555 	segsiz = ctf_fixed_maxseg(tp);
9556 	minseg = segsiz;
9557 
9558 	if (tp->snd_max == tp->snd_una) {
9559 		/*
9560 		 * We are doing dynamic pacing and we are way
9561 		 * under. Basically everything got acked while
9562 		 * we were still waiting on the pacer to expire.
9563 		 *
9564 		 * This means we need to boost the b/w in
9565 		 * addition to any earlier boosting of
9566 		 * the multipler.
9567 		 */
9568 		rack->rc_dragged_bottom = 1;
9569 		rack_validate_multipliers_at_or_above100(rack);
9570 		/*
9571 		 * Lets use the segment bytes acked plus
9572 		 * the lowest RTT seen as the basis to
9573 		 * form a b/w estimate. This will be off
9574 		 * due to the fact that the true estimate
9575 		 * should be around 1/2 the time of the RTT
9576 		 * but we can settle for that.
9577 		 */
9578 		if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) &&
9579 		    acked) {
9580 			uint64_t bw, calc_bw, rtt;
9581 
9582 			rtt = rack->r_ctl.rack_rs.rs_us_rtt;
9583 			if (rtt == 0) {
9584 				/* no us sample is there a ms one? */
9585 				if (rack->r_ctl.rack_rs.rs_rtt_lowest) {
9586 					rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
9587 				} else {
9588 					goto no_measurement;
9589 				}
9590 			}
9591 			bw = acked;
9592 			calc_bw = bw * 1000000;
9593 			calc_bw /= rtt;
9594 			if (rack->r_ctl.last_max_bw &&
9595 			    (rack->r_ctl.last_max_bw < calc_bw)) {
9596 				/*
9597 				 * If we have a last calculated max bw
9598 				 * enforce it.
9599 				 */
9600 				calc_bw = rack->r_ctl.last_max_bw;
9601 			}
9602 			/* now plop it in */
9603 			if (rack->rc_gp_filled == 0) {
9604 				if (calc_bw > ONE_POINT_TWO_MEG) {
9605 					/*
9606 					 * If we have no measurement
9607 					 * don't let us set in more than
9608 					 * 1.2Mbps. If we are still too
9609 					 * low after pacing with this we
9610 					 * will hopefully have a max b/w
9611 					 * available to sanity check things.
9612 					 */
9613 					calc_bw = ONE_POINT_TWO_MEG;
9614 				}
9615 				rack->r_ctl.rc_rtt_diff = 0;
9616 				rack->r_ctl.gp_bw = calc_bw;
9617 				rack->rc_gp_filled = 1;
9618 				if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9619 					rack->r_ctl.num_measurements = RACK_REQ_AVG;
9620 				rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9621 			} else if (calc_bw > rack->r_ctl.gp_bw) {
9622 				rack->r_ctl.rc_rtt_diff = 0;
9623 				if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9624 					rack->r_ctl.num_measurements = RACK_REQ_AVG;
9625 				rack->r_ctl.gp_bw = calc_bw;
9626 				rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9627 			} else
9628 				rack_increase_bw_mul(rack, -1, 0, 0, 1);
9629 			if ((rack->gp_ready == 0) &&
9630 			    (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
9631 				/* We have enough measurements now */
9632 				rack->gp_ready = 1;
9633 				rack_set_cc_pacing(rack);
9634 				if (rack->defer_options)
9635 					rack_apply_deferred_options(rack);
9636 			}
9637 			/*
9638 			 * For acks over 1mss we do a extra boost to simulate
9639 			 * where we would get 2 acks (we want 110 for the mul).
9640 			 */
9641 			if (acked > segsiz)
9642 				rack_increase_bw_mul(rack, -1, 0, 0, 1);
9643 		} else {
9644 			/*
9645 			 * zero rtt possibly?, settle for just an old increase.
9646 			 */
9647 no_measurement:
9648 			rack_increase_bw_mul(rack, -1, 0, 0, 1);
9649 		}
9650 	} else if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
9651 		   (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)),
9652 					       minseg)) &&
9653 		   (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9654 		   (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9655 		   (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <=
9656 		    (segsiz * rack_req_segs))) {
9657 		/*
9658 		 * We are doing dynamic GP pacing and
9659 		 * we have everything except 1MSS or less
9660 		 * bytes left out. We are still pacing away.
9661 		 * And there is data that could be sent, This
9662 		 * means we are inserting delayed ack time in
9663 		 * our measurements because we are pacing too slow.
9664 		 */
9665 		rack_validate_multipliers_at_or_above100(rack);
9666 		rack->rc_dragged_bottom = 1;
9667 		rack_increase_bw_mul(rack, -1, 0, 0, 1);
9668 	}
9669 }
9670 
9671 
9672 
9673 static void
9674 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount)
9675 {
9676 	/*
9677 	 * The fast output path is enabled and we
9678 	 * have moved the cumack forward. Lets see if
9679 	 * we can expand forward the fast path length by
9680 	 * that amount. What we would ideally like to
9681 	 * do is increase the number of bytes in the
9682 	 * fast path block (left_to_send) by the
9683 	 * acked amount. However we have to gate that
9684 	 * by two factors:
9685 	 * 1) The amount outstanding and the rwnd of the peer
9686 	 *    (i.e. we don't want to exceed the rwnd of the peer).
9687 	 *    <and>
9688 	 * 2) The amount of data left in the socket buffer (i.e.
9689 	 *    we can't send beyond what is in the buffer).
9690 	 *
9691 	 * Note that this does not take into account any increase
9692 	 * in the cwnd. We will only extend the fast path by
9693 	 * what was acked.
9694 	 */
9695 	uint32_t new_total, gating_val;
9696 
9697 	new_total = acked_amount + rack->r_ctl.fsb.left_to_send;
9698 	gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)),
9699 			 (tp->snd_wnd - (tp->snd_max - tp->snd_una)));
9700 	if (new_total <= gating_val) {
9701 		/* We can increase left_to_send by the acked amount */
9702 		counter_u64_add(rack_extended_rfo, 1);
9703 		rack->r_ctl.fsb.left_to_send = new_total;
9704 		KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))),
9705 			("rack:%p left_to_send:%u sbavail:%u out:%u",
9706 			 rack, rack->r_ctl.fsb.left_to_send,
9707 			 sbavail(&rack->rc_inp->inp_socket->so_snd),
9708 			 (tp->snd_max - tp->snd_una)));
9709 
9710 	}
9711 }
9712 
9713 static void
9714 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una)
9715 {
9716 	/*
9717 	 * Here any sendmap entry that points to the
9718 	 * beginning mbuf must be adjusted to the correct
9719 	 * offset. This must be called with:
9720 	 * 1) The socket buffer locked
9721 	 * 2) snd_una adjusted to its new postion.
9722 	 *
9723 	 * Note that (2) implies rack_ack_received has also
9724 	 * been called.
9725 	 *
9726 	 * We grab the first mbuf in the socket buffer and
9727 	 * then go through the front of the sendmap, recalculating
9728 	 * the stored offset for any sendmap entry that has
9729 	 * that mbuf. We must use the sb functions to do this
9730 	 * since its possible an add was done has well as
9731 	 * the subtraction we may have just completed. This should
9732 	 * not be a penalty though, since we just referenced the sb
9733 	 * to go in and trim off the mbufs that we freed (of course
9734 	 * there will be a penalty for the sendmap references though).
9735 	 */
9736 	struct mbuf *m;
9737 	struct rack_sendmap *rsm;
9738 
9739 	SOCKBUF_LOCK_ASSERT(sb);
9740 	m = sb->sb_mb;
9741 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9742 	if ((rsm == NULL) || (m == NULL)) {
9743 		/* Nothing outstanding */
9744 		return;
9745 	}
9746 	while (rsm->m && (rsm->m == m)) {
9747 		/* one to adjust */
9748 #ifdef INVARIANTS
9749 		struct mbuf *tm;
9750 		uint32_t soff;
9751 
9752 		tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff);
9753 		if (rsm->orig_m_len != m->m_len) {
9754 			rack_adjust_orig_mlen(rsm);
9755 		}
9756 		if (rsm->soff != soff) {
9757 			/*
9758 			 * This is not a fatal error, we anticipate it
9759 			 * might happen (the else code), so we count it here
9760 			 * so that under invariant we can see that it really
9761 			 * does happen.
9762 			 */
9763 			counter_u64_add(rack_adjust_map_bw, 1);
9764 		}
9765 		rsm->m = tm;
9766 		rsm->soff = soff;
9767 		if (tm)
9768 			rsm->orig_m_len = rsm->m->m_len;
9769 		else
9770 			rsm->orig_m_len = 0;
9771 #else
9772 		rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff);
9773 		if (rsm->m)
9774 			rsm->orig_m_len = rsm->m->m_len;
9775 		else
9776 			rsm->orig_m_len = 0;
9777 #endif
9778 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
9779 			      rsm);
9780 		if (rsm == NULL)
9781 			break;
9782 	}
9783 }
9784 
9785 /*
9786  * Return value of 1, we do not need to call rack_process_data().
9787  * return value of 0, rack_process_data can be called.
9788  * For ret_val if its 0 the TCP is locked, if its non-zero
9789  * its unlocked and probably unsafe to touch the TCB.
9790  */
9791 static int
9792 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
9793     struct tcpcb *tp, struct tcpopt *to,
9794     uint32_t tiwin, int32_t tlen,
9795     int32_t * ofia, int32_t thflags, int32_t *ret_val)
9796 {
9797 	int32_t ourfinisacked = 0;
9798 	int32_t nsegs, acked_amount;
9799 	int32_t acked;
9800 	struct mbuf *mfree;
9801 	struct tcp_rack *rack;
9802 	int32_t under_pacing = 0;
9803 	int32_t recovery = 0;
9804 
9805 	rack = (struct tcp_rack *)tp->t_fb_ptr;
9806 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
9807 		__ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val,
9808 				      &rack->r_ctl.challenge_ack_ts,
9809 				      &rack->r_ctl.challenge_ack_cnt);
9810 		rack->r_wanted_output = 1;
9811 		return (1);
9812 	}
9813 	if (rack->gp_ready &&
9814 	    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
9815 		under_pacing = 1;
9816 	}
9817 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
9818 		int in_rec, dup_ack_struck = 0;
9819 
9820 		in_rec = IN_FASTRECOVERY(tp->t_flags);
9821 		if (rack->rc_in_persist) {
9822 			tp->t_rxtshift = 0;
9823 			RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
9824 				      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
9825 		}
9826 		if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd)) {
9827 			rack_strike_dupack(rack);
9828 			dup_ack_struck = 1;
9829 		}
9830 		rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck);
9831 	}
9832 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
9833 		/*
9834 		 * Old ack, behind (or duplicate to) the last one rcv'd
9835 		 * Note: We mark reordering is occuring if its
9836 		 * less than and we have not closed our window.
9837 		 */
9838 		if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) {
9839 			counter_u64_add(rack_reorder_seen, 1);
9840 			rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
9841 		}
9842 		return (0);
9843 	}
9844 	/*
9845 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
9846 	 * something we sent.
9847 	 */
9848 	if (tp->t_flags & TF_NEEDSYN) {
9849 		/*
9850 		 * T/TCP: Connection was half-synchronized, and our SYN has
9851 		 * been ACK'd (so connection is now fully synchronized).  Go
9852 		 * to non-starred state, increment snd_una for ACK of SYN,
9853 		 * and check if we can do window scaling.
9854 		 */
9855 		tp->t_flags &= ~TF_NEEDSYN;
9856 		tp->snd_una++;
9857 		/* Do window scaling? */
9858 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
9859 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
9860 			tp->rcv_scale = tp->request_r_scale;
9861 			/* Send window already scaled. */
9862 		}
9863 	}
9864 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
9865 	INP_WLOCK_ASSERT(tp->t_inpcb);
9866 
9867 	acked = BYTES_THIS_ACK(tp, th);
9868 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
9869 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
9870 	/*
9871 	 * If we just performed our first retransmit, and the ACK arrives
9872 	 * within our recovery window, then it was a mistake to do the
9873 	 * retransmit in the first place.  Recover our original cwnd and
9874 	 * ssthresh, and proceed to transmit where we left off.
9875 	 */
9876 	if ((tp->t_flags & TF_PREVVALID) &&
9877 	    ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
9878 		tp->t_flags &= ~TF_PREVVALID;
9879 		if (tp->t_rxtshift == 1 &&
9880 		    (int)(ticks - tp->t_badrxtwin) < 0)
9881 			rack_cong_signal(tp, CC_RTO_ERR, th->th_ack);
9882 	}
9883 	if (acked) {
9884 		/* assure we are not backed off */
9885 		tp->t_rxtshift = 0;
9886 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
9887 			      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
9888 		rack->rc_tlp_in_progress = 0;
9889 		rack->r_ctl.rc_tlp_cnt_out = 0;
9890 		/*
9891 		 * If it is the RXT timer we want to
9892 		 * stop it, so we can restart a TLP.
9893 		 */
9894 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
9895 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9896 #ifdef NETFLIX_HTTP_LOGGING
9897 		tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
9898 #endif
9899 	}
9900 	/*
9901 	 * If we have a timestamp reply, update smoothed round trip time. If
9902 	 * no timestamp is present but transmit timer is running and timed
9903 	 * sequence number was acked, update smoothed round trip time. Since
9904 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
9905 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
9906 	 * timer.
9907 	 *
9908 	 * Some boxes send broken timestamp replies during the SYN+ACK
9909 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
9910 	 * and blow up the retransmit timer.
9911 	 */
9912 	/*
9913 	 * If all outstanding data is acked, stop retransmit timer and
9914 	 * remember to restart (more output or persist). If there is more
9915 	 * data to be acked, restart retransmit timer, using current
9916 	 * (possibly backed-off) value.
9917 	 */
9918 	if (acked == 0) {
9919 		if (ofia)
9920 			*ofia = ourfinisacked;
9921 		return (0);
9922 	}
9923 	if (IN_RECOVERY(tp->t_flags)) {
9924 		if (SEQ_LT(th->th_ack, tp->snd_recover) &&
9925 		    (SEQ_LT(th->th_ack, tp->snd_max))) {
9926 			tcp_rack_partialack(tp);
9927 		} else {
9928 			rack_post_recovery(tp, th->th_ack);
9929 			recovery = 1;
9930 		}
9931 	}
9932 	/*
9933 	 * Let the congestion control algorithm update congestion control
9934 	 * related information. This typically means increasing the
9935 	 * congestion window.
9936 	 */
9937 	rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery);
9938 	SOCKBUF_LOCK(&so->so_snd);
9939 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
9940 	tp->snd_wnd -= acked_amount;
9941 	mfree = sbcut_locked(&so->so_snd, acked_amount);
9942 	if ((sbused(&so->so_snd) == 0) &&
9943 	    (acked > acked_amount) &&
9944 	    (tp->t_state >= TCPS_FIN_WAIT_1) &&
9945 	    (tp->t_flags & TF_SENTFIN)) {
9946 		/*
9947 		 * We must be sure our fin
9948 		 * was sent and acked (we can be
9949 		 * in FIN_WAIT_1 without having
9950 		 * sent the fin).
9951 		 */
9952 		ourfinisacked = 1;
9953 	}
9954 	tp->snd_una = th->th_ack;
9955 	if (acked_amount && sbavail(&so->so_snd))
9956 		rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
9957 	rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
9958 	/* NB: sowwakeup_locked() does an implicit unlock. */
9959 	sowwakeup_locked(so);
9960 	m_freem(mfree);
9961 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
9962 		tp->snd_recover = tp->snd_una;
9963 
9964 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
9965 		tp->snd_nxt = tp->snd_una;
9966 	}
9967 	if (under_pacing &&
9968 	    (rack->use_fixed_rate == 0) &&
9969 	    (rack->in_probe_rtt == 0) &&
9970 	    rack->rc_gp_dyn_mul &&
9971 	    rack->rc_always_pace) {
9972 		/* Check if we are dragging bottom */
9973 		rack_check_bottom_drag(tp, rack, so, acked);
9974 	}
9975 	if (tp->snd_una == tp->snd_max) {
9976 		/* Nothing left outstanding */
9977 		tp->t_flags &= ~TF_PREVVALID;
9978 		rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
9979 		rack->r_ctl.retran_during_recovery = 0;
9980 		rack->r_ctl.dsack_byte_cnt = 0;
9981 		if (rack->r_ctl.rc_went_idle_time == 0)
9982 			rack->r_ctl.rc_went_idle_time = 1;
9983 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
9984 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
9985 			tp->t_acktime = 0;
9986 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9987 		/* Set need output so persist might get set */
9988 		rack->r_wanted_output = 1;
9989 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
9990 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
9991 		    (sbavail(&so->so_snd) == 0) &&
9992 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
9993 			/*
9994 			 * The socket was gone and the
9995 			 * peer sent data (now or in the past), time to
9996 			 * reset him.
9997 			 */
9998 			*ret_val = 1;
9999 			/* tcp_close will kill the inp pre-log the Reset */
10000 			tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
10001 			tp = tcp_close(tp);
10002 			ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
10003 			return (1);
10004 		}
10005 	}
10006 	if (ofia)
10007 		*ofia = ourfinisacked;
10008 	return (0);
10009 }
10010 
10011 static void
10012 rack_collapsed_window(struct tcp_rack *rack)
10013 {
10014 	/*
10015 	 * Now we must walk the
10016 	 * send map and divide the
10017 	 * ones left stranded. These
10018 	 * guys can't cause us to abort
10019 	 * the connection and are really
10020 	 * "unsent". However if a buggy
10021 	 * client actually did keep some
10022 	 * of the data i.e. collapsed the win
10023 	 * and refused to ack and then opened
10024 	 * the win and acked that data. We would
10025 	 * get into an ack war, the simplier
10026 	 * method then of just pretending we
10027 	 * did not send those segments something
10028 	 * won't work.
10029 	 */
10030 	struct rack_sendmap *rsm, *nrsm, fe, *insret;
10031 	tcp_seq max_seq;
10032 
10033 	max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
10034 	memset(&fe, 0, sizeof(fe));
10035 	fe.r_start = max_seq;
10036 	/* Find the first seq past or at maxseq */
10037 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
10038 	if (rsm == NULL) {
10039 		/* Nothing to do strange */
10040 		rack->rc_has_collapsed = 0;
10041 		return;
10042 	}
10043 	/*
10044 	 * Now do we need to split at
10045 	 * the collapse point?
10046 	 */
10047 	if (SEQ_GT(max_seq, rsm->r_start)) {
10048 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
10049 		if (nrsm == NULL) {
10050 			/* We can't get a rsm, mark all? */
10051 			nrsm = rsm;
10052 			goto no_split;
10053 		}
10054 		/* Clone it */
10055 		rack_clone_rsm(rack, nrsm, rsm, max_seq);
10056 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
10057 #ifdef INVARIANTS
10058 		if (insret != NULL) {
10059 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
10060 			      nrsm, insret, rack, rsm);
10061 		}
10062 #endif
10063 		rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, max_seq, __LINE__);
10064 		if (rsm->r_in_tmap) {
10065 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
10066 			nrsm->r_in_tmap = 1;
10067 		}
10068 		/*
10069 		 * Set in the new RSM as the
10070 		 * collapsed starting point
10071 		 */
10072 		rsm = nrsm;
10073 	}
10074 no_split:
10075 	counter_u64_add(rack_collapsed_win, 1);
10076 	RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
10077 		nrsm->r_flags |= RACK_RWND_COLLAPSED;
10078 	}
10079 	rack->rc_has_collapsed = 1;
10080 }
10081 
10082 static void
10083 rack_un_collapse_window(struct tcp_rack *rack)
10084 {
10085 	struct rack_sendmap *rsm;
10086 
10087 	RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
10088 		if (rsm->r_flags & RACK_RWND_COLLAPSED)
10089 			rsm->r_flags &= ~RACK_RWND_COLLAPSED;
10090 		else
10091 			break;
10092 	}
10093 	rack->rc_has_collapsed = 0;
10094 }
10095 
10096 static void
10097 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack,
10098 			int32_t tlen, int32_t tfo_syn)
10099 {
10100 	if (DELAY_ACK(tp, tlen) || tfo_syn) {
10101 		if (rack->rc_dack_mode &&
10102 		    (tlen > 500) &&
10103 		    (rack->rc_dack_toggle == 1)) {
10104 			goto no_delayed_ack;
10105 		}
10106 		rack_timer_cancel(tp, rack,
10107 				  rack->r_ctl.rc_rcvtime, __LINE__);
10108 		tp->t_flags |= TF_DELACK;
10109 	} else {
10110 no_delayed_ack:
10111 		rack->r_wanted_output = 1;
10112 		tp->t_flags |= TF_ACKNOW;
10113 		if (rack->rc_dack_mode) {
10114 			if (tp->t_flags & TF_DELACK)
10115 				rack->rc_dack_toggle = 1;
10116 			else
10117 				rack->rc_dack_toggle = 0;
10118 		}
10119 	}
10120 }
10121 
10122 static void
10123 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack)
10124 {
10125 	/*
10126 	 * If fast output is in progress, lets validate that
10127 	 * the new window did not shrink on us and make it
10128 	 * so fast output should end.
10129 	 */
10130 	if (rack->r_fast_output) {
10131 		uint32_t out;
10132 
10133 		/*
10134 		 * Calculate what we will send if left as is
10135 		 * and compare that to our send window.
10136 		 */
10137 		out = ctf_outstanding(tp);
10138 		if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) {
10139 			/* ok we have an issue */
10140 			if (out >= tp->snd_wnd) {
10141 				/* Turn off fast output the window is met or collapsed */
10142 				rack->r_fast_output = 0;
10143 			} else {
10144 				/* we have some room left */
10145 				rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out;
10146 				if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) {
10147 					/* If not at least 1 full segment never mind */
10148 					rack->r_fast_output = 0;
10149 				}
10150 			}
10151 		}
10152 	}
10153 }
10154 
10155 
10156 /*
10157  * Return value of 1, the TCB is unlocked and most
10158  * likely gone, return value of 0, the TCP is still
10159  * locked.
10160  */
10161 static int
10162 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
10163     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
10164     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
10165 {
10166 	/*
10167 	 * Update window information. Don't look at window if no ACK: TAC's
10168 	 * send garbage on first SYN.
10169 	 */
10170 	int32_t nsegs;
10171 	int32_t tfo_syn;
10172 	struct tcp_rack *rack;
10173 
10174 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10175 	INP_WLOCK_ASSERT(tp->t_inpcb);
10176 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
10177 	if ((thflags & TH_ACK) &&
10178 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
10179 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
10180 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
10181 		/* keep track of pure window updates */
10182 		if (tlen == 0 &&
10183 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
10184 			KMOD_TCPSTAT_INC(tcps_rcvwinupd);
10185 		tp->snd_wnd = tiwin;
10186 		rack_validate_fo_sendwin_up(tp, rack);
10187 		tp->snd_wl1 = th->th_seq;
10188 		tp->snd_wl2 = th->th_ack;
10189 		if (tp->snd_wnd > tp->max_sndwnd)
10190 			tp->max_sndwnd = tp->snd_wnd;
10191 		rack->r_wanted_output = 1;
10192 	} else if (thflags & TH_ACK) {
10193 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
10194 			tp->snd_wnd = tiwin;
10195 			rack_validate_fo_sendwin_up(tp, rack);
10196 			tp->snd_wl1 = th->th_seq;
10197 			tp->snd_wl2 = th->th_ack;
10198 		}
10199 	}
10200 	if (tp->snd_wnd < ctf_outstanding(tp))
10201 		/* The peer collapsed the window */
10202 		rack_collapsed_window(rack);
10203 	else if (rack->rc_has_collapsed)
10204 		rack_un_collapse_window(rack);
10205 	/* Was persist timer active and now we have window space? */
10206 	if ((rack->rc_in_persist != 0) &&
10207 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10208 				rack->r_ctl.rc_pace_min_segs))) {
10209 		rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10210 		tp->snd_nxt = tp->snd_max;
10211 		/* Make sure we output to start the timer */
10212 		rack->r_wanted_output = 1;
10213 	}
10214 	/* Do we enter persists? */
10215 	if ((rack->rc_in_persist == 0) &&
10216 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10217 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
10218 	    (tp->snd_max == tp->snd_una) &&
10219 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
10220 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
10221 		/*
10222 		 * Here the rwnd is less than
10223 		 * the pacing size, we are established,
10224 		 * nothing is outstanding, and there is
10225 		 * data to send. Enter persists.
10226 		 */
10227 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10228 	}
10229 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
10230 		m_freem(m);
10231 		return (0);
10232 	}
10233 	/*
10234 	 * don't process the URG bit, ignore them drag
10235 	 * along the up.
10236 	 */
10237 	tp->rcv_up = tp->rcv_nxt;
10238 	INP_WLOCK_ASSERT(tp->t_inpcb);
10239 
10240 	/*
10241 	 * Process the segment text, merging it into the TCP sequencing
10242 	 * queue, and arranging for acknowledgment of receipt if necessary.
10243 	 * This process logically involves adjusting tp->rcv_wnd as data is
10244 	 * presented to the user (this happens in tcp_usrreq.c, case
10245 	 * PRU_RCVD).  If a FIN has already been received on this connection
10246 	 * then we just ignore the text.
10247 	 */
10248 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
10249 		   IS_FASTOPEN(tp->t_flags));
10250 	if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
10251 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10252 		tcp_seq save_start = th->th_seq;
10253 		tcp_seq save_rnxt  = tp->rcv_nxt;
10254 		int     save_tlen  = tlen;
10255 
10256 		m_adj(m, drop_hdrlen);	/* delayed header drop */
10257 		/*
10258 		 * Insert segment which includes th into TCP reassembly
10259 		 * queue with control block tp.  Set thflags to whether
10260 		 * reassembly now includes a segment with FIN.  This handles
10261 		 * the common case inline (segment is the next to be
10262 		 * received on an established connection, and the queue is
10263 		 * empty), avoiding linkage into and removal from the queue
10264 		 * and repetition of various conversions. Set DELACK for
10265 		 * segments received in order, but ack immediately when
10266 		 * segments are out of order (so fast retransmit can work).
10267 		 */
10268 		if (th->th_seq == tp->rcv_nxt &&
10269 		    SEGQ_EMPTY(tp) &&
10270 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
10271 		    tfo_syn)) {
10272 #ifdef NETFLIX_SB_LIMITS
10273 			u_int mcnt, appended;
10274 
10275 			if (so->so_rcv.sb_shlim) {
10276 				mcnt = m_memcnt(m);
10277 				appended = 0;
10278 				if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10279 				    CFO_NOSLEEP, NULL) == false) {
10280 					counter_u64_add(tcp_sb_shlim_fails, 1);
10281 					m_freem(m);
10282 					return (0);
10283 				}
10284 			}
10285 #endif
10286 			rack_handle_delayed_ack(tp, rack, tlen, tfo_syn);
10287 			tp->rcv_nxt += tlen;
10288 			if (tlen &&
10289 			    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10290 			    (tp->t_fbyte_in == 0)) {
10291 				tp->t_fbyte_in = ticks;
10292 				if (tp->t_fbyte_in == 0)
10293 					tp->t_fbyte_in = 1;
10294 				if (tp->t_fbyte_out && tp->t_fbyte_in)
10295 					tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10296 			}
10297 			thflags = th->th_flags & TH_FIN;
10298 			KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10299 			KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10300 			SOCKBUF_LOCK(&so->so_rcv);
10301 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10302 				m_freem(m);
10303 			} else
10304 #ifdef NETFLIX_SB_LIMITS
10305 				appended =
10306 #endif
10307 					sbappendstream_locked(&so->so_rcv, m, 0);
10308 
10309 			rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10310 			/* NB: sorwakeup_locked() does an implicit unlock. */
10311 			sorwakeup_locked(so);
10312 #ifdef NETFLIX_SB_LIMITS
10313 			if (so->so_rcv.sb_shlim && appended != mcnt)
10314 				counter_fo_release(so->so_rcv.sb_shlim,
10315 				    mcnt - appended);
10316 #endif
10317 		} else {
10318 			/*
10319 			 * XXX: Due to the header drop above "th" is
10320 			 * theoretically invalid by now.  Fortunately
10321 			 * m_adj() doesn't actually frees any mbufs when
10322 			 * trimming from the head.
10323 			 */
10324 			tcp_seq temp = save_start;
10325 
10326 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
10327 			tp->t_flags |= TF_ACKNOW;
10328 			if (tp->t_flags & TF_WAKESOR) {
10329 				tp->t_flags &= ~TF_WAKESOR;
10330 				/* NB: sorwakeup_locked() does an implicit unlock. */
10331 				sorwakeup_locked(so);
10332 			}
10333 		}
10334 		if ((tp->t_flags & TF_SACK_PERMIT) &&
10335 		    (save_tlen > 0) &&
10336 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
10337 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
10338 				/*
10339 				 * DSACK actually handled in the fastpath
10340 				 * above.
10341 				 */
10342 				RACK_OPTS_INC(tcp_sack_path_1);
10343 				tcp_update_sack_list(tp, save_start,
10344 				    save_start + save_tlen);
10345 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
10346 				if ((tp->rcv_numsacks >= 1) &&
10347 				    (tp->sackblks[0].end == save_start)) {
10348 					/*
10349 					 * Partial overlap, recorded at todrop
10350 					 * above.
10351 					 */
10352 					RACK_OPTS_INC(tcp_sack_path_2a);
10353 					tcp_update_sack_list(tp,
10354 					    tp->sackblks[0].start,
10355 					    tp->sackblks[0].end);
10356 				} else {
10357 					RACK_OPTS_INC(tcp_sack_path_2b);
10358 					tcp_update_dsack_list(tp, save_start,
10359 					    save_start + save_tlen);
10360 				}
10361 			} else if (tlen >= save_tlen) {
10362 				/* Update of sackblks. */
10363 				RACK_OPTS_INC(tcp_sack_path_3);
10364 				tcp_update_dsack_list(tp, save_start,
10365 				    save_start + save_tlen);
10366 			} else if (tlen > 0) {
10367 				RACK_OPTS_INC(tcp_sack_path_4);
10368 				tcp_update_dsack_list(tp, save_start,
10369 				    save_start + tlen);
10370 			}
10371 		}
10372 	} else {
10373 		m_freem(m);
10374 		thflags &= ~TH_FIN;
10375 	}
10376 
10377 	/*
10378 	 * If FIN is received ACK the FIN and let the user know that the
10379 	 * connection is closing.
10380 	 */
10381 	if (thflags & TH_FIN) {
10382 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10383 			/* The socket upcall is handled by socantrcvmore. */
10384 			socantrcvmore(so);
10385 			/*
10386 			 * If connection is half-synchronized (ie NEEDSYN
10387 			 * flag on) then delay ACK, so it may be piggybacked
10388 			 * when SYN is sent. Otherwise, since we received a
10389 			 * FIN then no more input can be expected, send ACK
10390 			 * now.
10391 			 */
10392 			if (tp->t_flags & TF_NEEDSYN) {
10393 				rack_timer_cancel(tp, rack,
10394 				    rack->r_ctl.rc_rcvtime, __LINE__);
10395 				tp->t_flags |= TF_DELACK;
10396 			} else {
10397 				tp->t_flags |= TF_ACKNOW;
10398 			}
10399 			tp->rcv_nxt++;
10400 		}
10401 		switch (tp->t_state) {
10402 			/*
10403 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
10404 			 * CLOSE_WAIT state.
10405 			 */
10406 		case TCPS_SYN_RECEIVED:
10407 			tp->t_starttime = ticks;
10408 			/* FALLTHROUGH */
10409 		case TCPS_ESTABLISHED:
10410 			rack_timer_cancel(tp, rack,
10411 			    rack->r_ctl.rc_rcvtime, __LINE__);
10412 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
10413 			break;
10414 
10415 			/*
10416 			 * If still in FIN_WAIT_1 STATE FIN has not been
10417 			 * acked so enter the CLOSING state.
10418 			 */
10419 		case TCPS_FIN_WAIT_1:
10420 			rack_timer_cancel(tp, rack,
10421 			    rack->r_ctl.rc_rcvtime, __LINE__);
10422 			tcp_state_change(tp, TCPS_CLOSING);
10423 			break;
10424 
10425 			/*
10426 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
10427 			 * starting the time-wait timer, turning off the
10428 			 * other standard timers.
10429 			 */
10430 		case TCPS_FIN_WAIT_2:
10431 			rack_timer_cancel(tp, rack,
10432 			    rack->r_ctl.rc_rcvtime, __LINE__);
10433 			tcp_twstart(tp);
10434 			return (1);
10435 		}
10436 	}
10437 	/*
10438 	 * Return any desired output.
10439 	 */
10440 	if ((tp->t_flags & TF_ACKNOW) ||
10441 	    (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
10442 		rack->r_wanted_output = 1;
10443 	}
10444 	INP_WLOCK_ASSERT(tp->t_inpcb);
10445 	return (0);
10446 }
10447 
10448 /*
10449  * Here nothing is really faster, its just that we
10450  * have broken out the fast-data path also just like
10451  * the fast-ack.
10452  */
10453 static int
10454 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
10455     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10456     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
10457 {
10458 	int32_t nsegs;
10459 	int32_t newsize = 0;	/* automatic sockbuf scaling */
10460 	struct tcp_rack *rack;
10461 #ifdef NETFLIX_SB_LIMITS
10462 	u_int mcnt, appended;
10463 #endif
10464 #ifdef TCPDEBUG
10465 	/*
10466 	 * The size of tcp_saveipgen must be the size of the max ip header,
10467 	 * now IPv6.
10468 	 */
10469 	u_char tcp_saveipgen[IP6_HDR_LEN];
10470 	struct tcphdr tcp_savetcp;
10471 	short ostate = 0;
10472 
10473 #endif
10474 	/*
10475 	 * If last ACK falls within this segment's sequence numbers, record
10476 	 * the timestamp. NOTE that the test is modified according to the
10477 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10478 	 */
10479 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
10480 		return (0);
10481 	}
10482 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10483 		return (0);
10484 	}
10485 	if (tiwin && tiwin != tp->snd_wnd) {
10486 		return (0);
10487 	}
10488 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
10489 		return (0);
10490 	}
10491 	if (__predict_false((to->to_flags & TOF_TS) &&
10492 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
10493 		return (0);
10494 	}
10495 	if (__predict_false((th->th_ack != tp->snd_una))) {
10496 		return (0);
10497 	}
10498 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
10499 		return (0);
10500 	}
10501 	if ((to->to_flags & TOF_TS) != 0 &&
10502 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10503 		tp->ts_recent_age = tcp_ts_getticks();
10504 		tp->ts_recent = to->to_tsval;
10505 	}
10506 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10507 	/*
10508 	 * This is a pure, in-sequence data packet with nothing on the
10509 	 * reassembly queue and we have enough buffer space to take it.
10510 	 */
10511 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
10512 
10513 #ifdef NETFLIX_SB_LIMITS
10514 	if (so->so_rcv.sb_shlim) {
10515 		mcnt = m_memcnt(m);
10516 		appended = 0;
10517 		if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10518 		    CFO_NOSLEEP, NULL) == false) {
10519 			counter_u64_add(tcp_sb_shlim_fails, 1);
10520 			m_freem(m);
10521 			return (1);
10522 		}
10523 	}
10524 #endif
10525 	/* Clean receiver SACK report if present */
10526 	if (tp->rcv_numsacks)
10527 		tcp_clean_sackreport(tp);
10528 	KMOD_TCPSTAT_INC(tcps_preddat);
10529 	tp->rcv_nxt += tlen;
10530 	if (tlen &&
10531 	    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10532 	    (tp->t_fbyte_in == 0)) {
10533 		tp->t_fbyte_in = ticks;
10534 		if (tp->t_fbyte_in == 0)
10535 			tp->t_fbyte_in = 1;
10536 		if (tp->t_fbyte_out && tp->t_fbyte_in)
10537 			tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10538 	}
10539 	/*
10540 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
10541 	 */
10542 	tp->snd_wl1 = th->th_seq;
10543 	/*
10544 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
10545 	 */
10546 	tp->rcv_up = tp->rcv_nxt;
10547 	KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10548 	KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10549 #ifdef TCPDEBUG
10550 	if (so->so_options & SO_DEBUG)
10551 		tcp_trace(TA_INPUT, ostate, tp,
10552 		    (void *)tcp_saveipgen, &tcp_savetcp, 0);
10553 #endif
10554 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
10555 
10556 	/* Add data to socket buffer. */
10557 	SOCKBUF_LOCK(&so->so_rcv);
10558 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10559 		m_freem(m);
10560 	} else {
10561 		/*
10562 		 * Set new socket buffer size. Give up when limit is
10563 		 * reached.
10564 		 */
10565 		if (newsize)
10566 			if (!sbreserve_locked(&so->so_rcv,
10567 			    newsize, so, NULL))
10568 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
10569 		m_adj(m, drop_hdrlen);	/* delayed header drop */
10570 #ifdef NETFLIX_SB_LIMITS
10571 		appended =
10572 #endif
10573 			sbappendstream_locked(&so->so_rcv, m, 0);
10574 		ctf_calc_rwin(so, tp);
10575 	}
10576 	rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10577 	/* NB: sorwakeup_locked() does an implicit unlock. */
10578 	sorwakeup_locked(so);
10579 #ifdef NETFLIX_SB_LIMITS
10580 	if (so->so_rcv.sb_shlim && mcnt != appended)
10581 		counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
10582 #endif
10583 	rack_handle_delayed_ack(tp, rack, tlen, 0);
10584 	if (tp->snd_una == tp->snd_max)
10585 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
10586 	return (1);
10587 }
10588 
10589 /*
10590  * This subfunction is used to try to highly optimize the
10591  * fast path. We again allow window updates that are
10592  * in sequence to remain in the fast-path. We also add
10593  * in the __predict's to attempt to help the compiler.
10594  * Note that if we return a 0, then we can *not* process
10595  * it and the caller should push the packet into the
10596  * slow-path.
10597  */
10598 static int
10599 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10600     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10601     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
10602 {
10603 	int32_t acked;
10604 	int32_t nsegs;
10605 #ifdef TCPDEBUG
10606 	/*
10607 	 * The size of tcp_saveipgen must be the size of the max ip header,
10608 	 * now IPv6.
10609 	 */
10610 	u_char tcp_saveipgen[IP6_HDR_LEN];
10611 	struct tcphdr tcp_savetcp;
10612 	short ostate = 0;
10613 #endif
10614 	int32_t under_pacing = 0;
10615 	struct tcp_rack *rack;
10616 
10617 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10618 		/* Old ack, behind (or duplicate to) the last one rcv'd */
10619 		return (0);
10620 	}
10621 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
10622 		/* Above what we have sent? */
10623 		return (0);
10624 	}
10625 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10626 		/* We are retransmitting */
10627 		return (0);
10628 	}
10629 	if (__predict_false(tiwin == 0)) {
10630 		/* zero window */
10631 		return (0);
10632 	}
10633 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
10634 		/* We need a SYN or a FIN, unlikely.. */
10635 		return (0);
10636 	}
10637 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
10638 		/* Timestamp is behind .. old ack with seq wrap? */
10639 		return (0);
10640 	}
10641 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
10642 		/* Still recovering */
10643 		return (0);
10644 	}
10645 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10646 	if (rack->r_ctl.rc_sacked) {
10647 		/* We have sack holes on our scoreboard */
10648 		return (0);
10649 	}
10650 	/* Ok if we reach here, we can process a fast-ack */
10651 	if (rack->gp_ready &&
10652 	    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
10653 		under_pacing = 1;
10654 	}
10655 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
10656 	rack_log_ack(tp, to, th, 0, 0);
10657 	/* Did the window get updated? */
10658 	if (tiwin != tp->snd_wnd) {
10659 		tp->snd_wnd = tiwin;
10660 		rack_validate_fo_sendwin_up(tp, rack);
10661 		tp->snd_wl1 = th->th_seq;
10662 		if (tp->snd_wnd > tp->max_sndwnd)
10663 			tp->max_sndwnd = tp->snd_wnd;
10664 	}
10665 	/* Do we exit persists? */
10666 	if ((rack->rc_in_persist != 0) &&
10667 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10668 			       rack->r_ctl.rc_pace_min_segs))) {
10669 		rack_exit_persist(tp, rack, cts);
10670 	}
10671 	/* Do we enter persists? */
10672 	if ((rack->rc_in_persist == 0) &&
10673 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10674 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
10675 	    (tp->snd_max == tp->snd_una) &&
10676 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
10677 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
10678 		/*
10679 		 * Here the rwnd is less than
10680 		 * the pacing size, we are established,
10681 		 * nothing is outstanding, and there is
10682 		 * data to send. Enter persists.
10683 		 */
10684 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10685 	}
10686 	/*
10687 	 * If last ACK falls within this segment's sequence numbers, record
10688 	 * the timestamp. NOTE that the test is modified according to the
10689 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10690 	 */
10691 	if ((to->to_flags & TOF_TS) != 0 &&
10692 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10693 		tp->ts_recent_age = tcp_ts_getticks();
10694 		tp->ts_recent = to->to_tsval;
10695 	}
10696 	/*
10697 	 * This is a pure ack for outstanding data.
10698 	 */
10699 	KMOD_TCPSTAT_INC(tcps_predack);
10700 
10701 	/*
10702 	 * "bad retransmit" recovery.
10703 	 */
10704 	if ((tp->t_flags & TF_PREVVALID) &&
10705 	    ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10706 		tp->t_flags &= ~TF_PREVVALID;
10707 		if (tp->t_rxtshift == 1 &&
10708 		    (int)(ticks - tp->t_badrxtwin) < 0)
10709 			rack_cong_signal(tp, CC_RTO_ERR, th->th_ack);
10710 	}
10711 	/*
10712 	 * Recalculate the transmit timer / rtt.
10713 	 *
10714 	 * Some boxes send broken timestamp replies during the SYN+ACK
10715 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
10716 	 * and blow up the retransmit timer.
10717 	 */
10718 	acked = BYTES_THIS_ACK(tp, th);
10719 
10720 #ifdef TCP_HHOOK
10721 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
10722 	hhook_run_tcp_est_in(tp, th, to);
10723 #endif
10724 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
10725 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
10726 	if (acked) {
10727 		struct mbuf *mfree;
10728 
10729 		rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0);
10730 		SOCKBUF_LOCK(&so->so_snd);
10731 		mfree = sbcut_locked(&so->so_snd, acked);
10732 		tp->snd_una = th->th_ack;
10733 		/* Note we want to hold the sb lock through the sendmap adjust */
10734 		rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
10735 		/* Wake up the socket if we have room to write more */
10736 		rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
10737 		sowwakeup_locked(so);
10738 		m_freem(mfree);
10739 		tp->t_rxtshift = 0;
10740 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
10741 			      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
10742 		rack->rc_tlp_in_progress = 0;
10743 		rack->r_ctl.rc_tlp_cnt_out = 0;
10744 		/*
10745 		 * If it is the RXT timer we want to
10746 		 * stop it, so we can restart a TLP.
10747 		 */
10748 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
10749 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10750 #ifdef NETFLIX_HTTP_LOGGING
10751 		tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
10752 #endif
10753 	}
10754 	/*
10755 	 * Let the congestion control algorithm update congestion control
10756 	 * related information. This typically means increasing the
10757 	 * congestion window.
10758 	 */
10759 	if (tp->snd_wnd < ctf_outstanding(tp)) {
10760 		/* The peer collapsed the window */
10761 		rack_collapsed_window(rack);
10762 	} else if (rack->rc_has_collapsed)
10763 		rack_un_collapse_window(rack);
10764 
10765 	/*
10766 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
10767 	 */
10768 	tp->snd_wl2 = th->th_ack;
10769 	tp->t_dupacks = 0;
10770 	m_freem(m);
10771 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
10772 
10773 	/*
10774 	 * If all outstanding data are acked, stop retransmit timer,
10775 	 * otherwise restart timer using current (possibly backed-off)
10776 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
10777 	 * If data are ready to send, let tcp_output decide between more
10778 	 * output or persist.
10779 	 */
10780 #ifdef TCPDEBUG
10781 	if (so->so_options & SO_DEBUG)
10782 		tcp_trace(TA_INPUT, ostate, tp,
10783 		    (void *)tcp_saveipgen,
10784 		    &tcp_savetcp, 0);
10785 #endif
10786 	if (under_pacing &&
10787 	    (rack->use_fixed_rate == 0) &&
10788 	    (rack->in_probe_rtt == 0) &&
10789 	    rack->rc_gp_dyn_mul &&
10790 	    rack->rc_always_pace) {
10791 		/* Check if we are dragging bottom */
10792 		rack_check_bottom_drag(tp, rack, so, acked);
10793 	}
10794 	if (tp->snd_una == tp->snd_max) {
10795 		tp->t_flags &= ~TF_PREVVALID;
10796 		rack->r_ctl.retran_during_recovery = 0;
10797 		rack->r_ctl.dsack_byte_cnt = 0;
10798 		rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
10799 		if (rack->r_ctl.rc_went_idle_time == 0)
10800 			rack->r_ctl.rc_went_idle_time = 1;
10801 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
10802 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
10803 			tp->t_acktime = 0;
10804 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10805 	}
10806 	if (acked && rack->r_fast_output)
10807 		rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked);
10808 	if (sbavail(&so->so_snd)) {
10809 		rack->r_wanted_output = 1;
10810 	}
10811 	return (1);
10812 }
10813 
10814 /*
10815  * Return value of 1, the TCB is unlocked and most
10816  * likely gone, return value of 0, the TCP is still
10817  * locked.
10818  */
10819 static int
10820 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
10821     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10822     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
10823 {
10824 	int32_t ret_val = 0;
10825 	int32_t todrop;
10826 	int32_t ourfinisacked = 0;
10827 	struct tcp_rack *rack;
10828 
10829 	ctf_calc_rwin(so, tp);
10830 	/*
10831 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
10832 	 * SYN, drop the input. if seg contains a RST, then drop the
10833 	 * connection. if seg does not contain SYN, then drop it. Otherwise
10834 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
10835 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
10836 	 * contains an ECE and ECN support is enabled, the stream is ECN
10837 	 * capable. if SYN has been acked change to ESTABLISHED else
10838 	 * SYN_RCVD state arrange for segment to be acked (eventually)
10839 	 * continue processing rest of data/controls.
10840 	 */
10841 	if ((thflags & TH_ACK) &&
10842 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
10843 	    SEQ_GT(th->th_ack, tp->snd_max))) {
10844 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
10845 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10846 		return (1);
10847 	}
10848 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
10849 		TCP_PROBE5(connect__refused, NULL, tp,
10850 		    mtod(m, const char *), tp, th);
10851 		tp = tcp_drop(tp, ECONNREFUSED);
10852 		ctf_do_drop(m, tp);
10853 		return (1);
10854 	}
10855 	if (thflags & TH_RST) {
10856 		ctf_do_drop(m, tp);
10857 		return (1);
10858 	}
10859 	if (!(thflags & TH_SYN)) {
10860 		ctf_do_drop(m, tp);
10861 		return (1);
10862 	}
10863 	tp->irs = th->th_seq;
10864 	tcp_rcvseqinit(tp);
10865 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10866 	if (thflags & TH_ACK) {
10867 		int tfo_partial = 0;
10868 
10869 		KMOD_TCPSTAT_INC(tcps_connects);
10870 		soisconnected(so);
10871 #ifdef MAC
10872 		mac_socketpeer_set_from_mbuf(m, so);
10873 #endif
10874 		/* Do window scaling on this connection? */
10875 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
10876 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
10877 			tp->rcv_scale = tp->request_r_scale;
10878 		}
10879 		tp->rcv_adv += min(tp->rcv_wnd,
10880 		    TCP_MAXWIN << tp->rcv_scale);
10881 		/*
10882 		 * If not all the data that was sent in the TFO SYN
10883 		 * has been acked, resend the remainder right away.
10884 		 */
10885 		if (IS_FASTOPEN(tp->t_flags) &&
10886 		    (tp->snd_una != tp->snd_max)) {
10887 			tp->snd_nxt = th->th_ack;
10888 			tfo_partial = 1;
10889 		}
10890 		/*
10891 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
10892 		 * will be turned on later.
10893 		 */
10894 		if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) {
10895 			rack_timer_cancel(tp, rack,
10896 					  rack->r_ctl.rc_rcvtime, __LINE__);
10897 			tp->t_flags |= TF_DELACK;
10898 		} else {
10899 			rack->r_wanted_output = 1;
10900 			tp->t_flags |= TF_ACKNOW;
10901 			rack->rc_dack_toggle = 0;
10902 		}
10903 		if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
10904 		    (V_tcp_do_ecn == 1)) {
10905 			tp->t_flags2 |= TF2_ECN_PERMIT;
10906 			KMOD_TCPSTAT_INC(tcps_ecn_shs);
10907 		}
10908 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
10909 			/*
10910 			 * We advance snd_una for the
10911 			 * fast open case. If th_ack is
10912 			 * acknowledging data beyond
10913 			 * snd_una we can't just call
10914 			 * ack-processing since the
10915 			 * data stream in our send-map
10916 			 * will start at snd_una + 1 (one
10917 			 * beyond the SYN). If its just
10918 			 * equal we don't need to do that
10919 			 * and there is no send_map.
