xref: /freebsd/sys/netinet/tcp_sack.c (revision 8c5a9161d16094d9db474fe78ddead1325246d05)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)tcp_sack.c	8.12 (Berkeley) 5/24/95
33  */
34 
35 /*-
36  *	@@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  *	This product includes software developed by the University of
50  *	California, Berkeley and its contributors.
51  *	This product includes software developed at the Information
52  *	Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_inet.h"
79 #include "opt_inet6.h"
80 #include "opt_tcpdebug.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/malloc.h>
87 #include <sys/mbuf.h>
88 #include <sys/proc.h>		/* for proc0 declaration */
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/syslog.h>
93 #include <sys/systm.h>
94 
95 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
96 
97 #include <vm/uma.h>
98 
99 #include <net/if.h>
100 #include <net/if_var.h>
101 #include <net/route.h>
102 #include <net/vnet.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip6.h>
111 #include <netinet/icmp6.h>
112 #include <netinet6/nd6.h>
113 #include <netinet6/ip6_var.h>
114 #include <netinet6/in6_pcb.h>
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif /* TCPDEBUG */
125 
126 #include <machine/in_cksum.h>
127 
128 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129 #define	V_sack_hole_zone		VNET(sack_hole_zone)
130 
131 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
132 VNET_DEFINE(int, tcp_do_sack) = 1;
133 #define	V_tcp_do_sack			VNET(tcp_do_sack)
134 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
135     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
136 
137 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
138 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
139     &VNET_NAME(tcp_sack_maxholes), 0,
140     "Maximum number of TCP SACK holes allowed per connection");
141 
142 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
143 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
144     &VNET_NAME(tcp_sack_globalmaxholes), 0,
145     "Global maximum number of TCP SACK holes");
146 
147 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
148 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
149     &VNET_NAME(tcp_sack_globalholes), 0,
150     "Global number of TCP SACK holes currently allocated");
151 
152 /*
153  * This function is called upon receipt of new valid data (while not in
154  * header prediction mode), and it updates the ordered list of sacks.
155  */
156 void
157 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
158 {
159 	/*
160 	 * First reported block MUST be the most recent one.  Subsequent
161 	 * blocks SHOULD be in the order in which they arrived at the
162 	 * receiver.  These two conditions make the implementation fully
163 	 * compliant with RFC 2018.
164 	 */
165 	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
166 	int num_head, num_saved, i;
167 
168 	INP_WLOCK_ASSERT(tp->t_inpcb);
169 
170 	/* Check arguments. */
171 	KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
172 
173 	/* SACK block for the received segment. */
174 	head_blk.start = rcv_start;
175 	head_blk.end = rcv_end;
176 
177 	/*
178 	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
179 	 * blocks into saved_blks[].  num_saved will have the number of the
180 	 * saved SACK blocks.
181 	 */
182 	num_saved = 0;
183 	for (i = 0; i < tp->rcv_numsacks; i++) {
184 		tcp_seq start = tp->sackblks[i].start;
185 		tcp_seq end = tp->sackblks[i].end;
186 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
187 			/*
188 			 * Discard this SACK block.
189 			 */
190 		} else if (SEQ_LEQ(head_blk.start, end) &&
191 			   SEQ_GEQ(head_blk.end, start)) {
192 			/*
193 			 * Merge this SACK block into head_blk.  This SACK
194 			 * block itself will be discarded.
195 			 */
196 			/*
197 			 * |-|
198 			 *   |---|  merge
199 			 *
200 			 *     |-|
201 			 * |---|    merge
202 			 *
203 			 * |-----|
204 			 *   |-|    DSACK smaller
205 			 *
206 			 *   |-|
207 			 * |-----|  DSACK smaller
208 			 */
209 			if (head_blk.start == end)
210 				head_blk.start = start;
211 			else if (head_blk.end == start)
212 				head_blk.end = end;
213 			else {
214 				if (SEQ_LT(head_blk.start, start)) {
215 					tcp_seq temp = start;
216 					start = head_blk.start;
217 					head_blk.start = temp;
218 				}
219 				if (SEQ_GT(head_blk.end, end)) {
220 					tcp_seq temp = end;
221 					end = head_blk.end;
222 					head_blk.end = temp;
223 				}
224 				if ((head_blk.start != start) ||
225 				    (head_blk.end != end)) {
226 					if ((num_saved >= 1) &&
227 					   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
228 					   SEQ_LEQ(saved_blks[num_saved-1].end, end))
229 						num_saved--;
230 					saved_blks[num_saved].start = start;
231 					saved_blks[num_saved].end = end;
232 					num_saved++;
233 				}
234 			}
235 		} else {
236 			/*
237 			 * This block supercedes the prior block
238 			 */
239 			if ((num_saved >= 1) &&
240 			   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
241 			   SEQ_LEQ(saved_blks[num_saved-1].end, end))
242 				num_saved--;
243 			/*
244 			 * Save this SACK block.
