xref: /freebsd/sys/netinet/tcp_sack.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	@(#)tcp_sack.c	8.12 (Berkeley) 5/24/95
31  */
32 
33 /*-
34  *	@@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
35  *
36  * NRL grants permission for redistribution and use in source and binary
37  * forms, with or without modification, of the software and documentation
38  * created at NRL provided that the following conditions are met:
39  *
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgements:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  *	This product includes software developed at the Information
50  *	Technology Division, US Naval Research Laboratory.
51  * 4. Neither the name of the NRL nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
56  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
58  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
59  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
62  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
63  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
64  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
65  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66  *
67  * The views and conclusions contained in the software and documentation
68  * are those of the authors and should not be interpreted as representing
69  * official policies, either expressed or implied, of the US Naval
70  * Research Laboratory (NRL).
71  */
72 
73 #include <sys/cdefs.h>
74 __FBSDID("$FreeBSD$");
75 
76 #include "opt_inet.h"
77 #include "opt_inet6.h"
78 #include "opt_tcpdebug.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/sysctl.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>		/* for proc0 declaration */
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/syslog.h>
91 #include <sys/systm.h>
92 
93 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
94 
95 #include <vm/uma.h>
96 
97 #include <net/if.h>
98 #include <net/route.h>
99 
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/ip.h>
103 #include <netinet/in_var.h>
104 #include <netinet/in_pcb.h>
105 #include <netinet/ip_var.h>
106 #include <netinet/ip6.h>
107 #include <netinet/icmp6.h>
108 #include <netinet6/nd6.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 #endif /* TCPDEBUG */
121 
122 #include <machine/in_cksum.h>
123 
124 extern struct uma_zone *sack_hole_zone;
125 
126 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
127 int tcp_do_sack = 1;
128 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_RW,
129     &tcp_do_sack, 0, "Enable/Disable TCP SACK support");
130 TUNABLE_INT("net.inet.tcp.sack.enable", &tcp_do_sack);
131 
132 static int tcp_sack_maxholes = 128;
133 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_RW,
134     &tcp_sack_maxholes, 0,
135     "Maximum number of TCP SACK holes allowed per connection");
136 
137 static int tcp_sack_globalmaxholes = 65536;
138 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_RW,
139     &tcp_sack_globalmaxholes, 0,
140     "Global maximum number of TCP SACK holes");
141 
142 static int tcp_sack_globalholes = 0;
143 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_RD,
144     &tcp_sack_globalholes, 0,
145     "Global number of TCP SACK holes currently allocated");
146 
147 /*
148  * This function is called upon receipt of new valid data (while not in
149  * header prediction mode), and it updates the ordered list of sacks.
150  */
151 void
152 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
153 {
154 	/*
155 	 * First reported block MUST be the most recent one.  Subsequent
156 	 * blocks SHOULD be in the order in which they arrived at the
157 	 * receiver.  These two conditions make the implementation fully
158 	 * compliant with RFC 2018.
159 	 */
160 	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
161 	int num_head, num_saved, i;
162 
163 	INP_LOCK_ASSERT(tp->t_inpcb);
164 
165 	/* Check arguments. */
166 	KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
167 
168 	/* SACK block for the received segment. */
169 	head_blk.start = rcv_start;
170 	head_blk.end = rcv_end;
171 
172 	/*
173 	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
174 	 * blocks into saved_blks[].  num_saved will have the number of the
175 	 * saved SACK blocks.
176 	 */
177 	num_saved = 0;
178 	for (i = 0; i < tp->rcv_numsacks; i++) {
179 		tcp_seq start = tp->sackblks[i].start;
180 		tcp_seq end = tp->sackblks[i].end;
181 		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
182 			/*
183 			 * Discard this SACK block.
184 			 */
185 		} else if (SEQ_LEQ(head_blk.start, end) &&
186 			   SEQ_GEQ(head_blk.end, start)) {
187 			/*
188 			 * Merge this SACK block into head_blk.  This SACK
189 			 * block itself will be discarded.
