xref: /freebsd/sys/netinet/tcp_sack.c (revision 525fe93dc7487a1e63a90f6a2b956abc601963c1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*-
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *	This product includes software developed by the University of
47  *	California, Berkeley and its contributors.
48  *	This product includes software developed at the Information
49  *	Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 #include <sys/cdefs.h>
73 #include "opt_inet.h"
74 #include "opt_inet6.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/proc.h>		/* for proc0 declaration */
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/systm.h>
88 
89 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
90 
91 #include <vm/uma.h>
92 
93 #include <net/if.h>
94 #include <net/if_var.h>
95 #include <net/route.h>
96 #include <net/vnet.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_var.h>
114 #include <netinet/tcpip.h>
115 #include <netinet/cc/cc.h>
116 
117 #include <machine/in_cksum.h>
118 
119 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
120 #define	V_sack_hole_zone		VNET(sack_hole_zone)
121 
122 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
123     "TCP SACK");
124 
125 VNET_DEFINE(int, tcp_do_sack) = 1;
126 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
127     &VNET_NAME(tcp_do_sack), 0,
128     "Enable/Disable TCP SACK support");
129 
130 VNET_DEFINE(int, tcp_do_newsack) = 1;
131 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, revised, CTLFLAG_VNET | CTLFLAG_RW,
132     &VNET_NAME(tcp_do_newsack), 0,
133     "Use revised SACK loss recovery per RFC 6675");
134 
135 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
136 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
137     &VNET_NAME(tcp_sack_maxholes), 0,
138     "Maximum number of TCP SACK holes allowed per connection");
139 
140 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
141 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
142     &VNET_NAME(tcp_sack_globalmaxholes), 0,
143     "Global maximum number of TCP SACK holes");
144 
145 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
146 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
147     &VNET_NAME(tcp_sack_globalholes), 0,
148     "Global number of TCP SACK holes currently allocated");
149 
150 int
151 tcp_dsack_block_exists(struct tcpcb *tp)
152 {
153 	/* Return true if a DSACK block exists */
154 	if (tp->rcv_numsacks == 0)
155 		return (0);
156 	if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
157 		return(1);
158 	return (0);
159 }
160 
161 /*
162  * This function will find overlaps with the currently stored sackblocks
163  * and add any overlap as a dsack block upfront
164  */
165 void
166 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
167 {
168 	struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
169 	int i, j, n, identical;
170 	tcp_seq start, end;
171 
172 	INP_WLOCK_ASSERT(tptoinpcb(tp));
173 
174 	KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
175 
176 	if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
177 	    ((rcv_end == tp->rcv_nxt) &&
178 	     (tp->rcv_numsacks > 0 ) &&
179 	     (tp->sackblks[0].end == tp->rcv_nxt))) {
180 		saved_blks[0].start = rcv_start;
181 		saved_blks[0].end = rcv_end;
182 	} else {
183 		saved_blks[0].start = saved_blks[0].end = 0;
184 	}
185 
186 	head_blk.start = head_blk.end = 0;
187 	mid_blk.start = rcv_start;
188 	mid_blk.end = rcv_end;
189 	identical = 0;
190 
191 	for (i = 0; i < tp->rcv_numsacks; i++) {
192 		start = tp->sackblks[i].start;
193 		end = tp->sackblks[i].end;
194 		if (SEQ_LT(rcv_end, start)) {
195 			/* pkt left to sack blk */
196 			continue;
197 		}
198 		if (SEQ_GT(rcv_start, end)) {
199 			/* pkt right to sack blk */
200 			continue;
201 		}
202 		if (SEQ_GT(tp->rcv_nxt, end)) {
203 			if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
204 			    (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
205 			    (head_blk.start == head_blk.end))) {
206 				head_blk.start = SEQ_MAX(rcv_start, start);
207 				head_blk.end = SEQ_MIN(rcv_end, end);
208 			}
209 			continue;
210 		}
211 		if (((head_blk.start == head_blk.end) ||
212 		     SEQ_LT(start, head_blk.start)) &&
213 		     (SEQ_GT(end, rcv_start) &&
214 		      SEQ_LEQ(start, rcv_end))) {
215 			head_blk.start = start;
216 			head_blk.end = end;
217 		}
218 		mid_blk.start = SEQ_MIN(mid_blk.start, start);
219 		mid_blk.end = SEQ_MAX(mid_blk.end, end);
220 		if ((mid_blk.start == start) &&
221 		    (mid_blk.end == end))
222 			identical = 1;
223 	}
224 	if (SEQ_LT(head_blk.start, head_blk.end)) {
225 		/* store overlapping range */
226 		saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
227 		saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
228 	}
229 	n = 1;
230 	/*
231 	 * Second, if not ACKed, store the SACK block that
232 	 * overlaps with the DSACK block unless it is identical
233 	 */
234 	if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
235 	    !((mid_blk.start == saved_blks[0].start) &&
236 	    (mid_blk.end == saved_blks[0].end))) ||
237 	    identical == 1) {
238 		saved_blks[n].start = mid_blk.start;
239 		saved_blks[n++].end = mid_blk.end;
240 	}
241 	for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
242 		if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
243 		      SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
244 		    (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
245 		saved_blks[n++] = tp->sackblks[j];
246 	}
247 	j = 0;
248 	for (i = 0; i < n; i++) {
249 		/* we can end up with a stale initial entry */
250 		if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
251 			tp->sackblks[j++] = saved_blks[i];
252 		}
253 	}
254 	tp->rcv_numsacks = j;
255 }
256 
257 /*
258  * This function is called upon receipt of new valid data (while not in
259  * header prediction mode), and it updates the ordered list of sacks.
