xref: /freebsd/sys/netinet/tcp_reass.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 #include "opt_tcp_input.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syslog.h>
54 
55 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
56 
57 #include <net/if.h>
58 #include <net/route.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #include <netinet/in_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 #endif
70 #include <netinet/in_pcb.h>
71 #ifdef INET6
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #endif
78 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 
91 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
92 struct tcphdr tcp_savetcp;
93 #endif /* TCPDEBUG */
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #include <netkey/key.h>
101 #endif /*IPSEC*/
102 
103 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
104 
105 static int	tcprexmtthresh = 3;
106 tcp_seq	tcp_iss;
107 tcp_cc	tcp_ccgen;
108 
109 struct	tcpstat tcpstat;
110 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD,
111     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
112 
113 static int log_in_vain = 0;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
115     &log_in_vain, 0, "Log all incoming TCP connections");
116 
117 static int blackhole = 0;
118 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
119 	&blackhole, 0, "Do not send RST when dropping refused connections");
120 
121 int tcp_delack_enabled = 1;
122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
123     &tcp_delack_enabled, 0,
124     "Delay ACK to try and piggyback it onto a data packet");
125 
126 #ifdef TCP_DROP_SYNFIN
127 static int drop_synfin = 0;
128 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
129     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
130 #endif
131 
132 #ifdef TCP_RESTRICT_RST
133 static int restrict_rst = 0;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, restrict_rst, CTLFLAG_RW,
135     &restrict_rst, 0, "Restrict RST emission");
136 #endif
137 
138 struct inpcbhead tcb;
139 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
140 struct inpcbinfo tcbinfo;
141 
142 static void	 tcp_dooptions __P((struct tcpcb *,
143 	    u_char *, int, struct tcphdr *, struct tcpopt *));
144 static void	 tcp_pulloutofband __P((struct socket *,
145 	    struct tcphdr *, struct mbuf *, int));
146 static int	 tcp_reass __P((struct tcpcb *, struct tcphdr *, int *,
147 				struct mbuf *));
148 static void	 tcp_xmit_timer __P((struct tcpcb *, int));
149 
150 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
151 #ifdef INET6
152 #define ND6_HINT(tp) \
153 do { \
154 	if ((tp) && (tp)->t_inpcb && \
155 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
156 	    (tp)->t_inpcb->in6p_route.ro_rt) \
157 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL); \
158 } while (0)
159 #else
160 #define ND6_HINT(tp)
161 #endif
162 
163 /*
164  * Insert segment which inludes th into reassembly queue of tcp with
165  * control block tp.  Return TH_FIN if reassembly now includes
166  * a segment with FIN.  The macro form does the common case inline
167  * (segment is the next to be received on an established connection,
168  * and the queue is empty), avoiding linkage into and removal
169  * from the queue and repetition of various conversions.
170  * Set DELACK for segments received in order, but ack immediately
171  * when segments are out of order (so fast retransmit can work).
172  */
173 #define	TCP_REASS(tp, th, tlenp, m, so, flags) { \
174 	if ((th)->th_seq == (tp)->rcv_nxt && \
175 	    LIST_EMPTY(&(tp)->t_segq) && \
176 	    (tp)->t_state == TCPS_ESTABLISHED) { \
177 		if (tcp_delack_enabled) \
178 			callout_reset(tp->tt_delack, tcp_delacktime, \
179 			    tcp_timer_delack, tp); \
180 		else \
181 			tp->t_flags |= TF_ACKNOW; \
182 		(tp)->rcv_nxt += *(tlenp); \
183 		flags = (th)->th_flags & TH_FIN; \
184 		tcpstat.tcps_rcvpack++;\
185 		tcpstat.tcps_rcvbyte += *(tlenp);\
186 		ND6_HINT(tp); \
187 		sbappend(&(so)->so_rcv, (m)); \
188 		sorwakeup(so); \
189 	} else { \
190 		(flags) = tcp_reass((tp), (th), (tlenp), (m)); \
191 		tp->t_flags |= TF_ACKNOW; \
192 	} \
193 }
194 
195 static int
196 tcp_reass(tp, th, tlenp, m)
197 	register struct tcpcb *tp;
198 	register struct tcphdr *th;
199 	int *tlenp;
200 	struct mbuf *m;
201 {
202 	struct tseg_qent *q;
203 	struct tseg_qent *p = NULL;
204 	struct tseg_qent *nq;
205 	struct tseg_qent *te;
206 	struct socket *so = tp->t_inpcb->inp_socket;
207 	int flags;
208 
209 	/*
210 	 * Call with th==0 after become established to
211 	 * force pre-ESTABLISHED data up to user socket.
212 	 */
213 	if (th == 0)
214 		goto present;
215 
216 	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
217 	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
218 	       M_NOWAIT);
219 	if (te == NULL) {
220 		tcpstat.tcps_rcvmemdrop++;
221 		m_freem(m);
222 		return (0);
223 	}
224 
225 	/*
226 	 * Find a segment which begins after this one does.
227 	 */
228 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
229 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
230 			break;
231 		p = q;
232 	}
233 
234 	/*
235 	 * If there is a preceding segment, it may provide some of
236 	 * our data already.  If so, drop the data from the incoming
237 	 * segment.  If it provides all of our data, drop us.
238 	 */
239 	if (p != NULL) {
240 		register int i;
241 		/* conversion to int (in i) handles seq wraparound */
242 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
243 		if (i > 0) {
244 			if (i >= *tlenp) {
245 				tcpstat.tcps_rcvduppack++;
246 				tcpstat.tcps_rcvdupbyte += *tlenp;
247 				m_freem(m);
248 				FREE(te, M_TSEGQ);
249 				/*
250 				 * Try to present any queued data
251 				 * at the left window edge to the user.
252 				 * This is needed after the 3-WHS
253 				 * completes.
254 				 */
255 				goto present;	/* ??? */
256 			}
257 			m_adj(m, i);
258 			*tlenp -= i;
259 			th->th_seq += i;
260 		}
261 	}
262 	tcpstat.tcps_rcvoopack++;
263 	tcpstat.tcps_rcvoobyte += *tlenp;
264 
265 	/*
266 	 * While we overlap succeeding segments trim them or,
267 	 * if they are completely covered, dequeue them.
268 	 */
269 	while (q) {
270 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
271 		if (i <= 0)
272 			break;
273 		if (i < q->tqe_len) {
274 			q->tqe_th->th_seq += i;
275 			q->tqe_len -= i;
276 			m_adj(q->tqe_m, i);
277 			break;
278 		}
279 
280 		nq = LIST_NEXT(q, tqe_q);
281 		LIST_REMOVE(q, tqe_q);
282 		m_freem(q->tqe_m);
283 		FREE(q, M_TSEGQ);
284 		q = nq;
285 	}
286 
287 	/* Insert the new segment queue entry into place. */
288 	te->tqe_m = m;
289 	te->tqe_th = th;
290 	te->tqe_len = *tlenp;
291 
292 	if (p == NULL) {
293 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
294 	} else {
295 		LIST_INSERT_AFTER(p, te, tqe_q);
296 	}
297 
298 present:
299 	/*
300 	 * Present data to user, advancing rcv_nxt through
301 	 * completed sequence space.
302 	 */
303 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
304 		return (0);
305 	q = LIST_FIRST(&tp->t_segq);
306 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
307 		return (0);
308 	do {
309 		tp->rcv_nxt += q->tqe_len;
310 		flags = q->tqe_th->th_flags & TH_FIN;
311 		nq = LIST_NEXT(q, tqe_q);
312 		LIST_REMOVE(q, tqe_q);
313 		if (so->so_state & SS_CANTRCVMORE)
314 			m_freem(q->tqe_m);
315 		else
316 			sbappend(&so->so_rcv, q->tqe_m);
317 		FREE(q, M_TSEGQ);
318 		q = nq;
319 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
320 	ND6_HINT(tp);
321 	sorwakeup(so);
322 	return (flags);
323 }
324 
325 /*
326  * TCP input routine, follows pages 65-76 of the
327  * protocol specification dated September, 1981 very closely.
328  */
329 #ifdef INET6
330 int
331 tcp6_input(mp, offp, proto)
332 	struct mbuf **mp;
333 	int *offp, proto;
334 {
335 	register struct mbuf *m = *mp;
336 
337 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
338 
339 	/*
340 	 * draft-itojun-ipv6-tcp-to-anycast
341 	 * better place to put this in?
342 	 */
343 	if (m->m_flags & M_ANYCAST6) {
344 		struct ip6_hdr *ip6;
345 
346 		ip6 = mtod(m, struct ip6_hdr *);
347 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
348 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
349 		return IPPROTO_DONE;
350 	}
351 
352 	tcp_input(m, *offp, proto);
353 	return IPPROTO_DONE;
354 }
355 #endif
356 
357 void
358 tcp_input(m, off0, proto)
359 	register struct mbuf *m;
360 	int off0, proto;
361 {
362 	register struct tcphdr *th;
363 	register struct ip *ip = NULL;
364 	register struct ipovly *ipov;
365 	register struct inpcb *inp;
366 	u_char *optp = NULL;
367 	int optlen = 0;
368 	int len, tlen, off;
369 	int drop_hdrlen;
370 	register struct tcpcb *tp = 0;
371 	register int thflags;
372 	struct socket *so = 0;
373 	int todrop, acked, ourfinisacked, needoutput = 0;
374 	struct in_addr laddr;
375 #ifdef INET6
376 	struct in6_addr laddr6;
377 #endif
378 	int dropsocket = 0;
379 	int iss = 0;
380 	u_long tiwin;
381 	struct tcpopt to;		/* options in this segment */
382 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
383 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
384 #ifdef TCPDEBUG
385 	short ostate = 0;
386 #endif
387 #ifdef INET6
388 	struct ip6_hdr *ip6 = NULL;
389 	int isipv6;
390 #endif /* INET6 */
391 
392 #ifdef INET6
393 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
394 #endif
395 	bzero((char *)&to, sizeof(to));
396 
397 	tcpstat.tcps_rcvtotal++;
398 
399 #ifdef INET6
400 	if (isipv6) {
401 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
402 		ip6 = mtod(m, struct ip6_hdr *);
403 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
404 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
405 			tcpstat.tcps_rcvbadsum++;
406 			goto drop;
407 		}
408 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
409 	} else
410 #endif /* INET6 */
411       {
412 	/*
413 	 * Get IP and TCP header together in first mbuf.
414 	 * Note: IP leaves IP header in first mbuf.
415 	 */
416 	if (off0 > sizeof (struct ip)) {
417 		ip_stripoptions(m, (struct mbuf *)0);
418 		off0 = sizeof(struct ip);
419 	}
420 	if (m->m_len < sizeof (struct tcpiphdr)) {
421 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
422 			tcpstat.tcps_rcvshort++;
423 			return;
424 		}
425 	}
426 	ip = mtod(m, struct ip *);
427 	ipov = (struct ipovly *)ip;
428 
429 	/*
430 	 * Checksum extended TCP header and data.
431 	 */
432 	tlen = ip->ip_len;
433 	len = sizeof (struct ip) + tlen;
434 	bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
435 	ipov->ih_len = (u_short)tlen;
436 	HTONS(ipov->ih_len);
437 	th = (struct tcphdr *)((caddr_t)ip + off0);
438 	th->th_sum = in_cksum(m, len);
439 	if (th->th_sum) {
440 		tcpstat.tcps_rcvbadsum++;
441 		goto drop;
442 	}
443 #ifdef INET6
444 	/* Re-initialization for later version check */
445 	ip->ip_v = IPVERSION;
446 #endif
447       }
448 
449 	/*
450 	 * Check that TCP offset makes sense,
451 	 * pull out TCP options and adjust length.		XXX
452 	 */
453 	off = th->th_off << 2;
454 	if (off < sizeof (struct tcphdr) || off > tlen) {
455 		tcpstat.tcps_rcvbadoff++;
456 		goto drop;
457 	}
458 	tlen -= off;	/* tlen is used instead of ti->ti_len */
459 	if (off > sizeof (struct tcphdr)) {
460 #ifdef INET6
461 		if (isipv6) {
462 			IP6_EXTHDR_CHECK(m, off0, off, );
463 			ip6 = mtod(m, struct ip6_hdr *);
464 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
465 		} else
466 #endif /* INET6 */
467 	      {
468 		if (m->m_len < sizeof(struct ip) + off) {
469 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
470 				tcpstat.tcps_rcvshort++;
471 				return;
472 			}
473 			ip = mtod(m, struct ip *);
474 			ipov = (struct ipovly *)ip;
475 			th = (struct tcphdr *)((caddr_t)ip + off0);
476 		}
477 	      }
478 		optlen = off - sizeof (struct tcphdr);
479 		optp = (u_char *)(th + 1);
480 	}
481 	thflags = th->th_flags;
482 
483 #ifdef TCP_DROP_SYNFIN
484 	/*
485 	 * If the drop_synfin option is enabled, drop all packets with
486 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
487 	 * identifying the TCP/IP stack.
