xref: /freebsd/sys/netinet/tcp_stacks/rack.c (revision 00e84f52f0985e6b2fd73694aa5f4b50a5f957af)
1 /*-
2  * Copyright (c) 2016-2020 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_ratelimit.h"
34 #include "opt_kern_tls.h"
35 #if defined(INET) || defined(INET6)
36 #include <sys/param.h>
37 #include <sys/arb.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #ifdef TCP_HHOOK
41 #include <sys/hhook.h>
42 #endif
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/proc.h>		/* for proc0 declaration */
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/systm.h>
53 #ifdef STATS
54 #include <sys/qmath.h>
55 #include <sys/tree.h>
56 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
57 #else
58 #include <sys/tree.h>
59 #endif
60 #include <sys/refcount.h>
61 #include <sys/queue.h>
62 #include <sys/tim_filter.h>
63 #include <sys/smp.h>
64 #include <sys/kthread.h>
65 #include <sys/kern_prefetch.h>
66 #include <sys/protosw.h>
67 #ifdef TCP_ACCOUNTING
68 #include <sys/sched.h>
69 #include <machine/cpu.h>
70 #endif
71 #include <vm/uma.h>
72 
73 #include <net/route.h>
74 #include <net/route/nhop.h>
75 #include <net/vnet.h>
76 
77 #define TCPSTATES		/* for logging */
78 
79 #include <netinet/in.h>
80 #include <netinet/in_kdtrace.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
84 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
85 #include <netinet/ip_var.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/ip6_var.h>
89 #include <netinet/tcp.h>
90 #define	TCPOUTFLAGS
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcp_log_buf.h>
96 #include <netinet/tcp_syncache.h>
97 #include <netinet/tcp_hpts.h>
98 #include <netinet/tcp_ratelimit.h>
99 #include <netinet/tcp_accounting.h>
100 #include <netinet/tcpip.h>
101 #include <netinet/cc/cc.h>
102 #include <netinet/cc/cc_newreno.h>
103 #include <netinet/tcp_fastopen.h>
104 #include <netinet/tcp_lro.h>
105 #ifdef NETFLIX_SHARED_CWND
106 #include <netinet/tcp_shared_cwnd.h>
107 #endif
108 #ifdef TCP_OFFLOAD
109 #include <netinet/tcp_offload.h>
110 #endif
111 #ifdef INET6
112 #include <netinet6/tcp6_var.h>
113 #endif
114 #include <netinet/tcp_ecn.h>
115 
116 #include <netipsec/ipsec_support.h>
117 
118 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
119 #include <netipsec/ipsec.h>
120 #include <netipsec/ipsec6.h>
121 #endif				/* IPSEC */
122 
123 #include <netinet/udp.h>
124 #include <netinet/udp_var.h>
125 #include <machine/in_cksum.h>
126 
127 #ifdef MAC
128 #include <security/mac/mac_framework.h>
129 #endif
130 #include "sack_filter.h"
131 #include "tcp_rack.h"
132 #include "rack_bbr_common.h"
133 
134 uma_zone_t rack_zone;
135 uma_zone_t rack_pcb_zone;
136 
137 #ifndef TICKS2SBT
138 #define	TICKS2SBT(__t)	(tick_sbt * ((sbintime_t)(__t)))
139 #endif
140 
141 VNET_DECLARE(uint32_t, newreno_beta);
142 VNET_DECLARE(uint32_t, newreno_beta_ecn);
143 #define V_newreno_beta VNET(newreno_beta)
144 #define V_newreno_beta_ecn VNET(newreno_beta_ecn)
145 
146 
147 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block");
148 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options");
149 
150 struct sysctl_ctx_list rack_sysctl_ctx;
151 struct sysctl_oid *rack_sysctl_root;
152 
153 #define CUM_ACKED 1
154 #define SACKED 2
155 
156 /*
157  * The RACK module incorporates a number of
158  * TCP ideas that have been put out into the IETF
159  * over the last few years:
160  * - Matt Mathis's Rate Halving which slowly drops
161  *    the congestion window so that the ack clock can
162  *    be maintained during a recovery.
163  * - Yuchung Cheng's RACK TCP (for which its named) that
164  *    will stop us using the number of dup acks and instead
165  *    use time as the gage of when we retransmit.
166  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
167  *    of Dukkipati et.al.
168  * RACK depends on SACK, so if an endpoint arrives that
169  * cannot do SACK the state machine below will shuttle the
170  * connection back to using the "default" TCP stack that is
171  * in FreeBSD.
172  *
173  * To implement RACK the original TCP stack was first decomposed
174  * into a functional state machine with individual states
175  * for each of the possible TCP connection states. The do_segment
176  * functions role in life is to mandate the connection supports SACK
177  * initially and then assure that the RACK state matches the conenction
178  * state before calling the states do_segment function. Each
179  * state is simplified due to the fact that the original do_segment
180  * has been decomposed and we *know* what state we are in (no
181  * switches on the state) and all tests for SACK are gone. This
182  * greatly simplifies what each state does.
183  *
184  * TCP output is also over-written with a new version since it
185  * must maintain the new rack scoreboard.
186  *
187  */
188 static int32_t rack_tlp_thresh = 1;
189 static int32_t rack_tlp_limit = 2;	/* No more than 2 TLPs w-out new data */
190 static int32_t rack_tlp_use_greater = 1;
191 static int32_t rack_reorder_thresh = 2;
192 static int32_t rack_reorder_fade = 60000000;	/* 0 - never fade, def 60,000,000
193 						 * - 60 seconds */
194 static uint8_t rack_req_measurements = 1;
195 /* Attack threshold detections */
196 static uint32_t rack_highest_sack_thresh_seen = 0;
197 static uint32_t rack_highest_move_thresh_seen = 0;
198 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */
199 static int32_t rack_hw_pace_extra_slots = 2;	/* 2 extra MSS time betweens */
200 static int32_t rack_hw_rate_caps = 1; /* 1; */
201 static int32_t rack_hw_rate_min = 0; /* 1500000;*/
202 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */
203 static int32_t rack_hw_up_only = 1;
204 static int32_t rack_stats_gets_ms_rtt = 1;
205 static int32_t rack_prr_addbackmax = 2;
206 static int32_t rack_do_hystart = 0;
207 static int32_t rack_apply_rtt_with_reduced_conf = 0;
208 
209 static int32_t rack_pkt_delay = 1000;
210 static int32_t rack_send_a_lot_in_prr = 1;
211 static int32_t rack_min_to = 1000;	/* Number of microsecond  min timeout */
212 static int32_t rack_verbose_logging = 0;
213 static int32_t rack_ignore_data_after_close = 1;
214 static int32_t rack_enable_shared_cwnd = 1;
215 static int32_t rack_use_cmp_acks = 1;
216 static int32_t rack_use_fsb = 1;
217 static int32_t rack_use_rfo = 1;
218 static int32_t rack_use_rsm_rfo = 1;
219 static int32_t rack_max_abc_post_recovery = 2;
220 static int32_t rack_client_low_buf = 0;
221 static int32_t rack_dsack_std_based = 0x3;	/* bit field bit 1 sets rc_rack_tmr_std_based and bit 2 sets rc_rack_use_dsack */
222 #ifdef TCP_ACCOUNTING
223 static int32_t rack_tcp_accounting = 0;
224 #endif
225 static int32_t rack_limits_scwnd = 1;
226 static int32_t rack_enable_mqueue_for_nonpaced = 0;
227 static int32_t rack_disable_prr = 0;
228 static int32_t use_rack_rr = 1;
229 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */
230 static int32_t rack_persist_min = 250000;	/* 250usec */
231 static int32_t rack_persist_max = 2000000;	/* 2 Second in usec's */
232 static int32_t rack_sack_not_required = 1;	/* set to one to allow non-sack to use rack */
233 static int32_t rack_default_init_window = 0;	/* Use system default */
234 static int32_t rack_limit_time_with_srtt = 0;
235 static int32_t rack_autosndbuf_inc = 20;	/* In percentage form */
236 static int32_t rack_enobuf_hw_boost_mult = 2;	/* How many times the hw rate we boost slot using time_between */
237 static int32_t rack_enobuf_hw_max = 12000;	/* 12 ms in usecs */
238 static int32_t rack_enobuf_hw_min = 10000;	/* 10 ms in usecs */
239 static int32_t rack_hw_rwnd_factor = 2;		/* How many max_segs the rwnd must be before we hold off sending */
240 
241 /*
242  * Currently regular tcp has a rto_min of 30ms
243  * the backoff goes 12 times so that ends up
244  * being a total of 122.850 seconds before a
245  * connection is killed.
246  */
247 static uint32_t rack_def_data_window = 20;
248 static uint32_t rack_goal_bdp = 2;
249 static uint32_t rack_min_srtts = 1;
250 static uint32_t rack_min_measure_usec = 0;
251 static int32_t rack_tlp_min = 10000;	/* 10ms */
252 static int32_t rack_rto_min = 30000;	/* 30,000 usec same as main freebsd */
253 static int32_t rack_rto_max = 4000000;	/* 4 seconds in usec's */
254 static const int32_t rack_free_cache = 2;
255 static int32_t rack_hptsi_segments = 40;
256 static int32_t rack_rate_sample_method = USE_RTT_LOW;
257 static int32_t rack_pace_every_seg = 0;
258 static int32_t rack_delayed_ack_time = 40000;	/* 40ms in usecs */
259 static int32_t rack_slot_reduction = 4;
260 static int32_t rack_wma_divisor = 8;		/* For WMA calculation */
261 static int32_t rack_cwnd_block_ends_measure = 0;
262 static int32_t rack_rwnd_block_ends_measure = 0;
263 static int32_t rack_def_profile = 0;
264 
265 static int32_t rack_lower_cwnd_at_tlp = 0;
266 static int32_t rack_limited_retran = 0;
267 static int32_t rack_always_send_oldest = 0;
268 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
269 
270 static uint16_t rack_per_of_gp_ss = 250;	/* 250 % slow-start */
271 static uint16_t rack_per_of_gp_ca = 200;	/* 200 % congestion-avoidance */
272 static uint16_t rack_per_of_gp_rec = 200;	/* 200 % of bw */
273 
274 /* Probertt */
275 static uint16_t rack_per_of_gp_probertt = 60;	/* 60% of bw */
276 static uint16_t rack_per_of_gp_lowthresh = 40;	/* 40% is bottom */
277 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */
278 static uint16_t rack_atexit_prtt_hbp = 130;	/* Clamp to 130% on exit prtt if highly buffered path */
279 static uint16_t rack_atexit_prtt = 130;	/* Clamp to 100% on exit prtt if non highly buffered path */
280 
281 static uint32_t rack_max_drain_wait = 2;	/* How man gp srtt's before we give up draining */
282 static uint32_t rack_must_drain = 1;		/* How many GP srtt's we *must* wait */
283 static uint32_t rack_probertt_use_min_rtt_entry = 1;	/* Use the min to calculate the goal else gp_srtt */
284 static uint32_t rack_probertt_use_min_rtt_exit = 0;
285 static uint32_t rack_probe_rtt_sets_cwnd = 0;
286 static uint32_t rack_probe_rtt_safety_val = 2000000;	/* No more than 2 sec in probe-rtt */
287 static uint32_t rack_time_between_probertt = 9600000;	/* 9.6 sec in usecs */
288 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0;	/* How many srtt periods does probe-rtt last top fraction */
289 static uint32_t rack_probertt_gpsrtt_cnt_div = 0;	/* How many srtt periods does probe-rtt last bottom fraction */
290 static uint32_t rack_min_probertt_hold = 40000;		/* Equal to delayed ack time */
291 static uint32_t rack_probertt_filter_life = 10000000;
292 static uint32_t rack_probertt_lower_within = 10;
293 static uint32_t rack_min_rtt_movement = 250000;	/* Must move at least 250ms (in microseconds)  to count as a lowering */
294 static int32_t rack_pace_one_seg = 0;		/* Shall we pace for less than 1.4Meg 1MSS at a time */
295 static int32_t rack_probertt_clear_is = 1;
296 static int32_t rack_max_drain_hbp = 1;		/* Extra drain times gpsrtt for highly buffered paths */
297 static int32_t rack_hbp_thresh = 3;		/* what is the divisor max_rtt/min_rtt to decided a hbp */
298 
299 /* Part of pacing */
300 static int32_t rack_max_per_above = 30;		/* When we go to increment stop if above 100+this% */
301 
302 /* Timely information */
303 /* Combine these two gives the range of 'no change' to bw */
304 /* ie the up/down provide the upper and lower bound */
305 static int32_t rack_gp_per_bw_mul_up = 2;	/* 2% */
306 static int32_t rack_gp_per_bw_mul_down = 4;	/* 4% */
307 static int32_t rack_gp_rtt_maxmul = 3;		/* 3 x maxmin */
308 static int32_t rack_gp_rtt_minmul = 1;		/* minrtt + (minrtt/mindiv) is lower rtt */
309 static int32_t rack_gp_rtt_mindiv = 4;		/* minrtt + (minrtt * minmul/mindiv) is lower rtt */
310 static int32_t rack_gp_decrease_per = 20;	/* 20% decrease in multiplier */
311 static int32_t rack_gp_increase_per = 2;	/* 2% increase in multiplier */
312 static int32_t rack_per_lower_bound = 50;	/* Don't allow to drop below this multiplier */
313 static int32_t rack_per_upper_bound_ss = 0;	/* Don't allow SS to grow above this */
314 static int32_t rack_per_upper_bound_ca = 0;	/* Don't allow CA to grow above this */
315 static int32_t rack_do_dyn_mul = 0;		/* Are the rack gp multipliers dynamic */
316 static int32_t rack_gp_no_rec_chg = 1;		/* Prohibit recovery from reducing it's multiplier */
317 static int32_t rack_timely_dec_clear = 6;	/* Do we clear decrement count at a value (6)? */
318 static int32_t rack_timely_max_push_rise = 3;	/* One round of pushing */
319 static int32_t rack_timely_max_push_drop = 3;	/* Three round of pushing */
320 static int32_t rack_timely_min_segs = 4;	/* 4 segment minimum */
321 static int32_t rack_use_max_for_nobackoff = 0;
322 static int32_t rack_timely_int_timely_only = 0;	/* do interim timely's only use the timely algo (no b/w changes)? */
323 static int32_t rack_timely_no_stopping = 0;
324 static int32_t rack_down_raise_thresh = 100;
325 static int32_t rack_req_segs = 1;
326 static uint64_t rack_bw_rate_cap = 0;
327 
328 
329 /* Weird delayed ack mode */
330 static int32_t rack_use_imac_dack = 0;
331 /* Rack specific counters */
332 counter_u64_t rack_saw_enobuf;
333 counter_u64_t rack_saw_enobuf_hw;
334 counter_u64_t rack_saw_enetunreach;
335 counter_u64_t rack_persists_sends;
336 counter_u64_t rack_persists_acks;
337 counter_u64_t rack_persists_loss;
338 counter_u64_t rack_persists_lost_ends;
339 #ifdef INVARIANTS
340 counter_u64_t rack_adjust_map_bw;
341 #endif
342 /* Tail loss probe counters */
343 counter_u64_t rack_tlp_tot;
344 counter_u64_t rack_tlp_newdata;
345 counter_u64_t rack_tlp_retran;
346 counter_u64_t rack_tlp_retran_bytes;
347 counter_u64_t rack_to_tot;
348 counter_u64_t rack_hot_alloc;
349 counter_u64_t rack_to_alloc;
350 counter_u64_t rack_to_alloc_hard;
351 counter_u64_t rack_to_alloc_emerg;
352 counter_u64_t rack_to_alloc_limited;
353 counter_u64_t rack_alloc_limited_conns;
354 counter_u64_t rack_split_limited;
355 
356 counter_u64_t rack_multi_single_eq;
357 counter_u64_t rack_proc_non_comp_ack;
358 
359 counter_u64_t rack_fto_send;
360 counter_u64_t rack_fto_rsm_send;
361 counter_u64_t rack_nfto_resend;
362 counter_u64_t rack_non_fto_send;
363 counter_u64_t rack_extended_rfo;
364 
365 counter_u64_t rack_sack_proc_all;
366 counter_u64_t rack_sack_proc_short;
367 counter_u64_t rack_sack_proc_restart;
368 counter_u64_t rack_sack_attacks_detected;
369 counter_u64_t rack_sack_attacks_reversed;
370 counter_u64_t rack_sack_used_next_merge;
371 counter_u64_t rack_sack_splits;
372 counter_u64_t rack_sack_used_prev_merge;
373 counter_u64_t rack_sack_skipped_acked;
374 counter_u64_t rack_ack_total;
375 counter_u64_t rack_express_sack;
376 counter_u64_t rack_sack_total;
377 counter_u64_t rack_move_none;
378 counter_u64_t rack_move_some;
379 
380 counter_u64_t rack_input_idle_reduces;
381 counter_u64_t rack_collapsed_win;
382 counter_u64_t rack_collapsed_win_seen;
383 counter_u64_t rack_collapsed_win_rxt;
384 counter_u64_t rack_collapsed_win_rxt_bytes;
385 counter_u64_t rack_try_scwnd;
386 counter_u64_t rack_hw_pace_init_fail;
387 counter_u64_t rack_hw_pace_lost;
388 
389 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
390 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
391 
392 
393 #define	RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2)))
394 
395 #define	RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do {	\
396 	(tv) = (value) + slop;	 \
397 	if ((u_long)(tv) < (u_long)(tvmin)) \
398 		(tv) = (tvmin); \
399 	if ((u_long)(tv) > (u_long)(tvmax)) \
400 		(tv) = (tvmax); \
401 } while (0)
402 
403 static void
404 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
405 
406 static int
407 rack_process_ack(struct mbuf *m, struct tcphdr *th,
408     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
409     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
410 static int
411 rack_process_data(struct mbuf *m, struct tcphdr *th,
412     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
413     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
414 static void
415 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
416    uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery);
417 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
418 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
419     uint8_t limit_type);
420 static struct rack_sendmap *
421 rack_check_recovery_mode(struct tcpcb *tp,
422     uint32_t tsused);
423 static void
424 rack_cong_signal(struct tcpcb *tp,
425 		 uint32_t type, uint32_t ack, int );
426 static void rack_counter_destroy(void);
427 static int
428 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt);
429 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
430 static void
431 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override);
432 static void
433 rack_do_segment(struct mbuf *m, struct tcphdr *th,
434     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
435     uint8_t iptos);
436 static void rack_dtor(void *mem, int32_t size, void *arg);
437 static void
438 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
439     uint32_t flex1, uint32_t flex2,
440     uint32_t flex3, uint32_t flex4,
441     uint32_t flex5, uint32_t flex6,
442     uint16_t flex7, uint8_t mod);
443 
444 static void
445 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
446    uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line,
447    struct rack_sendmap *rsm, uint8_t quality);
448 static struct rack_sendmap *
449 rack_find_high_nonack(struct tcp_rack *rack,
450     struct rack_sendmap *rsm);
451 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
452 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
453 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
454 static int rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt);
455 static void
456 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
457 			    tcp_seq th_ack, int line, uint8_t quality);
458 static uint32_t
459 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss);
460 static int32_t rack_handoff_ok(struct tcpcb *tp);
461 static int32_t rack_init(struct tcpcb *tp);
462 static void rack_init_sysctls(void);
463 static void
464 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
465     struct tcphdr *th, int entered_rec, int dup_ack_struck);
466 static void
467 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
468     uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t ts,
469     struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls);
470 
471 static void
472 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
473     struct rack_sendmap *rsm);
474 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm);
475 static int32_t rack_output(struct tcpcb *tp);
476 
477 static uint32_t
478 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
479     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
480     uint32_t cts, int *moved_two);
481 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq);
482 static void rack_remxt_tmr(struct tcpcb *tp);
483 static int rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt);
484 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
485 static int32_t rack_stopall(struct tcpcb *tp);
486 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
487 static uint32_t
488 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
489     struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag);
490 static void
491 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
492     struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag);
493 static int
494 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
495     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack);
496 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
497 static int
498 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
499     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
500     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
501 static int
502 rack_do_closing(struct mbuf *m, struct tcphdr *th,
503     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
504     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
505 static int
506 rack_do_established(struct mbuf *m, struct tcphdr *th,
507     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
508     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
509 static int
510 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
511     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
512     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
513 static int
514 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
515     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
516     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
517 static int
518 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
519     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
520     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
521 static int
522 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
523     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
524     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
525 static int
526 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
527     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
528     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
529 static int
530 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
531     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
532     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
533 struct rack_sendmap *
534 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
535     uint32_t tsused);
536 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt,
537     uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt);
538 static void
539      tcp_rack_partialack(struct tcpcb *tp);
540 static int
541 rack_set_profile(struct tcp_rack *rack, int prof);
542 static void
543 rack_apply_deferred_options(struct tcp_rack *rack);
544 
545 int32_t rack_clear_counter=0;
546 
547 static void
548 rack_swap_beta_values(struct tcp_rack *rack, uint8_t flex8)
549 {
550 	struct sockopt sopt;
551 	struct cc_newreno_opts opt;
552 	struct newreno old;
553 	struct tcpcb *tp;
554 	int error, failed = 0;
555 
556 	tp = rack->rc_tp;
557 	if (tp->t_cc == NULL) {
558 		/* Tcb is leaving */
559 		return;
560 	}
561 	rack->rc_pacing_cc_set = 1;
562 	if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) {
563 		/* Not new-reno we can't play games with beta! */
564 		failed = 1;
565 		goto out;
566 
567 	}
568 	if (CC_ALGO(tp)->ctl_output == NULL)  {
569 		/* Huh, not using new-reno so no swaps.? */
570 		failed = 2;
571 		goto out;
572 	}
573 	/* Get the current values out */
574 	sopt.sopt_valsize = sizeof(struct cc_newreno_opts);
575 	sopt.sopt_dir = SOPT_GET;
576 	opt.name = CC_NEWRENO_BETA;
577 	error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
578 	if (error)  {
579 		failed = 3;
580 		goto out;
581 	}
582 	old.beta = opt.val;
583 	opt.name = CC_NEWRENO_BETA_ECN;
584 	error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
585 	if (error)  {
586 		failed = 4;
587 		goto out;
588 	}
589 	old.beta_ecn = opt.val;
590 
591 	/* Now lets set in the values we have stored */
592 	sopt.sopt_dir = SOPT_SET;
593 	opt.name = CC_NEWRENO_BETA;
594 	opt.val = rack->r_ctl.rc_saved_beta.beta;
595 	error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
596 	if (error)  {
597 		failed = 5;
598 		goto out;
599 	}
600 	opt.name = CC_NEWRENO_BETA_ECN;
601 	opt.val = rack->r_ctl.rc_saved_beta.beta_ecn;
602 	error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
603 	if (error) {
604 		failed = 6;
605 		goto out;
606 	}
607 	/* Save off the values for restoral */
608 	memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
609 out:
610 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
611 		union tcp_log_stackspecific log;
612 		struct timeval tv;
613 		struct newreno *ptr;
614 
615 		ptr = ((struct newreno *)tp->t_ccv.cc_data);
616 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
617 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
618 		log.u_bbr.flex1 = ptr->beta;
619 		log.u_bbr.flex2 = ptr->beta_ecn;
620 		log.u_bbr.flex3 = ptr->newreno_flags;
621 		log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
622 		log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn;
623 		log.u_bbr.flex6 = failed;
624 		log.u_bbr.flex7 = rack->gp_ready;
625 		log.u_bbr.flex7 <<= 1;
626 		log.u_bbr.flex7 |= rack->use_fixed_rate;
627 		log.u_bbr.flex7 <<= 1;
628 		log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
629 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
630 		log.u_bbr.flex8 = flex8;
631 		tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, error,
632 			       0, &log, false, NULL, NULL, 0, &tv);
633 	}
634 }
635 
636 static void
637 rack_set_cc_pacing(struct tcp_rack *rack)
638 {
639 	if (rack->rc_pacing_cc_set)
640 		return;
641 	/*
642 	 * Use the swap utility placing in 3 for flex8 to id a
643 	 * set of a new set of values.
644 	 */
645 	rack->rc_pacing_cc_set = 1;
646 	rack_swap_beta_values(rack, 3);
647 }
648 
649 static void
650 rack_undo_cc_pacing(struct tcp_rack *rack)
651 {
652 	if (rack->rc_pacing_cc_set == 0)
653 		return;
654 	/*
655 	 * Use the swap utility placing in 4 for flex8 to id a
656 	 * restoral of the old values.
657 	 */
658 	rack->rc_pacing_cc_set = 0;
659 	rack_swap_beta_values(rack, 4);
660 }
661 
662 #ifdef NETFLIX_PEAKRATE
663 static inline void
664 rack_update_peakrate_thr(struct tcpcb *tp)
665 {
666 	/* Keep in mind that t_maxpeakrate is in B/s. */
667 	uint64_t peak;
668 	peak = uqmax((tp->t_maxseg * 2),
669 		     (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC));
670 	tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX);
671 }
672 #endif
673 
674 static int
675 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
676 {
677 	uint32_t stat;
678 	int32_t error;
679 
680 	error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
681 	if (error || req->newptr == NULL)
682 		return error;
683 
684 	error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
685 	if (error)
686 		return (error);
687 	if (stat == 1) {
688 #ifdef INVARIANTS
689 		printf("Clearing RACK counters\n");
690 #endif
691 		counter_u64_zero(rack_tlp_tot);
692 		counter_u64_zero(rack_tlp_newdata);
693 		counter_u64_zero(rack_tlp_retran);
694 		counter_u64_zero(rack_tlp_retran_bytes);
695 		counter_u64_zero(rack_to_tot);
696 		counter_u64_zero(rack_saw_enobuf);
697 		counter_u64_zero(rack_saw_enobuf_hw);
698 		counter_u64_zero(rack_saw_enetunreach);
699 		counter_u64_zero(rack_persists_sends);
700 		counter_u64_zero(rack_persists_acks);
701 		counter_u64_zero(rack_persists_loss);
702 		counter_u64_zero(rack_persists_lost_ends);
703 #ifdef INVARIANTS
704 		counter_u64_zero(rack_adjust_map_bw);
705 #endif
706 		counter_u64_zero(rack_to_alloc_hard);
707 		counter_u64_zero(rack_to_alloc_emerg);
708 		counter_u64_zero(rack_sack_proc_all);
709 		counter_u64_zero(rack_fto_send);
710 		counter_u64_zero(rack_fto_rsm_send);
711 		counter_u64_zero(rack_extended_rfo);
712 		counter_u64_zero(rack_hw_pace_init_fail);
713 		counter_u64_zero(rack_hw_pace_lost);
714 		counter_u64_zero(rack_non_fto_send);
715 		counter_u64_zero(rack_nfto_resend);
716 		counter_u64_zero(rack_sack_proc_short);
717 		counter_u64_zero(rack_sack_proc_restart);
718 		counter_u64_zero(rack_to_alloc);
719 		counter_u64_zero(rack_to_alloc_limited);
720 		counter_u64_zero(rack_alloc_limited_conns);
721 		counter_u64_zero(rack_split_limited);
722 		counter_u64_zero(rack_multi_single_eq);
723 		counter_u64_zero(rack_proc_non_comp_ack);
724 		counter_u64_zero(rack_sack_attacks_detected);
725 		counter_u64_zero(rack_sack_attacks_reversed);
726 		counter_u64_zero(rack_sack_used_next_merge);
727 		counter_u64_zero(rack_sack_used_prev_merge);
728 		counter_u64_zero(rack_sack_splits);
729 		counter_u64_zero(rack_sack_skipped_acked);
730 		counter_u64_zero(rack_ack_total);
731 		counter_u64_zero(rack_express_sack);
732 		counter_u64_zero(rack_sack_total);
733 		counter_u64_zero(rack_move_none);
734 		counter_u64_zero(rack_move_some);
735 		counter_u64_zero(rack_try_scwnd);
736 		counter_u64_zero(rack_collapsed_win);
737 		counter_u64_zero(rack_collapsed_win_rxt);
738 		counter_u64_zero(rack_collapsed_win_seen);
739 		counter_u64_zero(rack_collapsed_win_rxt_bytes);
740 	}
741 	rack_clear_counter = 0;
742 	return (0);
743 }
744 
745 static void
746 rack_init_sysctls(void)
747 {
748 	struct sysctl_oid *rack_counters;
749 	struct sysctl_oid *rack_attack;
750 	struct sysctl_oid *rack_pacing;
751 	struct sysctl_oid *rack_timely;
752 	struct sysctl_oid *rack_timers;
753 	struct sysctl_oid *rack_tlp;
754 	struct sysctl_oid *rack_misc;
755 	struct sysctl_oid *rack_features;
756 	struct sysctl_oid *rack_measure;
757 	struct sysctl_oid *rack_probertt;
758 	struct sysctl_oid *rack_hw_pacing;
759 
760 	rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
761 	    SYSCTL_CHILDREN(rack_sysctl_root),
762 	    OID_AUTO,
763 	    "sack_attack",
764 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
765 	    "Rack Sack Attack Counters and Controls");
766 	rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
767 	    SYSCTL_CHILDREN(rack_sysctl_root),
768 	    OID_AUTO,
769 	    "stats",
770 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
771 	    "Rack Counters");
772 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
773 	    SYSCTL_CHILDREN(rack_sysctl_root),
774 	    OID_AUTO, "rate_sample_method", CTLFLAG_RW,
775 	    &rack_rate_sample_method , USE_RTT_LOW,
776 	    "What method should we use for rate sampling 0=high, 1=low ");
777 	/* Probe rtt related controls */
778 	rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
779 	    SYSCTL_CHILDREN(rack_sysctl_root),
780 	    OID_AUTO,
781 	    "probertt",
782 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
783 	    "ProbeRTT related Controls");
784 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
785 	    SYSCTL_CHILDREN(rack_probertt),
786 	    OID_AUTO, "exit_per_hpb", CTLFLAG_RW,
787 	    &rack_atexit_prtt_hbp, 130,
788 	    "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%");
789 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
790 	    SYSCTL_CHILDREN(rack_probertt),
791 	    OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW,
792 	    &rack_atexit_prtt, 130,
793 	    "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%");
794 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
795 	    SYSCTL_CHILDREN(rack_probertt),
796 	    OID_AUTO, "gp_per_mul", CTLFLAG_RW,
797 	    &rack_per_of_gp_probertt, 60,
798 	    "What percentage of goodput do we pace at in probertt");
799 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
800 	    SYSCTL_CHILDREN(rack_probertt),
801 	    OID_AUTO, "gp_per_reduce", CTLFLAG_RW,
802 	    &rack_per_of_gp_probertt_reduce, 10,
803 	    "What percentage of goodput do we reduce every gp_srtt");
804 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
805 	    SYSCTL_CHILDREN(rack_probertt),
806 	    OID_AUTO, "gp_per_low", CTLFLAG_RW,
807 	    &rack_per_of_gp_lowthresh, 40,
808 	    "What percentage of goodput do we allow the multiplier to fall to");
809 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
810 	    SYSCTL_CHILDREN(rack_probertt),
811 	    OID_AUTO, "time_between", CTLFLAG_RW,
812 	    & rack_time_between_probertt, 96000000,
813 	    "How many useconds between the lowest rtt falling must past before we enter probertt");
814 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
815 	    SYSCTL_CHILDREN(rack_probertt),
816 	    OID_AUTO, "safety", CTLFLAG_RW,
817 	    &rack_probe_rtt_safety_val, 2000000,
818 	    "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)");
819 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
820 	    SYSCTL_CHILDREN(rack_probertt),
821 	    OID_AUTO, "sets_cwnd", CTLFLAG_RW,
822 	    &rack_probe_rtt_sets_cwnd, 0,
823 	    "Do we set the cwnd too (if always_lower is on)");
824 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
825 	    SYSCTL_CHILDREN(rack_probertt),
826 	    OID_AUTO, "maxdrainsrtts", CTLFLAG_RW,
827 	    &rack_max_drain_wait, 2,
828 	    "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal");
829 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
830 	    SYSCTL_CHILDREN(rack_probertt),
831 	    OID_AUTO, "mustdrainsrtts", CTLFLAG_RW,
832 	    &rack_must_drain, 1,
833 	    "We must drain this many gp_srtt's waiting for flight to reach goal");
834 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
835 	    SYSCTL_CHILDREN(rack_probertt),
836 	    OID_AUTO, "goal_use_min_entry", CTLFLAG_RW,
837 	    &rack_probertt_use_min_rtt_entry, 1,
838 	    "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry");
839 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
840 	    SYSCTL_CHILDREN(rack_probertt),
841 	    OID_AUTO, "goal_use_min_exit", CTLFLAG_RW,
842 	    &rack_probertt_use_min_rtt_exit, 0,
843 	    "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt");
844 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
845 	    SYSCTL_CHILDREN(rack_probertt),
846 	    OID_AUTO, "length_div", CTLFLAG_RW,
847 	    &rack_probertt_gpsrtt_cnt_div, 0,
848 	    "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)");
849 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
850 	    SYSCTL_CHILDREN(rack_probertt),
851 	    OID_AUTO, "length_mul", CTLFLAG_RW,
852 	    &rack_probertt_gpsrtt_cnt_mul, 0,
853 	    "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)");
854 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
855 	    SYSCTL_CHILDREN(rack_probertt),
856 	    OID_AUTO, "holdtim_at_target", CTLFLAG_RW,
857 	    &rack_min_probertt_hold, 200000,
858 	    "What is the minimum time we hold probertt at target");
859 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
860 	    SYSCTL_CHILDREN(rack_probertt),
861 	    OID_AUTO, "filter_life", CTLFLAG_RW,
862 	    &rack_probertt_filter_life, 10000000,
863 	    "What is the time for the filters life in useconds");
864 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
865 	    SYSCTL_CHILDREN(rack_probertt),
866 	    OID_AUTO, "lower_within", CTLFLAG_RW,
867 	    &rack_probertt_lower_within, 10,
868 	    "If the rtt goes lower within this percentage of the time, go into probe-rtt");
869 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
870 	    SYSCTL_CHILDREN(rack_probertt),
871 	    OID_AUTO, "must_move", CTLFLAG_RW,
872 	    &rack_min_rtt_movement, 250,
873 	    "How much is the minimum movement in rtt to count as a drop for probertt purposes");
874 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
875 	    SYSCTL_CHILDREN(rack_probertt),
876 	    OID_AUTO, "clear_is_cnts", CTLFLAG_RW,
877 	    &rack_probertt_clear_is, 1,
878 	    "Do we clear I/S counts on exiting probe-rtt");
879 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
880 	    SYSCTL_CHILDREN(rack_probertt),
881 	    OID_AUTO, "hbp_extra_drain", CTLFLAG_RW,
882 	    &rack_max_drain_hbp, 1,
883 	    "How many extra drain gpsrtt's do we get in highly buffered paths");
884 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
885 	    SYSCTL_CHILDREN(rack_probertt),
886 	    OID_AUTO, "hbp_threshold", CTLFLAG_RW,
887 	    &rack_hbp_thresh, 3,
888 	    "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold");
889 	/* Pacing related sysctls */
890 	rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
891 	    SYSCTL_CHILDREN(rack_sysctl_root),
892 	    OID_AUTO,
893 	    "pacing",
894 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
895 	    "Pacing related Controls");
896 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
897 	    SYSCTL_CHILDREN(rack_pacing),
898 	    OID_AUTO, "max_pace_over", CTLFLAG_RW,
899 	    &rack_max_per_above, 30,
900 	    "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)");
901 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
902 	    SYSCTL_CHILDREN(rack_pacing),
903 	    OID_AUTO, "pace_to_one", CTLFLAG_RW,
904 	    &rack_pace_one_seg, 0,
905 	    "Do we allow low b/w pacing of 1MSS instead of two");
906 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
907 	    SYSCTL_CHILDREN(rack_pacing),
908 	    OID_AUTO, "limit_wsrtt", CTLFLAG_RW,
909 	    &rack_limit_time_with_srtt, 0,
910 	    "Do we limit pacing time based on srtt");
911 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
912 	    SYSCTL_CHILDREN(rack_pacing),
913 	    OID_AUTO, "init_win", CTLFLAG_RW,
914 	    &rack_default_init_window, 0,
915 	    "Do we have a rack initial window 0 = system default");
916 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
917 	    SYSCTL_CHILDREN(rack_pacing),
918 	    OID_AUTO, "gp_per_ss", CTLFLAG_RW,
919 	    &rack_per_of_gp_ss, 250,
920 	    "If non zero, what percentage of goodput to pace at in slow start");
921 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
922 	    SYSCTL_CHILDREN(rack_pacing),
923 	    OID_AUTO, "gp_per_ca", CTLFLAG_RW,
924 	    &rack_per_of_gp_ca, 150,
925 	    "If non zero, what percentage of goodput to pace at in congestion avoidance");
926 	SYSCTL_ADD_U16(&rack_sysctl_ctx,
927 	    SYSCTL_CHILDREN(rack_pacing),
928 	    OID_AUTO, "gp_per_rec", CTLFLAG_RW,
929 	    &rack_per_of_gp_rec, 200,
930 	    "If non zero, what percentage of goodput to pace at in recovery");
931 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
932 	    SYSCTL_CHILDREN(rack_pacing),
933 	    OID_AUTO, "pace_max_seg", CTLFLAG_RW,
934 	    &rack_hptsi_segments, 40,
935 	    "What size is the max for TSO segments in pacing and burst mitigation");
936 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
937 	    SYSCTL_CHILDREN(rack_pacing),
938 	    OID_AUTO, "burst_reduces", CTLFLAG_RW,
939 	    &rack_slot_reduction, 4,
940 	    "When doing only burst mitigation what is the reduce divisor");
941 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
942 	    SYSCTL_CHILDREN(rack_sysctl_root),
943 	    OID_AUTO, "use_pacing", CTLFLAG_RW,
944 	    &rack_pace_every_seg, 0,
945 	    "If set we use pacing, if clear we use only the original burst mitigation");
946 	SYSCTL_ADD_U64(&rack_sysctl_ctx,
947 	    SYSCTL_CHILDREN(rack_pacing),
948 	    OID_AUTO, "rate_cap", CTLFLAG_RW,
949 	    &rack_bw_rate_cap, 0,
950 	    "If set we apply this value to the absolute rate cap used by pacing");
951 	SYSCTL_ADD_U8(&rack_sysctl_ctx,
952 	    SYSCTL_CHILDREN(rack_sysctl_root),
953 	    OID_AUTO, "req_measure_cnt", CTLFLAG_RW,
954 	    &rack_req_measurements, 1,
955 	    "If doing dynamic pacing, how many measurements must be in before we start pacing?");
956 	/* Hardware pacing */
957 	rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
958 	    SYSCTL_CHILDREN(rack_sysctl_root),
959 	    OID_AUTO,
960 	    "hdwr_pacing",
961 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
962 	    "Pacing related Controls");
963 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
964 	    SYSCTL_CHILDREN(rack_hw_pacing),
965 	    OID_AUTO, "rwnd_factor", CTLFLAG_RW,
966 	    &rack_hw_rwnd_factor, 2,
967 	    "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?");
968 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
969 	    SYSCTL_CHILDREN(rack_hw_pacing),
970 	    OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW,
971 	    &rack_enobuf_hw_boost_mult, 2,
972 	    "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?");
973 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
974 	    SYSCTL_CHILDREN(rack_hw_pacing),
975 	    OID_AUTO, "pace_enobuf_max", CTLFLAG_RW,
976 	    &rack_enobuf_hw_max, 2,
977 	    "What is the max boost the pacing time if we see a ENOBUFS?");
978 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
979 	    SYSCTL_CHILDREN(rack_hw_pacing),
980 	    OID_AUTO, "pace_enobuf_min", CTLFLAG_RW,
981 	    &rack_enobuf_hw_min, 2,
982 	    "What is the min boost the pacing time if we see a ENOBUFS?");
983 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
984 	    SYSCTL_CHILDREN(rack_hw_pacing),
985 	    OID_AUTO, "enable", CTLFLAG_RW,
986 	    &rack_enable_hw_pacing, 0,
987 	    "Should RACK attempt to use hw pacing?");
988 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
989 	    SYSCTL_CHILDREN(rack_hw_pacing),
990 	    OID_AUTO, "rate_cap", CTLFLAG_RW,
991 	    &rack_hw_rate_caps, 1,
992 	    "Does the highest hardware pacing rate cap the rate we will send at??");
993 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
994 	    SYSCTL_CHILDREN(rack_hw_pacing),
995 	    OID_AUTO, "rate_min", CTLFLAG_RW,
996 	    &rack_hw_rate_min, 0,
997 	    "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?");
998 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
999 	    SYSCTL_CHILDREN(rack_hw_pacing),
1000 	    OID_AUTO, "rate_to_low", CTLFLAG_RW,
1001 	    &rack_hw_rate_to_low, 0,
1002 	    "If we fall below this rate, dis-engage hw pacing?");
1003 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1004 	    SYSCTL_CHILDREN(rack_hw_pacing),
1005 	    OID_AUTO, "up_only", CTLFLAG_RW,
1006 	    &rack_hw_up_only, 1,
1007 	    "Do we allow hw pacing to lower the rate selected?");
1008 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1009 	    SYSCTL_CHILDREN(rack_hw_pacing),
1010 	    OID_AUTO, "extra_mss_precise", CTLFLAG_RW,
1011 	    &rack_hw_pace_extra_slots, 2,
1012 	    "If the rates between software and hardware match precisely how many extra time_betweens do we get?");
1013 	rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1014 	    SYSCTL_CHILDREN(rack_sysctl_root),
1015 	    OID_AUTO,
1016 	    "timely",
1017 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1018 	    "Rack Timely RTT Controls");
1019 	/* Timely based GP dynmics */
1020 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1021 	    SYSCTL_CHILDREN(rack_timely),
1022 	    OID_AUTO, "upper", CTLFLAG_RW,
1023 	    &rack_gp_per_bw_mul_up, 2,
1024 	    "Rack timely upper range for equal b/w (in percentage)");
1025 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1026 	    SYSCTL_CHILDREN(rack_timely),
1027 	    OID_AUTO, "lower", CTLFLAG_RW,
1028 	    &rack_gp_per_bw_mul_down, 4,
1029 	    "Rack timely lower range for equal b/w (in percentage)");
1030 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1031 	    SYSCTL_CHILDREN(rack_timely),
1032 	    OID_AUTO, "rtt_max_mul", CTLFLAG_RW,
1033 	    &rack_gp_rtt_maxmul, 3,
1034 	    "Rack timely multiplier of lowest rtt for rtt_max");
1035 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1036 	    SYSCTL_CHILDREN(rack_timely),
1037 	    OID_AUTO, "rtt_min_div", CTLFLAG_RW,
1038 	    &rack_gp_rtt_mindiv, 4,
1039 	    "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt");
1040 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1041 	    SYSCTL_CHILDREN(rack_timely),
1042 	    OID_AUTO, "rtt_min_mul", CTLFLAG_RW,
1043 	    &rack_gp_rtt_minmul, 1,
1044 	    "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt");
1045 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1046 	    SYSCTL_CHILDREN(rack_timely),
1047 	    OID_AUTO, "decrease", CTLFLAG_RW,
1048 	    &rack_gp_decrease_per, 20,
1049 	    "Rack timely decrease percentage of our GP multiplication factor");
1050 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1051 	    SYSCTL_CHILDREN(rack_timely),
1052 	    OID_AUTO, "increase", CTLFLAG_RW,
1053 	    &rack_gp_increase_per, 2,
1054 	    "Rack timely increase perentage of our GP multiplication factor");
1055 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1056 	    SYSCTL_CHILDREN(rack_timely),
1057 	    OID_AUTO, "lowerbound", CTLFLAG_RW,
1058 	    &rack_per_lower_bound, 50,
1059 	    "Rack timely lowest percentage we allow GP multiplier to fall to");
1060 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1061 	    SYSCTL_CHILDREN(rack_timely),
1062 	    OID_AUTO, "upperboundss", CTLFLAG_RW,
1063 	    &rack_per_upper_bound_ss, 0,
1064 	    "Rack timely highest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)");
1065 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1066 	    SYSCTL_CHILDREN(rack_timely),
1067 	    OID_AUTO, "upperboundca", CTLFLAG_RW,
1068 	    &rack_per_upper_bound_ca, 0,
1069 	    "Rack timely highest percentage we allow GP multiplier to CA raise to (0 is no upperbound)");
1070 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1071 	    SYSCTL_CHILDREN(rack_timely),
1072 	    OID_AUTO, "dynamicgp", CTLFLAG_RW,
1073 	    &rack_do_dyn_mul, 0,
1074 	    "Rack timely do we enable dynmaic timely goodput by default");
1075 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1076 	    SYSCTL_CHILDREN(rack_timely),
1077 	    OID_AUTO, "no_rec_red", CTLFLAG_RW,
1078 	    &rack_gp_no_rec_chg, 1,
1079 	    "Rack timely do we prohibit the recovery multiplier from being lowered");
1080 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1081 	    SYSCTL_CHILDREN(rack_timely),
1082 	    OID_AUTO, "red_clear_cnt", CTLFLAG_RW,
1083 	    &rack_timely_dec_clear, 6,
1084 	    "Rack timely what threshold do we count to before another boost during b/w decent");
1085 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1086 	    SYSCTL_CHILDREN(rack_timely),
1087 	    OID_AUTO, "max_push_rise", CTLFLAG_RW,
1088 	    &rack_timely_max_push_rise, 3,
1089 	    "Rack timely how many times do we push up with b/w increase");
1090 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1091 	    SYSCTL_CHILDREN(rack_timely),
1092 	    OID_AUTO, "max_push_drop", CTLFLAG_RW,
1093 	    &rack_timely_max_push_drop, 3,
1094 	    "Rack timely how many times do we push back on b/w decent");
1095 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1096 	    SYSCTL_CHILDREN(rack_timely),
1097 	    OID_AUTO, "min_segs", CTLFLAG_RW,
1098 	    &rack_timely_min_segs, 4,
1099 	    "Rack timely when setting the cwnd what is the min num segments");
1100 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1101 	    SYSCTL_CHILDREN(rack_timely),
1102 	    OID_AUTO, "noback_max", CTLFLAG_RW,
1103 	    &rack_use_max_for_nobackoff, 0,
1104 	    "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min");
1105 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1106 	    SYSCTL_CHILDREN(rack_timely),
1107 	    OID_AUTO, "interim_timely_only", CTLFLAG_RW,
1108 	    &rack_timely_int_timely_only, 0,
1109 	    "Rack timely when doing interim timely's do we only do timely (no b/w consideration)");
1110 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1111 	    SYSCTL_CHILDREN(rack_timely),
1112 	    OID_AUTO, "nonstop", CTLFLAG_RW,
1113 	    &rack_timely_no_stopping, 0,
1114 	    "Rack timely don't stop increase");
1115 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1116 	    SYSCTL_CHILDREN(rack_timely),
1117 	    OID_AUTO, "dec_raise_thresh", CTLFLAG_RW,
1118 	    &rack_down_raise_thresh, 100,
1119 	    "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)");
1120 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1121 	    SYSCTL_CHILDREN(rack_timely),
1122 	    OID_AUTO, "bottom_drag_segs", CTLFLAG_RW,
1123 	    &rack_req_segs, 1,
1124 	    "Bottom dragging if not these many segments outstanding and room");
1125 
1126 	/* TLP and Rack related parameters */
1127 	rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1128 	    SYSCTL_CHILDREN(rack_sysctl_root),
1129 	    OID_AUTO,
1130 	    "tlp",
1131 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1132 	    "TLP and Rack related Controls");
1133 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1134 	    SYSCTL_CHILDREN(rack_tlp),
1135 	    OID_AUTO, "use_rrr", CTLFLAG_RW,
1136 	    &use_rack_rr, 1,
1137 	    "Do we use Rack Rapid Recovery");
1138 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1139 	    SYSCTL_CHILDREN(rack_tlp),
1140 	    OID_AUTO, "post_rec_labc", CTLFLAG_RW,
1141 	    &rack_max_abc_post_recovery, 2,
1142 	    "Since we do early recovery, do we override the l_abc to a value, if so what?");
1143 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1144 	    SYSCTL_CHILDREN(rack_tlp),
1145 	    OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW,
1146 	    &rack_non_rxt_use_cr, 0,
1147 	    "Do we use ss/ca rate if in recovery we are transmitting a new data chunk");
1148 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1149 	    SYSCTL_CHILDREN(rack_tlp),
1150 	    OID_AUTO, "tlpmethod", CTLFLAG_RW,
1151 	    &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
1152 	    "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
1153 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1154 	    SYSCTL_CHILDREN(rack_tlp),
1155 	    OID_AUTO, "limit", CTLFLAG_RW,
1156 	    &rack_tlp_limit, 2,
1157 	    "How many TLP's can be sent without sending new data");
1158 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1159 	    SYSCTL_CHILDREN(rack_tlp),
1160 	    OID_AUTO, "use_greater", CTLFLAG_RW,
1161 	    &rack_tlp_use_greater, 1,
1162 	    "Should we use the rack_rtt time if its greater than srtt");
1163 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1164 	    SYSCTL_CHILDREN(rack_tlp),
1165 	    OID_AUTO, "tlpminto", CTLFLAG_RW,
1166 	    &rack_tlp_min, 10000,
1167 	    "TLP minimum timeout per the specification (in microseconds)");
1168 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1169 	    SYSCTL_CHILDREN(rack_tlp),
1170 	    OID_AUTO, "send_oldest", CTLFLAG_RW,
1171 	    &rack_always_send_oldest, 0,
1172 	    "Should we always send the oldest TLP and RACK-TLP");
1173 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1174 	    SYSCTL_CHILDREN(rack_tlp),
1175 	    OID_AUTO, "rack_tlimit", CTLFLAG_RW,
1176 	    &rack_limited_retran, 0,
1177 	    "How many times can a rack timeout drive out sends");
1178 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1179 	    SYSCTL_CHILDREN(rack_tlp),
1180 	    OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
1181 	    &rack_lower_cwnd_at_tlp, 0,
1182 	    "When a TLP completes a retran should we enter recovery");
1183 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1184 	    SYSCTL_CHILDREN(rack_tlp),
1185 	    OID_AUTO, "reorder_thresh", CTLFLAG_RW,
1186 	    &rack_reorder_thresh, 2,
1187 	    "What factor for rack will be added when seeing reordering (shift right)");
1188 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1189 	    SYSCTL_CHILDREN(rack_tlp),
1190 	    OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
1191 	    &rack_tlp_thresh, 1,
1192 	    "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
1193 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1194 	    SYSCTL_CHILDREN(rack_tlp),
1195 	    OID_AUTO, "reorder_fade", CTLFLAG_RW,
1196 	    &rack_reorder_fade, 60000000,
1197 	    "Does reorder detection fade, if so how many microseconds (0 means never)");
1198 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1199 	    SYSCTL_CHILDREN(rack_tlp),
1200 	    OID_AUTO, "pktdelay", CTLFLAG_RW,
1201 	    &rack_pkt_delay, 1000,
1202 	    "Extra RACK time (in microseconds) besides reordering thresh");
1203 
1204 	/* Timer related controls */
1205 	rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1206 	    SYSCTL_CHILDREN(rack_sysctl_root),
1207 	    OID_AUTO,
1208 	    "timers",
1209 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1210 	    "Timer related controls");
1211 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1212 	    SYSCTL_CHILDREN(rack_timers),
1213 	    OID_AUTO, "persmin", CTLFLAG_RW,
1214 	    &rack_persist_min, 250000,
1215 	    "What is the minimum time in microseconds between persists");
1216 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1217 	    SYSCTL_CHILDREN(rack_timers),
1218 	    OID_AUTO, "persmax", CTLFLAG_RW,
1219 	    &rack_persist_max, 2000000,
1220 	    "What is the largest delay in microseconds between persists");
1221 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1222 	    SYSCTL_CHILDREN(rack_timers),
1223 	    OID_AUTO, "delayed_ack", CTLFLAG_RW,
1224 	    &rack_delayed_ack_time, 40000,
1225 	    "Delayed ack time (40ms in microseconds)");
1226 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1227 	    SYSCTL_CHILDREN(rack_timers),
1228 	    OID_AUTO, "minrto", CTLFLAG_RW,
1229 	    &rack_rto_min, 30000,
1230 	    "Minimum RTO in microseconds -- set with caution below 1000 due to TLP");
1231 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1232 	    SYSCTL_CHILDREN(rack_timers),
1233 	    OID_AUTO, "maxrto", CTLFLAG_RW,
1234 	    &rack_rto_max, 4000000,
1235 	    "Maximum RTO in microseconds -- should be at least as large as min_rto");
1236 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1237 	    SYSCTL_CHILDREN(rack_timers),
1238 	    OID_AUTO, "minto", CTLFLAG_RW,
1239 	    &rack_min_to, 1000,
1240 	    "Minimum rack timeout in microseconds");
1241 	/* Measure controls */
1242 	rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1243 	    SYSCTL_CHILDREN(rack_sysctl_root),
1244 	    OID_AUTO,
1245 	    "measure",
1246 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1247 	    "Measure related controls");
1248 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1249 	    SYSCTL_CHILDREN(rack_measure),
1250 	    OID_AUTO, "wma_divisor", CTLFLAG_RW,
1251 	    &rack_wma_divisor, 8,
1252 	    "When doing b/w calculation what is the  divisor for the WMA");
1253 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1254 	    SYSCTL_CHILDREN(rack_measure),
1255 	    OID_AUTO, "end_cwnd", CTLFLAG_RW,
1256 	    &rack_cwnd_block_ends_measure, 0,
1257 	    "Does a cwnd just-return end the measurement window (app limited)");
1258 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1259 	    SYSCTL_CHILDREN(rack_measure),
1260 	    OID_AUTO, "end_rwnd", CTLFLAG_RW,
1261 	    &rack_rwnd_block_ends_measure, 0,
1262 	    "Does an rwnd just-return end the measurement window (app limited -- not persists)");
1263 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1264 	    SYSCTL_CHILDREN(rack_measure),
1265 	    OID_AUTO, "min_target", CTLFLAG_RW,
1266 	    &rack_def_data_window, 20,
1267 	    "What is the minimum target window (in mss) for a GP measurements");
1268 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1269 	    SYSCTL_CHILDREN(rack_measure),
1270 	    OID_AUTO, "goal_bdp", CTLFLAG_RW,
1271 	    &rack_goal_bdp, 2,
1272 	    "What is the goal BDP to measure");
1273 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1274 	    SYSCTL_CHILDREN(rack_measure),
1275 	    OID_AUTO, "min_srtts", CTLFLAG_RW,
1276 	    &rack_min_srtts, 1,
1277 	    "What is the goal BDP to measure");
1278 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1279 	    SYSCTL_CHILDREN(rack_measure),
1280 	    OID_AUTO, "min_measure_tim", CTLFLAG_RW,
1281 	    &rack_min_measure_usec, 0,
1282 	    "What is the Minimum time time for a measurement if 0, this is off");
1283 	/* Features */
1284 	rack_features = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1285 	    SYSCTL_CHILDREN(rack_sysctl_root),
1286 	    OID_AUTO,
1287 	    "features",
1288 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1289 	    "Feature controls");
1290 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1291 	    SYSCTL_CHILDREN(rack_features),
1292 	    OID_AUTO, "cmpack", CTLFLAG_RW,
1293 	    &rack_use_cmp_acks, 1,
1294 	    "Should RACK have LRO send compressed acks");
1295 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1296 	    SYSCTL_CHILDREN(rack_features),
1297 	    OID_AUTO, "fsb", CTLFLAG_RW,
1298 	    &rack_use_fsb, 1,
1299 	    "Should RACK use the fast send block?");
1300 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1301 	    SYSCTL_CHILDREN(rack_features),
1302 	    OID_AUTO, "rfo", CTLFLAG_RW,
1303 	    &rack_use_rfo, 1,
1304 	    "Should RACK use rack_fast_output()?");
1305 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1306 	    SYSCTL_CHILDREN(rack_features),
1307 	    OID_AUTO, "rsmrfo", CTLFLAG_RW,
1308 	    &rack_use_rsm_rfo, 1,
1309 	    "Should RACK use rack_fast_rsm_output()?");
1310 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1311 	    SYSCTL_CHILDREN(rack_features),
1312 	    OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW,
1313 	    &rack_enable_mqueue_for_nonpaced, 0,
1314 	    "Should RACK use mbuf queuing for non-paced connections");
1315 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1316 	    SYSCTL_CHILDREN(rack_features),
1317 	    OID_AUTO, "hystartplusplus", CTLFLAG_RW,
1318 	    &rack_do_hystart, 0,
1319 	    "Should RACK enable HyStart++ on connections?");
1320 	/* Misc rack controls */
1321 	rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1322 	    SYSCTL_CHILDREN(rack_sysctl_root),
1323 	    OID_AUTO,
1324 	    "misc",
1325 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1326 	    "Misc related controls");
1327 #ifdef TCP_ACCOUNTING
1328 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1329 	    SYSCTL_CHILDREN(rack_misc),
1330 	    OID_AUTO, "tcp_acct", CTLFLAG_RW,
1331 	    &rack_tcp_accounting, 0,
1332 	    "Should we turn on TCP accounting for all rack sessions?");
1333 #endif
1334 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1335 	    SYSCTL_CHILDREN(rack_misc),
1336 	    OID_AUTO, "apply_rtt_with_low_conf", CTLFLAG_RW,
1337 	    &rack_apply_rtt_with_reduced_conf, 0,
1338 	    "When a persist or keep-alive probe is not answered do we calculate rtt on subsequent answers?");
1339 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1340 	    SYSCTL_CHILDREN(rack_misc),
1341 	    OID_AUTO, "rack_dsack_ctl", CTLFLAG_RW,
1342 	    &rack_dsack_std_based, 3,
1343 	    "How do we process dsack with respect to rack timers, bit field, 3 is standards based?");
1344 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1345 	    SYSCTL_CHILDREN(rack_misc),
1346 	    OID_AUTO, "prr_addback_max", CTLFLAG_RW,
1347 	    &rack_prr_addbackmax, 2,
1348 	    "What is the maximum number of MSS we allow to be added back if prr can't send all its data?");
1349 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1350 	    SYSCTL_CHILDREN(rack_misc),
1351 	    OID_AUTO, "stats_gets_ms", CTLFLAG_RW,
1352 	    &rack_stats_gets_ms_rtt, 1,
1353 	    "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?");
1354 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1355 	    SYSCTL_CHILDREN(rack_misc),
1356 	    OID_AUTO, "clientlowbuf", CTLFLAG_RW,
1357 	    &rack_client_low_buf, 0,
1358 	    "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?");
1359 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1360 	    SYSCTL_CHILDREN(rack_misc),
1361 	    OID_AUTO, "defprofile", CTLFLAG_RW,
1362 	    &rack_def_profile, 0,
1363 	    "Should RACK use a default profile (0=no, num == profile num)?");
1364 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1365 	    SYSCTL_CHILDREN(rack_misc),
1366 	    OID_AUTO, "shared_cwnd", CTLFLAG_RW,
1367 	    &rack_enable_shared_cwnd, 1,
1368 	    "Should RACK try to use the shared cwnd on connections where allowed");
1369 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1370 	    SYSCTL_CHILDREN(rack_misc),
1371 	    OID_AUTO, "limits_on_scwnd", CTLFLAG_RW,
1372 	    &rack_limits_scwnd, 1,
1373 	    "Should RACK place low end time limits on the shared cwnd feature");
1374 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1375 	    SYSCTL_CHILDREN(rack_misc),
1376 	    OID_AUTO, "iMac_dack", CTLFLAG_RW,
1377 	    &rack_use_imac_dack, 0,
1378 	    "Should RACK try to emulate iMac delayed ack");
1379 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1380 	    SYSCTL_CHILDREN(rack_misc),
1381 	    OID_AUTO, "no_prr", CTLFLAG_RW,
1382 	    &rack_disable_prr, 0,
1383 	    "Should RACK not use prr and only pace (must have pacing on)");
1384 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1385 	    SYSCTL_CHILDREN(rack_misc),
1386 	    OID_AUTO, "bb_verbose", CTLFLAG_RW,
1387 	    &rack_verbose_logging, 0,
1388 	    "Should RACK black box logging be verbose");
1389 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1390 	    SYSCTL_CHILDREN(rack_misc),
1391 	    OID_AUTO, "data_after_close", CTLFLAG_RW,
1392 	    &rack_ignore_data_after_close, 1,
1393 	    "Do we hold off sending a RST until all pending data is ack'd");
1394 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1395 	    SYSCTL_CHILDREN(rack_misc),
1396 	    OID_AUTO, "no_sack_needed", CTLFLAG_RW,
1397 	    &rack_sack_not_required, 1,
1398 	    "Do we allow rack to run on connections not supporting SACK");
1399 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1400 	    SYSCTL_CHILDREN(rack_misc),
1401 	    OID_AUTO, "prr_sendalot", CTLFLAG_RW,
1402 	    &rack_send_a_lot_in_prr, 1,
1403 	    "Send a lot in prr");
1404 	SYSCTL_ADD_S32(&rack_sysctl_ctx,
1405 	    SYSCTL_CHILDREN(rack_misc),
1406 	    OID_AUTO, "autoscale", CTLFLAG_RW,
1407 	    &rack_autosndbuf_inc, 20,
1408 	    "What percentage should rack scale up its snd buffer by?");
1409 	/* Sack Attacker detection stuff */
1410 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1411 	    SYSCTL_CHILDREN(rack_attack),
1412 	    OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
1413 	    &rack_highest_sack_thresh_seen, 0,
1414 	    "Highest sack to ack ratio seen");
1415 	SYSCTL_ADD_U32(&rack_sysctl_ctx,
1416 	    SYSCTL_CHILDREN(rack_attack),
1417 	    OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
1418 	    &rack_highest_move_thresh_seen, 0,
1419 	    "Highest move to non-move ratio seen");
1420 	rack_ack_total = counter_u64_alloc(M_WAITOK);
1421 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1422 	    SYSCTL_CHILDREN(rack_attack),
1423 	    OID_AUTO, "acktotal", CTLFLAG_RD,
1424 	    &rack_ack_total,
1425 	    "Total number of Ack's");
1426 	rack_express_sack = counter_u64_alloc(M_WAITOK);
1427 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1428 	    SYSCTL_CHILDREN(rack_attack),
1429 	    OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
1430 	    &rack_express_sack,
1431 	    "Total expresss number of Sack's");
1432 	rack_sack_total = counter_u64_alloc(M_WAITOK);
1433 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1434 	    SYSCTL_CHILDREN(rack_attack),
1435 	    OID_AUTO, "sacktotal", CTLFLAG_RD,
1436 	    &rack_sack_total,
1437 	    "Total number of SACKs");
1438 	rack_move_none = counter_u64_alloc(M_WAITOK);
1439 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1440 	    SYSCTL_CHILDREN(rack_attack),
1441 	    OID_AUTO, "move_none", CTLFLAG_RD,
1442 	    &rack_move_none,
1443 	    "Total number of SACK index reuse of positions under threshold");
1444 	rack_move_some = counter_u64_alloc(M_WAITOK);
1445 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1446 	    SYSCTL_CHILDREN(rack_attack),
1447 	    OID_AUTO, "move_some", CTLFLAG_RD,
1448 	    &rack_move_some,
1449 	    "Total number of SACK index reuse of positions over threshold");
1450 	rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
1451 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1452 	    SYSCTL_CHILDREN(rack_attack),
1453 	    OID_AUTO, "attacks", CTLFLAG_RD,
1454 	    &rack_sack_attacks_detected,
1455 	    "Total number of SACK attackers that had sack disabled");
1456 	rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
1457 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1458 	    SYSCTL_CHILDREN(rack_attack),
1459 	    OID_AUTO, "reversed", CTLFLAG_RD,
1460 	    &rack_sack_attacks_reversed,
1461 	    "Total number of SACK attackers that were later determined false positive");
1462 	rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
1463 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1464 	    SYSCTL_CHILDREN(rack_attack),
1465 	    OID_AUTO, "nextmerge", CTLFLAG_RD,
1466 	    &rack_sack_used_next_merge,
1467 	    "Total number of times we used the next merge");
1468 	rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
1469 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1470 	    SYSCTL_CHILDREN(rack_attack),
1471 	    OID_AUTO, "prevmerge", CTLFLAG_RD,
1472 	    &rack_sack_used_prev_merge,
1473 	    "Total number of times we used the prev merge");
1474 	/* Counters */
1475 	rack_fto_send = counter_u64_alloc(M_WAITOK);
1476 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1477 	    SYSCTL_CHILDREN(rack_counters),
1478 	    OID_AUTO, "fto_send", CTLFLAG_RD,
1479 	    &rack_fto_send, "Total number of rack_fast_output sends");
1480 	rack_fto_rsm_send = counter_u64_alloc(M_WAITOK);
1481 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1482 	    SYSCTL_CHILDREN(rack_counters),
1483 	    OID_AUTO, "fto_rsm_send", CTLFLAG_RD,
1484 	    &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends");
1485 	rack_nfto_resend = counter_u64_alloc(M_WAITOK);
1486 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1487 	    SYSCTL_CHILDREN(rack_counters),
1488 	    OID_AUTO, "nfto_resend", CTLFLAG_RD,
1489 	    &rack_nfto_resend, "Total number of rack_output retransmissions");
1490 	rack_non_fto_send = counter_u64_alloc(M_WAITOK);
1491 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1492 	    SYSCTL_CHILDREN(rack_counters),
1493 	    OID_AUTO, "nfto_send", CTLFLAG_RD,
1494 	    &rack_non_fto_send, "Total number of rack_output first sends");
1495 	rack_extended_rfo = counter_u64_alloc(M_WAITOK);
1496 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1497 	    SYSCTL_CHILDREN(rack_counters),
1498 	    OID_AUTO, "rfo_extended", CTLFLAG_RD,
1499 	    &rack_extended_rfo, "Total number of times we extended rfo");
1500 
1501 	rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK);
1502 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1503 	    SYSCTL_CHILDREN(rack_counters),
1504 	    OID_AUTO, "hwpace_init_fail", CTLFLAG_RD,
1505 	    &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing");
1506 	rack_hw_pace_lost = counter_u64_alloc(M_WAITOK);
1507 
1508 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1509 	    SYSCTL_CHILDREN(rack_counters),
1510 	    OID_AUTO, "hwpace_lost", CTLFLAG_RD,
1511 	    &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing");
1512 	rack_tlp_tot = counter_u64_alloc(M_WAITOK);
1513 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1514 	    SYSCTL_CHILDREN(rack_counters),
1515 	    OID_AUTO, "tlp_to_total", CTLFLAG_RD,
1516 	    &rack_tlp_tot,
1517 	    "Total number of tail loss probe expirations");
1518 	rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
1519 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1520 	    SYSCTL_CHILDREN(rack_counters),
1521 	    OID_AUTO, "tlp_new", CTLFLAG_RD,
1522 	    &rack_tlp_newdata,
1523 	    "Total number of tail loss probe sending new data");
1524 	rack_tlp_retran = counter_u64_alloc(M_WAITOK);
1525 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1526 	    SYSCTL_CHILDREN(rack_counters),
1527 	    OID_AUTO, "tlp_retran", CTLFLAG_RD,
1528 	    &rack_tlp_retran,
1529 	    "Total number of tail loss probe sending retransmitted data");
1530 	rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
1531 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1532 	    SYSCTL_CHILDREN(rack_counters),
1533 	    OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
1534 	    &rack_tlp_retran_bytes,
1535 	    "Total bytes of tail loss probe sending retransmitted data");
1536 	rack_to_tot = counter_u64_alloc(M_WAITOK);
1537 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1538 	    SYSCTL_CHILDREN(rack_counters),
1539 	    OID_AUTO, "rack_to_tot", CTLFLAG_RD,
1540 	    &rack_to_tot,
1541 	    "Total number of times the rack to expired");
1542 	rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
1543 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1544 	    SYSCTL_CHILDREN(rack_counters),
1545 	    OID_AUTO, "saw_enobufs", CTLFLAG_RD,
1546 	    &rack_saw_enobuf,
1547 	    "Total number of times a sends returned enobuf for non-hdwr paced connections");
1548 	rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK);
1549 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1550 	    SYSCTL_CHILDREN(rack_counters),
1551 	    OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD,
1552 	    &rack_saw_enobuf_hw,
1553 	    "Total number of times a send returned enobuf for hdwr paced connections");
1554 	rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
1555 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1556 	    SYSCTL_CHILDREN(rack_counters),
1557 	    OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
1558 	    &rack_saw_enetunreach,
1559 	    "Total number of times a send received a enetunreachable");
1560 	rack_hot_alloc = counter_u64_alloc(M_WAITOK);
1561 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1562 	    SYSCTL_CHILDREN(rack_counters),
1563 	    OID_AUTO, "alloc_hot", CTLFLAG_RD,
1564 	    &rack_hot_alloc,
1565 	    "Total allocations from the top of our list");
1566 	rack_to_alloc = counter_u64_alloc(M_WAITOK);
1567 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1568 	    SYSCTL_CHILDREN(rack_counters),
1569 	    OID_AUTO, "allocs", CTLFLAG_RD,
1570 	    &rack_to_alloc,
1571 	    "Total allocations of tracking structures");
1572 	rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
1573 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1574 	    SYSCTL_CHILDREN(rack_counters),
1575 	    OID_AUTO, "allochard", CTLFLAG_RD,
1576 	    &rack_to_alloc_hard,
1577 	    "Total allocations done with sleeping the hard way");
1578 	rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
1579 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1580 	    SYSCTL_CHILDREN(rack_counters),
1581 	    OID_AUTO, "allocemerg", CTLFLAG_RD,
1582 	    &rack_to_alloc_emerg,
1583 	    "Total allocations done from emergency cache");
1584 	rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
1585 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1586 	    SYSCTL_CHILDREN(rack_counters),
1587 	    OID_AUTO, "alloc_limited", CTLFLAG_RD,
1588 	    &rack_to_alloc_limited,
1589 	    "Total allocations dropped due to limit");
1590 	rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
1591 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1592 	    SYSCTL_CHILDREN(rack_counters),
1593 	    OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
1594 	    &rack_alloc_limited_conns,
1595 	    "Connections with allocations dropped due to limit");
1596 	rack_split_limited = counter_u64_alloc(M_WAITOK);
1597 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1598 	    SYSCTL_CHILDREN(rack_counters),
1599 	    OID_AUTO, "split_limited", CTLFLAG_RD,
1600 	    &rack_split_limited,
1601 	    "Split allocations dropped due to limit");
1602 	rack_persists_sends = counter_u64_alloc(M_WAITOK);
1603 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1604 	    SYSCTL_CHILDREN(rack_counters),
1605 	    OID_AUTO, "persist_sends", CTLFLAG_RD,
1606 	    &rack_persists_sends,
1607 	    "Number of times we sent a persist probe");
1608 	rack_persists_acks = counter_u64_alloc(M_WAITOK);
1609 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1610 	    SYSCTL_CHILDREN(rack_counters),
1611 	    OID_AUTO, "persist_acks", CTLFLAG_RD,
1612 	    &rack_persists_acks,
1613 	    "Number of times a persist probe was acked");
1614 	rack_persists_loss = counter_u64_alloc(M_WAITOK);
1615 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1616 	    SYSCTL_CHILDREN(rack_counters),
1617 	    OID_AUTO, "persist_loss", CTLFLAG_RD,
1618 	    &rack_persists_loss,
1619 	    "Number of times we detected a lost persist probe (no ack)");
1620 	rack_persists_lost_ends = counter_u64_alloc(M_WAITOK);
1621 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1622 	    SYSCTL_CHILDREN(rack_counters),
1623 	    OID_AUTO, "persist_loss_ends", CTLFLAG_RD,
1624 	    &rack_persists_lost_ends,
1625 	    "Number of lost persist probe (no ack) that the run ended with a PERSIST abort");
1626 #ifdef INVARIANTS
1627 	rack_adjust_map_bw = counter_u64_alloc(M_WAITOK);
1628 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1629 	    SYSCTL_CHILDREN(rack_counters),
1630 	    OID_AUTO, "map_adjust_req", CTLFLAG_RD,
1631 	    &rack_adjust_map_bw,
1632 	    "Number of times we hit the case where the sb went up and down on a sendmap entry");
1633 #endif
1634 	rack_multi_single_eq = counter_u64_alloc(M_WAITOK);
1635 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1636 	    SYSCTL_CHILDREN(rack_counters),
1637 	    OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD,
1638 	    &rack_multi_single_eq,
1639 	    "Number of compressed acks total represented");
1640 	rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK);
1641 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1642 	    SYSCTL_CHILDREN(rack_counters),
1643 	    OID_AUTO, "cmp_ack_not", CTLFLAG_RD,
1644 	    &rack_proc_non_comp_ack,
1645 	    "Number of non compresseds acks that we processed");
1646 
1647 
1648 	rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
1649 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1650 	    SYSCTL_CHILDREN(rack_counters),
1651 	    OID_AUTO, "sack_long", CTLFLAG_RD,
1652 	    &rack_sack_proc_all,
1653 	    "Total times we had to walk whole list for sack processing");
1654 	rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
1655 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1656 	    SYSCTL_CHILDREN(rack_counters),
1657 	    OID_AUTO, "sack_restart", CTLFLAG_RD,
1658 	    &rack_sack_proc_restart,
1659 	    "Total times we had to walk whole list due to a restart");
1660 	rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
1661 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1662 	    SYSCTL_CHILDREN(rack_counters),
1663 	    OID_AUTO, "sack_short", CTLFLAG_RD,
1664 	    &rack_sack_proc_short,
1665 	    "Total times we took shortcut for sack processing");
1666 	rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
1667 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1668 	    SYSCTL_CHILDREN(rack_attack),
1669 	    OID_AUTO, "skipacked", CTLFLAG_RD,
1670 	    &rack_sack_skipped_acked,
1671 	    "Total number of times we skipped previously sacked");
1672 	rack_sack_splits = counter_u64_alloc(M_WAITOK);
1673 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1674 	    SYSCTL_CHILDREN(rack_attack),
1675 	    OID_AUTO, "ofsplit", CTLFLAG_RD,
1676 	    &rack_sack_splits,
1677 	    "Total number of times we did the old fashion tree split");
1678 	rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
1679 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1680 	    SYSCTL_CHILDREN(rack_counters),
1681 	    OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
1682 	    &rack_input_idle_reduces,
1683 	    "Total number of idle reductions on input");
1684 	rack_collapsed_win_seen = counter_u64_alloc(M_WAITOK);
1685 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1686 	    SYSCTL_CHILDREN(rack_counters),
1687 	    OID_AUTO, "collapsed_win_seen", CTLFLAG_RD,
1688 	    &rack_collapsed_win_seen,
1689 	    "Total number of collapsed window events seen (where our window shrinks)");
1690 
1691 	rack_collapsed_win = counter_u64_alloc(M_WAITOK);
1692 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1693 	    SYSCTL_CHILDREN(rack_counters),
1694 	    OID_AUTO, "collapsed_win", CTLFLAG_RD,
1695 	    &rack_collapsed_win,
1696 	    "Total number of collapsed window events where we mark packets");
1697 	rack_collapsed_win_rxt = counter_u64_alloc(M_WAITOK);
1698 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1699 	    SYSCTL_CHILDREN(rack_counters),
1700 	    OID_AUTO, "collapsed_win_rxt", CTLFLAG_RD,
1701 	    &rack_collapsed_win_rxt,
1702 	    "Total number of packets that were retransmitted");
1703 	rack_collapsed_win_rxt_bytes = counter_u64_alloc(M_WAITOK);
1704 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1705 	    SYSCTL_CHILDREN(rack_counters),
1706 	    OID_AUTO, "collapsed_win_bytes", CTLFLAG_RD,
1707 	    &rack_collapsed_win_rxt_bytes,
1708 	    "Total number of bytes that were retransmitted");
1709 	rack_try_scwnd = counter_u64_alloc(M_WAITOK);
1710 	SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1711 	    SYSCTL_CHILDREN(rack_counters),
1712 	    OID_AUTO, "tried_scwnd", CTLFLAG_RD,
1713 	    &rack_try_scwnd,
1714 	    "Total number of scwnd attempts");
1715 	COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1716 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1717 	    OID_AUTO, "outsize", CTLFLAG_RD,
1718 	    rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1719 	COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1720 	SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1721 	    OID_AUTO, "opts", CTLFLAG_RD,
1722 	    rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1723 	SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1724 	    SYSCTL_CHILDREN(rack_sysctl_root),
1725 	    OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1726 	    &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1727 }
1728 
1729 static __inline int
1730 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1731 {
1732 	if (SEQ_GEQ(b->r_start, a->r_start) &&
1733 	    SEQ_LT(b->r_start, a->r_end)) {
1734 		/*
1735 		 * The entry b is within the
1736 		 * block a. i.e.:
1737 		 * a --   |-------------|
1738 		 * b --   |----|
1739 		 * <or>
1740 		 * b --       |------|
1741 		 * <or>
1742 		 * b --       |-----------|
1743 		 */
1744 		return (0);
1745 	} else if (SEQ_GEQ(b->r_start, a->r_end)) {
1746 		/*
1747 		 * b falls as either the next
1748 		 * sequence block after a so a
1749 		 * is said to be smaller than b.
1750 		 * i.e:
1751 		 * a --   |------|
1752 		 * b --          |--------|
1753 		 * or
1754 		 * b --              |-----|
1755 		 */
1756 		return (1);
1757 	}
1758 	/*
1759 	 * Whats left is where a is
1760 	 * larger than b. i.e:
1761 	 * a --         |-------|
1762 	 * b --  |---|
1763 	 * or even possibly
1764 	 * b --   |--------------|
1765 	 */
1766 	return (-1);
1767 }
1768 
1769 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1770 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1771 
1772 static uint32_t
1773 rc_init_window(struct tcp_rack *rack)
1774 {
1775 	uint32_t win;
1776 
1777 	if (rack->rc_init_win == 0) {
1778 		/*
1779 		 * Nothing set by the user, use the system stack
1780 		 * default.
1781 		 */
1782 		return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)));
1783 	}
1784 	win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win;
1785 	return (win);
1786 }
1787 
1788 static uint64_t
1789 rack_get_fixed_pacing_bw(struct tcp_rack *rack)
1790 {
1791 	if (IN_FASTRECOVERY(rack->rc_tp->t_flags))
1792 		return (rack->r_ctl.rc_fixed_pacing_rate_rec);
1793 	else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1794 		return (rack->r_ctl.rc_fixed_pacing_rate_ss);
1795 	else
1796 		return (rack->r_ctl.rc_fixed_pacing_rate_ca);
1797 }
1798 
1799 static uint64_t
1800 rack_get_bw(struct tcp_rack *rack)
1801 {
1802 	if (rack->use_fixed_rate) {
1803 		/* Return the fixed pacing rate */
1804 		return (rack_get_fixed_pacing_bw(rack));
1805 	}
1806 	if (rack->r_ctl.gp_bw == 0) {
1807 		/*
1808 		 * We have yet no b/w measurement,
1809 		 * if we have a user set initial bw
1810 		 * return it. If we don't have that and
1811 		 * we have an srtt, use the tcp IW (10) to
1812 		 * calculate a fictional b/w over the SRTT
1813 		 * which is more or less a guess. Note
1814 		 * we don't use our IW from rack on purpose
1815 		 * so if we have like IW=30, we are not
1816 		 * calculating a "huge" b/w.
1817 		 */
1818 		uint64_t bw, srtt;
1819 		if (rack->r_ctl.init_rate)
1820 			return (rack->r_ctl.init_rate);
1821 
1822 		/* Has the user set a max peak rate? */
1823 #ifdef NETFLIX_PEAKRATE
1824 		if (rack->rc_tp->t_maxpeakrate)
1825 			return (rack->rc_tp->t_maxpeakrate);
1826 #endif
1827 		/* Ok lets come up with the IW guess, if we have a srtt */
1828 		if (rack->rc_tp->t_srtt == 0) {
1829 			/*
1830 			 * Go with old pacing method
1831 			 * i.e. burst mitigation only.
1832 			 */
1833 			return (0);
1834 		}
1835 		/* Ok lets get the initial TCP win (not racks) */
1836 		bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp));
1837 		srtt = (uint64_t)rack->rc_tp->t_srtt;
1838 		bw *= (uint64_t)USECS_IN_SECOND;
1839 		bw /= srtt;
1840 		if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
1841 			bw = rack->r_ctl.bw_rate_cap;
1842 		return (bw);
1843 	} else {
1844 		uint64_t bw;
1845 
1846 		if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
1847 			/* Averaging is done, we can return the value */
1848 			bw = rack->r_ctl.gp_bw;
1849 		} else {
1850 			/* Still doing initial average must calculate */
1851 			bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements;
1852 		}
1853 #ifdef NETFLIX_PEAKRATE
1854 		if ((rack->rc_tp->t_maxpeakrate) &&
1855 		    (bw > rack->rc_tp->t_maxpeakrate)) {
1856 			/* The user has set a peak rate to pace at
1857 			 * don't allow us to pace faster than that.
1858 			 */
1859 			return (rack->rc_tp->t_maxpeakrate);
1860 		}
1861 #endif
1862 		if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
1863 			bw = rack->r_ctl.bw_rate_cap;
1864 		return (bw);
1865 	}
1866 }
1867 
1868 static uint16_t
1869 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm)
1870 {
1871 	if (rack->use_fixed_rate) {
1872 		return (100);
1873 	} else if (rack->in_probe_rtt && (rsm == NULL))
1874 		return (rack->r_ctl.rack_per_of_gp_probertt);
1875 	else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
1876 		  rack->r_ctl.rack_per_of_gp_rec)) {
1877 		if (rsm) {
1878 			/* a retransmission always use the recovery rate */
1879 			return (rack->r_ctl.rack_per_of_gp_rec);
1880 		} else if (rack->rack_rec_nonrxt_use_cr) {
1881 			/* Directed to use the configured rate */
1882 			goto configured_rate;
1883 		} else if (rack->rack_no_prr &&
1884 			   (rack->r_ctl.rack_per_of_gp_rec > 100)) {
1885 			/* No PRR, lets just use the b/w estimate only */
1886 			return (100);
1887 		} else {
1888 			/*
1889 			 * Here we may have a non-retransmit but we
1890 			 * have no overrides, so just use the recovery
1891 			 * rate (prr is in effect).
1892 			 */
1893 			return (rack->r_ctl.rack_per_of_gp_rec);
1894 		}
1895 	}
1896 configured_rate:
1897 	/* For the configured rate we look at our cwnd vs the ssthresh */
1898 	if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1899 		return (rack->r_ctl.rack_per_of_gp_ss);
1900 	else
1901 		return (rack->r_ctl.rack_per_of_gp_ca);
1902 }
1903 
1904 static void
1905 rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6)
1906 {
1907 	/*
1908 	 * Types of logs (mod value)
1909 	 * 1 = dsack_persists reduced by 1 via T-O or fast recovery exit.
1910 	 * 2 = a dsack round begins, persist is reset to 16.
1911 	 * 3 = a dsack round ends
1912 	 * 4 = Dsack option increases rack rtt flex5 is the srtt input, flex6 is thresh
1913 	 * 5 = Socket option set changing the control flags rc_rack_tmr_std_based, rc_rack_use_dsack
1914 	 * 6 = Final rack rtt, flex4 is srtt and flex6 is final limited thresh.
1915 	 */
1916 	if (tcp_bblogging_on(rack->rc_tp)) {
1917 		union tcp_log_stackspecific log;
1918 		struct timeval tv;
1919 
1920 		memset(&log, 0, sizeof(log));
1921 		log.u_bbr.flex1 = rack->rc_rack_tmr_std_based;
1922 		log.u_bbr.flex1 <<= 1;
1923 		log.u_bbr.flex1 |= rack->rc_rack_use_dsack;
1924 		log.u_bbr.flex1 <<= 1;
1925 		log.u_bbr.flex1 |= rack->rc_dsack_round_seen;
1926 		log.u_bbr.flex2 = rack->r_ctl.dsack_round_end;
1927 		log.u_bbr.flex3 = rack->r_ctl.num_dsack;
1928 		log.u_bbr.flex4 = flex4;
1929 		log.u_bbr.flex5 = flex5;
1930 		log.u_bbr.flex6 = flex6;
1931 		log.u_bbr.flex7 = rack->r_ctl.dsack_persist;
1932 		log.u_bbr.flex8 = mod;
1933 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1934 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1935 		    &rack->rc_inp->inp_socket->so_rcv,
1936 		    &rack->rc_inp->inp_socket->so_snd,
1937 		    RACK_DSACK_HANDLING, 0,
1938 		    0, &log, false, &tv);
1939 	}
1940 }
1941 
1942 static void
1943 rack_log_hdwr_pacing(struct tcp_rack *rack,
1944 		     uint64_t rate, uint64_t hw_rate, int line,
1945 		     int error, uint16_t mod)
1946 {
1947 	if (tcp_bblogging_on(rack->rc_tp)) {
1948 		union tcp_log_stackspecific log;
1949 		struct timeval tv;
1950 		const struct ifnet *ifp;
1951 
1952 		memset(&log, 0, sizeof(log));
1953 		log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff);
1954 		log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff);
1955 		if (rack->r_ctl.crte) {
1956 			ifp = rack->r_ctl.crte->ptbl->rs_ifp;
1957 		} else if (rack->rc_inp->inp_route.ro_nh &&
1958 			   rack->rc_inp->inp_route.ro_nh->nh_ifp) {
1959 			ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp;
1960 		} else
1961 			ifp = NULL;
1962 		if (ifp) {
1963 			log.u_bbr.flex3 = (((uint64_t)ifp  >> 32) & 0x00000000ffffffff);
1964 			log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff);
1965 		}
1966 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1967 		log.u_bbr.bw_inuse = rate;
1968 		log.u_bbr.flex5 = line;
1969 		log.u_bbr.flex6 = error;
1970 		log.u_bbr.flex7 = mod;
1971 		log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs;
1972 		log.u_bbr.flex8 = rack->use_fixed_rate;
1973 		log.u_bbr.flex8 <<= 1;
1974 		log.u_bbr.flex8 |= rack->rack_hdrw_pacing;
1975 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
1976 		log.u_bbr.delRate = rack->r_ctl.crte_prev_rate;
1977 		if (rack->r_ctl.crte)
1978 			log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate;
1979 		else
1980 			log.u_bbr.cur_del_rate = 0;
1981 		log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req;
1982 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
1983 		    &rack->rc_inp->inp_socket->so_rcv,
1984 		    &rack->rc_inp->inp_socket->so_snd,
1985 		    BBR_LOG_HDWR_PACE, 0,
1986 		    0, &log, false, &tv);
1987 	}
1988 }
1989 
1990 static uint64_t
1991 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped)
1992 {
1993 	/*
1994 	 * We allow rack_per_of_gp_xx to dictate our bw rate we want.
1995 	 */
1996 	uint64_t bw_est, high_rate;
1997 	uint64_t gain;
1998 
1999 	gain = (uint64_t)rack_get_output_gain(rack, rsm);
2000 	bw_est = bw * gain;
2001 	bw_est /= (uint64_t)100;
2002 	/* Never fall below the minimum (def 64kbps) */
2003 	if (bw_est < RACK_MIN_BW)
2004 		bw_est = RACK_MIN_BW;
2005 	if (rack->r_rack_hw_rate_caps) {
2006 		/* Rate caps are in place */
2007 		if (rack->r_ctl.crte != NULL) {
2008 			/* We have a hdwr rate already */
2009 			high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
2010 			if (bw_est >= high_rate) {
2011 				/* We are capping bw at the highest rate table entry */
2012 				rack_log_hdwr_pacing(rack,
2013 						     bw_est, high_rate, __LINE__,
2014 						     0, 3);
2015 				bw_est = high_rate;
2016 				if (capped)
2017 					*capped = 1;
2018 			}
2019 		} else if ((rack->rack_hdrw_pacing == 0) &&
2020 			   (rack->rack_hdw_pace_ena) &&
2021 			   (rack->rack_attempt_hdwr_pace == 0) &&
2022 			   (rack->rc_inp->inp_route.ro_nh != NULL) &&
2023 			   (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
2024 			/*
2025 			 * Special case, we have not yet attempted hardware
2026 			 * pacing, and yet we may, when we do, find out if we are
2027 			 * above the highest rate. We need to know the maxbw for the interface
2028 			 * in question (if it supports ratelimiting). We get back
2029 			 * a 0, if the interface is not found in the RL lists.
2030 			 */
2031 			high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
2032 			if (high_rate) {
2033 				/* Yep, we have a rate is it above this rate? */
2034 				if (bw_est > high_rate) {
2035 					bw_est = high_rate;
2036 					if (capped)
2037 						*capped = 1;
2038 				}
2039 			}
2040 		}
2041 	}
2042 	return (bw_est);
2043 }
2044 
2045 static void
2046 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
2047 {
2048 	if (tcp_bblogging_on(rack->rc_tp)) {
2049 		union tcp_log_stackspecific log;
2050 		struct timeval tv;
2051 
2052 		if ((mod != 1) && (rack_verbose_logging == 0)) {
2053 			/*
2054 			 * We get 3 values currently for mod
2055 			 * 1 - We are retransmitting and this tells the reason.
2056 			 * 2 - We are clearing a dup-ack count.
2057 			 * 3 - We are incrementing a dup-ack count.
2058 			 *
2059 			 * The clear/increment are only logged
2060 			 * if you have BBverbose on.
2061 			 */
2062 			return;
2063 		}
2064 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2065 		log.u_bbr.flex1 = tsused;
2066 		log.u_bbr.flex2 = thresh;
2067 		log.u_bbr.flex3 = rsm->r_flags;
2068 		log.u_bbr.flex4 = rsm->r_dupack;
2069 		log.u_bbr.flex5 = rsm->r_start;
2070 		log.u_bbr.flex6 = rsm->r_end;
2071 		log.u_bbr.flex8 = mod;
2072 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2073 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2074 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2075 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2076 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2077 		log.u_bbr.pacing_gain = rack->r_must_retran;
2078 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2079 		    &rack->rc_inp->inp_socket->so_rcv,
2080 		    &rack->rc_inp->inp_socket->so_snd,
2081 		    BBR_LOG_SETTINGS_CHG, 0,
2082 		    0, &log, false, &tv);
2083 	}
2084 }
2085 
2086 static void
2087 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
2088 {
2089 	if (tcp_bblogging_on(rack->rc_tp)) {
2090 		union tcp_log_stackspecific log;
2091 		struct timeval tv;
2092 
2093 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2094 		log.u_bbr.flex1 = rack->rc_tp->t_srtt;
2095 		log.u_bbr.flex2 = to;
2096 		log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
2097 		log.u_bbr.flex4 = slot;
2098 		log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
2099 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2100 		log.u_bbr.flex7 = rack->rc_in_persist;
2101 		log.u_bbr.flex8 = which;
2102 		if (rack->rack_no_prr)
2103 			log.u_bbr.pkts_out = 0;
2104 		else
2105 			log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
2106 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2107 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2108 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2109 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2110 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2111 		log.u_bbr.pacing_gain = rack->r_must_retran;
2112 		log.u_bbr.cwnd_gain = rack->rc_has_collapsed;
2113 		log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift;
2114 		log.u_bbr.lost = rack_rto_min;
2115 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2116 		    &rack->rc_inp->inp_socket->so_rcv,
2117 		    &rack->rc_inp->inp_socket->so_snd,
2118 		    BBR_LOG_TIMERSTAR, 0,
2119 		    0, &log, false, &tv);
2120 	}
2121 }
2122 
2123 static void
2124 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm)
2125 {
2126 	if (tcp_bblogging_on(rack->rc_tp)) {
2127 		union tcp_log_stackspecific log;
2128 		struct timeval tv;
2129 
2130 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2131 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2132 		log.u_bbr.flex8 = to_num;
2133 		log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
2134 		log.u_bbr.flex2 = rack->rc_rack_rtt;
2135 		if (rsm == NULL)
2136 			log.u_bbr.flex3 = 0;
2137 		else
2138 			log.u_bbr.flex3 = rsm->r_end - rsm->r_start;
2139 		if (rack->rack_no_prr)
2140 			log.u_bbr.flex5 = 0;
2141 		else
2142 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2143 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2144 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2145 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2146 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2147 		log.u_bbr.pacing_gain = rack->r_must_retran;
2148 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2149 		    &rack->rc_inp->inp_socket->so_rcv,
2150 		    &rack->rc_inp->inp_socket->so_snd,
2151 		    BBR_LOG_RTO, 0,
2152 		    0, &log, false, &tv);
2153 	}
2154 }
2155 
2156 static void
2157 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack,
2158 		 struct rack_sendmap *prev,
2159 		 struct rack_sendmap *rsm,
2160 		 struct rack_sendmap *next,
2161 		 int flag, uint32_t th_ack, int line)
2162 {
2163 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
2164 		union tcp_log_stackspecific log;
2165 		struct timeval tv;
2166 
2167 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2168 		log.u_bbr.flex8 = flag;
2169 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2170 		log.u_bbr.cur_del_rate = (uint64_t)prev;
2171 		log.u_bbr.delRate = (uint64_t)rsm;
2172 		log.u_bbr.rttProp = (uint64_t)next;
2173 		log.u_bbr.flex7 = 0;
2174 		if (prev) {
2175 			log.u_bbr.flex1 = prev->r_start;
2176 			log.u_bbr.flex2 = prev->r_end;
2177 			log.u_bbr.flex7 |= 0x4;
2178 		}
2179 		if (rsm) {
2180 			log.u_bbr.flex3 = rsm->r_start;
2181 			log.u_bbr.flex4 = rsm->r_end;
2182 			log.u_bbr.flex7 |= 0x2;
2183 		}
2184 		if (next) {
2185 			log.u_bbr.flex5 = next->r_start;
2186 			log.u_bbr.flex6 = next->r_end;
2187 			log.u_bbr.flex7 |= 0x1;
2188 		}
2189 		log.u_bbr.applimited = line;
2190 		log.u_bbr.pkts_out = th_ack;
2191 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2192 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2193 		if (rack->rack_no_prr)
2194 			log.u_bbr.lost = 0;
2195 		else
2196 			log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt;
2197 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2198 		    &rack->rc_inp->inp_socket->so_rcv,
2199 		    &rack->rc_inp->inp_socket->so_snd,
2200 		    TCP_LOG_MAPCHG, 0,
2201 		    0, &log, false, &tv);
2202 	}
2203 }
2204 
2205 static void
2206 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len,
2207 		 struct rack_sendmap *rsm, int conf)
2208 {
2209 	if (tcp_bblogging_on(tp)) {
2210 		union tcp_log_stackspecific log;
2211 		struct timeval tv;
2212 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2213 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2214 		log.u_bbr.flex1 = t;
2215 		log.u_bbr.flex2 = len;
2216 		log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt;
2217 		log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
2218 		log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
2219 		log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2220 		log.u_bbr.flex7 = conf;
2221 		log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot;
2222 		log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
2223 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2224 		log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2225 		log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags;
2226 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2227 		if (rsm) {
2228 			log.u_bbr.pkt_epoch = rsm->r_start;
2229 			log.u_bbr.lost = rsm->r_end;
2230 			log.u_bbr.cwnd_gain = rsm->r_rtr_cnt;
2231 			/* We loose any upper of the 24 bits */
2232 			log.u_bbr.pacing_gain = (uint16_t)rsm->r_flags;
2233 		} else {
2234 			/* Its a SYN */
2235 			log.u_bbr.pkt_epoch = rack->rc_tp->iss;
2236 			log.u_bbr.lost = 0;
2237 			log.u_bbr.cwnd_gain = 0;
2238 			log.u_bbr.pacing_gain = 0;
2239 		}
2240 		/* Write out general bits of interest rrs here */
2241 		log.u_bbr.use_lt_bw = rack->rc_highly_buffered;
2242 		log.u_bbr.use_lt_bw <<= 1;
2243 		log.u_bbr.use_lt_bw |= rack->forced_ack;
2244 		log.u_bbr.use_lt_bw <<= 1;
2245 		log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul;
2246 		log.u_bbr.use_lt_bw <<= 1;
2247 		log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
2248 		log.u_bbr.use_lt_bw <<= 1;
2249 		log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
2250 		log.u_bbr.use_lt_bw <<= 1;
2251 		log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
2252 		log.u_bbr.use_lt_bw <<= 1;
2253 		log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
2254 		log.u_bbr.use_lt_bw <<= 1;
2255 		log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom;
2256 		log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight;
2257 		log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts;
2258 		log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered;
2259 		log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts;
2260 		log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt;
2261 		log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
2262 		log.u_bbr.bw_inuse <<= 32;
2263 		if (rsm)
2264 			log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]);
2265 		TCP_LOG_EVENTP(tp, NULL,
2266 		    &rack->rc_inp->inp_socket->so_rcv,
2267 		    &rack->rc_inp->inp_socket->so_snd,
2268 		    BBR_LOG_BBRRTT, 0,
2269 		    0, &log, false, &tv);
2270 
2271 
2272 	}
2273 }
2274 
2275 static void
2276 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
2277 {
2278 	/*
2279 	 * Log the rtt sample we are
2280 	 * applying to the srtt algorithm in
2281 	 * useconds.
2282 	 */
2283 	if (tcp_bblogging_on(rack->rc_tp)) {
2284 		union tcp_log_stackspecific log;
2285 		struct timeval tv;
2286 
2287 		/* Convert our ms to a microsecond */
2288 		memset(&log, 0, sizeof(log));
2289 		log.u_bbr.flex1 = rtt;
2290 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
2291 		log.u_bbr.flex3 = rack->r_ctl.sack_count;
2292 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2293 		log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
2294 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2295 		log.u_bbr.flex7 = 1;
2296 		log.u_bbr.flex8 = rack->sack_attack_disable;
2297 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2298 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2299 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2300 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2301 		log.u_bbr.pacing_gain = rack->r_must_retran;
2302 		/*
2303 		 * We capture in delRate the upper 32 bits as
2304 		 * the confidence level we had declared, and the
2305 		 * lower 32 bits as the actual RTT using the arrival
2306 		 * timestamp.