260  */
261 void
262 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
263 {
264 	/*
265 	 * First reported block MUST be the most recent one.  Subsequent
266 	 * blocks SHOULD be in the order in which they arrived at the
267 	 * receiver.  These two conditions make the implementation fully
268 	 * compliant with RFC 2018.
269 	 */
270 	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
271 	int num_head, num_saved, i;
272 
273 	INP_WLOCK_ASSERT(tptoinpcb(tp));
274 
275 	/* Check arguments. */
276 	KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
277 
278 	if ((rcv_start == rcv_end) &&
279 	    (tp->rcv_numsacks >= 1) &&
280 	    (rcv_end == tp->sackblks[0].end)) {
281 		/* retaining DSACK block below rcv_nxt (todrop) */
282 		head_blk = tp->sackblks[0];
283 	} else {
284 		/* SACK block for the received segment. */
285 		head_blk.start = rcv_start;
286 		head_blk.end = rcv_end;
287 	}
288 
289 	/*
290 	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
291 	 * blocks into saved_blks[].  num_saved will have the number of the
292 	 * saved SACK blocks.
293 	 */
294 	num_saved = 0;
295 	for (i = 0; i < tp->rcv_numsacks; i++) {
296 		tcp_seq start = tp->sackblks[i].start;
297 		tcp_seq end = tp->sackblks[i].end;
298 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
299 			/*
300 			 * Discard this SACK block.
301 			 */
302 		} else if (SEQ_LEQ(head_blk.start, end) &&
303 			   SEQ_GEQ(head_blk.end, start)) {
304 			/*
305 			 * Merge this SACK block into head_blk.  This SACK
306 			 * block itself will be discarded.
307 			 */
308 			/*
309 			 * |-|
310 			 *   |---|  merge
311 			 *
312 			 *     |-|
313 			 * |---|    merge
314 			 *
315 			 * |-----|
316 			 *   |-|    DSACK smaller
317 			 *
318 			 *   |-|
319 			 * |-----|  DSACK smaller
320 			 */
321 			if (head_blk.start == end)
322 				head_blk.start = start;
323 			else if (head_blk.end == start)
324 				head_blk.end = end;
325 			else {
326 				if (SEQ_LT(head_blk.start, start)) {
327 					tcp_seq temp = start;
328 					start = head_blk.start;
329 					head_blk.start = temp;
330 				}
331 				if (SEQ_GT(head_blk.end, end)) {
332 					tcp_seq temp = end;
333 					end = head_blk.end;
334 					head_blk.end = temp;
335 				}
336 				if ((head_blk.start != start) ||
337 				    (head_blk.end != end)) {
338 					if ((num_saved >= 1) &&
339 					   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
340 					   SEQ_LEQ(saved_blks[num_saved-1].end, end))
341 						num_saved--;
342 					saved_blks[num_saved].start = start;
343 					saved_blks[num_saved].end = end;
344 					num_saved++;
345 				}
346 			}
347 		} else {
348 			/*
349 			 * This block supercedes the prior block
350 			 */
351 			if ((num_saved >= 1) &&
352 			   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
353 			   SEQ_LEQ(saved_blks[num_saved-1].end, end))
354 				num_saved--;
355 			/*
356 			 * Save this SACK block.
357 			 */
358 			saved_blks[num_saved].start = start;
359 			saved_blks[num_saved].end = end;
360 			num_saved++;
361 		}
362 	}
363 
364 	/*
365 	 * Update SACK list in tp->sackblks[].
366 	 */
367 	num_head = 0;
368 	if (SEQ_LT(rcv_start, rcv_end)) {
369 		/*
370 		 * The received data segment is an out-of-order segment.  Put
371 		 * head_blk at the top of SACK list.
372 		 */
373 		tp->sackblks[0] = head_blk;
374 		num_head = 1;
375 		/*
376 		 * If the number of saved SACK blocks exceeds its limit,
377 		 * discard the last SACK block.
378 		 */
379 		if (num_saved >= MAX_SACK_BLKS)
380 			num_saved--;
381 	}
382 	if ((rcv_start == rcv_end) &&
383 	    (rcv_start == tp->sackblks[0].end)) {
384 		num_head = 1;
385 	}
386 	if (num_saved > 0) {
387 		/*
388 		 * Copy the saved SACK blocks back.