10920 			 */
10921 			tp->snd_una++;
10922 		}
10923 		/*
10924 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
10925 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
10926 		 */
10927 		tp->t_starttime = ticks;
10928 		if (tp->t_flags & TF_NEEDFIN) {
10929 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
10930 			tp->t_flags &= ~TF_NEEDFIN;
10931 			thflags &= ~TH_SYN;
10932 		} else {
10933 			tcp_state_change(tp, TCPS_ESTABLISHED);
10934 			TCP_PROBE5(connect__established, NULL, tp,
10935 			    mtod(m, const char *), tp, th);
10936 			rack_cc_conn_init(tp);
10937 		}
10938 	} else {
10939 		/*
10940 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
10941 		 * open.  If segment contains CC option and there is a
10942 		 * cached CC, apply TAO test. If it succeeds, connection is *
10943 		 * half-synchronized. Otherwise, do 3-way handshake:
10944 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
10945 		 * there was no CC option, clear cached CC value.
10946 		 */
10947 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
10948 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
10949 	}
10950 	INP_WLOCK_ASSERT(tp->t_inpcb);
10951 	/*
10952 	 * Advance th->th_seq to correspond to first data byte. If data,
10953 	 * trim to stay within window, dropping FIN if necessary.
10954 	 */
10955 	th->th_seq++;
10956 	if (tlen > tp->rcv_wnd) {
10957 		todrop = tlen - tp->rcv_wnd;
10958 		m_adj(m, -todrop);
10959 		tlen = tp->rcv_wnd;
10960 		thflags &= ~TH_FIN;
10961 		KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
10962 		KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
10963 	}
10964 	tp->snd_wl1 = th->th_seq - 1;
10965 	tp->rcv_up = th->th_seq;
10966 	/*
10967 	 * Client side of transaction: already sent SYN and data. If the
10968 	 * remote host used T/TCP to validate the SYN, our data will be
10969 	 * ACK'd; if so, enter normal data segment processing in the middle
10970 	 * of step 5, ack processing. Otherwise, goto step 6.
10971 	 */
10972 	if (thflags & TH_ACK) {
10973 		/* For syn-sent we need to possibly update the rtt */
10974 		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
10975 			uint32_t t, mcts;
10976 
10977 			mcts = tcp_ts_getticks();
10978 			t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
10979 			if (!tp->t_rttlow || tp->t_rttlow > t)
10980 				tp->t_rttlow = t;
10981 			rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4);
10982 			tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
10983 			tcp_rack_xmit_timer_commit(rack, tp);
10984 		}
10985 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
10986 			return (ret_val);
10987 		/* We may have changed to FIN_WAIT_1 above */
10988 		if (tp->t_state == TCPS_FIN_WAIT_1) {
10989 			/*
10990 			 * In FIN_WAIT_1 STATE in addition to the processing
10991 			 * for the ESTABLISHED state if our FIN is now
10992 			 * acknowledged then enter FIN_WAIT_2.
10993 			 */
10994 			if (ourfinisacked) {
10995 				/*
10996 				 * If we can't receive any more data, then
10997 				 * closing user can proceed. Starting the
10998 				 * timer is contrary to the specification,
10999 				 * but if we don't get a FIN we'll hang
11000 				 * forever.
11001 				 *
11002 				 * XXXjl: we should release the tp also, and
11003 				 * use a compressed state.
11004 				 */
11005 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11006 					soisdisconnected(so);
11007 					tcp_timer_activate(tp, TT_2MSL,
11008 					    (tcp_fast_finwait2_recycle ?
11009 					    tcp_finwait2_timeout :
11010 					    TP_MAXIDLE(tp)));
11011 				}
11012 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
11013 			}
11014 		}
11015 	}
11016 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11017 	   tiwin, thflags, nxt_pkt));
11018 }
11019 
11020 /*
11021  * Return value of 1, the TCB is unlocked and most
11022  * likely gone, return value of 0, the TCP is still
11023  * locked.
11024  */
11025 static int
11026 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
11027     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11028     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11029 {
11030 	struct tcp_rack *rack;
11031 	int32_t ret_val = 0;
11032 	int32_t ourfinisacked = 0;
11033 
11034 	ctf_calc_rwin(so, tp);
11035 	if ((thflags & TH_ACK) &&
11036 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
11037 	    SEQ_GT(th->th_ack, tp->snd_max))) {
11038 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11039 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11040 		return (1);
11041 	}
11042 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11043 	if (IS_FASTOPEN(tp->t_flags)) {
11044 		/*
11045 		 * When a TFO connection is in SYN_RECEIVED, the
11046 		 * only valid packets are the initial SYN, a
11047 		 * retransmit/copy of the initial SYN (possibly with
11048 		 * a subset of the original data), a valid ACK, a
11049 		 * FIN, or a RST.
11050 		 */
11051 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
11052 			tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11053 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11054 			return (1);
11055 		} else if (thflags & TH_SYN) {
11056 			/* non-initial SYN is ignored */
11057 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
11058 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
11059 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
11060 				ctf_do_drop(m, NULL);
11061 				return (0);
11062 			}
11063 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
11064 			ctf_do_drop(m, NULL);
11065 			return (0);
11066 		}
11067 	}
11068 	if ((thflags & TH_RST) ||
11069 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11070 		return (ctf_process_rst(m, th, so, tp));
11071 	/*
11072 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11073 	 * it's less than ts_recent, drop it.
11074 	 */
11075 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11076 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11077 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11078 			return (ret_val);
11079 	}
11080 	/*
11081 	 * In the SYN-RECEIVED state, validate that the packet belongs to
11082 	 * this connection before trimming the data to fit the receive
11083 	 * window.  Check the sequence number versus IRS since we know the
11084 	 * sequence numbers haven't wrapped.  This is a partial fix for the
11085 	 * "LAND" DoS attack.
11086 	 */
11087 	if (SEQ_LT(th->th_seq, tp->irs)) {
11088 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11089 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11090 		return (1);
11091 	}
11092 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11093 			      &rack->r_ctl.challenge_ack_ts,
11094 			      &rack->r_ctl.challenge_ack_cnt)) {
11095 		return (ret_val);
11096 	}
11097 	/*
11098 	 * If last ACK falls within this segment's sequence numbers, record
11099 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11100 	 * from the latest proposal of the tcplw@cray.com list (Braden
11101 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11102 	 * with our earlier PAWS tests, so this check should be solely
11103 	 * predicated on the sequence space of this segment. 3) That we
11104 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11105 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11106 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11107 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11108 	 * p.869. In such cases, we can still calculate the RTT correctly
11109 	 * when RCV.NXT == Last.ACK.Sent.
11110 	 */
11111 	if ((to->to_flags & TOF_TS) != 0 &&
11112 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11113 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11114 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11115 		tp->ts_recent_age = tcp_ts_getticks();
11116 		tp->ts_recent = to->to_tsval;
11117 	}
11118 	tp->snd_wnd = tiwin;
11119 	rack_validate_fo_sendwin_up(tp, rack);
11120 	/*
11121 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11122 	 * is on (half-synchronized state), then queue data for later
11123 	 * processing; else drop segment and return.
11124 	 */
11125 	if ((thflags & TH_ACK) == 0) {
11126 		if (IS_FASTOPEN(tp->t_flags)) {
11127 			rack_cc_conn_init(tp);
11128 		}
11129 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11130 		    tiwin, thflags, nxt_pkt));
11131 	}
11132 	KMOD_TCPSTAT_INC(tcps_connects);
11133 	soisconnected(so);
11134 	/* Do window scaling? */
11135 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11136 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
11137 		tp->rcv_scale = tp->request_r_scale;
11138 	}
11139 	/*
11140 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
11141 	 * FIN-WAIT-1
11142 	 */
11143 	tp->t_starttime = ticks;
11144 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
11145 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
11146 		tp->t_tfo_pending = NULL;
11147 	}
11148 	if (tp->t_flags & TF_NEEDFIN) {
11149 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
11150 		tp->t_flags &= ~TF_NEEDFIN;
11151 	} else {
11152 		tcp_state_change(tp, TCPS_ESTABLISHED);
11153 		TCP_PROBE5(accept__established, NULL, tp,
11154 		    mtod(m, const char *), tp, th);
11155 		/*
11156 		 * TFO connections call cc_conn_init() during SYN
11157 		 * processing.  Calling it again here for such connections
11158 		 * is not harmless as it would undo the snd_cwnd reduction
11159 		 * that occurs when a TFO SYN|ACK is retransmitted.
11160 		 */
11161 		if (!IS_FASTOPEN(tp->t_flags))
11162 			rack_cc_conn_init(tp);
11163 	}
11164 	/*
11165 	 * Account for the ACK of our SYN prior to
11166 	 * regular ACK processing below, except for
11167 	 * simultaneous SYN, which is handled later.
11168 	 */
11169 	if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
11170 		tp->snd_una++;
11171 	/*
11172 	 * If segment contains data or ACK, will call tcp_reass() later; if
11173 	 * not, do so now to pass queued data to user.
11174 	 */
11175 	if (tlen == 0 && (thflags & TH_FIN) == 0) {
11176 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
11177 		    (struct mbuf *)0);
11178 		if (tp->t_flags & TF_WAKESOR) {
11179 			tp->t_flags &= ~TF_WAKESOR;
11180 			/* NB: sorwakeup_locked() does an implicit unlock. */
11181 			sorwakeup_locked(so);
11182 		}
11183 	}
11184 	tp->snd_wl1 = th->th_seq - 1;
11185 	/* For syn-recv we need to possibly update the rtt */
11186 	if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11187 		uint32_t t, mcts;
11188 
11189 		mcts = tcp_ts_getticks();
11190 		t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11191 		if (!tp->t_rttlow || tp->t_rttlow > t)
11192 			tp->t_rttlow = t;
11193 		rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5);
11194 		tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11195 		tcp_rack_xmit_timer_commit(rack, tp);
11196 	}
11197 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11198 		return (ret_val);
11199 	}
11200 	if (tp->t_state == TCPS_FIN_WAIT_1) {
11201 		/* We could have went to FIN_WAIT_1 (or EST) above */
11202 		/*
11203 		 * In FIN_WAIT_1 STATE in addition to the processing for the
11204 		 * ESTABLISHED state if our FIN is now acknowledged then
11205 		 * enter FIN_WAIT_2.
11206 		 */
11207 		if (ourfinisacked) {
11208 			/*
11209 			 * If we can't receive any more data, then closing
11210 			 * user can proceed. Starting the timer is contrary
11211 			 * to the specification, but if we don't get a FIN
11212 			 * we'll hang forever.
11213 			 *
11214 			 * XXXjl: we should release the tp also, and use a
11215 			 * compressed state.
11216 			 */
11217 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11218 				soisdisconnected(so);
11219 				tcp_timer_activate(tp, TT_2MSL,
11220 				    (tcp_fast_finwait2_recycle ?
11221 				    tcp_finwait2_timeout :
11222 				    TP_MAXIDLE(tp)));
11223 			}
11224 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
11225 		}
11226 	}
11227 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11228 	    tiwin, thflags, nxt_pkt));
11229 }
11230 
11231 /*
11232  * Return value of 1, the TCB is unlocked and most
11233  * likely gone, return value of 0, the TCP is still
11234  * locked.
11235  */
11236 static int
11237 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
11238     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11239     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11240 {
11241 	int32_t ret_val = 0;
11242 	struct tcp_rack *rack;
11243 
11244 	/*
11245 	 * Header prediction: check for the two common cases of a
11246 	 * uni-directional data xfer.  If the packet has no control flags,
11247 	 * is in-sequence, the window didn't change and we're not
11248 	 * retransmitting, it's a candidate.  If the length is zero and the
11249 	 * ack moved forward, we're the sender side of the xfer.  Just free
11250 	 * the data acked & wake any higher level process that was blocked
11251 	 * waiting for space.  If the length is non-zero and the ack didn't
11252 	 * move, we're the receiver side.  If we're getting packets in-order
11253 	 * (the reassembly queue is empty), add the data toc The socket
11254 	 * buffer and note that we need a delayed ack. Make sure that the
11255 	 * hidden state-flags are also off. Since we check for
11256 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
11257 	 */
11258 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11259 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
11260 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) &&
11261 	    __predict_true(SEGQ_EMPTY(tp)) &&
11262 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
11263 		if (tlen == 0) {
11264 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
11265 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
11266 				return (0);
11267 			}
11268 		} else {
11269 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
11270 			    tiwin, nxt_pkt, iptos)) {
11271 				return (0);
11272 			}
11273 		}
11274 	}
11275 	ctf_calc_rwin(so, tp);
11276 
11277 	if ((thflags & TH_RST) ||
11278 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11279 		return (ctf_process_rst(m, th, so, tp));
11280 
11281 	/*
11282 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11283 	 * synchronized state.
11284 	 */
11285 	if (thflags & TH_SYN) {
11286 		ctf_challenge_ack(m, th, tp, &ret_val);
11287 		return (ret_val);
11288 	}
11289 	/*
11290 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11291 	 * it's less than ts_recent, drop it.
11292 	 */
11293 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11294 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11295 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11296 			return (ret_val);
11297 	}
11298 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11299 			      &rack->r_ctl.challenge_ack_ts,
11300 			      &rack->r_ctl.challenge_ack_cnt)) {
11301 		return (ret_val);
11302 	}
11303 	/*
11304 	 * If last ACK falls within this segment's sequence numbers, record
11305 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11306 	 * from the latest proposal of the tcplw@cray.com list (Braden
11307 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11308 	 * with our earlier PAWS tests, so this check should be solely
11309 	 * predicated on the sequence space of this segment. 3) That we
11310 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11311 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11312 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11313 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11314 	 * p.869. In such cases, we can still calculate the RTT correctly
11315 	 * when RCV.NXT == Last.ACK.Sent.
11316 	 */
11317 	if ((to->to_flags & TOF_TS) != 0 &&
11318 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11319 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11320 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11321 		tp->ts_recent_age = tcp_ts_getticks();
11322 		tp->ts_recent = to->to_tsval;
11323 	}
11324 	/*
11325 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11326 	 * is on (half-synchronized state), then queue data for later
11327 	 * processing; else drop segment and return.
11328 	 */
11329 	if ((thflags & TH_ACK) == 0) {
11330 		if (tp->t_flags & TF_NEEDSYN) {
11331 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11332 			    tiwin, thflags, nxt_pkt));
11333 
11334 		} else if (tp->t_flags & TF_ACKNOW) {
11335 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11336 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11337 			return (ret_val);
11338 		} else {
11339 			ctf_do_drop(m, NULL);
11340 			return (0);
11341 		}
11342 	}
11343 	/*
11344 	 * Ack processing.
11345 	 */
11346 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11347 		return (ret_val);
11348 	}
11349 	if (sbavail(&so->so_snd)) {
11350 		if (ctf_progress_timeout_check(tp, true)) {
11351 			rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
11352 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11353 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11354 			return (1);
11355 		}
11356 	}
11357 	/* State changes only happen in rack_process_data() */
11358 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11359 	    tiwin, thflags, nxt_pkt));
11360 }
11361 
11362 /*
11363  * Return value of 1, the TCB is unlocked and most
11364  * likely gone, return value of 0, the TCP is still
11365  * locked.
11366  */
11367 static int
11368 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
11369     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11370     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11371 {
11372 	int32_t ret_val = 0;
11373 	struct tcp_rack *rack;
11374 
11375 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11376 	ctf_calc_rwin(so, tp);
11377 	if ((thflags & TH_RST) ||
11378 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11379 		return (ctf_process_rst(m, th, so, tp));
11380 	/*
11381 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11382 	 * synchronized state.
11383 	 */
11384 	if (thflags & TH_SYN) {
11385 		ctf_challenge_ack(m, th, tp, &ret_val);
11386 		return (ret_val);
11387 	}
11388 	/*
11389 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11390 	 * it's less than ts_recent, drop it.
11391 	 */
11392 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11393 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11394 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11395 			return (ret_val);
11396 	}
11397 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11398 			      &rack->r_ctl.challenge_ack_ts,
11399 			      &rack->r_ctl.challenge_ack_cnt)) {
11400 		return (ret_val);
11401 	}
11402 	/*
11403 	 * If last ACK falls within this segment's sequence numbers, record
11404 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11405 	 * from the latest proposal of the tcplw@cray.com list (Braden
11406 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11407 	 * with our earlier PAWS tests, so this check should be solely
11408 	 * predicated on the sequence space of this segment. 3) That we
11409 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11410 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11411 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11412 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11413 	 * p.869. In such cases, we can still calculate the RTT correctly
11414 	 * when RCV.NXT == Last.ACK.Sent.
11415 	 */
11416 	if ((to->to_flags & TOF_TS) != 0 &&
11417 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11418 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11419 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11420 		tp->ts_recent_age = tcp_ts_getticks();
11421 		tp->ts_recent = to->to_tsval;
11422 	}
11423 	/*
11424 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11425 	 * is on (half-synchronized state), then queue data for later
11426 	 * processing; else drop segment and return.
11427 	 */
11428 	if ((thflags & TH_ACK) == 0) {
11429 		if (tp->t_flags & TF_NEEDSYN) {
11430 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11431 			    tiwin, thflags, nxt_pkt));
11432 
11433 		} else if (tp->t_flags & TF_ACKNOW) {
11434 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11435 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11436 			return (ret_val);
11437 		} else {
11438 			ctf_do_drop(m, NULL);
11439 			return (0);
11440 		}
11441 	}
11442 	/*
11443 	 * Ack processing.
11444 	 */
11445 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11446 		return (ret_val);
11447 	}
11448 	if (sbavail(&so->so_snd)) {
11449 		if (ctf_progress_timeout_check(tp, true)) {
11450 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11451 						tp, tick, PROGRESS_DROP, __LINE__);
11452 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11453 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11454 			return (1);
11455 		}
11456 	}
11457 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11458 	    tiwin, thflags, nxt_pkt));
11459 }
11460 
11461 static int
11462 rack_check_data_after_close(struct mbuf *m,
11463     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
11464 {
11465 	struct tcp_rack *rack;
11466 
11467 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11468 	if (rack->rc_allow_data_af_clo == 0) {
11469 	close_now:
11470 		tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11471 		/* tcp_close will kill the inp pre-log the Reset */
11472 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
11473 		tp = tcp_close(tp);
11474 		KMOD_TCPSTAT_INC(tcps_rcvafterclose);
11475 		ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
11476 		return (1);
11477 	}
11478 	if (sbavail(&so->so_snd) == 0)
11479 		goto close_now;
11480 	/* Ok we allow data that is ignored and a followup reset */
11481 	tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11482 	tp->rcv_nxt = th->th_seq + *tlen;
11483 	tp->t_flags2 |= TF2_DROP_AF_DATA;
11484 	rack->r_wanted_output = 1;
11485 	*tlen = 0;
11486 	return (0);
11487 }
11488 
11489 /*
11490  * Return value of 1, the TCB is unlocked and most
11491  * likely gone, return value of 0, the TCP is still
11492  * locked.
11493  */
11494 static int
11495 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
11496     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11497     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11498 {
11499 	int32_t ret_val = 0;
11500 	int32_t ourfinisacked = 0;
11501 	struct tcp_rack *rack;
11502 
11503 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11504 	ctf_calc_rwin(so, tp);
11505 
11506 	if ((thflags & TH_RST) ||
11507 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11508 		return (ctf_process_rst(m, th, so, tp));
11509 	/*
11510 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11511 	 * synchronized state.
11512 	 */
11513 	if (thflags & TH_SYN) {
11514 		ctf_challenge_ack(m, th, tp, &ret_val);
11515 		return (ret_val);
11516 	}
11517 	/*
11518 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11519 	 * it's less than ts_recent, drop it.
11520 	 */
11521 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11522 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11523 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11524 			return (ret_val);
11525 	}
11526 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11527 			      &rack->r_ctl.challenge_ack_ts,
11528 			      &rack->r_ctl.challenge_ack_cnt)) {
11529 		return (ret_val);
11530 	}
11531 	/*
11532 	 * If new data are received on a connection after the user processes
11533 	 * are gone, then RST the other end.
11534 	 */
11535 	if ((so->so_state & SS_NOFDREF) && tlen) {
11536 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
11537 			return (1);
11538 	}
11539 	/*
11540 	 * If last ACK falls within this segment's sequence numbers, record
11541 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11542 	 * from the latest proposal of the tcplw@cray.com list (Braden
11543 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11544 	 * with our earlier PAWS tests, so this check should be solely
11545 	 * predicated on the sequence space of this segment. 3) That we
11546 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11547 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11548 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11549 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11550 	 * p.869. In such cases, we can still calculate the RTT correctly
11551 	 * when RCV.NXT == Last.ACK.Sent.
11552 	 */
11553 	if ((to->to_flags & TOF_TS) != 0 &&
11554 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11555 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11556 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11557 		tp->ts_recent_age = tcp_ts_getticks();
11558 		tp->ts_recent = to->to_tsval;
11559 	}
11560 	/*
11561 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11562 	 * is on (half-synchronized state), then queue data for later
11563 	 * processing; else drop segment and return.
11564 	 */
11565 	if ((thflags & TH_ACK) == 0) {
11566 		if (tp->t_flags & TF_NEEDSYN) {
11567 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11568 			    tiwin, thflags, nxt_pkt));
11569 		} else if (tp->t_flags & TF_ACKNOW) {
11570 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11571 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11572 			return (ret_val);
11573 		} else {
11574 			ctf_do_drop(m, NULL);
11575 			return (0);
11576 		}
11577 	}
11578 	/*
11579 	 * Ack processing.
11580 	 */
11581 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11582 		return (ret_val);
11583 	}
11584 	if (ourfinisacked) {
11585 		/*
11586 		 * If we can't receive any more data, then closing user can
11587 		 * proceed. Starting the timer is contrary to the
11588 		 * specification, but if we don't get a FIN we'll hang
11589 		 * forever.
11590 		 *
11591 		 * XXXjl: we should release the tp also, and use a
11592 		 * compressed state.
11593 		 */
11594 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11595 			soisdisconnected(so);
11596 			tcp_timer_activate(tp, TT_2MSL,
11597 			    (tcp_fast_finwait2_recycle ?
11598 			    tcp_finwait2_timeout :
11599 			    TP_MAXIDLE(tp)));
11600 		}
11601 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
11602 	}
11603 	if (sbavail(&so->so_snd)) {
11604 		if (ctf_progress_timeout_check(tp, true)) {
11605 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11606 						tp, tick, PROGRESS_DROP, __LINE__);
11607 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11608 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11609 			return (1);
11610 		}
11611 	}
11612 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11613 	    tiwin, thflags, nxt_pkt));
11614 }
11615 
11616 /*
11617  * Return value of 1, the TCB is unlocked and most
11618  * likely gone, return value of 0, the TCP is still
11619  * locked.
11620  */
11621 static int
11622 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
11623     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11624     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11625 {
11626 	int32_t ret_val = 0;
11627 	int32_t ourfinisacked = 0;
11628 	struct tcp_rack *rack;
11629 
11630 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11631 	ctf_calc_rwin(so, tp);
11632 
11633 	if ((thflags & TH_RST) ||
11634 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11635 		return (ctf_process_rst(m, th, so, tp));
11636 	/*
11637 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11638 	 * synchronized state.
11639 	 */
11640 	if (thflags & TH_SYN) {
11641 		ctf_challenge_ack(m, th, tp, &ret_val);
11642 		return (ret_val);
11643 	}
11644 	/*
11645 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11646 	 * it's less than ts_recent, drop it.
11647 	 */
11648 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11649 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11650 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11651 			return (ret_val);
11652 	}
11653 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11654 			      &rack->r_ctl.challenge_ack_ts,
11655 			      &rack->r_ctl.challenge_ack_cnt)) {
11656 		return (ret_val);
11657 	}
11658 	/*
11659 	 * If new data are received on a connection after the user processes
11660 	 * are gone, then RST the other end.
11661 	 */
11662 	if ((so->so_state & SS_NOFDREF) && tlen) {
11663 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
11664 			return (1);
11665 	}
11666 	/*
11667 	 * If last ACK falls within this segment's sequence numbers, record
11668 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11669 	 * from the latest proposal of the tcplw@cray.com list (Braden
11670 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11671 	 * with our earlier PAWS tests, so this check should be solely
11672 	 * predicated on the sequence space of this segment. 3) That we
11673 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11674 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11675 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11676 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11677 	 * p.869. In such cases, we can still calculate the RTT correctly
11678 	 * when RCV.NXT == Last.ACK.Sent.
11679 	 */
11680 	if ((to->to_flags & TOF_TS) != 0 &&
11681 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11682 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11683 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11684 		tp->ts_recent_age = tcp_ts_getticks();
11685 		tp->ts_recent = to->to_tsval;
11686 	}
11687 	/*
11688 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11689 	 * is on (half-synchronized state), then queue data for later
11690 	 * processing; else drop segment and return.
11691 	 */
11692 	if ((thflags & TH_ACK) == 0) {
11693 		if (tp->t_flags & TF_NEEDSYN) {
11694 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11695 			    tiwin, thflags, nxt_pkt));
11696 		} else if (tp->t_flags & TF_ACKNOW) {
11697 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11698 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11699 			return (ret_val);
11700 		} else {
11701 			ctf_do_drop(m, NULL);
11702 			return (0);
11703 		}
11704 	}
11705 	/*
11706 	 * Ack processing.
11707 	 */
11708 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11709 		return (ret_val);
11710 	}
11711 	if (ourfinisacked) {
11712 		tcp_twstart(tp);
11713 		m_freem(m);
11714 		return (1);
11715 	}
11716 	if (sbavail(&so->so_snd)) {
11717 		if (ctf_progress_timeout_check(tp, true)) {
11718 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11719 						tp, tick, PROGRESS_DROP, __LINE__);
11720 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11721 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11722 			return (1);
11723 		}
11724 	}
11725 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11726 	    tiwin, thflags, nxt_pkt));
11727 }
11728 
11729 /*
11730  * Return value of 1, the TCB is unlocked and most
11731  * likely gone, return value of 0, the TCP is still
11732  * locked.
11733  */
11734 static int
11735 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
11736     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11737     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11738 {
11739 	int32_t ret_val = 0;
11740 	int32_t ourfinisacked = 0;
11741 	struct tcp_rack *rack;
11742 
11743 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11744 	ctf_calc_rwin(so, tp);
11745 
11746 	if ((thflags & TH_RST) ||
11747 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11748 		return (ctf_process_rst(m, th, so, tp));
11749 	/*
11750 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11751 	 * synchronized state.
11752 	 */
11753 	if (thflags & TH_SYN) {
11754 		ctf_challenge_ack(m, th, tp, &ret_val);
11755 		return (ret_val);
11756 	}
11757 	/*
11758 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11759 	 * it's less than ts_recent, drop it.
11760 	 */
11761 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11762 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11763 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11764 			return (ret_val);
11765 	}
11766 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11767 			      &rack->r_ctl.challenge_ack_ts,
11768 			      &rack->r_ctl.challenge_ack_cnt)) {
11769 		return (ret_val);
11770 	}
11771 	/*
11772 	 * If new data are received on a connection after the user processes
11773 	 * are gone, then RST the other end.
11774 	 */
11775 	if ((so->so_state & SS_NOFDREF) && tlen) {
11776 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
11777 			return (1);
11778 	}
11779 	/*
11780 	 * If last ACK falls within this segment's sequence numbers, record
11781 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11782 	 * from the latest proposal of the tcplw@cray.com list (Braden
11783 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11784 	 * with our earlier PAWS tests, so this check should be solely
11785 	 * predicated on the sequence space of this segment. 3) That we
11786 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11787 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11788 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11789 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11790 	 * p.869. In such cases, we can still calculate the RTT correctly
11791 	 * when RCV.NXT == Last.ACK.Sent.
11792 	 */
11793 	if ((to->to_flags & TOF_TS) != 0 &&
11794 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11795 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11796 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11797 		tp->ts_recent_age = tcp_ts_getticks();
11798 		tp->ts_recent = to->to_tsval;
11799 	}
11800 	/*
11801 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11802 	 * is on (half-synchronized state), then queue data for later
11803 	 * processing; else drop segment and return.
11804 	 */
11805 	if ((thflags & TH_ACK) == 0) {
11806 		if (tp->t_flags & TF_NEEDSYN) {
11807 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11808 			    tiwin, thflags, nxt_pkt));
11809 		} else if (tp->t_flags & TF_ACKNOW) {
11810 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11811 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11812 			return (ret_val);
11813 		} else {
11814 			ctf_do_drop(m, NULL);
11815 			return (0);
11816 		}
11817 	}
11818 	/*
11819 	 * case TCPS_LAST_ACK: Ack processing.
11820 	 */
11821 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11822 		return (ret_val);
11823 	}
11824 	if (ourfinisacked) {
11825 		tp = tcp_close(tp);
11826 		ctf_do_drop(m, tp);
11827 		return (1);
11828 	}
11829 	if (sbavail(&so->so_snd)) {
11830 		if (ctf_progress_timeout_check(tp, true)) {
11831 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11832 						tp, tick, PROGRESS_DROP, __LINE__);
11833 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11834 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11835 			return (1);
11836 		}
11837 	}
11838 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11839 	    tiwin, thflags, nxt_pkt));
11840 }
11841 
11842 /*
11843  * Return value of 1, the TCB is unlocked and most
11844  * likely gone, return value of 0, the TCP is still
11845  * locked.
11846  */
11847 static int
11848 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
11849     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11850     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11851 {
11852 	int32_t ret_val = 0;
11853 	int32_t ourfinisacked = 0;
11854 	struct tcp_rack *rack;
11855 
11856 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11857 	ctf_calc_rwin(so, tp);
11858 
11859 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
11860 	if ((thflags & TH_RST) ||
11861 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11862 		return (ctf_process_rst(m, th, so, tp));
11863 	/*
11864 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11865 	 * synchronized state.
11866 	 */
11867 	if (thflags & TH_SYN) {
11868 		ctf_challenge_ack(m, th, tp, &ret_val);
11869 		return (ret_val);
11870 	}
11871 	/*
11872 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11873 	 * it's less than ts_recent, drop it.
11874 	 */
11875 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11876 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11877 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11878 			return (ret_val);
11879 	}
11880 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11881 			      &rack->r_ctl.challenge_ack_ts,
11882 			      &rack->r_ctl.challenge_ack_cnt)) {
11883 		return (ret_val);
11884 	}
11885 	/*
11886 	 * If new data are received on a connection after the user processes
11887 	 * are gone, then RST the other end.
11888 	 */
11889 	if ((so->so_state & SS_NOFDREF) &&
11890 	    tlen) {
11891 		if (rack_check_data_after_close(m, tp, &tlen, th, so))
11892 			return (1);
11893 	}
11894 	/*
11895 	 * If last ACK falls within this segment's sequence numbers, record
11896 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11897 	 * from the latest proposal of the tcplw@cray.com list (Braden
11898 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11899 	 * with our earlier PAWS tests, so this check should be solely
11900 	 * predicated on the sequence space of this segment. 3) That we
11901 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11902 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11903 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11904 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11905 	 * p.869. In such cases, we can still calculate the RTT correctly
11906 	 * when RCV.NXT == Last.ACK.Sent.
11907 	 */
11908 	if ((to->to_flags & TOF_TS) != 0 &&
11909 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11910 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11911 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11912 		tp->ts_recent_age = tcp_ts_getticks();
11913 		tp->ts_recent = to->to_tsval;
11914 	}
11915 	/*
11916 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11917 	 * is on (half-synchronized state), then queue data for later
11918 	 * processing; else drop segment and return.
11919 	 */
11920 	if ((thflags & TH_ACK) == 0) {
11921 		if (tp->t_flags & TF_NEEDSYN) {
11922 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11923 			    tiwin, thflags, nxt_pkt));
11924 		} else if (tp->t_flags & TF_ACKNOW) {
11925 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11926 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11927 			return (ret_val);
11928 		} else {
11929 			ctf_do_drop(m, NULL);
11930 			return (0);
11931 		}
11932 	}
11933 	/*
11934 	 * Ack processing.
11935 	 */
11936 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11937 		return (ret_val);
11938 	}
11939 	if (sbavail(&so->so_snd)) {
11940 		if (ctf_progress_timeout_check(tp, true)) {
11941 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11942 						tp, tick, PROGRESS_DROP, __LINE__);
11943 			tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11944 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11945 			return (1);
11946 		}
11947 	}
11948 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11949 	    tiwin, thflags, nxt_pkt));
11950 }
11951 
11952 static void inline
11953 rack_clear_rate_sample(struct tcp_rack *rack)
11954 {
11955 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
11956 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
11957 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
11958 }
11959 
11960 static void
11961 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override)
11962 {
11963 	uint64_t bw_est, rate_wanted;
11964 	int chged = 0;
11965 	uint32_t user_max, orig_min, orig_max;
11966 
11967 	orig_min = rack->r_ctl.rc_pace_min_segs;
11968 	orig_max = rack->r_ctl.rc_pace_max_segs;
11969 	user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs;
11970 	if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs)
11971 		chged = 1;
11972 	rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
11973 	if (rack->use_fixed_rate || rack->rc_force_max_seg) {
11974 		if (user_max != rack->r_ctl.rc_pace_max_segs)
11975 			chged = 1;
11976 	}
11977 	if (rack->rc_force_max_seg) {
11978 		rack->r_ctl.rc_pace_max_segs = user_max;
11979 	} else if (rack->use_fixed_rate) {
11980 		bw_est = rack_get_bw(rack);
11981 		if ((rack->r_ctl.crte == NULL) ||
11982 		    (bw_est != rack->r_ctl.crte->rate)) {
11983 			rack->r_ctl.rc_pace_max_segs = user_max;
11984 		} else {
11985 			/* We are pacing right at the hardware rate */
11986 			uint32_t segsiz;
11987 
11988 			segsiz = min(ctf_fixed_maxseg(tp),
11989 				     rack->r_ctl.rc_pace_min_segs);
11990 			rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(
11991 				                           tp, bw_est, segsiz, 0,
11992 							   rack->r_ctl.crte, NULL);
11993 		}
11994 	} else if (rack->rc_always_pace) {
11995 		if (rack->r_ctl.gp_bw ||
11996 #ifdef NETFLIX_PEAKRATE
11997 		    rack->rc_tp->t_maxpeakrate ||
11998 #endif
11999 		    rack->r_ctl.init_rate) {
12000 			/* We have a rate of some sort set */
12001 			uint32_t  orig;
12002 
12003 			bw_est = rack_get_bw(rack);
12004 			orig = rack->r_ctl.rc_pace_max_segs;
12005 			if (fill_override)
12006 				rate_wanted = *fill_override;
12007 			else
12008 				rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL);
12009 			if (rate_wanted) {
12010 				/* We have something */
12011 				rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack,
12012 										   rate_wanted,
12013 										   ctf_fixed_maxseg(rack->rc_tp));
12014 			} else
12015 				rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs;
12016 			if (orig != rack->r_ctl.rc_pace_max_segs)
12017 				chged = 1;
12018 		} else if ((rack->r_ctl.gp_bw == 0) &&
12019 			   (rack->r_ctl.rc_pace_max_segs == 0)) {
12020 			/*
12021 			 * If we have nothing limit us to bursting
12022 			 * out IW sized pieces.
12023 			 */
12024 			chged = 1;
12025 			rack->r_ctl.rc_pace_max_segs = rc_init_window(rack);
12026 		}
12027 	}
12028 	if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) {
12029 		chged = 1;
12030 		rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
12031 	}
12032 	if (chged)
12033 		rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2);
12034 }
12035 
12036 
12037 static void
12038 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack)
12039 {
12040 #ifdef INET6
12041 	struct ip6_hdr *ip6 = NULL;
12042 #endif
12043 #ifdef INET
12044 	struct ip *ip = NULL;
12045 #endif
12046 #if defined(INET) || defined(INET6)
12047 	struct udphdr *udp = NULL;
12048 #endif
12049 
12050 	/* Ok lets fill in the fast block, it can only be used with no IP options! */
12051 #ifdef INET6
12052 	if (rack->r_is_v6) {
12053 		rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
12054 		ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
12055 		if (tp->t_port) {
12056 			rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12057 			udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
12058 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12059 			udp->uh_dport = tp->t_port;
12060 			rack->r_ctl.fsb.udp = udp;
12061 			rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12062 		} else
12063 		{
12064 			rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1);
12065 			rack->r_ctl.fsb.udp = NULL;
12066 		}
12067 		tcpip_fillheaders(rack->rc_inp,
12068 				  tp->t_port,
12069 				  ip6, rack->r_ctl.fsb.th);
12070 	} else
12071 #endif				/* INET6 */
12072 #ifdef INET
12073 	{
12074 		rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr);
12075 		ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
12076 		if (tp->t_port) {
12077 			rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12078 			udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
12079 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12080 			udp->uh_dport = tp->t_port;
12081 			rack->r_ctl.fsb.udp = udp;
12082 			rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12083 		} else
12084 		{
12085 			rack->r_ctl.fsb.udp = NULL;
12086 			rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1);
12087 		}
12088 		tcpip_fillheaders(rack->rc_inp,
12089 				  tp->t_port,
12090 				  ip, rack->r_ctl.fsb.th);
12091 	}
12092 #endif
12093 	rack->r_fsb_inited = 1;
12094 }
12095 
12096 static int
12097 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack)
12098 {
12099 	/*
12100 	 * Allocate the larger of spaces V6 if available else just
12101 	 * V4 and include udphdr (overbook)
12102 	 */
12103 #ifdef INET6
12104 	rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr);
12105 #else
12106 	rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr);
12107 #endif
12108 	rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len,
12109 					    M_TCPFSB, M_NOWAIT|M_ZERO);
12110 	if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) {
12111 		return (ENOMEM);
12112 	}
12113 	rack->r_fsb_inited = 0;
12114 	return (0);
12115 }
12116 
12117 static int
12118 rack_init(struct tcpcb *tp)
12119 {
12120 	struct tcp_rack *rack = NULL;
12121 	struct rack_sendmap *insret;
12122 	uint32_t iwin, snt, us_cts;
12123 	int err;
12124 
12125 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
12126 	if (tp->t_fb_ptr == NULL) {
12127 		/*
12128 		 * We need to allocate memory but cant. The INP and INP_INFO
12129 		 * locks and they are recusive (happens during setup. So a
12130 		 * scheme to drop the locks fails :(
12131 		 *
12132 		 */
12133 		return (ENOMEM);
12134 	}
12135 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
12136 
12137 	rack = (struct tcp_rack *)tp->t_fb_ptr;
12138 	RB_INIT(&rack->r_ctl.rc_mtree);
12139 	TAILQ_INIT(&rack->r_ctl.rc_free);
12140 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
12141 	rack->rc_tp = tp;
12142 	rack->rc_inp = tp->t_inpcb;
12143 	/* Set the flag */
12144 	rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
12145 	/* Probably not needed but lets be sure */
12146 	rack_clear_rate_sample(rack);
12147 	/*
12148 	 * Save off the default values, socket options will poke
12149 	 * at these if pacing is not on or we have not yet
12150 	 * reached where pacing is on (gp_ready/fixed enabled).
12151 	 * When they get set into the CC module (when gp_ready
12152 	 * is enabled or we enable fixed) then we will set these
12153 	 * values into the CC and place in here the old values
12154 	 * so we have a restoral. Then we will set the flag
12155 	 * rc_pacing_cc_set. That way whenever we turn off pacing
12156 	 * or switch off this stack, we will know to go restore
12157 	 * the saved values.
12158 	 */
12159 	rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn;
12160 	rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn;
12161 	/* We want abe like behavior as well */
12162 	rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN;
12163 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
12164 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
12165 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
12166 	if (use_rack_rr)
12167 		rack->use_rack_rr = 1;
12168 	if (V_tcp_delack_enabled)
12169 		tp->t_delayed_ack = 1;
12170 	else
12171 		tp->t_delayed_ack = 0;
12172 #ifdef TCP_ACCOUNTING
12173 	if (rack_tcp_accounting) {
12174 		tp->t_flags2 |= TF2_TCP_ACCOUNTING;
12175 	}
12176 #endif
12177 	if (rack_enable_shared_cwnd)
12178 		rack->rack_enable_scwnd = 1;
12179 	rack->rc_user_set_max_segs = rack_hptsi_segments;
12180 	rack->rc_force_max_seg = 0;
12181 	if (rack_use_imac_dack)
12182 		rack->rc_dack_mode = 1;
12183 	TAILQ_INIT(&rack->r_ctl.opt_list);
12184 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
12185 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
12186 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
12187 	rack->r_ctl.rc_lowest_us_rtt = 0xffffffff;
12188 	rack->r_ctl.rc_highest_us_rtt = 0;
12189 	rack->r_ctl.bw_rate_cap = rack_bw_rate_cap;
12190 	rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop);
12191 	if (rack_use_cmp_acks)
12192 		rack->r_use_cmp_ack = 1;
12193 	if (rack_disable_prr)
12194 		rack->rack_no_prr = 1;
12195 	if (rack_gp_no_rec_chg)
12196 		rack->rc_gp_no_rec_chg = 1;
12197 	if (rack_pace_every_seg && tcp_can_enable_pacing()) {
12198 		rack->rc_always_pace = 1;
12199 		if (rack->use_fixed_rate || rack->gp_ready)
12200 			rack_set_cc_pacing(rack);
12201 	} else
12202 		rack->rc_always_pace = 0;
12203 	if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack)
12204 		rack->r_mbuf_queue = 1;
12205 	else
12206 		rack->r_mbuf_queue = 0;
12207 	if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
12208 		tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
12209 	else
12210 		tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12211 	rack_set_pace_segments(tp, rack, __LINE__, NULL);
12212 	if (rack_limits_scwnd)
12213 		rack->r_limit_scw = 1;
12214 	else
12215 		rack->r_limit_scw = 0;
12216 	rack->rc_labc = V_tcp_abc_l_var;
12217 	rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
12218 	rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
12219 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
12220 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
12221 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
12222 	rack->r_ctl.rc_min_to = rack_min_to;
12223 	microuptime(&rack->r_ctl.act_rcv_time);
12224 	rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
12225 	rack->r_running_late = 0;
12226 	rack->r_running_early = 0;
12227 	rack->rc_init_win = rack_default_init_window;
12228 	rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss;
12229 	if (rack_hw_up_only)
12230 		rack->r_up_only = 1;
12231 	if (rack_do_dyn_mul) {
12232 		/* When dynamic adjustment is on CA needs to start at 100% */
12233 		rack->rc_gp_dyn_mul = 1;
12234 		if (rack_do_dyn_mul >= 100)
12235 			rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
12236 	} else
12237 		rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
12238 	rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec;
12239 	rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
12240 	rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time);
12241 	setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN,
12242 				rack_probertt_filter_life);
12243 	us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
12244 	rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
12245 	rack->r_ctl.rc_time_of_last_probertt = us_cts;
12246 	rack->r_ctl.challenge_ack_ts = tcp_ts_getticks();
12247 	rack->r_ctl.rc_time_probertt_starts = 0;
12248 	/* We require at least one measurement, even if the sysctl is 0 */
12249 	if (rack_req_measurements)
12250 		rack->r_ctl.req_measurements = rack_req_measurements;
12251 	else
12252 		rack->r_ctl.req_measurements = 1;
12253 	if (rack_enable_hw_pacing)
12254 		rack->rack_hdw_pace_ena = 1;
12255 	if (rack_hw_rate_caps)
12256 		rack->r_rack_hw_rate_caps = 1;
12257 	/* Do we force on detection? */
12258 #ifdef NETFLIX_EXP_DETECTION
12259 	if (tcp_force_detection)
12260 		rack->do_detection = 1;
12261 	else
12262 #endif
12263 		rack->do_detection = 0;
12264 	if (rack_non_rxt_use_cr)
12265 		rack->rack_rec_nonrxt_use_cr = 1;
12266 	err = rack_init_fsb(tp, rack);
12267 	if (err) {
12268 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12269 		tp->t_fb_ptr = NULL;
12270 		return (err);
12271 	}
12272 	if (tp->snd_una != tp->snd_max) {
12273 		/* Create a send map for the current outstanding data */
12274 		struct rack_sendmap *rsm;
12275 
12276 		rsm = rack_alloc(rack);
12277 		if (rsm == NULL) {
12278 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12279 			tp->t_fb_ptr = NULL;
12280 			return (ENOMEM);
12281 		}
12282 		rsm->r_no_rtt_allowed = 1;
12283 		rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
12284 		rsm->r_rtr_cnt = 1;
12285 		rsm->r_rtr_bytes = 0;
12286 		if (tp->t_flags & TF_SENTFIN) {
12287 			rsm->r_end = tp->snd_max - 1;
12288 			rsm->r_flags |= RACK_HAS_FIN;
12289 		} else {
12290 			rsm->r_end = tp->snd_max;
12291 		}
12292 		if (tp->snd_una == tp->iss) {
12293 			/* The data space is one beyond snd_una */
12294 			rsm->r_flags |= RACK_HAS_SYN;
12295 			rsm->r_start = tp->iss;
12296 			rsm->r_end = rsm->r_start + (tp->snd_max - tp->snd_una);
12297 		} else
12298 			rsm->r_start = tp->snd_una;
12299 		rsm->r_dupack = 0;
12300 		if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) {
12301 			rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff);
12302 			if (rsm->m)
12303 				rsm->orig_m_len = rsm->m->m_len;
12304 			else
12305 				rsm->orig_m_len = 0;
12306 		} else {
12307 			/*
12308 			 * This can happen if we have a stand-alone FIN or
12309 			 *  SYN.
12310 			 */
12311 			rsm->m = NULL;
12312 			rsm->orig_m_len = 0;
12313 			rsm->soff = 0;
12314 		}
12315 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12316 #ifdef INVARIANTS
12317 		if (insret != NULL) {
12318 			panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
12319 			      insret, rack, rsm);
12320 		}
12321 #endif
12322 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
12323 		rsm->r_in_tmap = 1;
12324 	}
12325 	/*
12326 	 * Timers in Rack are kept in microseconds so lets
12327 	 * convert any initial incoming variables
12328 	 * from ticks into usecs. Note that we
12329 	 * also change the values of t_srtt and t_rttvar, if
12330 	 * they are non-zero. They are kept with a 5
12331 	 * bit decimal so we have to carefully convert
12332 	 * these to get the full precision.
12333 	 */
12334 	rack_convert_rtts(tp);
12335 	tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
12336 	if (rack_def_profile)
12337 		rack_set_profile(rack, rack_def_profile);
12338 	/* Cancel the GP measurement in progress */
12339 	tp->t_flags &= ~TF_GPUTINPROG;
12340 	if (SEQ_GT(tp->snd_max, tp->iss))
12341 		snt = tp->snd_max - tp->iss;
12342 	else
12343 		snt = 0;
12344 	iwin = rc_init_window(rack);
12345 	if (snt < iwin) {
12346 		/* We are not past the initial window
12347 		 * so we need to make sure cwnd is
12348 		 * correct.
12349 		 */
12350 		if (tp->snd_cwnd < iwin)
12351 			tp->snd_cwnd = iwin;
12352 		/*
12353 		 * If we are within the initial window
12354 		 * we want ssthresh to be unlimited. Setting
12355 		 * it to the rwnd (which the default stack does
12356 		 * and older racks) is not really a good idea
12357 		 * since we want to be in SS and grow both the
12358 		 * cwnd and the rwnd (via dynamic rwnd growth). If
12359 		 * we set it to the rwnd then as the peer grows its
12360 		 * rwnd we will be stuck in CA and never hit SS.
12361 		 *
12362 		 * Its far better to raise it up high (this takes the
12363 		 * risk that there as been a loss already, probably
12364 		 * we should have an indicator in all stacks of loss
12365 		 * but we don't), but considering the normal use this
12366 		 * is a risk worth taking. The consequences of not
12367 		 * hitting SS are far worse than going one more time
12368 		 * into it early on (before we have sent even a IW).
12369 		 * It is highly unlikely that we will have had a loss
12370 		 * before getting the IW out.
12371 		 */
12372 		tp->snd_ssthresh = 0xffffffff;
12373 	}
12374 	rack_stop_all_timers(tp);
12375 	/* Lets setup the fsb block */
12376 	rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12377 	rack_log_rtt_shrinks(rack,  us_cts,  tp->t_rxtcur,
12378 			     __LINE__, RACK_RTTS_INIT);
12379 	return (0);
12380 }
12381 
12382 static int
12383 rack_handoff_ok(struct tcpcb *tp)
12384 {
12385 	if ((tp->t_state == TCPS_CLOSED) ||
12386 	    (tp->t_state == TCPS_LISTEN)) {
12387 		/* Sure no problem though it may not stick */
12388 		return (0);
12389 	}
12390 	if ((tp->t_state == TCPS_SYN_SENT) ||
12391 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
12392 		/*
12393 		 * We really don't know if you support sack,
12394 		 * you have to get to ESTAB or beyond to tell.