245 			 */
246 			saved_blks[num_saved].start = start;
247 			saved_blks[num_saved].end = end;
248 			num_saved++;
249 		}
250 	}
251 
252 	/*
253 	 * Update SACK list in tp->sackblks[].
254 	 */
255 	num_head = 0;
256 	if (SEQ_LT(rcv_start, rcv_end)) {
257 		/*
258 		 * The received data segment is an out-of-order segment.  Put
259 		 * head_blk at the top of SACK list.
260 		 */
261 		tp->sackblks[0] = head_blk;
262 		num_head = 1;
263 		/*
264 		 * If the number of saved SACK blocks exceeds its limit,
265 		 * discard the last SACK block.
266 		 */
267 		if (num_saved >= MAX_SACK_BLKS)
268 			num_saved--;
269 	}
270 	if (num_saved > 0) {
271 		/*
272 		 * Copy the saved SACK blocks back.
273 		 */
274 		bcopy(saved_blks, &tp->sackblks[num_head],
275 		      sizeof(struct sackblk) * num_saved);
276 	}
277 
278 	/* Save the number of SACK blocks. */
279 	tp->rcv_numsacks = num_head + num_saved;
280 }
281 
282 /*
283  * Delete all receiver-side SACK information.
284  */
285 void
286 tcp_clean_sackreport(struct tcpcb *tp)
287 {
288 	int i;
289 
290 	INP_WLOCK_ASSERT(tp->t_inpcb);
291 	tp->rcv_numsacks = 0;
292 	for (i = 0; i < MAX_SACK_BLKS; i++)
293 		tp->sackblks[i].start = tp->sackblks[i].end=0;
294 }
295 
296 /*
297  * Allocate struct sackhole.
298  */
299 static struct sackhole *
300 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
301 {
302 	struct sackhole *hole;
303 
304 	if (tp->snd_numholes >= V_tcp_sack_maxholes ||
305 	    V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
306 		TCPSTAT_INC(tcps_sack_sboverflow);
307 		return NULL;
308 	}
309 
310 	hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
311 	if (hole == NULL)
312 		return NULL;
313 
314 	hole->start = start;
315 	hole->end = end;
316 	hole->rxmit = start;
317 
318 	tp->snd_numholes++;
319 	atomic_add_int(&V_tcp_sack_globalholes, 1);
320 
321 	return hole;
322 }
323 
324 /*
325  * Free struct sackhole.
326  */
327 static void
328 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
329 {
330 
331 	uma_zfree(V_sack_hole_zone, hole);
332 
333 	tp->snd_numholes--;
334 	atomic_subtract_int(&V_tcp_sack_globalholes, 1);
335 
336 	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
337 	KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
338 }
339 
340 /*
341  * Insert new SACK hole into scoreboard.
342  */
343 static struct sackhole *
344 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
345     struct sackhole *after)
346 {
347 	struct sackhole *hole;
348 
349 	/* Allocate a new SACK hole. */
350 	hole = tcp_sackhole_alloc(tp, start, end);
351 	if (hole == NULL)
352 		return NULL;
353 
354 	/* Insert the new SACK hole into scoreboard. */
355 	if (after != NULL)
356 		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
357 	else
358 		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
359 
360 	/* Update SACK hint. */
361 	if (tp->sackhint.nexthole == NULL)
362 		tp->sackhint.nexthole = hole;
363 
364 	return hole;
365 }
366 
367 /*
368  * Remove SACK hole from scoreboard.
369  */
370 static void
371 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
372 {
373 
374 	/* Update SACK hint. */
375 	if (tp->sackhint.nexthole == hole)
376 		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
377 
378 	/* Remove this SACK hole. */
379 	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
380 
381 	/* Free this SACK hole. */
382 	tcp_sackhole_free(tp, hole);
383 }
384 
385 /*
386  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
387  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
388  * the sequence space).