488 	 *
489 	 * This is incompatible with RFC1644 extensions (T/TCP).
490 	 */
491 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
492 		goto drop;
493 #endif
494 
495 	/*
496 	 * Convert TCP protocol specific fields to host format.
497 	 */
498 	NTOHL(th->th_seq);
499 	NTOHL(th->th_ack);
500 	NTOHS(th->th_win);
501 	NTOHS(th->th_urp);
502 
503 	/*
504 	 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
505 	 * until after ip6_savecontrol() is called and before other functions
506 	 * which don't want those proto headers.
507 	 * Because ip6_savecontrol() is going to parse the mbuf to
508 	 * search for data to be passed up to user-land, it wants mbuf
509 	 * parameters to be unchanged.
510 	 */
511 	drop_hdrlen = off0 + off;
512 
513 	/*
514 	 * Locate pcb for segment.
515 	 */
516 findpcb:
517 #ifdef IPFIREWALL_FORWARD
518 	if (ip_fw_fwd_addr != NULL
519 #ifdef INET6
520 	    && isipv6 == NULL /* IPv6 support is not yet */
521 #endif /* INET6 */
522 	    ) {
523 		/*
524 		 * Diverted. Pretend to be the destination.
525 		 * already got one like this?
526 		 */
527 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
528 			ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
529 		if (!inp) {
530 			/*
531 			 * No, then it's new. Try find the ambushing socket
532 			 */
533 			if (!ip_fw_fwd_addr->sin_port) {
534 				inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
535 				    th->th_sport, ip_fw_fwd_addr->sin_addr,
536 				    th->th_dport, 1, m->m_pkthdr.rcvif);
537 			} else {
538 				inp = in_pcblookup_hash(&tcbinfo,
539 				    ip->ip_src, th->th_sport,
540 	    			    ip_fw_fwd_addr->sin_addr,
541 				    ntohs(ip_fw_fwd_addr->sin_port), 1,
542 				    m->m_pkthdr.rcvif);
543 			}
544 		}
545 		ip_fw_fwd_addr = NULL;
546 	} else
547 #endif	/* IPFIREWALL_FORWARD */
548       {
549 #ifdef INET6
550 	if (isipv6)
551 		inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
552 					 &ip6->ip6_dst, th->th_dport, 1,
553 					 m->m_pkthdr.rcvif);
554 	else
555 #endif /* INET6 */
556 	inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
557 	    ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
558       }
559 
560 #ifdef IPSEC
561 #ifdef INET6
562 	if (isipv6) {
563 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
564 			ipsec6stat.in_polvio++;
565 			goto drop;
566 		}
567 	} else
568 #endif /* INET6 */
569 	if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
570 		ipsecstat.in_polvio++;
571 		goto drop;
572 	}
573 #endif /*IPSEC*/
574 
575 	/*
576 	 * If the state is CLOSED (i.e., TCB does not exist) then
577 	 * all data in the incoming segment is discarded.
578 	 * If the TCB exists but is in CLOSED state, it is embryonic,
579 	 * but should either do a listen or a connect soon.
580 	 */
581 	if (inp == NULL) {
582 		if (log_in_vain) {
583 #ifdef INET6
584 			char dbuf[INET6_ADDRSTRLEN], sbuf[INET6_ADDRSTRLEN];
585 #else /* INET6 */
586 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
587 #endif /* INET6 */
588 
589 #ifdef INET6
590 			if (isipv6) {
591 				strcpy(dbuf, ip6_sprintf(&ip6->ip6_dst));
592 				strcpy(sbuf, ip6_sprintf(&ip6->ip6_src));
593 			} else
594 #endif
595 		      {
596 			strcpy(dbuf, inet_ntoa(ip->ip_dst));
597 			strcpy(sbuf, inet_ntoa(ip->ip_src));
598 		      }
599 			switch (log_in_vain) {
600 			case 1:
601 				if(thflags & TH_SYN)
602 					log(LOG_INFO,
603 			    		"Connection attempt to TCP %s:%d from %s:%d\n",
604 			    		dbuf, ntohs(th->th_dport),
605 					sbuf,
606 					ntohs(th->th_sport));
607 				break;
608 			case 2:
609 				log(LOG_INFO,
610 			    	"Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
611 			    	dbuf, ntohs(th->th_dport), sbuf,
612 			    	ntohs(th->th_sport), thflags);
613 				break;
614 			default:
615 				break;
616 			}
617 		}
618 		if (blackhole) {
619 			switch (blackhole) {
620 			case 1:
621 				if (thflags & TH_SYN)
622 					goto drop;
623 				break;
624 			case 2:
625 				goto drop;
626 			default:
627 				goto drop;
628 			}
629 		}
630 		goto maybedropwithreset;
631 	}
632 	tp = intotcpcb(inp);
633 	if (tp == 0)
634 		goto maybedropwithreset;
635 	if (tp->t_state == TCPS_CLOSED)
636 		goto drop;
637 
638 	/* Unscale the window into a 32-bit value. */
639 	if ((thflags & TH_SYN) == 0)
640 		tiwin = th->th_win << tp->snd_scale;
641 	else
642 		tiwin = th->th_win;
643 
644 #ifdef INET6
645 	/* save packet options if user wanted */
646 	if (inp->in6p_flags & INP_CONTROLOPTS) {
647 		if (inp->in6p_options) {
648 			m_freem(inp->in6p_options);
649 			inp->in6p_options = 0;
650 		}
651 		ip6_savecontrol(inp, &inp->in6p_options, ip6, m);
652 	}
653         /* else, should also do ip_srcroute() here? */
654 #endif /* INET6 */
655 
656 	so = inp->inp_socket;
657 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
658 #ifdef TCPDEBUG
659 		if (so->so_options & SO_DEBUG) {
660 			ostate = tp->t_state;
661 #ifdef INET6
662 			if (isipv6)
663 				bcopy((char *)ip6, (char *)tcp_saveipgen,
664 				      sizeof(*ip6));
665 			else
666 #endif /* INET6 */
667 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
668 			tcp_savetcp = *th;
669 		}
670 #endif
671 		if (so->so_options & SO_ACCEPTCONN) {
672 			register struct tcpcb *tp0 = tp;
673 			struct socket *so2;
674 #ifdef IPSEC
675 			struct socket *oso;
676 #endif
677 #ifdef INET6
678 			struct inpcb *oinp = sotoinpcb(so);
679 #endif /* INET6 */
680 
681 #ifndef IPSEC
682 			/*
683 			 * Current IPsec implementation makes incorrect IPsec
684 			 * cache if this check is done here.
685 			 * So delay this until duplicated socket is created.
686 			 */
687 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
688 				/*
689 				 * Note: dropwithreset makes sure we don't
690 				 * send a RST in response to a RST.
691 				 */
692 				if (thflags & TH_ACK) {
693 					tcpstat.tcps_badsyn++;
694 					goto maybedropwithreset;
695 				}
696 				goto drop;
697 			}
698 #endif
699 			so2 = sonewconn(so, 0);
700 			if (so2 == 0) {
701 				tcpstat.tcps_listendrop++;
702 				so2 = sodropablereq(so);
703 				if (so2) {
704 					tcp_drop(sototcpcb(so2), ETIMEDOUT);
705 					so2 = sonewconn(so, 0);
706 				}
707 				if (!so2)
708 					goto drop;
709 			}
710 #ifdef IPSEC
711 			oso = so;
712 #endif
713 			so = so2;
714 			/*
715 			 * This is ugly, but ....
716 			 *
717 			 * Mark socket as temporary until we're
718 			 * committed to keeping it.  The code at
719 			 * ``drop'' and ``dropwithreset'' check the
720 			 * flag dropsocket to see if the temporary
721 			 * socket created here should be discarded.
722 			 * We mark the socket as discardable until
723 			 * we're committed to it below in TCPS_LISTEN.
724 			 */
725 			dropsocket++;
726 			inp = (struct inpcb *)so->so_pcb;
727 #ifdef INET6
728 			if (isipv6)
729 				inp->in6p_laddr = ip6->ip6_dst;
730 			else {
731 				if (ip6_mapped_addr_on) {
732 					inp->inp_vflag &= ~INP_IPV6;
733 					inp->inp_vflag |= INP_IPV4;
734 				}
735 #endif /* INET6 */
736 			inp->inp_laddr = ip->ip_dst;
737 #ifdef INET6
738 			}
739 #endif /* INET6 */
740 			inp->inp_lport = th->th_dport;
741 			if (in_pcbinshash(inp) != 0) {
742 				/*
743 				 * Undo the assignments above if we failed to
744 				 * put the PCB on the hash lists.
745 				 */
746 #ifdef INET6
747 				if (isipv6)
748 					inp->in6p_laddr = in6addr_any;
749 				else
750 #endif /* INET6 */
751 				inp->inp_laddr.s_addr = INADDR_ANY;
752 				inp->inp_lport = 0;
753 				goto drop;
754 			}
755 #ifdef IPSEC
756 			/*
757 			 * To avoid creating incorrectly cached IPsec
758 			 * association, this is need to be done here.
759 			 *
760 			 * Subject: (KAME-snap 748)
761 			 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
762 			 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
763 			 */
764 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
765 				/*
766 				 * Note: dropwithreset makes sure we don't
767 				 * send a RST in response to a RST.
768 				 */
769 				if (thflags & TH_ACK) {
770 					tcpstat.tcps_badsyn++;
771 					goto maybedropwithreset;
772 				}
773 				goto drop;
774 			}
775 #endif
776 #ifdef INET6
777 			if (isipv6) {
778 				/*
779 				 * inherit socket options from the listening
780 				 * socket.
781 				 */
782 				inp->inp_flags |=
783 					oinp->inp_flags & INP_CONTROLOPTS;
784 				if (inp->inp_flags & INP_CONTROLOPTS) {
785 					if (inp->in6p_options) {
786 						m_freem(inp->in6p_options);
787 						inp->in6p_options = 0;
788 					}
789 					ip6_savecontrol(inp,
790 							&inp->in6p_options,
791 							ip6, m);
792 				}
793 			} else
794 #endif /* INET6 */
795 			inp->inp_options = ip_srcroute();
796 #ifdef IPSEC
797 			/* copy old policy into new socket's */
798 			if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp,
799 			                      inp->inp_sp))
800 				printf("tcp_input: could not copy policy\n");
801 #endif
802 			tp = intotcpcb(inp);
803 			tp->t_state = TCPS_LISTEN;
804 			tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT);
805 
806 			/* Compute proper scaling value from buffer space */
807 			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
808 			   TCP_MAXWIN << tp->request_r_scale <
809 			   so->so_rcv.sb_hiwat)
810 				tp->request_r_scale++;
811 		}
812 	}
813 
814 	/*
815 	 * Segment received on connection.
816 	 * Reset idle time and keep-alive timer.
817 	 */
818 	tp->t_rcvtime = ticks;
819 	if (TCPS_HAVEESTABLISHED(tp->t_state))
820 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
821 
822 	/*
823 	 * Process options if not in LISTEN state,
824 	 * else do it below (after getting remote address).
