xref: /freebsd/sys/netinet/tcp_reass.c (revision d37ea99837e6ad50837fd9fe1771ddf1c3ba6002)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_input.h"
40 #include "opt_tcp_sack.h"
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/mac.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>		/* for proc0 declaration */
48 #include <sys/protosw.h>
49 #include <sys/signalvar.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 
56 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70 #include <netinet/ip_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/in6_pcb.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #ifdef TCPDEBUG
84 #include <netinet/tcp_debug.h>
85 #endif /* TCPDEBUG */
86 
87 #ifdef FAST_IPSEC
88 #include <netipsec/ipsec.h>
89 #include <netipsec/ipsec6.h>
90 #endif /*FAST_IPSEC*/
91 
92 #ifdef IPSEC
93 #include <netinet6/ipsec.h>
94 #include <netinet6/ipsec6.h>
95 #include <netkey/key.h>
96 #endif /*IPSEC*/
97 
98 #include <machine/in_cksum.h>
99 
100 static const int tcprexmtthresh = 3;
101 tcp_cc	tcp_ccgen;
102 
103 struct	tcpstat tcpstat;
104 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
105     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
106 
107 static int log_in_vain = 0;
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
109     &log_in_vain, 0, "Log all incoming TCP connections");
110 
111 static int blackhole = 0;
112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
113 	&blackhole, 0, "Do not send RST when dropping refused connections");
114 
115 int tcp_delack_enabled = 1;
116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
117     &tcp_delack_enabled, 0,
118     "Delay ACK to try and piggyback it onto a data packet");
119 
120 #ifdef TCP_DROP_SYNFIN
121 static int drop_synfin = 0;
122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
123     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
124 #endif
125 
126 static int tcp_do_rfc3042 = 1;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
128     &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
129 
130 static int tcp_do_rfc3390 = 1;
131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
132     &tcp_do_rfc3390, 0,
133     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
134 
135 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
136 	    "TCP Segment Reassembly Queue");
137 
138 static int tcp_reass_maxseg = 0;
139 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
140 	   &tcp_reass_maxseg, 0,
141 	   "Global maximum number of TCP Segments in Reassembly Queue");
142 
143 int tcp_reass_qsize = 0;
144 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
145 	   &tcp_reass_qsize, 0,
146 	   "Global number of TCP Segments currently in Reassembly Queue");
147 
148 static int tcp_reass_maxqlen = 48;
149 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
150 	   &tcp_reass_maxqlen, 0,
151 	   "Maximum number of TCP Segments per individual Reassembly Queue");
152 
153 static int tcp_reass_overflows = 0;
154 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
155 	   &tcp_reass_overflows, 0,
156 	   "Global number of TCP Segment Reassembly Queue Overflows");
157 
158 struct inpcbhead tcb;
159 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
160 struct inpcbinfo tcbinfo;
161 struct mtx	*tcbinfo_mtx;
162 
163 static void	 tcp_dooptions(struct tcpcb *, struct tcpopt *, u_char *,
164 		     int, int, struct tcphdr *);
165 
166 static void	 tcp_pulloutofband(struct socket *,
167 		     struct tcphdr *, struct mbuf *, int);
168 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
169 		     struct mbuf *);
170 static void	 tcp_xmit_timer(struct tcpcb *, int);
171 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
172 static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
173 		     struct tcphdr *, struct mbuf *, int);
174 
175 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
176 #ifdef INET6
177 #define ND6_HINT(tp) \
178 do { \
179 	if ((tp) && (tp)->t_inpcb && \
180 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
181 		nd6_nud_hint(NULL, NULL, 0); \
182 } while (0)
183 #else
184 #define ND6_HINT(tp)
185 #endif
186 
187 /*
188  * Indicate whether this ack should be delayed.  We can delay the ack if
189  *	- there is no delayed ack timer in progress and
190  *	- our last ack wasn't a 0-sized window.  We never want to delay
191  *	  the ack that opens up a 0-sized window and
192  *		- delayed acks are enabled or
193  *		- this is a half-synchronized T/TCP connection.