190 			 */
191 			if (SEQ_GT(head_blk.start, start))
192 				head_blk.start = start;
193 			if (SEQ_LT(head_blk.end, end))
194 				head_blk.end = end;
195 		} else {
196 			/*
197 			 * Save this SACK block.
198 			 */
199 			saved_blks[num_saved].start = start;
200 			saved_blks[num_saved].end = end;
201 			num_saved++;
202 		}
203 	}
204 
205 	/*
206 	 * Update SACK list in tp->sackblks[].
207 	 */
208 	num_head = 0;
209 	if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
210 		/*
211 		 * The received data segment is an out-of-order segment.  Put
212 		 * head_blk at the top of SACK list.
213 		 */
214 		tp->sackblks[0] = head_blk;
215 		num_head = 1;
216 		/*
217 		 * If the number of saved SACK blocks exceeds its limit,
218 		 * discard the last SACK block.
219 		 */
220 		if (num_saved >= MAX_SACK_BLKS)
221 			num_saved--;
222 	}
223 	if (num_saved > 0) {
224 		/*
225 		 * Copy the saved SACK blocks back.
226 		 */
227 		bcopy(saved_blks, &tp->sackblks[num_head],
228 		      sizeof(struct sackblk) * num_saved);
229 	}
230 
231 	/* Save the number of SACK blocks. */
232 	tp->rcv_numsacks = num_head + num_saved;
233 }
234 
235 /*
236  * Delete all receiver-side SACK information.
237  */
238 void
239 tcp_clean_sackreport(struct tcpcb *tp)
240 {
241 	int i;
242 
243 	INP_LOCK_ASSERT(tp->t_inpcb);
244 	tp->rcv_numsacks = 0;
245 	for (i = 0; i < MAX_SACK_BLKS; i++)
246 		tp->sackblks[i].start = tp->sackblks[i].end=0;
247 }
248 
249 /*
250  * Allocate struct sackhole.
251  */
252 static struct sackhole *
253 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
254 {
255 	struct sackhole *hole;
256 
257 	if (tp->snd_numholes >= tcp_sack_maxholes ||
258 	    tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
259 		tcpstat.tcps_sack_sboverflow++;
260 		return NULL;
261 	}
262 
263 	hole = (struct sackhole *)uma_zalloc(sack_hole_zone, M_NOWAIT);
264 	if (hole == NULL)
265 		return NULL;
266 
267 	hole->start = start;
268 	hole->end = end;
269 	hole->rxmit = start;
270 
271 	tp->snd_numholes++;
272 	tcp_sack_globalholes++;
273 
274 	return hole;
275 }
276 
277 /*
278  * Free struct sackhole.
279  */
280 static void
281 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
282 {
283 
284 	uma_zfree(sack_hole_zone, hole);
285 
286 	tp->snd_numholes--;
287 	tcp_sack_globalholes--;
288 
289 	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
290 	KASSERT(tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
291 }
292 
293 /*
294  * Insert new SACK hole into scoreboard.
295  */
296 static struct sackhole *
297 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
298     struct sackhole *after)
299 {
300 	struct sackhole *hole;
301 
302 	/* Allocate a new SACK hole. */
303 	hole = tcp_sackhole_alloc(tp, start, end);
304 	if (hole == NULL)
305 		return NULL;
306 
307 	/* Insert the new SACK hole into scoreboard. */
308 	if (after != NULL)
309 		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
310 	else
311 		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
312 
313 	/* Update SACK hint. */
314 	if (tp->sackhint.nexthole == NULL)
315 		tp->sackhint.nexthole = hole;
316 
317 	return hole;
318 }
319 
320 /*
321  * Remove SACK hole from scoreboard.
322  */
323 static void
324 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
325 {
326 
327 	/* Update SACK hint. */
328 	if (tp->sackhint.nexthole == hole)
329 		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
330 
331 	/* Remove this SACK hole. */
332 	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
333 
334 	/* Free this SACK hole. */
335 	tcp_sackhole_free(tp, hole);
336 }
337 
338 /*
339  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
340  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
341  * the sequence space).