2307 		 */
2308 		log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence;
2309 		log.u_bbr.delRate <<= 32;
2310 		log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt;
2311 		/* Lets capture all the things that make up t_rtxcur */
2312 		log.u_bbr.applimited = rack_rto_min;
2313 		log.u_bbr.epoch = rack_rto_max;
2314 		log.u_bbr.lt_epoch = rack->r_ctl.timer_slop;
2315 		log.u_bbr.lost = rack_rto_min;
2316 		log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop);
2317 		log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp);
2318 		log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec;
2319 		log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC;
2320 		log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec;
2321 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2322 		    &rack->rc_inp->inp_socket->so_rcv,
2323 		    &rack->rc_inp->inp_socket->so_snd,
2324 		    TCP_LOG_RTT, 0,
2325 		    0, &log, false, &tv);
2326 	}
2327 }
2328 
2329 static void
2330 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where)
2331 {
2332 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
2333 		union tcp_log_stackspecific log;
2334 		struct timeval tv;
2335 
2336 		/* Convert our ms to a microsecond */
2337 		memset(&log, 0, sizeof(log));
2338 		log.u_bbr.flex1 = rtt;
2339 		log.u_bbr.flex2 = send_time;
2340 		log.u_bbr.flex3 = ack_time;
2341 		log.u_bbr.flex4 = where;
2342 		log.u_bbr.flex7 = 2;
2343 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2344 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2345 		    &rack->rc_inp->inp_socket->so_rcv,
2346 		    &rack->rc_inp->inp_socket->so_snd,
2347 		    TCP_LOG_RTT, 0,
2348 		    0, &log, false, &tv);
2349 	}
2350 }
2351 
2352 
2353 
2354 static inline void
2355 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
2356 {
2357 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
2358 		union tcp_log_stackspecific log;
2359 		struct timeval tv;
2360 
2361 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2362 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2363 		log.u_bbr.flex1 = line;
2364 		log.u_bbr.flex2 = tick;
2365 		log.u_bbr.flex3 = tp->t_maxunacktime;
2366 		log.u_bbr.flex4 = tp->t_acktime;
2367 		log.u_bbr.flex8 = event;
2368 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2369 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2370 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2371 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2372 		log.u_bbr.pacing_gain = rack->r_must_retran;
2373 		TCP_LOG_EVENTP(tp, NULL,
2374 		    &rack->rc_inp->inp_socket->so_rcv,
2375 		    &rack->rc_inp->inp_socket->so_snd,
2376 		    BBR_LOG_PROGRESS, 0,
2377 		    0, &log, false, &tv);
2378 	}
2379 }
2380 
2381 static void
2382 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv)
2383 {
2384 	if (tcp_bblogging_on(rack->rc_tp)) {
2385 		union tcp_log_stackspecific log;
2386 
2387 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2388 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2389 		log.u_bbr.flex1 = slot;
2390 		if (rack->rack_no_prr)
2391 			log.u_bbr.flex2 = 0;
2392 		else
2393 			log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
2394 		log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
2395 		log.u_bbr.flex8 = rack->rc_in_persist;
2396 		log.u_bbr.timeStamp = cts;
2397 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2398 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2399 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2400 		log.u_bbr.pacing_gain = rack->r_must_retran;
2401 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2402 		    &rack->rc_inp->inp_socket->so_rcv,
2403 		    &rack->rc_inp->inp_socket->so_snd,
2404 		    BBR_LOG_BBRSND, 0,
2405 		    0, &log, false, tv);
2406 	}
2407 }
2408 
2409 static void
2410 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs)
2411 {
2412 	if (tcp_bblogging_on(rack->rc_tp)) {
2413 		union tcp_log_stackspecific log;
2414 		struct timeval tv;
2415 
2416 		memset(&log, 0, sizeof(log));
2417 		log.u_bbr.flex1 = did_out;
2418 		log.u_bbr.flex2 = nxt_pkt;
2419 		log.u_bbr.flex3 = way_out;
2420 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2421 		if (rack->rack_no_prr)
2422 			log.u_bbr.flex5 = 0;
2423 		else
2424 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2425 		log.u_bbr.flex6 = nsegs;
2426 		log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
2427 		log.u_bbr.flex7 = rack->rc_ack_can_sendout_data;	/* Do we have ack-can-send set */
2428 		log.u_bbr.flex7 <<= 1;
2429 		log.u_bbr.flex7 |= rack->r_fast_output;	/* is fast output primed */
2430 		log.u_bbr.flex7 <<= 1;
2431 		log.u_bbr.flex7 |= rack->r_wanted_output;	/* Do we want output */
2432 		log.u_bbr.flex8 = rack->rc_in_persist;
2433 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2434 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2435 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2436 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2437 		log.u_bbr.use_lt_bw <<= 1;
2438 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
2439 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2440 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2441 		log.u_bbr.pacing_gain = rack->r_must_retran;
2442 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2443 		    &rack->rc_inp->inp_socket->so_rcv,
2444 		    &rack->rc_inp->inp_socket->so_snd,
2445 		    BBR_LOG_DOSEG_DONE, 0,
2446 		    0, &log, false, &tv);
2447 	}
2448 }
2449 
2450 static void
2451 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm)
2452 {
2453 	if (tcp_bblogging_on(rack->rc_tp)) {
2454 		union tcp_log_stackspecific log;
2455 		struct timeval tv;
2456 
2457 		memset(&log, 0, sizeof(log));
2458 		log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
2459 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
2460 		log.u_bbr.flex4 = arg1;
2461 		log.u_bbr.flex5 = arg2;
2462 		log.u_bbr.flex6 = arg3;
2463 		log.u_bbr.flex8 = frm;
2464 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2465 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2466 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2467 		log.u_bbr.applimited = rack->r_ctl.rc_sacked;
2468 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2469 		log.u_bbr.pacing_gain = rack->r_must_retran;
2470 		TCP_LOG_EVENTP(tp, NULL, &tptosocket(tp)->so_rcv,
2471 		    &tptosocket(tp)->so_snd,
2472 		    TCP_HDWR_PACE_SIZE, 0, 0, &log, false, &tv);
2473 	}
2474 }
2475 
2476 static void
2477 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot,
2478 			  uint8_t hpts_calling, int reason, uint32_t cwnd_to_use)
2479 {
2480 	if (tcp_bblogging_on(rack->rc_tp)) {
2481 		union tcp_log_stackspecific log;
2482 		struct timeval tv;
2483 
2484 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2485 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2486 		log.u_bbr.flex1 = slot;
2487 		log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
2488 		log.u_bbr.flex4 = reason;
2489 		if (rack->rack_no_prr)
2490 			log.u_bbr.flex5 = 0;
2491 		else
2492 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2493 		log.u_bbr.flex7 = hpts_calling;
2494 		log.u_bbr.flex8 = rack->rc_in_persist;
2495 		log.u_bbr.lt_epoch = cwnd_to_use;
2496 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2497 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2498 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2499 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2500 		log.u_bbr.pacing_gain = rack->r_must_retran;
2501 		log.u_bbr.cwnd_gain = rack->rc_has_collapsed;
2502 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2503 		    &rack->rc_inp->inp_socket->so_rcv,
2504 		    &rack->rc_inp->inp_socket->so_snd,
2505 		    BBR_LOG_JUSTRET, 0,
2506 		    tlen, &log, false, &tv);
2507 	}
2508 }
2509 
2510 static void
2511 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts,
2512 		   struct timeval *tv, uint32_t flags_on_entry)
2513 {
2514 	if (tcp_bblogging_on(rack->rc_tp)) {
2515 		union tcp_log_stackspecific log;
2516 
2517 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2518 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2519 		log.u_bbr.flex1 = line;
2520 		log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to;
2521 		log.u_bbr.flex3 = flags_on_entry;
2522 		log.u_bbr.flex4 = us_cts;
2523 		if (rack->rack_no_prr)
2524 			log.u_bbr.flex5 = 0;
2525 		else
2526 			log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2527 		log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2528 		log.u_bbr.flex7 = hpts_removed;
2529 		log.u_bbr.flex8 = 1;
2530 		log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags;
2531 		log.u_bbr.timeStamp = us_cts;
2532 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2533 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2534 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2535 		log.u_bbr.pacing_gain = rack->r_must_retran;
2536 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2537 		    &rack->rc_inp->inp_socket->so_rcv,
2538 		    &rack->rc_inp->inp_socket->so_snd,
2539 		    BBR_LOG_TIMERCANC, 0,
2540 		    0, &log, false, tv);
2541 	}
2542 }
2543 
2544 static void
2545 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
2546 			  uint32_t flex1, uint32_t flex2,
2547 			  uint32_t flex3, uint32_t flex4,
2548 			  uint32_t flex5, uint32_t flex6,
2549 			  uint16_t flex7, uint8_t mod)
2550 {
2551 	if (tcp_bblogging_on(rack->rc_tp)) {
2552 		union tcp_log_stackspecific log;
2553 		struct timeval tv;
2554 
2555 		if (mod == 1) {
2556 			/* No you can't use 1, its for the real to cancel */
2557 			return;
2558 		}
2559 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2560 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2561 		log.u_bbr.flex1 = flex1;
2562 		log.u_bbr.flex2 = flex2;
2563 		log.u_bbr.flex3 = flex3;
2564 		log.u_bbr.flex4 = flex4;
2565 		log.u_bbr.flex5 = flex5;
2566 		log.u_bbr.flex6 = flex6;
2567 		log.u_bbr.flex7 = flex7;
2568 		log.u_bbr.flex8 = mod;
2569 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2570 		    &rack->rc_inp->inp_socket->so_rcv,
2571 		    &rack->rc_inp->inp_socket->so_snd,
2572 		    BBR_LOG_TIMERCANC, 0,
2573 		    0, &log, false, &tv);
2574 	}
2575 }
2576 
2577 static void
2578 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
2579 {
2580 	if (tcp_bblogging_on(rack->rc_tp)) {
2581 		union tcp_log_stackspecific log;
2582 		struct timeval tv;
2583 
2584 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2585 		log.u_bbr.flex1 = timers;
2586 		log.u_bbr.flex2 = ret;
2587 		log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
2588 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2589 		log.u_bbr.flex5 = cts;
2590 		if (rack->rack_no_prr)
2591 			log.u_bbr.flex6 = 0;
2592 		else
2593 			log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
2594 		log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2595 		log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2596 		log.u_bbr.pacing_gain = rack->r_must_retran;
2597 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2598 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2599 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2600 		    &rack->rc_inp->inp_socket->so_rcv,
2601 		    &rack->rc_inp->inp_socket->so_snd,
2602 		    BBR_LOG_TO_PROCESS, 0,
2603 		    0, &log, false, &tv);
2604 	}
2605 }
2606 
2607 static void
2608 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd, int line)
2609 {
2610 	if (tcp_bblogging_on(rack->rc_tp)) {
2611 		union tcp_log_stackspecific log;
2612 		struct timeval tv;
2613 
2614 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2615 		log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
2616 		log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
2617 		if (rack->rack_no_prr)
2618 			log.u_bbr.flex3 = 0;
2619 		else
2620 			log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
2621 		log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
2622 		log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
2623 		log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
2624 		log.u_bbr.flex7 = line;
2625 		log.u_bbr.flex8 = frm;
2626 		log.u_bbr.pkts_out = orig_cwnd;
2627 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2628 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2629 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2630 		log.u_bbr.use_lt_bw <<= 1;
2631 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
2632 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2633 		    &rack->rc_inp->inp_socket->so_rcv,
2634 		    &rack->rc_inp->inp_socket->so_snd,
2635 		    BBR_LOG_BBRUPD, 0,
2636 		    0, &log, false, &tv);
2637 	}
2638 }
2639 
2640 #ifdef NETFLIX_EXP_DETECTION
2641 static void
2642 rack_log_sad(struct tcp_rack *rack, int event)
2643 {
2644 	if (tcp_bblogging_on(rack->rc_tp)) {
2645 		union tcp_log_stackspecific log;
2646 		struct timeval tv;
2647 
2648 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2649 		log.u_bbr.flex1 = rack->r_ctl.sack_count;
2650 		log.u_bbr.flex2 = rack->r_ctl.ack_count;
2651 		log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
2652 		log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2653 		log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
2654 		log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
2655 		log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
2656 		log.u_bbr.lt_epoch = (tcp_force_detection << 8);
2657 		log.u_bbr.lt_epoch |= rack->do_detection;
2658 		log.u_bbr.applimited = tcp_map_minimum;
2659 		log.u_bbr.flex7 = rack->sack_attack_disable;
2660 		log.u_bbr.flex8 = event;
2661 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2662 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2663 		log.u_bbr.delivered = tcp_sad_decay_val;
2664 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
2665 		    &rack->rc_inp->inp_socket->so_rcv,
2666 		    &rack->rc_inp->inp_socket->so_snd,
2667 		    TCP_SAD_DETECTION, 0,
2668 		    0, &log, false, &tv);
2669 	}
2670 }
2671 #endif
2672 
2673 static void
2674 rack_counter_destroy(void)
2675 {
2676 	counter_u64_free(rack_fto_send);
2677 	counter_u64_free(rack_fto_rsm_send);
2678 	counter_u64_free(rack_nfto_resend);
2679 	counter_u64_free(rack_hw_pace_init_fail);
2680 	counter_u64_free(rack_hw_pace_lost);
2681 	counter_u64_free(rack_non_fto_send);
2682 	counter_u64_free(rack_extended_rfo);
2683 	counter_u64_free(rack_ack_total);
2684 	counter_u64_free(rack_express_sack);
2685 	counter_u64_free(rack_sack_total);
2686 	counter_u64_free(rack_move_none);
2687 	counter_u64_free(rack_move_some);
2688 	counter_u64_free(rack_sack_attacks_detected);
2689 	counter_u64_free(rack_sack_attacks_reversed);
2690 	counter_u64_free(rack_sack_used_next_merge);
2691 	counter_u64_free(rack_sack_used_prev_merge);
2692 	counter_u64_free(rack_tlp_tot);
2693 	counter_u64_free(rack_tlp_newdata);
2694 	counter_u64_free(rack_tlp_retran);
2695 	counter_u64_free(rack_tlp_retran_bytes);
2696 	counter_u64_free(rack_to_tot);
2697 	counter_u64_free(rack_saw_enobuf);
2698 	counter_u64_free(rack_saw_enobuf_hw);
2699 	counter_u64_free(rack_saw_enetunreach);
2700 	counter_u64_free(rack_hot_alloc);
2701 	counter_u64_free(rack_to_alloc);
2702 	counter_u64_free(rack_to_alloc_hard);
2703 	counter_u64_free(rack_to_alloc_emerg);
2704 	counter_u64_free(rack_to_alloc_limited);
2705 	counter_u64_free(rack_alloc_limited_conns);
2706 	counter_u64_free(rack_split_limited);
2707 	counter_u64_free(rack_multi_single_eq);
2708 	counter_u64_free(rack_proc_non_comp_ack);
2709 	counter_u64_free(rack_sack_proc_all);
2710 	counter_u64_free(rack_sack_proc_restart);
2711 	counter_u64_free(rack_sack_proc_short);
2712 	counter_u64_free(rack_sack_skipped_acked);
2713 	counter_u64_free(rack_sack_splits);
2714 	counter_u64_free(rack_input_idle_reduces);
2715 	counter_u64_free(rack_collapsed_win);
2716 	counter_u64_free(rack_collapsed_win_rxt);
2717 	counter_u64_free(rack_collapsed_win_rxt_bytes);
2718 	counter_u64_free(rack_collapsed_win_seen);
2719 	counter_u64_free(rack_try_scwnd);
2720 	counter_u64_free(rack_persists_sends);
2721 	counter_u64_free(rack_persists_acks);
2722 	counter_u64_free(rack_persists_loss);
2723 	counter_u64_free(rack_persists_lost_ends);
2724 #ifdef INVARIANTS
2725 	counter_u64_free(rack_adjust_map_bw);
2726 #endif
2727 	COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
2728 	COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
2729 }
2730 
2731 static struct rack_sendmap *
2732 rack_alloc(struct tcp_rack *rack)
2733 {
2734 	struct rack_sendmap *rsm;
2735 
2736 	/*
2737 	 * First get the top of the list it in
2738 	 * theory is the "hottest" rsm we have,
2739 	 * possibly just freed by ack processing.
2740 	 */
2741 	if (rack->rc_free_cnt > rack_free_cache) {
2742 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2743 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2744 		counter_u64_add(rack_hot_alloc, 1);
2745 		rack->rc_free_cnt--;
2746 		return (rsm);
2747 	}
2748 	/*
2749 	 * Once we get under our free cache we probably
2750 	 * no longer have a "hot" one available. Lets
2751 	 * get one from UMA.
2752 	 */
2753 	rsm = uma_zalloc(rack_zone, M_NOWAIT);
2754 	if (rsm) {
2755 		rack->r_ctl.rc_num_maps_alloced++;
2756 		counter_u64_add(rack_to_alloc, 1);
2757 		return (rsm);
2758 	}
2759 	/*
2760 	 * Dig in to our aux rsm's (the last two) since
2761 	 * UMA failed to get us one.
2762 	 */
2763 	if (rack->rc_free_cnt) {
2764 		counter_u64_add(rack_to_alloc_emerg, 1);
2765 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2766 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2767 		rack->rc_free_cnt--;
2768 		return (rsm);
2769 	}
2770 	return (NULL);
2771 }
2772 
2773 static struct rack_sendmap *
2774 rack_alloc_full_limit(struct tcp_rack *rack)
2775 {
2776 	if ((V_tcp_map_entries_limit > 0) &&
2777 	    (rack->do_detection == 0) &&
2778 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
2779 		counter_u64_add(rack_to_alloc_limited, 1);
2780 		if (!rack->alloc_limit_reported) {
2781 			rack->alloc_limit_reported = 1;
2782 			counter_u64_add(rack_alloc_limited_conns, 1);
2783 		}
2784 		return (NULL);
2785 	}
2786 	return (rack_alloc(rack));
2787 }
2788 
2789 /* wrapper to allocate a sendmap entry, subject to a specific limit */
2790 static struct rack_sendmap *
2791 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
2792 {
2793 	struct rack_sendmap *rsm;
2794 
2795 	if (limit_type) {
2796 		/* currently there is only one limit type */
2797 		if (V_tcp_map_split_limit > 0 &&
2798 		    (rack->do_detection == 0) &&
2799 		    rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
2800 			counter_u64_add(rack_split_limited, 1);
2801 			if (!rack->alloc_limit_reported) {
2802 				rack->alloc_limit_reported = 1;
2803 				counter_u64_add(rack_alloc_limited_conns, 1);
2804 			}
2805 			return (NULL);
2806 		}
2807 	}
2808 
2809 	/* allocate and mark in the limit type, if set */
2810 	rsm = rack_alloc(rack);
2811 	if (rsm != NULL && limit_type) {
2812 		rsm->r_limit_type = limit_type;
2813 		rack->r_ctl.rc_num_split_allocs++;
2814 	}
2815 	return (rsm);
2816 }
2817 
2818 static void
2819 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
2820 {
2821 	if (rsm->r_flags & RACK_APP_LIMITED) {
2822 		if (rack->r_ctl.rc_app_limited_cnt > 0) {
2823 			rack->r_ctl.rc_app_limited_cnt--;
2824 		}
2825 	}
2826 	if (rsm->r_limit_type) {
2827 		/* currently there is only one limit type */
2828 		rack->r_ctl.rc_num_split_allocs--;
2829 	}
2830 	if (rsm == rack->r_ctl.rc_first_appl) {
2831 		if (rack->r_ctl.rc_app_limited_cnt == 0)
2832 			rack->r_ctl.rc_first_appl = NULL;
2833 		else {
2834 			/* Follow the next one out */
2835 			struct rack_sendmap fe;
2836 
2837 			fe.r_start = rsm->r_nseq_appl;
2838 			rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
2839 		}
2840 	}
2841 	if (rsm == rack->r_ctl.rc_resend)
2842 		rack->r_ctl.rc_resend = NULL;
2843 	if (rsm == rack->r_ctl.rc_end_appl)
2844 		rack->r_ctl.rc_end_appl = NULL;
2845 	if (rack->r_ctl.rc_tlpsend == rsm)
2846 		rack->r_ctl.rc_tlpsend = NULL;
2847 	if (rack->r_ctl.rc_sacklast == rsm)
2848 		rack->r_ctl.rc_sacklast = NULL;
2849 	memset(rsm, 0, sizeof(struct rack_sendmap));
2850 	TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext);
2851 	rack->rc_free_cnt++;
2852 }
2853 
2854 static void
2855 rack_free_trim(struct tcp_rack *rack)
2856 {
2857 	struct rack_sendmap *rsm;
2858 
2859 	/*
2860 	 * Free up all the tail entries until
2861 	 * we get our list down to the limit.
2862 	 */
2863 	while (rack->rc_free_cnt > rack_free_cache) {
2864 		rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head);
2865 		TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2866 		rack->rc_free_cnt--;
2867 		uma_zfree(rack_zone, rsm);
2868 	}
2869 }
2870 
2871 
2872 static uint32_t
2873 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack)
2874 {
2875 	uint64_t srtt, bw, len, tim;
2876 	uint32_t segsiz, def_len, minl;
2877 
2878 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
2879 	def_len = rack_def_data_window * segsiz;
2880 	if (rack->rc_gp_filled == 0) {
2881 		/*
2882 		 * We have no measurement (IW is in flight?) so
2883 		 * we can only guess using our data_window sysctl
2884 		 * value (usually 20MSS).
2885 		 */
2886 		return (def_len);
2887 	}
2888 	/*
2889 	 * Now we have a number of factors to consider.
2890 	 *
2891 	 * 1) We have a desired BDP which is usually
2892 	 *    at least 2.
2893 	 * 2) We have a minimum number of rtt's usually 1 SRTT
2894 	 *    but we allow it too to be more.
2895 	 * 3) We want to make sure a measurement last N useconds (if
2896 	 *    we have set rack_min_measure_usec.
2897 	 *
2898 	 * We handle the first concern here by trying to create a data
2899 	 * window of max(rack_def_data_window, DesiredBDP). The
2900 	 * second concern we handle in not letting the measurement
2901 	 * window end normally until at least the required SRTT's
2902 	 * have gone by which is done further below in
2903 	 * rack_enough_for_measurement(). Finally the third concern
2904 	 * we also handle here by calculating how long that time
2905 	 * would take at the current BW and then return the
2906 	 * max of our first calculation and that length. Note
2907 	 * that if rack_min_measure_usec is 0, we don't deal
2908 	 * with concern 3. Also for both Concern 1 and 3 an
2909 	 * application limited period could end the measurement
2910 	 * earlier.
2911 	 *
2912 	 * So lets calculate the BDP with the "known" b/w using
2913 	 * the SRTT has our rtt and then multiply it by the
2914 	 * goal.
2915 	 */
2916 	bw = rack_get_bw(rack);
2917 	srtt = (uint64_t)tp->t_srtt;
2918 	len = bw * srtt;
2919 	len /= (uint64_t)HPTS_USEC_IN_SEC;
2920 	len *= max(1, rack_goal_bdp);
2921 	/* Now we need to round up to the nearest MSS */
2922 	len = roundup(len, segsiz);
2923 	if (rack_min_measure_usec) {
2924 		/* Now calculate our min length for this b/w */
2925 		tim = rack_min_measure_usec;
2926 		minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC;
2927 		if (minl == 0)
2928 			minl = 1;
2929 		minl = roundup(minl, segsiz);
2930 		if (len < minl)
2931 			len = minl;
2932 	}
2933 	/*
2934 	 * Now if we have a very small window we want
2935 	 * to attempt to get the window that is
2936 	 * as small as possible. This happens on
2937 	 * low b/w connections and we don't want to
2938 	 * span huge numbers of rtt's between measurements.
2939 	 *
2940 	 * We basically include 2 over our "MIN window" so
2941 	 * that the measurement can be shortened (possibly) by
2942 	 * an ack'ed packet.
2943 	 */
2944 	if (len < def_len)
2945 		return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz)));
2946 	else
2947 		return (max((uint32_t)len, def_len));
2948 
2949 }
2950 
2951 static int
2952 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality)
2953 {
2954 	uint32_t tim, srtts, segsiz;
2955 
2956 	/*
2957 	 * Has enough time passed for the GP measurement to be valid?
2958 	 */
2959 	if ((tp->snd_max == tp->snd_una) ||
2960 	    (th_ack == tp->snd_max)){
2961 		/* All is acked */
2962 		*quality = RACK_QUALITY_ALLACKED;
2963 		return (1);
2964 	}
2965 	if (SEQ_LT(th_ack, tp->gput_seq)) {
2966 		/* Not enough bytes yet */
2967 		return (0);
2968 	}
2969 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
2970 	if (SEQ_LT(th_ack, tp->gput_ack) &&
2971 	    ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
2972 		/* Not enough bytes yet */
2973 		return (0);
2974 	}
2975 	if (rack->r_ctl.rc_first_appl &&
2976 	    (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) {
2977 		/*
2978 		 * We are up to the app limited send point
2979 		 * we have to measure irrespective of the time..
2980 		 */
2981 		*quality = RACK_QUALITY_APPLIMITED;
2982 		return (1);
2983 	}
2984 	/* Now what about time? */
2985 	srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts);
2986 	tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts;
2987 	if (tim >= srtts) {
2988 		*quality = RACK_QUALITY_HIGH;
2989 		return (1);
2990 	}
2991 	/* Nope not even a full SRTT has passed */
2992 	return (0);
2993 }
2994 
2995 static void
2996 rack_log_timely(struct tcp_rack *rack,
2997 		uint32_t logged, uint64_t cur_bw, uint64_t low_bnd,
2998 		uint64_t up_bnd, int line, uint8_t method)
2999 {
3000 	if (tcp_bblogging_on(rack->rc_tp)) {
3001 		union tcp_log_stackspecific log;
3002 		struct timeval tv;
3003 
3004 		memset(&log, 0, sizeof(log));
3005 		log.u_bbr.flex1 = logged;
3006 		log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt;
3007 		log.u_bbr.flex2 <<= 4;
3008 		log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt;
3009 		log.u_bbr.flex2 <<= 4;
3010 		log.u_bbr.flex2 |= rack->rc_gp_incr;
3011 		log.u_bbr.flex2 <<= 4;
3012 		log.u_bbr.flex2 |= rack->rc_gp_bwred;
3013 		log.u_bbr.flex3 = rack->rc_gp_incr;
3014 		log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3015 		log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca;
3016 		log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec;
3017 		log.u_bbr.flex7 = rack->rc_gp_bwred;
3018 		log.u_bbr.flex8 = method;
3019 		log.u_bbr.cur_del_rate = cur_bw;
3020 		log.u_bbr.delRate = low_bnd;
3021 		log.u_bbr.bw_inuse = up_bnd;
3022 		log.u_bbr.rttProp = rack_get_bw(rack);
3023 		log.u_bbr.pkt_epoch = line;
3024 		log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3025 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3026 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3027 		log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3028 		log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3029 		log.u_bbr.cwnd_gain = rack->rc_dragged_bottom;
3030 		log.u_bbr.cwnd_gain <<= 1;
3031 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec;
3032 		log.u_bbr.cwnd_gain <<= 1;
3033 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
3034 		log.u_bbr.cwnd_gain <<= 1;
3035 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
3036 		log.u_bbr.lost = rack->r_ctl.rc_loss_count;
3037 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
3038 		    &rack->rc_inp->inp_socket->so_rcv,
3039 		    &rack->rc_inp->inp_socket->so_snd,
3040 		    TCP_TIMELY_WORK, 0,
3041 		    0, &log, false, &tv);
3042 	}
3043 }
3044 
3045 static int
3046 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult)
3047 {
3048 	/*
3049 	 * Before we increase we need to know if
3050 	 * the estimate just made was less than
3051 	 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est)
3052 	 *
3053 	 * If we already are pacing at a fast enough
3054 	 * rate to push us faster there is no sense of
3055 	 * increasing.
3056 	 *
3057 	 * We first caculate our actual pacing rate (ss or ca multiplier
3058 	 * times our cur_bw).
3059 	 *
3060 	 * Then we take the last measured rate and multipy by our
3061 	 * maximum pacing overage to give us a max allowable rate.
3062 	 *
3063 	 * If our act_rate is smaller than our max_allowable rate
3064 	 * then we should increase. Else we should hold steady.
3065 	 *
3066 	 */
3067 	uint64_t act_rate, max_allow_rate;
3068 
3069 	if (rack_timely_no_stopping)
3070 		return (1);
3071 
3072 	if ((cur_bw == 0) || (last_bw_est == 0)) {
3073 		/*
3074 		 * Initial startup case or
3075 		 * everything is acked case.
3076 		 */
3077 		rack_log_timely(rack,  mult, cur_bw, 0, 0,
3078 				__LINE__, 9);
3079 		return (1);
3080 	}
3081 	if (mult <= 100) {
3082 		/*
3083 		 * We can always pace at or slightly above our rate.
3084 		 */
3085 		rack_log_timely(rack,  mult, cur_bw, 0, 0,
3086 				__LINE__, 9);
3087 		return (1);
3088 	}
3089 	act_rate = cur_bw * (uint64_t)mult;
3090 	act_rate /= 100;
3091 	max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100);
3092 	max_allow_rate /= 100;
3093 	if (act_rate < max_allow_rate) {
3094 		/*
3095 		 * Here the rate we are actually pacing at
3096 		 * is smaller than 10% above our last measurement.
3097 		 * This means we are pacing below what we would
3098 		 * like to try to achieve (plus some wiggle room).
3099 		 */
3100 		rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
3101 				__LINE__, 9);
3102 		return (1);
3103 	} else {
3104 		/*
3105 		 * Here we are already pacing at least rack_max_per_above(10%)
3106 		 * what we are getting back. This indicates most likely
3107 		 * that we are being limited (cwnd/rwnd/app) and can't
3108 		 * get any more b/w. There is no sense of trying to
3109 		 * raise up the pacing rate its not speeding us up
3110 		 * and we already are pacing faster than we are getting.
3111 		 */
3112 		rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
3113 				__LINE__, 8);
3114 		return (0);
3115 	}
3116 }
3117 
3118 static void
3119 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack)
3120 {
3121 	/*
3122 	 * When we drag bottom, we want to assure
3123 	 * that no multiplier is below 1.0, if so
3124 	 * we want to restore it to at least that.
3125 	 */
3126 	if (rack->r_ctl.rack_per_of_gp_rec  < 100) {
3127 		/* This is unlikely we usually do not touch recovery */
3128 		rack->r_ctl.rack_per_of_gp_rec = 100;
3129 	}
3130 	if (rack->r_ctl.rack_per_of_gp_ca < 100) {
3131 		rack->r_ctl.rack_per_of_gp_ca = 100;
3132 	}
3133 	if (rack->r_ctl.rack_per_of_gp_ss < 100) {
3134 		rack->r_ctl.rack_per_of_gp_ss = 100;
3135 	}
3136 }
3137 
3138 static void
3139 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack)
3140 {
3141 	if (rack->r_ctl.rack_per_of_gp_ca > 100) {
3142 		rack->r_ctl.rack_per_of_gp_ca = 100;
3143 	}
3144 	if (rack->r_ctl.rack_per_of_gp_ss > 100) {
3145 		rack->r_ctl.rack_per_of_gp_ss = 100;
3146 	}
3147 }
3148 
3149 static void
3150 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override)
3151 {
3152 	int32_t  calc, logged, plus;
3153 
3154 	logged = 0;
3155 
3156 	if (override) {
3157 		/*
3158 		 * override is passed when we are
3159 		 * loosing b/w and making one last
3160 		 * gasp at trying to not loose out
3161 		 * to a new-reno flow.
3162 		 */
3163 		goto extra_boost;
3164 	}
3165 	/* In classic timely we boost by 5x if we have 5 increases in a row, lets not */
3166 	if (rack->rc_gp_incr &&
3167 	    ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) {
3168 		/*
3169 		 * Reset and get 5 strokes more before the boost. Note
3170 		 * that the count is 0 based so we have to add one.
3171 		 */
3172 extra_boost:
3173 		plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST;
3174 		rack->rc_gp_timely_inc_cnt = 0;
3175 	} else
3176 		plus = (uint32_t)rack_gp_increase_per;
3177 	/* Must be at least 1% increase for true timely increases */
3178 	if ((plus < 1) &&
3179 	    ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0)))
3180 		plus = 1;
3181 	if (rack->rc_gp_saw_rec &&
3182 	    (rack->rc_gp_no_rec_chg == 0) &&
3183 	    rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3184 				  rack->r_ctl.rack_per_of_gp_rec)) {
3185 		/* We have been in recovery ding it too */
3186 		calc = rack->r_ctl.rack_per_of_gp_rec + plus;
3187 		if (calc > 0xffff)
3188 			calc = 0xffff;
3189 		logged |= 1;
3190 		rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc;
3191 		if (rack_per_upper_bound_ss &&
3192 		    (rack->rc_dragged_bottom == 0) &&
3193 		    (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss))
3194 			rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss;
3195 	}
3196 	if (rack->rc_gp_saw_ca &&
3197 	    (rack->rc_gp_saw_ss == 0) &&
3198 	    rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3199 				  rack->r_ctl.rack_per_of_gp_ca)) {
3200 		/* In CA */
3201 		calc = rack->r_ctl.rack_per_of_gp_ca + plus;
3202 		if (calc > 0xffff)
3203 			calc = 0xffff;
3204 		logged |= 2;
3205 		rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc;
3206 		if (rack_per_upper_bound_ca &&
3207 		    (rack->rc_dragged_bottom == 0) &&
3208 		    (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca))
3209 			rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca;
3210 	}
3211 	if (rack->rc_gp_saw_ss &&
3212 	    rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3213 				  rack->r_ctl.rack_per_of_gp_ss)) {
3214 		/* In SS */
3215 		calc = rack->r_ctl.rack_per_of_gp_ss + plus;
3216 		if (calc > 0xffff)
3217 			calc = 0xffff;
3218 		rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc;
3219 		if (rack_per_upper_bound_ss &&
3220 		    (rack->rc_dragged_bottom == 0) &&
3221 		    (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss))
3222 			rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss;
3223 		logged |= 4;
3224 	}
3225 	if (logged &&
3226 	    (rack->rc_gp_incr == 0)){
3227 		/* Go into increment mode */
3228 		rack->rc_gp_incr = 1;
3229 		rack->rc_gp_timely_inc_cnt = 0;
3230 	}
3231 	if (rack->rc_gp_incr &&
3232 	    logged &&
3233 	    (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) {
3234 		rack->rc_gp_timely_inc_cnt++;
3235 	}
3236 	rack_log_timely(rack,  logged, plus, 0, 0,
3237 			__LINE__, 1);
3238 }
3239 
3240 static uint32_t
3241 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff)
3242 {
3243 	/*
3244 	 * norm_grad = rtt_diff / minrtt;
3245 	 * new_per = curper * (1 - B * norm_grad)
3246 	 *
3247 	 * B = rack_gp_decrease_per (default 10%)
3248 	 * rtt_dif = input var current rtt-diff
3249 	 * curper = input var current percentage
3250 	 * minrtt = from rack filter
3251 	 *
3252 	 */
3253 	uint64_t perf;
3254 
3255 	perf = (((uint64_t)curper * ((uint64_t)1000000 -
3256 		    ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 *
3257 		     (((uint64_t)rtt_diff * (uint64_t)1000000)/
3258 		      (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/
3259 		     (uint64_t)1000000)) /
3260 		(uint64_t)1000000);
3261 	if (perf > curper) {
3262 		/* TSNH */
3263 		perf = curper - 1;
3264 	}
3265 	return ((uint32_t)perf);
3266 }
3267 
3268 static uint32_t
3269 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt)
3270 {
3271 	/*
3272 	 *                                   highrttthresh
3273 	 * result = curper * (1 - (B * ( 1 -  ------          ))
3274 	 *                                     gp_srtt
3275 	 *
3276 	 * B = rack_gp_decrease_per (default 10%)
3277 	 * highrttthresh = filter_min * rack_gp_rtt_maxmul
3278 	 */
3279 	uint64_t perf;
3280 	uint32_t highrttthresh;
3281 
3282 	highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3283 
3284 	perf = (((uint64_t)curper * ((uint64_t)1000000 -
3285 				     ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 -
3286 					((uint64_t)highrttthresh * (uint64_t)1000000) /
3287 						    (uint64_t)rtt)) / 100)) /(uint64_t)1000000);
3288 	return (perf);
3289 }
3290 
3291 static void
3292 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff)
3293 {
3294 	uint64_t logvar, logvar2, logvar3;
3295 	uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val;
3296 
3297 	if (rack->rc_gp_incr) {
3298 		/* Turn off increment counting */
3299 		rack->rc_gp_incr = 0;
3300 		rack->rc_gp_timely_inc_cnt = 0;
3301 	}
3302 	ss_red = ca_red = rec_red = 0;
3303 	logged = 0;
3304 	/* Calculate the reduction value */
3305 	if (rtt_diff < 0) {
3306 		rtt_diff *= -1;
3307 	}
3308 	/* Must be at least 1% reduction */
3309 	if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) {
3310 		/* We have been in recovery ding it too */
3311 		if (timely_says == 2) {
3312 			new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt);
3313 			alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3314 			if (alt < new_per)
3315 				val = alt;
3316 			else
3317 				val = new_per;
3318 		} else
3319 			 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3320 		if (rack->r_ctl.rack_per_of_gp_rec > val) {
3321 			rec_red = (rack->r_ctl.rack_per_of_gp_rec - val);
3322 			rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val;
3323 		} else {
3324 			rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3325 			rec_red = 0;
3326 		}
3327 		if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec)
3328 			rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3329 		logged |= 1;
3330 	}
3331 	if (rack->rc_gp_saw_ss) {
3332 		/* Sent in SS */
3333 		if (timely_says == 2) {
3334 			new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt);
3335 			alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3336 			if (alt < new_per)
3337 				val = alt;
3338 			else
3339 				val = new_per;
3340 		} else
3341 			val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff);
3342 		if (rack->r_ctl.rack_per_of_gp_ss > new_per) {
3343 			ss_red = rack->r_ctl.rack_per_of_gp_ss - val;
3344 			rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val;
3345 		} else {
3346 			ss_red = new_per;
3347 			rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3348 			logvar = new_per;
3349 			logvar <<= 32;
3350 			logvar |= alt;
3351 			logvar2 = (uint32_t)rtt;
3352 			logvar2 <<= 32;
3353 			logvar2 |= (uint32_t)rtt_diff;
3354 			logvar3 = rack_gp_rtt_maxmul;
3355 			logvar3 <<= 32;
3356 			logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3357 			rack_log_timely(rack, timely_says,
3358 					logvar2, logvar3,
3359 					logvar, __LINE__, 10);
3360 		}
3361 		if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss)
3362 			rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3363 		logged |= 4;
3364 	} else if (rack->rc_gp_saw_ca) {
3365 		/* Sent in CA */
3366 		if (timely_says == 2) {
3367 			new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt);
3368 			alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3369 			if (alt < new_per)
3370 				val = alt;
3371 			else
3372 				val = new_per;
3373 		} else
3374 			val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff);
3375 		if (rack->r_ctl.rack_per_of_gp_ca > val) {
3376 			ca_red = rack->r_ctl.rack_per_of_gp_ca - val;
3377 			rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val;
3378 		} else {
3379 			rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3380 			ca_red = 0;
3381 			logvar = new_per;
3382 			logvar <<= 32;
3383 			logvar |= alt;
3384 			logvar2 = (uint32_t)rtt;
3385 			logvar2 <<= 32;
3386 			logvar2 |= (uint32_t)rtt_diff;
3387 			logvar3 = rack_gp_rtt_maxmul;
3388 			logvar3 <<= 32;
3389 			logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3390 			rack_log_timely(rack, timely_says,
3391 					logvar2, logvar3,
3392 					logvar, __LINE__, 10);
3393 		}
3394 		if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca)
3395 			rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3396 		logged |= 2;
3397 	}
3398 	if (rack->rc_gp_timely_dec_cnt < 0x7) {
3399 		rack->rc_gp_timely_dec_cnt++;
3400 		if (rack_timely_dec_clear &&
3401 		    (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear))
3402 			rack->rc_gp_timely_dec_cnt = 0;
3403 	}
3404 	logvar = ss_red;
3405 	logvar <<= 32;
3406 	logvar |= ca_red;
3407 	rack_log_timely(rack,  logged, rec_red, rack_per_lower_bound, logvar,
3408 			__LINE__, 2);
3409 }
3410 
3411 static void
3412 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts,
3413 		     uint32_t rtt, uint32_t line, uint8_t reas)
3414 {
3415 	if (tcp_bblogging_on(rack->rc_tp)) {
3416 		union tcp_log_stackspecific log;
3417 		struct timeval tv;
3418 
3419 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
3420 		log.u_bbr.flex1 = line;
3421 		log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts;
3422 		log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts;
3423 		log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3424 		log.u_bbr.flex5 = rtt;
3425 		log.u_bbr.flex6 = rack->rc_highly_buffered;
3426 		log.u_bbr.flex6 <<= 1;
3427 		log.u_bbr.flex6 |= rack->forced_ack;
3428 		log.u_bbr.flex6 <<= 1;
3429 		log.u_bbr.flex6 |= rack->rc_gp_dyn_mul;
3430 		log.u_bbr.flex6 <<= 1;
3431 		log.u_bbr.flex6 |= rack->in_probe_rtt;
3432 		log.u_bbr.flex6 <<= 1;
3433 		log.u_bbr.flex6 |= rack->measure_saw_probe_rtt;
3434 		log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt;
3435 		log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca;
3436 		log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec;
3437 		log.u_bbr.flex8 = reas;
3438 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3439 		log.u_bbr.delRate = rack_get_bw(rack);
3440 		log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt;
3441 		log.u_bbr.cur_del_rate <<= 32;
3442 		log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt;
3443 		log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered;
3444 		log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3445 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3446 		log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3447 		log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3448 		log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts;
3449 		log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight;
3450 		log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3451 		log.u_bbr.rttProp = us_cts;
3452 		log.u_bbr.rttProp <<= 32;
3453 		log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt;
3454 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
3455 		    &rack->rc_inp->inp_socket->so_rcv,
3456 		    &rack->rc_inp->inp_socket->so_snd,
3457 		    BBR_LOG_RTT_SHRINKS, 0,
3458 		    0, &log, false, &rack->r_ctl.act_rcv_time);
3459 	}
3460 }
3461 
3462 static void
3463 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt)
3464 {
3465 	uint64_t bwdp;
3466 
3467 	bwdp = rack_get_bw(rack);
3468 	bwdp *= (uint64_t)rtt;
3469 	bwdp /= (uint64_t)HPTS_USEC_IN_SEC;
3470 	rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz);
3471 	if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) {
3472 		/*
3473 		 * A window protocol must be able to have 4 packets
3474 		 * outstanding as the floor in order to function
3475 		 * (especially considering delayed ack :D).
3476 		 */
3477 		rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs);
3478 	}
3479 }
3480 
3481 static void
3482 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts)
3483 {
3484 	/**
3485 	 * ProbeRTT is a bit different in rack_pacing than in
3486 	 * BBR. It is like BBR in that it uses the lowering of
3487 	 * the RTT as a signal that we saw something new and
3488 	 * counts from there for how long between. But it is
3489 	 * different in that its quite simple. It does not
3490 	 * play with the cwnd and wait until we get down
3491 	 * to N segments outstanding and hold that for
3492 	 * 200ms. Instead it just sets the pacing reduction
3493 	 * rate to a set percentage (70 by default) and hold
3494 	 * that for a number of recent GP Srtt's.
3495 	 */
3496 	uint32_t segsiz;
3497 
3498 	if (rack->rc_gp_dyn_mul == 0)
3499 		return;
3500 
3501 	if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) {
3502 		/* We are idle */
3503 		return;
3504 	}
3505 	if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3506 	    SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3507 		/*
3508 		 * Stop the goodput now, the idea here is
3509 		 * that future measurements with in_probe_rtt
3510 		 * won't register if they are not greater so
3511 		 * we want to get what info (if any) is available
3512 		 * now.
3513 		 */
3514 		rack_do_goodput_measurement(rack->rc_tp, rack,
3515 					    rack->rc_tp->snd_una, __LINE__,
3516 					    RACK_QUALITY_PROBERTT);
3517 	}
3518 	rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3519 	rack->r_ctl.rc_time_probertt_entered = us_cts;
3520 	segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3521 		     rack->r_ctl.rc_pace_min_segs);
3522 	rack->in_probe_rtt = 1;
3523 	rack->measure_saw_probe_rtt = 1;
3524 	rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3525 	rack->r_ctl.rc_time_probertt_starts = 0;
3526 	rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt;
3527 	if (rack_probertt_use_min_rtt_entry)
3528 		rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3529 	else
3530 		rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt);
3531 	rack_log_rtt_shrinks(rack,  us_cts,  get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3532 			     __LINE__, RACK_RTTS_ENTERPROBE);
3533 }
3534 
3535 static void
3536 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts)
3537 {
3538 	struct rack_sendmap *rsm;
3539 	uint32_t segsiz;
3540 
3541 	segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3542 		     rack->r_ctl.rc_pace_min_segs);
3543 	rack->in_probe_rtt = 0;
3544 	if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3545 	    SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3546 		/*
3547 		 * Stop the goodput now, the idea here is
3548 		 * that future measurements with in_probe_rtt
3549 		 * won't register if they are not greater so
3550 		 * we want to get what info (if any) is available
3551 		 * now.
3552 		 */
3553 		rack_do_goodput_measurement(rack->rc_tp, rack,
3554 					    rack->rc_tp->snd_una, __LINE__,
3555 					    RACK_QUALITY_PROBERTT);
3556 	} else if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
3557 		/*
3558 		 * We don't have enough data to make a measurement.
3559 		 * So lets just stop and start here after exiting
3560 		 * probe-rtt. We probably are not interested in
3561 		 * the results anyway.
3562 		 */
3563 		rack->rc_tp->t_flags &= ~TF_GPUTINPROG;
3564 	}
3565 	/*
3566 	 * Measurements through the current snd_max are going
3567 	 * to be limited by the slower pacing rate.
3568 	 *
3569 	 * We need to mark these as app-limited so we
3570 	 * don't collapse the b/w.
3571 	 */
3572 	rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3573 	if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
3574 		if (rack->r_ctl.rc_app_limited_cnt == 0)
3575 			rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
3576 		else {
3577 			/*
3578 			 * Go out to the end app limited and mark
3579 			 * this new one as next and move the end_appl up
3580 			 * to this guy.
3581 			 */
3582 			if (rack->r_ctl.rc_end_appl)
3583 				rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
3584 			rack->r_ctl.rc_end_appl = rsm;
3585 		}
3586 		rsm->r_flags |= RACK_APP_LIMITED;
3587 		rack->r_ctl.rc_app_limited_cnt++;
3588 	}
3589 	/*
3590 	 * Now, we need to examine our pacing rate multipliers.
3591 	 * If its under 100%, we need to kick it back up to
3592 	 * 100%. We also don't let it be over our "max" above
3593 	 * the actual rate i.e. 100% + rack_clamp_atexit_prtt.
3594 	 * Note setting clamp_atexit_prtt to 0 has the effect
3595 	 * of setting CA/SS to 100% always at exit (which is
3596 	 * the default behavior).
3597 	 */
3598 	if (rack_probertt_clear_is) {
3599 		rack->rc_gp_incr = 0;
3600 		rack->rc_gp_bwred = 0;
3601 		rack->rc_gp_timely_inc_cnt = 0;
3602 		rack->rc_gp_timely_dec_cnt = 0;
3603 	}
3604 	/* Do we do any clamping at exit? */
3605 	if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) {
3606 		rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp;
3607 		rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp;
3608 	}
3609 	if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) {
3610 		rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt;
3611 		rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt;
3612 	}
3613 	/*
3614 	 * Lets set rtt_diff to 0, so that we will get a "boost"
3615 	 * after exiting.
3616 	 */
3617 	rack->r_ctl.rc_rtt_diff = 0;
3618 
3619 	/* Clear all flags so we start fresh */
3620 	rack->rc_tp->t_bytes_acked = 0;
3621 	rack->rc_tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
3622 	/*
3623 	 * If configured to, set the cwnd and ssthresh to
3624 	 * our targets.
3625 	 */
3626 	if (rack_probe_rtt_sets_cwnd) {
3627 		uint64_t ebdp;
3628 		uint32_t setto;
3629 
3630 		/* Set ssthresh so we get into CA once we hit our target */
3631 		if (rack_probertt_use_min_rtt_exit == 1) {
3632 			/* Set to min rtt */
3633 			rack_set_prtt_target(rack, segsiz,
3634 					     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3635 		} else if (rack_probertt_use_min_rtt_exit == 2) {
3636 			/* Set to current gp rtt */
3637 			rack_set_prtt_target(rack, segsiz,
3638 					     rack->r_ctl.rc_gp_srtt);
3639 		} else if (rack_probertt_use_min_rtt_exit == 3) {
3640 			/* Set to entry gp rtt */
3641 			rack_set_prtt_target(rack, segsiz,
3642 					     rack->r_ctl.rc_entry_gp_rtt);
3643 		} else {
3644 			uint64_t sum;
3645 			uint32_t setval;
3646 
3647 			sum = rack->r_ctl.rc_entry_gp_rtt;
3648 			sum *= 10;
3649 			sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt));
3650 			if (sum >= 20) {
3651 				/*
3652 				 * A highly buffered path needs
3653 				 * cwnd space for timely to work.
3654 				 * Lets set things up as if
3655 				 * we are heading back here again.
3656 				 */
3657 				setval = rack->r_ctl.rc_entry_gp_rtt;
3658 			} else if (sum >= 15) {
3659 				/*
3660 				 * Lets take the smaller of the
3661 				 * two since we are just somewhat
3662 				 * buffered.
3663 				 */
3664 				setval = rack->r_ctl.rc_gp_srtt;
3665 				if (setval > rack->r_ctl.rc_entry_gp_rtt)
3666 					setval = rack->r_ctl.rc_entry_gp_rtt;
3667 			} else {
3668 				/*
3669 				 * Here we are not highly buffered
3670 				 * and should pick the min we can to
3671 				 * keep from causing loss.
3672 				 */
3673 				setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3674 			}
3675 			rack_set_prtt_target(rack, segsiz,
3676 					     setval);
3677 		}
3678 		if (rack_probe_rtt_sets_cwnd > 1) {
3679 			/* There is a percentage here to boost */
3680 			ebdp = rack->r_ctl.rc_target_probertt_flight;
3681 			ebdp *= rack_probe_rtt_sets_cwnd;
3682 			ebdp /= 100;
3683 			setto = rack->r_ctl.rc_target_probertt_flight + ebdp;
3684 		} else
3685 			setto = rack->r_ctl.rc_target_probertt_flight;
3686 		rack->rc_tp->snd_cwnd = roundup(setto, segsiz);
3687 		if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) {
3688 			/* Enforce a min */
3689 			rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs;
3690 		}
3691 		/* If we set in the cwnd also set the ssthresh point so we are in CA */
3692 		rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1);
3693 	}
3694 	rack_log_rtt_shrinks(rack,  us_cts,
3695 			     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3696 			     __LINE__, RACK_RTTS_EXITPROBE);
3697 	/* Clear times last so log has all the info */
3698 	rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max;
3699 	rack->r_ctl.rc_time_probertt_entered = us_cts;
3700 	rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3701 	rack->r_ctl.rc_time_of_last_probertt = us_cts;
3702 }
3703 
3704 static void
3705 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts)
3706 {
3707 	/* Check in on probe-rtt */
3708 	if (rack->rc_gp_filled == 0) {
3709 		/* We do not do p-rtt unless we have gp measurements */
3710 		return;
3711 	}
3712 	if (rack->in_probe_rtt) {
3713 		uint64_t no_overflow;
3714 		uint32_t endtime, must_stay;
3715 
3716 		if (rack->r_ctl.rc_went_idle_time &&
3717 		    ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) {
3718 			/*
3719 			 * We went idle during prtt, just exit now.
3720 			 */
3721 			rack_exit_probertt(rack, us_cts);
3722 		} else if (rack_probe_rtt_safety_val &&
3723 		    TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) &&
3724 		    ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) {
3725 			/*
3726 			 * Probe RTT safety value triggered!
3727 			 */
3728 			rack_log_rtt_shrinks(rack,  us_cts,
3729 					     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3730 					     __LINE__, RACK_RTTS_SAFETY);
3731 			rack_exit_probertt(rack, us_cts);
3732 		}
3733 		/* Calculate the max we will wait */
3734 		endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait);
3735 		if (rack->rc_highly_buffered)
3736 			endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp);
3737 		/* Calculate the min we must wait */
3738 		must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain);
3739 		if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) &&
3740 		    TSTMP_LT(us_cts, endtime)) {
3741 			uint32_t calc;
3742 			/* Do we lower more? */
3743 no_exit:
3744 			if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered))
3745 				calc = us_cts - rack->r_ctl.rc_time_probertt_entered;
3746 			else
3747 				calc = 0;
3748 			calc /= max(rack->r_ctl.rc_gp_srtt, 1);
3749 			if (calc) {
3750 				/* Maybe */
3751 				calc *= rack_per_of_gp_probertt_reduce;
3752 				rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc;
3753 				/* Limit it too */
3754 				if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh)
3755 					rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh;
3756 			}
3757 			/* We must reach target or the time set */
3758 			return;
3759 		}
3760 		if (rack->r_ctl.rc_time_probertt_starts == 0) {
3761 			if ((TSTMP_LT(us_cts, must_stay) &&
3762 			     rack->rc_highly_buffered) ||
3763 			     (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) >
3764 			      rack->r_ctl.rc_target_probertt_flight)) {
3765 				/* We are not past the must_stay time */
3766 				goto no_exit;
3767 			}
3768 			rack_log_rtt_shrinks(rack,  us_cts,
3769 					     get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3770 					     __LINE__, RACK_RTTS_REACHTARGET);
3771 			rack->r_ctl.rc_time_probertt_starts = us_cts;
3772 			if (rack->r_ctl.rc_time_probertt_starts == 0)
3773 				rack->r_ctl.rc_time_probertt_starts = 1;
3774 			/* Restore back to our rate we want to pace at in prtt */
3775 			rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3776 		}
3777 		/*
3778 		 * Setup our end time, some number of gp_srtts plus 200ms.
3779 		 */
3780 		no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt *
3781 			       (uint64_t)rack_probertt_gpsrtt_cnt_mul);
3782 		if (rack_probertt_gpsrtt_cnt_div)
3783 			endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div);
3784 		else
3785 			endtime = 0;
3786 		endtime += rack_min_probertt_hold;
3787 		endtime += rack->r_ctl.rc_time_probertt_starts;
3788 		if (TSTMP_GEQ(us_cts,  endtime)) {
3789 			/* yes, exit probertt */
3790 			rack_exit_probertt(rack, us_cts);
3791 		}
3792 
3793 	} else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) {
3794 		/* Go into probertt, its been too long since we went lower */
3795 		rack_enter_probertt(rack, us_cts);
3796 	}
3797 }
3798 
3799 static void
3800 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est,
3801 		       uint32_t rtt, int32_t rtt_diff)
3802 {
3803 	uint64_t cur_bw, up_bnd, low_bnd, subfr;
3804 	uint32_t losses;
3805 
3806 	if ((rack->rc_gp_dyn_mul == 0) ||
3807 	    (rack->use_fixed_rate) ||
3808 	    (rack->in_probe_rtt) ||
3809 	    (rack->rc_always_pace == 0)) {
3810 		/* No dynamic GP multiplier in play */
3811 		return;
3812 	}
3813 	losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start;
3814 	cur_bw = rack_get_bw(rack);
3815 	/* Calculate our up and down range */
3816 	up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up;
3817 	up_bnd /= 100;
3818 	up_bnd += rack->r_ctl.last_gp_comp_bw;
3819 
3820 	subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down;
3821 	subfr /= 100;
3822 	low_bnd = rack->r_ctl.last_gp_comp_bw - subfr;
3823 	if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) {
3824 		/*
3825 		 * This is the case where our RTT is above
3826 		 * the max target and we have been configured
3827 		 * to just do timely no bonus up stuff in that case.
3828 		 *
3829 		 * There are two configurations, set to 1, and we
3830 		 * just do timely if we are over our max. If its
3831 		 * set above 1 then we slam the multipliers down
3832 		 * to 100 and then decrement per timely.
3833 		 */
3834 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3835 				__LINE__, 3);
3836 		if (rack->r_ctl.rc_no_push_at_mrtt > 1)
3837 			rack_validate_multipliers_at_or_below_100(rack);
3838 		rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3839 	} else if ((last_bw_est < low_bnd) && !losses) {
3840 		/*
3841 		 * We are decreasing this is a bit complicated this
3842 		 * means we are loosing ground. This could be
3843 		 * because another flow entered and we are competing
3844 		 * for b/w with it. This will push the RTT up which
3845 		 * makes timely unusable unless we want to get shoved
3846 		 * into a corner and just be backed off (the age
3847 		 * old problem with delay based CC).
3848 		 *
3849 		 * On the other hand if it was a route change we
3850 		 * would like to stay somewhat contained and not
3851 		 * blow out the buffers.
3852 		 */
3853 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3854 				__LINE__, 3);
3855 		rack->r_ctl.last_gp_comp_bw = cur_bw;
3856 		if (rack->rc_gp_bwred == 0) {
3857 			/* Go into reduction counting */
3858 			rack->rc_gp_bwred = 1;
3859 			rack->rc_gp_timely_dec_cnt = 0;
3860 		}
3861 		if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) ||
3862 		    (timely_says == 0)) {
3863 			/*
3864 			 * Push another time with a faster pacing
3865 			 * to try to gain back (we include override to
3866 			 * get a full raise factor).
3867 			 */
3868 			if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) ||
3869 			    (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) ||
3870 			    (timely_says == 0) ||
3871 			    (rack_down_raise_thresh == 0)) {
3872 				/*
3873 				 * Do an override up in b/w if we were
3874 				 * below the threshold or if the threshold
3875 				 * is zero we always do the raise.
3876 				 */
3877 				rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1);
3878 			} else {
3879 				/* Log it stays the same */
3880 				rack_log_timely(rack,  0, last_bw_est, low_bnd, 0,
3881 						__LINE__, 11);
3882 			}
3883 			rack->rc_gp_timely_dec_cnt++;
3884 			/* We are not incrementing really no-count */
3885 			rack->rc_gp_incr = 0;
3886 			rack->rc_gp_timely_inc_cnt = 0;
3887 		} else {
3888 			/*
3889 			 * Lets just use the RTT
3890 			 * information and give up
3891 			 * pushing.
3892 			 */
3893 			goto use_timely;
3894 		}
3895 	} else if ((timely_says != 2) &&
3896 		    !losses &&
3897 		    (last_bw_est > up_bnd)) {
3898 		/*
3899 		 * We are increasing b/w lets keep going, updating
3900 		 * our b/w and ignoring any timely input, unless
3901 		 * of course we are at our max raise (if there is one).
3902 		 */
3903 
3904 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3905 				__LINE__, 3);
3906 		rack->r_ctl.last_gp_comp_bw = cur_bw;
3907 		if (rack->rc_gp_saw_ss &&
3908 		    rack_per_upper_bound_ss &&
3909 		     (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) {
3910 			    /*
3911 			     * In cases where we can't go higher
3912 			     * we should just use timely.
3913 			     */
3914 			    goto use_timely;
3915 		}
3916 		if (rack->rc_gp_saw_ca &&
3917 		    rack_per_upper_bound_ca &&
3918 		    (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) {
3919 			    /*
3920 			     * In cases where we can't go higher
3921 			     * we should just use timely.
3922 			     */
3923 			    goto use_timely;
3924 		}
3925 		rack->rc_gp_bwred = 0;
3926 		rack->rc_gp_timely_dec_cnt = 0;
3927 		/* You get a set number of pushes if timely is trying to reduce */
3928 		if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) {
3929 			rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3930 		} else {
3931 			/* Log it stays the same */
3932 			rack_log_timely(rack,  0, last_bw_est, up_bnd, 0,
3933 			    __LINE__, 12);
3934 		}
3935 		return;
3936 	} else {
3937 		/*
3938 		 * We are staying between the lower and upper range bounds
3939 		 * so use timely to decide.
3940 		 */
3941 		rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3942 				__LINE__, 3);
3943 use_timely:
3944 		if (timely_says) {
3945 			rack->rc_gp_incr = 0;
3946 			rack->rc_gp_timely_inc_cnt = 0;
3947 			if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) &&
3948 			    !losses &&
3949 			    (last_bw_est < low_bnd)) {
3950 				/* We are loosing ground */
3951 				rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3952 				rack->rc_gp_timely_dec_cnt++;
3953 				/* We are not incrementing really no-count */
3954 				rack->rc_gp_incr = 0;
3955 				rack->rc_gp_timely_inc_cnt = 0;
3956 			} else
3957 				rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3958 		} else {
3959 			rack->rc_gp_bwred = 0;
3960 			rack->rc_gp_timely_dec_cnt = 0;
3961 			rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3962 		}
3963 	}
3964 }
3965 
3966 static int32_t
3967 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt)
3968 {
3969 	int32_t timely_says;
3970 	uint64_t log_mult, log_rtt_a_diff;
3971 
3972 	log_rtt_a_diff = rtt;
3973 	log_rtt_a_diff <<= 32;
3974 	log_rtt_a_diff |= (uint32_t)rtt_diff;
3975 	if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) *
3976 		    rack_gp_rtt_maxmul)) {
3977 		/* Reduce the b/w multiplier */
3978 		timely_says = 2;
3979 		log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3980 		log_mult <<= 32;
3981 		log_mult |= prev_rtt;
3982 		rack_log_timely(rack,  timely_says, log_mult,
3983 				get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3984 				log_rtt_a_diff, __LINE__, 4);
3985 	} else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
3986 			   ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
3987 			    max(rack_gp_rtt_mindiv , 1)))) {
3988 		/* Increase the b/w multiplier */
3989 		log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
3990 			((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
3991 			 max(rack_gp_rtt_mindiv , 1));
3992 		log_mult <<= 32;
3993 		log_mult |= prev_rtt;
3994 		timely_says = 0;
3995 		rack_log_timely(rack,  timely_says, log_mult ,
3996 				get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3997 				log_rtt_a_diff, __LINE__, 5);
3998 	} else {
3999 		/*
4000 		 * Use a gradient to find it the timely gradient
4001 		 * is:
4002 		 * grad = rc_rtt_diff / min_rtt;
4003 		 *
4004 		 * anything below or equal to 0 will be
4005 		 * a increase indication. Anything above
4006 		 * zero is a decrease. Note we take care
4007 		 * of the actual gradient calculation
4008 		 * in the reduction (its not needed for
4009 		 * increase).
4010 		 */
4011 		log_mult = prev_rtt;
4012 		if (rtt_diff <= 0) {
4013 			/*
4014 			 * Rttdiff is less than zero, increase the
4015 			 * b/w multiplier (its 0 or negative)
4016 			 */
4017 			timely_says = 0;
4018 			rack_log_timely(rack,  timely_says, log_mult,
4019 					get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6);
4020 		} else {
4021 			/* Reduce the b/w multiplier */
4022 			timely_says = 1;
4023 			rack_log_timely(rack,  timely_says, log_mult,
4024 					get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7);
4025 		}
4026 	}
4027 	return (timely_says);
4028 }
4029 
4030 static void
4031 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
4032 			    tcp_seq th_ack, int line, uint8_t quality)
4033 {
4034 	uint64_t tim, bytes_ps, ltim, stim, utim;
4035 	uint32_t segsiz, bytes, reqbytes, us_cts;
4036 	int32_t gput, new_rtt_diff, timely_says;
4037 	uint64_t  resid_bw, subpart = 0, addpart = 0, srtt;
4038 	int did_add = 0;
4039 
4040 	us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4041 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
4042 	if (TSTMP_GEQ(us_cts, tp->gput_ts))
4043 		tim = us_cts - tp->gput_ts;
4044 	else
4045 		tim = 0;
4046 	if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts)
4047 		stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts;
4048 	else
4049 		stim = 0;
4050 	/*
4051 	 * Use the larger of the send time or ack time. This prevents us
4052 	 * from being influenced by ack artifacts to come up with too
4053 	 * high of measurement. Note that since we are spanning over many more
4054 	 * bytes in most of our measurements hopefully that is less likely to
4055 	 * occur.
4056 	 */
4057 	if (tim > stim)
4058 		utim = max(tim, 1);
4059 	else
4060 		utim = max(stim, 1);
4061 	/* Lets get a msec time ltim too for the old stuff */
4062 	ltim = max(1, (utim / HPTS_USEC_IN_MSEC));
4063 	gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim;
4064 	reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz));
4065 	if ((tim == 0) && (stim == 0)) {
4066 		/*
4067 		 * Invalid measurement time, maybe
4068 		 * all on one ack/one send?
4069 		 */
4070 		bytes = 0;
4071 		bytes_ps = 0;
4072 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4073 					   0, 0, 0, 10, __LINE__, NULL, quality);
4074 		goto skip_measurement;
4075 	}
4076 	if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) {
4077 		/* We never made a us_rtt measurement? */
4078 		bytes = 0;
4079 		bytes_ps = 0;
4080 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4081 					   0, 0, 0, 10, __LINE__, NULL, quality);
4082 		goto skip_measurement;
4083 	}
4084 	/*
4085 	 * Calculate the maximum possible b/w this connection
4086 	 * could have. We base our calculation on the lowest
4087 	 * rtt we have seen during the measurement and the
4088 	 * largest rwnd the client has given us in that time. This
4089 	 * forms a BDP that is the maximum that we could ever
4090 	 * get to the client. Anything larger is not valid.
4091 	 *
4092 	 * I originally had code here that rejected measurements
4093 	 * where the time was less than 1/2 the latest us_rtt.
4094 	 * But after thinking on that I realized its wrong since
4095 	 * say you had a 150Mbps or even 1Gbps link, and you
4096 	 * were a long way away.. example I am in Europe (100ms rtt)
4097 	 * talking to my 1Gbps link in S.C. Now measuring say 150,000
4098 	 * bytes my time would be 1.2ms, and yet my rtt would say
4099 	 * the measurement was invalid the time was < 50ms. The
4100 	 * same thing is true for 150Mb (8ms of time).
4101 	 *
4102 	 * A better way I realized is to look at what the maximum
4103 	 * the connection could possibly do. This is gated on
4104 	 * the lowest RTT we have seen and the highest rwnd.
4105 	 * We should in theory never exceed that, if we are
4106 	 * then something on the path is storing up packets
4107 	 * and then feeding them all at once to our endpoint
4108 	 * messing up our measurement.
4109 	 */
4110 	rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd;
4111 	rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC;
4112 	rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt;
4113 	if (SEQ_LT(th_ack, tp->gput_seq)) {
4114 		/* No measurement can be made */
4115 		bytes = 0;
4116 		bytes_ps = 0;
4117 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4118 					   0, 0, 0, 10, __LINE__, NULL, quality);
4119 		goto skip_measurement;
4120 	} else
4121 		bytes = (th_ack - tp->gput_seq);
4122 	bytes_ps = (uint64_t)bytes;
4123 	/*
4124 	 * Don't measure a b/w for pacing unless we have gotten at least
4125 	 * an initial windows worth of data in this measurement interval.
4126 	 *
4127 	 * Small numbers of bytes get badly influenced by delayed ack and
4128 	 * other artifacts. Note we take the initial window or our
4129 	 * defined minimum GP (defaulting to 10 which hopefully is the
4130 	 * IW).
4131 	 */
4132 	if (rack->rc_gp_filled == 0) {
4133 		/*
4134 		 * The initial estimate is special. We
4135 		 * have blasted out an IW worth of packets
4136 		 * without a real valid ack ts results. We
4137 		 * then setup the app_limited_needs_set flag,
4138 		 * this should get the first ack in (probably 2
4139 		 * MSS worth) to be recorded as the timestamp.
4140 		 * We thus allow a smaller number of bytes i.e.
4141 		 * IW - 2MSS.
4142 		 */
4143 		reqbytes -= (2 * segsiz);
4144 		/* Also lets fill previous for our first measurement to be neutral */
4145 		rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4146 	}
4147 	if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) {
4148 		rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4149 					   rack->r_ctl.rc_app_limited_cnt,
4150 					   0, 0, 10, __LINE__, NULL, quality);
4151 		goto skip_measurement;
4152 	}
4153 	/*
4154 	 * We now need to calculate the Timely like status so
4155 	 * we can update (possibly) the b/w multipliers.
4156 	 */
4157 	new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt;
4158 	if (rack->rc_gp_filled == 0) {
4159 		/* No previous reading */
4160 		rack->r_ctl.rc_rtt_diff = new_rtt_diff;
4161 	} else {
4162 		if (rack->measure_saw_probe_rtt == 0) {
4163 			/*
4164 			 * We don't want a probertt to be counted
4165 			 * since it will be negative incorrectly. We
4166 			 * expect to be reducing the RTT when we
4167 			 * pace at a slower rate.
4168 			 */
4169 			rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8);
4170 			rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8);
4171 		}
4172 	}
4173 	timely_says = rack_make_timely_judgement(rack,
4174 		rack->r_ctl.rc_gp_srtt,
4175 		rack->r_ctl.rc_rtt_diff,
4176 	        rack->r_ctl.rc_prev_gp_srtt
4177 		);
4178 	bytes_ps *= HPTS_USEC_IN_SEC;
4179 	bytes_ps /= utim;
4180 	if (bytes_ps > rack->r_ctl.last_max_bw) {
4181 		/*
4182 		 * Something is on path playing
4183 		 * since this b/w is not possible based
4184 		 * on our BDP (highest rwnd and lowest rtt
4185 		 * we saw in the measurement window).
4186 		 *
4187 		 * Another option here would be to
4188 		 * instead skip the measurement.
4189 		 */
4190 		rack_log_pacing_delay_calc(rack, bytes, reqbytes,
4191 					   bytes_ps, rack->r_ctl.last_max_bw, 0,
4192 					   11, __LINE__, NULL, quality);
4193 		bytes_ps = rack->r_ctl.last_max_bw;
4194 	}
4195 	/* We store gp for b/w in bytes per second */
4196 	if (rack->rc_gp_filled == 0) {
4197 		/* Initial measurement */
4198 		if (bytes_ps) {
4199 			rack->r_ctl.gp_bw = bytes_ps;
4200 			rack->rc_gp_filled = 1;
4201 			rack->r_ctl.num_measurements = 1;
4202 			rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
4203 		} else {
4204 			rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4205 						   rack->r_ctl.rc_app_limited_cnt,
4206 						   0, 0, 10, __LINE__, NULL, quality);
4207 		}
4208 		if (tcp_in_hpts(rack->rc_inp) &&
4209 		    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
4210 			/*
4211 			 * Ok we can't trust the pacer in this case
4212 			 * where we transition from un-paced to paced.
4213 			 * Or for that matter when the burst mitigation
4214 			 * was making a wild guess and got it wrong.
4215 			 * Stop the pacer and clear up all the aggregate
4216 			 * delays etc.
4217 			 */
4218 			tcp_hpts_remove(rack->rc_inp);
4219 			rack->r_ctl.rc_hpts_flags = 0;
4220 			rack->r_ctl.rc_last_output_to = 0;
4221 		}
4222 		did_add = 2;
4223 	} else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) {
4224 		/* Still a small number run an average */
4225 		rack->r_ctl.gp_bw += bytes_ps;
4226 		addpart = rack->r_ctl.num_measurements;
4227 		rack->r_ctl.num_measurements++;
4228 		if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
4229 			/* We have collected enough to move forward */
4230 			rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements;
4231 		}
4232 		did_add = 3;
4233 	} else {
4234 		/*
4235 		 * We want to take 1/wma of the goodput and add in to 7/8th
4236 		 * of the old value weighted by the srtt. So if your measurement
4237 		 * period is say 2 SRTT's long you would get 1/4 as the
4238 		 * value, if it was like 1/2 SRTT then you would get 1/16th.
4239 		 *
4240 		 * But we must be careful not to take too much i.e. if the
4241 		 * srtt is say 20ms and the measurement is taken over
4242 		 * 400ms our weight would be 400/20 i.e. 20. On the
4243 		 * other hand if we get a measurement over 1ms with a
4244 		 * 10ms rtt we only want to take a much smaller portion.
4245 		 */
4246 		if (rack->r_ctl.num_measurements < 0xff) {
4247 			rack->r_ctl.num_measurements++;
4248 		}
4249 		srtt = (uint64_t)tp->t_srtt;
4250 		if (srtt == 0) {
4251 			/*
4252 			 * Strange why did t_srtt go back to zero?
4253 			 */
4254 			if (rack->r_ctl.rc_rack_min_rtt)
4255 				srtt = rack->r_ctl.rc_rack_min_rtt;
4256 			else
4257 				srtt = HPTS_USEC_IN_MSEC;
4258 		}
4259 		/*
4260 		 * XXXrrs: Note for reviewers, in playing with
4261 		 * dynamic pacing I discovered this GP calculation
4262 		 * as done originally leads to some undesired results.
4263 		 * Basically you can get longer measurements contributing
4264 		 * too much to the WMA. Thus I changed it if you are doing
4265 		 * dynamic adjustments to only do the aportioned adjustment
4266 		 * if we have a very small (time wise) measurement. Longer
4267 		 * measurements just get there weight (defaulting to 1/8)
4268 		 * add to the WMA. We may want to think about changing
4269 		 * this to always do that for both sides i.e. dynamic
4270 		 * and non-dynamic... but considering lots of folks
4271 		 * were playing with this I did not want to change the
4272 		 * calculation per.se. without your thoughts.. Lawerence?
4273 		 * Peter??
4274 		 */
4275 		if (rack->rc_gp_dyn_mul == 0) {
4276 			subpart = rack->r_ctl.gp_bw * utim;
4277 			subpart /= (srtt * 8);
4278 			if (subpart < (rack->r_ctl.gp_bw / 2)) {
4279 				/*
4280 				 * The b/w update takes no more
4281 				 * away then 1/2 our running total
4282 				 * so factor it in.
4283 				 */
4284 				addpart = bytes_ps * utim;
4285 				addpart /= (srtt * 8);
4286 			} else {
4287 				/*
4288 				 * Don't allow a single measurement
4289 				 * to account for more than 1/2 of the
4290 				 * WMA. This could happen on a retransmission
4291 				 * where utim becomes huge compared to
4292 				 * srtt (multiple retransmissions when using
4293 				 * the sending rate which factors in all the
4294 				 * transmissions from the first one).
4295 				 */
4296 				subpart = rack->r_ctl.gp_bw / 2;
4297 				addpart = bytes_ps / 2;
4298 			}
4299 			resid_bw = rack->r_ctl.gp_bw - subpart;
4300 			rack->r_ctl.gp_bw = resid_bw + addpart;
4301 			did_add = 1;
4302 		} else {
4303 			if ((utim / srtt) <= 1) {
4304 				/*
4305 				 * The b/w update was over a small period
4306 				 * of time. The idea here is to prevent a small
4307 				 * measurement time period from counting
4308 				 * too much. So we scale it based on the
4309 				 * time so it attributes less than 1/rack_wma_divisor
4310 				 * of its measurement.
4311 				 */
4312 				subpart = rack->r_ctl.gp_bw * utim;
4313 				subpart /= (srtt * rack_wma_divisor);
4314 				addpart = bytes_ps * utim;
4315 				addpart /= (srtt * rack_wma_divisor);
4316 			} else {
4317 				/*
4318 				 * The scaled measurement was long
4319 				 * enough so lets just add in the
4320 				 * portion of the measurement i.e. 1/rack_wma_divisor
4321 				 */
4322 				subpart = rack->r_ctl.gp_bw / rack_wma_divisor;
4323 				addpart = bytes_ps / rack_wma_divisor;
4324 			}
4325 			if ((rack->measure_saw_probe_rtt == 0) ||
4326 		            (bytes_ps > rack->r_ctl.gp_bw)) {
4327 				/*
4328 				 * For probe-rtt we only add it in
4329 				 * if its larger, all others we just
4330 				 * add in.
4331 				 */
4332 				did_add = 1;
4333 				resid_bw = rack->r_ctl.gp_bw - subpart;
4334 				rack->r_ctl.gp_bw = resid_bw + addpart;
4335 			}
4336 		}
4337 	}
4338 	if ((rack->gp_ready == 0) &&
4339 	    (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
4340 		/* We have enough measurements now */
4341 		rack->gp_ready = 1;
4342 		rack_set_cc_pacing(rack);
4343 		if (rack->defer_options)
4344 			rack_apply_deferred_options(rack);
4345 	}
4346 	rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim,
4347 				   rack_get_bw(rack), 22, did_add, NULL, quality);
4348 	/* We do not update any multipliers if we are in or have seen a probe-rtt */
4349 	if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set)
4350 		rack_update_multiplier(rack, timely_says, bytes_ps,
4351 				       rack->r_ctl.rc_gp_srtt,
4352 				       rack->r_ctl.rc_rtt_diff);
4353 	rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim,
4354 				   rack_get_bw(rack), 3, line, NULL, quality);
4355 	/* reset the gp srtt and setup the new prev */
4356 	rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4357 	/* Record the lost count for the next measurement */
4358 	rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count;
4359 	/*
4360 	 * We restart our diffs based on the gpsrtt in the
4361 	 * measurement window.
4362 	 */
4363 	rack->rc_gp_rtt_set = 0;
4364 	rack->rc_gp_saw_rec = 0;
4365 	rack->rc_gp_saw_ca = 0;
4366 	rack->rc_gp_saw_ss = 0;
4367 	rack->rc_dragged_bottom = 0;
4368 skip_measurement:
4369 
4370 #ifdef STATS
4371 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
4372 				 gput);
4373 	/*
4374 	 * XXXLAS: This is a temporary hack, and should be
4375 	 * chained off VOI_TCP_GPUT when stats(9) grows an
4376 	 * API to deal with chained VOIs.
4377 	 */
4378 	if (tp->t_stats_gput_prev > 0)
4379 		stats_voi_update_abs_s32(tp->t_stats,
4380 					 VOI_TCP_GPUT_ND,
4381 					 ((gput - tp->t_stats_gput_prev) * 100) /
4382 					 tp->t_stats_gput_prev);
4383 #endif
4384 	tp->t_flags &= ~TF_GPUTINPROG;
4385 	tp->t_stats_gput_prev = gput;
4386 	/*
4387 	 * Now are we app limited now and there is space from where we
4388 	 * were to where we want to go?
4389 	 *
4390 	 * We don't do the other case i.e. non-applimited here since
4391 	 * the next send will trigger us picking up the missing data.
4392 	 */
4393 	if (rack->r_ctl.rc_first_appl &&
4394 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
4395 	    rack->r_ctl.rc_app_limited_cnt &&
4396 	    (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) &&
4397 	    ((rack->r_ctl.rc_first_appl->r_end - th_ack) >
4398 	     max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
4399 		/*
4400 		 * Yep there is enough outstanding to make a measurement here.
4401 		 */
4402 		struct rack_sendmap *rsm, fe;
4403 
4404 		rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
4405 		rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
4406 		tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4407 		rack->app_limited_needs_set = 0;
4408 		tp->gput_seq = th_ack;
4409 		if (rack->in_probe_rtt)
4410 			rack->measure_saw_probe_rtt = 1;
4411 		else if ((rack->measure_saw_probe_rtt) &&
4412 			 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
4413 			rack->measure_saw_probe_rtt = 0;
4414 		if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) {
4415 			/* There is a full window to gain info from */
4416 			tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
4417 		} else {
4418 			/* We can only measure up to the applimited point */
4419 			tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack);
4420 			if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
4421 				/*
4422 				 * We don't have enough to make a measurement.
4423 				 */
4424 				tp->t_flags &= ~TF_GPUTINPROG;
4425 				rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
4426 							   0, 0, 0, 6, __LINE__, NULL, quality);
4427 				return;
4428 			}
4429 		}
4430 		if (tp->t_state >= TCPS_FIN_WAIT_1) {
4431 			/*
4432 			 * We will get no more data into the SB
4433 			 * this means we need to have the data available
4434 			 * before we start a measurement.
4435 			 */
4436 			if (sbavail(&tptosocket(tp)->so_snd) < (tp->gput_ack - tp->gput_seq)) {
4437 				/* Nope not enough data. */
4438 				return;
4439 			}
4440 		}
4441 		tp->t_flags |= TF_GPUTINPROG;
4442 		/*
4443 		 * Now we need to find the timestamp of the send at tp->gput_seq
4444 		 * for the send based measurement.
4445 		 */
4446 		fe.r_start = tp->gput_seq;
4447 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4448 		if (rsm) {
4449 			/* Ok send-based limit is set */
4450 			if (SEQ_LT(rsm->r_start, tp->gput_seq)) {
4451 				/*
4452 				 * Move back to include the earlier part
4453 				 * so our ack time lines up right (this may
4454 				 * make an overlapping measurement but thats
4455 				 * ok).
4456 				 */
4457 				tp->gput_seq = rsm->r_start;
4458 			}
4459 			if (rsm->r_flags & RACK_ACKED)
4460 				tp->gput_ts = (uint32_t)rsm->r_ack_arrival;
4461 			else
4462 				rack->app_limited_needs_set = 1;
4463 			rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
4464 		} else {
4465 			/*
4466 			 * If we don't find the rsm due to some
4467 			 * send-limit set the current time, which
4468 			 * basically disables the send-limit.
4469 			 */
4470 			struct timeval tv;
4471 
4472 			microuptime(&tv);
4473 			rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
4474 		}
4475 		rack_log_pacing_delay_calc(rack,
4476 					   tp->gput_seq,
4477 					   tp->gput_ack,
4478 					   (uint64_t)rsm,
4479 					   tp->gput_ts,
4480 					   rack->r_ctl.rc_app_limited_cnt,
4481 					   9,
4482 					   __LINE__, NULL, quality);
4483 	}
4484 }
4485 
4486 /*
4487  * CC wrapper hook functions
4488  */
4489 static void
4490 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs,
4491     uint16_t type, int32_t recovery)
4492 {
4493 	uint32_t prior_cwnd, acked;
4494 	struct tcp_log_buffer *lgb = NULL;
4495 	uint8_t labc_to_use, quality;
4496 
4497 	INP_WLOCK_ASSERT(tptoinpcb(tp));
4498 	tp->t_ccv.nsegs = nsegs;
4499 	acked = tp->t_ccv.bytes_this_ack = (th_ack - tp->snd_una);
4500 	if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
4501 		uint32_t max;
4502 
4503 		max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
4504 		if (tp->t_ccv.bytes_this_ack > max) {
4505 			tp->t_ccv.bytes_this_ack = max;
4506 		}
4507 	}
4508 #ifdef STATS
4509 	stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
4510 	    ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd);
4511 #endif
4512 	quality = RACK_QUALITY_NONE;
4513 	if ((tp->t_flags & TF_GPUTINPROG) &&
4514 	    rack_enough_for_measurement(tp, rack, th_ack, &quality)) {
4515 		/* Measure the Goodput */
4516 		rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality);
4517 #ifdef NETFLIX_PEAKRATE
4518 		if ((type == CC_ACK) &&
4519 		    (tp->t_maxpeakrate)) {
4520 			/*
4521 			 * We update t_peakrate_thr. This gives us roughly
4522 			 * one update per round trip time. Note
4523 			 * it will only be used if pace_always is off i.e
4524 			 * we don't do this for paced flows.
4525 			 */
4526 			rack_update_peakrate_thr(tp);
4527 		}
4528 #endif
4529 	}
4530 	/* Which way our we limited, if not cwnd limited no advance in CA */
4531 	if (tp->snd_cwnd <= tp->snd_wnd)
4532 		tp->t_ccv.flags |= CCF_CWND_LIMITED;
4533 	else
4534 		tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
4535 	if (tp->snd_cwnd > tp->snd_ssthresh) {
4536 		tp->t_bytes_acked += min(tp->t_ccv.bytes_this_ack,
4537 			 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
4538 		/* For the setting of a window past use the actual scwnd we are using */
4539 		if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) {
4540 			tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use;
4541 			tp->t_ccv.flags |= CCF_ABC_SENTAWND;
4542 		}
4543 	} else {
4544 		tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
4545 		tp->t_bytes_acked = 0;
4546 	}
4547 	prior_cwnd = tp->snd_cwnd;
4548 	if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec ||
4549 	    (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf)))
4550 		labc_to_use = rack->rc_labc;
4551 	else
4552 		labc_to_use = rack_max_abc_post_recovery;
4553 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
4554 		union tcp_log_stackspecific log;
4555 		struct timeval tv;
4556 
4557 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4558 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4559 		log.u_bbr.flex1 = th_ack;
4560 		log.u_bbr.flex2 = tp->t_ccv.flags;
4561 		log.u_bbr.flex3 = tp->t_ccv.bytes_this_ack;
4562 		log.u_bbr.flex4 = tp->t_ccv.nsegs;
4563 		log.u_bbr.flex5 = labc_to_use;
4564 		log.u_bbr.flex6 = prior_cwnd;
4565 		log.u_bbr.flex7 = V_tcp_do_newsack;
4566 		log.u_bbr.flex8 = 1;
4567 		lgb = tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4568 				     0, &log, false, NULL, NULL, 0, &tv);
4569 	}
4570 	if (CC_ALGO(tp)->ack_received != NULL) {
4571 		/* XXXLAS: Find a way to live without this */
4572 		tp->t_ccv.curack = th_ack;
4573 		tp->t_ccv.labc = labc_to_use;
4574 		tp->t_ccv.flags |= CCF_USE_LOCAL_ABC;
4575 		CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
4576 	}
4577 	if (lgb) {
4578 		lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd;
4579 	}
4580 	if (rack->r_must_retran) {
4581 		if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) {
4582 			/*
4583 			 * We now are beyond the rxt point so lets disable
4584 			 * the flag.
4585 			 */
4586 			rack->r_ctl.rc_out_at_rto = 0;
4587 			rack->r_must_retran = 0;
4588 		} else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) {
4589 			/*
4590 			 * Only decrement the rc_out_at_rto if the cwnd advances
4591 			 * at least a whole segment. Otherwise next time the peer
4592 			 * acks, we won't be able to send this generaly happens
4593 			 * when we are in Congestion Avoidance.
4594 			 */
4595 			if (acked <= rack->r_ctl.rc_out_at_rto){
4596 				rack->r_ctl.rc_out_at_rto -= acked;
4597 			} else {
4598 				rack->r_ctl.rc_out_at_rto = 0;
4599 			}
4600 		}
4601 	}
4602 #ifdef STATS
4603 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use);
4604 #endif
4605 	if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) {
4606 		rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use;
4607 	}
4608 #ifdef NETFLIX_PEAKRATE
4609 	/* we enforce max peak rate if it is set and we are not pacing */
4610 	if ((rack->rc_always_pace == 0) &&
4611 	    tp->t_peakrate_thr &&
4612 	    (tp->snd_cwnd > tp->t_peakrate_thr)) {
4613 		tp->snd_cwnd = tp->t_peakrate_thr;
4614 	}
4615 #endif
4616 }
4617 
4618 static void
4619 tcp_rack_partialack(struct tcpcb *tp)
4620 {
4621 	struct tcp_rack *rack;
4622 
4623 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4624 	INP_WLOCK_ASSERT(tptoinpcb(tp));
4625 	/*
4626 	 * If we are doing PRR and have enough
4627 	 * room to send <or> we are pacing and prr
4628 	 * is disabled we will want to see if we
4629 	 * can send data (by setting r_wanted_output to
4630 	 * true).
4631 	 */
4632 	if ((rack->r_ctl.rc_prr_sndcnt > 0) ||
4633 	    rack->rack_no_prr)
4634 		rack->r_wanted_output = 1;
4635 }
4636 
4637 static void
4638 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack)
4639 {
4640 	struct tcp_rack *rack;
4641 	uint32_t orig_cwnd;
4642 
4643 	orig_cwnd = tp->snd_cwnd;
4644 	INP_WLOCK_ASSERT(tptoinpcb(tp));
4645 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4646 	/* only alert CC if we alerted when we entered */
4647 	if (CC_ALGO(tp)->post_recovery != NULL) {
4648 		tp->t_ccv.curack = th_ack;
4649 		CC_ALGO(tp)->post_recovery(&tp->t_ccv);
4650 		if (tp->snd_cwnd < tp->snd_ssthresh) {
4651 			/*
4652 			 * Rack has burst control and pacing
4653 			 * so lets not set this any lower than
4654 			 * snd_ssthresh per RFC-6582 (option 2).
4655 			 */
4656 			tp->snd_cwnd = tp->snd_ssthresh;
4657 		}
4658 	}
4659 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
4660 		union tcp_log_stackspecific log;
4661 		struct timeval tv;
4662 
4663 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4664 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4665 		log.u_bbr.flex1 = th_ack;
4666 		log.u_bbr.flex2 = tp->t_ccv.flags;
4667 		log.u_bbr.flex3 = tp->t_ccv.bytes_this_ack;
4668 		log.u_bbr.flex4 = tp->t_ccv.nsegs;
4669 		log.u_bbr.flex5 = V_tcp_abc_l_var;
4670 		log.u_bbr.flex6 = orig_cwnd;
4671 		log.u_bbr.flex7 = V_tcp_do_newsack;
4672 		log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
4673 		log.u_bbr.flex8 = 2;
4674 		tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4675 			       0, &log, false, NULL, NULL, 0, &tv);
4676 	}
4677 	if ((rack->rack_no_prr == 0) &&
4678 	    (rack->no_prr_addback == 0) &&
4679 	    (rack->r_ctl.rc_prr_sndcnt > 0)) {
4680 		/*
4681 		 * Suck the next prr cnt back into cwnd, but
4682 		 * only do that if we are not application limited.
4683 		 */
4684 		if (ctf_outstanding(tp) <= sbavail(&tptosocket(tp)->so_snd)) {
4685 			/*
4686 			 * We are allowed to add back to the cwnd the amount we did
4687 			 * not get out if:
4688 			 * a) no_prr_addback is off.
4689 			 * b) we are not app limited
4690 			 * c) we are doing prr
4691 			 * <and>
4692 			 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none).
4693 			 */
4694 			tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax),
4695 					    rack->r_ctl.rc_prr_sndcnt);
4696 		}
4697 		rack->r_ctl.rc_prr_sndcnt = 0;
4698 		rack_log_to_prr(rack, 1, 0, __LINE__);
4699 	}
4700 	rack_log_to_prr(rack, 14, orig_cwnd, __LINE__);
4701 	tp->snd_recover = tp->snd_una;
4702 	if (rack->r_ctl.dsack_persist) {
4703 		rack->r_ctl.dsack_persist--;
4704 		if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
4705 			rack->r_ctl.num_dsack = 0;
4706 		}
4707 		rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
4708 	}
4709 	EXIT_RECOVERY(tp->t_flags);
4710 }
4711 
4712 static void
4713 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack, int line)
4714 {
4715 	struct tcp_rack *rack;
4716 	uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd;
4717 
4718 	INP_WLOCK_ASSERT(tptoinpcb(tp));
4719 #ifdef STATS
4720 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
4721 #endif
4722 	if (IN_RECOVERY(tp->t_flags) == 0) {
4723 		in_rec_at_entry = 0;
4724 		ssthresh_enter = tp->snd_ssthresh;
4725 		cwnd_enter = tp->snd_cwnd;
4726 	} else
4727 		in_rec_at_entry = 1;
4728 	rack = (struct tcp_rack *)tp->t_fb_ptr;
4729 	switch (type) {
4730 	case CC_NDUPACK:
4731 		tp->t_flags &= ~TF_WASFRECOVERY;
4732 		tp->t_flags &= ~TF_WASCRECOVERY;
4733 		if (!IN_FASTRECOVERY(tp->t_flags)) {
4734 			rack->r_ctl.rc_prr_delivered = 0;
4735 			rack->r_ctl.rc_prr_out = 0;
4736 			if (rack->rack_no_prr == 0) {
4737 				rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4738 				rack_log_to_prr(rack, 2, in_rec_at_entry, line);
4739 			}
4740 			rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
4741 			tp->snd_recover = tp->snd_max;
4742 			if (tp->t_flags2 & TF2_ECN_PERMIT)
4743 				tp->t_flags2 |= TF2_ECN_SND_CWR;
4744 		}
4745 		break;
4746 	case CC_ECN:
4747 		if (!IN_CONGRECOVERY(tp->t_flags) ||
4748 		    /*
4749 		     * Allow ECN reaction on ACK to CWR, if
4750 		     * that data segment was also CE marked.
4751 		     */
4752 		    SEQ_GEQ(ack, tp->snd_recover)) {
4753 			EXIT_CONGRECOVERY(tp->t_flags);
4754 			KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
4755 			tp->snd_recover = tp->snd_max + 1;
4756 			if (tp->t_flags2 & TF2_ECN_PERMIT)
4757 				tp->t_flags2 |= TF2_ECN_SND_CWR;
4758 		}
4759 		break;
4760 	case CC_RTO:
4761 		tp->t_dupacks = 0;
4762 		tp->t_bytes_acked = 0;
4763 		EXIT_RECOVERY(tp->t_flags);
4764 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 /
4765 		    ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
4766 		orig_cwnd = tp->snd_cwnd;
4767 		tp->snd_cwnd = ctf_fixed_maxseg(tp);
4768 		rack_log_to_prr(rack, 16, orig_cwnd, line);
4769 		if (tp->t_flags2 & TF2_ECN_PERMIT)
4770 			tp->t_flags2 |= TF2_ECN_SND_CWR;
4771 		break;
4772 	case CC_RTO_ERR:
4773 		KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
4774 		/* RTO was unnecessary, so reset everything. */
4775 		tp->snd_cwnd = tp->snd_cwnd_prev;
4776 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
4777 		tp->snd_recover = tp->snd_recover_prev;
4778 		if (tp->t_flags & TF_WASFRECOVERY) {
4779 			ENTER_FASTRECOVERY(tp->t_flags);
4780 			tp->t_flags &= ~TF_WASFRECOVERY;
4781 		}
4782 		if (tp->t_flags & TF_WASCRECOVERY) {
4783 			ENTER_CONGRECOVERY(tp->t_flags);
4784 			tp->t_flags &= ~TF_WASCRECOVERY;
4785 		}
4786 		tp->snd_nxt = tp->snd_max;
4787 		tp->t_badrxtwin = 0;
4788 		break;
4789 	}
4790 	if ((CC_ALGO(tp)->cong_signal != NULL)  &&
4791 	    (type != CC_RTO)){
4792 		tp->t_ccv.curack = ack;
4793 		CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
4794 	}
4795 	if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) {
4796 		rack_log_to_prr(rack, 15, cwnd_enter, line);
4797 		rack->r_ctl.dsack_byte_cnt = 0;
4798 		rack->r_ctl.retran_during_recovery = 0;
4799 		rack->r_ctl.rc_cwnd_at_erec = cwnd_enter;
4800 		rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter;
4801 		rack->r_ent_rec_ns = 1;
4802 	}
4803 }
4804 
4805 static inline void
4806 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp)
4807 {
4808 	uint32_t i_cwnd;
4809 
4810 	INP_WLOCK_ASSERT(tptoinpcb(tp));
4811 
4812 #ifdef NETFLIX_STATS
4813 	KMOD_TCPSTAT_INC(tcps_idle_restarts);
4814 	if (tp->t_state == TCPS_ESTABLISHED)
4815 		KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
4816 #endif
4817 	if (CC_ALGO(tp)->after_idle != NULL)
4818 		CC_ALGO(tp)->after_idle(&tp->t_ccv);
4819 
4820 	if (tp->snd_cwnd == 1)
4821 		i_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
4822 	else
4823 		i_cwnd = rc_init_window(rack);
4824 
4825 	/*
4826 	 * Being idle is no different than the initial window. If the cc
4827 	 * clamps it down below the initial window raise it to the initial
4828 	 * window.
4829 	 */
4830 	if (tp->snd_cwnd < i_cwnd) {
4831 		tp->snd_cwnd = i_cwnd;
4832 	}
4833 }
4834 
4835 /*
4836  * Indicate whether this ack should be delayed.  We can delay the ack if
4837  * following conditions are met:
4838  *	- There is no delayed ack timer in progress.
4839  *	- Our last ack wasn't a 0-sized window. We never want to delay
4840  *	  the ack that opens up a 0-sized window.
4841  *	- LRO wasn't used for this segment. We make sure by checking that the
4842  *	  segment size is not larger than the MSS.
4843  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
4844  *	  connection.
4845  */
4846 #define DELAY_ACK(tp, tlen)			 \
4847 	(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
4848 	((tp->t_flags & TF_DELACK) == 0) &&	 \
4849 	(tlen <= tp->t_maxseg) &&		 \
4850 	(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
4851 
4852 static struct rack_sendmap *
4853 rack_find_lowest_rsm(struct tcp_rack *rack)
4854 {
4855 	struct rack_sendmap *rsm;
4856 
4857 	/*
4858 	 * Walk the time-order transmitted list looking for an rsm that is
4859 	 * not acked. This will be the one that was sent the longest time
4860 	 * ago that is still outstanding.
4861 	 */
4862 	TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
4863 		if (rsm->r_flags & RACK_ACKED) {
4864 			continue;
4865 		}
4866 		goto finish;
4867 	}
4868 finish:
4869 	return (rsm);
4870 }
4871 
4872 static struct rack_sendmap *
4873 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
4874 {
4875 	struct rack_sendmap *prsm;
4876 
4877 	/*
4878 	 * Walk the sequence order list backward until we hit and arrive at
4879 	 * the highest seq not acked. In theory when this is called it
4880 	 * should be the last segment (which it was not).
4881 	 */
4882 	prsm = rsm;
4883 	RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
4884 		if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
4885 			continue;
4886 		}
4887 		return (prsm);
4888 	}
4889 	return (NULL);
4890 }
4891 
4892 static uint32_t
4893 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
4894 {
4895 	int32_t lro;
4896 	uint32_t thresh;
4897 
4898 	/*
4899 	 * lro is the flag we use to determine if we have seen reordering.
4900 	 * If it gets set we have seen reordering. The reorder logic either
4901 	 * works in one of two ways:
4902 	 *
4903 	 * If reorder-fade is configured, then we track the last time we saw
4904 	 * re-ordering occur. If we reach the point where enough time as
4905 	 * passed we no longer consider reordering has occuring.
4906 	 *
4907 	 * Or if reorder-face is 0, then once we see reordering we consider
4908 	 * the connection to alway be subject to reordering and just set lro
4909 	 * to 1.
4910 	 *
4911 	 * In the end if lro is non-zero we add the extra time for
4912 	 * reordering in.
4913 	 */
4914 	if (srtt == 0)
4915 		srtt = 1;
4916 	if (rack->r_ctl.rc_reorder_ts) {
4917 		if (rack->r_ctl.rc_reorder_fade) {
4918 			if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
4919 				lro = cts - rack->r_ctl.rc_reorder_ts;
4920 				if (lro == 0) {
4921 					/*
4922 					 * No time as passed since the last
4923 					 * reorder, mark it as reordering.