825 	 */
826 	if (tp->t_state != TCPS_LISTEN)
827 		tcp_dooptions(tp, optp, optlen, th, &to);
828 
829 	/*
830 	 * Header prediction: check for the two common cases
831 	 * of a uni-directional data xfer.  If the packet has
832 	 * no control flags, is in-sequence, the window didn't
833 	 * change and we're not retransmitting, it's a
834 	 * candidate.  If the length is zero and the ack moved
835 	 * forward, we're the sender side of the xfer.  Just
836 	 * free the data acked & wake any higher level process
837 	 * that was blocked waiting for space.  If the length
838 	 * is non-zero and the ack didn't move, we're the
839 	 * receiver side.  If we're getting packets in-order
840 	 * (the reassembly queue is empty), add the data to
841 	 * the socket buffer and note that we need a delayed ack.
842 	 * Make sure that the hidden state-flags are also off.
843 	 * Since we check for TCPS_ESTABLISHED above, it can only
844 	 * be TH_NEEDSYN.
845 	 */
846 	if (tp->t_state == TCPS_ESTABLISHED &&
847 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
848 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
849 	    ((to.to_flag & TOF_TS) == 0 ||
850 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
851 	    /*
852 	     * Using the CC option is compulsory if once started:
853 	     *   the segment is OK if no T/TCP was negotiated or
854 	     *   if the segment has a CC option equal to CCrecv
855 	     */
856 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
857 	     ((to.to_flag & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
858 	    th->th_seq == tp->rcv_nxt &&
859 	    tiwin && tiwin == tp->snd_wnd &&
860 	    tp->snd_nxt == tp->snd_max) {
861 
862 		/*
863 		 * If last ACK falls within this segment's sequence numbers,
864 		 * record the timestamp.
865 		 * NOTE that the test is modified according to the latest
866 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
867 		 */
868 		if ((to.to_flag & TOF_TS) != 0 &&
869 		   SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
870 			tp->ts_recent_age = ticks;
871 			tp->ts_recent = to.to_tsval;
872 		}
873 
874 		if (tlen == 0) {
875 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
876 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
877 			    tp->snd_cwnd >= tp->snd_wnd &&
878 			    tp->t_dupacks < tcprexmtthresh) {
879 				/*
880 				 * this is a pure ack for outstanding data.
881 				 */
882 				++tcpstat.tcps_predack;
883 				/*
884 				 * "bad retransmit" recovery
885 				 */
886 				if (tp->t_rxtshift == 1 &&
887 				    ticks < tp->t_badrxtwin) {
888 					tp->snd_cwnd = tp->snd_cwnd_prev;
889 					tp->snd_ssthresh =
890 					    tp->snd_ssthresh_prev;
891 					tp->snd_nxt = tp->snd_max;
892 					tp->t_badrxtwin = 0;
893 				}
894 				if ((to.to_flag & TOF_TS) != 0)
895 					tcp_xmit_timer(tp,
896 					    ticks - to.to_tsecr + 1);
897 				else if (tp->t_rtttime &&
898 					    SEQ_GT(th->th_ack, tp->t_rtseq))
899 					tcp_xmit_timer(tp, ticks - tp->t_rtttime);
900 				acked = th->th_ack - tp->snd_una;
901 				tcpstat.tcps_rcvackpack++;
902 				tcpstat.tcps_rcvackbyte += acked;
903 				sbdrop(&so->so_snd, acked);
904 				tp->snd_una = th->th_ack;
905 				m_freem(m);
906 				ND6_HINT(tp); /* some progress has been done */
907 
908 				/*
909 				 * If all outstanding data are acked, stop
910 				 * retransmit timer, otherwise restart timer
911 				 * using current (possibly backed-off) value.
912 				 * If process is waiting for space,
913 				 * wakeup/selwakeup/signal.  If data
914 				 * are ready to send, let tcp_output
915 				 * decide between more output or persist.
916 				 */
917 				if (tp->snd_una == tp->snd_max)
918 					callout_stop(tp->tt_rexmt);
919 				else if (!callout_active(tp->tt_persist))
920 					callout_reset(tp->tt_rexmt,
921 						      tp->t_rxtcur,
922 						      tcp_timer_rexmt, tp);
923 
924 				sowwakeup(so);
925 				if (so->so_snd.sb_cc)
926 					(void) tcp_output(tp);
927 				return;
928 			}
929 		} else if (th->th_ack == tp->snd_una &&
930 		    LIST_EMPTY(&tp->t_segq) &&
931 		    tlen <= sbspace(&so->so_rcv)) {
932 			/*
933 			 * this is a pure, in-sequence data packet
934 			 * with nothing on the reassembly queue and
935 			 * we have enough buffer space to take it.
936 			 */
937 			++tcpstat.tcps_preddat;
938 			tp->rcv_nxt += tlen;
939 			tcpstat.tcps_rcvpack++;
940 			tcpstat.tcps_rcvbyte += tlen;
941 			ND6_HINT(tp);	/* some progress has been done */
942 			/*
943 			 * Add data to socket buffer.
944 			 */
945 			m_adj(m, drop_hdrlen);	/* delayed header drop */
946 			sbappend(&so->so_rcv, m);
947 			sorwakeup(so);
948 			if (tcp_delack_enabled) {
949 	                        callout_reset(tp->tt_delack, tcp_delacktime,
950 	                            tcp_timer_delack, tp);
951 			} else {
952 				tp->t_flags |= TF_ACKNOW;
953 				tcp_output(tp);
954 			}
955 			return;
956 		}
957 	}
958 
959 	/*
960 	 * Calculate amount of space in receive window,
961 	 * and then do TCP input processing.
962 	 * Receive window is amount of space in rcv queue,
963 	 * but not less than advertised window.
964 	 */
965 	{ int win;
966 
967 	win = sbspace(&so->so_rcv);
968 	if (win < 0)
969 		win = 0;
970 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
971 	}
972 
973 	switch (tp->t_state) {
974 
975 	/*
976 	 * If the state is LISTEN then ignore segment if it contains an RST.
977 	 * If the segment contains an ACK then it is bad and send a RST.
978 	 * If it does not contain a SYN then it is not interesting; drop it.
979 	 * If it is from this socket, drop it, it must be forged.
980 	 * Don't bother responding if the destination was a broadcast.
981 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
982 	 * tp->iss, and send a segment:
983 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
984 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
985 	 * Fill in remote peer address fields if not previously specified.
986 	 * Enter SYN_RECEIVED state, and process any other fields of this
987 	 * segment in this state.
988 	 */
989 	case TCPS_LISTEN: {
990 		register struct sockaddr_in *sin;
991 #ifdef INET6
992 		register struct sockaddr_in6 *sin6;
993 #endif
994 
995 		if (thflags & TH_RST)
996 			goto drop;
997 		if (thflags & TH_ACK)
998 			goto maybedropwithreset;
999 		if ((thflags & TH_SYN) == 0)
1000 			goto drop;
1001 		if (th->th_dport == th->th_sport) {
1002 #ifdef INET6
1003 			if (isipv6) {
1004 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1005 						       &ip6->ip6_src))
1006 					goto drop;
1007 			} else
1008 #endif /* INET6 */
1009 			if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1010 				goto drop;
1011 		}
1012 		/*
1013 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1014 		 * in_broadcast() should never return true on a received
1015 		 * packet with M_BCAST not set.
1016  		 *
1017  		 * Packets with a multicast source address should also
1018  		 * be discarded.
1019 		 */
1020 		if (m->m_flags & (M_BCAST|M_MCAST))
1021 			goto drop;
1022 #ifdef INET6
1023 		if (isipv6) {
1024 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1025 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1026 				goto drop;
1027 		} else
1028 #endif
1029 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1030 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1031 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
1032 			goto drop;
1033 #ifdef INET6
1034 		if (isipv6) {
1035 			MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
1036 			       M_SONAME, M_NOWAIT);
1037 			if (sin6 == NULL)
1038 				goto drop;
1039 			bzero(sin6, sizeof(*sin6));
1040 			sin6->sin6_family = AF_INET6;
1041 			sin6->sin6_len = sizeof(*sin6);
1042 			sin6->sin6_addr = ip6->ip6_src;
1043 			sin6->sin6_port = th->th_sport;
1044 			laddr6 = inp->in6p_laddr;
1045 			if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1046 				inp->in6p_laddr = ip6->ip6_dst;
1047 			if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
1048 					   &proc0)) {
1049 				inp->in6p_laddr = laddr6;
1050 				FREE(sin6, M_SONAME);
1051 				goto drop;
1052 			}
1053 			FREE(sin6, M_SONAME);
1054 		} else
1055 #endif
1056 	      {
1057 		MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
1058 		       M_NOWAIT);
1059 		if (sin == NULL)
1060 			goto drop;
1061 		sin->sin_family = AF_INET;
1062 		sin->sin_len = sizeof(*sin);
1063 		sin->sin_addr = ip->ip_src;
1064 		sin->sin_port = th->th_sport;
1065 		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1066 		laddr = inp->inp_laddr;
1067 		if (inp->inp_laddr.s_addr == INADDR_ANY)
1068 			inp->inp_laddr = ip->ip_dst;
1069 		if (in_pcbconnect(inp, (struct sockaddr *)sin, &proc0)) {
1070 			inp->inp_laddr = laddr;
1071 			FREE(sin, M_SONAME);
1072 			goto drop;
1073 		}
1074 		FREE(sin, M_SONAME);
1075 	      }
1076 		tp->t_template = tcp_template(tp);
1077 		if (tp->t_template == 0) {
1078 			tp = tcp_drop(tp, ENOBUFS);
1079 			dropsocket = 0;		/* socket is already gone */
1080 			goto drop;
1081 		}
1082 		if ((taop = tcp_gettaocache(inp)) == NULL) {
1083 			taop = &tao_noncached;
1084 			bzero(taop, sizeof(*taop));
1085 		}
1086 		tcp_dooptions(tp, optp, optlen, th, &to);
1087 		if (iss)
1088 			tp->iss = iss;
1089 		else
1090 			tp->iss = tcp_iss;
1091 		tcp_iss += TCP_ISSINCR/4;
1092 		tp->irs = th->th_seq;
1093 		tcp_sendseqinit(tp);
1094 		tcp_rcvseqinit(tp);
1095 		/*
1096 		 * Initialization of the tcpcb for transaction;
1097 		 *   set SND.WND = SEG.WND,
1098 		 *   initialize CCsend and CCrecv.
1099 		 */
1100 		tp->snd_wnd = tiwin;	/* initial send-window */
1101 		tp->cc_send = CC_INC(tcp_ccgen);
1102 		tp->cc_recv = to.to_cc;
1103 		/*
1104 		 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1105 		 * - compare SEG.CC against cached CC from the same host,
1106 		 *	if any.
1107 		 * - if SEG.CC > chached value, SYN must be new and is accepted
1108 		 *	immediately: save new CC in the cache, mark the socket
1109 		 *	connected, enter ESTABLISHED state, turn on flag to
1110 		 *	send a SYN in the next segment.
1111 		 *	A virtual advertised window is set in rcv_adv to
1112 		 *	initialize SWS prevention.  Then enter normal segment
1113 		 *	processing: drop SYN, process data and FIN.
1114 		 * - otherwise do a normal 3-way handshake.
1115 		 */
1116 		if ((to.to_flag & TOF_CC) != 0) {
1117 		    if (((tp->t_flags & TF_NOPUSH) != 0) &&
1118 			taop->tao_cc != 0 && CC_GT(to.to_cc, taop->tao_cc)) {
1119 
1120 			taop->tao_cc = to.to_cc;
1121 			tp->t_starttime = ticks;
1122 			tp->t_state = TCPS_ESTABLISHED;
1123 
1124 			/*
1125 			 * If there is a FIN, or if there is data and the
1126 			 * connection is local, then delay SYN,ACK(SYN) in
1127 			 * the hope of piggy-backing it on a response
1128 			 * segment.  Otherwise must send ACK now in case
1129 			 * the other side is slow starting.