12395 		 */
12396 		return (EAGAIN);
12397 	}
12398 	if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) {
12399 		/*
12400 		 * Rack will only send a FIN after all data is acknowledged.
12401 		 * So in this case we have more data outstanding. We can't
12402 		 * switch stacks until either all data and only the FIN
12403 		 * is left (in which case rack_init() now knows how
12404 		 * to deal with that) <or> all is acknowledged and we
12405 		 * are only left with incoming data, though why you
12406 		 * would want to switch to rack after all data is acknowledged
12407 		 * I have no idea (rrs)!
12408 		 */
12409 		return (EAGAIN);
12410 	}
12411 	if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
12412 		return (0);
12413 	}
12414 	/*
12415 	 * If we reach here we don't do SACK on this connection so we can
12416 	 * never do rack.
12417 	 */
12418 	return (EINVAL);
12419 }
12420 
12421 
12422 static void
12423 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
12424 {
12425 	int ack_cmp = 0;
12426 
12427 	if (tp->t_fb_ptr) {
12428 		struct tcp_rack *rack;
12429 		struct rack_sendmap *rsm, *nrsm, *rm;
12430 
12431 		rack = (struct tcp_rack *)tp->t_fb_ptr;
12432 		if (tp->t_in_pkt) {
12433 			/*
12434 			 * It is unsafe to process the packets since a
12435 			 * reset may be lurking in them (its rare but it
12436 			 * can occur). If we were to find a RST, then we
12437 			 * would end up dropping the connection and the
12438 			 * INP lock, so when we return the caller (tcp_usrreq)
12439 			 * will blow up when it trys to unlock the inp.
12440 			 */
12441 			struct mbuf *save, *m;
12442 
12443 			m = tp->t_in_pkt;
12444 			tp->t_in_pkt = NULL;
12445 			tp->t_tail_pkt = NULL;
12446 			while (m) {
12447 				save = m->m_nextpkt;
12448 				m->m_nextpkt = NULL;
12449 				m_freem(m);
12450 				m = save;
12451 			}
12452 			if ((tp->t_inpcb) &&
12453 			    (tp->t_inpcb->inp_flags2 & INP_MBUF_ACKCMP))
12454 				ack_cmp = 1;
12455 			if (ack_cmp) {
12456 				/* Total if we used large or small (if ack-cmp was used). */
12457 				if (rack->rc_inp->inp_flags2 & INP_MBUF_L_ACKS)
12458 					counter_u64_add(rack_large_ackcmp, 1);
12459 				else
12460 					counter_u64_add(rack_small_ackcmp, 1);
12461 			}
12462 		}
12463 		tp->t_flags &= ~TF_FORCEDATA;
12464 #ifdef NETFLIX_SHARED_CWND
12465 		if (rack->r_ctl.rc_scw) {
12466 			uint32_t limit;
12467 
12468 			if (rack->r_limit_scw)
12469 				limit = max(1, rack->r_ctl.rc_lowest_us_rtt);
12470 			else
12471 				limit = 0;
12472 			tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw,
12473 						  rack->r_ctl.rc_scw_index,
12474 						  limit);
12475 			rack->r_ctl.rc_scw = NULL;
12476 		}
12477 #endif
12478 		if (rack->r_ctl.fsb.tcp_ip_hdr) {
12479 			free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB);
12480 			rack->r_ctl.fsb.tcp_ip_hdr = NULL;
12481 			rack->r_ctl.fsb.th = NULL;
12482 		}
12483 		/* Convert back to ticks, with  */
12484 		if (tp->t_srtt > 1) {
12485 			uint32_t val, frac;
12486 
12487 			val = USEC_2_TICKS(tp->t_srtt);
12488 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12489 			tp->t_srtt = val << TCP_RTT_SHIFT;
12490 			/*
12491 			 * frac is the fractional part here is left
12492 			 * over from converting to hz and shifting.
12493 			 * We need to convert this to the 5 bit
12494 			 * remainder.
12495 			 */
12496 			if (frac) {
12497 				if (hz == 1000) {
12498 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12499 				} else {
12500 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12501 				}
12502 				tp->t_srtt += frac;
12503 			}
12504 		}
12505 		if (tp->t_rttvar) {
12506 			uint32_t val, frac;
12507 
12508 			val = USEC_2_TICKS(tp->t_rttvar);
12509 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12510 			tp->t_rttvar = val <<  TCP_RTTVAR_SHIFT;
12511 			/*
12512 			 * frac is the fractional part here is left
12513 			 * over from converting to hz and shifting.
12514 			 * We need to convert this to the 5 bit
12515 			 * remainder.
12516 			 */
12517 			if (frac) {
12518 				if (hz == 1000) {
12519 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12520 				} else {
12521 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12522 				}
12523 				tp->t_rttvar += frac;
12524 			}
12525 		}
12526 		tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur);
12527 		tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
12528 		if (rack->rc_always_pace) {
12529 			tcp_decrement_paced_conn();
12530 			rack_undo_cc_pacing(rack);
12531 			rack->rc_always_pace = 0;
12532 		}
12533 		/* Clean up any options if they were not applied */
12534 		while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) {
12535 			struct deferred_opt_list *dol;
12536 
12537 			dol = TAILQ_FIRST(&rack->r_ctl.opt_list);
12538 			TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
12539 			free(dol, M_TCPDO);
12540 		}
12541 		/* rack does not use force data but other stacks may clear it */
12542 		if (rack->r_ctl.crte != NULL) {
12543 			tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
12544 			rack->rack_hdrw_pacing = 0;
12545 			rack->r_ctl.crte = NULL;
12546 		}
12547 #ifdef TCP_BLACKBOX
12548 		tcp_log_flowend(tp);
12549 #endif
12550 		RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
12551 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12552 #ifdef INVARIANTS
12553 			if (rm != rsm) {
12554 				panic("At fini, rack:%p rsm:%p rm:%p",
12555 				      rack, rsm, rm);
12556 			}
12557 #endif
12558 			uma_zfree(rack_zone, rsm);
12559 		}
12560 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12561 		while (rsm) {
12562 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
12563 			uma_zfree(rack_zone, rsm);
12564 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12565 		}
12566 		rack->rc_free_cnt = 0;
12567 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12568 		tp->t_fb_ptr = NULL;
12569 	}
12570 	if (tp->t_inpcb) {
12571 		tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12572 		tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
12573 		tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
12574 		tp->t_inpcb->inp_flags2 &= ~INP_MBUF_ACKCMP;
12575 		/* Cancel the GP measurement in progress */
12576 		tp->t_flags &= ~TF_GPUTINPROG;
12577 		tp->t_inpcb->inp_flags2 &= ~INP_MBUF_L_ACKS;
12578 	}
12579 	/* Make sure snd_nxt is correctly set */
12580 	tp->snd_nxt = tp->snd_max;
12581 }
12582 
12583 static void
12584 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
12585 {
12586 	if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) {
12587 		rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
12588 	}
12589 	switch (tp->t_state) {
12590 	case TCPS_SYN_SENT:
12591 		rack->r_state = TCPS_SYN_SENT;
12592 		rack->r_substate = rack_do_syn_sent;
12593 		break;
12594 	case TCPS_SYN_RECEIVED:
12595 		rack->r_state = TCPS_SYN_RECEIVED;
12596 		rack->r_substate = rack_do_syn_recv;
12597 		break;
12598 	case TCPS_ESTABLISHED:
12599 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12600 		rack->r_state = TCPS_ESTABLISHED;
12601 		rack->r_substate = rack_do_established;
12602 		break;
12603 	case TCPS_CLOSE_WAIT:
12604 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12605 		rack->r_state = TCPS_CLOSE_WAIT;
12606 		rack->r_substate = rack_do_close_wait;
12607 		break;
12608 	case TCPS_FIN_WAIT_1:
12609 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12610 		rack->r_state = TCPS_FIN_WAIT_1;
12611 		rack->r_substate = rack_do_fin_wait_1;
12612 		break;
12613 	case TCPS_CLOSING:
12614 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12615 		rack->r_state = TCPS_CLOSING;
12616 		rack->r_substate = rack_do_closing;
12617 		break;
12618 	case TCPS_LAST_ACK:
12619 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12620 		rack->r_state = TCPS_LAST_ACK;
12621 		rack->r_substate = rack_do_lastack;
12622 		break;
12623 	case TCPS_FIN_WAIT_2:
12624 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12625 		rack->r_state = TCPS_FIN_WAIT_2;
12626 		rack->r_substate = rack_do_fin_wait_2;
12627 		break;
12628 	case TCPS_LISTEN:
12629 	case TCPS_CLOSED:
12630 	case TCPS_TIME_WAIT:
12631 	default:
12632 		break;
12633 	};
12634 	if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
12635 		rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
12636 
12637 }
12638 
12639 static void
12640 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
12641 {
12642 	/*
12643 	 * We received an ack, and then did not
12644 	 * call send or were bounced out due to the
12645 	 * hpts was running. Now a timer is up as well, is
12646 	 * it the right timer?
12647 	 */
12648 	struct rack_sendmap *rsm;
12649 	int tmr_up;
12650 
12651 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
12652 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
12653 		return;
12654 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
12655 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
12656 	    (tmr_up == PACE_TMR_RXT)) {
12657 		/* Should be an RXT */
12658 		return;
12659 	}
12660 	if (rsm == NULL) {
12661 		/* Nothing outstanding? */
12662 		if (tp->t_flags & TF_DELACK) {
12663 			if (tmr_up == PACE_TMR_DELACK)
12664 				/* We are supposed to have delayed ack up and we do */
12665 				return;
12666 		} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
12667 			/*
12668 			 * if we hit enobufs then we would expect the possiblity
12669 			 * of nothing outstanding and the RXT up (and the hptsi timer).
12670 			 */
12671 			return;
12672 		} else if (((V_tcp_always_keepalive ||
12673 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
12674 			    (tp->t_state <= TCPS_CLOSING)) &&
12675 			   (tmr_up == PACE_TMR_KEEP) &&
12676 			   (tp->snd_max == tp->snd_una)) {
12677 			/* We should have keep alive up and we do */
12678 			return;
12679 		}
12680 	}
12681 	if (SEQ_GT(tp->snd_max, tp->snd_una) &&
12682 		   ((tmr_up == PACE_TMR_TLP) ||
12683 		    (tmr_up == PACE_TMR_RACK) ||
12684 		    (tmr_up == PACE_TMR_RXT))) {
12685 		/*
12686 		 * Either a Rack, TLP or RXT is fine if  we
12687 		 * have outstanding data.
12688 		 */
12689 		return;
12690 	} else if (tmr_up == PACE_TMR_DELACK) {
12691 		/*
12692 		 * If the delayed ack was going to go off
12693 		 * before the rtx/tlp/rack timer were going to
12694 		 * expire, then that would be the timer in control.
12695 		 * Note we don't check the time here trusting the
12696 		 * code is correct.
12697 		 */
12698 		return;
12699 	}
12700 	/*
12701 	 * Ok the timer originally started is not what we want now.
12702 	 * We will force the hpts to be stopped if any, and restart
12703 	 * with the slot set to what was in the saved slot.
12704 	 */
12705 	if (rack->rc_inp->inp_in_hpts) {
12706 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
12707 			uint32_t us_cts;
12708 
12709 			us_cts = tcp_get_usecs(NULL);
12710 			if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
12711 				rack->r_early = 1;
12712 				rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
12713 			}
12714 			rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
12715 		}
12716 		tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
12717 	}
12718 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
12719 	rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12720 }
12721 
12722 
12723 static void
12724 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq)
12725 {
12726 	tp->snd_wnd = tiwin;
12727 	rack_validate_fo_sendwin_up(tp, rack);
12728 	tp->snd_wl1 = seq;
12729 	tp->snd_wl2 = ack;
12730 	if (tp->snd_wnd > tp->max_sndwnd)
12731 		tp->max_sndwnd = tp->snd_wnd;
12732 	if (tp->snd_wnd < (tp->snd_max - high_seq)) {
12733 		/* The peer collapsed the window */
12734 		rack_collapsed_window(rack);
12735 	} else if (rack->rc_has_collapsed)
12736 		rack_un_collapse_window(rack);
12737 	/* Do we exit persists? */
12738 	if ((rack->rc_in_persist != 0) &&
12739 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
12740 				rack->r_ctl.rc_pace_min_segs))) {
12741 		rack_exit_persist(tp, rack, cts);
12742 	}
12743 	/* Do we enter persists? */
12744 	if ((rack->rc_in_persist == 0) &&
12745 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
12746 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
12747 	    (tp->snd_max == tp->snd_una) &&
12748 	    sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
12749 	    (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
12750 		/*
12751 		 * Here the rwnd is less than
12752 		 * the pacing size, we are established,
12753 		 * nothing is outstanding, and there is
12754 		 * data to send. Enter persists.
12755 		 */
12756 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
12757 	}
12758 }
12759 
12760 static void
12761 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq)
12762 {
12763 
12764 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
12765 		union tcp_log_stackspecific log;
12766 		struct timeval ltv;
12767 		char tcp_hdr_buf[60];
12768 		struct tcphdr *th;
12769 		struct timespec ts;
12770 		uint32_t orig_snd_una;
12771 		uint8_t xx = 0;
12772 
12773 #ifdef NETFLIX_HTTP_LOGGING
12774 		struct http_sendfile_track *http_req;
12775 
12776 		if (SEQ_GT(ae->ack, tp->snd_una)) {
12777 			http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1));
12778 		} else {
12779 			http_req = tcp_http_find_req_for_seq(tp, ae->ack);
12780 		}
12781 #endif
12782 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
12783 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
12784 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
12785 		if (rack->rack_no_prr == 0)
12786 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
12787 		else
12788 			log.u_bbr.flex1 = 0;
12789 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
12790 		log.u_bbr.use_lt_bw <<= 1;
12791 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
12792 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
12793 		log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
12794 		log.u_bbr.pkts_out = tp->t_maxseg;
12795 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
12796 		log.u_bbr.flex7 = 1;
12797 		log.u_bbr.lost = ae->flags;
12798 		log.u_bbr.cwnd_gain = ackval;
12799 		log.u_bbr.pacing_gain = 0x2;
12800 		if (ae->flags & TSTMP_HDWR) {
12801 			/* Record the hardware timestamp if present */
12802 			log.u_bbr.flex3 = M_TSTMP;
12803 			ts.tv_sec = ae->timestamp / 1000000000;
12804 			ts.tv_nsec = ae->timestamp % 1000000000;
12805 			ltv.tv_sec = ts.tv_sec;
12806 			ltv.tv_usec = ts.tv_nsec / 1000;
12807 			log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
12808 		} else if (ae->flags & TSTMP_LRO) {
12809 			/* Record the LRO the arrival timestamp */
12810 			log.u_bbr.flex3 = M_TSTMP_LRO;
12811 			ts.tv_sec = ae->timestamp / 1000000000;
12812 			ts.tv_nsec = ae->timestamp % 1000000000;
12813 			ltv.tv_sec = ts.tv_sec;
12814 			ltv.tv_usec = ts.tv_nsec / 1000;
12815 			log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
12816 		}
12817 		log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
12818 		/* Log the rcv time */
12819 		log.u_bbr.delRate = ae->timestamp;
12820 #ifdef NETFLIX_HTTP_LOGGING
12821 		log.u_bbr.applimited = tp->t_http_closed;
12822 		log.u_bbr.applimited <<= 8;
12823 		log.u_bbr.applimited |= tp->t_http_open;
12824 		log.u_bbr.applimited <<= 8;
12825 		log.u_bbr.applimited |= tp->t_http_req;
12826 		if (http_req) {
12827 			/* Copy out any client req info */
12828 			/* seconds */
12829 			log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
12830 			/* useconds */
12831 			log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
12832 			log.u_bbr.rttProp = http_req->timestamp;
12833 			log.u_bbr.cur_del_rate = http_req->start;
12834 			if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
12835 				log.u_bbr.flex8 |= 1;
12836 			} else {
12837 				log.u_bbr.flex8 |= 2;
12838 				log.u_bbr.bw_inuse = http_req->end;
12839 			}
12840 			log.u_bbr.flex6 = http_req->start_seq;
12841 			if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
12842 				log.u_bbr.flex8 |= 4;
12843 				log.u_bbr.epoch = http_req->end_seq;
12844 			}
12845 		}
12846 #endif
12847 		memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf));
12848 		th = (struct tcphdr *)tcp_hdr_buf;
12849 		th->th_seq = ae->seq;
12850 		th->th_ack = ae->ack;
12851 		th->th_win = ae->win;
12852 		/* Now fill in the ports */
12853 		th->th_sport = tp->t_inpcb->inp_fport;
12854 		th->th_dport = tp->t_inpcb->inp_lport;
12855 		th->th_flags = ae->flags & 0xff;
12856 		/* Now do we have a timestamp option? */
12857 		if (ae->flags & HAS_TSTMP) {
12858 			u_char *cp;
12859 			uint32_t val;
12860 
12861 			th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2);
12862 			cp = (u_char *)(th + 1);
12863 			*cp = TCPOPT_NOP;
12864 			cp++;
12865 			*cp = TCPOPT_NOP;
12866 			cp++;
12867 			*cp = TCPOPT_TIMESTAMP;
12868 			cp++;
12869 			*cp = TCPOLEN_TIMESTAMP;
12870 			cp++;
12871 			val = htonl(ae->ts_value);
12872 			bcopy((char *)&val,
12873 			      (char *)cp, sizeof(uint32_t));
12874 			val = htonl(ae->ts_echo);
12875 			bcopy((char *)&val,
12876 			      (char *)(cp + 4), sizeof(uint32_t));
12877 		} else
12878 			th->th_off = (sizeof(struct tcphdr) >> 2);
12879 
12880 		/*
12881 		 * For sane logging we need to play a little trick.
12882 		 * If the ack were fully processed we would have moved
12883 		 * snd_una to high_seq, but since compressed acks are
12884 		 * processed in two phases, at this point (logging) snd_una
12885 		 * won't be advanced. So we would see multiple acks showing
12886 		 * the advancement. We can prevent that by "pretending" that
12887 		 * snd_una was advanced and then un-advancing it so that the
12888 		 * logging code has the right value for tlb_snd_una.
12889 		 */
12890 		if (tp->snd_una != high_seq) {
12891 			orig_snd_una = tp->snd_una;
12892 			tp->snd_una = high_seq;
12893 			xx = 1;
12894 		} else
12895 			xx = 0;
12896 		TCP_LOG_EVENTP(tp, th,
12897 			       &tp->t_inpcb->inp_socket->so_rcv,
12898 			       &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_IN, 0,
12899 			       0, &log, true, &ltv);
12900 		if (xx) {
12901 			tp->snd_una = orig_snd_una;
12902 		}
12903 	}
12904 
12905 }
12906 
12907 static int
12908 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv)
12909 {
12910 	/*
12911 	 * Handle a "special" compressed ack mbuf. Each incoming
12912 	 * ack has only four possible dispositions:
12913 	 *
12914 	 * A) It moves the cum-ack forward
12915 	 * B) It is behind the cum-ack.
12916 	 * C) It is a window-update ack.
12917 	 * D) It is a dup-ack.
12918 	 *
12919 	 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES
12920 	 * in the incoming mbuf. We also need to still pay attention
12921 	 * to nxt_pkt since there may be another packet after this
12922 	 * one.
12923 	 */
12924 #ifdef TCP_ACCOUNTING
12925 	uint64_t ts_val;
12926 	uint64_t rdstc;
12927 #endif
12928 	int segsiz;
12929 	struct timespec ts;
12930 	struct tcp_rack *rack;
12931 	struct tcp_ackent *ae;
12932 	uint32_t tiwin, us_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack;
12933 	int cnt, i, did_out, ourfinisacked = 0;
12934 	int win_up_req = 0;
12935 	struct tcpopt to_holder, *to = NULL;
12936 	int nsegs = 0;
12937 	int under_pacing = 1;
12938 	int recovery = 0;
12939 	int idx;
12940 #ifdef TCP_ACCOUNTING
12941 	sched_pin();
12942 #endif
12943 	rack = (struct tcp_rack *)tp->t_fb_ptr;
12944 	if (rack->gp_ready &&
12945 	    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT))
12946 		under_pacing = 0;
12947 	else
12948 		under_pacing = 1;
12949 
12950 	if (rack->r_state != tp->t_state)
12951 		rack_set_state(tp, rack);
12952 	if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
12953 	    (tp->t_flags & TF_GPUTINPROG)) {
12954 		/*
12955 		 * We have a goodput in progress
12956 		 * and we have entered a late state.
12957 		 * Do we have enough data in the sb
12958 		 * to handle the GPUT request?
12959 		 */
12960 		uint32_t bytes;
12961 
12962 		bytes = tp->gput_ack - tp->gput_seq;
12963 		if (SEQ_GT(tp->gput_seq, tp->snd_una))
12964 			bytes += tp->gput_seq - tp->snd_una;
12965 		if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
12966 			/*
12967 			 * There are not enough bytes in the socket
12968 			 * buffer that have been sent to cover this
12969 			 * measurement. Cancel it.
12970 			 */
12971 			rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
12972 						   rack->r_ctl.rc_gp_srtt /*flex1*/,
12973 						   tp->gput_seq,
12974 						   0, 0, 18, __LINE__, NULL, 0);
12975 			tp->t_flags &= ~TF_GPUTINPROG;
12976 		}
12977 	}
12978 	to = &to_holder;
12979 	to->to_flags = 0;
12980 	KASSERT((m->m_len >= sizeof(struct tcp_ackent)),
12981 		("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len));
12982 	cnt = m->m_len / sizeof(struct tcp_ackent);
12983 	idx = cnt / 5;
12984 	if (idx >= MAX_NUM_OF_CNTS)
12985 		idx = MAX_NUM_OF_CNTS - 1;
12986 	counter_u64_add(rack_proc_comp_ack[idx], 1);
12987 	counter_u64_add(rack_multi_single_eq, cnt);
12988 	high_seq = tp->snd_una;
12989 	the_win = tp->snd_wnd;
12990 	win_seq = tp->snd_wl1;
12991 	win_upd_ack = tp->snd_wl2;
12992 	cts = us_cts = tcp_tv_to_usectick(tv);
12993 	segsiz = ctf_fixed_maxseg(tp);
12994 	if ((rack->rc_gp_dyn_mul) &&
12995 	    (rack->use_fixed_rate == 0) &&
12996 	    (rack->rc_always_pace)) {
12997 		/* Check in on probertt */
12998 		rack_check_probe_rtt(rack, us_cts);
12999 	}
13000 	for (i = 0; i < cnt; i++) {
13001 #ifdef TCP_ACCOUNTING
13002 		ts_val = get_cyclecount();
13003 #endif
13004 		rack_clear_rate_sample(rack);
13005 		ae = ((mtod(m, struct tcp_ackent *)) + i);
13006 		/* Setup the window */
13007 		tiwin = ae->win << tp->snd_scale;
13008 		/* figure out the type of ack */
13009 		if (SEQ_LT(ae->ack, high_seq)) {
13010 			/* Case B*/
13011 			ae->ack_val_set = ACK_BEHIND;
13012 		} else if (SEQ_GT(ae->ack, high_seq)) {
13013 			/* Case A */
13014 			ae->ack_val_set = ACK_CUMACK;
13015 		} else if (tiwin == the_win) {
13016 			/* Case D */
13017 			ae->ack_val_set = ACK_DUPACK;
13018 		} else {
13019 			/* Case C */
13020 			ae->ack_val_set = ACK_RWND;
13021 		}
13022 		rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq);
13023 		/* Validate timestamp */
13024 		if (ae->flags & HAS_TSTMP) {
13025 			/* Setup for a timestamp */
13026 			to->to_flags = TOF_TS;
13027 			ae->ts_echo -= tp->ts_offset;
13028 			to->to_tsecr = ae->ts_echo;
13029 			to->to_tsval = ae->ts_value;
13030 			/*
13031 			 * If echoed timestamp is later than the current time, fall back to
13032 			 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
13033 			 * were used when this connection was established.
13034 			 */
13035 			if (TSTMP_GT(ae->ts_echo, cts))
13036 				ae->ts_echo = 0;
13037 			if (tp->ts_recent &&
13038 			    TSTMP_LT(ae->ts_value, tp->ts_recent)) {
13039 				if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) {
13040 #ifdef TCP_ACCOUNTING
13041 					rdstc = get_cyclecount();
13042 					if (rdstc > ts_val) {
13043 						counter_u64_add(tcp_proc_time[ae->ack_val_set] ,
13044 								(rdstc - ts_val));
13045 						if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13046 							tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13047 						}
13048 					}
13049 #endif
13050 					continue;
13051 				}
13052 			}
13053 			if (SEQ_LEQ(ae->seq, tp->last_ack_sent) &&
13054 			    SEQ_LEQ(tp->last_ack_sent, ae->seq)) {
13055 				tp->ts_recent_age = tcp_ts_getticks();
13056 				tp->ts_recent = ae->ts_value;
13057 			}
13058 		} else {
13059 			/* Setup for a no options */
13060 			to->to_flags = 0;
13061 		}
13062 		/* Update the rcv time and perform idle reduction possibly */
13063 		if  (tp->t_idle_reduce &&
13064 		     (tp->snd_max == tp->snd_una) &&
13065 		     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
13066 			counter_u64_add(rack_input_idle_reduces, 1);
13067 			rack_cc_after_idle(rack, tp);
13068 		}
13069 		tp->t_rcvtime = ticks;
13070 		/* Now what about ECN? */
13071 		if (tp->t_flags2 & TF2_ECN_PERMIT) {
13072 			if (ae->flags & TH_CWR) {
13073 				tp->t_flags2 &= ~TF2_ECN_SND_ECE;
13074 				tp->t_flags |= TF_ACKNOW;
13075 			}
13076 			switch (ae->codepoint & IPTOS_ECN_MASK) {
13077 			case IPTOS_ECN_CE:
13078 				tp->t_flags2 |= TF2_ECN_SND_ECE;
13079 				KMOD_TCPSTAT_INC(tcps_ecn_ce);
13080 				break;
13081 			case IPTOS_ECN_ECT0:
13082 				KMOD_TCPSTAT_INC(tcps_ecn_ect0);
13083 				break;
13084 			case IPTOS_ECN_ECT1:
13085 				KMOD_TCPSTAT_INC(tcps_ecn_ect1);
13086 				break;
13087 			}
13088 
13089 			/* Process a packet differently from RFC3168. */
13090 			cc_ecnpkt_handler_flags(tp, ae->flags, ae->codepoint);
13091 			/* Congestion experienced. */
13092 			if (ae->flags & TH_ECE) {
13093 				rack_cong_signal(tp,  CC_ECN, ae->ack);
13094 			}
13095 		}
13096 #ifdef TCP_ACCOUNTING
13097 		/* Count for the specific type of ack in */
13098 		counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1);
13099 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13100 			tp->tcp_cnt_counters[ae->ack_val_set]++;
13101 		}
13102 #endif
13103 		/*
13104 		 * Note how we could move up these in the determination
13105 		 * above, but we don't so that way the timestamp checks (and ECN)
13106 		 * is done first before we do any processing on the ACK.
13107 		 * The non-compressed path through the code has this
13108 		 * weakness (noted by @jtl) that it actually does some
13109 		 * processing before verifying the timestamp information.
13110 		 * We don't take that path here which is why we set
13111 		 * the ack_val_set first, do the timestamp and ecn
13112 		 * processing, and then look at what we have setup.
13113 		 */
13114 		if (ae->ack_val_set == ACK_BEHIND) {
13115 			/*
13116 			 * Case B flag reordering, if window is not closed
13117 			 * or it could be a keep-alive or persists
13118 			 */
13119 			if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) {
13120 				counter_u64_add(rack_reorder_seen, 1);
13121 				rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
13122 			}
13123 		} else if (ae->ack_val_set == ACK_DUPACK) {
13124 			/* Case D */
13125 
13126 			rack_strike_dupack(rack);
13127 		} else if (ae->ack_val_set == ACK_RWND) {
13128 			/* Case C */
13129 
13130 			win_up_req = 1;
13131 			win_upd_ack = ae->ack;
13132 			win_seq = ae->seq;
13133 			the_win = tiwin;
13134 		} else {
13135 			/* Case A */
13136 
13137 			if (SEQ_GT(ae->ack, tp->snd_max)) {
13138 				/*
13139 				 * We just send an ack since the incoming
13140 				 * ack is beyond the largest seq we sent.
13141 				 */
13142 				if ((tp->t_flags & TF_ACKNOW) == 0) {
13143 					ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt);
13144 					if (tp->t_flags && TF_ACKNOW)
13145 						rack->r_wanted_output = 1;
13146 				}
13147 			} else {
13148 				nsegs++;
13149 				/* If the window changed setup to update */
13150 				if (tiwin != tp->snd_wnd) {
13151 					win_up_req = 1;
13152 					win_upd_ack = ae->ack;
13153 					win_seq = ae->seq;
13154 					the_win = tiwin;
13155 				}
13156 #ifdef TCP_ACCOUNTING
13157 				/* Account for the acks */
13158 				if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13159 					tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz);
13160 				}
13161 				counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN],
13162 						(((ae->ack - high_seq) + segsiz - 1) / segsiz));
13163 #endif
13164 				high_seq = ae->ack;
13165 				/* Setup our act_rcv_time */
13166 				if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13167 					ts.tv_sec = ae->timestamp / 1000000000;
13168 					ts.tv_nsec = ae->timestamp % 1000000000;
13169 					rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13170 					rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13171 				} else {
13172 					rack->r_ctl.act_rcv_time = *tv;
13173 				}
13174 				rack_process_to_cumack(tp, rack, ae->ack, cts, to);
13175 			}
13176 		}
13177 		/* And lets be sure to commit the rtt measurements for this ack */
13178 		tcp_rack_xmit_timer_commit(rack, tp);
13179 #ifdef TCP_ACCOUNTING
13180 		rdstc = get_cyclecount();
13181 		if (rdstc > ts_val) {
13182 			counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val));
13183 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13184 				tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13185 				if (ae->ack_val_set == ACK_CUMACK)
13186 					tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val);
13187 			}
13188 		}
13189 #endif
13190 	}
13191 #ifdef TCP_ACCOUNTING
13192 	ts_val = get_cyclecount();
13193 #endif
13194 	acked_amount = acked = (high_seq - tp->snd_una);
13195 	if (win_up_req) {
13196 		rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13197 	}
13198 	if (acked) {
13199 		if (rack->sack_attack_disable == 0)
13200 			rack_do_decay(rack);
13201 		if (acked >= segsiz) {
13202 			/*
13203 			 * You only get credit for
13204 			 * MSS and greater (and you get extra
13205 			 * credit for larger cum-ack moves).
13206 			 */
13207 			int ac;
13208 
13209 			ac = acked / segsiz;
13210 			rack->r_ctl.ack_count += ac;
13211 			counter_u64_add(rack_ack_total, ac);
13212 		}
13213 		if (rack->r_ctl.ack_count > 0xfff00000) {
13214 			/*
13215 			 * reduce the number to keep us under
13216 			 * a uint32_t.
13217 			 */
13218 			rack->r_ctl.ack_count /= 2;
13219 			rack->r_ctl.sack_count /= 2;
13220 		}
13221 		if (tp->t_flags & TF_NEEDSYN) {
13222 			/*
13223 			 * T/TCP: Connection was half-synchronized, and our SYN has
13224 			 * been ACK'd (so connection is now fully synchronized).  Go
13225 			 * to non-starred state, increment snd_una for ACK of SYN,
13226 			 * and check if we can do window scaling.
13227 			 */
13228 			tp->t_flags &= ~TF_NEEDSYN;
13229 			tp->snd_una++;
13230 			acked_amount = acked = (high_seq - tp->snd_una);
13231 		}
13232 		if (acked > sbavail(&so->so_snd))
13233 			acked_amount = sbavail(&so->so_snd);
13234 #ifdef NETFLIX_EXP_DETECTION
13235 		/*
13236 		 * We only care on a cum-ack move if we are in a sack-disabled
13237 		 * state. We have already added in to the ack_count, and we never
13238 		 * would disable on a cum-ack move, so we only care to do the
13239 		 * detection if it may "undo" it, i.e. we were in disabled already.
13240 		 */
13241 		if (rack->sack_attack_disable)
13242 			rack_do_detection(tp, rack, acked_amount, segsiz);
13243 #endif
13244 		if (IN_FASTRECOVERY(tp->t_flags) &&
13245 		    (rack->rack_no_prr == 0))
13246 			rack_update_prr(tp, rack, acked_amount, high_seq);
13247 		if (IN_RECOVERY(tp->t_flags)) {
13248 			if (SEQ_LT(high_seq, tp->snd_recover) &&
13249 			    (SEQ_LT(high_seq, tp->snd_max))) {
13250 				tcp_rack_partialack(tp);
13251 			} else {
13252 				rack_post_recovery(tp, high_seq);
13253 				recovery = 1;
13254 			}
13255 		}
13256 		/* Handle the rack-log-ack part (sendmap) */
13257 		if ((sbused(&so->so_snd) == 0) &&
13258 		    (acked > acked_amount) &&
13259 		    (tp->t_state >= TCPS_FIN_WAIT_1) &&
13260 		    (tp->t_flags & TF_SENTFIN)) {
13261 			/*
13262 			 * We must be sure our fin
13263 			 * was sent and acked (we can be
13264 			 * in FIN_WAIT_1 without having
13265 			 * sent the fin).
13266 			 */
13267 			ourfinisacked = 1;
13268 			/*
13269 			 * Lets make sure snd_una is updated
13270 			 * since most likely acked_amount = 0 (it
13271 			 * should be).
13272 			 */
13273 			tp->snd_una = high_seq;
13274 		}
13275 		/* Did we make a RTO error? */
13276 		if ((tp->t_flags & TF_PREVVALID) &&
13277 		    ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
13278 			tp->t_flags &= ~TF_PREVVALID;
13279 			if (tp->t_rxtshift == 1 &&
13280 			    (int)(ticks - tp->t_badrxtwin) < 0)
13281 				rack_cong_signal(tp, CC_RTO_ERR, high_seq);
13282 		}
13283 		/* Handle the data in the socket buffer */
13284 		KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1);
13285 		KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
13286 		if (acked_amount > 0) {
13287 			struct mbuf *mfree;
13288 
13289 			rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery);
13290 			SOCKBUF_LOCK(&so->so_snd);
13291 			mfree = sbcut_locked(&so->so_snd, acked);
13292 			tp->snd_una = high_seq;
13293 			/* Note we want to hold the sb lock through the sendmap adjust */
13294 			rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
13295 			/* Wake up the socket if we have room to write more */
13296 			rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
13297 			sowwakeup_locked(so);
13298 			m_freem(mfree);
13299 		}
13300 		/* update progress */
13301 		tp->t_acktime = ticks;
13302 		rack_log_progress_event(rack, tp, tp->t_acktime,
13303 					PROGRESS_UPDATE, __LINE__);
13304 		/* Clear out shifts and such */
13305 		tp->t_rxtshift = 0;
13306 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
13307 				   rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
13308 		rack->rc_tlp_in_progress = 0;
13309 		rack->r_ctl.rc_tlp_cnt_out = 0;
13310 		/* Send recover and snd_nxt must be dragged along */
13311 		if (SEQ_GT(tp->snd_una, tp->snd_recover))
13312 			tp->snd_recover = tp->snd_una;
13313 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
13314 			tp->snd_nxt = tp->snd_una;
13315 		/*
13316 		 * If the RXT timer is running we want to
13317 		 * stop it, so we can restart a TLP (or new RXT).
13318 		 */
13319 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
13320 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13321 #ifdef NETFLIX_HTTP_LOGGING
13322 		tcp_http_check_for_comp(rack->rc_tp, high_seq);
13323 #endif
13324 		tp->snd_wl2 = high_seq;
13325 		tp->t_dupacks = 0;
13326 		if (under_pacing &&
13327 		    (rack->use_fixed_rate == 0) &&
13328 		    (rack->in_probe_rtt == 0) &&
13329 		    rack->rc_gp_dyn_mul &&
13330 		    rack->rc_always_pace) {
13331 			/* Check if we are dragging bottom */
13332 			rack_check_bottom_drag(tp, rack, so, acked);
13333 		}
13334 		if (tp->snd_una == tp->snd_max) {
13335 			tp->t_flags &= ~TF_PREVVALID;
13336 			rack->r_ctl.retran_during_recovery = 0;
13337 			rack->r_ctl.dsack_byte_cnt = 0;
13338 			rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
13339 			if (rack->r_ctl.rc_went_idle_time == 0)
13340 				rack->r_ctl.rc_went_idle_time = 1;
13341 			rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
13342 			if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
13343 				tp->t_acktime = 0;
13344 			/* Set so we might enter persists... */
13345 			rack->r_wanted_output = 1;
13346 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13347 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
13348 			if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13349 			    (sbavail(&so->so_snd) == 0) &&
13350 			    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
13351 				/*
13352 				 * The socket was gone and the
13353 				 * peer sent data (not now in the past), time to
13354 				 * reset him.
13355 				 */
13356 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13357 				/* tcp_close will kill the inp pre-log the Reset */
13358 				tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
13359 #ifdef TCP_ACCOUNTING
13360 				rdstc = get_cyclecount();
13361 				if (rdstc > ts_val) {
13362 					counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13363 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13364 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13365 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13366 					}
13367 				}
13368 #endif
13369 				m_freem(m);
13370 				tp = tcp_close(tp);
13371 				if (tp == NULL) {
13372 #ifdef TCP_ACCOUNTING
13373 					sched_unpin();
13374 #endif
13375 					return (1);
13376 				}
13377 				/*
13378 				 * We would normally do drop-with-reset which would
13379 				 * send back a reset. We can't since we don't have
13380 				 * all the needed bits. Instead lets arrange for
13381 				 * a call to tcp_output(). That way since we
13382 				 * are in the closed state we will generate a reset.
13383 				 *
13384 				 * Note if tcp_accounting is on we don't unpin since
13385 				 * we do that after the goto label.
13386 				 */
13387 				goto send_out_a_rst;
13388 			}
13389 			if ((sbused(&so->so_snd) == 0) &&
13390 			    (tp->t_state >= TCPS_FIN_WAIT_1) &&
13391 			    (tp->t_flags & TF_SENTFIN)) {
13392 				/*
13393 				 * If we can't receive any more data, then closing user can
13394 				 * proceed. Starting the timer is contrary to the
13395 				 * specification, but if we don't get a FIN we'll hang
13396 				 * forever.
13397 				 *
13398 				 */
13399 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13400 					soisdisconnected(so);
13401 					tcp_timer_activate(tp, TT_2MSL,
13402 							   (tcp_fast_finwait2_recycle ?
13403 							    tcp_finwait2_timeout :
13404 							    TP_MAXIDLE(tp)));
13405 				}
13406 				if (ourfinisacked == 0) {
13407 					/*
13408 					 * We don't change to fin-wait-2 if we have our fin acked
13409 					 * which means we are probably in TCPS_CLOSING.
13410 					 */
13411 					tcp_state_change(tp, TCPS_FIN_WAIT_2);
13412 				}
13413 			}
13414 		}
13415 		/* Wake up the socket if we have room to write more */
13416 		if (sbavail(&so->so_snd)) {
13417 			rack->r_wanted_output = 1;
13418 			if (ctf_progress_timeout_check(tp, true)) {
13419 				rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
13420 							tp, tick, PROGRESS_DROP, __LINE__);
13421 				tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
13422 				/*
13423 				 * We cheat here and don't send a RST, we should send one
13424 				 * when the pacer drops the connection.
13425 				 */
13426 #ifdef TCP_ACCOUNTING
13427 				rdstc = get_cyclecount();
13428 				if (rdstc > ts_val) {
13429 					counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13430 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13431 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13432 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13433 					}
13434 				}
13435 				sched_unpin();
13436 #endif
13437 				INP_WUNLOCK(rack->rc_inp);
13438 				m_freem(m);
13439 				return (1);
13440 			}
13441 		}
13442 		if (ourfinisacked) {
13443 			switch(tp->t_state) {
13444 			case TCPS_CLOSING:
13445 #ifdef TCP_ACCOUNTING
13446 				rdstc = get_cyclecount();
13447 				if (rdstc > ts_val) {
13448 					counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13449 							(rdstc - ts_val));
13450 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13451 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13452 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13453 					}
13454 				}
13455 				sched_unpin();
13456 #endif
13457 				tcp_twstart(tp);
13458 				m_freem(m);
13459 				return (1);
13460 				break;
13461 			case TCPS_LAST_ACK:
13462 #ifdef TCP_ACCOUNTING
13463 				rdstc = get_cyclecount();
13464 				if (rdstc > ts_val) {
13465 					counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13466 							(rdstc - ts_val));
13467 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13468 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13469 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13470 					}
13471 				}
13472 				sched_unpin();
13473 #endif
13474 				tp = tcp_close(tp);
13475 				ctf_do_drop(m, tp);
13476 				return (1);
13477 				break;
13478 			case TCPS_FIN_WAIT_1:
13479 #ifdef TCP_ACCOUNTING
13480 				rdstc = get_cyclecount();
13481 				if (rdstc > ts_val) {
13482 					counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13483 							(rdstc - ts_val));
13484 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13485 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13486 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13487 					}
13488 				}
13489 #endif
13490 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13491 					soisdisconnected(so);
13492 					tcp_timer_activate(tp, TT_2MSL,
13493 							   (tcp_fast_finwait2_recycle ?
13494 							    tcp_finwait2_timeout :
13495 							    TP_MAXIDLE(tp)));
13496 				}
13497 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
13498 				break;
13499 			default:
13500 				break;
13501 			}
13502 		}
13503 		if (rack->r_fast_output) {
13504 			/*
13505 			 * We re doing fast output.. can we expand that?
13506 			 */
13507 			rack_gain_for_fastoutput(rack, tp, so, acked_amount);
13508 		}
13509 #ifdef TCP_ACCOUNTING
13510 		rdstc = get_cyclecount();
13511 		if (rdstc > ts_val) {
13512 			counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13513 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13514 				tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13515 				tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13516 			}
13517 		}
13518 
13519 	} else if (win_up_req) {
13520 		rdstc = get_cyclecount();
13521 		if (rdstc > ts_val) {
13522 			counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val));
13523 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13524 				tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val);
13525 			}
13526 		}
13527 #endif
13528 	}
13529 	/* Now is there a next packet, if so we are done */
13530 	m_freem(m);
13531 	did_out = 0;
13532 	if (nxt_pkt) {
13533 #ifdef TCP_ACCOUNTING
13534 		sched_unpin();
13535 #endif
13536 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs);
13537 		return (0);
13538 	}
13539 	rack_handle_might_revert(tp, rack);
13540 	ctf_calc_rwin(so, tp);
13541 	if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
13542 	send_out_a_rst:
13543 		(void)tp->t_fb->tfb_tcp_output(tp);
13544 		did_out = 1;
13545 	}
13546 	rack_free_trim(rack);
13547 #ifdef TCP_ACCOUNTING
13548 	sched_unpin();
13549 #endif
13550 	rack_timer_audit(tp, rack, &so->so_snd);
13551 	rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs);
13552 	return (0);
13553 }
13554 
13555 
13556 static int
13557 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
13558     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
13559     int32_t nxt_pkt, struct timeval *tv)
13560 {
13561 #ifdef TCP_ACCOUNTING
13562 	uint64_t ts_val;
13563 #endif
13564 	int32_t thflags, retval, did_out = 0;
13565 	int32_t way_out = 0;
13566 	uint32_t cts;
13567 	uint32_t tiwin;
13568 	struct timespec ts;
13569 	struct tcpopt to;
13570 	struct tcp_rack *rack;
13571 	struct rack_sendmap *rsm;
13572 	int32_t prev_state = 0;
13573 #ifdef TCP_ACCOUNTING
13574 	int ack_val_set = 0xf;
13575 #endif
13576 	int nsegs;
13577 	uint32_t us_cts;
13578 	/*
13579 	 * tv passed from common code is from either M_TSTMP_LRO or
13580 	 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present.
13581 	 */
13582 	rack = (struct tcp_rack *)tp->t_fb_ptr;
13583 	cts = tcp_tv_to_usectick(tv);
13584 	if (m->m_flags & M_ACKCMP) {
13585 		return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv));
13586 	}
13587 	if (m->m_flags & M_ACKCMP) {
13588 		panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp);
13589 	}
13590 	nsegs = m->m_pkthdr.lro_nsegs;
13591 	counter_u64_add(rack_proc_non_comp_ack, 1);
13592 	thflags = th->th_flags;
13593 #ifdef TCP_ACCOUNTING
13594 	sched_pin();
13595 	if (thflags & TH_ACK)
13596 		ts_val = get_cyclecount();
13597 #endif
13598 	if ((m->m_flags & M_TSTMP) ||
13599 	    (m->m_flags & M_TSTMP_LRO)) {
13600 		mbuf_tstmp2timespec(m, &ts);
13601 		rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13602 		rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13603 	} else
13604 		rack->r_ctl.act_rcv_time = *tv;
13605 	kern_prefetch(rack, &prev_state);
13606 	prev_state = 0;
13607 	/*
13608 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
13609 	 * the scale is zero.
13610 	 */
13611 	tiwin = th->th_win << tp->snd_scale;
13612 	/*
13613 	 * Parse options on any incoming segment.
13614 	 */
13615 	memset(&to, 0, sizeof(to));
13616 	tcp_dooptions(&to, (u_char *)(th + 1),
13617 	    (th->th_off << 2) - sizeof(struct tcphdr),
13618 	    (thflags & TH_SYN) ? TO_SYN : 0);
13619 #ifdef TCP_ACCOUNTING
13620 	if (thflags & TH_ACK) {
13621 		/*
13622 		 * We have a tradeoff here. We can either do what we are
13623 		 * doing i.e. pinning to this CPU and then doing the accounting
13624 		 * <or> we could do a critical enter, setup the rdtsc and cpu
13625 		 * as in below, and then validate we are on the same CPU on
13626 		 * exit. I have choosen to not do the critical enter since
13627 		 * that often will gain you a context switch, and instead lock
13628 		 * us (line above this if) to the same CPU with sched_pin(). This
13629 		 * means we may be context switched out for a higher priority
13630 		 * interupt but we won't be moved to another CPU.
13631 		 *
13632 		 * If this occurs (which it won't very often since we most likely
13633 		 * are running this code in interupt context and only a higher
13634 		 * priority will bump us ... clock?) we will falsely add in
13635 		 * to the time the interupt processing time plus the ack processing
13636 		 * time. This is ok since its a rare event.
13637 		 */
13638 		ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin,
13639 						    ctf_fixed_maxseg(tp));
13640 	}
13641 #endif
13642 	NET_EPOCH_ASSERT();
13643 	INP_WLOCK_ASSERT(tp->t_inpcb);
13644 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
13645 	    __func__));
13646 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
13647 	    __func__));
13648 	if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13649 	    (tp->t_flags & TF_GPUTINPROG)) {
13650 		/*
13651 		 * We have a goodput in progress
13652 		 * and we have entered a late state.
13653 		 * Do we have enough data in the sb
13654 		 * to handle the GPUT request?
13655 		 */
13656 		uint32_t bytes;
13657 
13658 		bytes = tp->gput_ack - tp->gput_seq;
13659 		if (SEQ_GT(tp->gput_seq, tp->snd_una))
13660 			bytes += tp->gput_seq - tp->snd_una;
13661 		if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
13662 			/*
13663 			 * There are not enough bytes in the socket
13664 			 * buffer that have been sent to cover this
13665 			 * measurement. Cancel it.