194  */
195 #define DELAY_ACK(tp)							\
196 	((!callout_active(tp->tt_delack) &&				\
197 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
198 	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
199 
200 /* Initialize TCP reassembly queue */
201 uma_zone_t	tcp_reass_zone;
202 void
203 tcp_reass_init()
204 {
205 	tcp_reass_maxseg = nmbclusters / 16;
206 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
207 	    &tcp_reass_maxseg);
208 	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
210 	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
211 }
212 
213 static int
214 tcp_reass(tp, th, tlenp, m)
215 	register struct tcpcb *tp;
216 	register struct tcphdr *th;
217 	int *tlenp;
218 	struct mbuf *m;
219 {
220 	struct tseg_qent *q;
221 	struct tseg_qent *p = NULL;
222 	struct tseg_qent *nq;
223 	struct tseg_qent *te = NULL;
224 	struct socket *so = tp->t_inpcb->inp_socket;
225 	int flags;
226 
227 	/*
228 	 * XXX: tcp_reass() is rather inefficient with its data structures
229 	 * and should be rewritten (see NetBSD for optimizations).  While
230 	 * doing that it should move to its own file tcp_reass.c.
231 	 */
232 
233 	/*
234 	 * Call with th==0 after become established to
235 	 * force pre-ESTABLISHED data up to user socket.
236 	 */
237 	if (th == 0)
238 		goto present;
239 
240 	/*
241 	 * Limit the number of segments in the reassembly queue to prevent
242 	 * holding on to too many segments (and thus running out of mbufs).
243 	 * Make sure to let the missing segment through which caused this
244 	 * queue.  Always keep one global queue entry spare to be able to
245 	 * process the missing segment.
246 	 */
247 	if (th->th_seq != tp->rcv_nxt &&
248 	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
249 	     tp->t_segqlen >= tcp_reass_maxqlen)) {
250 		tcp_reass_overflows++;
251 		tcpstat.tcps_rcvmemdrop++;
252 		m_freem(m);
253 		return (0);
254 	}
255 
256 	/*
257 	 * Allocate a new queue entry. If we can't, or hit the zone limit
258 	 * just drop the pkt.
259 	 */
260 	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
261 	if (te == NULL) {
262 		tcpstat.tcps_rcvmemdrop++;
263 		m_freem(m);
264 		return (0);
265 	}
266 	tp->t_segqlen++;
267 	tcp_reass_qsize++;
268 
269 	/*
270 	 * Find a segment which begins after this one does.
271 	 */
272 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
273 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
274 			break;
275 		p = q;
276 	}
277 
278 	/*
279 	 * If there is a preceding segment, it may provide some of
280 	 * our data already.  If so, drop the data from the incoming
281 	 * segment.  If it provides all of our data, drop us.
282 	 */
283 	if (p != NULL) {
284 		register int i;
285 		/* conversion to int (in i) handles seq wraparound */
286 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
287 		if (i > 0) {
288 			if (i >= *tlenp) {
289 				tcpstat.tcps_rcvduppack++;
290 				tcpstat.tcps_rcvdupbyte += *tlenp;
291 				m_freem(m);
292 				uma_zfree(tcp_reass_zone, te);
293 				tp->t_segqlen--;
294 				tcp_reass_qsize--;
295 				/*
296 				 * Try to present any queued data
297 				 * at the left window edge to the user.
298 				 * This is needed after the 3-WHS
299 				 * completes.
300 				 */
301 				goto present;	/* ??? */
302 			}
303 			m_adj(m, i);
304 			*tlenp -= i;
305 			th->th_seq += i;
306 		}
307 	}
308 	tcpstat.tcps_rcvoopack++;
309 	tcpstat.tcps_rcvoobyte += *tlenp;
310 
311 	/*
312 	 * While we overlap succeeding segments trim them or,
313 	 * if they are completely covered, dequeue them.
314 	 */
315 	while (q) {
316 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
317 		if (i <= 0)
318 			break;
319 		if (i < q->tqe_len) {
320 			q->tqe_th->th_seq += i;
321 			q->tqe_len -= i;
322 			m_adj(q->tqe_m, i);
323 			break;
324 		}
325 
326 		nq = LIST_NEXT(q, tqe_q);
327 		LIST_REMOVE(q, tqe_q);
328 		m_freem(q->tqe_m);
329 		uma_zfree(tcp_reass_zone, q);
330 		tp->t_segqlen--;
331 		tcp_reass_qsize--;
332 		q = nq;
333 	}
334 
335 	/* Insert the new segment queue entry into place. */
336 	te->tqe_m = m;
337 	te->tqe_th = th;
338 	te->tqe_len = *tlenp;
339 
340 	if (p == NULL) {
341 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
342 	} else {
343 		LIST_INSERT_AFTER(p, te, tqe_q);
344 	}
345 
346 present:
347 	/*
348 	 * Present data to user, advancing rcv_nxt through
349 	 * completed sequence space.
