xref: /freebsd/sys/netinet/tcp_sack.c (revision a2b560cc69eb254c92caf2027a69cadf9865d273)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)tcp_sack.c	8.12 (Berkeley) 5/24/95
33  */
34 
35 /*-
36  *	@@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *	This product includes software developed by the University of
50  *	California, Berkeley and its contributors.
51  *	This product includes software developed at the Information
52  *	Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74 
75 #include <sys/cdefs.h>
76 #include "opt_inet.h"
77 #include "opt_inet6.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/syslog.h>
90 #include <sys/systm.h>
91 
92 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
93 
94 #include <vm/uma.h>
95 
96 #include <net/if.h>
97 #include <net/if_var.h>
98 #include <net/route.h>
99 #include <net/vnet.h>
100 
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/in_var.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_fsm.h>
114 #include <netinet/tcp_seq.h>
115 #include <netinet/tcp_timer.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet/tcpip.h>
118 #include <netinet/cc/cc.h>
119 
120 #include <machine/in_cksum.h>
121 
122 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
123 #define	V_sack_hole_zone		VNET(sack_hole_zone)
124 
125 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
126     "TCP SACK");
127 
128 VNET_DEFINE(int, tcp_do_sack) = 1;
129 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
130     &VNET_NAME(tcp_do_sack), 0,
131     "Enable/Disable TCP SACK support");
132 
133 VNET_DEFINE(int, tcp_do_newsack) = 1;
134 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, revised, CTLFLAG_VNET | CTLFLAG_RW,
135     &VNET_NAME(tcp_do_newsack), 0,
136     "Use revised SACK loss recovery per RFC 6675");
137 
138 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
139 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(tcp_sack_maxholes), 0,
141     "Maximum number of TCP SACK holes allowed per connection");
142 
143 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
144 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_sack_globalmaxholes), 0,
146     "Global maximum number of TCP SACK holes");
147 
148 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
149 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
150     &VNET_NAME(tcp_sack_globalholes), 0,
151     "Global number of TCP SACK holes currently allocated");
152 
153 int
154 tcp_dsack_block_exists(struct tcpcb *tp)
155 {
156 	/* Return true if a DSACK block exists */
157 	if (tp->rcv_numsacks == 0)
158 		return (0);
159 	if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
160 		return(1);
161 	return (0);
162 }
163 
164 /*
165  * This function will find overlaps with the currently stored sackblocks
166  * and add any overlap as a dsack block upfront
167  */
168 void
169 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
170 {
171 	struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
172 	int i, j, n, identical;
173 	tcp_seq start, end;
174 
175 	INP_WLOCK_ASSERT(tptoinpcb(tp));
176 
177 	KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
178 
179 	if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
180 	    ((rcv_end == tp->rcv_nxt) &&
181 	     (tp->rcv_numsacks > 0 ) &&
182 	     (tp->sackblks[0].end == tp->rcv_nxt))) {
183 		saved_blks[0].start = rcv_start;
184 		saved_blks[0].end = rcv_end;
185 	} else {
186 		saved_blks[0].start = saved_blks[0].end = 0;
187 	}
188 
189 	head_blk.start = head_blk.end = 0;
190 	mid_blk.start = rcv_start;
191 	mid_blk.end = rcv_end;
192 	identical = 0;
193 
194 	for (i = 0; i < tp->rcv_numsacks; i++) {
195 		start = tp->sackblks[i].start;
196 		end = tp->sackblks[i].end;
197 		if (SEQ_LT(rcv_end, start)) {
198 			/* pkt left to sack blk */
199 			continue;
200 		}
201 		if (SEQ_GT(rcv_start, end)) {
202 			/* pkt right to sack blk */
203 			continue;
204 		}
205 		if (SEQ_GT(tp->rcv_nxt, end)) {
206 			if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
207 			    (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
208 			    (head_blk.start == head_blk.end))) {
209 				head_blk.start = SEQ_MAX(rcv_start, start);
210 				head_blk.end = SEQ_MIN(rcv_end, end);
211 			}
212 			continue;
213 		}
214 		if (((head_blk.start == head_blk.end) ||
215 		     SEQ_LT(start, head_blk.start)) &&
216 		     (SEQ_GT(end, rcv_start) &&
217 		      SEQ_LEQ(start, rcv_end))) {
218 			head_blk.start = start;
219 			head_blk.end = end;
220 		}
221 		mid_blk.start = SEQ_MIN(mid_blk.start, start);
222 		mid_blk.end = SEQ_MAX(mid_blk.end, end);
223 		if ((mid_blk.start == start) &&
224 		    (mid_blk.end == end))
225 			identical = 1;
226 	}
227 	if (SEQ_LT(head_blk.start, head_blk.end)) {
228 		/* store overlapping range */
229 		saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
230 		saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
231 	}
232 	n = 1;
233 	/*
234 	 * Second, if not ACKed, store the SACK block that
235 	 * overlaps with the DSACK block unless it is identical
236 	 */
237 	if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
238 	    !((mid_blk.start == saved_blks[0].start) &&
239 	    (mid_blk.end == saved_blks[0].end))) ||
240 	    identical == 1) {
241 		saved_blks[n].start = mid_blk.start;
242 		saved_blks[n++].end = mid_blk.end;
243 	}
244 	for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
245 		if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
246 		      SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
247 		    (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
248 		saved_blks[n++] = tp->sackblks[j];
249 	}
250 	j = 0;
251 	for (i = 0; i < n; i++) {
252 		/* we can end up with a stale initial entry */
253 		if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
254 			tp->sackblks[j++] = saved_blks[i];
255 		}
256 	}
257 	tp->rcv_numsacks = j;
258 }
259 
260 /*
261  * This function is called upon receipt of new valid data (while not in
262  * header prediction mode), and it updates the ordered list of sacks.