389 		 */
390 		bcopy(saved_blks, &tp->sackblks[num_head],
391 		      sizeof(struct sackblk) * num_saved);
392 	}
393 
394 	/* Save the number of SACK blocks. */
395 	tp->rcv_numsacks = num_head + num_saved;
396 }
397 
398 void
399 tcp_clean_dsack_blocks(struct tcpcb *tp)
400 {
401 	struct sackblk saved_blks[MAX_SACK_BLKS];
402 	int num_saved, i;
403 
404 	INP_WLOCK_ASSERT(tptoinpcb(tp));
405 	/*
406 	 * Clean up any DSACK blocks that
407 	 * are in our queue of sack blocks.
408 	 *
409 	 */
410 	num_saved = 0;
411 	for (i = 0; i < tp->rcv_numsacks; i++) {
412 		tcp_seq start = tp->sackblks[i].start;
413 		tcp_seq end = tp->sackblks[i].end;
414 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
415 			/*
416 			 * Discard this D-SACK block.
417 			 */
418 			continue;
419 		}
420 		/*
421 		 * Save this SACK block.
422 		 */
423 		saved_blks[num_saved].start = start;
424 		saved_blks[num_saved].end = end;
425 		num_saved++;
426 	}
427 	if (num_saved > 0) {
428 		/*
429 		 * Copy the saved SACK blocks back.
430 		 */
431 		bcopy(saved_blks, &tp->sackblks[0],
432 		      sizeof(struct sackblk) * num_saved);
433 	}
434 	tp->rcv_numsacks = num_saved;
435 }
436 
437 /*
438  * Delete all receiver-side SACK information.
439  */
440 void
441 tcp_clean_sackreport(struct tcpcb *tp)
442 {
443 	int i;
444 
445 	INP_WLOCK_ASSERT(tptoinpcb(tp));
446 	tp->rcv_numsacks = 0;
447 	for (i = 0; i < MAX_SACK_BLKS; i++)
448 		tp->sackblks[i].start = tp->sackblks[i].end=0;
449 }
450 
451 /*
452  * Allocate struct sackhole.
453  */
454 static struct sackhole *
455 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
456 {
457 	struct sackhole *hole;
458 
459 	if (tp->snd_numholes >= V_tcp_sack_maxholes ||
460 	    V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
461 		TCPSTAT_INC(tcps_sack_sboverflow);
462 		return NULL;
463 	}
464 
465 	hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
466 	if (hole == NULL)
467 		return NULL;
468 
469 	hole->start = start;
470 	hole->end = end;
471 	hole->rxmit = start;
472 
473 	tp->snd_numholes++;
474 	atomic_add_int(&V_tcp_sack_globalholes, 1);
475 
476 	return hole;
477 }
478 
479 /*
480  * Free struct sackhole.
481  */
482 static void
483 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
484 {
485 
486 	uma_zfree(V_sack_hole_zone, hole);
487 
488 	tp->snd_numholes--;
489 	atomic_subtract_int(&V_tcp_sack_globalholes, 1);
490 
491 	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
492 	KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
493 }
494 
495 /*
496  * Insert new SACK hole into scoreboard.
497  */
498 static struct sackhole *
499 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
500     struct sackhole *after)
501 {
502 	struct sackhole *hole;
503 
504 	/* Allocate a new SACK hole. */
505 	hole = tcp_sackhole_alloc(tp, start, end);
506 	if (hole == NULL)
507 		return NULL;
508 
509 	/* Insert the new SACK hole into scoreboard. */
510 	if (after != NULL)
511 		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
512 	else
513 		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
514 
515 	/* Update SACK hint. */
516 	if (tp->sackhint.nexthole == NULL)
517 		tp->sackhint.nexthole = hole;
518 
519 	return hole;
520 }
521 
522 /*
523  * Remove SACK hole from scoreboard.
524  */
525 static void
526 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
527 {
528 
529 	/* Update SACK hint. */
530 	if (tp->sackhint.nexthole == hole)
531 		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
532 
533 	/* Remove this SACK hole. */
534 	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
535 
536 	/* Free this SACK hole. */
537 	tcp_sackhole_free(tp, hole);
538 }
539 
540 /*
541  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
542  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
543  * the sequence space).
544  * Returns SACK_NEWLOSS if incoming ACK indicates ongoing loss (hole split, new hole),
545  * SACK_CHANGE if incoming ACK has previously unknown SACK information,
546  * SACK_NOCHANGE otherwise.