1130 			 */
1131 			if (tcp_delack_enabled && ((thflags & TH_FIN) ||
1132 			    (tlen != 0 &&
1133 #ifdef INET6
1134 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr))
1135 			      ||
1136 			      (!isipv6 &&
1137 #endif
1138 			    in_localaddr(inp->inp_faddr)
1139 #ifdef INET6
1140 			       ))
1141 #endif
1142 			     ))) {
1143                                 callout_reset(tp->tt_delack, tcp_delacktime,
1144                                     tcp_timer_delack, tp);
1145 				tp->t_flags |= TF_NEEDSYN;
1146 			} else
1147 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1148 
1149 			/*
1150 			 * Limit the `virtual advertised window' to TCP_MAXWIN
1151 			 * here.  Even if we requested window scaling, it will
1152 			 * become effective only later when our SYN is acked.
1153 			 */
1154 			tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN);
1155 			tcpstat.tcps_connects++;
1156 			soisconnected(so);
1157 			callout_reset(tp->tt_keep, tcp_keepinit,
1158 				      tcp_timer_keep, tp);
1159 			dropsocket = 0;		/* committed to socket */
1160 			tcpstat.tcps_accepts++;
1161 			goto trimthenstep6;
1162 		    }
1163 		/* else do standard 3-way handshake */
1164 		} else {
1165 		    /*
1166 		     * No CC option, but maybe CC.NEW:
1167 		     *   invalidate cached value.
1168 		     */
1169 		     taop->tao_cc = 0;
1170 		}
1171 		/*
1172 		 * TAO test failed or there was no CC option,
1173 		 *    do a standard 3-way handshake.
1174 		 */
1175 		tp->t_flags |= TF_ACKNOW;
1176 		tp->t_state = TCPS_SYN_RECEIVED;
1177 		callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
1178 		dropsocket = 0;		/* committed to socket */
1179 		tcpstat.tcps_accepts++;
1180 		ND6_HINT((struct tcpcb *)inp->inp_ppcb);
1181 		goto trimthenstep6;
1182 		}
1183 
1184 	/*
1185 	 * If the state is SYN_RECEIVED:
1186 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1187 	 */
1188 	case TCPS_SYN_RECEIVED:
1189 		if ((thflags & TH_ACK) &&
1190 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1191 		     SEQ_GT(th->th_ack, tp->snd_max)))
1192 				goto maybedropwithreset;
1193 		break;
1194 
1195 	/*
1196 	 * If the state is SYN_SENT:
1197 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1198 	 *	if seg contains a RST, then drop the connection.
1199 	 *	if seg does not contain SYN, then drop it.
1200 	 * Otherwise this is an acceptable SYN segment
1201 	 *	initialize tp->rcv_nxt and tp->irs
1202 	 *	if seg contains ack then advance tp->snd_una
1203 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1204 	 *	arrange for segment to be acked (eventually)
1205 	 *	continue processing rest of data/controls, beginning with URG
1206 	 */
1207 	case TCPS_SYN_SENT:
1208 		if ((taop = tcp_gettaocache(inp)) == NULL) {
1209 			taop = &tao_noncached;
1210 			bzero(taop, sizeof(*taop));
1211 		}
1212 
1213 		if ((thflags & TH_ACK) &&
1214 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1215 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1216 			/*
1217 			 * If we have a cached CCsent for the remote host,
1218 			 * hence we haven't just crashed and restarted,
1219 			 * do not send a RST.  This may be a retransmission
1220 			 * from the other side after our earlier ACK was lost.
1221 			 * Our new SYN, when it arrives, will serve as the
1222 			 * needed ACK.
1223 			 */
1224 			if (taop->tao_ccsent != 0)
1225 				goto drop;
1226 			else
1227 				goto dropwithreset;
1228 		}
1229 		if (thflags & TH_RST) {
1230 			if (thflags & TH_ACK)
1231 				tp = tcp_drop(tp, ECONNREFUSED);
1232 			goto drop;
1233 		}
1234 		if ((thflags & TH_SYN) == 0)
1235 			goto drop;
1236 		tp->snd_wnd = th->th_win;	/* initial send window */
1237 		tp->cc_recv = to.to_cc;		/* foreign CC */
1238 
1239 		tp->irs = th->th_seq;
1240 		tcp_rcvseqinit(tp);
1241 		if (thflags & TH_ACK) {
1242 			/*
1243 			 * Our SYN was acked.  If segment contains CC.ECHO
1244 			 * option, check it to make sure this segment really
1245 			 * matches our SYN.  If not, just drop it as old
1246 			 * duplicate, but send an RST if we're still playing
1247 			 * by the old rules.  If no CC.ECHO option, make sure
1248 			 * we don't get fooled into using T/TCP.
1249 			 */
1250 			if (to.to_flag & TOF_CCECHO) {
1251 				if (tp->cc_send != to.to_ccecho) {
1252 					if (taop->tao_ccsent != 0)
1253 						goto drop;
1254 					else
1255 						goto dropwithreset;
1256 				}
1257 			} else
1258 				tp->t_flags &= ~TF_RCVD_CC;
1259 			tcpstat.tcps_connects++;
1260 			soisconnected(so);
1261 			/* Do window scaling on this connection? */
1262 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1263 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1264 				tp->snd_scale = tp->requested_s_scale;
1265 				tp->rcv_scale = tp->request_r_scale;
1266 			}
1267 			/* Segment is acceptable, update cache if undefined. */
1268 			if (taop->tao_ccsent == 0)
1269 				taop->tao_ccsent = to.to_ccecho;
1270 
1271 			tp->rcv_adv += tp->rcv_wnd;
1272 			tp->snd_una++;		/* SYN is acked */
1273 			/*
1274 			 * If there's data, delay ACK; if there's also a FIN
1275 			 * ACKNOW will be turned on later.
1276 			 */
1277 			if (tcp_delack_enabled && tlen != 0)
1278                                 callout_reset(tp->tt_delack, tcp_delacktime,
1279                                     tcp_timer_delack, tp);
1280 			else
1281 				tp->t_flags |= TF_ACKNOW;
1282 			/*
1283 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1284 			 * Transitions:
1285 			 *	SYN_SENT  --> ESTABLISHED
1286 			 *	SYN_SENT* --> FIN_WAIT_1
1287 			 */
1288 			tp->t_starttime = ticks;
1289 			if (tp->t_flags & TF_NEEDFIN) {
1290 				tp->t_state = TCPS_FIN_WAIT_1;
1291 				tp->t_flags &= ~TF_NEEDFIN;
1292 				thflags &= ~TH_SYN;
1293 			} else {
1294 				tp->t_state = TCPS_ESTABLISHED;
1295 				callout_reset(tp->tt_keep, tcp_keepidle,
1296 					      tcp_timer_keep, tp);
1297 			}
1298 		} else {
1299 		/*
1300 		 *  Received initial SYN in SYN-SENT[*] state => simul-
1301 		 *  taneous open.  If segment contains CC option and there is
1302 		 *  a cached CC, apply TAO test; if it succeeds, connection is
1303 		 *  half-synchronized.  Otherwise, do 3-way handshake:
1304 		 *        SYN-SENT -> SYN-RECEIVED
1305 		 *        SYN-SENT* -> SYN-RECEIVED*
1306 		 *  If there was no CC option, clear cached CC value.
1307 		 */
1308 			tp->t_flags |= TF_ACKNOW;
1309 			callout_stop(tp->tt_rexmt);
1310 			if (to.to_flag & TOF_CC) {
1311 				if (taop->tao_cc != 0 &&
1312 				    CC_GT(to.to_cc, taop->tao_cc)) {
1313 					/*
1314 					 * update cache and make transition:
1315 					 *        SYN-SENT -> ESTABLISHED*
1316 					 *        SYN-SENT* -> FIN-WAIT-1*
1317 					 */
1318 					taop->tao_cc = to.to_cc;
1319 					tp->t_starttime = ticks;
1320 					if (tp->t_flags & TF_NEEDFIN) {
1321 						tp->t_state = TCPS_FIN_WAIT_1;
1322 						tp->t_flags &= ~TF_NEEDFIN;
1323 					} else {
1324 						tp->t_state = TCPS_ESTABLISHED;
1325 						callout_reset(tp->tt_keep,
1326 							      tcp_keepidle,
1327 							      tcp_timer_keep,
1328 							      tp);
1329 					}
1330 					tp->t_flags |= TF_NEEDSYN;
1331 				} else
1332 					tp->t_state = TCPS_SYN_RECEIVED;
1333 			} else {
1334 				/* CC.NEW or no option => invalidate cache */
1335 				taop->tao_cc = 0;
1336 				tp->t_state = TCPS_SYN_RECEIVED;
1337 			}
1338 		}
1339 
1340 trimthenstep6:
1341 		/*
1342 		 * Advance th->th_seq to correspond to first data byte.
1343 		 * If data, trim to stay within window,
1344 		 * dropping FIN if necessary.
1345 		 */
1346 		th->th_seq++;
1347 		if (tlen > tp->rcv_wnd) {
1348 			todrop = tlen - tp->rcv_wnd;
1349 			m_adj(m, -todrop);
1350 			tlen = tp->rcv_wnd;
1351 			thflags &= ~TH_FIN;
1352 			tcpstat.tcps_rcvpackafterwin++;
1353 			tcpstat.tcps_rcvbyteafterwin += todrop;
1354 		}
1355 		tp->snd_wl1 = th->th_seq - 1;
1356 		tp->rcv_up = th->th_seq;
1357 		/*
1358 		 *  Client side of transaction: already sent SYN and data.
1359 		 *  If the remote host used T/TCP to validate the SYN,
1360 		 *  our data will be ACK'd; if so, enter normal data segment
1361 		 *  processing in the middle of step 5, ack processing.
1362 		 *  Otherwise, goto step 6.
1363 		 */
1364  		if (thflags & TH_ACK)
1365 			goto process_ACK;
1366 		goto step6;
1367 	/*
1368 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1369 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1370 	 *              if state == TIME_WAIT and connection duration > MSL,
1371 	 *                  drop packet and send RST;
1372 	 *
1373 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1374 	 *		    ack the FIN (and data) in retransmission queue.
1375 	 *                  Complete close and delete TCPCB.  Then reprocess
1376 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1377 	 *
1378 	 *		else must be old SYN; drop it.
1379 	 *      else do normal processing.
1380 	 */
1381 	case TCPS_LAST_ACK:
1382 	case TCPS_CLOSING:
1383 	case TCPS_TIME_WAIT:
1384 		if ((thflags & TH_SYN) &&
1385 		    (to.to_flag & TOF_CC) && tp->cc_recv != 0) {
1386 			if (tp->t_state == TCPS_TIME_WAIT &&
1387 					(ticks - tp->t_starttime) > tcp_msl)
1388 				goto dropwithreset;
1389 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1390 				tp = tcp_close(tp);
1391 				goto findpcb;
1392 			}
1393 			else
1394 				goto drop;
1395 		}
1396  		break;  /* continue normal processing */
1397 	}
1398 
1399 	/*
1400 	 * States other than LISTEN or SYN_SENT.
1401 	 * First check the RST flag and sequence number since reset segments
1402 	 * are exempt from the timestamp and connection count tests.  This
1403 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1404 	 * below which allowed reset segments in half the sequence space
1405 	 * to fall though and be processed (which gives forged reset
1406 	 * segments with a random sequence number a 50 percent chance of
1407 	 * killing a connection).
1408 	 * Then check timestamp, if present.
1409 	 * Then check the connection count, if present.
1410 	 * Then check that at least some bytes of segment are within
1411 	 * receive window.  If segment begins before rcv_nxt,
1412 	 * drop leading data (and SYN); if nothing left, just ack.
1413 	 *
1414 	 *
1415 	 * If the RST bit is set, check the sequence number to see
1416 	 * if this is a valid reset segment.
1417 	 * RFC 793 page 37:
1418 	 *   In all states except SYN-SENT, all reset (RST) segments
1419 	 *   are validated by checking their SEQ-fields.  A reset is
1420 	 *   valid if its sequence number is in the window.
1421 	 * Note: this does not take into account delayed ACKs, so
1422 	 *   we should test against last_ack_sent instead of rcv_nxt.
1423 	 *   The sequence number in the reset segment is normally an
1424 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1425 	 *   send a reset with the sequence number at the rightmost edge
1426 	 *   of our receive window, and we have to handle this case.