263  */
264 void
265 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
266 {
267 	/*
268 	 * First reported block MUST be the most recent one.  Subsequent
269 	 * blocks SHOULD be in the order in which they arrived at the
270 	 * receiver.  These two conditions make the implementation fully
271 	 * compliant with RFC 2018.
272 	 */
273 	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
274 	int num_head, num_saved, i;
275 
276 	INP_WLOCK_ASSERT(tptoinpcb(tp));
277 
278 	/* Check arguments. */
279 	KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
280 
281 	if ((rcv_start == rcv_end) &&
282 	    (tp->rcv_numsacks >= 1) &&
283 	    (rcv_end == tp->sackblks[0].end)) {
284 		/* retaining DSACK block below rcv_nxt (todrop) */
285 		head_blk = tp->sackblks[0];
286 	} else {
287 		/* SACK block for the received segment. */
288 		head_blk.start = rcv_start;
289 		head_blk.end = rcv_end;
290 	}
291 
292 	/*
293 	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
294 	 * blocks into saved_blks[].  num_saved will have the number of the
295 	 * saved SACK blocks.
296 	 */
297 	num_saved = 0;
298 	for (i = 0; i < tp->rcv_numsacks; i++) {
299 		tcp_seq start = tp->sackblks[i].start;
300 		tcp_seq end = tp->sackblks[i].end;
301 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
302 			/*
303 			 * Discard this SACK block.
304 			 */
305 		} else if (SEQ_LEQ(head_blk.start, end) &&
306 			   SEQ_GEQ(head_blk.end, start)) {
307 			/*
308 			 * Merge this SACK block into head_blk.  This SACK
309 			 * block itself will be discarded.
310 			 */
311 			/*
312 			 * |-|
313 			 *   |---|  merge
314 			 *
315 			 *     |-|
316 			 * |---|    merge
317 			 *
318 			 * |-----|
319 			 *   |-|    DSACK smaller
320 			 *
321 			 *   |-|
322 			 * |-----|  DSACK smaller
323 			 */
324 			if (head_blk.start == end)
325 				head_blk.start = start;
326 			else if (head_blk.end == start)
327 				head_blk.end = end;
328 			else {
329 				if (SEQ_LT(head_blk.start, start)) {
330 					tcp_seq temp = start;
331 					start = head_blk.start;
332 					head_blk.start = temp;
333 				}
334 				if (SEQ_GT(head_blk.end, end)) {
335 					tcp_seq temp = end;
336 					end = head_blk.end;
337 					head_blk.end = temp;
338 				}
339 				if ((head_blk.start != start) ||
340 				    (head_blk.end != end)) {
341 					if ((num_saved >= 1) &&
342 					   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
343 					   SEQ_LEQ(saved_blks[num_saved-1].end, end))
344 						num_saved--;
345 					saved_blks[num_saved].start = start;
346 					saved_blks[num_saved].end = end;
347 					num_saved++;
348 				}
349 			}
350 		} else {
351 			/*
352 			 * This block supercedes the prior block
353 			 */
354 			if ((num_saved >= 1) &&
355 			   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
356 			   SEQ_LEQ(saved_blks[num_saved-1].end, end))
357 				num_saved--;
358 			/*
359 			 * Save this SACK block.
360 			 */
361 			saved_blks[num_saved].start = start;
362 			saved_blks[num_saved].end = end;
363 			num_saved++;
364 		}
365 	}
366 
367 	/*
368 	 * Update SACK list in tp->sackblks[].
369 	 */
370 	num_head = 0;
371 	if (SEQ_LT(rcv_start, rcv_end)) {
372 		/*
373 		 * The received data segment is an out-of-order segment.  Put
374 		 * head_blk at the top of SACK list.
375 		 */
376 		tp->sackblks[0] = head_blk;
377 		num_head = 1;
378 		/*
379 		 * If the number of saved SACK blocks exceeds its limit,
380 		 * discard the last SACK block.