547  */
548 sackstatus_t
549 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
550 {
551 	struct sackhole *cur, *temp;
552 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
553 	int i, j, num_sack_blks;
554 	sackstatus_t sack_changed;
555 	int delivered_data, left_edge_delta;
556 
557 	tcp_seq loss_hiack = 0;
558 	int loss_thresh = 0;
559 	int loss_sblks = 0;
560 	int notlost_bytes = 0;
561 
562 	INP_WLOCK_ASSERT(tptoinpcb(tp));
563 
564 	num_sack_blks = 0;
565 	sack_changed = SACK_NOCHANGE;
566 	delivered_data = 0;
567 	left_edge_delta = 0;
568 	/*
569 	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
570 	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
571 	 * Account changes to SND.UNA always in delivered data.
572 	 */
573 	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
574 		left_edge_delta = th_ack - tp->snd_una;
575 		sack_blocks[num_sack_blks].start = tp->snd_una;
576 		sack_blocks[num_sack_blks++].end = th_ack;
577 		/*
578 		 * Pulling snd_fack forward if we got here
579 		 * due to DSACK blocks
580 		 */
581 		if (SEQ_LT(tp->snd_fack, th_ack)) {
582 			delivered_data += th_ack - tp->snd_una;
583 			tp->snd_fack = th_ack;
584 			sack_changed = SACK_CHANGE;
585 		}
586 	}
587 	/*
588 	 * Append received valid SACK blocks to sack_blocks[], but only if we
589 	 * received new blocks from the other side.
590 	 */
591 	if (to->to_flags & TOF_SACK) {
592 		for (i = 0; i < to->to_nsacks; i++) {
593 			bcopy((to->to_sacks + i * TCPOLEN_SACK),
594 			    &sack, sizeof(sack));
595 			sack.start = ntohl(sack.start);
596 			sack.end = ntohl(sack.end);
597 			if (SEQ_GT(sack.end, sack.start) &&
598 			    SEQ_GT(sack.start, tp->snd_una) &&
599 			    SEQ_GT(sack.start, th_ack) &&
600 			    SEQ_LT(sack.start, tp->snd_max) &&
601 			    SEQ_GT(sack.end, tp->snd_una) &&
602 			    SEQ_LEQ(sack.end, tp->snd_max)) {
603 				sack_blocks[num_sack_blks++] = sack;
604 			} else if (SEQ_LEQ(sack.start, th_ack) &&
605 			    SEQ_LEQ(sack.end, th_ack)) {
606 				/*
607 				 * Its a D-SACK block.
608 				 */
609 				tcp_record_dsack(tp, sack.start, sack.end, 0);
610 			}
611 		}
612 	}
613 	/*
614 	 * Return if SND.UNA is not advanced and no valid SACK block is
615 	 * received.
616 	 */
617 	if (num_sack_blks == 0)
618 		return (sack_changed);
619 
620 	/*
621 	 * Sort the SACK blocks so we can update the scoreboard with just one
622 	 * pass. The overhead of sorting up to 4+1 elements is less than
623 	 * making up to 4+1 passes over the scoreboard.
624 	 */
625 	for (i = 0; i < num_sack_blks; i++) {
626 		for (j = i + 1; j < num_sack_blks; j++) {
627 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
628 				sack = sack_blocks[i];
629 				sack_blocks[i] = sack_blocks[j];
630 				sack_blocks[j] = sack;
631 			}
632 		}
633 	}
634 	if (TAILQ_EMPTY(&tp->snd_holes)) {
635 		/*
636 		 * Empty scoreboard. Need to initialize snd_fack (it may be
637 		 * uninitialized or have a bogus value). Scoreboard holes
638 		 * (from the sack blocks received) are created later below
639 		 * (in the logic that adds holes to the tail of the
640 		 * scoreboard).
641 		 */
642 		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
643 		tp->sackhint.sacked_bytes = 0;	/* reset */
644 		tp->sackhint.hole_bytes = 0;
645 	}
646 	/*
647 	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
648 	 * SACK holes (snd_holes) are traversed from their tails with just
649 	 * one pass in order to reduce the number of compares especially when
650 	 * the bandwidth-delay product is large.
651 	 *
652 	 * Note: Typically, in the first RTT of SACK recovery, the highest
653 	 * three or four SACK blocks with the same ack number are received.
654 	 * In the second RTT, if retransmitted data segments are not lost,
655 	 * the highest three or four SACK blocks with ack number advancing
656 	 * are received.
657 	 */
658 	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
659 	tp->sackhint.last_sack_ack = sblkp->end;
660 	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
661 		/*
662 		 * The highest SACK block is beyond fack.  First,
663 		 * check if there was a successful Rescue Retransmission,
664 		 * and move this hole left. With normal holes, snd_fack
665 		 * is always to the right of the end.