4924 					 */
4925 					lro = 1;
4926 				}
4927 			} else {
4928 				/* Negative time? */
4929 				lro = 0;
4930 			}
4931 			if (lro > rack->r_ctl.rc_reorder_fade) {
4932 				/* Turn off reordering seen too */
4933 				rack->r_ctl.rc_reorder_ts = 0;
4934 				lro = 0;
4935 			}
4936 		} else {
4937 			/* Reodering does not fade */
4938 			lro = 1;
4939 		}
4940 	} else {
4941 		lro = 0;
4942 	}
4943 	if (rack->rc_rack_tmr_std_based == 0) {
4944 		thresh = srtt + rack->r_ctl.rc_pkt_delay;
4945 	} else {
4946 		/* Standards based pkt-delay is 1/4 srtt */
4947 		thresh = srtt +  (srtt >> 2);
4948 	}
4949 	if (lro && (rack->rc_rack_tmr_std_based == 0)) {
4950 		/* It must be set, if not you get 1/4 rtt */
4951 		if (rack->r_ctl.rc_reorder_shift)
4952 			thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
4953 		else
4954 			thresh += (srtt >> 2);
4955 	}
4956 	if (rack->rc_rack_use_dsack &&
4957 	    lro &&
4958 	    (rack->r_ctl.num_dsack > 0)) {
4959 		/*
4960 		 * We only increase the reordering window if we
4961 		 * have seen reordering <and> we have a DSACK count.
4962 		 */
4963 		thresh += rack->r_ctl.num_dsack * (srtt >> 2);
4964 		rack_log_dsack_event(rack, 4, __LINE__, srtt, thresh);
4965 	}
4966 	/* SRTT * 2 is the ceiling */
4967 	if (thresh > (srtt * 2)) {
4968 		thresh = srtt * 2;
4969 	}
4970 	/* And we don't want it above the RTO max either */
4971 	if (thresh > rack_rto_max) {
4972 		thresh = rack_rto_max;
4973 	}
4974 	rack_log_dsack_event(rack, 6, __LINE__, srtt, thresh);
4975 	return (thresh);
4976 }
4977 
4978 static uint32_t
4979 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
4980 		     struct rack_sendmap *rsm, uint32_t srtt)
4981 {
4982 	struct rack_sendmap *prsm;
4983 	uint32_t thresh, len;
4984 	int segsiz;
4985 
4986 	if (srtt == 0)
4987 		srtt = 1;
4988 	if (rack->r_ctl.rc_tlp_threshold)
4989 		thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
4990 	else
4991 		thresh = (srtt * 2);
4992 
4993 	/* Get the previous sent packet, if any */
4994 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
4995 	len = rsm->r_end - rsm->r_start;
4996 	if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
4997 		/* Exactly like the ID */
4998 		if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) {
4999 			uint32_t alt_thresh;
5000 			/*
5001 			 * Compensate for delayed-ack with the d-ack time.
5002 			 */
5003 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5004 			if (alt_thresh > thresh)
5005 				thresh = alt_thresh;
5006 		}
5007 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
5008 		/* 2.1 behavior */
5009 		prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
5010 		if (prsm && (len <= segsiz)) {
5011 			/*
5012 			 * Two packets outstanding, thresh should be (2*srtt) +
5013 			 * possible inter-packet delay (if any).
5014 			 */
5015 			uint32_t inter_gap = 0;
5016 			int idx, nidx;
5017 
5018 			idx = rsm->r_rtr_cnt - 1;
5019 			nidx = prsm->r_rtr_cnt - 1;
5020 			if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) {
5021 				/* Yes it was sent later (or at the same time) */
5022 				inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
5023 			}
5024 			thresh += inter_gap;
5025 		} else if (len <= segsiz) {
5026 			/*
5027 			 * Possibly compensate for delayed-ack.
5028 			 */
5029 			uint32_t alt_thresh;
5030 
5031 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5032 			if (alt_thresh > thresh)
5033 				thresh = alt_thresh;
5034 		}
5035 	} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
5036 		/* 2.2 behavior */
5037 		if (len <= segsiz) {
5038 			uint32_t alt_thresh;
5039 			/*
5040 			 * Compensate for delayed-ack with the d-ack time.
5041 			 */
5042 			alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5043 			if (alt_thresh > thresh)
5044 				thresh = alt_thresh;
5045 		}
5046 	}
5047 	/* Not above an RTO */
5048 	if (thresh > tp->t_rxtcur) {
5049 		thresh = tp->t_rxtcur;
5050 	}
5051 	/* Not above a RTO max */
5052 	if (thresh > rack_rto_max) {
5053 		thresh = rack_rto_max;
5054 	}
5055 	/* Apply user supplied min TLP */
5056 	if (thresh < rack_tlp_min) {
5057 		thresh = rack_tlp_min;
5058 	}
5059 	return (thresh);
5060 }
5061 
5062 static uint32_t
5063 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
5064 {
5065 	/*
5066 	 * We want the rack_rtt which is the
5067 	 * last rtt we measured. However if that
5068 	 * does not exist we fallback to the srtt (which
5069 	 * we probably will never do) and then as a last
5070 	 * resort we use RACK_INITIAL_RTO if no srtt is
5071 	 * yet set.
5072 	 */
5073 	if (rack->rc_rack_rtt)
5074 		return (rack->rc_rack_rtt);
5075 	else if (tp->t_srtt == 0)
5076 		return (RACK_INITIAL_RTO);
5077 	return (tp->t_srtt);
5078 }
5079 
5080 static struct rack_sendmap *
5081 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
5082 {
5083 	/*
5084 	 * Check to see that we don't need to fall into recovery. We will
5085 	 * need to do so if our oldest transmit is past the time we should
5086 	 * have had an ack.
5087 	 */
5088 	struct tcp_rack *rack;
5089 	struct rack_sendmap *rsm;
5090 	int32_t idx;
5091 	uint32_t srtt, thresh;
5092 
5093 	rack = (struct tcp_rack *)tp->t_fb_ptr;
5094 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
5095 		return (NULL);
5096 	}
5097 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5098 	if (rsm == NULL)
5099 		return (NULL);
5100 
5101 
5102 	if (rsm->r_flags & RACK_ACKED) {
5103 		rsm = rack_find_lowest_rsm(rack);
5104 		if (rsm == NULL)
5105 			return (NULL);
5106 	}
5107 	idx = rsm->r_rtr_cnt - 1;
5108 	srtt = rack_grab_rtt(tp, rack);
5109 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
5110 	if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) {
5111 		return (NULL);
5112 	}
5113 	if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) {
5114 		return (NULL);
5115 	}
5116 	/* Ok if we reach here we are over-due and this guy can be sent */
5117 	rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
5118 	return (rsm);
5119 }
5120 
5121 static uint32_t
5122 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
5123 {
5124 	int32_t t;
5125 	int32_t tt;
5126 	uint32_t ret_val;
5127 
5128 	t = (tp->t_srtt + (tp->t_rttvar << 2));
5129 	RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
5130  	    rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop);
5131 	rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
5132 	ret_val = (uint32_t)tt;
5133 	return (ret_val);
5134 }
5135 
5136 static uint32_t
5137 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
5138 {
5139 	/*
5140 	 * Start the FR timer, we do this based on getting the first one in
5141 	 * the rc_tmap. Note that if its NULL we must stop the timer. in all
5142 	 * events we need to stop the running timer (if its running) before
5143 	 * starting the new one.
5144 	 */
5145 	uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
5146 	uint32_t srtt_cur;
5147 	int32_t idx;
5148 	int32_t is_tlp_timer = 0;
5149 	struct rack_sendmap *rsm;
5150 
5151 	if (rack->t_timers_stopped) {
5152 		/* All timers have been stopped none are to run */
5153 		return (0);
5154 	}
5155 	if (rack->rc_in_persist) {
5156 		/* We can't start any timer in persists */
5157 		return (rack_get_persists_timer_val(tp, rack));
5158 	}
5159 	rack->rc_on_min_to = 0;
5160 	if ((tp->t_state < TCPS_ESTABLISHED) ||
5161 	    ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
5162 		goto activate_rxt;
5163 	}
5164 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5165 	if ((rsm == NULL) || sup_rack) {
5166 		/* Nothing on the send map or no rack */
5167 activate_rxt:
5168 		time_since_sent = 0;
5169 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5170 		if (rsm) {
5171 			/*
5172 			 * Should we discount the RTX timer any?
5173 			 *
5174 			 * We want to discount it the smallest amount.
5175 			 * If a timer (Rack/TLP or RXT) has gone off more
5176 			 * recently thats the discount we want to use (now - timer time).
5177 			 * If the retransmit of the oldest packet was more recent then
5178 			 * we want to use that (now - oldest-packet-last_transmit_time).
5179 			 *
5180 			 */
5181 			idx = rsm->r_rtr_cnt - 1;
5182 			if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx])))
5183 				tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5184 			else
5185 				tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5186 			if (TSTMP_GT(cts, tstmp_touse))
5187 			    time_since_sent = cts - tstmp_touse;
5188 		}
5189 		if (SEQ_LT(tp->snd_una, tp->snd_max) ||
5190 		    sbavail(&tptosocket(tp)->so_snd)) {
5191 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
5192 			to = tp->t_rxtcur;
5193 			if (to > time_since_sent)
5194 				to -= time_since_sent;
5195 			else
5196 				to = rack->r_ctl.rc_min_to;
5197 			if (to == 0)
5198 				to = 1;
5199 			/* Special case for KEEPINIT */
5200 			if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
5201 			    (TP_KEEPINIT(tp) != 0) &&
5202 			    rsm) {
5203 				/*
5204 				 * We have to put a ceiling on the rxt timer
5205 				 * of the keep-init timeout.
5206 				 */
5207 				uint32_t max_time, red;
5208 
5209 				max_time = TICKS_2_USEC(TP_KEEPINIT(tp));
5210 				if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) {
5211 					red = (cts - (uint32_t)rsm->r_tim_lastsent[0]);
5212 					if (red < max_time)
5213 						max_time -= red;
5214 					else
5215 						max_time = 1;
5216 				}
5217 				/* Reduce timeout to the keep value if needed */
5218 				if (max_time < to)
5219 					to = max_time;
5220 			}
5221 			return (to);
5222 		}
5223 		return (0);
5224 	}
5225 	if (rsm->r_flags & RACK_ACKED) {
5226 		rsm = rack_find_lowest_rsm(rack);
5227 		if (rsm == NULL) {
5228 			/* No lowest? */
5229 			goto activate_rxt;
5230 		}
5231 	}
5232 	if (rack->sack_attack_disable) {
5233 		/*
5234 		 * We don't want to do
5235 		 * any TLP's if you are an attacker.
5236 		 * Though if you are doing what
5237 		 * is expected you may still have
5238 		 * SACK-PASSED marks.
5239 		 */
5240 		goto activate_rxt;
5241 	}
5242 	/* Convert from ms to usecs */
5243 	if ((rsm->r_flags & RACK_SACK_PASSED) ||
5244 	    (rsm->r_flags & RACK_RWND_COLLAPSED) ||
5245 	    (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
5246 		if ((tp->t_flags & TF_SENTFIN) &&
5247 		    ((tp->snd_max - tp->snd_una) == 1) &&
5248 		    (rsm->r_flags & RACK_HAS_FIN)) {
5249 			/*
5250 			 * We don't start a rack timer if all we have is a
5251 			 * FIN outstanding.
5252 			 */
5253 			goto activate_rxt;
5254 		}
5255 		if ((rack->use_rack_rr == 0) &&
5256 		    (IN_FASTRECOVERY(tp->t_flags)) &&
5257 		    (rack->rack_no_prr == 0) &&
5258 		     (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
5259 			/*
5260 			 * We are not cheating, in recovery  and
5261 			 * not enough ack's to yet get our next
5262 			 * retransmission out.
5263 			 *
5264 			 * Note that classified attackers do not
5265 			 * get to use the rack-cheat.
5266 			 */
5267 			goto activate_tlp;
5268 		}
5269 		srtt = rack_grab_rtt(tp, rack);
5270 		thresh = rack_calc_thresh_rack(rack, srtt, cts);
5271 		idx = rsm->r_rtr_cnt - 1;
5272 		exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh;
5273 		if (SEQ_GEQ(exp, cts)) {
5274 			to = exp - cts;
5275 			if (to < rack->r_ctl.rc_min_to) {
5276 				to = rack->r_ctl.rc_min_to;
5277 				if (rack->r_rr_config == 3)
5278 					rack->rc_on_min_to = 1;
5279 			}
5280 		} else {
5281 			to = rack->r_ctl.rc_min_to;
5282 			if (rack->r_rr_config == 3)
5283 				rack->rc_on_min_to = 1;
5284 		}
5285 	} else {
5286 		/* Ok we need to do a TLP not RACK */
5287 activate_tlp:
5288 		if ((rack->rc_tlp_in_progress != 0) &&
5289 		    (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) {
5290 			/*
5291 			 * The previous send was a TLP and we have sent
5292 			 * N TLP's without sending new data.
5293 			 */
5294 			goto activate_rxt;
5295 		}
5296 		rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
5297 		if (rsm == NULL) {
5298 			/* We found no rsm to TLP with. */
5299 			goto activate_rxt;
5300 		}
5301 		if (rsm->r_flags & RACK_HAS_FIN) {
5302 			/* If its a FIN we dont do TLP */
5303 			rsm = NULL;
5304 			goto activate_rxt;
5305 		}
5306 		idx = rsm->r_rtr_cnt - 1;
5307 		time_since_sent = 0;
5308 		if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time))
5309 			tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5310 		else
5311 			tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5312 		if (TSTMP_GT(cts, tstmp_touse))
5313 		    time_since_sent = cts - tstmp_touse;
5314 		is_tlp_timer = 1;
5315 		if (tp->t_srtt) {
5316 			if ((rack->rc_srtt_measure_made == 0) &&
5317 			    (tp->t_srtt == 1)) {
5318 				/*
5319 				 * If another stack as run and set srtt to 1,
5320 				 * then the srtt was 0, so lets use the initial.
5321 				 */
5322 				srtt = RACK_INITIAL_RTO;
5323 			} else {
5324 				srtt_cur = tp->t_srtt;
5325 				srtt = srtt_cur;
5326 			}
5327 		} else
5328 			srtt = RACK_INITIAL_RTO;
5329 		/*
5330 		 * If the SRTT is not keeping up and the
5331 		 * rack RTT has spiked we want to use
5332 		 * the last RTT not the smoothed one.
5333 		 */
5334 		if (rack_tlp_use_greater &&
5335 		    tp->t_srtt &&
5336 		    (srtt < rack_grab_rtt(tp, rack))) {
5337 			srtt = rack_grab_rtt(tp, rack);
5338 		}
5339 		thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
5340 		if (thresh > time_since_sent) {
5341 			to = thresh - time_since_sent;
5342 		} else {
5343 			to = rack->r_ctl.rc_min_to;
5344 			rack_log_alt_to_to_cancel(rack,
5345 						  thresh,		/* flex1 */
5346 						  time_since_sent,	/* flex2 */
5347 						  tstmp_touse,		/* flex3 */
5348 						  rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */
5349 						  (uint32_t)rsm->r_tim_lastsent[idx],
5350 						  srtt,
5351 						  idx, 99);
5352 		}
5353 		if (to < rack_tlp_min) {
5354 			to = rack_tlp_min;
5355 		}
5356 		if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) {
5357 			/*
5358 			 * If the TLP time works out to larger than the max
5359 			 * RTO lets not do TLP.. just RTO.
5360 			 */
5361 			goto activate_rxt;
5362 		}
5363 	}
5364 	if (is_tlp_timer == 0) {
5365 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
5366 	} else {
5367 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
5368 	}
5369 	if (to == 0)
5370 		to = 1;
5371 	return (to);
5372 }
5373 
5374 static void
5375 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5376 {
5377 	if (rack->rc_in_persist == 0) {
5378 		if (tp->t_flags & TF_GPUTINPROG) {
5379 			/*
5380 			 * Stop the goodput now, the calling of the
5381 			 * measurement function clears the flag.
5382 			 */
5383 			rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__,
5384 						    RACK_QUALITY_PERSIST);
5385 		}
5386 #ifdef NETFLIX_SHARED_CWND
5387 		if (rack->r_ctl.rc_scw) {
5388 			tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5389 			rack->rack_scwnd_is_idle = 1;
5390 		}
5391 #endif
5392 		rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
5393 		if (rack->r_ctl.rc_went_idle_time == 0)
5394 			rack->r_ctl.rc_went_idle_time = 1;
5395 		rack_timer_cancel(tp, rack, cts, __LINE__);
5396 		rack->r_ctl.persist_lost_ends = 0;
5397 		rack->probe_not_answered = 0;
5398 		rack->forced_ack = 0;
5399 		tp->t_rxtshift = 0;
5400 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5401 			      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5402 		rack->rc_in_persist = 1;
5403 	}
5404 }
5405 
5406 static void
5407 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5408 {
5409 	if (tcp_in_hpts(rack->rc_inp)) {
5410 		tcp_hpts_remove(rack->rc_inp);
5411 		rack->r_ctl.rc_hpts_flags = 0;
5412 	}
5413 #ifdef NETFLIX_SHARED_CWND
5414 	if (rack->r_ctl.rc_scw) {
5415 		tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5416 		rack->rack_scwnd_is_idle = 0;
5417 	}
5418 #endif
5419 	if (rack->rc_gp_dyn_mul &&
5420 	    (rack->use_fixed_rate == 0) &&
5421 	    (rack->rc_always_pace)) {
5422 		/*
5423 		 * Do we count this as if a probe-rtt just
5424 		 * finished?
5425 		 */
5426 		uint32_t time_idle, idle_min;
5427 
5428 		time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time;
5429 		idle_min = rack_min_probertt_hold;
5430 		if (rack_probertt_gpsrtt_cnt_div) {
5431 			uint64_t extra;
5432 			extra = (uint64_t)rack->r_ctl.rc_gp_srtt *
5433 				(uint64_t)rack_probertt_gpsrtt_cnt_mul;
5434 			extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div;
5435 			idle_min += (uint32_t)extra;
5436 		}
5437 		if (time_idle >= idle_min) {
5438 			/* Yes, we count it as a probe-rtt. */
5439 			uint32_t us_cts;
5440 
5441 			us_cts = tcp_get_usecs(NULL);
5442 			if (rack->in_probe_rtt == 0) {
5443 				rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
5444 				rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
5445 				rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
5446 				rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
5447 			} else {
5448 				rack_exit_probertt(rack, us_cts);
5449 			}
5450 		}
5451 	}
5452 	rack->rc_in_persist = 0;
5453 	rack->r_ctl.rc_went_idle_time = 0;
5454 	tp->t_rxtshift = 0;
5455 	RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5456 	   rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5457 	rack->r_ctl.rc_agg_delayed = 0;
5458 	rack->r_early = 0;
5459 	rack->r_late = 0;
5460 	rack->r_ctl.rc_agg_early = 0;
5461 }
5462 
5463 static void
5464 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts,
5465 		   struct hpts_diag *diag, struct timeval *tv)
5466 {
5467 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
5468 		union tcp_log_stackspecific log;
5469 
5470 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5471 		log.u_bbr.flex1 = diag->p_nxt_slot;
5472 		log.u_bbr.flex2 = diag->p_cur_slot;
5473 		log.u_bbr.flex3 = diag->slot_req;
5474 		log.u_bbr.flex4 = diag->inp_hptsslot;
5475 		log.u_bbr.flex5 = diag->slot_remaining;
5476 		log.u_bbr.flex6 = diag->need_new_to;
5477 		log.u_bbr.flex7 = diag->p_hpts_active;
5478 		log.u_bbr.flex8 = diag->p_on_min_sleep;
5479 		/* Hijack other fields as needed */
5480 		log.u_bbr.epoch = diag->have_slept;
5481 		log.u_bbr.lt_epoch = diag->yet_to_sleep;
5482 		log.u_bbr.pkts_out = diag->co_ret;
5483 		log.u_bbr.applimited = diag->hpts_sleep_time;
5484 		log.u_bbr.delivered = diag->p_prev_slot;
5485 		log.u_bbr.inflight = diag->p_runningslot;
5486 		log.u_bbr.bw_inuse = diag->wheel_slot;
5487 		log.u_bbr.rttProp = diag->wheel_cts;
5488 		log.u_bbr.timeStamp = cts;
5489 		log.u_bbr.delRate = diag->maxslots;
5490 		log.u_bbr.cur_del_rate = diag->p_curtick;
5491 		log.u_bbr.cur_del_rate <<= 32;
5492 		log.u_bbr.cur_del_rate |= diag->p_lasttick;
5493 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
5494 		    &rack->rc_inp->inp_socket->so_rcv,
5495 		    &rack->rc_inp->inp_socket->so_snd,
5496 		    BBR_LOG_HPTSDIAG, 0,
5497 		    0, &log, false, tv);
5498 	}
5499 
5500 }
5501 
5502 static void
5503 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type)
5504 {
5505 	if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
5506 		union tcp_log_stackspecific log;
5507 		struct timeval tv;
5508 
5509 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5510 		log.u_bbr.flex1 = sb->sb_flags;
5511 		log.u_bbr.flex2 = len;
5512 		log.u_bbr.flex3 = sb->sb_state;
5513 		log.u_bbr.flex8 = type;
5514 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
5515 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
5516 		    &rack->rc_inp->inp_socket->so_rcv,
5517 		    &rack->rc_inp->inp_socket->so_snd,
5518 		    TCP_LOG_SB_WAKE, 0,
5519 		    len, &log, false, &tv);
5520 	}
5521 }
5522 
5523 static void
5524 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
5525       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
5526 {
5527 	struct hpts_diag diag;
5528 	struct inpcb *inp = tptoinpcb(tp);
5529 	struct timeval tv;
5530 	uint32_t delayed_ack = 0;
5531 	uint32_t hpts_timeout;
5532 	uint32_t entry_slot = slot;
5533 	uint8_t stopped;
5534 	uint32_t left = 0;
5535 	uint32_t us_cts;
5536 
5537 	if ((tp->t_state == TCPS_CLOSED) ||
5538 	    (tp->t_state == TCPS_LISTEN)) {
5539 		return;
5540 	}
5541 	if (tcp_in_hpts(inp)) {
5542 		/* Already on the pacer */
5543 		return;
5544 	}
5545 	stopped = rack->rc_tmr_stopped;
5546 	if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
5547 		left = rack->r_ctl.rc_timer_exp - cts;
5548 	}
5549 	rack->r_ctl.rc_timer_exp = 0;
5550 	rack->r_ctl.rc_hpts_flags = 0;
5551 	us_cts = tcp_get_usecs(&tv);
5552 	/* Now early/late accounting */
5553 	rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0);
5554 	if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) {
5555 		/*
5556 		 * We have a early carry over set,
5557 		 * we can always add more time so we
5558 		 * can always make this compensation.
5559 		 *
5560 		 * Note if ack's are allowed to wake us do not
5561 		 * penalize the next timer for being awoke
5562 		 * by an ack aka the rc_agg_early (non-paced mode).
5563 		 */
5564 		slot += rack->r_ctl.rc_agg_early;
5565 		rack->r_early = 0;
5566 		rack->r_ctl.rc_agg_early = 0;
5567 	}
5568 	if (rack->r_late) {
5569 		/*
5570 		 * This is harder, we can
5571 		 * compensate some but it
5572 		 * really depends on what
5573 		 * the current pacing time is.
5574 		 */
5575 		if (rack->r_ctl.rc_agg_delayed >= slot) {
5576 			/*
5577 			 * We can't compensate for it all.
5578 			 * And we have to have some time
5579 			 * on the clock. We always have a min
5580 			 * 10 slots (10 x 10 i.e. 100 usecs).
5581 			 */
5582 			if (slot <= HPTS_TICKS_PER_SLOT) {
5583 				/* We gain delay */
5584 				rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot);
5585 				slot = HPTS_TICKS_PER_SLOT;
5586 			} else {
5587 				/* We take off some */
5588 				rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT);
5589 				slot = HPTS_TICKS_PER_SLOT;
5590 			}
5591 		} else {
5592 			slot -= rack->r_ctl.rc_agg_delayed;
5593 			rack->r_ctl.rc_agg_delayed = 0;
5594 			/* Make sure we have 100 useconds at minimum */
5595 			if (slot < HPTS_TICKS_PER_SLOT) {
5596 				rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_SLOT - slot;
5597 				slot = HPTS_TICKS_PER_SLOT;
5598 			}
5599 			if (rack->r_ctl.rc_agg_delayed == 0)
5600 				rack->r_late = 0;
5601 		}
5602 	}
5603 	if (slot) {
5604 		/* We are pacing too */
5605 		rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
5606 	}
5607 	hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
5608 #ifdef NETFLIX_EXP_DETECTION
5609 	if (rack->sack_attack_disable &&
5610 	    (slot < tcp_sad_pacing_interval)) {
5611 		/*
5612 		 * We have a potential attacker on
5613 		 * the line. We have possibly some
5614 		 * (or now) pacing time set. We want to
5615 		 * slow down the processing of sacks by some
5616 		 * amount (if it is an attacker). Set the default
5617 		 * slot for attackers in place (unless the original
5618 		 * interval is longer). Its stored in
5619 		 * micro-seconds, so lets convert to msecs.
5620 		 */
5621 		slot = tcp_sad_pacing_interval;
5622 	}
5623 #endif
5624 	if (tp->t_flags & TF_DELACK) {
5625 		delayed_ack = TICKS_2_USEC(tcp_delacktime);
5626 		rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
5627 	}
5628 	if (delayed_ack && ((hpts_timeout == 0) ||
5629 			    (delayed_ack < hpts_timeout)))
5630 		hpts_timeout = delayed_ack;
5631 	else
5632 		rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
5633 	/*
5634 	 * If no timers are going to run and we will fall off the hptsi
5635 	 * wheel, we resort to a keep-alive timer if its configured.
5636 	 */
5637 	if ((hpts_timeout == 0) &&
5638 	    (slot == 0)) {
5639 		if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
5640 		    (tp->t_state <= TCPS_CLOSING)) {
5641 			/*
5642 			 * Ok we have no timer (persists, rack, tlp, rxt  or
5643 			 * del-ack), we don't have segments being paced. So
5644 			 * all that is left is the keepalive timer.
5645 			 */
5646 			if (TCPS_HAVEESTABLISHED(tp->t_state)) {
5647 				/* Get the established keep-alive time */
5648 				hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp));
5649 			} else {
5650 				/*
5651 				 * Get the initial setup keep-alive time,
5652 				 * note that this is probably not going to
5653 				 * happen, since rack will be running a rxt timer
5654 				 * if a SYN of some sort is outstanding. It is
5655 				 * actually handled in rack_timeout_rxt().
5656 				 */
5657 				hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp));
5658 			}
5659 			rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
5660 			if (rack->in_probe_rtt) {
5661 				/*
5662 				 * We want to instead not wake up a long time from
5663 				 * now but to wake up about the time we would
5664 				 * exit probe-rtt and initiate a keep-alive ack.
5665 				 * This will get us out of probe-rtt and update
5666 				 * our min-rtt.
5667 				 */
5668 				hpts_timeout = rack_min_probertt_hold;
5669 			}
5670 		}
5671 	}
5672 	if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
5673 	    (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
5674 		/*
5675 		 * RACK, TLP, persists and RXT timers all are restartable
5676 		 * based on actions input .. i.e we received a packet (ack
5677 		 * or sack) and that changes things (rw, or snd_una etc).
5678 		 * Thus we can restart them with a new value. For
5679 		 * keep-alive, delayed_ack we keep track of what was left
5680 		 * and restart the timer with a smaller value.
5681 		 */
5682 		if (left < hpts_timeout)
5683 			hpts_timeout = left;
5684 	}
5685 	if (hpts_timeout) {
5686 		/*
5687 		 * Hack alert for now we can't time-out over 2,147,483
5688 		 * seconds (a bit more than 596 hours), which is probably ok
5689 		 * :).
5690 		 */
5691 		if (hpts_timeout > 0x7ffffffe)
5692 			hpts_timeout = 0x7ffffffe;
5693 		rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
5694 	}
5695 	rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0);
5696 	if ((rack->gp_ready == 0) &&
5697 	    (rack->use_fixed_rate == 0) &&
5698 	    (hpts_timeout < slot) &&
5699 	    (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) {
5700 		/*
5701 		 * We have no good estimate yet for the
5702 		 * old clunky burst mitigation or the
5703 		 * real pacing. And the tlp or rxt is smaller
5704 		 * than the pacing calculation. Lets not
5705 		 * pace that long since we know the calculation
5706 		 * so far is not accurate.
5707 		 */
5708 		slot = hpts_timeout;
5709 	}
5710 	/**
5711 	 * Turn off all the flags for queuing by default. The
5712 	 * flags have important meanings to what happens when
5713 	 * LRO interacts with the transport. Most likely (by default now)
5714 	 * mbuf_queueing and ack compression are on. So the transport
5715 	 * has a couple of flags that control what happens (if those
5716 	 * are not on then these flags won't have any effect since it
5717 	 * won't go through the queuing LRO path).
5718 	 *
5719 	 * INP_MBUF_QUEUE_READY - This flags says that I am busy
5720 	 *                        pacing output, so don't disturb. But
5721 	 *                        it also means LRO can wake me if there
5722 	 *                        is a SACK arrival.
5723 	 *
5724 	 * INP_DONT_SACK_QUEUE - This flag is used in conjunction
5725 	 *                       with the above flag (QUEUE_READY) and
5726 	 *                       when present it says don't even wake me
5727 	 *                       if a SACK arrives.
5728 	 *
5729 	 * The idea behind these flags is that if we are pacing we
5730 	 * set the MBUF_QUEUE_READY and only get woken up if
5731 	 * a SACK arrives (which could change things) or if
5732 	 * our pacing timer expires. If, however, we have a rack
5733 	 * timer running, then we don't even want a sack to wake
5734 	 * us since the rack timer has to expire before we can send.
5735 	 *
5736 	 * Other cases should usually have none of the flags set
5737 	 * so LRO can call into us.
5738 	 */
5739 	inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5740 	if (slot) {
5741 		rack->r_ctl.rc_last_output_to = us_cts + slot;
5742 		/*
5743 		 * A pacing timer (slot) is being set, in
5744 		 * such a case we cannot send (we are blocked by
5745 		 * the timer). So lets tell LRO that it should not
5746 		 * wake us unless there is a SACK. Note this only
5747 		 * will be effective if mbuf queueing is on or
5748 		 * compressed acks are being processed.
5749 		 */
5750 		inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
5751 		/*
5752 		 * But wait if we have a Rack timer running
5753 		 * even a SACK should not disturb us (with
5754 		 * the exception of r_rr_config 3).
5755 		 */
5756 		if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
5757 		    (rack->r_rr_config != 3))
5758 			inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
5759 		if (rack->rc_ack_can_sendout_data) {
5760 			/*
5761 			 * Ahh but wait, this is that special case
5762 			 * where the pacing timer can be disturbed
5763 			 * backout the changes (used for non-paced
5764 			 * burst limiting).
5765 			 */
5766 			inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5767 		}
5768 		if ((rack->use_rack_rr) &&
5769 		    (rack->r_rr_config < 2) &&
5770 		    ((hpts_timeout) && (hpts_timeout < slot))) {
5771 			/*
5772 			 * Arrange for the hpts to kick back in after the
5773 			 * t-o if the t-o does not cause a send.
5774 			 */
5775 			(void)tcp_hpts_insert_diag(inp, HPTS_USEC_TO_SLOTS(hpts_timeout),
5776 						   __LINE__, &diag);
5777 			rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5778 			rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5779 		} else {
5780 			(void)tcp_hpts_insert_diag(inp, HPTS_USEC_TO_SLOTS(slot),
5781 						   __LINE__, &diag);
5782 			rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5783 			rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
5784 		}
5785 	} else if (hpts_timeout) {
5786 		/*
5787 		 * With respect to inp_flags2 here, lets let any new acks wake
5788 		 * us up here. Since we are not pacing (no pacing timer), output
5789 		 * can happen so we should let it. If its a Rack timer, then any inbound
5790 		 * packet probably won't change the sending (we will be blocked)
5791 		 * but it may change the prr stats so letting it in (the set defaults
5792 		 * at the start of this block) are good enough.
5793 		 */
5794 		(void)tcp_hpts_insert_diag(inp, HPTS_USEC_TO_SLOTS(hpts_timeout),
5795 					   __LINE__, &diag);
5796 		rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5797 		rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5798 	} else {
5799 		/* No timer starting */
5800 #ifdef INVARIANTS
5801 		if (SEQ_GT(tp->snd_max, tp->snd_una)) {
5802 			panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
5803 			    tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
5804 		}
5805 #endif
5806 	}
5807 	rack->rc_tmr_stopped = 0;
5808 	if (slot)
5809 		rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv);
5810 }
5811 
5812 /*
5813  * RACK Timer, here we simply do logging and house keeping.
5814  * the normal rack_output() function will call the
5815  * appropriate thing to check if we need to do a RACK retransmit.
5816  * We return 1, saying don't proceed with rack_output only
5817  * when all timers have been stopped (destroyed PCB?).
5818  */
5819 static int
5820 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5821 {
5822 	/*
5823 	 * This timer simply provides an internal trigger to send out data.
5824 	 * The check_recovery_mode call will see if there are needed
5825 	 * retransmissions, if so we will enter fast-recovery. The output
5826 	 * call may or may not do the same thing depending on sysctl
5827 	 * settings.
5828 	 */
5829 	struct rack_sendmap *rsm;
5830 
5831 	counter_u64_add(rack_to_tot, 1);
5832 	if (rack->r_state && (rack->r_state != tp->t_state))
5833 		rack_set_state(tp, rack);
5834 	rack->rc_on_min_to = 0;
5835 	rsm = rack_check_recovery_mode(tp, cts);
5836 	rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm);
5837 	if (rsm) {
5838 		rack->r_ctl.rc_resend = rsm;
5839 		rack->r_timer_override = 1;
5840 		if (rack->use_rack_rr) {
5841 			/*
5842 			 * Don't accumulate extra pacing delay
5843 			 * we are allowing the rack timer to
5844 			 * over-ride pacing i.e. rrr takes precedence
5845 			 * if the pacing interval is longer than the rrr
5846 			 * time (in other words we get the min pacing
5847 			 * time versus rrr pacing time).
5848 			 */
5849 			rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
5850 		}
5851 	}
5852 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
5853 	if (rsm == NULL) {
5854 		/* restart a timer and return 1 */
5855 		rack_start_hpts_timer(rack, tp, cts,
5856 				      0, 0, 0);
5857 		return (1);
5858 	}
5859 	return (0);
5860 }
5861 
5862 static void
5863 rack_adjust_orig_mlen(struct rack_sendmap *rsm)
5864 {
5865 	if (rsm->m->m_len > rsm->orig_m_len) {
5866 		/*
5867 		 * Mbuf grew, caused by sbcompress, our offset does
5868 		 * not change.
5869 		 */
5870 		rsm->orig_m_len = rsm->m->m_len;
5871 	} else if (rsm->m->m_len < rsm->orig_m_len) {
5872 		/*
5873 		 * Mbuf shrank, trimmed off the top by an ack, our
5874 		 * offset changes.
5875 		 */
5876 		rsm->soff -= (rsm->orig_m_len - rsm->m->m_len);
5877 		rsm->orig_m_len = rsm->m->m_len;
5878 	}
5879 }
5880 
5881 static void
5882 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm)
5883 {
5884 	struct mbuf *m;
5885 	uint32_t soff;
5886 
5887 	if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) {
5888 		/* Fix up the orig_m_len and possibly the mbuf offset */
5889 		rack_adjust_orig_mlen(src_rsm);
5890 	}
5891 	m = src_rsm->m;
5892 	soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start);
5893 	while (soff >= m->m_len) {
5894 		/* Move out past this mbuf */
5895 		soff -= m->m_len;
5896 		m = m->m_next;
5897 		KASSERT((m != NULL),
5898 			("rsm:%p nrsm:%p hit at soff:%u null m",
5899 			 src_rsm, rsm, soff));
5900 	}
5901 	rsm->m = m;
5902 	rsm->soff = soff;
5903 	rsm->orig_m_len = m->m_len;
5904 }
5905 
5906 static __inline void
5907 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
5908 	       struct rack_sendmap *rsm, uint32_t start)
5909 {
5910 	int idx;
5911 
5912 	nrsm->r_start = start;
5913 	nrsm->r_end = rsm->r_end;
5914 	nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
5915 	nrsm->r_flags = rsm->r_flags;
5916 	nrsm->r_dupack = rsm->r_dupack;
5917 	nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed;
5918 	nrsm->r_rtr_bytes = 0;
5919 	nrsm->r_fas = rsm->r_fas;
5920 	rsm->r_end = nrsm->r_start;
5921 	nrsm->r_just_ret = rsm->r_just_ret;
5922 	for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
5923 		nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
5924 	}
5925 	/* Now if we have SYN flag we keep it on the left edge */
5926 	if (nrsm->r_flags & RACK_HAS_SYN)
5927 		nrsm->r_flags &= ~RACK_HAS_SYN;
5928 	/* Now if we have a FIN flag we keep it on the right edge */
5929 	if (rsm->r_flags & RACK_HAS_FIN)
5930 		rsm->r_flags &= ~RACK_HAS_FIN;
5931 	/* Push bit must go to the right edge as well */
5932 	if (rsm->r_flags & RACK_HAD_PUSH)
5933 		rsm->r_flags &= ~RACK_HAD_PUSH;
5934 	/* Clone over the state of the hw_tls flag */
5935 	nrsm->r_hw_tls = rsm->r_hw_tls;
5936 	/*
5937 	 * Now we need to find nrsm's new location in the mbuf chain
5938 	 * we basically calculate a new offset, which is soff +
5939 	 * how much is left in original rsm. Then we walk out the mbuf
5940 	 * chain to find the righ position, it may be the same mbuf
5941 	 * or maybe not.
5942 	 */
5943 	KASSERT(((rsm->m != NULL) ||
5944 		 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))),
5945 		("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack));
5946 	if (rsm->m)
5947 		rack_setup_offset_for_rsm(rsm, nrsm);
5948 }
5949 
5950 static struct rack_sendmap *
5951 rack_merge_rsm(struct tcp_rack *rack,
5952 	       struct rack_sendmap *l_rsm,
5953 	       struct rack_sendmap *r_rsm)
5954 {
5955 	/*
5956 	 * We are merging two ack'd RSM's,
5957 	 * the l_rsm is on the left (lower seq
5958 	 * values) and the r_rsm is on the right
5959 	 * (higher seq value). The simplest way
5960 	 * to merge these is to move the right
5961 	 * one into the left. I don't think there
5962 	 * is any reason we need to try to find
5963 	 * the oldest (or last oldest retransmitted).
5964 	 */
5965 #ifdef INVARIANTS
5966 	struct rack_sendmap *rm;
5967 #endif
5968 	rack_log_map_chg(rack->rc_tp, rack, NULL,
5969 			 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__);
5970 	l_rsm->r_end = r_rsm->r_end;
5971 	if (l_rsm->r_dupack < r_rsm->r_dupack)
5972 		l_rsm->r_dupack = r_rsm->r_dupack;
5973 	if (r_rsm->r_rtr_bytes)
5974 		l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
5975 	if (r_rsm->r_in_tmap) {
5976 		/* This really should not happen */
5977 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
5978 		r_rsm->r_in_tmap = 0;
5979 	}
5980 
5981 	/* Now the flags */
5982 	if (r_rsm->r_flags & RACK_HAS_FIN)
5983 		l_rsm->r_flags |= RACK_HAS_FIN;
5984 	if (r_rsm->r_flags & RACK_TLP)
5985 		l_rsm->r_flags |= RACK_TLP;
5986 	if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
5987 		l_rsm->r_flags |= RACK_RWND_COLLAPSED;
5988 	if ((r_rsm->r_flags & RACK_APP_LIMITED)  &&
5989 	    ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) {
5990 		/*
5991 		 * If both are app-limited then let the
5992 		 * free lower the count. If right is app
5993 		 * limited and left is not, transfer.
5994 		 */
5995 		l_rsm->r_flags |= RACK_APP_LIMITED;
5996 		r_rsm->r_flags &= ~RACK_APP_LIMITED;
5997 		if (r_rsm == rack->r_ctl.rc_first_appl)
5998 			rack->r_ctl.rc_first_appl = l_rsm;
5999 	}
6000 #ifndef INVARIANTS
6001 	(void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6002 #else
6003 	rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6004 	if (rm != r_rsm) {
6005 		panic("removing head in rack:%p rsm:%p rm:%p",
6006 		      rack, r_rsm, rm);
6007 	}
6008 #endif
6009 	if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
6010 		/* Transfer the split limit to the map we free */
6011 		r_rsm->r_limit_type = l_rsm->r_limit_type;
6012 		l_rsm->r_limit_type = 0;
6013 	}
6014 	rack_free(rack, r_rsm);
6015 	return (l_rsm);
6016 }
6017 
6018 /*
6019  * TLP Timer, here we simply setup what segment we want to
6020  * have the TLP expire on, the normal rack_output() will then
6021  * send it out.
6022  *
6023  * We return 1, saying don't proceed with rack_output only
6024  * when all timers have been stopped (destroyed PCB?).
6025  */
6026 static int
6027 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp)
6028 {
6029 	/*
6030 	 * Tail Loss Probe.
6031 	 */
6032 	struct rack_sendmap *rsm = NULL;
6033 #ifdef INVARIANTS
6034 	struct rack_sendmap *insret;
6035 #endif
6036 	struct socket *so = tptosocket(tp);
6037 	uint32_t amm;
6038 	uint32_t out, avail;
6039 	int collapsed_win = 0;
6040 
6041 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6042 		/* Its not time yet */
6043 		return (0);
6044 	}
6045 	if (ctf_progress_timeout_check(tp, true)) {
6046 		rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6047 		return (-ETIMEDOUT);	/* tcp_drop() */
6048 	}
6049 	/*
6050 	 * A TLP timer has expired. We have been idle for 2 rtts. So we now
6051 	 * need to figure out how to force a full MSS segment out.
6052 	 */
6053 	rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL);
6054 	rack->r_ctl.retran_during_recovery = 0;
6055 	rack->r_ctl.dsack_byte_cnt = 0;
6056 	counter_u64_add(rack_tlp_tot, 1);
6057 	if (rack->r_state && (rack->r_state != tp->t_state))
6058 		rack_set_state(tp, rack);
6059 	avail = sbavail(&so->so_snd);
6060 	out = tp->snd_max - tp->snd_una;
6061 	if ((out > tp->snd_wnd) || rack->rc_has_collapsed) {
6062 		/* special case, we need a retransmission */
6063 		collapsed_win = 1;
6064 		goto need_retran;
6065 	}
6066 	if (rack->r_ctl.dsack_persist && (rack->r_ctl.rc_tlp_cnt_out >= 1)) {
6067 		rack->r_ctl.dsack_persist--;
6068 		if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
6069 			rack->r_ctl.num_dsack = 0;
6070 		}
6071 		rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
6072 	}
6073 	if ((tp->t_flags & TF_GPUTINPROG) &&
6074 	    (rack->r_ctl.rc_tlp_cnt_out == 1)) {
6075 		/*
6076 		 * If this is the second in a row
6077 		 * TLP and we are doing a measurement
6078 		 * its time to abandon the measurement.
6079 		 * Something is likely broken on
6080 		 * the clients network and measuring a
6081 		 * broken network does us no good.
6082 		 */
6083 		tp->t_flags &= ~TF_GPUTINPROG;
6084 		rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6085 					   rack->r_ctl.rc_gp_srtt /*flex1*/,
6086 					   tp->gput_seq,
6087 					   0, 0, 18, __LINE__, NULL, 0);
6088 	}
6089 	/*
6090 	 * Check our send oldest always settings, and if
6091 	 * there is an oldest to send jump to the need_retran.
6092 	 */
6093 	if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0))
6094 		goto need_retran;
6095 
6096 	if (avail > out) {
6097 		/* New data is available */
6098 		amm = avail - out;
6099 		if (amm > ctf_fixed_maxseg(tp)) {
6100 			amm = ctf_fixed_maxseg(tp);
6101 			if ((amm + out) > tp->snd_wnd) {
6102 				/* We are rwnd limited */
6103 				goto need_retran;
6104 			}
6105 		} else if (amm < ctf_fixed_maxseg(tp)) {
6106 			/* not enough to fill a MTU */
6107 			goto need_retran;
6108 		}
6109 		if (IN_FASTRECOVERY(tp->t_flags)) {
6110 			/* Unlikely */
6111 			if (rack->rack_no_prr == 0) {
6112 				if (out + amm <= tp->snd_wnd) {
6113 					rack->r_ctl.rc_prr_sndcnt = amm;
6114 					rack->r_ctl.rc_tlp_new_data = amm;
6115 					rack_log_to_prr(rack, 4, 0, __LINE__);
6116 				}
6117 			} else
6118 				goto need_retran;
6119 		} else {
6120 			/* Set the send-new override */
6121 			if (out + amm <= tp->snd_wnd)
6122 				rack->r_ctl.rc_tlp_new_data = amm;
6123 			else
6124 				goto need_retran;
6125 		}
6126 		rack->r_ctl.rc_tlpsend = NULL;
6127 		counter_u64_add(rack_tlp_newdata, 1);
6128 		goto send;
6129 	}
6130 need_retran:
6131 	/*
6132 	 * Ok we need to arrange the last un-acked segment to be re-sent, or
6133 	 * optionally the first un-acked segment.
6134 	 */
6135 	if (collapsed_win == 0) {
6136 		if (rack_always_send_oldest)
6137 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6138 		else {
6139 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6140 			if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
6141 				rsm = rack_find_high_nonack(rack, rsm);
6142 			}
6143 		}
6144 		if (rsm == NULL) {
6145 #ifdef TCP_BLACKBOX
6146 			tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6147 #endif
6148 			goto out;
6149 		}
6150 	} else {
6151 		/*
6152 		 * We must find the last segment
6153 		 * that was acceptable by the client.
6154 		 */
6155 		RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6156 			if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
6157 				/* Found one */
6158 				break;
6159 			}
6160 		}
6161 		if (rsm == NULL) {
6162 			/* None? if so send the first */
6163 			rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6164 			if (rsm == NULL) {
6165 #ifdef TCP_BLACKBOX
6166 				tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6167 #endif
6168 				goto out;
6169 			}
6170 		}
6171 	}
6172 	if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
6173 		/*
6174 		 * We need to split this the last segment in two.
6175 		 */
6176 		struct rack_sendmap *nrsm;
6177 
6178 		nrsm = rack_alloc_full_limit(rack);
6179 		if (nrsm == NULL) {
6180 			/*
6181 			 * No memory to split, we will just exit and punt
6182 			 * off to the RXT timer.
6183 			 */
6184 			goto out;
6185 		}
6186 		rack_clone_rsm(rack, nrsm, rsm,
6187 			       (rsm->r_end - ctf_fixed_maxseg(tp)));
6188 		rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
6189 #ifndef INVARIANTS
6190 		(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6191 #else
6192 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6193 		if (insret != NULL) {
6194 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6195 			      nrsm, insret, rack, rsm);
6196 		}
6197 #endif
6198 		if (rsm->r_in_tmap) {
6199 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
6200 			nrsm->r_in_tmap = 1;
6201 		}
6202 		rsm = nrsm;
6203 	}
6204 	rack->r_ctl.rc_tlpsend = rsm;
6205 send:
6206 	/* Make sure output path knows we are doing a TLP */
6207 	*doing_tlp = 1;
6208 	rack->r_timer_override = 1;
6209 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6210 	return (0);
6211 out:
6212 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6213 	return (0);
6214 }
6215 
6216 /*
6217  * Delayed ack Timer, here we simply need to setup the
6218  * ACK_NOW flag and remove the DELACK flag. From there
6219  * the output routine will send the ack out.
6220  *
6221  * We only return 1, saying don't proceed, if all timers
6222  * are stopped (destroyed PCB?).
6223  */
6224 static int
6225 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6226 {
6227 
6228 	rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL);
6229 	tp->t_flags &= ~TF_DELACK;
6230 	tp->t_flags |= TF_ACKNOW;
6231 	KMOD_TCPSTAT_INC(tcps_delack);
6232 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
6233 	return (0);
6234 }
6235 
6236 /*
6237  * Persists timer, here we simply send the
6238  * same thing as a keepalive will.
6239  * the one byte send.
6240  *
6241  * We only return 1, saying don't proceed, if all timers
6242  * are stopped (destroyed PCB?).
6243  */
6244 static int
6245 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6246 {
6247 	struct tcptemp *t_template;
6248 	int32_t retval = 1;
6249 
6250 	if (rack->rc_in_persist == 0)
6251 		return (0);
6252 	if (ctf_progress_timeout_check(tp, false)) {
6253 		tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6254 		rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6255 		counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6256 		return (-ETIMEDOUT);	/* tcp_drop() */
6257 	}
6258 	/*
6259 	 * Persistence timer into zero window. Force a byte to be output, if
6260 	 * possible.
6261 	 */
6262 	KMOD_TCPSTAT_INC(tcps_persisttimeo);
6263 	/*
6264 	 * Hack: if the peer is dead/unreachable, we do not time out if the
6265 	 * window is closed.  After a full backoff, drop the connection if
6266 	 * the idle time (no responses to probes) reaches the maximum
6267 	 * backoff that we would use if retransmitting.
6268 	 */
6269 	if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
6270 	    (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
6271 	     TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) {
6272 		KMOD_TCPSTAT_INC(tcps_persistdrop);
6273 		tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6274 		counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6275 		retval = -ETIMEDOUT;	/* tcp_drop() */
6276 		goto out;
6277 	}
6278 	if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
6279 	    tp->snd_una == tp->snd_max)
6280 		rack_exit_persist(tp, rack, cts);
6281 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
6282 	/*
6283 	 * If the user has closed the socket then drop a persisting
6284 	 * connection after a much reduced timeout.
6285 	 */
6286 	if (tp->t_state > TCPS_CLOSE_WAIT &&
6287 	    (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
6288 		KMOD_TCPSTAT_INC(tcps_persistdrop);
6289 		tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6290 		counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6291 		retval = -ETIMEDOUT;	/* tcp_drop() */
6292 		goto out;
6293 	}
6294 	t_template = tcpip_maketemplate(rack->rc_inp);
6295 	if (t_template) {
6296 		/* only set it if we were answered */
6297 		if (rack->forced_ack == 0) {
6298 			rack->forced_ack = 1;
6299 			rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6300 		} else {
6301 			rack->probe_not_answered = 1;
6302 			counter_u64_add(rack_persists_loss, 1);
6303 			rack->r_ctl.persist_lost_ends++;
6304 		}
6305 		counter_u64_add(rack_persists_sends, 1);
6306 		tcp_respond(tp, t_template->tt_ipgen,
6307 			    &t_template->tt_t, (struct mbuf *)NULL,
6308 			    tp->rcv_nxt, tp->snd_una - 1, 0);
6309 		/* This sends an ack */
6310 		if (tp->t_flags & TF_DELACK)
6311 			tp->t_flags &= ~TF_DELACK;
6312 		free(t_template, M_TEMP);
6313 	}
6314 	if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
6315 		tp->t_rxtshift++;
6316 out:
6317 	rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL);
6318 	rack_start_hpts_timer(rack, tp, cts,
6319 			      0, 0, 0);
6320 	return (retval);
6321 }
6322 
6323 /*
6324  * If a keepalive goes off, we had no other timers
6325  * happening. We always return 1 here since this
6326  * routine either drops the connection or sends
6327  * out a segment with respond.
6328  */
6329 static int
6330 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6331 {
6332 	struct tcptemp *t_template;
6333 	struct inpcb *inp = tptoinpcb(tp);
6334 
6335 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
6336 	rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL);
6337 	/*
6338 	 * Keep-alive timer went off; send something or drop connection if
6339 	 * idle for too long.
6340 	 */
6341 	KMOD_TCPSTAT_INC(tcps_keeptimeo);
6342 	if (tp->t_state < TCPS_ESTABLISHED)
6343 		goto dropit;
6344 	if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
6345 	    tp->t_state <= TCPS_CLOSING) {
6346 		if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
6347 			goto dropit;
6348 		/*
6349 		 * Send a packet designed to force a response if the peer is
6350 		 * up and reachable: either an ACK if the connection is
6351 		 * still alive, or an RST if the peer has closed the
6352 		 * connection due to timeout or reboot. Using sequence
6353 		 * number tp->snd_una-1 causes the transmitted zero-length
6354 		 * segment to lie outside the receive window; by the
6355 		 * protocol spec, this requires the correspondent TCP to
6356 		 * respond.
6357 		 */
6358 		KMOD_TCPSTAT_INC(tcps_keepprobe);
6359 		t_template = tcpip_maketemplate(inp);
6360 		if (t_template) {
6361 			if (rack->forced_ack == 0) {
6362 				rack->forced_ack = 1;
6363 				rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6364 			} else {
6365 				rack->probe_not_answered = 1;
6366 			}
6367 			tcp_respond(tp, t_template->tt_ipgen,
6368 			    &t_template->tt_t, (struct mbuf *)NULL,
6369 			    tp->rcv_nxt, tp->snd_una - 1, 0);
6370 			free(t_template, M_TEMP);
6371 		}
6372 	}
6373 	rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
6374 	return (1);
6375 dropit:
6376 	KMOD_TCPSTAT_INC(tcps_keepdrops);
6377 	tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6378 	return (-ETIMEDOUT);	/* tcp_drop() */
6379 }
6380 
6381 /*
6382  * Retransmit helper function, clear up all the ack
6383  * flags and take care of important book keeping.
6384  */
6385 static void
6386 rack_remxt_tmr(struct tcpcb *tp)
6387 {
6388 	/*
6389 	 * The retransmit timer went off, all sack'd blocks must be
6390 	 * un-acked.
6391 	 */
6392 	struct rack_sendmap *rsm, *trsm = NULL;
6393 	struct tcp_rack *rack;
6394 
6395 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6396 	rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__);
6397 	rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL);
6398 	if (rack->r_state && (rack->r_state != tp->t_state))
6399 		rack_set_state(tp, rack);
6400 	/*
6401 	 * Ideally we would like to be able to
6402 	 * mark SACK-PASS on anything not acked here.
6403 	 *
6404 	 * However, if we do that we would burst out
6405 	 * all that data 1ms apart. This would be unwise,
6406 	 * so for now we will just let the normal rxt timer
6407 	 * and tlp timer take care of it.
6408 	 *
6409 	 * Also we really need to stick them back in sequence
6410 	 * order. This way we send in the proper order and any
6411 	 * sacks that come floating in will "re-ack" the data.
6412 	 * To do this we zap the tmap with an INIT and then
6413 	 * walk through and place every rsm in the RB tree
6414 	 * back in its seq ordered place.
6415 	 */
6416 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
6417 	RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6418 		rsm->r_dupack = 0;
6419 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
6420 		/* We must re-add it back to the tlist */
6421 		if (trsm == NULL) {
6422 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6423 		} else {
6424 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
6425 		}
6426 		rsm->r_in_tmap = 1;
6427 		trsm = rsm;
6428 		if (rsm->r_flags & RACK_ACKED)
6429 			rsm->r_flags |= RACK_WAS_ACKED;
6430 		rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS | RACK_RWND_COLLAPSED);
6431 		rsm->r_flags |= RACK_MUST_RXT;
6432 	}
6433 	/* Clear the count (we just un-acked them) */
6434 	rack->r_ctl.rc_last_timeout_snduna = tp->snd_una;
6435 	rack->r_ctl.rc_sacked = 0;
6436 	rack->r_ctl.rc_sacklast = NULL;
6437 	rack->r_ctl.rc_agg_delayed = 0;
6438 	rack->r_early = 0;
6439 	rack->r_ctl.rc_agg_early = 0;
6440 	rack->r_late = 0;
6441 	/* Clear the tlp rtx mark */
6442 	rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6443 	if (rack->r_ctl.rc_resend != NULL)
6444 		rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT;
6445 	rack->r_ctl.rc_prr_sndcnt = 0;
6446 	rack_log_to_prr(rack, 6, 0, __LINE__);
6447 	rack->r_timer_override = 1;
6448 	if ((((tp->t_flags & TF_SACK_PERMIT) == 0)
6449 #ifdef NETFLIX_EXP_DETECTION
6450 	    || (rack->sack_attack_disable != 0)
6451 #endif
6452 		    ) && ((tp->t_flags & TF_SENTFIN) == 0)) {
6453 		/*
6454 		 * For non-sack customers new data
6455 		 * needs to go out as retransmits until
6456 		 * we retransmit up to snd_max.
6457 		 */
6458 		rack->r_must_retran = 1;
6459 		rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp,
6460 						rack->r_ctl.rc_sacked);
6461 	}
6462 	rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
6463 }
6464 
6465 static void
6466 rack_convert_rtts(struct tcpcb *tp)
6467 {
6468 	if (tp->t_srtt > 1) {
6469 		uint32_t val, frac;
6470 
6471 		val = tp->t_srtt >> TCP_RTT_SHIFT;
6472 		frac = tp->t_srtt & 0x1f;
6473 		tp->t_srtt = TICKS_2_USEC(val);
6474 		/*
6475 		 * frac is the fractional part of the srtt (if any)
6476 		 * but its in ticks and every bit represents
6477 		 * 1/32nd of a hz.
6478 		 */
6479 		if (frac) {
6480 			if (hz == 1000) {
6481 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6482 			} else {
6483 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6484 			}
6485 			tp->t_srtt += frac;
6486 		}
6487 	}
6488 	if (tp->t_rttvar) {
6489 		uint32_t val, frac;
6490 
6491 		val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
6492 		frac = tp->t_rttvar & 0x1f;
6493 		tp->t_rttvar = TICKS_2_USEC(val);
6494 		/*
6495 		 * frac is the fractional part of the srtt (if any)
6496 		 * but its in ticks and every bit represents
6497 		 * 1/32nd of a hz.
6498 		 */
6499 		if (frac) {
6500 			if (hz == 1000) {
6501 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6502 			} else {
6503 				frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6504 			}
6505 			tp->t_rttvar += frac;
6506 		}
6507 	}
6508 	tp->t_rxtcur = RACK_REXMTVAL(tp);
6509 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
6510 		tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop);
6511 	}
6512 	if (tp->t_rxtcur > rack_rto_max) {
6513 		tp->t_rxtcur = rack_rto_max;
6514 	}
6515 }
6516 
6517 static void
6518 rack_cc_conn_init(struct tcpcb *tp)
6519 {
6520 	struct tcp_rack *rack;
6521 	uint32_t srtt;
6522 
6523 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6524 	srtt = tp->t_srtt;
6525 	cc_conn_init(tp);
6526 	/*
6527 	 * Now convert to rack's internal format,
6528 	 * if required.
6529 	 */
6530 	if ((srtt == 0) && (tp->t_srtt != 0))
6531 		rack_convert_rtts(tp);
6532 	/*
6533 	 * We want a chance to stay in slowstart as
6534 	 * we create a connection. TCP spec says that
6535 	 * initially ssthresh is infinite. For our
6536 	 * purposes that is the snd_wnd.
6537 	 */
6538 	if (tp->snd_ssthresh < tp->snd_wnd) {
6539 		tp->snd_ssthresh = tp->snd_wnd;
6540 	}
6541 	/*
6542 	 * We also want to assure a IW worth of
6543 	 * data can get inflight.
6544 	 */
6545 	if (rc_init_window(rack) < tp->snd_cwnd)
6546 		tp->snd_cwnd = rc_init_window(rack);
6547 }
6548 
6549 /*
6550  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
6551  * we will setup to retransmit the lowest seq number outstanding.
6552  */
6553 static int
6554 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6555 {
6556 	struct inpcb *inp = tptoinpcb(tp);
6557 	int32_t rexmt;
6558 	int32_t retval = 0;
6559 	bool isipv6;
6560 
6561 	if ((tp->t_flags & TF_GPUTINPROG) &&
6562 	    (tp->t_rxtshift)) {
6563 		/*
6564 		 * We have had a second timeout
6565 		 * measurements on successive rxt's are not profitable.
6566 		 * It is unlikely to be of any use (the network is
6567 		 * broken or the client went away).
6568 		 */
6569 		tp->t_flags &= ~TF_GPUTINPROG;
6570 		rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6571 					   rack->r_ctl.rc_gp_srtt /*flex1*/,
6572 					   tp->gput_seq,
6573 					   0, 0, 18, __LINE__, NULL, 0);
6574 	}
6575 	if (ctf_progress_timeout_check(tp, false)) {
6576 		tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6577 		rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6578 		return (-ETIMEDOUT);	/* tcp_drop() */
6579 	}
6580 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
6581 	rack->r_ctl.retran_during_recovery = 0;
6582 	rack->rc_ack_required = 1;
6583 	rack->r_ctl.dsack_byte_cnt = 0;
6584 	if (IN_FASTRECOVERY(tp->t_flags))
6585 		tp->t_flags |= TF_WASFRECOVERY;
6586 	else
6587 		tp->t_flags &= ~TF_WASFRECOVERY;
6588 	if (IN_CONGRECOVERY(tp->t_flags))
6589 		tp->t_flags |= TF_WASCRECOVERY;
6590 	else
6591 		tp->t_flags &= ~TF_WASCRECOVERY;
6592 	if (TCPS_HAVEESTABLISHED(tp->t_state) &&
6593 	    (tp->snd_una == tp->snd_max)) {
6594 		/* Nothing outstanding .. nothing to do */
6595 		return (0);
6596 	}
6597 	if (rack->r_ctl.dsack_persist) {
6598 		rack->r_ctl.dsack_persist--;
6599 		if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
6600 			rack->r_ctl.num_dsack = 0;
6601 		}
6602 		rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
6603 	}
6604 	/*
6605 	 * Rack can only run one timer  at a time, so we cannot
6606 	 * run a KEEPINIT (gating SYN sending) and a retransmit
6607 	 * timer for the SYN. So if we are in a front state and
6608 	 * have a KEEPINIT timer we need to check the first transmit
6609 	 * against now to see if we have exceeded the KEEPINIT time
6610 	 * (if one is set).
6611 	 */
6612 	if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
6613 	    (TP_KEEPINIT(tp) != 0)) {
6614 		struct rack_sendmap *rsm;
6615 
6616 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6617 		if (rsm) {
6618 			/* Ok we have something outstanding to test keepinit with */
6619 			if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) &&
6620 			    ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) {
6621 				/* We have exceeded the KEEPINIT time */
6622 				tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6623 				goto drop_it;
6624 			}
6625 		}
6626 	}
6627 	/*
6628 	 * Retransmission timer went off.  Message has not been acked within
6629 	 * retransmit interval.  Back off to a longer retransmit interval
6630 	 * and retransmit one segment.
6631 	 */
6632 	rack_remxt_tmr(tp);
6633 	if ((rack->r_ctl.rc_resend == NULL) ||
6634 	    ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
6635 		/*
6636 		 * If the rwnd collapsed on
6637 		 * the one we are retransmitting
6638 		 * it does not count against the
6639 		 * rxt count.
6640 		 */
6641 		tp->t_rxtshift++;
6642 	}
6643 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
6644 		tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6645 drop_it:
6646 		tp->t_rxtshift = TCP_MAXRXTSHIFT;
6647 		KMOD_TCPSTAT_INC(tcps_timeoutdrop);
6648 		/* XXXGL: previously t_softerror was casted to uint16_t */
6649 		MPASS(tp->t_softerror >= 0);
6650 		retval = tp->t_softerror ? -tp->t_softerror : -ETIMEDOUT;
6651 		goto out;	/* tcp_drop() */
6652 	}
6653 	if (tp->t_state == TCPS_SYN_SENT) {
6654 		/*
6655 		 * If the SYN was retransmitted, indicate CWND to be limited
6656 		 * to 1 segment in cc_conn_init().
6657 		 */
6658 		tp->snd_cwnd = 1;
6659 	} else if (tp->t_rxtshift == 1) {
6660 		/*
6661 		 * first retransmit; record ssthresh and cwnd so they can be
6662 		 * recovered if this turns out to be a "bad" retransmit. A
6663 		 * retransmit is considered "bad" if an ACK for this segment
6664 		 * is received within RTT/2 interval; the assumption here is
6665 		 * that the ACK was already in flight.  See "On Estimating
6666 		 * End-to-End Network Path Properties" by Allman and Paxson
6667 		 * for more details.
6668 		 */
6669 		tp->snd_cwnd_prev = tp->snd_cwnd;
6670 		tp->snd_ssthresh_prev = tp->snd_ssthresh;
6671 		tp->snd_recover_prev = tp->snd_recover;
6672 		tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2);
6673 		tp->t_flags |= TF_PREVVALID;
6674 	} else if ((tp->t_flags & TF_RCVD_TSTMP) == 0)
6675 		tp->t_flags &= ~TF_PREVVALID;
6676 	KMOD_TCPSTAT_INC(tcps_rexmttimeo);
6677 	if ((tp->t_state == TCPS_SYN_SENT) ||
6678 	    (tp->t_state == TCPS_SYN_RECEIVED))
6679 		rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift];
6680 	else
6681 		rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift];
6682 
6683 	RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt,
6684 	   max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop);
6685 	/*
6686 	 * We enter the path for PLMTUD if connection is established or, if
6687 	 * connection is FIN_WAIT_1 status, reason for the last is that if
6688 	 * amount of data we send is very small, we could send it in couple
6689 	 * of packets and process straight to FIN. In that case we won't
6690 	 * catch ESTABLISHED state.
6691 	 */
6692 #ifdef INET6
6693 	isipv6 = (inp->inp_vflag & INP_IPV6) ? true : false;
6694 #else
6695 	isipv6 = false;
6696 #endif
6697 	if (((V_tcp_pmtud_blackhole_detect == 1) ||
6698 	    (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
6699 	    (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
6700 	    ((tp->t_state == TCPS_ESTABLISHED) ||
6701 	    (tp->t_state == TCPS_FIN_WAIT_1))) {
6702 		/*
6703 		 * Idea here is that at each stage of mtu probe (usually,
6704 		 * 1448 -> 1188 -> 524) should be given 2 chances to recover
6705 		 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
6706 		 * should take care of that.
6707 		 */
6708 		if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
6709 		    (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
6710 		    (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
6711 		    tp->t_rxtshift % 2 == 0)) {
6712 			/*
6713 			 * Enter Path MTU Black-hole Detection mechanism: -
6714 			 * Disable Path MTU Discovery (IP "DF" bit). -
6715 			 * Reduce MTU to lower value than what we negotiated
6716 			 * with peer.
6717 			 */
6718 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
6719 				/* Record that we may have found a black hole. */
6720 				tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
6721 				/* Keep track of previous MSS. */
6722 				tp->t_pmtud_saved_maxseg = tp->t_maxseg;
6723 			}
6724 
6725 			/*
6726 			 * Reduce the MSS to blackhole value or to the
6727 			 * default in an attempt to retransmit.
6728 			 */
6729 #ifdef INET6
6730 			if (isipv6 &&
6731 			    tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
6732 				/* Use the sysctl tuneable blackhole MSS. */
6733 				tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
6734 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6735 			} else if (isipv6) {
6736 				/* Use the default MSS. */
6737 				tp->t_maxseg = V_tcp_v6mssdflt;
6738 				/*
6739 				 * Disable Path MTU Discovery when we switch
6740 				 * to minmss.
6741 				 */
6742 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6743 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6744 			}
6745 #endif
6746 #if defined(INET6) && defined(INET)
6747 			else
6748 #endif
6749 #ifdef INET
6750 			if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
6751 				/* Use the sysctl tuneable blackhole MSS. */
6752 				tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
6753 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6754 			} else {
6755 				/* Use the default MSS. */
6756 				tp->t_maxseg = V_tcp_mssdflt;
6757 				/*
6758 				 * Disable Path MTU Discovery when we switch
6759 				 * to minmss.
6760 				 */
6761 				tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6762 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6763 			}
6764 #endif
6765 		} else {
6766 			/*
6767 			 * If further retransmissions are still unsuccessful
6768 			 * with a lowered MTU, maybe this isn't a blackhole
6769 			 * and we restore the previous MSS and blackhole
6770 			 * detection flags. The limit '6' is determined by
6771 			 * giving each probe stage (1448, 1188, 524) 2
6772 			 * chances to recover.
6773 			 */
6774 			if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
6775 			    (tp->t_rxtshift >= 6)) {
6776 				tp->t_flags2 |= TF2_PLPMTU_PMTUD;
6777 				tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
6778 				tp->t_maxseg = tp->t_pmtud_saved_maxseg;
6779 				KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
6780 			}
6781 		}
6782 	}
6783 	/*
6784 	 * Disable RFC1323 and SACK if we haven't got any response to
6785 	 * our third SYN to work-around some broken terminal servers
6786 	 * (most of which have hopefully been retired) that have bad VJ
6787 	 * header compression code which trashes TCP segments containing
6788 	 * unknown-to-them TCP options.
6789 	 */
6790 	if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
6791 	    (tp->t_rxtshift == 3))
6792 		tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT);
6793 	/*
6794 	 * If we backed off this far, our srtt estimate is probably bogus.
6795 	 * Clobber it so we'll take the next rtt measurement as our srtt;
6796 	 * move the current srtt into rttvar to keep the current retransmit
6797 	 * times until then.
6798 	 */
6799 	if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
6800 #ifdef INET6
6801 		if ((inp->inp_vflag & INP_IPV6) != 0)
6802 			in6_losing(inp);
6803 		else
6804 #endif
6805 			in_losing(inp);
6806 		tp->t_rttvar += tp->t_srtt;
6807 		tp->t_srtt = 0;
6808 	}
6809 	sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6810 	tp->snd_recover = tp->snd_max;
6811 	tp->t_flags |= TF_ACKNOW;
6812 	tp->t_rtttime = 0;
6813 	rack_cong_signal(tp, CC_RTO, tp->snd_una, __LINE__);
6814 out:
6815 	return (retval);
6816 }
6817 
6818 static int
6819 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp)
6820 {
6821 	int32_t ret = 0;
6822 	int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
6823 
6824 	if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
6825 	    (tp->t_flags & TF_GPUTINPROG)) {
6826 		/*
6827 		 * We have a goodput in progress
6828 		 * and we have entered a late state.
6829 		 * Do we have enough data in the sb
6830 		 * to handle the GPUT request?
6831 		 */
6832 		uint32_t bytes;
6833 
6834 		bytes = tp->gput_ack - tp->gput_seq;
6835 		if (SEQ_GT(tp->gput_seq, tp->snd_una))
6836 			bytes += tp->gput_seq - tp->snd_una;
6837 		if (bytes > sbavail(&tptosocket(tp)->so_snd)) {
6838 			/*
6839 			 * There are not enough bytes in the socket
6840 			 * buffer that have been sent to cover this
6841 			 * measurement. Cancel it.
6842 			 */
6843 			rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6844 						   rack->r_ctl.rc_gp_srtt /*flex1*/,
6845 						   tp->gput_seq,
6846 						   0, 0, 18, __LINE__, NULL, 0);
6847 			tp->t_flags &= ~TF_GPUTINPROG;
6848 		}
6849 	}
6850 	if (timers == 0) {
6851 		return (0);
6852 	}
6853 	if (tp->t_state == TCPS_LISTEN) {
6854 		/* no timers on listen sockets */
6855 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
6856 			return (0);
6857 		return (1);
6858 	}
6859 	if ((timers & PACE_TMR_RACK) &&
6860 	    rack->rc_on_min_to) {
6861 		/*
6862 		 * For the rack timer when we
6863 		 * are on a min-timeout (which means rrr_conf = 3)
6864 		 * we don't want to check the timer. It may
6865 		 * be going off for a pace and thats ok we
6866 		 * want to send the retransmit (if its ready).
6867 		 *
6868 		 * If its on a normal rack timer (non-min) then
6869 		 * we will check if its expired.
6870 		 */
6871 		goto skip_time_check;
6872 	}
6873 	if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6874 		uint32_t left;
6875 
6876 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
6877 			ret = -1;
6878 			rack_log_to_processing(rack, cts, ret, 0);
6879 			return (0);
6880 		}
6881 		if (hpts_calling == 0) {
6882 			/*
6883 			 * A user send or queued mbuf (sack) has called us? We
6884 			 * return 0 and let the pacing guards
6885 			 * deal with it if they should or
6886 			 * should not cause a send.
6887 			 */
6888 			ret = -2;
6889 			rack_log_to_processing(rack, cts, ret, 0);
6890 			return (0);
6891 		}
6892 		/*
6893 		 * Ok our timer went off early and we are not paced false
6894 		 * alarm, go back to sleep.
6895 		 */
6896 		ret = -3;
6897 		left = rack->r_ctl.rc_timer_exp - cts;
6898 		tcp_hpts_insert(tptoinpcb(tp), HPTS_MS_TO_SLOTS(left));
6899 		rack_log_to_processing(rack, cts, ret, left);
6900 		return (1);
6901 	}
6902 skip_time_check:
6903 	rack->rc_tmr_stopped = 0;
6904 	rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
6905 	if (timers & PACE_TMR_DELACK) {
6906 		ret = rack_timeout_delack(tp, rack, cts);
6907 	} else if (timers & PACE_TMR_RACK) {
6908 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
6909 		rack->r_fast_output = 0;
6910 		ret = rack_timeout_rack(tp, rack, cts);
6911 	} else if (timers & PACE_TMR_TLP) {
6912 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
6913 		ret = rack_timeout_tlp(tp, rack, cts, doing_tlp);
6914 	} else if (timers & PACE_TMR_RXT) {
6915 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
6916 		rack->r_fast_output = 0;
6917 		ret = rack_timeout_rxt(tp, rack, cts);
6918 	} else if (timers & PACE_TMR_PERSIT) {
6919 		ret = rack_timeout_persist(tp, rack, cts);
6920 	} else if (timers & PACE_TMR_KEEP) {
6921 		ret = rack_timeout_keepalive(tp, rack, cts);
6922 	}
6923 	rack_log_to_processing(rack, cts, ret, timers);
6924 	return (ret);
6925 }
6926 
6927 static void
6928 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
6929 {
6930 	struct timeval tv;
6931 	uint32_t us_cts, flags_on_entry;
6932 	uint8_t hpts_removed = 0;
6933 
6934 	flags_on_entry = rack->r_ctl.rc_hpts_flags;
6935 	us_cts = tcp_get_usecs(&tv);
6936 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
6937 	    ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) ||
6938 	     ((tp->snd_max - tp->snd_una) == 0))) {
6939 		tcp_hpts_remove(rack->rc_inp);
6940 		hpts_removed = 1;
6941 		/* If we were not delayed cancel out the flag. */
6942 		if ((tp->snd_max - tp->snd_una) == 0)
6943 			rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
6944 		rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
6945 	}
6946 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
6947 		rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
6948 		if (tcp_in_hpts(rack->rc_inp) &&
6949 		    ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
6950 			/*
6951 			 * Canceling timer's when we have no output being
6952 			 * paced. We also must remove ourselves from the
6953 			 * hpts.
6954 			 */
6955 			tcp_hpts_remove(rack->rc_inp);
6956 			hpts_removed = 1;
6957 		}
6958 		rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
6959 	}
6960 	if (hpts_removed == 0)
6961 		rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
6962 }
6963 
6964 static int
6965 rack_stopall(struct tcpcb *tp)
6966 {
6967 	struct tcp_rack *rack;
6968 	rack = (struct tcp_rack *)tp->t_fb_ptr;
6969 	rack->t_timers_stopped = 1;
6970 	return (0);
6971 }
6972 
6973 static void
6974 rack_stop_all_timers(struct tcpcb *tp)
6975 {
6976 	struct tcp_rack *rack;
6977 
6978 	/*
6979 	 * Assure no timers are running.
6980 	 */
6981 	if (tcp_timer_active(tp, TT_PERSIST)) {
6982 		/* We enter in persists, set the flag appropriately */
6983 		rack = (struct tcp_rack *)tp->t_fb_ptr;
6984 		rack->rc_in_persist = 1;
6985 	}
6986 }
6987 
6988 static void
6989 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
6990     struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag)
6991 {
6992 	int32_t idx;
6993 
6994 	rsm->r_rtr_cnt++;
6995 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
6996 	rsm->r_dupack = 0;
6997 	if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
6998 		rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
6999 		rsm->r_flags |= RACK_OVERMAX;
7000 	}
7001 	if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) {
7002 		rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
7003 		rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
7004 	}
7005 	idx = rsm->r_rtr_cnt - 1;
7006 	rsm->r_tim_lastsent[idx] = ts;
7007 	/*
7008 	 * Here we don't add in the len of send, since its already
7009 	 * in snduna <->snd_max.
7010 	 */
7011 	rsm->r_fas = ctf_flight_size(rack->rc_tp,
7012 				     rack->r_ctl.rc_sacked);
7013 	if (rsm->r_flags & RACK_ACKED) {
7014 		/* Problably MTU discovery messing with us */
7015 		rsm->r_flags &= ~RACK_ACKED;
7016 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
7017 	}
7018 	if (rsm->r_in_tmap) {
7019 		TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7020 		rsm->r_in_tmap = 0;
7021 	}
7022 	TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7023 	rsm->r_in_tmap = 1;
7024 	/* Take off the must retransmit flag, if its on */
7025 	if (rsm->r_flags & RACK_MUST_RXT) {
7026 		if (rack->r_must_retran)
7027 			rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
7028 		if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
7029 			/*
7030 			 * We have retransmitted all we need. Clear
7031 			 * any must retransmit flags.
7032 			 */
7033 			rack->r_must_retran = 0;
7034 			rack->r_ctl.rc_out_at_rto = 0;
7035 		}
7036 		rsm->r_flags &= ~RACK_MUST_RXT;
7037 	}
7038 	if (rsm->r_flags & RACK_SACK_PASSED) {
7039 		/* We have retransmitted due to the SACK pass */
7040 		rsm->r_flags &= ~RACK_SACK_PASSED;
7041 		rsm->r_flags |= RACK_WAS_SACKPASS;
7042 	}
7043 }
7044 
7045 static uint32_t
7046 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
7047     struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag)
7048 {
7049 	/*
7050 	 * We (re-)transmitted starting at rsm->r_start for some length
7051 	 * (possibly less than r_end.
7052 	 */
7053 	struct rack_sendmap *nrsm;
7054 #ifdef INVARIANTS
7055 	struct rack_sendmap *insret;
7056 #endif
7057 	uint32_t c_end;
7058 	int32_t len;
7059 
7060 	len = *lenp;
7061 	c_end = rsm->r_start + len;
7062 	if (SEQ_GEQ(c_end, rsm->r_end)) {
7063 		/*
7064 		 * We retransmitted the whole piece or more than the whole
7065 		 * slopping into the next rsm.
7066 		 */
7067 		rack_update_rsm(tp, rack, rsm, ts, add_flag);
7068 		if (c_end == rsm->r_end) {
7069 			*lenp = 0;
7070 			return (0);
7071 		} else {
7072 			int32_t act_len;
7073 
7074 			/* Hangs over the end return whats left */
7075 			act_len = rsm->r_end - rsm->r_start;
7076 			*lenp = (len - act_len);
7077 			return (rsm->r_end);
7078 		}
7079 		/* We don't get out of this block. */
7080 	}
7081 	/*
7082 	 * Here we retransmitted less than the whole thing which means we
7083 	 * have to split this into what was transmitted and what was not.
7084 	 */
7085 	nrsm = rack_alloc_full_limit(rack);
7086 	if (nrsm == NULL) {
7087 		/*
7088 		 * We can't get memory, so lets not proceed.
7089 		 */
7090 		*lenp = 0;
7091 		return (0);
7092 	}
7093 	/*
7094 	 * So here we are going to take the original rsm and make it what we
7095 	 * retransmitted. nrsm will be the tail portion we did not
7096 	 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
7097 	 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
7098 	 * 1, 6 and the new piece will be 6, 11.
7099 	 */
7100 	rack_clone_rsm(rack, nrsm, rsm, c_end);
7101 	nrsm->r_dupack = 0;
7102 	rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
7103 #ifndef INVARIANTS
7104 	(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7105 #else
7106 	insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7107 	if (insret != NULL) {
7108 		panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7109 		      nrsm, insret, rack, rsm);
7110 	}
7111 #endif
7112 	if (rsm->r_in_tmap) {
7113 		TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7114 		nrsm->r_in_tmap = 1;
7115 	}
7116 	rsm->r_flags &= (~RACK_HAS_FIN);
7117 	rack_update_rsm(tp, rack, rsm, ts, add_flag);
7118 	/* Log a split of rsm into rsm and nrsm */
7119 	rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7120 	*lenp = 0;
7121 	return (0);
7122 }
7123 
7124 static void
7125 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
7126 		uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t cts,
7127 		struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff, int hw_tls)
7128 {
7129 	struct tcp_rack *rack;
7130 	struct rack_sendmap *rsm, *nrsm, fe;
7131 #ifdef INVARIANTS
7132 	struct rack_sendmap *insret;
7133 #endif
7134 	register uint32_t snd_max, snd_una;
7135 
7136 	/*
7137 	 * Add to the RACK log of packets in flight or retransmitted. If
7138 	 * there is a TS option we will use the TS echoed, if not we will
7139 	 * grab a TS.
7140 	 *
7141 	 * Retransmissions will increment the count and move the ts to its
7142 	 * proper place. Note that if options do not include TS's then we
7143 	 * won't be able to effectively use the ACK for an RTT on a retran.
7144 	 *
7145 	 * Notes about r_start and r_end. Lets consider a send starting at
7146 	 * sequence 1 for 10 bytes. In such an example the r_start would be
7147 	 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
7148 	 * This means that r_end is actually the first sequence for the next
7149 	 * slot (11).
7150 	 *
7151 	 */
7152 	/*
7153 	 * If err is set what do we do XXXrrs? should we not add the thing?
7154 	 * -- i.e. return if err != 0 or should we pretend we sent it? --
7155 	 * i.e. proceed with add ** do this for now.
7156 	 */
7157 	INP_WLOCK_ASSERT(tptoinpcb(tp));
7158 	if (err)
7159 		/*
7160 		 * We don't log errors -- we could but snd_max does not
7161 		 * advance in this case either.
7162 		 */
7163 		return;
7164 
7165 	if (th_flags & TH_RST) {
7166 		/*
7167 		 * We don't log resets and we return immediately from
7168 		 * sending
7169 		 */
7170 		return;
7171 	}
7172 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7173 	snd_una = tp->snd_una;
7174 	snd_max = tp->snd_max;
7175 	if (th_flags & (TH_SYN | TH_FIN)) {
7176 		/*
7177 		 * The call to rack_log_output is made before bumping
7178 		 * snd_max. This means we can record one extra byte on a SYN
7179 		 * or FIN if seq_out is adding more on and a FIN is present
7180 		 * (and we are not resending).
7181 		 */
7182 		if ((th_flags & TH_SYN) && (seq_out == tp->iss))
7183 			len++;
7184 		if (th_flags & TH_FIN)
7185 			len++;
7186 		if (SEQ_LT(snd_max, tp->snd_nxt)) {
7187 			/*
7188 			 * The add/update as not been done for the FIN/SYN
7189 			 * yet.
7190 			 */
7191 			snd_max = tp->snd_nxt;
7192 		}
7193 	}
7194 	if (SEQ_LEQ((seq_out + len), snd_una)) {
7195 		/* Are sending an old segment to induce an ack (keep-alive)? */
7196 		return;
7197 	}
7198 	if (SEQ_LT(seq_out, snd_una)) {
7199 		/* huh? should we panic? */
7200 		uint32_t end;
7201 
7202 		end = seq_out + len;
7203 		seq_out = snd_una;
7204 		if (SEQ_GEQ(end, seq_out))
7205 			len = end - seq_out;
7206 		else
7207 			len = 0;
7208 	}
7209 	if (len == 0) {
7210 		/* We don't log zero window probes */
7211 		return;
7212 	}
7213 	if (IN_FASTRECOVERY(tp->t_flags)) {
7214 		rack->r_ctl.rc_prr_out += len;
7215 	}
7216 	/* First question is it a retransmission or new? */
7217 	if (seq_out == snd_max) {
7218 		/* Its new */
7219 again:
7220 		rsm = rack_alloc(rack);
7221 		if (rsm == NULL) {
7222 			/*
7223 			 * Hmm out of memory and the tcb got destroyed while
7224 			 * we tried to wait.
7225 			 */
7226 			return;
7227 		}
7228 		if (th_flags & TH_FIN) {
7229 			rsm->r_flags = RACK_HAS_FIN|add_flag;
7230 		} else {
7231 			rsm->r_flags = add_flag;
7232 		}
7233 		if (hw_tls)
7234 			rsm->r_hw_tls = 1;
7235 		rsm->r_tim_lastsent[0] = cts;
7236 		rsm->r_rtr_cnt = 1;
7237 		rsm->r_rtr_bytes = 0;
7238 		if (th_flags & TH_SYN) {
7239 			/* The data space is one beyond snd_una */
7240 			rsm->r_flags |= RACK_HAS_SYN;
7241 		}
7242 		rsm->r_start = seq_out;
7243 		rsm->r_end = rsm->r_start + len;
7244 		rsm->r_dupack = 0;
7245 		/*
7246 		 * save off the mbuf location that
7247 		 * sndmbuf_noadv returned (which is
7248 		 * where we started copying from)..
7249 		 */
7250 		rsm->m = s_mb;
7251 		rsm->soff = s_moff;
7252 		/*
7253 		 * Here we do add in the len of send, since its not yet
7254 		 * reflected in in snduna <->snd_max
7255 		 */
7256 		rsm->r_fas = (ctf_flight_size(rack->rc_tp,
7257 					      rack->r_ctl.rc_sacked) +
7258 			      (rsm->r_end - rsm->r_start));
7259 		/* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */
7260 		if (rsm->m) {
7261 			if (rsm->m->m_len <= rsm->soff) {
7262 				/*
7263 				 * XXXrrs Question, will this happen?
7264 				 *
7265 				 * If sbsndptr is set at the correct place
7266 				 * then s_moff should always be somewhere
7267 				 * within rsm->m. But if the sbsndptr was
7268 				 * off then that won't be true. If it occurs
7269 				 * we need to walkout to the correct location.
7270 				 */
7271 				struct mbuf *lm;
7272 
7273 				lm = rsm->m;
7274 				while (lm->m_len <= rsm->soff) {
7275 					rsm->soff -= lm->m_len;
7276 					lm = lm->m_next;
7277 					KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u",
7278 							     __func__, rack, s_moff, s_mb, rsm->soff));
7279 				}
7280 				rsm->m = lm;
7281 			}
7282 			rsm->orig_m_len = rsm->m->m_len;
7283 		} else
7284 			rsm->orig_m_len = 0;
7285 		rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7286 		/* Log a new rsm */
7287 		rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__);
7288 #ifndef INVARIANTS
7289 		(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7290 #else
7291 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7292 		if (insret != NULL) {
7293 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7294 			      nrsm, insret, rack, rsm);
7295 		}
7296 #endif
7297 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7298 		rsm->r_in_tmap = 1;
7299 		/*
7300 		 * Special case detection, is there just a single
7301 		 * packet outstanding when we are not in recovery?
7302 		 *
7303 		 * If this is true mark it so.
7304 		 */
7305 		if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
7306 		    (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) {
7307 			struct rack_sendmap *prsm;
7308 
7309 			prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7310 			if (prsm)
7311 				prsm->r_one_out_nr = 1;
7312 		}
7313 		return;
7314 	}
7315 	/*
7316 	 * If we reach here its a retransmission and we need to find it.
7317 	 */
7318 	memset(&fe, 0, sizeof(fe));
7319 more:
7320 	if (hintrsm && (hintrsm->r_start == seq_out)) {
7321 		rsm = hintrsm;
7322 		hintrsm = NULL;
7323 	} else {
7324 		/* No hints sorry */
7325 		rsm = NULL;
7326 	}
7327 	if ((rsm) && (rsm->r_start == seq_out)) {
7328 		seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7329 		if (len == 0) {
7330 			return;
7331 		} else {
7332 			goto more;
7333 		}
7334 	}
7335 	/* Ok it was not the last pointer go through it the hard way. */
7336 refind:
7337 	fe.r_start = seq_out;
7338 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
7339 	if (rsm) {
7340 		if (rsm->r_start == seq_out) {
7341 			seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7342 			if (len == 0) {
7343 				return;
7344 			} else {
7345 				goto refind;
7346 			}
7347 		}
7348 		if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
7349 			/* Transmitted within this piece */
7350 			/*
7351 			 * Ok we must split off the front and then let the
7352 			 * update do the rest
7353 			 */
7354 			nrsm = rack_alloc_full_limit(rack);
7355 			if (nrsm == NULL) {
7356 				rack_update_rsm(tp, rack, rsm, cts, add_flag);
7357 				return;
7358 			}
7359 			/*
7360 			 * copy rsm to nrsm and then trim the front of rsm
7361 			 * to not include this part.
7362 			 */
7363 			rack_clone_rsm(rack, nrsm, rsm, seq_out);
7364 			rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7365 #ifndef INVARIANTS
7366 			(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7367 #else
7368 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7369 			if (insret != NULL) {
7370 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7371 				      nrsm, insret, rack, rsm);
7372 			}
7373 #endif
7374 			if (rsm->r_in_tmap) {
7375 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7376 				nrsm->r_in_tmap = 1;
7377 			}
7378 			rsm->r_flags &= (~RACK_HAS_FIN);
7379 			seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag);
7380 			if (len == 0) {
7381 				return;
7382 			} else if (len > 0)
7383 				goto refind;
7384 		}
7385 	}
7386 	/*
7387 	 * Hmm not found in map did they retransmit both old and on into the
7388 	 * new?
7389 	 */
7390 	if (seq_out == tp->snd_max) {
7391 		goto again;
7392 	} else if (SEQ_LT(seq_out, tp->snd_max)) {
7393 #ifdef INVARIANTS
7394 		printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
7395 		       seq_out, len, tp->snd_una, tp->snd_max);
7396 		printf("Starting Dump of all rack entries\n");
7397 		RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
7398 			printf("rsm:%p start:%u end:%u\n",
7399 			       rsm, rsm->r_start, rsm->r_end);
7400 		}
7401 		printf("Dump complete\n");
7402 		panic("seq_out not found rack:%p tp:%p",
7403 		      rack, tp);
7404 #endif
7405 	} else {
7406 #ifdef INVARIANTS
7407 		/*
7408 		 * Hmm beyond sndmax? (only if we are using the new rtt-pack
7409 		 * flag)
7410 		 */
7411 		panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
7412 		      seq_out, len, tp->snd_max, tp);
7413 #endif
7414 	}
7415 }
7416 
7417 /*
7418  * Record one of the RTT updates from an ack into
7419  * our sample structure.
7420  */
7421 
7422 static void
7423 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt,
7424 		    int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt)
7425 {
7426 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7427 	    (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
7428 		rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
7429 	}
7430 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7431 	    (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
7432 		rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
7433 	}
7434 	if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
7435 	    if (us_rtt < rack->r_ctl.rc_gp_lowrtt)
7436 		rack->r_ctl.rc_gp_lowrtt = us_rtt;
7437 	    if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd)
7438 		    rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
7439 	}
7440 	if ((confidence == 1) &&
7441 	    ((rsm == NULL) ||
7442 	     (rsm->r_just_ret) ||
7443 	     (rsm->r_one_out_nr &&
7444 	      len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) {
7445 		/*
7446 		 * If the rsm had a just return
7447 		 * hit it then we can't trust the
7448 		 * rtt measurement for buffer deterimination
7449 		 * Note that a confidence of 2, indicates
7450 		 * SACK'd which overrides the r_just_ret or
7451 		 * the r_one_out_nr. If it was a CUM-ACK and
7452 		 * we had only two outstanding, but get an
7453 		 * ack for only 1. Then that also lowers our
7454 		 * confidence.
7455 		 */
7456 		confidence = 0;
7457 	}
7458 	if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7459 	    (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) {
7460 		if (rack->r_ctl.rack_rs.confidence == 0) {
7461 			/*
7462 			 * We take anything with no current confidence
7463 			 * saved.
7464 			 */
7465 			rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7466 			rack->r_ctl.rack_rs.confidence = confidence;
7467 			rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7468 		} else if (confidence || rack->r_ctl.rack_rs.confidence) {
7469 			/*
7470 			 * Once we have a confident number,
7471 			 * we can update it with a smaller
7472 			 * value since this confident number
7473 			 * may include the DSACK time until
7474 			 * the next segment (the second one) arrived.
7475 			 */
7476 			rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7477 			rack->r_ctl.rack_rs.confidence = confidence;
7478 			rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7479 		}
7480 	}
7481 	rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence);
7482 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
7483 	rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
7484 	rack->r_ctl.rack_rs.rs_rtt_cnt++;
7485 }
7486 
7487 /*
7488  * Collect new round-trip time estimate
7489  * and update averages and current timeout.
7490  */
7491 static void
7492 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
7493 {
7494 	int32_t delta;
7495 	int32_t rtt;
7496 
7497 	if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
7498 		/* No valid sample */
7499 		return;
7500 	if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
7501 		/* We are to use the lowest RTT seen in a single ack */
7502 		rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
7503 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
7504 		/* We are to use the highest RTT seen in a single ack */
7505 		rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
7506 	} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
7507 		/* We are to use the average RTT seen in a single ack */
7508 		rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
7509 				(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
7510 	} else {
7511 #ifdef INVARIANTS
7512 		panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
7513 #endif
7514 		return;
7515 	}
7516 	if (rtt == 0)
7517 		rtt = 1;
7518 	if (rack->rc_gp_rtt_set == 0) {
7519 		/*
7520 		 * With no RTT we have to accept
7521 		 * even one we are not confident of.
7522 		 */
7523 		rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt;
7524 		rack->rc_gp_rtt_set = 1;
7525 	} else if (rack->r_ctl.rack_rs.confidence) {
7526 		/* update the running gp srtt */
7527 		rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8);
7528 		rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8;
7529 	}
7530 	if (rack->r_ctl.rack_rs.confidence) {
7531 		/*
7532 		 * record the low and high for highly buffered path computation,
7533 		 * we only do this if we are confident (not a retransmission).
7534 		 */
7535 		if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) {
7536 			rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7537 		}
7538 		if (rack->rc_highly_buffered == 0) {
7539 			/*
7540 			 * Currently once we declare a path has
7541 			 * highly buffered there is no going
7542 			 * back, which may be a problem...
7543 			 */
7544 			if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) {
7545 				rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt,
7546 						     rack->r_ctl.rc_highest_us_rtt,
7547 						     rack->r_ctl.rc_lowest_us_rtt,
7548 						     RACK_RTTS_SEEHBP);
7549 				rack->rc_highly_buffered = 1;
7550 			}
7551 		}
7552 	}
7553 	if ((rack->r_ctl.rack_rs.confidence) ||
7554 	    (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) {
7555 		/*
7556 		 * If we are highly confident of it <or> it was
7557 		 * never retransmitted we accept it as the last us_rtt.
7558 		 */
7559 		rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7560 		/* The lowest rtt can be set if its was not retransmited */
7561 		if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) {
7562 			rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7563 			if (rack->r_ctl.rc_lowest_us_rtt == 0)
7564 				rack->r_ctl.rc_lowest_us_rtt = 1;
7565 		}
7566 	}
7567 	rack = (struct tcp_rack *)tp->t_fb_ptr;
7568 	if (tp->t_srtt != 0) {
7569 		/*
7570 		 * We keep a simple srtt in microseconds, like our rtt
7571 		 * measurement. We don't need to do any tricks with shifting
7572 		 * etc. Instead we just add in 1/8th of the new measurement
7573 		 * and subtract out 1/8 of the old srtt. We do the same with
7574 		 * the variance after finding the absolute value of the
7575 		 * difference between this sample and the current srtt.
7576 		 */
7577 		delta = tp->t_srtt - rtt;
7578 		/* Take off 1/8th of the current sRTT */
7579 		tp->t_srtt -= (tp->t_srtt >> 3);
7580 		/* Add in 1/8th of the new RTT just measured */
7581 		tp->t_srtt += (rtt >> 3);
7582 		if (tp->t_srtt <= 0)
7583 			tp->t_srtt = 1;
7584 		/* Now lets make the absolute value of the variance */
7585 		if (delta < 0)
7586 			delta = -delta;
7587 		/* Subtract out 1/8th */
7588 		tp->t_rttvar -= (tp->t_rttvar >> 3);
7589 		/* Add in 1/8th of the new variance we just saw */
7590 		tp->t_rttvar += (delta >> 3);
7591 		if (tp->t_rttvar <= 0)
7592 			tp->t_rttvar = 1;
7593 	} else {
7594 		/*
7595 		 * No rtt measurement yet - use the unsmoothed rtt. Set the
7596 		 * variance to half the rtt (so our first retransmit happens
7597 		 * at 3*rtt).
7598 		 */
7599 		tp->t_srtt = rtt;
7600 		tp->t_rttvar = rtt >> 1;
7601 	}
7602 	rack->rc_srtt_measure_made = 1;
7603 	KMOD_TCPSTAT_INC(tcps_rttupdated);
7604 	if (tp->t_rttupdated < UCHAR_MAX)
7605 		tp->t_rttupdated++;
7606 #ifdef STATS
7607 	if (rack_stats_gets_ms_rtt == 0) {
7608 		/* Send in the microsecond rtt used for rxt timeout purposes */
7609 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
7610 	} else if (rack_stats_gets_ms_rtt == 1) {
7611 		/* Send in the millisecond rtt used for rxt timeout purposes */
7612 		int32_t ms_rtt;
7613 
7614 		/* Round up */
7615 		ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7616 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7617 	} else if (rack_stats_gets_ms_rtt == 2) {
7618 		/* Send in the millisecond rtt has close to the path RTT as we can get  */
7619 		int32_t ms_rtt;
7620 
7621 		/* Round up */
7622 		ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7623 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7624 	}  else {
7625 		/* Send in the microsecond rtt has close to the path RTT as we can get  */
7626 		stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt));
7627 	}
7628 
7629 #endif
7630 	/*
7631 	 * the retransmit should happen at rtt + 4 * rttvar. Because of the
7632 	 * way we do the smoothing, srtt and rttvar will each average +1/2
7633 	 * tick of bias.  When we compute the retransmit timer, we want 1/2
7634 	 * tick of rounding and 1 extra tick because of +-1/2 tick
7635 	 * uncertainty in the firing of the timer.  The bias will give us
7636 	 * exactly the 1.5 tick we need.  But, because the bias is
7637 	 * statistical, we have to test that we don't drop below the minimum
7638 	 * feasible timer (which is 2 ticks).