381 		 */
382 		if (num_saved >= MAX_SACK_BLKS)
383 			num_saved--;
384 	}
385 	if ((rcv_start == rcv_end) &&
386 	    (rcv_start == tp->sackblks[0].end)) {
387 		num_head = 1;
388 	}
389 	if (num_saved > 0) {
390 		/*
391 		 * Copy the saved SACK blocks back.
392 		 */
393 		bcopy(saved_blks, &tp->sackblks[num_head],
394 		      sizeof(struct sackblk) * num_saved);
395 	}
396 
397 	/* Save the number of SACK blocks. */
398 	tp->rcv_numsacks = num_head + num_saved;
399 }
400 
401 void
402 tcp_clean_dsack_blocks(struct tcpcb *tp)
403 {
404 	struct sackblk saved_blks[MAX_SACK_BLKS];
405 	int num_saved, i;
406 
407 	INP_WLOCK_ASSERT(tptoinpcb(tp));
408 	/*
409 	 * Clean up any DSACK blocks that
410 	 * are in our queue of sack blocks.
411 	 *
412 	 */
413 	num_saved = 0;
414 	for (i = 0; i < tp->rcv_numsacks; i++) {
415 		tcp_seq start = tp->sackblks[i].start;
416 		tcp_seq end = tp->sackblks[i].end;
417 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
418 			/*
419 			 * Discard this D-SACK block.
420 			 */
421 			continue;
422 		}
423 		/*
424 		 * Save this SACK block.
425 		 */
426 		saved_blks[num_saved].start = start;
427 		saved_blks[num_saved].end = end;
428 		num_saved++;
429 	}
430 	if (num_saved > 0) {
431 		/*
432 		 * Copy the saved SACK blocks back.
433 		 */
434 		bcopy(saved_blks, &tp->sackblks[0],
435 		      sizeof(struct sackblk) * num_saved);
436 	}
437 	tp->rcv_numsacks = num_saved;
438 }
439 
440 /*
441  * Delete all receiver-side SACK information.
442  */
443 void
444 tcp_clean_sackreport(struct tcpcb *tp)
445 {
446 	int i;
447 
448 	INP_WLOCK_ASSERT(tptoinpcb(tp));
449 	tp->rcv_numsacks = 0;
450 	for (i = 0; i < MAX_SACK_BLKS; i++)
451 		tp->sackblks[i].start = tp->sackblks[i].end=0;
452 }
453 
454 /*
455  * Allocate struct sackhole.
456  */
457 static struct sackhole *
458 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
459 {
460 	struct sackhole *hole;
461 
462 	if (tp->snd_numholes >= V_tcp_sack_maxholes ||
463 	    V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
464 		TCPSTAT_INC(tcps_sack_sboverflow);
465 		return NULL;
466 	}
467 
468 	hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
469 	if (hole == NULL)
470 		return NULL;
471 
472 	hole->start = start;
473 	hole->end = end;
474 	hole->rxmit = start;
475 
476 	tp->snd_numholes++;
477 	atomic_add_int(&V_tcp_sack_globalholes, 1);
478 
479 	return hole;
480 }
481 
482 /*
483  * Free struct sackhole.
484  */
485 static void
486 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
487 {
488 
489 	uma_zfree(V_sack_hole_zone, hole);
490 
491 	tp->snd_numholes--;
492 	atomic_subtract_int(&V_tcp_sack_globalholes, 1);
493 
494 	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
495 	KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
496 }
497 
498 /*
499  * Insert new SACK hole into scoreboard.
500  */
501 static struct sackhole *
502 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
503     struct sackhole *after)
504 {
505 	struct sackhole *hole;
506 
507 	/* Allocate a new SACK hole. */
508 	hole = tcp_sackhole_alloc(tp, start, end);
509 	if (hole == NULL)
510 		return NULL;
511 
512 	/* Insert the new SACK hole into scoreboard. */
513 	if (after != NULL)
514 		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
515 	else
516 		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
517 
518 	/* Update SACK hint. */
519 	if (tp->sackhint.nexthole == NULL)
520 		tp->sackhint.nexthole = hole;
521 
522 	return hole;
523 }
524 
525 /*
526  * Remove SACK hole from scoreboard.
527  */
528 static void
529 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
530 {
531 
532 	/* Update SACK hint. */
533 	if (tp->sackhint.nexthole == hole)
534 		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
535 
536 	/* Remove this SACK hole. */
537 	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
538 
539 	/* Free this SACK hole. */
540 	tcp_sackhole_free(tp, hole);
541 }
542 
543 /*
544  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
545  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
546  * the sequence space).
547  * Returns SACK_NEWLOSS if incoming ACK indicates ongoing loss (hole split, new hole),
548  * SACK_CHANGE if incoming ACK has previously unknown SACK information,
549  * SACK_NOCHANGE otherwise.
