xref: /freebsd/sys/netinet/tcp_sack.c (revision eb43a03acb08801a6734b6f3e75c6e6b8971220e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)tcp_sack.c	8.12 (Berkeley) 5/24/95
33  */
34 
35 /*-
36  *	@@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *	This product includes software developed by the University of
50  *	California, Berkeley and its contributors.
51  *	This product includes software developed at the Information
52  *	Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>		/* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94 
95 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
96 
97 #include <vm/uma.h>
98 
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif /* TCPDEBUG */
125 
126 #include <machine/in_cksum.h>
127 
128 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129 #define	V_sack_hole_zone		VNET(sack_hole_zone)
130 
131 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
132 VNET_DEFINE(int, tcp_do_sack) = 1;
133 #define	V_tcp_do_sack			VNET(tcp_do_sack)
134 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
135     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
136 
137 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
138 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
139     &VNET_NAME(tcp_sack_maxholes), 0,
140     "Maximum number of TCP SACK holes allowed per connection");
141 
142 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
143 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
144     &VNET_NAME(tcp_sack_globalmaxholes), 0,
145     "Global maximum number of TCP SACK holes");
146 
147 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
148 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
149     &VNET_NAME(tcp_sack_globalholes), 0,
150     "Global number of TCP SACK holes currently allocated");
151 
152 
153 /*
154  * This function will find overlaps with the currently stored sackblocks
155  * and add any overlap as a dsack block upfront
156  */
157 void
158 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
159 {
160 	struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
161 	int i, j, n, identical;
162 	tcp_seq start, end;
163 
164 	INP_WLOCK_ASSERT(tp->t_inpcb);
165 
166 	KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
167 
168 	if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
169 	    ((rcv_end == tp->rcv_nxt) &&
170 	     (tp->rcv_numsacks > 0 ) &&
171 	     (tp->sackblks[0].end == tp->rcv_nxt))) {
172 		saved_blks[0].start = rcv_start;
173 		saved_blks[0].end = rcv_end;
174 	} else {
175 		saved_blks[0].start = saved_blks[0].end = 0;
176 	}
177 
178 	head_blk.start = head_blk.end = 0;
179 	mid_blk.start = rcv_start;
180 	mid_blk.end = rcv_end;
181 	identical = 0;
182 
183 	for (i = 0; i < tp->rcv_numsacks; i++) {
184 		start = tp->sackblks[i].start;
185 		end = tp->sackblks[i].end;
186 		if (SEQ_LT(rcv_end, start)) {
187 			/* pkt left to sack blk */
188 			continue;
189 		}
190 		if (SEQ_GT(rcv_start, end)) {
191 			/* pkt right to sack blk */
192 			continue;
193 		}
194 		if (SEQ_GT(tp->rcv_nxt, end)) {
195 			if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
196 			    (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
197 			    (head_blk.start == head_blk.end))) {
198 				head_blk.start = SEQ_MAX(rcv_start, start);
199 				head_blk.end = SEQ_MIN(rcv_end, end);
200 			}
201 			continue;
202 		}
203 		if (((head_blk.start == head_blk.end) ||
204 		     SEQ_LT(start, head_blk.start)) &&
205 		     (SEQ_GT(end, rcv_start) &&
206 		      SEQ_LEQ(start, rcv_end))) {
207 			head_blk.start = start;
208 			head_blk.end = end;
209 		}
210 		mid_blk.start = SEQ_MIN(mid_blk.start, start);
211 		mid_blk.end = SEQ_MAX(mid_blk.end, end);
212 		if ((mid_blk.start == start) &&
213 		    (mid_blk.end == end))
214 			identical = 1;
215 	}
216 	if (SEQ_LT(head_blk.start, head_blk.end)) {
217 		/* store overlapping range */
218 		saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
219 		saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
220 	}
221 	n = 1;
222 	/*
223 	 * Second, if not ACKed, store the SACK block that
224 	 * overlaps with the DSACK block unless it is identical
225 	 */
226 	if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
227 	    !((mid_blk.start == saved_blks[0].start) &&
228 	    (mid_blk.end == saved_blks[0].end))) ||
229 	    identical == 1) {
230 		saved_blks[n].start = mid_blk.start;
231 		saved_blks[n++].end = mid_blk.end;
232 	}
233 	for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
234 		if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
235 		      SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
236 		    (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
237 		saved_blks[n++] = tp->sackblks[j];
238 	}
239 	j = 0;
240 	for (i = 0; i < n; i++) {
241 		/* we can end up with a stale initial entry */
242 		if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
243 			tp->sackblks[j++] = saved_blks[i];
244 		}
245 	}
246 	tp->rcv_numsacks = j;
247 }
248 
249 /*
250  * This function is called upon receipt of new valid data (while not in
251  * header prediction mode), and it updates the ordered list of sacks.