7639 	 */
7640 	tp->t_rxtshift = 0;
7641 	RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7642 		      max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop);
7643 	rack_log_rtt_sample(rack, rtt);
7644 	tp->t_softerror = 0;
7645 }
7646 
7647 
7648 static void
7649 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts)
7650 {
7651 	/*
7652 	 * Apply to filter the inbound us-rtt at us_cts.
7653 	 */
7654 	uint32_t old_rtt;
7655 
7656 	old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
7657 	apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt,
7658 			       us_rtt, us_cts);
7659 	if (old_rtt > us_rtt) {
7660 		/* We just hit a new lower rtt time */
7661 		rack_log_rtt_shrinks(rack,  us_cts,  old_rtt,
7662 				     __LINE__, RACK_RTTS_NEWRTT);
7663 		/*
7664 		 * Only count it if its lower than what we saw within our
7665 		 * calculated range.
7666 		 */
7667 		if ((old_rtt - us_rtt) > rack_min_rtt_movement) {
7668 			if (rack_probertt_lower_within &&
7669 			    rack->rc_gp_dyn_mul &&
7670 			    (rack->use_fixed_rate == 0) &&
7671 			    (rack->rc_always_pace)) {
7672 				/*
7673 				 * We are seeing a new lower rtt very close
7674 				 * to the time that we would have entered probe-rtt.
7675 				 * This is probably due to the fact that a peer flow
7676 				 * has entered probe-rtt. Lets go in now too.
7677 				 */
7678 				uint32_t val;
7679 
7680 				val = rack_probertt_lower_within * rack_time_between_probertt;
7681 				val /= 100;
7682 				if ((rack->in_probe_rtt == 0)  &&
7683 				    ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val)))	{
7684 					rack_enter_probertt(rack, us_cts);
7685 				}
7686 			}
7687 			rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
7688 		}
7689 	}
7690 }
7691 
7692 static int
7693 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
7694     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack)
7695 {
7696 	uint32_t us_rtt;
7697 	int32_t i, all;
7698 	uint32_t t, len_acked;
7699 
7700 	if ((rsm->r_flags & RACK_ACKED) ||
7701 	    (rsm->r_flags & RACK_WAS_ACKED))
7702 		/* Already done */
7703 		return (0);
7704 	if (rsm->r_no_rtt_allowed) {
7705 		/* Not allowed */
7706 		return (0);
7707 	}
7708 	if (ack_type == CUM_ACKED) {
7709 		if (SEQ_GT(th_ack, rsm->r_end)) {
7710 			len_acked = rsm->r_end - rsm->r_start;
7711 			all = 1;
7712 		} else {
7713 			len_acked = th_ack - rsm->r_start;
7714 			all = 0;
7715 		}
7716 	} else {
7717 		len_acked = rsm->r_end - rsm->r_start;
7718 		all = 0;
7719 	}
7720 	if (rsm->r_rtr_cnt == 1) {
7721 
7722 		t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7723 		if ((int)t <= 0)
7724 			t = 1;
7725 		if (!tp->t_rttlow || tp->t_rttlow > t)
7726 			tp->t_rttlow = t;
7727 		if (!rack->r_ctl.rc_rack_min_rtt ||
7728 		    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7729 			rack->r_ctl.rc_rack_min_rtt = t;
7730 			if (rack->r_ctl.rc_rack_min_rtt == 0) {
7731 				rack->r_ctl.rc_rack_min_rtt = 1;
7732 			}
7733 		}
7734 		if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]))
7735 			us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7736 		else
7737 			us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7738 		if (us_rtt == 0)
7739 			us_rtt = 1;
7740 		if (CC_ALGO(tp)->rttsample != NULL) {
7741 			/* Kick the RTT to the CC */
7742 			CC_ALGO(tp)->rttsample(&tp->t_ccv, us_rtt, 1, rsm->r_fas);
7743 		}
7744 		rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time));
7745 		if (ack_type == SACKED) {
7746 			rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1);
7747 			tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt);
7748 		} else {
7749 			/*
7750 			 * We need to setup what our confidence
7751 			 * is in this ack.
7752 			 *
7753 			 * If the rsm was app limited and it is
7754 			 * less than a mss in length (the end
7755 			 * of the send) then we have a gap. If we
7756 			 * were app limited but say we were sending
7757 			 * multiple MSS's then we are more confident
7758 			 * int it.
7759 			 *
7760 			 * When we are not app-limited then we see if
7761 			 * the rsm is being included in the current
7762 			 * measurement, we tell this by the app_limited_needs_set
7763 			 * flag.
7764 			 *
7765 			 * Note that being cwnd blocked is not applimited
7766 			 * as well as the pacing delay between packets which
7767 			 * are sending only 1 or 2 MSS's also will show up
7768 			 * in the RTT. We probably need to examine this algorithm
7769 			 * a bit more and enhance it to account for the delay
7770 			 * between rsm's. We could do that by saving off the
7771 			 * pacing delay of each rsm (in an rsm) and then
7772 			 * factoring that in somehow though for now I am
7773 			 * not sure how :)
7774 			 */
7775 			int calc_conf = 0;
7776 
7777 			if (rsm->r_flags & RACK_APP_LIMITED) {
7778 				if (all && (len_acked <= ctf_fixed_maxseg(tp)))
7779 					calc_conf = 0;
7780 				else
7781 					calc_conf = 1;
7782 			} else if (rack->app_limited_needs_set == 0) {
7783 				calc_conf = 1;
7784 			} else {
7785 				calc_conf = 0;
7786 			}
7787 			rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2);
7788 			tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt,
7789 					    calc_conf, rsm, rsm->r_rtr_cnt);
7790 		}
7791 		if ((rsm->r_flags & RACK_TLP) &&
7792 		    (!IN_FASTRECOVERY(tp->t_flags))) {
7793 			/* Segment was a TLP and our retrans matched */
7794 			if (rack->r_ctl.rc_tlp_cwnd_reduce) {
7795 				rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
7796 			}
7797 		}
7798 		if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7799 			/* New more recent rack_tmit_time */
7800 			rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7801 			rack->rc_rack_rtt = t;
7802 		}
7803 		return (1);
7804 	}
7805 	/*
7806 	 * We clear the soft/rxtshift since we got an ack.
7807 	 * There is no assurance we will call the commit() function
7808 	 * so we need to clear these to avoid incorrect handling.
7809 	 */
7810 	tp->t_rxtshift = 0;
7811 	RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7812 		      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
7813 	tp->t_softerror = 0;
7814 	if (to && (to->to_flags & TOF_TS) &&
7815 	    (ack_type == CUM_ACKED) &&
7816 	    (to->to_tsecr) &&
7817 	    ((rsm->r_flags & RACK_OVERMAX) == 0)) {
7818 		/*
7819 		 * Now which timestamp does it match? In this block the ACK
7820 		 * must be coming from a previous transmission.
7821 		 */
7822 		for (i = 0; i < rsm->r_rtr_cnt; i++) {
7823 			if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) {
7824 				t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7825 				if ((int)t <= 0)
7826 					t = 1;
7827 				if (CC_ALGO(tp)->rttsample != NULL) {
7828 					/*
7829 					 * Kick the RTT to the CC, here
7830 					 * we lie a bit in that we know the
7831 					 * retransmission is correct even though
7832 					 * we retransmitted. This is because
7833 					 * we match the timestamps.
7834 					 */
7835 					if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[i]))
7836 						us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[i];
7837 					else
7838 						us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[i];
7839 					CC_ALGO(tp)->rttsample(&tp->t_ccv, us_rtt, 1, rsm->r_fas);
7840 				}
7841 				if ((i + 1) < rsm->r_rtr_cnt) {
7842 					/*
7843 					 * The peer ack'd from our previous
7844 					 * transmission. We have a spurious
7845 					 * retransmission and thus we dont
7846 					 * want to update our rack_rtt.
7847 					 *
7848 					 * Hmm should there be a CC revert here?
7849 					 *
7850 					 */
7851 					return (0);
7852 				}
7853 				if (!tp->t_rttlow || tp->t_rttlow > t)
7854 					tp->t_rttlow = t;
7855 				if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7856 					rack->r_ctl.rc_rack_min_rtt = t;
7857 					if (rack->r_ctl.rc_rack_min_rtt == 0) {
7858 						rack->r_ctl.rc_rack_min_rtt = 1;
7859 					}
7860 				}
7861 				if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
7862 					   (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7863 					/* New more recent rack_tmit_time */
7864 					rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7865 					rack->rc_rack_rtt = t;
7866 				}
7867 				rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3);
7868 				tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm,
7869 						    rsm->r_rtr_cnt);
7870 				return (1);
7871 			}
7872 		}
7873 		goto ts_not_found;
7874 	} else {
7875 		/*
7876 		 * Ok its a SACK block that we retransmitted. or a windows
7877 		 * machine without timestamps. We can tell nothing from the
7878 		 * time-stamp since its not there or the time the peer last
7879 		 * recieved a segment that moved forward its cum-ack point.
7880 		 */
7881 ts_not_found:
7882 		i = rsm->r_rtr_cnt - 1;
7883 		t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7884 		if ((int)t <= 0)
7885 			t = 1;
7886 		if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7887 			/*
7888 			 * We retransmitted and the ack came back in less
7889 			 * than the smallest rtt we have observed. We most
7890 			 * likely did an improper retransmit as outlined in
7891 			 * 6.2 Step 2 point 2 in the rack-draft so we
7892 			 * don't want to update our rack_rtt. We in
7893 			 * theory (in future) might want to think about reverting our
7894 			 * cwnd state but we won't for now.
7895 			 */
7896 			return (0);
7897 		} else if (rack->r_ctl.rc_rack_min_rtt) {
7898 			/*
7899 			 * We retransmitted it and the retransmit did the
7900 			 * job.
7901 			 */
7902 			if (!rack->r_ctl.rc_rack_min_rtt ||
7903 			    SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7904 				rack->r_ctl.rc_rack_min_rtt = t;
7905 				if (rack->r_ctl.rc_rack_min_rtt == 0) {
7906 					rack->r_ctl.rc_rack_min_rtt = 1;
7907 				}
7908 			}
7909 			if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) {
7910 				/* New more recent rack_tmit_time */
7911 				rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i];
7912 				rack->rc_rack_rtt = t;
7913 			}
7914 			return (1);
7915 		}
7916 	}
7917 	return (0);
7918 }
7919 
7920 /*
7921  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
7922  */
7923 static void
7924 rack_log_sack_passed(struct tcpcb *tp,
7925     struct tcp_rack *rack, struct rack_sendmap *rsm)
7926 {
7927 	struct rack_sendmap *nrsm;
7928 
7929 	nrsm = rsm;
7930 	TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
7931 	    rack_head, r_tnext) {
7932 		if (nrsm == rsm) {
7933 			/* Skip original segment he is acked */
7934 			continue;
7935 		}
7936 		if (nrsm->r_flags & RACK_ACKED) {
7937 			/*
7938 			 * Skip ack'd segments, though we
7939 			 * should not see these, since tmap
7940 			 * should not have ack'd segments.
7941 			 */
7942 			continue;
7943 		}
7944 		if (nrsm->r_flags & RACK_RWND_COLLAPSED) {
7945 			/*
7946 			 * If the peer dropped the rwnd on
7947 			 * these then we don't worry about them.
7948 			 */
7949 			continue;
7950 		}
7951 		if (nrsm->r_flags & RACK_SACK_PASSED) {
7952 			/*
7953 			 * We found one that is already marked
7954 			 * passed, we have been here before and
7955 			 * so all others below this are marked.
7956 			 */
7957 			break;
7958 		}
7959 		nrsm->r_flags |= RACK_SACK_PASSED;
7960 		nrsm->r_flags &= ~RACK_WAS_SACKPASS;
7961 	}
7962 }
7963 
7964 static void
7965 rack_need_set_test(struct tcpcb *tp,
7966 		   struct tcp_rack *rack,
7967 		   struct rack_sendmap *rsm,
7968 		   tcp_seq th_ack,
7969 		   int line,
7970 		   int use_which)
7971 {
7972 
7973 	if ((tp->t_flags & TF_GPUTINPROG) &&
7974 	    SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
7975 		/*
7976 		 * We were app limited, and this ack
7977 		 * butts up or goes beyond the point where we want
7978 		 * to start our next measurement. We need
7979 		 * to record the new gput_ts as here and
7980 		 * possibly update the start sequence.
7981 		 */
7982 		uint32_t seq, ts;
7983 
7984 		if (rsm->r_rtr_cnt > 1) {
7985 			/*
7986 			 * This is a retransmit, can we
7987 			 * really make any assessment at this
7988 			 * point?  We are not really sure of
7989 			 * the timestamp, is it this or the
7990 			 * previous transmission?
7991 			 *
7992 			 * Lets wait for something better that
7993 			 * is not retransmitted.
7994 			 */
7995 			return;
7996 		}
7997 		seq = tp->gput_seq;
7998 		ts = tp->gput_ts;
7999 		rack->app_limited_needs_set = 0;
8000 		tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
8001 		/* Do we start at a new end? */
8002 		if ((use_which == RACK_USE_BEG) &&
8003 		    SEQ_GEQ(rsm->r_start, tp->gput_seq)) {
8004 			/*
8005 			 * When we get an ACK that just eats
8006 			 * up some of the rsm, we set RACK_USE_BEG
8007 			 * since whats at r_start (i.e. th_ack)
8008 			 * is left unacked and thats where the
8009 			 * measurement not starts.
8010 			 */
8011 			tp->gput_seq = rsm->r_start;
8012 			rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8013 		}
8014 		if ((use_which == RACK_USE_END) &&
8015 		    SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8016 			    /*
8017 			     * We use the end when the cumack
8018 			     * is moving forward and completely
8019 			     * deleting the rsm passed so basically
8020 			     * r_end holds th_ack.
8021 			     *
8022 			     * For SACK's we also want to use the end
8023 			     * since this piece just got sacked and
8024 			     * we want to target anything after that
8025 			     * in our measurement.
8026 			     */
8027 			    tp->gput_seq = rsm->r_end;
8028 			    rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8029 		}
8030 		if (use_which == RACK_USE_END_OR_THACK) {
8031 			/*
8032 			 * special case for ack moving forward,
8033 			 * not a sack, we need to move all the
8034 			 * way up to where this ack cum-ack moves
8035 			 * to.
8036 			 */
8037 			if (SEQ_GT(th_ack, rsm->r_end))
8038 				tp->gput_seq = th_ack;
8039 			else
8040 				tp->gput_seq = rsm->r_end;
8041 			rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8042 		}
8043 		if (SEQ_GT(tp->gput_seq, tp->gput_ack)) {
8044 			/*
8045 			 * We moved beyond this guy's range, re-calculate
8046 			 * the new end point.
8047 			 */
8048 			if (rack->rc_gp_filled == 0) {
8049 				tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
8050 			} else {
8051 				tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
8052 			}
8053 		}
8054 		/*
8055 		 * We are moving the goal post, we may be able to clear the
8056 		 * measure_saw_probe_rtt flag.
8057 		 */
8058 		if ((rack->in_probe_rtt == 0) &&
8059 		    (rack->measure_saw_probe_rtt) &&
8060 		    (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
8061 			rack->measure_saw_probe_rtt = 0;
8062 		rack_log_pacing_delay_calc(rack, ts, tp->gput_ts,
8063 					   seq, tp->gput_seq, 0, 5, line, NULL, 0);
8064 		if (rack->rc_gp_filled &&
8065 		    ((tp->gput_ack - tp->gput_seq) <
8066 		     max(rc_init_window(rack), (MIN_GP_WIN *
8067 						ctf_fixed_maxseg(tp))))) {
8068 			uint32_t ideal_amount;
8069 
8070 			ideal_amount = rack_get_measure_window(tp, rack);
8071 			if (ideal_amount > sbavail(&tptosocket(tp)->so_snd)) {
8072 				/*
8073 				 * There is no sense of continuing this measurement
8074 				 * because its too small to gain us anything we
8075 				 * trust. Skip it and that way we can start a new
8076 				 * measurement quicker.
8077 				 */
8078 				tp->t_flags &= ~TF_GPUTINPROG;
8079 				rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
8080 							   0, 0, 0, 6, __LINE__, NULL, 0);
8081 			} else {
8082 				/*
8083 				 * Reset the window further out.
8084 				 */
8085 				tp->gput_ack = tp->gput_seq + ideal_amount;
8086 			}
8087 		}
8088 	}
8089 }
8090 
8091 static inline int
8092 is_rsm_inside_declared_tlp_block(struct tcp_rack *rack, struct rack_sendmap *rsm)
8093 {
8094 	if (SEQ_LT(rsm->r_end, rack->r_ctl.last_tlp_acked_start)) {
8095 		/* Behind our TLP definition or right at */
8096 		return (0);
8097 	}
8098 	if (SEQ_GT(rsm->r_start, rack->r_ctl.last_tlp_acked_end)) {
8099 		/* The start is beyond or right at our end of TLP definition */
8100 		return (0);
8101 	}
8102 	/* It has to be a sub-part of the original TLP recorded */
8103 	return (1);
8104 }
8105 
8106 
8107 static uint32_t
8108 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
8109 		   struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
8110 {
8111 	uint32_t start, end, changed = 0;
8112 	struct rack_sendmap stack_map;
8113 	struct rack_sendmap *rsm, *nrsm, fe, *prev, *next;
8114 #ifdef INVARIANTS
8115 	struct rack_sendmap *insret;
8116 #endif
8117 	int32_t used_ref = 1;
8118 	int moved = 0;
8119 
8120 	start = sack->start;
8121 	end = sack->end;
8122 	rsm = *prsm;
8123 	memset(&fe, 0, sizeof(fe));
8124 do_rest_ofb:
8125 	if ((rsm == NULL) ||
8126 	    (SEQ_LT(end, rsm->r_start)) ||
8127 	    (SEQ_GEQ(start, rsm->r_end)) ||
8128 	    (SEQ_LT(start, rsm->r_start))) {
8129 		/*
8130 		 * We are not in the right spot,
8131 		 * find the correct spot in the tree.
8132 		 */
8133 		used_ref = 0;
8134 		fe.r_start = start;
8135 		rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
8136 		moved++;
8137 	}
8138 	if (rsm == NULL) {
8139 		/* TSNH */
8140 		goto out;
8141 	}
8142 	/* Ok we have an ACK for some piece of this rsm */
8143 	if (rsm->r_start != start) {
8144 		if ((rsm->r_flags & RACK_ACKED) == 0) {
8145 			/*
8146 			 * Before any splitting or hookery is
8147 			 * done is it a TLP of interest i.e. rxt?
8148 			 */
8149 			if ((rsm->r_flags & RACK_TLP) &&
8150 			    (rsm->r_rtr_cnt > 1)) {
8151 				/*
8152 				 * We are splitting a rxt TLP, check
8153 				 * if we need to save off the start/end
8154 				 */
8155 				if (rack->rc_last_tlp_acked_set &&
8156 				    (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8157 					/*
8158 					 * We already turned this on since we are inside
8159 					 * the previous one was a partially sack now we
8160 					 * are getting another one (maybe all of it).
8161 					 *
8162 					 */
8163 					rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8164 					/*
8165 					 * Lets make sure we have all of it though.
8166 					 */
8167 					if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8168 						rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8169 						rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8170 								     rack->r_ctl.last_tlp_acked_end);
8171 					}
8172 					if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8173 						rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8174 						rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8175 								     rack->r_ctl.last_tlp_acked_end);
8176 					}
8177 				} else {
8178 					rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8179 					rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8180 					rack->rc_last_tlp_past_cumack = 0;
8181 					rack->rc_last_tlp_acked_set = 1;
8182 					rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8183 				}
8184 			}
8185 			/**
8186 			 * Need to split this in two pieces the before and after,
8187 			 * the before remains in the map, the after must be
8188 			 * added. In other words we have:
8189 			 * rsm        |--------------|
8190 			 * sackblk        |------->
8191 			 * rsm will become
8192 			 *     rsm    |---|
8193 			 * and nrsm will be  the sacked piece
8194 			 *     nrsm       |----------|
8195 			 *
8196 			 * But before we start down that path lets
8197 			 * see if the sack spans over on top of
8198 			 * the next guy and it is already sacked.
8199 			 *
8200 			 */
8201 			next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8202 			if (next && (next->r_flags & RACK_ACKED) &&
8203 			    SEQ_GEQ(end, next->r_start)) {
8204 				/**
8205 				 * So the next one is already acked, and
8206 				 * we can thus by hookery use our stack_map
8207 				 * to reflect the piece being sacked and
8208 				 * then adjust the two tree entries moving
8209 				 * the start and ends around. So we start like:
8210 				 *  rsm     |------------|             (not-acked)
8211 				 *  next                 |-----------| (acked)
8212 				 *  sackblk        |-------->
8213 				 *  We want to end like so:
8214 				 *  rsm     |------|                   (not-acked)
8215 				 *  next           |-----------------| (acked)
8216 				 *  nrsm           |-----|
8217 				 * Where nrsm is a temporary stack piece we
8218 				 * use to update all the gizmos.
8219 				 */
8220 				/* Copy up our fudge block */
8221 				nrsm = &stack_map;
8222 				memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8223 				/* Now adjust our tree blocks */
8224 				rsm->r_end = start;
8225 				next->r_start = start;
8226 				/* Now we must adjust back where next->m is */
8227 				rack_setup_offset_for_rsm(rsm, next);
8228 
8229 				/* We don't need to adjust rsm, it did not change */
8230 				/* Clear out the dup ack count of the remainder */
8231 				rsm->r_dupack = 0;
8232 				rsm->r_just_ret = 0;
8233 				rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8234 				/* Now lets make sure our fudge block is right */
8235 				nrsm->r_start = start;
8236 				/* Now lets update all the stats and such */
8237 				rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8238 				if (rack->app_limited_needs_set)
8239 					rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8240 				changed += (nrsm->r_end - nrsm->r_start);
8241 				rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8242 				if (nrsm->r_flags & RACK_SACK_PASSED) {
8243 					rack->r_ctl.rc_reorder_ts = cts;
8244 				}
8245 				/*
8246 				 * Now we want to go up from rsm (the
8247 				 * one left un-acked) to the next one
8248 				 * in the tmap. We do this so when
8249 				 * we walk backwards we include marking
8250 				 * sack-passed on rsm (The one passed in
8251 				 * is skipped since it is generally called
8252 				 * on something sacked before removing it
8253 				 * from the tmap).
8254 				 */
8255 				if (rsm->r_in_tmap) {
8256 					nrsm = TAILQ_NEXT(rsm, r_tnext);
8257 					/*
8258 					 * Now that we have the next
8259 					 * one walk backwards from there.
8260 					 */
8261 					if (nrsm && nrsm->r_in_tmap)
8262 						rack_log_sack_passed(tp, rack, nrsm);
8263 				}
8264 				/* Now are we done? */
8265 				if (SEQ_LT(end, next->r_end) ||
8266 				    (end == next->r_end)) {
8267 					/* Done with block */
8268 					goto out;
8269 				}
8270 				rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__);
8271 				counter_u64_add(rack_sack_used_next_merge, 1);
8272 				/* Postion for the next block */
8273 				start = next->r_end;
8274 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
8275 				if (rsm == NULL)
8276 					goto out;
8277 			} else {
8278 				/**
8279 				 * We can't use any hookery here, so we
8280 				 * need to split the map. We enter like
8281 				 * so:
8282 				 *  rsm      |--------|
8283 				 *  sackblk       |----->
8284 				 * We will add the new block nrsm and
8285 				 * that will be the new portion, and then
8286 				 * fall through after reseting rsm. So we
8287 				 * split and look like this:
8288 				 *  rsm      |----|
8289 				 *  sackblk       |----->
8290 				 *  nrsm          |---|
8291 				 * We then fall through reseting
8292 				 * rsm to nrsm, so the next block
8293 				 * picks it up.
8294 				 */
8295 				nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8296 				if (nrsm == NULL) {
8297 					/*
8298 					 * failed XXXrrs what can we do but loose the sack
8299 					 * info?
8300 					 */
8301 					goto out;
8302 				}
8303 				counter_u64_add(rack_sack_splits, 1);
8304 				rack_clone_rsm(rack, nrsm, rsm, start);
8305 				rsm->r_just_ret = 0;
8306 #ifndef INVARIANTS
8307 				(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8308 #else
8309 				insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8310 				if (insret != NULL) {
8311 					panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8312 					      nrsm, insret, rack, rsm);
8313 				}
8314 #endif
8315 				if (rsm->r_in_tmap) {
8316 					TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8317 					nrsm->r_in_tmap = 1;
8318 				}
8319 				rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__);
8320 				rsm->r_flags &= (~RACK_HAS_FIN);
8321 				/* Position us to point to the new nrsm that starts the sack blk */
8322 				rsm = nrsm;
8323 			}
8324 		} else {
8325 			/* Already sacked this piece */
8326 			counter_u64_add(rack_sack_skipped_acked, 1);
8327 			moved++;
8328 			if (end == rsm->r_end) {
8329 				/* Done with block */
8330 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8331 				goto out;
8332 			} else if (SEQ_LT(end, rsm->r_end)) {
8333 				/* A partial sack to a already sacked block */
8334 				moved++;
8335 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8336 				goto out;
8337 			} else {
8338 				/*
8339 				 * The end goes beyond this guy
8340 				 * reposition the start to the
8341 				 * next block.
8342 				 */
8343 				start = rsm->r_end;
8344 				rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8345 				if (rsm == NULL)
8346 					goto out;
8347 			}
8348 		}
8349 	}
8350 	if (SEQ_GEQ(end, rsm->r_end)) {
8351 		/**
8352 		 * The end of this block is either beyond this guy or right
8353 		 * at this guy. I.e.:
8354 		 *  rsm ---                 |-----|
8355 		 *  end                     |-----|
8356 		 *  <or>
8357 		 *  end                     |---------|
8358 		 */
8359 		if ((rsm->r_flags & RACK_ACKED) == 0) {
8360 			/*
8361 			 * Is it a TLP of interest?
8362 			 */
8363 			if ((rsm->r_flags & RACK_TLP) &&
8364 			    (rsm->r_rtr_cnt > 1)) {
8365 				/*
8366 				 * We are splitting a rxt TLP, check
8367 				 * if we need to save off the start/end
8368 				 */
8369 				if (rack->rc_last_tlp_acked_set &&
8370 				    (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8371 					/*
8372 					 * We already turned this on since we are inside
8373 					 * the previous one was a partially sack now we
8374 					 * are getting another one (maybe all of it).
8375 					 */
8376 					rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8377 					/*
8378 					 * Lets make sure we have all of it though.
8379 					 */
8380 					if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8381 						rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8382 						rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8383 								     rack->r_ctl.last_tlp_acked_end);
8384 					}
8385 					if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8386 						rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8387 						rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8388 								     rack->r_ctl.last_tlp_acked_end);
8389 					}
8390 				} else {
8391 					rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8392 					rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8393 					rack->rc_last_tlp_past_cumack = 0;
8394 					rack->rc_last_tlp_acked_set = 1;
8395 					rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8396 				}
8397 			}
8398 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8399 			changed += (rsm->r_end - rsm->r_start);
8400 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8401 			if (rsm->r_in_tmap) /* should be true */
8402 				rack_log_sack_passed(tp, rack, rsm);
8403 			/* Is Reordering occuring? */
8404 			if (rsm->r_flags & RACK_SACK_PASSED) {
8405 				rsm->r_flags &= ~RACK_SACK_PASSED;
8406 				rack->r_ctl.rc_reorder_ts = cts;
8407 			}
8408 			if (rack->app_limited_needs_set)
8409 				rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8410 			rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8411 			rsm->r_flags |= RACK_ACKED;
8412 			if (rsm->r_in_tmap) {
8413 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8414 				rsm->r_in_tmap = 0;
8415 			}
8416 			rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__);
8417 		} else {
8418 			counter_u64_add(rack_sack_skipped_acked, 1);
8419 			moved++;
8420 		}
8421 		if (end == rsm->r_end) {
8422 			/* This block only - done, setup for next */
8423 			goto out;
8424 		}
8425 		/*
8426 		 * There is more not coverend by this rsm move on
8427 		 * to the next block in the RB tree.
8428 		 */
8429 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8430 		start = rsm->r_end;
8431 		rsm = nrsm;
8432 		if (rsm == NULL)
8433 			goto out;
8434 		goto do_rest_ofb;
8435 	}
8436 	/**
8437 	 * The end of this sack block is smaller than
8438 	 * our rsm i.e.:
8439 	 *  rsm ---                 |-----|
8440 	 *  end                     |--|
8441 	 */
8442 	if ((rsm->r_flags & RACK_ACKED) == 0) {
8443 		/*
8444 		 * Is it a TLP of interest?
8445 		 */
8446 		if ((rsm->r_flags & RACK_TLP) &&
8447 		    (rsm->r_rtr_cnt > 1)) {
8448 			/*
8449 			 * We are splitting a rxt TLP, check
8450 			 * if we need to save off the start/end
8451 			 */
8452 			if (rack->rc_last_tlp_acked_set &&
8453 			    (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8454 				/*
8455 				 * We already turned this on since we are inside
8456 				 * the previous one was a partially sack now we
8457 				 * are getting another one (maybe all of it).
8458 				 */
8459 				rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8460 				/*
8461 				 * Lets make sure we have all of it though.
8462 				 */
8463 				if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8464 					rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8465 					rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8466 							     rack->r_ctl.last_tlp_acked_end);
8467 				}
8468 				if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8469 					rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8470 					rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8471 							     rack->r_ctl.last_tlp_acked_end);
8472 				}
8473 			} else {
8474 				rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8475 				rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8476 				rack->rc_last_tlp_past_cumack = 0;
8477 				rack->rc_last_tlp_acked_set = 1;
8478 				rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8479 			}
8480 		}
8481 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8482 		if (prev &&
8483 		    (prev->r_flags & RACK_ACKED)) {
8484 			/**
8485 			 * Goal, we want the right remainder of rsm to shrink
8486 			 * in place and span from (rsm->r_start = end) to rsm->r_end.
8487 			 * We want to expand prev to go all the way
8488 			 * to prev->r_end <- end.
8489 			 * so in the tree we have before:
8490 			 *   prev     |--------|         (acked)
8491 			 *   rsm               |-------| (non-acked)
8492 			 *   sackblk           |-|
8493 			 * We churn it so we end up with
8494 			 *   prev     |----------|       (acked)
8495 			 *   rsm                 |-----| (non-acked)
8496 			 *   nrsm              |-| (temporary)
8497 			 *
8498 			 * Note if either prev/rsm is a TLP we don't
8499 			 * do this.
8500 			 */
8501 			nrsm = &stack_map;
8502 			memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8503 			prev->r_end = end;
8504 			rsm->r_start = end;
8505 			/* Now adjust nrsm (stack copy) to be
8506 			 * the one that is the small
8507 			 * piece that was "sacked".
8508 			 */
8509 			nrsm->r_end = end;
8510 			rsm->r_dupack = 0;
8511 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8512 			/*
8513 			 * Now that the rsm has had its start moved forward
8514 			 * lets go ahead and get its new place in the world.
8515 			 */
8516 			rack_setup_offset_for_rsm(prev, rsm);
8517 			/*
8518 			 * Now nrsm is our new little piece
8519 			 * that is acked (which was merged
8520 			 * to prev). Update the rtt and changed
8521 			 * based on that. Also check for reordering.
8522 			 */
8523 			rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8524 			if (rack->app_limited_needs_set)
8525 				rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8526 			changed += (nrsm->r_end - nrsm->r_start);
8527 			rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8528 			if (nrsm->r_flags & RACK_SACK_PASSED) {
8529 				rack->r_ctl.rc_reorder_ts = cts;
8530 			}
8531 			rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__);
8532 			rsm = prev;
8533 			counter_u64_add(rack_sack_used_prev_merge, 1);
8534 		} else {
8535 			/**
8536 			 * This is the case where our previous
8537 			 * block is not acked either, so we must
8538 			 * split the block in two.
8539 			 */
8540 			nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8541 			if (nrsm == NULL) {
8542 				/* failed rrs what can we do but loose the sack info? */
8543 				goto out;
8544 			}
8545 			if ((rsm->r_flags & RACK_TLP) &&
8546 			    (rsm->r_rtr_cnt > 1)) {
8547 				/*
8548 				 * We are splitting a rxt TLP, check
8549 				 * if we need to save off the start/end
8550 				 */
8551 				if (rack->rc_last_tlp_acked_set &&
8552 				    (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8553 					    /*
8554 					     * We already turned this on since this block is inside
8555 					     * the previous one was a partially sack now we
8556 					     * are getting another one (maybe all of it).
8557 					     */
8558 					    rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8559 					    /*
8560 					     * Lets make sure we have all of it though.
8561 					     */
8562 					    if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8563 						    rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8564 						    rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8565 									 rack->r_ctl.last_tlp_acked_end);
8566 					    }
8567 					    if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8568 						    rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8569 						    rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8570 									 rack->r_ctl.last_tlp_acked_end);
8571 					    }
8572 				    } else {
8573 					    rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8574 					    rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8575 					    rack->rc_last_tlp_acked_set = 1;
8576 					    rack->rc_last_tlp_past_cumack = 0;
8577 					    rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8578 				    }
8579 			}
8580 			/**
8581 			 * In this case nrsm becomes
8582 			 * nrsm->r_start = end;
8583 			 * nrsm->r_end = rsm->r_end;
8584 			 * which is un-acked.
8585 			 * <and>
8586 			 * rsm->r_end = nrsm->r_start;
8587 			 * i.e. the remaining un-acked
8588 			 * piece is left on the left
8589 			 * hand side.
8590 			 *
8591 			 * So we start like this
8592 			 * rsm      |----------| (not acked)
8593 			 * sackblk  |---|
8594 			 * build it so we have
8595 			 * rsm      |---|         (acked)
8596 			 * nrsm         |------|  (not acked)
8597 			 */
8598 			counter_u64_add(rack_sack_splits, 1);
8599 			rack_clone_rsm(rack, nrsm, rsm, end);
8600 			rsm->r_flags &= (~RACK_HAS_FIN);
8601 			rsm->r_just_ret = 0;
8602 #ifndef INVARIANTS
8603 			(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8604 #else
8605 			insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8606 			if (insret != NULL) {
8607 				panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8608 				      nrsm, insret, rack, rsm);
8609 			}
8610 #endif
8611 			if (rsm->r_in_tmap) {
8612 				TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8613 				nrsm->r_in_tmap = 1;
8614 			}
8615 			nrsm->r_dupack = 0;
8616 			rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
8617 			rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8618 			changed += (rsm->r_end - rsm->r_start);
8619 			rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8620 			if (rsm->r_in_tmap) /* should be true */
8621 				rack_log_sack_passed(tp, rack, rsm);
8622 			/* Is Reordering occuring? */
8623 			if (rsm->r_flags & RACK_SACK_PASSED) {
8624 				rsm->r_flags &= ~RACK_SACK_PASSED;
8625 				rack->r_ctl.rc_reorder_ts = cts;
8626 			}
8627 			if (rack->app_limited_needs_set)
8628 				rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8629 			rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8630 			rsm->r_flags |= RACK_ACKED;
8631 			rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__);
8632 			if (rsm->r_in_tmap) {
8633 				TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8634 				rsm->r_in_tmap = 0;
8635 			}
8636 		}
8637 	} else if (start != end){
8638 		/*
8639 		 * The block was already acked.
8640 		 */
8641 		counter_u64_add(rack_sack_skipped_acked, 1);
8642 		moved++;
8643 	}
8644 out:
8645 	if (rsm &&
8646 	    ((rsm->r_flags & RACK_TLP) == 0) &&
8647 	    (rsm->r_flags & RACK_ACKED)) {
8648 		/*
8649 		 * Now can we merge where we worked
8650 		 * with either the previous or
8651 		 * next block?
8652 		 */
8653 		next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8654 		while (next) {
8655 			if (next->r_flags & RACK_TLP)
8656 				break;
8657 			if (next->r_flags & RACK_ACKED) {
8658 			/* yep this and next can be merged */
8659 				rsm = rack_merge_rsm(rack, rsm, next);
8660 				next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8661 			} else
8662 				break;
8663 		}
8664 		/* Now what about the previous? */
8665 		prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8666 		while (prev) {
8667 			if (prev->r_flags & RACK_TLP)
8668 				break;
8669 			if (prev->r_flags & RACK_ACKED) {
8670 				/* yep the previous and this can be merged */
8671 				rsm = rack_merge_rsm(rack, prev, rsm);
8672 				prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8673 			} else
8674 				break;
8675 		}
8676 	}
8677 	if (used_ref == 0) {
8678 		counter_u64_add(rack_sack_proc_all, 1);
8679 	} else {
8680 		counter_u64_add(rack_sack_proc_short, 1);
8681 	}
8682 	/* Save off the next one for quick reference. */
8683 	if (rsm)
8684 		nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8685 	else
8686 		nrsm = NULL;
8687 	*prsm = rack->r_ctl.rc_sacklast = nrsm;
8688 	/* Pass back the moved. */
8689 	*moved_two = moved;
8690 	return (changed);
8691 }
8692 
8693 static void inline
8694 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
8695 {
8696 	struct rack_sendmap *tmap;
8697 
8698 	tmap = NULL;
8699 	while (rsm && (rsm->r_flags & RACK_ACKED)) {
8700 		/* Its no longer sacked, mark it so */
8701 		rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8702 #ifdef INVARIANTS
8703 		if (rsm->r_in_tmap) {
8704 			panic("rack:%p rsm:%p flags:0x%x in tmap?",
8705 			      rack, rsm, rsm->r_flags);
8706 		}
8707 #endif
8708 		rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
8709 		/* Rebuild it into our tmap */
8710 		if (tmap == NULL) {
8711 			TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8712 			tmap = rsm;
8713 		} else {
8714 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
8715 			tmap = rsm;
8716 		}
8717 		tmap->r_in_tmap = 1;
8718 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8719 	}
8720 	/*
8721 	 * Now lets possibly clear the sack filter so we start
8722 	 * recognizing sacks that cover this area.
8723 	 */
8724 	sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
8725 
8726 }
8727 
8728 static void
8729 rack_do_decay(struct tcp_rack *rack)
8730 {
8731 	struct timeval res;
8732 
8733 #define	timersub(tvp, uvp, vvp)						\
8734 	do {								\
8735 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
8736 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
8737 		if ((vvp)->tv_usec < 0) {				\
8738 			(vvp)->tv_sec--;				\
8739 			(vvp)->tv_usec += 1000000;			\
8740 		}							\
8741 	} while (0)
8742 
8743 	timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res);
8744 #undef timersub
8745 
8746 	rack->r_ctl.input_pkt++;
8747 	if ((rack->rc_in_persist) ||
8748 	    (res.tv_sec >= 1) ||
8749 	    (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
8750 		/*
8751 		 * Check for decay of non-SAD,
8752 		 * we want all SAD detection metrics to
8753 		 * decay 1/4 per second (or more) passed.
8754 		 */
8755 #ifdef NETFLIX_EXP_DETECTION
8756 		uint32_t pkt_delta;
8757 
8758 		pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
8759 #endif
8760 		/* Update our saved tracking values */
8761 		rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
8762 		rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
8763 		/* Now do we escape without decay? */
8764 #ifdef NETFLIX_EXP_DETECTION
8765 		if (rack->rc_in_persist ||
8766 		    (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
8767 		    (pkt_delta < tcp_sad_low_pps)){
8768 			/*
8769 			 * We don't decay idle connections
8770 			 * or ones that have a low input pps.
8771 			 */
8772 			return;
8773 		}
8774 		/* Decay the counters */
8775 		rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
8776 							tcp_sad_decay_val);
8777 		rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
8778 							 tcp_sad_decay_val);
8779 		rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
8780 							       tcp_sad_decay_val);
8781 		rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
8782 								tcp_sad_decay_val);
8783 #endif
8784 	}
8785 }
8786 
8787 static void
8788 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to)
8789 {
8790 	struct rack_sendmap *rsm;
8791 #ifdef INVARIANTS
8792 	struct rack_sendmap *rm;
8793 #endif
8794 
8795 	/*
8796 	 * The ACK point is advancing to th_ack, we must drop off
8797 	 * the packets in the rack log and calculate any eligble
8798 	 * RTT's.
8799 	 */
8800 	rack->r_wanted_output = 1;
8801 
8802 	/* Tend any TLP that has been marked for 1/2 the seq space (its old)  */
8803 	if ((rack->rc_last_tlp_acked_set == 1)&&
8804 	    (rack->rc_last_tlp_past_cumack == 1) &&
8805 	    (SEQ_GT(rack->r_ctl.last_tlp_acked_start, th_ack))) {
8806 		/*
8807 		 * We have reached the point where our last rack
8808 		 * tlp retransmit sequence is ahead of the cum-ack.
8809 		 * This can only happen when the cum-ack moves all
8810 		 * the way around (its been a full 2^^31+1 bytes
8811 		 * or more since we sent a retransmitted TLP). Lets
8812 		 * turn off the valid flag since its not really valid.
8813 		 *
8814 		 * Note since sack's also turn on this event we have
8815 		 * a complication, we have to wait to age it out until
8816 		 * the cum-ack is by the TLP before checking which is
8817 		 * what the next else clause does.
8818 		 */
8819 		rack_log_dsack_event(rack, 9, __LINE__,
8820 				     rack->r_ctl.last_tlp_acked_start,
8821 				     rack->r_ctl.last_tlp_acked_end);
8822 		rack->rc_last_tlp_acked_set = 0;
8823 		rack->rc_last_tlp_past_cumack = 0;
8824 	} else if ((rack->rc_last_tlp_acked_set == 1) &&
8825 		   (rack->rc_last_tlp_past_cumack == 0) &&
8826 		   (SEQ_GEQ(th_ack, rack->r_ctl.last_tlp_acked_end))) {
8827 		/*
8828 		 * It is safe to start aging TLP's out.
8829 		 */
8830 		rack->rc_last_tlp_past_cumack = 1;
8831 	}
8832 	/* We do the same for the tlp send seq as well */
8833 	if ((rack->rc_last_sent_tlp_seq_valid == 1) &&
8834 	    (rack->rc_last_sent_tlp_past_cumack == 1) &&
8835 	    (SEQ_GT(rack->r_ctl.last_sent_tlp_seq,  th_ack))) {
8836 		rack_log_dsack_event(rack, 9, __LINE__,
8837 				     rack->r_ctl.last_sent_tlp_seq,
8838 				     (rack->r_ctl.last_sent_tlp_seq +
8839 				      rack->r_ctl.last_sent_tlp_len));
8840 		rack->rc_last_sent_tlp_seq_valid = 0;
8841 		rack->rc_last_sent_tlp_past_cumack = 0;
8842 	} else if ((rack->rc_last_sent_tlp_seq_valid == 1) &&
8843 		   (rack->rc_last_sent_tlp_past_cumack == 0) &&
8844 		   (SEQ_GEQ(th_ack, rack->r_ctl.last_sent_tlp_seq))) {
8845 		/*
8846 		 * It is safe to start aging TLP's send.
8847 		 */
8848 		rack->rc_last_sent_tlp_past_cumack = 1;
8849 	}
8850 more:
8851 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
8852 	if (rsm == NULL) {
8853 		if ((th_ack - 1) == tp->iss) {
8854 			/*
8855 			 * For the SYN incoming case we will not
8856 			 * have called tcp_output for the sending of
8857 			 * the SYN, so there will be no map. All
8858 			 * other cases should probably be a panic.
8859 			 */
8860 			return;
8861 		}
8862 		if (tp->t_flags & TF_SENTFIN) {
8863 			/* if we sent a FIN we often will not have map */
8864 			return;
8865 		}
8866 #ifdef INVARIANTS
8867 		panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n",
8868 		      tp,
8869 		      tp->t_state, th_ack, rack,
8870 		      tp->snd_una, tp->snd_max, tp->snd_nxt);
8871 #endif
8872 		return;
8873 	}
8874 	if (SEQ_LT(th_ack, rsm->r_start)) {
8875 		/* Huh map is missing this */
8876 #ifdef INVARIANTS
8877 		printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
8878 		       rsm->r_start,
8879 		       th_ack, tp->t_state, rack->r_state);
8880 #endif
8881 		return;
8882 	}
8883 	rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack);
8884 
8885 	/* Now was it a retransmitted TLP? */
8886 	if ((rsm->r_flags & RACK_TLP) &&
8887 	    (rsm->r_rtr_cnt > 1)) {
8888 		/*
8889 		 * Yes, this rsm was a TLP and retransmitted, remember that
8890 		 * since if a DSACK comes back on this we don't want
8891 		 * to think of it as a reordered segment. This may
8892 		 * get updated again with possibly even other TLPs
8893 		 * in flight, but thats ok. Only when we don't send
8894 		 * a retransmitted TLP for 1/2 the sequences space
8895 		 * will it get turned off (above).
8896 		 */
8897 		if (rack->rc_last_tlp_acked_set &&
8898 		    (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8899 			/*
8900 			 * We already turned this on since the end matches,
8901 			 * the previous one was a partially ack now we
8902 			 * are getting another one (maybe all of it).
8903 			 */
8904 			rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8905 			/*
8906 			 * Lets make sure we have all of it though.
8907 			 */
8908 			if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8909 				rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8910 				rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8911 						     rack->r_ctl.last_tlp_acked_end);
8912 			}
8913 			if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8914 				rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8915 				rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8916 						     rack->r_ctl.last_tlp_acked_end);
8917 			}
8918 		} else {
8919 			rack->rc_last_tlp_past_cumack = 1;
8920 			rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8921 			rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8922 			rack->rc_last_tlp_acked_set = 1;
8923 			rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8924 		}
8925 	}
8926 	/* Now do we consume the whole thing? */
8927 	if (SEQ_GEQ(th_ack, rsm->r_end)) {
8928 		/* Its all consumed. */
8929 		uint32_t left;
8930 		uint8_t newly_acked;
8931 
8932 		rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__);
8933 		rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
8934 		rsm->r_rtr_bytes = 0;
8935 		/* Record the time of highest cumack sent */
8936 		rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8937 #ifndef INVARIANTS
8938 		(void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8939 #else
8940 		rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8941 		if (rm != rsm) {
8942 			panic("removing head in rack:%p rsm:%p rm:%p",
8943 			      rack, rsm, rm);
8944 		}
8945 #endif
8946 		if (rsm->r_in_tmap) {
8947 			TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8948 			rsm->r_in_tmap = 0;
8949 		}
8950 		newly_acked = 1;
8951 		if (rsm->r_flags & RACK_ACKED) {
8952 			/*
8953 			 * It was acked on the scoreboard -- remove
8954 			 * it from total
8955 			 */
8956 			rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8957 			newly_acked = 0;
8958 		} else if (rsm->r_flags & RACK_SACK_PASSED) {
8959 			/*
8960 			 * There are segments ACKED on the
8961 			 * scoreboard further up. We are seeing
8962 			 * reordering.
8963 			 */
8964 			rsm->r_flags &= ~RACK_SACK_PASSED;
8965 			rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8966 			rsm->r_flags |= RACK_ACKED;
8967 			rack->r_ctl.rc_reorder_ts = cts;
8968 			if (rack->r_ent_rec_ns) {
8969 				/*
8970 				 * We have sent no more, and we saw an sack
8971 				 * then ack arrive.
8972 				 */
8973 				rack->r_might_revert = 1;
8974 			}
8975 		}
8976 		if ((rsm->r_flags & RACK_TO_REXT) &&
8977 		    (tp->t_flags & TF_RCVD_TSTMP) &&
8978 		    (to->to_flags & TOF_TS) &&
8979 		    (to->to_tsecr != 0) &&
8980 		    (tp->t_flags & TF_PREVVALID)) {
8981 			/*
8982 			 * We can use the timestamp to see
8983 			 * if this retransmission was from the
8984 			 * first transmit. If so we made a mistake.
8985 			 */
8986 			tp->t_flags &= ~TF_PREVVALID;
8987 			if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) {
8988 				/* The first transmit is what this ack is for */
8989 				rack_cong_signal(tp, CC_RTO_ERR, th_ack, __LINE__);
8990 			}
8991 		}
8992 		left = th_ack - rsm->r_end;
8993 		if (rack->app_limited_needs_set && newly_acked)
8994 			rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK);
8995 		/* Free back to zone */
8996 		rack_free(rack, rsm);
8997 		if (left) {
8998 			goto more;
8999 		}
9000 		/* Check for reneging */
9001 		rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9002 		if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
9003 			/*
9004 			 * The peer has moved snd_una up to
9005 			 * the edge of this send, i.e. one
9006 			 * that it had previously acked. The only
9007 			 * way that can be true if the peer threw
9008 			 * away data (space issues) that it had
9009 			 * previously sacked (else it would have
9010 			 * given us snd_una up to (rsm->r_end).
9011 			 * We need to undo the acked markings here.
9012 			 *
9013 			 * Note we have to look to make sure th_ack is
9014 			 * our rsm->r_start in case we get an old ack
9015 			 * where th_ack is behind snd_una.
9016 			 */
9017 			rack_peer_reneges(rack, rsm, th_ack);
9018 		}
9019 		return;
9020 	}
9021 	if (rsm->r_flags & RACK_ACKED) {
9022 		/*
9023 		 * It was acked on the scoreboard -- remove it from
9024 		 * total for the part being cum-acked.
9025 		 */
9026 		rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
9027 	}
9028 	/*
9029 	 * Clear the dup ack count for
9030 	 * the piece that remains.
9031 	 */
9032 	rsm->r_dupack = 0;
9033 	rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
9034 	if (rsm->r_rtr_bytes) {
9035 		/*
9036 		 * It was retransmitted adjust the
9037 		 * sack holes for what was acked.
9038 		 */
9039 		int ack_am;
9040 
9041 		ack_am = (th_ack - rsm->r_start);
9042 		if (ack_am >= rsm->r_rtr_bytes) {
9043 			rack->r_ctl.rc_holes_rxt -= ack_am;
9044 			rsm->r_rtr_bytes -= ack_am;
9045 		}
9046 	}
9047 	/*
9048 	 * Update where the piece starts and record
9049 	 * the time of send of highest cumack sent.
9050 	 */
9051 	rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
9052 	rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__);
9053 	/* Now we need to move our offset forward too */
9054 	if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) {
9055 		/* Fix up the orig_m_len and possibly the mbuf offset */
9056 		rack_adjust_orig_mlen(rsm);
9057 	}
9058 	rsm->soff += (th_ack - rsm->r_start);
9059 	rsm->r_start = th_ack;
9060 	/* Now do we need to move the mbuf fwd too? */
9061 	if (rsm->m) {
9062 		while (rsm->soff >= rsm->m->m_len) {
9063 			rsm->soff -= rsm->m->m_len;
9064 			rsm->m = rsm->m->m_next;
9065 			KASSERT((rsm->m != NULL),
9066 				(" nrsm:%p hit at soff:%u null m",
9067 				 rsm, rsm->soff));
9068 		}
9069 		rsm->orig_m_len = rsm->m->m_len;
9070 	}
9071 	if (rack->app_limited_needs_set)
9072 		rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG);
9073 }
9074 
9075 static void
9076 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack)
9077 {
9078 	struct rack_sendmap *rsm;
9079 	int sack_pass_fnd = 0;
9080 
9081 	if (rack->r_might_revert) {
9082 		/*
9083 		 * Ok we have reordering, have not sent anything, we
9084 		 * might want to revert the congestion state if nothing
9085 		 * further has SACK_PASSED on it. Lets check.
9086 		 *
9087 		 * We also get here when we have DSACKs come in for
9088 		 * all the data that we FR'd. Note that a rxt or tlp
9089 		 * timer clears this from happening.
9090 		 */
9091 
9092 		TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
9093 			if (rsm->r_flags & RACK_SACK_PASSED) {
9094 				sack_pass_fnd = 1;
9095 				break;
9096 			}
9097 		}
9098 		if (sack_pass_fnd == 0) {
9099 			/*
9100 			 * We went into recovery
9101 			 * incorrectly due to reordering!
9102 			 */
9103 			int orig_cwnd;
9104 
9105 			rack->r_ent_rec_ns = 0;
9106 			orig_cwnd = tp->snd_cwnd;
9107 			tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec;
9108 			tp->snd_recover = tp->snd_una;
9109 			rack_log_to_prr(rack, 14, orig_cwnd, __LINE__);
9110 			EXIT_RECOVERY(tp->t_flags);
9111 		}
9112 		rack->r_might_revert = 0;
9113 	}
9114 }
9115 
9116 #ifdef NETFLIX_EXP_DETECTION
9117 static void
9118 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack,  uint32_t bytes_this_ack, uint32_t segsiz)
9119 {
9120 	if ((rack->do_detection || tcp_force_detection) &&
9121 	    tcp_sack_to_ack_thresh &&
9122 	    tcp_sack_to_move_thresh &&
9123 	    ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
9124 		/*
9125 		 * We have thresholds set to find
9126 		 * possible attackers and disable sack.
9127 		 * Check them.
9128 		 */
9129 		uint64_t ackratio, moveratio, movetotal;
9130 
9131 		/* Log detecting */
9132 		rack_log_sad(rack, 1);
9133 		ackratio = (uint64_t)(rack->r_ctl.sack_count);
9134 		ackratio *= (uint64_t)(1000);
9135 		if (rack->r_ctl.ack_count)
9136 			ackratio /= (uint64_t)(rack->r_ctl.ack_count);
9137 		else {
9138 			/* We really should not hit here */
9139 			ackratio = 1000;
9140 		}
9141 		if ((rack->sack_attack_disable == 0) &&
9142 		    (ackratio > rack_highest_sack_thresh_seen))
9143 			rack_highest_sack_thresh_seen = (uint32_t)ackratio;
9144 		movetotal = rack->r_ctl.sack_moved_extra;
9145 		movetotal += rack->r_ctl.sack_noextra_move;
9146 		moveratio = rack->r_ctl.sack_moved_extra;
9147 		moveratio *= (uint64_t)1000;
9148 		if (movetotal)
9149 			moveratio /= movetotal;
9150 		else {
9151 			/* No moves, thats pretty good */
9152 			moveratio = 0;
9153 		}
9154 		if ((rack->sack_attack_disable == 0) &&
9155 		    (moveratio > rack_highest_move_thresh_seen))
9156 			rack_highest_move_thresh_seen = (uint32_t)moveratio;
9157 		if (rack->sack_attack_disable == 0) {
9158 			if ((ackratio > tcp_sack_to_ack_thresh) &&
9159 			    (moveratio > tcp_sack_to_move_thresh)) {
9160 				/* Disable sack processing */
9161 				rack->sack_attack_disable = 1;
9162 				if (rack->r_rep_attack == 0) {
9163 					rack->r_rep_attack = 1;
9164 					counter_u64_add(rack_sack_attacks_detected, 1);
9165 				}
9166 				tcp_trace_point(rack->rc_tp, TCP_TP_SAD_TRIGGERED);
9167 				/* Clamp the cwnd at flight size */
9168 				rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
9169 				rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9170 				rack_log_sad(rack, 2);
9171 			}
9172 		} else {
9173 			/* We are sack-disabled check for false positives */
9174 			if ((ackratio <= tcp_restoral_thresh) ||
9175 			    (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
9176 				rack->sack_attack_disable = 0;
9177 				rack_log_sad(rack, 3);
9178 				/* Restart counting */
9179 				rack->r_ctl.sack_count = 0;
9180 				rack->r_ctl.sack_moved_extra = 0;
9181 				rack->r_ctl.sack_noextra_move = 1;
9182 				rack->r_ctl.ack_count = max(1,
9183 				      (bytes_this_ack / segsiz));
9184 
9185 				if (rack->r_rep_reverse == 0) {
9186 					rack->r_rep_reverse = 1;
9187 					counter_u64_add(rack_sack_attacks_reversed, 1);
9188 				}
9189 				/* Restore the cwnd */
9190 				if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
9191 					rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
9192 			}
9193 		}
9194 	}
9195 }
9196 #endif
9197 
9198 static int
9199 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end)
9200 {
9201 
9202 	uint32_t am, l_end;
9203 	int was_tlp = 0;
9204 
9205 	if (SEQ_GT(end, start))
9206 		am = end - start;
9207 	else
9208 		am = 0;
9209 	if ((rack->rc_last_tlp_acked_set ) &&
9210 	    (SEQ_GEQ(start, rack->r_ctl.last_tlp_acked_start)) &&
9211 	    (SEQ_LEQ(end, rack->r_ctl.last_tlp_acked_end))) {
9212 		/*
9213 		 * The DSACK is because of a TLP which we don't
9214 		 * do anything with the reordering window over since
9215 		 * it was not reordering that caused the DSACK but
9216 		 * our previous retransmit TLP.
9217 		 */
9218 		rack_log_dsack_event(rack, 7, __LINE__, start, end);
9219 		was_tlp = 1;
9220 		goto skip_dsack_round;
9221 	}
9222 	if (rack->rc_last_sent_tlp_seq_valid) {
9223 		l_end = rack->r_ctl.last_sent_tlp_seq + rack->r_ctl.last_sent_tlp_len;
9224 		if (SEQ_GEQ(start, rack->r_ctl.last_sent_tlp_seq) &&
9225 		    (SEQ_LEQ(end, l_end))) {
9226 			/*
9227 			 * This dsack is from the last sent TLP, ignore it
9228 			 * for reordering purposes.
9229 			 */
9230 			rack_log_dsack_event(rack, 7, __LINE__, start, end);
9231 			was_tlp = 1;
9232 			goto skip_dsack_round;
9233 		}
9234 	}
9235 	if (rack->rc_dsack_round_seen == 0) {
9236 		rack->rc_dsack_round_seen = 1;
9237 		rack->r_ctl.dsack_round_end = rack->rc_tp->snd_max;
9238 		rack->r_ctl.num_dsack++;
9239 		rack->r_ctl.dsack_persist = 16;	/* 16 is from the standard */
9240 		rack_log_dsack_event(rack, 2, __LINE__, 0, 0);
9241 	}
9242 skip_dsack_round:
9243 	/*
9244 	 * We keep track of how many DSACK blocks we get
9245 	 * after a recovery incident.
9246 	 */
9247 	rack->r_ctl.dsack_byte_cnt += am;
9248 	if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
9249 	    rack->r_ctl.retran_during_recovery &&
9250 	    (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) {
9251 		/*
9252 		 * False recovery most likely culprit is reordering. If
9253 		 * nothing else is missing we need to revert.
9254 		 */
9255 		rack->r_might_revert = 1;
9256 		rack_handle_might_revert(rack->rc_tp, rack);
9257 		rack->r_might_revert = 0;
9258 		rack->r_ctl.retran_during_recovery = 0;
9259 		rack->r_ctl.dsack_byte_cnt = 0;
9260 	}
9261 	return (was_tlp);
9262 }
9263 
9264 static uint32_t
9265 do_rack_compute_pipe(struct tcpcb *tp, struct tcp_rack *rack, uint32_t snd_una)
9266 {
9267 	return (((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt);
9268 }
9269 
9270 static int32_t
9271 rack_compute_pipe(struct tcpcb *tp)
9272 {
9273 	return ((int32_t)do_rack_compute_pipe(tp,
9274 					      (struct tcp_rack *)tp->t_fb_ptr,
9275 					      tp->snd_una));
9276 }
9277 
9278 static void
9279 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack)
9280 {
9281 	/* Deal with changed and PRR here (in recovery only) */
9282 	uint32_t pipe, snd_una;
9283 
9284 	rack->r_ctl.rc_prr_delivered += changed;
9285 
9286 	if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) {
9287 		/*
9288 		 * It is all outstanding, we are application limited
9289 		 * and thus we don't need more room to send anything.
9290 		 * Note we use tp->snd_una here and not th_ack because
9291 		 * the data as yet not been cut from the sb.
9292 		 */
9293 		rack->r_ctl.rc_prr_sndcnt = 0;
9294 		return;
9295 	}
9296 	/* Compute prr_sndcnt */
9297 	if (SEQ_GT(tp->snd_una, th_ack)) {
9298 		snd_una = tp->snd_una;
9299 	} else {
9300 		snd_una = th_ack;
9301 	}
9302 	pipe = do_rack_compute_pipe(tp, rack, snd_una);
9303 	if (pipe > tp->snd_ssthresh) {
9304 		long sndcnt;
9305 
9306 		sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
9307 		if (rack->r_ctl.rc_prr_recovery_fs > 0)
9308 			sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
9309 		else {
9310 			rack->r_ctl.rc_prr_sndcnt = 0;
9311 			rack_log_to_prr(rack, 9, 0, __LINE__);
9312 			sndcnt = 0;
9313 		}
9314 		sndcnt++;
9315 		if (sndcnt > (long)rack->r_ctl.rc_prr_out)
9316 			sndcnt -= rack->r_ctl.rc_prr_out;
9317 		else
9318 			sndcnt = 0;
9319 		rack->r_ctl.rc_prr_sndcnt = sndcnt;
9320 		rack_log_to_prr(rack, 10, 0, __LINE__);
9321 	} else {
9322 		uint32_t limit;
9323 
9324 		if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
9325 			limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
9326 		else
9327 			limit = 0;
9328 		if (changed > limit)
9329 			limit = changed;
9330 		limit += ctf_fixed_maxseg(tp);
9331 		if (tp->snd_ssthresh > pipe) {
9332 			rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
9333 			rack_log_to_prr(rack, 11, 0, __LINE__);
9334 		} else {
9335 			rack->r_ctl.rc_prr_sndcnt = min(0, limit);
9336 			rack_log_to_prr(rack, 12, 0, __LINE__);
9337 		}
9338 	}
9339 }
9340 
9341 static void
9342 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck)
9343 {
9344 	uint32_t changed;
9345 	struct tcp_rack *rack;
9346 	struct rack_sendmap *rsm;
9347 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
9348 	register uint32_t th_ack;
9349 	int32_t i, j, k, num_sack_blks = 0;
9350 	uint32_t cts, acked, ack_point;
9351 	int loop_start = 0, moved_two = 0;
9352 	uint32_t tsused;
9353 
9354 
9355 	INP_WLOCK_ASSERT(tptoinpcb(tp));
9356 	if (tcp_get_flags(th) & TH_RST) {
9357 		/* We don't log resets */
9358 		return;
9359 	}
9360 	rack = (struct tcp_rack *)tp->t_fb_ptr;
9361 	cts = tcp_get_usecs(NULL);
9362 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9363 	changed = 0;
9364 	th_ack = th->th_ack;
9365 	if (rack->sack_attack_disable == 0)
9366 		rack_do_decay(rack);
9367 	if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
9368 		/*
9369 		 * You only get credit for
9370 		 * MSS and greater (and you get extra
9371 		 * credit for larger cum-ack moves).
9372 		 */
9373 		int ac;
9374 
9375 		ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
9376 		rack->r_ctl.ack_count += ac;
9377 		counter_u64_add(rack_ack_total, ac);
9378 	}
9379 	if (rack->r_ctl.ack_count > 0xfff00000) {
9380 		/*
9381 		 * reduce the number to keep us under
9382 		 * a uint32_t.
9383 		 */
9384 		rack->r_ctl.ack_count /= 2;
9385 		rack->r_ctl.sack_count /= 2;
9386 	}
9387 	if (SEQ_GT(th_ack, tp->snd_una)) {
9388 		rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
9389 		tp->t_acktime = ticks;
9390 	}
9391 	if (rsm && SEQ_GT(th_ack, rsm->r_start))
9392 		changed = th_ack - rsm->r_start;
9393 	if (changed) {
9394 		rack_process_to_cumack(tp, rack, th_ack, cts, to);
9395 	}
9396 	if ((to->to_flags & TOF_SACK) == 0) {
9397 		/* We are done nothing left and no sack. */
9398 		rack_handle_might_revert(tp, rack);
9399 		/*
9400 		 * For cases where we struck a dup-ack
9401 		 * with no SACK, add to the changes so
9402 		 * PRR will work right.
9403 		 */
9404 		if (dup_ack_struck && (changed == 0)) {
9405 			changed += ctf_fixed_maxseg(rack->rc_tp);
9406 		}
9407 		goto out;
9408 	}
9409 	/* Sack block processing */
9410 	if (SEQ_GT(th_ack, tp->snd_una))
9411 		ack_point = th_ack;
9412 	else
9413 		ack_point = tp->snd_una;
9414 	for (i = 0; i < to->to_nsacks; i++) {
9415 		bcopy((to->to_sacks + i * TCPOLEN_SACK),
9416 		      &sack, sizeof(sack));
9417 		sack.start = ntohl(sack.start);
9418 		sack.end = ntohl(sack.end);
9419 		if (SEQ_GT(sack.end, sack.start) &&
9420 		    SEQ_GT(sack.start, ack_point) &&
9421 		    SEQ_LT(sack.start, tp->snd_max) &&
9422 		    SEQ_GT(sack.end, ack_point) &&
9423 		    SEQ_LEQ(sack.end, tp->snd_max)) {
9424 			sack_blocks[num_sack_blks] = sack;
9425 			num_sack_blks++;
9426 		} else if (SEQ_LEQ(sack.start, th_ack) &&
9427 			   SEQ_LEQ(sack.end, th_ack)) {
9428 			int was_tlp;
9429 
9430 			was_tlp = rack_note_dsack(rack, sack.start, sack.end);
9431 			/*
9432 			 * Its a D-SACK block.
9433 			 */
9434 			tcp_record_dsack(tp, sack.start, sack.end, was_tlp);
9435 		}
9436 	}
9437 	if (rack->rc_dsack_round_seen) {
9438 		/* Is the dsack roound over? */
9439 		if (SEQ_GEQ(th_ack, rack->r_ctl.dsack_round_end)) {
9440 			/* Yes it is */
9441 			rack->rc_dsack_round_seen = 0;
9442 			rack_log_dsack_event(rack, 3, __LINE__, 0, 0);
9443 		}
9444 	}
9445 	/*
9446 	 * Sort the SACK blocks so we can update the rack scoreboard with
9447 	 * just one pass.
9448 	 */
9449 	num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
9450 					 num_sack_blks, th->th_ack);
9451 	ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
9452 	if (num_sack_blks == 0) {
9453 		/* Nothing to sack (DSACKs?) */
9454 		goto out_with_totals;
9455 	}
9456 	if (num_sack_blks < 2) {
9457 		/* Only one, we don't need to sort */
9458 		goto do_sack_work;
9459 	}
9460 	/* Sort the sacks */
9461 	for (i = 0; i < num_sack_blks; i++) {
9462 		for (j = i + 1; j < num_sack_blks; j++) {
9463 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
9464 				sack = sack_blocks[i];
9465 				sack_blocks[i] = sack_blocks[j];
9466 				sack_blocks[j] = sack;
9467 			}
9468 		}
9469 	}
9470 	/*
9471 	 * Now are any of the sack block ends the same (yes some
9472 	 * implementations send these)?
9473 	 */
9474 again:
9475 	if (num_sack_blks == 0)
9476 		goto out_with_totals;
9477 	if (num_sack_blks > 1) {
9478 		for (i = 0; i < num_sack_blks; i++) {
9479 			for (j = i + 1; j < num_sack_blks; j++) {
9480 				if (sack_blocks[i].end == sack_blocks[j].end) {
9481 					/*
9482 					 * Ok these two have the same end we
9483 					 * want the smallest end and then
9484 					 * throw away the larger and start
9485 					 * again.
9486 					 */
9487 					if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
9488 						/*
9489 						 * The second block covers
9490 						 * more area use that
9491 						 */
9492 						sack_blocks[i].start = sack_blocks[j].start;
9493 					}
9494 					/*
9495 					 * Now collapse out the dup-sack and
9496 					 * lower the count
9497 					 */
9498 					for (k = (j + 1); k < num_sack_blks; k++) {
9499 						sack_blocks[j].start = sack_blocks[k].start;
9500 						sack_blocks[j].end = sack_blocks[k].end;
9501 						j++;
9502 					}
9503 					num_sack_blks--;
9504 					goto again;
9505 				}
9506 			}
9507 		}
9508 	}
9509 do_sack_work:
9510 	/*
9511 	 * First lets look to see if
9512 	 * we have retransmitted and
9513 	 * can use the transmit next?
9514 	 */
9515 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9516 	if (rsm &&
9517 	    SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
9518 	    SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
9519 		/*
9520 		 * We probably did the FR and the next
9521 		 * SACK in continues as we would expect.
9522 		 */
9523 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
9524 		if (acked) {
9525 			rack->r_wanted_output = 1;
9526 			changed += acked;
9527 		}
9528 		if (num_sack_blks == 1) {
9529 			/*
9530 			 * This is what we would expect from
9531 			 * a normal implementation to happen
9532 			 * after we have retransmitted the FR,
9533 			 * i.e the sack-filter pushes down
9534 			 * to 1 block and the next to be retransmitted
9535 			 * is the sequence in the sack block (has more
9536 			 * are acked). Count this as ACK'd data to boost
9537 			 * up the chances of recovering any false positives.
9538 			 */
9539 			rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
9540 			counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
9541 			counter_u64_add(rack_express_sack, 1);
9542 			if (rack->r_ctl.ack_count > 0xfff00000) {
9543 				/*
9544 				 * reduce the number to keep us under
9545 				 * a uint32_t.
9546 				 */
9547 				rack->r_ctl.ack_count /= 2;
9548 				rack->r_ctl.sack_count /= 2;
9549 			}
9550 			goto out_with_totals;
9551 		} else {
9552 			/*
9553 			 * Start the loop through the
9554 			 * rest of blocks, past the first block.
9555 			 */
9556 			moved_two = 0;
9557 			loop_start = 1;
9558 		}
9559 	}
9560 	/* Its a sack of some sort */
9561 	rack->r_ctl.sack_count++;
9562 	if (rack->r_ctl.sack_count > 0xfff00000) {
9563 		/*
9564 		 * reduce the number to keep us under
9565 		 * a uint32_t.
9566 		 */
9567 		rack->r_ctl.ack_count /= 2;
9568 		rack->r_ctl.sack_count /= 2;
9569 	}
9570 	counter_u64_add(rack_sack_total, 1);
9571 	if (rack->sack_attack_disable) {
9572 		/* An attacker disablement is in place */
9573 		if (num_sack_blks > 1) {
9574 			rack->r_ctl.sack_count += (num_sack_blks - 1);
9575 			rack->r_ctl.sack_moved_extra++;
9576 			counter_u64_add(rack_move_some, 1);
9577 			if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
9578 				rack->r_ctl.sack_moved_extra /= 2;
9579 				rack->r_ctl.sack_noextra_move /= 2;
9580 			}
9581 		}
9582 		goto out;
9583 	}
9584 	rsm = rack->r_ctl.rc_sacklast;
9585 	for (i = loop_start; i < num_sack_blks; i++) {
9586 		acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
9587 		if (acked) {
9588 			rack->r_wanted_output = 1;
9589 			changed += acked;
9590 		}
9591 		if (moved_two) {
9592 			/*
9593 			 * If we did not get a SACK for at least a MSS and
9594 			 * had to move at all, or if we moved more than our
9595 			 * threshold, it counts against the "extra" move.
9596 			 */
9597 			rack->r_ctl.sack_moved_extra += moved_two;
9598 			counter_u64_add(rack_move_some, 1);
9599 		} else {
9600 			/*
9601 			 * else we did not have to move
9602 			 * any more than we would expect.
9603 			 */
9604 			rack->r_ctl.sack_noextra_move++;
9605 			counter_u64_add(rack_move_none, 1);
9606 		}
9607 		if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
9608 			/*
9609 			 * If the SACK was not a full MSS then
9610 			 * we add to sack_count the number of
9611 			 * MSS's (or possibly more than
9612 			 * a MSS if its a TSO send) we had to skip by.
9613 			 */
9614 			rack->r_ctl.sack_count += moved_two;
9615 			counter_u64_add(rack_sack_total, moved_two);
9616 		}
9617 		/*
9618 		 * Now we need to setup for the next
9619 		 * round. First we make sure we won't
9620 		 * exceed the size of our uint32_t on
9621 		 * the various counts, and then clear out
9622 		 * moved_two.
9623 		 */
9624 		if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
9625 		    (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
9626 			rack->r_ctl.sack_moved_extra /= 2;
9627 			rack->r_ctl.sack_noextra_move /= 2;
9628 		}
9629 		if (rack->r_ctl.sack_count > 0xfff00000) {
9630 			rack->r_ctl.ack_count /= 2;
9631 			rack->r_ctl.sack_count /= 2;
9632 		}
9633 		moved_two = 0;
9634 	}
9635 out_with_totals:
9636 	if (num_sack_blks > 1) {
9637 		/*
9638 		 * You get an extra stroke if
9639 		 * you have more than one sack-blk, this
9640 		 * could be where we are skipping forward
9641 		 * and the sack-filter is still working, or
9642 		 * it could be an attacker constantly
9643 		 * moving us.
9644 		 */
9645 		rack->r_ctl.sack_moved_extra++;
9646 		counter_u64_add(rack_move_some, 1);
9647 	}
9648 out:
9649 #ifdef NETFLIX_EXP_DETECTION
9650 	rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp));
9651 #endif
9652 	if (changed) {
9653 		/* Something changed cancel the rack timer */
9654 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9655 	}
9656 	tsused = tcp_get_usecs(NULL);
9657 	rsm = tcp_rack_output(tp, rack, tsused);
9658 	if ((!IN_FASTRECOVERY(tp->t_flags)) &&
9659 	    rsm &&
9660 	    ((rsm->r_flags & RACK_MUST_RXT) == 0)) {
9661 		/* Enter recovery */
9662 		entered_recovery = 1;
9663 		rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
9664 		/*
9665 		 * When we enter recovery we need to assure we send
9666 		 * one packet.
9667 		 */
9668 		if (rack->rack_no_prr == 0) {
9669 			rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
9670 			rack_log_to_prr(rack, 8, 0, __LINE__);
9671 		}
9672 		rack->r_timer_override = 1;
9673 		rack->r_early = 0;
9674 		rack->r_ctl.rc_agg_early = 0;
9675 	} else if (IN_FASTRECOVERY(tp->t_flags) &&
9676 		   rsm &&
9677 		   (rack->r_rr_config == 3)) {
9678 		/*
9679 		 * Assure we can output and we get no
9680 		 * remembered pace time except the retransmit.
9681 		 */
9682 		rack->r_timer_override = 1;
9683 		rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
9684 		rack->r_ctl.rc_resend = rsm;
9685 	}
9686 	if (IN_FASTRECOVERY(tp->t_flags) &&
9687 	    (rack->rack_no_prr == 0) &&
9688 	    (entered_recovery == 0)) {
9689 		rack_update_prr(tp, rack, changed, th_ack);
9690 		if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) &&
9691 		     ((tcp_in_hpts(rack->rc_inp) == 0) &&
9692 		      ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) {
9693 			/*
9694 			 * If you are pacing output you don't want
9695 			 * to override.
9696 			 */
9697 			rack->r_early = 0;
9698 			rack->r_ctl.rc_agg_early = 0;
9699 			rack->r_timer_override = 1;
9700 		}
9701 	}
9702 }
9703 
9704 static void
9705 rack_strike_dupack(struct tcp_rack *rack)
9706 {
9707 	struct rack_sendmap *rsm;
9708 
9709 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9710 	while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
9711 		rsm = TAILQ_NEXT(rsm, r_tnext);
9712 		if (rsm->r_flags & RACK_MUST_RXT) {
9713 			/* Sendmap entries that are marked to
9714 			 * be retransmitted do not need dupack's
9715 			 * struck. We get these marks for a number
9716 			 * of reasons (rxt timeout with no sack,
9717 			 * mtu change, or rwnd collapses). When
9718 			 * these events occur, we know we must retransmit
9719 			 * them and mark the sendmap entries. Dupack counting
9720 			 * is not needed since we are already set to retransmit
9721 			 * it as soon as we can.
9722 			 */
9723 			continue;
9724 		}
9725 	}
9726 	if (rsm && (rsm->r_dupack < 0xff)) {
9727 		rsm->r_dupack++;
9728 		if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
9729 			struct timeval tv;
9730 			uint32_t cts;
9731 			/*
9732 			 * Here we see if we need to retransmit. For
9733 			 * a SACK type connection if enough time has passed
9734 			 * we will get a return of the rsm. For a non-sack
9735 			 * connection we will get the rsm returned if the
9736 			 * dupack value is 3 or more.
9737 			 */
9738 			cts = tcp_get_usecs(&tv);
9739 			rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts);
9740 			if (rack->r_ctl.rc_resend != NULL) {
9741 				if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) {
9742 					rack_cong_signal(rack->rc_tp, CC_NDUPACK,
9743 							 rack->rc_tp->snd_una, __LINE__);
9744 				}
9745 				rack->r_wanted_output = 1;
9746 				rack->r_timer_override = 1;
9747 				rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
9748 			}
9749 		} else {
9750 			rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
9751 		}
9752 	}
9753 }
9754 
9755 static void
9756 rack_check_bottom_drag(struct tcpcb *tp,
9757 		       struct tcp_rack *rack,
9758 		       struct socket *so, int32_t acked)
9759 {
9760 	uint32_t segsiz, minseg;
9761 
9762 	segsiz = ctf_fixed_maxseg(tp);
9763 	minseg = segsiz;
9764 
9765 	if (tp->snd_max == tp->snd_una) {
9766 		/*
9767 		 * We are doing dynamic pacing and we are way
9768 		 * under. Basically everything got acked while
9769 		 * we were still waiting on the pacer to expire.
9770 		 *
9771 		 * This means we need to boost the b/w in
9772 		 * addition to any earlier boosting of
9773 		 * the multiplier.
9774 		 */
9775 		rack->rc_dragged_bottom = 1;
9776 		rack_validate_multipliers_at_or_above100(rack);
9777 		/*
9778 		 * Lets use the segment bytes acked plus
9779 		 * the lowest RTT seen as the basis to
9780 		 * form a b/w estimate. This will be off
9781 		 * due to the fact that the true estimate
9782 		 * should be around 1/2 the time of the RTT
9783 		 * but we can settle for that.
9784 		 */
9785 		if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) &&
9786 		    acked) {
9787 			uint64_t bw, calc_bw, rtt;
9788 
9789 			rtt = rack->r_ctl.rack_rs.rs_us_rtt;
9790 			if (rtt == 0) {
9791 				/* no us sample is there a ms one? */
9792 				if (rack->r_ctl.rack_rs.rs_rtt_lowest) {
9793 					rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
9794 				} else {
9795 					goto no_measurement;
9796 				}
9797 			}
9798 			bw = acked;
9799 			calc_bw = bw * 1000000;
9800 			calc_bw /= rtt;
9801 			if (rack->r_ctl.last_max_bw &&
9802 			    (rack->r_ctl.last_max_bw < calc_bw)) {
9803 				/*
9804 				 * If we have a last calculated max bw
9805 				 * enforce it.
9806 				 */
9807 				calc_bw = rack->r_ctl.last_max_bw;
9808 			}
9809 			/* now plop it in */
9810 			if (rack->rc_gp_filled == 0) {
9811 				if (calc_bw > ONE_POINT_TWO_MEG) {
9812 					/*
9813 					 * If we have no measurement
9814 					 * don't let us set in more than
9815 					 * 1.2Mbps. If we are still too
9816 					 * low after pacing with this we
9817 					 * will hopefully have a max b/w
9818 					 * available to sanity check things.
9819 					 */
9820 					calc_bw = ONE_POINT_TWO_MEG;
9821 				}
9822 				rack->r_ctl.rc_rtt_diff = 0;
9823 				rack->r_ctl.gp_bw = calc_bw;
9824 				rack->rc_gp_filled = 1;
9825 				if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9826 					rack->r_ctl.num_measurements = RACK_REQ_AVG;
9827 				rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9828 			} else if (calc_bw > rack->r_ctl.gp_bw) {
9829 				rack->r_ctl.rc_rtt_diff = 0;
9830 				if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9831 					rack->r_ctl.num_measurements = RACK_REQ_AVG;
9832 				rack->r_ctl.gp_bw = calc_bw;
9833 				rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9834 			} else
9835 				rack_increase_bw_mul(rack, -1, 0, 0, 1);
9836 			if ((rack->gp_ready == 0) &&
9837 			    (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
9838 				/* We have enough measurements now */
9839 				rack->gp_ready = 1;
9840 				rack_set_cc_pacing(rack);
9841 				if (rack->defer_options)
9842 					rack_apply_deferred_options(rack);
9843 			}
9844 			/*
9845 			 * For acks over 1mss we do a extra boost to simulate
9846 			 * where we would get 2 acks (we want 110 for the mul).
9847 			 */
9848 			if (acked > segsiz)
9849 				rack_increase_bw_mul(rack, -1, 0, 0, 1);
9850 		} else {
9851 			/*
9852 			 * zero rtt possibly?, settle for just an old increase.
9853 			 */
9854 no_measurement:
9855 			rack_increase_bw_mul(rack, -1, 0, 0, 1);
9856 		}
9857 	} else if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
9858 		   (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)),
9859 					       minseg)) &&
9860 		   (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9861 		   (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9862 		   (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <=
9863 		    (segsiz * rack_req_segs))) {
9864 		/*
9865 		 * We are doing dynamic GP pacing and
9866 		 * we have everything except 1MSS or less
9867 		 * bytes left out. We are still pacing away.
9868 		 * And there is data that could be sent, This
9869 		 * means we are inserting delayed ack time in
9870 		 * our measurements because we are pacing too slow.
9871 		 */
9872 		rack_validate_multipliers_at_or_above100(rack);
9873 		rack->rc_dragged_bottom = 1;
9874 		rack_increase_bw_mul(rack, -1, 0, 0, 1);
9875 	}
9876 }
9877 
9878 
9879 
9880 static void
9881 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount)
9882 {
9883 	/*
9884 	 * The fast output path is enabled and we
9885 	 * have moved the cumack forward. Lets see if
9886 	 * we can expand forward the fast path length by
9887 	 * that amount. What we would ideally like to
9888 	 * do is increase the number of bytes in the
9889 	 * fast path block (left_to_send) by the
9890 	 * acked amount. However we have to gate that
9891 	 * by two factors:
9892 	 * 1) The amount outstanding and the rwnd of the peer
9893 	 *    (i.e. we don't want to exceed the rwnd of the peer).
9894 	 *    <and>
9895 	 * 2) The amount of data left in the socket buffer (i.e.
9896 	 *    we can't send beyond what is in the buffer).
9897 	 *
9898 	 * Note that this does not take into account any increase
9899 	 * in the cwnd. We will only extend the fast path by
9900 	 * what was acked.
9901 	 */
9902 	uint32_t new_total, gating_val;
9903 
9904 	new_total = acked_amount + rack->r_ctl.fsb.left_to_send;
9905 	gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)),
9906 			 (tp->snd_wnd - (tp->snd_max - tp->snd_una)));
9907 	if (new_total <= gating_val) {
9908 		/* We can increase left_to_send by the acked amount */
9909 		counter_u64_add(rack_extended_rfo, 1);
9910 		rack->r_ctl.fsb.left_to_send = new_total;
9911 		KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))),
9912 			("rack:%p left_to_send:%u sbavail:%u out:%u",
9913 			 rack, rack->r_ctl.fsb.left_to_send,
9914 			 sbavail(&rack->rc_inp->inp_socket->so_snd),
9915 			 (tp->snd_max - tp->snd_una)));
9916 
9917 	}
9918 }
9919 
9920 static void
9921 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una)
9922 {
9923 	/*
9924 	 * Here any sendmap entry that points to the
9925 	 * beginning mbuf must be adjusted to the correct
9926 	 * offset. This must be called with:
9927 	 * 1) The socket buffer locked
9928 	 * 2) snd_una adjusted to its new position.
9929 	 *
9930 	 * Note that (2) implies rack_ack_received has also
9931 	 * been called.
9932 	 *
9933 	 * We grab the first mbuf in the socket buffer and
9934 	 * then go through the front of the sendmap, recalculating
9935 	 * the stored offset for any sendmap entry that has
9936 	 * that mbuf. We must use the sb functions to do this
9937 	 * since its possible an add was done has well as
9938 	 * the subtraction we may have just completed. This should
9939 	 * not be a penalty though, since we just referenced the sb
9940 	 * to go in and trim off the mbufs that we freed (of course
9941 	 * there will be a penalty for the sendmap references though).
9942 	 */
9943 	struct mbuf *m;
9944 	struct rack_sendmap *rsm;
9945 
9946 	SOCKBUF_LOCK_ASSERT(sb);
9947 	m = sb->sb_mb;
9948 	rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9949 	if ((rsm == NULL) || (m == NULL)) {
9950 		/* Nothing outstanding */
9951 		return;
9952 	}
9953 	while (rsm->m && (rsm->m == m)) {
9954 		/* one to adjust */
9955 #ifdef INVARIANTS
9956 		struct mbuf *tm;
9957 		uint32_t soff;
9958 
9959 		tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff);
9960 		if (rsm->orig_m_len != m->m_len) {
9961 			rack_adjust_orig_mlen(rsm);
9962 		}
9963 		if (rsm->soff != soff) {
9964 			/*
9965 			 * This is not a fatal error, we anticipate it
9966 			 * might happen (the else code), so we count it here
9967 			 * so that under invariant we can see that it really
9968 			 * does happen.
9969 			 */
9970 			counter_u64_add(rack_adjust_map_bw, 1);
9971 		}
9972 		rsm->m = tm;
9973 		rsm->soff = soff;
9974 		if (tm)
9975 			rsm->orig_m_len = rsm->m->m_len;
9976 		else
9977 			rsm->orig_m_len = 0;
9978 #else
9979 		rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff);
9980 		if (rsm->m)
9981 			rsm->orig_m_len = rsm->m->m_len;
9982 		else
9983 			rsm->orig_m_len = 0;
9984 #endif
9985 		rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
9986 			      rsm);
9987 		if (rsm == NULL)
9988 			break;
9989 	}
9990 }
9991 
9992 /*
9993  * Return value of 1, we do not need to call rack_process_data().
9994  * return value of 0, rack_process_data can be called.
9995  * For ret_val if its 0 the TCP is locked, if its non-zero
9996  * its unlocked and probably unsafe to touch the TCB.
9997  */
9998 static int
9999 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10000     struct tcpcb *tp, struct tcpopt *to,
10001     uint32_t tiwin, int32_t tlen,
10002     int32_t * ofia, int32_t thflags, int32_t *ret_val)
10003 {
10004 	int32_t ourfinisacked = 0;
10005 	int32_t nsegs, acked_amount;
10006 	int32_t acked;
10007 	struct mbuf *mfree;
10008 	struct tcp_rack *rack;
10009 	int32_t under_pacing = 0;
10010 	int32_t recovery = 0;
10011 
10012 	INP_WLOCK_ASSERT(tptoinpcb(tp));
10013 
10014 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10015 	if (SEQ_GT(th->th_ack, tp->snd_max)) {
10016 		__ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val,
10017 				      &rack->r_ctl.challenge_ack_ts,
10018 				      &rack->r_ctl.challenge_ack_cnt);
10019 		rack->r_wanted_output = 1;
10020 		return (1);
10021 	}
10022 	if (rack->gp_ready &&
10023 	    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
10024 		under_pacing = 1;
10025 	}
10026 	if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
10027 		int in_rec, dup_ack_struck = 0;
10028 
10029 		in_rec = IN_FASTRECOVERY(tp->t_flags);
10030 		if (rack->rc_in_persist) {
10031 			tp->t_rxtshift = 0;
10032 			RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
10033 				      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
10034 		}
10035 		if ((th->th_ack == tp->snd_una) &&
10036 		    (tiwin == tp->snd_wnd) &&
10037 		    ((to->to_flags & TOF_SACK) == 0)) {
10038 			rack_strike_dupack(rack);
10039 			dup_ack_struck = 1;
10040 		}
10041 		rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck);
10042 	}
10043 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10044 		/*
10045 		 * Old ack, behind (or duplicate to) the last one rcv'd
10046 		 * Note: We mark reordering is occuring if its
10047 		 * less than and we have not closed our window.
10048 		 */
10049 		if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) {
10050 			rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
10051 		}
10052 		return (0);
10053 	}
10054 	/*
10055 	 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
10056 	 * something we sent.
10057 	 */
10058 	if (tp->t_flags & TF_NEEDSYN) {
10059 		/*
10060 		 * T/TCP: Connection was half-synchronized, and our SYN has
10061 		 * been ACK'd (so connection is now fully synchronized).  Go
10062 		 * to non-starred state, increment snd_una for ACK of SYN,
10063 		 * and check if we can do window scaling.
10064 		 */
10065 		tp->t_flags &= ~TF_NEEDSYN;
10066 		tp->snd_una++;
10067 		/* Do window scaling? */
10068 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
10069 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
10070 			tp->rcv_scale = tp->request_r_scale;
10071 			/* Send window already scaled. */
10072 		}
10073 	}
10074 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
10075 
10076 	acked = BYTES_THIS_ACK(tp, th);
10077 	if (acked) {
10078 		/*
10079 		 * Any time we move the cum-ack forward clear
10080 		 * keep-alive tied probe-not-answered. The
10081 		 * persists clears its own on entry.
10082 		 */
10083 		rack->probe_not_answered = 0;
10084 	}
10085 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
10086 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
10087 	/*
10088 	 * If we just performed our first retransmit, and the ACK arrives
10089 	 * within our recovery window, then it was a mistake to do the
10090 	 * retransmit in the first place.  Recover our original cwnd and
10091 	 * ssthresh, and proceed to transmit where we left off.
10092 	 */
10093 	if ((tp->t_flags & TF_PREVVALID) &&
10094 	    ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10095 		tp->t_flags &= ~TF_PREVVALID;
10096 		if (tp->t_rxtshift == 1 &&
10097 		    (int)(ticks - tp->t_badrxtwin) < 0)
10098 			rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__);
10099 	}
10100 	if (acked) {
10101 		/* assure we are not backed off */
10102 		tp->t_rxtshift = 0;
10103 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
10104 			      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
10105 		rack->rc_tlp_in_progress = 0;
10106 		rack->r_ctl.rc_tlp_cnt_out = 0;
10107 		/*
10108 		 * If it is the RXT timer we want to
10109 		 * stop it, so we can restart a TLP.
10110 		 */
10111 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
10112 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10113 #ifdef NETFLIX_HTTP_LOGGING
10114 		tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
10115 #endif
10116 	}
10117 	/*
10118 	 * If we have a timestamp reply, update smoothed round trip time. If
10119 	 * no timestamp is present but transmit timer is running and timed
10120 	 * sequence number was acked, update smoothed round trip time. Since
10121 	 * we now have an rtt measurement, cancel the timer backoff (cf.,
10122 	 * Phil Karn's retransmit alg.). Recompute the initial retransmit
10123 	 * timer.
10124 	 *
10125 	 * Some boxes send broken timestamp replies during the SYN+ACK
10126 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
10127 	 * and blow up the retransmit timer.
10128 	 */
10129 	/*
10130 	 * If all outstanding data is acked, stop retransmit timer and
10131 	 * remember to restart (more output or persist). If there is more
10132 	 * data to be acked, restart retransmit timer, using current
10133 	 * (possibly backed-off) value.
10134 	 */
10135 	if (acked == 0) {
10136 		if (ofia)
10137 			*ofia = ourfinisacked;
10138 		return (0);
10139 	}
10140 	if (IN_RECOVERY(tp->t_flags)) {
10141 		if (SEQ_LT(th->th_ack, tp->snd_recover) &&
10142 		    (SEQ_LT(th->th_ack, tp->snd_max))) {
10143 			tcp_rack_partialack(tp);
10144 		} else {
10145 			rack_post_recovery(tp, th->th_ack);
10146 			recovery = 1;
10147 		}
10148 	}
10149 	/*
10150 	 * Let the congestion control algorithm update congestion control
10151 	 * related information. This typically means increasing the
10152 	 * congestion window.
10153 	 */
10154 	rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery);
10155 	SOCKBUF_LOCK(&so->so_snd);
10156 	acked_amount = min(acked, (int)sbavail(&so->so_snd));
10157 	tp->snd_wnd -= acked_amount;
10158 	mfree = sbcut_locked(&so->so_snd, acked_amount);
10159 	if ((sbused(&so->so_snd) == 0) &&
10160 	    (acked > acked_amount) &&
10161 	    (tp->t_state >= TCPS_FIN_WAIT_1) &&
10162 	    (tp->t_flags & TF_SENTFIN)) {
10163 		/*
10164 		 * We must be sure our fin
10165 		 * was sent and acked (we can be
10166 		 * in FIN_WAIT_1 without having
10167 		 * sent the fin).
10168 		 */
10169 		ourfinisacked = 1;
10170 	}
10171 	tp->snd_una = th->th_ack;
10172 	if (acked_amount && sbavail(&so->so_snd))
10173 		rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
10174 	rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
10175 	/* NB: sowwakeup_locked() does an implicit unlock. */
10176 	sowwakeup_locked(so);
10177 	m_freem(mfree);
10178 	if (SEQ_GT(tp->snd_una, tp->snd_recover))
10179 		tp->snd_recover = tp->snd_una;
10180 
10181 	if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
10182 		tp->snd_nxt = tp->snd_una;
10183 	}
10184 	if (under_pacing &&
10185 	    (rack->use_fixed_rate == 0) &&
10186 	    (rack->in_probe_rtt == 0) &&
10187 	    rack->rc_gp_dyn_mul &&
10188 	    rack->rc_always_pace) {
10189 		/* Check if we are dragging bottom */
10190 		rack_check_bottom_drag(tp, rack, so, acked);
10191 	}
10192 	if (tp->snd_una == tp->snd_max) {
10193 		/* Nothing left outstanding */
10194 		tp->t_flags &= ~TF_PREVVALID;
10195 		rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
10196 		rack->r_ctl.retran_during_recovery = 0;
10197 		rack->r_ctl.dsack_byte_cnt = 0;
10198 		if (rack->r_ctl.rc_went_idle_time == 0)
10199 			rack->r_ctl.rc_went_idle_time = 1;
10200 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
10201 		if (sbavail(&tptosocket(tp)->so_snd) == 0)
10202 			tp->t_acktime = 0;
10203 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10204 		/* Set need output so persist might get set */
10205 		rack->r_wanted_output = 1;
10206 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
10207 		if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
10208 		    (sbavail(&so->so_snd) == 0) &&
10209 		    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
10210 			/*
10211 			 * The socket was gone and the
10212 			 * peer sent data (now or in the past), time to
10213 			 * reset him.
10214 			 */
10215 			*ret_val = 1;
10216 			/* tcp_close will kill the inp pre-log the Reset */
10217 			tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
10218 			tp = tcp_close(tp);
10219 			ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
10220 			return (1);
10221 		}
10222 	}
10223 	if (ofia)
10224 		*ofia = ourfinisacked;
10225 	return (0);
10226 }
10227 
10228 
10229 static void
10230 rack_log_collapse(struct tcp_rack *rack, uint32_t cnt, uint32_t split, uint32_t out, int line,
10231 		  int dir, uint32_t flags, struct rack_sendmap *rsm)
10232 {
10233 	if (tcp_bblogging_on(rack->rc_tp)) {
10234 		union tcp_log_stackspecific log;
10235 		struct timeval tv;
10236 
10237 		memset(&log, 0, sizeof(log));
10238 		log.u_bbr.flex1 = cnt;
10239 		log.u_bbr.flex2 = split;
10240 		log.u_bbr.flex3 = out;
10241 		log.u_bbr.flex4 = line;
10242 		log.u_bbr.flex5 = rack->r_must_retran;
10243 		log.u_bbr.flex6 = flags;
10244 		log.u_bbr.flex7 = rack->rc_has_collapsed;
10245 		log.u_bbr.flex8 = dir;	/*
10246 					 * 1 is collapsed, 0 is uncollapsed,
10247 					 * 2 is log of a rsm being marked, 3 is a split.
10248 					 */
10249 		if (rsm == NULL)
10250 			log.u_bbr.rttProp = 0;
10251 		else
10252 			log.u_bbr.rttProp = (uint64_t)rsm;
10253 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
10254 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
10255 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
10256 		    &rack->rc_inp->inp_socket->so_rcv,
10257 		    &rack->rc_inp->inp_socket->so_snd,
10258 		    TCP_RACK_LOG_COLLAPSE, 0,
10259 		    0, &log, false, &tv);
10260 	}
10261 }
10262 
10263 static void
10264 rack_collapsed_window(struct tcp_rack *rack, uint32_t out, int line)
10265 {
10266 	/*
10267 	 * Here all we do is mark the collapsed point and set the flag.
10268 	 * This may happen again and again, but there is no
10269 	 * sense splitting our map until we know where the
10270 	 * peer finally lands in the collapse.