1427 	 * If we have multiple segments in flight, the intial reset
1428 	 * segment sequence numbers will be to the left of last_ack_sent,
1429 	 * but they will eventually catch up.
1430 	 * In any case, it never made sense to trim reset segments to
1431 	 * fit the receive window since RFC 1122 says:
1432 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1433 	 *
1434 	 *    A TCP SHOULD allow a received RST segment to include data.
1435 	 *
1436 	 *    DISCUSSION
1437 	 *         It has been suggested that a RST segment could contain
1438 	 *         ASCII text that encoded and explained the cause of the
1439 	 *         RST.  No standard has yet been established for such
1440 	 *         data.
1441 	 *
1442 	 * If the reset segment passes the sequence number test examine
1443 	 * the state:
1444 	 *    SYN_RECEIVED STATE:
1445 	 *	If passive open, return to LISTEN state.
1446 	 *	If active open, inform user that connection was refused.
1447 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1448 	 *	Inform user that connection was reset, and close tcb.
1449 	 *    CLOSING, LAST_ACK STATES:
1450 	 *	Close the tcb.
1451 	 *    TIME_WAIT STATE:
1452 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1453 	 *      RFC 1337.
1454 	 */
1455 	if (thflags & TH_RST) {
1456 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1457 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1458 			switch (tp->t_state) {
1459 
1460 			case TCPS_SYN_RECEIVED:
1461 				so->so_error = ECONNREFUSED;
1462 				goto close;
1463 
1464 			case TCPS_ESTABLISHED:
1465 			case TCPS_FIN_WAIT_1:
1466 			case TCPS_FIN_WAIT_2:
1467 			case TCPS_CLOSE_WAIT:
1468 				so->so_error = ECONNRESET;
1469 			close:
1470 				tp->t_state = TCPS_CLOSED;
1471 				tcpstat.tcps_drops++;
1472 				tp = tcp_close(tp);
1473 				break;
1474 
1475 			case TCPS_CLOSING:
1476 			case TCPS_LAST_ACK:
1477 				tp = tcp_close(tp);
1478 				break;
1479 
1480 			case TCPS_TIME_WAIT:
1481 				break;
1482 			}
1483 		}
1484 		goto drop;
1485 	}
1486 
1487 	/*
1488 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1489 	 * and it's less than ts_recent, drop it.
1490 	 */
1491 	if ((to.to_flag & TOF_TS) != 0 && tp->ts_recent &&
1492 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1493 
1494 		/* Check to see if ts_recent is over 24 days old.  */
1495 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1496 			/*
1497 			 * Invalidate ts_recent.  If this segment updates
1498 			 * ts_recent, the age will be reset later and ts_recent
1499 			 * will get a valid value.  If it does not, setting
1500 			 * ts_recent to zero will at least satisfy the
1501 			 * requirement that zero be placed in the timestamp
1502 			 * echo reply when ts_recent isn't valid.  The
1503 			 * age isn't reset until we get a valid ts_recent
1504 			 * because we don't want out-of-order segments to be
1505 			 * dropped when ts_recent is old.
1506 			 */
1507 			tp->ts_recent = 0;
1508 		} else {
1509 			tcpstat.tcps_rcvduppack++;
1510 			tcpstat.tcps_rcvdupbyte += tlen;
1511 			tcpstat.tcps_pawsdrop++;
1512 			goto dropafterack;
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * T/TCP mechanism
1518 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1519 	 *   or if its CC is wrong then drop the segment.
1520 	 *   RST segments do not have to comply with this.
1521 	 */
1522 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1523 	    ((to.to_flag & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1524  		goto dropafterack;
1525 
1526 	/*
1527 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1528 	 * this connection before trimming the data to fit the receive
1529 	 * window.  Check the sequence number versus IRS since we know
1530 	 * the sequence numbers haven't wrapped.  This is a partial fix
1531 	 * for the "LAND" DoS attack.
1532 	 */
1533 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs))
1534 		goto maybedropwithreset;
1535 
1536 	todrop = tp->rcv_nxt - th->th_seq;
1537 	if (todrop > 0) {
1538 		if (thflags & TH_SYN) {
1539 			thflags &= ~TH_SYN;
1540 			th->th_seq++;
1541 			if (th->th_urp > 1)
1542 				th->th_urp--;
1543 			else
1544 				thflags &= ~TH_URG;
1545 			todrop--;
1546 		}
1547 		/*
1548 		 * Following if statement from Stevens, vol. 2, p. 960.
1549 		 */
1550 		if (todrop > tlen
1551 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1552 			/*
1553 			 * Any valid FIN must be to the left of the window.
1554 			 * At this point the FIN must be a duplicate or out
1555 			 * of sequence; drop it.
1556 			 */
1557 			thflags &= ~TH_FIN;
1558 
1559 			/*
1560 			 * Send an ACK to resynchronize and drop any data.
1561 			 * But keep on processing for RST or ACK.
1562 			 */
1563 			tp->t_flags |= TF_ACKNOW;
1564 			todrop = tlen;
1565 			tcpstat.tcps_rcvduppack++;
1566 			tcpstat.tcps_rcvdupbyte += todrop;
1567 		} else {
1568 			tcpstat.tcps_rcvpartduppack++;
1569 			tcpstat.tcps_rcvpartdupbyte += todrop;
1570 		}
1571 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1572 		th->th_seq += todrop;
1573 		tlen -= todrop;
1574 		if (th->th_urp > todrop)
1575 			th->th_urp -= todrop;
1576 		else {
1577 			thflags &= ~TH_URG;
1578 			th->th_urp = 0;
1579 		}
1580 	}
1581 
1582 	/*
1583 	 * If new data are received on a connection after the
1584 	 * user processes are gone, then RST the other end.
1585 	 */
1586 	if ((so->so_state & SS_NOFDREF) &&
1587 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1588 		tp = tcp_close(tp);
1589 		tcpstat.tcps_rcvafterclose++;
1590 		goto dropwithreset;
1591 	}
1592 
1593 	/*
1594 	 * If segment ends after window, drop trailing data
1595 	 * (and PUSH and FIN); if nothing left, just ACK.
1596 	 */
1597 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1598 	if (todrop > 0) {
1599 		tcpstat.tcps_rcvpackafterwin++;
1600 		if (todrop >= tlen) {
1601 			tcpstat.tcps_rcvbyteafterwin += tlen;
1602 			/*
1603 			 * If a new connection request is received
1604 			 * while in TIME_WAIT, drop the old connection
1605 			 * and start over if the sequence numbers
1606 			 * are above the previous ones.
1607 			 */
1608 			if (thflags & TH_SYN &&
1609 			    tp->t_state == TCPS_TIME_WAIT &&
1610 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1611 				iss = tp->snd_nxt + TCP_ISSINCR;
1612 				tp = tcp_close(tp);
1613 				goto findpcb;
1614 			}
1615 			/*
1616 			 * If window is closed can only take segments at
1617 			 * window edge, and have to drop data and PUSH from
1618 			 * incoming segments.  Continue processing, but
1619 			 * remember to ack.  Otherwise, drop segment
1620 			 * and ack.
1621 			 */
1622 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1623 				tp->t_flags |= TF_ACKNOW;
1624 				tcpstat.tcps_rcvwinprobe++;
1625 			} else
1626 				goto dropafterack;
1627 		} else
1628 			tcpstat.tcps_rcvbyteafterwin += todrop;
1629 		m_adj(m, -todrop);
1630 		tlen -= todrop;
1631 		thflags &= ~(TH_PUSH|TH_FIN);
1632 	}
1633 
1634 	/*
1635 	 * If last ACK falls within this segment's sequence numbers,
1636 	 * record its timestamp.
1637 	 * NOTE that the test is modified according to the latest
1638 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1639 	 */
1640 	if ((to.to_flag & TOF_TS) != 0 &&
1641 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1642 		tp->ts_recent_age = ticks;
1643 		tp->ts_recent = to.to_tsval;
1644 	}
1645 
1646 	/*
1647 	 * If a SYN is in the window, then this is an
1648 	 * error and we send an RST and drop the connection.
1649 	 */
1650 	if (thflags & TH_SYN) {
1651 		tp = tcp_drop(tp, ECONNRESET);
1652 		goto dropwithreset;
1653 	}
1654 
1655 	/*
1656 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1657 	 * flag is on (half-synchronized state), then queue data for
1658 	 * later processing; else drop segment and return.
1659 	 */
1660 	if ((thflags & TH_ACK) == 0) {
1661 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1662 		    (tp->t_flags & TF_NEEDSYN))
1663 			goto step6;
1664 		else
1665 			goto drop;
1666 	}
1667 
1668 	/*
1669 	 * Ack processing.
1670 	 */
1671 	switch (tp->t_state) {
1672 
1673 	/*
1674 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1675 	 * ESTABLISHED state and continue processing.
1676 	 * The ACK was checked above.
1677 	 */
1678 	case TCPS_SYN_RECEIVED:
1679 
1680 		tcpstat.tcps_connects++;
1681 		soisconnected(so);
1682 		/* Do window scaling? */
1683 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1684 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1685 			tp->snd_scale = tp->requested_s_scale;
1686 			tp->rcv_scale = tp->request_r_scale;
1687 		}
1688 		/*
1689 		 * Upon successful completion of 3-way handshake,
1690 		 * update cache.CC if it was undefined, pass any queued
1691 		 * data to the user, and advance state appropriately.
1692 		 */
1693 		if ((taop = tcp_gettaocache(inp)) != NULL &&
1694 		    taop->tao_cc == 0)
1695 			taop->tao_cc = tp->cc_recv;
1696 
1697 		/*
1698 		 * Make transitions:
1699 		 *      SYN-RECEIVED  -> ESTABLISHED
1700 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1701 		 */
1702 		tp->t_starttime = ticks;
1703 		if (tp->t_flags & TF_NEEDFIN) {
1704 			tp->t_state = TCPS_FIN_WAIT_1;
1705 			tp->t_flags &= ~TF_NEEDFIN;
1706 		} else {
1707 			tp->t_state = TCPS_ESTABLISHED;
1708 			callout_reset(tp->tt_keep, tcp_keepidle,
1709 				      tcp_timer_keep, tp);
1710 		}
1711 		/*
1712 		 * If segment contains data or ACK, will call tcp_reass()
1713 		 * later; if not, do so now to pass queued data to user.
1714 		 */
1715 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1716 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1717 			    (struct mbuf *)0);
1718 		tp->snd_wl1 = th->th_seq - 1;
1719 		/* fall into ... */
1720 
1721 	/*
1722 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1723 	 * ACKs.  If the ack is in the range
1724 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1725 	 * then advance tp->snd_una to th->th_ack and drop
1726 	 * data from the retransmission queue.  If this ACK reflects
1727 	 * more up to date window information we update our window information.
1728 	 */
1729 	case TCPS_ESTABLISHED:
1730 	case TCPS_FIN_WAIT_1:
1731 	case TCPS_FIN_WAIT_2:
1732 	case TCPS_CLOSE_WAIT:
1733 	case TCPS_CLOSING:
1734 	case TCPS_LAST_ACK:
1735 	case TCPS_TIME_WAIT:
1736 
1737 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1738 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1739 				tcpstat.tcps_rcvdupack++;
1740 				/*
1741 				 * If we have outstanding data (other than
1742 				 * a window probe), this is a completely
1743 				 * duplicate ack (ie, window info didn't
1744 				 * change), the ack is the biggest we've
1745 				 * seen and we've seen exactly our rexmt
1746 				 * threshhold of them, assume a packet
1747 				 * has been dropped and retransmit it.
1748 				 * Kludge snd_nxt & the congestion
1749 				 * window so we send only this one
1750 				 * packet.
1751 				 *
1752 				 * We know we're losing at the current
1753 				 * window size so do congestion avoidance
1754 				 * (set ssthresh to half the current window
1755 				 * and pull our congestion window back to
1756 				 * the new ssthresh).
1757 				 *
1758 				 * Dup acks mean that packets have left the
1759 				 * network (they're now cached at the receiver)
1760 				 * so bump cwnd by the amount in the receiver
1761 				 * to keep a constant cwnd packets in the
1762 				 * network.