252  */
253 void
254 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
255 {
256 	/*
257 	 * First reported block MUST be the most recent one.  Subsequent
258 	 * blocks SHOULD be in the order in which they arrived at the
259 	 * receiver.  These two conditions make the implementation fully
260 	 * compliant with RFC 2018.
261 	 */
262 	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
263 	int num_head, num_saved, i;
264 
265 	INP_WLOCK_ASSERT(tp->t_inpcb);
266 
267 	/* Check arguments. */
268 	KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
269 
270 	if ((rcv_start == rcv_end) &&
271 	    (tp->rcv_numsacks >= 1) &&
272 	    (rcv_end == tp->sackblks[0].end)) {
273 		/* retaining DSACK block below rcv_nxt (todrop) */
274 		head_blk = tp->sackblks[0];
275 	} else {
276 		/* SACK block for the received segment. */
277 		head_blk.start = rcv_start;
278 		head_blk.end = rcv_end;
279 	}
280 
281 	/*
282 	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
283 	 * blocks into saved_blks[].  num_saved will have the number of the
284 	 * saved SACK blocks.
285 	 */
286 	num_saved = 0;
287 	for (i = 0; i < tp->rcv_numsacks; i++) {
288 		tcp_seq start = tp->sackblks[i].start;
289 		tcp_seq end = tp->sackblks[i].end;
290 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
291 			/*
292 			 * Discard this SACK block.
293 			 */
294 		} else if (SEQ_LEQ(head_blk.start, end) &&
295 			   SEQ_GEQ(head_blk.end, start)) {
296 			/*
297 			 * Merge this SACK block into head_blk.  This SACK
298 			 * block itself will be discarded.
299 			 */
300 			/*
301 			 * |-|
302 			 *   |---|  merge
303 			 *
304 			 *     |-|
305 			 * |---|    merge
306 			 *
307 			 * |-----|
308 			 *   |-|    DSACK smaller
309 			 *
310 			 *   |-|
311 			 * |-----|  DSACK smaller
312 			 */
313 			if (head_blk.start == end)
314 				head_blk.start = start;
315 			else if (head_blk.end == start)
316 				head_blk.end = end;
317 			else {
318 				if (SEQ_LT(head_blk.start, start)) {
319 					tcp_seq temp = start;
320 					start = head_blk.start;
321 					head_blk.start = temp;
322 				}
323 				if (SEQ_GT(head_blk.end, end)) {
324 					tcp_seq temp = end;
325 					end = head_blk.end;
326 					head_blk.end = temp;
327 				}
328 				if ((head_blk.start != start) ||
329 				    (head_blk.end != end)) {
330 					if ((num_saved >= 1) &&
331 					   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
332 					   SEQ_LEQ(saved_blks[num_saved-1].end, end))
333 						num_saved--;
334 					saved_blks[num_saved].start = start;
335 					saved_blks[num_saved].end = end;
336 					num_saved++;
337 				}
338 			}
339 		} else {
340 			/*
341 			 * This block supercedes the prior block
342 			 */
343 			if ((num_saved >= 1) &&
344 			   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
345 			   SEQ_LEQ(saved_blks[num_saved-1].end, end))
346 				num_saved--;
347 			/*
348 			 * Save this SACK block.
349 			 */
350 			saved_blks[num_saved].start = start;
351 			saved_blks[num_saved].end = end;
352 			num_saved++;
353 		}
354 	}
355 
356 	/*
357 	 * Update SACK list in tp->sackblks[].
358 	 */
359 	num_head = 0;
360 	if (SEQ_LT(rcv_start, rcv_end)) {
361 		/*
362 		 * The received data segment is an out-of-order segment.  Put
363 		 * head_blk at the top of SACK list.
364 		 */
365 		tp->sackblks[0] = head_blk;
366 		num_head = 1;
367 		/*
368 		 * If the number of saved SACK blocks exceeds its limit,
369 		 * discard the last SACK block.