10271 	 */
10272 	tcp_trace_point(rack->rc_tp, TCP_TP_COLLAPSED_WND);
10273 	if ((rack->rc_has_collapsed == 0) ||
10274 	    (rack->r_ctl.last_collapse_point != (rack->rc_tp->snd_una + rack->rc_tp->snd_wnd)))
10275 		counter_u64_add(rack_collapsed_win_seen, 1);
10276 	rack->r_ctl.last_collapse_point = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
10277 	rack->r_ctl.high_collapse_point = rack->rc_tp->snd_max;
10278 	rack->rc_has_collapsed = 1;
10279 	rack->r_collapse_point_valid = 1;
10280 	rack_log_collapse(rack, 0, 0, rack->r_ctl.last_collapse_point, line, 1, 0, NULL);
10281 }
10282 
10283 static void
10284 rack_un_collapse_window(struct tcp_rack *rack, int line)
10285 {
10286 	struct rack_sendmap *nrsm, *rsm, fe;
10287 	int cnt = 0, split = 0;
10288 #ifdef INVARIANTS
10289 	struct rack_sendmap *insret;
10290 #endif
10291 
10292 	memset(&fe, 0, sizeof(fe));
10293 	rack->rc_has_collapsed = 0;
10294 	fe.r_start = rack->r_ctl.last_collapse_point;
10295 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
10296 	if (rsm == NULL) {
10297 		/* Nothing to do maybe the peer ack'ed it all */
10298 		rack_log_collapse(rack, 0, 0, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL);
10299 		return;
10300 	}
10301 	/* Now do we need to split this one? */
10302 	if (SEQ_GT(rack->r_ctl.last_collapse_point, rsm->r_start)) {
10303 		rack_log_collapse(rack, rsm->r_start, rsm->r_end,
10304 				  rack->r_ctl.last_collapse_point, line, 3, rsm->r_flags, rsm);
10305 		nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
10306 		if (nrsm == NULL) {
10307 			/* We can't get a rsm, mark all? */
10308 			nrsm = rsm;
10309 			goto no_split;
10310 		}
10311 		/* Clone it */
10312 		split = 1;
10313 		rack_clone_rsm(rack, nrsm, rsm, rack->r_ctl.last_collapse_point);
10314 #ifndef INVARIANTS
10315 		(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
10316 #else
10317 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
10318 		if (insret != NULL) {
10319 			panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
10320 			      nrsm, insret, rack, rsm);
10321 		}
10322 #endif
10323 		rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT,
10324 				 rack->r_ctl.last_collapse_point, __LINE__);
10325 		if (rsm->r_in_tmap) {
10326 			TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
10327 			nrsm->r_in_tmap = 1;
10328 		}
10329 		/*
10330 		 * Set in the new RSM as the
10331 		 * collapsed starting point
10332 		 */
10333 		rsm = nrsm;
10334 	}
10335 no_split:
10336 	RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
10337 		nrsm->r_flags |= RACK_RWND_COLLAPSED;
10338 		rack_log_collapse(rack, nrsm->r_start, nrsm->r_end, 0, line, 4, nrsm->r_flags, nrsm);
10339 		cnt++;
10340 	}
10341 	if (cnt) {
10342 		counter_u64_add(rack_collapsed_win, 1);
10343 	}
10344 	rack_log_collapse(rack, cnt, split, ctf_outstanding(rack->rc_tp), line, 0, 0, NULL);
10345 }
10346 
10347 static void
10348 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack,
10349 			int32_t tlen, int32_t tfo_syn)
10350 {
10351 	if (DELAY_ACK(tp, tlen) || tfo_syn) {
10352 		if (rack->rc_dack_mode &&
10353 		    (tlen > 500) &&
10354 		    (rack->rc_dack_toggle == 1)) {
10355 			goto no_delayed_ack;
10356 		}
10357 		rack_timer_cancel(tp, rack,
10358 				  rack->r_ctl.rc_rcvtime, __LINE__);
10359 		tp->t_flags |= TF_DELACK;
10360 	} else {
10361 no_delayed_ack:
10362 		rack->r_wanted_output = 1;
10363 		tp->t_flags |= TF_ACKNOW;
10364 		if (rack->rc_dack_mode) {
10365 			if (tp->t_flags & TF_DELACK)
10366 				rack->rc_dack_toggle = 1;
10367 			else
10368 				rack->rc_dack_toggle = 0;
10369 		}
10370 	}
10371 }
10372 
10373 static void
10374 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack)
10375 {
10376 	/*
10377 	 * If fast output is in progress, lets validate that
10378 	 * the new window did not shrink on us and make it
10379 	 * so fast output should end.
10380 	 */
10381 	if (rack->r_fast_output) {
10382 		uint32_t out;
10383 
10384 		/*
10385 		 * Calculate what we will send if left as is
10386 		 * and compare that to our send window.
10387 		 */
10388 		out = ctf_outstanding(tp);
10389 		if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) {
10390 			/* ok we have an issue */
10391 			if (out >= tp->snd_wnd) {
10392 				/* Turn off fast output the window is met or collapsed */
10393 				rack->r_fast_output = 0;
10394 			} else {
10395 				/* we have some room left */
10396 				rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out;
10397 				if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) {
10398 					/* If not at least 1 full segment never mind */
10399 					rack->r_fast_output = 0;
10400 				}
10401 			}
10402 		}
10403 	}
10404 }
10405 
10406 
10407 /*
10408  * Return value of 1, the TCB is unlocked and most
10409  * likely gone, return value of 0, the TCP is still
10410  * locked.
10411  */
10412 static int
10413 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
10414     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
10415     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
10416 {
10417 	/*
10418 	 * Update window information. Don't look at window if no ACK: TAC's
10419 	 * send garbage on first SYN.
10420 	 */
10421 	int32_t nsegs;
10422 	int32_t tfo_syn;
10423 	struct tcp_rack *rack;
10424 
10425 	INP_WLOCK_ASSERT(tptoinpcb(tp));
10426 
10427 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10428 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
10429 	if ((thflags & TH_ACK) &&
10430 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
10431 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
10432 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
10433 		/* keep track of pure window updates */
10434 		if (tlen == 0 &&
10435 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
10436 			KMOD_TCPSTAT_INC(tcps_rcvwinupd);
10437 		tp->snd_wnd = tiwin;
10438 		rack_validate_fo_sendwin_up(tp, rack);
10439 		tp->snd_wl1 = th->th_seq;
10440 		tp->snd_wl2 = th->th_ack;
10441 		if (tp->snd_wnd > tp->max_sndwnd)
10442 			tp->max_sndwnd = tp->snd_wnd;
10443 		rack->r_wanted_output = 1;
10444 	} else if (thflags & TH_ACK) {
10445 		if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
10446 			tp->snd_wnd = tiwin;
10447 			rack_validate_fo_sendwin_up(tp, rack);
10448 			tp->snd_wl1 = th->th_seq;
10449 			tp->snd_wl2 = th->th_ack;
10450 		}
10451 	}
10452 	if (tp->snd_wnd < ctf_outstanding(tp))
10453 		/* The peer collapsed the window */
10454 		rack_collapsed_window(rack, ctf_outstanding(tp), __LINE__);
10455 	else if (rack->rc_has_collapsed)
10456 		rack_un_collapse_window(rack, __LINE__);
10457 	if ((rack->r_collapse_point_valid) &&
10458 	    (SEQ_GT(th->th_ack, rack->r_ctl.high_collapse_point)))
10459 		rack->r_collapse_point_valid = 0;
10460 	/* Was persist timer active and now we have window space? */
10461 	if ((rack->rc_in_persist != 0) &&
10462 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10463 				rack->r_ctl.rc_pace_min_segs))) {
10464 		rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10465 		tp->snd_nxt = tp->snd_max;
10466 		/* Make sure we output to start the timer */
10467 		rack->r_wanted_output = 1;
10468 	}
10469 	/* Do we enter persists? */
10470 	if ((rack->rc_in_persist == 0) &&
10471 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10472 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
10473 	    ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) &&
10474 	    sbavail(&tptosocket(tp)->so_snd) &&
10475 	    (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) {
10476 		/*
10477 		 * Here the rwnd is less than
10478 		 * the pacing size, we are established,
10479 		 * nothing is outstanding, and there is
10480 		 * data to send. Enter persists.
10481 		 */
10482 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10483 	}
10484 	if (tp->t_flags2 & TF2_DROP_AF_DATA) {
10485 		m_freem(m);
10486 		return (0);
10487 	}
10488 	/*
10489 	 * don't process the URG bit, ignore them drag
10490 	 * along the up.
10491 	 */
10492 	tp->rcv_up = tp->rcv_nxt;
10493 
10494 	/*
10495 	 * Process the segment text, merging it into the TCP sequencing
10496 	 * queue, and arranging for acknowledgment of receipt if necessary.
10497 	 * This process logically involves adjusting tp->rcv_wnd as data is
10498 	 * presented to the user (this happens in tcp_usrreq.c, case
10499 	 * PRU_RCVD).  If a FIN has already been received on this connection
10500 	 * then we just ignore the text.
10501 	 */
10502 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
10503 		   IS_FASTOPEN(tp->t_flags));
10504 	if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
10505 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10506 		tcp_seq save_start = th->th_seq;
10507 		tcp_seq save_rnxt  = tp->rcv_nxt;
10508 		int     save_tlen  = tlen;
10509 
10510 		m_adj(m, drop_hdrlen);	/* delayed header drop */
10511 		/*
10512 		 * Insert segment which includes th into TCP reassembly
10513 		 * queue with control block tp.  Set thflags to whether
10514 		 * reassembly now includes a segment with FIN.  This handles
10515 		 * the common case inline (segment is the next to be
10516 		 * received on an established connection, and the queue is
10517 		 * empty), avoiding linkage into and removal from the queue
10518 		 * and repetition of various conversions. Set DELACK for
10519 		 * segments received in order, but ack immediately when
10520 		 * segments are out of order (so fast retransmit can work).
10521 		 */
10522 		if (th->th_seq == tp->rcv_nxt &&
10523 		    SEGQ_EMPTY(tp) &&
10524 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
10525 		    tfo_syn)) {
10526 #ifdef NETFLIX_SB_LIMITS
10527 			u_int mcnt, appended;
10528 
10529 			if (so->so_rcv.sb_shlim) {
10530 				mcnt = m_memcnt(m);
10531 				appended = 0;
10532 				if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10533 				    CFO_NOSLEEP, NULL) == false) {
10534 					counter_u64_add(tcp_sb_shlim_fails, 1);
10535 					m_freem(m);
10536 					return (0);
10537 				}
10538 			}
10539 #endif
10540 			rack_handle_delayed_ack(tp, rack, tlen, tfo_syn);
10541 			tp->rcv_nxt += tlen;
10542 			if (tlen &&
10543 			    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10544 			    (tp->t_fbyte_in == 0)) {
10545 				tp->t_fbyte_in = ticks;
10546 				if (tp->t_fbyte_in == 0)
10547 					tp->t_fbyte_in = 1;
10548 				if (tp->t_fbyte_out && tp->t_fbyte_in)
10549 					tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10550 			}
10551 			thflags = tcp_get_flags(th) & TH_FIN;
10552 			KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10553 			KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10554 			SOCKBUF_LOCK(&so->so_rcv);
10555 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10556 				m_freem(m);
10557 			} else
10558 #ifdef NETFLIX_SB_LIMITS
10559 				appended =
10560 #endif
10561 					sbappendstream_locked(&so->so_rcv, m, 0);
10562 
10563 			rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10564 			/* NB: sorwakeup_locked() does an implicit unlock. */
10565 			sorwakeup_locked(so);
10566 #ifdef NETFLIX_SB_LIMITS
10567 			if (so->so_rcv.sb_shlim && appended != mcnt)
10568 				counter_fo_release(so->so_rcv.sb_shlim,
10569 				    mcnt - appended);
10570 #endif
10571 		} else {
10572 			/*
10573 			 * XXX: Due to the header drop above "th" is
10574 			 * theoretically invalid by now.  Fortunately
10575 			 * m_adj() doesn't actually frees any mbufs when
10576 			 * trimming from the head.
10577 			 */
10578 			tcp_seq temp = save_start;
10579 
10580 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
10581 			tp->t_flags |= TF_ACKNOW;
10582 			if (tp->t_flags & TF_WAKESOR) {
10583 				tp->t_flags &= ~TF_WAKESOR;
10584 				/* NB: sorwakeup_locked() does an implicit unlock. */
10585 				sorwakeup_locked(so);
10586 			}
10587 		}
10588 		if ((tp->t_flags & TF_SACK_PERMIT) &&
10589 		    (save_tlen > 0) &&
10590 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
10591 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
10592 				/*
10593 				 * DSACK actually handled in the fastpath
10594 				 * above.
10595 				 */
10596 				RACK_OPTS_INC(tcp_sack_path_1);
10597 				tcp_update_sack_list(tp, save_start,
10598 				    save_start + save_tlen);
10599 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
10600 				if ((tp->rcv_numsacks >= 1) &&
10601 				    (tp->sackblks[0].end == save_start)) {
10602 					/*
10603 					 * Partial overlap, recorded at todrop
10604 					 * above.
10605 					 */
10606 					RACK_OPTS_INC(tcp_sack_path_2a);
10607 					tcp_update_sack_list(tp,
10608 					    tp->sackblks[0].start,
10609 					    tp->sackblks[0].end);
10610 				} else {
10611 					RACK_OPTS_INC(tcp_sack_path_2b);
10612 					tcp_update_dsack_list(tp, save_start,
10613 					    save_start + save_tlen);
10614 				}
10615 			} else if (tlen >= save_tlen) {
10616 				/* Update of sackblks. */
10617 				RACK_OPTS_INC(tcp_sack_path_3);
10618 				tcp_update_dsack_list(tp, save_start,
10619 				    save_start + save_tlen);
10620 			} else if (tlen > 0) {
10621 				RACK_OPTS_INC(tcp_sack_path_4);
10622 				tcp_update_dsack_list(tp, save_start,
10623 				    save_start + tlen);
10624 			}
10625 		}
10626 	} else {
10627 		m_freem(m);
10628 		thflags &= ~TH_FIN;
10629 	}
10630 
10631 	/*
10632 	 * If FIN is received ACK the FIN and let the user know that the
10633 	 * connection is closing.
10634 	 */
10635 	if (thflags & TH_FIN) {
10636 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10637 			/* The socket upcall is handled by socantrcvmore. */
10638 			socantrcvmore(so);
10639 			/*
10640 			 * If connection is half-synchronized (ie NEEDSYN
10641 			 * flag on) then delay ACK, so it may be piggybacked
10642 			 * when SYN is sent. Otherwise, since we received a
10643 			 * FIN then no more input can be expected, send ACK
10644 			 * now.
10645 			 */
10646 			if (tp->t_flags & TF_NEEDSYN) {
10647 				rack_timer_cancel(tp, rack,
10648 				    rack->r_ctl.rc_rcvtime, __LINE__);
10649 				tp->t_flags |= TF_DELACK;
10650 			} else {
10651 				tp->t_flags |= TF_ACKNOW;
10652 			}
10653 			tp->rcv_nxt++;
10654 		}
10655 		switch (tp->t_state) {
10656 			/*
10657 			 * In SYN_RECEIVED and ESTABLISHED STATES enter the
10658 			 * CLOSE_WAIT state.
10659 			 */
10660 		case TCPS_SYN_RECEIVED:
10661 			tp->t_starttime = ticks;
10662 			/* FALLTHROUGH */
10663 		case TCPS_ESTABLISHED:
10664 			rack_timer_cancel(tp, rack,
10665 			    rack->r_ctl.rc_rcvtime, __LINE__);
10666 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
10667 			break;
10668 
10669 			/*
10670 			 * If still in FIN_WAIT_1 STATE FIN has not been
10671 			 * acked so enter the CLOSING state.
10672 			 */
10673 		case TCPS_FIN_WAIT_1:
10674 			rack_timer_cancel(tp, rack,
10675 			    rack->r_ctl.rc_rcvtime, __LINE__);
10676 			tcp_state_change(tp, TCPS_CLOSING);
10677 			break;
10678 
10679 			/*
10680 			 * In FIN_WAIT_2 state enter the TIME_WAIT state,
10681 			 * starting the time-wait timer, turning off the
10682 			 * other standard timers.
10683 			 */
10684 		case TCPS_FIN_WAIT_2:
10685 			rack_timer_cancel(tp, rack,
10686 			    rack->r_ctl.rc_rcvtime, __LINE__);
10687 			tcp_twstart(tp);
10688 			return (1);
10689 		}
10690 	}
10691 	/*
10692 	 * Return any desired output.
10693 	 */
10694 	if ((tp->t_flags & TF_ACKNOW) ||
10695 	    (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
10696 		rack->r_wanted_output = 1;
10697 	}
10698 	return (0);
10699 }
10700 
10701 /*
10702  * Here nothing is really faster, its just that we
10703  * have broken out the fast-data path also just like
10704  * the fast-ack.
10705  */
10706 static int
10707 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
10708     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10709     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
10710 {
10711 	int32_t nsegs;
10712 	int32_t newsize = 0;	/* automatic sockbuf scaling */
10713 	struct tcp_rack *rack;
10714 #ifdef NETFLIX_SB_LIMITS
10715 	u_int mcnt, appended;
10716 #endif
10717 
10718 	/*
10719 	 * If last ACK falls within this segment's sequence numbers, record
10720 	 * the timestamp. NOTE that the test is modified according to the
10721 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10722 	 */
10723 	if (__predict_false(th->th_seq != tp->rcv_nxt)) {
10724 		return (0);
10725 	}
10726 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10727 		return (0);
10728 	}
10729 	if (tiwin && tiwin != tp->snd_wnd) {
10730 		return (0);
10731 	}
10732 	if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
10733 		return (0);
10734 	}
10735 	if (__predict_false((to->to_flags & TOF_TS) &&
10736 	    (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
10737 		return (0);
10738 	}
10739 	if (__predict_false((th->th_ack != tp->snd_una))) {
10740 		return (0);
10741 	}
10742 	if (__predict_false(tlen > sbspace(&so->so_rcv))) {
10743 		return (0);
10744 	}
10745 	if ((to->to_flags & TOF_TS) != 0 &&
10746 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10747 		tp->ts_recent_age = tcp_ts_getticks();
10748 		tp->ts_recent = to->to_tsval;
10749 	}
10750 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10751 	/*
10752 	 * This is a pure, in-sequence data packet with nothing on the
10753 	 * reassembly queue and we have enough buffer space to take it.
10754 	 */
10755 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
10756 
10757 #ifdef NETFLIX_SB_LIMITS
10758 	if (so->so_rcv.sb_shlim) {
10759 		mcnt = m_memcnt(m);
10760 		appended = 0;
10761 		if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10762 		    CFO_NOSLEEP, NULL) == false) {
10763 			counter_u64_add(tcp_sb_shlim_fails, 1);
10764 			m_freem(m);
10765 			return (1);
10766 		}
10767 	}
10768 #endif
10769 	/* Clean receiver SACK report if present */
10770 	if (tp->rcv_numsacks)
10771 		tcp_clean_sackreport(tp);
10772 	KMOD_TCPSTAT_INC(tcps_preddat);
10773 	tp->rcv_nxt += tlen;
10774 	if (tlen &&
10775 	    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10776 	    (tp->t_fbyte_in == 0)) {
10777 		tp->t_fbyte_in = ticks;
10778 		if (tp->t_fbyte_in == 0)
10779 			tp->t_fbyte_in = 1;
10780 		if (tp->t_fbyte_out && tp->t_fbyte_in)
10781 			tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10782 	}
10783 	/*
10784 	 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
10785 	 */
10786 	tp->snd_wl1 = th->th_seq;
10787 	/*
10788 	 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
10789 	 */
10790 	tp->rcv_up = tp->rcv_nxt;
10791 	KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10792 	KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10793 	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
10794 
10795 	/* Add data to socket buffer. */
10796 	SOCKBUF_LOCK(&so->so_rcv);
10797 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10798 		m_freem(m);
10799 	} else {
10800 		/*
10801 		 * Set new socket buffer size. Give up when limit is
10802 		 * reached.
10803 		 */
10804 		if (newsize)
10805 			if (!sbreserve_locked(so, SO_RCV, newsize, NULL))
10806 				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
10807 		m_adj(m, drop_hdrlen);	/* delayed header drop */
10808 #ifdef NETFLIX_SB_LIMITS
10809 		appended =
10810 #endif
10811 			sbappendstream_locked(&so->so_rcv, m, 0);
10812 		ctf_calc_rwin(so, tp);
10813 	}
10814 	rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10815 	/* NB: sorwakeup_locked() does an implicit unlock. */
10816 	sorwakeup_locked(so);
10817 #ifdef NETFLIX_SB_LIMITS
10818 	if (so->so_rcv.sb_shlim && mcnt != appended)
10819 		counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
10820 #endif
10821 	rack_handle_delayed_ack(tp, rack, tlen, 0);
10822 	if (tp->snd_una == tp->snd_max)
10823 		sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
10824 	return (1);
10825 }
10826 
10827 /*
10828  * This subfunction is used to try to highly optimize the
10829  * fast path. We again allow window updates that are
10830  * in sequence to remain in the fast-path. We also add
10831  * in the __predict's to attempt to help the compiler.
10832  * Note that if we return a 0, then we can *not* process
10833  * it and the caller should push the packet into the
10834  * slow-path.
10835  */
10836 static int
10837 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10838     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10839     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
10840 {
10841 	int32_t acked;
10842 	int32_t nsegs;
10843 	int32_t under_pacing = 0;
10844 	struct tcp_rack *rack;
10845 
10846 	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10847 		/* Old ack, behind (or duplicate to) the last one rcv'd */
10848 		return (0);
10849 	}
10850 	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
10851 		/* Above what we have sent? */
10852 		return (0);
10853 	}
10854 	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10855 		/* We are retransmitting */
10856 		return (0);
10857 	}
10858 	if (__predict_false(tiwin == 0)) {
10859 		/* zero window */
10860 		return (0);
10861 	}
10862 	if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
10863 		/* We need a SYN or a FIN, unlikely.. */
10864 		return (0);
10865 	}
10866 	if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
10867 		/* Timestamp is behind .. old ack with seq wrap? */
10868 		return (0);
10869 	}
10870 	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
10871 		/* Still recovering */
10872 		return (0);
10873 	}
10874 	rack = (struct tcp_rack *)tp->t_fb_ptr;
10875 	if (rack->r_ctl.rc_sacked) {
10876 		/* We have sack holes on our scoreboard */
10877 		return (0);
10878 	}
10879 	/* Ok if we reach here, we can process a fast-ack */
10880 	if (rack->gp_ready &&
10881 	    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
10882 		under_pacing = 1;
10883 	}
10884 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
10885 	rack_log_ack(tp, to, th, 0, 0);
10886 	/* Did the window get updated? */
10887 	if (tiwin != tp->snd_wnd) {
10888 		tp->snd_wnd = tiwin;
10889 		rack_validate_fo_sendwin_up(tp, rack);
10890 		tp->snd_wl1 = th->th_seq;
10891 		if (tp->snd_wnd > tp->max_sndwnd)
10892 			tp->max_sndwnd = tp->snd_wnd;
10893 	}
10894 	/* Do we exit persists? */
10895 	if ((rack->rc_in_persist != 0) &&
10896 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10897 			       rack->r_ctl.rc_pace_min_segs))) {
10898 		rack_exit_persist(tp, rack, cts);
10899 	}
10900 	/* Do we enter persists? */
10901 	if ((rack->rc_in_persist == 0) &&
10902 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10903 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
10904 	    ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) &&
10905 	    sbavail(&tptosocket(tp)->so_snd) &&
10906 	    (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) {
10907 		/*
10908 		 * Here the rwnd is less than
10909 		 * the pacing size, we are established,
10910 		 * nothing is outstanding, and there is
10911 		 * data to send. Enter persists.
10912 		 */
10913 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10914 	}
10915 	/*
10916 	 * If last ACK falls within this segment's sequence numbers, record
10917 	 * the timestamp. NOTE that the test is modified according to the
10918 	 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10919 	 */
10920 	if ((to->to_flags & TOF_TS) != 0 &&
10921 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10922 		tp->ts_recent_age = tcp_ts_getticks();
10923 		tp->ts_recent = to->to_tsval;
10924 	}
10925 	/*
10926 	 * This is a pure ack for outstanding data.
10927 	 */
10928 	KMOD_TCPSTAT_INC(tcps_predack);
10929 
10930 	/*
10931 	 * "bad retransmit" recovery.
10932 	 */
10933 	if ((tp->t_flags & TF_PREVVALID) &&
10934 	    ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10935 		tp->t_flags &= ~TF_PREVVALID;
10936 		if (tp->t_rxtshift == 1 &&
10937 		    (int)(ticks - tp->t_badrxtwin) < 0)
10938 			rack_cong_signal(tp, CC_RTO_ERR, th->th_ack, __LINE__);
10939 	}
10940 	/*
10941 	 * Recalculate the transmit timer / rtt.
10942 	 *
10943 	 * Some boxes send broken timestamp replies during the SYN+ACK
10944 	 * phase, ignore timestamps of 0 or we could calculate a huge RTT
10945 	 * and blow up the retransmit timer.
10946 	 */
10947 	acked = BYTES_THIS_ACK(tp, th);
10948 
10949 #ifdef TCP_HHOOK
10950 	/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
10951 	hhook_run_tcp_est_in(tp, th, to);
10952 #endif
10953 	KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
10954 	KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
10955 	if (acked) {
10956 		struct mbuf *mfree;
10957 
10958 		rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0);
10959 		SOCKBUF_LOCK(&so->so_snd);
10960 		mfree = sbcut_locked(&so->so_snd, acked);
10961 		tp->snd_una = th->th_ack;
10962 		/* Note we want to hold the sb lock through the sendmap adjust */
10963 		rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
10964 		/* Wake up the socket if we have room to write more */
10965 		rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
10966 		sowwakeup_locked(so);
10967 		m_freem(mfree);
10968 		tp->t_rxtshift = 0;
10969 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
10970 			      rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
10971 		rack->rc_tlp_in_progress = 0;
10972 		rack->r_ctl.rc_tlp_cnt_out = 0;
10973 		/*
10974 		 * If it is the RXT timer we want to
10975 		 * stop it, so we can restart a TLP.
10976 		 */
10977 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
10978 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10979 #ifdef NETFLIX_HTTP_LOGGING
10980 		tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
10981 #endif
10982 	}
10983 	/*
10984 	 * Let the congestion control algorithm update congestion control
10985 	 * related information. This typically means increasing the
10986 	 * congestion window.
10987 	 */
10988 	if (tp->snd_wnd < ctf_outstanding(tp)) {
10989 		/* The peer collapsed the window */
10990 		rack_collapsed_window(rack, ctf_outstanding(tp), __LINE__);
10991 	} else if (rack->rc_has_collapsed)
10992 		rack_un_collapse_window(rack, __LINE__);
10993 	if ((rack->r_collapse_point_valid) &&
10994 	    (SEQ_GT(tp->snd_una, rack->r_ctl.high_collapse_point)))
10995 		rack->r_collapse_point_valid = 0;
10996 	/*
10997 	 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
10998 	 */
10999 	tp->snd_wl2 = th->th_ack;
11000 	tp->t_dupacks = 0;
11001 	m_freem(m);
11002 	/* ND6_HINT(tp);	 *//* Some progress has been made. */
11003 
11004 	/*
11005 	 * If all outstanding data are acked, stop retransmit timer,
11006 	 * otherwise restart timer using current (possibly backed-off)
11007 	 * value. If process is waiting for space, wakeup/selwakeup/signal.
11008 	 * If data are ready to send, let tcp_output decide between more
11009 	 * output or persist.
11010 	 */
11011 	if (under_pacing &&
11012 	    (rack->use_fixed_rate == 0) &&
11013 	    (rack->in_probe_rtt == 0) &&
11014 	    rack->rc_gp_dyn_mul &&
11015 	    rack->rc_always_pace) {
11016 		/* Check if we are dragging bottom */
11017 		rack_check_bottom_drag(tp, rack, so, acked);
11018 	}
11019 	if (tp->snd_una == tp->snd_max) {
11020 		tp->t_flags &= ~TF_PREVVALID;
11021 		rack->r_ctl.retran_during_recovery = 0;
11022 		rack->r_ctl.dsack_byte_cnt = 0;
11023 		rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
11024 		if (rack->r_ctl.rc_went_idle_time == 0)
11025 			rack->r_ctl.rc_went_idle_time = 1;
11026 		rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
11027 		if (sbavail(&tptosocket(tp)->so_snd) == 0)
11028 			tp->t_acktime = 0;
11029 		rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
11030 	}
11031 	if (acked && rack->r_fast_output)
11032 		rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked);
11033 	if (sbavail(&so->so_snd)) {
11034 		rack->r_wanted_output = 1;
11035 	}
11036 	return (1);
11037 }
11038 
11039 /*
11040  * Return value of 1, the TCB is unlocked and most
11041  * likely gone, return value of 0, the TCP is still
11042  * locked.
11043  */
11044 static int
11045 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
11046     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11047     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11048 {
11049 	int32_t ret_val = 0;
11050 	int32_t todrop;
11051 	int32_t ourfinisacked = 0;
11052 	struct tcp_rack *rack;
11053 
11054 	INP_WLOCK_ASSERT(tptoinpcb(tp));
11055 
11056 	ctf_calc_rwin(so, tp);
11057 	/*
11058 	 * If the state is SYN_SENT: if seg contains an ACK, but not for our
11059 	 * SYN, drop the input. if seg contains a RST, then drop the
11060 	 * connection. if seg does not contain SYN, then drop it. Otherwise
11061 	 * this is an acceptable SYN segment initialize tp->rcv_nxt and
11062 	 * tp->irs if seg contains ack then advance tp->snd_una if seg
11063 	 * contains an ECE and ECN support is enabled, the stream is ECN
11064 	 * capable. if SYN has been acked change to ESTABLISHED else
11065 	 * SYN_RCVD state arrange for segment to be acked (eventually)
11066 	 * continue processing rest of data/controls.
11067 	 */
11068 	if ((thflags & TH_ACK) &&
11069 	    (SEQ_LEQ(th->th_ack, tp->iss) ||
11070 	    SEQ_GT(th->th_ack, tp->snd_max))) {
11071 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11072 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11073 		return (1);
11074 	}
11075 	if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
11076 		TCP_PROBE5(connect__refused, NULL, tp,
11077 		    mtod(m, const char *), tp, th);
11078 		tp = tcp_drop(tp, ECONNREFUSED);
11079 		ctf_do_drop(m, tp);
11080 		return (1);
11081 	}
11082 	if (thflags & TH_RST) {
11083 		ctf_do_drop(m, tp);
11084 		return (1);
11085 	}
11086 	if (!(thflags & TH_SYN)) {
11087 		ctf_do_drop(m, tp);
11088 		return (1);
11089 	}
11090 	tp->irs = th->th_seq;
11091 	tcp_rcvseqinit(tp);
11092 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11093 	if (thflags & TH_ACK) {
11094 		int tfo_partial = 0;
11095 
11096 		KMOD_TCPSTAT_INC(tcps_connects);
11097 		soisconnected(so);
11098 #ifdef MAC
11099 		mac_socketpeer_set_from_mbuf(m, so);
11100 #endif
11101 		/* Do window scaling on this connection? */
11102 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11103 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
11104 			tp->rcv_scale = tp->request_r_scale;
11105 		}
11106 		tp->rcv_adv += min(tp->rcv_wnd,
11107 		    TCP_MAXWIN << tp->rcv_scale);
11108 		/*
11109 		 * If not all the data that was sent in the TFO SYN
11110 		 * has been acked, resend the remainder right away.
11111 		 */
11112 		if (IS_FASTOPEN(tp->t_flags) &&
11113 		    (tp->snd_una != tp->snd_max)) {
11114 			tp->snd_nxt = th->th_ack;
11115 			tfo_partial = 1;
11116 		}
11117 		/*
11118 		 * If there's data, delay ACK; if there's also a FIN ACKNOW
11119 		 * will be turned on later.
11120 		 */
11121 		if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) {
11122 			rack_timer_cancel(tp, rack,
11123 					  rack->r_ctl.rc_rcvtime, __LINE__);
11124 			tp->t_flags |= TF_DELACK;
11125 		} else {
11126 			rack->r_wanted_output = 1;
11127 			tp->t_flags |= TF_ACKNOW;
11128 			rack->rc_dack_toggle = 0;
11129 		}
11130 
11131 		tcp_ecn_input_syn_sent(tp, thflags, iptos);
11132 
11133 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
11134 			/*
11135 			 * We advance snd_una for the
11136 			 * fast open case. If th_ack is
11137 			 * acknowledging data beyond
11138 			 * snd_una we can't just call
11139 			 * ack-processing since the
11140 			 * data stream in our send-map
11141 			 * will start at snd_una + 1 (one
11142 			 * beyond the SYN). If its just
11143 			 * equal we don't need to do that
11144 			 * and there is no send_map.
11145 			 */
11146 			tp->snd_una++;
11147 		}
11148 		/*
11149 		 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
11150 		 * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
11151 		 */
11152 		tp->t_starttime = ticks;
11153 		if (tp->t_flags & TF_NEEDFIN) {
11154 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
11155 			tp->t_flags &= ~TF_NEEDFIN;
11156 			thflags &= ~TH_SYN;
11157 		} else {
11158 			tcp_state_change(tp, TCPS_ESTABLISHED);
11159 			TCP_PROBE5(connect__established, NULL, tp,
11160 			    mtod(m, const char *), tp, th);
11161 			rack_cc_conn_init(tp);
11162 		}
11163 	} else {
11164 		/*
11165 		 * Received initial SYN in SYN-SENT[*] state => simultaneous
11166 		 * open.  If segment contains CC option and there is a
11167 		 * cached CC, apply TAO test. If it succeeds, connection is *
11168 		 * half-synchronized. Otherwise, do 3-way handshake:
11169 		 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
11170 		 * there was no CC option, clear cached CC value.
11171 		 */
11172 		tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
11173 		tcp_state_change(tp, TCPS_SYN_RECEIVED);
11174 	}
11175 	/*
11176 	 * Advance th->th_seq to correspond to first data byte. If data,
11177 	 * trim to stay within window, dropping FIN if necessary.
11178 	 */
11179 	th->th_seq++;
11180 	if (tlen > tp->rcv_wnd) {
11181 		todrop = tlen - tp->rcv_wnd;
11182 		m_adj(m, -todrop);
11183 		tlen = tp->rcv_wnd;
11184 		thflags &= ~TH_FIN;
11185 		KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
11186 		KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
11187 	}
11188 	tp->snd_wl1 = th->th_seq - 1;
11189 	tp->rcv_up = th->th_seq;
11190 	/*
11191 	 * Client side of transaction: already sent SYN and data. If the
11192 	 * remote host used T/TCP to validate the SYN, our data will be
11193 	 * ACK'd; if so, enter normal data segment processing in the middle
11194 	 * of step 5, ack processing. Otherwise, goto step 6.
11195 	 */
11196 	if (thflags & TH_ACK) {
11197 		/* For syn-sent we need to possibly update the rtt */
11198 		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11199 			uint32_t t, mcts;
11200 
11201 			mcts = tcp_ts_getticks();
11202 			t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11203 			if (!tp->t_rttlow || tp->t_rttlow > t)
11204 				tp->t_rttlow = t;
11205 			rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4);
11206 			tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11207 			tcp_rack_xmit_timer_commit(rack, tp);
11208 		}
11209 		if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
11210 			return (ret_val);
11211 		/* We may have changed to FIN_WAIT_1 above */
11212 		if (tp->t_state == TCPS_FIN_WAIT_1) {
11213 			/*
11214 			 * In FIN_WAIT_1 STATE in addition to the processing
11215 			 * for the ESTABLISHED state if our FIN is now
11216 			 * acknowledged then enter FIN_WAIT_2.
11217 			 */
11218 			if (ourfinisacked) {
11219 				/*
11220 				 * If we can't receive any more data, then
11221 				 * closing user can proceed. Starting the
11222 				 * timer is contrary to the specification,
11223 				 * but if we don't get a FIN we'll hang
11224 				 * forever.
11225 				 *
11226 				 * XXXjl: we should release the tp also, and
11227 				 * use a compressed state.
11228 				 */
11229 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11230 					soisdisconnected(so);
11231 					tcp_timer_activate(tp, TT_2MSL,
11232 					    (tcp_fast_finwait2_recycle ?
11233 					    tcp_finwait2_timeout :
11234 					    TP_MAXIDLE(tp)));
11235 				}
11236 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
11237 			}
11238 		}
11239 	}
11240 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11241 	   tiwin, thflags, nxt_pkt));
11242 }
11243 
11244 /*
11245  * Return value of 1, the TCB is unlocked and most
11246  * likely gone, return value of 0, the TCP is still
11247  * locked.
11248  */
11249 static int
11250 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
11251     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11252     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11253 {
11254 	struct tcp_rack *rack;
11255 	int32_t ret_val = 0;
11256 	int32_t ourfinisacked = 0;
11257 
11258 	ctf_calc_rwin(so, tp);
11259 	if ((thflags & TH_ACK) &&
11260 	    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
11261 	    SEQ_GT(th->th_ack, tp->snd_max))) {
11262 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11263 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11264 		return (1);
11265 	}
11266 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11267 	if (IS_FASTOPEN(tp->t_flags)) {
11268 		/*
11269 		 * When a TFO connection is in SYN_RECEIVED, the
11270 		 * only valid packets are the initial SYN, a
11271 		 * retransmit/copy of the initial SYN (possibly with
11272 		 * a subset of the original data), a valid ACK, a
11273 		 * FIN, or a RST.
11274 		 */
11275 		if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
11276 			tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11277 			ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11278 			return (1);
11279 		} else if (thflags & TH_SYN) {
11280 			/* non-initial SYN is ignored */
11281 			if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
11282 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
11283 			    (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
11284 				ctf_do_drop(m, NULL);
11285 				return (0);
11286 			}
11287 		} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
11288 			ctf_do_drop(m, NULL);
11289 			return (0);
11290 		}
11291 	}
11292 
11293 	if ((thflags & TH_RST) ||
11294 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11295 		return (__ctf_process_rst(m, th, so, tp,
11296 					  &rack->r_ctl.challenge_ack_ts,
11297 					  &rack->r_ctl.challenge_ack_cnt));
11298 	/*
11299 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11300 	 * it's less than ts_recent, drop it.
11301 	 */
11302 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11303 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11304 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11305 			return (ret_val);
11306 	}
11307 	/*
11308 	 * In the SYN-RECEIVED state, validate that the packet belongs to
11309 	 * this connection before trimming the data to fit the receive
11310 	 * window.  Check the sequence number versus IRS since we know the
11311 	 * sequence numbers haven't wrapped.  This is a partial fix for the
11312 	 * "LAND" DoS attack.
11313 	 */
11314 	if (SEQ_LT(th->th_seq, tp->irs)) {
11315 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11316 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11317 		return (1);
11318 	}
11319 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11320 			      &rack->r_ctl.challenge_ack_ts,
11321 			      &rack->r_ctl.challenge_ack_cnt)) {
11322 		return (ret_val);
11323 	}
11324 	/*
11325 	 * If last ACK falls within this segment's sequence numbers, record
11326 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11327 	 * from the latest proposal of the tcplw@cray.com list (Braden
11328 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11329 	 * with our earlier PAWS tests, so this check should be solely
11330 	 * predicated on the sequence space of this segment. 3) That we
11331 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11332 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11333 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11334 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11335 	 * p.869. In such cases, we can still calculate the RTT correctly
11336 	 * when RCV.NXT == Last.ACK.Sent.
11337 	 */
11338 	if ((to->to_flags & TOF_TS) != 0 &&
11339 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11340 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11341 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11342 		tp->ts_recent_age = tcp_ts_getticks();
11343 		tp->ts_recent = to->to_tsval;
11344 	}
11345 	tp->snd_wnd = tiwin;
11346 	rack_validate_fo_sendwin_up(tp, rack);
11347 	/*
11348 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11349 	 * is on (half-synchronized state), then queue data for later
11350 	 * processing; else drop segment and return.
11351 	 */
11352 	if ((thflags & TH_ACK) == 0) {
11353 		if (IS_FASTOPEN(tp->t_flags)) {
11354 			rack_cc_conn_init(tp);
11355 		}
11356 		return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11357 		    tiwin, thflags, nxt_pkt));
11358 	}
11359 	KMOD_TCPSTAT_INC(tcps_connects);
11360 	if (tp->t_flags & TF_SONOTCONN) {
11361 		tp->t_flags &= ~TF_SONOTCONN;
11362 		soisconnected(so);
11363 	}
11364 	/* Do window scaling? */
11365 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11366 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
11367 		tp->rcv_scale = tp->request_r_scale;
11368 	}
11369 	/*
11370 	 * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
11371 	 * FIN-WAIT-1
11372 	 */
11373 	tp->t_starttime = ticks;
11374 	if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
11375 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
11376 		tp->t_tfo_pending = NULL;
11377 	}
11378 	if (tp->t_flags & TF_NEEDFIN) {
11379 		tcp_state_change(tp, TCPS_FIN_WAIT_1);
11380 		tp->t_flags &= ~TF_NEEDFIN;
11381 	} else {
11382 		tcp_state_change(tp, TCPS_ESTABLISHED);
11383 		TCP_PROBE5(accept__established, NULL, tp,
11384 		    mtod(m, const char *), tp, th);
11385 		/*
11386 		 * TFO connections call cc_conn_init() during SYN
11387 		 * processing.  Calling it again here for such connections
11388 		 * is not harmless as it would undo the snd_cwnd reduction
11389 		 * that occurs when a TFO SYN|ACK is retransmitted.
11390 		 */
11391 		if (!IS_FASTOPEN(tp->t_flags))
11392 			rack_cc_conn_init(tp);
11393 	}
11394 	/*
11395 	 * Account for the ACK of our SYN prior to
11396 	 * regular ACK processing below, except for
11397 	 * simultaneous SYN, which is handled later.
11398 	 */
11399 	if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
11400 		tp->snd_una++;
11401 	/*
11402 	 * If segment contains data or ACK, will call tcp_reass() later; if
11403 	 * not, do so now to pass queued data to user.
11404 	 */
11405 	if (tlen == 0 && (thflags & TH_FIN) == 0) {
11406 		(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
11407 		    (struct mbuf *)0);
11408 		if (tp->t_flags & TF_WAKESOR) {
11409 			tp->t_flags &= ~TF_WAKESOR;
11410 			/* NB: sorwakeup_locked() does an implicit unlock. */
11411 			sorwakeup_locked(so);
11412 		}
11413 	}
11414 	tp->snd_wl1 = th->th_seq - 1;
11415 	/* For syn-recv we need to possibly update the rtt */
11416 	if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11417 		uint32_t t, mcts;
11418 
11419 		mcts = tcp_ts_getticks();
11420 		t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11421 		if (!tp->t_rttlow || tp->t_rttlow > t)
11422 			tp->t_rttlow = t;
11423 		rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5);
11424 		tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11425 		tcp_rack_xmit_timer_commit(rack, tp);
11426 	}
11427 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11428 		return (ret_val);
11429 	}
11430 	if (tp->t_state == TCPS_FIN_WAIT_1) {
11431 		/* We could have went to FIN_WAIT_1 (or EST) above */
11432 		/*
11433 		 * In FIN_WAIT_1 STATE in addition to the processing for the
11434 		 * ESTABLISHED state if our FIN is now acknowledged then
11435 		 * enter FIN_WAIT_2.
11436 		 */
11437 		if (ourfinisacked) {
11438 			/*
11439 			 * If we can't receive any more data, then closing
11440 			 * user can proceed. Starting the timer is contrary
11441 			 * to the specification, but if we don't get a FIN
11442 			 * we'll hang forever.
11443 			 *
11444 			 * XXXjl: we should release the tp also, and use a
11445 			 * compressed state.
11446 			 */
11447 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11448 				soisdisconnected(so);
11449 				tcp_timer_activate(tp, TT_2MSL,
11450 				    (tcp_fast_finwait2_recycle ?
11451 				    tcp_finwait2_timeout :
11452 				    TP_MAXIDLE(tp)));
11453 			}
11454 			tcp_state_change(tp, TCPS_FIN_WAIT_2);
11455 		}
11456 	}
11457 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11458 	    tiwin, thflags, nxt_pkt));
11459 }
11460 
11461 /*
11462  * Return value of 1, the TCB is unlocked and most
11463  * likely gone, return value of 0, the TCP is still
11464  * locked.
11465  */
11466 static int
11467 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
11468     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11469     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11470 {
11471 	int32_t ret_val = 0;
11472 	struct tcp_rack *rack;
11473 
11474 	/*
11475 	 * Header prediction: check for the two common cases of a
11476 	 * uni-directional data xfer.  If the packet has no control flags,
11477 	 * is in-sequence, the window didn't change and we're not
11478 	 * retransmitting, it's a candidate.  If the length is zero and the
11479 	 * ack moved forward, we're the sender side of the xfer.  Just free
11480 	 * the data acked & wake any higher level process that was blocked
11481 	 * waiting for space.  If the length is non-zero and the ack didn't
11482 	 * move, we're the receiver side.  If we're getting packets in-order
11483 	 * (the reassembly queue is empty), add the data toc The socket
11484 	 * buffer and note that we need a delayed ack. Make sure that the
11485 	 * hidden state-flags are also off. Since we check for
11486 	 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
11487 	 */
11488 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11489 	if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
11490 	    __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) &&
11491 	    __predict_true(SEGQ_EMPTY(tp)) &&
11492 	    __predict_true(th->th_seq == tp->rcv_nxt)) {
11493 		if (tlen == 0) {
11494 			if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
11495 			    tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
11496 				return (0);
11497 			}
11498 		} else {
11499 			if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
11500 			    tiwin, nxt_pkt, iptos)) {
11501 				return (0);
11502 			}
11503 		}
11504 	}
11505 	ctf_calc_rwin(so, tp);
11506 
11507 	if ((thflags & TH_RST) ||
11508 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11509 		return (__ctf_process_rst(m, th, so, tp,
11510 					  &rack->r_ctl.challenge_ack_ts,
11511 					  &rack->r_ctl.challenge_ack_cnt));
11512 
11513 	/*
11514 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11515 	 * synchronized state.
11516 	 */
11517 	if (thflags & TH_SYN) {
11518 		ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11519 		return (ret_val);
11520 	}
11521 	/*
11522 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11523 	 * it's less than ts_recent, drop it.
11524 	 */
11525 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11526 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11527 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11528 			return (ret_val);
11529 	}
11530 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11531 			      &rack->r_ctl.challenge_ack_ts,
11532 			      &rack->r_ctl.challenge_ack_cnt)) {
11533 		return (ret_val);
11534 	}
11535 	/*
11536 	 * If last ACK falls within this segment's sequence numbers, record
11537 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11538 	 * from the latest proposal of the tcplw@cray.com list (Braden
11539 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11540 	 * with our earlier PAWS tests, so this check should be solely
11541 	 * predicated on the sequence space of this segment. 3) That we
11542 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11543 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11544 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11545 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11546 	 * p.869. In such cases, we can still calculate the RTT correctly
11547 	 * when RCV.NXT == Last.ACK.Sent.
11548 	 */
11549 	if ((to->to_flags & TOF_TS) != 0 &&
11550 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11551 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11552 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11553 		tp->ts_recent_age = tcp_ts_getticks();
11554 		tp->ts_recent = to->to_tsval;
11555 	}
11556 	/*
11557 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11558 	 * is on (half-synchronized state), then queue data for later
11559 	 * processing; else drop segment and return.
11560 	 */
11561 	if ((thflags & TH_ACK) == 0) {
11562 		if (tp->t_flags & TF_NEEDSYN) {
11563 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11564 			    tiwin, thflags, nxt_pkt));
11565 
11566 		} else if (tp->t_flags & TF_ACKNOW) {
11567 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11568 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11569 			return (ret_val);
11570 		} else {
11571 			ctf_do_drop(m, NULL);
11572 			return (0);
11573 		}
11574 	}
11575 	/*
11576 	 * Ack processing.
11577 	 */
11578 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11579 		return (ret_val);
11580 	}
11581 	if (sbavail(&so->so_snd)) {
11582 		if (ctf_progress_timeout_check(tp, true)) {
11583 			rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
11584 			ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11585 			return (1);
11586 		}
11587 	}
11588 	/* State changes only happen in rack_process_data() */
11589 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11590 	    tiwin, thflags, nxt_pkt));
11591 }
11592 
11593 /*
11594  * Return value of 1, the TCB is unlocked and most
11595  * likely gone, return value of 0, the TCP is still
11596  * locked.
11597  */
11598 static int
11599 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
11600     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11601     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11602 {
11603 	int32_t ret_val = 0;
11604 	struct tcp_rack *rack;
11605 
11606 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11607 	ctf_calc_rwin(so, tp);
11608 	if ((thflags & TH_RST) ||
11609 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11610 		return (__ctf_process_rst(m, th, so, tp,
11611 					  &rack->r_ctl.challenge_ack_ts,
11612 					  &rack->r_ctl.challenge_ack_cnt));
11613 	/*
11614 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11615 	 * synchronized state.
11616 	 */
11617 	if (thflags & TH_SYN) {
11618 		ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11619 		return (ret_val);
11620 	}
11621 	/*
11622 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11623 	 * it's less than ts_recent, drop it.
11624 	 */
11625 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11626 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11627 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11628 			return (ret_val);
11629 	}
11630 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11631 			      &rack->r_ctl.challenge_ack_ts,
11632 			      &rack->r_ctl.challenge_ack_cnt)) {
11633 		return (ret_val);
11634 	}
11635 	/*
11636 	 * If last ACK falls within this segment's sequence numbers, record
11637 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11638 	 * from the latest proposal of the tcplw@cray.com list (Braden
11639 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11640 	 * with our earlier PAWS tests, so this check should be solely
11641 	 * predicated on the sequence space of this segment. 3) That we
11642 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11643 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11644 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11645 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11646 	 * p.869. In such cases, we can still calculate the RTT correctly
11647 	 * when RCV.NXT == Last.ACK.Sent.
11648 	 */
11649 	if ((to->to_flags & TOF_TS) != 0 &&
11650 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11651 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11652 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11653 		tp->ts_recent_age = tcp_ts_getticks();
11654 		tp->ts_recent = to->to_tsval;
11655 	}
11656 	/*
11657 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11658 	 * is on (half-synchronized state), then queue data for later
11659 	 * processing; else drop segment and return.
11660 	 */
11661 	if ((thflags & TH_ACK) == 0) {
11662 		if (tp->t_flags & TF_NEEDSYN) {
11663 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11664 			    tiwin, thflags, nxt_pkt));
11665 
11666 		} else if (tp->t_flags & TF_ACKNOW) {
11667 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11668 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11669 			return (ret_val);
11670 		} else {
11671 			ctf_do_drop(m, NULL);
11672 			return (0);
11673 		}
11674 	}
11675 	/*
11676 	 * Ack processing.
11677 	 */
11678 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11679 		return (ret_val);
11680 	}
11681 	if (sbavail(&so->so_snd)) {
11682 		if (ctf_progress_timeout_check(tp, true)) {
11683 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11684 						tp, tick, PROGRESS_DROP, __LINE__);
11685 			ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11686 			return (1);
11687 		}
11688 	}
11689 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11690 	    tiwin, thflags, nxt_pkt));
11691 }
11692 
11693 static int
11694 rack_check_data_after_close(struct mbuf *m,
11695     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
11696 {
11697 	struct tcp_rack *rack;
11698 
11699 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11700 	if (rack->rc_allow_data_af_clo == 0) {
11701 	close_now:
11702 		tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11703 		/* tcp_close will kill the inp pre-log the Reset */
11704 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
11705 		tp = tcp_close(tp);
11706 		KMOD_TCPSTAT_INC(tcps_rcvafterclose);
11707 		ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
11708 		return (1);
11709 	}
11710 	if (sbavail(&so->so_snd) == 0)
11711 		goto close_now;
11712 	/* Ok we allow data that is ignored and a followup reset */
11713 	tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11714 	tp->rcv_nxt = th->th_seq + *tlen;
11715 	tp->t_flags2 |= TF2_DROP_AF_DATA;
11716 	rack->r_wanted_output = 1;
11717 	*tlen = 0;
11718 	return (0);
11719 }
11720 
11721 /*
11722  * Return value of 1, the TCB is unlocked and most
11723  * likely gone, return value of 0, the TCP is still
11724  * locked.
11725  */
11726 static int
11727 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
11728     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11729     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11730 {
11731 	int32_t ret_val = 0;
11732 	int32_t ourfinisacked = 0;
11733 	struct tcp_rack *rack;
11734 
11735 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11736 	ctf_calc_rwin(so, tp);
11737 
11738 	if ((thflags & TH_RST) ||
11739 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11740 		return (__ctf_process_rst(m, th, so, tp,
11741 					  &rack->r_ctl.challenge_ack_ts,
11742 					  &rack->r_ctl.challenge_ack_cnt));
11743 	/*
11744 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11745 	 * synchronized state.
11746 	 */
11747 	if (thflags & TH_SYN) {
11748 		ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11749 		return (ret_val);
11750 	}
11751 	/*
11752 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11753 	 * it's less than ts_recent, drop it.
11754 	 */
11755 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11756 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11757 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11758 			return (ret_val);
11759 	}
11760 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11761 			      &rack->r_ctl.challenge_ack_ts,
11762 			      &rack->r_ctl.challenge_ack_cnt)) {
11763 		return (ret_val);
11764 	}
11765 	/*
11766 	 * If new data are received on a connection after the user processes
11767 	 * are gone, then RST the other end.
11768 	 */
11769 	if ((tp->t_flags & TF_CLOSED) && tlen &&
11770 	    rack_check_data_after_close(m, tp, &tlen, th, so))
11771 		return (1);
11772 	/*
11773 	 * If last ACK falls within this segment's sequence numbers, record
11774 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11775 	 * from the latest proposal of the tcplw@cray.com list (Braden
11776 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11777 	 * with our earlier PAWS tests, so this check should be solely
11778 	 * predicated on the sequence space of this segment. 3) That we
11779 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11780 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11781 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11782 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11783 	 * p.869. In such cases, we can still calculate the RTT correctly
11784 	 * when RCV.NXT == Last.ACK.Sent.
11785 	 */
11786 	if ((to->to_flags & TOF_TS) != 0 &&
11787 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11788 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11789 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11790 		tp->ts_recent_age = tcp_ts_getticks();
11791 		tp->ts_recent = to->to_tsval;
11792 	}
11793 	/*
11794 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11795 	 * is on (half-synchronized state), then queue data for later
11796 	 * processing; else drop segment and return.
11797 	 */
11798 	if ((thflags & TH_ACK) == 0) {
11799 		if (tp->t_flags & TF_NEEDSYN) {
11800 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11801 			    tiwin, thflags, nxt_pkt));
11802 		} else if (tp->t_flags & TF_ACKNOW) {
11803 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11804 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11805 			return (ret_val);
11806 		} else {
11807 			ctf_do_drop(m, NULL);
11808 			return (0);
11809 		}
11810 	}
11811 	/*
11812 	 * Ack processing.
11813 	 */
11814 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11815 		return (ret_val);
11816 	}
11817 	if (ourfinisacked) {
11818 		/*
11819 		 * If we can't receive any more data, then closing user can
11820 		 * proceed. Starting the timer is contrary to the
11821 		 * specification, but if we don't get a FIN we'll hang
11822 		 * forever.
11823 		 *
11824 		 * XXXjl: we should release the tp also, and use a
11825 		 * compressed state.
11826 		 */
11827 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11828 			soisdisconnected(so);
11829 			tcp_timer_activate(tp, TT_2MSL,
11830 			    (tcp_fast_finwait2_recycle ?
11831 			    tcp_finwait2_timeout :
11832 			    TP_MAXIDLE(tp)));
11833 		}
11834 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
11835 	}
11836 	if (sbavail(&so->so_snd)) {
11837 		if (ctf_progress_timeout_check(tp, true)) {
11838 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11839 						tp, tick, PROGRESS_DROP, __LINE__);
11840 			ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11841 			return (1);
11842 		}
11843 	}
11844 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11845 	    tiwin, thflags, nxt_pkt));
11846 }
11847 
11848 /*
11849  * Return value of 1, the TCB is unlocked and most
11850  * likely gone, return value of 0, the TCP is still
11851  * locked.
11852  */
11853 static int
11854 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
11855     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11856     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11857 {
11858 	int32_t ret_val = 0;
11859 	int32_t ourfinisacked = 0;
11860 	struct tcp_rack *rack;
11861 
11862 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11863 	ctf_calc_rwin(so, tp);
11864 
11865 	if ((thflags & TH_RST) ||
11866 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11867 		return (__ctf_process_rst(m, th, so, tp,
11868 					  &rack->r_ctl.challenge_ack_ts,
11869 					  &rack->r_ctl.challenge_ack_cnt));
11870 	/*
11871 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11872 	 * synchronized state.
11873 	 */
11874 	if (thflags & TH_SYN) {
11875 		ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11876 		return (ret_val);
11877 	}
11878 	/*
11879 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11880 	 * it's less than ts_recent, drop it.
11881 	 */
11882 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11883 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11884 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11885 			return (ret_val);
11886 	}
11887 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11888 			      &rack->r_ctl.challenge_ack_ts,
11889 			      &rack->r_ctl.challenge_ack_cnt)) {
11890 		return (ret_val);
11891 	}
11892 	/*
11893 	 * If new data are received on a connection after the user processes
11894 	 * are gone, then RST the other end.
11895 	 */
11896 	if ((tp->t_flags & TF_CLOSED) && tlen &&
11897 	    rack_check_data_after_close(m, tp, &tlen, th, so))
11898 		return (1);
11899 	/*
11900 	 * If last ACK falls within this segment's sequence numbers, record
11901 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
11902 	 * from the latest proposal of the tcplw@cray.com list (Braden
11903 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
11904 	 * with our earlier PAWS tests, so this check should be solely
11905 	 * predicated on the sequence space of this segment. 3) That we
11906 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11907 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11908 	 * SEG.Len, This modified check allows us to overcome RFC1323's
11909 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11910 	 * p.869. In such cases, we can still calculate the RTT correctly
11911 	 * when RCV.NXT == Last.ACK.Sent.
11912 	 */
11913 	if ((to->to_flags & TOF_TS) != 0 &&
11914 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11915 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11916 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11917 		tp->ts_recent_age = tcp_ts_getticks();
11918 		tp->ts_recent = to->to_tsval;
11919 	}
11920 	/*
11921 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11922 	 * is on (half-synchronized state), then queue data for later
11923 	 * processing; else drop segment and return.
11924 	 */
11925 	if ((thflags & TH_ACK) == 0) {
11926 		if (tp->t_flags & TF_NEEDSYN) {
11927 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11928 			    tiwin, thflags, nxt_pkt));
11929 		} else if (tp->t_flags & TF_ACKNOW) {
11930 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11931 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11932 			return (ret_val);
11933 		} else {
11934 			ctf_do_drop(m, NULL);
11935 			return (0);
11936 		}
11937 	}
11938 	/*
11939 	 * Ack processing.
11940 	 */
11941 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11942 		return (ret_val);
11943 	}
11944 	if (ourfinisacked) {
11945 		tcp_twstart(tp);
11946 		m_freem(m);
11947 		return (1);
11948 	}
11949 	if (sbavail(&so->so_snd)) {
11950 		if (ctf_progress_timeout_check(tp, true)) {
11951 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11952 						tp, tick, PROGRESS_DROP, __LINE__);
11953 			ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11954 			return (1);
11955 		}
11956 	}
11957 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11958 	    tiwin, thflags, nxt_pkt));
11959 }
11960 
11961 /*
11962  * Return value of 1, the TCB is unlocked and most
11963  * likely gone, return value of 0, the TCP is still
11964  * locked.
11965  */
11966 static int
11967 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
11968     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11969     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11970 {
11971 	int32_t ret_val = 0;
11972 	int32_t ourfinisacked = 0;
11973 	struct tcp_rack *rack;
11974 
11975 	rack = (struct tcp_rack *)tp->t_fb_ptr;
11976 	ctf_calc_rwin(so, tp);
11977 
11978 	if ((thflags & TH_RST) ||
11979 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
11980 		return (__ctf_process_rst(m, th, so, tp,
11981 					  &rack->r_ctl.challenge_ack_ts,
11982 					  &rack->r_ctl.challenge_ack_cnt));
11983 	/*
11984 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11985 	 * synchronized state.
11986 	 */
11987 	if (thflags & TH_SYN) {
11988 		ctf_challenge_ack(m, th, tp, iptos, &ret_val);
11989 		return (ret_val);
11990 	}
11991 	/*
11992 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11993 	 * it's less than ts_recent, drop it.
11994 	 */
11995 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11996 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11997 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11998 			return (ret_val);
11999 	}
12000 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
12001 			      &rack->r_ctl.challenge_ack_ts,
12002 			      &rack->r_ctl.challenge_ack_cnt)) {
12003 		return (ret_val);
12004 	}
12005 	/*
12006 	 * If new data are received on a connection after the user processes
12007 	 * are gone, then RST the other end.
12008 	 */
12009 	if ((tp->t_flags & TF_CLOSED) && tlen &&
12010 	    rack_check_data_after_close(m, tp, &tlen, th, so))
12011 		return (1);
12012 	/*
12013 	 * If last ACK falls within this segment's sequence numbers, record
12014 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
12015 	 * from the latest proposal of the tcplw@cray.com list (Braden
12016 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
12017 	 * with our earlier PAWS tests, so this check should be solely
12018 	 * predicated on the sequence space of this segment. 3) That we
12019 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
12020 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
12021 	 * SEG.Len, This modified check allows us to overcome RFC1323's
12022 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
12023 	 * p.869. In such cases, we can still calculate the RTT correctly
12024 	 * when RCV.NXT == Last.ACK.Sent.
12025 	 */
12026 	if ((to->to_flags & TOF_TS) != 0 &&
12027 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
12028 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
12029 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
12030 		tp->ts_recent_age = tcp_ts_getticks();
12031 		tp->ts_recent = to->to_tsval;
12032 	}
12033 	/*
12034 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
12035 	 * is on (half-synchronized state), then queue data for later
12036 	 * processing; else drop segment and return.
12037 	 */
12038 	if ((thflags & TH_ACK) == 0) {
12039 		if (tp->t_flags & TF_NEEDSYN) {
12040 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12041 			    tiwin, thflags, nxt_pkt));
12042 		} else if (tp->t_flags & TF_ACKNOW) {
12043 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
12044 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
12045 			return (ret_val);
12046 		} else {
12047 			ctf_do_drop(m, NULL);
12048 			return (0);
12049 		}
12050 	}
12051 	/*
12052 	 * case TCPS_LAST_ACK: Ack processing.
12053 	 */
12054 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
12055 		return (ret_val);
12056 	}
12057 	if (ourfinisacked) {
12058 		tp = tcp_close(tp);
12059 		ctf_do_drop(m, tp);
12060 		return (1);
12061 	}
12062 	if (sbavail(&so->so_snd)) {
12063 		if (ctf_progress_timeout_check(tp, true)) {
12064 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
12065 						tp, tick, PROGRESS_DROP, __LINE__);
12066 			ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
12067 			return (1);
12068 		}
12069 	}
12070 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12071 	    tiwin, thflags, nxt_pkt));
12072 }
12073 
12074 /*
12075  * Return value of 1, the TCB is unlocked and most
12076  * likely gone, return value of 0, the TCP is still
12077  * locked.
12078  */
12079 static int
12080 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
12081     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
12082     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
12083 {
12084 	int32_t ret_val = 0;
12085 	int32_t ourfinisacked = 0;
12086 	struct tcp_rack *rack;
12087 
12088 	rack = (struct tcp_rack *)tp->t_fb_ptr;
12089 	ctf_calc_rwin(so, tp);
12090 
12091 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
12092 	if ((thflags & TH_RST) ||
12093 	    (tp->t_fin_is_rst && (thflags & TH_FIN)))
12094 		return (__ctf_process_rst(m, th, so, tp,
12095 					  &rack->r_ctl.challenge_ack_ts,
12096 					  &rack->r_ctl.challenge_ack_cnt));
12097 	/*
12098 	 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
12099 	 * synchronized state.
12100 	 */
12101 	if (thflags & TH_SYN) {
12102 		ctf_challenge_ack(m, th, tp, iptos, &ret_val);
12103 		return (ret_val);
12104 	}
12105 	/*
12106 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
12107 	 * it's less than ts_recent, drop it.
12108 	 */
12109 	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
12110 	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
12111 		if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
12112 			return (ret_val);
12113 	}
12114 	if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
12115 			      &rack->r_ctl.challenge_ack_ts,
12116 			      &rack->r_ctl.challenge_ack_cnt)) {
12117 		return (ret_val);
12118 	}
12119 	/*
12120 	 * If new data are received on a connection after the user processes
12121 	 * are gone, then RST the other end.
12122 	 */
12123 	if ((tp->t_flags & TF_CLOSED) && tlen &&
12124 	    rack_check_data_after_close(m, tp, &tlen, th, so))
12125 		return (1);
12126 	/*
12127 	 * If last ACK falls within this segment's sequence numbers, record
12128 	 * its timestamp. NOTE: 1) That the test incorporates suggestions
12129 	 * from the latest proposal of the tcplw@cray.com list (Braden
12130 	 * 1993/04/26). 2) That updating only on newer timestamps interferes
12131 	 * with our earlier PAWS tests, so this check should be solely
12132 	 * predicated on the sequence space of this segment. 3) That we
12133 	 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
12134 	 * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
12135 	 * SEG.Len, This modified check allows us to overcome RFC1323's
12136 	 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
12137 	 * p.869. In such cases, we can still calculate the RTT correctly
12138 	 * when RCV.NXT == Last.ACK.Sent.
12139 	 */
12140 	if ((to->to_flags & TOF_TS) != 0 &&
12141 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
12142 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
12143 	    ((thflags & (TH_SYN | TH_FIN)) != 0))) {
12144 		tp->ts_recent_age = tcp_ts_getticks();
12145 		tp->ts_recent = to->to_tsval;
12146 	}
12147 	/*
12148 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
12149 	 * is on (half-synchronized state), then queue data for later
12150 	 * processing; else drop segment and return.
12151 	 */
12152 	if ((thflags & TH_ACK) == 0) {
12153 		if (tp->t_flags & TF_NEEDSYN) {
12154 			return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12155 			    tiwin, thflags, nxt_pkt));
12156 		} else if (tp->t_flags & TF_ACKNOW) {
12157 			ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
12158 			((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
12159 			return (ret_val);
12160 		} else {
12161 			ctf_do_drop(m, NULL);
12162 			return (0);
12163 		}
12164 	}
12165 	/*
12166 	 * Ack processing.
12167 	 */
12168 	if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
12169 		return (ret_val);
12170 	}
12171 	if (sbavail(&so->so_snd)) {
12172 		if (ctf_progress_timeout_check(tp, true)) {
12173 			rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
12174 						tp, tick, PROGRESS_DROP, __LINE__);
12175 			ctf_do_dropwithreset_conn(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
12176 			return (1);
12177 		}
12178 	}
12179 	return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12180 	    tiwin, thflags, nxt_pkt));
12181 }
12182 
12183 static void inline
12184 rack_clear_rate_sample(struct tcp_rack *rack)
12185 {
12186 	rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
12187 	rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
12188 	rack->r_ctl.rack_rs.rs_rtt_tot = 0;
12189 }
12190 
12191 static void
12192 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override)
12193 {
12194 	uint64_t bw_est, rate_wanted;
12195 	int chged = 0;
12196 	uint32_t user_max, orig_min, orig_max;
12197 
12198 	orig_min = rack->r_ctl.rc_pace_min_segs;
12199 	orig_max = rack->r_ctl.rc_pace_max_segs;
12200 	user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs;
12201 	if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs)
12202 		chged = 1;
12203 	rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
12204 	if (rack->use_fixed_rate || rack->rc_force_max_seg) {
12205 		if (user_max != rack->r_ctl.rc_pace_max_segs)
12206 			chged = 1;
12207 	}
12208 	if (rack->rc_force_max_seg) {
12209 		rack->r_ctl.rc_pace_max_segs = user_max;
12210 	} else if (rack->use_fixed_rate) {
12211 		bw_est = rack_get_bw(rack);
12212 		if ((rack->r_ctl.crte == NULL) ||
12213 		    (bw_est != rack->r_ctl.crte->rate)) {
12214 			rack->r_ctl.rc_pace_max_segs = user_max;
12215 		} else {
12216 			/* We are pacing right at the hardware rate */
12217 			uint32_t segsiz;
12218 
12219 			segsiz = min(ctf_fixed_maxseg(tp),
12220 				     rack->r_ctl.rc_pace_min_segs);
12221 			rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(
12222 				                           tp, bw_est, segsiz, 0,
12223 							   rack->r_ctl.crte, NULL);
12224 		}
12225 	} else if (rack->rc_always_pace) {
12226 		if (rack->r_ctl.gp_bw ||
12227 #ifdef NETFLIX_PEAKRATE
12228 		    rack->rc_tp->t_maxpeakrate ||
12229 #endif
12230 		    rack->r_ctl.init_rate) {
12231 			/* We have a rate of some sort set */
12232 			uint32_t  orig;
12233 
12234 			bw_est = rack_get_bw(rack);
12235 			orig = rack->r_ctl.rc_pace_max_segs;
12236 			if (fill_override)
12237 				rate_wanted = *fill_override;
12238 			else
12239 				rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL);
12240 			if (rate_wanted) {
12241 				/* We have something */
12242 				rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack,
12243 										   rate_wanted,
12244 										   ctf_fixed_maxseg(rack->rc_tp));
12245 			} else
12246 				rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs;
12247 			if (orig != rack->r_ctl.rc_pace_max_segs)
12248 				chged = 1;
12249 		} else if ((rack->r_ctl.gp_bw == 0) &&
12250 			   (rack->r_ctl.rc_pace_max_segs == 0)) {
12251 			/*
12252 			 * If we have nothing limit us to bursting
12253 			 * out IW sized pieces.
12254 			 */
12255 			chged = 1;
12256 			rack->r_ctl.rc_pace_max_segs = rc_init_window(rack);
12257 		}
12258 	}
12259 	if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) {
12260 		chged = 1;
12261 		rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
12262 	}
12263 	if (chged)
12264 		rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2);
12265 }
12266 
12267 
12268 static void
12269 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack)
12270 {
12271 #ifdef INET6
12272 	struct ip6_hdr *ip6 = NULL;
12273 #endif
12274 #ifdef INET
12275 	struct ip *ip = NULL;
12276 #endif
12277 	struct udphdr *udp = NULL;
12278 
12279 	/* Ok lets fill in the fast block, it can only be used with no IP options! */
12280 #ifdef INET6
12281 	if (rack->r_is_v6) {
12282 		rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
12283 		ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
12284 		if (tp->t_port) {
12285 			rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12286 			udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
12287 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12288 			udp->uh_dport = tp->t_port;
12289 			rack->r_ctl.fsb.udp = udp;
12290 			rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12291 		} else
12292 		{
12293 			rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1);
12294 			rack->r_ctl.fsb.udp = NULL;
12295 		}
12296 		tcpip_fillheaders(rack->rc_inp,
12297 				  tp->t_port,
12298 				  ip6, rack->r_ctl.fsb.th);
12299 	} else
12300 #endif				/* INET6 */
12301 #ifdef INET
12302 	{
12303 		rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr);
12304 		ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
12305 		if (tp->t_port) {
12306 			rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12307 			udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
12308 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12309 			udp->uh_dport = tp->t_port;
12310 			rack->r_ctl.fsb.udp = udp;
12311 			rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12312 		} else
12313 		{
12314 			rack->r_ctl.fsb.udp = NULL;
12315 			rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1);
12316 		}
12317 		tcpip_fillheaders(rack->rc_inp,
12318 				  tp->t_port,
12319 				  ip, rack->r_ctl.fsb.th);
12320 	}
12321 #endif
12322 	rack->r_fsb_inited = 1;
12323 }
12324 
12325 static int
12326 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack)
12327 {
12328 	/*
12329 	 * Allocate the larger of spaces V6 if available else just
12330 	 * V4 and include udphdr (overbook)
12331 	 */
12332 #ifdef INET6
12333 	rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr);
12334 #else
12335 	rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr);
12336 #endif
12337 	rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len,
12338 					    M_TCPFSB, M_NOWAIT|M_ZERO);
12339 	if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) {
12340 		return (ENOMEM);
12341 	}
12342 	rack->r_fsb_inited = 0;
12343 	return (0);
12344 }
12345 
12346 static int
12347 rack_init(struct tcpcb *tp)
12348 {
12349 	struct inpcb *inp = tptoinpcb(tp);
12350 	struct tcp_rack *rack = NULL;
12351 #ifdef INVARIANTS
12352 	struct rack_sendmap *insret;
12353 #endif
12354 	uint32_t iwin, snt, us_cts;
12355 	int err;
12356 
12357 	tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
12358 	if (tp->t_fb_ptr == NULL) {
12359 		/*
12360 		 * We need to allocate memory but cant. The INP and INP_INFO
12361 		 * locks and they are recursive (happens during setup. So a
12362 		 * scheme to drop the locks fails :(
12363 		 *
12364 		 */
12365 		return (ENOMEM);
12366 	}
12367 	memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
12368 
12369 	rack = (struct tcp_rack *)tp->t_fb_ptr;
12370 	RB_INIT(&rack->r_ctl.rc_mtree);
12371 	TAILQ_INIT(&rack->r_ctl.rc_free);
12372 	TAILQ_INIT(&rack->r_ctl.rc_tmap);
12373 	rack->rc_tp = tp;
12374 	rack->rc_inp = inp;
12375 	/* Set the flag */
12376 	rack->r_is_v6 = (inp->inp_vflag & INP_IPV6) != 0;
12377 	/* Probably not needed but lets be sure */
12378 	rack_clear_rate_sample(rack);
12379 	/*
12380 	 * Save off the default values, socket options will poke
12381 	 * at these if pacing is not on or we have not yet
12382 	 * reached where pacing is on (gp_ready/fixed enabled).
12383 	 * When they get set into the CC module (when gp_ready
12384 	 * is enabled or we enable fixed) then we will set these
12385 	 * values into the CC and place in here the old values
12386 	 * so we have a restoral. Then we will set the flag
12387 	 * rc_pacing_cc_set. That way whenever we turn off pacing
12388 	 * or switch off this stack, we will know to go restore
12389 	 * the saved values.
12390 	 */
12391 	rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn;
12392 	rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn;
12393 	/* We want abe like behavior as well */
12394 	rack->r_ctl.rc_saved_beta.newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED;
12395 	rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
12396 	rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
12397 	rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
12398 	rack->r_ctl.roundends = tp->snd_max;
12399 	if (use_rack_rr)
12400 		rack->use_rack_rr = 1;
12401 	if (V_tcp_delack_enabled)
12402 		tp->t_delayed_ack = 1;
12403 	else
12404 		tp->t_delayed_ack = 0;
12405 #ifdef TCP_ACCOUNTING
12406 	if (rack_tcp_accounting) {
12407 		tp->t_flags2 |= TF2_TCP_ACCOUNTING;
12408 	}
12409 #endif
12410 	if (rack_enable_shared_cwnd)
12411 		rack->rack_enable_scwnd = 1;
12412 	rack->rc_user_set_max_segs = rack_hptsi_segments;
12413 	rack->rc_force_max_seg = 0;
12414 	if (rack_use_imac_dack)
12415 		rack->rc_dack_mode = 1;
12416 	TAILQ_INIT(&rack->r_ctl.opt_list);
12417 	rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
12418 	rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
12419 	rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
12420 	rack->r_ctl.rc_lowest_us_rtt = 0xffffffff;
12421 	rack->r_ctl.rc_highest_us_rtt = 0;
12422 	rack->r_ctl.bw_rate_cap = rack_bw_rate_cap;
12423 	rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop);
12424 	if (rack_use_cmp_acks)
12425 		rack->r_use_cmp_ack = 1;
12426 	if (rack_disable_prr)
12427 		rack->rack_no_prr = 1;
12428 	if (rack_gp_no_rec_chg)
12429 		rack->rc_gp_no_rec_chg = 1;
12430 	if (rack_pace_every_seg && tcp_can_enable_pacing()) {
12431 		rack->rc_always_pace = 1;
12432 		if (rack->use_fixed_rate || rack->gp_ready)
12433 			rack_set_cc_pacing(rack);
12434 	} else
12435 		rack->rc_always_pace = 0;
12436 	if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack)
12437 		rack->r_mbuf_queue = 1;
12438 	else
12439 		rack->r_mbuf_queue = 0;
12440 	if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
12441 		inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
12442 	else
12443 		inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12444 	rack_set_pace_segments(tp, rack, __LINE__, NULL);
12445 	if (rack_limits_scwnd)
12446 		rack->r_limit_scw = 1;
12447 	else
12448 		rack->r_limit_scw = 0;
12449 	rack->rc_labc = V_tcp_abc_l_var;
12450 	rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
12451 	rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
12452 	rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
12453 	rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
12454 	rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
12455 	rack->r_ctl.rc_min_to = rack_min_to;
12456 	microuptime(&rack->r_ctl.act_rcv_time);
12457 	rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
12458 	rack->rc_init_win = rack_default_init_window;
12459 	rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss;
12460 	if (rack_hw_up_only)
12461 		rack->r_up_only = 1;
12462 	if (rack_do_dyn_mul) {
12463 		/* When dynamic adjustment is on CA needs to start at 100% */
12464 		rack->rc_gp_dyn_mul = 1;
12465 		if (rack_do_dyn_mul >= 100)
12466 			rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
12467 	} else
12468 		rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
12469 	rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec;
12470 	rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
12471 	rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time);
12472 	setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN,
12473 				rack_probertt_filter_life);
12474 	us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
12475 	rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
12476 	rack->r_ctl.rc_time_of_last_probertt = us_cts;
12477 	rack->r_ctl.challenge_ack_ts = tcp_ts_getticks();
12478 	rack->r_ctl.rc_time_probertt_starts = 0;
12479 	if (rack_dsack_std_based & 0x1) {
12480 		/* Basically this means all rack timers are at least (srtt + 1/4 srtt) */
12481 		rack->rc_rack_tmr_std_based = 1;
12482 	}
12483 	if (rack_dsack_std_based & 0x2) {
12484 		/* Basically this means  rack timers are extended based on dsack by up to (2 * srtt) */
12485 		rack->rc_rack_use_dsack = 1;
12486 	}
12487 	/* We require at least one measurement, even if the sysctl is 0 */
12488 	if (rack_req_measurements)
12489 		rack->r_ctl.req_measurements = rack_req_measurements;
12490 	else
12491 		rack->r_ctl.req_measurements = 1;
12492 	if (rack_enable_hw_pacing)
12493 		rack->rack_hdw_pace_ena = 1;
12494 	if (rack_hw_rate_caps)
12495 		rack->r_rack_hw_rate_caps = 1;
12496 	/* Do we force on detection? */
12497 #ifdef NETFLIX_EXP_DETECTION
12498 	if (tcp_force_detection)
12499 		rack->do_detection = 1;
12500 	else
12501 #endif
12502 		rack->do_detection = 0;
12503 	if (rack_non_rxt_use_cr)
12504 		rack->rack_rec_nonrxt_use_cr = 1;
12505 	err = rack_init_fsb(tp, rack);
12506 	if (err) {
12507 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12508 		tp->t_fb_ptr = NULL;
12509 		return (err);
12510 	}
12511 	if (tp->snd_una != tp->snd_max) {
12512 		/* Create a send map for the current outstanding data */
12513 		struct rack_sendmap *rsm;
12514 
12515 		rsm = rack_alloc(rack);
12516 		if (rsm == NULL) {
12517 			uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12518 			tp->t_fb_ptr = NULL;
12519 			return (ENOMEM);
12520 		}
12521 		rsm->r_no_rtt_allowed = 1;
12522 		rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
12523 		rsm->r_rtr_cnt = 1;
12524 		rsm->r_rtr_bytes = 0;
12525 		if (tp->t_flags & TF_SENTFIN)
12526 			rsm->r_flags |= RACK_HAS_FIN;
12527 		if ((tp->snd_una == tp->iss) &&
12528 		    !TCPS_HAVEESTABLISHED(tp->t_state))
12529 			rsm->r_flags |= RACK_HAS_SYN;
12530 		rsm->r_start = tp->snd_una;
12531 		rsm->r_end = tp->snd_max;
12532 		rsm->r_dupack = 0;
12533 		if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) {
12534 			rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff);
12535 			if (rsm->m)
12536 				rsm->orig_m_len = rsm->m->m_len;
12537 			else
12538 				rsm->orig_m_len = 0;
12539 		} else {
12540 			/*
12541 			 * This can happen if we have a stand-alone FIN or
12542 			 *  SYN.
12543 			 */
12544 			rsm->m = NULL;
12545 			rsm->orig_m_len = 0;
12546 			rsm->soff = 0;
12547 		}
12548 #ifndef INVARIANTS
12549 		(void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12550 #else
12551 		insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12552 		if (insret != NULL) {
12553 			panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
12554 			      insret, rack, rsm);
12555 		}
12556 #endif
12557 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
12558 		rsm->r_in_tmap = 1;
12559 	}
12560 	/*
12561 	 * Timers in Rack are kept in microseconds so lets
12562 	 * convert any initial incoming variables
12563 	 * from ticks into usecs. Note that we
12564 	 * also change the values of t_srtt and t_rttvar, if
12565 	 * they are non-zero. They are kept with a 5
12566 	 * bit decimal so we have to carefully convert
12567 	 * these to get the full precision.
12568 	 */
12569 	rack_convert_rtts(tp);
12570 	tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
12571 	if (rack_do_hystart) {
12572 		tp->t_ccv.flags |= CCF_HYSTART_ALLOWED;
12573 		if (rack_do_hystart > 1)
12574 			tp->t_ccv.flags |= CCF_HYSTART_CAN_SH_CWND;
12575 		if (rack_do_hystart > 2)
12576 			tp->t_ccv.flags |= CCF_HYSTART_CONS_SSTH;
12577 	}
12578 	if (rack_def_profile)
12579 		rack_set_profile(rack, rack_def_profile);
12580 	/* Cancel the GP measurement in progress */
12581 	tp->t_flags &= ~TF_GPUTINPROG;
12582 	if (SEQ_GT(tp->snd_max, tp->iss))
12583 		snt = tp->snd_max - tp->iss;
12584 	else
12585 		snt = 0;
12586 	iwin = rc_init_window(rack);
12587 	if (snt < iwin) {
12588 		/* We are not past the initial window
12589 		 * so we need to make sure cwnd is
12590 		 * correct.
12591 		 */
12592 		if (tp->snd_cwnd < iwin)
12593 			tp->snd_cwnd = iwin;
12594 		/*
12595 		 * If we are within the initial window
12596 		 * we want ssthresh to be unlimited. Setting
12597 		 * it to the rwnd (which the default stack does
12598 		 * and older racks) is not really a good idea
12599 		 * since we want to be in SS and grow both the
12600 		 * cwnd and the rwnd (via dynamic rwnd growth). If
12601 		 * we set it to the rwnd then as the peer grows its
12602 		 * rwnd we will be stuck in CA and never hit SS.
12603 		 *
12604 		 * Its far better to raise it up high (this takes the
12605 		 * risk that there as been a loss already, probably
12606 		 * we should have an indicator in all stacks of loss
12607 		 * but we don't), but considering the normal use this
12608 		 * is a risk worth taking. The consequences of not
12609 		 * hitting SS are far worse than going one more time
12610 		 * into it early on (before we have sent even a IW).
12611 		 * It is highly unlikely that we will have had a loss
12612 		 * before getting the IW out.
12613 		 */
12614 		tp->snd_ssthresh = 0xffffffff;
12615 	}
12616 	rack_stop_all_timers(tp);
12617 	/* Lets setup the fsb block */
12618 	rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12619 	rack_log_rtt_shrinks(rack,  us_cts,  tp->t_rxtcur,
12620 			     __LINE__, RACK_RTTS_INIT);
12621 	return (0);
12622 }
12623 
12624 static int
12625 rack_handoff_ok(struct tcpcb *tp)
12626 {
12627 	if ((tp->t_state == TCPS_CLOSED) ||
12628 	    (tp->t_state == TCPS_LISTEN)) {
12629 		/* Sure no problem though it may not stick */
12630 		return (0);
12631 	}
12632 	if ((tp->t_state == TCPS_SYN_SENT) ||
12633 	    (tp->t_state == TCPS_SYN_RECEIVED)) {
12634 		/*
12635 		 * We really don't know if you support sack,
12636 		 * you have to get to ESTAB or beyond to tell.
12637 		 */
12638 		return (EAGAIN);
12639 	}
12640 	if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) {
12641 		/*
12642 		 * Rack will only send a FIN after all data is acknowledged.
12643 		 * So in this case we have more data outstanding. We can't
12644 		 * switch stacks until either all data and only the FIN
12645 		 * is left (in which case rack_init() now knows how
12646 		 * to deal with that) <or> all is acknowledged and we
12647 		 * are only left with incoming data, though why you
12648 		 * would want to switch to rack after all data is acknowledged
12649 		 * I have no idea (rrs)!
12650 		 */
12651 		return (EAGAIN);
12652 	}
12653 	if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
12654 		return (0);
12655 	}
12656 	/*
12657 	 * If we reach here we don't do SACK on this connection so we can
12658 	 * never do rack.
12659 	 */
12660 	return (EINVAL);
12661 }
12662 
12663 
12664 static void
12665 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
12666 {
12667 	struct inpcb *inp = tptoinpcb(tp);
12668 
12669 	if (tp->t_fb_ptr) {
12670 		struct tcp_rack *rack;
12671 		struct rack_sendmap *rsm, *nrsm;
12672 #ifdef INVARIANTS
12673 		struct rack_sendmap *rm;
12674 #endif
12675 
12676 		rack = (struct tcp_rack *)tp->t_fb_ptr;
12677 		if (tp->t_in_pkt) {
12678 			/*
12679 			 * It is unsafe to process the packets since a
12680 			 * reset may be lurking in them (its rare but it
12681 			 * can occur). If we were to find a RST, then we
12682 			 * would end up dropping the connection and the
12683 			 * INP lock, so when we return the caller (tcp_usrreq)
12684 			 * will blow up when it trys to unlock the inp.
12685 			 */
12686 			struct mbuf *save, *m;
12687 
12688 			m = tp->t_in_pkt;
12689 			tp->t_in_pkt = NULL;
12690 			tp->t_tail_pkt = NULL;
12691 			while (m) {
12692 				save = m->m_nextpkt;
12693 				m->m_nextpkt = NULL;
12694 				m_freem(m);
12695 				m = save;
12696 			}
12697 		}
12698 		tp->t_flags &= ~TF_FORCEDATA;
12699 #ifdef NETFLIX_SHARED_CWND
12700 		if (rack->r_ctl.rc_scw) {
12701 			uint32_t limit;
12702 
12703 			if (rack->r_limit_scw)
12704 				limit = max(1, rack->r_ctl.rc_lowest_us_rtt);
12705 			else
12706 				limit = 0;
12707 			tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw,
12708 						  rack->r_ctl.rc_scw_index,
12709 						  limit);
12710 			rack->r_ctl.rc_scw = NULL;
12711 		}
12712 #endif
12713 		if (rack->r_ctl.fsb.tcp_ip_hdr) {
12714 			free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB);
12715 			rack->r_ctl.fsb.tcp_ip_hdr = NULL;
12716 			rack->r_ctl.fsb.th = NULL;
12717 		}
12718 		/* Convert back to ticks, with  */
12719 		if (tp->t_srtt > 1) {
12720 			uint32_t val, frac;
12721 
12722 			val = USEC_2_TICKS(tp->t_srtt);
12723 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12724 			tp->t_srtt = val << TCP_RTT_SHIFT;
12725 			/*
12726 			 * frac is the fractional part here is left
12727 			 * over from converting to hz and shifting.
12728 			 * We need to convert this to the 5 bit
12729 			 * remainder.
12730 			 */
12731 			if (frac) {
12732 				if (hz == 1000) {
12733 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12734 				} else {
12735 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12736 				}
12737 				tp->t_srtt += frac;
12738 			}
12739 		}
12740 		if (tp->t_rttvar) {
12741 			uint32_t val, frac;
12742 
12743 			val = USEC_2_TICKS(tp->t_rttvar);
12744 			frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12745 			tp->t_rttvar = val <<  TCP_RTTVAR_SHIFT;
12746 			/*
12747 			 * frac is the fractional part here is left
12748 			 * over from converting to hz and shifting.
12749 			 * We need to convert this to the 5 bit
12750 			 * remainder.
12751 			 */
12752 			if (frac) {
12753 				if (hz == 1000) {
12754 					frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12755 				} else {
12756 					frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12757 				}
12758 				tp->t_rttvar += frac;
12759 			}
12760 		}
12761 		tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur);
12762 		tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
12763 		if (rack->rc_always_pace) {
12764 			tcp_decrement_paced_conn();
12765 			rack_undo_cc_pacing(rack);
12766 			rack->rc_always_pace = 0;
12767 		}
12768 		/* Clean up any options if they were not applied */
12769 		while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) {
12770 			struct deferred_opt_list *dol;
12771 
12772 			dol = TAILQ_FIRST(&rack->r_ctl.opt_list);
12773 			TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
12774 			free(dol, M_TCPDO);
12775 		}
12776 		/* rack does not use force data but other stacks may clear it */
12777 		if (rack->r_ctl.crte != NULL) {
12778 			tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
12779 			rack->rack_hdrw_pacing = 0;
12780 			rack->r_ctl.crte = NULL;
12781 		}
12782 #ifdef TCP_BLACKBOX
12783 		tcp_log_flowend(tp);
12784 #endif
12785 		RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
12786 #ifndef INVARIANTS
12787 			(void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12788 #else
12789 			rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12790 			if (rm != rsm) {
12791 				panic("At fini, rack:%p rsm:%p rm:%p",
12792 				      rack, rsm, rm);
12793 			}
12794 #endif
12795 			uma_zfree(rack_zone, rsm);
12796 		}
12797 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12798 		while (rsm) {
12799 			TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
12800 			uma_zfree(rack_zone, rsm);
12801 			rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12802 		}
12803 		rack->rc_free_cnt = 0;
12804 		uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12805 		tp->t_fb_ptr = NULL;
12806 	}
12807 	inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12808 	inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
12809 	inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
12810 	inp->inp_flags2 &= ~INP_MBUF_ACKCMP;
12811 	/* Cancel the GP measurement in progress */
12812 	tp->t_flags &= ~TF_GPUTINPROG;
12813 	inp->inp_flags2 &= ~INP_MBUF_L_ACKS;
12814 	/* Make sure snd_nxt is correctly set */
12815 	tp->snd_nxt = tp->snd_max;
12816 }
12817 
12818 static void
12819 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
12820 {
12821 	if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) {
12822 		rack->r_is_v6 = (tptoinpcb(tp)->inp_vflag & INP_IPV6) != 0;
12823 	}
12824 	switch (tp->t_state) {
12825 	case TCPS_SYN_SENT:
12826 		rack->r_state = TCPS_SYN_SENT;
12827 		rack->r_substate = rack_do_syn_sent;
12828 		break;
12829 	case TCPS_SYN_RECEIVED:
12830 		rack->r_state = TCPS_SYN_RECEIVED;
12831 		rack->r_substate = rack_do_syn_recv;
12832 		break;
12833 	case TCPS_ESTABLISHED:
12834 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12835 		rack->r_state = TCPS_ESTABLISHED;
12836 		rack->r_substate = rack_do_established;
12837 		break;
12838 	case TCPS_CLOSE_WAIT:
12839 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12840 		rack->r_state = TCPS_CLOSE_WAIT;
12841 		rack->r_substate = rack_do_close_wait;
12842 		break;
12843 	case TCPS_FIN_WAIT_1:
12844 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12845 		rack->r_state = TCPS_FIN_WAIT_1;
12846 		rack->r_substate = rack_do_fin_wait_1;
12847 		break;
12848 	case TCPS_CLOSING:
12849 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12850 		rack->r_state = TCPS_CLOSING;
12851 		rack->r_substate = rack_do_closing;
12852 		break;
12853 	case TCPS_LAST_ACK:
12854 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12855 		rack->r_state = TCPS_LAST_ACK;
12856 		rack->r_substate = rack_do_lastack;
12857 		break;
12858 	case TCPS_FIN_WAIT_2:
12859 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
12860 		rack->r_state = TCPS_FIN_WAIT_2;
12861 		rack->r_substate = rack_do_fin_wait_2;
12862 		break;
12863 	case TCPS_LISTEN:
12864 	case TCPS_CLOSED:
12865 	case TCPS_TIME_WAIT:
12866 	default:
12867 		break;
12868 	};
12869 	if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
12870 		rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
12871 
12872 }
12873 
12874 static void
12875 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
12876 {
12877 	/*
12878 	 * We received an ack, and then did not
12879 	 * call send or were bounced out due to the
12880 	 * hpts was running. Now a timer is up as well, is
12881 	 * it the right timer?
12882 	 */
12883 	struct rack_sendmap *rsm;
12884 	int tmr_up;
12885 
12886 	tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
12887 	if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
12888 		return;
12889 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
12890 	if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
12891 	    (tmr_up == PACE_TMR_RXT)) {
12892 		/* Should be an RXT */
12893 		return;
12894 	}
12895 	if (rsm == NULL) {
12896 		/* Nothing outstanding? */
12897 		if (tp->t_flags & TF_DELACK) {
12898 			if (tmr_up == PACE_TMR_DELACK)
12899 				/* We are supposed to have delayed ack up and we do */
12900 				return;
12901 		} else if (sbavail(&tptosocket(tp)->so_snd) && (tmr_up == PACE_TMR_RXT)) {
12902 			/*
12903 			 * if we hit enobufs then we would expect the possibility
12904 			 * of nothing outstanding and the RXT up (and the hptsi timer).
12905 			 */
12906 			return;
12907 		} else if (((V_tcp_always_keepalive ||
12908 			     rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
12909 			    (tp->t_state <= TCPS_CLOSING)) &&
12910 			   (tmr_up == PACE_TMR_KEEP) &&
12911 			   (tp->snd_max == tp->snd_una)) {
12912 			/* We should have keep alive up and we do */
12913 			return;
12914 		}
12915 	}
12916 	if (SEQ_GT(tp->snd_max, tp->snd_una) &&
12917 		   ((tmr_up == PACE_TMR_TLP) ||
12918 		    (tmr_up == PACE_TMR_RACK) ||
12919 		    (tmr_up == PACE_TMR_RXT))) {
12920 		/*
12921 		 * Either a Rack, TLP or RXT is fine if  we
12922 		 * have outstanding data.
12923 		 */
12924 		return;
12925 	} else if (tmr_up == PACE_TMR_DELACK) {
12926 		/*
12927 		 * If the delayed ack was going to go off
12928 		 * before the rtx/tlp/rack timer were going to
12929 		 * expire, then that would be the timer in control.
12930 		 * Note we don't check the time here trusting the
12931 		 * code is correct.
12932 		 */
12933 		return;
12934 	}
12935 	/*
12936 	 * Ok the timer originally started is not what we want now.
12937 	 * We will force the hpts to be stopped if any, and restart
12938 	 * with the slot set to what was in the saved slot.
12939 	 */
12940 	if (tcp_in_hpts(rack->rc_inp)) {
12941 		if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
12942 			uint32_t us_cts;
12943 
12944 			us_cts = tcp_get_usecs(NULL);
12945 			if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
12946 				rack->r_early = 1;
12947 				rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
12948 			}
12949 			rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
12950 		}
12951 		tcp_hpts_remove(rack->rc_inp);
12952 	}
12953 	rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
12954 	rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12955 }
12956 
12957 
12958 static void
12959 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq)
12960 {
12961 	if ((SEQ_LT(tp->snd_wl1, seq) ||
12962 	    (tp->snd_wl1 == seq && (SEQ_LT(tp->snd_wl2, ack) ||
12963 	    (tp->snd_wl2 == ack && tiwin > tp->snd_wnd))))) {
12964 		/* keep track of pure window updates */
12965 		if ((tp->snd_wl2 == ack) && (tiwin > tp->snd_wnd))
12966 			KMOD_TCPSTAT_INC(tcps_rcvwinupd);
12967 		tp->snd_wnd = tiwin;
12968 		rack_validate_fo_sendwin_up(tp, rack);
12969 		tp->snd_wl1 = seq;
12970 		tp->snd_wl2 = ack;
12971 		if (tp->snd_wnd > tp->max_sndwnd)
12972 			tp->max_sndwnd = tp->snd_wnd;
12973 	    rack->r_wanted_output = 1;
12974 	} else if ((tp->snd_wl2 == ack) && (tiwin < tp->snd_wnd)) {
12975 		tp->snd_wnd = tiwin;
12976 		rack_validate_fo_sendwin_up(tp, rack);
12977 		tp->snd_wl1 = seq;
12978 		tp->snd_wl2 = ack;
12979 	} else {
12980 		/* Not a valid win update */
12981 		return;
12982 	}
12983 	/* Do we exit persists? */
12984 	if ((rack->rc_in_persist != 0) &&
12985 	    (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
12986 				rack->r_ctl.rc_pace_min_segs))) {
12987 		rack_exit_persist(tp, rack, cts);
12988 	}
12989 	/* Do we enter persists? */
12990 	if ((rack->rc_in_persist == 0) &&
12991 	    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
12992 	    TCPS_HAVEESTABLISHED(tp->t_state) &&
12993 	    ((tp->snd_max == tp->snd_una) || rack->rc_has_collapsed) &&
12994 	    sbavail(&tptosocket(tp)->so_snd) &&
12995 	    (sbavail(&tptosocket(tp)->so_snd) > tp->snd_wnd)) {
12996 		/*
12997 		 * Here the rwnd is less than
12998 		 * the pacing size, we are established,
12999 		 * nothing is outstanding, and there is
13000 		 * data to send. Enter persists.
13001 		 */
13002 		rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
13003 	}
13004 }
13005 
13006 static void
13007 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq)
13008 {
13009 
13010 	if (tcp_bblogging_on(rack->rc_tp)) {
13011 		struct inpcb *inp = tptoinpcb(tp);
13012 		union tcp_log_stackspecific log;
13013 		struct timeval ltv;
13014 		char tcp_hdr_buf[60];
13015 		struct tcphdr *th;
13016 		struct timespec ts;
13017 		uint32_t orig_snd_una;
13018 		uint8_t xx = 0;
13019 
13020 #ifdef NETFLIX_HTTP_LOGGING
13021 		struct http_sendfile_track *http_req;
13022 
13023 		if (SEQ_GT(ae->ack, tp->snd_una)) {
13024 			http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1));
13025 		} else {
13026 			http_req = tcp_http_find_req_for_seq(tp, ae->ack);
13027 		}
13028 #endif
13029 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13030 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
13031 		if (rack->rack_no_prr == 0)
13032 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
13033 		else
13034 			log.u_bbr.flex1 = 0;
13035 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
13036 		log.u_bbr.use_lt_bw <<= 1;
13037 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
13038 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
13039 		log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
13040 		log.u_bbr.pkts_out = tp->t_maxseg;
13041 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
13042 		log.u_bbr.flex7 = 1;
13043 		log.u_bbr.lost = ae->flags;
13044 		log.u_bbr.cwnd_gain = ackval;
13045 		log.u_bbr.pacing_gain = 0x2;
13046 		if (ae->flags & TSTMP_HDWR) {
13047 			/* Record the hardware timestamp if present */
13048 			log.u_bbr.flex3 = M_TSTMP;
13049 			ts.tv_sec = ae->timestamp / 1000000000;
13050 			ts.tv_nsec = ae->timestamp % 1000000000;
13051 			ltv.tv_sec = ts.tv_sec;
13052 			ltv.tv_usec = ts.tv_nsec / 1000;
13053 			log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
13054 		} else if (ae->flags & TSTMP_LRO) {
13055 			/* Record the LRO the arrival timestamp */
13056 			log.u_bbr.flex3 = M_TSTMP_LRO;
13057 			ts.tv_sec = ae->timestamp / 1000000000;
13058 			ts.tv_nsec = ae->timestamp % 1000000000;
13059 			ltv.tv_sec = ts.tv_sec;
13060 			ltv.tv_usec = ts.tv_nsec / 1000;
13061 			log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
13062 		}
13063 		log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
13064 		/* Log the rcv time */
13065 		log.u_bbr.delRate = ae->timestamp;
13066 #ifdef NETFLIX_HTTP_LOGGING
13067 		log.u_bbr.applimited = tp->t_http_closed;
13068 		log.u_bbr.applimited <<= 8;
13069 		log.u_bbr.applimited |= tp->t_http_open;
13070 		log.u_bbr.applimited <<= 8;
13071 		log.u_bbr.applimited |= tp->t_http_req;
13072 		if (http_req) {
13073 			/* Copy out any client req info */
13074 			/* seconds */
13075 			log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
13076 			/* useconds */
13077 			log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
13078 			log.u_bbr.rttProp = http_req->timestamp;
13079 			log.u_bbr.cur_del_rate = http_req->start;
13080 			if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
13081 				log.u_bbr.flex8 |= 1;
13082 			} else {
13083 				log.u_bbr.flex8 |= 2;
13084 				log.u_bbr.bw_inuse = http_req->end;
13085 			}
13086 			log.u_bbr.flex6 = http_req->start_seq;
13087 			if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
13088 				log.u_bbr.flex8 |= 4;
13089 				log.u_bbr.epoch = http_req->end_seq;
13090 			}
13091 		}
13092 #endif
13093 		memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf));
13094 		th = (struct tcphdr *)tcp_hdr_buf;
13095 		th->th_seq = ae->seq;
13096 		th->th_ack = ae->ack;
13097 		th->th_win = ae->win;
13098 		/* Now fill in the ports */
13099 		th->th_sport = inp->inp_fport;
13100 		th->th_dport = inp->inp_lport;
13101 		tcp_set_flags(th, ae->flags);
13102 		/* Now do we have a timestamp option? */
13103 		if (ae->flags & HAS_TSTMP) {
13104 			u_char *cp;
13105 			uint32_t val;
13106 
13107 			th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2);
13108 			cp = (u_char *)(th + 1);
13109 			*cp = TCPOPT_NOP;
13110 			cp++;
13111 			*cp = TCPOPT_NOP;
13112 			cp++;
13113 			*cp = TCPOPT_TIMESTAMP;
13114 			cp++;
13115 			*cp = TCPOLEN_TIMESTAMP;
13116 			cp++;
13117 			val = htonl(ae->ts_value);
13118 			bcopy((char *)&val,
13119 			      (char *)cp, sizeof(uint32_t));
13120 			val = htonl(ae->ts_echo);
13121 			bcopy((char *)&val,
13122 			      (char *)(cp + 4), sizeof(uint32_t));
13123 		} else
13124 			th->th_off = (sizeof(struct tcphdr) >> 2);
13125 
13126 		/*
13127 		 * For sane logging we need to play a little trick.