1763 				 */
1764 				if (!callout_active(tp->tt_rexmt) ||
1765 				    th->th_ack != tp->snd_una)
1766 					tp->t_dupacks = 0;
1767 				else if (++tp->t_dupacks == tcprexmtthresh) {
1768 					tcp_seq onxt = tp->snd_nxt;
1769 					u_int win =
1770 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1771 						tp->t_maxseg;
1772 
1773 					if (win < 2)
1774 						win = 2;
1775 					tp->snd_ssthresh = win * tp->t_maxseg;
1776 					callout_stop(tp->tt_rexmt);
1777 					tp->t_rtttime = 0;
1778 					tp->snd_nxt = th->th_ack;
1779 					tp->snd_cwnd = tp->t_maxseg;
1780 					(void) tcp_output(tp);
1781 					tp->snd_cwnd = tp->snd_ssthresh +
1782 					       tp->t_maxseg * tp->t_dupacks;
1783 					if (SEQ_GT(onxt, tp->snd_nxt))
1784 						tp->snd_nxt = onxt;
1785 					goto drop;
1786 				} else if (tp->t_dupacks > tcprexmtthresh) {
1787 					tp->snd_cwnd += tp->t_maxseg;
1788 					(void) tcp_output(tp);
1789 					goto drop;
1790 				}
1791 			} else
1792 				tp->t_dupacks = 0;
1793 			break;
1794 		}
1795 		/*
1796 		 * If the congestion window was inflated to account
1797 		 * for the other side's cached packets, retract it.
1798 		 */
1799 		if (tp->t_dupacks >= tcprexmtthresh &&
1800 		    tp->snd_cwnd > tp->snd_ssthresh)
1801 			tp->snd_cwnd = tp->snd_ssthresh;
1802 		tp->t_dupacks = 0;
1803 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1804 			tcpstat.tcps_rcvacktoomuch++;
1805 			goto dropafterack;
1806 		}
1807 		/*
1808 		 *  If we reach this point, ACK is not a duplicate,
1809 		 *     i.e., it ACKs something we sent.
1810 		 */
1811 		if (tp->t_flags & TF_NEEDSYN) {
1812 			/*
1813 			 * T/TCP: Connection was half-synchronized, and our
1814 			 * SYN has been ACK'd (so connection is now fully
1815 			 * synchronized).  Go to non-starred state,
1816 			 * increment snd_una for ACK of SYN, and check if
1817 			 * we can do window scaling.
1818 			 */
1819 			tp->t_flags &= ~TF_NEEDSYN;
1820 			tp->snd_una++;
1821 			/* Do window scaling? */
1822 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1823 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1824 				tp->snd_scale = tp->requested_s_scale;
1825 				tp->rcv_scale = tp->request_r_scale;
1826 			}
1827 		}
1828 
1829 process_ACK:
1830 		acked = th->th_ack - tp->snd_una;
1831 		tcpstat.tcps_rcvackpack++;
1832 		tcpstat.tcps_rcvackbyte += acked;
1833 
1834 		/*
1835 		 * If we just performed our first retransmit, and the ACK
1836 		 * arrives within our recovery window, then it was a mistake
1837 		 * to do the retransmit in the first place.  Recover our
1838 		 * original cwnd and ssthresh, and proceed to transmit where
1839 		 * we left off.
1840 		 */
1841 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1842 			tp->snd_cwnd = tp->snd_cwnd_prev;
1843 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1844 			tp->snd_nxt = tp->snd_max;
1845 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1846 		}
1847 
1848 		/*
1849 		 * If we have a timestamp reply, update smoothed
1850 		 * round trip time.  If no timestamp is present but
1851 		 * transmit timer is running and timed sequence
1852 		 * number was acked, update smoothed round trip time.
1853 		 * Since we now have an rtt measurement, cancel the
1854 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1855 		 * Recompute the initial retransmit timer.
1856 		 */
1857 		if (to.to_flag & TOF_TS)
1858 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1859 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1860 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1861 
1862 		/*
1863 		 * If all outstanding data is acked, stop retransmit
1864 		 * timer and remember to restart (more output or persist).
1865 		 * If there is more data to be acked, restart retransmit
1866 		 * timer, using current (possibly backed-off) value.
1867 		 */
1868 		if (th->th_ack == tp->snd_max) {
1869 			callout_stop(tp->tt_rexmt);
1870 			needoutput = 1;
1871 		} else if (!callout_active(tp->tt_persist))
1872 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1873 				      tcp_timer_rexmt, tp);
1874 
1875 		/*
1876 		 * If no data (only SYN) was ACK'd,
1877 		 *    skip rest of ACK processing.
1878 		 */
1879 		if (acked == 0)
1880 			goto step6;
1881 
1882 		/*
1883 		 * When new data is acked, open the congestion window.
1884 		 * If the window gives us less than ssthresh packets
1885 		 * in flight, open exponentially (maxseg per packet).
1886 		 * Otherwise open linearly: maxseg per window
1887 		 * (maxseg^2 / cwnd per packet).
1888 		 */
1889 		{
1890 		register u_int cw = tp->snd_cwnd;
1891 		register u_int incr = tp->t_maxseg;
1892 
1893 		if (cw > tp->snd_ssthresh)
1894 			incr = incr * incr / cw;
1895 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN << tp->snd_scale);
1896 		}
1897 		if (acked > so->so_snd.sb_cc) {
1898 			tp->snd_wnd -= so->so_snd.sb_cc;
1899 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1900 			ourfinisacked = 1;
1901 		} else {
1902 			sbdrop(&so->so_snd, acked);
1903 			tp->snd_wnd -= acked;
1904 			ourfinisacked = 0;
1905 		}
1906 		sowwakeup(so);
1907 		tp->snd_una = th->th_ack;
1908 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1909 			tp->snd_nxt = tp->snd_una;
1910 
1911 		switch (tp->t_state) {
1912 
1913 		/*
1914 		 * In FIN_WAIT_1 STATE in addition to the processing
1915 		 * for the ESTABLISHED state if our FIN is now acknowledged
1916 		 * then enter FIN_WAIT_2.
1917 		 */
1918 		case TCPS_FIN_WAIT_1:
1919 			if (ourfinisacked) {
1920 				/*
1921 				 * If we can't receive any more
1922 				 * data, then closing user can proceed.
1923 				 * Starting the timer is contrary to the
1924 				 * specification, but if we don't get a FIN
1925 				 * we'll hang forever.
1926 				 */
1927 				if (so->so_state & SS_CANTRCVMORE) {
1928 					soisdisconnected(so);
1929 					callout_reset(tp->tt_2msl, tcp_maxidle,
1930 						      tcp_timer_2msl, tp);
1931 				}
1932 				tp->t_state = TCPS_FIN_WAIT_2;
1933 			}
1934 			break;
1935 
1936 	 	/*
1937 		 * In CLOSING STATE in addition to the processing for
1938 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1939 		 * then enter the TIME-WAIT state, otherwise ignore
1940 		 * the segment.
1941 		 */
1942 		case TCPS_CLOSING:
1943 			if (ourfinisacked) {
1944 				tp->t_state = TCPS_TIME_WAIT;
1945 				tcp_canceltimers(tp);
1946 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
1947 				if (tp->cc_recv != 0 &&
1948 				    (ticks - tp->t_starttime) < tcp_msl)
1949 					callout_reset(tp->tt_2msl,
1950 						      tp->t_rxtcur *
1951 						      TCPTV_TWTRUNC,
1952 						      tcp_timer_2msl, tp);
1953 				else
1954 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
1955 						      tcp_timer_2msl, tp);
1956 				soisdisconnected(so);
1957 			}
1958 			break;
1959 
1960 		/*
1961 		 * In LAST_ACK, we may still be waiting for data to drain
1962 		 * and/or to be acked, as well as for the ack of our FIN.
1963 		 * If our FIN is now acknowledged, delete the TCB,
1964 		 * enter the closed state and return.
1965 		 */
1966 		case TCPS_LAST_ACK:
1967 			if (ourfinisacked) {
1968 				tp = tcp_close(tp);
1969 				goto drop;
1970 			}
1971 			break;
1972 
1973 		/*
1974 		 * In TIME_WAIT state the only thing that should arrive
1975 		 * is a retransmission of the remote FIN.  Acknowledge
1976 		 * it and restart the finack timer.
1977 		 */
1978 		case TCPS_TIME_WAIT:
1979 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
1980 				      tcp_timer_2msl, tp);
1981 			goto dropafterack;
1982 		}
1983 	}
1984 
1985 step6:
1986 	/*
1987 	 * Update window information.
1988 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1989 	 */
1990 	if ((thflags & TH_ACK) &&
1991 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1992 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1993 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1994 		/* keep track of pure window updates */
1995 		if (tlen == 0 &&
1996 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1997 			tcpstat.tcps_rcvwinupd++;
1998 		tp->snd_wnd = tiwin;
1999 		tp->snd_wl1 = th->th_seq;
2000 		tp->snd_wl2 = th->th_ack;
2001 		if (tp->snd_wnd > tp->max_sndwnd)
2002 			tp->max_sndwnd = tp->snd_wnd;
2003 		needoutput = 1;
2004 	}
2005 
2006 	/*
2007 	 * Process segments with URG.
2008 	 */
2009 	if ((thflags & TH_URG) && th->th_urp &&
2010 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2011 		/*
2012 		 * This is a kludge, but if we receive and accept
2013 		 * random urgent pointers, we'll crash in
2014 		 * soreceive.  It's hard to imagine someone
2015 		 * actually wanting to send this much urgent data.
2016 		 */
2017 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2018 			th->th_urp = 0;			/* XXX */
2019 			thflags &= ~TH_URG;		/* XXX */
2020 			goto dodata;			/* XXX */
2021 		}
2022 		/*
2023 		 * If this segment advances the known urgent pointer,
2024 		 * then mark the data stream.  This should not happen
2025 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2026 		 * a FIN has been received from the remote side.
2027 		 * In these states we ignore the URG.
2028 		 *
2029 		 * According to RFC961 (Assigned Protocols),
2030 		 * the urgent pointer points to the last octet
2031 		 * of urgent data.  We continue, however,
2032 		 * to consider it to indicate the first octet
2033 		 * of data past the urgent section as the original
2034 		 * spec states (in one of two places).
2035 		 */
2036 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2037 			tp->rcv_up = th->th_seq + th->th_urp;
2038 			so->so_oobmark = so->so_rcv.sb_cc +
2039 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2040 			if (so->so_oobmark == 0)
2041 				so->so_state |= SS_RCVATMARK;
2042 			sohasoutofband(so);
2043 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2044 		}
2045 		/*
2046 		 * Remove out of band data so doesn't get presented to user.
2047 		 * This can happen independent of advancing the URG pointer,
2048 		 * but if two URG's are pending at once, some out-of-band
2049 		 * data may creep in... ick.
2050 		 */
2051 		if (th->th_urp <= (u_long)tlen
2052 #ifdef SO_OOBINLINE
2053 		     && (so->so_options & SO_OOBINLINE) == 0
2054 #endif
2055 		     )
2056 			tcp_pulloutofband(so, th, m,
2057 				drop_hdrlen);	/* hdr drop is delayed */
2058 	} else
2059 		/*
2060 		 * If no out of band data is expected,
2061 		 * pull receive urgent pointer along
2062 		 * with the receive window.
2063 		 */
2064 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2065 			tp->rcv_up = tp->rcv_nxt;
2066 dodata:							/* XXX */
2067 
2068 	/*
2069 	 * Process the segment text, merging it into the TCP sequencing queue,
2070 	 * and arranging for acknowledgment of receipt if necessary.
2071 	 * This process logically involves adjusting tp->rcv_wnd as data
2072 	 * is presented to the user (this happens in tcp_usrreq.c,
2073 	 * case PRU_RCVD).  If a FIN has already been received on this
2074 	 * connection then we just ignore the text.