550  */
551 sackstatus_t
552 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
553 {
554 	struct sackhole *cur, *temp;
555 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
556 	int i, j, num_sack_blks;
557 	sackstatus_t sack_changed;
558 	int delivered_data, left_edge_delta;
559 
560 	tcp_seq loss_hiack = 0;
561 	int loss_thresh = 0;
562 	int loss_sblks = 0;
563 	int notlost_bytes = 0;
564 
565 	INP_WLOCK_ASSERT(tptoinpcb(tp));
566 
567 	num_sack_blks = 0;
568 	sack_changed = SACK_NOCHANGE;
569 	delivered_data = 0;
570 	left_edge_delta = 0;
571 	/*
572 	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
573 	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
574 	 * Account changes to SND.UNA always in delivered data.
575 	 */
576 	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
577 		left_edge_delta = th_ack - tp->snd_una;
578 		sack_blocks[num_sack_blks].start = tp->snd_una;
579 		sack_blocks[num_sack_blks++].end = th_ack;
580 		/*
581 		 * Pulling snd_fack forward if we got here
582 		 * due to DSACK blocks
583 		 */
584 		if (SEQ_LT(tp->snd_fack, th_ack)) {
585 			delivered_data += th_ack - tp->snd_una;
586 			tp->snd_fack = th_ack;
587 			sack_changed = SACK_CHANGE;
588 		}
589 	}
590 	/*
591 	 * Append received valid SACK blocks to sack_blocks[], but only if we
592 	 * received new blocks from the other side.
593 	 */
594 	if (to->to_flags & TOF_SACK) {
595 		for (i = 0; i < to->to_nsacks; i++) {
596 			bcopy((to->to_sacks + i * TCPOLEN_SACK),
597 			    &sack, sizeof(sack));
598 			sack.start = ntohl(sack.start);
599 			sack.end = ntohl(sack.end);
600 			if (SEQ_GT(sack.end, sack.start) &&
601 			    SEQ_GT(sack.start, tp->snd_una) &&
602 			    SEQ_GT(sack.start, th_ack) &&
603 			    SEQ_LT(sack.start, tp->snd_max) &&
604 			    SEQ_GT(sack.end, tp->snd_una) &&
605 			    SEQ_LEQ(sack.end, tp->snd_max)) {
606 				sack_blocks[num_sack_blks++] = sack;
607 			} else if (SEQ_LEQ(sack.start, th_ack) &&
608 			    SEQ_LEQ(sack.end, th_ack)) {
609 				/*
610 				 * Its a D-SACK block.
611 				 */
612 				tcp_record_dsack(tp, sack.start, sack.end, 0);
613 			}
614 		}
615 	}
616 	/*
617 	 * Return if SND.UNA is not advanced and no valid SACK block is
618 	 * received.
619 	 */
620 	if (num_sack_blks == 0)
621 		return (sack_changed);
622 
623 	/*
624 	 * Sort the SACK blocks so we can update the scoreboard with just one
625 	 * pass. The overhead of sorting up to 4+1 elements is less than
626 	 * making up to 4+1 passes over the scoreboard.
627 	 */
628 	for (i = 0; i < num_sack_blks; i++) {
629 		for (j = i + 1; j < num_sack_blks; j++) {
630 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
631 				sack = sack_blocks[i];
632 				sack_blocks[i] = sack_blocks[j];
633 				sack_blocks[j] = sack;
634 			}
635 		}
636 	}
637 	if (TAILQ_EMPTY(&tp->snd_holes)) {
638 		/*
639 		 * Empty scoreboard. Need to initialize snd_fack (it may be
640 		 * uninitialized or have a bogus value). Scoreboard holes
641 		 * (from the sack blocks received) are created later below
642 		 * (in the logic that adds holes to the tail of the
643 		 * scoreboard).
644 		 */
645 		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
646 		tp->sackhint.sacked_bytes = 0;	/* reset */
647 		tp->sackhint.hole_bytes = 0;
648 	}
649 	/*
650 	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
651 	 * SACK holes (snd_holes) are traversed from their tails with just
652 	 * one pass in order to reduce the number of compares especially when
653 	 * the bandwidth-delay product is large.
654 	 *
655 	 * Note: Typically, in the first RTT of SACK recovery, the highest
656 	 * three or four SACK blocks with the same ack number are received.
657 	 * In the second RTT, if retransmitted data segments are not lost,
658 	 * the highest three or four SACK blocks with ack number advancing
659 	 * are received.
660 	 */
661 	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
662 	tp->sackhint.last_sack_ack = sblkp->end;
663 	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
664 		/*
665 		 * The highest SACK block is beyond fack.  First,
666 		 * check if there was a successful Rescue Retransmission,
667 		 * and move this hole left. With normal holes, snd_fack
668 		 * is always to the right of the end.