350 	 */
351 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
352 		return (0);
353 	q = LIST_FIRST(&tp->t_segq);
354 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
355 		return (0);
356 	SOCKBUF_LOCK(&so->so_rcv);
357 	do {
358 		tp->rcv_nxt += q->tqe_len;
359 		flags = q->tqe_th->th_flags & TH_FIN;
360 		nq = LIST_NEXT(q, tqe_q);
361 		LIST_REMOVE(q, tqe_q);
362 		/* Unlocked read. */
363 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
364 			m_freem(q->tqe_m);
365 		else
366 			sbappendstream_locked(&so->so_rcv, q->tqe_m);
367 		uma_zfree(tcp_reass_zone, q);
368 		tp->t_segqlen--;
369 		tcp_reass_qsize--;
370 		q = nq;
371 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
372 	ND6_HINT(tp);
373 	sorwakeup_locked(so);
374 	return (flags);
375 }
376 
377 /*
378  * TCP input routine, follows pages 65-76 of the
379  * protocol specification dated September, 1981 very closely.
380  */
381 #ifdef INET6
382 int
383 tcp6_input(mp, offp, proto)
384 	struct mbuf **mp;
385 	int *offp, proto;
386 {
387 	register struct mbuf *m = *mp;
388 	struct in6_ifaddr *ia6;
389 
390 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
391 
392 	/*
393 	 * draft-itojun-ipv6-tcp-to-anycast
394 	 * better place to put this in?
395 	 */
396 	ia6 = ip6_getdstifaddr(m);
397 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
398 		struct ip6_hdr *ip6;
399 
400 		ip6 = mtod(m, struct ip6_hdr *);
401 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
402 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
403 		return IPPROTO_DONE;
404 	}
405 
406 	tcp_input(m, *offp);
407 	return IPPROTO_DONE;
408 }
409 #endif
410 
411 void
412 tcp_input(m, off0)
413 	register struct mbuf *m;
414 	int off0;
415 {
416 	register struct tcphdr *th;
417 	register struct ip *ip = NULL;
418 	register struct ipovly *ipov;
419 	register struct inpcb *inp = NULL;
420 	u_char *optp = NULL;
421 	int optlen = 0;
422 	int len, tlen, off;
423 	int drop_hdrlen;
424 	register struct tcpcb *tp = 0;
425 	register int thflags;
426 	struct socket *so = 0;
427 	int todrop, acked, ourfinisacked, needoutput = 0;
428 	u_long tiwin;
429 	struct tcpopt to;		/* options in this segment */
430 	struct rmxp_tao tao;		/* our TAO cache entry */
431 	int headlocked = 0;
432 	struct sockaddr_in *next_hop = NULL;
433 	int rstreason; /* For badport_bandlim accounting purposes */
434 
435 	struct ip6_hdr *ip6 = NULL;
436 #ifdef INET6
437 	int isipv6;
438 #else
439 	const int isipv6 = 0;
440 #endif
441 
442 #ifdef TCPDEBUG
443 	/*
444 	 * The size of tcp_saveipgen must be the size of the max ip header,
445 	 * now IPv6.
446 	 */
447 	u_char tcp_saveipgen[40];
448 	struct tcphdr tcp_savetcp;
449 	short ostate = 0;
450 #endif
451 
452 	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
453 	next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
454 #ifdef INET6
455 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
456 #endif
457 	bzero(&tao, sizeof(tao));
458 	bzero((char *)&to, sizeof(to));
459 
460 	tcpstat.tcps_rcvtotal++;
461 
462 	if (isipv6) {
463 #ifdef INET6
464 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
465 		ip6 = mtod(m, struct ip6_hdr *);
466 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
467 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
468 			tcpstat.tcps_rcvbadsum++;
469 			goto drop;
470 		}
471 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
472 
473 		/*
474 		 * Be proactive about unspecified IPv6 address in source.
475 		 * As we use all-zero to indicate unbounded/unconnected pcb,
476 		 * unspecified IPv6 address can be used to confuse us.
477 		 *
478 		 * Note that packets with unspecified IPv6 destination is
479 		 * already dropped in ip6_input.