666 		 */
667 		if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
668 		    SEQ_LEQ(tp->snd_fack,temp->end)) {
669 			tp->sackhint.hole_bytes -= temp->end - temp->start;
670 			temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
671 			temp->end = sblkp->start;
672 			temp->rxmit = temp->start;
673 			delivered_data += sblkp->end - sblkp->start;
674 			tp->sackhint.hole_bytes += temp->end - temp->start;
675 			KASSERT(tp->sackhint.hole_bytes >= 0,
676 			    ("sackhint hole bytes >= 0"));
677 			tp->snd_fack = sblkp->end;
678 			sblkp--;
679 			sack_changed = SACK_NEWLOSS;
680 		} else {
681 			/*
682 			 * Append a new SACK hole at the tail.  If the
683 			 * second or later highest SACK blocks are also
684 			 * beyond the current fack, they will be inserted
685 			 * by way of hole splitting in the while-loop below.
686 			 */
687 			temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
688 			if (temp != NULL) {
689 				delivered_data += sblkp->end - sblkp->start;
690 				tp->sackhint.hole_bytes += temp->end - temp->start;
691 				tp->snd_fack = sblkp->end;
692 				/* Go to the previous sack block. */
693 				sblkp--;
694 				sack_changed = SACK_CHANGE;
695 			} else {
696 				/*
697 				 * We failed to add a new hole based on the current
698 				 * sack block.  Skip over all the sack blocks that
699 				 * fall completely to the right of snd_fack and
700 				 * proceed to trim the scoreboard based on the
701 				 * remaining sack blocks.  This also trims the
702 				 * scoreboard for th_ack (which is sack_blocks[0]).
703 				 */
704 				while (sblkp >= sack_blocks &&
705 				       SEQ_LT(tp->snd_fack, sblkp->start))
706 					sblkp--;
707 				if (sblkp >= sack_blocks &&
708 				    SEQ_LT(tp->snd_fack, sblkp->end)) {
709 					delivered_data += sblkp->end - tp->snd_fack;
710 					tp->snd_fack = sblkp->end;
711 					/*
712 					 * While the Scoreboard didn't change in
713 					 * size, we only ended up here because
714 					 * some SACK data had to be dismissed.
715 					 */
716 					sack_changed = SACK_NEWLOSS;
717 				}
718 			}
719 		}
720 	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
721 		/* fack is advanced. */
722 		delivered_data += sblkp->end - tp->snd_fack;
723 		tp->snd_fack = sblkp->end;
724 		sack_changed = SACK_CHANGE;
725 	}
726 	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
727 	loss_hiack = tp->snd_fack;
728 
729 	/*
730 	 * Since the incoming sack blocks are sorted, we can process them
731 	 * making one sweep of the scoreboard.
732 	 */
733 	while (cur != NULL) {
734 		if (!(sblkp >= sack_blocks)) {
735 			if (((loss_sblks >= tcprexmtthresh) ||
736 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
737 				break;
738 			loss_thresh += loss_hiack - cur->end;
739 			loss_hiack = cur->start;
740 			loss_sblks++;
741 			if (!((loss_sblks >= tcprexmtthresh) ||
742 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg))) {
743 				notlost_bytes += cur->end - cur->start;
744 			} else {
745 				break;
746 			}
747 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
748 			continue;
749 		}
750 		if (SEQ_GEQ(sblkp->start, cur->end)) {
751 			/*
752 			 * SACKs data beyond the current hole.  Go to the
753 			 * previous sack block.
754 			 */
755 			sblkp--;
756 			continue;
757 		}
758 		if (SEQ_LEQ(sblkp->end, cur->start)) {
759 			/*
760 			 * SACKs data before the current hole.  Go to the
761 			 * previous hole.
762 			 */
763 			loss_thresh += loss_hiack - cur->end;
764 			loss_hiack = cur->start;
765 			loss_sblks++;
766 			if (!((loss_sblks >= tcprexmtthresh) ||
767 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
768 				notlost_bytes += cur->end - cur->start;
769 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
770 			continue;
771 		}
772 		tp->sackhint.sack_bytes_rexmit -=
773 		    (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
774 		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
775 		    ("sackhint bytes rtx >= 0"));
776 		sack_changed = SACK_CHANGE;
777 		if (SEQ_LEQ(sblkp->start, cur->start)) {
778 			/* Data acks at least the beginning of hole. */
779 			if (SEQ_GEQ(sblkp->end, cur->end)) {
780 				/* Acks entire hole, so delete hole. */
781 				delivered_data += (cur->end - cur->start);
782 				temp = cur;
783 				cur = TAILQ_PREV(cur, sackhole_head, scblink);
784 				tp->sackhint.hole_bytes -= temp->end - temp->start;
785 				tcp_sackhole_remove(tp, temp);
786 				/*
787 				 * The sack block may ack all or part of the
788 				 * next hole too, so continue onto the next
789 				 * hole.