342  */
343 void
344 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
345 {
346 	struct sackhole *cur, *temp;
347 	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
348 	int i, j, num_sack_blks;
349 
350 	INP_LOCK_ASSERT(tp->t_inpcb);
351 
352 	num_sack_blks = 0;
353 	/*
354 	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
355 	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
356 	 */
357 	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
358 		sack_blocks[num_sack_blks].start = tp->snd_una;
359 		sack_blocks[num_sack_blks++].end = th_ack;
360 	}
361 	/*
362 	 * Append received valid SACK blocks to sack_blocks[], but only if we
363 	 * received new blocks from the other side.
364 	 */
365 	if (to->to_flags & TOF_SACK) {
366 		for (i = 0; i < to->to_nsacks; i++) {
367 			bcopy((to->to_sacks + i * TCPOLEN_SACK),
368 			    &sack, sizeof(sack));
369 			sack.start = ntohl(sack.start);
370 			sack.end = ntohl(sack.end);
371 			if (SEQ_GT(sack.end, sack.start) &&
372 			    SEQ_GT(sack.start, tp->snd_una) &&
373 			    SEQ_GT(sack.start, th_ack) &&
374 			    SEQ_LT(sack.start, tp->snd_max) &&
375 			    SEQ_GT(sack.end, tp->snd_una) &&
376 			    SEQ_LEQ(sack.end, tp->snd_max))
377 				sack_blocks[num_sack_blks++] = sack;
378 		}
379 	}
380 	/*
381 	 * Return if SND.UNA is not advanced and no valid SACK block is
382 	 * received.
383 	 */
384 	if (num_sack_blks == 0)
385 		return;
386 
387 	/*
388 	 * Sort the SACK blocks so we can update the scoreboard with just one
389 	 * pass. The overhead of sorting upto 4+1 elements is less than
390 	 * making upto 4+1 passes over the scoreboard.
391 	 */
392 	for (i = 0; i < num_sack_blks; i++) {
393 		for (j = i + 1; j < num_sack_blks; j++) {
394 			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
395 				sack = sack_blocks[i];
396 				sack_blocks[i] = sack_blocks[j];
397 				sack_blocks[j] = sack;
398 			}
399 		}
400 	}
401 	if (TAILQ_EMPTY(&tp->snd_holes))
402 		/*
403 		 * Empty scoreboard. Need to initialize snd_fack (it may be
404 		 * uninitialized or have a bogus value). Scoreboard holes
405 		 * (from the sack blocks received) are created later below
406 		 * (in the logic that adds holes to the tail of the
407 		 * scoreboard).
408 		 */
409 		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
410 	/*
411 	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
412 	 * SACK holes (snd_holes) are traversed from their tails with just
413 	 * one pass in order to reduce the number of compares especially when
414 	 * the bandwidth-delay product is large.
415 	 *
416 	 * Note: Typically, in the first RTT of SACK recovery, the highest
417 	 * three or four SACK blocks with the same ack number are received.
418 	 * In the second RTT, if retransmitted data segments are not lost,
419 	 * the highest three or four SACK blocks with ack number advancing
420 	 * are received.
421 	 */
422 	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
423 	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
424 		/*
425 		 * The highest SACK block is beyond fack.  Append new SACK
426 		 * hole at the tail.  If the second or later highest SACK
427 		 * blocks are also beyond the current fack, they will be
428 		 * inserted by way of hole splitting in the while-loop below.
429 		 */
430 		temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
431 		if (temp != NULL) {
432 			tp->snd_fack = sblkp->end;
433 			/* Go to the previous sack block. */
434 			sblkp--;
435 		} else {
436 			/*
437 			 * We failed to add a new hole based on the current
438 			 * sack block.  Skip over all the sack blocks that
439 			 * fall completely to the right of snd_fack and
440 			 * proceed to trim the scoreboard based on the
441 			 * remaining sack blocks.  This also trims the
442 			 * scoreboard for th_ack (which is sack_blocks[0]).