13666 			 */
13667 			rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
13668 						   rack->r_ctl.rc_gp_srtt /*flex1*/,
13669 						   tp->gput_seq,
13670 						   0, 0, 18, __LINE__, NULL, 0);
13671 			tp->t_flags &= ~TF_GPUTINPROG;
13672 		}
13673 	}
13674 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
13675 		union tcp_log_stackspecific log;
13676 		struct timeval ltv;
13677 #ifdef NETFLIX_HTTP_LOGGING
13678 		struct http_sendfile_track *http_req;
13679 
13680 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
13681 			http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1));
13682 		} else {
13683 			http_req = tcp_http_find_req_for_seq(tp, th->th_ack);
13684 		}
13685 #endif
13686 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13687 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
13688 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
13689 		if (rack->rack_no_prr == 0)
13690 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
13691 		else
13692 			log.u_bbr.flex1 = 0;
13693 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
13694 		log.u_bbr.use_lt_bw <<= 1;
13695 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
13696 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
13697 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
13698 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
13699 		log.u_bbr.flex3 = m->m_flags;
13700 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
13701 		log.u_bbr.lost = thflags;
13702 		log.u_bbr.pacing_gain = 0x1;
13703 #ifdef TCP_ACCOUNTING
13704 		log.u_bbr.cwnd_gain = ack_val_set;
13705 #endif
13706 		log.u_bbr.flex7 = 2;
13707 		if (m->m_flags & M_TSTMP) {
13708 			/* Record the hardware timestamp if present */
13709 			mbuf_tstmp2timespec(m, &ts);
13710 			ltv.tv_sec = ts.tv_sec;
13711 			ltv.tv_usec = ts.tv_nsec / 1000;
13712 			log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
13713 		} else if (m->m_flags & M_TSTMP_LRO) {
13714 			/* Record the LRO the arrival timestamp */
13715 			mbuf_tstmp2timespec(m, &ts);
13716 			ltv.tv_sec = ts.tv_sec;
13717 			ltv.tv_usec = ts.tv_nsec / 1000;
13718 			log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
13719 		}
13720 		log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
13721 		/* Log the rcv time */
13722 		log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp;
13723 #ifdef NETFLIX_HTTP_LOGGING
13724 		log.u_bbr.applimited = tp->t_http_closed;
13725 		log.u_bbr.applimited <<= 8;
13726 		log.u_bbr.applimited |= tp->t_http_open;
13727 		log.u_bbr.applimited <<= 8;
13728 		log.u_bbr.applimited |= tp->t_http_req;
13729 		if (http_req) {
13730 			/* Copy out any client req info */
13731 			/* seconds */
13732 			log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
13733 			/* useconds */
13734 			log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
13735 			log.u_bbr.rttProp = http_req->timestamp;
13736 			log.u_bbr.cur_del_rate = http_req->start;
13737 			if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
13738 				log.u_bbr.flex8 |= 1;
13739 			} else {
13740 				log.u_bbr.flex8 |= 2;
13741 				log.u_bbr.bw_inuse = http_req->end;
13742 			}
13743 			log.u_bbr.flex6 = http_req->start_seq;
13744 			if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
13745 				log.u_bbr.flex8 |= 4;
13746 				log.u_bbr.epoch = http_req->end_seq;
13747 			}
13748 		}
13749 #endif
13750 		TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
13751 		    tlen, &log, true, &ltv);
13752 	}
13753 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
13754 		way_out = 4;
13755 		retval = 0;
13756 		m_freem(m);
13757 		goto done_with_input;
13758 	}
13759 	/*
13760 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
13761 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
13762 	 */
13763 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
13764 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
13765 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
13766 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
13767 #ifdef TCP_ACCOUNTING
13768 		sched_unpin();
13769 #endif
13770 		return (1);
13771 	}
13772 
13773 	/*
13774 	 * Parse options on any incoming segment.
13775 	 */
13776 	tcp_dooptions(&to, (u_char *)(th + 1),
13777 	    (th->th_off << 2) - sizeof(struct tcphdr),
13778 	    (thflags & TH_SYN) ? TO_SYN : 0);
13779 
13780 	/*
13781 	 * If timestamps were negotiated during SYN/ACK and a
13782 	 * segment without a timestamp is received, silently drop
13783 	 * the segment, unless it is a RST segment or missing timestamps are
13784 	 * tolerated.
13785 	 * See section 3.2 of RFC 7323.
13786 	 */
13787 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) &&
13788 	    ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) {
13789 		way_out = 5;
13790 		retval = 0;
13791 		m_freem(m);
13792 		goto done_with_input;
13793 	}
13794 
13795 	/*
13796 	 * Segment received on connection. Reset idle time and keep-alive
13797 	 * timer. XXX: This should be done after segment validation to
13798 	 * ignore broken/spoofed segs.
13799 	 */
13800 	if  (tp->t_idle_reduce &&
13801 	     (tp->snd_max == tp->snd_una) &&
13802 	     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
13803 		counter_u64_add(rack_input_idle_reduces, 1);
13804 		rack_cc_after_idle(rack, tp);
13805 	}
13806 	tp->t_rcvtime = ticks;
13807 #ifdef STATS
13808 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
13809 #endif
13810 	if (tiwin > rack->r_ctl.rc_high_rwnd)
13811 		rack->r_ctl.rc_high_rwnd = tiwin;
13812 	/*
13813 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
13814 	 * this to occur after we've validated the segment.
13815 	 */
13816 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
13817 		if (thflags & TH_CWR) {
13818 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
13819 			tp->t_flags |= TF_ACKNOW;
13820 		}
13821 		switch (iptos & IPTOS_ECN_MASK) {
13822 		case IPTOS_ECN_CE:
13823 			tp->t_flags2 |= TF2_ECN_SND_ECE;
13824 			KMOD_TCPSTAT_INC(tcps_ecn_ce);
13825 			break;
13826 		case IPTOS_ECN_ECT0:
13827 			KMOD_TCPSTAT_INC(tcps_ecn_ect0);
13828 			break;
13829 		case IPTOS_ECN_ECT1:
13830 			KMOD_TCPSTAT_INC(tcps_ecn_ect1);
13831 			break;
13832 		}
13833 
13834 		/* Process a packet differently from RFC3168. */
13835 		cc_ecnpkt_handler(tp, th, iptos);
13836 
13837 		/* Congestion experienced. */
13838 		if (thflags & TH_ECE) {
13839 			rack_cong_signal(tp, CC_ECN, th->th_ack);
13840 		}
13841 	}
13842 
13843 	/*
13844 	 * If echoed timestamp is later than the current time, fall back to
13845 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
13846 	 * were used when this connection was established.
13847 	 */
13848 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
13849 		to.to_tsecr -= tp->ts_offset;
13850 		if (TSTMP_GT(to.to_tsecr, cts))
13851 			to.to_tsecr = 0;
13852 	}
13853 
13854 	/*
13855 	 * If its the first time in we need to take care of options and
13856 	 * verify we can do SACK for rack!
13857 	 */
13858 	if (rack->r_state == 0) {
13859 		/* Should be init'd by rack_init() */
13860 		KASSERT(rack->rc_inp != NULL,
13861 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
13862 		if (rack->rc_inp == NULL) {
13863 			rack->rc_inp = tp->t_inpcb;
13864 		}
13865 
13866 		/*
13867 		 * Process options only when we get SYN/ACK back. The SYN
13868 		 * case for incoming connections is handled in tcp_syncache.
13869 		 * According to RFC1323 the window field in a SYN (i.e., a
13870 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
13871 		 * this is traditional behavior, may need to be cleaned up.
13872 		 */
13873 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
13874 			/* Handle parallel SYN for ECN */
13875 			if (!(thflags & TH_ACK) &&
13876 			    ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) &&
13877 			    ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) {
13878 				tp->t_flags2 |= TF2_ECN_PERMIT;
13879 				tp->t_flags2 |= TF2_ECN_SND_ECE;
13880 				TCPSTAT_INC(tcps_ecn_shs);
13881 			}
13882 			if ((to.to_flags & TOF_SCALE) &&
13883 			    (tp->t_flags & TF_REQ_SCALE)) {
13884 				tp->t_flags |= TF_RCVD_SCALE;
13885 				tp->snd_scale = to.to_wscale;
13886 			} else
13887 				tp->t_flags &= ~TF_REQ_SCALE;
13888 			/*
13889 			 * Initial send window.  It will be updated with the
13890 			 * next incoming segment to the scaled value.
13891 			 */
13892 			tp->snd_wnd = th->th_win;
13893 			rack_validate_fo_sendwin_up(tp, rack);
13894 			if ((to.to_flags & TOF_TS) &&
13895 			    (tp->t_flags & TF_REQ_TSTMP)) {
13896 				tp->t_flags |= TF_RCVD_TSTMP;
13897 				tp->ts_recent = to.to_tsval;
13898 				tp->ts_recent_age = cts;
13899 			} else
13900 				tp->t_flags &= ~TF_REQ_TSTMP;
13901 			if (to.to_flags & TOF_MSS) {
13902 				tcp_mss(tp, to.to_mss);
13903 			}
13904 			if ((tp->t_flags & TF_SACK_PERMIT) &&
13905 			    (to.to_flags & TOF_SACKPERM) == 0)
13906 				tp->t_flags &= ~TF_SACK_PERMIT;
13907 			if (IS_FASTOPEN(tp->t_flags)) {
13908 				if (to.to_flags & TOF_FASTOPEN) {
13909 					uint16_t mss;
13910 
13911 					if (to.to_flags & TOF_MSS)
13912 						mss = to.to_mss;
13913 					else
13914 						if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
13915 							mss = TCP6_MSS;
13916 						else
13917 							mss = TCP_MSS;
13918 					tcp_fastopen_update_cache(tp, mss,
13919 					    to.to_tfo_len, to.to_tfo_cookie);
13920 				} else
13921 					tcp_fastopen_disable_path(tp);
13922 			}
13923 		}
13924 		/*
13925 		 * At this point we are at the initial call. Here we decide
13926 		 * if we are doing RACK or not. We do this by seeing if
13927 		 * TF_SACK_PERMIT is set and the sack-not-required is clear.
13928 		 * The code now does do dup-ack counting so if you don't
13929 		 * switch back you won't get rack & TLP, but you will still
13930 		 * get this stack.
13931 		 */
13932 
13933 		if ((rack_sack_not_required == 0) &&
13934 		    ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
13935 			tcp_switch_back_to_default(tp);
13936 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
13937 			    tlen, iptos);
13938 #ifdef TCP_ACCOUNTING
13939 			sched_unpin();
13940 #endif
13941 			return (1);
13942 		}
13943 		tcp_set_hpts(tp->t_inpcb);
13944 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
13945 	}
13946 	if (thflags & TH_FIN)
13947 		tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
13948 	us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
13949 	if ((rack->rc_gp_dyn_mul) &&
13950 	    (rack->use_fixed_rate == 0) &&
13951 	    (rack->rc_always_pace)) {
13952 		/* Check in on probertt */
13953 		rack_check_probe_rtt(rack, us_cts);
13954 	}
13955 	rack_clear_rate_sample(rack);
13956 	if (rack->forced_ack) {
13957 		uint32_t us_rtt;
13958 
13959 		/*
13960 		 * A persist or keep-alive was forced out, update our
13961 		 * min rtt time. Note we do not worry about lost
13962 		 * retransmissions since KEEP-ALIVES and persists
13963 		 * are usually way long on times of sending (though
13964 		 * if we were really paranoid or worried we could
13965 		 * at least use timestamps if available to validate).
13966 		 */
13967 		rack->forced_ack = 0;
13968 		us_rtt = us_cts - rack->r_ctl.forced_ack_ts;
13969 		if (us_rtt == 0)
13970 			us_rtt = 1;
13971 		rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13972 		tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1);
13973 	}
13974 	/*
13975 	 * This is the one exception case where we set the rack state
13976 	 * always. All other times (timers etc) we must have a rack-state
13977 	 * set (so we assure we have done the checks above for SACK).
13978 	 */
13979 	rack->r_ctl.rc_rcvtime = cts;
13980 	if (rack->r_state != tp->t_state)
13981 		rack_set_state(tp, rack);
13982 	if (SEQ_GT(th->th_ack, tp->snd_una) &&
13983 	    (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
13984 		kern_prefetch(rsm, &prev_state);
13985 	prev_state = rack->r_state;
13986 	retval = (*rack->r_substate) (m, th, so,
13987 	    tp, &to, drop_hdrlen,
13988 	    tlen, tiwin, thflags, nxt_pkt, iptos);
13989 #ifdef INVARIANTS
13990 	if ((retval == 0) &&
13991 	    (tp->t_inpcb == NULL)) {
13992 		panic("retval:%d tp:%p t_inpcb:NULL state:%d",
13993 		    retval, tp, prev_state);
13994 	}
13995 #endif
13996 	if (retval == 0) {
13997 		/*
13998 		 * If retval is 1 the tcb is unlocked and most likely the tp
13999 		 * is gone.
14000 		 */
14001 		INP_WLOCK_ASSERT(tp->t_inpcb);
14002 		if ((rack->rc_gp_dyn_mul) &&
14003 		    (rack->rc_always_pace) &&
14004 		    (rack->use_fixed_rate == 0) &&
14005 		    rack->in_probe_rtt &&
14006 		    (rack->r_ctl.rc_time_probertt_starts == 0)) {
14007 			/*
14008 			 * If we are going for target, lets recheck before
14009 			 * we output.
14010 			 */
14011 			rack_check_probe_rtt(rack, us_cts);
14012 		}
14013 		if (rack->set_pacing_done_a_iw == 0) {
14014 			/* How much has been acked? */
14015 			if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
14016 				/* We have enough to set in the pacing segment size */
14017 				rack->set_pacing_done_a_iw = 1;
14018 				rack_set_pace_segments(tp, rack, __LINE__, NULL);
14019 			}
14020 		}
14021 		tcp_rack_xmit_timer_commit(rack, tp);
14022 #ifdef TCP_ACCOUNTING
14023 		/*
14024 		 * If we set the ack_val_se to what ack processing we are doing
14025 		 * we also want to track how many cycles we burned. Note
14026 		 * the bits after tcp_output we let be "free". This is because
14027 		 * we are also tracking the tcp_output times as well. Note the
14028 		 * use of 0xf here since we only have 11 counter (0 - 0xa) and
14029 		 * 0xf cannot be returned and is what we initialize it too to
14030 		 * indicate we are not doing the tabulations.
14031 		 */
14032 		if (ack_val_set != 0xf) {
14033 			uint64_t crtsc;
14034 
14035 			crtsc = get_cyclecount();
14036 			counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
14037 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
14038 				tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val);
14039 			}
14040 		}
14041 #endif
14042 		if (nxt_pkt == 0) {
14043 			if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
14044 do_output_now:
14045 				did_out = 1;
14046 				(void)tp->t_fb->tfb_tcp_output(tp);
14047 			}
14048 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
14049 			rack_free_trim(rack);
14050 		}
14051 		if ((nxt_pkt == 0) &&
14052 		    ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
14053 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
14054 		     (tp->t_flags & TF_DELACK) ||
14055 		     ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
14056 		      (tp->t_state <= TCPS_CLOSING)))) {
14057 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
14058 			if ((tp->snd_max == tp->snd_una) &&
14059 			    ((tp->t_flags & TF_DELACK) == 0) &&
14060 			    (rack->rc_inp->inp_in_hpts) &&
14061 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
14062 				/* keep alive not needed if we are hptsi output yet */
14063 				;
14064 			} else {
14065 				int late = 0;
14066 				if (rack->rc_inp->inp_in_hpts) {
14067 					if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
14068 						us_cts = tcp_get_usecs(NULL);
14069 						if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
14070 							rack->r_early = 1;
14071 							rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
14072 						} else
14073 							late = 1;
14074 						rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
14075 					}
14076 					tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
14077 				}
14078 				if (late && (did_out == 0)) {
14079 					/*
14080 					 * We are late in the sending
14081 					 * and we did not call the output
14082 					 * (this probably should not happen).
14083 					 */
14084 					goto do_output_now;
14085 				}
14086 				rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
14087 			}
14088 			way_out = 1;
14089 		} else if (nxt_pkt == 0) {
14090 			/* Do we have the correct timer running? */
14091 			rack_timer_audit(tp, rack, &so->so_snd);
14092 			way_out = 2;
14093 		}
14094 	done_with_input:
14095 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs));
14096 		if (did_out)
14097 			rack->r_wanted_output = 0;
14098 #ifdef INVARIANTS
14099 		if (tp->t_inpcb == NULL) {
14100 			panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
14101 			      did_out,
14102 			      retval, tp, prev_state);
14103 		}
14104 #endif
14105 #ifdef TCP_ACCOUNTING
14106 	} else {
14107 		/*
14108 		 * Track the time (see above).
14109 		 */
14110 		if (ack_val_set != 0xf) {
14111 			uint64_t crtsc;
14112 
14113 			crtsc = get_cyclecount();
14114 			counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
14115 			/*
14116 			 * Note we *DO NOT* increment the per-tcb counters since
14117 			 * in the else the TP may be gone!!
14118 			 */
14119 		}
14120 #endif
14121 	}
14122 #ifdef TCP_ACCOUNTING
14123 	sched_unpin();
14124 #endif
14125 	return (retval);
14126 }
14127 
14128 void
14129 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
14130     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
14131 {
14132 	struct timeval tv;
14133 
14134 	/* First lets see if we have old packets */
14135 	if (tp->t_in_pkt) {
14136 		if (ctf_do_queued_segments(so, tp, 1)) {
14137 			m_freem(m);
14138 			return;
14139 		}
14140 	}
14141 	if (m->m_flags & M_TSTMP_LRO) {
14142 		tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
14143 		tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
14144 	} else {
14145 		/* Should not be should we kassert instead? */
14146 		tcp_get_usecs(&tv);
14147 	}
14148 	if (rack_do_segment_nounlock(m, th, so, tp,
14149 				     drop_hdrlen, tlen, iptos, 0, &tv) == 0) {
14150 		INP_WUNLOCK(tp->t_inpcb);
14151 	}
14152 }
14153 
14154 struct rack_sendmap *
14155 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
14156 {
14157 	struct rack_sendmap *rsm = NULL;
14158 	int32_t idx;
14159 	uint32_t srtt = 0, thresh = 0, ts_low = 0;
14160 
14161 	/* Return the next guy to be re-transmitted */
14162 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
14163 		return (NULL);
14164 	}
14165 	if (tp->t_flags & TF_SENTFIN) {
14166 		/* retran the end FIN? */
14167 		return (NULL);
14168 	}
14169 	/* ok lets look at this one */
14170 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
14171 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
14172 		goto check_it;
14173 	}
14174 	rsm = rack_find_lowest_rsm(rack);
14175 	if (rsm == NULL) {
14176 		return (NULL);
14177 	}
14178 check_it:
14179 	if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) &&
14180 	    (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
14181 		/*
14182 		 * No sack so we automatically do the 3 strikes and
14183 		 * retransmit (no rack timer would be started).
14184 		 */
14185 
14186 		return (rsm);
14187 	}
14188 	if (rsm->r_flags & RACK_ACKED) {
14189 		return (NULL);
14190 	}
14191 	if (((rsm->r_flags & RACK_SACK_PASSED) == 0) &&
14192 	    (rsm->r_dupack < DUP_ACK_THRESHOLD)) {
14193 		/* Its not yet ready */
14194 		return (NULL);
14195 	}
14196 	srtt = rack_grab_rtt(tp, rack);
14197 	idx = rsm->r_rtr_cnt - 1;
14198 	ts_low = (uint32_t)rsm->r_tim_lastsent[idx];
14199 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
14200 	if ((tsused == ts_low) ||
14201 	    (TSTMP_LT(tsused, ts_low))) {
14202 		/* No time since sending */
14203 		return (NULL);
14204 	}
14205 	if ((tsused - ts_low) < thresh) {
14206 		/* It has not been long enough yet */
14207 		return (NULL);
14208 	}
14209 	if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
14210 	    ((rsm->r_flags & RACK_SACK_PASSED) &&
14211 	     (rack->sack_attack_disable == 0))) {
14212 		/*
14213 		 * We have passed the dup-ack threshold <or>
14214 		 * a SACK has indicated this is missing.
14215 		 * Note that if you are a declared attacker
14216 		 * it is only the dup-ack threshold that
14217 		 * will cause retransmits.
14218 		 */
14219 		/* log retransmit reason */
14220 		rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
14221 		rack->r_fast_output = 0;
14222 		return (rsm);
14223 	}
14224 	return (NULL);
14225 }
14226 
14227 static void
14228 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
14229 			   uint64_t bw_est, uint64_t bw, uint64_t len_time, int method,
14230 			   int line, struct rack_sendmap *rsm, uint8_t quality)
14231 {
14232 	if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
14233 		union tcp_log_stackspecific log;
14234 		struct timeval tv;
14235 
14236 		memset(&log, 0, sizeof(log));
14237 		log.u_bbr.flex1 = slot;
14238 		log.u_bbr.flex2 = len;
14239 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs;
14240 		log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs;
14241 		log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss;
14242 		log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca;
14243 		log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data;
14244 		log.u_bbr.use_lt_bw <<= 1;
14245 		log.u_bbr.use_lt_bw |= rack->r_late;
14246 		log.u_bbr.use_lt_bw <<= 1;
14247 		log.u_bbr.use_lt_bw |= rack->r_early;
14248 		log.u_bbr.use_lt_bw <<= 1;
14249 		log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
14250 		log.u_bbr.use_lt_bw <<= 1;
14251 		log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
14252 		log.u_bbr.use_lt_bw <<= 1;
14253 		log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
14254 		log.u_bbr.use_lt_bw <<= 1;
14255 		log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
14256 		log.u_bbr.use_lt_bw <<= 1;
14257 		log.u_bbr.use_lt_bw |= rack->gp_ready;
14258 		log.u_bbr.pkt_epoch = line;
14259 		log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed;
14260 		log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early;
14261 		log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec;
14262 		log.u_bbr.bw_inuse = bw_est;
14263 		log.u_bbr.delRate = bw;
14264 		if (rack->r_ctl.gp_bw == 0)
14265 			log.u_bbr.cur_del_rate = 0;
14266 		else
14267 			log.u_bbr.cur_del_rate = rack_get_bw(rack);
14268 		log.u_bbr.rttProp = len_time;
14269 		log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt;
14270 		log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit;
14271 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
14272 		if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) {
14273 			/* We are in slow start */
14274 			log.u_bbr.flex7 = 1;
14275 		} else {
14276 			/* we are on congestion avoidance */
14277 			log.u_bbr.flex7 = 0;
14278 		}
14279 		log.u_bbr.flex8 = method;
14280 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14281 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14282 		log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec;
14283 		log.u_bbr.cwnd_gain <<= 1;
14284 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
14285 		log.u_bbr.cwnd_gain <<= 1;
14286 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
14287 		log.u_bbr.bbr_substate = quality;
14288 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
14289 		    &rack->rc_inp->inp_socket->so_rcv,
14290 		    &rack->rc_inp->inp_socket->so_snd,
14291 		    BBR_LOG_HPTSI_CALC, 0,
14292 		    0, &log, false, &tv);
14293 	}
14294 }
14295 
14296 static uint32_t
14297 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss)
14298 {
14299 	uint32_t new_tso, user_max;
14300 
14301 	user_max = rack->rc_user_set_max_segs * mss;
14302 	if (rack->rc_force_max_seg) {
14303 		return (user_max);
14304 	}
14305 	if (rack->use_fixed_rate &&
14306 	    ((rack->r_ctl.crte == NULL) ||
14307 	     (bw != rack->r_ctl.crte->rate))) {
14308 		/* Use the user mss since we are not exactly matched */
14309 		return (user_max);
14310 	}
14311 	new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL);
14312 	if (new_tso > user_max)
14313 		new_tso = user_max;
14314 	return (new_tso);
14315 }
14316 
14317 static int32_t
14318 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced)
14319 {
14320 	uint64_t lentim, fill_bw;
14321 
14322 	/* Lets first see if we are full, if so continue with normal rate */
14323 	rack->r_via_fill_cw = 0;
14324 	if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use)
14325 		return (slot);
14326 	if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd)
14327 		return (slot);
14328 	if (rack->r_ctl.rc_last_us_rtt == 0)
14329 		return (slot);
14330 	if (rack->rc_pace_fill_if_rttin_range &&
14331 	    (rack->r_ctl.rc_last_us_rtt >=
14332 	     (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) {
14333 		/* The rtt is huge, N * smallest, lets not fill */
14334 		return (slot);
14335 	}
14336 	/*
14337 	 * first lets calculate the b/w based on the last us-rtt
14338 	 * and the sndwnd.
14339 	 */
14340 	fill_bw = rack->r_ctl.cwnd_to_use;
14341 	/* Take the rwnd if its smaller */
14342 	if (fill_bw > rack->rc_tp->snd_wnd)
14343 		fill_bw = rack->rc_tp->snd_wnd;
14344 	if (rack->r_fill_less_agg) {
14345 		/*
14346 		 * Now take away the inflight (this will reduce our
14347 		 * aggressiveness and yeah, if we get that much out in 1RTT
14348 		 * we will have had acks come back and still be behind).
14349 		 */
14350 		fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14351 	}
14352 	/* Now lets make it into a b/w */
14353 	fill_bw *= (uint64_t)HPTS_USEC_IN_SEC;
14354 	fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt;
14355 	/* We are below the min b/w */
14356 	if (non_paced)
14357 		*rate_wanted = fill_bw;
14358 	if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted))
14359 		return (slot);
14360 	if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap))
14361 		fill_bw = rack->r_ctl.bw_rate_cap;
14362 	rack->r_via_fill_cw = 1;
14363 	if (rack->r_rack_hw_rate_caps &&
14364 	    (rack->r_ctl.crte != NULL)) {
14365 		uint64_t high_rate;
14366 
14367 		high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
14368 		if (fill_bw > high_rate) {
14369 			/* We are capping bw at the highest rate table entry */
14370 			if (*rate_wanted > high_rate) {
14371 				/* The original rate was also capped */
14372 				rack->r_via_fill_cw = 0;
14373 			}
14374 			rack_log_hdwr_pacing(rack,
14375 					     fill_bw, high_rate, __LINE__,
14376 					     0, 3);
14377 			fill_bw = high_rate;
14378 			if (capped)
14379 				*capped = 1;
14380 		}
14381 	} else if ((rack->r_ctl.crte == NULL) &&
14382 		   (rack->rack_hdrw_pacing == 0) &&
14383 		   (rack->rack_hdw_pace_ena) &&
14384 		   rack->r_rack_hw_rate_caps &&
14385 		   (rack->rack_attempt_hdwr_pace == 0) &&
14386 		   (rack->rc_inp->inp_route.ro_nh != NULL) &&
14387 		   (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14388 		/*
14389 		 * Ok we may have a first attempt that is greater than our top rate
14390 		 * lets check.
14391 		 */
14392 		uint64_t high_rate;
14393 
14394 		high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
14395 		if (high_rate) {
14396 			if (fill_bw > high_rate) {
14397 				fill_bw = high_rate;
14398 				if (capped)
14399 					*capped = 1;
14400 			}
14401 		}
14402 	}
14403 	/*
14404 	 * Ok fill_bw holds our mythical b/w to fill the cwnd
14405 	 * in a rtt, what does that time wise equate too?
14406 	 */
14407 	lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC;
14408 	lentim /= fill_bw;
14409 	*rate_wanted = fill_bw;
14410 	if (non_paced || (lentim < slot)) {
14411 		rack_log_pacing_delay_calc(rack, len, slot, fill_bw,
14412 					   0, lentim, 12, __LINE__, NULL, 0);
14413 		return ((int32_t)lentim);
14414 	} else
14415 		return (slot);
14416 }
14417 
14418 static int32_t
14419 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz)
14420 {
14421 	int32_t slot = 0;
14422 	int can_start_hw_pacing = 1;
14423 	int err;
14424 
14425 	if (rack->rc_always_pace == 0) {
14426 		/*
14427 		 * We use the most optimistic possible cwnd/srtt for
14428 		 * sending calculations. This will make our
14429 		 * calculation anticipate getting more through
14430 		 * quicker then possible. But thats ok we don't want
14431 		 * the peer to have a gap in data sending.
14432 		 */
14433 		uint32_t srtt, cwnd, tr_perms = 0;
14434 		int32_t reduce = 0;
14435 
14436 	old_method:
14437 		/*
14438 		 * We keep no precise pacing with the old method
14439 		 * instead we use the pacer to mitigate bursts.
14440 		 */
14441 		if (rack->r_ctl.rc_rack_min_rtt)
14442 			srtt = rack->r_ctl.rc_rack_min_rtt;
14443 		else
14444 			srtt = max(tp->t_srtt, 1);
14445 		if (rack->r_ctl.rc_rack_largest_cwnd)
14446 			cwnd = rack->r_ctl.rc_rack_largest_cwnd;
14447 		else
14448 			cwnd = rack->r_ctl.cwnd_to_use;
14449 		/* Inflate cwnd by 1000 so srtt of usecs is in ms */
14450 		tr_perms = (cwnd * 1000) / srtt;
14451 		if (tr_perms == 0) {
14452 			tr_perms = ctf_fixed_maxseg(tp);
14453 		}
14454 		/*
14455 		 * Calculate how long this will take to drain, if
14456 		 * the calculation comes out to zero, thats ok we
14457 		 * will use send_a_lot to possibly spin around for
14458 		 * more increasing tot_len_this_send to the point
14459 		 * that its going to require a pace, or we hit the
14460 		 * cwnd. Which in that case we are just waiting for
14461 		 * a ACK.
14462 		 */
14463 		slot = len / tr_perms;
14464 		/* Now do we reduce the time so we don't run dry? */
14465 		if (slot && rack_slot_reduction) {
14466 			reduce = (slot / rack_slot_reduction);
14467 			if (reduce < slot) {
14468 				slot -= reduce;
14469 			} else
14470 				slot = 0;
14471 		}
14472 		slot *= HPTS_USEC_IN_MSEC;
14473 		if (rack->rc_pace_to_cwnd) {
14474 			uint64_t rate_wanted = 0;
14475 
14476 			slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1);
14477 			rack->rc_ack_can_sendout_data = 1;
14478 			rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0);
14479 		} else
14480 			rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0);
14481 	} else {
14482 		uint64_t bw_est, res, lentim, rate_wanted;
14483 		uint32_t orig_val, srtt, segs, oh;
14484 		int capped = 0;
14485 		int prev_fill;
14486 
14487 		if ((rack->r_rr_config == 1) && rsm) {
14488 			return (rack->r_ctl.rc_min_to);
14489 		}
14490 		if (rack->use_fixed_rate) {
14491 			rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack);
14492 		} else if ((rack->r_ctl.init_rate == 0) &&
14493 #ifdef NETFLIX_PEAKRATE
14494 			   (rack->rc_tp->t_maxpeakrate == 0) &&
14495 #endif
14496 			   (rack->r_ctl.gp_bw == 0)) {
14497 			/* no way to yet do an estimate */
14498 			bw_est = rate_wanted = 0;
14499 		} else {
14500 			bw_est = rack_get_bw(rack);
14501 			rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped);
14502 		}
14503 		if ((bw_est == 0) || (rate_wanted == 0) ||
14504 		    ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) {
14505 			/*
14506 			 * No way yet to make a b/w estimate or
14507 			 * our raise is set incorrectly.
14508 			 */
14509 			goto old_method;
14510 		}
14511 		/* We need to account for all the overheads */
14512 		segs = (len + segsiz - 1) / segsiz;
14513 		/*
14514 		 * We need the diff between 1514 bytes (e-mtu with e-hdr)
14515 		 * and how much data we put in each packet. Yes this
14516 		 * means we may be off if we are larger than 1500 bytes
14517 		 * or smaller. But this just makes us more conservative.
14518 		 */
14519 		if (rack_hw_rate_min &&
14520 		    (bw_est < rack_hw_rate_min))
14521 			can_start_hw_pacing = 0;
14522 		if (ETHERNET_SEGMENT_SIZE > segsiz)
14523 			oh = ETHERNET_SEGMENT_SIZE - segsiz;
14524 		else
14525 			oh = 0;
14526 		segs *= oh;
14527 		lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC;
14528 		res = lentim / rate_wanted;
14529 		slot = (uint32_t)res;
14530 		orig_val = rack->r_ctl.rc_pace_max_segs;
14531 		if (rack->r_ctl.crte == NULL) {
14532 			/*
14533 			 * Only do this if we are not hardware pacing
14534 			 * since if we are doing hw-pacing below we will
14535 			 * set make a call after setting up or changing
14536 			 * the rate.
14537 			 */
14538 			rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
14539 		} else if (rack->rc_inp->inp_snd_tag == NULL) {
14540 			/*
14541 			 * We lost our rate somehow, this can happen
14542 			 * if the interface changed underneath us.
14543 			 */
14544 			tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14545 			rack->r_ctl.crte = NULL;
14546 			/* Lets re-allow attempting to setup pacing */
14547 			rack->rack_hdrw_pacing = 0;
14548 			rack->rack_attempt_hdwr_pace = 0;
14549 			rack_log_hdwr_pacing(rack,
14550 					     rate_wanted, bw_est, __LINE__,
14551 					     0, 6);
14552 		}
14553 		/* Did we change the TSO size, if so log it */
14554 		if (rack->r_ctl.rc_pace_max_segs != orig_val)
14555 			rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL, 0);
14556 		prev_fill = rack->r_via_fill_cw;
14557 		if ((rack->rc_pace_to_cwnd) &&
14558 		    (capped == 0) &&
14559 		    (rack->use_fixed_rate == 0) &&
14560 		    (rack->in_probe_rtt == 0) &&
14561 		    (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) {
14562 			/*
14563 			 * We want to pace at our rate *or* faster to
14564 			 * fill the cwnd to the max if its not full.
14565 			 */
14566 			slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0);
14567 		}
14568 		if ((rack->rc_inp->inp_route.ro_nh != NULL) &&
14569 		    (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14570 			if ((rack->rack_hdw_pace_ena) &&
14571 			    (can_start_hw_pacing > 0) &&
14572 			    (rack->rack_hdrw_pacing == 0) &&
14573 			    (rack->rack_attempt_hdwr_pace == 0)) {
14574 				/*
14575 				 * Lets attempt to turn on hardware pacing
14576 				 * if we can.
14577 				 */
14578 				rack->rack_attempt_hdwr_pace = 1;
14579 				rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp,
14580 								       rack->rc_inp->inp_route.ro_nh->nh_ifp,
14581 								       rate_wanted,
14582 								       RS_PACING_GEQ,
14583 								       &err, &rack->r_ctl.crte_prev_rate);
14584 				if (rack->r_ctl.crte) {
14585 					rack->rack_hdrw_pacing = 1;
14586 					rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz,
14587 												 0, rack->r_ctl.crte,
14588 												 NULL);
14589 					rack_log_hdwr_pacing(rack,
14590 							     rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14591 							     err, 0);
14592 					rack->r_ctl.last_hw_bw_req = rate_wanted;
14593 				} else {
14594 					counter_u64_add(rack_hw_pace_init_fail, 1);
14595 				}
14596 			} else if (rack->rack_hdrw_pacing &&
14597 				   (rack->r_ctl.last_hw_bw_req != rate_wanted)) {
14598 				/* Do we need to adjust our rate? */
14599 				const struct tcp_hwrate_limit_table *nrte;
14600 
14601 				if (rack->r_up_only &&
14602 				    (rate_wanted < rack->r_ctl.crte->rate)) {
14603 					/**
14604 					 * We have four possible states here
14605 					 * having to do with the previous time
14606 					 * and this time.
14607 					 *   previous  |  this-time
14608 					 * A)     0      |     0   -- fill_cw not in the picture
14609 					 * B)     1      |     0   -- we were doing a fill-cw but now are not
14610 					 * C)     1      |     1   -- all rates from fill_cw
14611 					 * D)     0      |     1   -- we were doing non-fill and now we are filling
14612 					 *
14613 					 * For case A, C and D we don't allow a drop. But for
14614 					 * case B where we now our on our steady rate we do
14615 					 * allow a drop.
14616 					 *
14617 					 */
14618 					if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0)))
14619 						goto done_w_hdwr;
14620 				}
14621 				if ((rate_wanted > rack->r_ctl.crte->rate) ||
14622 				    (rate_wanted <= rack->r_ctl.crte_prev_rate)) {
14623 					if (rack_hw_rate_to_low &&
14624 					    (bw_est < rack_hw_rate_to_low)) {
14625 						/*
14626 						 * The pacing rate is too low for hardware, but
14627 						 * do allow hardware pacing to be restarted.
14628 						 */
14629 						rack_log_hdwr_pacing(rack,
14630 							     bw_est, rack->r_ctl.crte->rate, __LINE__,
14631 							     0, 5);
14632 						tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14633 						rack->r_ctl.crte = NULL;
14634 						rack->rack_attempt_hdwr_pace = 0;
14635 						rack->rack_hdrw_pacing = 0;
14636 						rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14637 						goto done_w_hdwr;
14638 					}
14639 					nrte = tcp_chg_pacing_rate(rack->r_ctl.crte,
14640 								   rack->rc_tp,
14641 								   rack->rc_inp->inp_route.ro_nh->nh_ifp,
14642 								   rate_wanted,
14643 								   RS_PACING_GEQ,
14644 								   &err, &rack->r_ctl.crte_prev_rate);
14645 					if (nrte == NULL) {
14646 						/* Lost the rate */
14647 						rack->rack_hdrw_pacing = 0;
14648 						rack->r_ctl.crte = NULL;
14649 						rack_log_hdwr_pacing(rack,
14650 								     rate_wanted, 0, __LINE__,
14651 								     err, 1);
14652 						rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14653 						counter_u64_add(rack_hw_pace_lost, 1);
14654 					} else if (nrte != rack->r_ctl.crte) {
14655 						rack->r_ctl.crte = nrte;
14656 						rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted,
14657 													 segsiz, 0,
14658 													 rack->r_ctl.crte,
14659 													 NULL);
14660 						rack_log_hdwr_pacing(rack,
14661 								     rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14662 								     err, 2);
14663 						rack->r_ctl.last_hw_bw_req = rate_wanted;
14664 					}
14665 				} else {
14666 					/* We just need to adjust the segment size */
14667 					rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14668 					rack_log_hdwr_pacing(rack,
14669 							     rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14670 							     0, 4);
14671 					rack->r_ctl.last_hw_bw_req = rate_wanted;
14672 				}
14673 			}
14674 		}
14675 		if ((rack->r_ctl.crte != NULL) &&
14676 		    (rack->r_ctl.crte->rate == rate_wanted)) {
14677 			/*
14678 			 * We need to add a extra if the rates
14679 			 * are exactly matched. The idea is
14680 			 * we want the software to make sure the
14681 			 * queue is empty before adding more, this
14682 			 * gives us N MSS extra pace times where
14683 			 * N is our sysctl
14684 			 */
14685 			slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots);
14686 		}
14687 done_w_hdwr:
14688 		if (rack_limit_time_with_srtt &&
14689 		    (rack->use_fixed_rate == 0) &&
14690 #ifdef NETFLIX_PEAKRATE
14691 		    (rack->rc_tp->t_maxpeakrate == 0) &&
14692 #endif
14693 		    (rack->rack_hdrw_pacing == 0)) {
14694 			/*
14695 			 * Sanity check, we do not allow the pacing delay
14696 			 * to be longer than the SRTT of the path. If it is
14697 			 * a slow path, then adding a packet should increase
14698 			 * the RTT and compensate for this i.e. the srtt will
14699 			 * be greater so the allowed pacing time will be greater.
14700 			 *
14701 			 * Note this restriction is not for where a peak rate
14702 			 * is set, we are doing fixed pacing or hardware pacing.
14703 			 */
14704 			if (rack->rc_tp->t_srtt)
14705 				srtt = rack->rc_tp->t_srtt;
14706 			else
14707 				srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC;	/* its in ms convert */
14708 			if (srtt < slot) {
14709 				rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0);
14710 				slot = srtt;
14711 			}
14712 		}
14713 		rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0);
14714 	}
14715 	if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) {
14716 		/*
14717 		 * If this rate is seeing enobufs when it
14718 		 * goes to send then either the nic is out
14719 		 * of gas or we are mis-estimating the time
14720 		 * somehow and not letting the queue empty
14721 		 * completely. Lets add to the pacing time.
14722 		 */
14723 		int hw_boost_delay;
14724 
14725 		hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult;
14726 		if (hw_boost_delay > rack_enobuf_hw_max)
14727 			hw_boost_delay = rack_enobuf_hw_max;
14728 		else if (hw_boost_delay < rack_enobuf_hw_min)
14729 			hw_boost_delay = rack_enobuf_hw_min;
14730 		slot += hw_boost_delay;
14731 	}
14732 	if (slot)
14733 		counter_u64_add(rack_calc_nonzero, 1);
14734 	else
14735 		counter_u64_add(rack_calc_zero, 1);
14736 	return (slot);
14737 }
14738 
14739 static void
14740 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack,
14741     tcp_seq startseq, uint32_t sb_offset)
14742 {
14743 	struct rack_sendmap *my_rsm = NULL;
14744 	struct rack_sendmap fe;
14745 
14746 	if (tp->t_state < TCPS_ESTABLISHED) {
14747 		/*
14748 		 * We don't start any measurements if we are
14749 		 * not at least established.
14750 		 */
14751 		return;
14752 	}
14753 	if (tp->t_state >= TCPS_FIN_WAIT_1) {
14754 		/*
14755 		 * We will get no more data into the SB
14756 		 * this means we need to have the data available
14757 		 * before we start a measurement.
14758 		 */
14759 
14760 		if (sbavail(&tp->t_inpcb->inp_socket->so_snd) <
14761 		    max(rc_init_window(rack),
14762 			(MIN_GP_WIN * ctf_fixed_maxseg(tp)))) {
14763 			/* Nope not enough data */
14764 			return;
14765 		}
14766 	}
14767 	tp->t_flags |= TF_GPUTINPROG;
14768 	rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
14769 	rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
14770 	tp->gput_seq = startseq;
14771 	rack->app_limited_needs_set = 0;
14772 	if (rack->in_probe_rtt)
14773 		rack->measure_saw_probe_rtt = 1;
14774 	else if ((rack->measure_saw_probe_rtt) &&
14775 		 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
14776 		rack->measure_saw_probe_rtt = 0;
14777 	if (rack->rc_gp_filled)
14778 		tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
14779 	else {
14780 		/* Special case initial measurement */
14781 		struct timeval tv;
14782 
14783 		tp->gput_ts = tcp_get_usecs(&tv);
14784 		rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
14785 	}
14786 	/*
14787 	 * We take a guess out into the future,
14788 	 * if we have no measurement and no
14789 	 * initial rate, we measure the first
14790 	 * initial-windows worth of data to
14791 	 * speed up getting some GP measurement and
14792 	 * thus start pacing.
14793 	 */
14794 	if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) {
14795 		rack->app_limited_needs_set = 1;
14796 		tp->gput_ack = startseq + max(rc_init_window(rack),
14797 					      (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
14798 		rack_log_pacing_delay_calc(rack,
14799 					   tp->gput_seq,
14800 					   tp->gput_ack,
14801 					   0,
14802 					   tp->gput_ts,
14803 					   rack->r_ctl.rc_app_limited_cnt,
14804 					   9,
14805 					   __LINE__, NULL, 0);
14806 		return;
14807 	}
14808 	if (sb_offset) {
14809 		/*
14810 		 * We are out somewhere in the sb
14811 		 * can we use the already outstanding data?
14812 		 */
14813 		if (rack->r_ctl.rc_app_limited_cnt == 0) {
14814 			/*
14815 			 * Yes first one is good and in this case
14816 			 * the tp->gput_ts is correctly set based on
14817 			 * the last ack that arrived (no need to
14818 			 * set things up when an ack comes in).
14819 			 */
14820 			my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
14821 			if ((my_rsm == NULL) ||
14822 			    (my_rsm->r_rtr_cnt != 1)) {
14823 				/* retransmission? */
14824 				goto use_latest;
14825 			}
14826 		} else {
14827 			if (rack->r_ctl.rc_first_appl == NULL) {
14828 				/*
14829 				 * If rc_first_appl is NULL
14830 				 * then the cnt should be 0.
14831 				 * This is probably an error, maybe
14832 				 * a KASSERT would be approprate.
14833 				 */
14834 				goto use_latest;
14835 			}
14836 			/*
14837 			 * If we have a marker pointer to the last one that is
14838 			 * app limited we can use that, but we need to set
14839 			 * things up so that when it gets ack'ed we record
14840 			 * the ack time (if its not already acked).
14841 			 */
14842 			rack->app_limited_needs_set = 1;
14843 			/*
14844 			 * We want to get to the rsm that is either
14845 			 * next with space i.e. over 1 MSS or the one
14846 			 * after that (after the app-limited).
14847 			 */
14848 			my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
14849 					 rack->r_ctl.rc_first_appl);
14850 			if (my_rsm) {
14851 				if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp))
14852 					/* Have to use the next one */
14853 					my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
14854 							 my_rsm);
14855 				else {
14856 					/* Use after the first MSS of it is acked */
14857 					tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp);
14858 					goto start_set;
14859 				}
14860 			}
14861 			if ((my_rsm == NULL) ||
14862 			    (my_rsm->r_rtr_cnt != 1)) {
14863 				/*
14864 				 * Either its a retransmit or
14865 				 * the last is the app-limited one.
14866 				 */
14867 				goto use_latest;
14868 			}
14869 		}
14870 		tp->gput_seq = my_rsm->r_start;
14871 start_set:
14872 		if (my_rsm->r_flags & RACK_ACKED) {
14873 			/*
14874 			 * This one has been acked use the arrival ack time
14875 			 */
14876 			tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
14877 			rack->app_limited_needs_set = 0;
14878 		}
14879 		rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
14880 		tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
14881 		rack_log_pacing_delay_calc(rack,
14882 					   tp->gput_seq,
14883 					   tp->gput_ack,
14884 					   (uint64_t)my_rsm,
14885 					   tp->gput_ts,
14886 					   rack->r_ctl.rc_app_limited_cnt,
14887 					   9,
14888 					   __LINE__, NULL, 0);
14889 		return;
14890 	}
14891 
14892 use_latest:
14893 	/*
14894 	 * We don't know how long we may have been
14895 	 * idle or if this is the first-send. Lets
14896 	 * setup the flag so we will trim off
14897 	 * the first ack'd data so we get a true
14898 	 * measurement.
14899 	 */
14900 	rack->app_limited_needs_set = 1;
14901 	tp->gput_ack = startseq + rack_get_measure_window(tp, rack);
14902 	/* Find this guy so we can pull the send time */
14903 	fe.r_start = startseq;
14904 	my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
14905 	if (my_rsm) {
14906 		rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
14907 		if (my_rsm->r_flags & RACK_ACKED) {
14908 			/*
14909 			 * Unlikely since its probably what was
14910 			 * just transmitted (but I am paranoid).
14911 			 */
14912 			tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
14913 			rack->app_limited_needs_set = 0;
14914 		}
14915 		if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) {
14916 			/* This also is unlikely */
14917 			tp->gput_seq = my_rsm->r_start;
14918 		}
14919 	} else {
14920 		/*
14921 		 * TSNH unless we have some send-map limit,
14922 		 * and even at that it should not be hitting
14923 		 * that limit (we should have stopped sending).
14924 		 */
14925 		struct timeval tv;
14926 
14927 		microuptime(&tv);
14928 		rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
14929 	}
14930 	rack_log_pacing_delay_calc(rack,
14931 				   tp->gput_seq,
14932 				   tp->gput_ack,
14933 				   (uint64_t)my_rsm,
14934 				   tp->gput_ts,
14935 				   rack->r_ctl.rc_app_limited_cnt,
14936 				   9, __LINE__, NULL, 0);
14937 }
14938 
14939 static inline uint32_t
14940 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack,  uint32_t cwnd_to_use,
14941     uint32_t avail, int32_t sb_offset)
14942 {
14943 	uint32_t len;
14944 	uint32_t sendwin;
14945 
14946 	if (tp->snd_wnd > cwnd_to_use)
14947 		sendwin = cwnd_to_use;
14948 	else
14949 		sendwin = tp->snd_wnd;
14950 	if (ctf_outstanding(tp) >= tp->snd_wnd) {
14951 		/* We never want to go over our peers rcv-window */
14952 		len = 0;
14953 	} else {
14954 		uint32_t flight;
14955 
14956 		flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
14957 		if (flight >= sendwin) {
14958 			/*
14959 			 * We have in flight what we are allowed by cwnd (if
14960 			 * it was rwnd blocking it would have hit above out
14961 			 * >= tp->snd_wnd).
14962 			 */
14963 			return (0);
14964 		}
14965 		len = sendwin - flight;
14966 		if ((len + ctf_outstanding(tp)) > tp->snd_wnd) {
14967 			/* We would send too much (beyond the rwnd) */
14968 			len = tp->snd_wnd - ctf_outstanding(tp);
14969 		}
14970 		if ((len + sb_offset) > avail) {
14971 			/*
14972 			 * We don't have that much in the SB, how much is
14973 			 * there?