389  * Returns 1 if incoming ACK has previously unknown SACK information,
390  * 0 otherwise. Note: We treat (snd_una, th_ack) as a sack block so any changes
391  * to that (i.e. left edge moving) would also be considered a change in SACK
392  * information which is slightly different than rfc6675.
393  */
394 int
395 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
396 {
397 	struct sackhole *cur, *temp;
398 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
399 	int i, j, num_sack_blks, sack_changed;
400 
401 	INP_WLOCK_ASSERT(tp->t_inpcb);
402 
403 	num_sack_blks = 0;
404 	sack_changed = 0;
405 	/*
406 	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
407 	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
408 	 */
409 	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
410 		sack_blocks[num_sack_blks].start = tp->snd_una;
411 		sack_blocks[num_sack_blks++].end = th_ack;
412 	}
413 	/*
414 	 * Append received valid SACK blocks to sack_blocks[], but only if we
415 	 * received new blocks from the other side.
416 	 */
417 	if (to->to_flags & TOF_SACK) {
418 		tp->sackhint.sacked_bytes = 0;	/* reset */
419 		for (i = 0; i < to->to_nsacks; i++) {
420 			bcopy((to->to_sacks + i * TCPOLEN_SACK),
421 			    &sack, sizeof(sack));
422 			sack.start = ntohl(sack.start);
423 			sack.end = ntohl(sack.end);
424 			if (SEQ_GT(sack.end, sack.start) &&
425 			    SEQ_GT(sack.start, tp->snd_una) &&
426 			    SEQ_GT(sack.start, th_ack) &&
427 			    SEQ_LT(sack.start, tp->snd_max) &&
428 			    SEQ_GT(sack.end, tp->snd_una) &&
429 			    SEQ_LEQ(sack.end, tp->snd_max)) {
430 				sack_blocks[num_sack_blks++] = sack;
431 				tp->sackhint.sacked_bytes +=
432 				    (sack.end-sack.start);
433 			}
434 		}
435 	}
436 	/*
437 	 * Return if SND.UNA is not advanced and no valid SACK block is
438 	 * received.
439 	 */
440 	if (num_sack_blks == 0)
441 		return (sack_changed);
442 
443 	/*
444 	 * Sort the SACK blocks so we can update the scoreboard with just one
445 	 * pass. The overhead of sorting up to 4+1 elements is less than
446 	 * making up to 4+1 passes over the scoreboard.
447 	 */
448 	for (i = 0; i < num_sack_blks; i++) {
449 		for (j = i + 1; j < num_sack_blks; j++) {
450 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
451 				sack = sack_blocks[i];
452 				sack_blocks[i] = sack_blocks[j];
453 				sack_blocks[j] = sack;
454 			}
455 		}
456 	}
457 	if (TAILQ_EMPTY(&tp->snd_holes))
458 		/*
459 		 * Empty scoreboard. Need to initialize snd_fack (it may be
460 		 * uninitialized or have a bogus value). Scoreboard holes
461 		 * (from the sack blocks received) are created later below
462 		 * (in the logic that adds holes to the tail of the
463 		 * scoreboard).
464 		 */
465 		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
466 	/*
467 	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
468 	 * SACK holes (snd_holes) are traversed from their tails with just
469 	 * one pass in order to reduce the number of compares especially when
470 	 * the bandwidth-delay product is large.
471 	 *
472 	 * Note: Typically, in the first RTT of SACK recovery, the highest
473 	 * three or four SACK blocks with the same ack number are received.
474 	 * In the second RTT, if retransmitted data segments are not lost,
475 	 * the highest three or four SACK blocks with ack number advancing
476 	 * are received.
477 	 */
478 	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
479 	tp->sackhint.last_sack_ack = sblkp->end;
480 	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
481 		/*
482 		 * The highest SACK block is beyond fack.  Append new SACK
483 		 * hole at the tail.  If the second or later highest SACK
484 		 * blocks are also beyond the current fack, they will be
485 		 * inserted by way of hole splitting in the while-loop below.