2075 	 */
2076 	if ((tlen || (thflags&TH_FIN)) &&
2077 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2078 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2079 		TCP_REASS(tp, th, &tlen, m, so, thflags);
2080 		/*
2081 		 * Note the amount of data that peer has sent into
2082 		 * our window, in order to estimate the sender's
2083 		 * buffer size.
2084 		 */
2085 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2086 	} else {
2087 		m_freem(m);
2088 		thflags &= ~TH_FIN;
2089 	}
2090 
2091 	/*
2092 	 * If FIN is received ACK the FIN and let the user know
2093 	 * that the connection is closing.
2094 	 */
2095 	if (thflags & TH_FIN) {
2096 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2097 			socantrcvmore(so);
2098 			/*
2099 			 *  If connection is half-synchronized
2100 			 *  (ie NEEDSYN flag on) then delay ACK,
2101 			 *  so it may be piggybacked when SYN is sent.
2102 			 *  Otherwise, since we received a FIN then no
2103 			 *  more input can be expected, send ACK now.
2104 			 */
2105 			if (tcp_delack_enabled && (tp->t_flags & TF_NEEDSYN))
2106                                 callout_reset(tp->tt_delack, tcp_delacktime,
2107                                     tcp_timer_delack, tp);
2108 			else
2109 				tp->t_flags |= TF_ACKNOW;
2110 			tp->rcv_nxt++;
2111 		}
2112 		switch (tp->t_state) {
2113 
2114 	 	/*
2115 		 * In SYN_RECEIVED and ESTABLISHED STATES
2116 		 * enter the CLOSE_WAIT state.
2117 		 */
2118 		case TCPS_SYN_RECEIVED:
2119 			tp->t_starttime = ticks;
2120 			/*FALLTHROUGH*/
2121 		case TCPS_ESTABLISHED:
2122 			tp->t_state = TCPS_CLOSE_WAIT;
2123 			break;
2124 
2125 	 	/*
2126 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2127 		 * enter the CLOSING state.
2128 		 */
2129 		case TCPS_FIN_WAIT_1:
2130 			tp->t_state = TCPS_CLOSING;
2131 			break;
2132 
2133 	 	/*
2134 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2135 		 * starting the time-wait timer, turning off the other
2136 		 * standard timers.
2137 		 */
2138 		case TCPS_FIN_WAIT_2:
2139 			tp->t_state = TCPS_TIME_WAIT;
2140 			tcp_canceltimers(tp);
2141 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2142 			if (tp->cc_recv != 0 &&
2143 			    (ticks - tp->t_starttime) < tcp_msl) {
2144 				callout_reset(tp->tt_2msl,
2145 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2146 					      tcp_timer_2msl, tp);
2147 				/* For transaction client, force ACK now. */
2148 				tp->t_flags |= TF_ACKNOW;
2149 			}
2150 			else
2151 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2152 					      tcp_timer_2msl, tp);
2153 			soisdisconnected(so);
2154 			break;
2155 
2156 		/*
2157 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2158 		 */
2159 		case TCPS_TIME_WAIT:
2160 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2161 				      tcp_timer_2msl, tp);
2162 			break;
2163 		}
2164 	}
2165 #ifdef TCPDEBUG
2166 	if (so->so_options & SO_DEBUG)
2167 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2168 			  &tcp_savetcp, 0);
2169 #endif
2170 
2171 	/*
2172 	 * Return any desired output.
2173 	 */
2174 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2175 		(void) tcp_output(tp);
2176 	return;
2177 
2178 dropafterack:
2179 	/*
2180 	 * Generate an ACK dropping incoming segment if it occupies
2181 	 * sequence space, where the ACK reflects our state.
2182 	 *
2183 	 * We can now skip the test for the RST flag since all
2184 	 * paths to this code happen after packets containing
2185 	 * RST have been dropped.
2186 	 *
2187 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2188 	 * segment we received passes the SYN-RECEIVED ACK test.
2189 	 * If it fails send a RST.  This breaks the loop in the
2190 	 * "LAND" DoS attack, and also prevents an ACK storm
2191 	 * between two listening ports that have been sent forged
2192 	 * SYN segments, each with the source address of the other.
2193 	 */
2194 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2195 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2196 	     SEQ_GT(th->th_ack, tp->snd_max)) )
2197 		goto maybedropwithreset;
2198 #ifdef TCPDEBUG
2199 	if (so->so_options & SO_DEBUG)
2200 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2201 			  &tcp_savetcp, 0);
2202 #endif
2203 	m_freem(m);
2204 	tp->t_flags |= TF_ACKNOW;
2205 	(void) tcp_output(tp);
2206 	return;
2207 
2208 
2209 	/*
2210 	 * Conditionally drop with reset or just drop depending on whether
2211 	 * we think we are under attack or not.
2212 	 */
2213 maybedropwithreset:
2214 #ifdef ICMP_BANDLIM
2215 	if (badport_bandlim(1) < 0)
2216 		goto drop;
2217 #endif
2218 	/* fall through */
2219 dropwithreset:
2220 #ifdef TCP_RESTRICT_RST
2221 	if (restrict_rst)
2222 		goto drop;
2223 #endif
2224 	/*
2225 	 * Generate a RST, dropping incoming segment.
2226 	 * Make ACK acceptable to originator of segment.
2227 	 * Don't bother to respond if destination was broadcast/multicast.
2228 	 */
2229 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2230 		goto drop;
2231 #ifdef INET6
2232 	if (isipv6) {
2233 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2234 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2235 			goto drop;
2236 	} else
2237 #endif /* INET6 */
2238 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2239 	    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2240 	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
2241 		goto drop;
2242 	/* IPv6 anycast check is done at tcp6_input() */
2243 #ifdef TCPDEBUG
2244 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2245 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2246 			  &tcp_savetcp, 0);
2247 #endif
2248 	if (thflags & TH_ACK)
2249 		/* mtod() below is safe as long as hdr dropping is delayed */
2250 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2251 			    TH_RST);
2252 	else {
2253 		if (thflags & TH_SYN)
2254 			tlen++;
2255 		/* mtod() below is safe as long as hdr dropping is delayed */
2256 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2257 			    (tcp_seq)0, TH_RST|TH_ACK);
2258 	}
2259 	/* destroy temporarily created socket */
2260 	if (dropsocket)
2261 		(void) soabort(so);
2262 	return;
2263 
2264 drop:
2265 	/*
2266 	 * Drop space held by incoming segment and return.
2267 	 */
2268 #ifdef TCPDEBUG
2269 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2270 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2271 			  &tcp_savetcp, 0);
2272 #endif
2273 	m_freem(m);
2274 	/* destroy temporarily created socket */
2275 	if (dropsocket)
2276 		(void) soabort(so);
2277 	return;
2278 }
2279 
2280 static void
2281 tcp_dooptions(tp, cp, cnt, th, to)
2282 	struct tcpcb *tp;
2283 	u_char *cp;
2284 	int cnt;
2285 	struct tcphdr *th;
2286 	struct tcpopt *to;
2287 {
2288 	u_short mss = 0;
2289 	int opt, optlen;
2290 
2291 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2292 		opt = cp[0];
2293 		if (opt == TCPOPT_EOL)
2294 			break;
2295 		if (opt == TCPOPT_NOP)
2296 			optlen = 1;
2297 		else {
2298 			optlen = cp[1];
2299 			if (optlen <= 0)
2300 				break;
2301 		}
2302 		switch (opt) {
2303 
2304 		default:
2305 			continue;
2306 
2307 		case TCPOPT_MAXSEG:
2308 			if (optlen != TCPOLEN_MAXSEG)
2309 				continue;
2310 			if (!(th->th_flags & TH_SYN))
2311 				continue;
2312 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2313 			NTOHS(mss);
2314 			break;
2315 
2316 		case TCPOPT_WINDOW:
2317 			if (optlen != TCPOLEN_WINDOW)
2318 				continue;
2319 			if (!(th->th_flags & TH_SYN))
2320 				continue;
2321 			tp->t_flags |= TF_RCVD_SCALE;
2322 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2323 			break;
2324 
2325 		case TCPOPT_TIMESTAMP:
2326 			if (optlen != TCPOLEN_TIMESTAMP)
2327 				continue;
2328 			to->to_flag |= TOF_TS;
2329 			bcopy((char *)cp + 2,
2330 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2331 			NTOHL(to->to_tsval);
2332 			bcopy((char *)cp + 6,
2333 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2334 			NTOHL(to->to_tsecr);
2335 
2336 			/*
2337 			 * A timestamp received in a SYN makes
2338 			 * it ok to send timestamp requests and replies.
2339 			 */
2340 			if (th->th_flags & TH_SYN) {
2341 				tp->t_flags |= TF_RCVD_TSTMP;
2342 				tp->ts_recent = to->to_tsval;
2343 				tp->ts_recent_age = ticks;
2344 			}
2345 			break;
2346 		case TCPOPT_CC:
2347 			if (optlen != TCPOLEN_CC)
2348 				continue;
2349 			to->to_flag |= TOF_CC;
2350 			bcopy((char *)cp + 2,
2351 			    (char *)&to->to_cc, sizeof(to->to_cc));
2352 			NTOHL(to->to_cc);
2353 			/*
2354 			 * A CC or CC.new option received in a SYN makes
2355 			 * it ok to send CC in subsequent segments.
2356 			 */
2357 			if (th->th_flags & TH_SYN)
2358 				tp->t_flags |= TF_RCVD_CC;
2359 			break;
2360 		case TCPOPT_CCNEW:
2361 			if (optlen != TCPOLEN_CC)
2362 				continue;
2363 			if (!(th->th_flags & TH_SYN))
2364 				continue;
2365 			to->to_flag |= TOF_CCNEW;
2366 			bcopy((char *)cp + 2,
2367 			    (char *)&to->to_cc, sizeof(to->to_cc));
2368 			NTOHL(to->to_cc);
2369 			/*
2370 			 * A CC or CC.new option received in a SYN makes
2371 			 * it ok to send CC in subsequent segments.
2372 			 */
2373 			tp->t_flags |= TF_RCVD_CC;
2374 			break;
2375 		case TCPOPT_CCECHO:
2376 			if (optlen != TCPOLEN_CC)
2377 				continue;
2378 			if (!(th->th_flags & TH_SYN))
2379 				continue;
2380 			to->to_flag |= TOF_CCECHO;
2381 			bcopy((char *)cp + 2,
2382 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2383 			NTOHL(to->to_ccecho);
2384 			break;
2385 		}
2386 	}
2387 	if (th->th_flags & TH_SYN)
2388 		tcp_mss(tp, mss);	/* sets t_maxseg */
2389 }
2390 
2391 /*
2392  * Pull out of band byte out of a segment so
2393  * it doesn't appear in the user's data queue.
2394  * It is still reflected in the segment length for
2395  * sequencing purposes.
2396  */
2397 static void
2398 tcp_pulloutofband(so, th, m, off)
2399 	struct socket *so;
2400 	struct tcphdr *th;
2401 	register struct mbuf *m;
2402 	int off;		/* delayed to be droped hdrlen */
2403 {
2404 	int cnt = off + th->th_urp - 1;
2405 
2406 	while (cnt >= 0) {
2407 		if (m->m_len > cnt) {
2408 			char *cp = mtod(m, caddr_t) + cnt;
2409 			struct tcpcb *tp = sototcpcb(so);
2410 
2411 			tp->t_iobc = *cp;
2412 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2413 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2414 			m->m_len--;
2415 			if (m->m_flags & M_PKTHDR)
2416 				m->m_pkthdr.len--;
2417 			return;
2418 		}
2419 		cnt -= m->m_len;
2420 		m = m->m_next;
2421 		if (m == 0)
2422 			break;
2423 	}
2424 	panic("tcp_pulloutofband");
2425 }
2426 
2427 /*
2428  * Collect new round-trip time estimate
2429  * and update averages and current timeout.
2430  */
2431 static void
2432 tcp_xmit_timer(tp, rtt)
2433 	register struct tcpcb *tp;
2434 	int rtt;
2435 {
2436 	register int delta;
2437 
2438 	tcpstat.tcps_rttupdated++;
2439 	tp->t_rttupdated++;
2440 	if (tp->t_srtt != 0) {
2441 		/*
2442 		 * srtt is stored as fixed point with 5 bits after the
2443 		 * binary point (i.e., scaled by 8).  The following magic
2444 		 * is equivalent to the smoothing algorithm in rfc793 with
2445 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2446 		 * point).  Adjust rtt to origin 0.