14974 			 */
14975 			len = avail - sb_offset;
14976 		}
14977 	}
14978 	return (len);
14979 }
14980 
14981 static void
14982 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags,
14983 	     unsigned ipoptlen, int32_t orig_len, int32_t len, int error,
14984 	     int rsm_is_null, int optlen, int line, uint16_t mode)
14985 {
14986 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
14987 		union tcp_log_stackspecific log;
14988 		struct timeval tv;
14989 
14990 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14991 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
14992 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
14993 		log.u_bbr.flex1 = error;
14994 		log.u_bbr.flex2 = flags;
14995 		log.u_bbr.flex3 = rsm_is_null;
14996 		log.u_bbr.flex4 = ipoptlen;
14997 		log.u_bbr.flex5 = tp->rcv_numsacks;
14998 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
14999 		log.u_bbr.flex7 = optlen;
15000 		log.u_bbr.flex8 = rack->r_fsb_inited;
15001 		log.u_bbr.applimited = rack->r_fast_output;
15002 		log.u_bbr.bw_inuse = rack_get_bw(rack);
15003 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15004 		log.u_bbr.cwnd_gain = mode;
15005 		log.u_bbr.pkts_out = orig_len;
15006 		log.u_bbr.lt_epoch = len;
15007 		log.u_bbr.delivered = line;
15008 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
15009 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15010 		tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0,
15011 			       len, &log, false, NULL, NULL, 0, &tv);
15012 	}
15013 }
15014 
15015 
15016 static struct mbuf *
15017 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen,
15018 		   struct rack_fast_send_blk *fsb,
15019 		   int32_t seglimit, int32_t segsize, int hw_tls)
15020 {
15021 #ifdef KERN_TLS
15022 	struct ktls_session *tls, *ntls;
15023 	struct mbuf *start;
15024 #endif
15025 	struct mbuf *m, *n, **np, *smb;
15026 	struct mbuf *top;
15027 	int32_t off, soff;
15028 	int32_t len = *plen;
15029 	int32_t fragsize;
15030 	int32_t len_cp = 0;
15031 	uint32_t mlen, frags;
15032 
15033 	soff = off = the_off;
15034 	smb = m = the_m;
15035 	np = &top;
15036 	top = NULL;
15037 #ifdef KERN_TLS
15038 	if (hw_tls && (m->m_flags & M_EXTPG))
15039 		tls = m->m_epg_tls;
15040 	else
15041 		tls = NULL;
15042 	start = m;
15043 #endif
15044 	while (len > 0) {
15045 		if (m == NULL) {
15046 			*plen = len_cp;
15047 			break;
15048 		}
15049 #ifdef KERN_TLS
15050 		if (hw_tls) {
15051 			if (m->m_flags & M_EXTPG)
15052 				ntls = m->m_epg_tls;
15053 			else
15054 				ntls = NULL;
15055 
15056 			/*
15057 			 * Avoid mixing TLS records with handshake
15058 			 * data or TLS records from different
15059 			 * sessions.
15060 			 */
15061 			if (tls != ntls) {
15062 				MPASS(m != start);
15063 				*plen = len_cp;
15064 				break;
15065 			}
15066 		}
15067 #endif
15068 		mlen = min(len, m->m_len - off);
15069 		if (seglimit) {
15070 			/*
15071 			 * For M_EXTPG mbufs, add 3 segments
15072 			 * + 1 in case we are crossing page boundaries
15073 			 * + 2 in case the TLS hdr/trailer are used
15074 			 * It is cheaper to just add the segments
15075 			 * than it is to take the cache miss to look
15076 			 * at the mbuf ext_pgs state in detail.
15077 			 */
15078 			if (m->m_flags & M_EXTPG) {
15079 				fragsize = min(segsize, PAGE_SIZE);
15080 				frags = 3;
15081 			} else {
15082 				fragsize = segsize;
15083 				frags = 0;
15084 			}
15085 
15086 			/* Break if we really can't fit anymore. */
15087 			if ((frags + 1) >= seglimit) {
15088 				*plen =	len_cp;
15089 				break;
15090 			}
15091 
15092 			/*
15093 			 * Reduce size if you can't copy the whole
15094 			 * mbuf. If we can't copy the whole mbuf, also
15095 			 * adjust len so the loop will end after this
15096 			 * mbuf.
15097 			 */
15098 			if ((frags + howmany(mlen, fragsize)) >= seglimit) {
15099 				mlen = (seglimit - frags - 1) * fragsize;
15100 				len = mlen;
15101 				*plen = len_cp + len;
15102 			}
15103 			frags += howmany(mlen, fragsize);
15104 			if (frags == 0)
15105 				frags++;
15106 			seglimit -= frags;
15107 			KASSERT(seglimit > 0,
15108 			    ("%s: seglimit went too low", __func__));
15109 		}
15110 		n = m_get(M_NOWAIT, m->m_type);
15111 		*np = n;
15112 		if (n == NULL)
15113 			goto nospace;
15114 		n->m_len = mlen;
15115 		soff += mlen;
15116 		len_cp += n->m_len;
15117 		if (m->m_flags & (M_EXT|M_EXTPG)) {
15118 			n->m_data = m->m_data + off;
15119 			mb_dupcl(n, m);
15120 		} else {
15121 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
15122 			    (u_int)n->m_len);
15123 		}
15124 		len -= n->m_len;
15125 		off = 0;
15126 		m = m->m_next;
15127 		np = &n->m_next;
15128 		if (len || (soff == smb->m_len)) {
15129 			/*
15130 			 * We have more so we move forward  or
15131 			 * we have consumed the entire mbuf and
15132 			 * len has fell to 0.
15133 			 */
15134 			soff = 0;
15135 			smb = m;
15136 		}
15137 
15138 	}
15139 	if (fsb != NULL) {
15140 		fsb->m = smb;
15141 		fsb->off = soff;
15142 		if (smb) {
15143 			/*
15144 			 * Save off the size of the mbuf. We do
15145 			 * this so that we can recognize when it
15146 			 * has been trimmed by sbcut() as acks
15147 			 * come in.
15148 			 */
15149 			fsb->o_m_len = smb->m_len;
15150 		} else {
15151 			/*
15152 			 * This is the case where the next mbuf went to NULL. This
15153 			 * means with this copy we have sent everything in the sb.
15154 			 * In theory we could clear the fast_output flag, but lets
15155 			 * not since its possible that we could get more added
15156 			 * and acks that call the extend function which would let
15157 			 * us send more.
15158 			 */
15159 			fsb->o_m_len = 0;
15160 		}
15161 	}
15162 	return (top);
15163 nospace:
15164 	if (top)
15165 		m_freem(top);
15166 	return (NULL);
15167 
15168 }
15169 
15170 /*
15171  * This is a copy of m_copym(), taking the TSO segment size/limit
15172  * constraints into account, and advancing the sndptr as it goes.
15173  */
15174 static struct mbuf *
15175 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen,
15176 		int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff)
15177 {
15178 	struct mbuf *m, *n;
15179 	int32_t soff;
15180 
15181 	soff = rack->r_ctl.fsb.off;
15182 	m = rack->r_ctl.fsb.m;
15183 	if (rack->r_ctl.fsb.o_m_len != m->m_len) {
15184 		/*
15185 		 * The mbuf had the front of it chopped off by an ack
15186 		 * we need to adjust the soff/off by that difference.
15187 		 */
15188 		uint32_t delta;
15189 
15190 		delta = rack->r_ctl.fsb.o_m_len - m->m_len;
15191 		soff -= delta;
15192 	}
15193 	KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff));
15194 	KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen));
15195 	KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?",
15196 				 __FUNCTION__,
15197 				 rack, *plen, m, m->m_len));
15198 	/* Save off the right location before we copy and advance */
15199 	*s_soff = soff;
15200 	*s_mb = rack->r_ctl.fsb.m;
15201 	n = rack_fo_base_copym(m, soff, plen,
15202 			       &rack->r_ctl.fsb,
15203 			       seglimit, segsize, rack->r_ctl.fsb.hw_tls);
15204 	return (n);
15205 }
15206 
15207 static int
15208 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm,
15209 		     uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp)
15210 {
15211 	/*
15212 	 * Enter the fast retransmit path. We are given that a sched_pin is
15213 	 * in place (if accounting is compliled in) and the cycle count taken
15214 	 * at the entry is in the ts_val. The concept her is that the rsm
15215 	 * now holds the mbuf offsets and such so we can directly transmit
15216 	 * without a lot of overhead, the len field is already set for
15217 	 * us to prohibit us from sending too much (usually its 1MSS).
15218 	 */
15219 	struct ip *ip = NULL;
15220 	struct udphdr *udp = NULL;
15221 	struct tcphdr *th = NULL;
15222 	struct mbuf *m = NULL;
15223 	struct inpcb *inp;
15224 	uint8_t *cpto;
15225 	struct tcp_log_buffer *lgb;
15226 #ifdef TCP_ACCOUNTING
15227 	uint64_t crtsc;
15228 	int cnt_thru = 1;
15229 #endif
15230 	struct tcpopt to;
15231 	u_char opt[TCP_MAXOLEN];
15232 	uint32_t hdrlen, optlen;
15233 	int32_t slot, segsiz, max_val, tso = 0, error = 0, flags, ulen = 0;
15234 	uint32_t us_cts;
15235 	uint32_t if_hw_tsomaxsegcount = 0, startseq;
15236 	uint32_t if_hw_tsomaxsegsize;
15237 
15238 #ifdef INET6
15239 	struct ip6_hdr *ip6 = NULL;
15240 
15241 	if (rack->r_is_v6) {
15242 		ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
15243 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
15244 	} else
15245 #endif				/* INET6 */
15246 	{
15247 		ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
15248 		hdrlen = sizeof(struct tcpiphdr);
15249 	}
15250 	if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
15251 		goto failed;
15252 	}
15253 	if (rsm->r_flags & RACK_TLP)
15254 		doing_tlp = 1;
15255 	else if (doing_tlp)
15256 		rsm->r_flags |= RACK_TLP;
15257 	startseq = rsm->r_start;
15258 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
15259 	inp = rack->rc_inp;
15260 	to.to_flags = 0;
15261 	flags = tcp_outflags[tp->t_state];
15262 	if (flags & (TH_SYN|TH_RST)) {
15263 		goto failed;
15264 	}
15265 	if (rsm->r_flags & RACK_HAS_FIN) {
15266 		/* We can't send a FIN here */
15267 		goto failed;
15268 	}
15269 	if (flags & TH_FIN) {
15270 		/* We never send a FIN */
15271 		flags &= ~TH_FIN;
15272 	}
15273 	if (tp->t_flags & TF_RCVD_TSTMP) {
15274 		to.to_tsval = ms_cts + tp->ts_offset;
15275 		to.to_tsecr = tp->ts_recent;
15276 		to.to_flags = TOF_TS;
15277 	}
15278 	optlen = tcp_addoptions(&to, opt);
15279 	hdrlen += optlen;
15280 	udp = rack->r_ctl.fsb.udp;
15281 	if (udp)
15282 		hdrlen += sizeof(struct udphdr);
15283 	if (rack->r_ctl.rc_pace_max_segs)
15284 		max_val = rack->r_ctl.rc_pace_max_segs;
15285 	else if (rack->rc_user_set_max_segs)
15286 		max_val = rack->rc_user_set_max_segs * segsiz;
15287 	else
15288 		max_val = len;
15289 	if ((tp->t_flags & TF_TSO) &&
15290 	    V_tcp_do_tso &&
15291 	    (len > segsiz) &&
15292 	    (tp->t_port == 0))
15293 		tso = 1;
15294 #ifdef INET6
15295 	if (MHLEN < hdrlen + max_linkhdr)
15296 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
15297 	else
15298 #endif
15299 		m = m_gethdr(M_NOWAIT, MT_DATA);
15300 	if (m == NULL)
15301 		goto failed;
15302 	m->m_data += max_linkhdr;
15303 	m->m_len = hdrlen;
15304 	th = rack->r_ctl.fsb.th;
15305 	/* Establish the len to send */
15306 	if (len > max_val)
15307 		len = max_val;
15308 	if ((tso) && (len + optlen > tp->t_maxseg)) {
15309 		uint32_t if_hw_tsomax;
15310 		int32_t max_len;
15311 
15312 		/* extract TSO information */
15313 		if_hw_tsomax = tp->t_tsomax;
15314 		if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
15315 		if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
15316 		/*
15317 		 * Check if we should limit by maximum payload
15318 		 * length:
15319 		 */
15320 		if (if_hw_tsomax != 0) {
15321 			/* compute maximum TSO length */
15322 			max_len = (if_hw_tsomax - hdrlen -
15323 				   max_linkhdr);
15324 			if (max_len <= 0) {
15325 				goto failed;
15326 			} else if (len > max_len) {
15327 				len = max_len;
15328 			}
15329 		}
15330 		if (len <= segsiz) {
15331 			/*
15332 			 * In case there are too many small fragments don't
15333 			 * use TSO:
15334 			 */
15335 			tso = 0;
15336 		}
15337 	} else {
15338 		tso = 0;
15339 	}
15340 	if ((tso == 0) && (len > segsiz))
15341 		len = segsiz;
15342 	us_cts = tcp_get_usecs(tv);
15343 	if ((len == 0) ||
15344 	    (len <= MHLEN - hdrlen - max_linkhdr)) {
15345 		goto failed;
15346 	}
15347 	th->th_seq = htonl(rsm->r_start);
15348 	th->th_ack = htonl(tp->rcv_nxt);
15349 	/*
15350 	 * The PUSH bit should only be applied
15351 	 * if the full retransmission is made. If
15352 	 * we are sending less than this is the
15353 	 * left hand edge and should not have
15354 	 * the PUSH bit.
15355 	 */
15356 	if ((rsm->r_flags & RACK_HAD_PUSH) &&
15357 	    (len == (rsm->r_end - rsm->r_start)))
15358 		flags |= TH_PUSH;
15359 	th->th_flags = flags;
15360 	th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
15361 	if (th->th_win == 0) {
15362 		tp->t_sndzerowin++;
15363 		tp->t_flags |= TF_RXWIN0SENT;
15364 	} else
15365 		tp->t_flags &= ~TF_RXWIN0SENT;
15366 	if (rsm->r_flags & RACK_TLP) {
15367 		/*
15368 		 * TLP should not count in retran count, but
15369 		 * in its own bin
15370 		 */
15371 		counter_u64_add(rack_tlp_retran, 1);
15372 		counter_u64_add(rack_tlp_retran_bytes, len);
15373 	} else {
15374 		tp->t_sndrexmitpack++;
15375 		KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
15376 		KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
15377 	}
15378 #ifdef STATS
15379 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
15380 				 len);
15381 #endif
15382 	if (rsm->m == NULL)
15383 		goto failed;
15384 	if (rsm->orig_m_len != rsm->m->m_len) {
15385 		/* Fix up the orig_m_len and possibly the mbuf offset */
15386 		rack_adjust_orig_mlen(rsm);
15387 	}
15388 	m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls);
15389 	if (len <= segsiz) {
15390 		/*
15391 		 * Must have ran out of mbufs for the copy
15392 		 * shorten it to no longer need tso. Lets
15393 		 * not put on sendalot since we are low on
15394 		 * mbufs.
15395 		 */
15396 		tso = 0;
15397 	}
15398 	if ((m->m_next == NULL) || (len <= 0)){
15399 		goto failed;
15400 	}
15401 	if (udp) {
15402 		if (rack->r_is_v6)
15403 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
15404 		else
15405 			ulen = hdrlen + len - sizeof(struct ip);
15406 		udp->uh_ulen = htons(ulen);
15407 	}
15408 	m->m_pkthdr.rcvif = (struct ifnet *)0;
15409 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
15410 #ifdef INET6
15411 	if (rack->r_is_v6) {
15412 		if (tp->t_port) {
15413 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
15414 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15415 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
15416 			th->th_sum = htons(0);
15417 			UDPSTAT_INC(udps_opackets);
15418 		} else {
15419 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
15420 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15421 			th->th_sum = in6_cksum_pseudo(ip6,
15422 						      sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
15423 						      0);
15424 		}
15425 	}
15426 #endif
15427 #if defined(INET6) && defined(INET)
15428 	else
15429 #endif
15430 #ifdef INET
15431 	{
15432 		if (tp->t_port) {
15433 			m->m_pkthdr.csum_flags = CSUM_UDP;
15434 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15435 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
15436 						ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
15437 			th->th_sum = htons(0);
15438 			UDPSTAT_INC(udps_opackets);
15439 		} else {
15440 			m->m_pkthdr.csum_flags = CSUM_TCP;
15441 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15442 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
15443 					       ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
15444 									IPPROTO_TCP + len + optlen));
15445 		}
15446 		/* IP version must be set here for ipv4/ipv6 checking later */
15447 		KASSERT(ip->ip_v == IPVERSION,
15448 			("%s: IP version incorrect: %d", __func__, ip->ip_v));
15449 	}
15450 #endif
15451 	if (tso) {
15452 		KASSERT(len > tp->t_maxseg - optlen,
15453 			("%s: len <= tso_segsz tp:%p", __func__, tp));
15454 		m->m_pkthdr.csum_flags |= CSUM_TSO;
15455 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
15456 	}
15457 #ifdef INET6
15458 	if (rack->r_is_v6) {
15459 		ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
15460 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
15461 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
15462 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15463 		else
15464 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15465 	}
15466 #endif
15467 #if defined(INET) && defined(INET6)
15468 	else
15469 #endif
15470 #ifdef INET
15471 	{
15472 		ip->ip_len = htons(m->m_pkthdr.len);
15473 		ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
15474 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
15475 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15476 			if (tp->t_port == 0 || len < V_tcp_minmss) {
15477 				ip->ip_off |= htons(IP_DF);
15478 			}
15479 		} else {
15480 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15481 		}
15482 	}
15483 #endif
15484 	/* Time to copy in our header */
15485 	cpto = mtod(m, uint8_t *);
15486 	memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
15487 	th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
15488 	if (optlen) {
15489 		bcopy(opt, th + 1, optlen);
15490 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
15491 	} else {
15492 		th->th_off = sizeof(struct tcphdr) >> 2;
15493 	}
15494 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15495 		union tcp_log_stackspecific log;
15496 
15497 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15498 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
15499 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
15500 		if (rack->rack_no_prr)
15501 			log.u_bbr.flex1 = 0;
15502 		else
15503 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
15504 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
15505 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
15506 		log.u_bbr.flex4 = max_val;
15507 		log.u_bbr.flex5 = 0;
15508 		/* Save off the early/late values */
15509 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15510 		log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
15511 		log.u_bbr.bw_inuse = rack_get_bw(rack);
15512 		if (doing_tlp == 0)
15513 			log.u_bbr.flex8 = 1;
15514 		else
15515 			log.u_bbr.flex8 = 2;
15516 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15517 		log.u_bbr.flex7 = 55;
15518 		log.u_bbr.pkts_out = tp->t_maxseg;
15519 		log.u_bbr.timeStamp = cts;
15520 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15521 		log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
15522 		log.u_bbr.delivered = 0;
15523 		lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
15524 				     len, &log, false, NULL, NULL, 0, tv);
15525 	} else
15526 		lgb = NULL;
15527 #ifdef INET6
15528 	if (rack->r_is_v6) {
15529 		error = ip6_output(m, NULL,
15530 				   &inp->inp_route6,
15531 				   0, NULL, NULL, inp);
15532 	}
15533 #endif
15534 #if defined(INET) && defined(INET6)
15535 	else
15536 #endif
15537 #ifdef INET
15538 	{
15539 		error = ip_output(m, NULL,
15540 				  &inp->inp_route,
15541 				  0, 0, inp);
15542 	}
15543 #endif
15544 	m = NULL;
15545 	if (lgb) {
15546 		lgb->tlb_errno = error;
15547 		lgb = NULL;
15548 	}
15549 	if (error) {
15550 		goto failed;
15551 	}
15552 	rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv),
15553 			rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls);
15554 	if (doing_tlp && (rack->fast_rsm_hack == 0)) {
15555 		rack->rc_tlp_in_progress = 1;
15556 		rack->r_ctl.rc_tlp_cnt_out++;
15557 	}
15558 	if (error == 0)
15559 		tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls);
15560 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
15561 	rack->forced_ack = 0;	/* If we send something zap the FA flag */
15562 	if (IN_FASTRECOVERY(tp->t_flags) && rsm)
15563 		rack->r_ctl.retran_during_recovery += len;
15564 	{
15565 		int idx;
15566 
15567 		idx = (len / segsiz) + 3;
15568 		if (idx >= TCP_MSS_ACCT_ATIMER)
15569 			counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
15570 		else
15571 			counter_u64_add(rack_out_size[idx], 1);
15572 	}
15573 	if (tp->t_rtttime == 0) {
15574 		tp->t_rtttime = ticks;
15575 		tp->t_rtseq = startseq;
15576 		KMOD_TCPSTAT_INC(tcps_segstimed);
15577 	}
15578 	counter_u64_add(rack_fto_rsm_send, 1);
15579 	if (error && (error == ENOBUFS)) {
15580 		slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
15581 		if (rack->rc_enobuf < 0x7f)
15582 			rack->rc_enobuf++;
15583 		if (slot < (10 * HPTS_USEC_IN_MSEC))
15584 			slot = 10 * HPTS_USEC_IN_MSEC;
15585 	} else
15586 		slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz);
15587 	if ((slot == 0) ||
15588 	    (rack->rc_always_pace == 0) ||
15589 	    (rack->r_rr_config == 1)) {
15590 		/*
15591 		 * We have no pacing set or we
15592 		 * are using old-style rack or
15593 		 * we are overriden to use the old 1ms pacing.
15594 		 */
15595 		slot = rack->r_ctl.rc_min_to;
15596 	}
15597 	rack_start_hpts_timer(rack, tp, cts, slot, len, 0);
15598 	if (rack->r_must_retran) {
15599 		rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
15600 		if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
15601 			/*
15602 			 * We have retransmitted all we need.
15603 			 */
15604 			rack->r_must_retran = 0;
15605 			rack->r_ctl.rc_out_at_rto = 0;
15606 		}
15607 	}
15608 #ifdef TCP_ACCOUNTING
15609 	crtsc = get_cyclecount();
15610 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15611 		tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
15612 	}
15613 	counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
15614 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15615 		tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
15616 	}
15617 	counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
15618 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15619 		tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz);
15620 	}
15621 	counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz));
15622 	sched_unpin();
15623 #endif
15624 	return (0);
15625 failed:
15626 	if (m)
15627 		m_free(m);
15628 	return (-1);
15629 }
15630 
15631 static void
15632 rack_sndbuf_autoscale(struct tcp_rack *rack)
15633 {
15634 	/*
15635 	 * Automatic sizing of send socket buffer.  Often the send buffer
15636 	 * size is not optimally adjusted to the actual network conditions
15637 	 * at hand (delay bandwidth product).  Setting the buffer size too
15638 	 * small limits throughput on links with high bandwidth and high
15639 	 * delay (eg. trans-continental/oceanic links).  Setting the
15640 	 * buffer size too big consumes too much real kernel memory,
15641 	 * especially with many connections on busy servers.
15642 	 *
15643 	 * The criteria to step up the send buffer one notch are:
15644 	 *  1. receive window of remote host is larger than send buffer
15645 	 *     (with a fudge factor of 5/4th);
15646 	 *  2. send buffer is filled to 7/8th with data (so we actually
15647 	 *     have data to make use of it);
15648 	 *  3. send buffer fill has not hit maximal automatic size;
15649 	 *  4. our send window (slow start and cogestion controlled) is
15650 	 *     larger than sent but unacknowledged data in send buffer.
15651 	 *
15652 	 * Note that the rack version moves things much faster since
15653 	 * we want to avoid hitting cache lines in the rack_fast_output()
15654 	 * path so this is called much less often and thus moves
15655 	 * the SB forward by a percentage.
15656 	 */
15657 	struct socket *so;
15658 	struct tcpcb *tp;
15659 	uint32_t sendwin, scaleup;
15660 
15661 	tp = rack->rc_tp;
15662 	so = rack->rc_inp->inp_socket;
15663 	sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd);
15664 	if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) {
15665 		if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat &&
15666 		    sbused(&so->so_snd) >=
15667 		    (so->so_snd.sb_hiwat / 8 * 7) &&
15668 		    sbused(&so->so_snd) < V_tcp_autosndbuf_max &&
15669 		    sendwin >= (sbused(&so->so_snd) -
15670 		    (tp->snd_nxt - tp->snd_una))) {
15671 			if (rack_autosndbuf_inc)
15672 				scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100;
15673 			else
15674 				scaleup = V_tcp_autosndbuf_inc;
15675 			if (scaleup < V_tcp_autosndbuf_inc)
15676 				scaleup = V_tcp_autosndbuf_inc;
15677 			scaleup += so->so_snd.sb_hiwat;
15678 			if (scaleup > V_tcp_autosndbuf_max)
15679 				scaleup = V_tcp_autosndbuf_max;
15680 			if (!sbreserve_locked(&so->so_snd, scaleup, so, curthread))
15681 				so->so_snd.sb_flags &= ~SB_AUTOSIZE;
15682 		}
15683 	}
15684 }
15685 
15686 static int
15687 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val,
15688 		 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err)
15689 {
15690 	/*
15691 	 * Enter to do fast output. We are given that the sched_pin is
15692 	 * in place (if accounting is compiled in) and the cycle count taken
15693 	 * at entry is in place in ts_val. The idea here is that
15694 	 * we know how many more bytes needs to be sent (presumably either
15695 	 * during pacing or to fill the cwnd and that was greater than
15696 	 * the max-burst). We have how much to send and all the info we
15697 	 * need to just send.
15698 	 */
15699 	struct ip *ip = NULL;
15700 	struct udphdr *udp = NULL;
15701 	struct tcphdr *th = NULL;
15702 	struct mbuf *m, *s_mb;
15703 	struct inpcb *inp;
15704 	uint8_t *cpto;
15705 	struct tcp_log_buffer *lgb;
15706 #ifdef TCP_ACCOUNTING
15707 	uint64_t crtsc;
15708 #endif
15709 	struct tcpopt to;
15710 	u_char opt[TCP_MAXOLEN];
15711 	uint32_t hdrlen, optlen;
15712 	int cnt_thru = 1;
15713 	int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error = 0, flags, ulen = 0;
15714 	uint32_t us_cts, s_soff;
15715 	uint32_t if_hw_tsomaxsegcount = 0, startseq;
15716 	uint32_t if_hw_tsomaxsegsize;
15717 	uint16_t add_flag = RACK_SENT_FP;
15718 #ifdef INET6
15719 	struct ip6_hdr *ip6 = NULL;
15720 
15721 	if (rack->r_is_v6) {
15722 		ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
15723 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
15724 	} else
15725 #endif				/* INET6 */
15726 	{
15727 		ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
15728 		hdrlen = sizeof(struct tcpiphdr);
15729 	}
15730 	if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
15731 		m = NULL;
15732 		goto failed;
15733 	}
15734 	startseq = tp->snd_max;
15735 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
15736 	inp = rack->rc_inp;
15737 	len = rack->r_ctl.fsb.left_to_send;
15738 	to.to_flags = 0;
15739 	flags = rack->r_ctl.fsb.tcp_flags;
15740 	if (tp->t_flags & TF_RCVD_TSTMP) {
15741 		to.to_tsval = ms_cts + tp->ts_offset;
15742 		to.to_tsecr = tp->ts_recent;
15743 		to.to_flags = TOF_TS;
15744 	}
15745 	optlen = tcp_addoptions(&to, opt);
15746 	hdrlen += optlen;
15747 	udp = rack->r_ctl.fsb.udp;
15748 	if (udp)
15749 		hdrlen += sizeof(struct udphdr);
15750 	if (rack->r_ctl.rc_pace_max_segs)
15751 		max_val = rack->r_ctl.rc_pace_max_segs;
15752 	else if (rack->rc_user_set_max_segs)
15753 		max_val = rack->rc_user_set_max_segs * segsiz;
15754 	else
15755 		max_val = len;
15756 	if ((tp->t_flags & TF_TSO) &&
15757 	    V_tcp_do_tso &&
15758 	    (len > segsiz) &&
15759 	    (tp->t_port == 0))
15760 		tso = 1;
15761 again:
15762 #ifdef INET6
15763 	if (MHLEN < hdrlen + max_linkhdr)
15764 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
15765 	else
15766 #endif
15767 		m = m_gethdr(M_NOWAIT, MT_DATA);
15768 	if (m == NULL)
15769 		goto failed;
15770 	m->m_data += max_linkhdr;
15771 	m->m_len = hdrlen;
15772 	th = rack->r_ctl.fsb.th;
15773 	/* Establish the len to send */
15774 	if (len > max_val)
15775 		len = max_val;
15776 	if ((tso) && (len + optlen > tp->t_maxseg)) {
15777 		uint32_t if_hw_tsomax;
15778 		int32_t max_len;
15779 
15780 		/* extract TSO information */
15781 		if_hw_tsomax = tp->t_tsomax;
15782 		if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
15783 		if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
15784 		/*
15785 		 * Check if we should limit by maximum payload
15786 		 * length:
15787 		 */
15788 		if (if_hw_tsomax != 0) {
15789 			/* compute maximum TSO length */
15790 			max_len = (if_hw_tsomax - hdrlen -
15791 				   max_linkhdr);
15792 			if (max_len <= 0) {
15793 				goto failed;
15794 			} else if (len > max_len) {
15795 				len = max_len;
15796 			}
15797 		}
15798 		if (len <= segsiz) {
15799 			/*
15800 			 * In case there are too many small fragments don't
15801 			 * use TSO:
15802 			 */
15803 			tso = 0;
15804 		}
15805 	} else {
15806 		tso = 0;
15807 	}
15808 	if ((tso == 0) && (len > segsiz))
15809 		len = segsiz;
15810 	us_cts = tcp_get_usecs(tv);
15811 	if ((len == 0) ||
15812 	    (len <= MHLEN - hdrlen - max_linkhdr)) {
15813 		goto failed;
15814 	}
15815 	sb_offset = tp->snd_max - tp->snd_una;
15816 	th->th_seq = htonl(tp->snd_max);
15817 	th->th_ack = htonl(tp->rcv_nxt);
15818 	th->th_flags = flags;
15819 	th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
15820 	if (th->th_win == 0) {
15821 		tp->t_sndzerowin++;
15822 		tp->t_flags |= TF_RXWIN0SENT;
15823 	} else
15824 		tp->t_flags &= ~TF_RXWIN0SENT;
15825 	tp->snd_up = tp->snd_una;	/* drag it along, its deprecated */
15826 	KMOD_TCPSTAT_INC(tcps_sndpack);
15827 	KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
15828 #ifdef STATS
15829 	stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
15830 				 len);
15831 #endif
15832 	if (rack->r_ctl.fsb.m == NULL)
15833 		goto failed;
15834 
15835 	/* s_mb and s_soff are saved for rack_log_output */
15836 	m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize,
15837 				    &s_mb, &s_soff);
15838 	if (len <= segsiz) {
15839 		/*
15840 		 * Must have ran out of mbufs for the copy
15841 		 * shorten it to no longer need tso. Lets
15842 		 * not put on sendalot since we are low on
15843 		 * mbufs.
15844 		 */
15845 		tso = 0;
15846 	}
15847 	if (rack->r_ctl.fsb.rfo_apply_push &&
15848 	    (len == rack->r_ctl.fsb.left_to_send)) {
15849 		th->th_flags |= TH_PUSH;
15850 		add_flag |= RACK_HAD_PUSH;
15851 	}
15852 	if ((m->m_next == NULL) || (len <= 0)){
15853 		goto failed;
15854 	}
15855 	if (udp) {
15856 		if (rack->r_is_v6)
15857 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
15858 		else
15859 			ulen = hdrlen + len - sizeof(struct ip);
15860 		udp->uh_ulen = htons(ulen);
15861 	}
15862 	m->m_pkthdr.rcvif = (struct ifnet *)0;
15863 	if (tp->t_state == TCPS_ESTABLISHED &&
15864 	    (tp->t_flags2 & TF2_ECN_PERMIT)) {
15865 		/*
15866 		 * If the peer has ECN, mark data packets with ECN capable
15867 		 * transmission (ECT). Ignore pure ack packets,
15868 		 * retransmissions.
15869 		 */
15870 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
15871 #ifdef INET6
15872 			if (rack->r_is_v6)
15873 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
15874 			else
15875 #endif
15876 				ip->ip_tos |= IPTOS_ECN_ECT0;
15877 			KMOD_TCPSTAT_INC(tcps_ecn_ect0);
15878 			/*
15879 			 * Reply with proper ECN notifications.
15880 			 * Only set CWR on new data segments.
15881 			 */
15882 			if (tp->t_flags2 & TF2_ECN_SND_CWR) {
15883 				flags |= TH_CWR;
15884 				tp->t_flags2 &= ~TF2_ECN_SND_CWR;
15885 			}
15886 		}
15887 		if (tp->t_flags2 & TF2_ECN_SND_ECE)
15888 			flags |= TH_ECE;
15889 	}
15890 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
15891 #ifdef INET6
15892 	if (rack->r_is_v6) {
15893 		if (tp->t_port) {
15894 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
15895 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15896 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
15897 			th->th_sum = htons(0);
15898 			UDPSTAT_INC(udps_opackets);
15899 		} else {
15900 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
15901 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15902 			th->th_sum = in6_cksum_pseudo(ip6,
15903 						      sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
15904 						      0);
15905 		}
15906 	}
15907 #endif
15908 #if defined(INET6) && defined(INET)
15909 	else
15910 #endif
15911 #ifdef INET
15912 	{
15913 		if (tp->t_port) {
15914 			m->m_pkthdr.csum_flags = CSUM_UDP;
15915 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15916 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
15917 						ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
15918 			th->th_sum = htons(0);
15919 			UDPSTAT_INC(udps_opackets);
15920 		} else {
15921 			m->m_pkthdr.csum_flags = CSUM_TCP;
15922 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15923 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
15924 					       ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
15925 									IPPROTO_TCP + len + optlen));
15926 		}
15927 		/* IP version must be set here for ipv4/ipv6 checking later */
15928 		KASSERT(ip->ip_v == IPVERSION,
15929 			("%s: IP version incorrect: %d", __func__, ip->ip_v));
15930 	}
15931 #endif
15932 	if (tso) {
15933 		KASSERT(len > tp->t_maxseg - optlen,
15934 			("%s: len <= tso_segsz tp:%p", __func__, tp));
15935 		m->m_pkthdr.csum_flags |= CSUM_TSO;
15936 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
15937 	}
15938 #ifdef INET6
15939 	if (rack->r_is_v6) {
15940 		ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
15941 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
15942 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
15943 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15944 		else
15945 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15946 	}
15947 #endif
15948 #if defined(INET) && defined(INET6)
15949 	else
15950 #endif
15951 #ifdef INET
15952 	{
15953 		ip->ip_len = htons(m->m_pkthdr.len);
15954 		ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
15955 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
15956 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15957 			if (tp->t_port == 0 || len < V_tcp_minmss) {
15958 				ip->ip_off |= htons(IP_DF);
15959 			}
15960 		} else {
15961 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15962 		}
15963 	}
15964 #endif
15965 	/* Time to copy in our header */
15966 	cpto = mtod(m, uint8_t *);
15967 	memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
15968 	th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
15969 	if (optlen) {
15970 		bcopy(opt, th + 1, optlen);
15971 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
15972 	} else {
15973 		th->th_off = sizeof(struct tcphdr) >> 2;
15974 	}
15975 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15976 		union tcp_log_stackspecific log;
15977 
15978 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15979 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
15980 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
15981 		if (rack->rack_no_prr)
15982 			log.u_bbr.flex1 = 0;
15983 		else
15984 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
15985 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
15986 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
15987 		log.u_bbr.flex4 = max_val;
15988 		log.u_bbr.flex5 = 0;
15989 		/* Save off the early/late values */
15990 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15991 		log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
15992 		log.u_bbr.bw_inuse = rack_get_bw(rack);
15993 		log.u_bbr.flex8 = 0;
15994 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15995 		log.u_bbr.flex7 = 44;
15996 		log.u_bbr.pkts_out = tp->t_maxseg;
15997 		log.u_bbr.timeStamp = cts;
15998 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15999 		log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
16000 		log.u_bbr.delivered = 0;
16001 		lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
16002 				     len, &log, false, NULL, NULL, 0, tv);
16003 	} else
16004 		lgb = NULL;
16005 #ifdef INET6
16006 	if (rack->r_is_v6) {
16007 		error = ip6_output(m, NULL,
16008 				   &inp->inp_route6,
16009 				   0, NULL, NULL, inp);
16010 	}
16011 #endif
16012 #if defined(INET) && defined(INET6)
16013 	else
16014 #endif
16015 #ifdef INET
16016 	{
16017 		error = ip_output(m, NULL,
16018 				  &inp->inp_route,
16019 				  0, 0, inp);
16020 	}
16021 #endif
16022 	if (lgb) {
16023 		lgb->tlb_errno = error;
16024 		lgb = NULL;
16025 	}
16026 	if (error) {
16027 		*send_err = error;
16028 		m = NULL;
16029 		goto failed;
16030 	}
16031 	rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv),
16032 			NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls);
16033 	m = NULL;
16034 	if (tp->snd_una == tp->snd_max) {
16035 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
16036 		rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
16037 		tp->t_acktime = ticks;
16038 	}
16039 	if (error == 0)
16040 		tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls);
16041 
16042 	rack->forced_ack = 0;	/* If we send something zap the FA flag */
16043 	tot_len += len;
16044 	if ((tp->t_flags & TF_GPUTINPROG) == 0)
16045 		rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset);
16046 	tp->snd_max += len;
16047 	tp->snd_nxt = tp->snd_max;
16048 	{
16049 		int idx;
16050 
16051 		idx = (len / segsiz) + 3;
16052 		if (idx >= TCP_MSS_ACCT_ATIMER)
16053 			counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
16054 		else
16055 			counter_u64_add(rack_out_size[idx], 1);
16056 	}
16057 	if (len <= rack->r_ctl.fsb.left_to_send)
16058 		rack->r_ctl.fsb.left_to_send -= len;
16059 	else
16060 		rack->r_ctl.fsb.left_to_send = 0;
16061 	if (rack->r_ctl.fsb.left_to_send < segsiz) {
16062 		rack->r_fast_output = 0;
16063 		rack->r_ctl.fsb.left_to_send = 0;
16064 		/* At the end of fast_output scale up the sb */
16065 		SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd);
16066 		rack_sndbuf_autoscale(rack);
16067 		SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd);
16068 	}
16069 	if (tp->t_rtttime == 0) {
16070 		tp->t_rtttime = ticks;
16071 		tp->t_rtseq = startseq;
16072 		KMOD_TCPSTAT_INC(tcps_segstimed);
16073 	}
16074 	if ((rack->r_ctl.fsb.left_to_send >= segsiz) &&
16075 	    (max_val > len) &&
16076 	    (tso == 0)) {
16077 		max_val -= len;
16078 		len = segsiz;
16079 		th = rack->r_ctl.fsb.th;
16080 		cnt_thru++;
16081 		goto again;
16082 	}
16083 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
16084 	counter_u64_add(rack_fto_send, 1);
16085 	slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz);
16086 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0);
16087 #ifdef TCP_ACCOUNTING
16088 	crtsc = get_cyclecount();
16089 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16090 		tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
16091 	}
16092 	counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
16093 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16094 		tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
16095 	}
16096 	counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
16097 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16098 		tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz);
16099 	}
16100 	counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz));
16101 	sched_unpin();
16102 #endif
16103 	return (0);
16104 failed:
16105 	if (m)
16106 		m_free(m);
16107 	rack->r_fast_output = 0;
16108 	return (-1);
16109 }
16110 
16111 static int
16112 rack_output(struct tcpcb *tp)
16113 {
16114 	struct socket *so;
16115 	uint32_t recwin;
16116 	uint32_t sb_offset, s_moff = 0;
16117 	int32_t len, flags, error = 0;
16118 	struct mbuf *m, *s_mb = NULL;
16119 	struct mbuf *mb;
16120 	uint32_t if_hw_tsomaxsegcount = 0;
16121 	uint32_t if_hw_tsomaxsegsize;
16122 	int32_t segsiz, minseg;
16123 	long tot_len_this_send = 0;
16124 #ifdef INET
16125 	struct ip *ip = NULL;
16126 #ifdef TCPDEBUG
16127 	struct ipovly *ipov = NULL;
16128 #endif
16129 #endif
16130 	struct udphdr *udp = NULL;
16131 	struct tcp_rack *rack;
16132 	struct tcphdr *th;
16133 	uint8_t pass = 0;
16134 	uint8_t mark = 0;
16135 	uint8_t wanted_cookie = 0;
16136 	u_char opt[TCP_MAXOLEN];
16137 	unsigned ipoptlen, optlen, hdrlen;
16138 #if defined(INET) || defined(INET6)
16139 	unsigned ulen=0;
16140 #endif
16141 	uint32_t rack_seq;
16142 
16143 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
16144 	unsigned ipsec_optlen = 0;
16145 
16146 #endif
16147 	int32_t idle, sendalot;
16148 	int32_t sub_from_prr = 0;
16149 	volatile int32_t sack_rxmit;
16150 	struct rack_sendmap *rsm = NULL;
16151 	int32_t tso, mtu;
16152 	struct tcpopt to;
16153 	int32_t slot = 0;
16154 	int32_t sup_rack = 0;
16155 	uint32_t cts, ms_cts, delayed, early;
16156 	uint16_t add_flag = RACK_SENT_SP;
16157 	/* The doing_tlp flag will be set by the actual rack_timeout_tlp() */
16158 	uint8_t hpts_calling,  doing_tlp = 0;
16159 	uint32_t cwnd_to_use, pace_max_seg;
16160 	int32_t do_a_prefetch = 0;
16161 	int32_t prefetch_rsm = 0;
16162 	int32_t orig_len = 0;
16163 	struct timeval tv;
16164 	int32_t prefetch_so_done = 0;
16165 	struct tcp_log_buffer *lgb;
16166 	struct inpcb *inp;
16167 	struct sockbuf *sb;
16168 	uint64_t ts_val = 0;
16169 #ifdef TCP_ACCOUNTING
16170 	uint64_t crtsc;
16171 #endif
16172 #ifdef INET6
16173 	struct ip6_hdr *ip6 = NULL;
16174 	int32_t isipv6;
16175 #endif
16176 	uint8_t filled_all = 0;
16177 	bool hw_tls = false;
16178 
16179 	/* setup and take the cache hits here */
16180 	rack = (struct tcp_rack *)tp->t_fb_ptr;
16181 #ifdef TCP_ACCOUNTING
16182 	sched_pin();
16183 	ts_val = get_cyclecount();
16184 #endif
16185 	hpts_calling = rack->rc_inp->inp_hpts_calls;
16186 	NET_EPOCH_ASSERT();
16187 	INP_WLOCK_ASSERT(rack->rc_inp);
16188 #ifdef TCP_OFFLOAD
16189 	if (tp->t_flags & TF_TOE) {
16190 #ifdef TCP_ACCOUNTING
16191 		sched_unpin();
16192 #endif
16193 		return (tcp_offload_output(tp));
16194 	}
16195 #endif
16196 	/*
16197 	 * For TFO connections in SYN_RECEIVED, only allow the initial
16198 	 * SYN|ACK and those sent by the retransmit timer.
16199 	 */
16200 	if (IS_FASTOPEN(tp->t_flags) &&
16201 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
16202 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
16203 	    (rack->r_ctl.rc_resend == NULL)) {         /* not a retransmit */
16204 #ifdef TCP_ACCOUNTING
16205 		sched_unpin();
16206 #endif
16207 		return (0);
16208 	}
16209 #ifdef INET6
16210 	if (rack->r_state) {
16211 		/* Use the cache line loaded if possible */
16212 		isipv6 = rack->r_is_v6;
16213 	} else {
16214 		isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0;
16215 	}
16216 #endif
16217 	early = 0;
16218 	cts = tcp_get_usecs(&tv);
16219 	ms_cts = tcp_tv_to_mssectick(&tv);
16220 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
16221 	    rack->rc_inp->inp_in_hpts) {
16222 		/*
16223 		 * We are on the hpts for some timer but not hptsi output.
16224 		 * Remove from the hpts unconditionally.
16225 		 */
16226 		rack_timer_cancel(tp, rack, cts, __LINE__);
16227 	}
16228 	/* Are we pacing and late? */
16229 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16230 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
16231 		/* We are delayed */
16232 		delayed = cts - rack->r_ctl.rc_last_output_to;
16233 	} else {
16234 		delayed = 0;
16235 	}
16236 	/* Do the timers, which may override the pacer */
16237 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
16238 		if (rack_process_timers(tp, rack, cts, hpts_calling, &doing_tlp)) {
16239 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
16240 #ifdef TCP_ACCOUNTING
16241 			sched_unpin();
16242 #endif
16243 			return (0);
16244 		}
16245 	}
16246 	if (rack->rc_in_persist) {
16247 		if (rack->rc_inp->inp_in_hpts == 0) {
16248 			/* Timer is not running */
16249 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
16250 		}
16251 #ifdef TCP_ACCOUNTING
16252 		sched_unpin();
16253 #endif
16254 		return (0);
16255 	}
16256 	if ((rack->r_timer_override) ||
16257 	    (rack->rc_ack_can_sendout_data) ||
16258 	    (delayed) ||
16259 	    (tp->t_state < TCPS_ESTABLISHED)) {
16260 		rack->rc_ack_can_sendout_data = 0;
16261 		if (rack->rc_inp->inp_in_hpts)
16262 			tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
16263 	} else if (rack->rc_inp->inp_in_hpts) {
16264 		/*
16265 		 * On the hpts you can't pass even if ACKNOW is on, we will
16266 		 * when the hpts fires.
16267 		 */
16268 #ifdef TCP_ACCOUNTING
16269 		crtsc = get_cyclecount();
16270 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16271 			tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val);
16272 		}
16273 		counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val));
16274 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16275 			tp->tcp_cnt_counters[SND_BLOCKED]++;
16276 		}
16277 		counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1);
16278 		sched_unpin();
16279 #endif
16280 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
16281 		return (0);
16282 	}
16283 	rack->rc_inp->inp_hpts_calls = 0;
16284 	/* Finish out both pacing early and late accounting */
16285 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16286 	    TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) {
16287 		early = rack->r_ctl.rc_last_output_to - cts;
16288 	} else
16289 		early = 0;
16290 	if (delayed) {
16291 		rack->r_ctl.rc_agg_delayed += delayed;
16292 		rack->r_late = 1;
16293 	} else if (early) {
16294 		rack->r_ctl.rc_agg_early += early;
16295 		rack->r_early = 1;
16296 	}
16297 	/* Now that early/late accounting is done turn off the flag */
16298 	rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
16299 	rack->r_wanted_output = 0;
16300 	rack->r_timer_override = 0;
16301 	if ((tp->t_state != rack->r_state) &&
16302 	    TCPS_HAVEESTABLISHED(tp->t_state)) {
16303 		rack_set_state(tp, rack);
16304 	}
16305 	if ((rack->r_fast_output) &&
16306 	    (doing_tlp == 0) &&
16307 	    (tp->rcv_numsacks == 0)) {
16308 		int ret;
16309 
16310 		error = 0;
16311 		ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
16312 		if (ret >= 0)
16313 			return(ret);
16314 		else if (error) {
16315 			inp = rack->rc_inp;
16316 			so = inp->inp_socket;
16317 			sb = &so->so_snd;
16318 			goto nomore;
16319 		}
16320 	}
16321 	inp = rack->rc_inp;
16322 	/*
16323 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
16324 	 * only allow the initial SYN or SYN|ACK and those sent
16325 	 * by the retransmit timer.
16326 	 */
16327 	if (IS_FASTOPEN(tp->t_flags) &&
16328 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
16329 	     (tp->t_state == TCPS_SYN_SENT)) &&
16330 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
16331 	    (tp->t_rxtshift == 0)) {              /* not a retransmit */
16332 		cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16333 		so = inp->inp_socket;
16334 		sb = &so->so_snd;
16335 		goto just_return_nolock;
16336 	}
16337 	/*
16338 	 * Determine length of data that should be transmitted, and flags
16339 	 * that will be used. If there is some data or critical controls
16340 	 * (SYN, RST) to send, then transmit; otherwise, investigate
16341 	 * further.
16342 	 */
16343 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
16344 	if (tp->t_idle_reduce) {
16345 		if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
16346 			rack_cc_after_idle(rack, tp);
16347 	}
16348 	tp->t_flags &= ~TF_LASTIDLE;
16349 	if (idle) {
16350 		if (tp->t_flags & TF_MORETOCOME) {
16351 			tp->t_flags |= TF_LASTIDLE;
16352 			idle = 0;
16353 		}
16354 	}
16355 	if ((tp->snd_una == tp->snd_max) &&
16356 	    rack->r_ctl.rc_went_idle_time &&
16357 	    TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) {
16358 		idle = cts - rack->r_ctl.rc_went_idle_time;
16359 		if (idle > rack_min_probertt_hold) {
16360 			/* Count as a probe rtt */
16361 			if (rack->in_probe_rtt == 0) {
16362 				rack->r_ctl.rc_lower_rtt_us_cts = cts;
16363 				rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
16364 				rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
16365 				rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
16366 			} else {
16367 				rack_exit_probertt(rack, cts);
16368 			}
16369 		}
16370 		idle = 0;
16371 	}
16372 	if (rack_use_fsb && (rack->r_fsb_inited == 0) && (rack->r_state != TCPS_CLOSED))
16373 		rack_init_fsb_block(tp, rack);
16374 again:
16375 	/*
16376 	 * If we've recently taken a timeout, snd_max will be greater than
16377 	 * snd_nxt.  There may be SACK information that allows us to avoid
16378 	 * resending already delivered data.  Adjust snd_nxt accordingly.