486 		 */
487 		temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
488 		if (temp != NULL) {
489 			tp->snd_fack = sblkp->end;
490 			/* Go to the previous sack block. */
491 			sblkp--;
492 			sack_changed = 1;
493 		} else {
494 			/*
495 			 * We failed to add a new hole based on the current
496 			 * sack block.  Skip over all the sack blocks that
497 			 * fall completely to the right of snd_fack and
498 			 * proceed to trim the scoreboard based on the
499 			 * remaining sack blocks.  This also trims the
500 			 * scoreboard for th_ack (which is sack_blocks[0]).
501 			 */
502 			while (sblkp >= sack_blocks &&
503 			       SEQ_LT(tp->snd_fack, sblkp->start))
504 				sblkp--;
505 			if (sblkp >= sack_blocks &&
506 			    SEQ_LT(tp->snd_fack, sblkp->end))
507 				tp->snd_fack = sblkp->end;
508 		}
509 	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
510 		/* fack is advanced. */
511 		tp->snd_fack = sblkp->end;
512 		sack_changed = 1;
513 	}
514 	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
515 	/*
516 	 * Since the incoming sack blocks are sorted, we can process them
517 	 * making one sweep of the scoreboard.
518 	 */
519 	while (sblkp >= sack_blocks  && cur != NULL) {
520 		if (SEQ_GEQ(sblkp->start, cur->end)) {
521 			/*
522 			 * SACKs data beyond the current hole.  Go to the
523 			 * previous sack block.
524 			 */
525 			sblkp--;
526 			continue;
527 		}
528 		if (SEQ_LEQ(sblkp->end, cur->start)) {
529 			/*
530 			 * SACKs data before the current hole.  Go to the
531 			 * previous hole.
532 			 */
533 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
534 			continue;
535 		}
536 		tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
537 		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
538 		    ("sackhint bytes rtx >= 0"));
539 		sack_changed = 1;
540 		if (SEQ_LEQ(sblkp->start, cur->start)) {
541 			/* Data acks at least the beginning of hole. */
542 			if (SEQ_GEQ(sblkp->end, cur->end)) {
543 				/* Acks entire hole, so delete hole. */
544 				temp = cur;
545 				cur = TAILQ_PREV(cur, sackhole_head, scblink);
546 				tcp_sackhole_remove(tp, temp);
547 				/*
548 				 * The sack block may ack all or part of the
549 				 * next hole too, so continue onto the next
550 				 * hole.
551 				 */
552 				continue;
553 			} else {
554 				/* Move start of hole forward. */
555 				cur->start = sblkp->end;
556 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
557 			}
558 		} else {
559 			/* Data acks at least the end of hole. */
560 			if (SEQ_GEQ(sblkp->end, cur->end)) {
561 				/* Move end of hole backward. */
562 				cur->end = sblkp->start;
563 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
564 			} else {
565 				/*
566 				 * ACKs some data in middle of a hole; need
567 				 * to split current hole
568 				 */
569 				temp = tcp_sackhole_insert(tp, sblkp->end,
570 				    cur->end, cur);
571 				if (temp != NULL) {
572 					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
573 						temp->rxmit = cur->rxmit;
574 						tp->sackhint.sack_bytes_rexmit
575 						    += (temp->rxmit
576 						    - temp->start);
577 					}
578 					cur->end = sblkp->start;
579 					cur->rxmit = SEQ_MIN(cur->rxmit,
580 					    cur->end);
581 				}
582 			}
583 		}
584 		tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
585 		/*
586 		 * Testing sblkp->start against cur->start tells us whether
587 		 * we're done with the sack block or the sack hole.
588 		 * Accordingly, we advance one or the other.
589 		 */
590 		if (SEQ_LEQ(sblkp->start, cur->start))
591 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
592 		else
593 			sblkp--;
594 	}
595 	return (sack_changed);
596 }
597 
598 /*
599  * Free all SACK holes to clear the scoreboard.
600  */
601 void
602 tcp_free_sackholes(struct tcpcb *tp)
603 {
604 	struct sackhole *q;
605 
606 	INP_WLOCK_ASSERT(tp->t_inpcb);
607 	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
608 		tcp_sackhole_remove(tp, q);
609 	tp->sackhint.sack_bytes_rexmit = 0;
610 
611 	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
612 	KASSERT(tp->sackhint.nexthole == NULL,
613 		("tp->sackhint.nexthole == NULL"));
614 }
615 
616 /*
617  * Partial ack handling within a sack recovery episode.  Keeping this very
618  * simple for now.  When a partial ack is received, force snd_cwnd to a value
619  * that will allow the sender to transmit no more than 2 segments.  If
620  * necessary, a better scheme can be adopted at a later point, but for now,
621  * the goal is to prevent the sender from bursting a large amount of data in
622  * the midst of sack recovery.