443 			 */
444 			while (sblkp >= sack_blocks &&
445 			       SEQ_LT(tp->snd_fack, sblkp->start))
446 				sblkp--;
447 			if (sblkp >= sack_blocks &&
448 			    SEQ_LT(tp->snd_fack, sblkp->end))
449 				tp->snd_fack = sblkp->end;
450 		}
451 	} else if (SEQ_LT(tp->snd_fack, sblkp->end))
452 		/* fack is advanced. */
453 		tp->snd_fack = sblkp->end;
454 	/* We must have at least one SACK hole in scoreboard. */
455 	KASSERT(!TAILQ_EMPTY(&tp->snd_holes),
456 	    ("SACK scoreboard must not be empty"));
457 	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
458 	/*
459 	 * Since the incoming sack blocks are sorted, we can process them
460 	 * making one sweep of the scoreboard.
461 	 */
462 	while (sblkp >= sack_blocks  && cur != NULL) {
463 		if (SEQ_GEQ(sblkp->start, cur->end)) {
464 			/*
465 			 * SACKs data beyond the current hole.  Go to the
466 			 * previous sack block.
467 			 */
468 			sblkp--;
469 			continue;
470 		}
471 		if (SEQ_LEQ(sblkp->end, cur->start)) {
472 			/*
473 			 * SACKs data before the current hole.  Go to the
474 			 * previous hole.
475 			 */
476 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
477 			continue;
478 		}
479 		tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
480 		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
481 		    ("sackhint bytes rtx >= 0"));
482 		if (SEQ_LEQ(sblkp->start, cur->start)) {
483 			/* Data acks at least the beginning of hole. */
484 			if (SEQ_GEQ(sblkp->end, cur->end)) {
485 				/* Acks entire hole, so delete hole. */
486 				temp = cur;
487 				cur = TAILQ_PREV(cur, sackhole_head, scblink);
488 				tcp_sackhole_remove(tp, temp);
489 				/*
490 				 * The sack block may ack all or part of the
491 				 * next hole too, so continue onto the next
492 				 * hole.
493 				 */
494 				continue;
495 			} else {
496 				/* Move start of hole forward. */
497 				cur->start = sblkp->end;
498 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
499 			}
500 		} else {
501 			/* Data acks at least the end of hole. */
502 			if (SEQ_GEQ(sblkp->end, cur->end)) {
503 				/* Move end of hole backward. */
504 				cur->end = sblkp->start;
505 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
506 			} else {
507 				/*
508 				 * ACKs some data in middle of a hole; need
509 				 * to split current hole
510 				 */
511 				temp = tcp_sackhole_insert(tp, sblkp->end,
512 				    cur->end, cur);
513 				if (temp != NULL) {
514 					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
515 						temp->rxmit = cur->rxmit;
516 						tp->sackhint.sack_bytes_rexmit
517 						    += (temp->rxmit
518 						    - temp->start);
519 					}
520 					cur->end = sblkp->start;
521 					cur->rxmit = SEQ_MIN(cur->rxmit,
522 					    cur->end);
523 				}
524 			}
525 		}
526 		tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
527 		/*
528 		 * Testing sblkp->start against cur->start tells us whether
529 		 * we're done with the sack block or the sack hole.
530 		 * Accordingly, we advance one or the other.
531 		 */
532 		if (SEQ_LEQ(sblkp->start, cur->start))
533 			cur = TAILQ_PREV(cur, sackhole_head, scblink);
534 		else
535 			sblkp--;
536 	}
537 }
538 
539 /*
540  * Free all SACK holes to clear the scoreboard.
541  */
542 void
543 tcp_free_sackholes(struct tcpcb *tp)
544 {
545 	struct sackhole *q;
546 
547 	INP_LOCK_ASSERT(tp->t_inpcb);
548 	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
549 		tcp_sackhole_remove(tp, q);
550 	tp->sackhint.sack_bytes_rexmit = 0;
551 
552 	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
553 	KASSERT(tp->sackhint.nexthole == NULL,
554 		("tp->sackhint.nexthole == NULL"));
555 }
556 
557 /*
558  * Partial ack handling within a sack recovery episode.  Keeping this very
559  * simple for now.  When a partial ack is received, force snd_cwnd to a value
560  * that will allow the sender to transmit no more than 2 segments.  If
561  * necessary, a better scheme can be adopted at a later point, but for now,
562  * the goal is to prevent the sender from bursting a large amount of data in
563  * the midst of sack recovery.