790 				 */
791 				continue;
792 			} else {
793 				/* Move start of hole forward. */
794 				delivered_data += (sblkp->end - cur->start);
795 				tp->sackhint.hole_bytes -= sblkp->end - cur->start;
796 				cur->start = sblkp->end;
797 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
798 			}
799 		} else {
800 			/* Data acks at least the end of hole. */
801 			if (SEQ_GEQ(sblkp->end, cur->end)) {
802 				/* Move end of hole backward. */
803 				delivered_data += (cur->end - sblkp->start);
804 				tp->sackhint.hole_bytes -= cur->end - sblkp->start;
805 				cur->end = sblkp->start;
806 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
807 				if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
808 					cur->rxmit = tp->snd_recover;
809 			} else {
810 				/*
811 				 * ACKs some data in middle of a hole; need
812 				 * to split current hole
813 				 */
814 				temp = tcp_sackhole_insert(tp, sblkp->end,
815 				    cur->end, cur);
816 				sack_changed = SACK_NEWLOSS;
817 				if (temp != NULL) {
818 					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
819 						temp->rxmit = cur->rxmit;
820 						tp->sackhint.sack_bytes_rexmit +=
821 						    (SEQ_MIN(temp->rxmit,
822 						    temp->end) - temp->start);
823 					}
824 					tp->sackhint.hole_bytes -= sblkp->end - sblkp->start;
825 					loss_thresh += loss_hiack - temp->end;
826 					loss_hiack = temp->start;
827 					loss_sblks++;
828 					if (!((loss_sblks >= tcprexmtthresh) ||
829 					    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
830 						notlost_bytes += temp->end - temp->start;
831 					cur->end = sblkp->start;
832 					cur->rxmit = SEQ_MIN(cur->rxmit,
833 					    cur->end);
834 					if ((tp->t_flags & TF_LRD) && SEQ_GEQ(cur->rxmit, cur->end))
835 						cur->rxmit = tp->snd_recover;
836 					delivered_data += (sblkp->end - sblkp->start);
837 				}
838 			}
839 		}
840 		tp->sackhint.sack_bytes_rexmit +=
841 		    (SEQ_MIN(cur->rxmit, cur->end) - cur->start);
842 		/*
843 		 * Testing sblkp->start against cur->start tells us whether
844 		 * we're done with the sack block or the sack hole.
845 		 * Accordingly, we advance one or the other.
846 		 */
847 		if (SEQ_LEQ(sblkp->start, cur->start)) {
848 			loss_thresh += loss_hiack - cur->end;
849 			loss_hiack = cur->start;
850 			loss_sblks++;
851 			if (!((loss_sblks >= tcprexmtthresh) ||
852 			    (loss_thresh > (tcprexmtthresh-1)*tp->t_maxseg)))
853 				notlost_bytes += cur->end - cur->start;
854 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
855 		} else {
856 			sblkp--;
857 		}
858 	}
859 
860 	KASSERT(!(TAILQ_EMPTY(&tp->snd_holes) && (tp->sackhint.hole_bytes != 0)),
861 	    ("SACK scoreboard empty, but accounting non-zero\n"));
862 
863 	KASSERT(notlost_bytes <= tp->sackhint.hole_bytes,
864 	    ("SACK: more bytes marked notlost than in scoreboard holes"));
865 
866 	if (!(to->to_flags & TOF_SACK))
867 		/*
868 		 * If this ACK did not contain any
869 		 * SACK blocks, any only moved the
870 		 * left edge right, it is a pure
871 		 * cumulative ACK. Do not count
872 		 * DupAck for this. Also required
873 		 * for RFC6675 rescue retransmission.
874 		 */
875 		sack_changed = SACK_NOCHANGE;
876 	tp->sackhint.delivered_data = delivered_data;
877 	tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
878 	tp->sackhint.lost_bytes = tp->sackhint.hole_bytes - notlost_bytes;
879 	KASSERT((delivered_data >= 0), ("delivered_data < 0"));
880 	KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
881 	return (sack_changed);
882 }
883 
884 /*
885  * Free all SACK holes to clear the scoreboard.
886  */
887 void
888 tcp_free_sackholes(struct tcpcb *tp)
889 {
890 	struct sackhole *q;
891 
892 	INP_WLOCK_ASSERT(tptoinpcb(tp));
893 	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
894 		tcp_sackhole_remove(tp, q);
895 	tp->sackhint.sack_bytes_rexmit = 0;
896 	tp->sackhint.delivered_data = 0;
897 	tp->sackhint.sacked_bytes = 0;
898 	tp->sackhint.hole_bytes = 0;
899 	tp->sackhint.lost_bytes = 0;
900 
901 	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
902 	KASSERT(tp->sackhint.nexthole == NULL,
903 		("tp->sackhint.nexthole == NULL"));
904 }
905 
906 /*
907  * Partial ack handling within a sack recovery episode.  Keeping this very
908  * simple for now.  When a partial ack is received, force snd_cwnd to a value
909  * that will allow the sender to transmit no more than 2 segments.  If
910  * necessary, a better scheme can be adopted at a later point, but for now,
911  * the goal is to prevent the sender from bursting a large amount of data in
912  * the midst of sack recovery.