16379 	 */
16380 	sendalot = 0;
16381 	cts = tcp_get_usecs(&tv);
16382 	ms_cts = tcp_tv_to_mssectick(&tv);
16383 	tso = 0;
16384 	mtu = 0;
16385 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16386 	minseg = segsiz;
16387 	if (rack->r_ctl.rc_pace_max_segs == 0)
16388 		pace_max_seg = rack->rc_user_set_max_segs * segsiz;
16389 	else
16390 		pace_max_seg = rack->r_ctl.rc_pace_max_segs;
16391 	sb_offset = tp->snd_max - tp->snd_una;
16392 	cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16393 	flags = tcp_outflags[tp->t_state];
16394 	while (rack->rc_free_cnt < rack_free_cache) {
16395 		rsm = rack_alloc(rack);
16396 		if (rsm == NULL) {
16397 			if (inp->inp_hpts_calls)
16398 				/* Retry in a ms */
16399 				slot = (1 * HPTS_USEC_IN_MSEC);
16400 			so = inp->inp_socket;
16401 			sb = &so->so_snd;
16402 			goto just_return_nolock;
16403 		}
16404 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
16405 		rack->rc_free_cnt++;
16406 		rsm = NULL;
16407 	}
16408 	if (inp->inp_hpts_calls)
16409 		inp->inp_hpts_calls = 0;
16410 	sack_rxmit = 0;
16411 	len = 0;
16412 	rsm = NULL;
16413 	if (flags & TH_RST) {
16414 		SOCKBUF_LOCK(&inp->inp_socket->so_snd);
16415 		so = inp->inp_socket;
16416 		sb = &so->so_snd;
16417 		goto send;
16418 	}
16419 	if (rack->r_ctl.rc_resend) {
16420 		/* Retransmit timer */
16421 		rsm = rack->r_ctl.rc_resend;
16422 		rack->r_ctl.rc_resend = NULL;
16423 		rsm->r_flags &= ~RACK_TLP;
16424 		len = rsm->r_end - rsm->r_start;
16425 		sack_rxmit = 1;
16426 		sendalot = 0;
16427 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16428 			("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16429 			 __func__, __LINE__,
16430 			 rsm->r_start, tp->snd_una, tp, rack, rsm));
16431 		sb_offset = rsm->r_start - tp->snd_una;
16432 		if (len >= segsiz)
16433 			len = segsiz;
16434 	} else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) {
16435 		/* We have a retransmit that takes precedence */
16436 		rsm->r_flags &= ~RACK_TLP;
16437 		if ((!IN_FASTRECOVERY(tp->t_flags)) &&
16438 		    ((tp->t_flags & TF_WASFRECOVERY) == 0)) {
16439 			/* Enter recovery if not induced by a time-out */
16440 			rack->r_ctl.rc_rsm_start = rsm->r_start;
16441 			rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
16442 			rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
16443 			rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
16444 		}
16445 #ifdef INVARIANTS
16446 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
16447 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
16448 			      tp, rack, rsm, rsm->r_start, tp->snd_una);
16449 		}
16450 #endif
16451 		len = rsm->r_end - rsm->r_start;
16452 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16453 			("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16454 			 __func__, __LINE__,
16455 			 rsm->r_start, tp->snd_una, tp, rack, rsm));
16456 		sb_offset = rsm->r_start - tp->snd_una;
16457 		sendalot = 0;
16458 		if (len >= segsiz)
16459 			len = segsiz;
16460 		if (len > 0) {
16461 			sack_rxmit = 1;
16462 			KMOD_TCPSTAT_INC(tcps_sack_rexmits);
16463 			KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
16464 			    min(len, segsiz));
16465 			counter_u64_add(rack_rtm_prr_retran, 1);
16466 		}
16467 	} else if (rack->r_ctl.rc_tlpsend) {
16468 		/* Tail loss probe */
16469 		long cwin;
16470 		long tlen;
16471 
16472 		/*
16473 		 * Check if we can do a TLP with a RACK'd packet
16474 		 * this can happen if we are not doing the rack
16475 		 * cheat and we skipped to a TLP and it
16476 		 * went off.
16477 		 */
16478 		rsm = rack->r_ctl.rc_tlpsend;
16479 		rsm->r_flags |= RACK_TLP;
16480 
16481 		rack->r_ctl.rc_tlpsend = NULL;
16482 		sack_rxmit = 1;
16483 		tlen = rsm->r_end - rsm->r_start;
16484 		if (tlen > segsiz)
16485 			tlen = segsiz;
16486 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16487 			("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16488 			 __func__, __LINE__,
16489 			 rsm->r_start, tp->snd_una, tp, rack, rsm));
16490 		sb_offset = rsm->r_start - tp->snd_una;
16491 		cwin = min(tp->snd_wnd, tlen);
16492 		len = cwin;
16493 	}
16494 	if (rack->r_must_retran &&
16495 	    (rsm == NULL)) {
16496 		/*
16497 		 * Non-Sack and we had a RTO or MTU change, we
16498 		 * need to retransmit until we reach
16499 		 * the former snd_max (rack->r_ctl.rc_snd_max_at_rto).
16500 		 */
16501 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
16502 			int sendwin, flight;
16503 
16504 			sendwin = min(tp->snd_wnd, tp->snd_cwnd);
16505 			flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto);
16506 			if (flight >= sendwin) {
16507 				so = inp->inp_socket;
16508 				sb = &so->so_snd;
16509 				goto just_return_nolock;
16510 			}
16511 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
16512 			KASSERT(rsm != NULL, ("rsm is NULL rack:%p r_must_retran set", rack));
16513 			if (rsm == NULL) {
16514 				/* TSNH */
16515 				rack->r_must_retran = 0;
16516 				rack->r_ctl.rc_out_at_rto = 0;
16517 				rack->r_must_retran = 0;
16518 				so = inp->inp_socket;
16519 				sb = &so->so_snd;
16520 				goto just_return_nolock;
16521 			}
16522 			sack_rxmit = 1;
16523 			len = rsm->r_end - rsm->r_start;
16524 			sendalot = 0;
16525 			sb_offset = rsm->r_start - tp->snd_una;
16526 			if (len >= segsiz)
16527 				len = segsiz;
16528 		} else {
16529 			/* We must be done if there is nothing outstanding */
16530 			rack->r_must_retran = 0;
16531 			rack->r_ctl.rc_out_at_rto = 0;
16532 		}
16533 	}
16534 	/*
16535 	 * Enforce a connection sendmap count limit if set
16536 	 * as long as we are not retransmiting.
16537 	 */
16538 	if ((rsm == NULL) &&
16539 	    (rack->do_detection == 0) &&
16540 	    (V_tcp_map_entries_limit > 0) &&
16541 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
16542 		counter_u64_add(rack_to_alloc_limited, 1);
16543 		if (!rack->alloc_limit_reported) {
16544 			rack->alloc_limit_reported = 1;
16545 			counter_u64_add(rack_alloc_limited_conns, 1);
16546 		}
16547 		so = inp->inp_socket;
16548 		sb = &so->so_snd;
16549 		goto just_return_nolock;
16550 	}
16551 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
16552 		/* we are retransmitting the fin */
16553 		len--;
16554 		if (len) {
16555 			/*
16556 			 * When retransmitting data do *not* include the
16557 			 * FIN. This could happen from a TLP probe.
16558 			 */
16559 			flags &= ~TH_FIN;
16560 		}
16561 	}
16562 #ifdef INVARIANTS
16563 	/* For debugging */
16564 	rack->r_ctl.rc_rsm_at_retran = rsm;
16565 #endif
16566 	if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo &&
16567 	    ((rsm->r_flags & RACK_HAS_FIN) == 0)) {
16568 		int ret;
16569 
16570 		ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp);
16571 		if (ret == 0)
16572 			return (0);
16573 	}
16574 	so = inp->inp_socket;
16575 	sb = &so->so_snd;
16576 	if (do_a_prefetch == 0) {
16577 		kern_prefetch(sb, &do_a_prefetch);
16578 		do_a_prefetch = 1;
16579 	}
16580 #ifdef NETFLIX_SHARED_CWND
16581 	if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) &&
16582 	    rack->rack_enable_scwnd) {
16583 		/* We are doing cwnd sharing */
16584 		if (rack->gp_ready &&
16585 		    (rack->rack_attempted_scwnd == 0) &&
16586 		    (rack->r_ctl.rc_scw == NULL) &&
16587 		    tp->t_lib) {
16588 			/* The pcbid is in, lets make an attempt */
16589 			counter_u64_add(rack_try_scwnd, 1);
16590 			rack->rack_attempted_scwnd = 1;
16591 			rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp,
16592 								   &rack->r_ctl.rc_scw_index,
16593 								   segsiz);
16594 		}
16595 		if (rack->r_ctl.rc_scw &&
16596 		    (rack->rack_scwnd_is_idle == 1) &&
16597 		    sbavail(&so->so_snd)) {
16598 			/* we are no longer out of data */
16599 			tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
16600 			rack->rack_scwnd_is_idle = 0;
16601 		}
16602 		if (rack->r_ctl.rc_scw) {
16603 			/* First lets update and get the cwnd */
16604 			rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw,
16605 								    rack->r_ctl.rc_scw_index,
16606 								    tp->snd_cwnd, tp->snd_wnd, segsiz);
16607 		}
16608 	}
16609 #endif
16610 	/*
16611 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
16612 	 * state flags.
16613 	 */
16614 	if (tp->t_flags & TF_NEEDFIN)
16615 		flags |= TH_FIN;
16616 	if (tp->t_flags & TF_NEEDSYN)
16617 		flags |= TH_SYN;
16618 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
16619 		void *end_rsm;
16620 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
16621 		if (end_rsm)
16622 			kern_prefetch(end_rsm, &prefetch_rsm);
16623 		prefetch_rsm = 1;
16624 	}
16625 	SOCKBUF_LOCK(sb);
16626 	/*
16627 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
16628 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
16629 	 * negative length.  This can also occur when TCP opens up its
16630 	 * congestion window while receiving additional duplicate acks after
16631 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
16632 	 * the fast-retransmit.
16633 	 *
16634 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
16635 	 * set to snd_una, the sb_offset will be 0, and the length may wind
16636 	 * up 0.
16637 	 *
16638 	 * If sack_rxmit is true we are retransmitting from the scoreboard
16639 	 * in which case len is already set.
16640 	 */
16641 	if ((sack_rxmit == 0) &&
16642 	    (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) {
16643 		uint32_t avail;
16644 
16645 		avail = sbavail(sb);
16646 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
16647 			sb_offset = tp->snd_nxt - tp->snd_una;
16648 		else
16649 			sb_offset = 0;
16650 		if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) {
16651 			if (rack->r_ctl.rc_tlp_new_data) {
16652 				/* TLP is forcing out new data */
16653 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
16654 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
16655 				}
16656 				if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) {
16657 					if (tp->snd_wnd > sb_offset)
16658 						len = tp->snd_wnd - sb_offset;
16659 					else
16660 						len = 0;
16661 				} else {
16662 					len = rack->r_ctl.rc_tlp_new_data;
16663 				}
16664 			}  else {
16665 				len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset);
16666 			}
16667 			if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) {
16668 				/*
16669 				 * For prr=off, we need to send only 1 MSS
16670 				 * at a time. We do this because another sack could
16671 				 * be arriving that causes us to send retransmits and
16672 				 * we don't want to be on a long pace due to a larger send
16673 				 * that keeps us from sending out the retransmit.
16674 				 */
16675 				len = segsiz;
16676 			}
16677 		} else {
16678 			uint32_t outstanding;
16679 			/*
16680 			 * We are inside of a Fast recovery episode, this
16681 			 * is caused by a SACK or 3 dup acks. At this point
16682 			 * we have sent all the retransmissions and we rely
16683 			 * on PRR to dictate what we will send in the form of
16684 			 * new data.
16685 			 */
16686 
16687 			outstanding = tp->snd_max - tp->snd_una;
16688 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
16689 				if (tp->snd_wnd > outstanding) {
16690 					len = tp->snd_wnd - outstanding;
16691 					/* Check to see if we have the data */
16692 					if ((sb_offset + len) > avail) {
16693 						/* It does not all fit */
16694 						if (avail > sb_offset)
16695 							len = avail - sb_offset;
16696 						else
16697 							len = 0;
16698 					}
16699 				} else {
16700 					len = 0;
16701 				}
16702 			} else if (avail > sb_offset) {
16703 				len = avail - sb_offset;
16704 			} else {
16705 				len = 0;
16706 			}
16707 			if (len > 0) {
16708 				if (len > rack->r_ctl.rc_prr_sndcnt) {
16709 					len = rack->r_ctl.rc_prr_sndcnt;
16710 				}
16711 				if (len > 0) {
16712 					sub_from_prr = 1;
16713 					counter_u64_add(rack_rtm_prr_newdata, 1);
16714 				}
16715 			}
16716 			if (len > segsiz) {
16717 				/*
16718 				 * We should never send more than a MSS when
16719 				 * retransmitting or sending new data in prr
16720 				 * mode unless the override flag is on. Most
16721 				 * likely the PRR algorithm is not going to
16722 				 * let us send a lot as well :-)
16723 				 */
16724 				if (rack->r_ctl.rc_prr_sendalot == 0) {
16725 					len = segsiz;
16726 				}
16727 			} else if (len < segsiz) {
16728 				/*
16729 				 * Do we send any? The idea here is if the
16730 				 * send empty's the socket buffer we want to
16731 				 * do it. However if not then lets just wait
16732 				 * for our prr_sndcnt to get bigger.
16733 				 */
16734 				long leftinsb;
16735 
16736 				leftinsb = sbavail(sb) - sb_offset;
16737 				if (leftinsb > len) {
16738 					/* This send does not empty the sb */
16739 					len = 0;
16740 				}
16741 			}
16742 		}
16743 	} else if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
16744 		/*
16745 		 * If you have not established
16746 		 * and are not doing FAST OPEN
16747 		 * no data please.
16748 		 */
16749 		if ((sack_rxmit == 0) &&
16750 		    (!IS_FASTOPEN(tp->t_flags))){
16751 			len = 0;
16752 			sb_offset = 0;
16753 		}
16754 	}
16755 	if (prefetch_so_done == 0) {
16756 		kern_prefetch(so, &prefetch_so_done);
16757 		prefetch_so_done = 1;
16758 	}
16759 	/*
16760 	 * Lop off SYN bit if it has already been sent.  However, if this is
16761 	 * SYN-SENT state and if segment contains data and if we don't know
16762 	 * that foreign host supports TAO, suppress sending segment.
16763 	 */
16764 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
16765 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
16766 		/*
16767 		 * When sending additional segments following a TFO SYN|ACK,
16768 		 * do not include the SYN bit.
16769 		 */
16770 		if (IS_FASTOPEN(tp->t_flags) &&
16771 		    (tp->t_state == TCPS_SYN_RECEIVED))
16772 			flags &= ~TH_SYN;
16773 	}
16774 	/*
16775 	 * Be careful not to send data and/or FIN on SYN segments. This
16776 	 * measure is needed to prevent interoperability problems with not
16777 	 * fully conformant TCP implementations.
16778 	 */
16779 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
16780 		len = 0;
16781 		flags &= ~TH_FIN;
16782 	}
16783 	/*
16784 	 * On TFO sockets, ensure no data is sent in the following cases:
16785 	 *
16786 	 *  - When retransmitting SYN|ACK on a passively-created socket
16787 	 *
16788 	 *  - When retransmitting SYN on an actively created socket
16789 	 *
16790 	 *  - When sending a zero-length cookie (cookie request) on an
16791 	 *    actively created socket
16792 	 *
16793 	 *  - When the socket is in the CLOSED state (RST is being sent)
16794 	 */
16795 	if (IS_FASTOPEN(tp->t_flags) &&
16796 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
16797 	     ((tp->t_state == TCPS_SYN_SENT) &&
16798 	      (tp->t_tfo_client_cookie_len == 0)) ||
16799 	     (flags & TH_RST))) {
16800 		sack_rxmit = 0;
16801 		len = 0;
16802 	}
16803 	/* Without fast-open there should never be data sent on a SYN */
16804 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) {
16805 		tp->snd_nxt = tp->iss;
16806 		len = 0;
16807 	}
16808 	if ((len > segsiz) && (tcp_dsack_block_exists(tp))) {
16809 		/* We only send 1 MSS if we have a DSACK block */
16810 		add_flag |= RACK_SENT_W_DSACK;
16811 		len = segsiz;
16812 	}
16813 	orig_len = len;
16814 	if (len <= 0) {
16815 		/*
16816 		 * If FIN has been sent but not acked, but we haven't been
16817 		 * called to retransmit, len will be < 0.  Otherwise, window
16818 		 * shrank after we sent into it.  If window shrank to 0,
16819 		 * cancel pending retransmit, pull snd_nxt back to (closed)
16820 		 * window, and set the persist timer if it isn't already
16821 		 * going.  If the window didn't close completely, just wait
16822 		 * for an ACK.
16823 		 *
16824 		 * We also do a general check here to ensure that we will
16825 		 * set the persist timer when we have data to send, but a
16826 		 * 0-byte window. This makes sure the persist timer is set
16827 		 * even if the packet hits one of the "goto send" lines
16828 		 * below.
16829 		 */
16830 		len = 0;
16831 		if ((tp->snd_wnd == 0) &&
16832 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
16833 		    (tp->snd_una == tp->snd_max) &&
16834 		    (sb_offset < (int)sbavail(sb))) {
16835 			rack_enter_persist(tp, rack, cts);
16836 		}
16837 	} else if ((rsm == NULL) &&
16838 		   (doing_tlp == 0) &&
16839 		   (len < pace_max_seg)) {
16840 		/*
16841 		 * We are not sending a maximum sized segment for
16842 		 * some reason. Should we not send anything (think
16843 		 * sws or persists)?
16844 		 */
16845 		if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
16846 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
16847 		    (len < minseg) &&
16848 		    (len < (int)(sbavail(sb) - sb_offset))) {
16849 			/*
16850 			 * Here the rwnd is less than
16851 			 * the minimum pacing size, this is not a retransmit,
16852 			 * we are established and
16853 			 * the send is not the last in the socket buffer
16854 			 * we send nothing, and we may enter persists
16855 			 * if nothing is outstanding.
16856 			 */
16857 			len = 0;
16858 			if (tp->snd_max == tp->snd_una) {
16859 				/*
16860 				 * Nothing out we can
16861 				 * go into persists.
16862 				 */
16863 				rack_enter_persist(tp, rack, cts);
16864 			}
16865 		     } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) &&
16866 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
16867 			   (len < (int)(sbavail(sb) - sb_offset)) &&
16868 			   (len < minseg)) {
16869 			/*
16870 			 * Here we are not retransmitting, and
16871 			 * the cwnd is not so small that we could
16872 			 * not send at least a min size (rxt timer
16873 			 * not having gone off), We have 2 segments or
16874 			 * more already in flight, its not the tail end
16875 			 * of the socket buffer  and the cwnd is blocking
16876 			 * us from sending out a minimum pacing segment size.
16877 			 * Lets not send anything.
16878 			 */
16879 			len = 0;
16880 		} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
16881 			    min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
16882 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
16883 			   (len < (int)(sbavail(sb) - sb_offset)) &&
16884 			   (TCPS_HAVEESTABLISHED(tp->t_state))) {
16885 			/*
16886 			 * Here we have a send window but we have
16887 			 * filled it up and we can't send another pacing segment.
16888 			 * We also have in flight more than 2 segments
16889 			 * and we are not completing the sb i.e. we allow
16890 			 * the last bytes of the sb to go out even if
16891 			 * its not a full pacing segment.
16892 			 */
16893 			len = 0;
16894 		} else if ((rack->r_ctl.crte != NULL) &&
16895 			   (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) &&
16896 			   (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) &&
16897 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) &&
16898 			   (len < (int)(sbavail(sb) - sb_offset))) {
16899 			/*
16900 			 * Here we are doing hardware pacing, this is not a TLP,
16901 			 * we are not sending a pace max segment size, there is rwnd
16902 			 * room to send at least N pace_max_seg, the cwnd is greater
16903 			 * than or equal to a full pacing segments plus 4 mss and we have 2 or
16904 			 * more segments in flight and its not the tail of the socket buffer.
16905 			 *
16906 			 * We don't want to send instead we need to get more ack's in to
16907 			 * allow us to send a full pacing segment. Normally, if we are pacing
16908 			 * about the right speed, we should have finished our pacing
16909 			 * send as most of the acks have come back if we are at the
16910 			 * right rate. This is a bit fuzzy since return path delay
16911 			 * can delay the acks, which is why we want to make sure we
16912 			 * have cwnd space to have a bit more than a max pace segments in flight.
16913 			 *
16914 			 * If we have not gotten our acks back we are pacing at too high a
16915 			 * rate delaying will not hurt and will bring our GP estimate down by
16916 			 * injecting the delay. If we don't do this we will send
16917 			 * 2 MSS out in response to the acks being clocked in which
16918 			 * defeats the point of hw-pacing (i.e. to help us get
16919 			 * larger TSO's out).
16920 			 */
16921 			len = 0;
16922 
16923 		}
16924 
16925 	}
16926 	/* len will be >= 0 after this point. */
16927 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
16928 	rack_sndbuf_autoscale(rack);
16929 	/*
16930 	 * Decide if we can use TCP Segmentation Offloading (if supported by
16931 	 * hardware).
16932 	 *
16933 	 * TSO may only be used if we are in a pure bulk sending state.  The
16934 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
16935 	 * options prevent using TSO.  With TSO the TCP header is the same
16936 	 * (except for the sequence number) for all generated packets.  This
16937 	 * makes it impossible to transmit any options which vary per
16938 	 * generated segment or packet.
16939 	 *
16940 	 * IPv4 handling has a clear separation of ip options and ip header
16941 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
16942 	 * the right thing below to provide length of just ip options and thus
16943 	 * checking for ipoptlen is enough to decide if ip options are present.
16944 	 */
16945 	ipoptlen = 0;
16946 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
16947 	/*
16948 	 * Pre-calculate here as we save another lookup into the darknesses
16949 	 * of IPsec that way and can actually decide if TSO is ok.
16950 	 */
16951 #ifdef INET6
16952 	if (isipv6 && IPSEC_ENABLED(ipv6))
16953 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
16954 #ifdef INET
16955 	else
16956 #endif
16957 #endif				/* INET6 */
16958 #ifdef INET
16959 		if (IPSEC_ENABLED(ipv4))
16960 			ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
16961 #endif				/* INET */
16962 #endif
16963 
16964 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
16965 	ipoptlen += ipsec_optlen;
16966 #endif
16967 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz &&
16968 	    (tp->t_port == 0) &&
16969 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
16970 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
16971 	    ipoptlen == 0)
16972 		tso = 1;
16973 	{
16974 		uint32_t outstanding;
16975 
16976 		outstanding = tp->snd_max - tp->snd_una;
16977 		if (tp->t_flags & TF_SENTFIN) {
16978 			/*
16979 			 * If we sent a fin, snd_max is 1 higher than
16980 			 * snd_una
16981 			 */
16982 			outstanding--;
16983 		}
16984 		if (sack_rxmit) {
16985 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
16986 				flags &= ~TH_FIN;
16987 		} else {
16988 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
16989 				   sbused(sb)))
16990 				flags &= ~TH_FIN;
16991 		}
16992 	}
16993 	recwin = lmin(lmax(sbspace(&so->so_rcv), 0),
16994 	    (long)TCP_MAXWIN << tp->rcv_scale);
16995 
16996 	/*
16997 	 * Sender silly window avoidance.   We transmit under the following
16998 	 * conditions when len is non-zero:
16999 	 *
17000 	 * - We have a full segment (or more with TSO) - This is the last
17001 	 * buffer in a write()/send() and we are either idle or running
17002 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
17003 	 * then 1/2 the maximum send window's worth of data (receiver may be
17004 	 * limited the window size) - we need to retransmit
17005 	 */
17006 	if (len) {
17007 		if (len >= segsiz) {
17008 			goto send;
17009 		}
17010 		/*
17011 		 * NOTE! on localhost connections an 'ack' from the remote
17012 		 * end may occur synchronously with the output and cause us
17013 		 * to flush a buffer queued with moretocome.  XXX
17014 		 *
17015 		 */
17016 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
17017 		    (idle || (tp->t_flags & TF_NODELAY)) &&
17018 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17019 		    (tp->t_flags & TF_NOPUSH) == 0) {
17020 			pass = 2;
17021 			goto send;
17022 		}
17023 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
17024 			pass = 22;
17025 			goto send;
17026 		}
17027 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
17028 			pass = 4;
17029 			goto send;
17030 		}
17031 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
17032 			pass = 5;
17033 			goto send;
17034 		}
17035 		if (sack_rxmit) {
17036 			pass = 6;
17037 			goto send;
17038 		}
17039 		if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) &&
17040 		    (ctf_outstanding(tp) < (segsiz * 2))) {
17041 			/*
17042 			 * We have less than two MSS outstanding (delayed ack)
17043 			 * and our rwnd will not let us send a full sized
17044 			 * MSS. Lets go ahead and let this small segment
17045 			 * out because we want to try to have at least two
17046 			 * packets inflight to not be caught by delayed ack.
17047 			 */
17048 			pass = 12;
17049 			goto send;
17050 		}
17051 	}
17052 	/*
17053 	 * Sending of standalone window updates.
17054 	 *
17055 	 * Window updates are important when we close our window due to a
17056 	 * full socket buffer and are opening it again after the application
17057 	 * reads data from it.  Once the window has opened again and the
17058 	 * remote end starts to send again the ACK clock takes over and
17059 	 * provides the most current window information.
17060 	 *
17061 	 * We must avoid the silly window syndrome whereas every read from
17062 	 * the receive buffer, no matter how small, causes a window update
17063 	 * to be sent.  We also should avoid sending a flurry of window
17064 	 * updates when the socket buffer had queued a lot of data and the
17065 	 * application is doing small reads.
17066 	 *
17067 	 * Prevent a flurry of pointless window updates by only sending an
17068 	 * update when we can increase the advertized window by more than
17069 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
17070 	 * full or is very small be more aggressive and send an update
17071 	 * whenever we can increase by two mss sized segments. In all other
17072 	 * situations the ACK's to new incoming data will carry further
17073 	 * window increases.
17074 	 *
17075 	 * Don't send an independent window update if a delayed ACK is
17076 	 * pending (it will get piggy-backed on it) or the remote side
17077 	 * already has done a half-close and won't send more data.  Skip
17078 	 * this if the connection is in T/TCP half-open state.
17079 	 */
17080 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
17081 	    !(tp->t_flags & TF_DELACK) &&
17082 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
17083 		/*
17084 		 * "adv" is the amount we could increase the window, taking
17085 		 * into account that we are limited by TCP_MAXWIN <<
17086 		 * tp->rcv_scale.
17087 		 */
17088 		int32_t adv;
17089 		int oldwin;
17090 
17091 		adv = recwin;
17092 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
17093 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
17094 			if (adv > oldwin)
17095 			    adv -= oldwin;
17096 			else {
17097 				/* We can't increase the window */
17098 				adv = 0;
17099 			}
17100 		} else
17101 			oldwin = 0;
17102 
17103 		/*
17104 		 * If the new window size ends up being the same as or less
17105 		 * than the old size when it is scaled, then don't force
17106 		 * a window update.
17107 		 */
17108 		if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale)
17109 			goto dontupdate;
17110 
17111 		if (adv >= (int32_t)(2 * segsiz) &&
17112 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
17113 		     recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
17114 		     so->so_rcv.sb_hiwat <= 8 * segsiz)) {
17115 			pass = 7;
17116 			goto send;
17117 		}
17118 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) {
17119 			pass = 23;
17120 			goto send;
17121 		}
17122 	}
17123 dontupdate:
17124 
17125 	/*
17126 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
17127 	 * is also a catch-all for the retransmit timer timeout case.
17128 	 */
17129 	if (tp->t_flags & TF_ACKNOW) {
17130 		pass = 8;
17131 		goto send;
17132 	}
17133 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
17134 		pass = 9;
17135 		goto send;
17136 	}
17137 	/*
17138 	 * If our state indicates that FIN should be sent and we have not
17139 	 * yet done so, then we need to send.
17140 	 */
17141 	if ((flags & TH_FIN) &&
17142 	    (tp->snd_nxt == tp->snd_una)) {
17143 		pass = 11;
17144 		goto send;
17145 	}
17146 	/*
17147 	 * No reason to send a segment, just return.
17148 	 */
17149 just_return:
17150 	SOCKBUF_UNLOCK(sb);
17151 just_return_nolock:
17152 	{
17153 		int app_limited = CTF_JR_SENT_DATA;
17154 
17155 		if (tot_len_this_send > 0) {
17156 			/* Make sure snd_nxt is up to max */
17157 			rack->r_ctl.fsb.recwin = recwin;
17158 			slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz);
17159 			if ((error == 0) &&
17160 			    rack_use_rfo &&
17161 			    ((flags & (TH_SYN|TH_FIN)) == 0) &&
17162 			    (ipoptlen == 0) &&
17163 			    (tp->snd_nxt == tp->snd_max) &&
17164 			    (tp->rcv_numsacks == 0) &&
17165 			    rack->r_fsb_inited &&
17166 			    TCPS_HAVEESTABLISHED(tp->t_state) &&
17167 			    (rack->r_must_retran == 0) &&
17168 			    ((tp->t_flags & TF_NEEDFIN) == 0) &&
17169 			    (len > 0) && (orig_len > 0) &&
17170 			    (orig_len > len) &&
17171 			    ((orig_len - len) >= segsiz) &&
17172 			    ((optlen == 0) ||
17173 			     ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
17174 				/* We can send at least one more MSS using our fsb */
17175 
17176 				rack->r_fast_output = 1;
17177 				rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
17178 				rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
17179 				rack->r_ctl.fsb.tcp_flags = flags;
17180 				rack->r_ctl.fsb.left_to_send = orig_len - len;
17181 				if (hw_tls)
17182 					rack->r_ctl.fsb.hw_tls = 1;
17183 				else
17184 					rack->r_ctl.fsb.hw_tls = 0;
17185 				KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
17186 					("rack:%p left_to_send:%u sbavail:%u out:%u",
17187 					rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
17188 					 (tp->snd_max - tp->snd_una)));
17189 				if (rack->r_ctl.fsb.left_to_send < segsiz)
17190 					rack->r_fast_output = 0;
17191 				else {
17192 					if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
17193 						rack->r_ctl.fsb.rfo_apply_push = 1;
17194 					else
17195 						rack->r_ctl.fsb.rfo_apply_push = 0;
17196 				}
17197 			} else
17198 				rack->r_fast_output = 0;
17199 
17200 
17201 			rack_log_fsb(rack, tp, so, flags,
17202 				     ipoptlen, orig_len, len, 0,
17203 				     1, optlen, __LINE__, 1);
17204 			if (SEQ_GT(tp->snd_max, tp->snd_nxt))
17205 				tp->snd_nxt = tp->snd_max;
17206 		} else {
17207 			int end_window = 0;
17208 			uint32_t seq = tp->gput_ack;
17209 
17210 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17211 			if (rsm) {
17212 				/*
17213 				 * Mark the last sent that we just-returned (hinting
17214 				 * that delayed ack may play a role in any rtt measurement).
17215 				 */
17216 				rsm->r_just_ret = 1;
17217 			}
17218 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
17219 			rack->r_ctl.rc_agg_delayed = 0;
17220 			rack->r_early = 0;
17221 			rack->r_late = 0;
17222 			rack->r_ctl.rc_agg_early = 0;
17223 			if ((ctf_outstanding(tp) +
17224 			     min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)),
17225 				 minseg)) >= tp->snd_wnd) {
17226 				/* We are limited by the rwnd */
17227 				app_limited = CTF_JR_RWND_LIMITED;
17228 				if (IN_FASTRECOVERY(tp->t_flags))
17229 				    rack->r_ctl.rc_prr_sndcnt = 0;
17230 			} else if (ctf_outstanding(tp) >= sbavail(sb)) {
17231 				/* We are limited by whats available -- app limited */
17232 				app_limited = CTF_JR_APP_LIMITED;
17233 				if (IN_FASTRECOVERY(tp->t_flags))
17234 				    rack->r_ctl.rc_prr_sndcnt = 0;
17235 			} else if ((idle == 0) &&
17236 				   ((tp->t_flags & TF_NODELAY) == 0) &&
17237 				   ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17238 				   (len < segsiz)) {
17239 				/*
17240 				 * No delay is not on and the
17241 				 * user is sending less than 1MSS. This
17242 				 * brings out SWS avoidance so we
17243 				 * don't send. Another app-limited case.
17244 				 */
17245 				app_limited = CTF_JR_APP_LIMITED;
17246 			} else if (tp->t_flags & TF_NOPUSH) {
17247 				/*
17248 				 * The user has requested no push of
17249 				 * the last segment and we are
17250 				 * at the last segment. Another app
17251 				 * limited case.
17252 				 */
17253 				app_limited = CTF_JR_APP_LIMITED;
17254 			} else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) {
17255 				/* Its the cwnd */
17256 				app_limited = CTF_JR_CWND_LIMITED;
17257 			} else if (IN_FASTRECOVERY(tp->t_flags) &&
17258 				   (rack->rack_no_prr == 0) &&
17259 				   (rack->r_ctl.rc_prr_sndcnt < segsiz)) {
17260 				app_limited = CTF_JR_PRR;
17261 			} else {
17262 				/* Now why here are we not sending? */
17263 #ifdef NOW
17264 #ifdef INVARIANTS
17265 				panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use);
17266 #endif
17267 #endif
17268 				app_limited = CTF_JR_ASSESSING;
17269 			}
17270 			/*
17271 			 * App limited in some fashion, for our pacing GP
17272 			 * measurements we don't want any gap (even cwnd).
17273 			 * Close  down the measurement window.
17274 			 */
17275 			if (rack_cwnd_block_ends_measure &&
17276 			    ((app_limited == CTF_JR_CWND_LIMITED) ||
17277 			     (app_limited == CTF_JR_PRR))) {
17278 				/*
17279 				 * The reason we are not sending is
17280 				 * the cwnd (or prr). We have been configured
17281 				 * to end the measurement window in
17282 				 * this case.
17283 				 */
17284 				end_window = 1;
17285 			} else if (rack_rwnd_block_ends_measure &&
17286 				   (app_limited == CTF_JR_RWND_LIMITED)) {
17287 				/*
17288 				 * We are rwnd limited and have been
17289 				 * configured to end the measurement
17290 				 * window in this case.
17291 				 */
17292 				end_window = 1;
17293 			} else if (app_limited == CTF_JR_APP_LIMITED) {
17294 				/*
17295 				 * A true application limited period, we have
17296 				 * ran out of data.
17297 				 */
17298 				end_window = 1;
17299 			} else if (app_limited == CTF_JR_ASSESSING) {
17300 				/*
17301 				 * In the assessing case we hit the end of
17302 				 * the if/else and had no known reason
17303 				 * This will panic us under invariants..
17304 				 *
17305 				 * If we get this out in logs we need to
17306 				 * investagate which reason we missed.
17307 				 */
17308 				end_window = 1;
17309 			}
17310 			if (end_window) {
17311 				uint8_t log = 0;
17312 
17313 				/* Adjust the Gput measurement */
17314 				if ((tp->t_flags & TF_GPUTINPROG) &&
17315 				    SEQ_GT(tp->gput_ack, tp->snd_max)) {
17316 					tp->gput_ack = tp->snd_max;
17317 					if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
17318 						/*
17319 						 * There is not enough to measure.
17320 						 */
17321 						tp->t_flags &= ~TF_GPUTINPROG;
17322 						rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
17323 									   rack->r_ctl.rc_gp_srtt /*flex1*/,
17324 									   tp->gput_seq,
17325 									   0, 0, 18, __LINE__, NULL, 0);
17326 					} else
17327 						log = 1;
17328 				}
17329 				/* Mark the last packet has app limited */
17330 				rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17331 				if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
17332 					if (rack->r_ctl.rc_app_limited_cnt == 0)
17333 						rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
17334 					else {
17335 						/*
17336 						 * Go out to the end app limited and mark
17337 						 * this new one as next and move the end_appl up
17338 						 * to this guy.
17339 						 */
17340 						if (rack->r_ctl.rc_end_appl)
17341 							rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
17342 						rack->r_ctl.rc_end_appl = rsm;
17343 					}
17344 					rsm->r_flags |= RACK_APP_LIMITED;
17345 					rack->r_ctl.rc_app_limited_cnt++;
17346 				}
17347 				if (log)
17348 					rack_log_pacing_delay_calc(rack,
17349 								   rack->r_ctl.rc_app_limited_cnt, seq,
17350 								   tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0);
17351 			}
17352 		}
17353 		if (slot) {
17354 			/* set the rack tcb into the slot N */
17355 			counter_u64_add(rack_paced_segments, 1);
17356 		} else if (tot_len_this_send) {
17357 			counter_u64_add(rack_unpaced_segments, 1);
17358 		}
17359 		/* Check if we need to go into persists or not */
17360 		if ((tp->snd_max == tp->snd_una) &&
17361 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
17362 		    sbavail(sb) &&
17363 		    (sbavail(sb) > tp->snd_wnd) &&
17364 		    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) {
17365 			/* Yes lets make sure to move to persist before timer-start */
17366 			rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
17367 		}
17368 		rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
17369 		rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use);
17370 	}
17371 #ifdef NETFLIX_SHARED_CWND
17372 	if ((sbavail(sb) == 0) &&
17373 	    rack->r_ctl.rc_scw) {
17374 		tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
17375 		rack->rack_scwnd_is_idle = 1;
17376 	}
17377 #endif
17378 #ifdef TCP_ACCOUNTING
17379 	if (tot_len_this_send > 0) {
17380 		crtsc = get_cyclecount();
17381 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17382 			tp->tcp_cnt_counters[SND_OUT_DATA]++;
17383 		}
17384 		counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
17385 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17386 			tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
17387 		}
17388 		counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
17389 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17390 			tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz);
17391 		}
17392 		counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz));
17393 	} else {
17394 		crtsc = get_cyclecount();
17395 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17396 			tp->tcp_cnt_counters[SND_LIMITED]++;
17397 		}
17398 		counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1);
17399 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17400 			tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val);
17401 		}
17402 		counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val));
17403 	}
17404 	sched_unpin();
17405 #endif
17406 	return (0);
17407 
17408 send:
17409 	if (rsm || sack_rxmit)
17410 		counter_u64_add(rack_nfto_resend, 1);
17411 	else
17412 		counter_u64_add(rack_non_fto_send, 1);
17413 	if ((flags & TH_FIN) &&
17414 	    sbavail(sb)) {
17415 		/*
17416 		 * We do not transmit a FIN
17417 		 * with data outstanding. We
17418 		 * need to make it so all data
17419 		 * is acked first.
17420 		 */
17421 		flags &= ~TH_FIN;
17422 	}
17423 	/* Enforce stack imposed max seg size if we have one */
17424 	if (rack->r_ctl.rc_pace_max_segs &&
17425 	    (len > rack->r_ctl.rc_pace_max_segs)) {
17426 		mark = 1;
17427 		len = rack->r_ctl.rc_pace_max_segs;
17428 	}
17429 	SOCKBUF_LOCK_ASSERT(sb);
17430 	if (len > 0) {
17431 		if (len >= segsiz)
17432 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
17433 		else
17434 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
17435 	}
17436 	/*
17437 	 * Before ESTABLISHED, force sending of initial options unless TCP
17438 	 * set not to do any options. NOTE: we assume that the IP/TCP header
17439 	 * plus TCP options always fit in a single mbuf, leaving room for a
17440 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
17441 	 * + optlen <= MCLBYTES
17442 	 */
17443 	optlen = 0;
17444 #ifdef INET6
17445 	if (isipv6)
17446 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
17447 	else
17448 #endif
17449 		hdrlen = sizeof(struct tcpiphdr);
17450 
17451 	/*
17452 	 * Compute options for segment. We only have to care about SYN and
17453 	 * established connection segments.  Options for SYN-ACK segments
17454 	 * are handled in TCP syncache.
17455 	 */
17456 	to.to_flags = 0;
17457 	if ((tp->t_flags & TF_NOOPT) == 0) {
17458 		/* Maximum segment size. */
17459 		if (flags & TH_SYN) {
17460 			tp->snd_nxt = tp->iss;
17461 			to.to_mss = tcp_mssopt(&inp->inp_inc);
17462 			if (tp->t_port)
17463 				to.to_mss -= V_tcp_udp_tunneling_overhead;
17464 			to.to_flags |= TOF_MSS;
17465 
17466 			/*
17467 			 * On SYN or SYN|ACK transmits on TFO connections,
17468 			 * only include the TFO option if it is not a
17469 			 * retransmit, as the presence of the TFO option may
17470 			 * have caused the original SYN or SYN|ACK to have
17471 			 * been dropped by a middlebox.
17472 			 */
17473 			if (IS_FASTOPEN(tp->t_flags) &&
17474 			    (tp->t_rxtshift == 0)) {
17475 				if (tp->t_state == TCPS_SYN_RECEIVED) {
17476 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
17477 					to.to_tfo_cookie =
17478 						(u_int8_t *)&tp->t_tfo_cookie.server;
17479 					to.to_flags |= TOF_FASTOPEN;
17480 					wanted_cookie = 1;
17481 				} else if (tp->t_state == TCPS_SYN_SENT) {
17482 					to.to_tfo_len =
17483 						tp->t_tfo_client_cookie_len;
17484 					to.to_tfo_cookie =
17485 						tp->t_tfo_cookie.client;
17486 					to.to_flags |= TOF_FASTOPEN;
17487 					wanted_cookie = 1;
17488 					/*
17489 					 * If we wind up having more data to
17490 					 * send with the SYN than can fit in
17491 					 * one segment, don't send any more
17492 					 * until the SYN|ACK comes back from
17493 					 * the other end.
17494 					 */
17495 					sendalot = 0;
17496 				}
17497 			}
17498 		}
17499 		/* Window scaling. */
17500 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
17501 			to.to_wscale = tp->request_r_scale;
17502 			to.to_flags |= TOF_SCALE;
17503 		}
17504 		/* Timestamps. */
17505 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
17506 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
17507 			to.to_tsval = ms_cts + tp->ts_offset;
17508 			to.to_tsecr = tp->ts_recent;
17509 			to.to_flags |= TOF_TS;
17510 		}
17511 		/* Set receive buffer autosizing timestamp. */
17512 		if (tp->rfbuf_ts == 0 &&
17513 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
17514 			tp->rfbuf_ts = tcp_ts_getticks();
17515 		/* Selective ACK's. */
17516 		if (tp->t_flags & TF_SACK_PERMIT) {
17517 			if (flags & TH_SYN)
17518 				to.to_flags |= TOF_SACKPERM;
17519 			else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
17520 				 tp->rcv_numsacks > 0) {
17521 				to.to_flags |= TOF_SACK;
17522 				to.to_nsacks = tp->rcv_numsacks;
17523 				to.to_sacks = (u_char *)tp->sackblks;
17524 			}
17525 		}
17526 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
17527 		/* TCP-MD5 (RFC2385). */
17528 		if (tp->t_flags & TF_SIGNATURE)
17529 			to.to_flags |= TOF_SIGNATURE;
17530 #endif				/* TCP_SIGNATURE */
17531 
17532 		/* Processing the options. */
17533 		hdrlen += optlen = tcp_addoptions(&to, opt);
17534 		/*
17535 		 * If we wanted a TFO option to be added, but it was unable
17536 		 * to fit, ensure no data is sent.
17537 		 */
17538 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
17539 		    !(to.to_flags & TOF_FASTOPEN))
17540 			len = 0;
17541 	}
17542 	if (tp->t_port) {
17543 		if (V_tcp_udp_tunneling_port == 0) {
17544 			/* The port was removed?? */
17545 			SOCKBUF_UNLOCK(&so->so_snd);
17546 #ifdef TCP_ACCOUNTING
17547 			crtsc = get_cyclecount();
17548 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17549 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
17550 			}
17551 			counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
17552 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17553 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
17554 			}
17555 			counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
17556 			sched_unpin();
17557 #endif
17558 			return (EHOSTUNREACH);
17559 		}
17560 		hdrlen += sizeof(struct udphdr);
17561 	}
17562 #ifdef INET6
17563 	if (isipv6)
17564 		ipoptlen = ip6_optlen(tp->t_inpcb);
17565 	else
17566 #endif
17567 		if (tp->t_inpcb->inp_options)
17568 			ipoptlen = tp->t_inpcb->inp_options->m_len -
17569 				offsetof(struct ipoption, ipopt_list);
17570 		else
17571 			ipoptlen = 0;
17572 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
17573 	ipoptlen += ipsec_optlen;
17574 #endif
17575 
17576 	/*
17577 	 * Adjust data length if insertion of options will bump the packet
17578 	 * length beyond the t_maxseg length. Clear the FIN bit because we
17579 	 * cut off the tail of the segment.
17580 	 */
17581 	if (len + optlen + ipoptlen > tp->t_maxseg) {
17582 		if (tso) {
17583 			uint32_t if_hw_tsomax;
17584 			uint32_t moff;
17585 			int32_t max_len;
17586 
17587 			/* extract TSO information */
17588 			if_hw_tsomax = tp->t_tsomax;
17589 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
17590 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
17591 			KASSERT(ipoptlen == 0,
17592 				("%s: TSO can't do IP options", __func__));
17593 
17594 			/*
17595 			 * Check if we should limit by maximum payload
17596 			 * length:
17597 			 */
17598 			if (if_hw_tsomax != 0) {
17599 				/* compute maximum TSO length */
17600 				max_len = (if_hw_tsomax - hdrlen -
17601 					   max_linkhdr);
17602 				if (max_len <= 0) {
17603 					len = 0;
17604 				} else if (len > max_len) {
17605 					sendalot = 1;
17606 					len = max_len;
17607 					mark = 2;
17608 				}
17609 			}
17610 			/*
17611 			 * Prevent the last segment from being fractional
17612 			 * unless the send sockbuf can be emptied:
17613 			 */
17614 			max_len = (tp->t_maxseg - optlen);
17615 			if ((sb_offset + len) < sbavail(sb)) {
17616 				moff = len % (u_int)max_len;
17617 				if (moff != 0) {
17618 					mark = 3;
17619 					len -= moff;
17620 				}
17621 			}
17622 			/*
17623 			 * In case there are too many small fragments don't
17624 			 * use TSO:
17625 			 */
17626 			if (len <= segsiz) {
17627 				mark = 4;
17628 				tso = 0;
17629 			}
17630 			/*
17631 			 * Send the FIN in a separate segment after the bulk
17632 			 * sending is done. We don't trust the TSO
17633 			 * implementations to clear the FIN flag on all but
17634 			 * the last segment.
17635 			 */
17636 			if (tp->t_flags & TF_NEEDFIN) {
17637 				sendalot = 4;
17638 			}
17639 		} else {
17640 			mark = 5;
17641 			if (optlen + ipoptlen >= tp->t_maxseg) {
17642 				/*
17643 				 * Since we don't have enough space to put
17644 				 * the IP header chain and the TCP header in
17645 				 * one packet as required by RFC 7112, don't
17646 				 * send it. Also ensure that at least one
17647 				 * byte of the payload can be put into the
17648 				 * TCP segment.
17649 				 */
17650 				SOCKBUF_UNLOCK(&so->so_snd);
17651 				error = EMSGSIZE;
17652 				sack_rxmit = 0;
17653 				goto out;
17654 			}
17655 			len = tp->t_maxseg - optlen - ipoptlen;
17656 			sendalot = 5;
17657 		}
17658 	} else {
17659 		tso = 0;
17660 		mark = 6;
17661 	}
17662 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
17663 		("%s: len > IP_MAXPACKET", __func__));
17664 #ifdef DIAGNOSTIC
17665 #ifdef INET6
17666 	if (max_linkhdr + hdrlen > MCLBYTES)
17667 #else
17668 		if (max_linkhdr + hdrlen > MHLEN)
17669 #endif
17670 			panic("tcphdr too big");
17671 #endif
17672 
17673 	/*
17674 	 * This KASSERT is here to catch edge cases at a well defined place.
17675 	 * Before, those had triggered (random) panic conditions further
17676 	 * down.
17677 	 */
17678 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
17679 	if ((len == 0) &&
17680 	    (flags & TH_FIN) &&
17681 	    (sbused(sb))) {
17682 		/*
17683 		 * We have outstanding data, don't send a fin by itself!.
17684 		 */
17685 		goto just_return;
17686 	}
17687 	/*
17688 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
17689 	 * and initialize the header from the template for sends on this
17690 	 * connection.