564  */
565 void
566 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
567 {
568 	int num_segs = 1;
569 
570 	INP_LOCK_ASSERT(tp->t_inpcb);
571 	tcp_timer_activate(tp, TT_REXMT, 0);
572 	tp->t_rtttime = 0;
573 	/* Send one or 2 segments based on how much new data was acked. */
574 	if (((th->th_ack - tp->snd_una) / tp->t_maxseg) > 2)
575 		num_segs = 2;
576 	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
577 	    (tp->snd_nxt - tp->sack_newdata) + num_segs * tp->t_maxseg);
578 	if (tp->snd_cwnd > tp->snd_ssthresh)
579 		tp->snd_cwnd = tp->snd_ssthresh;
580 	tp->t_flags |= TF_ACKNOW;
581 	(void) tcp_output(tp);
582 }
583 
584 #if 0
585 /*
586  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
587  * now to sanity check the hint.
588  */
589 static struct sackhole *
590 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
591 {
592 	struct sackhole *p;
593 
594 	INP_LOCK_ASSERT(tp->t_inpcb);
595 	*sack_bytes_rexmt = 0;
596 	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
597 		if (SEQ_LT(p->rxmit, p->end)) {
598 			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
599 				continue;
600 			}
601 			*sack_bytes_rexmt += (p->rxmit - p->start);
602 			break;
603 		}
604 		*sack_bytes_rexmt += (p->rxmit - p->start);
605 	}
606 	return (p);
607 }
608 #endif
609 
610 /*
611  * Returns the next hole to retransmit and the number of retransmitted bytes
612  * from the scoreboard.  We store both the next hole and the number of
613  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
614  * reception).  This avoids scoreboard traversals completely.
615  *
616  * The loop here will traverse *at most* one link.  Here's the argument.  For
617  * the loop to traverse more than 1 link before finding the next hole to
618  * retransmit, we would need to have at least 1 node following the current
619  * hint with (rxmit == end).  But, for all holes following the current hint,
620  * (start == rxmit), since we have not yet retransmitted from them.
621  * Therefore, in order to traverse more 1 link in the loop below, we need to
622  * have at least one node following the current hint with (start == rxmit ==
623  * end).  But that can't happen, (start == end) means that all the data in
624  * that hole has been sacked, in which case, the hole would have been removed
625  * from the scoreboard.
626  */
627 struct sackhole *
628 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
629 {
630 	struct sackhole *hole = NULL;
631 
632 	INP_LOCK_ASSERT(tp->t_inpcb);
633 	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
634 	hole = tp->sackhint.nexthole;
635 	if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
636 		goto out;
637 	while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
638 		if (SEQ_LT(hole->rxmit, hole->end)) {
639 			tp->sackhint.nexthole = hole;
640 			break;
641 		}
642 	}
643 out:
644 	return (hole);
645 }
646 
647 /*
648  * After a timeout, the SACK list may be rebuilt.  This SACK information
649  * should be used to avoid retransmitting SACKed data.  This function
650  * traverses the SACK list to see if snd_nxt should be moved forward.
651  */
652 void
653 tcp_sack_adjust(struct tcpcb *tp)
654 {
655 	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
656 
657 	INP_LOCK_ASSERT(tp->t_inpcb);
658 	if (cur == NULL)
659 		return; /* No holes */
660 	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
661 		return; /* We're already beyond any SACKed blocks */
662 	/*-
663 	 * Two cases for which we want to advance snd_nxt:
664 	 * i) snd_nxt lies between end of one hole and beginning of another
665 	 * ii) snd_nxt lies between end of last hole and snd_fack
666 	 */
667 	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
668 		if (SEQ_LT(tp->snd_nxt, cur->end))
669 			return;
670 		if (SEQ_GEQ(tp->snd_nxt, p->start))
671 			cur = p;
672 		else {
673 			tp->snd_nxt = p->start;
674 			return;
675 		}
676 	}
677 	if (SEQ_LT(tp->snd_nxt, cur->end))
678 		return;
679 	tp->snd_nxt = tp->snd_fack;
680 	return;
681 }
682