669 		 */
670 		if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
671 		    SEQ_LEQ(tp->snd_fack,temp->end)) {
672 			tp->sackhint.hole_bytes -= temp->end - temp->start;
673 			temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
674 			temp->end = sblkp->start;
675 			temp->rxmit = temp->start;
676 			delivered_data += sblkp->end - sblkp->start;
677 			tp->sackhint.hole_bytes += temp->end - temp->start;
678 			KASSERT(tp->sackhint.hole_bytes >= 0,
679 			    ("sackhint hole bytes >= 0"));
680 			tp->snd_fack = sblkp->end;
681 			sblkp--;
682 			sack_changed = SACK_NEWLOSS;
683 		} else {
684 			/*
685 			 * Append a new SACK hole at the tail.  If the
686 			 * second or later highest SACK blocks are also
687 			 * beyond the current fack, they will be inserted
688 			 * by way of hole splitting in the while-loop below.
689 			 */
690 			temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
691 			if (temp != NULL) {
692 				delivered_data += sblkp->end - sblkp->start;
693 				tp->sackhint.hole_bytes += temp->end - temp->start;
694 				tp->snd_fack = sblkp->end;
695 				/* Go to the previous sack block. */
696 				sblkp--;
697 				sack_changed = SACK_CHANGE;
698 			} else {
699 				/*
700 				 * We failed to add a new hole based on the current
701 				 * sack block.  Skip over all the sack blocks that
702 				 * fall completely to the right of snd_fack and
703 				 * proceed to trim the scoreboard based on the
704 				 * remaining sack blocks.  This also trims the
705 				 * scoreboard for th_ack (which is sack_blocks[0]).
706 				 */
707 				while (sblkp >= sack_blocks &&
708 				       SEQ_LT(tp->snd_fack, sblkp->start))
709 					sblkp--;
710 				if (sblkp >= sack_blocks &&
711 				    SEQ_LT(tp->snd_fack, sblkp->end)) {
712 					delivered_data += sblkp->end - tp->snd_fack;
713 					tp->snd_fack = sblkp->end;
714 					/*
715 					 * While the Scoreboard didn't change in
716 					 * size, we only ended up here because
717 					 * some SACK data had to be dismissed.
718 					 */
719 					sack_changed = SACK_NEWLOSS;
720 				}
721 			}
722 		}
723 	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
724 		/* fack is advanced. */
725 		delivered_data += sblkp->end - tp->snd_fack;
726 		tp->snd_fack = sblkp->end;
727 		sack_changed = SACK_CHANGE;
728 	}
729 	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
730 	loss_hiack = tp->snd_fack;
731 
732 	/*
733 	 * Since the incoming sack blocks are sorted, we can process them
734 	 * making one sweep of the scoreboard.
735 	 */
736 	while (cur != NULL) {
737 		if (!(sblkp >= sack_blocks)) {
738 			if (((loss_sblks >= tcprexmtthresh) ||
739 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
740 				break;
741 			loss_thresh += loss_hiack - cur->end;
742 			loss_hiack = cur->start;
743 			loss_sblks++;
744 			if (!((loss_sblks >= tcprexmtthresh) ||
745 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg))) {
746 				notlost_bytes += cur->end - cur->start;
747 			} else {
748 				break;
749 			}
750 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
751 			continue;
752 		}
753 		if (SEQ_GEQ(sblkp->start, cur->end)) {
754 			/*
755 			 * SACKs data beyond the current hole.  Go to the
756 			 * previous sack block.
757 			 */
758 			sblkp--;
759 			continue;
760 		}
761 		if (SEQ_LEQ(sblkp->end, cur->start)) {
762 			/*
763 			 * SACKs data before the current hole.  Go to the
764 			 * previous hole.
765 			 */
766 			loss_thresh += loss_hiack - cur->end;
767 			loss_hiack = cur->start;
768 			loss_sblks++;
769 			if (!((loss_sblks >= tcprexmtthresh) ||
770 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
771 				notlost_bytes += cur->end - cur->start;
772 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
773 			continue;
774 		}
775 		tp->sackhint.sack_bytes_rexmit -=
776 		    (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
777 		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
778 		    ("sackhint bytes rtx >= 0"));
779 		sack_changed = SACK_CHANGE;
780 		if (SEQ_LEQ(sblkp->start, cur->start)) {
781 			/* Data acks at least the beginning of hole. */
782 			if (SEQ_GEQ(sblkp->end, cur->end)) {
783 				/* Acks entire hole, so delete hole. */
784 				delivered_data += (cur->end - cur->start);
785 				temp = cur;
786 				cur = TAILQ_PREV(cur, sackhole_head, scblink);
787 				tp->sackhint.hole_bytes -= temp->end - temp->start;
788 				tcp_sackhole_remove(tp, temp);
789 				/*
790 				 * The sack block may ack all or part of the
791 				 * next hole too, so continue onto the next
792 				 * hole.