370 		 */
371 		if (num_saved >= MAX_SACK_BLKS)
372 			num_saved--;
373 	}
374 	if ((rcv_start == rcv_end) &&
375 	    (rcv_start == tp->sackblks[0].end)) {
376 		num_head = 1;
377 	}
378 	if (num_saved > 0) {
379 		/*
380 		 * Copy the saved SACK blocks back.
381 		 */
382 		bcopy(saved_blks, &tp->sackblks[num_head],
383 		      sizeof(struct sackblk) * num_saved);
384 	}
385 
386 	/* Save the number of SACK blocks. */
387 	tp->rcv_numsacks = num_head + num_saved;
388 }
389 
390 void
391 tcp_clean_dsack_blocks(struct tcpcb *tp)
392 {
393 	struct sackblk saved_blks[MAX_SACK_BLKS];
394 	int num_saved, i;
395 
396 	INP_WLOCK_ASSERT(tp->t_inpcb);
397 	/*
398 	 * Clean up any DSACK blocks that
399 	 * are in our queue of sack blocks.
400 	 *
401 	 */
402 	num_saved = 0;
403 	for (i = 0; i < tp->rcv_numsacks; i++) {
404 		tcp_seq start = tp->sackblks[i].start;
405 		tcp_seq end = tp->sackblks[i].end;
406 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
407 			/*
408 			 * Discard this D-SACK block.
409 			 */
410 			continue;
411 		}
412 		/*
413 		 * Save this SACK block.
414 		 */
415 		saved_blks[num_saved].start = start;
416 		saved_blks[num_saved].end = end;
417 		num_saved++;
418 	}
419 	if (num_saved > 0) {
420 		/*
421 		 * Copy the saved SACK blocks back.
422 		 */
423 		bcopy(saved_blks, &tp->sackblks[0],
424 		      sizeof(struct sackblk) * num_saved);
425 	}
426 	tp->rcv_numsacks = num_saved;
427 }
428 
429 /*
430  * Delete all receiver-side SACK information.
431  */
432 void
433 tcp_clean_sackreport(struct tcpcb *tp)
434 {
435 	int i;
436 
437 	INP_WLOCK_ASSERT(tp->t_inpcb);
438 	tp->rcv_numsacks = 0;
439 	for (i = 0; i < MAX_SACK_BLKS; i++)
440 		tp->sackblks[i].start = tp->sackblks[i].end=0;
441 }
442 
443 /*
444  * Allocate struct sackhole.
445  */
446 static struct sackhole *
447 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
448 {
449 	struct sackhole *hole;
450 
451 	if (tp->snd_numholes >= V_tcp_sack_maxholes ||
452 	    V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
453 		TCPSTAT_INC(tcps_sack_sboverflow);
454 		return NULL;
455 	}
456 
457 	hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
458 	if (hole == NULL)
459 		return NULL;
460 
461 	hole->start = start;
462 	hole->end = end;
463 	hole->rxmit = start;
464 
465 	tp->snd_numholes++;
466 	atomic_add_int(&V_tcp_sack_globalholes, 1);
467 
468 	return hole;
469 }
470 
471 /*
472  * Free struct sackhole.
473  */
474 static void
475 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
476 {
477 
478 	uma_zfree(V_sack_hole_zone, hole);
479 
480 	tp->snd_numholes--;
481 	atomic_subtract_int(&V_tcp_sack_globalholes, 1);
482 
483 	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
484 	KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
485 }
486 
487 /*
488  * Insert new SACK hole into scoreboard.
489  */
490 static struct sackhole *
491 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
492     struct sackhole *after)
493 {
494 	struct sackhole *hole;
495 
496 	/* Allocate a new SACK hole. */
497 	hole = tcp_sackhole_alloc(tp, start, end);
498 	if (hole == NULL)
499 		return NULL;
500 
501 	/* Insert the new SACK hole into scoreboard. */
502 	if (after != NULL)
503 		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
504 	else
505 		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
506 
507 	/* Update SACK hint. */
508 	if (tp->sackhint.nexthole == NULL)
509 		tp->sackhint.nexthole = hole;
510 
511 	return hole;
512 }
513 
514 /*
515  * Remove SACK hole from scoreboard.