13128 		 * If the ack were fully processed we would have moved
13129 		 * snd_una to high_seq, but since compressed acks are
13130 		 * processed in two phases, at this point (logging) snd_una
13131 		 * won't be advanced. So we would see multiple acks showing
13132 		 * the advancement. We can prevent that by "pretending" that
13133 		 * snd_una was advanced and then un-advancing it so that the
13134 		 * logging code has the right value for tlb_snd_una.
13135 		 */
13136 		if (tp->snd_una != high_seq) {
13137 			orig_snd_una = tp->snd_una;
13138 			tp->snd_una = high_seq;
13139 			xx = 1;
13140 		} else
13141 			xx = 0;
13142 		TCP_LOG_EVENTP(tp, th,
13143 			       &tptosocket(tp)->so_rcv,
13144 			       &tptosocket(tp)->so_snd, TCP_LOG_IN, 0,
13145 			       0, &log, true, &ltv);
13146 		if (xx) {
13147 			tp->snd_una = orig_snd_una;
13148 		}
13149 	}
13150 
13151 }
13152 
13153 static void
13154 rack_handle_probe_response(struct tcp_rack *rack, uint32_t tiwin, uint32_t us_cts)
13155 {
13156 	uint32_t us_rtt;
13157 	/*
13158 	 * A persist or keep-alive was forced out, update our
13159 	 * min rtt time. Note now worry about lost responses.
13160 	 * When a subsequent keep-alive or persist times out
13161 	 * and forced_ack is still on, then the last probe
13162 	 * was not responded to. In such cases we have a
13163 	 * sysctl that controls the behavior. Either we apply
13164 	 * the rtt but with reduced confidence (0). Or we just
13165 	 * plain don't apply the rtt estimate. Having data flow
13166 	 * will clear the probe_not_answered flag i.e. cum-ack
13167 	 * move forward <or> exiting and reentering persists.
13168 	 */
13169 
13170 	rack->forced_ack = 0;
13171 	rack->rc_tp->t_rxtshift = 0;
13172 	if ((rack->rc_in_persist &&
13173 	     (tiwin == rack->rc_tp->snd_wnd)) ||
13174 	    (rack->rc_in_persist == 0)) {
13175 		/*
13176 		 * In persists only apply the RTT update if this is
13177 		 * a response to our window probe. And that
13178 		 * means the rwnd sent must match the current
13179 		 * snd_wnd. If it does not, then we got a
13180 		 * window update ack instead. For keepalive
13181 		 * we allow the answer no matter what the window.
13182 		 *
13183 		 * Note that if the probe_not_answered is set then
13184 		 * the forced_ack_ts is the oldest one i.e. the first
13185 		 * probe sent that might have been lost. This assures
13186 		 * us that if we do calculate an RTT it is longer not
13187 		 * some short thing.
13188 		 */
13189 		if (rack->rc_in_persist)
13190 			counter_u64_add(rack_persists_acks, 1);
13191 		us_rtt = us_cts - rack->r_ctl.forced_ack_ts;
13192 		if (us_rtt == 0)
13193 			us_rtt = 1;
13194 		if (rack->probe_not_answered == 0) {
13195 			rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13196 			tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1);
13197 		} else {
13198 			/* We have a retransmitted probe here too */
13199 			if (rack_apply_rtt_with_reduced_conf) {
13200 				rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13201 				tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 0, NULL, 1);
13202 			}
13203 		}
13204 	}
13205 }
13206 
13207 static int
13208 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv)
13209 {
13210 	/*
13211 	 * Handle a "special" compressed ack mbuf. Each incoming
13212 	 * ack has only four possible dispositions:
13213 	 *
13214 	 * A) It moves the cum-ack forward
13215 	 * B) It is behind the cum-ack.
13216 	 * C) It is a window-update ack.
13217 	 * D) It is a dup-ack.
13218 	 *
13219 	 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES
13220 	 * in the incoming mbuf. We also need to still pay attention
13221 	 * to nxt_pkt since there may be another packet after this
13222 	 * one.
13223 	 */
13224 #ifdef TCP_ACCOUNTING
13225 	uint64_t ts_val;
13226 	uint64_t rdstc;
13227 #endif
13228 	int segsiz;
13229 	struct timespec ts;
13230 	struct tcp_rack *rack;
13231 	struct tcp_ackent *ae;
13232 	uint32_t tiwin, ms_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack;
13233 	int cnt, i, did_out, ourfinisacked = 0;
13234 	struct tcpopt to_holder, *to = NULL;
13235 #ifdef TCP_ACCOUNTING
13236 	int win_up_req = 0;
13237 #endif
13238 	int nsegs = 0;
13239 	int under_pacing = 1;
13240 	int recovery = 0;
13241 #ifdef TCP_ACCOUNTING
13242 	sched_pin();
13243 #endif
13244 	rack = (struct tcp_rack *)tp->t_fb_ptr;
13245 	if (rack->gp_ready &&
13246 	    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT))
13247 		under_pacing = 0;
13248 	else
13249 		under_pacing = 1;
13250 
13251 	if (rack->r_state != tp->t_state)
13252 		rack_set_state(tp, rack);
13253 	if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13254 	    (tp->t_flags & TF_GPUTINPROG)) {
13255 		/*
13256 		 * We have a goodput in progress
13257 		 * and we have entered a late state.
13258 		 * Do we have enough data in the sb
13259 		 * to handle the GPUT request?
13260 		 */
13261 		uint32_t bytes;
13262 
13263 		bytes = tp->gput_ack - tp->gput_seq;
13264 		if (SEQ_GT(tp->gput_seq, tp->snd_una))
13265 			bytes += tp->gput_seq - tp->snd_una;
13266 		if (bytes > sbavail(&tptosocket(tp)->so_snd)) {
13267 			/*
13268 			 * There are not enough bytes in the socket
13269 			 * buffer that have been sent to cover this
13270 			 * measurement. Cancel it.
13271 			 */
13272 			rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
13273 						   rack->r_ctl.rc_gp_srtt /*flex1*/,
13274 						   tp->gput_seq,
13275 						   0, 0, 18, __LINE__, NULL, 0);
13276 			tp->t_flags &= ~TF_GPUTINPROG;
13277 		}
13278 	}
13279 	to = &to_holder;
13280 	to->to_flags = 0;
13281 	KASSERT((m->m_len >= sizeof(struct tcp_ackent)),
13282 		("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len));
13283 	cnt = m->m_len / sizeof(struct tcp_ackent);
13284 	counter_u64_add(rack_multi_single_eq, cnt);
13285 	high_seq = tp->snd_una;
13286 	the_win = tp->snd_wnd;
13287 	win_seq = tp->snd_wl1;
13288 	win_upd_ack = tp->snd_wl2;
13289 	cts = tcp_tv_to_usectick(tv);
13290 	ms_cts = tcp_tv_to_mssectick(tv);
13291 	rack->r_ctl.rc_rcvtime = cts;
13292 	segsiz = ctf_fixed_maxseg(tp);
13293 	if ((rack->rc_gp_dyn_mul) &&
13294 	    (rack->use_fixed_rate == 0) &&
13295 	    (rack->rc_always_pace)) {
13296 		/* Check in on probertt */
13297 		rack_check_probe_rtt(rack, cts);
13298 	}
13299 	for (i = 0; i < cnt; i++) {
13300 #ifdef TCP_ACCOUNTING
13301 		ts_val = get_cyclecount();
13302 #endif
13303 		rack_clear_rate_sample(rack);
13304 		ae = ((mtod(m, struct tcp_ackent *)) + i);
13305 		/* Setup the window */
13306 		tiwin = ae->win << tp->snd_scale;
13307 		if (tiwin > rack->r_ctl.rc_high_rwnd)
13308 			rack->r_ctl.rc_high_rwnd = tiwin;
13309 		/* figure out the type of ack */
13310 		if (SEQ_LT(ae->ack, high_seq)) {
13311 			/* Case B*/
13312 			ae->ack_val_set = ACK_BEHIND;
13313 		} else if (SEQ_GT(ae->ack, high_seq)) {
13314 			/* Case A */
13315 			ae->ack_val_set = ACK_CUMACK;
13316 		} else if ((tiwin == the_win) && (rack->rc_in_persist == 0)){
13317 			/* Case D */
13318 			ae->ack_val_set = ACK_DUPACK;
13319 		} else {
13320 			/* Case C */
13321 			ae->ack_val_set = ACK_RWND;
13322 		}
13323 		rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq);
13324 		/* Validate timestamp */
13325 		if (ae->flags & HAS_TSTMP) {
13326 			/* Setup for a timestamp */
13327 			to->to_flags = TOF_TS;
13328 			ae->ts_echo -= tp->ts_offset;
13329 			to->to_tsecr = ae->ts_echo;
13330 			to->to_tsval = ae->ts_value;
13331 			/*
13332 			 * If echoed timestamp is later than the current time, fall back to
13333 			 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
13334 			 * were used when this connection was established.
13335 			 */
13336 			if (TSTMP_GT(ae->ts_echo, ms_cts))
13337 				to->to_tsecr = 0;
13338 			if (tp->ts_recent &&
13339 			    TSTMP_LT(ae->ts_value, tp->ts_recent)) {
13340 				if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) {
13341 #ifdef TCP_ACCOUNTING
13342 					rdstc = get_cyclecount();
13343 					if (rdstc > ts_val) {
13344 						if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13345 							tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13346 						}
13347 					}
13348 #endif
13349 					continue;
13350 				}
13351 			}
13352 			if (SEQ_LEQ(ae->seq, tp->last_ack_sent) &&
13353 			    SEQ_LEQ(tp->last_ack_sent, ae->seq)) {
13354 				tp->ts_recent_age = tcp_ts_getticks();
13355 				tp->ts_recent = ae->ts_value;
13356 			}
13357 		} else {
13358 			/* Setup for a no options */
13359 			to->to_flags = 0;
13360 		}
13361 		/* Update the rcv time and perform idle reduction possibly */
13362 		if  (tp->t_idle_reduce &&
13363 		     (tp->snd_max == tp->snd_una) &&
13364 		     (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
13365 			counter_u64_add(rack_input_idle_reduces, 1);
13366 			rack_cc_after_idle(rack, tp);
13367 		}
13368 		tp->t_rcvtime = ticks;
13369 		/* Now what about ECN of a chain of pure ACKs? */
13370 		if (tcp_ecn_input_segment(tp, ae->flags, 0,
13371 			tcp_packets_this_ack(tp, ae->ack),
13372 			ae->codepoint))
13373 			rack_cong_signal(tp, CC_ECN, ae->ack, __LINE__);
13374 #ifdef TCP_ACCOUNTING
13375 		/* Count for the specific type of ack in */
13376 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13377 			tp->tcp_cnt_counters[ae->ack_val_set]++;
13378 		}
13379 #endif
13380 		/*
13381 		 * Note how we could move up these in the determination
13382 		 * above, but we don't so that way the timestamp checks (and ECN)
13383 		 * is done first before we do any processing on the ACK.
13384 		 * The non-compressed path through the code has this
13385 		 * weakness (noted by @jtl) that it actually does some
13386 		 * processing before verifying the timestamp information.
13387 		 * We don't take that path here which is why we set
13388 		 * the ack_val_set first, do the timestamp and ecn
13389 		 * processing, and then look at what we have setup.
13390 		 */
13391 		if (ae->ack_val_set == ACK_BEHIND) {
13392 			/*
13393 			 * Case B flag reordering, if window is not closed
13394 			 * or it could be a keep-alive or persists
13395 			 */
13396 			if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) {
13397 				rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
13398 			}
13399 		} else if (ae->ack_val_set == ACK_DUPACK) {
13400 			/* Case D */
13401 			rack_strike_dupack(rack);
13402 		} else if (ae->ack_val_set == ACK_RWND) {
13403 			/* Case C */
13404 			if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13405 				ts.tv_sec = ae->timestamp / 1000000000;
13406 				ts.tv_nsec = ae->timestamp % 1000000000;
13407 				rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13408 				rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13409 			} else {
13410 				rack->r_ctl.act_rcv_time = *tv;
13411 			}
13412 			if (rack->forced_ack) {
13413 				rack_handle_probe_response(rack, tiwin,
13414 							   tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time));
13415 			}
13416 #ifdef TCP_ACCOUNTING
13417 			win_up_req = 1;
13418 #endif
13419 			win_upd_ack = ae->ack;
13420 			win_seq = ae->seq;
13421 			the_win = tiwin;
13422 			rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13423 		} else {
13424 			/* Case A */
13425 			if (SEQ_GT(ae->ack, tp->snd_max)) {
13426 				/*
13427 				 * We just send an ack since the incoming
13428 				 * ack is beyond the largest seq we sent.
13429 				 */
13430 				if ((tp->t_flags & TF_ACKNOW) == 0) {
13431 					ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt);
13432 					if (tp->t_flags && TF_ACKNOW)
13433 						rack->r_wanted_output = 1;
13434 				}
13435 			} else {
13436 				nsegs++;
13437 				/* If the window changed setup to update */
13438 				if (tiwin != tp->snd_wnd) {
13439 					win_upd_ack = ae->ack;
13440 					win_seq = ae->seq;
13441 					the_win = tiwin;
13442 					rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13443 				}
13444 #ifdef TCP_ACCOUNTING
13445 				/* Account for the acks */
13446 				if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13447 					tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz);
13448 				}
13449 #endif
13450 				high_seq = ae->ack;
13451 				if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
13452 					union tcp_log_stackspecific log;
13453 					struct timeval tv;
13454 
13455 					memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13456 					log.u_bbr.timeStamp = tcp_get_usecs(&tv);
13457 					log.u_bbr.flex1 = high_seq;
13458 					log.u_bbr.flex2 = rack->r_ctl.roundends;
13459 					log.u_bbr.flex3 = rack->r_ctl.current_round;
13460 					log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround;
13461 					log.u_bbr.flex8 = 8;
13462 					tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
13463 						       0, &log, false, NULL, NULL, 0, &tv);
13464 				}
13465 				/*
13466 				 * The draft (v3) calls for us to use SEQ_GEQ, but that
13467 				 * causes issues when we are just going app limited. Lets
13468 				 * instead use SEQ_GT <or> where its equal but more data
13469 				 * is outstanding.
13470 				 */
13471 				if ((SEQ_GT(high_seq, rack->r_ctl.roundends)) ||
13472 				    ((high_seq == rack->r_ctl.roundends) &&
13473 				     SEQ_GT(tp->snd_max, tp->snd_una))) {
13474 					rack->r_ctl.current_round++;
13475 					rack->r_ctl.roundends = tp->snd_max;
13476 					if (CC_ALGO(tp)->newround != NULL) {
13477 						CC_ALGO(tp)->newround(&tp->t_ccv, rack->r_ctl.current_round);
13478 					}
13479 				}
13480 				/* Setup our act_rcv_time */
13481 				if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13482 					ts.tv_sec = ae->timestamp / 1000000000;
13483 					ts.tv_nsec = ae->timestamp % 1000000000;
13484 					rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13485 					rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13486 				} else {
13487 					rack->r_ctl.act_rcv_time = *tv;
13488 				}
13489 				rack_process_to_cumack(tp, rack, ae->ack, cts, to);
13490 				if (rack->rc_dsack_round_seen) {
13491 					/* Is the dsack round over? */
13492 					if (SEQ_GEQ(ae->ack, rack->r_ctl.dsack_round_end)) {
13493 						/* Yes it is */
13494 						rack->rc_dsack_round_seen = 0;
13495 						rack_log_dsack_event(rack, 3, __LINE__, 0, 0);
13496 					}
13497 				}
13498 			}
13499 		}
13500 		/* And lets be sure to commit the rtt measurements for this ack */
13501 		tcp_rack_xmit_timer_commit(rack, tp);
13502 #ifdef TCP_ACCOUNTING
13503 		rdstc = get_cyclecount();
13504 		if (rdstc > ts_val) {
13505 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13506 				tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13507 				if (ae->ack_val_set == ACK_CUMACK)
13508 					tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val);
13509 			}
13510 		}
13511 #endif
13512 	}
13513 #ifdef TCP_ACCOUNTING
13514 	ts_val = get_cyclecount();
13515 #endif
13516 	/* Tend to any collapsed window */
13517 	if (SEQ_GT(tp->snd_max, high_seq) && (tp->snd_wnd < (tp->snd_max - high_seq))) {
13518 		/* The peer collapsed the window */
13519 		rack_collapsed_window(rack, (tp->snd_max - high_seq), __LINE__);
13520 	} else if (rack->rc_has_collapsed)
13521 		rack_un_collapse_window(rack, __LINE__);
13522 	if ((rack->r_collapse_point_valid) &&
13523 	    (SEQ_GT(high_seq, rack->r_ctl.high_collapse_point)))
13524 		rack->r_collapse_point_valid = 0;
13525 	acked_amount = acked = (high_seq - tp->snd_una);
13526 	if (acked) {
13527 		/*
13528 		 * Clear the probe not answered flag
13529 		 * since cum-ack moved forward.
13530 		 */
13531 		rack->probe_not_answered = 0;
13532 		if (rack->sack_attack_disable == 0)
13533 			rack_do_decay(rack);
13534 		if (acked >= segsiz) {
13535 			/*
13536 			 * You only get credit for
13537 			 * MSS and greater (and you get extra
13538 			 * credit for larger cum-ack moves).
13539 			 */
13540 			int ac;
13541 
13542 			ac = acked / segsiz;
13543 			rack->r_ctl.ack_count += ac;
13544 			counter_u64_add(rack_ack_total, ac);
13545 		}
13546 		if (rack->r_ctl.ack_count > 0xfff00000) {
13547 			/*
13548 			 * reduce the number to keep us under
13549 			 * a uint32_t.
13550 			 */
13551 			rack->r_ctl.ack_count /= 2;
13552 			rack->r_ctl.sack_count /= 2;
13553 		}
13554 		if (tp->t_flags & TF_NEEDSYN) {
13555 			/*
13556 			 * T/TCP: Connection was half-synchronized, and our SYN has
13557 			 * been ACK'd (so connection is now fully synchronized).  Go
13558 			 * to non-starred state, increment snd_una for ACK of SYN,
13559 			 * and check if we can do window scaling.
13560 			 */
13561 			tp->t_flags &= ~TF_NEEDSYN;
13562 			tp->snd_una++;
13563 			acked_amount = acked = (high_seq - tp->snd_una);
13564 		}
13565 		if (acked > sbavail(&so->so_snd))
13566 			acked_amount = sbavail(&so->so_snd);
13567 #ifdef NETFLIX_EXP_DETECTION
13568 		/*
13569 		 * We only care on a cum-ack move if we are in a sack-disabled
13570 		 * state. We have already added in to the ack_count, and we never
13571 		 * would disable on a cum-ack move, so we only care to do the
13572 		 * detection if it may "undo" it, i.e. we were in disabled already.
13573 		 */
13574 		if (rack->sack_attack_disable)
13575 			rack_do_detection(tp, rack, acked_amount, segsiz);
13576 #endif
13577 		if (IN_FASTRECOVERY(tp->t_flags) &&
13578 		    (rack->rack_no_prr == 0))
13579 			rack_update_prr(tp, rack, acked_amount, high_seq);
13580 		if (IN_RECOVERY(tp->t_flags)) {
13581 			if (SEQ_LT(high_seq, tp->snd_recover) &&
13582 			    (SEQ_LT(high_seq, tp->snd_max))) {
13583 				tcp_rack_partialack(tp);
13584 			} else {
13585 				rack_post_recovery(tp, high_seq);
13586 				recovery = 1;
13587 			}
13588 		}
13589 		/* Handle the rack-log-ack part (sendmap) */
13590 		if ((sbused(&so->so_snd) == 0) &&
13591 		    (acked > acked_amount) &&
13592 		    (tp->t_state >= TCPS_FIN_WAIT_1) &&
13593 		    (tp->t_flags & TF_SENTFIN)) {
13594 			/*
13595 			 * We must be sure our fin
13596 			 * was sent and acked (we can be
13597 			 * in FIN_WAIT_1 without having
13598 			 * sent the fin).
13599 			 */
13600 			ourfinisacked = 1;
13601 			/*
13602 			 * Lets make sure snd_una is updated
13603 			 * since most likely acked_amount = 0 (it
13604 			 * should be).
13605 			 */
13606 			tp->snd_una = high_seq;
13607 		}
13608 		/* Did we make a RTO error? */
13609 		if ((tp->t_flags & TF_PREVVALID) &&
13610 		    ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
13611 			tp->t_flags &= ~TF_PREVVALID;
13612 			if (tp->t_rxtshift == 1 &&
13613 			    (int)(ticks - tp->t_badrxtwin) < 0)
13614 				rack_cong_signal(tp, CC_RTO_ERR, high_seq, __LINE__);
13615 		}
13616 		/* Handle the data in the socket buffer */
13617 		KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1);
13618 		KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
13619 		if (acked_amount > 0) {
13620 			struct mbuf *mfree;
13621 
13622 			rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery);
13623 			SOCKBUF_LOCK(&so->so_snd);
13624 			mfree = sbcut_locked(&so->so_snd, acked_amount);
13625 			tp->snd_una = high_seq;
13626 			/* Note we want to hold the sb lock through the sendmap adjust */
13627 			rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
13628 			/* Wake up the socket if we have room to write more */
13629 			rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
13630 			sowwakeup_locked(so);
13631 			m_freem(mfree);
13632 		}
13633 		/* update progress */
13634 		tp->t_acktime = ticks;
13635 		rack_log_progress_event(rack, tp, tp->t_acktime,
13636 					PROGRESS_UPDATE, __LINE__);
13637 		/* Clear out shifts and such */
13638 		tp->t_rxtshift = 0;
13639 		RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
13640 				   rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
13641 		rack->rc_tlp_in_progress = 0;
13642 		rack->r_ctl.rc_tlp_cnt_out = 0;
13643 		/* Send recover and snd_nxt must be dragged along */
13644 		if (SEQ_GT(tp->snd_una, tp->snd_recover))
13645 			tp->snd_recover = tp->snd_una;
13646 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
13647 			tp->snd_nxt = tp->snd_una;
13648 		/*
13649 		 * If the RXT timer is running we want to
13650 		 * stop it, so we can restart a TLP (or new RXT).
13651 		 */
13652 		if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
13653 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13654 #ifdef NETFLIX_HTTP_LOGGING
13655 		tcp_http_check_for_comp(rack->rc_tp, high_seq);
13656 #endif
13657 		tp->snd_wl2 = high_seq;
13658 		tp->t_dupacks = 0;
13659 		if (under_pacing &&
13660 		    (rack->use_fixed_rate == 0) &&
13661 		    (rack->in_probe_rtt == 0) &&
13662 		    rack->rc_gp_dyn_mul &&
13663 		    rack->rc_always_pace) {
13664 			/* Check if we are dragging bottom */
13665 			rack_check_bottom_drag(tp, rack, so, acked);
13666 		}
13667 		if (tp->snd_una == tp->snd_max) {
13668 			tp->t_flags &= ~TF_PREVVALID;
13669 			rack->r_ctl.retran_during_recovery = 0;
13670 			rack->r_ctl.dsack_byte_cnt = 0;
13671 			rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
13672 			if (rack->r_ctl.rc_went_idle_time == 0)
13673 				rack->r_ctl.rc_went_idle_time = 1;
13674 			rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
13675 			if (sbavail(&tptosocket(tp)->so_snd) == 0)
13676 				tp->t_acktime = 0;
13677 			/* Set so we might enter persists... */
13678 			rack->r_wanted_output = 1;
13679 			rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13680 			sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
13681 			if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13682 			    (sbavail(&so->so_snd) == 0) &&
13683 			    (tp->t_flags2 & TF2_DROP_AF_DATA)) {
13684 				/*
13685 				 * The socket was gone and the
13686 				 * peer sent data (not now in the past), time to
13687 				 * reset him.
13688 				 */
13689 				rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13690 				/* tcp_close will kill the inp pre-log the Reset */
13691 				tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
13692 #ifdef TCP_ACCOUNTING
13693 				rdstc = get_cyclecount();
13694 				if (rdstc > ts_val) {
13695 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13696 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13697 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13698 					}
13699 				}
13700 #endif
13701 				m_freem(m);
13702 				tp = tcp_close(tp);
13703 				if (tp == NULL) {
13704 #ifdef TCP_ACCOUNTING
13705 					sched_unpin();
13706 #endif
13707 					return (1);
13708 				}
13709 				/*
13710 				 * We would normally do drop-with-reset which would
13711 				 * send back a reset. We can't since we don't have
13712 				 * all the needed bits. Instead lets arrange for
13713 				 * a call to tcp_output(). That way since we
13714 				 * are in the closed state we will generate a reset.
13715 				 *
13716 				 * Note if tcp_accounting is on we don't unpin since
13717 				 * we do that after the goto label.
13718 				 */
13719 				goto send_out_a_rst;
13720 			}
13721 			if ((sbused(&so->so_snd) == 0) &&
13722 			    (tp->t_state >= TCPS_FIN_WAIT_1) &&
13723 			    (tp->t_flags & TF_SENTFIN)) {
13724 				/*
13725 				 * If we can't receive any more data, then closing user can
13726 				 * proceed. Starting the timer is contrary to the
13727 				 * specification, but if we don't get a FIN we'll hang
13728 				 * forever.
13729 				 *
13730 				 */
13731 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13732 					soisdisconnected(so);
13733 					tcp_timer_activate(tp, TT_2MSL,
13734 							   (tcp_fast_finwait2_recycle ?
13735 							    tcp_finwait2_timeout :
13736 							    TP_MAXIDLE(tp)));
13737 				}
13738 				if (ourfinisacked == 0) {
13739 					/*
13740 					 * We don't change to fin-wait-2 if we have our fin acked
13741 					 * which means we are probably in TCPS_CLOSING.
13742 					 */
13743 					tcp_state_change(tp, TCPS_FIN_WAIT_2);
13744 				}
13745 			}
13746 		}
13747 		/* Wake up the socket if we have room to write more */
13748 		if (sbavail(&so->so_snd)) {
13749 			rack->r_wanted_output = 1;
13750 			if (ctf_progress_timeout_check(tp, true)) {
13751 				rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
13752 							tp, tick, PROGRESS_DROP, __LINE__);
13753 				/*
13754 				 * We cheat here and don't send a RST, we should send one
13755 				 * when the pacer drops the connection.
13756 				 */
13757 #ifdef TCP_ACCOUNTING
13758 				rdstc = get_cyclecount();
13759 				if (rdstc > ts_val) {
13760 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13761 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13762 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13763 					}
13764 				}
13765 				sched_unpin();
13766 #endif
13767 				(void)tcp_drop(tp, ETIMEDOUT);
13768 				m_freem(m);
13769 				return (1);
13770 			}
13771 		}
13772 		if (ourfinisacked) {
13773 			switch(tp->t_state) {
13774 			case TCPS_CLOSING:
13775 #ifdef TCP_ACCOUNTING
13776 				rdstc = get_cyclecount();
13777 				if (rdstc > ts_val) {
13778 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13779 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13780 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13781 					}
13782 				}
13783 				sched_unpin();
13784 #endif
13785 				tcp_twstart(tp);
13786 				m_freem(m);
13787 				return (1);
13788 				break;
13789 			case TCPS_LAST_ACK:
13790 #ifdef TCP_ACCOUNTING
13791 				rdstc = get_cyclecount();
13792 				if (rdstc > ts_val) {
13793 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13794 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13795 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13796 					}
13797 				}
13798 				sched_unpin();
13799 #endif
13800 				tp = tcp_close(tp);
13801 				ctf_do_drop(m, tp);
13802 				return (1);
13803 				break;
13804 			case TCPS_FIN_WAIT_1:
13805 #ifdef TCP_ACCOUNTING
13806 				rdstc = get_cyclecount();
13807 				if (rdstc > ts_val) {
13808 					if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13809 						tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13810 						tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13811 					}
13812 				}
13813 #endif
13814 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13815 					soisdisconnected(so);
13816 					tcp_timer_activate(tp, TT_2MSL,
13817 							   (tcp_fast_finwait2_recycle ?
13818 							    tcp_finwait2_timeout :
13819 							    TP_MAXIDLE(tp)));
13820 				}
13821 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
13822 				break;
13823 			default:
13824 				break;
13825 			}
13826 		}
13827 		if (rack->r_fast_output) {
13828 			/*
13829 			 * We re doing fast output.. can we expand that?
13830 			 */
13831 			rack_gain_for_fastoutput(rack, tp, so, acked_amount);
13832 		}
13833 #ifdef TCP_ACCOUNTING
13834 		rdstc = get_cyclecount();
13835 		if (rdstc > ts_val) {
13836 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13837 				tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13838 				tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13839 			}
13840 		}
13841 
13842 	} else if (win_up_req) {
13843 		rdstc = get_cyclecount();
13844 		if (rdstc > ts_val) {
13845 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13846 				tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val);
13847 			}
13848 		}
13849 #endif
13850 	}
13851 	/* Now is there a next packet, if so we are done */
13852 	m_freem(m);
13853 	did_out = 0;
13854 	if (nxt_pkt) {
13855 #ifdef TCP_ACCOUNTING
13856 		sched_unpin();
13857 #endif
13858 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs);
13859 		return (0);
13860 	}
13861 	rack_handle_might_revert(tp, rack);
13862 	ctf_calc_rwin(so, tp);
13863 	if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
13864 	send_out_a_rst:
13865 		if (tcp_output(tp) < 0) {
13866 #ifdef TCP_ACCOUNTING
13867 			sched_unpin();
13868 #endif
13869 			return (1);
13870 		}
13871 		did_out = 1;
13872 	}
13873 	rack_free_trim(rack);
13874 #ifdef TCP_ACCOUNTING
13875 	sched_unpin();
13876 #endif
13877 	rack_timer_audit(tp, rack, &so->so_snd);
13878 	rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs);
13879 	return (0);
13880 }
13881 
13882 
13883 static int
13884 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
13885     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
13886     int32_t nxt_pkt, struct timeval *tv)
13887 {
13888 	struct inpcb *inp = tptoinpcb(tp);
13889 #ifdef TCP_ACCOUNTING
13890 	uint64_t ts_val;
13891 #endif
13892 	int32_t thflags, retval, did_out = 0;
13893 	int32_t way_out = 0;
13894 	/*
13895 	 * cts - is the current time from tv (caller gets ts) in microseconds.
13896 	 * ms_cts - is the current time from tv in milliseconds.
13897 	 * us_cts - is the time that LRO or hardware actually got the packet in microseconds.
13898 	 */
13899 	uint32_t cts, us_cts, ms_cts;
13900 	uint32_t tiwin, high_seq;
13901 	struct timespec ts;
13902 	struct tcpopt to;
13903 	struct tcp_rack *rack;
13904 	struct rack_sendmap *rsm;
13905 	int32_t prev_state = 0;
13906 #ifdef TCP_ACCOUNTING
13907 	int ack_val_set = 0xf;
13908 #endif
13909 	int nsegs;
13910 
13911 	NET_EPOCH_ASSERT();
13912 	INP_WLOCK_ASSERT(inp);
13913 
13914 	/*
13915 	 * tv passed from common code is from either M_TSTMP_LRO or
13916 	 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present.
13917 	 */
13918 	rack = (struct tcp_rack *)tp->t_fb_ptr;
13919 	if (m->m_flags & M_ACKCMP) {
13920 		/*
13921 		 * All compressed ack's are ack's by definition so
13922 		 * remove any ack required flag and then do the processing.
13923 		 */
13924 		rack->rc_ack_required = 0;
13925 		return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv));
13926 	}
13927 	if (m->m_flags & M_ACKCMP) {
13928 		panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp);
13929 	}
13930 	cts = tcp_tv_to_usectick(tv);
13931 	ms_cts =  tcp_tv_to_mssectick(tv);
13932 	nsegs = m->m_pkthdr.lro_nsegs;
13933 	counter_u64_add(rack_proc_non_comp_ack, 1);
13934 	thflags = tcp_get_flags(th);
13935 #ifdef TCP_ACCOUNTING
13936 	sched_pin();
13937 	if (thflags & TH_ACK)
13938 		ts_val = get_cyclecount();
13939 #endif
13940 	if ((m->m_flags & M_TSTMP) ||
13941 	    (m->m_flags & M_TSTMP_LRO)) {
13942 		mbuf_tstmp2timespec(m, &ts);
13943 		rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13944 		rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13945 	} else
13946 		rack->r_ctl.act_rcv_time = *tv;
13947 	kern_prefetch(rack, &prev_state);
13948 	prev_state = 0;
13949 	/*
13950 	 * Unscale the window into a 32-bit value. For the SYN_SENT state
13951 	 * the scale is zero.
13952 	 */
13953 	tiwin = th->th_win << tp->snd_scale;
13954 #ifdef TCP_ACCOUNTING
13955 	if (thflags & TH_ACK) {
13956 		/*
13957 		 * We have a tradeoff here. We can either do what we are
13958 		 * doing i.e. pinning to this CPU and then doing the accounting
13959 		 * <or> we could do a critical enter, setup the rdtsc and cpu
13960 		 * as in below, and then validate we are on the same CPU on
13961 		 * exit. I have choosen to not do the critical enter since
13962 		 * that often will gain you a context switch, and instead lock
13963 		 * us (line above this if) to the same CPU with sched_pin(). This
13964 		 * means we may be context switched out for a higher priority
13965 		 * interupt but we won't be moved to another CPU.
13966 		 *
13967 		 * If this occurs (which it won't very often since we most likely
13968 		 * are running this code in interupt context and only a higher
13969 		 * priority will bump us ... clock?) we will falsely add in
13970 		 * to the time the interupt processing time plus the ack processing
13971 		 * time. This is ok since its a rare event.
13972 		 */
13973 		ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin,
13974 						    ctf_fixed_maxseg(tp));
13975 	}
13976 #endif
13977 	/*
13978 	 * Parse options on any incoming segment.
13979 	 */
13980 	memset(&to, 0, sizeof(to));
13981 	tcp_dooptions(&to, (u_char *)(th + 1),
13982 	    (th->th_off << 2) - sizeof(struct tcphdr),
13983 	    (thflags & TH_SYN) ? TO_SYN : 0);
13984 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
13985 	    __func__));
13986 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
13987 	    __func__));
13988 
13989 	if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13990 	    (tp->t_flags & TF_GPUTINPROG)) {
13991 		/*
13992 		 * We have a goodput in progress
13993 		 * and we have entered a late state.
13994 		 * Do we have enough data in the sb
13995 		 * to handle the GPUT request?
13996 		 */
13997 		uint32_t bytes;
13998 
13999 		bytes = tp->gput_ack - tp->gput_seq;
14000 		if (SEQ_GT(tp->gput_seq, tp->snd_una))
14001 			bytes += tp->gput_seq - tp->snd_una;
14002 		if (bytes > sbavail(&tptosocket(tp)->so_snd)) {
14003 			/*
14004 			 * There are not enough bytes in the socket
14005 			 * buffer that have been sent to cover this
14006 			 * measurement. Cancel it.
14007 			 */
14008 			rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
14009 						   rack->r_ctl.rc_gp_srtt /*flex1*/,
14010 						   tp->gput_seq,
14011 						   0, 0, 18, __LINE__, NULL, 0);
14012 			tp->t_flags &= ~TF_GPUTINPROG;
14013 		}
14014 	}
14015 	high_seq = th->th_ack;
14016 	if (tcp_bblogging_on(rack->rc_tp)) {
14017 		union tcp_log_stackspecific log;
14018 		struct timeval ltv;
14019 #ifdef NETFLIX_HTTP_LOGGING
14020 		struct http_sendfile_track *http_req;
14021 
14022 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
14023 			http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1));
14024 		} else {
14025 			http_req = tcp_http_find_req_for_seq(tp, th->th_ack);
14026 		}
14027 #endif
14028 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14029 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
14030 		if (rack->rack_no_prr == 0)
14031 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
14032 		else
14033 			log.u_bbr.flex1 = 0;
14034 		log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
14035 		log.u_bbr.use_lt_bw <<= 1;
14036 		log.u_bbr.use_lt_bw |= rack->r_might_revert;
14037 		log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
14038 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14039 		log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
14040 		log.u_bbr.flex3 = m->m_flags;
14041 		log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
14042 		log.u_bbr.lost = thflags;
14043 		log.u_bbr.pacing_gain = 0x1;
14044 #ifdef TCP_ACCOUNTING
14045 		log.u_bbr.cwnd_gain = ack_val_set;
14046 #endif
14047 		log.u_bbr.flex7 = 2;
14048 		if (m->m_flags & M_TSTMP) {
14049 			/* Record the hardware timestamp if present */
14050 			mbuf_tstmp2timespec(m, &ts);
14051 			ltv.tv_sec = ts.tv_sec;
14052 			ltv.tv_usec = ts.tv_nsec / 1000;
14053 			log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
14054 		} else if (m->m_flags & M_TSTMP_LRO) {
14055 			/* Record the LRO the arrival timestamp */
14056 			mbuf_tstmp2timespec(m, &ts);
14057 			ltv.tv_sec = ts.tv_sec;
14058 			ltv.tv_usec = ts.tv_nsec / 1000;
14059 			log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
14060 		}
14061 		log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
14062 		/* Log the rcv time */
14063 		log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp;
14064 #ifdef NETFLIX_HTTP_LOGGING
14065 		log.u_bbr.applimited = tp->t_http_closed;
14066 		log.u_bbr.applimited <<= 8;
14067 		log.u_bbr.applimited |= tp->t_http_open;
14068 		log.u_bbr.applimited <<= 8;
14069 		log.u_bbr.applimited |= tp->t_http_req;
14070 		if (http_req) {
14071 			/* Copy out any client req info */
14072 			/* seconds */
14073 			log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
14074 			/* useconds */
14075 			log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
14076 			log.u_bbr.rttProp = http_req->timestamp;
14077 			log.u_bbr.cur_del_rate = http_req->start;
14078 			if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
14079 				log.u_bbr.flex8 |= 1;
14080 			} else {
14081 				log.u_bbr.flex8 |= 2;
14082 				log.u_bbr.bw_inuse = http_req->end;
14083 			}
14084 			log.u_bbr.flex6 = http_req->start_seq;
14085 			if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
14086 				log.u_bbr.flex8 |= 4;
14087 				log.u_bbr.epoch = http_req->end_seq;
14088 			}
14089 		}
14090 #endif
14091 		TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
14092 		    tlen, &log, true, &ltv);
14093 	}
14094 	/* Remove ack required flag if set, we have one  */
14095 	if (thflags & TH_ACK)
14096 		rack->rc_ack_required = 0;
14097 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
14098 		way_out = 4;
14099 		retval = 0;
14100 		m_freem(m);
14101 		goto done_with_input;
14102 	}
14103 	/*
14104 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
14105 	 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
14106 	 */
14107 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
14108 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
14109 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
14110 		ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
14111 #ifdef TCP_ACCOUNTING
14112 		sched_unpin();
14113 #endif
14114 		return (1);
14115 	}
14116 	/*
14117 	 * If timestamps were negotiated during SYN/ACK and a
14118 	 * segment without a timestamp is received, silently drop
14119 	 * the segment, unless it is a RST segment or missing timestamps are
14120 	 * tolerated.
14121 	 * See section 3.2 of RFC 7323.
14122 	 */
14123 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) &&
14124 	    ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) {
14125 		way_out = 5;
14126 		retval = 0;
14127 		m_freem(m);
14128 		goto done_with_input;
14129 	}
14130 
14131 	/*
14132 	 * Segment received on connection. Reset idle time and keep-alive
14133 	 * timer. XXX: This should be done after segment validation to
14134 	 * ignore broken/spoofed segs.
14135 	 */
14136 	if  (tp->t_idle_reduce &&
14137 	     (tp->snd_max == tp->snd_una) &&
14138 	     (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
14139 		counter_u64_add(rack_input_idle_reduces, 1);
14140 		rack_cc_after_idle(rack, tp);
14141 	}
14142 	tp->t_rcvtime = ticks;
14143 #ifdef STATS
14144 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
14145 #endif
14146 	if (tiwin > rack->r_ctl.rc_high_rwnd)
14147 		rack->r_ctl.rc_high_rwnd = tiwin;
14148 	/*
14149 	 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
14150 	 * this to occur after we've validated the segment.
14151 	 */
14152 	if (tcp_ecn_input_segment(tp, thflags, tlen,
14153 	    tcp_packets_this_ack(tp, th->th_ack),
14154 	    iptos))
14155 		rack_cong_signal(tp, CC_ECN, th->th_ack, __LINE__);
14156 
14157 	/*
14158 	 * If echoed timestamp is later than the current time, fall back to
14159 	 * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
14160 	 * were used when this connection was established.
14161 	 */
14162 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
14163 		to.to_tsecr -= tp->ts_offset;
14164 		if (TSTMP_GT(to.to_tsecr, ms_cts))
14165 			to.to_tsecr = 0;
14166 	}
14167 
14168 	/*
14169 	 * If its the first time in we need to take care of options and
14170 	 * verify we can do SACK for rack!
14171 	 */
14172 	if (rack->r_state == 0) {
14173 		/* Should be init'd by rack_init() */
14174 		KASSERT(rack->rc_inp != NULL,
14175 		    ("%s: rack->rc_inp unexpectedly NULL", __func__));
14176 		if (rack->rc_inp == NULL) {
14177 			rack->rc_inp = inp;
14178 		}
14179 
14180 		/*
14181 		 * Process options only when we get SYN/ACK back. The SYN
14182 		 * case for incoming connections is handled in tcp_syncache.
14183 		 * According to RFC1323 the window field in a SYN (i.e., a
14184 		 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
14185 		 * this is traditional behavior, may need to be cleaned up.
14186 		 */
14187 		if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
14188 			/* Handle parallel SYN for ECN */
14189 			tcp_ecn_input_parallel_syn(tp, thflags, iptos);
14190 			if ((to.to_flags & TOF_SCALE) &&
14191 			    (tp->t_flags & TF_REQ_SCALE)) {
14192 				tp->t_flags |= TF_RCVD_SCALE;
14193 				tp->snd_scale = to.to_wscale;
14194 			} else
14195 				tp->t_flags &= ~TF_REQ_SCALE;
14196 			/*
14197 			 * Initial send window.  It will be updated with the
14198 			 * next incoming segment to the scaled value.
14199 			 */
14200 			tp->snd_wnd = th->th_win;
14201 			rack_validate_fo_sendwin_up(tp, rack);
14202 			if ((to.to_flags & TOF_TS) &&
14203 			    (tp->t_flags & TF_REQ_TSTMP)) {
14204 				tp->t_flags |= TF_RCVD_TSTMP;
14205 				tp->ts_recent = to.to_tsval;
14206 				tp->ts_recent_age = cts;
14207 			} else
14208 				tp->t_flags &= ~TF_REQ_TSTMP;
14209 			if (to.to_flags & TOF_MSS) {
14210 				tcp_mss(tp, to.to_mss);
14211 			}
14212 			if ((tp->t_flags & TF_SACK_PERMIT) &&
14213 			    (to.to_flags & TOF_SACKPERM) == 0)
14214 				tp->t_flags &= ~TF_SACK_PERMIT;
14215 			if (IS_FASTOPEN(tp->t_flags)) {
14216 				if (to.to_flags & TOF_FASTOPEN) {
14217 					uint16_t mss;
14218 
14219 					if (to.to_flags & TOF_MSS)
14220 						mss = to.to_mss;
14221 					else
14222 						if ((inp->inp_vflag & INP_IPV6) != 0)
14223 							mss = TCP6_MSS;
14224 						else
14225 							mss = TCP_MSS;
14226 					tcp_fastopen_update_cache(tp, mss,
14227 					    to.to_tfo_len, to.to_tfo_cookie);
14228 				} else
14229 					tcp_fastopen_disable_path(tp);
14230 			}
14231 		}
14232 		/*
14233 		 * At this point we are at the initial call. Here we decide
14234 		 * if we are doing RACK or not. We do this by seeing if
14235 		 * TF_SACK_PERMIT is set and the sack-not-required is clear.
14236 		 * The code now does do dup-ack counting so if you don't
14237 		 * switch back you won't get rack & TLP, but you will still
14238 		 * get this stack.
14239 		 */
14240 
14241 		if ((rack_sack_not_required == 0) &&
14242 		    ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
14243 			tcp_switch_back_to_default(tp);
14244 			(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
14245 			    tlen, iptos);
14246 #ifdef TCP_ACCOUNTING
14247 			sched_unpin();
14248 #endif
14249 			return (1);
14250 		}
14251 		tcp_set_hpts(inp);
14252 		sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
14253 	}
14254 	if (thflags & TH_FIN)
14255 		tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
14256 	us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
14257 	if ((rack->rc_gp_dyn_mul) &&
14258 	    (rack->use_fixed_rate == 0) &&
14259 	    (rack->rc_always_pace)) {
14260 		/* Check in on probertt */
14261 		rack_check_probe_rtt(rack, us_cts);
14262 	}
14263 	rack_clear_rate_sample(rack);
14264 	if ((rack->forced_ack) &&
14265 	    ((tcp_get_flags(th) & TH_RST) == 0)) {
14266 		rack_handle_probe_response(rack, tiwin, us_cts);
14267 	}
14268 	/*
14269 	 * This is the one exception case where we set the rack state
14270 	 * always. All other times (timers etc) we must have a rack-state
14271 	 * set (so we assure we have done the checks above for SACK).
14272 	 */
14273 	rack->r_ctl.rc_rcvtime = cts;
14274 	if (rack->r_state != tp->t_state)
14275 		rack_set_state(tp, rack);
14276 	if (SEQ_GT(th->th_ack, tp->snd_una) &&
14277 	    (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
14278 		kern_prefetch(rsm, &prev_state);
14279 	prev_state = rack->r_state;
14280 	retval = (*rack->r_substate) (m, th, so,
14281 	    tp, &to, drop_hdrlen,
14282 	    tlen, tiwin, thflags, nxt_pkt, iptos);
14283 	if (retval == 0) {
14284 		/*
14285 		 * If retval is 1 the tcb is unlocked and most likely the tp
14286 		 * is gone.
14287 		 */
14288 		INP_WLOCK_ASSERT(inp);
14289 		if ((rack->rc_gp_dyn_mul) &&
14290 		    (rack->rc_always_pace) &&
14291 		    (rack->use_fixed_rate == 0) &&
14292 		    rack->in_probe_rtt &&
14293 		    (rack->r_ctl.rc_time_probertt_starts == 0)) {
14294 			/*
14295 			 * If we are going for target, lets recheck before
14296 			 * we output.
14297 			 */
14298 			rack_check_probe_rtt(rack, us_cts);
14299 		}
14300 		if (rack->set_pacing_done_a_iw == 0) {
14301 			/* How much has been acked? */
14302 			if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
14303 				/* We have enough to set in the pacing segment size */
14304 				rack->set_pacing_done_a_iw = 1;
14305 				rack_set_pace_segments(tp, rack, __LINE__, NULL);
14306 			}
14307 		}
14308 		tcp_rack_xmit_timer_commit(rack, tp);
14309 #ifdef TCP_ACCOUNTING
14310 		/*
14311 		 * If we set the ack_val_se to what ack processing we are doing
14312 		 * we also want to track how many cycles we burned. Note
14313 		 * the bits after tcp_output we let be "free". This is because
14314 		 * we are also tracking the tcp_output times as well. Note the
14315 		 * use of 0xf here since we only have 11 counter (0 - 0xa) and
14316 		 * 0xf cannot be returned and is what we initialize it too to
14317 		 * indicate we are not doing the tabulations.
14318 		 */
14319 		if (ack_val_set != 0xf) {
14320 			uint64_t crtsc;
14321 
14322 			crtsc = get_cyclecount();
14323 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
14324 				tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val);
14325 			}
14326 		}
14327 #endif
14328 		if (nxt_pkt == 0) {
14329 			if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
14330 do_output_now:
14331 				if (tcp_output(tp) < 0)
14332 					return (1);
14333 				did_out = 1;
14334 			}
14335 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
14336 			rack_free_trim(rack);
14337 		}
14338 		/* Update any rounds needed */
14339 		if (rack_verbose_logging && tcp_bblogging_on(rack->rc_tp)) {
14340 			union tcp_log_stackspecific log;
14341 			struct timeval tv;
14342 
14343 			memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14344 			log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14345 			log.u_bbr.flex1 = high_seq;
14346 			log.u_bbr.flex2 = rack->r_ctl.roundends;
14347 			log.u_bbr.flex3 = rack->r_ctl.current_round;
14348 			log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround;
14349 			log.u_bbr.flex8 = 9;
14350 			tcp_log_event(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
14351 				       0, &log, false, NULL, NULL, 0, &tv);
14352 		}
14353 		/*
14354 		 * The draft (v3) calls for us to use SEQ_GEQ, but that
14355 		 * causes issues when we are just going app limited. Lets
14356 		 * instead use SEQ_GT <or> where its equal but more data
14357 		 * is outstanding.
14358 		 */
14359 		if ((SEQ_GT(tp->snd_una, rack->r_ctl.roundends)) ||
14360 		    ((tp->snd_una == rack->r_ctl.roundends) && SEQ_GT(tp->snd_max, tp->snd_una))) {
14361 			rack->r_ctl.current_round++;
14362 			rack->r_ctl.roundends = tp->snd_max;
14363 			if (CC_ALGO(tp)->newround != NULL) {
14364 				CC_ALGO(tp)->newround(&tp->t_ccv, rack->r_ctl.current_round);
14365 			}
14366 		}
14367 		if ((nxt_pkt == 0) &&
14368 		    ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
14369 		    (SEQ_GT(tp->snd_max, tp->snd_una) ||
14370 		     (tp->t_flags & TF_DELACK) ||
14371 		     ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
14372 		      (tp->t_state <= TCPS_CLOSING)))) {
14373 			/* We could not send (probably in the hpts but stopped the timer earlier)? */
14374 			if ((tp->snd_max == tp->snd_una) &&
14375 			    ((tp->t_flags & TF_DELACK) == 0) &&
14376 			    (tcp_in_hpts(rack->rc_inp)) &&
14377 			    (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
14378 				/* keep alive not needed if we are hptsi output yet */
14379 				;
14380 			} else {
14381 				int late = 0;
14382 				if (tcp_in_hpts(inp)) {
14383 					if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
14384 						us_cts = tcp_get_usecs(NULL);
14385 						if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
14386 							rack->r_early = 1;
14387 							rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
14388 						} else
14389 							late = 1;
14390 						rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
14391 					}
14392 					tcp_hpts_remove(inp);
14393 				}
14394 				if (late && (did_out == 0)) {
14395 					/*
14396 					 * We are late in the sending
14397 					 * and we did not call the output
14398 					 * (this probably should not happen).
14399 					 */
14400 					goto do_output_now;
14401 				}
14402 				rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
14403 			}
14404 			way_out = 1;
14405 		} else if (nxt_pkt == 0) {
14406 			/* Do we have the correct timer running? */
14407 			rack_timer_audit(tp, rack, &so->so_snd);
14408 			way_out = 2;
14409 		}
14410 	done_with_input:
14411 		rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs));
14412 		if (did_out)
14413 			rack->r_wanted_output = 0;
14414 	}
14415 #ifdef TCP_ACCOUNTING
14416 	sched_unpin();
14417 #endif
14418 	return (retval);
14419 }
14420 
14421 void
14422 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
14423     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
14424 {
14425 	struct timeval tv;
14426 
14427 	/* First lets see if we have old packets */
14428 	if (tp->t_in_pkt) {
14429 		if (ctf_do_queued_segments(so, tp, 1)) {
14430 			m_freem(m);
14431 			return;
14432 		}
14433 	}
14434 	if (m->m_flags & M_TSTMP_LRO) {
14435 		mbuf_tstmp2timeval(m, &tv);
14436 	} else {
14437 		/* Should not be should we kassert instead? */
14438 		tcp_get_usecs(&tv);
14439 	}
14440 	if (rack_do_segment_nounlock(m, th, so, tp,
14441 				     drop_hdrlen, tlen, iptos, 0, &tv) == 0) {
14442 		INP_WUNLOCK(tptoinpcb(tp));
14443 	}
14444 }
14445 
14446 struct rack_sendmap *
14447 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
14448 {
14449 	struct rack_sendmap *rsm = NULL;
14450 	int32_t idx;
14451 	uint32_t srtt = 0, thresh = 0, ts_low = 0;
14452 
14453 	/* Return the next guy to be re-transmitted */
14454 	if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
14455 		return (NULL);
14456 	}
14457 	if (tp->t_flags & TF_SENTFIN) {
14458 		/* retran the end FIN? */
14459 		return (NULL);
14460 	}
14461 	/* ok lets look at this one */
14462 	rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
14463 	if (rack->r_must_retran && rsm && (rsm->r_flags & RACK_MUST_RXT)) {
14464 		return (rsm);
14465 	}
14466 	if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
14467 		goto check_it;
14468 	}
14469 	rsm = rack_find_lowest_rsm(rack);
14470 	if (rsm == NULL) {
14471 		return (NULL);
14472 	}
14473 check_it:
14474 	if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) &&
14475 	    (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
14476 		/*
14477 		 * No sack so we automatically do the 3 strikes and
14478 		 * retransmit (no rack timer would be started).
14479 		 */
14480 
14481 		return (rsm);
14482 	}
14483 	if (rsm->r_flags & RACK_ACKED) {
14484 		return (NULL);
14485 	}
14486 	if (((rsm->r_flags & RACK_SACK_PASSED) == 0) &&
14487 	    (rsm->r_dupack < DUP_ACK_THRESHOLD)) {
14488 		/* Its not yet ready */
14489 		return (NULL);
14490 	}
14491 	srtt = rack_grab_rtt(tp, rack);
14492 	idx = rsm->r_rtr_cnt - 1;
14493 	ts_low = (uint32_t)rsm->r_tim_lastsent[idx];
14494 	thresh = rack_calc_thresh_rack(rack, srtt, tsused);
14495 	if ((tsused == ts_low) ||
14496 	    (TSTMP_LT(tsused, ts_low))) {
14497 		/* No time since sending */
14498 		return (NULL);
14499 	}
14500 	if ((tsused - ts_low) < thresh) {
14501 		/* It has not been long enough yet */
14502 		return (NULL);
14503 	}
14504 	if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
14505 	    ((rsm->r_flags & RACK_SACK_PASSED) &&
14506 	     (rack->sack_attack_disable == 0))) {
14507 		/*
14508 		 * We have passed the dup-ack threshold <or>
14509 		 * a SACK has indicated this is missing.
14510 		 * Note that if you are a declared attacker
14511 		 * it is only the dup-ack threshold that
14512 		 * will cause retransmits.
14513 		 */
14514 		/* log retransmit reason */
14515 		rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
14516 		rack->r_fast_output = 0;
14517 		return (rsm);
14518 	}
14519 	return (NULL);
14520 }
14521 
14522 static void
14523 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
14524 			   uint64_t bw_est, uint64_t bw, uint64_t len_time, int method,
14525 			   int line, struct rack_sendmap *rsm, uint8_t quality)
14526 {
14527 	if (tcp_bblogging_on(rack->rc_tp)) {
14528 		union tcp_log_stackspecific log;
14529 		struct timeval tv;
14530 
14531 		memset(&log, 0, sizeof(log));
14532 		log.u_bbr.flex1 = slot;
14533 		log.u_bbr.flex2 = len;
14534 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs;
14535 		log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs;
14536 		log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss;
14537 		log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca;
14538 		log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data;
14539 		log.u_bbr.use_lt_bw <<= 1;
14540 		log.u_bbr.use_lt_bw |= rack->r_late;
14541 		log.u_bbr.use_lt_bw <<= 1;
14542 		log.u_bbr.use_lt_bw |= rack->r_early;
14543 		log.u_bbr.use_lt_bw <<= 1;
14544 		log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
14545 		log.u_bbr.use_lt_bw <<= 1;
14546 		log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
14547 		log.u_bbr.use_lt_bw <<= 1;
14548 		log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
14549 		log.u_bbr.use_lt_bw <<= 1;
14550 		log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
14551 		log.u_bbr.use_lt_bw <<= 1;
14552 		log.u_bbr.use_lt_bw |= rack->gp_ready;
14553 		log.u_bbr.pkt_epoch = line;
14554 		log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed;
14555 		log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early;
14556 		log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec;
14557 		log.u_bbr.bw_inuse = bw_est;
14558 		log.u_bbr.delRate = bw;
14559 		if (rack->r_ctl.gp_bw == 0)
14560 			log.u_bbr.cur_del_rate = 0;
14561 		else
14562 			log.u_bbr.cur_del_rate = rack_get_bw(rack);
14563 		log.u_bbr.rttProp = len_time;
14564 		log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt;
14565 		log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit;
14566 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
14567 		if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) {
14568 			/* We are in slow start */
14569 			log.u_bbr.flex7 = 1;
14570 		} else {
14571 			/* we are on congestion avoidance */
14572 			log.u_bbr.flex7 = 0;
14573 		}
14574 		log.u_bbr.flex8 = method;
14575 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14576 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14577 		log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec;
14578 		log.u_bbr.cwnd_gain <<= 1;
14579 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
14580 		log.u_bbr.cwnd_gain <<= 1;
14581 		log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
14582 		log.u_bbr.bbr_substate = quality;
14583 		TCP_LOG_EVENTP(rack->rc_tp, NULL,
14584 		    &rack->rc_inp->inp_socket->so_rcv,
14585 		    &rack->rc_inp->inp_socket->so_snd,
14586 		    BBR_LOG_HPTSI_CALC, 0,
14587 		    0, &log, false, &tv);
14588 	}
14589 }
14590 
14591 static uint32_t
14592 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss)
14593 {
14594 	uint32_t new_tso, user_max;
14595 
14596 	user_max = rack->rc_user_set_max_segs * mss;
14597 	if (rack->rc_force_max_seg) {
14598 		return (user_max);
14599 	}
14600 	if (rack->use_fixed_rate &&
14601 	    ((rack->r_ctl.crte == NULL) ||
14602 	     (bw != rack->r_ctl.crte->rate))) {
14603 		/* Use the user mss since we are not exactly matched */
14604 		return (user_max);
14605 	}
14606 	new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL);
14607 	if (new_tso > user_max)
14608 		new_tso = user_max;
14609 	return (new_tso);
14610 }
14611 
14612 static int32_t
14613 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced)
14614 {
14615 	uint64_t lentim, fill_bw;
14616 
14617 	/* Lets first see if we are full, if so continue with normal rate */
14618 	rack->r_via_fill_cw = 0;
14619 	if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use)
14620 		return (slot);
14621 	if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd)
14622 		return (slot);
14623 	if (rack->r_ctl.rc_last_us_rtt == 0)
14624 		return (slot);
14625 	if (rack->rc_pace_fill_if_rttin_range &&
14626 	    (rack->r_ctl.rc_last_us_rtt >=
14627 	     (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) {
14628 		/* The rtt is huge, N * smallest, lets not fill */
14629 		return (slot);
14630 	}
14631 	/*
14632 	 * first lets calculate the b/w based on the last us-rtt
14633 	 * and the sndwnd.
14634 	 */
14635 	fill_bw = rack->r_ctl.cwnd_to_use;
14636 	/* Take the rwnd if its smaller */
14637 	if (fill_bw > rack->rc_tp->snd_wnd)
14638 		fill_bw = rack->rc_tp->snd_wnd;
14639 	if (rack->r_fill_less_agg) {
14640 		/*
14641 		 * Now take away the inflight (this will reduce our
14642 		 * aggressiveness and yeah, if we get that much out in 1RTT
14643 		 * we will have had acks come back and still be behind).
14644 		 */
14645 		fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14646 	}
14647 	/* Now lets make it into a b/w */
14648 	fill_bw *= (uint64_t)HPTS_USEC_IN_SEC;
14649 	fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt;
14650 	/* We are below the min b/w */
14651 	if (non_paced)
14652 		*rate_wanted = fill_bw;
14653 	if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted))
14654 		return (slot);
14655 	if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap))
14656 		fill_bw = rack->r_ctl.bw_rate_cap;
14657 	rack->r_via_fill_cw = 1;
14658 	if (rack->r_rack_hw_rate_caps &&
14659 	    (rack->r_ctl.crte != NULL)) {
14660 		uint64_t high_rate;
14661 
14662 		high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
14663 		if (fill_bw > high_rate) {
14664 			/* We are capping bw at the highest rate table entry */
14665 			if (*rate_wanted > high_rate) {
14666 				/* The original rate was also capped */
14667 				rack->r_via_fill_cw = 0;
14668 			}
14669 			rack_log_hdwr_pacing(rack,
14670 					     fill_bw, high_rate, __LINE__,
14671 					     0, 3);
14672 			fill_bw = high_rate;
14673 			if (capped)
14674 				*capped = 1;
14675 		}
14676 	} else if ((rack->r_ctl.crte == NULL) &&
14677 		   (rack->rack_hdrw_pacing == 0) &&
14678 		   (rack->rack_hdw_pace_ena) &&
14679 		   rack->r_rack_hw_rate_caps &&
14680 		   (rack->rack_attempt_hdwr_pace == 0) &&
14681 		   (rack->rc_inp->inp_route.ro_nh != NULL) &&
14682 		   (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14683 		/*
14684 		 * Ok we may have a first attempt that is greater than our top rate
14685 		 * lets check.
14686 		 */
14687 		uint64_t high_rate;
14688 
14689 		high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
14690 		if (high_rate) {
14691 			if (fill_bw > high_rate) {
14692 				fill_bw = high_rate;
14693 				if (capped)
14694 					*capped = 1;
14695 			}
14696 		}
14697 	}
14698 	/*
14699 	 * Ok fill_bw holds our mythical b/w to fill the cwnd
14700 	 * in a rtt, what does that time wise equate too?
14701 	 */
14702 	lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC;
14703 	lentim /= fill_bw;
14704 	*rate_wanted = fill_bw;
14705 	if (non_paced || (lentim < slot)) {
14706 		rack_log_pacing_delay_calc(rack, len, slot, fill_bw,
14707 					   0, lentim, 12, __LINE__, NULL, 0);
14708 		return ((int32_t)lentim);
14709 	} else
14710 		return (slot);
14711 }
14712 
14713 static int32_t
14714 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz)
14715 {
14716 	uint64_t srtt;
14717 	int32_t slot = 0;
14718 	int can_start_hw_pacing = 1;
14719 	int err;
14720 
14721 	if (rack->rc_always_pace == 0) {
14722 		/*
14723 		 * We use the most optimistic possible cwnd/srtt for
14724 		 * sending calculations. This will make our
14725 		 * calculation anticipate getting more through
14726 		 * quicker then possible. But thats ok we don't want
14727 		 * the peer to have a gap in data sending.
14728 		 */
14729 		uint64_t cwnd, tr_perms = 0;
14730 		int32_t reduce = 0;
14731 
14732 	old_method:
14733 		/*
14734 		 * We keep no precise pacing with the old method
14735 		 * instead we use the pacer to mitigate bursts.
14736 		 */
14737 		if (rack->r_ctl.rc_rack_min_rtt)
14738 			srtt = rack->r_ctl.rc_rack_min_rtt;
14739 		else
14740 			srtt = max(tp->t_srtt, 1);
14741 		if (rack->r_ctl.rc_rack_largest_cwnd)
14742 			cwnd = rack->r_ctl.rc_rack_largest_cwnd;
14743 		else
14744 			cwnd = rack->r_ctl.cwnd_to_use;
14745 		/* Inflate cwnd by 1000 so srtt of usecs is in ms */
14746 		tr_perms = (cwnd * 1000) / srtt;
14747 		if (tr_perms == 0) {
14748 			tr_perms = ctf_fixed_maxseg(tp);
14749 		}
14750 		/*
14751 		 * Calculate how long this will take to drain, if
14752 		 * the calculation comes out to zero, thats ok we
14753 		 * will use send_a_lot to possibly spin around for
14754 		 * more increasing tot_len_this_send to the point
14755 		 * that its going to require a pace, or we hit the
14756 		 * cwnd. Which in that case we are just waiting for
14757 		 * a ACK.
14758 		 */
14759 		slot = len / tr_perms;
14760 		/* Now do we reduce the time so we don't run dry? */
14761 		if (slot && rack_slot_reduction) {
14762 			reduce = (slot / rack_slot_reduction);
14763 			if (reduce < slot) {
14764 				slot -= reduce;
14765 			} else
14766 				slot = 0;
14767 		}
14768 		slot *= HPTS_USEC_IN_MSEC;
14769 		if (rack->rc_pace_to_cwnd) {
14770 			uint64_t rate_wanted = 0;
14771 
14772 			slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1);
14773 			rack->rc_ack_can_sendout_data = 1;
14774 			rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0);
14775 		} else
14776 			rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0);
14777 	} else {
14778 		uint64_t bw_est, res, lentim, rate_wanted;
14779 		uint32_t orig_val, segs, oh;
14780 		int capped = 0;
14781 		int prev_fill;
14782 
14783 		if ((rack->r_rr_config == 1) && rsm) {
14784 			return (rack->r_ctl.rc_min_to);
14785 		}
14786 		if (rack->use_fixed_rate) {
14787 			rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack);
14788 		} else if ((rack->r_ctl.init_rate == 0) &&
14789 #ifdef NETFLIX_PEAKRATE
14790 			   (rack->rc_tp->t_maxpeakrate == 0) &&
14791 #endif
14792 			   (rack->r_ctl.gp_bw == 0)) {
14793 			/* no way to yet do an estimate */
14794 			bw_est = rate_wanted = 0;
14795 		} else {
14796 			bw_est = rack_get_bw(rack);
14797 			rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped);
14798 		}
14799 		if ((bw_est == 0) || (rate_wanted == 0) ||
14800 		    ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) {
14801 			/*
14802 			 * No way yet to make a b/w estimate or
14803 			 * our raise is set incorrectly.
14804 			 */
14805 			goto old_method;
14806 		}
14807 		/* We need to account for all the overheads */
14808 		segs = (len + segsiz - 1) / segsiz;
14809 		/*
14810 		 * We need the diff between 1514 bytes (e-mtu with e-hdr)
14811 		 * and how much data we put in each packet. Yes this
14812 		 * means we may be off if we are larger than 1500 bytes
14813 		 * or smaller. But this just makes us more conservative.
14814 		 */
14815 		if (rack_hw_rate_min &&
14816 		    (bw_est < rack_hw_rate_min))
14817 			can_start_hw_pacing = 0;
14818 		if (ETHERNET_SEGMENT_SIZE > segsiz)
14819 			oh = ETHERNET_SEGMENT_SIZE - segsiz;
14820 		else
14821 			oh = 0;
14822 		segs *= oh;
14823 		lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC;
14824 		res = lentim / rate_wanted;
14825 		slot = (uint32_t)res;
14826 		orig_val = rack->r_ctl.rc_pace_max_segs;
14827 		if (rack->r_ctl.crte == NULL) {
14828 			/*
14829 			 * Only do this if we are not hardware pacing
14830 			 * since if we are doing hw-pacing below we will
14831 			 * set make a call after setting up or changing
14832 			 * the rate.
14833 			 */
14834 			rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
14835 		} else if (rack->rc_inp->inp_snd_tag == NULL) {
14836 			/*
14837 			 * We lost our rate somehow, this can happen
14838 			 * if the interface changed underneath us.
14839 			 */
14840 			tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14841 			rack->r_ctl.crte = NULL;
14842 			/* Lets re-allow attempting to setup pacing */
14843 			rack->rack_hdrw_pacing = 0;
14844 			rack->rack_attempt_hdwr_pace = 0;
14845 			rack_log_hdwr_pacing(rack,
14846 					     rate_wanted, bw_est, __LINE__,
14847 					     0, 6);
14848 		}
14849 		/* Did we change the TSO size, if so log it */
14850 		if (rack->r_ctl.rc_pace_max_segs != orig_val)
14851 			rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL, 0);
14852 		prev_fill = rack->r_via_fill_cw;
14853 		if ((rack->rc_pace_to_cwnd) &&
14854 		    (capped == 0) &&
14855 		    (rack->use_fixed_rate == 0) &&
14856 		    (rack->in_probe_rtt == 0) &&
14857 		    (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) {
14858 			/*
14859 			 * We want to pace at our rate *or* faster to
14860 			 * fill the cwnd to the max if its not full.
14861 			 */
14862 			slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0);
14863 		}
14864 		if ((rack->rc_inp->inp_route.ro_nh != NULL) &&
14865 		    (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14866 			if ((rack->rack_hdw_pace_ena) &&
14867 			    (can_start_hw_pacing > 0) &&
14868 			    (rack->rack_hdrw_pacing == 0) &&
14869 			    (rack->rack_attempt_hdwr_pace == 0)) {
14870 				/*
14871 				 * Lets attempt to turn on hardware pacing
14872 				 * if we can.
14873 				 */
14874 				rack->rack_attempt_hdwr_pace = 1;
14875 				rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp,
14876 								       rack->rc_inp->inp_route.ro_nh->nh_ifp,
14877 								       rate_wanted,
14878 								       RS_PACING_GEQ,
14879 								       &err, &rack->r_ctl.crte_prev_rate);
14880 				if (rack->r_ctl.crte) {
14881 					rack->rack_hdrw_pacing = 1;
14882 					rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz,
14883 												 0, rack->r_ctl.crte,
14884 												 NULL);
14885 					rack_log_hdwr_pacing(rack,
14886 							     rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14887 							     err, 0);
14888 					rack->r_ctl.last_hw_bw_req = rate_wanted;
14889 				} else {
14890 					counter_u64_add(rack_hw_pace_init_fail, 1);
14891 				}
14892 			} else if (rack->rack_hdrw_pacing &&
14893 				   (rack->r_ctl.last_hw_bw_req != rate_wanted)) {
14894 				/* Do we need to adjust our rate? */
14895 				const struct tcp_hwrate_limit_table *nrte;
14896 
14897 				if (rack->r_up_only &&
14898 				    (rate_wanted < rack->r_ctl.crte->rate)) {
14899 					/**
14900 					 * We have four possible states here
14901 					 * having to do with the previous time
14902 					 * and this time.
14903 					 *   previous  |  this-time
14904 					 * A)     0      |     0   -- fill_cw not in the picture
14905 					 * B)     1      |     0   -- we were doing a fill-cw but now are not
14906 					 * C)     1      |     1   -- all rates from fill_cw
14907 					 * D)     0      |     1   -- we were doing non-fill and now we are filling
14908 					 *
14909 					 * For case A, C and D we don't allow a drop. But for
14910 					 * case B where we now our on our steady rate we do
14911 					 * allow a drop.
14912 					 *
14913 					 */
14914 					if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0)))
14915 						goto done_w_hdwr;
14916 				}
14917 				if ((rate_wanted > rack->r_ctl.crte->rate) ||
14918 				    (rate_wanted <= rack->r_ctl.crte_prev_rate)) {
14919 					if (rack_hw_rate_to_low &&
14920 					    (bw_est < rack_hw_rate_to_low)) {
14921 						/*
14922 						 * The pacing rate is too low for hardware, but
14923 						 * do allow hardware pacing to be restarted.
14924 						 */
14925 						rack_log_hdwr_pacing(rack,
14926 							     bw_est, rack->r_ctl.crte->rate, __LINE__,
14927 							     0, 5);
14928 						tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14929 						rack->r_ctl.crte = NULL;
14930 						rack->rack_attempt_hdwr_pace = 0;
14931 						rack->rack_hdrw_pacing = 0;
14932 						rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14933 						goto done_w_hdwr;
14934 					}
14935 					nrte = tcp_chg_pacing_rate(rack->r_ctl.crte,
14936 								   rack->rc_tp,
14937 								   rack->rc_inp->inp_route.ro_nh->nh_ifp,
14938 								   rate_wanted,
14939 								   RS_PACING_GEQ,
14940 								   &err, &rack->r_ctl.crte_prev_rate);
14941 					if (nrte == NULL) {
14942 						/* Lost the rate */
14943 						rack->rack_hdrw_pacing = 0;
14944 						rack->r_ctl.crte = NULL;
14945 						rack_log_hdwr_pacing(rack,
14946 								     rate_wanted, 0, __LINE__,
14947 								     err, 1);
14948 						rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14949 						counter_u64_add(rack_hw_pace_lost, 1);
14950 					} else if (nrte != rack->r_ctl.crte) {
14951 						rack->r_ctl.crte = nrte;
14952 						rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted,
14953 													 segsiz, 0,
14954 													 rack->r_ctl.crte,
14955 													 NULL);
14956 						rack_log_hdwr_pacing(rack,
14957 								     rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14958 								     err, 2);
14959 						rack->r_ctl.last_hw_bw_req = rate_wanted;
14960 					}
14961 				} else {
14962 					/* We just need to adjust the segment size */
14963 					rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14964 					rack_log_hdwr_pacing(rack,
14965 							     rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14966 							     0, 4);
14967 					rack->r_ctl.last_hw_bw_req = rate_wanted;
14968 				}
14969 			}
14970 		}
14971 		if ((rack->r_ctl.crte != NULL) &&
14972 		    (rack->r_ctl.crte->rate == rate_wanted)) {
14973 			/*
14974 			 * We need to add a extra if the rates
14975 			 * are exactly matched. The idea is
14976 			 * we want the software to make sure the
14977 			 * queue is empty before adding more, this
14978 			 * gives us N MSS extra pace times where
14979 			 * N is our sysctl
14980 			 */
14981 			slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots);
14982 		}
14983 done_w_hdwr:
14984 		if (rack_limit_time_with_srtt &&
14985 		    (rack->use_fixed_rate == 0) &&
14986 #ifdef NETFLIX_PEAKRATE
14987 		    (rack->rc_tp->t_maxpeakrate == 0) &&
14988 #endif
14989 		    (rack->rack_hdrw_pacing == 0)) {
14990 			/*
14991 			 * Sanity check, we do not allow the pacing delay
14992 			 * to be longer than the SRTT of the path. If it is
14993 			 * a slow path, then adding a packet should increase
14994 			 * the RTT and compensate for this i.e. the srtt will
14995 			 * be greater so the allowed pacing time will be greater.
14996 			 *
14997 			 * Note this restriction is not for where a peak rate
14998 			 * is set, we are doing fixed pacing or hardware pacing.
14999 			 */
15000 			if (rack->rc_tp->t_srtt)
15001 				srtt = rack->rc_tp->t_srtt;
15002 			else
15003 				srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC;	/* its in ms convert */
15004 			if (srtt < (uint64_t)slot) {
15005 				rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0);
15006 				slot = srtt;
15007 			}
15008 		}
15009 		rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0);
15010 	}
15011 	if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) {
15012 		/*
15013 		 * If this rate is seeing enobufs when it
15014 		 * goes to send then either the nic is out
15015 		 * of gas or we are mis-estimating the time
15016 		 * somehow and not letting the queue empty
15017 		 * completely. Lets add to the pacing time.
15018 		 */
15019 		int hw_boost_delay;
15020 
15021 		hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult;
15022 		if (hw_boost_delay > rack_enobuf_hw_max)
15023 			hw_boost_delay = rack_enobuf_hw_max;
15024 		else if (hw_boost_delay < rack_enobuf_hw_min)
15025 			hw_boost_delay = rack_enobuf_hw_min;
15026 		slot += hw_boost_delay;
15027 	}
15028 	return (slot);
15029 }
15030 
15031 static void
15032 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack,
15033     tcp_seq startseq, uint32_t sb_offset)
15034 {
15035 	struct rack_sendmap *my_rsm = NULL;
15036 	struct rack_sendmap fe;
15037 
15038 	if (tp->t_state < TCPS_ESTABLISHED) {
15039 		/*
15040 		 * We don't start any measurements if we are
15041 		 * not at least established.
15042 		 */
15043 		return;
15044 	}
15045 	if (tp->t_state >= TCPS_FIN_WAIT_1) {
15046 		/*
15047 		 * We will get no more data into the SB
15048 		 * this means we need to have the data available
15049 		 * before we start a measurement.
15050 		 */
15051 
15052 		if (sbavail(&tptosocket(tp)->so_snd) <
15053 		    max(rc_init_window(rack),
15054 			(MIN_GP_WIN * ctf_fixed_maxseg(tp)))) {
15055 			/* Nope not enough data */
15056 			return;
15057 		}
15058 	}
15059 	tp->t_flags |= TF_GPUTINPROG;
15060 	rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
15061 	rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
15062 	tp->gput_seq = startseq;
15063 	rack->app_limited_needs_set = 0;
15064 	if (rack->in_probe_rtt)
15065 		rack->measure_saw_probe_rtt = 1;
15066 	else if ((rack->measure_saw_probe_rtt) &&
15067 		 (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
15068 		rack->measure_saw_probe_rtt = 0;
15069 	if (rack->rc_gp_filled)
15070 		tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
15071 	else {
15072 		/* Special case initial measurement */
15073 		struct timeval tv;
15074 
15075 		tp->gput_ts = tcp_get_usecs(&tv);
15076 		rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
15077 	}
15078 	/*
15079 	 * We take a guess out into the future,
15080 	 * if we have no measurement and no
15081 	 * initial rate, we measure the first
15082 	 * initial-windows worth of data to
15083 	 * speed up getting some GP measurement and
15084 	 * thus start pacing.
15085 	 */
15086 	if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) {
15087 		rack->app_limited_needs_set = 1;
15088 		tp->gput_ack = startseq + max(rc_init_window(rack),
15089 					      (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
15090 		rack_log_pacing_delay_calc(rack,
15091 					   tp->gput_seq,
15092 					   tp->gput_ack,
15093 					   0,
15094 					   tp->gput_ts,
15095 					   rack->r_ctl.rc_app_limited_cnt,
15096 					   9,
15097 					   __LINE__, NULL, 0);
15098 		return;
15099 	}
15100 	if (sb_offset) {
15101 		/*
15102 		 * We are out somewhere in the sb
15103 		 * can we use the already outstanding data?
15104 		 */
15105 		if (rack->r_ctl.rc_app_limited_cnt == 0) {
15106 			/*
15107 			 * Yes first one is good and in this case
15108 			 * the tp->gput_ts is correctly set based on
15109 			 * the last ack that arrived (no need to
15110 			 * set things up when an ack comes in).
15111 			 */
15112 			my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
15113 			if ((my_rsm == NULL) ||
15114 			    (my_rsm->r_rtr_cnt != 1)) {
15115 				/* retransmission? */
15116 				goto use_latest;
15117 			}
15118 		} else {
15119 			if (rack->r_ctl.rc_first_appl == NULL) {
15120 				/*
15121 				 * If rc_first_appl is NULL
15122 				 * then the cnt should be 0.
15123 				 * This is probably an error, maybe
15124 				 * a KASSERT would be approprate.
15125 				 */
15126 				goto use_latest;
15127 			}
15128 			/*
15129 			 * If we have a marker pointer to the last one that is
15130 			 * app limited we can use that, but we need to set
15131 			 * things up so that when it gets ack'ed we record
15132 			 * the ack time (if its not already acked).
15133 			 */
15134 			rack->app_limited_needs_set = 1;
15135 			/*
15136 			 * We want to get to the rsm that is either
15137 			 * next with space i.e. over 1 MSS or the one
15138 			 * after that (after the app-limited).
15139 			 */
15140 			my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
15141 					 rack->r_ctl.rc_first_appl);
15142 			if (my_rsm) {
15143 				if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp))
15144 					/* Have to use the next one */
15145 					my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
15146 							 my_rsm);
15147 				else {
15148 					/* Use after the first MSS of it is acked */
15149 					tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp);
15150 					goto start_set;
15151 				}
15152 			}
15153 			if ((my_rsm == NULL) ||
15154 			    (my_rsm->r_rtr_cnt != 1)) {
15155 				/*
15156 				 * Either its a retransmit or
15157 				 * the last is the app-limited one.
15158 				 */
15159 				goto use_latest;
15160 			}
15161 		}
15162 		tp->gput_seq = my_rsm->r_start;
15163 start_set:
15164 		if (my_rsm->r_flags & RACK_ACKED) {
15165 			/*
15166 			 * This one has been acked use the arrival ack time
15167 			 */
15168 			tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
15169 			rack->app_limited_needs_set = 0;
15170 		}
15171 		rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
15172 		tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
15173 		rack_log_pacing_delay_calc(rack,
15174 					   tp->gput_seq,
15175 					   tp->gput_ack,
15176 					   (uint64_t)my_rsm,
15177 					   tp->gput_ts,
15178 					   rack->r_ctl.rc_app_limited_cnt,
15179 					   9,
15180 					   __LINE__, NULL, 0);
15181 		return;
15182 	}
15183 
15184 use_latest:
15185 	/*
15186 	 * We don't know how long we may have been
15187 	 * idle or if this is the first-send. Lets
15188 	 * setup the flag so we will trim off
15189 	 * the first ack'd data so we get a true
15190 	 * measurement.
15191 	 */
15192 	rack->app_limited_needs_set = 1;
15193 	tp->gput_ack = startseq + rack_get_measure_window(tp, rack);
15194 	/* Find this guy so we can pull the send time */
15195 	fe.r_start = startseq;
15196 	my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
15197 	if (my_rsm) {
15198 		rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
15199 		if (my_rsm->r_flags & RACK_ACKED) {
15200 			/*
15201 			 * Unlikely since its probably what was
15202 			 * just transmitted (but I am paranoid).
15203 			 */
15204 			tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
15205 			rack->app_limited_needs_set = 0;
15206 		}
15207 		if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) {
15208 			/* This also is unlikely */
15209 			tp->gput_seq = my_rsm->r_start;
15210 		}
15211 	} else {
15212 		/*
15213 		 * TSNH unless we have some send-map limit,
15214 		 * and even at that it should not be hitting
15215 		 * that limit (we should have stopped sending).
15216 		 */
15217 		struct timeval tv;
15218 
15219 		microuptime(&tv);
15220 		rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
15221 	}
15222 	rack_log_pacing_delay_calc(rack,
15223 				   tp->gput_seq,
15224 				   tp->gput_ack,
15225 				   (uint64_t)my_rsm,
15226 				   tp->gput_ts,
15227 				   rack->r_ctl.rc_app_limited_cnt,
15228 				   9, __LINE__, NULL, 0);
15229 }
15230 
15231 static inline uint32_t
15232 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack,  uint32_t cwnd_to_use,
15233     uint32_t avail, int32_t sb_offset)
15234 {
15235 	uint32_t len;
15236 	uint32_t sendwin;
15237 
15238 	if (tp->snd_wnd > cwnd_to_use)
15239 		sendwin = cwnd_to_use;
15240 	else
15241 		sendwin = tp->snd_wnd;
15242 	if (ctf_outstanding(tp) >= tp->snd_wnd) {
15243 		/* We never want to go over our peers rcv-window */
15244 		len = 0;
15245 	} else {
15246 		uint32_t flight;
15247 
15248 		flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
15249 		if (flight >= sendwin) {
15250 			/*
15251 			 * We have in flight what we are allowed by cwnd (if
15252 			 * it was rwnd blocking it would have hit above out
15253 			 * >= tp->snd_wnd).
15254 			 */
15255 			return (0);
15256 		}
15257 		len = sendwin - flight;
15258 		if ((len + ctf_outstanding(tp)) > tp->snd_wnd) {
15259 			/* We would send too much (beyond the rwnd) */
15260 			len = tp->snd_wnd - ctf_outstanding(tp);
15261 		}
15262 		if ((len + sb_offset) > avail) {
15263 			/*
15264 			 * We don't have that much in the SB, how much is
15265 			 * there?
15266 			 */
15267 			len = avail - sb_offset;
15268 		}
15269 	}
15270 	return (len);
15271 }
15272 
15273 static void
15274 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags,
15275 	     unsigned ipoptlen, int32_t orig_len, int32_t len, int error,
15276 	     int rsm_is_null, int optlen, int line, uint16_t mode)
15277 {
15278 	if (tcp_bblogging_on(rack->rc_tp)) {
15279 		union tcp_log_stackspecific log;
15280 		struct timeval tv;
15281 
15282 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15283 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
15284 		log.u_bbr.flex1 = error;
15285 		log.u_bbr.flex2 = flags;
15286 		log.u_bbr.flex3 = rsm_is_null;
15287 		log.u_bbr.flex4 = ipoptlen;
15288 		log.u_bbr.flex5 = tp->rcv_numsacks;
15289 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15290 		log.u_bbr.flex7 = optlen;
15291 		log.u_bbr.flex8 = rack->r_fsb_inited;
15292 		log.u_bbr.applimited = rack->r_fast_output;
15293 		log.u_bbr.bw_inuse = rack_get_bw(rack);
15294 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15295 		log.u_bbr.cwnd_gain = mode;
15296 		log.u_bbr.pkts_out = orig_len;
15297 		log.u_bbr.lt_epoch = len;
15298 		log.u_bbr.delivered = line;
15299 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
15300 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15301 		tcp_log_event(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0,
15302 			       len, &log, false, NULL, NULL, 0, &tv);
15303 	}
15304 }
15305 
15306 
15307 static struct mbuf *
15308 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen,
15309 		   struct rack_fast_send_blk *fsb,
15310 		   int32_t seglimit, int32_t segsize, int hw_tls)
15311 {
15312 #ifdef KERN_TLS
15313 	struct ktls_session *tls, *ntls;
15314 #ifdef INVARIANTS
15315 	struct mbuf *start;
15316 #endif
15317 #endif
15318 	struct mbuf *m, *n, **np, *smb;
15319 	struct mbuf *top;
15320 	int32_t off, soff;
15321 	int32_t len = *plen;
15322 	int32_t fragsize;
15323 	int32_t len_cp = 0;
15324 	uint32_t mlen, frags;
15325 
15326 	soff = off = the_off;
15327 	smb = m = the_m;
15328 	np = &top;
15329 	top = NULL;
15330 #ifdef KERN_TLS
15331 	if (hw_tls && (m->m_flags & M_EXTPG))
15332 		tls = m->m_epg_tls;
15333 	else
15334 		tls = NULL;
15335 #ifdef INVARIANTS
15336 	start = m;
15337 #endif
15338 #endif
15339 	while (len > 0) {
15340 		if (m == NULL) {
15341 			*plen = len_cp;
15342 			break;
15343 		}
15344 #ifdef KERN_TLS
15345 		if (hw_tls) {
15346 			if (m->m_flags & M_EXTPG)
15347 				ntls = m->m_epg_tls;
15348 			else
15349 				ntls = NULL;
15350 
15351 			/*
15352 			 * Avoid mixing TLS records with handshake
15353 			 * data or TLS records from different
15354 			 * sessions.
15355 			 */
15356 			if (tls != ntls) {
15357 				MPASS(m != start);
15358 				*plen = len_cp;
15359 				break;
15360 			}
15361 		}
15362 #endif
15363 		mlen = min(len, m->m_len - off);
15364 		if (seglimit) {
15365 			/*
15366 			 * For M_EXTPG mbufs, add 3 segments
15367 			 * + 1 in case we are crossing page boundaries
15368 			 * + 2 in case the TLS hdr/trailer are used
15369 			 * It is cheaper to just add the segments
15370 			 * than it is to take the cache miss to look
15371 			 * at the mbuf ext_pgs state in detail.
15372 			 */
15373 			if (m->m_flags & M_EXTPG) {
15374 				fragsize = min(segsize, PAGE_SIZE);
15375 				frags = 3;
15376 			} else {
15377 				fragsize = segsize;
15378 				frags = 0;
15379 			}
15380 
15381 			/* Break if we really can't fit anymore. */
15382 			if ((frags + 1) >= seglimit) {
15383 				*plen =	len_cp;
15384 				break;
15385 			}
15386 
15387 			/*
15388 			 * Reduce size if you can't copy the whole
15389 			 * mbuf. If we can't copy the whole mbuf, also
15390 			 * adjust len so the loop will end after this
15391 			 * mbuf.
15392 			 */
15393 			if ((frags + howmany(mlen, fragsize)) >= seglimit) {
15394 				mlen = (seglimit - frags - 1) * fragsize;
15395 				len = mlen;
15396 				*plen = len_cp + len;
15397 			}
15398 			frags += howmany(mlen, fragsize);
15399 			if (frags == 0)
15400 				frags++;
15401 			seglimit -= frags;
15402 			KASSERT(seglimit > 0,
15403 			    ("%s: seglimit went too low", __func__));
15404 		}
15405 		n = m_get(M_NOWAIT, m->m_type);
15406 		*np = n;
15407 		if (n == NULL)
15408 			goto nospace;
15409 		n->m_len = mlen;
15410 		soff += mlen;
15411 		len_cp += n->m_len;
15412 		if (m->m_flags & (M_EXT|M_EXTPG)) {
15413 			n->m_data = m->m_data + off;
15414 			mb_dupcl(n, m);
15415 		} else {
15416 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
15417 			    (u_int)n->m_len);
15418 		}
15419 		len -= n->m_len;
15420 		off = 0;
15421 		m = m->m_next;
15422 		np = &n->m_next;
15423 		if (len || (soff == smb->m_len)) {
15424 			/*
15425 			 * We have more so we move forward  or
15426 			 * we have consumed the entire mbuf and
15427 			 * len has fell to 0.
15428 			 */
15429 			soff = 0;
15430 			smb = m;
15431 		}
15432 
15433 	}
15434 	if (fsb != NULL) {
15435 		fsb->m = smb;
15436 		fsb->off = soff;
15437 		if (smb) {
15438 			/*
15439 			 * Save off the size of the mbuf. We do
15440 			 * this so that we can recognize when it
15441 			 * has been trimmed by sbcut() as acks
15442 			 * come in.
15443 			 */
15444 			fsb->o_m_len = smb->m_len;
15445 		} else {
15446 			/*
15447 			 * This is the case where the next mbuf went to NULL. This
15448 			 * means with this copy we have sent everything in the sb.
15449 			 * In theory we could clear the fast_output flag, but lets
15450 			 * not since its possible that we could get more added
15451 			 * and acks that call the extend function which would let
15452 			 * us send more.
15453 			 */
15454 			fsb->o_m_len = 0;
15455 		}
15456 	}
15457 	return (top);
15458 nospace:
15459 	if (top)
15460 		m_freem(top);
15461 	return (NULL);
15462 
15463 }
15464 
15465 /*
15466  * This is a copy of m_copym(), taking the TSO segment size/limit
15467  * constraints into account, and advancing the sndptr as it goes.
15468  */
15469 static struct mbuf *
15470 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen,
15471 		int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff)
15472 {
15473 	struct mbuf *m, *n;
15474 	int32_t soff;
15475 
15476 	soff = rack->r_ctl.fsb.off;
15477 	m = rack->r_ctl.fsb.m;
15478 	if (rack->r_ctl.fsb.o_m_len > m->m_len) {
15479 		/*
15480 		 * The mbuf had the front of it chopped off by an ack
15481 		 * we need to adjust the soff/off by that difference.
15482 		 */
15483 		uint32_t delta;
15484 
15485 		delta = rack->r_ctl.fsb.o_m_len - m->m_len;
15486 		soff -= delta;
15487 	} else if (rack->r_ctl.fsb.o_m_len < m->m_len) {
15488 		/*
15489 		 * The mbuf was expanded probably by
15490 		 * a m_compress. Just update o_m_len.
15491 		 */
15492 		rack->r_ctl.fsb.o_m_len = m->m_len;
15493 	}
15494 	KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff));
15495 	KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen));
15496 	KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?",
15497 				 __FUNCTION__,
15498 				 rack, *plen, m, m->m_len));
15499 	/* Save off the right location before we copy and advance */
15500 	*s_soff = soff;
15501 	*s_mb = rack->r_ctl.fsb.m;
15502 	n = rack_fo_base_copym(m, soff, plen,
15503 			       &rack->r_ctl.fsb,
15504 			       seglimit, segsize, rack->r_ctl.fsb.hw_tls);
15505 	return (n);
15506 }
15507 
15508 static int
15509 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm,
15510 		     uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp)
15511 {
15512 	/*
15513 	 * Enter the fast retransmit path. We are given that a sched_pin is
15514 	 * in place (if accounting is compliled in) and the cycle count taken
15515 	 * at the entry is in the ts_val. The concept her is that the rsm
15516 	 * now holds the mbuf offsets and such so we can directly transmit
15517 	 * without a lot of overhead, the len field is already set for
15518 	 * us to prohibit us from sending too much (usually its 1MSS).
15519 	 */
15520 	struct ip *ip = NULL;
15521 	struct udphdr *udp = NULL;
15522 	struct tcphdr *th = NULL;
15523 	struct mbuf *m = NULL;
15524 	struct inpcb *inp;
15525 	uint8_t *cpto;
15526 	struct tcp_log_buffer *lgb;
15527 #ifdef TCP_ACCOUNTING
15528 	uint64_t crtsc;
15529 	int cnt_thru = 1;
15530 #endif
15531 	struct tcpopt to;
15532 	u_char opt[TCP_MAXOLEN];
15533 	uint32_t hdrlen, optlen;
15534 	int32_t slot, segsiz, max_val, tso = 0, error = 0, ulen = 0;
15535 	uint16_t flags;
15536 	uint32_t if_hw_tsomaxsegcount = 0, startseq;
15537 	uint32_t if_hw_tsomaxsegsize;
15538 
15539 #ifdef INET6
15540 	struct ip6_hdr *ip6 = NULL;
15541 
15542 	if (rack->r_is_v6) {
15543 		ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
15544 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
15545 	} else
15546 #endif				/* INET6 */
15547 	{
15548 		ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
15549 		hdrlen = sizeof(struct tcpiphdr);
15550 	}
15551 	if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
15552 		goto failed;
15553 	}
15554 	if (doing_tlp) {
15555 		/* Its a TLP add the flag, it may already be there but be sure */
15556 		rsm->r_flags |= RACK_TLP;
15557 	} else {
15558 		/* If it was a TLP it is not not on this retransmit */
15559 		rsm->r_flags &= ~RACK_TLP;
15560 	}
15561 	startseq = rsm->r_start;
15562 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
15563 	inp = rack->rc_inp;
15564 	to.to_flags = 0;
15565 	flags = tcp_outflags[tp->t_state];
15566 	if (flags & (TH_SYN|TH_RST)) {
15567 		goto failed;
15568 	}
15569 	if (rsm->r_flags & RACK_HAS_FIN) {
15570 		/* We can't send a FIN here */
15571 		goto failed;
15572 	}
15573 	if (flags & TH_FIN) {
15574 		/* We never send a FIN */
15575 		flags &= ~TH_FIN;
15576 	}
15577 	if (tp->t_flags & TF_RCVD_TSTMP) {
15578 		to.to_tsval = ms_cts + tp->ts_offset;
15579 		to.to_tsecr = tp->ts_recent;
15580 		to.to_flags = TOF_TS;
15581 	}
15582 	optlen = tcp_addoptions(&to, opt);
15583 	hdrlen += optlen;
15584 	udp = rack->r_ctl.fsb.udp;
15585 	if (udp)
15586 		hdrlen += sizeof(struct udphdr);
15587 	if (rack->r_ctl.rc_pace_max_segs)
15588 		max_val = rack->r_ctl.rc_pace_max_segs;
15589 	else if (rack->rc_user_set_max_segs)
15590 		max_val = rack->rc_user_set_max_segs * segsiz;
15591 	else
15592 		max_val = len;
15593 	if ((tp->t_flags & TF_TSO) &&
15594 	    V_tcp_do_tso &&
15595 	    (len > segsiz) &&
15596 	    (tp->t_port == 0))
15597 		tso = 1;
15598 #ifdef INET6
15599 	if (MHLEN < hdrlen + max_linkhdr)
15600 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
15601 	else
15602 #endif
15603 		m = m_gethdr(M_NOWAIT, MT_DATA);
15604 	if (m == NULL)
15605 		goto failed;
15606 	m->m_data += max_linkhdr;
15607 	m->m_len = hdrlen;
15608 	th = rack->r_ctl.fsb.th;
15609 	/* Establish the len to send */
15610 	if (len > max_val)
15611 		len = max_val;
15612 	if ((tso) && (len + optlen > tp->t_maxseg)) {
15613 		uint32_t if_hw_tsomax;
15614 		int32_t max_len;
15615 
15616 		/* extract TSO information */
15617 		if_hw_tsomax = tp->t_tsomax;
15618 		if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
15619 		if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
15620 		/*
15621 		 * Check if we should limit by maximum payload
15622 		 * length:
15623 		 */
15624 		if (if_hw_tsomax != 0) {
15625 			/* compute maximum TSO length */
15626 			max_len = (if_hw_tsomax - hdrlen -
15627 				   max_linkhdr);
15628 			if (max_len <= 0) {
15629 				goto failed;
15630 			} else if (len > max_len) {
15631 				len = max_len;
15632 			}
15633 		}
15634 		if (len <= segsiz) {
15635 			/*
15636 			 * In case there are too many small fragments don't
15637 			 * use TSO:
15638 			 */
15639 			tso = 0;
15640 		}
15641 	} else {
15642 		tso = 0;
15643 	}
15644 	if ((tso == 0) && (len > segsiz))
15645 		len = segsiz;
15646 	if ((len == 0) ||
15647 	    (len <= MHLEN - hdrlen - max_linkhdr)) {
15648 		goto failed;
15649 	}
15650 	th->th_seq = htonl(rsm->r_start);
15651 	th->th_ack = htonl(tp->rcv_nxt);
15652 	/*
15653 	 * The PUSH bit should only be applied
15654 	 * if the full retransmission is made. If
15655 	 * we are sending less than this is the
15656 	 * left hand edge and should not have
15657 	 * the PUSH bit.