17691 	 */
17692 	hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0;
17693 	if (len) {
17694 		uint32_t max_val;
17695 		uint32_t moff;
17696 
17697 		if (rack->r_ctl.rc_pace_max_segs)
17698 			max_val = rack->r_ctl.rc_pace_max_segs;
17699 		else if (rack->rc_user_set_max_segs)
17700 			max_val = rack->rc_user_set_max_segs * segsiz;
17701 		else
17702 			max_val = len;
17703 		/*
17704 		 * We allow a limit on sending with hptsi.
17705 		 */
17706 		if (len > max_val) {
17707 			mark = 7;
17708 			len = max_val;
17709 		}
17710 #ifdef INET6
17711 		if (MHLEN < hdrlen + max_linkhdr)
17712 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
17713 		else
17714 #endif
17715 			m = m_gethdr(M_NOWAIT, MT_DATA);
17716 
17717 		if (m == NULL) {
17718 			SOCKBUF_UNLOCK(sb);
17719 			error = ENOBUFS;
17720 			sack_rxmit = 0;
17721 			goto out;
17722 		}
17723 		m->m_data += max_linkhdr;
17724 		m->m_len = hdrlen;
17725 
17726 		/*
17727 		 * Start the m_copy functions from the closest mbuf to the
17728 		 * sb_offset in the socket buffer chain.
17729 		 */
17730 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
17731 		s_mb = mb;
17732 		s_moff = moff;
17733 		if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
17734 			m_copydata(mb, moff, (int)len,
17735 				   mtod(m, caddr_t)+hdrlen);
17736 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
17737 				sbsndptr_adv(sb, mb, len);
17738 			m->m_len += len;
17739 		} else {
17740 			struct sockbuf *msb;
17741 
17742 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
17743 				msb = NULL;
17744 			else
17745 				msb = sb;
17746 			m->m_next = tcp_m_copym(
17747 				mb, moff, &len,
17748 				if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
17749 				((rsm == NULL) ? hw_tls : 0)
17750 #ifdef NETFLIX_COPY_ARGS
17751 				, &filled_all
17752 #endif
17753 				);
17754 			if (len <= (tp->t_maxseg - optlen)) {
17755 				/*
17756 				 * Must have ran out of mbufs for the copy
17757 				 * shorten it to no longer need tso. Lets
17758 				 * not put on sendalot since we are low on
17759 				 * mbufs.
17760 				 */
17761 				tso = 0;
17762 			}
17763 			if (m->m_next == NULL) {
17764 				SOCKBUF_UNLOCK(sb);
17765 				(void)m_free(m);
17766 				error = ENOBUFS;
17767 				sack_rxmit = 0;
17768 				goto out;
17769 			}
17770 		}
17771 		if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
17772 			if (rsm && (rsm->r_flags & RACK_TLP)) {
17773 				/*
17774 				 * TLP should not count in retran count, but
17775 				 * in its own bin
17776 				 */
17777 				counter_u64_add(rack_tlp_retran, 1);
17778 				counter_u64_add(rack_tlp_retran_bytes, len);
17779 			} else {
17780 				tp->t_sndrexmitpack++;
17781 				KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
17782 				KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
17783 			}
17784 #ifdef STATS
17785 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
17786 						 len);
17787 #endif
17788 		} else {
17789 			KMOD_TCPSTAT_INC(tcps_sndpack);
17790 			KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
17791 #ifdef STATS
17792 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
17793 						 len);
17794 #endif
17795 		}
17796 		/*
17797 		 * If we're sending everything we've got, set PUSH. (This
17798 		 * will keep happy those implementations which only give
17799 		 * data to the user when a buffer fills or a PUSH comes in.)
17800 		 */
17801 		if (sb_offset + len == sbused(sb) &&
17802 		    sbused(sb) &&
17803 		    !(flags & TH_SYN)) {
17804 			flags |= TH_PUSH;
17805 			add_flag |= RACK_HAD_PUSH;
17806 		}
17807 
17808 		SOCKBUF_UNLOCK(sb);
17809 	} else {
17810 		SOCKBUF_UNLOCK(sb);
17811 		if (tp->t_flags & TF_ACKNOW)
17812 			KMOD_TCPSTAT_INC(tcps_sndacks);
17813 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
17814 			KMOD_TCPSTAT_INC(tcps_sndctrl);
17815 		else
17816 			KMOD_TCPSTAT_INC(tcps_sndwinup);
17817 
17818 		m = m_gethdr(M_NOWAIT, MT_DATA);
17819 		if (m == NULL) {
17820 			error = ENOBUFS;
17821 			sack_rxmit = 0;
17822 			goto out;
17823 		}
17824 #ifdef INET6
17825 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
17826 		    MHLEN >= hdrlen) {
17827 			M_ALIGN(m, hdrlen);
17828 		} else
17829 #endif
17830 			m->m_data += max_linkhdr;
17831 		m->m_len = hdrlen;
17832 	}
17833 	SOCKBUF_UNLOCK_ASSERT(sb);
17834 	m->m_pkthdr.rcvif = (struct ifnet *)0;
17835 #ifdef MAC
17836 	mac_inpcb_create_mbuf(inp, m);
17837 #endif
17838 	if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) &&  rack->r_fsb_inited) {
17839 #ifdef INET6
17840 		if (isipv6) {
17841 			ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
17842 		} else
17843 #endif				/* INET6 */
17844 		{
17845 #ifdef INET
17846 			ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
17847 #endif
17848 		}
17849 		th = rack->r_ctl.fsb.th;
17850 		udp = rack->r_ctl.fsb.udp;
17851 		if (udp) {
17852 #ifdef INET6
17853 			if (isipv6) {
17854 				ulen = hdrlen + len - sizeof(struct ip6_hdr);
17855 			} else
17856 #endif				/* INET6 */
17857 			{
17858 #ifdef INET
17859 				ulen = hdrlen + len - sizeof(struct ip);
17860 				udp->uh_ulen = htons(ulen);
17861 #endif
17862 			}
17863 		}
17864 	} else {
17865 #ifdef INET6
17866 		if (isipv6) {
17867 			ip6 = mtod(m, struct ip6_hdr *);
17868 			if (tp->t_port) {
17869 				udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
17870 				udp->uh_sport = htons(V_tcp_udp_tunneling_port);
17871 				udp->uh_dport = tp->t_port;
17872 				ulen = hdrlen + len - sizeof(struct ip6_hdr);
17873 				udp->uh_ulen = htons(ulen);
17874 				th = (struct tcphdr *)(udp + 1);
17875 			} else
17876 				th = (struct tcphdr *)(ip6 + 1);
17877 			tcpip_fillheaders(inp, tp->t_port, ip6, th);
17878 		} else
17879 #endif				/* INET6 */
17880 		{
17881 #ifdef INET
17882 			ip = mtod(m, struct ip *);
17883 #ifdef TCPDEBUG
17884 			ipov = (struct ipovly *)ip;
17885 #endif
17886 			if (tp->t_port) {
17887 				udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
17888 				udp->uh_sport = htons(V_tcp_udp_tunneling_port);
17889 				udp->uh_dport = tp->t_port;
17890 				ulen = hdrlen + len - sizeof(struct ip);
17891 				udp->uh_ulen = htons(ulen);
17892 				th = (struct tcphdr *)(udp + 1);
17893 			} else
17894 				th = (struct tcphdr *)(ip + 1);
17895 			tcpip_fillheaders(inp, tp->t_port, ip, th);
17896 #endif				/* INET */
17897 		}
17898 	}
17899 	/*
17900 	 * Fill in fields, remembering maximum advertised window for use in
17901 	 * delaying messages about window sizes. If resending a FIN, be sure
17902 	 * not to use a new sequence number.
17903 	 */
17904 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
17905 	    tp->snd_nxt == tp->snd_max)
17906 		tp->snd_nxt--;
17907 	/*
17908 	 * If we are starting a connection, send ECN setup SYN packet. If we
17909 	 * are on a retransmit, we may resend those bits a number of times
17910 	 * as per RFC 3168.
17911 	 */
17912 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
17913 		if (tp->t_rxtshift >= 1) {
17914 			if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
17915 				flags |= TH_ECE | TH_CWR;
17916 		} else
17917 			flags |= TH_ECE | TH_CWR;
17918 	}
17919 	/* Handle parallel SYN for ECN */
17920 	if ((tp->t_state == TCPS_SYN_RECEIVED) &&
17921 	    (tp->t_flags2 & TF2_ECN_SND_ECE)) {
17922 		flags |= TH_ECE;
17923 		tp->t_flags2 &= ~TF2_ECN_SND_ECE;
17924 	}
17925 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
17926 	    (tp->t_flags2 & TF2_ECN_PERMIT)) {
17927 		/*
17928 		 * If the peer has ECN, mark data packets with ECN capable
17929 		 * transmission (ECT). Ignore pure ack packets,
17930 		 * retransmissions.
17931 		 */
17932 		if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
17933 		    (sack_rxmit == 0)) {
17934 #ifdef INET6
17935 			if (isipv6) {
17936 				ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
17937 			} else
17938 #endif
17939 			{
17940 #ifdef INET
17941 				ip->ip_tos |= IPTOS_ECN_ECT0;
17942 #endif
17943 			}
17944 			KMOD_TCPSTAT_INC(tcps_ecn_ect0);
17945 			/*
17946 			 * Reply with proper ECN notifications.
17947 			 * Only set CWR on new data segments.
17948 			 */
17949 			if (tp->t_flags2 & TF2_ECN_SND_CWR) {
17950 				flags |= TH_CWR;
17951 				tp->t_flags2 &= ~TF2_ECN_SND_CWR;
17952 			}
17953 		}
17954 		if (tp->t_flags2 & TF2_ECN_SND_ECE)
17955 			flags |= TH_ECE;
17956 	}
17957 	/*
17958 	 * If we are doing retransmissions, then snd_nxt will not reflect
17959 	 * the first unsent octet.  For ACK only packets, we do not want the
17960 	 * sequence number of the retransmitted packet, we want the sequence
17961 	 * number of the next unsent octet.  So, if there is no data (and no
17962 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
17963 	 * ti_seq.  But if we are in persist state, snd_max might reflect
17964 	 * one byte beyond the right edge of the window, so use snd_nxt in
17965 	 * that case, since we know we aren't doing a retransmission.
17966 	 * (retransmit and persist are mutually exclusive...)
17967 	 */
17968 	if (sack_rxmit == 0) {
17969 		if (len || (flags & (TH_SYN | TH_FIN))) {
17970 			th->th_seq = htonl(tp->snd_nxt);
17971 			rack_seq = tp->snd_nxt;
17972 		} else {
17973 			th->th_seq = htonl(tp->snd_max);
17974 			rack_seq = tp->snd_max;
17975 		}
17976 	} else {
17977 		th->th_seq = htonl(rsm->r_start);
17978 		rack_seq = rsm->r_start;
17979 	}
17980 	th->th_ack = htonl(tp->rcv_nxt);
17981 	th->th_flags = flags;
17982 	/*
17983 	 * Calculate receive window.  Don't shrink window, but avoid silly
17984 	 * window syndrome.
17985 	 * If a RST segment is sent, advertise a window of zero.
17986 	 */
17987 	if (flags & TH_RST) {
17988 		recwin = 0;
17989 	} else {
17990 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
17991 		    recwin < (long)segsiz) {
17992 			recwin = 0;
17993 		}
17994 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
17995 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
17996 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
17997 	}
17998 
17999 	/*
18000 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
18001 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
18002 	 * handled in syncache.
18003 	 */
18004 	if (flags & TH_SYN)
18005 		th->th_win = htons((u_short)
18006 				   (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
18007 	else {
18008 		/* Avoid shrinking window with window scaling. */
18009 		recwin = roundup2(recwin, 1 << tp->rcv_scale);
18010 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
18011 	}
18012 	/*
18013 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
18014 	 * window.  This may cause the remote transmitter to stall.  This
18015 	 * flag tells soreceive() to disable delayed acknowledgements when
18016 	 * draining the buffer.  This can occur if the receiver is
18017 	 * attempting to read more data than can be buffered prior to
18018 	 * transmitting on the connection.
18019 	 */
18020 	if (th->th_win == 0) {
18021 		tp->t_sndzerowin++;
18022 		tp->t_flags |= TF_RXWIN0SENT;
18023 	} else
18024 		tp->t_flags &= ~TF_RXWIN0SENT;
18025 	tp->snd_up = tp->snd_una;	/* drag it along, its deprecated */
18026 	/* Now are we using fsb?, if so copy the template data to the mbuf */
18027 	if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) {
18028 		uint8_t *cpto;
18029 
18030 		cpto = mtod(m, uint8_t *);
18031 		memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
18032 		/*
18033 		 * We have just copied in:
18034 		 * IP/IP6
18035 		 * <optional udphdr>
18036 		 * tcphdr (no options)
18037 		 *
18038 		 * We need to grab the correct pointers into the mbuf
18039 		 * for both the tcp header, and possibly the udp header (if tunneling).
18040 		 * We do this by using the offset in the copy buffer and adding it
18041 		 * to the mbuf base pointer (cpto).
18042 		 */
18043 #ifdef INET6
18044 		if (isipv6)
18045 			ip6 = mtod(m, struct ip6_hdr *);
18046 		else
18047 #endif				/* INET6 */
18048 #ifdef INET
18049 			ip = mtod(m, struct ip *);
18050 #endif				/* INET */
18051 		th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
18052 		/* If we have a udp header lets set it into the mbuf as well */
18053 		if (udp)
18054 			udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr));
18055 	}
18056 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
18057 	if (to.to_flags & TOF_SIGNATURE) {
18058 		/*
18059 		 * Calculate MD5 signature and put it into the place
18060 		 * determined before.
18061 		 * NOTE: since TCP options buffer doesn't point into
18062 		 * mbuf's data, calculate offset and use it.
18063 		 */
18064 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
18065 						       (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
18066 			/*
18067 			 * Do not send segment if the calculation of MD5
18068 			 * digest has failed.
18069 			 */
18070 			goto out;
18071 		}
18072 	}
18073 #endif
18074 	if (optlen) {
18075 		bcopy(opt, th + 1, optlen);
18076 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
18077 	}
18078 	/*
18079 	 * Put TCP length in extended header, and then checksum extended
18080 	 * header and data.
18081 	 */
18082 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
18083 #ifdef INET6
18084 	if (isipv6) {
18085 		/*
18086 		 * ip6_plen is not need to be filled now, and will be filled
18087 		 * in ip6_output.
18088 		 */
18089 		if (tp->t_port) {
18090 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
18091 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18092 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
18093 			th->th_sum = htons(0);
18094 			UDPSTAT_INC(udps_opackets);
18095 		} else {
18096 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
18097 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18098 			th->th_sum = in6_cksum_pseudo(ip6,
18099 						      sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
18100 						      0);
18101 		}
18102 	}
18103 #endif
18104 #if defined(INET6) && defined(INET)
18105 	else
18106 #endif
18107 #ifdef INET
18108 	{
18109 		if (tp->t_port) {
18110 			m->m_pkthdr.csum_flags = CSUM_UDP;
18111 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18112 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
18113 						ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
18114 			th->th_sum = htons(0);
18115 			UDPSTAT_INC(udps_opackets);
18116 		} else {
18117 			m->m_pkthdr.csum_flags = CSUM_TCP;
18118 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18119 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
18120 					       ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
18121 									IPPROTO_TCP + len + optlen));
18122 		}
18123 		/* IP version must be set here for ipv4/ipv6 checking later */
18124 		KASSERT(ip->ip_v == IPVERSION,
18125 			("%s: IP version incorrect: %d", __func__, ip->ip_v));
18126 	}
18127 #endif
18128 	/*
18129 	 * Enable TSO and specify the size of the segments. The TCP pseudo
18130 	 * header checksum is always provided. XXX: Fixme: This is currently
18131 	 * not the case for IPv6.
18132 	 */
18133 	if (tso) {
18134 		KASSERT(len > tp->t_maxseg - optlen,
18135 			("%s: len <= tso_segsz", __func__));
18136 		m->m_pkthdr.csum_flags |= CSUM_TSO;
18137 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
18138 	}
18139 	KASSERT(len + hdrlen == m_length(m, NULL),
18140 		("%s: mbuf chain different than expected: %d + %u != %u",
18141 		 __func__, len, hdrlen, m_length(m, NULL)));
18142 
18143 #ifdef TCP_HHOOK
18144 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
18145 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
18146 #endif
18147 	/* We're getting ready to send; log now. */
18148 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
18149 		union tcp_log_stackspecific log;
18150 
18151 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
18152 		log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
18153 		log.u_bbr.ininput = rack->rc_inp->inp_in_input;
18154 		if (rack->rack_no_prr)
18155 			log.u_bbr.flex1 = 0;
18156 		else
18157 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
18158 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
18159 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
18160 		log.u_bbr.flex4 = orig_len;
18161 		if (filled_all)
18162 			log.u_bbr.flex5 = 0x80000000;
18163 		else
18164 			log.u_bbr.flex5 = 0;
18165 		/* Save off the early/late values */
18166 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
18167 		log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
18168 		log.u_bbr.bw_inuse = rack_get_bw(rack);
18169 		if (rsm || sack_rxmit) {
18170 			if (doing_tlp)
18171 				log.u_bbr.flex8 = 2;
18172 			else
18173 				log.u_bbr.flex8 = 1;
18174 		} else {
18175 			log.u_bbr.flex8 = 0;
18176 		}
18177 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
18178 		log.u_bbr.flex7 = mark;
18179 		log.u_bbr.flex7 <<= 8;
18180 		log.u_bbr.flex7 |= pass;
18181 		log.u_bbr.pkts_out = tp->t_maxseg;
18182 		log.u_bbr.timeStamp = cts;
18183 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
18184 		log.u_bbr.lt_epoch = cwnd_to_use;
18185 		log.u_bbr.delivered = sendalot;
18186 		lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
18187 				     len, &log, false, NULL, NULL, 0, &tv);
18188 	} else
18189 		lgb = NULL;
18190 
18191 	/*
18192 	 * Fill in IP length and desired time to live and send to IP level.
18193 	 * There should be a better way to handle ttl and tos; we could keep
18194 	 * them in the template, but need a way to checksum without them.
18195 	 */
18196 	/*
18197 	 * m->m_pkthdr.len should have been set before cksum calcuration,
18198 	 * because in6_cksum() need it.
18199 	 */
18200 #ifdef INET6
18201 	if (isipv6) {
18202 		/*
18203 		 * we separately set hoplimit for every segment, since the
18204 		 * user might want to change the value via setsockopt. Also,
18205 		 * desired default hop limit might be changed via Neighbor
18206 		 * Discovery.
18207 		 */
18208 		rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL);
18209 
18210 		/*
18211 		 * Set the packet size here for the benefit of DTrace
18212 		 * probes. ip6_output() will set it properly; it's supposed
18213 		 * to include the option header lengths as well.
18214 		 */
18215 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
18216 
18217 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
18218 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18219 		else
18220 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18221 
18222 		if (tp->t_state == TCPS_SYN_SENT)
18223 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
18224 
18225 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
18226 		/* TODO: IPv6 IP6TOS_ECT bit on */
18227 		error = ip6_output(m,
18228 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18229 				   inp->in6p_outputopts,
18230 #else
18231 				   NULL,
18232 #endif
18233 				   &inp->inp_route6,
18234 				   ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0),
18235 				   NULL, NULL, inp);
18236 
18237 		if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL)
18238 			mtu = inp->inp_route6.ro_nh->nh_mtu;
18239 	}
18240 #endif				/* INET6 */
18241 #if defined(INET) && defined(INET6)
18242 	else
18243 #endif
18244 #ifdef INET
18245 	{
18246 		ip->ip_len = htons(m->m_pkthdr.len);
18247 #ifdef INET6
18248 		if (inp->inp_vflag & INP_IPV6PROTO)
18249 			ip->ip_ttl = in6_selecthlim(inp, NULL);
18250 #endif				/* INET6 */
18251 		rack->r_ctl.fsb.hoplimit = ip->ip_ttl;
18252 		/*
18253 		 * If we do path MTU discovery, then we set DF on every
18254 		 * packet. This might not be the best thing to do according
18255 		 * to RFC3390 Section 2. However the tcp hostcache migitates
18256 		 * the problem so it affects only the first tcp connection
18257 		 * with a host.
18258 		 *
18259 		 * NB: Don't set DF on small MTU/MSS to have a safe
18260 		 * fallback.
18261 		 */
18262 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
18263 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18264 			if (tp->t_port == 0 || len < V_tcp_minmss) {
18265 				ip->ip_off |= htons(IP_DF);
18266 			}
18267 		} else {
18268 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18269 		}
18270 
18271 		if (tp->t_state == TCPS_SYN_SENT)
18272 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
18273 
18274 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
18275 
18276 		error = ip_output(m,
18277 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18278 				  inp->inp_options,
18279 #else
18280 				  NULL,
18281 #endif
18282 				  &inp->inp_route,
18283 				  ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0,
18284 				  inp);
18285 		if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL)
18286 			mtu = inp->inp_route.ro_nh->nh_mtu;
18287 	}
18288 #endif				/* INET */
18289 
18290 out:
18291 	if (lgb) {
18292 		lgb->tlb_errno = error;
18293 		lgb = NULL;
18294 	}
18295 	/*
18296 	 * In transmit state, time the transmission and arrange for the
18297 	 * retransmit.  In persist state, just set snd_max.
18298 	 */
18299 	if (error == 0) {
18300 		tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls);
18301 		rack->forced_ack = 0;	/* If we send something zap the FA flag */
18302 		if (rsm && (doing_tlp == 0)) {
18303 			/* Set we retransmitted */
18304 			rack->rc_gp_saw_rec = 1;
18305 		} else {
18306 			if (cwnd_to_use > tp->snd_ssthresh) {
18307 				/* Set we sent in CA */
18308 				rack->rc_gp_saw_ca = 1;
18309 			} else {
18310 				/* Set we sent in SS */
18311 				rack->rc_gp_saw_ss = 1;
18312 			}
18313 		}
18314 		if (doing_tlp && (rsm == NULL)) {
18315 			/* Make sure new data TLP cnt is clear */
18316 			rack->r_ctl.rc_tlp_new_data = 0;
18317 		}
18318 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
18319 		    (tp->t_flags & TF_SACK_PERMIT) &&
18320 		    tp->rcv_numsacks > 0)
18321 			tcp_clean_dsack_blocks(tp);
18322 		tot_len_this_send += len;
18323 		if (len == 0)
18324 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
18325 		else if (len == 1) {
18326 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
18327 		} else if (len > 1) {
18328 			int idx;
18329 
18330 			idx = (len / segsiz) + 3;
18331 			if (idx >= TCP_MSS_ACCT_ATIMER)
18332 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
18333 			else
18334 				counter_u64_add(rack_out_size[idx], 1);
18335 		}
18336 	}
18337 	if ((rack->rack_no_prr == 0) &&
18338 	    sub_from_prr &&
18339 	    (error == 0)) {
18340 		if (rack->r_ctl.rc_prr_sndcnt >= len)
18341 			rack->r_ctl.rc_prr_sndcnt -= len;
18342 		else
18343 			rack->r_ctl.rc_prr_sndcnt = 0;
18344 	}
18345 	sub_from_prr = 0;
18346 	if (doing_tlp && (rsm == NULL)) {
18347 		/* New send doing a TLP */
18348 		add_flag |= RACK_TLP;
18349 	}
18350 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error,
18351 			rack_to_usec_ts(&tv),
18352 			rsm, add_flag, s_mb, s_moff, hw_tls);
18353 
18354 
18355 	if ((error == 0) &&
18356 	    (len > 0) &&
18357 	    (tp->snd_una == tp->snd_max))
18358 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
18359 	{
18360 		tcp_seq startseq = tp->snd_nxt;
18361 
18362 		/* Track our lost count */
18363 		if (rsm && (doing_tlp == 0))
18364 			rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start;
18365 		/*
18366 		 * Advance snd_nxt over sequence space of this segment.
18367 		 */
18368 		if (error)
18369 			/* We don't log or do anything with errors */
18370 			goto nomore;
18371 		if (doing_tlp == 0) {
18372 			if (rsm == NULL) {
18373 				/*
18374 				 * Not a retransmission of some
18375 				 * sort, new data is going out so
18376 				 * clear our TLP count and flag.
18377 				 */
18378 				rack->rc_tlp_in_progress = 0;
18379 				rack->r_ctl.rc_tlp_cnt_out = 0;
18380 			}
18381 		} else {
18382 			/*
18383 			 * We have just sent a TLP, mark that it is true
18384 			 * and make sure our in progress is set so we
18385 			 * continue to check the count.
18386 			 */
18387 			rack->rc_tlp_in_progress = 1;
18388 			rack->r_ctl.rc_tlp_cnt_out++;
18389 		}
18390 		if (flags & (TH_SYN | TH_FIN)) {
18391 			if (flags & TH_SYN)
18392 				tp->snd_nxt++;
18393 			if (flags & TH_FIN) {
18394 				tp->snd_nxt++;
18395 				tp->t_flags |= TF_SENTFIN;
18396 			}
18397 		}
18398 		/* In the ENOBUFS case we do *not* update snd_max */
18399 		if (sack_rxmit)
18400 			goto nomore;
18401 
18402 		tp->snd_nxt += len;
18403 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
18404 			if (tp->snd_una == tp->snd_max) {
18405 				/*
18406 				 * Update the time we just added data since
18407 				 * none was outstanding.
18408 				 */
18409 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
18410 				tp->t_acktime = ticks;
18411 			}
18412 			tp->snd_max = tp->snd_nxt;
18413 			/*
18414 			 * Time this transmission if not a retransmission and
18415 			 * not currently timing anything.
18416 			 * This is only relevant in case of switching back to
18417 			 * the base stack.
18418 			 */
18419 			if (tp->t_rtttime == 0) {
18420 				tp->t_rtttime = ticks;
18421 				tp->t_rtseq = startseq;
18422 				KMOD_TCPSTAT_INC(tcps_segstimed);
18423 			}
18424 			if (len &&
18425 			    ((tp->t_flags & TF_GPUTINPROG) == 0))
18426 				rack_start_gp_measurement(tp, rack, startseq, sb_offset);
18427 		}
18428 		/*
18429 		 * If we are doing FO we need to update the mbuf position and subtract
18430 		 * this happens when the peer sends us duplicate information and
18431 		 * we thus want to send a DSACK.
18432 		 *
18433 		 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO
18434 		 * turned off? If not then we are going to echo multiple DSACK blocks
18435 		 * out (with the TSO), which we should not be doing.
18436 		 */
18437 		if (rack->r_fast_output && len) {
18438 			if (rack->r_ctl.fsb.left_to_send > len)
18439 				rack->r_ctl.fsb.left_to_send -= len;
18440 			else
18441 				rack->r_ctl.fsb.left_to_send = 0;
18442 			if (rack->r_ctl.fsb.left_to_send < segsiz)
18443 				rack->r_fast_output = 0;
18444 			if (rack->r_fast_output) {
18445 				rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18446 				rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18447 			}
18448 		}
18449 	}
18450 nomore:
18451 	if (error) {
18452 		rack->r_ctl.rc_agg_delayed = 0;
18453 		rack->r_early = 0;
18454 		rack->r_late = 0;
18455 		rack->r_ctl.rc_agg_early = 0;
18456 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
18457 		/*
18458 		 * Failures do not advance the seq counter above. For the
18459 		 * case of ENOBUFS we will fall out and retry in 1ms with
18460 		 * the hpts. Everything else will just have to retransmit
18461 		 * with the timer.
18462 		 *
18463 		 * In any case, we do not want to loop around for another
18464 		 * send without a good reason.
18465 		 */
18466 		sendalot = 0;
18467 		switch (error) {
18468 		case EPERM:
18469 			tp->t_softerror = error;
18470 #ifdef TCP_ACCOUNTING
18471 			crtsc = get_cyclecount();
18472 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18473 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18474 			}
18475 			counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18476 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18477 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18478 			}
18479 			counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18480 			sched_unpin();
18481 #endif
18482 			return (error);
18483 		case ENOBUFS:
18484 			/*
18485 			 * Pace us right away to retry in a some
18486 			 * time
18487 			 */
18488 			slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
18489 			if (rack->rc_enobuf < 0x7f)
18490 				rack->rc_enobuf++;
18491 			if (slot < (10 * HPTS_USEC_IN_MSEC))
18492 				slot = 10 * HPTS_USEC_IN_MSEC;
18493 			if (rack->r_ctl.crte != NULL) {
18494 				counter_u64_add(rack_saw_enobuf_hw, 1);
18495 				tcp_rl_log_enobuf(rack->r_ctl.crte);
18496 			}
18497 			counter_u64_add(rack_saw_enobuf, 1);
18498 			goto enobufs;
18499 		case EMSGSIZE:
18500 			/*
18501 			 * For some reason the interface we used initially
18502 			 * to send segments changed to another or lowered
18503 			 * its MTU. If TSO was active we either got an
18504 			 * interface without TSO capabilits or TSO was
18505 			 * turned off. If we obtained mtu from ip_output()
18506 			 * then update it and try again.
18507 			 */
18508 			if (tso)
18509 				tp->t_flags &= ~TF_TSO;
18510 			if (mtu != 0) {
18511 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
18512 				goto again;
18513 			}
18514 			slot = 10 * HPTS_USEC_IN_MSEC;
18515 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18516 #ifdef TCP_ACCOUNTING
18517 			crtsc = get_cyclecount();
18518 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18519 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18520 			}
18521 			counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18522 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18523 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18524 			}
18525 			counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18526 			sched_unpin();
18527 #endif
18528 			return (error);
18529 		case ENETUNREACH:
18530 			counter_u64_add(rack_saw_enetunreach, 1);
18531 		case EHOSTDOWN:
18532 		case EHOSTUNREACH:
18533 		case ENETDOWN:
18534 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
18535 				tp->t_softerror = error;
18536 			}
18537 			/* FALLTHROUGH */
18538 		default:
18539 			slot = 10 * HPTS_USEC_IN_MSEC;
18540 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18541 #ifdef TCP_ACCOUNTING
18542 			crtsc = get_cyclecount();
18543 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18544 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18545 			}
18546 			counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18547 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18548 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18549 			}
18550 			counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18551 			sched_unpin();
18552 #endif
18553 			return (error);
18554 		}
18555 	} else {
18556 		rack->rc_enobuf = 0;
18557 		if (IN_FASTRECOVERY(tp->t_flags) && rsm)
18558 			rack->r_ctl.retran_during_recovery += len;
18559 	}
18560 	KMOD_TCPSTAT_INC(tcps_sndtotal);
18561 
18562 	/*
18563 	 * Data sent (as far as we can tell). If this advertises a larger
18564 	 * window than any other segment, then remember the size of the
18565 	 * advertised window. Any pending ACK has now been sent.
18566 	 */
18567 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
18568 		tp->rcv_adv = tp->rcv_nxt + recwin;
18569 
18570 	tp->last_ack_sent = tp->rcv_nxt;
18571 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
18572 enobufs:
18573 	if (sendalot) {
18574 		/* Do we need to turn off sendalot? */
18575 		if (rack->r_ctl.rc_pace_max_segs &&
18576 		    (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) {
18577 			/* We hit our max. */
18578 			sendalot = 0;
18579 		} else if ((rack->rc_user_set_max_segs) &&
18580 			   (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) {
18581 			/* We hit the user defined max */
18582 			sendalot = 0;
18583 		}
18584 	}
18585 	if ((error == 0) && (flags & TH_FIN))
18586 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN);
18587 	if (flags & TH_RST) {
18588 		/*
18589 		 * We don't send again after sending a RST.
18590 		 */
18591 		slot = 0;
18592 		sendalot = 0;
18593 		if (error == 0)
18594 			tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
18595 	} else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) {
18596 		/*
18597 		 * Get our pacing rate, if an error
18598 		 * occurred in sending (ENOBUF) we would
18599 		 * hit the else if with slot preset. Other
18600 		 * errors return.
18601 		 */
18602 		slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz);
18603 	}
18604 	if (rsm &&
18605 	    (rsm->r_flags & RACK_HAS_SYN) == 0 &&
18606 	    rack->use_rack_rr) {
18607 		/* Its a retransmit and we use the rack cheat? */
18608 		if ((slot == 0) ||
18609 		    (rack->rc_always_pace == 0) ||
18610 		    (rack->r_rr_config == 1)) {
18611 			/*
18612 			 * We have no pacing set or we
18613 			 * are using old-style rack or
18614 			 * we are overriden to use the old 1ms pacing.
18615 			 */
18616 			slot = rack->r_ctl.rc_min_to;
18617 		}
18618 	}
18619 	/* We have sent clear the flag */
18620 	rack->r_ent_rec_ns = 0;
18621 	if (rack->r_must_retran) {
18622 		if (rsm) {
18623 			rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
18624 			if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
18625 				/*
18626 				 * We have retransmitted all.
18627 				 */
18628 				rack->r_must_retran = 0;
18629 				rack->r_ctl.rc_out_at_rto = 0;
18630 			}
18631 		} else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
18632 			/*
18633 			 * Sending new data will also kill
18634 			 * the loop.
18635 			 */
18636 			rack->r_must_retran = 0;
18637 			rack->r_ctl.rc_out_at_rto = 0;
18638 		}
18639 	}
18640 	rack->r_ctl.fsb.recwin = recwin;
18641 	if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) &&
18642 	    SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
18643 		/*
18644 		 * We hit an RTO and now have past snd_max at the RTO
18645 		 * clear all the WAS flags.
18646 		 */
18647 		tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY);
18648 	}
18649 	if (slot) {
18650 		/* set the rack tcb into the slot N */
18651 		counter_u64_add(rack_paced_segments, 1);
18652 		if ((error == 0) &&
18653 		    rack_use_rfo &&
18654 		    ((flags & (TH_SYN|TH_FIN)) == 0) &&
18655 		    (rsm == NULL) &&
18656 		    (tp->snd_nxt == tp->snd_max) &&
18657 		    (ipoptlen == 0) &&
18658 		    (tp->rcv_numsacks == 0) &&
18659 		    rack->r_fsb_inited &&
18660 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
18661 		    (rack->r_must_retran == 0) &&
18662 		    ((tp->t_flags & TF_NEEDFIN) == 0) &&
18663 		    (len > 0) && (orig_len > 0) &&
18664 		    (orig_len > len) &&
18665 		    ((orig_len - len) >= segsiz) &&
18666 		    ((optlen == 0) ||
18667 		     ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
18668 			/* We can send at least one more MSS using our fsb */
18669 
18670 			rack->r_fast_output = 1;
18671 			rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18672 			rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18673 			rack->r_ctl.fsb.tcp_flags = flags;
18674 			rack->r_ctl.fsb.left_to_send = orig_len - len;
18675 			if (hw_tls)
18676 				rack->r_ctl.fsb.hw_tls = 1;
18677 			else
18678 				rack->r_ctl.fsb.hw_tls = 0;
18679 			KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
18680 				("rack:%p left_to_send:%u sbavail:%u out:%u",
18681 				 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
18682 				 (tp->snd_max - tp->snd_una)));
18683 			if (rack->r_ctl.fsb.left_to_send < segsiz)
18684 				rack->r_fast_output = 0;
18685 			else {
18686 				if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
18687 					rack->r_ctl.fsb.rfo_apply_push = 1;
18688 				else
18689 					rack->r_ctl.fsb.rfo_apply_push = 0;
18690 			}
18691 		} else
18692 			rack->r_fast_output = 0;
18693 		rack_log_fsb(rack, tp, so, flags,
18694 			     ipoptlen, orig_len, len, error,
18695 			     (rsm == NULL), optlen, __LINE__, 2);
18696 	} else if (sendalot) {
18697 		int ret;
18698 
18699 		if (len)
18700 			counter_u64_add(rack_unpaced_segments, 1);
18701 		sack_rxmit = 0;
18702 		if ((error == 0) &&
18703 		    rack_use_rfo &&
18704 		    ((flags & (TH_SYN|TH_FIN)) == 0) &&
18705 		    (rsm == NULL) &&
18706 		    (ipoptlen == 0) &&
18707 		    (tp->rcv_numsacks == 0) &&
18708 		    (tp->snd_nxt == tp->snd_max) &&
18709 		    (rack->r_must_retran == 0) &&
18710 		    rack->r_fsb_inited &&
18711 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
18712 		    ((tp->t_flags & TF_NEEDFIN) == 0) &&
18713 		    (len > 0) && (orig_len > 0) &&
18714 		    (orig_len > len) &&
18715 		    ((orig_len - len) >= segsiz) &&
18716 		    ((optlen == 0) ||
18717 		     ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
18718 			/* we can use fast_output for more */
18719 
18720 			rack->r_fast_output = 1;
18721 			rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18722 			rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18723 			rack->r_ctl.fsb.tcp_flags = flags;
18724 			rack->r_ctl.fsb.left_to_send = orig_len - len;
18725 			if (hw_tls)
18726 				rack->r_ctl.fsb.hw_tls = 1;
18727 			else
18728 				rack->r_ctl.fsb.hw_tls = 0;
18729 			KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
18730 				("rack:%p left_to_send:%u sbavail:%u out:%u",
18731 				 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
18732 				 (tp->snd_max - tp->snd_una)));
18733 			if (rack->r_ctl.fsb.left_to_send < segsiz) {
18734 				rack->r_fast_output = 0;
18735 			}
18736 			if (rack->r_fast_output) {
18737 				if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
18738 					rack->r_ctl.fsb.rfo_apply_push = 1;
18739 				else
18740 					rack->r_ctl.fsb.rfo_apply_push = 0;
18741 				rack_log_fsb(rack, tp, so, flags,
18742 					     ipoptlen, orig_len, len, error,
18743 					     (rsm == NULL), optlen, __LINE__, 3);
18744 				error = 0;
18745 				ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
18746 				if (ret >= 0)
18747 					return (ret);
18748 			        else if (error)
18749 					goto nomore;
18750 
18751 			}
18752 		}
18753 		goto again;
18754 	} else if (len) {
18755 		counter_u64_add(rack_unpaced_segments, 1);
18756 	}
18757 	/* Assure when we leave that snd_nxt will point to top */
18758 	if (SEQ_GT(tp->snd_max, tp->snd_nxt))
18759 		tp->snd_nxt = tp->snd_max;
18760 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
18761 #ifdef TCP_ACCOUNTING
18762 	crtsc = get_cyclecount() - ts_val;
18763 	if (tot_len_this_send) {
18764 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18765 			tp->tcp_cnt_counters[SND_OUT_DATA]++;
18766 		}
18767 		counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
18768 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18769 			tp->tcp_proc_time[SND_OUT_DATA] += crtsc;
18770 		}
18771 		counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc);
18772 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18773 			tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz);
18774 		}
18775 		counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz));
18776 	} else {
18777 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18778 			tp->tcp_cnt_counters[SND_OUT_ACK]++;
18779 		}
18780 		counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1);
18781 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18782 			tp->tcp_proc_time[SND_OUT_ACK] += crtsc;
18783 		}
18784 		counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc);
18785 	}
18786 	sched_unpin();
18787 #endif
18788 	if (error == ENOBUFS)
18789 		error = 0;
18790 	return (error);
18791 }
18792 
18793 static void
18794 rack_update_seg(struct tcp_rack *rack)
18795 {
18796 	uint32_t orig_val;
18797 
18798 	orig_val = rack->r_ctl.rc_pace_max_segs;
18799 	rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
18800 	if (orig_val != rack->r_ctl.rc_pace_max_segs)
18801 		rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0);
18802 }
18803 
18804 static void
18805 rack_mtu_change(struct tcpcb *tp)
18806 {
18807 	/*
18808 	 * The MSS may have changed
18809 	 */
18810 	struct tcp_rack *rack;
18811 
18812 	rack = (struct tcp_rack *)tp->t_fb_ptr;
18813 	if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) {
18814 		/*
18815 		 * The MTU has changed we need to resend everything
18816 		 * since all we have sent is lost. We first fix
18817 		 * up the mtu though.
18818 		 */
18819 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
18820 		/* We treat this like a full retransmit timeout without the cwnd adjustment */
18821 		rack_remxt_tmr(tp);
18822 		rack->r_fast_output = 0;
18823 		rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp,
18824 						rack->r_ctl.rc_sacked);
18825 		rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
18826 		rack->r_must_retran = 1;
18827 
18828 	}
18829 	sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
18830 	/* We don't use snd_nxt to retransmit */
18831 	tp->snd_nxt = tp->snd_max;
18832 }
18833 
18834 static int
18835 rack_set_profile(struct tcp_rack *rack, int prof)
18836 {
18837 	int err = EINVAL;
18838 	if (prof == 1) {
18839 		/* pace_always=1 */
18840 		if (rack->rc_always_pace == 0) {
18841 			if (tcp_can_enable_pacing() == 0)
18842 				return (EBUSY);
18843 		}
18844 		rack->rc_always_pace = 1;
18845 		if (rack->use_fixed_rate || rack->gp_ready)
18846 			rack_set_cc_pacing(rack);
18847 		rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18848 		rack->rack_attempt_hdwr_pace = 0;
18849 		/* cmpack=1 */
18850 		if (rack_use_cmp_acks)
18851 			rack->r_use_cmp_ack = 1;
18852 		if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
18853 		    rack->r_use_cmp_ack)
18854 			rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18855 		/* scwnd=1 */
18856 		rack->rack_enable_scwnd = 1;
18857 		/* dynamic=100 */
18858 		rack->rc_gp_dyn_mul = 1;
18859 		/* gp_inc_ca */
18860 		rack->r_ctl.rack_per_of_gp_ca = 100;
18861 		/* rrr_conf=3 */
18862 		rack->r_rr_config = 3;
18863 		/* npush=2 */
18864 		rack->r_ctl.rc_no_push_at_mrtt = 2;
18865 		/* fillcw=1 */
18866 		rack->rc_pace_to_cwnd = 1;
18867 		rack->rc_pace_fill_if_rttin_range = 0;
18868 		rack->rtt_limit_mul = 0;
18869 		/* noprr=1 */
18870 		rack->rack_no_prr = 1;
18871 		/* lscwnd=1 */
18872 		rack->r_limit_scw = 1;
18873 		/* gp_inc_rec */
18874 		rack->r_ctl.rack_per_of_gp_rec = 90;
18875 		err = 0;
18876 
18877 	} else if (prof == 3) {
18878 		/* Same as profile one execept fill_cw becomes 2 (less aggressive set) */
18879 		/* pace_always=1 */
18880 		if (rack->rc_always_pace == 0) {
18881 			if (tcp_can_enable_pacing() == 0)
18882 				return (EBUSY);
18883 		}
18884 		rack->rc_always_pace = 1;
18885 		if (rack->use_fixed_rate || rack->gp_ready)
18886 			rack_set_cc_pacing(rack);
18887 		rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18888 		rack->rack_attempt_hdwr_pace = 0;
18889 		/* cmpack=1 */
18890 		if (rack_use_cmp_acks)
18891 			rack->r_use_cmp_ack = 1;
18892 		if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
18893 		    rack->r_use_cmp_ack)
18894 			rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18895 		/* scwnd=1 */
18896 		rack->rack_enable_scwnd = 1;
18897 		/* dynamic=100 */
18898 		rack->rc_gp_dyn_mul = 1;
18899 		/* gp_inc_ca */
18900 		rack->r_ctl.rack_per_of_gp_ca = 100;
18901 		/* rrr_conf=3 */
18902 		rack->r_rr_config = 3;
18903 		/* npush=2 */
18904 		rack->r_ctl.rc_no_push_at_mrtt = 2;
18905 		/* fillcw=2 */
18906 		rack->rc_pace_to_cwnd = 1;
18907 		rack->r_fill_less_agg = 1;
18908 		rack->rc_pace_fill_if_rttin_range = 0;
18909 		rack->rtt_limit_mul = 0;
18910 		/* noprr=1 */
18911 		rack->rack_no_prr = 1;
18912 		/* lscwnd=1 */
18913 		rack->r_limit_scw = 1;
18914 		/* gp_inc_rec */
18915 		rack->r_ctl.rack_per_of_gp_rec = 90;
18916 		err = 0;
18917 
18918 
18919 	} else if (prof == 2) {
18920 		/* cmpack=1 */
18921 		if (rack->rc_always_pace == 0) {
18922 			if (tcp_can_enable_pacing() == 0)
18923 				return (EBUSY);
18924 		}
18925 		rack->rc_always_pace = 1;
18926 		if (rack->use_fixed_rate || rack->gp_ready)
18927 			rack_set_cc_pacing(rack);
18928 		rack->r_use_cmp_ack = 1;
18929 		if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
18930 			rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18931 		/* pace_always=1 */
18932 		rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18933 		/* scwnd=1 */
18934 		rack->rack_enable_scwnd = 1;
18935 		/* dynamic=100 */
18936 		rack->rc_gp_dyn_mul = 1;
18937 		rack->r_ctl.rack_per_of_gp_ca = 100;
18938 		/* rrr_conf=3 */
18939 		rack->r_rr_config = 3;
18940 		/* npush=2 */
18941 		rack->r_ctl.rc_no_push_at_mrtt = 2;
18942 		/* fillcw=1 */
18943 		rack->rc_pace_to_cwnd = 1;
18944 		rack->rc_pace_fill_if_rttin_range = 0;
18945 		rack->rtt_limit_mul = 0;
18946 		/* noprr=1 */
18947 		rack->rack_no_prr = 1;
18948 		/* lscwnd=0 */
18949 		rack->r_limit_scw = 0;
18950 		err = 0;
18951 	} else if (prof == 0) {
18952 		/* This changes things back to the default settings */
18953 		err = 0;
18954 		if (rack->rc_always_pace) {
18955 			tcp_decrement_paced_conn();
18956 			rack_undo_cc_pacing(rack);
18957 			rack->rc_always_pace = 0;
18958 		}
18959 		if (rack_pace_every_seg && tcp_can_enable_pacing()) {
18960 			rack->rc_always_pace = 1;
18961 			if (rack->use_fixed_rate || rack->gp_ready)
18962 				rack_set_cc_pacing(rack);
18963 		} else
18964 			rack->rc_always_pace = 0;
18965 		if (rack_use_cmp_acks)
18966 			rack->r_use_cmp_ack = 1;
18967 		else
18968 			rack->r_use_cmp_ack = 0;
18969 		if (rack_disable_prr)
18970 			rack->rack_no_prr = 1;
18971 		else
18972 			rack->rack_no_prr = 0;
18973 		if (rack_gp_no_rec_chg)
18974 			rack->rc_gp_no_rec_chg = 1;
18975 		else
18976 			rack->rc_gp_no_rec_chg = 0;
18977 		if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) {
18978 			rack->r_mbuf_queue = 1;
18979 			if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
18980 				rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18981 			rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18982 		} else {
18983 			rack->r_mbuf_queue = 0;
18984 			rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
18985 		}
18986 		if (rack_enable_shared_cwnd)
18987 			rack->rack_enable_scwnd = 1;
18988 		else
18989 			rack->rack_enable_scwnd = 0;
18990 		if (rack_do_dyn_mul) {
18991 			/* When dynamic adjustment is on CA needs to start at 100% */
18992 			rack->rc_gp_dyn_mul = 1;
18993 			if (rack_do_dyn_mul >= 100)
18994 				rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
18995 		} else {
18996 			rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
18997 			rack->rc_gp_dyn_mul = 0;
18998 		}
18999 		rack->r_rr_config = 0;
19000 		rack->r_ctl.rc_no_push_at_mrtt = 0;
19001 		rack->rc_pace_to_cwnd = 0;
19002 		rack->rc_pace_fill_if_rttin_range = 0;
19003 		rack->rtt_limit_mul = 0;
19004 
19005 		if (rack_enable_hw_pacing)
19006 			rack->rack_hdw_pace_ena = 1;
19007 		else
19008 			rack->rack_hdw_pace_ena = 0;
19009 		if (rack_disable_prr)
19010 			rack->rack_no_prr = 1;
19011 		else
19012 			rack->rack_no_prr = 0;
19013 		if (rack_limits_scwnd)
19014 			rack->r_limit_scw  = 1;
19015 		else
19016 			rack->r_limit_scw  = 0;
19017 		err = 0;
19018 	}
19019 	return (err);
19020 }
19021 
19022 static int
19023 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval)
19024 {
19025 	struct deferred_opt_list *dol;
19026 
19027 	dol = malloc(sizeof(struct deferred_opt_list),
19028 		     M_TCPFSB, M_NOWAIT|M_ZERO);
19029 	if (dol == NULL) {
19030 		/*
19031 		 * No space yikes -- fail out..