793 				 */
794 				continue;
795 			} else {
796 				/* Move start of hole forward. */
797 				delivered_data += (sblkp->end - cur->start);
798 				tp->sackhint.hole_bytes -= sblkp->end - cur->start;
799 				cur->start = sblkp->end;
800 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
801 			}
802 		} else {
803 			/* Data acks at least the end of hole. */
804 			if (SEQ_GEQ(sblkp->end, cur->end)) {
805 				/* Move end of hole backward. */
806 				delivered_data += (cur->end - sblkp->start);
807 				tp->sackhint.hole_bytes -= cur->end - sblkp->start;
808 				cur->end = sblkp->start;
809 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
810 				if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
811 					cur->rxmit = tp->snd_recover;
812 			} else {
813 				/*
814 				 * ACKs some data in middle of a hole; need
815 				 * to split current hole
816 				 */
817 				temp = tcp_sackhole_insert(tp, sblkp->end,
818 				    cur->end, cur);
819 				sack_changed = SACK_NEWLOSS;
820 				if (temp != NULL) {
821 					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
822 						temp->rxmit = cur->rxmit;
823 						tp->sackhint.sack_bytes_rexmit +=
824 						    (SEQ_MIN(temp->rxmit,
825 						    temp->end) - temp->start);
826 					}
827 					tp->sackhint.hole_bytes -= sblkp->end - sblkp->start;
828 					loss_thresh += loss_hiack - temp->end;
829 					loss_hiack = temp->start;
830 					loss_sblks++;
831 					if (!((loss_sblks >= tcprexmtthresh) ||
832 					    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
833 						notlost_bytes += temp->end - temp->start;
834 					cur->end = sblkp->start;
835 					cur->rxmit = SEQ_MIN(cur->rxmit,
836 					    cur->end);
837 					if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
838 						cur->rxmit = tp->snd_recover;
839 					delivered_data += (sblkp->end - sblkp->start);
840 				}
841 			}
842 		}
843 		tp->sackhint.sack_bytes_rexmit +=
844 		    (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
845 		/*
846 		 * Testing sblkp->start against cur->start tells us whether
847 		 * we're done with the sack block or the sack hole.
848 		 * Accordingly, we advance one or the other.
849 		 */
850 		if (SEQ_LEQ(sblkp->start, cur->start)) {
851 			loss_thresh += loss_hiack - cur->end;
852 			loss_hiack = cur->start;
853 			loss_sblks++;
854 			if (!((loss_sblks >= tcprexmtthresh) ||
855 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
856 				notlost_bytes += cur->end - cur->start;
857 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
858 		} else {
859 			sblkp--;
860 		}
861 	}
862 
863 	KASSERT(!(TAILQ_EMPTY(&tp->snd_holes) && (tp->sackhint.hole_bytes != 0)),
864 	    ("SACK scoreboard empty, but accounting non-zero\n"));
865 
866 	KASSERT(notlost_bytes <= tp->sackhint.hole_bytes,
867 	    ("SACK: more bytes marked notlost than in scoreboard holes"));
868 
869 	if (!(to->to_flags & TOF_SACK))
870 		/*
871 		 * If this ACK did not contain any
872 		 * SACK blocks, any only moved the
873 		 * left edge right, it is a pure
874 		 * cumulative ACK. Do not count
875 		 * DupAck for this. Also required
876 		 * for RFC6675 rescue retransmission.
877 		 */
878 		sack_changed = SACK_NOCHANGE;
879 	tp->sackhint.delivered_data = delivered_data;
880 	tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
881 	tp->sackhint.lost_bytes = tp->sackhint.hole_bytes - notlost_bytes;
882 	KASSERT((delivered_data >= 0), ("delivered_data < 0"));
883 	KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
884 	return (sack_changed);
885 }
886 
887 /*
888  * Free all SACK holes to clear the scoreboard.
889  */
890 void
891 tcp_free_sackholes(struct tcpcb *tp)
892 {
893 	struct sackhole *q;
894 
895 	INP_WLOCK_ASSERT(tptoinpcb(tp));
896 	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
897 		tcp_sackhole_remove(tp, q);
898 	tp->sackhint.sack_bytes_rexmit = 0;
899 	tp->sackhint.delivered_data = 0;
900 	tp->sackhint.sacked_bytes = 0;
901 	tp->sackhint.hole_bytes = 0;
902 	tp->sackhint.lost_bytes = 0;
903 
904 	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
905 	KASSERT(tp->sackhint.nexthole == NULL,
906 		("tp->sackhint.nexthole == NULL"));
907 }
908 
909 /*
910  * Partial ack handling within a sack recovery episode.  Keeping this very
911  * simple for now.  When a partial ack is received, force snd_cwnd to a value
912  * that will allow the sender to transmit no more than 2 segments.  If
913  * necessary, a better scheme can be adopted at a later point, but for now,
914  * the goal is to prevent the sender from bursting a large amount of data in
915  * the midst of sack recovery.