15658 	 */
15659 	if ((rsm->r_flags & RACK_HAD_PUSH) &&
15660 	    (len == (rsm->r_end - rsm->r_start)))
15661 		flags |= TH_PUSH;
15662 	th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
15663 	if (th->th_win == 0) {
15664 		tp->t_sndzerowin++;
15665 		tp->t_flags |= TF_RXWIN0SENT;
15666 	} else
15667 		tp->t_flags &= ~TF_RXWIN0SENT;
15668 	if (rsm->r_flags & RACK_TLP) {
15669 		/*
15670 		 * TLP should not count in retran count, but
15671 		 * in its own bin
15672 		 */
15673 		counter_u64_add(rack_tlp_retran, 1);
15674 		counter_u64_add(rack_tlp_retran_bytes, len);
15675 	} else {
15676 		tp->t_sndrexmitpack++;
15677 		KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
15678 		KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
15679 	}
15680 #ifdef STATS
15681 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
15682 				 len);
15683 #endif
15684 	if (rsm->m == NULL)
15685 		goto failed;
15686 	if (rsm->orig_m_len != rsm->m->m_len) {
15687 		/* Fix up the orig_m_len and possibly the mbuf offset */
15688 		rack_adjust_orig_mlen(rsm);
15689 	}
15690 	m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls);
15691 	if (len <= segsiz) {
15692 		/*
15693 		 * Must have ran out of mbufs for the copy
15694 		 * shorten it to no longer need tso. Lets
15695 		 * not put on sendalot since we are low on
15696 		 * mbufs.
15697 		 */
15698 		tso = 0;
15699 	}
15700 	if ((m->m_next == NULL) || (len <= 0)){
15701 		goto failed;
15702 	}
15703 	if (udp) {
15704 		if (rack->r_is_v6)
15705 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
15706 		else
15707 			ulen = hdrlen + len - sizeof(struct ip);
15708 		udp->uh_ulen = htons(ulen);
15709 	}
15710 	m->m_pkthdr.rcvif = (struct ifnet *)0;
15711 	if (TCPS_HAVERCVDSYN(tp->t_state) &&
15712 	    (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) {
15713 		int ect = tcp_ecn_output_established(tp, &flags, len, true);
15714 		if ((tp->t_state == TCPS_SYN_RECEIVED) &&
15715 		    (tp->t_flags2 & TF2_ECN_SND_ECE))
15716 		    tp->t_flags2 &= ~TF2_ECN_SND_ECE;
15717 #ifdef INET6
15718 		if (rack->r_is_v6) {
15719 		    ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
15720 		    ip6->ip6_flow |= htonl(ect << 20);
15721 		}
15722 		else
15723 #endif
15724 		{
15725 		    ip->ip_tos &= ~IPTOS_ECN_MASK;
15726 		    ip->ip_tos |= ect;
15727 		}
15728 	}
15729 	tcp_set_flags(th, flags);
15730 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
15731 #ifdef INET6
15732 	if (rack->r_is_v6) {
15733 		if (tp->t_port) {
15734 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
15735 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15736 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
15737 			th->th_sum = htons(0);
15738 			UDPSTAT_INC(udps_opackets);
15739 		} else {
15740 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
15741 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15742 			th->th_sum = in6_cksum_pseudo(ip6,
15743 						      sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
15744 						      0);
15745 		}
15746 	}
15747 #endif
15748 #if defined(INET6) && defined(INET)
15749 	else
15750 #endif
15751 #ifdef INET
15752 	{
15753 		if (tp->t_port) {
15754 			m->m_pkthdr.csum_flags = CSUM_UDP;
15755 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15756 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
15757 						ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
15758 			th->th_sum = htons(0);
15759 			UDPSTAT_INC(udps_opackets);
15760 		} else {
15761 			m->m_pkthdr.csum_flags = CSUM_TCP;
15762 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15763 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
15764 					       ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
15765 									IPPROTO_TCP + len + optlen));
15766 		}
15767 		/* IP version must be set here for ipv4/ipv6 checking later */
15768 		KASSERT(ip->ip_v == IPVERSION,
15769 			("%s: IP version incorrect: %d", __func__, ip->ip_v));
15770 	}
15771 #endif
15772 	if (tso) {
15773 		KASSERT(len > tp->t_maxseg - optlen,
15774 			("%s: len <= tso_segsz tp:%p", __func__, tp));
15775 		m->m_pkthdr.csum_flags |= CSUM_TSO;
15776 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
15777 	}
15778 #ifdef INET6
15779 	if (rack->r_is_v6) {
15780 		ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
15781 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
15782 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
15783 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15784 		else
15785 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15786 	}
15787 #endif
15788 #if defined(INET) && defined(INET6)
15789 	else
15790 #endif
15791 #ifdef INET
15792 	{
15793 		ip->ip_len = htons(m->m_pkthdr.len);
15794 		ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
15795 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
15796 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15797 			if (tp->t_port == 0 || len < V_tcp_minmss) {
15798 				ip->ip_off |= htons(IP_DF);
15799 			}
15800 		} else {
15801 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15802 		}
15803 	}
15804 #endif
15805 	/* Time to copy in our header */
15806 	cpto = mtod(m, uint8_t *);
15807 	memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
15808 	th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
15809 	if (optlen) {
15810 		bcopy(opt, th + 1, optlen);
15811 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
15812 	} else {
15813 		th->th_off = sizeof(struct tcphdr) >> 2;
15814 	}
15815 	if (tcp_bblogging_on(rack->rc_tp)) {
15816 		union tcp_log_stackspecific log;
15817 
15818 		if (rsm->r_flags & RACK_RWND_COLLAPSED) {
15819 			rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm);
15820 			counter_u64_add(rack_collapsed_win_rxt, 1);
15821 			counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start));
15822 		}
15823 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15824 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
15825 		if (rack->rack_no_prr)
15826 			log.u_bbr.flex1 = 0;
15827 		else
15828 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
15829 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
15830 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
15831 		log.u_bbr.flex4 = max_val;
15832 		log.u_bbr.flex5 = 0;
15833 		/* Save off the early/late values */
15834 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15835 		log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
15836 		log.u_bbr.bw_inuse = rack_get_bw(rack);
15837 		if (doing_tlp == 0)
15838 			log.u_bbr.flex8 = 1;
15839 		else
15840 			log.u_bbr.flex8 = 2;
15841 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15842 		log.u_bbr.flex7 = 55;
15843 		log.u_bbr.pkts_out = tp->t_maxseg;
15844 		log.u_bbr.timeStamp = cts;
15845 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15846 		log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
15847 		log.u_bbr.delivered = 0;
15848 		lgb = tcp_log_event(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
15849 				     len, &log, false, NULL, NULL, 0, tv);
15850 	} else
15851 		lgb = NULL;
15852 #ifdef INET6
15853 	if (rack->r_is_v6) {
15854 		error = ip6_output(m, NULL,
15855 				   &inp->inp_route6,
15856 				   0, NULL, NULL, inp);
15857 	}
15858 	else
15859 #endif
15860 #ifdef INET
15861 	{
15862 		error = ip_output(m, NULL,
15863 				  &inp->inp_route,
15864 				  0, 0, inp);
15865 	}
15866 #endif
15867 	m = NULL;
15868 	if (lgb) {
15869 		lgb->tlb_errno = error;
15870 		lgb = NULL;
15871 	}
15872 	if (error) {
15873 		goto failed;
15874 	}
15875 	rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv),
15876 			rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls);
15877 	if (doing_tlp && (rack->fast_rsm_hack == 0)) {
15878 		rack->rc_tlp_in_progress = 1;
15879 		rack->r_ctl.rc_tlp_cnt_out++;
15880 	}
15881 	if (error == 0) {
15882 		tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls);
15883 		if (doing_tlp) {
15884 			rack->rc_last_sent_tlp_past_cumack = 0;
15885 			rack->rc_last_sent_tlp_seq_valid = 1;
15886 			rack->r_ctl.last_sent_tlp_seq = rsm->r_start;
15887 			rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start;
15888 		}
15889 	}
15890 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
15891 	rack->forced_ack = 0;	/* If we send something zap the FA flag */
15892 	if (IN_FASTRECOVERY(tp->t_flags) && rsm)
15893 		rack->r_ctl.retran_during_recovery += len;
15894 	{
15895 		int idx;
15896 
15897 		idx = (len / segsiz) + 3;
15898 		if (idx >= TCP_MSS_ACCT_ATIMER)
15899 			counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
15900 		else
15901 			counter_u64_add(rack_out_size[idx], 1);
15902 	}
15903 	if (tp->t_rtttime == 0) {
15904 		tp->t_rtttime = ticks;
15905 		tp->t_rtseq = startseq;
15906 		KMOD_TCPSTAT_INC(tcps_segstimed);
15907 	}
15908 	counter_u64_add(rack_fto_rsm_send, 1);
15909 	if (error && (error == ENOBUFS)) {
15910 		if (rack->r_ctl.crte != NULL) {
15911 			tcp_trace_point(rack->rc_tp, TCP_TP_HWENOBUF);
15912 		} else
15913 			tcp_trace_point(rack->rc_tp, TCP_TP_ENOBUF);
15914 		slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
15915 		if (rack->rc_enobuf < 0x7f)
15916 			rack->rc_enobuf++;
15917 		if (slot < (10 * HPTS_USEC_IN_MSEC))
15918 			slot = 10 * HPTS_USEC_IN_MSEC;
15919 	} else
15920 		slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz);
15921 	if ((slot == 0) ||
15922 	    (rack->rc_always_pace == 0) ||
15923 	    (rack->r_rr_config == 1)) {
15924 		/*
15925 		 * We have no pacing set or we
15926 		 * are using old-style rack or
15927 		 * we are overridden to use the old 1ms pacing.
15928 		 */
15929 		slot = rack->r_ctl.rc_min_to;
15930 	}
15931 	rack_start_hpts_timer(rack, tp, cts, slot, len, 0);
15932 #ifdef TCP_ACCOUNTING
15933 	crtsc = get_cyclecount();
15934 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15935 		tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
15936 	}
15937 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15938 		tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
15939 	}
15940 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15941 		tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz);
15942 	}
15943 	sched_unpin();
15944 #endif
15945 	return (0);
15946 failed:
15947 	if (m)
15948 		m_free(m);
15949 	return (-1);
15950 }
15951 
15952 static void
15953 rack_sndbuf_autoscale(struct tcp_rack *rack)
15954 {
15955 	/*
15956 	 * Automatic sizing of send socket buffer.  Often the send buffer
15957 	 * size is not optimally adjusted to the actual network conditions
15958 	 * at hand (delay bandwidth product).  Setting the buffer size too
15959 	 * small limits throughput on links with high bandwidth and high
15960 	 * delay (eg. trans-continental/oceanic links).  Setting the
15961 	 * buffer size too big consumes too much real kernel memory,
15962 	 * especially with many connections on busy servers.
15963 	 *
15964 	 * The criteria to step up the send buffer one notch are:
15965 	 *  1. receive window of remote host is larger than send buffer
15966 	 *     (with a fudge factor of 5/4th);
15967 	 *  2. send buffer is filled to 7/8th with data (so we actually
15968 	 *     have data to make use of it);
15969 	 *  3. send buffer fill has not hit maximal automatic size;
15970 	 *  4. our send window (slow start and cogestion controlled) is
15971 	 *     larger than sent but unacknowledged data in send buffer.
15972 	 *
15973 	 * Note that the rack version moves things much faster since
15974 	 * we want to avoid hitting cache lines in the rack_fast_output()
15975 	 * path so this is called much less often and thus moves
15976 	 * the SB forward by a percentage.
15977 	 */
15978 	struct socket *so;
15979 	struct tcpcb *tp;
15980 	uint32_t sendwin, scaleup;
15981 
15982 	tp = rack->rc_tp;
15983 	so = rack->rc_inp->inp_socket;
15984 	sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd);
15985 	if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) {
15986 		if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat &&
15987 		    sbused(&so->so_snd) >=
15988 		    (so->so_snd.sb_hiwat / 8 * 7) &&
15989 		    sbused(&so->so_snd) < V_tcp_autosndbuf_max &&
15990 		    sendwin >= (sbused(&so->so_snd) -
15991 		    (tp->snd_nxt - tp->snd_una))) {
15992 			if (rack_autosndbuf_inc)
15993 				scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100;
15994 			else
15995 				scaleup = V_tcp_autosndbuf_inc;
15996 			if (scaleup < V_tcp_autosndbuf_inc)
15997 				scaleup = V_tcp_autosndbuf_inc;
15998 			scaleup += so->so_snd.sb_hiwat;
15999 			if (scaleup > V_tcp_autosndbuf_max)
16000 				scaleup = V_tcp_autosndbuf_max;
16001 			if (!sbreserve_locked(so, SO_SND, scaleup, curthread))
16002 				so->so_snd.sb_flags &= ~SB_AUTOSIZE;
16003 		}
16004 	}
16005 }
16006 
16007 static int
16008 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val,
16009 		 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err)
16010 {
16011 	/*
16012 	 * Enter to do fast output. We are given that the sched_pin is
16013 	 * in place (if accounting is compiled in) and the cycle count taken
16014 	 * at entry is in place in ts_val. The idea here is that
16015 	 * we know how many more bytes needs to be sent (presumably either
16016 	 * during pacing or to fill the cwnd and that was greater than
16017 	 * the max-burst). We have how much to send and all the info we
16018 	 * need to just send.
16019 	 */
16020 #ifdef INET
16021 	struct ip *ip = NULL;
16022 #endif
16023 	struct udphdr *udp = NULL;
16024 	struct tcphdr *th = NULL;
16025 	struct mbuf *m, *s_mb;
16026 	struct inpcb *inp;
16027 	uint8_t *cpto;
16028 	struct tcp_log_buffer *lgb;
16029 #ifdef TCP_ACCOUNTING
16030 	uint64_t crtsc;
16031 #endif
16032 	struct tcpopt to;
16033 	u_char opt[TCP_MAXOLEN];
16034 	uint32_t hdrlen, optlen;
16035 #ifdef TCP_ACCOUNTING
16036 	int cnt_thru = 1;
16037 #endif
16038 	int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, ulen = 0;
16039 	uint16_t flags;
16040 	uint32_t s_soff;
16041 	uint32_t if_hw_tsomaxsegcount = 0, startseq;
16042 	uint32_t if_hw_tsomaxsegsize;
16043 	uint16_t add_flag = RACK_SENT_FP;
16044 #ifdef INET6
16045 	struct ip6_hdr *ip6 = NULL;
16046 
16047 	if (rack->r_is_v6) {
16048 		ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
16049 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
16050 	} else
16051 #endif				/* INET6 */
16052 	{
16053 #ifdef INET
16054 		ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
16055 		hdrlen = sizeof(struct tcpiphdr);
16056 #endif
16057 	}
16058 	if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
16059 		m = NULL;
16060 		goto failed;
16061 	}
16062 	startseq = tp->snd_max;
16063 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16064 	inp = rack->rc_inp;
16065 	len = rack->r_ctl.fsb.left_to_send;
16066 	to.to_flags = 0;
16067 	flags = rack->r_ctl.fsb.tcp_flags;
16068 	if (tp->t_flags & TF_RCVD_TSTMP) {
16069 		to.to_tsval = ms_cts + tp->ts_offset;
16070 		to.to_tsecr = tp->ts_recent;
16071 		to.to_flags = TOF_TS;
16072 	}
16073 	optlen = tcp_addoptions(&to, opt);
16074 	hdrlen += optlen;
16075 	udp = rack->r_ctl.fsb.udp;
16076 	if (udp)
16077 		hdrlen += sizeof(struct udphdr);
16078 	if (rack->r_ctl.rc_pace_max_segs)
16079 		max_val = rack->r_ctl.rc_pace_max_segs;
16080 	else if (rack->rc_user_set_max_segs)
16081 		max_val = rack->rc_user_set_max_segs * segsiz;
16082 	else
16083 		max_val = len;
16084 	if ((tp->t_flags & TF_TSO) &&
16085 	    V_tcp_do_tso &&
16086 	    (len > segsiz) &&
16087 	    (tp->t_port == 0))
16088 		tso = 1;
16089 again:
16090 #ifdef INET6
16091 	if (MHLEN < hdrlen + max_linkhdr)
16092 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
16093 	else
16094 #endif
16095 		m = m_gethdr(M_NOWAIT, MT_DATA);
16096 	if (m == NULL)
16097 		goto failed;
16098 	m->m_data += max_linkhdr;
16099 	m->m_len = hdrlen;
16100 	th = rack->r_ctl.fsb.th;
16101 	/* Establish the len to send */
16102 	if (len > max_val)
16103 		len = max_val;
16104 	if ((tso) && (len + optlen > tp->t_maxseg)) {
16105 		uint32_t if_hw_tsomax;
16106 		int32_t max_len;
16107 
16108 		/* extract TSO information */
16109 		if_hw_tsomax = tp->t_tsomax;
16110 		if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
16111 		if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
16112 		/*
16113 		 * Check if we should limit by maximum payload
16114 		 * length:
16115 		 */
16116 		if (if_hw_tsomax != 0) {
16117 			/* compute maximum TSO length */
16118 			max_len = (if_hw_tsomax - hdrlen -
16119 				   max_linkhdr);
16120 			if (max_len <= 0) {
16121 				goto failed;
16122 			} else if (len > max_len) {
16123 				len = max_len;
16124 			}
16125 		}
16126 		if (len <= segsiz) {
16127 			/*
16128 			 * In case there are too many small fragments don't
16129 			 * use TSO:
16130 			 */
16131 			tso = 0;
16132 		}
16133 	} else {
16134 		tso = 0;
16135 	}
16136 	if ((tso == 0) && (len > segsiz))
16137 		len = segsiz;
16138 	if ((len == 0) ||
16139 	    (len <= MHLEN - hdrlen - max_linkhdr)) {
16140 		goto failed;
16141 	}
16142 	sb_offset = tp->snd_max - tp->snd_una;
16143 	th->th_seq = htonl(tp->snd_max);
16144 	th->th_ack = htonl(tp->rcv_nxt);
16145 	th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
16146 	if (th->th_win == 0) {
16147 		tp->t_sndzerowin++;
16148 		tp->t_flags |= TF_RXWIN0SENT;
16149 	} else
16150 		tp->t_flags &= ~TF_RXWIN0SENT;
16151 	tp->snd_up = tp->snd_una;	/* drag it along, its deprecated */
16152 	KMOD_TCPSTAT_INC(tcps_sndpack);
16153 	KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
16154 #ifdef STATS
16155 	stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
16156 				 len);
16157 #endif
16158 	if (rack->r_ctl.fsb.m == NULL)
16159 		goto failed;
16160 
16161 	/* s_mb and s_soff are saved for rack_log_output */
16162 	m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize,
16163 				    &s_mb, &s_soff);
16164 	if (len <= segsiz) {
16165 		/*
16166 		 * Must have ran out of mbufs for the copy
16167 		 * shorten it to no longer need tso. Lets
16168 		 * not put on sendalot since we are low on
16169 		 * mbufs.
16170 		 */
16171 		tso = 0;
16172 	}
16173 	if (rack->r_ctl.fsb.rfo_apply_push &&
16174 	    (len == rack->r_ctl.fsb.left_to_send)) {
16175 		flags |= TH_PUSH;
16176 		add_flag |= RACK_HAD_PUSH;
16177 	}
16178 	if ((m->m_next == NULL) || (len <= 0)){
16179 		goto failed;
16180 	}
16181 	if (udp) {
16182 		if (rack->r_is_v6)
16183 			ulen = hdrlen + len - sizeof(struct ip6_hdr);
16184 		else
16185 			ulen = hdrlen + len - sizeof(struct ip);
16186 		udp->uh_ulen = htons(ulen);
16187 	}
16188 	m->m_pkthdr.rcvif = (struct ifnet *)0;
16189 	if (TCPS_HAVERCVDSYN(tp->t_state) &&
16190 	    (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) {
16191 		int ect = tcp_ecn_output_established(tp, &flags, len, false);
16192 		if ((tp->t_state == TCPS_SYN_RECEIVED) &&
16193 		    (tp->t_flags2 & TF2_ECN_SND_ECE))
16194 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
16195 #ifdef INET6
16196 		if (rack->r_is_v6) {
16197 			ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
16198 			ip6->ip6_flow |= htonl(ect << 20);
16199 		}
16200 		else
16201 #endif
16202 		{
16203 #ifdef INET
16204 			ip->ip_tos &= ~IPTOS_ECN_MASK;
16205 			ip->ip_tos |= ect;
16206 #endif
16207 		}
16208 	}
16209 	tcp_set_flags(th, flags);
16210 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
16211 #ifdef INET6
16212 	if (rack->r_is_v6) {
16213 		if (tp->t_port) {
16214 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
16215 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
16216 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
16217 			th->th_sum = htons(0);
16218 			UDPSTAT_INC(udps_opackets);
16219 		} else {
16220 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
16221 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
16222 			th->th_sum = in6_cksum_pseudo(ip6,
16223 						      sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
16224 						      0);
16225 		}
16226 	}
16227 #endif
16228 #if defined(INET6) && defined(INET)
16229 	else
16230 #endif
16231 #ifdef INET
16232 	{
16233 		if (tp->t_port) {
16234 			m->m_pkthdr.csum_flags = CSUM_UDP;
16235 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
16236 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
16237 						ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
16238 			th->th_sum = htons(0);
16239 			UDPSTAT_INC(udps_opackets);
16240 		} else {
16241 			m->m_pkthdr.csum_flags = CSUM_TCP;
16242 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
16243 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
16244 					       ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
16245 									IPPROTO_TCP + len + optlen));
16246 		}
16247 		/* IP version must be set here for ipv4/ipv6 checking later */
16248 		KASSERT(ip->ip_v == IPVERSION,
16249 			("%s: IP version incorrect: %d", __func__, ip->ip_v));
16250 	}
16251 #endif
16252 	if (tso) {
16253 		KASSERT(len > tp->t_maxseg - optlen,
16254 			("%s: len <= tso_segsz tp:%p", __func__, tp));
16255 		m->m_pkthdr.csum_flags |= CSUM_TSO;
16256 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
16257 	}
16258 #ifdef INET6
16259 	if (rack->r_is_v6) {
16260 		ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
16261 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
16262 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
16263 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
16264 		else
16265 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
16266 	}
16267 #endif
16268 #if defined(INET) && defined(INET6)
16269 	else
16270 #endif
16271 #ifdef INET
16272 	{
16273 		ip->ip_len = htons(m->m_pkthdr.len);
16274 		ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
16275 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
16276 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
16277 			if (tp->t_port == 0 || len < V_tcp_minmss) {
16278 				ip->ip_off |= htons(IP_DF);
16279 			}
16280 		} else {
16281 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
16282 		}
16283 	}
16284 #endif
16285 	/* Time to copy in our header */
16286 	cpto = mtod(m, uint8_t *);
16287 	memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
16288 	th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
16289 	if (optlen) {
16290 		bcopy(opt, th + 1, optlen);
16291 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
16292 	} else {
16293 		th->th_off = sizeof(struct tcphdr) >> 2;
16294 	}
16295 	if (tcp_bblogging_on(rack->rc_tp)) {
16296 		union tcp_log_stackspecific log;
16297 
16298 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
16299 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
16300 		if (rack->rack_no_prr)
16301 			log.u_bbr.flex1 = 0;
16302 		else
16303 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
16304 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
16305 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
16306 		log.u_bbr.flex4 = max_val;
16307 		log.u_bbr.flex5 = 0;
16308 		/* Save off the early/late values */
16309 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
16310 		log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
16311 		log.u_bbr.bw_inuse = rack_get_bw(rack);
16312 		log.u_bbr.flex8 = 0;
16313 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
16314 		log.u_bbr.flex7 = 44;
16315 		log.u_bbr.pkts_out = tp->t_maxseg;
16316 		log.u_bbr.timeStamp = cts;
16317 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
16318 		log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
16319 		log.u_bbr.delivered = 0;
16320 		lgb = tcp_log_event(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
16321 				     len, &log, false, NULL, NULL, 0, tv);
16322 	} else
16323 		lgb = NULL;
16324 #ifdef INET6
16325 	if (rack->r_is_v6) {
16326 		error = ip6_output(m, NULL,
16327 				   &inp->inp_route6,
16328 				   0, NULL, NULL, inp);
16329 	}
16330 #endif
16331 #if defined(INET) && defined(INET6)
16332 	else
16333 #endif
16334 #ifdef INET
16335 	{
16336 		error = ip_output(m, NULL,
16337 				  &inp->inp_route,
16338 				  0, 0, inp);
16339 	}
16340 #endif
16341 	if (lgb) {
16342 		lgb->tlb_errno = error;
16343 		lgb = NULL;
16344 	}
16345 	if (error) {
16346 		*send_err = error;
16347 		m = NULL;
16348 		goto failed;
16349 	}
16350 	rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv),
16351 			NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls);
16352 	m = NULL;
16353 	if (tp->snd_una == tp->snd_max) {
16354 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
16355 		rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
16356 		tp->t_acktime = ticks;
16357 	}
16358 	if (error == 0)
16359 		tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls);
16360 
16361 	rack->forced_ack = 0;	/* If we send something zap the FA flag */
16362 	tot_len += len;
16363 	if ((tp->t_flags & TF_GPUTINPROG) == 0)
16364 		rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset);
16365 	tp->snd_max += len;
16366 	tp->snd_nxt = tp->snd_max;
16367 	{
16368 		int idx;
16369 
16370 		idx = (len / segsiz) + 3;
16371 		if (idx >= TCP_MSS_ACCT_ATIMER)
16372 			counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
16373 		else
16374 			counter_u64_add(rack_out_size[idx], 1);
16375 	}
16376 	if (len <= rack->r_ctl.fsb.left_to_send)
16377 		rack->r_ctl.fsb.left_to_send -= len;
16378 	else
16379 		rack->r_ctl.fsb.left_to_send = 0;
16380 	if (rack->r_ctl.fsb.left_to_send < segsiz) {
16381 		rack->r_fast_output = 0;
16382 		rack->r_ctl.fsb.left_to_send = 0;
16383 		/* At the end of fast_output scale up the sb */
16384 		SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd);
16385 		rack_sndbuf_autoscale(rack);
16386 		SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd);
16387 	}
16388 	if (tp->t_rtttime == 0) {
16389 		tp->t_rtttime = ticks;
16390 		tp->t_rtseq = startseq;
16391 		KMOD_TCPSTAT_INC(tcps_segstimed);
16392 	}
16393 	if ((rack->r_ctl.fsb.left_to_send >= segsiz) &&
16394 	    (max_val > len) &&
16395 	    (tso == 0)) {
16396 		max_val -= len;
16397 		len = segsiz;
16398 		th = rack->r_ctl.fsb.th;
16399 #ifdef TCP_ACCOUNTING
16400 		cnt_thru++;
16401 #endif
16402 		goto again;
16403 	}
16404 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
16405 	counter_u64_add(rack_fto_send, 1);
16406 	slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz);
16407 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0);
16408 #ifdef TCP_ACCOUNTING
16409 	crtsc = get_cyclecount();
16410 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16411 		tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
16412 	}
16413 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16414 		tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
16415 	}
16416 	if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16417 		tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz);
16418 	}
16419 	sched_unpin();
16420 #endif
16421 	return (0);
16422 failed:
16423 	if (m)
16424 		m_free(m);
16425 	rack->r_fast_output = 0;
16426 	return (-1);
16427 }
16428 
16429 static struct rack_sendmap *
16430 rack_check_collapsed(struct tcp_rack *rack, uint32_t cts)
16431 {
16432 	struct rack_sendmap *rsm = NULL;
16433 	struct rack_sendmap fe;
16434 	int thresh;
16435 
16436 restart:
16437 	fe.r_start = rack->r_ctl.last_collapse_point;
16438 	rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
16439 	if ((rsm == NULL) || ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0)) {
16440 		/* Nothing, strange turn off validity  */
16441 		rack->r_collapse_point_valid = 0;
16442 		return (NULL);
16443 	}
16444 	/* Can we send it yet? */
16445 	if (rsm->r_end > (rack->rc_tp->snd_una + rack->rc_tp->snd_wnd)) {
16446 		/*
16447 		 * Receiver window has not grown enough for
16448 		 * the segment to be put on the wire.
16449 		 */
16450 		return (NULL);
16451 	}
16452 	if (rsm->r_flags & RACK_ACKED) {
16453 		/*
16454 		 * It has been sacked, lets move to the
16455 		 * next one if possible.
16456 		 */
16457 		rack->r_ctl.last_collapse_point = rsm->r_end;
16458 		/* Are we done? */
16459 		if (SEQ_GEQ(rack->r_ctl.last_collapse_point,
16460 			    rack->r_ctl.high_collapse_point)) {
16461 			rack->r_collapse_point_valid = 0;
16462 			return (NULL);
16463 		}
16464 		goto restart;
16465 	}
16466 	/* Now has it been long enough ? */
16467 	thresh = rack_calc_thresh_rack(rack, rack_grab_rtt(rack->rc_tp, rack), cts);
16468 	if ((cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])) > thresh) {
16469 		rack_log_collapse(rack, rsm->r_start,
16470 				  (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])),
16471 				  thresh, __LINE__, 6, rsm->r_flags, rsm);
16472 		return (rsm);
16473 	}
16474 	/* Not enough time */
16475 	rack_log_collapse(rack, rsm->r_start,
16476 			  (cts - ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)])),
16477 			  thresh, __LINE__, 7, rsm->r_flags, rsm);
16478 	return (NULL);
16479 }
16480 
16481 static int
16482 rack_output(struct tcpcb *tp)
16483 {
16484 	struct socket *so;
16485 	uint32_t recwin;
16486 	uint32_t sb_offset, s_moff = 0;
16487 	int32_t len, error = 0;
16488 	uint16_t flags;
16489 	struct mbuf *m, *s_mb = NULL;
16490 	struct mbuf *mb;
16491 	uint32_t if_hw_tsomaxsegcount = 0;
16492 	uint32_t if_hw_tsomaxsegsize;
16493 	int32_t segsiz, minseg;
16494 	long tot_len_this_send = 0;
16495 #ifdef INET
16496 	struct ip *ip = NULL;
16497 #endif
16498 	struct udphdr *udp = NULL;
16499 	struct tcp_rack *rack;
16500 	struct tcphdr *th;
16501 	uint8_t pass = 0;
16502 	uint8_t mark = 0;
16503 	uint8_t wanted_cookie = 0;
16504 	u_char opt[TCP_MAXOLEN];
16505 	unsigned ipoptlen, optlen, hdrlen, ulen=0;
16506 	uint32_t rack_seq;
16507 
16508 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
16509 	unsigned ipsec_optlen = 0;
16510 
16511 #endif
16512 	int32_t idle, sendalot;
16513 	int32_t sub_from_prr = 0;
16514 	volatile int32_t sack_rxmit;
16515 	struct rack_sendmap *rsm = NULL;
16516 	int32_t tso, mtu;
16517 	struct tcpopt to;
16518 	int32_t slot = 0;
16519 	int32_t sup_rack = 0;
16520 	uint32_t cts, ms_cts, delayed, early;
16521 	uint16_t add_flag = RACK_SENT_SP;
16522 	/* The doing_tlp flag will be set by the actual rack_timeout_tlp() */
16523 	uint8_t hpts_calling,  doing_tlp = 0;
16524 	uint32_t cwnd_to_use, pace_max_seg;
16525 	int32_t do_a_prefetch = 0;
16526 	int32_t prefetch_rsm = 0;
16527 	int32_t orig_len = 0;
16528 	struct timeval tv;
16529 	int32_t prefetch_so_done = 0;
16530 	struct tcp_log_buffer *lgb;
16531 	struct inpcb *inp = tptoinpcb(tp);
16532 	struct sockbuf *sb;
16533 	uint64_t ts_val = 0;
16534 #ifdef TCP_ACCOUNTING
16535 	uint64_t crtsc;
16536 #endif
16537 #ifdef INET6
16538 	struct ip6_hdr *ip6 = NULL;
16539 	int32_t isipv6;
16540 #endif
16541 	bool hw_tls = false;
16542 
16543 	NET_EPOCH_ASSERT();
16544 	INP_WLOCK_ASSERT(inp);
16545 
16546 	/* setup and take the cache hits here */
16547 	rack = (struct tcp_rack *)tp->t_fb_ptr;
16548 #ifdef TCP_ACCOUNTING
16549 	sched_pin();
16550 	ts_val = get_cyclecount();
16551 #endif
16552 	hpts_calling = inp->inp_hpts_calls;
16553 #ifdef TCP_OFFLOAD
16554 	if (tp->t_flags & TF_TOE) {
16555 #ifdef TCP_ACCOUNTING
16556 		sched_unpin();
16557 #endif
16558 		return (tcp_offload_output(tp));
16559 	}
16560 #endif
16561 	/*
16562 	 * For TFO connections in SYN_RECEIVED, only allow the initial
16563 	 * SYN|ACK and those sent by the retransmit timer.
16564 	 */
16565 	if (IS_FASTOPEN(tp->t_flags) &&
16566 	    (tp->t_state == TCPS_SYN_RECEIVED) &&
16567 	    SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
16568 	    (rack->r_ctl.rc_resend == NULL)) {         /* not a retransmit */
16569 #ifdef TCP_ACCOUNTING
16570 		sched_unpin();
16571 #endif
16572 		return (0);
16573 	}
16574 #ifdef INET6
16575 	if (rack->r_state) {
16576 		/* Use the cache line loaded if possible */
16577 		isipv6 = rack->r_is_v6;
16578 	} else {
16579 		isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0;
16580 	}
16581 #endif
16582 	early = 0;
16583 	cts = tcp_get_usecs(&tv);
16584 	ms_cts = tcp_tv_to_mssectick(&tv);
16585 	if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
16586 	    tcp_in_hpts(rack->rc_inp)) {
16587 		/*
16588 		 * We are on the hpts for some timer but not hptsi output.
16589 		 * Remove from the hpts unconditionally.
16590 		 */
16591 		rack_timer_cancel(tp, rack, cts, __LINE__);
16592 	}
16593 	/* Are we pacing and late? */
16594 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16595 	    TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
16596 		/* We are delayed */
16597 		delayed = cts - rack->r_ctl.rc_last_output_to;
16598 	} else {
16599 		delayed = 0;
16600 	}
16601 	/* Do the timers, which may override the pacer */
16602 	if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
16603 		int retval;
16604 
16605 		retval = rack_process_timers(tp, rack, cts, hpts_calling,
16606 		    &doing_tlp);
16607 		if (retval != 0) {
16608 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
16609 #ifdef TCP_ACCOUNTING
16610 			sched_unpin();
16611 #endif
16612 			/*
16613 			 * If timers want tcp_drop(), then pass error out,
16614 			 * otherwise suppress it.
16615 			 */
16616 			return (retval < 0 ? retval : 0);
16617 		}
16618 	}
16619 	if (rack->rc_in_persist) {
16620 		if (tcp_in_hpts(rack->rc_inp) == 0) {
16621 			/* Timer is not running */
16622 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
16623 		}
16624 #ifdef TCP_ACCOUNTING
16625 		sched_unpin();
16626 #endif
16627 		return (0);
16628 	}
16629 	if ((rack->rc_ack_required == 1) &&
16630 	    (rack->r_timer_override == 0)){
16631 		/* A timeout occurred and no ack has arrived */
16632 		if (tcp_in_hpts(rack->rc_inp) == 0) {
16633 			/* Timer is not running */
16634 			rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
16635 		}
16636 #ifdef TCP_ACCOUNTING
16637 		sched_unpin();
16638 #endif
16639 		return (0);
16640 	}
16641 	if ((rack->r_timer_override) ||
16642 	    (rack->rc_ack_can_sendout_data) ||
16643 	    (delayed) ||
16644 	    (tp->t_state < TCPS_ESTABLISHED)) {
16645 		rack->rc_ack_can_sendout_data = 0;
16646 		if (tcp_in_hpts(rack->rc_inp))
16647 			tcp_hpts_remove(rack->rc_inp);
16648 	} else if (tcp_in_hpts(rack->rc_inp)) {
16649 		/*
16650 		 * On the hpts you can't pass even if ACKNOW is on, we will
16651 		 * when the hpts fires.
16652 		 */
16653 #ifdef TCP_ACCOUNTING
16654 		crtsc = get_cyclecount();
16655 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16656 			tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val);
16657 		}
16658 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16659 			tp->tcp_cnt_counters[SND_BLOCKED]++;
16660 		}
16661 		sched_unpin();
16662 #endif
16663 		counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
16664 		return (0);
16665 	}
16666 	rack->rc_inp->inp_hpts_calls = 0;
16667 	/* Finish out both pacing early and late accounting */
16668 	if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16669 	    TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) {
16670 		early = rack->r_ctl.rc_last_output_to - cts;
16671 	} else
16672 		early = 0;
16673 	if (delayed) {
16674 		rack->r_ctl.rc_agg_delayed += delayed;
16675 		rack->r_late = 1;
16676 	} else if (early) {
16677 		rack->r_ctl.rc_agg_early += early;
16678 		rack->r_early = 1;
16679 	}
16680 	/* Now that early/late accounting is done turn off the flag */
16681 	rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
16682 	rack->r_wanted_output = 0;
16683 	rack->r_timer_override = 0;
16684 	if ((tp->t_state != rack->r_state) &&
16685 	    TCPS_HAVEESTABLISHED(tp->t_state)) {
16686 		rack_set_state(tp, rack);
16687 	}
16688 	if ((rack->r_fast_output) &&
16689 	    (doing_tlp == 0) &&
16690 	    (tp->rcv_numsacks == 0)) {
16691 		int ret;
16692 
16693 		error = 0;
16694 		ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
16695 		if (ret >= 0)
16696 			return(ret);
16697 		else if (error) {
16698 			inp = rack->rc_inp;
16699 			so = inp->inp_socket;
16700 			sb = &so->so_snd;
16701 			goto nomore;
16702 		}
16703 	}
16704 	inp = rack->rc_inp;
16705 	/*
16706 	 * For TFO connections in SYN_SENT or SYN_RECEIVED,
16707 	 * only allow the initial SYN or SYN|ACK and those sent
16708 	 * by the retransmit timer.
16709 	 */
16710 	if (IS_FASTOPEN(tp->t_flags) &&
16711 	    ((tp->t_state == TCPS_SYN_RECEIVED) ||
16712 	     (tp->t_state == TCPS_SYN_SENT)) &&
16713 	    SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
16714 	    (tp->t_rxtshift == 0)) {              /* not a retransmit */
16715 		cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16716 		so = inp->inp_socket;
16717 		sb = &so->so_snd;
16718 		goto just_return_nolock;
16719 	}
16720 	/*
16721 	 * Determine length of data that should be transmitted, and flags
16722 	 * that will be used. If there is some data or critical controls
16723 	 * (SYN, RST) to send, then transmit; otherwise, investigate
16724 	 * further.
16725 	 */
16726 	idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
16727 	if (tp->t_idle_reduce) {
16728 		if (idle && (TICKS_2_USEC(ticks - tp->t_rcvtime) >= tp->t_rxtcur))
16729 			rack_cc_after_idle(rack, tp);
16730 	}
16731 	tp->t_flags &= ~TF_LASTIDLE;
16732 	if (idle) {
16733 		if (tp->t_flags & TF_MORETOCOME) {
16734 			tp->t_flags |= TF_LASTIDLE;
16735 			idle = 0;
16736 		}
16737 	}
16738 	if ((tp->snd_una == tp->snd_max) &&
16739 	    rack->r_ctl.rc_went_idle_time &&
16740 	    TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) {
16741 		idle = cts - rack->r_ctl.rc_went_idle_time;
16742 		if (idle > rack_min_probertt_hold) {
16743 			/* Count as a probe rtt */
16744 			if (rack->in_probe_rtt == 0) {
16745 				rack->r_ctl.rc_lower_rtt_us_cts = cts;
16746 				rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
16747 				rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
16748 				rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
16749 			} else {
16750 				rack_exit_probertt(rack, cts);
16751 			}
16752 		}
16753 		idle = 0;
16754 	}
16755 	if (rack_use_fsb && (rack->r_fsb_inited == 0) && (rack->r_state != TCPS_CLOSED))
16756 		rack_init_fsb_block(tp, rack);
16757 again:
16758 	/*
16759 	 * If we've recently taken a timeout, snd_max will be greater than
16760 	 * snd_nxt.  There may be SACK information that allows us to avoid
16761 	 * resending already delivered data.  Adjust snd_nxt accordingly.
16762 	 */
16763 	sendalot = 0;
16764 	cts = tcp_get_usecs(&tv);
16765 	ms_cts = tcp_tv_to_mssectick(&tv);
16766 	tso = 0;
16767 	mtu = 0;
16768 	segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16769 	minseg = segsiz;
16770 	if (rack->r_ctl.rc_pace_max_segs == 0)
16771 		pace_max_seg = rack->rc_user_set_max_segs * segsiz;
16772 	else
16773 		pace_max_seg = rack->r_ctl.rc_pace_max_segs;
16774 	sb_offset = tp->snd_max - tp->snd_una;
16775 	cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16776 	flags = tcp_outflags[tp->t_state];
16777 	while (rack->rc_free_cnt < rack_free_cache) {
16778 		rsm = rack_alloc(rack);
16779 		if (rsm == NULL) {
16780 			if (inp->inp_hpts_calls)
16781 				/* Retry in a ms */
16782 				slot = (1 * HPTS_USEC_IN_MSEC);
16783 			so = inp->inp_socket;
16784 			sb = &so->so_snd;
16785 			goto just_return_nolock;
16786 		}
16787 		TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
16788 		rack->rc_free_cnt++;
16789 		rsm = NULL;
16790 	}
16791 	if (inp->inp_hpts_calls)
16792 		inp->inp_hpts_calls = 0;
16793 	sack_rxmit = 0;
16794 	len = 0;
16795 	rsm = NULL;
16796 	if (flags & TH_RST) {
16797 		SOCKBUF_LOCK(&inp->inp_socket->so_snd);
16798 		so = inp->inp_socket;
16799 		sb = &so->so_snd;
16800 		goto send;
16801 	}
16802 	if (rack->r_ctl.rc_resend) {
16803 		/* Retransmit timer */
16804 		rsm = rack->r_ctl.rc_resend;
16805 		rack->r_ctl.rc_resend = NULL;
16806 		len = rsm->r_end - rsm->r_start;
16807 		sack_rxmit = 1;
16808 		sendalot = 0;
16809 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16810 			("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16811 			 __func__, __LINE__,
16812 			 rsm->r_start, tp->snd_una, tp, rack, rsm));
16813 		sb_offset = rsm->r_start - tp->snd_una;
16814 		if (len >= segsiz)
16815 			len = segsiz;
16816 	} else if (rack->r_collapse_point_valid &&
16817 		   ((rsm = rack_check_collapsed(rack, cts)) != NULL)) {
16818 		/*
16819 		 * If an RSM is returned then enough time has passed
16820 		 * for us to retransmit it. Move up the collapse point,
16821 		 * since this rsm has its chance to retransmit now.
16822 		 */
16823 		tcp_trace_point(rack->rc_tp, TCP_TP_COLLAPSED_RXT);
16824 		rack->r_ctl.last_collapse_point = rsm->r_end;
16825 		/* Are we done? */
16826 		if (SEQ_GEQ(rack->r_ctl.last_collapse_point,
16827 			    rack->r_ctl.high_collapse_point))
16828 			rack->r_collapse_point_valid = 0;
16829 		sack_rxmit = 1;
16830 		/* We are not doing a TLP */
16831 		doing_tlp = 0;
16832 		len = rsm->r_end - rsm->r_start;
16833 		sb_offset = rsm->r_start - tp->snd_una;
16834 		sendalot = 0;
16835 		if ((rack->full_size_rxt == 0) &&
16836 		    (rack->shape_rxt_to_pacing_min == 0) &&
16837 		    (len >= segsiz))
16838 			len = segsiz;
16839 	} else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) {
16840 		/* We have a retransmit that takes precedence */
16841 		if ((!IN_FASTRECOVERY(tp->t_flags)) &&
16842 		    ((rsm->r_flags & RACK_MUST_RXT) == 0) &&
16843 		    ((tp->t_flags & TF_WASFRECOVERY) == 0)) {
16844 			/* Enter recovery if not induced by a time-out */
16845 			rack_cong_signal(tp, CC_NDUPACK, tp->snd_una, __LINE__);
16846 		}
16847 #ifdef INVARIANTS
16848 		if (SEQ_LT(rsm->r_start, tp->snd_una)) {
16849 			panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
16850 			      tp, rack, rsm, rsm->r_start, tp->snd_una);
16851 		}
16852 #endif
16853 		len = rsm->r_end - rsm->r_start;
16854 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16855 			("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16856 			 __func__, __LINE__,
16857 			 rsm->r_start, tp->snd_una, tp, rack, rsm));
16858 		sb_offset = rsm->r_start - tp->snd_una;
16859 		sendalot = 0;
16860 		if (len >= segsiz)
16861 			len = segsiz;
16862 		if (len > 0) {
16863 			sack_rxmit = 1;
16864 			KMOD_TCPSTAT_INC(tcps_sack_rexmits);
16865 			KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
16866 			    min(len, segsiz));
16867 		}
16868 	} else if (rack->r_ctl.rc_tlpsend) {
16869 		/* Tail loss probe */
16870 		long cwin;
16871 		long tlen;
16872 
16873 		/*
16874 		 * Check if we can do a TLP with a RACK'd packet
16875 		 * this can happen if we are not doing the rack
16876 		 * cheat and we skipped to a TLP and it
16877 		 * went off.
16878 		 */
16879 		rsm = rack->r_ctl.rc_tlpsend;
16880 		/* We are doing a TLP make sure the flag is preent */
16881 		rsm->r_flags |= RACK_TLP;
16882 		rack->r_ctl.rc_tlpsend = NULL;
16883 		sack_rxmit = 1;
16884 		tlen = rsm->r_end - rsm->r_start;
16885 		if (tlen > segsiz)
16886 			tlen = segsiz;
16887 		KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16888 			("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16889 			 __func__, __LINE__,
16890 			 rsm->r_start, tp->snd_una, tp, rack, rsm));
16891 		sb_offset = rsm->r_start - tp->snd_una;
16892 		cwin = min(tp->snd_wnd, tlen);
16893 		len = cwin;
16894 	}
16895 	if (rack->r_must_retran &&
16896 	    (doing_tlp == 0) &&
16897 	    (SEQ_GT(tp->snd_max, tp->snd_una)) &&
16898 	    (rsm == NULL)) {
16899 		/*
16900 		 * There are two different ways that we
16901 		 * can get into this block:
16902 		 * a) This is a non-sack connection, we had a time-out
16903 		 *    and thus r_must_retran was set and everything
16904 		 *    left outstanding as been marked for retransmit.
16905 		 * b) The MTU of the path shrank, so that everything
16906 		 *    was marked to be retransmitted with the smaller
16907 		 *    mtu and r_must_retran was set.
16908 		 *
16909 		 * This means that we expect the sendmap (outstanding)
16910 		 * to all be marked must. We can use the tmap to
16911 		 * look at them.
16912 		 *
16913 		 */
16914 		int sendwin, flight;
16915 
16916 		sendwin = min(tp->snd_wnd, tp->snd_cwnd);
16917 		flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto);
16918 		if (flight >= sendwin) {
16919 			/*
16920 			 * We can't send yet.
16921 			 */
16922 			so = inp->inp_socket;
16923 			sb = &so->so_snd;
16924 			goto just_return_nolock;
16925 		}
16926 		/*
16927 		 * This is the case a/b mentioned above. All
16928 		 * outstanding/not-acked should be marked.
16929 		 * We can use the tmap to find them.
16930 		 */
16931 		rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
16932 		if (rsm == NULL) {
16933 			/* TSNH */
16934 			rack->r_must_retran = 0;
16935 			rack->r_ctl.rc_out_at_rto = 0;
16936 			so = inp->inp_socket;
16937 			sb = &so->so_snd;
16938 			goto just_return_nolock;
16939 		}
16940 		if ((rsm->r_flags & RACK_MUST_RXT) == 0) {
16941 			/*
16942 			 * The first one does not have the flag, did we collapse
16943 			 * further up in our list?
16944 			 */
16945 			rack->r_must_retran = 0;
16946 			rack->r_ctl.rc_out_at_rto = 0;
16947 			rsm = NULL;
16948 			sack_rxmit = 0;
16949 		} else {
16950 			sack_rxmit = 1;
16951 			len = rsm->r_end - rsm->r_start;
16952 			sb_offset = rsm->r_start - tp->snd_una;
16953 			sendalot = 0;
16954 			if ((rack->full_size_rxt == 0) &&
16955 			    (rack->shape_rxt_to_pacing_min == 0) &&
16956 			    (len >= segsiz))
16957 				len = segsiz;
16958 			/*
16959 			 * Delay removing the flag RACK_MUST_RXT so
16960 			 * that the fastpath for retransmit will
16961 			 * work with this rsm.
16962 			 */
16963 		}
16964 	}
16965 	/*
16966 	 * Enforce a connection sendmap count limit if set
16967 	 * as long as we are not retransmiting.
16968 	 */
16969 	if ((rsm == NULL) &&
16970 	    (rack->do_detection == 0) &&
16971 	    (V_tcp_map_entries_limit > 0) &&
16972 	    (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
16973 		counter_u64_add(rack_to_alloc_limited, 1);
16974 		if (!rack->alloc_limit_reported) {
16975 			rack->alloc_limit_reported = 1;
16976 			counter_u64_add(rack_alloc_limited_conns, 1);
16977 		}
16978 		so = inp->inp_socket;
16979 		sb = &so->so_snd;
16980 		goto just_return_nolock;
16981 	}
16982 	if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
16983 		/* we are retransmitting the fin */
16984 		len--;
16985 		if (len) {
16986 			/*
16987 			 * When retransmitting data do *not* include the
16988 			 * FIN. This could happen from a TLP probe.
16989 			 */
16990 			flags &= ~TH_FIN;
16991 		}
16992 	}
16993 	if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo &&
16994 	    ((rsm->r_flags & RACK_HAS_FIN) == 0)) {
16995 		int ret;
16996 
16997 		ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp);
16998 		if (ret == 0)
16999 			return (0);
17000 	}
17001 	so = inp->inp_socket;
17002 	sb = &so->so_snd;
17003 	if (do_a_prefetch == 0) {
17004 		kern_prefetch(sb, &do_a_prefetch);
17005 		do_a_prefetch = 1;
17006 	}
17007 #ifdef NETFLIX_SHARED_CWND
17008 	if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) &&
17009 	    rack->rack_enable_scwnd) {
17010 		/* We are doing cwnd sharing */
17011 		if (rack->gp_ready &&
17012 		    (rack->rack_attempted_scwnd == 0) &&
17013 		    (rack->r_ctl.rc_scw == NULL) &&
17014 		    tp->t_lib) {
17015 			/* The pcbid is in, lets make an attempt */
17016 			counter_u64_add(rack_try_scwnd, 1);
17017 			rack->rack_attempted_scwnd = 1;
17018 			rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp,
17019 								   &rack->r_ctl.rc_scw_index,
17020 								   segsiz);
17021 		}
17022 		if (rack->r_ctl.rc_scw &&
17023 		    (rack->rack_scwnd_is_idle == 1) &&
17024 		    sbavail(&so->so_snd)) {
17025 			/* we are no longer out of data */
17026 			tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
17027 			rack->rack_scwnd_is_idle = 0;
17028 		}
17029 		if (rack->r_ctl.rc_scw) {
17030 			/* First lets update and get the cwnd */
17031 			rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw,
17032 								    rack->r_ctl.rc_scw_index,
17033 								    tp->snd_cwnd, tp->snd_wnd, segsiz);
17034 		}
17035 	}
17036 #endif
17037 	/*
17038 	 * Get standard flags, and add SYN or FIN if requested by 'hidden'
17039 	 * state flags.
17040 	 */
17041 	if (tp->t_flags & TF_NEEDFIN)
17042 		flags |= TH_FIN;
17043 	if (tp->t_flags & TF_NEEDSYN)
17044 		flags |= TH_SYN;
17045 	if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
17046 		void *end_rsm;
17047 		end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
17048 		if (end_rsm)
17049 			kern_prefetch(end_rsm, &prefetch_rsm);
17050 		prefetch_rsm = 1;
17051 	}
17052 	SOCKBUF_LOCK(sb);
17053 	/*
17054 	 * If snd_nxt == snd_max and we have transmitted a FIN, the
17055 	 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
17056 	 * negative length.  This can also occur when TCP opens up its
17057 	 * congestion window while receiving additional duplicate acks after
17058 	 * fast-retransmit because TCP will reset snd_nxt to snd_max after
17059 	 * the fast-retransmit.
17060 	 *
17061 	 * In the normal retransmit-FIN-only case, however, snd_nxt will be
17062 	 * set to snd_una, the sb_offset will be 0, and the length may wind
17063 	 * up 0.
17064 	 *
17065 	 * If sack_rxmit is true we are retransmitting from the scoreboard
17066 	 * in which case len is already set.
17067 	 */
17068 	if ((sack_rxmit == 0) &&
17069 	    (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) {
17070 		uint32_t avail;
17071 
17072 		avail = sbavail(sb);
17073 		if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
17074 			sb_offset = tp->snd_nxt - tp->snd_una;
17075 		else
17076 			sb_offset = 0;
17077 		if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) {
17078 			if (rack->r_ctl.rc_tlp_new_data) {
17079 				/* TLP is forcing out new data */
17080 				if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
17081 					rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
17082 				}
17083 				if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) {
17084 					if (tp->snd_wnd > sb_offset)
17085 						len = tp->snd_wnd - sb_offset;
17086 					else
17087 						len = 0;
17088 				} else {
17089 					len = rack->r_ctl.rc_tlp_new_data;
17090 				}
17091 				rack->r_ctl.rc_tlp_new_data = 0;
17092 			}  else {
17093 				len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset);
17094 			}
17095 			if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) {
17096 				/*
17097 				 * For prr=off, we need to send only 1 MSS
17098 				 * at a time. We do this because another sack could
17099 				 * be arriving that causes us to send retransmits and
17100 				 * we don't want to be on a long pace due to a larger send
17101 				 * that keeps us from sending out the retransmit.
17102 				 */
17103 				len = segsiz;
17104 			}
17105 		} else {
17106 			uint32_t outstanding;
17107 			/*
17108 			 * We are inside of a Fast recovery episode, this
17109 			 * is caused by a SACK or 3 dup acks. At this point
17110 			 * we have sent all the retransmissions and we rely
17111 			 * on PRR to dictate what we will send in the form of
17112 			 * new data.
17113 			 */
17114 
17115 			outstanding = tp->snd_max - tp->snd_una;
17116 			if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
17117 				if (tp->snd_wnd > outstanding) {
17118 					len = tp->snd_wnd - outstanding;
17119 					/* Check to see if we have the data */
17120 					if ((sb_offset + len) > avail) {
17121 						/* It does not all fit */
17122 						if (avail > sb_offset)
17123 							len = avail - sb_offset;
17124 						else
17125 							len = 0;
17126 					}
17127 				} else {
17128 					len = 0;
17129 				}
17130 			} else if (avail > sb_offset) {
17131 				len = avail - sb_offset;
17132 			} else {
17133 				len = 0;
17134 			}
17135 			if (len > 0) {
17136 				if (len > rack->r_ctl.rc_prr_sndcnt) {
17137 					len = rack->r_ctl.rc_prr_sndcnt;
17138 				}
17139 				if (len > 0) {
17140 					sub_from_prr = 1;
17141 				}
17142 			}
17143 			if (len > segsiz) {
17144 				/*
17145 				 * We should never send more than a MSS when
17146 				 * retransmitting or sending new data in prr
17147 				 * mode unless the override flag is on. Most
17148 				 * likely the PRR algorithm is not going to
17149 				 * let us send a lot as well :-)
17150 				 */
17151 				if (rack->r_ctl.rc_prr_sendalot == 0) {
17152 					len = segsiz;
17153 				}
17154 			} else if (len < segsiz) {
17155 				/*
17156 				 * Do we send any? The idea here is if the
17157 				 * send empty's the socket buffer we want to
17158 				 * do it. However if not then lets just wait
17159 				 * for our prr_sndcnt to get bigger.
17160 				 */
17161 				long leftinsb;
17162 
17163 				leftinsb = sbavail(sb) - sb_offset;
17164 				if (leftinsb > len) {
17165 					/* This send does not empty the sb */
17166 					len = 0;
17167 				}
17168 			}
17169 		}
17170 	} else if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
17171 		/*
17172 		 * If you have not established
17173 		 * and are not doing FAST OPEN
17174 		 * no data please.
17175 		 */
17176 		if ((sack_rxmit == 0) &&
17177 		    (!IS_FASTOPEN(tp->t_flags))){
17178 			len = 0;
17179 			sb_offset = 0;
17180 		}
17181 	}
17182 	if (prefetch_so_done == 0) {
17183 		kern_prefetch(so, &prefetch_so_done);
17184 		prefetch_so_done = 1;
17185 	}
17186 	/*
17187 	 * Lop off SYN bit if it has already been sent.  However, if this is
17188 	 * SYN-SENT state and if segment contains data and if we don't know
17189 	 * that foreign host supports TAO, suppress sending segment.
17190 	 */
17191 	if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
17192 	    ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
17193 		/*
17194 		 * When sending additional segments following a TFO SYN|ACK,
17195 		 * do not include the SYN bit.
17196 		 */
17197 		if (IS_FASTOPEN(tp->t_flags) &&
17198 		    (tp->t_state == TCPS_SYN_RECEIVED))
17199 			flags &= ~TH_SYN;
17200 	}
17201 	/*
17202 	 * Be careful not to send data and/or FIN on SYN segments. This
17203 	 * measure is needed to prevent interoperability problems with not
17204 	 * fully conformant TCP implementations.
17205 	 */
17206 	if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
17207 		len = 0;
17208 		flags &= ~TH_FIN;
17209 	}
17210 	/*
17211 	 * On TFO sockets, ensure no data is sent in the following cases:
17212 	 *
17213 	 *  - When retransmitting SYN|ACK on a passively-created socket
17214 	 *
17215 	 *  - When retransmitting SYN on an actively created socket
17216 	 *
17217 	 *  - When sending a zero-length cookie (cookie request) on an
17218 	 *    actively created socket
17219 	 *
17220 	 *  - When the socket is in the CLOSED state (RST is being sent)
17221 	 */
17222 	if (IS_FASTOPEN(tp->t_flags) &&
17223 	    (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
17224 	     ((tp->t_state == TCPS_SYN_SENT) &&
17225 	      (tp->t_tfo_client_cookie_len == 0)) ||
17226 	     (flags & TH_RST))) {
17227 		sack_rxmit = 0;
17228 		len = 0;
17229 	}
17230 	/* Without fast-open there should never be data sent on a SYN */
17231 	if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) {
17232 		tp->snd_nxt = tp->iss;
17233 		len = 0;
17234 	}
17235 	if ((len > segsiz) && (tcp_dsack_block_exists(tp))) {
17236 		/* We only send 1 MSS if we have a DSACK block */
17237 		add_flag |= RACK_SENT_W_DSACK;
17238 		len = segsiz;
17239 	}
17240 	orig_len = len;
17241 	if (len <= 0) {
17242 		/*
17243 		 * If FIN has been sent but not acked, but we haven't been
17244 		 * called to retransmit, len will be < 0.  Otherwise, window
17245 		 * shrank after we sent into it.  If window shrank to 0,
17246 		 * cancel pending retransmit, pull snd_nxt back to (closed)
17247 		 * window, and set the persist timer if it isn't already
17248 		 * going.  If the window didn't close completely, just wait
17249 		 * for an ACK.
17250 		 *
17251 		 * We also do a general check here to ensure that we will
17252 		 * set the persist timer when we have data to send, but a
17253 		 * 0-byte window. This makes sure the persist timer is set
17254 		 * even if the packet hits one of the "goto send" lines
17255 		 * below.
17256 		 */
17257 		len = 0;
17258 		if ((tp->snd_wnd == 0) &&
17259 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
17260 		    (tp->snd_una == tp->snd_max) &&
17261 		    (sb_offset < (int)sbavail(sb))) {
17262 			rack_enter_persist(tp, rack, cts);
17263 		}
17264 	} else if ((rsm == NULL) &&
17265 		   (doing_tlp == 0) &&
17266 		   (len < pace_max_seg)) {
17267 		/*
17268 		 * We are not sending a maximum sized segment for
17269 		 * some reason. Should we not send anything (think
17270 		 * sws or persists)?
17271 		 */
17272 		if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
17273 		    (TCPS_HAVEESTABLISHED(tp->t_state)) &&
17274 		    (len < minseg) &&
17275 		    (len < (int)(sbavail(sb) - sb_offset))) {
17276 			/*
17277 			 * Here the rwnd is less than
17278 			 * the minimum pacing size, this is not a retransmit,
17279 			 * we are established and
17280 			 * the send is not the last in the socket buffer
17281 			 * we send nothing, and we may enter persists
17282 			 * if nothing is outstanding.
17283 			 */
17284 			len = 0;
17285 			if (tp->snd_max == tp->snd_una) {
17286 				/*
17287 				 * Nothing out we can
17288 				 * go into persists.
17289 				 */
17290 				rack_enter_persist(tp, rack, cts);
17291 			}
17292 		     } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) &&
17293 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
17294 			   (len < (int)(sbavail(sb) - sb_offset)) &&
17295 			   (len < minseg)) {
17296 			/*
17297 			 * Here we are not retransmitting, and
17298 			 * the cwnd is not so small that we could
17299 			 * not send at least a min size (rxt timer
17300 			 * not having gone off), We have 2 segments or
17301 			 * more already in flight, its not the tail end
17302 			 * of the socket buffer  and the cwnd is blocking
17303 			 * us from sending out a minimum pacing segment size.
17304 			 * Lets not send anything.
17305 			 */
17306 			len = 0;
17307 		} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
17308 			    min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
17309 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
17310 			   (len < (int)(sbavail(sb) - sb_offset)) &&
17311 			   (TCPS_HAVEESTABLISHED(tp->t_state))) {
17312 			/*
17313 			 * Here we have a send window but we have
17314 			 * filled it up and we can't send another pacing segment.
17315 			 * We also have in flight more than 2 segments
17316 			 * and we are not completing the sb i.e. we allow
17317 			 * the last bytes of the sb to go out even if
17318 			 * its not a full pacing segment.
17319 			 */
17320 			len = 0;
17321 		} else if ((rack->r_ctl.crte != NULL) &&
17322 			   (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) &&
17323 			   (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) &&
17324 			   (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) &&
17325 			   (len < (int)(sbavail(sb) - sb_offset))) {
17326 			/*
17327 			 * Here we are doing hardware pacing, this is not a TLP,
17328 			 * we are not sending a pace max segment size, there is rwnd
17329 			 * room to send at least N pace_max_seg, the cwnd is greater
17330 			 * than or equal to a full pacing segments plus 4 mss and we have 2 or
17331 			 * more segments in flight and its not the tail of the socket buffer.
17332 			 *
17333 			 * We don't want to send instead we need to get more ack's in to
17334 			 * allow us to send a full pacing segment. Normally, if we are pacing
17335 			 * about the right speed, we should have finished our pacing
17336 			 * send as most of the acks have come back if we are at the
17337 			 * right rate. This is a bit fuzzy since return path delay
17338 			 * can delay the acks, which is why we want to make sure we
17339 			 * have cwnd space to have a bit more than a max pace segments in flight.
17340 			 *
17341 			 * If we have not gotten our acks back we are pacing at too high a
17342 			 * rate delaying will not hurt and will bring our GP estimate down by
17343 			 * injecting the delay. If we don't do this we will send
17344 			 * 2 MSS out in response to the acks being clocked in which
17345 			 * defeats the point of hw-pacing (i.e. to help us get
17346 			 * larger TSO's out).
17347 			 */
17348 			len = 0;
17349 
17350 		}
17351 
17352 	}
17353 	/* len will be >= 0 after this point. */
17354 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
17355 	rack_sndbuf_autoscale(rack);
17356 	/*
17357 	 * Decide if we can use TCP Segmentation Offloading (if supported by
17358 	 * hardware).
17359 	 *
17360 	 * TSO may only be used if we are in a pure bulk sending state.  The
17361 	 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
17362 	 * options prevent using TSO.  With TSO the TCP header is the same
17363 	 * (except for the sequence number) for all generated packets.  This
17364 	 * makes it impossible to transmit any options which vary per
17365 	 * generated segment or packet.
17366 	 *
17367 	 * IPv4 handling has a clear separation of ip options and ip header
17368 	 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
17369 	 * the right thing below to provide length of just ip options and thus
17370 	 * checking for ipoptlen is enough to decide if ip options are present.
17371 	 */
17372 	ipoptlen = 0;
17373 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
17374 	/*
17375 	 * Pre-calculate here as we save another lookup into the darknesses
17376 	 * of IPsec that way and can actually decide if TSO is ok.
17377 	 */
17378 #ifdef INET6
17379 	if (isipv6 && IPSEC_ENABLED(ipv6))
17380 		ipsec_optlen = IPSEC_HDRSIZE(ipv6, inp);
17381 #ifdef INET
17382 	else
17383 #endif
17384 #endif				/* INET6 */
17385 #ifdef INET
17386 		if (IPSEC_ENABLED(ipv4))
17387 			ipsec_optlen = IPSEC_HDRSIZE(ipv4, inp);
17388 #endif				/* INET */
17389 #endif
17390 
17391 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
17392 	ipoptlen += ipsec_optlen;
17393 #endif
17394 	if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz &&
17395 	    (tp->t_port == 0) &&
17396 	    ((tp->t_flags & TF_SIGNATURE) == 0) &&
17397 	    tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
17398 	    ipoptlen == 0)
17399 		tso = 1;
17400 	{
17401 		uint32_t outstanding __unused;
17402 
17403 		outstanding = tp->snd_max - tp->snd_una;
17404 		if (tp->t_flags & TF_SENTFIN) {
17405 			/*
17406 			 * If we sent a fin, snd_max is 1 higher than
17407 			 * snd_una
17408 			 */
17409 			outstanding--;
17410 		}
17411 		if (sack_rxmit) {
17412 			if ((rsm->r_flags & RACK_HAS_FIN) == 0)
17413 				flags &= ~TH_FIN;
17414 		} else {
17415 			if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
17416 				   sbused(sb)))
17417 				flags &= ~TH_FIN;
17418 		}
17419 	}
17420 	recwin = lmin(lmax(sbspace(&so->so_rcv), 0),
17421 	    (long)TCP_MAXWIN << tp->rcv_scale);
17422 
17423 	/*
17424 	 * Sender silly window avoidance.   We transmit under the following
17425 	 * conditions when len is non-zero:
17426 	 *
17427 	 * - We have a full segment (or more with TSO) - This is the last
17428 	 * buffer in a write()/send() and we are either idle or running
17429 	 * NODELAY - we've timed out (e.g. persist timer) - we have more
17430 	 * then 1/2 the maximum send window's worth of data (receiver may be
17431 	 * limited the window size) - we need to retransmit
17432 	 */
17433 	if (len) {
17434 		if (len >= segsiz) {
17435 			goto send;
17436 		}
17437 		/*
17438 		 * NOTE! on localhost connections an 'ack' from the remote
17439 		 * end may occur synchronously with the output and cause us
17440 		 * to flush a buffer queued with moretocome.  XXX
17441 		 *
17442 		 */
17443 		if (!(tp->t_flags & TF_MORETOCOME) &&	/* normal case */
17444 		    (idle || (tp->t_flags & TF_NODELAY)) &&
17445 		    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17446 		    (tp->t_flags & TF_NOPUSH) == 0) {
17447 			pass = 2;
17448 			goto send;
17449 		}
17450 		if ((tp->snd_una == tp->snd_max) && len) {	/* Nothing outstanding */
17451 			pass = 22;
17452 			goto send;
17453 		}
17454 		if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
17455 			pass = 4;
17456 			goto send;
17457 		}
17458 		if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {	/* retransmit case */
17459 			pass = 5;
17460 			goto send;
17461 		}
17462 		if (sack_rxmit) {
17463 			pass = 6;
17464 			goto send;
17465 		}
17466 		if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) &&
17467 		    (ctf_outstanding(tp) < (segsiz * 2))) {
17468 			/*
17469 			 * We have less than two MSS outstanding (delayed ack)
17470 			 * and our rwnd will not let us send a full sized
17471 			 * MSS. Lets go ahead and let this small segment
17472 			 * out because we want to try to have at least two
17473 			 * packets inflight to not be caught by delayed ack.
17474 			 */
17475 			pass = 12;
17476 			goto send;
17477 		}
17478 	}
17479 	/*
17480 	 * Sending of standalone window updates.
17481 	 *
17482 	 * Window updates are important when we close our window due to a
17483 	 * full socket buffer and are opening it again after the application
17484 	 * reads data from it.  Once the window has opened again and the
17485 	 * remote end starts to send again the ACK clock takes over and
17486 	 * provides the most current window information.
17487 	 *
17488 	 * We must avoid the silly window syndrome whereas every read from
17489 	 * the receive buffer, no matter how small, causes a window update
17490 	 * to be sent.  We also should avoid sending a flurry of window
17491 	 * updates when the socket buffer had queued a lot of data and the
17492 	 * application is doing small reads.
17493 	 *
17494 	 * Prevent a flurry of pointless window updates by only sending an
17495 	 * update when we can increase the advertized window by more than
17496 	 * 1/4th of the socket buffer capacity.  When the buffer is getting
17497 	 * full or is very small be more aggressive and send an update
17498 	 * whenever we can increase by two mss sized segments. In all other
17499 	 * situations the ACK's to new incoming data will carry further
17500 	 * window increases.
17501 	 *
17502 	 * Don't send an independent window update if a delayed ACK is
17503 	 * pending (it will get piggy-backed on it) or the remote side
17504 	 * already has done a half-close and won't send more data.  Skip
17505 	 * this if the connection is in T/TCP half-open state.
17506 	 */
17507 	if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
17508 	    !(tp->t_flags & TF_DELACK) &&
17509 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
17510 		/*
17511 		 * "adv" is the amount we could increase the window, taking
17512 		 * into account that we are limited by TCP_MAXWIN <<
17513 		 * tp->rcv_scale.
17514 		 */
17515 		int32_t adv;
17516 		int oldwin;
17517 
17518 		adv = recwin;
17519 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
17520 			oldwin = (tp->rcv_adv - tp->rcv_nxt);
17521 			if (adv > oldwin)
17522 			    adv -= oldwin;
17523 			else {
17524 				/* We can't increase the window */
17525 				adv = 0;
17526 			}
17527 		} else
17528 			oldwin = 0;
17529 
17530 		/*
17531 		 * If the new window size ends up being the same as or less
17532 		 * than the old size when it is scaled, then don't force
17533 		 * a window update.
17534 		 */
17535 		if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale)
17536 			goto dontupdate;
17537 
17538 		if (adv >= (int32_t)(2 * segsiz) &&
17539 		    (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
17540 		     recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
17541 		     so->so_rcv.sb_hiwat <= 8 * segsiz)) {
17542 			pass = 7;
17543 			goto send;
17544 		}
17545 		if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) {
17546 			pass = 23;
17547 			goto send;
17548 		}
17549 	}
17550 dontupdate:
17551 
17552 	/*
17553 	 * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
17554 	 * is also a catch-all for the retransmit timer timeout case.
17555 	 */
17556 	if (tp->t_flags & TF_ACKNOW) {
17557 		pass = 8;
17558 		goto send;
17559 	}
17560 	if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
17561 		pass = 9;
17562 		goto send;
17563 	}
17564 	/*
17565 	 * If our state indicates that FIN should be sent and we have not
17566 	 * yet done so, then we need to send.
17567 	 */
17568 	if ((flags & TH_FIN) &&
17569 	    (tp->snd_nxt == tp->snd_una)) {
17570 		pass = 11;
17571 		goto send;
17572 	}
17573 	/*
17574 	 * No reason to send a segment, just return.
17575 	 */
17576 just_return:
17577 	SOCKBUF_UNLOCK(sb);
17578 just_return_nolock:
17579 	{
17580 		int app_limited = CTF_JR_SENT_DATA;
17581 
17582 		if (tot_len_this_send > 0) {
17583 			/* Make sure snd_nxt is up to max */
17584 			rack->r_ctl.fsb.recwin = recwin;
17585 			slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz);
17586 			if ((error == 0) &&
17587 			    rack_use_rfo &&
17588 			    ((flags & (TH_SYN|TH_FIN)) == 0) &&
17589 			    (ipoptlen == 0) &&
17590 			    (tp->snd_nxt == tp->snd_max) &&
17591 			    (tp->rcv_numsacks == 0) &&
17592 			    rack->r_fsb_inited &&
17593 			    TCPS_HAVEESTABLISHED(tp->t_state) &&
17594 			    (rack->r_must_retran == 0) &&
17595 			    ((tp->t_flags & TF_NEEDFIN) == 0) &&
17596 			    (len > 0) && (orig_len > 0) &&
17597 			    (orig_len > len) &&
17598 			    ((orig_len - len) >= segsiz) &&
17599 			    ((optlen == 0) ||
17600 			     ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
17601 				/* We can send at least one more MSS using our fsb */
17602 
17603 				rack->r_fast_output = 1;
17604 				rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
17605 				rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
17606 				rack->r_ctl.fsb.tcp_flags = flags;
17607 				rack->r_ctl.fsb.left_to_send = orig_len - len;
17608 				if (hw_tls)
17609 					rack->r_ctl.fsb.hw_tls = 1;
17610 				else
17611 					rack->r_ctl.fsb.hw_tls = 0;
17612 				KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
17613 					("rack:%p left_to_send:%u sbavail:%u out:%u",
17614 					rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
17615 					 (tp->snd_max - tp->snd_una)));
17616 				if (rack->r_ctl.fsb.left_to_send < segsiz)
17617 					rack->r_fast_output = 0;
17618 				else {
17619 					if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
17620 						rack->r_ctl.fsb.rfo_apply_push = 1;
17621 					else
17622 						rack->r_ctl.fsb.rfo_apply_push = 0;
17623 				}
17624 			} else
17625 				rack->r_fast_output = 0;
17626 
17627 
17628 			rack_log_fsb(rack, tp, so, flags,
17629 				     ipoptlen, orig_len, len, 0,
17630 				     1, optlen, __LINE__, 1);
17631 			if (SEQ_GT(tp->snd_max, tp->snd_nxt))
17632 				tp->snd_nxt = tp->snd_max;
17633 		} else {
17634 			int end_window = 0;
17635 			uint32_t seq = tp->gput_ack;
17636 
17637 			rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17638 			if (rsm) {
17639 				/*
17640 				 * Mark the last sent that we just-returned (hinting
17641 				 * that delayed ack may play a role in any rtt measurement).
17642 				 */
17643 				rsm->r_just_ret = 1;
17644 			}
17645 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
17646 			rack->r_ctl.rc_agg_delayed = 0;
17647 			rack->r_early = 0;
17648 			rack->r_late = 0;
17649 			rack->r_ctl.rc_agg_early = 0;
17650 			if ((ctf_outstanding(tp) +
17651 			     min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)),
17652 				 minseg)) >= tp->snd_wnd) {
17653 				/* We are limited by the rwnd */
17654 				app_limited = CTF_JR_RWND_LIMITED;
17655 				if (IN_FASTRECOVERY(tp->t_flags))
17656 				    rack->r_ctl.rc_prr_sndcnt = 0;
17657 			} else if (ctf_outstanding(tp) >= sbavail(sb)) {
17658 				/* We are limited by whats available -- app limited */
17659 				app_limited = CTF_JR_APP_LIMITED;
17660 				if (IN_FASTRECOVERY(tp->t_flags))
17661 				    rack->r_ctl.rc_prr_sndcnt = 0;
17662 			} else if ((idle == 0) &&
17663 				   ((tp->t_flags & TF_NODELAY) == 0) &&
17664 				   ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17665 				   (len < segsiz)) {
17666 				/*
17667 				 * No delay is not on and the
17668 				 * user is sending less than 1MSS. This
17669 				 * brings out SWS avoidance so we
17670 				 * don't send. Another app-limited case.
17671 				 */
17672 				app_limited = CTF_JR_APP_LIMITED;
17673 			} else if (tp->t_flags & TF_NOPUSH) {
17674 				/*
17675 				 * The user has requested no push of
17676 				 * the last segment and we are
17677 				 * at the last segment. Another app
17678 				 * limited case.
17679 				 */
17680 				app_limited = CTF_JR_APP_LIMITED;
17681 			} else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) {
17682 				/* Its the cwnd */
17683 				app_limited = CTF_JR_CWND_LIMITED;
17684 			} else if (IN_FASTRECOVERY(tp->t_flags) &&
17685 				   (rack->rack_no_prr == 0) &&
17686 				   (rack->r_ctl.rc_prr_sndcnt < segsiz)) {
17687 				app_limited = CTF_JR_PRR;
17688 			} else {
17689 				/* Now why here are we not sending? */
17690 #ifdef NOW
17691 #ifdef INVARIANTS
17692 				panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use);
17693 #endif
17694 #endif
17695 				app_limited = CTF_JR_ASSESSING;
17696 			}
17697 			/*
17698 			 * App limited in some fashion, for our pacing GP
17699 			 * measurements we don't want any gap (even cwnd).
17700 			 * Close  down the measurement window.
17701 			 */
17702 			if (rack_cwnd_block_ends_measure &&
17703 			    ((app_limited == CTF_JR_CWND_LIMITED) ||
17704 			     (app_limited == CTF_JR_PRR))) {
17705 				/*
17706 				 * The reason we are not sending is
17707 				 * the cwnd (or prr). We have been configured
17708 				 * to end the measurement window in
17709 				 * this case.
17710 				 */
17711 				end_window = 1;
17712 			} else if (rack_rwnd_block_ends_measure &&
17713 				   (app_limited == CTF_JR_RWND_LIMITED)) {
17714 				/*
17715 				 * We are rwnd limited and have been
17716 				 * configured to end the measurement
17717 				 * window in this case.
17718 				 */
17719 				end_window = 1;
17720 			} else if (app_limited == CTF_JR_APP_LIMITED) {
17721 				/*
17722 				 * A true application limited period, we have
17723 				 * ran out of data.
17724 				 */
17725 				end_window = 1;
17726 			} else if (app_limited == CTF_JR_ASSESSING) {
17727 				/*
17728 				 * In the assessing case we hit the end of
17729 				 * the if/else and had no known reason
17730 				 * This will panic us under invariants..
17731 				 *
17732 				 * If we get this out in logs we need to
17733 				 * investagate which reason we missed.
17734 				 */
17735 				end_window = 1;
17736 			}
17737 			if (end_window) {
17738 				uint8_t log = 0;
17739 
17740 				/* Adjust the Gput measurement */
17741 				if ((tp->t_flags & TF_GPUTINPROG) &&
17742 				    SEQ_GT(tp->gput_ack, tp->snd_max)) {
17743 					tp->gput_ack = tp->snd_max;
17744 					if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
17745 						/*
17746 						 * There is not enough to measure.
17747 						 */
17748 						tp->t_flags &= ~TF_GPUTINPROG;
17749 						rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
17750 									   rack->r_ctl.rc_gp_srtt /*flex1*/,
17751 									   tp->gput_seq,
17752 									   0, 0, 18, __LINE__, NULL, 0);
17753 					} else
17754 						log = 1;
17755 				}
17756 				/* Mark the last packet has app limited */
17757 				rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17758 				if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
17759 					if (rack->r_ctl.rc_app_limited_cnt == 0)
17760 						rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
17761 					else {
17762 						/*
17763 						 * Go out to the end app limited and mark
17764 						 * this new one as next and move the end_appl up
17765 						 * to this guy.
17766 						 */
17767 						if (rack->r_ctl.rc_end_appl)
17768 							rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
17769 						rack->r_ctl.rc_end_appl = rsm;
17770 					}
17771 					rsm->r_flags |= RACK_APP_LIMITED;
17772 					rack->r_ctl.rc_app_limited_cnt++;
17773 				}
17774 				if (log)
17775 					rack_log_pacing_delay_calc(rack,
17776 								   rack->r_ctl.rc_app_limited_cnt, seq,
17777 								   tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0);
17778 			}
17779 		}
17780 		/* Check if we need to go into persists or not */
17781 		if ((tp->snd_max == tp->snd_una) &&
17782 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
17783 		    sbavail(sb) &&
17784 		    (sbavail(sb) > tp->snd_wnd) &&
17785 		    (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) {
17786 			/* Yes lets make sure to move to persist before timer-start */
17787 			rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
17788 		}
17789 		rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
17790 		rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use);
17791 	}
17792 #ifdef NETFLIX_SHARED_CWND
17793 	if ((sbavail(sb) == 0) &&
17794 	    rack->r_ctl.rc_scw) {
17795 		tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
17796 		rack->rack_scwnd_is_idle = 1;
17797 	}
17798 #endif
17799 #ifdef TCP_ACCOUNTING
17800 	if (tot_len_this_send > 0) {
17801 		crtsc = get_cyclecount();
17802 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17803 			tp->tcp_cnt_counters[SND_OUT_DATA]++;
17804 		}
17805 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17806 			tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
17807 		}
17808 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17809 			tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz);
17810 		}
17811 	} else {
17812 		crtsc = get_cyclecount();
17813 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17814 			tp->tcp_cnt_counters[SND_LIMITED]++;
17815 		}
17816 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17817 			tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val);
17818 		}
17819 	}
17820 	sched_unpin();
17821 #endif
17822 	return (0);
17823 
17824 send:
17825 	if (rsm || sack_rxmit)
17826 		counter_u64_add(rack_nfto_resend, 1);
17827 	else
17828 		counter_u64_add(rack_non_fto_send, 1);
17829 	if ((flags & TH_FIN) &&
17830 	    sbavail(sb)) {
17831 		/*
17832 		 * We do not transmit a FIN
17833 		 * with data outstanding. We
17834 		 * need to make it so all data
17835 		 * is acked first.
17836 		 */
17837 		flags &= ~TH_FIN;
17838 	}
17839 	/* Enforce stack imposed max seg size if we have one */
17840 	if (rack->r_ctl.rc_pace_max_segs &&
17841 	    (len > rack->r_ctl.rc_pace_max_segs)) {
17842 		mark = 1;
17843 		len = rack->r_ctl.rc_pace_max_segs;
17844 	}
17845 	SOCKBUF_LOCK_ASSERT(sb);
17846 	if (len > 0) {
17847 		if (len >= segsiz)
17848 			tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
17849 		else
17850 			tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
17851 	}
17852 	/*
17853 	 * Before ESTABLISHED, force sending of initial options unless TCP
17854 	 * set not to do any options. NOTE: we assume that the IP/TCP header
17855 	 * plus TCP options always fit in a single mbuf, leaving room for a
17856 	 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
17857 	 * + optlen <= MCLBYTES
17858 	 */
17859 	optlen = 0;
17860 #ifdef INET6
17861 	if (isipv6)
17862 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
17863 	else
17864 #endif
17865 		hdrlen = sizeof(struct tcpiphdr);
17866 
17867 	/*
17868 	 * Compute options for segment. We only have to care about SYN and
17869 	 * established connection segments.  Options for SYN-ACK segments
17870 	 * are handled in TCP syncache.
17871 	 */
17872 	to.to_flags = 0;
17873 	if ((tp->t_flags & TF_NOOPT) == 0) {
17874 		/* Maximum segment size. */
17875 		if (flags & TH_SYN) {
17876 			tp->snd_nxt = tp->iss;
17877 			to.to_mss = tcp_mssopt(&inp->inp_inc);
17878 			if (tp->t_port)
17879 				to.to_mss -= V_tcp_udp_tunneling_overhead;
17880 			to.to_flags |= TOF_MSS;
17881 
17882 			/*
17883 			 * On SYN or SYN|ACK transmits on TFO connections,
17884 			 * only include the TFO option if it is not a
17885 			 * retransmit, as the presence of the TFO option may
17886 			 * have caused the original SYN or SYN|ACK to have
17887 			 * been dropped by a middlebox.
17888 			 */
17889 			if (IS_FASTOPEN(tp->t_flags) &&
17890 			    (tp->t_rxtshift == 0)) {
17891 				if (tp->t_state == TCPS_SYN_RECEIVED) {
17892 					to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
17893 					to.to_tfo_cookie =
17894 						(u_int8_t *)&tp->t_tfo_cookie.server;
17895 					to.to_flags |= TOF_FASTOPEN;
17896 					wanted_cookie = 1;
17897 				} else if (tp->t_state == TCPS_SYN_SENT) {
17898 					to.to_tfo_len =
17899 						tp->t_tfo_client_cookie_len;
17900 					to.to_tfo_cookie =
17901 						tp->t_tfo_cookie.client;
17902 					to.to_flags |= TOF_FASTOPEN;
17903 					wanted_cookie = 1;
17904 					/*
17905 					 * If we wind up having more data to
17906 					 * send with the SYN than can fit in
17907 					 * one segment, don't send any more
17908 					 * until the SYN|ACK comes back from
17909 					 * the other end.
17910 					 */
17911 					sendalot = 0;
17912 				}
17913 			}
17914 		}
17915 		/* Window scaling. */
17916 		if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
17917 			to.to_wscale = tp->request_r_scale;
17918 			to.to_flags |= TOF_SCALE;
17919 		}
17920 		/* Timestamps. */
17921 		if ((tp->t_flags & TF_RCVD_TSTMP) ||
17922 		    ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
17923 			to.to_tsval = ms_cts + tp->ts_offset;
17924 			to.to_tsecr = tp->ts_recent;
17925 			to.to_flags |= TOF_TS;
17926 		}
17927 		/* Set receive buffer autosizing timestamp. */
17928 		if (tp->rfbuf_ts == 0 &&
17929 		    (so->so_rcv.sb_flags & SB_AUTOSIZE))
17930 			tp->rfbuf_ts = tcp_ts_getticks();
17931 		/* Selective ACK's. */
17932 		if (tp->t_flags & TF_SACK_PERMIT) {
17933 			if (flags & TH_SYN)
17934 				to.to_flags |= TOF_SACKPERM;
17935 			else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
17936 				 tp->rcv_numsacks > 0) {
17937 				to.to_flags |= TOF_SACK;
17938 				to.to_nsacks = tp->rcv_numsacks;
17939 				to.to_sacks = (u_char *)tp->sackblks;
17940 			}
17941 		}
17942 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
17943 		/* TCP-MD5 (RFC2385). */
17944 		if (tp->t_flags & TF_SIGNATURE)
17945 			to.to_flags |= TOF_SIGNATURE;
17946 #endif				/* TCP_SIGNATURE */
17947 
17948 		/* Processing the options. */
17949 		hdrlen += optlen = tcp_addoptions(&to, opt);
17950 		/*
17951 		 * If we wanted a TFO option to be added, but it was unable
17952 		 * to fit, ensure no data is sent.
17953 		 */
17954 		if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
17955 		    !(to.to_flags & TOF_FASTOPEN))
17956 			len = 0;
17957 	}
17958 	if (tp->t_port) {
17959 		if (V_tcp_udp_tunneling_port == 0) {
17960 			/* The port was removed?? */
17961 			SOCKBUF_UNLOCK(&so->so_snd);
17962 #ifdef TCP_ACCOUNTING
17963 			crtsc = get_cyclecount();
17964 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17965 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
17966 			}
17967 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17968 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
17969 			}
17970 			sched_unpin();
17971 #endif
17972 			return (EHOSTUNREACH);
17973 		}
17974 		hdrlen += sizeof(struct udphdr);
17975 	}
17976 #ifdef INET6
17977 	if (isipv6)
17978 		ipoptlen = ip6_optlen(inp);
17979 	else
17980 #endif
17981 		if (inp->inp_options)
17982 			ipoptlen = inp->inp_options->m_len -
17983 				offsetof(struct ipoption, ipopt_list);
17984 		else
17985 			ipoptlen = 0;
17986 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
17987 	ipoptlen += ipsec_optlen;
17988 #endif
17989 
17990 	/*
17991 	 * Adjust data length if insertion of options will bump the packet
17992 	 * length beyond the t_maxseg length. Clear the FIN bit because we
17993 	 * cut off the tail of the segment.
17994 	 */
17995 	if (len + optlen + ipoptlen > tp->t_maxseg) {
17996 		if (tso) {
17997 			uint32_t if_hw_tsomax;
17998 			uint32_t moff;
17999 			int32_t max_len;
18000 
18001 			/* extract TSO information */
18002 			if_hw_tsomax = tp->t_tsomax;
18003 			if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
18004 			if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
18005 			KASSERT(ipoptlen == 0,
18006 				("%s: TSO can't do IP options", __func__));
18007 
18008 			/*
18009 			 * Check if we should limit by maximum payload
18010 			 * length:
18011 			 */
18012 			if (if_hw_tsomax != 0) {
18013 				/* compute maximum TSO length */
18014 				max_len = (if_hw_tsomax - hdrlen -
18015 					   max_linkhdr);
18016 				if (max_len <= 0) {
18017 					len = 0;
18018 				} else if (len > max_len) {
18019 					sendalot = 1;
18020 					len = max_len;
18021 					mark = 2;
18022 				}
18023 			}
18024 			/*
18025 			 * Prevent the last segment from being fractional
18026 			 * unless the send sockbuf can be emptied:
18027 			 */
18028 			max_len = (tp->t_maxseg - optlen);
18029 			if ((sb_offset + len) < sbavail(sb)) {
18030 				moff = len % (u_int)max_len;
18031 				if (moff != 0) {
18032 					mark = 3;
18033 					len -= moff;
18034 				}
18035 			}
18036 			/*
18037 			 * In case there are too many small fragments don't
18038 			 * use TSO:
18039 			 */
18040 			if (len <= segsiz) {
18041 				mark = 4;
18042 				tso = 0;
18043 			}
18044 			/*
18045 			 * Send the FIN in a separate segment after the bulk
18046 			 * sending is done. We don't trust the TSO
18047 			 * implementations to clear the FIN flag on all but
18048 			 * the last segment.
18049 			 */
18050 			if (tp->t_flags & TF_NEEDFIN) {
18051 				sendalot = 4;
18052 			}
18053 		} else {
18054 			mark = 5;
18055 			if (optlen + ipoptlen >= tp->t_maxseg) {
18056 				/*
18057 				 * Since we don't have enough space to put
18058 				 * the IP header chain and the TCP header in
18059 				 * one packet as required by RFC 7112, don't
18060 				 * send it. Also ensure that at least one
18061 				 * byte of the payload can be put into the
18062 				 * TCP segment.
18063 				 */
18064 				SOCKBUF_UNLOCK(&so->so_snd);
18065 				error = EMSGSIZE;
18066 				sack_rxmit = 0;
18067 				goto out;
18068 			}
18069 			len = tp->t_maxseg - optlen - ipoptlen;
18070 			sendalot = 5;
18071 		}
18072 	} else {
18073 		tso = 0;
18074 		mark = 6;
18075 	}
18076 	KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
18077 		("%s: len > IP_MAXPACKET", __func__));
18078 #ifdef DIAGNOSTIC
18079 #ifdef INET6
18080 	if (max_linkhdr + hdrlen > MCLBYTES)
18081 #else
18082 		if (max_linkhdr + hdrlen > MHLEN)
18083 #endif
18084 			panic("tcphdr too big");
18085 #endif
18086 
18087 	/*
18088 	 * This KASSERT is here to catch edge cases at a well defined place.
18089 	 * Before, those had triggered (random) panic conditions further
18090 	 * down.
18091 	 */
18092 	KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
18093 	if ((len == 0) &&
18094 	    (flags & TH_FIN) &&
18095 	    (sbused(sb))) {
18096 		/*
18097 		 * We have outstanding data, don't send a fin by itself!.
18098 		 */
18099 		goto just_return;
18100 	}
18101 	/*
18102 	 * Grab a header mbuf, attaching a copy of data to be transmitted,
18103 	 * and initialize the header from the template for sends on this
18104 	 * connection.
18105 	 */
18106 	hw_tls = tp->t_nic_ktls_xmit != 0;
18107 	if (len) {
18108 		uint32_t max_val;
18109 		uint32_t moff;
18110 
18111 		if (rack->r_ctl.rc_pace_max_segs)
18112 			max_val = rack->r_ctl.rc_pace_max_segs;
18113 		else if (rack->rc_user_set_max_segs)
18114 			max_val = rack->rc_user_set_max_segs * segsiz;
18115 		else
18116 			max_val = len;
18117 		/*
18118 		 * We allow a limit on sending with hptsi.
18119 		 */
18120 		if (len > max_val) {
18121 			mark = 7;
18122 			len = max_val;
18123 		}
18124 #ifdef INET6
18125 		if (MHLEN < hdrlen + max_linkhdr)
18126 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
18127 		else
18128 #endif
18129 			m = m_gethdr(M_NOWAIT, MT_DATA);
18130 
18131 		if (m == NULL) {
18132 			SOCKBUF_UNLOCK(sb);
18133 			error = ENOBUFS;
18134 			sack_rxmit = 0;
18135 			goto out;
18136 		}
18137 		m->m_data += max_linkhdr;
18138 		m->m_len = hdrlen;
18139 
18140 		/*
18141 		 * Start the m_copy functions from the closest mbuf to the
18142 		 * sb_offset in the socket buffer chain.
18143 		 */
18144 		mb = sbsndptr_noadv(sb, sb_offset, &moff);
18145 		s_mb = mb;
18146 		s_moff = moff;
18147 		if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
18148 			m_copydata(mb, moff, (int)len,
18149 				   mtod(m, caddr_t)+hdrlen);
18150 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
18151 				sbsndptr_adv(sb, mb, len);
18152 			m->m_len += len;
18153 		} else {
18154 			struct sockbuf *msb;
18155 
18156 			if (SEQ_LT(tp->snd_nxt, tp->snd_max))
18157 				msb = NULL;
18158 			else
18159 				msb = sb;
18160 			m->m_next = tcp_m_copym(
18161 				mb, moff, &len,
18162 				if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
18163 				((rsm == NULL) ? hw_tls : 0)
18164 #ifdef NETFLIX_COPY_ARGS
18165 				, &s_mb, &s_moff
18166 #endif
18167 				);
18168 			if (len <= (tp->t_maxseg - optlen)) {
18169 				/*
18170 				 * Must have ran out of mbufs for the copy
18171 				 * shorten it to no longer need tso. Lets
18172 				 * not put on sendalot since we are low on
18173 				 * mbufs.
18174 				 */
18175 				tso = 0;
18176 			}
18177 			if (m->m_next == NULL) {
18178 				SOCKBUF_UNLOCK(sb);
18179 				(void)m_free(m);
18180 				error = ENOBUFS;
18181 				sack_rxmit = 0;
18182 				goto out;
18183 			}
18184 		}
18185 		if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
18186 			if (rsm && (rsm->r_flags & RACK_TLP)) {
18187 				/*
18188 				 * TLP should not count in retran count, but
18189 				 * in its own bin
18190 				 */
18191 				counter_u64_add(rack_tlp_retran, 1);
18192 				counter_u64_add(rack_tlp_retran_bytes, len);
18193 			} else {
18194 				tp->t_sndrexmitpack++;
18195 				KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
18196 				KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
18197 			}
18198 #ifdef STATS
18199 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
18200 						 len);
18201 #endif
18202 		} else {
18203 			KMOD_TCPSTAT_INC(tcps_sndpack);
18204 			KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
18205 #ifdef STATS
18206 			stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
18207 						 len);
18208 #endif
18209 		}
18210 		/*
18211 		 * If we're sending everything we've got, set PUSH. (This
18212 		 * will keep happy those implementations which only give
18213 		 * data to the user when a buffer fills or a PUSH comes in.)