913  */
914 void
915 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
916 {
917 	struct sackhole *temp;
918 	int num_segs = 1;
919 	u_int maxseg = tcp_maxseg(tp);
920 
921 	INP_WLOCK_ASSERT(tptoinpcb(tp));
922 	tcp_timer_activate(tp, TT_REXMT, 0);
923 	tp->t_rtttime = 0;
924 	/* Send one or 2 segments based on how much new data was acked. */
925 	if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
926 		num_segs = 2;
927 	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
928 	    (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
929 	if (tp->snd_cwnd > tp->snd_ssthresh)
930 		tp->snd_cwnd = tp->snd_ssthresh;
931 	tp->t_flags |= TF_ACKNOW;
932 	/*
933 	 * RFC6675 rescue retransmission
934 	 * Add a hole between th_ack (snd_una is not yet set) and snd_max,
935 	 * if this was a pure cumulative ACK and no data was send beyond
936 	 * recovery point. Since the data in the socket has not been freed
937 	 * at this point, we check if the scoreboard is empty, and the ACK
938 	 * delivered some new data, indicating a full ACK. Also, if the
939 	 * recovery point is still at snd_max, we are probably application
940 	 * limited. However, this inference might not always be true. The
941 	 * rescue retransmission may rarely be slightly premature
942 	 * compared to RFC6675.
943 	 * The corresponding ACK+SACK will cause any further outstanding
944 	 * segments to be retransmitted. This addresses a corner case, when
945 	 * the trailing packets of a window are lost and no further data
946 	 * is available for sending.
947 	 */
948 	if ((V_tcp_do_newsack) &&
949 	    SEQ_LT(th->th_ack, tp->snd_recover) &&
950 	    TAILQ_EMPTY(&tp->snd_holes) &&
951 	    (tp->sackhint.delivered_data > 0)) {
952 		/*
953 		 * Exclude FIN sequence space in
954 		 * the hole for the rescue retransmission,
955 		 * and also don't create a hole, if only
956 		 * the ACK for a FIN is outstanding.
957 		 */
958 		tcp_seq highdata = tp->snd_max;
959 		if (tp->t_flags & TF_SENTFIN)
960 			highdata--;
961 		highdata = SEQ_MIN(highdata, tp->snd_recover);
962 		if (th->th_ack != highdata) {
963 			tp->snd_fack = th->th_ack;
964 			if ((temp = tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
965 			    highdata - maxseg), highdata, NULL)) != NULL)
966 				tp->sackhint.hole_bytes += temp->end -
967 								temp->start;
968 		}
969 	}
970 	(void) tcp_output(tp);
971 }
972 
973 #if 0
974 /*
975  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
976  * now to sanity check the hint.
977  */
978 static struct sackhole *
979 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
980 {
981 	struct sackhole *p;
982 
983 	INP_WLOCK_ASSERT(tptoinpcb(tp));
984 	*sack_bytes_rexmt = 0;
985 	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
986 		if (SEQ_LT(p->rxmit, p->end)) {
987 			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
988 				continue;
989 			}
990 			*sack_bytes_rexmt += (p->rxmit - p->start);
991 			break;
992 		}
993 		*sack_bytes_rexmt += (SEQ_MIN(p->rxmit, p->end) - p->start);
994 	}
995 	return (p);
996 }
997 #endif
998 
999 /*
1000  * Returns the next hole to retransmit and the number of retransmitted bytes
1001  * from the scoreboard.  We store both the next hole and the number of
1002  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
1003  * reception).  This avoids scoreboard traversals completely.
1004  *
1005  * The loop here will traverse *at most* one link.  Here's the argument.  For
1006  * the loop to traverse more than 1 link before finding the next hole to
1007  * retransmit, we would need to have at least 1 node following the current
1008  * hint with (rxmit == end).  But, for all holes following the current hint,
1009  * (start == rxmit), since we have not yet retransmitted from them.
1010  * Therefore, in order to traverse more 1 link in the loop below, we need to
1011  * have at least one node following the current hint with (start == rxmit ==
1012  * end).  But that can't happen, (start == end) means that all the data in
1013  * that hole has been sacked, in which case, the hole would have been removed
1014  * from the scoreboard.