916  */
917 void
918 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
919 {
920 	struct sackhole *temp;
921 	int num_segs = 1;
922 	u_int maxseg = tcp_maxseg(tp);
923 
924 	INP_WLOCK_ASSERT(tptoinpcb(tp));
925 	tcp_timer_activate(tp, TT_REXMT, 0);
926 	tp->t_rtttime = 0;
927 	/* Send one or 2 segments based on how much new data was acked. */
928 	if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
929 		num_segs = 2;
930 	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
931 	    (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
932 	if (tp->snd_cwnd > tp->snd_ssthresh)
933 		tp->snd_cwnd = tp->snd_ssthresh;
934 	tp->t_flags |= TF_ACKNOW;
935 	/*
936 	 * RFC6675 rescue retransmission
937 	 * Add a hole between th_ack (snd_una is not yet set) and snd_max,
938 	 * if this was a pure cumulative ACK and no data was send beyond
939 	 * recovery point. Since the data in the socket has not been freed
940 	 * at this point, we check if the scoreboard is empty, and the ACK
941 	 * delivered some new data, indicating a full ACK. Also, if the
942 	 * recovery point is still at snd_max, we are probably application
943 	 * limited. However, this inference might not always be true. The
944 	 * rescue retransmission may rarely be slightly premature
945 	 * compared to RFC6675.
946 	 * The corresponding ACK+SACK will cause any further outstanding
947 	 * segments to be retransmitted. This addresses a corner case, when
948 	 * the trailing packets of a window are lost and no further data
949 	 * is available for sending.
950 	 */
951 	if ((V_tcp_do_newsack) &&
952 	    SEQ_LT(th->th_ack, tp->snd_recover) &&
953 	    TAILQ_EMPTY(&tp->snd_holes) &&
954 	    (tp->sackhint.delivered_data > 0)) {
955 		/*
956 		 * Exclude FIN sequence space in
957 		 * the hole for the rescue retransmission,
958 		 * and also don't create a hole, if only
959 		 * the ACK for a FIN is outstanding.
960 		 */
961 		tcp_seq highdata = tp->snd_max;
962 		if (tp->t_flags & TF_SENTFIN)
963 			highdata--;
964 		highdata = SEQ_MIN(highdata, tp->snd_recover);
965 		if (th->th_ack != highdata) {
966 			tp->snd_fack = th->th_ack;
967 			if ((temp = tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
968 			    highdata - maxseg), highdata, NULL)) != NULL)
969 				tp->sackhint.hole_bytes += temp->end -
970 								temp->start;
971 		}
972 	}
973 	(void) tcp_output(tp);
974 }
975 
976 #if 0
977 /*
978  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
979  * now to sanity check the hint.
980  */
981 static struct sackhole *
982 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
983 {
984 	struct sackhole *p;
985 
986 	INP_WLOCK_ASSERT(tptoinpcb(tp));
987 	*sack_bytes_rexmt = 0;
988 	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
989 		if (SEQ_LT(p->rxmit, p->end)) {
990 			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
991 				continue;
992 			}
993 			*sack_bytes_rexmt += (p->rxmit - p->start);
994 			break;
995 		}
996 		*sack_bytes_rexmt += (SEQ_MIN(p->rxmit, p->end) - p->start);
997 	}
998 	return (p);
999 }
1000 #endif
1001 
1002 /*
1003  * Returns the next hole to retransmit and the number of retransmitted bytes
1004  * from the scoreboard.  We store both the next hole and the number of
1005  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
1006  * reception).  This avoids scoreboard traversals completely.
1007  *
1008  * The loop here will traverse *at most* one link.  Here's the argument.  For
1009  * the loop to traverse more than 1 link before finding the next hole to
1010  * retransmit, we would need to have at least 1 node following the current
1011  * hint with (rxmit == end).  But, for all holes following the current hint,
1012  * (start == rxmit), since we have not yet retransmitted from them.
1013  * Therefore, in order to traverse more 1 link in the loop below, we need to
1014  * have at least one node following the current hint with (start == rxmit ==
1015  * end).  But that can't happen, (start == end) means that all the data in
1016  * that hole has been sacked, in which case, the hole would have been removed
1017  * from the scoreboard.