480 		 */
481 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
482 			/* XXX stat */
483 			goto drop;
484 		}
485 #else
486 		th = NULL;		/* XXX: avoid compiler warning */
487 #endif
488 	} else {
489 		/*
490 		 * Get IP and TCP header together in first mbuf.
491 		 * Note: IP leaves IP header in first mbuf.
492 		 */
493 		if (off0 > sizeof (struct ip)) {
494 			ip_stripoptions(m, (struct mbuf *)0);
495 			off0 = sizeof(struct ip);
496 		}
497 		if (m->m_len < sizeof (struct tcpiphdr)) {
498 			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
499 				tcpstat.tcps_rcvshort++;
500 				return;
501 			}
502 		}
503 		ip = mtod(m, struct ip *);
504 		ipov = (struct ipovly *)ip;
505 		th = (struct tcphdr *)((caddr_t)ip + off0);
506 		tlen = ip->ip_len;
507 
508 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
509 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
510 				th->th_sum = m->m_pkthdr.csum_data;
511 			else
512 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
513 						ip->ip_dst.s_addr,
514 						htonl(m->m_pkthdr.csum_data +
515 							ip->ip_len +
516 							IPPROTO_TCP));
517 			th->th_sum ^= 0xffff;
518 #ifdef TCPDEBUG
519 			ipov->ih_len = (u_short)tlen;
520 			ipov->ih_len = htons(ipov->ih_len);
521 #endif
522 		} else {
523 			/*
524 			 * Checksum extended TCP header and data.
525 			 */
526 			len = sizeof (struct ip) + tlen;
527 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
528 			ipov->ih_len = (u_short)tlen;
529 			ipov->ih_len = htons(ipov->ih_len);
530 			th->th_sum = in_cksum(m, len);
531 		}
532 		if (th->th_sum) {
533 			tcpstat.tcps_rcvbadsum++;
534 			goto drop;
535 		}
536 #ifdef INET6
537 		/* Re-initialization for later version check */
538 		ip->ip_v = IPVERSION;
539 #endif
540 	}
541 
542 	/*
543 	 * Check that TCP offset makes sense,
544 	 * pull out TCP options and adjust length.		XXX
545 	 */
546 	off = th->th_off << 2;
547 	if (off < sizeof (struct tcphdr) || off > tlen) {
548 		tcpstat.tcps_rcvbadoff++;
549 		goto drop;
550 	}
551 	tlen -= off;	/* tlen is used instead of ti->ti_len */
552 	if (off > sizeof (struct tcphdr)) {
553 		if (isipv6) {
554 #ifdef INET6
555 			IP6_EXTHDR_CHECK(m, off0, off, );
556 			ip6 = mtod(m, struct ip6_hdr *);
557 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
558 #endif
559 		} else {
560 			if (m->m_len < sizeof(struct ip) + off) {
561 				if ((m = m_pullup(m, sizeof (struct ip) + off))
562 						== 0) {
563 					tcpstat.tcps_rcvshort++;
564 					return;
565 				}
566 				ip = mtod(m, struct ip *);
567 				ipov = (struct ipovly *)ip;
568 				th = (struct tcphdr *)((caddr_t)ip + off0);
569 			}
570 		}
571 		optlen = off - sizeof (struct tcphdr);
572 		optp = (u_char *)(th + 1);
573 	}
574 	thflags = th->th_flags;
575 
576 #ifdef TCP_DROP_SYNFIN
577 	/*
578 	 * If the drop_synfin option is enabled, drop all packets with
579 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
580 	 * identifying the TCP/IP stack.
581 	 *
582 	 * This is a violation of the TCP specification.
583 	 */
584 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
585 		goto drop;
586 #endif
587 
588 	/*
589 	 * Convert TCP protocol specific fields to host format.
590 	 */
591 	th->th_seq = ntohl(th->th_seq);
592 	th->th_ack = ntohl(th->th_ack);
593 	th->th_win = ntohs(th->th_win);
594 	th->th_urp = ntohs(th->th_urp);
595 
596 	/*
597 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
598 	 * until after ip6_savecontrol() is called and before other functions
599 	 * which don't want those proto headers.
600 	 * Because ip6_savecontrol() is going to parse the mbuf to
601 	 * search for data to be passed up to user-land, it wants mbuf
602 	 * parameters to be unchanged.
603 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
604 	 * latest version of the advanced API (20020110).
605 	 */
606 	drop_hdrlen = off0 + off;
607 
608 	/*
609 	 * Locate pcb for segment.