516  */
517 static void
518 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
519 {
520 
521 	/* Update SACK hint. */
522 	if (tp->sackhint.nexthole == hole)
523 		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
524 
525 	/* Remove this SACK hole. */
526 	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
527 
528 	/* Free this SACK hole. */
529 	tcp_sackhole_free(tp, hole);
530 }
531 
532 /*
533  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
534  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
535  * the sequence space).
536  * Returns 1 if incoming ACK has previously unknown SACK information,
537  * 0 otherwise. Note: We treat (snd_una, th_ack) as a sack block so any changes
538  * to that (i.e. left edge moving) would also be considered a change in SACK
539  * information which is slightly different than rfc6675.
540  */
541 int
542 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
543 {
544 	struct sackhole *cur, *temp;
545 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
546 	int i, j, num_sack_blks, sack_changed;
547 
548 	INP_WLOCK_ASSERT(tp->t_inpcb);
549 
550 	num_sack_blks = 0;
551 	sack_changed = 0;
552 	/*
553 	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
554 	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
555 	 */
556 	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
557 		sack_blocks[num_sack_blks].start = tp->snd_una;
558 		sack_blocks[num_sack_blks++].end = th_ack;
559 	}
560 	/*
561 	 * Append received valid SACK blocks to sack_blocks[], but only if we
562 	 * received new blocks from the other side.
563 	 */
564 	if (to->to_flags & TOF_SACK) {
565 		tp->sackhint.sacked_bytes = 0;	/* reset */
566 		for (i = 0; i < to->to_nsacks; i++) {
567 			bcopy((to->to_sacks + i * TCPOLEN_SACK),
568 			    &sack, sizeof(sack));
569 			sack.start = ntohl(sack.start);
570 			sack.end = ntohl(sack.end);
571 			if (SEQ_GT(sack.end, sack.start) &&
572 			    SEQ_GT(sack.start, tp->snd_una) &&
573 			    SEQ_GT(sack.start, th_ack) &&
574 			    SEQ_LT(sack.start, tp->snd_max) &&
575 			    SEQ_GT(sack.end, tp->snd_una) &&
576 			    SEQ_LEQ(sack.end, tp->snd_max)) {
577 				sack_blocks[num_sack_blks++] = sack;
578 				tp->sackhint.sacked_bytes +=
579 				    (sack.end-sack.start);
580 			}
581 		}
582 	}
583 	/*
584 	 * Return if SND.UNA is not advanced and no valid SACK block is
585 	 * received.
586 	 */
587 	if (num_sack_blks == 0)
588 		return (sack_changed);
589 
590 	/*
591 	 * Sort the SACK blocks so we can update the scoreboard with just one
592 	 * pass. The overhead of sorting up to 4+1 elements is less than
593 	 * making up to 4+1 passes over the scoreboard.
594 	 */
595 	for (i = 0; i < num_sack_blks; i++) {
596 		for (j = i + 1; j < num_sack_blks; j++) {
597 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
598 				sack = sack_blocks[i];
599 				sack_blocks[i] = sack_blocks[j];
600 				sack_blocks[j] = sack;
601 			}
602 		}
603 	}
604 	if (TAILQ_EMPTY(&tp->snd_holes))
605 		/*
606 		 * Empty scoreboard. Need to initialize snd_fack (it may be
607 		 * uninitialized or have a bogus value). Scoreboard holes
608 		 * (from the sack blocks received) are created later below
609 		 * (in the logic that adds holes to the tail of the
610 		 * scoreboard).
611 		 */
612 		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
613 	/*
614 	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
615 	 * SACK holes (snd_holes) are traversed from their tails with just
616 	 * one pass in order to reduce the number of compares especially when
617 	 * the bandwidth-delay product is large.
618 	 *
619 	 * Note: Typically, in the first RTT of SACK recovery, the highest
620 	 * three or four SACK blocks with the same ack number are received.
621 	 * In the second RTT, if retransmitted data segments are not lost,
622 	 * the highest three or four SACK blocks with ack number advancing
623 	 * are received.
624 	 */
625 	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
626 	tp->sackhint.last_sack_ack = sblkp->end;
627 	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
628 		/*
629 		 * The highest SACK block is beyond fack.  Append new SACK
630 		 * hole at the tail.  If the second or later highest SACK
631 		 * blocks are also beyond the current fack, they will be
632 		 * inserted by way of hole splitting in the while-loop below.