1018  */
1019 struct sackhole *
1020 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
1021 {
1022 	struct sackhole *hole = NULL;
1023 
1024 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1025 	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
1026 	hole = tp->sackhint.nexthole;
1027 	if (hole == NULL)
1028 		return (hole);
1029 	if (SEQ_GEQ(hole->rxmit, hole->end)) {
1030 		for (;;) {
1031 			hole = TAILQ_NEXT(hole, scblink);
1032 			if (hole == NULL)
1033 				return (hole);
1034 			if (SEQ_LT(hole->rxmit, hole->end)) {
1035 				tp->sackhint.nexthole = hole;
1036 				break;
1037 			}
1038 		}
1039 	}
1040 	KASSERT(SEQ_LT(hole->start, hole->end), ("%s: hole.start >= hole.end", __func__));
1041 	if (!(V_tcp_do_newsack)) {
1042 		KASSERT(SEQ_LT(hole->start, tp->snd_fack), ("%s: hole.start >= snd.fack", __func__));
1043 		KASSERT(SEQ_LT(hole->end, tp->snd_fack), ("%s: hole.end >= snd.fack", __func__));
1044 		KASSERT(SEQ_LT(hole->rxmit, tp->snd_fack), ("%s: hole.rxmit >= snd.fack", __func__));
1045 		if (SEQ_GEQ(hole->start, hole->end) ||
1046 		    SEQ_GEQ(hole->start, tp->snd_fack) ||
1047 		    SEQ_GEQ(hole->end, tp->snd_fack) ||
1048 		    SEQ_GEQ(hole->rxmit, tp->snd_fack)) {
1049 			log(LOG_CRIT,"tcp: invalid SACK hole (%u-%u,%u) vs fwd ack %u, ignoring.\n",
1050 					hole->start, hole->end, hole->rxmit, tp->snd_fack);
1051 			return (NULL);
1052 		}
1053 	}
1054 	return (hole);
1055 }
1056 
1057 /*
1058  * After a timeout, the SACK list may be rebuilt.  This SACK information
1059  * should be used to avoid retransmitting SACKed data.  This function
1060  * traverses the SACK list to see if snd_nxt should be moved forward.
1061  */
1062 void
1063 tcp_sack_adjust(struct tcpcb *tp)
1064 {
1065 	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
1066 
1067 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1068 	if (cur == NULL)
1069 		return; /* No holes */
1070 	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
1071 		return; /* We're already beyond any SACKed blocks */
1072 	/*-
1073 	 * Two cases for which we want to advance snd_nxt:
1074 	 * i) snd_nxt lies between end of one hole and beginning of another
1075 	 * ii) snd_nxt lies between end of last hole and snd_fack
1076 	 */
1077 	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
1078 		if (SEQ_LT(tp->snd_nxt, cur->end))
1079 			return;
1080 		if (SEQ_GEQ(tp->snd_nxt, p->start))
1081 			cur = p;
1082 		else {
1083 			tp->snd_nxt = p->start;
1084 			return;
1085 		}
1086 	}
1087 	if (SEQ_LT(tp->snd_nxt, cur->end))
1088 		return;
1089 	tp->snd_nxt = tp->snd_fack;
1090 }
1091 
1092 /*
1093  * Lost Retransmission Detection
1094  * Check is FACK is beyond the rexmit of the leftmost hole.
1095  * If yes, we restart sending from still existing holes,
1096  * and adjust cwnd via the congestion control module.
1097  */
1098 void
1099 tcp_sack_lost_retransmission(struct tcpcb *tp, struct tcphdr *th)
1100 {
1101 	struct sackhole *temp;
1102 
1103 	if (IN_RECOVERY(tp->t_flags) &&
1104 	    SEQ_GT(tp->snd_fack, tp->snd_recover) &&
1105 	    ((temp = TAILQ_FIRST(&tp->snd_holes)) != NULL) &&
1106 	    SEQ_GEQ(temp->rxmit, temp->end) &&
1107 	    SEQ_GEQ(tp->snd_fack, temp->rxmit)) {
1108 		TCPSTAT_INC(tcps_sack_lostrexmt);
1109 		/*
1110 		 * Start retransmissions from the first hole, and
1111 		 * subsequently all other remaining holes, including
1112 		 * those, which had been sent completely before.
1113 		 */
1114 		tp->sackhint.nexthole = temp;
1115 		TAILQ_FOREACH(temp, &tp->snd_holes, scblink) {
1116 			if (SEQ_GEQ(tp->snd_fack, temp->rxmit) &&
1117 			    SEQ_GEQ(temp->rxmit, temp->end))
1118 				temp->rxmit = temp->start;
1119 		}
1120 		/*
1121 		 * Remember the old ssthresh, to deduct the beta factor used
1122 		 * by the CC module. Finally, set cwnd to ssthresh just
1123 		 * prior to invoking another cwnd reduction by the CC
1124 		 * module, to not shrink it excessively.
1125 		 */
1126 		tp->snd_cwnd = tp->snd_ssthresh;
1127 		/*
1128 		 * Formally exit recovery, and let the CC module adjust
1129 		 * ssthresh as intended.
1130 		 */
1131 		EXIT_RECOVERY(tp->t_flags);
1132 		cc_cong_signal(tp, th, CC_NDUPACK);
1133 		/*
1134 		 * For PRR, adjust recover_fs as if this new reduction
1135 		 * initialized this variable.
1136 		 * cwnd will be adjusted by SACK or PRR processing
1137 		 * subsequently, only set it to a safe value here.
1138 		 */
1139 		tp->snd_cwnd = tcp_maxseg(tp);
1140 		tp->sackhint.recover_fs = (tp->snd_max - tp->snd_una) -
1141 					    tp->sackhint.recover_fs;
1142 	}
1143 }
1144