19032 		 */
19033 		return (0);
19034 	}
19035 	dol->optname = sopt_name;
19036 	dol->optval = loptval;
19037 	TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next);
19038 	return (1);
19039 }
19040 
19041 static int
19042 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name,
19043 		    uint32_t optval, uint64_t loptval)
19044 {
19045 	struct epoch_tracker et;
19046 	struct sockopt sopt;
19047 	struct cc_newreno_opts opt;
19048 	uint64_t val;
19049 	int error = 0;
19050 	uint16_t ca, ss;
19051 
19052 	switch (sopt_name) {
19053 
19054 	case TCP_RACK_PACING_BETA:
19055 		RACK_OPTS_INC(tcp_rack_beta);
19056 		if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
19057 			/* This only works for newreno. */
19058 			error = EINVAL;
19059 			break;
19060 		}
19061 		if (rack->rc_pacing_cc_set) {
19062 			/*
19063 			 * Set them into the real CC module
19064 			 * whats in the rack pcb is the old values
19065 			 * to be used on restoral/
19066 			 */
19067 			sopt.sopt_dir = SOPT_SET;
19068 			opt.name = CC_NEWRENO_BETA;
19069 			opt.val = optval;
19070 			if (CC_ALGO(tp)->ctl_output != NULL)
19071 				error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
19072 			else {
19073 				error = ENOENT;
19074 				break;
19075 			}
19076 		} else {
19077 			/*
19078 			 * Not pacing yet so set it into our local
19079 			 * rack pcb storage.
19080 			 */
19081 			rack->r_ctl.rc_saved_beta.beta = optval;
19082 		}
19083 		break;
19084 	case TCP_RACK_TIMER_SLOP:
19085 		RACK_OPTS_INC(tcp_rack_timer_slop);
19086 		rack->r_ctl.timer_slop = optval;
19087 		if (rack->rc_tp->t_srtt) {
19088 			/*
19089 			 * If we have an SRTT lets update t_rxtcur
19090 			 * to have the new slop.
19091 			 */
19092 			RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
19093 					   rack_rto_min, rack_rto_max,
19094 					   rack->r_ctl.timer_slop);
19095 		}
19096 		break;
19097 	case TCP_RACK_PACING_BETA_ECN:
19098 		RACK_OPTS_INC(tcp_rack_beta_ecn);
19099 		if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
19100 			/* This only works for newreno. */
19101 			error = EINVAL;
19102 			break;
19103 		}
19104 		if (rack->rc_pacing_cc_set) {
19105 			/*
19106 			 * Set them into the real CC module
19107 			 * whats in the rack pcb is the old values
19108 			 * to be used on restoral/
19109 			 */
19110 			sopt.sopt_dir = SOPT_SET;
19111 			opt.name = CC_NEWRENO_BETA_ECN;
19112 			opt.val = optval;
19113 			if (CC_ALGO(tp)->ctl_output != NULL)
19114 				error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
19115 			else
19116 				error = ENOENT;
19117 		} else {
19118 			/*
19119 			 * Not pacing yet so set it into our local
19120 			 * rack pcb storage.
19121 			 */
19122 			rack->r_ctl.rc_saved_beta.beta_ecn = optval;
19123 			rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN;
19124 		}
19125 		break;
19126 	case TCP_DEFER_OPTIONS:
19127 		RACK_OPTS_INC(tcp_defer_opt);
19128 		if (optval) {
19129 			if (rack->gp_ready) {
19130 				/* Too late */
19131 				error = EINVAL;
19132 				break;
19133 			}
19134 			rack->defer_options = 1;
19135 		} else
19136 			rack->defer_options = 0;
19137 		break;
19138 	case TCP_RACK_MEASURE_CNT:
19139 		RACK_OPTS_INC(tcp_rack_measure_cnt);
19140 		if (optval && (optval <= 0xff)) {
19141 			rack->r_ctl.req_measurements = optval;
19142 		} else
19143 			error = EINVAL;
19144 		break;
19145 	case TCP_REC_ABC_VAL:
19146 		RACK_OPTS_INC(tcp_rec_abc_val);
19147 		if (optval > 0)
19148 			rack->r_use_labc_for_rec = 1;
19149 		else
19150 			rack->r_use_labc_for_rec = 0;
19151 		break;
19152 	case TCP_RACK_ABC_VAL:
19153 		RACK_OPTS_INC(tcp_rack_abc_val);
19154 		if ((optval > 0) && (optval < 255))
19155 			rack->rc_labc = optval;
19156 		else
19157 			error = EINVAL;
19158 		break;
19159 	case TCP_HDWR_UP_ONLY:
19160 		RACK_OPTS_INC(tcp_pacing_up_only);
19161 		if (optval)
19162 			rack->r_up_only = 1;
19163 		else
19164 			rack->r_up_only = 0;
19165 		break;
19166 	case TCP_PACING_RATE_CAP:
19167 		RACK_OPTS_INC(tcp_pacing_rate_cap);
19168 		rack->r_ctl.bw_rate_cap = loptval;
19169 		break;
19170 	case TCP_RACK_PROFILE:
19171 		RACK_OPTS_INC(tcp_profile);
19172 		error = rack_set_profile(rack, optval);
19173 		break;
19174 	case TCP_USE_CMP_ACKS:
19175 		RACK_OPTS_INC(tcp_use_cmp_acks);
19176 		if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) {
19177 			/* You can't turn it off once its on! */
19178 			error = EINVAL;
19179 		} else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) {
19180 			rack->r_use_cmp_ack = 1;
19181 			rack->r_mbuf_queue = 1;
19182 			tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19183 		}
19184 		if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
19185 			rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19186 		break;
19187 	case TCP_SHARED_CWND_TIME_LIMIT:
19188 		RACK_OPTS_INC(tcp_lscwnd);
19189 		if (optval)
19190 			rack->r_limit_scw = 1;
19191 		else
19192 			rack->r_limit_scw = 0;
19193 		break;
19194  	case TCP_RACK_PACE_TO_FILL:
19195 		RACK_OPTS_INC(tcp_fillcw);
19196 		if (optval == 0)
19197 			rack->rc_pace_to_cwnd = 0;
19198 		else {
19199 			rack->rc_pace_to_cwnd = 1;
19200 			if (optval > 1)
19201 				rack->r_fill_less_agg = 1;
19202 		}
19203 		if ((optval >= rack_gp_rtt_maxmul) &&
19204 		    rack_gp_rtt_maxmul &&
19205 		    (optval < 0xf)) {
19206 			rack->rc_pace_fill_if_rttin_range = 1;
19207 			rack->rtt_limit_mul = optval;
19208 		} else {
19209 			rack->rc_pace_fill_if_rttin_range = 0;
19210 			rack->rtt_limit_mul = 0;
19211 		}
19212 		break;
19213 	case TCP_RACK_NO_PUSH_AT_MAX:
19214 		RACK_OPTS_INC(tcp_npush);
19215 		if (optval == 0)
19216 			rack->r_ctl.rc_no_push_at_mrtt = 0;
19217 		else if (optval < 0xff)
19218 			rack->r_ctl.rc_no_push_at_mrtt = optval;
19219 		else
19220 			error = EINVAL;
19221 		break;
19222 	case TCP_SHARED_CWND_ENABLE:
19223 		RACK_OPTS_INC(tcp_rack_scwnd);
19224 		if (optval == 0)
19225 			rack->rack_enable_scwnd = 0;
19226 		else
19227 			rack->rack_enable_scwnd = 1;
19228 		break;
19229 	case TCP_RACK_MBUF_QUEUE:
19230 		/* Now do we use the LRO mbuf-queue feature */
19231 		RACK_OPTS_INC(tcp_rack_mbufq);
19232 		if (optval || rack->r_use_cmp_ack)
19233 			rack->r_mbuf_queue = 1;
19234 		else
19235 			rack->r_mbuf_queue = 0;
19236 		if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19237 			tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19238 		else
19239 			tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19240 		break;
19241 	case TCP_RACK_NONRXT_CFG_RATE:
19242 		RACK_OPTS_INC(tcp_rack_cfg_rate);
19243 		if (optval == 0)
19244 			rack->rack_rec_nonrxt_use_cr = 0;
19245 		else
19246 			rack->rack_rec_nonrxt_use_cr = 1;
19247 		break;
19248 	case TCP_NO_PRR:
19249 		RACK_OPTS_INC(tcp_rack_noprr);
19250 		if (optval == 0)
19251 			rack->rack_no_prr = 0;
19252 		else if (optval == 1)
19253 			rack->rack_no_prr = 1;
19254 		else if (optval == 2)
19255 			rack->no_prr_addback = 1;
19256 		else
19257 			error = EINVAL;
19258 		break;
19259 	case TCP_TIMELY_DYN_ADJ:
19260 		RACK_OPTS_INC(tcp_timely_dyn);
19261 		if (optval == 0)
19262 			rack->rc_gp_dyn_mul = 0;
19263 		else {
19264 			rack->rc_gp_dyn_mul = 1;
19265 			if (optval >= 100) {
19266 				/*
19267 				 * If the user sets something 100 or more
19268 				 * its the gp_ca value.
19269 				 */
19270 				rack->r_ctl.rack_per_of_gp_ca  = optval;
19271 			}
19272 		}
19273 		break;
19274 	case TCP_RACK_DO_DETECTION:
19275 		RACK_OPTS_INC(tcp_rack_do_detection);
19276 		if (optval == 0)
19277 			rack->do_detection = 0;
19278 		else
19279 			rack->do_detection = 1;
19280 		break;
19281 	case TCP_RACK_TLP_USE:
19282 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
19283 			error = EINVAL;
19284 			break;
19285 		}
19286 		RACK_OPTS_INC(tcp_tlp_use);
19287 		rack->rack_tlp_threshold_use = optval;
19288 		break;
19289 	case TCP_RACK_TLP_REDUCE:
19290 		/* RACK TLP cwnd reduction (bool) */
19291 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
19292 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
19293 		break;
19294 	/*  Pacing related ones */
19295 	case TCP_RACK_PACE_ALWAYS:
19296 		/*
19297 		 * zero is old rack method, 1 is new
19298 		 * method using a pacing rate.
19299 		 */
19300 		RACK_OPTS_INC(tcp_rack_pace_always);
19301 		if (optval > 0) {
19302 			if (rack->rc_always_pace) {
19303 				error = EALREADY;
19304 				break;
19305 			} else if (tcp_can_enable_pacing()) {
19306 				rack->rc_always_pace = 1;
19307 				if (rack->use_fixed_rate || rack->gp_ready)
19308 					rack_set_cc_pacing(rack);
19309 			}
19310 			else {
19311 				error = ENOSPC;
19312 				break;
19313 			}
19314 		} else {
19315 			if (rack->rc_always_pace) {
19316 				tcp_decrement_paced_conn();
19317 				rack->rc_always_pace = 0;
19318 				rack_undo_cc_pacing(rack);
19319 			}
19320 		}
19321 		if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19322 			tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19323 		else
19324 			tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19325 		/* A rate may be set irate or other, if so set seg size */
19326 		rack_update_seg(rack);
19327 		break;
19328 	case TCP_BBR_RACK_INIT_RATE:
19329 		RACK_OPTS_INC(tcp_initial_rate);
19330 		val = optval;
19331 		/* Change from kbits per second to bytes per second */
19332 		val *= 1000;
19333 		val /= 8;
19334 		rack->r_ctl.init_rate = val;
19335 		if (rack->rc_init_win != rack_default_init_window) {
19336 			uint32_t win, snt;
19337 
19338 			/*
19339 			 * Options don't always get applied
19340 			 * in the order you think. So in order
19341 			 * to assure we update a cwnd we need
19342 			 * to check and see if we are still
19343 			 * where we should raise the cwnd.
19344 			 */
19345 			win = rc_init_window(rack);
19346 			if (SEQ_GT(tp->snd_max, tp->iss))
19347 				snt = tp->snd_max - tp->iss;
19348 			else
19349 				snt = 0;
19350 			if ((snt < win) &&
19351 			    (tp->snd_cwnd < win))
19352 				tp->snd_cwnd = win;
19353 		}
19354 		if (rack->rc_always_pace)
19355 			rack_update_seg(rack);
19356 		break;
19357 	case TCP_BBR_IWINTSO:
19358 		RACK_OPTS_INC(tcp_initial_win);
19359 		if (optval && (optval <= 0xff)) {
19360 			uint32_t win, snt;
19361 
19362 			rack->rc_init_win = optval;
19363 			win = rc_init_window(rack);
19364 			if (SEQ_GT(tp->snd_max, tp->iss))
19365 				snt = tp->snd_max - tp->iss;
19366 			else
19367 				snt = 0;
19368 			if ((snt < win) &&
19369 			    (tp->t_srtt |
19370 #ifdef NETFLIX_PEAKRATE
19371 			     tp->t_maxpeakrate |
19372 #endif
19373 			     rack->r_ctl.init_rate)) {
19374 				/*
19375 				 * We are not past the initial window
19376 				 * and we have some bases for pacing,
19377 				 * so we need to possibly adjust up
19378 				 * the cwnd. Note even if we don't set
19379 				 * the cwnd, its still ok to raise the rc_init_win
19380 				 * which can be used coming out of idle when we
19381 				 * would have a rate.
19382 				 */
19383 				if (tp->snd_cwnd < win)
19384 					tp->snd_cwnd = win;
19385 			}
19386 			if (rack->rc_always_pace)
19387 				rack_update_seg(rack);
19388 		} else
19389 			error = EINVAL;
19390 		break;
19391 	case TCP_RACK_FORCE_MSEG:
19392 		RACK_OPTS_INC(tcp_rack_force_max_seg);
19393 		if (optval)
19394 			rack->rc_force_max_seg = 1;
19395 		else
19396 			rack->rc_force_max_seg = 0;
19397 		break;
19398 	case TCP_RACK_PACE_MAX_SEG:
19399 		/* Max segments size in a pace in bytes */
19400 		RACK_OPTS_INC(tcp_rack_max_seg);
19401 		rack->rc_user_set_max_segs = optval;
19402 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
19403 		break;
19404 	case TCP_RACK_PACE_RATE_REC:
19405 		/* Set the fixed pacing rate in Bytes per second ca */
19406 		RACK_OPTS_INC(tcp_rack_pace_rate_rec);
19407 		rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19408 		if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19409 			rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19410 		if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19411 			rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19412 		rack->use_fixed_rate = 1;
19413 		if (rack->rc_always_pace)
19414 			rack_set_cc_pacing(rack);
19415 		rack_log_pacing_delay_calc(rack,
19416 					   rack->r_ctl.rc_fixed_pacing_rate_ss,
19417 					   rack->r_ctl.rc_fixed_pacing_rate_ca,
19418 					   rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19419 					   __LINE__, NULL,0);
19420 		break;
19421 
19422 	case TCP_RACK_PACE_RATE_SS:
19423 		/* Set the fixed pacing rate in Bytes per second ca */
19424 		RACK_OPTS_INC(tcp_rack_pace_rate_ss);
19425 		rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19426 		if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19427 			rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19428 		if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19429 			rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19430 		rack->use_fixed_rate = 1;
19431 		if (rack->rc_always_pace)
19432 			rack_set_cc_pacing(rack);
19433 		rack_log_pacing_delay_calc(rack,
19434 					   rack->r_ctl.rc_fixed_pacing_rate_ss,
19435 					   rack->r_ctl.rc_fixed_pacing_rate_ca,
19436 					   rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19437 					   __LINE__, NULL, 0);
19438 		break;
19439 
19440 	case TCP_RACK_PACE_RATE_CA:
19441 		/* Set the fixed pacing rate in Bytes per second ca */
19442 		RACK_OPTS_INC(tcp_rack_pace_rate_ca);
19443 		rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19444 		if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19445 			rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19446 		if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19447 			rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19448 		rack->use_fixed_rate = 1;
19449 		if (rack->rc_always_pace)
19450 			rack_set_cc_pacing(rack);
19451 		rack_log_pacing_delay_calc(rack,
19452 					   rack->r_ctl.rc_fixed_pacing_rate_ss,
19453 					   rack->r_ctl.rc_fixed_pacing_rate_ca,
19454 					   rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19455 					   __LINE__, NULL, 0);
19456 		break;
19457 	case TCP_RACK_GP_INCREASE_REC:
19458 		RACK_OPTS_INC(tcp_gp_inc_rec);
19459 		rack->r_ctl.rack_per_of_gp_rec = optval;
19460 		rack_log_pacing_delay_calc(rack,
19461 					   rack->r_ctl.rack_per_of_gp_ss,
19462 					   rack->r_ctl.rack_per_of_gp_ca,
19463 					   rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19464 					   __LINE__, NULL, 0);
19465 		break;
19466 	case TCP_RACK_GP_INCREASE_CA:
19467 		RACK_OPTS_INC(tcp_gp_inc_ca);
19468 		ca = optval;
19469 		if (ca < 100) {
19470 			/*
19471 			 * We don't allow any reduction
19472 			 * over the GP b/w.
19473 			 */
19474 			error = EINVAL;
19475 			break;
19476 		}
19477 		rack->r_ctl.rack_per_of_gp_ca = ca;
19478 		rack_log_pacing_delay_calc(rack,
19479 					   rack->r_ctl.rack_per_of_gp_ss,
19480 					   rack->r_ctl.rack_per_of_gp_ca,
19481 					   rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19482 					   __LINE__, NULL, 0);
19483 		break;
19484 	case TCP_RACK_GP_INCREASE_SS:
19485 		RACK_OPTS_INC(tcp_gp_inc_ss);
19486 		ss = optval;
19487 		if (ss < 100) {
19488 			/*
19489 			 * We don't allow any reduction
19490 			 * over the GP b/w.
19491 			 */
19492 			error = EINVAL;
19493 			break;
19494 		}
19495 		rack->r_ctl.rack_per_of_gp_ss = ss;
19496 		rack_log_pacing_delay_calc(rack,
19497 					   rack->r_ctl.rack_per_of_gp_ss,
19498 					   rack->r_ctl.rack_per_of_gp_ca,
19499 					   rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19500 					   __LINE__, NULL, 0);
19501 		break;
19502 	case TCP_RACK_RR_CONF:
19503 		RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate);
19504 		if (optval && optval <= 3)
19505 			rack->r_rr_config = optval;
19506 		else
19507 			rack->r_rr_config = 0;
19508 		break;
19509 	case TCP_HDWR_RATE_CAP:
19510 		RACK_OPTS_INC(tcp_hdwr_rate_cap);
19511 		if (optval) {
19512 			if (rack->r_rack_hw_rate_caps == 0)
19513 				rack->r_rack_hw_rate_caps = 1;
19514 			else
19515 				error = EALREADY;
19516 		} else {
19517 			rack->r_rack_hw_rate_caps = 0;
19518 		}
19519 		break;
19520 	case TCP_BBR_HDWR_PACE:
19521 		RACK_OPTS_INC(tcp_hdwr_pacing);
19522 		if (optval){
19523 			if (rack->rack_hdrw_pacing == 0) {
19524 				rack->rack_hdw_pace_ena = 1;
19525 				rack->rack_attempt_hdwr_pace = 0;
19526 			} else
19527 				error = EALREADY;
19528 		} else {
19529 			rack->rack_hdw_pace_ena = 0;
19530 #ifdef RATELIMIT
19531 			if (rack->r_ctl.crte != NULL) {
19532 				rack->rack_hdrw_pacing = 0;
19533 				rack->rack_attempt_hdwr_pace = 0;
19534 				tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
19535 				rack->r_ctl.crte = NULL;
19536 			}
19537 #endif
19538 		}
19539 		break;
19540 	/*  End Pacing related ones */
19541 	case TCP_RACK_PRR_SENDALOT:
19542 		/* Allow PRR to send more than one seg */
19543 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
19544 		rack->r_ctl.rc_prr_sendalot = optval;
19545 		break;
19546 	case TCP_RACK_MIN_TO:
19547 		/* Minimum time between rack t-o's in ms */
19548 		RACK_OPTS_INC(tcp_rack_min_to);
19549 		rack->r_ctl.rc_min_to = optval;
19550 		break;
19551 	case TCP_RACK_EARLY_SEG:
19552 		/* If early recovery max segments */
19553 		RACK_OPTS_INC(tcp_rack_early_seg);
19554 		rack->r_ctl.rc_early_recovery_segs = optval;
19555 		break;
19556 	case TCP_RACK_REORD_THRESH:
19557 		/* RACK reorder threshold (shift amount) */
19558 		RACK_OPTS_INC(tcp_rack_reord_thresh);
19559 		if ((optval > 0) && (optval < 31))
19560 			rack->r_ctl.rc_reorder_shift = optval;
19561 		else
19562 			error = EINVAL;
19563 		break;
19564 	case TCP_RACK_REORD_FADE:
19565 		/* Does reordering fade after ms time */
19566 		RACK_OPTS_INC(tcp_rack_reord_fade);
19567 		rack->r_ctl.rc_reorder_fade = optval;
19568 		break;
19569 	case TCP_RACK_TLP_THRESH:
19570 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
19571 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
19572 		if (optval)
19573 			rack->r_ctl.rc_tlp_threshold = optval;
19574 		else
19575 			error = EINVAL;
19576 		break;
19577 	case TCP_BBR_USE_RACK_RR:
19578 		RACK_OPTS_INC(tcp_rack_rr);
19579 		if (optval)
19580 			rack->use_rack_rr = 1;
19581 		else
19582 			rack->use_rack_rr = 0;
19583 		break;
19584 	case TCP_FAST_RSM_HACK:
19585 		RACK_OPTS_INC(tcp_rack_fastrsm_hack);
19586 		if (optval)
19587 			rack->fast_rsm_hack = 1;
19588 		else
19589 			rack->fast_rsm_hack = 0;
19590 		break;
19591 	case TCP_RACK_PKT_DELAY:
19592 		/* RACK added ms i.e. rack-rtt + reord + N */
19593 		RACK_OPTS_INC(tcp_rack_pkt_delay);
19594 		rack->r_ctl.rc_pkt_delay = optval;
19595 		break;
19596 	case TCP_DELACK:
19597 		RACK_OPTS_INC(tcp_rack_delayed_ack);
19598 		if (optval == 0)
19599 			tp->t_delayed_ack = 0;
19600 		else
19601 			tp->t_delayed_ack = 1;
19602 		if (tp->t_flags & TF_DELACK) {
19603 			tp->t_flags &= ~TF_DELACK;
19604 			tp->t_flags |= TF_ACKNOW;
19605 			NET_EPOCH_ENTER(et);
19606 			rack_output(tp);
19607 			NET_EPOCH_EXIT(et);
19608 		}
19609 		break;
19610 
19611 	case TCP_BBR_RACK_RTT_USE:
19612 		RACK_OPTS_INC(tcp_rack_rtt_use);
19613 		if ((optval != USE_RTT_HIGH) &&
19614 		    (optval != USE_RTT_LOW) &&
19615 		    (optval != USE_RTT_AVG))
19616 			error = EINVAL;
19617 		else
19618 			rack->r_ctl.rc_rate_sample_method = optval;
19619 		break;
19620 	case TCP_DATA_AFTER_CLOSE:
19621 		RACK_OPTS_INC(tcp_data_after_close);
19622 		if (optval)
19623 			rack->rc_allow_data_af_clo = 1;
19624 		else
19625 			rack->rc_allow_data_af_clo = 0;
19626 		break;
19627 	default:
19628 		break;
19629 	}
19630 #ifdef NETFLIX_STATS
19631 	tcp_log_socket_option(tp, sopt_name, optval, error);
19632 #endif
19633 	return (error);
19634 }
19635 
19636 
19637 static void
19638 rack_apply_deferred_options(struct tcp_rack *rack)
19639 {
19640 	struct deferred_opt_list *dol, *sdol;
19641 	uint32_t s_optval;
19642 
19643 	TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) {
19644 		TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
19645 		/* Disadvantage of deferal is you loose the error return */
19646 		s_optval = (uint32_t)dol->optval;
19647 		(void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval);
19648 		free(dol, M_TCPDO);
19649 	}
19650 }
19651 
19652 static void
19653 rack_hw_tls_change(struct tcpcb *tp, int chg)
19654 {
19655 	/*
19656 	 * HW tls state has changed.. fix all
19657 	 * rsm's in flight.
19658 	 */
19659 	struct tcp_rack *rack;
19660 	struct rack_sendmap *rsm;
19661 
19662 	rack = (struct tcp_rack *)tp->t_fb_ptr;
19663 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
19664 		if (chg)
19665 			rsm->r_hw_tls = 1;
19666 		else
19667 			rsm->r_hw_tls = 0;
19668 	}
19669 	if (chg)
19670 		rack->r_ctl.fsb.hw_tls = 1;
19671 	else
19672 		rack->r_ctl.fsb.hw_tls = 0;
19673 }
19674 
19675 static int
19676 rack_pru_options(struct tcpcb *tp, int flags)
19677 {
19678 	if (flags & PRUS_OOB)
19679 		return (EOPNOTSUPP);
19680 	return (0);
19681 }
19682 
19683 static struct tcp_function_block __tcp_rack = {
19684 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
19685 	.tfb_tcp_output = rack_output,
19686 	.tfb_do_queued_segments = ctf_do_queued_segments,
19687 	.tfb_do_segment_nounlock = rack_do_segment_nounlock,
19688 	.tfb_tcp_do_segment = rack_do_segment,
19689 	.tfb_tcp_ctloutput = rack_ctloutput,
19690 	.tfb_tcp_fb_init = rack_init,
19691 	.tfb_tcp_fb_fini = rack_fini,
19692 	.tfb_tcp_timer_stop_all = rack_stopall,
19693 	.tfb_tcp_timer_activate = rack_timer_activate,
19694 	.tfb_tcp_timer_active = rack_timer_active,
19695 	.tfb_tcp_timer_stop = rack_timer_stop,
19696 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
19697 	.tfb_tcp_handoff_ok = rack_handoff_ok,
19698 	.tfb_tcp_mtu_chg = rack_mtu_change,
19699 	.tfb_pru_options = rack_pru_options,
19700 	.tfb_hwtls_change = rack_hw_tls_change,
19701 };
19702 
19703 /*
19704  * rack_ctloutput() must drop the inpcb lock before performing copyin on
19705  * socket option arguments.  When it re-acquires the lock after the copy, it
19706  * has to revalidate that the connection is still valid for the socket
19707  * option.
19708  */
19709 static int
19710 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
19711     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
19712 {
19713 	uint64_t loptval;
19714 	int32_t error = 0, optval;
19715 
19716 	switch (sopt->sopt_name) {
19717 	case TCP_RACK_TLP_REDUCE:		/*  URL:tlp_reduce */
19718 	/*  Pacing related ones */
19719 	case TCP_RACK_PACE_ALWAYS:		/*  URL:pace_always */
19720 	case TCP_BBR_RACK_INIT_RATE:		/*  URL:irate */
19721 	case TCP_BBR_IWINTSO:			/*  URL:tso_iwin */
19722 	case TCP_RACK_PACE_MAX_SEG:		/*  URL:pace_max_seg */
19723 	case TCP_RACK_FORCE_MSEG:		/*  URL:force_max_seg */
19724 	case TCP_RACK_PACE_RATE_CA:		/*  URL:pr_ca */
19725 	case TCP_RACK_PACE_RATE_SS:		/*  URL:pr_ss*/
19726 	case TCP_RACK_PACE_RATE_REC:		/*  URL:pr_rec */
19727 	case TCP_RACK_GP_INCREASE_CA:		/*  URL:gp_inc_ca */
19728 	case TCP_RACK_GP_INCREASE_SS:		/*  URL:gp_inc_ss */
19729 	case TCP_RACK_GP_INCREASE_REC:		/*  URL:gp_inc_rec */
19730 	case TCP_RACK_RR_CONF:			/*  URL:rrr_conf */
19731 	case TCP_BBR_HDWR_PACE:			/*  URL:hdwrpace */
19732 	case TCP_HDWR_RATE_CAP:			/*  URL:hdwrcap boolean */
19733 	case TCP_PACING_RATE_CAP:		/*  URL:cap  -- used by side-channel */
19734 	case TCP_HDWR_UP_ONLY:			/*  URL:uponly -- hardware pacing  boolean */
19735        /* End pacing related */
19736 	case TCP_FAST_RSM_HACK:			/*  URL:frsm_hack */
19737 	case TCP_DELACK:			/*  URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */
19738 	case TCP_RACK_PRR_SENDALOT:		/*  URL:prr_sendalot */
19739 	case TCP_RACK_MIN_TO:			/*  URL:min_to */
19740 	case TCP_RACK_EARLY_SEG:		/*  URL:early_seg */
19741 	case TCP_RACK_REORD_THRESH:		/*  URL:reord_thresh */
19742 	case TCP_RACK_REORD_FADE:		/*  URL:reord_fade */
19743 	case TCP_RACK_TLP_THRESH:		/*  URL:tlp_thresh */
19744 	case TCP_RACK_PKT_DELAY:		/*  URL:pkt_delay */
19745 	case TCP_RACK_TLP_USE:			/*  URL:tlp_use */
19746 	case TCP_BBR_RACK_RTT_USE:		/*  URL:rttuse */
19747 	case TCP_BBR_USE_RACK_RR:		/*  URL:rackrr */
19748 	case TCP_RACK_DO_DETECTION:		/*  URL:detect */
19749 	case TCP_NO_PRR:			/*  URL:noprr */
19750 	case TCP_TIMELY_DYN_ADJ:      		/*  URL:dynamic */
19751 	case TCP_DATA_AFTER_CLOSE:		/*  no URL */
19752 	case TCP_RACK_NONRXT_CFG_RATE:		/*  URL:nonrxtcr */
19753 	case TCP_SHARED_CWND_ENABLE:		/*  URL:scwnd */
19754 	case TCP_RACK_MBUF_QUEUE:		/*  URL:mqueue */
19755 	case TCP_RACK_NO_PUSH_AT_MAX:		/*  URL:npush */
19756 	case TCP_RACK_PACE_TO_FILL:		/*  URL:fillcw */
19757 	case TCP_SHARED_CWND_TIME_LIMIT:	/*  URL:lscwnd */
19758 	case TCP_RACK_PROFILE:			/*  URL:profile */
19759 	case TCP_USE_CMP_ACKS:			/*  URL:cmpack */
19760 	case TCP_RACK_ABC_VAL:			/*  URL:labc */
19761 	case TCP_REC_ABC_VAL:			/*  URL:reclabc */
19762 	case TCP_RACK_MEASURE_CNT:		/*  URL:measurecnt */
19763 	case TCP_DEFER_OPTIONS:			/*  URL:defer */
19764 	case TCP_RACK_PACING_BETA:		/*  URL:pacing_beta */
19765 	case TCP_RACK_PACING_BETA_ECN:		/*  URL:pacing_beta_ecn */
19766 	case TCP_RACK_TIMER_SLOP:		/*  URL:timer_slop */
19767 		break;
19768 	default:
19769 		/* Filter off all unknown options to the base stack */
19770 		return (tcp_default_ctloutput(so, sopt, inp, tp));
19771 		break;
19772 	}
19773 	INP_WUNLOCK(inp);
19774 	if (sopt->sopt_name == TCP_PACING_RATE_CAP) {
19775 		error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval));
19776 		/*
19777 		 * We truncate it down to 32 bits for the socket-option trace this
19778 		 * means rates > 34Gbps won't show right, but thats probably ok.
19779 		 */
19780 		optval = (uint32_t)loptval;
19781 	} else {
19782 		error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
19783 		/* Save it in 64 bit form too */
19784 		loptval = optval;
19785 	}
19786 	if (error)
19787 		return (error);
19788 	INP_WLOCK(inp);
19789 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
19790 		INP_WUNLOCK(inp);
19791 		return (ECONNRESET);
19792 	}
19793 	if (tp->t_fb != &__tcp_rack) {
19794 		INP_WUNLOCK(inp);
19795 		return (ENOPROTOOPT);
19796 	}
19797 	if (rack->defer_options && (rack->gp_ready == 0) &&
19798 	    (sopt->sopt_name != TCP_DEFER_OPTIONS) &&
19799 	    (sopt->sopt_name != TCP_RACK_PACING_BETA) &&
19800 	    (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) &&
19801 	    (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) {
19802 		/* Options are beind deferred */
19803 		if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) {
19804 			INP_WUNLOCK(inp);
19805 			return (0);
19806 		} else {
19807 			/* No memory to defer, fail */
19808 			INP_WUNLOCK(inp);
19809 			return (ENOMEM);
19810 		}
19811 	}
19812 	error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval);
19813 	INP_WUNLOCK(inp);
19814 	return (error);
19815 }
19816 
19817 static void
19818 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti)
19819 {
19820 
19821 	INP_WLOCK_ASSERT(tp->t_inpcb);
19822 	bzero(ti, sizeof(*ti));
19823 
19824 	ti->tcpi_state = tp->t_state;
19825 	if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
19826 		ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
19827 	if (tp->t_flags & TF_SACK_PERMIT)
19828 		ti->tcpi_options |= TCPI_OPT_SACK;
19829 	if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
19830 		ti->tcpi_options |= TCPI_OPT_WSCALE;
19831 		ti->tcpi_snd_wscale = tp->snd_scale;
19832 		ti->tcpi_rcv_wscale = tp->rcv_scale;
19833 	}
19834 	if (tp->t_flags2 & TF2_ECN_PERMIT)
19835 		ti->tcpi_options |= TCPI_OPT_ECN;
19836 	if (tp->t_flags & TF_FASTOPEN)
19837 		ti->tcpi_options |= TCPI_OPT_TFO;
19838 	/* still kept in ticks is t_rcvtime */
19839 	ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick;
19840 	/* Since we hold everything in precise useconds this is easy */
19841 	ti->tcpi_rtt = tp->t_srtt;
19842 	ti->tcpi_rttvar = tp->t_rttvar;
19843 	ti->tcpi_rto = tp->t_rxtcur;
19844 	ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
19845 	ti->tcpi_snd_cwnd = tp->snd_cwnd;
19846 	/*
19847 	 * FreeBSD-specific extension fields for tcp_info.
19848 	 */
19849 	ti->tcpi_rcv_space = tp->rcv_wnd;
19850 	ti->tcpi_rcv_nxt = tp->rcv_nxt;
19851 	ti->tcpi_snd_wnd = tp->snd_wnd;
19852 	ti->tcpi_snd_bwnd = 0;		/* Unused, kept for compat. */
19853 	ti->tcpi_snd_nxt = tp->snd_nxt;
19854 	ti->tcpi_snd_mss = tp->t_maxseg;
19855 	ti->tcpi_rcv_mss = tp->t_maxseg;
19856 	ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack;
19857 	ti->tcpi_rcv_ooopack = tp->t_rcvoopack;
19858 	ti->tcpi_snd_zerowin = tp->t_sndzerowin;
19859 #ifdef NETFLIX_STATS
19860 	ti->tcpi_total_tlp = tp->t_sndtlppack;
19861 	ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte;
19862 	memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo));
19863 #endif
19864 #ifdef TCP_OFFLOAD
19865 	if (tp->t_flags & TF_TOE) {
19866 		ti->tcpi_options |= TCPI_OPT_TOE;
19867 		tcp_offload_tcp_info(tp, ti);
19868 	}
19869 #endif
19870 }
19871 
19872 static int
19873 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
19874     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
19875 {
19876 	int32_t error, optval;
19877 	uint64_t val, loptval;
19878 	struct	tcp_info ti;
19879 	/*
19880 	 * Because all our options are either boolean or an int, we can just
19881 	 * pull everything into optval and then unlock and copy. If we ever
19882 	 * add a option that is not a int, then this will have quite an
19883 	 * impact to this routine.
19884 	 */
19885 	error = 0;
19886 	switch (sopt->sopt_name) {
19887 	case TCP_INFO:
19888 		/* First get the info filled */
19889 		rack_fill_info(tp, &ti);
19890 		/* Fix up the rtt related fields if needed */
19891 		INP_WUNLOCK(inp);
19892 		error = sooptcopyout(sopt, &ti, sizeof ti);
19893 		return (error);
19894 	/*
19895 	 * Beta is the congestion control value for NewReno that influences how
19896 	 * much of a backoff happens when loss is detected. It is normally set
19897 	 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value
19898 	 * when you exit recovery.
19899 	 */
19900 	case TCP_RACK_PACING_BETA:
19901 		if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0)
19902 			error = EINVAL;
19903 		else if (rack->rc_pacing_cc_set == 0)
19904 			optval = rack->r_ctl.rc_saved_beta.beta;
19905 		else {
19906 			/*
19907 			 * Reach out into the CC data and report back what
19908 			 * I have previously set. Yeah it looks hackish but
19909 			 * we don't want to report the saved values.
19910 			 */
19911 			if (tp->ccv->cc_data)
19912 				optval = ((struct newreno *)tp->ccv->cc_data)->beta;
19913 			else
19914 				error = EINVAL;
19915 		}
19916 		break;
19917 		/*
19918 		 * Beta_ecn is the congestion control value for NewReno that influences how
19919 		 * much of a backoff happens when a ECN mark is detected. It is normally set
19920 		 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when
19921 		 * you exit recovery. Note that classic ECN has a beta of 50, it is only
19922 		 * ABE Ecn that uses this "less" value, but we do too with pacing :)
19923 		 */
19924 
19925 	case TCP_RACK_PACING_BETA_ECN:
19926 		if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0)
19927 			error = EINVAL;
19928 		else if (rack->rc_pacing_cc_set == 0)
19929 			optval = rack->r_ctl.rc_saved_beta.beta_ecn;
19930 		else {
19931 			/*
19932 			 * Reach out into the CC data and report back what
19933 			 * I have previously set. Yeah it looks hackish but
19934 			 * we don't want to report the saved values.
19935 			 */
19936 			if (tp->ccv->cc_data)
19937 				optval = ((struct newreno *)tp->ccv->cc_data)->beta_ecn;
19938 			else
19939 				error = EINVAL;
19940 		}
19941 		break;
19942 	case TCP_FAST_RSM_HACK:
19943 		optval = rack->fast_rsm_hack;
19944 		break;
19945 	case TCP_DEFER_OPTIONS:
19946 		optval = rack->defer_options;
19947 		break;
19948 	case TCP_RACK_MEASURE_CNT:
19949 		optval = rack->r_ctl.req_measurements;
19950 		break;
19951 	case TCP_REC_ABC_VAL:
19952 		optval = rack->r_use_labc_for_rec;
19953 		break;
19954 	case TCP_RACK_ABC_VAL:
19955 		optval = rack->rc_labc;
19956 		break;
19957 	case TCP_HDWR_UP_ONLY:
19958 		optval= rack->r_up_only;
19959 		break;
19960 	case TCP_PACING_RATE_CAP:
19961 		loptval = rack->r_ctl.bw_rate_cap;
19962 		break;
19963 	case TCP_RACK_PROFILE:
19964 		/* You cannot retrieve a profile, its write only */
19965 		error = EINVAL;
19966 		break;
19967 	case TCP_USE_CMP_ACKS:
19968 		optval = rack->r_use_cmp_ack;
19969 		break;
19970 	case TCP_RACK_PACE_TO_FILL:
19971 		optval = rack->rc_pace_to_cwnd;
19972 		if (optval && rack->r_fill_less_agg)
19973 			optval++;
19974 		break;
19975 	case TCP_RACK_NO_PUSH_AT_MAX:
19976 		optval = rack->r_ctl.rc_no_push_at_mrtt;
19977 		break;
19978 	case TCP_SHARED_CWND_ENABLE:
19979 		optval = rack->rack_enable_scwnd;
19980 		break;
19981 	case TCP_RACK_NONRXT_CFG_RATE:
19982 		optval = rack->rack_rec_nonrxt_use_cr;
19983 		break;
19984 	case TCP_NO_PRR:
19985 		if (rack->rack_no_prr  == 1)
19986 			optval = 1;
19987 		else if (rack->no_prr_addback == 1)
19988 			optval = 2;
19989 		else
19990 			optval = 0;
19991 		break;
19992 	case TCP_RACK_DO_DETECTION:
19993 		optval = rack->do_detection;
19994 		break;
19995 	case TCP_RACK_MBUF_QUEUE:
19996 		/* Now do we use the LRO mbuf-queue feature */
19997 		optval = rack->r_mbuf_queue;
19998 		break;
19999 	case TCP_TIMELY_DYN_ADJ:
20000 		optval = rack->rc_gp_dyn_mul;
20001 		break;
20002 	case TCP_BBR_IWINTSO:
20003 		optval = rack->rc_init_win;
20004 		break;
20005 	case TCP_RACK_TLP_REDUCE:
20006 		/* RACK TLP cwnd reduction (bool) */
20007 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
20008 		break;
20009 	case TCP_BBR_RACK_INIT_RATE:
20010 		val = rack->r_ctl.init_rate;
20011 		/* convert to kbits per sec */
20012 		val *= 8;
20013 		val /= 1000;
20014 		optval = (uint32_t)val;
20015 		break;
20016 	case TCP_RACK_FORCE_MSEG:
20017 		optval = rack->rc_force_max_seg;
20018 		break;
20019 	case TCP_RACK_PACE_MAX_SEG:
20020 		/* Max segments in a pace */
20021 		optval = rack->rc_user_set_max_segs;
20022 		break;
20023 	case TCP_RACK_PACE_ALWAYS:
20024 		/* Use the always pace method */
20025 		optval = rack->rc_always_pace;
20026 		break;
20027 	case TCP_RACK_PRR_SENDALOT:
20028 		/* Allow PRR to send more than one seg */
20029 		optval = rack->r_ctl.rc_prr_sendalot;
20030 		break;
20031 	case TCP_RACK_MIN_TO:
20032 		/* Minimum time between rack t-o's in ms */
20033 		optval = rack->r_ctl.rc_min_to;
20034 		break;
20035 	case TCP_RACK_EARLY_SEG:
20036 		/* If early recovery max segments */
20037 		optval = rack->r_ctl.rc_early_recovery_segs;
20038 		break;
20039 	case TCP_RACK_REORD_THRESH:
20040 		/* RACK reorder threshold (shift amount) */
20041 		optval = rack->r_ctl.rc_reorder_shift;
20042 		break;
20043 	case TCP_RACK_REORD_FADE:
20044 		/* Does reordering fade after ms time */
20045 		optval = rack->r_ctl.rc_reorder_fade;
20046 		break;
20047 	case TCP_BBR_USE_RACK_RR:
20048 		/* Do we use the rack cheat for rxt */
20049 		optval = rack->use_rack_rr;
20050 		break;
20051 	case TCP_RACK_RR_CONF:
20052 		optval = rack->r_rr_config;
20053 		break;
20054 	case TCP_HDWR_RATE_CAP:
20055 		optval = rack->r_rack_hw_rate_caps;
20056 		break;
20057 	case TCP_BBR_HDWR_PACE:
20058 		optval = rack->rack_hdw_pace_ena;
20059 		break;
20060 	case TCP_RACK_TLP_THRESH:
20061 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
20062 		optval = rack->r_ctl.rc_tlp_threshold;
20063 		break;
20064 	case TCP_RACK_PKT_DELAY:
20065 		/* RACK added ms i.e. rack-rtt + reord + N */
20066 		optval = rack->r_ctl.rc_pkt_delay;
20067 		break;
20068 	case TCP_RACK_TLP_USE:
20069 		optval = rack->rack_tlp_threshold_use;
20070 		break;
20071 	case TCP_RACK_PACE_RATE_CA:
20072 		optval = rack->r_ctl.rc_fixed_pacing_rate_ca;
20073 		break;
20074 	case TCP_RACK_PACE_RATE_SS:
20075 		optval = rack->r_ctl.rc_fixed_pacing_rate_ss;
20076 		break;
20077 	case TCP_RACK_PACE_RATE_REC:
20078 		optval = rack->r_ctl.rc_fixed_pacing_rate_rec;
20079 		break;
20080 	case TCP_RACK_GP_INCREASE_SS:
20081 		optval = rack->r_ctl.rack_per_of_gp_ca;
20082 		break;
20083 	case TCP_RACK_GP_INCREASE_CA:
20084 		optval = rack->r_ctl.rack_per_of_gp_ss;
20085 		break;
20086 	case TCP_BBR_RACK_RTT_USE:
20087 		optval = rack->r_ctl.rc_rate_sample_method;
20088 		break;
20089 	case TCP_DELACK:
20090 		optval = tp->t_delayed_ack;
20091 		break;
20092 	case TCP_DATA_AFTER_CLOSE:
20093 		optval = rack->rc_allow_data_af_clo;
20094 		break;
20095 	case TCP_SHARED_CWND_TIME_LIMIT:
20096 		optval = rack->r_limit_scw;
20097 		break;
20098 	case TCP_RACK_TIMER_SLOP:
20099 		optval = rack->r_ctl.timer_slop;
20100 		break;
20101 	default:
20102 		return (tcp_default_ctloutput(so, sopt, inp, tp));
20103 		break;
20104 	}
20105 	INP_WUNLOCK(inp);
20106 	if (error == 0) {
20107 		if (TCP_PACING_RATE_CAP)
20108 			error = sooptcopyout(sopt, &loptval, sizeof loptval);
20109 		else
20110 			error = sooptcopyout(sopt, &optval, sizeof optval);
20111 	}
20112 	return (error);
20113 }
20114 
20115 static int
20116 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
20117 {
20118 	int32_t error = EINVAL;
20119 	struct tcp_rack *rack;
20120 
20121 	rack = (struct tcp_rack *)tp->t_fb_ptr;
20122 	if (rack == NULL) {
20123 		/* Huh? */
20124 		goto out;
20125 	}
20126 	if (sopt->sopt_dir == SOPT_SET) {
20127 		return (rack_set_sockopt(so, sopt, inp, tp, rack));
20128 	} else if (sopt->sopt_dir == SOPT_GET) {
20129 		return (rack_get_sockopt(so, sopt, inp, tp, rack));
20130 	}
20131 out:
20132 	INP_WUNLOCK(inp);
20133 	return (error);
20134 }
20135 
20136 static const char *rack_stack_names[] = {
20137 	__XSTRING(STACKNAME),
20138 #ifdef STACKALIAS
20139 	__XSTRING(STACKALIAS),
20140 #endif
20141 };
20142 
20143 static int
20144 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
20145 {
20146 	memset(mem, 0, size);
20147 	return (0);
20148 }
20149 
20150 static void
20151 rack_dtor(void *mem, int32_t size, void *arg)
20152 {
20153 
20154 }
20155 
20156 static bool rack_mod_inited = false;
20157 
20158 static int
20159 tcp_addrack(module_t mod, int32_t type, void *data)
20160 {
20161 	int32_t err = 0;
20162 	int num_stacks;
20163 
20164 	switch (type) {
20165 	case MOD_LOAD:
20166 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
20167 		    sizeof(struct rack_sendmap),
20168 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
20169 
20170 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
20171 		    sizeof(struct tcp_rack),
20172 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
20173 
20174 		sysctl_ctx_init(&rack_sysctl_ctx);
20175 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
20176 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
20177 		    OID_AUTO,
20178 #ifdef STACKALIAS
20179 		    __XSTRING(STACKALIAS),
20180 #else
20181 		    __XSTRING(STACKNAME),
20182 #endif
20183 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
20184 		    "");
20185 		if (rack_sysctl_root == NULL) {
20186 			printf("Failed to add sysctl node\n");
20187 			err = EFAULT;
20188 			goto free_uma;
20189 		}
20190 		rack_init_sysctls();
20191 		num_stacks = nitems(rack_stack_names);
20192 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
20193 		    rack_stack_names, &num_stacks);
20194 		if (err) {
20195 			printf("Failed to register %s stack name for "
20196 			    "%s module\n", rack_stack_names[num_stacks],
20197 			    __XSTRING(MODNAME));
20198 			sysctl_ctx_free(&rack_sysctl_ctx);
20199 free_uma:
20200 			uma_zdestroy(rack_zone);
20201 			uma_zdestroy(rack_pcb_zone);
20202 			rack_counter_destroy();
20203 			printf("Failed to register rack module -- err:%d\n", err);
20204 			return (err);
20205 		}
20206 		tcp_lro_reg_mbufq();
20207 		rack_mod_inited = true;
20208 		break;
20209 	case MOD_QUIESCE:
20210 		err = deregister_tcp_functions(&__tcp_rack, true, false);
20211 		break;
20212 	case MOD_UNLOAD:
20213 		err = deregister_tcp_functions(&__tcp_rack, false, true);
20214 		if (err == EBUSY)
20215 			break;
20216 		if (rack_mod_inited) {
20217 			uma_zdestroy(rack_zone);
20218 			uma_zdestroy(rack_pcb_zone);
20219 			sysctl_ctx_free(&rack_sysctl_ctx);
20220 			rack_counter_destroy();
20221 			rack_mod_inited = false;
20222 		}
20223 		tcp_lro_dereg_mbufq();
20224 		err = 0;
20225 		break;
20226 	default:
20227 		return (EOPNOTSUPP);
20228 	}
20229 	return (err);
20230 }
20231 
20232 static moduledata_t tcp_rack = {
20233 	.name = __XSTRING(MODNAME),
20234 	.evhand = tcp_addrack,
20235 	.priv = 0
20236 };
20237 
20238 MODULE_VERSION(MODNAME, 1);
20239 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
20240 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
20241