633 		 */
634 		temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
635 		if (temp != NULL) {
636 			tp->snd_fack = sblkp->end;
637 			/* Go to the previous sack block. */
638 			sblkp--;
639 			sack_changed = 1;
640 		} else {
641 			/*
642 			 * We failed to add a new hole based on the current
643 			 * sack block.  Skip over all the sack blocks that
644 			 * fall completely to the right of snd_fack and
645 			 * proceed to trim the scoreboard based on the
646 			 * remaining sack blocks.  This also trims the
647 			 * scoreboard for th_ack (which is sack_blocks[0]).
648 			 */
649 			while (sblkp >= sack_blocks &&
650 			       SEQ_LT(tp->snd_fack, sblkp->start))
651 				sblkp--;
652 			if (sblkp >= sack_blocks &&
653 			    SEQ_LT(tp->snd_fack, sblkp->end))
654 				tp->snd_fack = sblkp->end;
655 		}
656 	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
657 		/* fack is advanced. */
658 		tp->snd_fack = sblkp->end;
659 		sack_changed = 1;
660 	}
661 	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
662 	/*
663 	 * Since the incoming sack blocks are sorted, we can process them
664 	 * making one sweep of the scoreboard.
665 	 */
666 	while (sblkp >= sack_blocks  && cur != NULL) {
667 		if (SEQ_GEQ(sblkp->start, cur->end)) {
668 			/*
669 			 * SACKs data beyond the current hole.  Go to the
670 			 * previous sack block.
671 			 */
672 			sblkp--;
673 			continue;
674 		}
675 		if (SEQ_LEQ(sblkp->end, cur->start)) {
676 			/*
677 			 * SACKs data before the current hole.  Go to the
678 			 * previous hole.
679 			 */
680 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
681 			continue;
682 		}
683 		tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
684 		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
685 		    ("sackhint bytes rtx >= 0"));
686 		sack_changed = 1;
687 		if (SEQ_LEQ(sblkp->start, cur->start)) {
688 			/* Data acks at least the beginning of hole. */
689 			if (SEQ_GEQ(sblkp->end, cur->end)) {
690 				/* Acks entire hole, so delete hole. */
691 				temp = cur;
692 				cur = TAILQ_PREV(cur, sackhole_head, scblink);
693 				tcp_sackhole_remove(tp, temp);
694 				/*
695 				 * The sack block may ack all or part of the
696 				 * next hole too, so continue onto the next
697 				 * hole.
698 				 */
699 				continue;
700 			} else {
701 				/* Move start of hole forward. */
702 				cur->start = sblkp->end;
703 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
704 			}
705 		} else {
706 			/* Data acks at least the end of hole. */
707 			if (SEQ_GEQ(sblkp->end, cur->end)) {
708 				/* Move end of hole backward. */
709 				cur->end = sblkp->start;
710 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
711 			} else {
712 				/*
713 				 * ACKs some data in middle of a hole; need
714 				 * to split current hole
715 				 */
716 				temp = tcp_sackhole_insert(tp, sblkp->end,
717 				    cur->end, cur);
718 				if (temp != NULL) {
719 					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
720 						temp->rxmit = cur->rxmit;
721 						tp->sackhint.sack_bytes_rexmit
722 						    += (temp->rxmit
723 						    - temp->start);
724 					}
725 					cur->end = sblkp->start;
726 					cur->rxmit = SEQ_MIN(cur->rxmit,
727 					    cur->end);
728 				}
729 			}
730 		}
731 		tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
732 		/*
733 		 * Testing sblkp->start against cur->start tells us whether
734 		 * we're done with the sack block or the sack hole.
735 		 * Accordingly, we advance one or the other.
736 		 */
737 		if (SEQ_LEQ(sblkp->start, cur->start))
738 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
739 		else
740 			sblkp--;
741 	}
742 	return (sack_changed);
743 }
744 
745 /*
746  * Free all SACK holes to clear the scoreboard.
747  */
748 void
749 tcp_free_sackholes(struct tcpcb *tp)
750 {
751 	struct sackhole *q;
752 
753 	INP_WLOCK_ASSERT(tp->t_inpcb);
754 	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
755 		tcp_sackhole_remove(tp, q);
756 	tp->sackhint.sack_bytes_rexmit = 0;
757 
758 	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
759 	KASSERT(tp->sackhint.nexthole == NULL,
760 		("tp->sackhint.nexthole == NULL"));
761 }
762 
763 /*
764  * Partial ack handling within a sack recovery episode.  Keeping this very
765  * simple for now.  When a partial ack is received, force snd_cwnd to a value
766  * that will allow the sender to transmit no more than 2 segments.  If
767  * necessary, a better scheme can be adopted at a later point, but for now,
768  * the goal is to prevent the sender from bursting a large amount of data in
769  * the midst of sack recovery.