623  */
624 void
625 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
626 {
627 	int num_segs = 1;
628 
629 	INP_WLOCK_ASSERT(tp->t_inpcb);
630 	tcp_timer_activate(tp, TT_REXMT, 0);
631 	tp->t_rtttime = 0;
632 	/* Send one or 2 segments based on how much new data was acked. */
633 	if ((BYTES_THIS_ACK(tp, th) / tp->t_maxseg) >= 2)
634 		num_segs = 2;
635 	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
636 	    (tp->snd_nxt - tp->sack_newdata) + num_segs * tp->t_maxseg);
637 	if (tp->snd_cwnd > tp->snd_ssthresh)
638 		tp->snd_cwnd = tp->snd_ssthresh;
639 	tp->t_flags |= TF_ACKNOW;
640 	(void) tp->t_fb->tfb_tcp_output(tp);
641 }
642 
643 #if 0
644 /*
645  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
646  * now to sanity check the hint.
647  */
648 static struct sackhole *
649 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
650 {
651 	struct sackhole *p;
652 
653 	INP_WLOCK_ASSERT(tp->t_inpcb);
654 	*sack_bytes_rexmt = 0;
655 	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
656 		if (SEQ_LT(p->rxmit, p->end)) {
657 			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
658 				continue;
659 			}
660 			*sack_bytes_rexmt += (p->rxmit - p->start);
661 			break;
662 		}
663 		*sack_bytes_rexmt += (p->rxmit - p->start);
664 	}
665 	return (p);
666 }
667 #endif
668 
669 /*
670  * Returns the next hole to retransmit and the number of retransmitted bytes
671  * from the scoreboard.  We store both the next hole and the number of
672  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
673  * reception).  This avoids scoreboard traversals completely.
674  *
675  * The loop here will traverse *at most* one link.  Here's the argument.  For
676  * the loop to traverse more than 1 link before finding the next hole to
677  * retransmit, we would need to have at least 1 node following the current
678  * hint with (rxmit == end).  But, for all holes following the current hint,
679  * (start == rxmit), since we have not yet retransmitted from them.
680  * Therefore, in order to traverse more 1 link in the loop below, we need to
681  * have at least one node following the current hint with (start == rxmit ==
682  * end).  But that can't happen, (start == end) means that all the data in
683  * that hole has been sacked, in which case, the hole would have been removed
684  * from the scoreboard.
685  */
686 struct sackhole *
687 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
688 {
689 	struct sackhole *hole = NULL;
690 
691 	INP_WLOCK_ASSERT(tp->t_inpcb);
692 	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
693 	hole = tp->sackhint.nexthole;
694 	if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
695 		goto out;
696 	while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
697 		if (SEQ_LT(hole->rxmit, hole->end)) {
698 			tp->sackhint.nexthole = hole;
699 			break;
700 		}
701 	}
702 out:
703 	return (hole);
704 }
705 
706 /*
707  * After a timeout, the SACK list may be rebuilt.  This SACK information
708  * should be used to avoid retransmitting SACKed data.  This function
709  * traverses the SACK list to see if snd_nxt should be moved forward.
710  */
711 void
712 tcp_sack_adjust(struct tcpcb *tp)
713 {
714 	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
715 
716 	INP_WLOCK_ASSERT(tp->t_inpcb);
717 	if (cur == NULL)
718 		return; /* No holes */
719 	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
720 		return; /* We're already beyond any SACKed blocks */
721 	/*-
722 	 * Two cases for which we want to advance snd_nxt:
723 	 * i) snd_nxt lies between end of one hole and beginning of another
724 	 * ii) snd_nxt lies between end of last hole and snd_fack
725 	 */
726 	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
727 		if (SEQ_LT(tp->snd_nxt, cur->end))
728 			return;
729 		if (SEQ_GEQ(tp->snd_nxt, p->start))
730 			cur = p;
731 		else {
732 			tp->snd_nxt = p->start;
733 			return;
734 		}
735 	}
736 	if (SEQ_LT(tp->snd_nxt, cur->end))
737 		return;
738 	tp->snd_nxt = tp->snd_fack;
739 }
740