18214 		 */
18215 		if (sb_offset + len == sbused(sb) &&
18216 		    sbused(sb) &&
18217 		    !(flags & TH_SYN)) {
18218 			flags |= TH_PUSH;
18219 			add_flag |= RACK_HAD_PUSH;
18220 		}
18221 
18222 		SOCKBUF_UNLOCK(sb);
18223 	} else {
18224 		SOCKBUF_UNLOCK(sb);
18225 		if (tp->t_flags & TF_ACKNOW)
18226 			KMOD_TCPSTAT_INC(tcps_sndacks);
18227 		else if (flags & (TH_SYN | TH_FIN | TH_RST))
18228 			KMOD_TCPSTAT_INC(tcps_sndctrl);
18229 		else
18230 			KMOD_TCPSTAT_INC(tcps_sndwinup);
18231 
18232 		m = m_gethdr(M_NOWAIT, MT_DATA);
18233 		if (m == NULL) {
18234 			error = ENOBUFS;
18235 			sack_rxmit = 0;
18236 			goto out;
18237 		}
18238 #ifdef INET6
18239 		if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
18240 		    MHLEN >= hdrlen) {
18241 			M_ALIGN(m, hdrlen);
18242 		} else
18243 #endif
18244 			m->m_data += max_linkhdr;
18245 		m->m_len = hdrlen;
18246 	}
18247 	SOCKBUF_UNLOCK_ASSERT(sb);
18248 	m->m_pkthdr.rcvif = (struct ifnet *)0;
18249 #ifdef MAC
18250 	mac_inpcb_create_mbuf(inp, m);
18251 #endif
18252 	if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) &&  rack->r_fsb_inited) {
18253 #ifdef INET6
18254 		if (isipv6)
18255 			ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
18256 		else
18257 #endif				/* INET6 */
18258 #ifdef INET
18259 			ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
18260 #endif
18261 		th = rack->r_ctl.fsb.th;
18262 		udp = rack->r_ctl.fsb.udp;
18263 		if (udp) {
18264 #ifdef INET6
18265 			if (isipv6)
18266 				ulen = hdrlen + len - sizeof(struct ip6_hdr);
18267 			else
18268 #endif				/* INET6 */
18269 				ulen = hdrlen + len - sizeof(struct ip);
18270 			udp->uh_ulen = htons(ulen);
18271 		}
18272 	} else {
18273 #ifdef INET6
18274 		if (isipv6) {
18275 			ip6 = mtod(m, struct ip6_hdr *);
18276 			if (tp->t_port) {
18277 				udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
18278 				udp->uh_sport = htons(V_tcp_udp_tunneling_port);
18279 				udp->uh_dport = tp->t_port;
18280 				ulen = hdrlen + len - sizeof(struct ip6_hdr);
18281 				udp->uh_ulen = htons(ulen);
18282 				th = (struct tcphdr *)(udp + 1);
18283 			} else
18284 				th = (struct tcphdr *)(ip6 + 1);
18285 			tcpip_fillheaders(inp, tp->t_port, ip6, th);
18286 		} else
18287 #endif				/* INET6 */
18288 		{
18289 #ifdef INET
18290 			ip = mtod(m, struct ip *);
18291 			if (tp->t_port) {
18292 				udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
18293 				udp->uh_sport = htons(V_tcp_udp_tunneling_port);
18294 				udp->uh_dport = tp->t_port;
18295 				ulen = hdrlen + len - sizeof(struct ip);
18296 				udp->uh_ulen = htons(ulen);
18297 				th = (struct tcphdr *)(udp + 1);
18298 			} else
18299 				th = (struct tcphdr *)(ip + 1);
18300 			tcpip_fillheaders(inp, tp->t_port, ip, th);
18301 #endif
18302 		}
18303 	}
18304 	/*
18305 	 * Fill in fields, remembering maximum advertised window for use in
18306 	 * delaying messages about window sizes. If resending a FIN, be sure
18307 	 * not to use a new sequence number.
18308 	 */
18309 	if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
18310 	    tp->snd_nxt == tp->snd_max)
18311 		tp->snd_nxt--;
18312 	/*
18313 	 * If we are starting a connection, send ECN setup SYN packet. If we
18314 	 * are on a retransmit, we may resend those bits a number of times
18315 	 * as per RFC 3168.
18316 	 */
18317 	if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn) {
18318 		flags |= tcp_ecn_output_syn_sent(tp);
18319 	}
18320 	/* Also handle parallel SYN for ECN */
18321 	if (TCPS_HAVERCVDSYN(tp->t_state) &&
18322 	    (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))) {
18323 		int ect = tcp_ecn_output_established(tp, &flags, len, sack_rxmit);
18324 		if ((tp->t_state == TCPS_SYN_RECEIVED) &&
18325 		    (tp->t_flags2 & TF2_ECN_SND_ECE))
18326 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
18327 #ifdef INET6
18328 		if (isipv6) {
18329 			ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
18330 			ip6->ip6_flow |= htonl(ect << 20);
18331 		}
18332 		else
18333 #endif
18334 		{
18335 #ifdef INET
18336 			ip->ip_tos &= ~IPTOS_ECN_MASK;
18337 			ip->ip_tos |= ect;
18338 #endif
18339 		}
18340 	}
18341 	/*
18342 	 * If we are doing retransmissions, then snd_nxt will not reflect
18343 	 * the first unsent octet.  For ACK only packets, we do not want the
18344 	 * sequence number of the retransmitted packet, we want the sequence
18345 	 * number of the next unsent octet.  So, if there is no data (and no
18346 	 * SYN or FIN), use snd_max instead of snd_nxt when filling in
18347 	 * ti_seq.  But if we are in persist state, snd_max might reflect
18348 	 * one byte beyond the right edge of the window, so use snd_nxt in
18349 	 * that case, since we know we aren't doing a retransmission.
18350 	 * (retransmit and persist are mutually exclusive...)
18351 	 */
18352 	if (sack_rxmit == 0) {
18353 		if (len || (flags & (TH_SYN | TH_FIN))) {
18354 			th->th_seq = htonl(tp->snd_nxt);
18355 			rack_seq = tp->snd_nxt;
18356 		} else {
18357 			th->th_seq = htonl(tp->snd_max);
18358 			rack_seq = tp->snd_max;
18359 		}
18360 	} else {
18361 		th->th_seq = htonl(rsm->r_start);
18362 		rack_seq = rsm->r_start;
18363 	}
18364 	th->th_ack = htonl(tp->rcv_nxt);
18365 	tcp_set_flags(th, flags);
18366 	/*
18367 	 * Calculate receive window.  Don't shrink window, but avoid silly
18368 	 * window syndrome.
18369 	 * If a RST segment is sent, advertise a window of zero.
18370 	 */
18371 	if (flags & TH_RST) {
18372 		recwin = 0;
18373 	} else {
18374 		if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
18375 		    recwin < (long)segsiz) {
18376 			recwin = 0;
18377 		}
18378 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
18379 		    recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
18380 			recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
18381 	}
18382 
18383 	/*
18384 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
18385 	 * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
18386 	 * handled in syncache.
18387 	 */
18388 	if (flags & TH_SYN)
18389 		th->th_win = htons((u_short)
18390 				   (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
18391 	else {
18392 		/* Avoid shrinking window with window scaling. */
18393 		recwin = roundup2(recwin, 1 << tp->rcv_scale);
18394 		th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
18395 	}
18396 	/*
18397 	 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
18398 	 * window.  This may cause the remote transmitter to stall.  This
18399 	 * flag tells soreceive() to disable delayed acknowledgements when
18400 	 * draining the buffer.  This can occur if the receiver is
18401 	 * attempting to read more data than can be buffered prior to
18402 	 * transmitting on the connection.
18403 	 */
18404 	if (th->th_win == 0) {
18405 		tp->t_sndzerowin++;
18406 		tp->t_flags |= TF_RXWIN0SENT;
18407 	} else
18408 		tp->t_flags &= ~TF_RXWIN0SENT;
18409 	tp->snd_up = tp->snd_una;	/* drag it along, its deprecated */
18410 	/* Now are we using fsb?, if so copy the template data to the mbuf */
18411 	if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) {
18412 		uint8_t *cpto;
18413 
18414 		cpto = mtod(m, uint8_t *);
18415 		memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
18416 		/*
18417 		 * We have just copied in:
18418 		 * IP/IP6
18419 		 * <optional udphdr>
18420 		 * tcphdr (no options)
18421 		 *
18422 		 * We need to grab the correct pointers into the mbuf
18423 		 * for both the tcp header, and possibly the udp header (if tunneling).
18424 		 * We do this by using the offset in the copy buffer and adding it
18425 		 * to the mbuf base pointer (cpto).
18426 		 */
18427 #ifdef INET6
18428 		if (isipv6)
18429 			ip6 = mtod(m, struct ip6_hdr *);
18430 		else
18431 #endif				/* INET6 */
18432 #ifdef INET
18433 			ip = mtod(m, struct ip *);
18434 #endif
18435 		th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
18436 		/* If we have a udp header lets set it into the mbuf as well */
18437 		if (udp)
18438 			udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr));
18439 	}
18440 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
18441 	if (to.to_flags & TOF_SIGNATURE) {
18442 		/*
18443 		 * Calculate MD5 signature and put it into the place
18444 		 * determined before.
18445 		 * NOTE: since TCP options buffer doesn't point into
18446 		 * mbuf's data, calculate offset and use it.
18447 		 */
18448 		if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
18449 						       (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
18450 			/*
18451 			 * Do not send segment if the calculation of MD5
18452 			 * digest has failed.
18453 			 */
18454 			goto out;
18455 		}
18456 	}
18457 #endif
18458 	if (optlen) {
18459 		bcopy(opt, th + 1, optlen);
18460 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
18461 	}
18462 	/*
18463 	 * Put TCP length in extended header, and then checksum extended
18464 	 * header and data.
18465 	 */
18466 	m->m_pkthdr.len = hdrlen + len;	/* in6_cksum() need this */
18467 #ifdef INET6
18468 	if (isipv6) {
18469 		/*
18470 		 * ip6_plen is not need to be filled now, and will be filled
18471 		 * in ip6_output.
18472 		 */
18473 		if (tp->t_port) {
18474 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
18475 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18476 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
18477 			th->th_sum = htons(0);
18478 			UDPSTAT_INC(udps_opackets);
18479 		} else {
18480 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
18481 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18482 			th->th_sum = in6_cksum_pseudo(ip6,
18483 						      sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
18484 						      0);
18485 		}
18486 	}
18487 #endif
18488 #if defined(INET6) && defined(INET)
18489 	else
18490 #endif
18491 #ifdef INET
18492 	{
18493 		if (tp->t_port) {
18494 			m->m_pkthdr.csum_flags = CSUM_UDP;
18495 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18496 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
18497 						ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
18498 			th->th_sum = htons(0);
18499 			UDPSTAT_INC(udps_opackets);
18500 		} else {
18501 			m->m_pkthdr.csum_flags = CSUM_TCP;
18502 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18503 			th->th_sum = in_pseudo(ip->ip_src.s_addr,
18504 					       ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
18505 									IPPROTO_TCP + len + optlen));
18506 		}
18507 		/* IP version must be set here for ipv4/ipv6 checking later */
18508 		KASSERT(ip->ip_v == IPVERSION,
18509 			("%s: IP version incorrect: %d", __func__, ip->ip_v));
18510 	}
18511 #endif
18512 	/*
18513 	 * Enable TSO and specify the size of the segments. The TCP pseudo
18514 	 * header checksum is always provided. XXX: Fixme: This is currently
18515 	 * not the case for IPv6.
18516 	 */
18517 	if (tso) {
18518 		KASSERT(len > tp->t_maxseg - optlen,
18519 			("%s: len <= tso_segsz", __func__));
18520 		m->m_pkthdr.csum_flags |= CSUM_TSO;
18521 		m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
18522 	}
18523 	KASSERT(len + hdrlen == m_length(m, NULL),
18524 		("%s: mbuf chain different than expected: %d + %u != %u",
18525 		 __func__, len, hdrlen, m_length(m, NULL)));
18526 
18527 #ifdef TCP_HHOOK
18528 	/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
18529 	hhook_run_tcp_est_out(tp, th, &to, len, tso);
18530 #endif
18531 	/* We're getting ready to send; log now. */
18532 	if (tcp_bblogging_on(rack->rc_tp)) {
18533 		union tcp_log_stackspecific log;
18534 
18535 		memset(&log.u_bbr, 0, sizeof(log.u_bbr));
18536 		log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
18537 		if (rack->rack_no_prr)
18538 			log.u_bbr.flex1 = 0;
18539 		else
18540 			log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
18541 		log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
18542 		log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
18543 		log.u_bbr.flex4 = orig_len;
18544 		/* Save off the early/late values */
18545 		log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
18546 		log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
18547 		log.u_bbr.bw_inuse = rack_get_bw(rack);
18548 		log.u_bbr.flex8 = 0;
18549 		if (rsm) {
18550 			if (rsm->r_flags & RACK_RWND_COLLAPSED) {
18551 				rack_log_collapse(rack, rsm->r_start, rsm->r_end, 0, __LINE__, 5, rsm->r_flags, rsm);
18552 				counter_u64_add(rack_collapsed_win_rxt, 1);
18553 				counter_u64_add(rack_collapsed_win_rxt_bytes, (rsm->r_end - rsm->r_start));
18554 			}
18555 			if (doing_tlp)
18556 				log.u_bbr.flex8 = 2;
18557 			else
18558 				log.u_bbr.flex8 = 1;
18559 		} else {
18560 			if (doing_tlp)
18561 				log.u_bbr.flex8 = 3;
18562 			else
18563 				log.u_bbr.flex8 = 0;
18564 		}
18565 		log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
18566 		log.u_bbr.flex7 = mark;
18567 		log.u_bbr.flex7 <<= 8;
18568 		log.u_bbr.flex7 |= pass;
18569 		log.u_bbr.pkts_out = tp->t_maxseg;
18570 		log.u_bbr.timeStamp = cts;
18571 		log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
18572 		log.u_bbr.lt_epoch = cwnd_to_use;
18573 		log.u_bbr.delivered = sendalot;
18574 		lgb = tcp_log_event(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
18575 				     len, &log, false, NULL, NULL, 0, &tv);
18576 	} else
18577 		lgb = NULL;
18578 
18579 	/*
18580 	 * Fill in IP length and desired time to live and send to IP level.
18581 	 * There should be a better way to handle ttl and tos; we could keep
18582 	 * them in the template, but need a way to checksum without them.
18583 	 */
18584 	/*
18585 	 * m->m_pkthdr.len should have been set before cksum calcuration,
18586 	 * because in6_cksum() need it.
18587 	 */
18588 #ifdef INET6
18589 	if (isipv6) {
18590 		/*
18591 		 * we separately set hoplimit for every segment, since the
18592 		 * user might want to change the value via setsockopt. Also,
18593 		 * desired default hop limit might be changed via Neighbor
18594 		 * Discovery.
18595 		 */
18596 		rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL);
18597 
18598 		/*
18599 		 * Set the packet size here for the benefit of DTrace
18600 		 * probes. ip6_output() will set it properly; it's supposed
18601 		 * to include the option header lengths as well.
18602 		 */
18603 		ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
18604 
18605 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
18606 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18607 		else
18608 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18609 
18610 		if (tp->t_state == TCPS_SYN_SENT)
18611 			TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
18612 
18613 		TCP_PROBE5(send, NULL, tp, ip6, tp, th);
18614 		/* TODO: IPv6 IP6TOS_ECT bit on */
18615 		error = ip6_output(m,
18616 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18617 				   inp->in6p_outputopts,
18618 #else
18619 				   NULL,
18620 #endif
18621 				   &inp->inp_route6,
18622 				   ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0),
18623 				   NULL, NULL, inp);
18624 
18625 		if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL)
18626 			mtu = inp->inp_route6.ro_nh->nh_mtu;
18627 	}
18628 #endif				/* INET6 */
18629 #if defined(INET) && defined(INET6)
18630 	else
18631 #endif
18632 #ifdef INET
18633 	{
18634 		ip->ip_len = htons(m->m_pkthdr.len);
18635 #ifdef INET6
18636 		if (inp->inp_vflag & INP_IPV6PROTO)
18637 			ip->ip_ttl = in6_selecthlim(inp, NULL);
18638 #endif				/* INET6 */
18639 		rack->r_ctl.fsb.hoplimit = ip->ip_ttl;
18640 		/*
18641 		 * If we do path MTU discovery, then we set DF on every
18642 		 * packet. This might not be the best thing to do according
18643 		 * to RFC3390 Section 2. However the tcp hostcache migitates
18644 		 * the problem so it affects only the first tcp connection
18645 		 * with a host.
18646 		 *
18647 		 * NB: Don't set DF on small MTU/MSS to have a safe
18648 		 * fallback.
18649 		 */
18650 		if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
18651 			tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18652 			if (tp->t_port == 0 || len < V_tcp_minmss) {
18653 				ip->ip_off |= htons(IP_DF);
18654 			}
18655 		} else {
18656 			tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18657 		}
18658 
18659 		if (tp->t_state == TCPS_SYN_SENT)
18660 			TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
18661 
18662 		TCP_PROBE5(send, NULL, tp, ip, tp, th);
18663 
18664 		error = ip_output(m,
18665 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18666 				  inp->inp_options,
18667 #else
18668 				  NULL,
18669 #endif
18670 				  &inp->inp_route,
18671 				  ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0,
18672 				  inp);
18673 		if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL)
18674 			mtu = inp->inp_route.ro_nh->nh_mtu;
18675 	}
18676 #endif				/* INET */
18677 
18678 out:
18679 	if (lgb) {
18680 		lgb->tlb_errno = error;
18681 		lgb = NULL;
18682 	}
18683 	/*
18684 	 * In transmit state, time the transmission and arrange for the
18685 	 * retransmit.  In persist state, just set snd_max.
18686 	 */
18687 	if (error == 0) {
18688 		tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls);
18689 		if (rsm && doing_tlp) {
18690 			rack->rc_last_sent_tlp_past_cumack = 0;
18691 			rack->rc_last_sent_tlp_seq_valid = 1;
18692 			rack->r_ctl.last_sent_tlp_seq = rsm->r_start;
18693 			rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start;
18694 		}
18695 		rack->forced_ack = 0;	/* If we send something zap the FA flag */
18696 		if (rsm && (doing_tlp == 0)) {
18697 			/* Set we retransmitted */
18698 			rack->rc_gp_saw_rec = 1;
18699 		} else {
18700 			if (cwnd_to_use > tp->snd_ssthresh) {
18701 				/* Set we sent in CA */
18702 				rack->rc_gp_saw_ca = 1;
18703 			} else {
18704 				/* Set we sent in SS */
18705 				rack->rc_gp_saw_ss = 1;
18706 			}
18707 		}
18708 		if (TCPS_HAVEESTABLISHED(tp->t_state) &&
18709 		    (tp->t_flags & TF_SACK_PERMIT) &&
18710 		    tp->rcv_numsacks > 0)
18711 			tcp_clean_dsack_blocks(tp);
18712 		tot_len_this_send += len;
18713 		if (len == 0)
18714 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
18715 		else if (len == 1) {
18716 			counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
18717 		} else if (len > 1) {
18718 			int idx;
18719 
18720 			idx = (len / segsiz) + 3;
18721 			if (idx >= TCP_MSS_ACCT_ATIMER)
18722 				counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
18723 			else
18724 				counter_u64_add(rack_out_size[idx], 1);
18725 		}
18726 	}
18727 	if ((rack->rack_no_prr == 0) &&
18728 	    sub_from_prr &&
18729 	    (error == 0)) {
18730 		if (rack->r_ctl.rc_prr_sndcnt >= len)
18731 			rack->r_ctl.rc_prr_sndcnt -= len;
18732 		else
18733 			rack->r_ctl.rc_prr_sndcnt = 0;
18734 	}
18735 	sub_from_prr = 0;
18736 	if (doing_tlp) {
18737 		/* Make sure the TLP is added */
18738 		add_flag |= RACK_TLP;
18739 	} else if (rsm) {
18740 		/* If its a resend without TLP then it must not have the flag */
18741 		rsm->r_flags &= ~RACK_TLP;
18742 	}
18743 	rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error,
18744 			rack_to_usec_ts(&tv),
18745 			rsm, add_flag, s_mb, s_moff, hw_tls);
18746 
18747 
18748 	if ((error == 0) &&
18749 	    (len > 0) &&
18750 	    (tp->snd_una == tp->snd_max))
18751 		rack->r_ctl.rc_tlp_rxt_last_time = cts;
18752 	{
18753 		tcp_seq startseq = tp->snd_nxt;
18754 
18755 		/* Track our lost count */
18756 		if (rsm && (doing_tlp == 0))
18757 			rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start;
18758 		/*
18759 		 * Advance snd_nxt over sequence space of this segment.
18760 		 */
18761 		if (error)
18762 			/* We don't log or do anything with errors */
18763 			goto nomore;
18764 		if (doing_tlp == 0) {
18765 			if (rsm == NULL) {
18766 				/*
18767 				 * Not a retransmission of some
18768 				 * sort, new data is going out so
18769 				 * clear our TLP count and flag.
18770 				 */
18771 				rack->rc_tlp_in_progress = 0;
18772 				rack->r_ctl.rc_tlp_cnt_out = 0;
18773 			}
18774 		} else {
18775 			/*
18776 			 * We have just sent a TLP, mark that it is true
18777 			 * and make sure our in progress is set so we
18778 			 * continue to check the count.
18779 			 */
18780 			rack->rc_tlp_in_progress = 1;
18781 			rack->r_ctl.rc_tlp_cnt_out++;
18782 		}
18783 		if (flags & (TH_SYN | TH_FIN)) {
18784 			if (flags & TH_SYN)
18785 				tp->snd_nxt++;
18786 			if (flags & TH_FIN) {
18787 				tp->snd_nxt++;
18788 				tp->t_flags |= TF_SENTFIN;
18789 			}
18790 		}
18791 		/* In the ENOBUFS case we do *not* update snd_max */
18792 		if (sack_rxmit)
18793 			goto nomore;
18794 
18795 		tp->snd_nxt += len;
18796 		if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
18797 			if (tp->snd_una == tp->snd_max) {
18798 				/*
18799 				 * Update the time we just added data since
18800 				 * none was outstanding.
18801 				 */
18802 				rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
18803 				tp->t_acktime = ticks;
18804 			}
18805 			tp->snd_max = tp->snd_nxt;
18806 			/*
18807 			 * Time this transmission if not a retransmission and
18808 			 * not currently timing anything.
18809 			 * This is only relevant in case of switching back to
18810 			 * the base stack.
18811 			 */
18812 			if (tp->t_rtttime == 0) {
18813 				tp->t_rtttime = ticks;
18814 				tp->t_rtseq = startseq;
18815 				KMOD_TCPSTAT_INC(tcps_segstimed);
18816 			}
18817 			if (len &&
18818 			    ((tp->t_flags & TF_GPUTINPROG) == 0))
18819 				rack_start_gp_measurement(tp, rack, startseq, sb_offset);
18820 		}
18821 		/*
18822 		 * If we are doing FO we need to update the mbuf position and subtract
18823 		 * this happens when the peer sends us duplicate information and
18824 		 * we thus want to send a DSACK.
18825 		 *
18826 		 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO
18827 		 * turned off? If not then we are going to echo multiple DSACK blocks
18828 		 * out (with the TSO), which we should not be doing.
18829 		 */
18830 		if (rack->r_fast_output && len) {
18831 			if (rack->r_ctl.fsb.left_to_send > len)
18832 				rack->r_ctl.fsb.left_to_send -= len;
18833 			else
18834 				rack->r_ctl.fsb.left_to_send = 0;
18835 			if (rack->r_ctl.fsb.left_to_send < segsiz)
18836 				rack->r_fast_output = 0;
18837 			if (rack->r_fast_output) {
18838 				rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18839 				rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18840 			}
18841 		}
18842 	}
18843 nomore:
18844 	if (error) {
18845 		rack->r_ctl.rc_agg_delayed = 0;
18846 		rack->r_early = 0;
18847 		rack->r_late = 0;
18848 		rack->r_ctl.rc_agg_early = 0;
18849 		SOCKBUF_UNLOCK_ASSERT(sb);	/* Check gotos. */
18850 		/*
18851 		 * Failures do not advance the seq counter above. For the
18852 		 * case of ENOBUFS we will fall out and retry in 1ms with
18853 		 * the hpts. Everything else will just have to retransmit
18854 		 * with the timer.
18855 		 *
18856 		 * In any case, we do not want to loop around for another
18857 		 * send without a good reason.
18858 		 */
18859 		sendalot = 0;
18860 		switch (error) {
18861 		case EPERM:
18862 			tp->t_softerror = error;
18863 #ifdef TCP_ACCOUNTING
18864 			crtsc = get_cyclecount();
18865 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18866 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18867 			}
18868 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18869 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18870 			}
18871 			sched_unpin();
18872 #endif
18873 			return (error);
18874 		case ENOBUFS:
18875 			/*
18876 			 * Pace us right away to retry in a some
18877 			 * time
18878 			 */
18879 			if (rack->r_ctl.crte != NULL) {
18880 				tcp_trace_point(rack->rc_tp, TCP_TP_HWENOBUF);
18881 			} else
18882 				tcp_trace_point(rack->rc_tp, TCP_TP_ENOBUF);
18883 			slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
18884 			if (rack->rc_enobuf < 0x7f)
18885 				rack->rc_enobuf++;
18886 			if (slot < (10 * HPTS_USEC_IN_MSEC))
18887 				slot = 10 * HPTS_USEC_IN_MSEC;
18888 			if (rack->r_ctl.crte != NULL) {
18889 				counter_u64_add(rack_saw_enobuf_hw, 1);
18890 				tcp_rl_log_enobuf(rack->r_ctl.crte);
18891 			}
18892 			counter_u64_add(rack_saw_enobuf, 1);
18893 			goto enobufs;
18894 		case EMSGSIZE:
18895 			/*
18896 			 * For some reason the interface we used initially
18897 			 * to send segments changed to another or lowered
18898 			 * its MTU. If TSO was active we either got an
18899 			 * interface without TSO capabilits or TSO was
18900 			 * turned off. If we obtained mtu from ip_output()
18901 			 * then update it and try again.
18902 			 */
18903 			if (tso)
18904 				tp->t_flags &= ~TF_TSO;
18905 			if (mtu != 0) {
18906 				tcp_mss_update(tp, -1, mtu, NULL, NULL);
18907 				goto again;
18908 			}
18909 			slot = 10 * HPTS_USEC_IN_MSEC;
18910 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18911 #ifdef TCP_ACCOUNTING
18912 			crtsc = get_cyclecount();
18913 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18914 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18915 			}
18916 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18917 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18918 			}
18919 			sched_unpin();
18920 #endif
18921 			return (error);
18922 		case ENETUNREACH:
18923 			counter_u64_add(rack_saw_enetunreach, 1);
18924 		case EHOSTDOWN:
18925 		case EHOSTUNREACH:
18926 		case ENETDOWN:
18927 			if (TCPS_HAVERCVDSYN(tp->t_state)) {
18928 				tp->t_softerror = error;
18929 			}
18930 			/* FALLTHROUGH */
18931 		default:
18932 			slot = 10 * HPTS_USEC_IN_MSEC;
18933 			rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18934 #ifdef TCP_ACCOUNTING
18935 			crtsc = get_cyclecount();
18936 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18937 				tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18938 			}
18939 			if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18940 				tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18941 			}
18942 			sched_unpin();
18943 #endif
18944 			return (error);
18945 		}
18946 	} else {
18947 		rack->rc_enobuf = 0;
18948 		if (IN_FASTRECOVERY(tp->t_flags) && rsm)
18949 			rack->r_ctl.retran_during_recovery += len;
18950 	}
18951 	KMOD_TCPSTAT_INC(tcps_sndtotal);
18952 
18953 	/*
18954 	 * Data sent (as far as we can tell). If this advertises a larger
18955 	 * window than any other segment, then remember the size of the
18956 	 * advertised window. Any pending ACK has now been sent.
18957 	 */
18958 	if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
18959 		tp->rcv_adv = tp->rcv_nxt + recwin;
18960 
18961 	tp->last_ack_sent = tp->rcv_nxt;
18962 	tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
18963 enobufs:
18964 	if (sendalot) {
18965 		/* Do we need to turn off sendalot? */
18966 		if (rack->r_ctl.rc_pace_max_segs &&
18967 		    (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) {
18968 			/* We hit our max. */
18969 			sendalot = 0;
18970 		} else if ((rack->rc_user_set_max_segs) &&
18971 			   (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) {
18972 			/* We hit the user defined max */
18973 			sendalot = 0;
18974 		}
18975 	}
18976 	if ((error == 0) && (flags & TH_FIN))
18977 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN);
18978 	if (flags & TH_RST) {
18979 		/*
18980 		 * We don't send again after sending a RST.
18981 		 */
18982 		slot = 0;
18983 		sendalot = 0;
18984 		if (error == 0)
18985 			tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
18986 	} else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) {
18987 		/*
18988 		 * Get our pacing rate, if an error
18989 		 * occurred in sending (ENOBUF) we would
18990 		 * hit the else if with slot preset. Other
18991 		 * errors return.
18992 		 */
18993 		slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz);
18994 	}
18995 	if (rsm &&
18996 	    (rsm->r_flags & RACK_HAS_SYN) == 0 &&
18997 	    rack->use_rack_rr) {
18998 		/* Its a retransmit and we use the rack cheat? */
18999 		if ((slot == 0) ||
19000 		    (rack->rc_always_pace == 0) ||
19001 		    (rack->r_rr_config == 1)) {
19002 			/*
19003 			 * We have no pacing set or we
19004 			 * are using old-style rack or
19005 			 * we are overridden to use the old 1ms pacing.
19006 			 */
19007 			slot = rack->r_ctl.rc_min_to;
19008 		}
19009 	}
19010 	/* We have sent clear the flag */
19011 	rack->r_ent_rec_ns = 0;
19012 	if (rack->r_must_retran) {
19013 		if (rsm) {
19014 			rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
19015 			if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
19016 				/*
19017 				 * We have retransmitted all.
19018 				 */
19019 				rack->r_must_retran = 0;
19020 				rack->r_ctl.rc_out_at_rto = 0;
19021 			}
19022 		} else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
19023 			/*
19024 			 * Sending new data will also kill
19025 			 * the loop.
19026 			 */
19027 			rack->r_must_retran = 0;
19028 			rack->r_ctl.rc_out_at_rto = 0;
19029 		}
19030 	}
19031 	rack->r_ctl.fsb.recwin = recwin;
19032 	if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) &&
19033 	    SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
19034 		/*
19035 		 * We hit an RTO and now have past snd_max at the RTO
19036 		 * clear all the WAS flags.
19037 		 */
19038 		tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY);
19039 	}
19040 	if (slot) {
19041 		/* set the rack tcb into the slot N */
19042 		if ((error == 0) &&
19043 		    rack_use_rfo &&
19044 		    ((flags & (TH_SYN|TH_FIN)) == 0) &&
19045 		    (rsm == NULL) &&
19046 		    (tp->snd_nxt == tp->snd_max) &&
19047 		    (ipoptlen == 0) &&
19048 		    (tp->rcv_numsacks == 0) &&
19049 		    rack->r_fsb_inited &&
19050 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
19051 		    (rack->r_must_retran == 0) &&
19052 		    ((tp->t_flags & TF_NEEDFIN) == 0) &&
19053 		    (len > 0) && (orig_len > 0) &&
19054 		    (orig_len > len) &&
19055 		    ((orig_len - len) >= segsiz) &&
19056 		    ((optlen == 0) ||
19057 		     ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
19058 			/* We can send at least one more MSS using our fsb */
19059 
19060 			rack->r_fast_output = 1;
19061 			rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
19062 			rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
19063 			rack->r_ctl.fsb.tcp_flags = flags;
19064 			rack->r_ctl.fsb.left_to_send = orig_len - len;
19065 			if (hw_tls)
19066 				rack->r_ctl.fsb.hw_tls = 1;
19067 			else
19068 				rack->r_ctl.fsb.hw_tls = 0;
19069 			KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
19070 				("rack:%p left_to_send:%u sbavail:%u out:%u",
19071 				 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
19072 				 (tp->snd_max - tp->snd_una)));
19073 			if (rack->r_ctl.fsb.left_to_send < segsiz)
19074 				rack->r_fast_output = 0;
19075 			else {
19076 				if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
19077 					rack->r_ctl.fsb.rfo_apply_push = 1;
19078 				else
19079 					rack->r_ctl.fsb.rfo_apply_push = 0;
19080 			}
19081 		} else
19082 			rack->r_fast_output = 0;
19083 		rack_log_fsb(rack, tp, so, flags,
19084 			     ipoptlen, orig_len, len, error,
19085 			     (rsm == NULL), optlen, __LINE__, 2);
19086 	} else if (sendalot) {
19087 		int ret;
19088 
19089 		sack_rxmit = 0;
19090 		if ((error == 0) &&
19091 		    rack_use_rfo &&
19092 		    ((flags & (TH_SYN|TH_FIN)) == 0) &&
19093 		    (rsm == NULL) &&
19094 		    (ipoptlen == 0) &&
19095 		    (tp->rcv_numsacks == 0) &&
19096 		    (tp->snd_nxt == tp->snd_max) &&
19097 		    (rack->r_must_retran == 0) &&
19098 		    rack->r_fsb_inited &&
19099 		    TCPS_HAVEESTABLISHED(tp->t_state) &&
19100 		    ((tp->t_flags & TF_NEEDFIN) == 0) &&
19101 		    (len > 0) && (orig_len > 0) &&
19102 		    (orig_len > len) &&
19103 		    ((orig_len - len) >= segsiz) &&
19104 		    ((optlen == 0) ||
19105 		     ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
19106 			/* we can use fast_output for more */
19107 
19108 			rack->r_fast_output = 1;
19109 			rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
19110 			rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
19111 			rack->r_ctl.fsb.tcp_flags = flags;
19112 			rack->r_ctl.fsb.left_to_send = orig_len - len;
19113 			if (hw_tls)
19114 				rack->r_ctl.fsb.hw_tls = 1;
19115 			else
19116 				rack->r_ctl.fsb.hw_tls = 0;
19117 			KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
19118 				("rack:%p left_to_send:%u sbavail:%u out:%u",
19119 				 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
19120 				 (tp->snd_max - tp->snd_una)));
19121 			if (rack->r_ctl.fsb.left_to_send < segsiz) {
19122 				rack->r_fast_output = 0;
19123 			}
19124 			if (rack->r_fast_output) {
19125 				if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
19126 					rack->r_ctl.fsb.rfo_apply_push = 1;
19127 				else
19128 					rack->r_ctl.fsb.rfo_apply_push = 0;
19129 				rack_log_fsb(rack, tp, so, flags,
19130 					     ipoptlen, orig_len, len, error,
19131 					     (rsm == NULL), optlen, __LINE__, 3);
19132 				error = 0;
19133 				ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
19134 				if (ret >= 0)
19135 					return (ret);
19136 			        else if (error)
19137 					goto nomore;
19138 
19139 			}
19140 		}
19141 		goto again;
19142 	}
19143 	/* Assure when we leave that snd_nxt will point to top */
19144 	if (SEQ_GT(tp->snd_max, tp->snd_nxt))
19145 		tp->snd_nxt = tp->snd_max;
19146 	rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
19147 #ifdef TCP_ACCOUNTING
19148 	crtsc = get_cyclecount() - ts_val;
19149 	if (tot_len_this_send) {
19150 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19151 			tp->tcp_cnt_counters[SND_OUT_DATA]++;
19152 		}
19153 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19154 			tp->tcp_proc_time[SND_OUT_DATA] += crtsc;
19155 		}
19156 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19157 			tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz);
19158 		}
19159 	} else {
19160 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19161 			tp->tcp_cnt_counters[SND_OUT_ACK]++;
19162 		}
19163 		if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19164 			tp->tcp_proc_time[SND_OUT_ACK] += crtsc;
19165 		}
19166 	}
19167 	sched_unpin();
19168 #endif
19169 	if (error == ENOBUFS)
19170 		error = 0;
19171 	return (error);
19172 }
19173 
19174 static void
19175 rack_update_seg(struct tcp_rack *rack)
19176 {
19177 	uint32_t orig_val;
19178 
19179 	orig_val = rack->r_ctl.rc_pace_max_segs;
19180 	rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
19181 	if (orig_val != rack->r_ctl.rc_pace_max_segs)
19182 		rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0);
19183 }
19184 
19185 static void
19186 rack_mtu_change(struct tcpcb *tp)
19187 {
19188 	/*
19189 	 * The MSS may have changed
19190 	 */
19191 	struct tcp_rack *rack;
19192 	struct rack_sendmap *rsm;
19193 
19194 	rack = (struct tcp_rack *)tp->t_fb_ptr;
19195 	if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) {
19196 		/*
19197 		 * The MTU has changed we need to resend everything
19198 		 * since all we have sent is lost. We first fix
19199 		 * up the mtu though.
19200 		 */
19201 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
19202 		/* We treat this like a full retransmit timeout without the cwnd adjustment */
19203 		rack_remxt_tmr(tp);
19204 		rack->r_fast_output = 0;
19205 		rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp,
19206 						rack->r_ctl.rc_sacked);
19207 		rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
19208 		rack->r_must_retran = 1;
19209 		/* Mark all inflight to needing to be rxt'd */
19210 		TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
19211 			rsm->r_flags |= RACK_MUST_RXT;
19212 		}
19213 	}
19214 	sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
19215 	/* We don't use snd_nxt to retransmit */
19216 	tp->snd_nxt = tp->snd_max;
19217 }
19218 
19219 static int
19220 rack_set_profile(struct tcp_rack *rack, int prof)
19221 {
19222 	int err = EINVAL;
19223 	if (prof == 1) {
19224 		/* pace_always=1 */
19225 		if (rack->rc_always_pace == 0) {
19226 			if (tcp_can_enable_pacing() == 0)
19227 				return (EBUSY);
19228 		}
19229 		rack->rc_always_pace = 1;
19230 		if (rack->use_fixed_rate || rack->gp_ready)
19231 			rack_set_cc_pacing(rack);
19232 		rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19233 		rack->rack_attempt_hdwr_pace = 0;
19234 		/* cmpack=1 */
19235 		if (rack_use_cmp_acks)
19236 			rack->r_use_cmp_ack = 1;
19237 		if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
19238 		    rack->r_use_cmp_ack)
19239 			rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19240 		/* scwnd=1 */
19241 		rack->rack_enable_scwnd = 1;
19242 		/* dynamic=100 */
19243 		rack->rc_gp_dyn_mul = 1;
19244 		/* gp_inc_ca */
19245 		rack->r_ctl.rack_per_of_gp_ca = 100;
19246 		/* rrr_conf=3 */
19247 		rack->r_rr_config = 3;
19248 		/* npush=2 */
19249 		rack->r_ctl.rc_no_push_at_mrtt = 2;
19250 		/* fillcw=1 */
19251 		rack->rc_pace_to_cwnd = 1;
19252 		rack->rc_pace_fill_if_rttin_range = 0;
19253 		rack->rtt_limit_mul = 0;
19254 		/* noprr=1 */
19255 		rack->rack_no_prr = 1;
19256 		/* lscwnd=1 */
19257 		rack->r_limit_scw = 1;
19258 		/* gp_inc_rec */
19259 		rack->r_ctl.rack_per_of_gp_rec = 90;
19260 		err = 0;
19261 
19262 	} else if (prof == 3) {
19263 		/* Same as profile one execept fill_cw becomes 2 (less aggressive set) */
19264 		/* pace_always=1 */
19265 		if (rack->rc_always_pace == 0) {
19266 			if (tcp_can_enable_pacing() == 0)
19267 				return (EBUSY);
19268 		}
19269 		rack->rc_always_pace = 1;
19270 		if (rack->use_fixed_rate || rack->gp_ready)
19271 			rack_set_cc_pacing(rack);
19272 		rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19273 		rack->rack_attempt_hdwr_pace = 0;
19274 		/* cmpack=1 */
19275 		if (rack_use_cmp_acks)
19276 			rack->r_use_cmp_ack = 1;
19277 		if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
19278 		    rack->r_use_cmp_ack)
19279 			rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19280 		/* scwnd=1 */
19281 		rack->rack_enable_scwnd = 1;
19282 		/* dynamic=100 */
19283 		rack->rc_gp_dyn_mul = 1;
19284 		/* gp_inc_ca */
19285 		rack->r_ctl.rack_per_of_gp_ca = 100;
19286 		/* rrr_conf=3 */
19287 		rack->r_rr_config = 3;
19288 		/* npush=2 */
19289 		rack->r_ctl.rc_no_push_at_mrtt = 2;
19290 		/* fillcw=2 */
19291 		rack->rc_pace_to_cwnd = 1;
19292 		rack->r_fill_less_agg = 1;
19293 		rack->rc_pace_fill_if_rttin_range = 0;
19294 		rack->rtt_limit_mul = 0;
19295 		/* noprr=1 */
19296 		rack->rack_no_prr = 1;
19297 		/* lscwnd=1 */
19298 		rack->r_limit_scw = 1;
19299 		/* gp_inc_rec */
19300 		rack->r_ctl.rack_per_of_gp_rec = 90;
19301 		err = 0;
19302 
19303 
19304 	} else if (prof == 2) {
19305 		/* cmpack=1 */
19306 		if (rack->rc_always_pace == 0) {
19307 			if (tcp_can_enable_pacing() == 0)
19308 				return (EBUSY);
19309 		}
19310 		rack->rc_always_pace = 1;
19311 		if (rack->use_fixed_rate || rack->gp_ready)
19312 			rack_set_cc_pacing(rack);
19313 		rack->r_use_cmp_ack = 1;
19314 		if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
19315 			rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19316 		/* pace_always=1 */
19317 		rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19318 		/* scwnd=1 */
19319 		rack->rack_enable_scwnd = 1;
19320 		/* dynamic=100 */
19321 		rack->rc_gp_dyn_mul = 1;
19322 		rack->r_ctl.rack_per_of_gp_ca = 100;
19323 		/* rrr_conf=3 */
19324 		rack->r_rr_config = 3;
19325 		/* npush=2 */
19326 		rack->r_ctl.rc_no_push_at_mrtt = 2;
19327 		/* fillcw=1 */
19328 		rack->rc_pace_to_cwnd = 1;
19329 		rack->rc_pace_fill_if_rttin_range = 0;
19330 		rack->rtt_limit_mul = 0;
19331 		/* noprr=1 */
19332 		rack->rack_no_prr = 1;
19333 		/* lscwnd=0 */
19334 		rack->r_limit_scw = 0;
19335 		err = 0;
19336 	} else if (prof == 0) {
19337 		/* This changes things back to the default settings */
19338 		err = 0;
19339 		if (rack->rc_always_pace) {
19340 			tcp_decrement_paced_conn();
19341 			rack_undo_cc_pacing(rack);
19342 			rack->rc_always_pace = 0;
19343 		}
19344 		if (rack_pace_every_seg && tcp_can_enable_pacing()) {
19345 			rack->rc_always_pace = 1;
19346 			if (rack->use_fixed_rate || rack->gp_ready)
19347 				rack_set_cc_pacing(rack);
19348 		} else
19349 			rack->rc_always_pace = 0;
19350 		if (rack_dsack_std_based & 0x1) {
19351 			/* Basically this means all rack timers are at least (srtt + 1/4 srtt) */
19352 			rack->rc_rack_tmr_std_based = 1;
19353 		}
19354 		if (rack_dsack_std_based & 0x2) {
19355 			/* Basically this means  rack timers are extended based on dsack by up to (2 * srtt) */
19356 			rack->rc_rack_use_dsack = 1;
19357 		}
19358 		if (rack_use_cmp_acks)
19359 			rack->r_use_cmp_ack = 1;
19360 		else
19361 			rack->r_use_cmp_ack = 0;
19362 		if (rack_disable_prr)
19363 			rack->rack_no_prr = 1;
19364 		else
19365 			rack->rack_no_prr = 0;
19366 		if (rack_gp_no_rec_chg)
19367 			rack->rc_gp_no_rec_chg = 1;
19368 		else
19369 			rack->rc_gp_no_rec_chg = 0;
19370 		if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) {
19371 			rack->r_mbuf_queue = 1;
19372 			if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
19373 				rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
19374 			rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19375 		} else {
19376 			rack->r_mbuf_queue = 0;
19377 			rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19378 		}
19379 		if (rack_enable_shared_cwnd)
19380 			rack->rack_enable_scwnd = 1;
19381 		else
19382 			rack->rack_enable_scwnd = 0;
19383 		if (rack_do_dyn_mul) {
19384 			/* When dynamic adjustment is on CA needs to start at 100% */
19385 			rack->rc_gp_dyn_mul = 1;
19386 			if (rack_do_dyn_mul >= 100)
19387 				rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
19388 		} else {
19389 			rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
19390 			rack->rc_gp_dyn_mul = 0;
19391 		}
19392 		rack->r_rr_config = 0;
19393 		rack->r_ctl.rc_no_push_at_mrtt = 0;
19394 		rack->rc_pace_to_cwnd = 0;
19395 		rack->rc_pace_fill_if_rttin_range = 0;
19396 		rack->rtt_limit_mul = 0;
19397 
19398 		if (rack_enable_hw_pacing)
19399 			rack->rack_hdw_pace_ena = 1;
19400 		else
19401 			rack->rack_hdw_pace_ena = 0;
19402 		if (rack_disable_prr)
19403 			rack->rack_no_prr = 1;
19404 		else
19405 			rack->rack_no_prr = 0;
19406 		if (rack_limits_scwnd)
19407 			rack->r_limit_scw  = 1;
19408 		else
19409 			rack->r_limit_scw  = 0;
19410 		err = 0;
19411 	}
19412 	return (err);
19413 }
19414 
19415 static int
19416 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval)
19417 {
19418 	struct deferred_opt_list *dol;
19419 
19420 	dol = malloc(sizeof(struct deferred_opt_list),
19421 		     M_TCPFSB, M_NOWAIT|M_ZERO);
19422 	if (dol == NULL) {
19423 		/*
19424 		 * No space yikes -- fail out..
19425 		 */
19426 		return (0);
19427 	}
19428 	dol->optname = sopt_name;
19429 	dol->optval = loptval;
19430 	TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next);
19431 	return (1);
19432 }
19433 
19434 static int
19435 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name,
19436 		    uint32_t optval, uint64_t loptval)
19437 {
19438 	struct epoch_tracker et;
19439 	struct sockopt sopt;
19440 	struct cc_newreno_opts opt;
19441 	struct inpcb *inp = tptoinpcb(tp);
19442 	uint64_t val;
19443 	int error = 0;
19444 	uint16_t ca, ss;
19445 
19446 	switch (sopt_name) {
19447 
19448 	case TCP_RACK_DSACK_OPT:
19449 		RACK_OPTS_INC(tcp_rack_dsack_opt);
19450 		if (optval & 0x1) {
19451 			rack->rc_rack_tmr_std_based = 1;
19452 		} else {
19453 			rack->rc_rack_tmr_std_based = 0;
19454 		}
19455 		if (optval & 0x2) {
19456 			rack->rc_rack_use_dsack = 1;
19457 		} else {
19458 			rack->rc_rack_use_dsack = 0;
19459 		}
19460 		rack_log_dsack_event(rack, 5, __LINE__, 0, 0);
19461 		break;
19462 	case TCP_RACK_PACING_BETA:
19463 		RACK_OPTS_INC(tcp_rack_beta);
19464 		if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) {
19465 			/* This only works for newreno. */
19466 			error = EINVAL;
19467 			break;
19468 		}
19469 		if (rack->rc_pacing_cc_set) {
19470 			/*
19471 			 * Set them into the real CC module
19472 			 * whats in the rack pcb is the old values
19473 			 * to be used on restoral/
19474 			 */
19475 			sopt.sopt_dir = SOPT_SET;
19476 			opt.name = CC_NEWRENO_BETA;
19477 			opt.val = optval;
19478 			if (CC_ALGO(tp)->ctl_output != NULL)
19479 				error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
19480 			else {
19481 				error = ENOENT;
19482 				break;
19483 			}
19484 		} else {
19485 			/*
19486 			 * Not pacing yet so set it into our local
19487 			 * rack pcb storage.
19488 			 */
19489 			rack->r_ctl.rc_saved_beta.beta = optval;
19490 		}
19491 		break;
19492 	case TCP_RACK_TIMER_SLOP:
19493 		RACK_OPTS_INC(tcp_rack_timer_slop);
19494 		rack->r_ctl.timer_slop = optval;
19495 		if (rack->rc_tp->t_srtt) {
19496 			/*
19497 			 * If we have an SRTT lets update t_rxtcur
19498 			 * to have the new slop.
19499 			 */
19500 			RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
19501 					   rack_rto_min, rack_rto_max,
19502 					   rack->r_ctl.timer_slop);
19503 		}
19504 		break;
19505 	case TCP_RACK_PACING_BETA_ECN:
19506 		RACK_OPTS_INC(tcp_rack_beta_ecn);
19507 		if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0) {
19508 			/* This only works for newreno. */
19509 			error = EINVAL;
19510 			break;
19511 		}
19512 		if (rack->rc_pacing_cc_set) {
19513 			/*
19514 			 * Set them into the real CC module
19515 			 * whats in the rack pcb is the old values
19516 			 * to be used on restoral/
19517 			 */
19518 			sopt.sopt_dir = SOPT_SET;
19519 			opt.name = CC_NEWRENO_BETA_ECN;
19520 			opt.val = optval;
19521 			if (CC_ALGO(tp)->ctl_output != NULL)
19522 				error = CC_ALGO(tp)->ctl_output(&tp->t_ccv, &sopt, &opt);
19523 			else
19524 				error = ENOENT;
19525 		} else {
19526 			/*
19527 			 * Not pacing yet so set it into our local
19528 			 * rack pcb storage.
19529 			 */
19530 			rack->r_ctl.rc_saved_beta.beta_ecn = optval;
19531 			rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN_ENABLED;
19532 		}
19533 		break;
19534 	case TCP_DEFER_OPTIONS:
19535 		RACK_OPTS_INC(tcp_defer_opt);
19536 		if (optval) {
19537 			if (rack->gp_ready) {
19538 				/* Too late */
19539 				error = EINVAL;
19540 				break;
19541 			}
19542 			rack->defer_options = 1;
19543 		} else
19544 			rack->defer_options = 0;
19545 		break;
19546 	case TCP_RACK_MEASURE_CNT:
19547 		RACK_OPTS_INC(tcp_rack_measure_cnt);
19548 		if (optval && (optval <= 0xff)) {
19549 			rack->r_ctl.req_measurements = optval;
19550 		} else
19551 			error = EINVAL;
19552 		break;
19553 	case TCP_REC_ABC_VAL:
19554 		RACK_OPTS_INC(tcp_rec_abc_val);
19555 		if (optval > 0)
19556 			rack->r_use_labc_for_rec = 1;
19557 		else
19558 			rack->r_use_labc_for_rec = 0;
19559 		break;
19560 	case TCP_RACK_ABC_VAL:
19561 		RACK_OPTS_INC(tcp_rack_abc_val);
19562 		if ((optval > 0) && (optval < 255))
19563 			rack->rc_labc = optval;
19564 		else
19565 			error = EINVAL;
19566 		break;
19567 	case TCP_HDWR_UP_ONLY:
19568 		RACK_OPTS_INC(tcp_pacing_up_only);
19569 		if (optval)
19570 			rack->r_up_only = 1;
19571 		else
19572 			rack->r_up_only = 0;
19573 		break;
19574 	case TCP_PACING_RATE_CAP:
19575 		RACK_OPTS_INC(tcp_pacing_rate_cap);
19576 		rack->r_ctl.bw_rate_cap = loptval;
19577 		break;
19578 	case TCP_RACK_PROFILE:
19579 		RACK_OPTS_INC(tcp_profile);
19580 		error = rack_set_profile(rack, optval);
19581 		break;
19582 	case TCP_USE_CMP_ACKS:
19583 		RACK_OPTS_INC(tcp_use_cmp_acks);
19584 		if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) {
19585 			/* You can't turn it off once its on! */
19586 			error = EINVAL;
19587 		} else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) {
19588 			rack->r_use_cmp_ack = 1;
19589 			rack->r_mbuf_queue = 1;
19590 			inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19591 		}
19592 		if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
19593 			inp->inp_flags2 |= INP_MBUF_ACKCMP;
19594 		break;
19595 	case TCP_SHARED_CWND_TIME_LIMIT:
19596 		RACK_OPTS_INC(tcp_lscwnd);
19597 		if (optval)
19598 			rack->r_limit_scw = 1;
19599 		else
19600 			rack->r_limit_scw = 0;
19601 		break;
19602  	case TCP_RACK_PACE_TO_FILL:
19603 		RACK_OPTS_INC(tcp_fillcw);
19604 		if (optval == 0)
19605 			rack->rc_pace_to_cwnd = 0;
19606 		else {
19607 			rack->rc_pace_to_cwnd = 1;
19608 			if (optval > 1)
19609 				rack->r_fill_less_agg = 1;
19610 		}
19611 		if ((optval >= rack_gp_rtt_maxmul) &&
19612 		    rack_gp_rtt_maxmul &&
19613 		    (optval < 0xf)) {
19614 			rack->rc_pace_fill_if_rttin_range = 1;
19615 			rack->rtt_limit_mul = optval;
19616 		} else {
19617 			rack->rc_pace_fill_if_rttin_range = 0;
19618 			rack->rtt_limit_mul = 0;
19619 		}
19620 		break;
19621 	case TCP_RACK_NO_PUSH_AT_MAX:
19622 		RACK_OPTS_INC(tcp_npush);
19623 		if (optval == 0)
19624 			rack->r_ctl.rc_no_push_at_mrtt = 0;
19625 		else if (optval < 0xff)
19626 			rack->r_ctl.rc_no_push_at_mrtt = optval;
19627 		else
19628 			error = EINVAL;
19629 		break;
19630 	case TCP_SHARED_CWND_ENABLE:
19631 		RACK_OPTS_INC(tcp_rack_scwnd);
19632 		if (optval == 0)
19633 			rack->rack_enable_scwnd = 0;
19634 		else
19635 			rack->rack_enable_scwnd = 1;
19636 		break;
19637 	case TCP_RACK_MBUF_QUEUE:
19638 		/* Now do we use the LRO mbuf-queue feature */
19639 		RACK_OPTS_INC(tcp_rack_mbufq);
19640 		if (optval || rack->r_use_cmp_ack)
19641 			rack->r_mbuf_queue = 1;
19642 		else
19643 			rack->r_mbuf_queue = 0;
19644 		if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19645 			inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19646 		else
19647 			inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19648 		break;
19649 	case TCP_RACK_NONRXT_CFG_RATE:
19650 		RACK_OPTS_INC(tcp_rack_cfg_rate);
19651 		if (optval == 0)
19652 			rack->rack_rec_nonrxt_use_cr = 0;
19653 		else
19654 			rack->rack_rec_nonrxt_use_cr = 1;
19655 		break;
19656 	case TCP_NO_PRR:
19657 		RACK_OPTS_INC(tcp_rack_noprr);
19658 		if (optval == 0)
19659 			rack->rack_no_prr = 0;
19660 		else if (optval == 1)
19661 			rack->rack_no_prr = 1;
19662 		else if (optval == 2)
19663 			rack->no_prr_addback = 1;
19664 		else
19665 			error = EINVAL;
19666 		break;
19667 	case TCP_TIMELY_DYN_ADJ:
19668 		RACK_OPTS_INC(tcp_timely_dyn);
19669 		if (optval == 0)
19670 			rack->rc_gp_dyn_mul = 0;
19671 		else {
19672 			rack->rc_gp_dyn_mul = 1;
19673 			if (optval >= 100) {
19674 				/*
19675 				 * If the user sets something 100 or more
19676 				 * its the gp_ca value.
19677 				 */
19678 				rack->r_ctl.rack_per_of_gp_ca  = optval;
19679 			}
19680 		}
19681 		break;
19682 	case TCP_RACK_DO_DETECTION:
19683 		RACK_OPTS_INC(tcp_rack_do_detection);
19684 		if (optval == 0)
19685 			rack->do_detection = 0;
19686 		else
19687 			rack->do_detection = 1;
19688 		break;
19689 	case TCP_RACK_TLP_USE:
19690 		if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
19691 			error = EINVAL;
19692 			break;
19693 		}
19694 		RACK_OPTS_INC(tcp_tlp_use);
19695 		rack->rack_tlp_threshold_use = optval;
19696 		break;
19697 	case TCP_RACK_TLP_REDUCE:
19698 		/* RACK TLP cwnd reduction (bool) */
19699 		RACK_OPTS_INC(tcp_rack_tlp_reduce);
19700 		rack->r_ctl.rc_tlp_cwnd_reduce = optval;
19701 		break;
19702 	/*  Pacing related ones */
19703 	case TCP_RACK_PACE_ALWAYS:
19704 		/*
19705 		 * zero is old rack method, 1 is new
19706 		 * method using a pacing rate.
19707 		 */
19708 		RACK_OPTS_INC(tcp_rack_pace_always);
19709 		if (optval > 0) {
19710 			if (rack->rc_always_pace) {
19711 				error = EALREADY;
19712 				break;
19713 			} else if (tcp_can_enable_pacing()) {
19714 				rack->rc_always_pace = 1;
19715 				if (rack->use_fixed_rate || rack->gp_ready)
19716 					rack_set_cc_pacing(rack);
19717 			}
19718 			else {
19719 				error = ENOSPC;
19720 				break;
19721 			}
19722 		} else {
19723 			if (rack->rc_always_pace) {
19724 				tcp_decrement_paced_conn();
19725 				rack->rc_always_pace = 0;
19726 				rack_undo_cc_pacing(rack);
19727 			}
19728 		}
19729 		if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19730 			inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19731 		else
19732 			inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19733 		/* A rate may be set irate or other, if so set seg size */
19734 		rack_update_seg(rack);
19735 		break;
19736 	case TCP_BBR_RACK_INIT_RATE:
19737 		RACK_OPTS_INC(tcp_initial_rate);
19738 		val = optval;
19739 		/* Change from kbits per second to bytes per second */
19740 		val *= 1000;
19741 		val /= 8;
19742 		rack->r_ctl.init_rate = val;
19743 		if (rack->rc_init_win != rack_default_init_window) {
19744 			uint32_t win, snt;
19745 
19746 			/*
19747 			 * Options don't always get applied
19748 			 * in the order you think. So in order
19749 			 * to assure we update a cwnd we need
19750 			 * to check and see if we are still
19751 			 * where we should raise the cwnd.
19752 			 */
19753 			win = rc_init_window(rack);
19754 			if (SEQ_GT(tp->snd_max, tp->iss))
19755 				snt = tp->snd_max - tp->iss;
19756 			else
19757 				snt = 0;
19758 			if ((snt < win) &&
19759 			    (tp->snd_cwnd < win))
19760 				tp->snd_cwnd = win;
19761 		}
19762 		if (rack->rc_always_pace)
19763 			rack_update_seg(rack);
19764 		break;
19765 	case TCP_BBR_IWINTSO:
19766 		RACK_OPTS_INC(tcp_initial_win);
19767 		if (optval && (optval <= 0xff)) {
19768 			uint32_t win, snt;
19769 
19770 			rack->rc_init_win = optval;
19771 			win = rc_init_window(rack);
19772 			if (SEQ_GT(tp->snd_max, tp->iss))
19773 				snt = tp->snd_max - tp->iss;
19774 			else
19775 				snt = 0;
19776 			if ((snt < win) &&
19777 			    (tp->t_srtt |
19778 #ifdef NETFLIX_PEAKRATE
19779 			     tp->t_maxpeakrate |
19780 #endif
19781 			     rack->r_ctl.init_rate)) {
19782 				/*
19783 				 * We are not past the initial window
19784 				 * and we have some bases for pacing,
19785 				 * so we need to possibly adjust up
19786 				 * the cwnd. Note even if we don't set
19787 				 * the cwnd, its still ok to raise the rc_init_win
19788 				 * which can be used coming out of idle when we
19789 				 * would have a rate.
19790 				 */
19791 				if (tp->snd_cwnd < win)
19792 					tp->snd_cwnd = win;
19793 			}
19794 			if (rack->rc_always_pace)
19795 				rack_update_seg(rack);
19796 		} else
19797 			error = EINVAL;
19798 		break;
19799 	case TCP_RACK_FORCE_MSEG:
19800 		RACK_OPTS_INC(tcp_rack_force_max_seg);
19801 		if (optval)
19802 			rack->rc_force_max_seg = 1;
19803 		else
19804 			rack->rc_force_max_seg = 0;
19805 		break;
19806 	case TCP_RACK_PACE_MAX_SEG:
19807 		/* Max segments size in a pace in bytes */
19808 		RACK_OPTS_INC(tcp_rack_max_seg);
19809 		rack->rc_user_set_max_segs = optval;
19810 		rack_set_pace_segments(tp, rack, __LINE__, NULL);
19811 		break;
19812 	case TCP_RACK_PACE_RATE_REC:
19813 		/* Set the fixed pacing rate in Bytes per second ca */
19814 		RACK_OPTS_INC(tcp_rack_pace_rate_rec);
19815 		rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19816 		if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19817 			rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19818 		if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19819 			rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19820 		rack->use_fixed_rate = 1;
19821 		if (rack->rc_always_pace)
19822 			rack_set_cc_pacing(rack);
19823 		rack_log_pacing_delay_calc(rack,
19824 					   rack->r_ctl.rc_fixed_pacing_rate_ss,
19825 					   rack->r_ctl.rc_fixed_pacing_rate_ca,
19826 					   rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19827 					   __LINE__, NULL,0);
19828 		break;
19829 
19830 	case TCP_RACK_PACE_RATE_SS:
19831 		/* Set the fixed pacing rate in Bytes per second ca */
19832 		RACK_OPTS_INC(tcp_rack_pace_rate_ss);
19833 		rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19834 		if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19835 			rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19836 		if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19837 			rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19838 		rack->use_fixed_rate = 1;
19839 		if (rack->rc_always_pace)
19840 			rack_set_cc_pacing(rack);
19841 		rack_log_pacing_delay_calc(rack,
19842 					   rack->r_ctl.rc_fixed_pacing_rate_ss,
19843 					   rack->r_ctl.rc_fixed_pacing_rate_ca,
19844 					   rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19845 					   __LINE__, NULL, 0);
19846 		break;
19847 
19848 	case TCP_RACK_PACE_RATE_CA:
19849 		/* Set the fixed pacing rate in Bytes per second ca */
19850 		RACK_OPTS_INC(tcp_rack_pace_rate_ca);
19851 		rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19852 		if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19853 			rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19854 		if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19855 			rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19856 		rack->use_fixed_rate = 1;
19857 		if (rack->rc_always_pace)
19858 			rack_set_cc_pacing(rack);
19859 		rack_log_pacing_delay_calc(rack,
19860 					   rack->r_ctl.rc_fixed_pacing_rate_ss,
19861 					   rack->r_ctl.rc_fixed_pacing_rate_ca,
19862 					   rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19863 					   __LINE__, NULL, 0);
19864 		break;
19865 	case TCP_RACK_GP_INCREASE_REC:
19866 		RACK_OPTS_INC(tcp_gp_inc_rec);
19867 		rack->r_ctl.rack_per_of_gp_rec = optval;
19868 		rack_log_pacing_delay_calc(rack,
19869 					   rack->r_ctl.rack_per_of_gp_ss,
19870 					   rack->r_ctl.rack_per_of_gp_ca,
19871 					   rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19872 					   __LINE__, NULL, 0);
19873 		break;
19874 	case TCP_RACK_GP_INCREASE_CA:
19875 		RACK_OPTS_INC(tcp_gp_inc_ca);
19876 		ca = optval;
19877 		if (ca < 100) {
19878 			/*
19879 			 * We don't allow any reduction
19880 			 * over the GP b/w.
19881 			 */
19882 			error = EINVAL;
19883 			break;
19884 		}
19885 		rack->r_ctl.rack_per_of_gp_ca = ca;
19886 		rack_log_pacing_delay_calc(rack,
19887 					   rack->r_ctl.rack_per_of_gp_ss,
19888 					   rack->r_ctl.rack_per_of_gp_ca,
19889 					   rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19890 					   __LINE__, NULL, 0);
19891 		break;
19892 	case TCP_RACK_GP_INCREASE_SS:
19893 		RACK_OPTS_INC(tcp_gp_inc_ss);
19894 		ss = optval;
19895 		if (ss < 100) {
19896 			/*
19897 			 * We don't allow any reduction
19898 			 * over the GP b/w.
19899 			 */
19900 			error = EINVAL;
19901 			break;
19902 		}
19903 		rack->r_ctl.rack_per_of_gp_ss = ss;
19904 		rack_log_pacing_delay_calc(rack,
19905 					   rack->r_ctl.rack_per_of_gp_ss,
19906 					   rack->r_ctl.rack_per_of_gp_ca,
19907 					   rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19908 					   __LINE__, NULL, 0);
19909 		break;
19910 	case TCP_RACK_RR_CONF:
19911 		RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate);
19912 		if (optval && optval <= 3)
19913 			rack->r_rr_config = optval;
19914 		else
19915 			rack->r_rr_config = 0;
19916 		break;
19917 	case TCP_HDWR_RATE_CAP:
19918 		RACK_OPTS_INC(tcp_hdwr_rate_cap);
19919 		if (optval) {
19920 			if (rack->r_rack_hw_rate_caps == 0)
19921 				rack->r_rack_hw_rate_caps = 1;
19922 			else
19923 				error = EALREADY;
19924 		} else {
19925 			rack->r_rack_hw_rate_caps = 0;
19926 		}
19927 		break;
19928 	case TCP_BBR_HDWR_PACE:
19929 		RACK_OPTS_INC(tcp_hdwr_pacing);
19930 		if (optval){
19931 			if (rack->rack_hdrw_pacing == 0) {
19932 				rack->rack_hdw_pace_ena = 1;
19933 				rack->rack_attempt_hdwr_pace = 0;
19934 			} else
19935 				error = EALREADY;
19936 		} else {
19937 			rack->rack_hdw_pace_ena = 0;
19938 #ifdef RATELIMIT
19939 			if (rack->r_ctl.crte != NULL) {
19940 				rack->rack_hdrw_pacing = 0;
19941 				rack->rack_attempt_hdwr_pace = 0;
19942 				tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
19943 				rack->r_ctl.crte = NULL;
19944 			}
19945 #endif
19946 		}
19947 		break;
19948 	/*  End Pacing related ones */
19949 	case TCP_RACK_PRR_SENDALOT:
19950 		/* Allow PRR to send more than one seg */
19951 		RACK_OPTS_INC(tcp_rack_prr_sendalot);
19952 		rack->r_ctl.rc_prr_sendalot = optval;
19953 		break;
19954 	case TCP_RACK_MIN_TO:
19955 		/* Minimum time between rack t-o's in ms */
19956 		RACK_OPTS_INC(tcp_rack_min_to);
19957 		rack->r_ctl.rc_min_to = optval;
19958 		break;
19959 	case TCP_RACK_EARLY_SEG:
19960 		/* If early recovery max segments */
19961 		RACK_OPTS_INC(tcp_rack_early_seg);
19962 		rack->r_ctl.rc_early_recovery_segs = optval;
19963 		break;
19964 	case TCP_RACK_ENABLE_HYSTART:
19965 	{
19966 		if (optval) {
19967 			tp->t_ccv.flags |= CCF_HYSTART_ALLOWED;
19968 			if (rack_do_hystart > RACK_HYSTART_ON)
19969 				tp->t_ccv.flags |= CCF_HYSTART_CAN_SH_CWND;
19970 			if (rack_do_hystart > RACK_HYSTART_ON_W_SC)
19971 				tp->t_ccv.flags |= CCF_HYSTART_CONS_SSTH;
19972 		} else {
19973 			tp->t_ccv.flags &= ~(CCF_HYSTART_ALLOWED|CCF_HYSTART_CAN_SH_CWND|CCF_HYSTART_CONS_SSTH);
19974 		}
19975 	}
19976 	break;
19977 	case TCP_RACK_REORD_THRESH:
19978 		/* RACK reorder threshold (shift amount) */
19979 		RACK_OPTS_INC(tcp_rack_reord_thresh);
19980 		if ((optval > 0) && (optval < 31))
19981 			rack->r_ctl.rc_reorder_shift = optval;
19982 		else
19983 			error = EINVAL;
19984 		break;
19985 	case TCP_RACK_REORD_FADE:
19986 		/* Does reordering fade after ms time */
19987 		RACK_OPTS_INC(tcp_rack_reord_fade);
19988 		rack->r_ctl.rc_reorder_fade = optval;
19989 		break;
19990 	case TCP_RACK_TLP_THRESH:
19991 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
19992 		RACK_OPTS_INC(tcp_rack_tlp_thresh);
19993 		if (optval)
19994 			rack->r_ctl.rc_tlp_threshold = optval;
19995 		else
19996 			error = EINVAL;
19997 		break;
19998 	case TCP_BBR_USE_RACK_RR:
19999 		RACK_OPTS_INC(tcp_rack_rr);
20000 		if (optval)
20001 			rack->use_rack_rr = 1;
20002 		else
20003 			rack->use_rack_rr = 0;
20004 		break;
20005 	case TCP_FAST_RSM_HACK:
20006 		RACK_OPTS_INC(tcp_rack_fastrsm_hack);
20007 		if (optval)
20008 			rack->fast_rsm_hack = 1;
20009 		else
20010 			rack->fast_rsm_hack = 0;
20011 		break;
20012 	case TCP_RACK_PKT_DELAY:
20013 		/* RACK added ms i.e. rack-rtt + reord + N */
20014 		RACK_OPTS_INC(tcp_rack_pkt_delay);
20015 		rack->r_ctl.rc_pkt_delay = optval;
20016 		break;
20017 	case TCP_DELACK:
20018 		RACK_OPTS_INC(tcp_rack_delayed_ack);
20019 		if (optval == 0)
20020 			tp->t_delayed_ack = 0;
20021 		else
20022 			tp->t_delayed_ack = 1;
20023 		if (tp->t_flags & TF_DELACK) {
20024 			tp->t_flags &= ~TF_DELACK;
20025 			tp->t_flags |= TF_ACKNOW;
20026 			NET_EPOCH_ENTER(et);
20027 			rack_output(tp);
20028 			NET_EPOCH_EXIT(et);
20029 		}
20030 		break;
20031 
20032 	case TCP_BBR_RACK_RTT_USE:
20033 		RACK_OPTS_INC(tcp_rack_rtt_use);
20034 		if ((optval != USE_RTT_HIGH) &&
20035 		    (optval != USE_RTT_LOW) &&
20036 		    (optval != USE_RTT_AVG))
20037 			error = EINVAL;
20038 		else
20039 			rack->r_ctl.rc_rate_sample_method = optval;
20040 		break;
20041 	case TCP_DATA_AFTER_CLOSE:
20042 		RACK_OPTS_INC(tcp_data_after_close);
20043 		if (optval)
20044 			rack->rc_allow_data_af_clo = 1;
20045 		else
20046 			rack->rc_allow_data_af_clo = 0;
20047 		break;
20048 	default:
20049 		break;
20050 	}
20051 #ifdef NETFLIX_STATS
20052 	tcp_log_socket_option(tp, sopt_name, optval, error);
20053 #endif
20054 	return (error);
20055 }
20056 
20057 
20058 static void
20059 rack_apply_deferred_options(struct tcp_rack *rack)
20060 {
20061 	struct deferred_opt_list *dol, *sdol;
20062 	uint32_t s_optval;
20063 
20064 	TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) {
20065 		TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
20066 		/* Disadvantage of deferal is you loose the error return */
20067 		s_optval = (uint32_t)dol->optval;
20068 		(void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval);
20069 		free(dol, M_TCPDO);
20070 	}
20071 }
20072 
20073 static void
20074 rack_hw_tls_change(struct tcpcb *tp, int chg)
20075 {
20076 	/* Update HW tls state */
20077 	struct tcp_rack *rack;
20078 
20079 	rack = (struct tcp_rack *)tp->t_fb_ptr;
20080 	if (chg)
20081 		rack->r_ctl.fsb.hw_tls = 1;
20082 	else
20083 		rack->r_ctl.fsb.hw_tls = 0;
20084 }
20085 
20086 static int
20087 rack_pru_options(struct tcpcb *tp, int flags)
20088 {
20089 	if (flags & PRUS_OOB)
20090 		return (EOPNOTSUPP);
20091 	return (0);
20092 }
20093 
20094 static struct tcp_function_block __tcp_rack = {
20095 	.tfb_tcp_block_name = __XSTRING(STACKNAME),
20096 	.tfb_tcp_output = rack_output,
20097 	.tfb_do_queued_segments = ctf_do_queued_segments,
20098 	.tfb_do_segment_nounlock = rack_do_segment_nounlock,
20099 	.tfb_tcp_do_segment = rack_do_segment,
20100 	.tfb_tcp_ctloutput = rack_ctloutput,
20101 	.tfb_tcp_fb_init = rack_init,
20102 	.tfb_tcp_fb_fini = rack_fini,
20103 	.tfb_tcp_timer_stop_all = rack_stopall,
20104 	.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
20105 	.tfb_tcp_handoff_ok = rack_handoff_ok,
20106 	.tfb_tcp_mtu_chg = rack_mtu_change,
20107 	.tfb_pru_options = rack_pru_options,
20108 	.tfb_hwtls_change = rack_hw_tls_change,
20109 	.tfb_compute_pipe = rack_compute_pipe,
20110 	.tfb_flags = TCP_FUNC_OUTPUT_CANDROP,
20111 };
20112 
20113 /*
20114  * rack_ctloutput() must drop the inpcb lock before performing copyin on
20115  * socket option arguments.  When it re-acquires the lock after the copy, it
20116  * has to revalidate that the connection is still valid for the socket
20117  * option.
20118  */
20119 static int
20120 rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt)
20121 {
20122 #ifdef INET6
20123 	struct ip6_hdr *ip6;
20124 #endif
20125 #ifdef INET
20126 	struct ip *ip;
20127 #endif
20128 	struct tcpcb *tp;
20129 	struct tcp_rack *rack;
20130 	uint64_t loptval;
20131 	int32_t error = 0, optval;
20132 
20133 	tp = intotcpcb(inp);
20134 	rack = (struct tcp_rack *)tp->t_fb_ptr;
20135 	if (rack == NULL) {
20136 		INP_WUNLOCK(inp);
20137 		return (EINVAL);
20138 	}
20139 #ifdef INET6
20140 	ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
20141 #endif
20142 #ifdef INET
20143 	ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
20144 #endif
20145 
20146 	switch (sopt->sopt_level) {
20147 #ifdef INET6
20148 	case IPPROTO_IPV6:
20149 		MPASS(inp->inp_vflag & INP_IPV6PROTO);
20150 		switch (sopt->sopt_name) {
20151 		case IPV6_USE_MIN_MTU:
20152 			tcp6_use_min_mtu(tp);
20153 			break;
20154 		case IPV6_TCLASS:
20155 			/*
20156 			 * The DSCP codepoint has changed, update the fsb.
20157 			 */
20158 			ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
20159 			    (rack->rc_inp->inp_flow & IPV6_FLOWINFO_MASK);
20160 			break;
20161 		}
20162 		INP_WUNLOCK(inp);
20163 		return (0);
20164 #endif
20165 #ifdef INET
20166 	case IPPROTO_IP:
20167 		switch (sopt->sopt_name) {
20168 		case IP_TOS:
20169 			/*
20170 			 * The DSCP codepoint has changed, update the fsb.
20171 			 */
20172 			ip->ip_tos = rack->rc_inp->inp_ip_tos;
20173 			break;
20174 		case IP_TTL:
20175 			/*
20176 			 * The TTL has changed, update the fsb.
20177 			 */
20178 			ip->ip_ttl = rack->rc_inp->inp_ip_ttl;
20179 			break;
20180 		}
20181 		INP_WUNLOCK(inp);
20182 		return (0);
20183 #endif
20184 	}
20185 
20186 	switch (sopt->sopt_name) {
20187 	case TCP_RACK_TLP_REDUCE:		/*  URL:tlp_reduce */
20188 	/*  Pacing related ones */
20189 	case TCP_RACK_PACE_ALWAYS:		/*  URL:pace_always */
20190 	case TCP_BBR_RACK_INIT_RATE:		/*  URL:irate */
20191 	case TCP_BBR_IWINTSO:			/*  URL:tso_iwin */
20192 	case TCP_RACK_PACE_MAX_SEG:		/*  URL:pace_max_seg */
20193 	case TCP_RACK_FORCE_MSEG:		/*  URL:force_max_seg */
20194 	case TCP_RACK_PACE_RATE_CA:		/*  URL:pr_ca */
20195 	case TCP_RACK_PACE_RATE_SS:		/*  URL:pr_ss*/
20196 	case TCP_RACK_PACE_RATE_REC:		/*  URL:pr_rec */
20197 	case TCP_RACK_GP_INCREASE_CA:		/*  URL:gp_inc_ca */
20198 	case TCP_RACK_GP_INCREASE_SS:		/*  URL:gp_inc_ss */
20199 	case TCP_RACK_GP_INCREASE_REC:		/*  URL:gp_inc_rec */
20200 	case TCP_RACK_RR_CONF:			/*  URL:rrr_conf */
20201 	case TCP_BBR_HDWR_PACE:			/*  URL:hdwrpace */
20202 	case TCP_HDWR_RATE_CAP:			/*  URL:hdwrcap boolean */
20203 	case TCP_PACING_RATE_CAP:		/*  URL:cap  -- used by side-channel */
20204 	case TCP_HDWR_UP_ONLY:			/*  URL:uponly -- hardware pacing  boolean */
20205        /* End pacing related */
20206 	case TCP_FAST_RSM_HACK:			/*  URL:frsm_hack */
20207 	case TCP_DELACK:			/*  URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */
20208 	case TCP_RACK_PRR_SENDALOT:		/*  URL:prr_sendalot */
20209 	case TCP_RACK_MIN_TO:			/*  URL:min_to */
20210 	case TCP_RACK_EARLY_SEG:		/*  URL:early_seg */
20211 	case TCP_RACK_REORD_THRESH:		/*  URL:reord_thresh */
20212 	case TCP_RACK_REORD_FADE:		/*  URL:reord_fade */
20213 	case TCP_RACK_TLP_THRESH:		/*  URL:tlp_thresh */
20214 	case TCP_RACK_PKT_DELAY:		/*  URL:pkt_delay */
20215 	case TCP_RACK_TLP_USE:			/*  URL:tlp_use */
20216 	case TCP_BBR_RACK_RTT_USE:		/*  URL:rttuse */
20217 	case TCP_BBR_USE_RACK_RR:		/*  URL:rackrr */
20218 	case TCP_RACK_DO_DETECTION:		/*  URL:detect */
20219 	case TCP_NO_PRR:			/*  URL:noprr */
20220 	case TCP_TIMELY_DYN_ADJ:      		/*  URL:dynamic */
20221 	case TCP_DATA_AFTER_CLOSE:		/*  no URL */
20222 	case TCP_RACK_NONRXT_CFG_RATE:		/*  URL:nonrxtcr */
20223 	case TCP_SHARED_CWND_ENABLE:		/*  URL:scwnd */
20224 	case TCP_RACK_MBUF_QUEUE:		/*  URL:mqueue */
20225 	case TCP_RACK_NO_PUSH_AT_MAX:		/*  URL:npush */
20226 	case TCP_RACK_PACE_TO_FILL:		/*  URL:fillcw */
20227 	case TCP_SHARED_CWND_TIME_LIMIT:	/*  URL:lscwnd */
20228 	case TCP_RACK_PROFILE:			/*  URL:profile */
20229 	case TCP_USE_CMP_ACKS:			/*  URL:cmpack */
20230 	case TCP_RACK_ABC_VAL:			/*  URL:labc */
20231 	case TCP_REC_ABC_VAL:			/*  URL:reclabc */
20232 	case TCP_RACK_MEASURE_CNT:		/*  URL:measurecnt */
20233 	case TCP_DEFER_OPTIONS:			/*  URL:defer */
20234 	case TCP_RACK_DSACK_OPT:		/*  URL:dsack */
20235 	case TCP_RACK_PACING_BETA:		/*  URL:pacing_beta */
20236 	case TCP_RACK_PACING_BETA_ECN:		/*  URL:pacing_beta_ecn */
20237 	case TCP_RACK_TIMER_SLOP:		/*  URL:timer_slop */
20238 	case TCP_RACK_ENABLE_HYSTART:		/*  URL:hystart */
20239 		break;
20240 	default:
20241 		/* Filter off all unknown options to the base stack */
20242 		return (tcp_default_ctloutput(inp, sopt));
20243 		break;
20244 	}
20245 	INP_WUNLOCK(inp);
20246 	if (sopt->sopt_name == TCP_PACING_RATE_CAP) {
20247 		error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval));
20248 		/*
20249 		 * We truncate it down to 32 bits for the socket-option trace this
20250 		 * means rates > 34Gbps won't show right, but thats probably ok.
20251 		 */
20252 		optval = (uint32_t)loptval;
20253 	} else {
20254 		error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
20255 		/* Save it in 64 bit form too */
20256 		loptval = optval;
20257 	}
20258 	if (error)
20259 		return (error);
20260 	INP_WLOCK(inp);
20261 	if (inp->inp_flags & INP_DROPPED) {
20262 		INP_WUNLOCK(inp);
20263 		return (ECONNRESET);
20264 	}
20265 	if (tp->t_fb != &__tcp_rack) {
20266 		INP_WUNLOCK(inp);
20267 		return (ENOPROTOOPT);
20268 	}
20269 	if (rack->defer_options && (rack->gp_ready == 0) &&
20270 	    (sopt->sopt_name != TCP_DEFER_OPTIONS) &&
20271 	    (sopt->sopt_name != TCP_RACK_PACING_BETA) &&
20272 	    (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) &&
20273 	    (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) {
20274 		/* Options are beind deferred */
20275 		if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) {
20276 			INP_WUNLOCK(inp);
20277 			return (0);
20278 		} else {
20279 			/* No memory to defer, fail */
20280 			INP_WUNLOCK(inp);
20281 			return (ENOMEM);
20282 		}
20283 	}
20284 	error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval);
20285 	INP_WUNLOCK(inp);
20286 	return (error);
20287 }
20288 
20289 static void
20290 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti)
20291 {
20292 
20293 	INP_WLOCK_ASSERT(tptoinpcb(tp));
20294 	bzero(ti, sizeof(*ti));
20295 
20296 	ti->tcpi_state = tp->t_state;
20297 	if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
20298 		ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
20299 	if (tp->t_flags & TF_SACK_PERMIT)
20300 		ti->tcpi_options |= TCPI_OPT_SACK;
20301 	if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
20302 		ti->tcpi_options |= TCPI_OPT_WSCALE;
20303 		ti->tcpi_snd_wscale = tp->snd_scale;
20304 		ti->tcpi_rcv_wscale = tp->rcv_scale;
20305 	}
20306 	if (tp->t_flags2 & (TF2_ECN_PERMIT | TF2_ACE_PERMIT))
20307 		ti->tcpi_options |= TCPI_OPT_ECN;
20308 	if (tp->t_flags & TF_FASTOPEN)
20309 		ti->tcpi_options |= TCPI_OPT_TFO;
20310 	/* still kept in ticks is t_rcvtime */
20311 	ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick;
20312 	/* Since we hold everything in precise useconds this is easy */
20313 	ti->tcpi_rtt = tp->t_srtt;
20314 	ti->tcpi_rttvar = tp->t_rttvar;
20315 	ti->tcpi_rto = tp->t_rxtcur;
20316 	ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
20317 	ti->tcpi_snd_cwnd = tp->snd_cwnd;
20318 	/*
20319 	 * FreeBSD-specific extension fields for tcp_info.
20320 	 */
20321 	ti->tcpi_rcv_space = tp->rcv_wnd;
20322 	ti->tcpi_rcv_nxt = tp->rcv_nxt;
20323 	ti->tcpi_snd_wnd = tp->snd_wnd;
20324 	ti->tcpi_snd_bwnd = 0;		/* Unused, kept for compat. */
20325 	ti->tcpi_snd_nxt = tp->snd_nxt;
20326 	ti->tcpi_snd_mss = tp->t_maxseg;
20327 	ti->tcpi_rcv_mss = tp->t_maxseg;
20328 	ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack;
20329 	ti->tcpi_rcv_ooopack = tp->t_rcvoopack;
20330 	ti->tcpi_snd_zerowin = tp->t_sndzerowin;
20331 #ifdef NETFLIX_STATS
20332 	ti->tcpi_total_tlp = tp->t_sndtlppack;
20333 	ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte;
20334 	memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo));
20335 #endif
20336 #ifdef TCP_OFFLOAD
20337 	if (tp->t_flags & TF_TOE) {
20338 		ti->tcpi_options |= TCPI_OPT_TOE;
20339 		tcp_offload_tcp_info(tp, ti);
20340 	}
20341 #endif
20342 }
20343 
20344 static int
20345 rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt)
20346 {
20347 	struct tcpcb *tp;
20348 	struct tcp_rack *rack;
20349 	int32_t error, optval;
20350 	uint64_t val, loptval;
20351 	struct	tcp_info ti;
20352 	/*
20353 	 * Because all our options are either boolean or an int, we can just
20354 	 * pull everything into optval and then unlock and copy. If we ever
20355 	 * add a option that is not a int, then this will have quite an
20356 	 * impact to this routine.
20357 	 */
20358 	error = 0;
20359 	tp = intotcpcb(inp);
20360 	rack = (struct tcp_rack *)tp->t_fb_ptr;
20361 	if (rack == NULL) {
20362 		INP_WUNLOCK(inp);
20363 		return (EINVAL);
20364 	}
20365 	switch (sopt->sopt_name) {
20366 	case TCP_INFO:
20367 		/* First get the info filled */
20368 		rack_fill_info(tp, &ti);
20369 		/* Fix up the rtt related fields if needed */
20370 		INP_WUNLOCK(inp);
20371 		error = sooptcopyout(sopt, &ti, sizeof ti);
20372 		return (error);
20373 	/*
20374 	 * Beta is the congestion control value for NewReno that influences how
20375 	 * much of a backoff happens when loss is detected. It is normally set
20376 	 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value
20377 	 * when you exit recovery.
20378 	 */
20379 	case TCP_RACK_PACING_BETA:
20380 		if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0)
20381 			error = EINVAL;
20382 		else if (rack->rc_pacing_cc_set == 0)
20383 			optval = rack->r_ctl.rc_saved_beta.beta;
20384 		else {
20385 			/*
20386 			 * Reach out into the CC data and report back what
20387 			 * I have previously set. Yeah it looks hackish but
20388 			 * we don't want to report the saved values.
20389 			 */
20390 			if (tp->t_ccv.cc_data)
20391 				optval = ((struct newreno *)tp->t_ccv.cc_data)->beta;
20392 			else
20393 				error = EINVAL;
20394 		}
20395 		break;
20396 		/*
20397 		 * Beta_ecn is the congestion control value for NewReno that influences how
20398 		 * much of a backoff happens when a ECN mark is detected. It is normally set
20399 		 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when
20400 		 * you exit recovery. Note that classic ECN has a beta of 50, it is only
20401 		 * ABE Ecn that uses this "less" value, but we do too with pacing :)
20402 		 */
20403 
20404 	case TCP_RACK_PACING_BETA_ECN:
20405 		if (strcmp(tp->t_cc->name, CCALGONAME_NEWRENO) != 0)
20406 			error = EINVAL;
20407 		else if (rack->rc_pacing_cc_set == 0)
20408 			optval = rack->r_ctl.rc_saved_beta.beta_ecn;
20409 		else {
20410 			/*
20411 			 * Reach out into the CC data and report back what
20412 			 * I have previously set. Yeah it looks hackish but
20413 			 * we don't want to report the saved values.
20414 			 */
20415 			if (tp->t_ccv.cc_data)
20416 				optval = ((struct newreno *)tp->t_ccv.cc_data)->beta_ecn;
20417 			else
20418 				error = EINVAL;
20419 		}
20420 		break;
20421 	case TCP_RACK_DSACK_OPT:
20422 		optval = 0;
20423 		if (rack->rc_rack_tmr_std_based) {
20424 			optval |= 1;
20425 		}
20426 		if (rack->rc_rack_use_dsack) {
20427 			optval |= 2;
20428 		}
20429 		break;
20430  	case TCP_RACK_ENABLE_HYSTART:
20431 	{
20432 		if (tp->t_ccv.flags & CCF_HYSTART_ALLOWED) {
20433 			optval = RACK_HYSTART_ON;
20434 			if (tp->t_ccv.flags & CCF_HYSTART_CAN_SH_CWND)
20435 				optval = RACK_HYSTART_ON_W_SC;
20436 			if (tp->t_ccv.flags & CCF_HYSTART_CONS_SSTH)
20437 				optval = RACK_HYSTART_ON_W_SC_C;
20438 		} else {
20439 			optval = RACK_HYSTART_OFF;
20440 		}
20441 	}
20442 	break;
20443 	case TCP_FAST_RSM_HACK:
20444 		optval = rack->fast_rsm_hack;
20445 		break;
20446 	case TCP_DEFER_OPTIONS:
20447 		optval = rack->defer_options;
20448 		break;
20449 	case TCP_RACK_MEASURE_CNT:
20450 		optval = rack->r_ctl.req_measurements;
20451 		break;
20452 	case TCP_REC_ABC_VAL:
20453 		optval = rack->r_use_labc_for_rec;
20454 		break;
20455 	case TCP_RACK_ABC_VAL:
20456 		optval = rack->rc_labc;
20457 		break;
20458 	case TCP_HDWR_UP_ONLY:
20459 		optval= rack->r_up_only;
20460 		break;
20461 	case TCP_PACING_RATE_CAP:
20462 		loptval = rack->r_ctl.bw_rate_cap;
20463 		break;
20464 	case TCP_RACK_PROFILE:
20465 		/* You cannot retrieve a profile, its write only */
20466 		error = EINVAL;
20467 		break;
20468 	case TCP_USE_CMP_ACKS:
20469 		optval = rack->r_use_cmp_ack;
20470 		break;
20471 	case TCP_RACK_PACE_TO_FILL:
20472 		optval = rack->rc_pace_to_cwnd;
20473 		if (optval && rack->r_fill_less_agg)
20474 			optval++;
20475 		break;
20476 	case TCP_RACK_NO_PUSH_AT_MAX:
20477 		optval = rack->r_ctl.rc_no_push_at_mrtt;
20478 		break;
20479 	case TCP_SHARED_CWND_ENABLE:
20480 		optval = rack->rack_enable_scwnd;
20481 		break;
20482 	case TCP_RACK_NONRXT_CFG_RATE:
20483 		optval = rack->rack_rec_nonrxt_use_cr;
20484 		break;
20485 	case TCP_NO_PRR:
20486 		if (rack->rack_no_prr  == 1)
20487 			optval = 1;
20488 		else if (rack->no_prr_addback == 1)
20489 			optval = 2;
20490 		else
20491 			optval = 0;
20492 		break;
20493 	case TCP_RACK_DO_DETECTION:
20494 		optval = rack->do_detection;
20495 		break;
20496 	case TCP_RACK_MBUF_QUEUE:
20497 		/* Now do we use the LRO mbuf-queue feature */
20498 		optval = rack->r_mbuf_queue;
20499 		break;
20500 	case TCP_TIMELY_DYN_ADJ:
20501 		optval = rack->rc_gp_dyn_mul;
20502 		break;
20503 	case TCP_BBR_IWINTSO:
20504 		optval = rack->rc_init_win;
20505 		break;
20506 	case TCP_RACK_TLP_REDUCE:
20507 		/* RACK TLP cwnd reduction (bool) */
20508 		optval = rack->r_ctl.rc_tlp_cwnd_reduce;
20509 		break;
20510 	case TCP_BBR_RACK_INIT_RATE:
20511 		val = rack->r_ctl.init_rate;
20512 		/* convert to kbits per sec */
20513 		val *= 8;
20514 		val /= 1000;
20515 		optval = (uint32_t)val;
20516 		break;
20517 	case TCP_RACK_FORCE_MSEG:
20518 		optval = rack->rc_force_max_seg;
20519 		break;
20520 	case TCP_RACK_PACE_MAX_SEG:
20521 		/* Max segments in a pace */
20522 		optval = rack->rc_user_set_max_segs;
20523 		break;
20524 	case TCP_RACK_PACE_ALWAYS:
20525 		/* Use the always pace method */
20526 		optval = rack->rc_always_pace;
20527 		break;
20528 	case TCP_RACK_PRR_SENDALOT:
20529 		/* Allow PRR to send more than one seg */
20530 		optval = rack->r_ctl.rc_prr_sendalot;
20531 		break;
20532 	case TCP_RACK_MIN_TO:
20533 		/* Minimum time between rack t-o's in ms */
20534 		optval = rack->r_ctl.rc_min_to;
20535 		break;
20536 	case TCP_RACK_EARLY_SEG:
20537 		/* If early recovery max segments */
20538 		optval = rack->r_ctl.rc_early_recovery_segs;
20539 		break;
20540 	case TCP_RACK_REORD_THRESH:
20541 		/* RACK reorder threshold (shift amount) */
20542 		optval = rack->r_ctl.rc_reorder_shift;
20543 		break;
20544 	case TCP_RACK_REORD_FADE:
20545 		/* Does reordering fade after ms time */
20546 		optval = rack->r_ctl.rc_reorder_fade;
20547 		break;
20548 	case TCP_BBR_USE_RACK_RR:
20549 		/* Do we use the rack cheat for rxt */
20550 		optval = rack->use_rack_rr;
20551 		break;
20552 	case TCP_RACK_RR_CONF:
20553 		optval = rack->r_rr_config;
20554 		break;
20555 	case TCP_HDWR_RATE_CAP:
20556 		optval = rack->r_rack_hw_rate_caps;
20557 		break;
20558 	case TCP_BBR_HDWR_PACE:
20559 		optval = rack->rack_hdw_pace_ena;
20560 		break;
20561 	case TCP_RACK_TLP_THRESH:
20562 		/* RACK TLP theshold i.e. srtt+(srtt/N) */
20563 		optval = rack->r_ctl.rc_tlp_threshold;
20564 		break;
20565 	case TCP_RACK_PKT_DELAY:
20566 		/* RACK added ms i.e. rack-rtt + reord + N */
20567 		optval = rack->r_ctl.rc_pkt_delay;
20568 		break;
20569 	case TCP_RACK_TLP_USE:
20570 		optval = rack->rack_tlp_threshold_use;
20571 		break;
20572 	case TCP_RACK_PACE_RATE_CA:
20573 		optval = rack->r_ctl.rc_fixed_pacing_rate_ca;
20574 		break;
20575 	case TCP_RACK_PACE_RATE_SS:
20576 		optval = rack->r_ctl.rc_fixed_pacing_rate_ss;
20577 		break;
20578 	case TCP_RACK_PACE_RATE_REC:
20579 		optval = rack->r_ctl.rc_fixed_pacing_rate_rec;
20580 		break;
20581 	case TCP_RACK_GP_INCREASE_SS:
20582 		optval = rack->r_ctl.rack_per_of_gp_ca;
20583 		break;
20584 	case TCP_RACK_GP_INCREASE_CA:
20585 		optval = rack->r_ctl.rack_per_of_gp_ss;
20586 		break;
20587 	case TCP_BBR_RACK_RTT_USE:
20588 		optval = rack->r_ctl.rc_rate_sample_method;
20589 		break;
20590 	case TCP_DELACK:
20591 		optval = tp->t_delayed_ack;
20592 		break;
20593 	case TCP_DATA_AFTER_CLOSE:
20594 		optval = rack->rc_allow_data_af_clo;
20595 		break;
20596 	case TCP_SHARED_CWND_TIME_LIMIT:
20597 		optval = rack->r_limit_scw;
20598 		break;
20599 	case TCP_RACK_TIMER_SLOP:
20600 		optval = rack->r_ctl.timer_slop;
20601 		break;
20602 	default:
20603 		return (tcp_default_ctloutput(inp, sopt));
20604 		break;
20605 	}
20606 	INP_WUNLOCK(inp);
20607 	if (error == 0) {
20608 		if (TCP_PACING_RATE_CAP)
20609 			error = sooptcopyout(sopt, &loptval, sizeof loptval);
20610 		else
20611 			error = sooptcopyout(sopt, &optval, sizeof optval);
20612 	}
20613 	return (error);
20614 }
20615 
20616 static int
20617 rack_ctloutput(struct inpcb *inp, struct sockopt *sopt)
20618 {
20619 	if (sopt->sopt_dir == SOPT_SET) {
20620 		return (rack_set_sockopt(inp, sopt));
20621 	} else if (sopt->sopt_dir == SOPT_GET) {
20622 		return (rack_get_sockopt(inp, sopt));
20623 	} else {
20624 		panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir);
20625 	}
20626 }
20627 
20628 static const char *rack_stack_names[] = {
20629 	__XSTRING(STACKNAME),
20630 #ifdef STACKALIAS
20631 	__XSTRING(STACKALIAS),
20632 #endif
20633 };
20634 
20635 static int
20636 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
20637 {
20638 	memset(mem, 0, size);
20639 	return (0);
20640 }
20641 
20642 static void
20643 rack_dtor(void *mem, int32_t size, void *arg)
20644 {
20645 
20646 }
20647 
20648 static bool rack_mod_inited = false;
20649 
20650 static int
20651 tcp_addrack(module_t mod, int32_t type, void *data)
20652 {
20653 	int32_t err = 0;
20654 	int num_stacks;
20655 
20656 	switch (type) {
20657 	case MOD_LOAD:
20658 		rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
20659 		    sizeof(struct rack_sendmap),
20660 		    rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
20661 
20662 		rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
20663 		    sizeof(struct tcp_rack),
20664 		    rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
20665 
20666 		sysctl_ctx_init(&rack_sysctl_ctx);
20667 		rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
20668 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
20669 		    OID_AUTO,
20670 #ifdef STACKALIAS
20671 		    __XSTRING(STACKALIAS),
20672 #else
20673 		    __XSTRING(STACKNAME),
20674 #endif
20675 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
20676 		    "");
20677 		if (rack_sysctl_root == NULL) {
20678 			printf("Failed to add sysctl node\n");
20679 			err = EFAULT;
20680 			goto free_uma;
20681 		}
20682 		rack_init_sysctls();
20683 		num_stacks = nitems(rack_stack_names);
20684 		err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
20685 		    rack_stack_names, &num_stacks);
20686 		if (err) {
20687 			printf("Failed to register %s stack name for "
20688 			    "%s module\n", rack_stack_names[num_stacks],
20689 			    __XSTRING(MODNAME));
20690 			sysctl_ctx_free(&rack_sysctl_ctx);
20691 free_uma:
20692 			uma_zdestroy(rack_zone);
20693 			uma_zdestroy(rack_pcb_zone);
20694 			rack_counter_destroy();
20695 			printf("Failed to register rack module -- err:%d\n", err);
20696 			return (err);
20697 		}
20698 		tcp_lro_reg_mbufq();
20699 		rack_mod_inited = true;
20700 		break;
20701 	case MOD_QUIESCE:
20702 		err = deregister_tcp_functions(&__tcp_rack, true, false);
20703 		break;
20704 	case MOD_UNLOAD:
20705 		err = deregister_tcp_functions(&__tcp_rack, false, true);
20706 		if (err == EBUSY)
20707 			break;
20708 		if (rack_mod_inited) {
20709 			uma_zdestroy(rack_zone);
20710 			uma_zdestroy(rack_pcb_zone);
20711 			sysctl_ctx_free(&rack_sysctl_ctx);
20712 			rack_counter_destroy();
20713 			rack_mod_inited = false;
20714 		}
20715 		tcp_lro_dereg_mbufq();
20716 		err = 0;
20717 		break;
20718 	default:
20719 		return (EOPNOTSUPP);
20720 	}
20721 	return (err);
20722 }
20723 
20724 static moduledata_t tcp_rack = {
20725 	.name = __XSTRING(MODNAME),
20726 	.evhand = tcp_addrack,
20727 	.priv = 0
20728 };
20729 
20730 MODULE_VERSION(MODNAME, 1);
20731 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
20732 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
20733 
20734 #endif /* #if !defined(INET) && !defined(INET6) */
20735