2447 		 */
2448 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2449 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2450 
2451 		if ((tp->t_srtt += delta) <= 0)
2452 			tp->t_srtt = 1;
2453 
2454 		/*
2455 		 * We accumulate a smoothed rtt variance (actually, a
2456 		 * smoothed mean difference), then set the retransmit
2457 		 * timer to smoothed rtt + 4 times the smoothed variance.
2458 		 * rttvar is stored as fixed point with 4 bits after the
2459 		 * binary point (scaled by 16).  The following is
2460 		 * equivalent to rfc793 smoothing with an alpha of .75
2461 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2462 		 * rfc793's wired-in beta.
2463 		 */
2464 		if (delta < 0)
2465 			delta = -delta;
2466 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2467 		if ((tp->t_rttvar += delta) <= 0)
2468 			tp->t_rttvar = 1;
2469 	} else {
2470 		/*
2471 		 * No rtt measurement yet - use the unsmoothed rtt.
2472 		 * Set the variance to half the rtt (so our first
2473 		 * retransmit happens at 3*rtt).
2474 		 */
2475 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2476 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2477 	}
2478 	tp->t_rtttime = 0;
2479 	tp->t_rxtshift = 0;
2480 
2481 	/*
2482 	 * the retransmit should happen at rtt + 4 * rttvar.
2483 	 * Because of the way we do the smoothing, srtt and rttvar
2484 	 * will each average +1/2 tick of bias.  When we compute
2485 	 * the retransmit timer, we want 1/2 tick of rounding and
2486 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2487 	 * firing of the timer.  The bias will give us exactly the
2488 	 * 1.5 tick we need.  But, because the bias is
2489 	 * statistical, we have to test that we don't drop below
2490 	 * the minimum feasible timer (which is 2 ticks).
2491 	 */
2492 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2493 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2494 
2495 	/*
2496 	 * We received an ack for a packet that wasn't retransmitted;
2497 	 * it is probably safe to discard any error indications we've
2498 	 * received recently.  This isn't quite right, but close enough
2499 	 * for now (a route might have failed after we sent a segment,
2500 	 * and the return path might not be symmetrical).
2501 	 */
2502 	tp->t_softerror = 0;
2503 }
2504 
2505 /*
2506  * Determine a reasonable value for maxseg size.
2507  * If the route is known, check route for mtu.
2508  * If none, use an mss that can be handled on the outgoing
2509  * interface without forcing IP to fragment; if bigger than
2510  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2511  * to utilize large mbufs.  If no route is found, route has no mtu,
2512  * or the destination isn't local, use a default, hopefully conservative
2513  * size (usually 512 or the default IP max size, but no more than the mtu
2514  * of the interface), as we can't discover anything about intervening
2515  * gateways or networks.  We also initialize the congestion/slow start
2516  * window to be a single segment if the destination isn't local.
2517  * While looking at the routing entry, we also initialize other path-dependent
2518  * parameters from pre-set or cached values in the routing entry.
2519  *
2520  * Also take into account the space needed for options that we
2521  * send regularly.  Make maxseg shorter by that amount to assure
2522  * that we can send maxseg amount of data even when the options
2523  * are present.  Store the upper limit of the length of options plus
2524  * data in maxopd.
2525  *
2526  * NOTE that this routine is only called when we process an incoming
2527  * segment, for outgoing segments only tcp_mssopt is called.
2528  *
2529  * In case of T/TCP, we call this routine during implicit connection
2530  * setup as well (offer = -1), to initialize maxseg from the cached
2531  * MSS of our peer.
2532  */
2533 void
2534 tcp_mss(tp, offer)
2535 	struct tcpcb *tp;
2536 	int offer;
2537 {
2538 	register struct rtentry *rt;
2539 	struct ifnet *ifp;
2540 	register int rtt, mss;
2541 	u_long bufsize;
2542 	struct inpcb *inp;
2543 	struct socket *so;
2544 	struct rmxp_tao *taop;
2545 	int origoffer = offer;
2546 #ifdef INET6
2547 	int isipv6;
2548 	int min_protoh;
2549 #endif
2550 
2551 	inp = tp->t_inpcb;
2552 #ifdef INET6
2553 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2554 	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2555 			    : sizeof (struct tcpiphdr);
2556 #else
2557 #define min_protoh  (sizeof (struct tcpiphdr))
2558 #endif
2559 #ifdef INET6
2560 	if (isipv6)
2561 		rt = tcp_rtlookup6(inp);
2562 	else
2563 #endif
2564 	rt = tcp_rtlookup(inp);
2565 	if (rt == NULL) {
2566 		tp->t_maxopd = tp->t_maxseg =
2567 #ifdef INET6
2568 		isipv6 ? tcp_v6mssdflt :
2569 #endif /* INET6 */
2570 		tcp_mssdflt;
2571 		return;
2572 	}
2573 	ifp = rt->rt_ifp;
2574 	so = inp->inp_socket;
2575 
2576 	taop = rmx_taop(rt->rt_rmx);
2577 	/*
2578 	 * Offer == -1 means that we didn't receive SYN yet,
2579 	 * use cached value in that case;
2580 	 */
2581 	if (offer == -1)
2582 		offer = taop->tao_mssopt;
2583 	/*
2584 	 * Offer == 0 means that there was no MSS on the SYN segment,
2585 	 * in this case we use tcp_mssdflt.
2586 	 */
2587 	if (offer == 0)
2588 		offer =
2589 #ifdef INET6
2590 			isipv6 ? tcp_v6mssdflt :
2591 #endif /* INET6 */
2592 			tcp_mssdflt;
2593 	else
2594 		/*
2595 		 * Sanity check: make sure that maxopd will be large
2596 		 * enough to allow some data on segments even is the
2597 		 * all the option space is used (40bytes).  Otherwise
2598 		 * funny things may happen in tcp_output.
2599 		 */
2600 		offer = max(offer, 64);
2601 	taop->tao_mssopt = offer;
2602 
2603 	/*
2604 	 * While we're here, check if there's an initial rtt
2605 	 * or rttvar.  Convert from the route-table units
2606 	 * to scaled multiples of the slow timeout timer.
2607 	 */
2608 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2609 		/*
2610 		 * XXX the lock bit for RTT indicates that the value
2611 		 * is also a minimum value; this is subject to time.
2612 		 */
2613 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2614 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2615 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2616 		tcpstat.tcps_usedrtt++;
2617 		if (rt->rt_rmx.rmx_rttvar) {
2618 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2619 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2620 			tcpstat.tcps_usedrttvar++;
2621 		} else {
2622 			/* default variation is +- 1 rtt */
2623 			tp->t_rttvar =
2624 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2625 		}
2626 		TCPT_RANGESET(tp->t_rxtcur,
2627 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2628 			      tp->t_rttmin, TCPTV_REXMTMAX);
2629 	}
2630 	/*
2631 	 * if there's an mtu associated with the route, use it
2632 	 * else, use the link mtu.
2633 	 */
2634 	if (rt->rt_rmx.rmx_mtu)
2635 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2636 	else
2637 	{
2638 		mss =
2639 #ifdef INET6
2640 			(isipv6 ? nd_ifinfo[rt->rt_ifp->if_index].linkmtu :
2641 #endif
2642 			 ifp->if_mtu
2643 #ifdef INET6
2644 			 )
2645 #endif
2646 			- min_protoh;
2647 #ifdef INET6
2648 		if (isipv6) {
2649 			if (!in6_localaddr(&inp->in6p_faddr))
2650 				mss = min(mss, tcp_v6mssdflt);
2651 		} else
2652 #endif
2653 		if (!in_localaddr(inp->inp_faddr))
2654 			mss = min(mss, tcp_mssdflt);
2655 	}
2656 	mss = min(mss, offer);
2657 	/*
2658 	 * maxopd stores the maximum length of data AND options
2659 	 * in a segment; maxseg is the amount of data in a normal
2660 	 * segment.  We need to store this value (maxopd) apart
2661 	 * from maxseg, because now every segment carries options
2662 	 * and thus we normally have somewhat less data in segments.
2663 	 */
2664 	tp->t_maxopd = mss;
2665 
2666 	/*
2667 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2668 	 * were received yet.  In this case we just guess, otherwise
2669 	 * we do the same as before T/TCP.
2670 	 */
2671  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2672 	    (origoffer == -1 ||
2673 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2674 		mss -= TCPOLEN_TSTAMP_APPA;
2675  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2676 	    (origoffer == -1 ||
2677 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2678 		mss -= TCPOLEN_CC_APPA;
2679 
2680 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2681 		if (mss > MCLBYTES)
2682 			mss &= ~(MCLBYTES-1);
2683 #else
2684 		if (mss > MCLBYTES)
2685 			mss = mss / MCLBYTES * MCLBYTES;
2686 #endif
2687 	/*
2688 	 * If there's a pipesize, change the socket buffer
2689 	 * to that size.  Make the socket buffers an integral
2690 	 * number of mss units; if the mss is larger than
2691 	 * the socket buffer, decrease the mss.
2692 	 */
2693 #ifdef RTV_SPIPE
2694 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2695 #endif
2696 		bufsize = so->so_snd.sb_hiwat;
2697 	if (bufsize < mss)
2698 		mss = bufsize;
2699 	else {
2700 		bufsize = roundup(bufsize, mss);
2701 		if (bufsize > sb_max)
2702 			bufsize = sb_max;
2703 		(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2704 	}
2705 	tp->t_maxseg = mss;
2706 
2707 #ifdef RTV_RPIPE
2708 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2709 #endif
2710 		bufsize = so->so_rcv.sb_hiwat;
2711 	if (bufsize > mss) {
2712 		bufsize = roundup(bufsize, mss);
2713 		if (bufsize > sb_max)
2714 			bufsize = sb_max;
2715 		(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2716 	}
2717 
2718 	/*
2719 	 * Set the slow-start flight size depending on whether this
2720 	 * is a local network or not.
2721 	 */
2722 	if (
2723 #ifdef INET6
2724 	    (isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2725 	    (!isipv6 &&
2726 #endif
2727 	     in_localaddr(inp->inp_faddr)
2728 #ifdef INET6
2729 	     )
2730 #endif
2731 	    )
2732 		tp->snd_cwnd = mss * ss_fltsz_local;
2733 	else
2734 		tp->snd_cwnd = mss * ss_fltsz;
2735 
2736 	if (rt->rt_rmx.rmx_ssthresh) {
2737 		/*
2738 		 * There's some sort of gateway or interface
2739 		 * buffer limit on the path.  Use this to set
2740 		 * the slow start threshhold, but set the
2741 		 * threshold to no less than 2*mss.
2742 		 */
2743 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2744 		tcpstat.tcps_usedssthresh++;
2745 	}
2746 }
2747 
2748 /*
2749  * Determine the MSS option to send on an outgoing SYN.
2750  */
2751 int
2752 tcp_mssopt(tp)
2753 	struct tcpcb *tp;
2754 {
2755 	struct rtentry *rt;
2756 #ifdef INET6
2757 	int isipv6;
2758 	int min_protoh;
2759 #endif
2760 
2761 #ifdef INET6
2762 	isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2763 	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2764 			    : sizeof (struct tcpiphdr);
2765 #else
2766 #define min_protoh  (sizeof (struct tcpiphdr))
2767 #endif
2768 #ifdef INET6
2769 	if (isipv6)
2770 		rt = tcp_rtlookup6(tp->t_inpcb);
2771 	else
2772 #endif /* INET6 */
2773 	rt = tcp_rtlookup(tp->t_inpcb);
2774 	if (rt == NULL)
2775 		return
2776 #ifdef INET6
2777 			isipv6 ? tcp_v6mssdflt :
2778 #endif /* INET6 */
2779 			tcp_mssdflt;
2780 
2781 	return rt->rt_ifp->if_mtu - min_protoh;
2782 }
2783