770  */
771 void
772 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
773 {
774 	int num_segs = 1;
775 
776 	INP_WLOCK_ASSERT(tp->t_inpcb);
777 	tcp_timer_activate(tp, TT_REXMT, 0);
778 	tp->t_rtttime = 0;
779 	/* Send one or 2 segments based on how much new data was acked. */
780 	if ((BYTES_THIS_ACK(tp, th) / tp->t_maxseg) >= 2)
781 		num_segs = 2;
782 	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
783 	    (tp->snd_nxt - tp->sack_newdata) + num_segs * tp->t_maxseg);
784 	if (tp->snd_cwnd > tp->snd_ssthresh)
785 		tp->snd_cwnd = tp->snd_ssthresh;
786 	tp->t_flags |= TF_ACKNOW;
787 	(void) tp->t_fb->tfb_tcp_output(tp);
788 }
789 
790 #if 0
791 /*
792  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
793  * now to sanity check the hint.
794  */
795 static struct sackhole *
796 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
797 {
798 	struct sackhole *p;
799 
800 	INP_WLOCK_ASSERT(tp->t_inpcb);
801 	*sack_bytes_rexmt = 0;
802 	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
803 		if (SEQ_LT(p->rxmit, p->end)) {
804 			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
805 				continue;
806 			}
807 			*sack_bytes_rexmt += (p->rxmit - p->start);
808 			break;
809 		}
810 		*sack_bytes_rexmt += (p->rxmit - p->start);
811 	}
812 	return (p);
813 }
814 #endif
815 
816 /*
817  * Returns the next hole to retransmit and the number of retransmitted bytes
818  * from the scoreboard.  We store both the next hole and the number of
819  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
820  * reception).  This avoids scoreboard traversals completely.
821  *
822  * The loop here will traverse *at most* one link.  Here's the argument.  For
823  * the loop to traverse more than 1 link before finding the next hole to
824  * retransmit, we would need to have at least 1 node following the current
825  * hint with (rxmit == end).  But, for all holes following the current hint,
826  * (start == rxmit), since we have not yet retransmitted from them.
827  * Therefore, in order to traverse more 1 link in the loop below, we need to
828  * have at least one node following the current hint with (start == rxmit ==
829  * end).  But that can't happen, (start == end) means that all the data in
830  * that hole has been sacked, in which case, the hole would have been removed
831  * from the scoreboard.
832  */
833 struct sackhole *
834 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
835 {
836 	struct sackhole *hole = NULL;
837 
838 	INP_WLOCK_ASSERT(tp->t_inpcb);
839 	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
840 	hole = tp->sackhint.nexthole;
841 	if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
842 		goto out;
843 	while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
844 		if (SEQ_LT(hole->rxmit, hole->end)) {
845 			tp->sackhint.nexthole = hole;
846 			break;
847 		}
848 	}
849 out:
850 	return (hole);
851 }
852 
853 /*
854  * After a timeout, the SACK list may be rebuilt.  This SACK information
855  * should be used to avoid retransmitting SACKed data.  This function
856  * traverses the SACK list to see if snd_nxt should be moved forward.
857  */
858 void
859 tcp_sack_adjust(struct tcpcb *tp)
860 {
861 	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
862 
863 	INP_WLOCK_ASSERT(tp->t_inpcb);
864 	if (cur == NULL)
865 		return; /* No holes */
866 	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
867 		return; /* We're already beyond any SACKed blocks */
868 	/*-
869 	 * Two cases for which we want to advance snd_nxt:
870 	 * i) snd_nxt lies between end of one hole and beginning of another
871 	 * ii) snd_nxt lies between end of last hole and snd_fack
872 	 */
873 	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
874 		if (SEQ_LT(tp->snd_nxt, cur->end))
875 			return;
876 		if (SEQ_GEQ(tp->snd_nxt, p->start))
877 			cur = p;
878 		else {
879 			tp->snd_nxt = p->start;
880 			return;
881 		}
882 	}
883 	if (SEQ_LT(tp->snd_nxt, cur->end))
884 		return;
885 	tp->snd_nxt = tp->snd_fack;
886 }
887