1015  */
1016 struct sackhole *
1017 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
1018 {
1019 	struct sackhole *hole = NULL;
1020 
1021 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1022 	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
1023 	hole = tp->sackhint.nexthole;
1024 	if (hole == NULL)
1025 		return (hole);
1026 	if (SEQ_GEQ(hole->rxmit, hole->end)) {
1027 		for (;;) {
1028 			hole = TAILQ_NEXT(hole, scblink);
1029 			if (hole == NULL)
1030 				return (hole);
1031 			if (SEQ_LT(hole->rxmit, hole->end)) {
1032 				tp->sackhint.nexthole = hole;
1033 				break;
1034 			}
1035 		}
1036 	}
1037 	KASSERT(SEQ_LT(hole->start, hole->end), ("%s: hole.start >= hole.end", __func__));
1038 	if (!(V_tcp_do_newsack)) {
1039 		KASSERT(SEQ_LT(hole->start, tp->snd_fack), ("%s: hole.start >= snd.fack", __func__));
1040 		KASSERT(SEQ_LT(hole->end, tp->snd_fack), ("%s: hole.end >= snd.fack", __func__));
1041 		KASSERT(SEQ_LT(hole->rxmit, tp->snd_fack), ("%s: hole.rxmit >= snd.fack", __func__));
1042 		if (SEQ_GEQ(hole->start, hole->end) ||
1043 		    SEQ_GEQ(hole->start, tp->snd_fack) ||
1044 		    SEQ_GEQ(hole->end, tp->snd_fack) ||
1045 		    SEQ_GEQ(hole->rxmit, tp->snd_fack)) {
1046 			log(LOG_CRIT,"tcp: invalid SACK hole (%u-%u,%u) vs fwd ack %u, ignoring.\n",
1047 					hole->start, hole->end, hole->rxmit, tp->snd_fack);
1048 			return (NULL);
1049 		}
1050 	}
1051 	return (hole);
1052 }
1053 
1054 /*
1055  * After a timeout, the SACK list may be rebuilt.  This SACK information
1056  * should be used to avoid retransmitting SACKed data.  This function
1057  * traverses the SACK list to see if snd_nxt should be moved forward.
1058  */
1059 void
1060 tcp_sack_adjust(struct tcpcb *tp)
1061 {
1062 	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
1063 
1064 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1065 	if (cur == NULL)
1066 		return; /* No holes */
1067 	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
1068 		return; /* We're already beyond any SACKed blocks */
1069 	/*-
1070 	 * Two cases for which we want to advance snd_nxt:
1071 	 * i) snd_nxt lies between end of one hole and beginning of another
1072 	 * ii) snd_nxt lies between end of last hole and snd_fack
1073 	 */
1074 	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
1075 		if (SEQ_LT(tp->snd_nxt, cur->end))
1076 			return;
1077 		if (SEQ_GEQ(tp->snd_nxt, p->start))
1078 			cur = p;
1079 		else {
1080 			tp->snd_nxt = p->start;
1081 			return;
1082 		}
1083 	}
1084 	if (SEQ_LT(tp->snd_nxt, cur->end))
1085 		return;
1086 	tp->snd_nxt = tp->snd_fack;
1087 }
1088 
1089 /*
1090  * Lost Retransmission Detection
1091  * Check is FACK is beyond the rexmit of the leftmost hole.
1092  * If yes, we restart sending from still existing holes,
1093  * and adjust cwnd via the congestion control module.
1094  */
1095 void
1096 tcp_sack_lost_retransmission(struct tcpcb *tp, struct tcphdr *th)
1097 {
1098 	struct sackhole *temp;
1099 
1100 	if (IN_RECOVERY(tp->t_flags) &&
1101 	    SEQ_GT(tp->snd_fack, tp->snd_recover) &&
1102 	    ((temp = TAILQ_FIRST(&tp->snd_holes)) != NULL) &&
1103 	    SEQ_GEQ(temp->rxmit, temp->end) &&
1104 	    SEQ_GEQ(tp->snd_fack, temp->rxmit)) {
1105 		TCPSTAT_INC(tcps_sack_lostrexmt);
1106 		/*
1107 		 * Start retransmissions from the first hole, and
1108 		 * subsequently all other remaining holes, including
1109 		 * those, which had been sent completely before.
1110 		 */
1111 		tp->sackhint.nexthole = temp;
1112 		TAILQ_FOREACH(temp, &tp->snd_holes, scblink) {
1113 			if (SEQ_GEQ(tp->snd_fack, temp->rxmit) &&
1114 			    SEQ_GEQ(temp->rxmit, temp->end))
1115 				temp->rxmit = temp->start;
1116 		}
1117 		/*
1118 		 * Remember the old ssthresh, to deduct the beta factor used
1119 		 * by the CC module. Finally, set cwnd to ssthresh just
1120 		 * prior to invoking another cwnd reduction by the CC
1121 		 * module, to not shrink it excessively.
1122 		 */
1123 		tp->snd_cwnd = tp->snd_ssthresh;
1124 		/*
1125 		 * Formally exit recovery, and let the CC module adjust
1126 		 * ssthresh as intended.
1127 		 */
1128 		EXIT_RECOVERY(tp->t_flags);
1129 		cc_cong_signal(tp, th, CC_NDUPACK);
1130 		/*
1131 		 * For PRR, adjust recover_fs as if this new reduction
1132 		 * initialized this variable.
1133 		 * cwnd will be adjusted by SACK or PRR processing
1134 		 * subsequently, only set it to a safe value here.
1135 		 */
1136 		tp->snd_cwnd = tcp_maxseg(tp);
1137 		tp->sackhint.recover_fs = (tp->snd_max - tp->snd_una) -
1138 					    tp->sackhint.recover_fs;
1139 	}
1140 }
1141