610 	 */
611 	INP_INFO_WLOCK(&tcbinfo);
612 	headlocked = 1;
613 findpcb:
614 	/* IPFIREWALL_FORWARD section */
615 	if (next_hop != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
616 		/*
617 		 * Transparently forwarded. Pretend to be the destination.
618 		 * already got one like this?
619 		 */
620 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
621 					ip->ip_dst, th->th_dport,
622 					0, m->m_pkthdr.rcvif);
623 		if (!inp) {
624 			/* It's new.  Try find the ambushing socket. */
625 			inp = in_pcblookup_hash(&tcbinfo,
626 						ip->ip_src, th->th_sport,
627 						next_hop->sin_addr,
628 						next_hop->sin_port ?
629 						    ntohs(next_hop->sin_port) :
630 						    th->th_dport,
631 						1, m->m_pkthdr.rcvif);
632 		}
633 	} else {
634 		if (isipv6) {
635 #ifdef INET6
636 			inp = in6_pcblookup_hash(&tcbinfo,
637 						 &ip6->ip6_src, th->th_sport,
638 						 &ip6->ip6_dst, th->th_dport,
639 						 1, m->m_pkthdr.rcvif);
640 #endif
641 		} else
642 			inp = in_pcblookup_hash(&tcbinfo,
643 						ip->ip_src, th->th_sport,
644 						ip->ip_dst, th->th_dport,
645 						1, m->m_pkthdr.rcvif);
646       }
647 
648 #if defined(IPSEC) || defined(FAST_IPSEC)
649 #ifdef INET6
650 	if (isipv6) {
651 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
652 #ifdef IPSEC
653 			ipsec6stat.in_polvio++;
654 #endif
655 			goto drop;
656 		}
657 	} else
658 #endif /* INET6 */
659 	if (inp != NULL && ipsec4_in_reject(m, inp)) {
660 #ifdef IPSEC
661 		ipsecstat.in_polvio++;
662 #endif
663 		goto drop;
664 	}
665 #endif /*IPSEC || FAST_IPSEC*/
666 
667 	/*
668 	 * If the state is CLOSED (i.e., TCB does not exist) then
669 	 * all data in the incoming segment is discarded.
670 	 * If the TCB exists but is in CLOSED state, it is embryonic,
671 	 * but should either do a listen or a connect soon.
672 	 */
673 	if (inp == NULL) {
674 		if (log_in_vain) {
675 #ifdef INET6
676 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
677 #else
678 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
679 #endif
680 
681 			if (isipv6) {
682 #ifdef INET6
683 				strcpy(dbuf, "[");
684 				strcpy(sbuf, "[");
685 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
686 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
687 				strcat(dbuf, "]");
688 				strcat(sbuf, "]");
689 #endif
690 			} else {
691 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
692 				strcpy(sbuf, inet_ntoa(ip->ip_src));
693 			}
694 			switch (log_in_vain) {
695 			case 1:
696 				if ((thflags & TH_SYN) == 0)
697 					break;
698 				/* FALLTHROUGH */
699 			case 2:
700 				log(LOG_INFO,
701 				    "Connection attempt to TCP %s:%d "
702 				    "from %s:%d flags:0x%02x\n",
703 				    dbuf, ntohs(th->th_dport), sbuf,
704 				    ntohs(th->th_sport), thflags);
705 				break;
706 			default:
707 				break;
708 			}
709 		}
710 		if (blackhole) {
711 			switch (blackhole) {
712 			case 1:
713 				if (thflags & TH_SYN)
714 					goto drop;
715 				break;
716 			case 2:
717 				goto drop;
718 			default:
719 				goto drop;
720 			}
721 		}
722 		rstreason = BANDLIM_RST_CLOSEDPORT;
723 		goto dropwithreset;
724 	}
725 	INP_LOCK(inp);
726 	if (inp->inp_vflag & INP_TIMEWAIT) {
727 		/*
728 		 * The only option of relevance is TOF_CC, and only if
729 		 * present in a SYN segment.  See tcp_timewait().
730 		 */
731 		if (thflags & TH_SYN)
732 			tcp_dooptions((struct tcpcb *)NULL, &to, optp, optlen, 1, th);
733 		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
734 		    &to, th, m, tlen))
735 			goto findpcb;
736 		/*
737 		 * tcp_timewait unlocks inp.
738 		 */
739 		INP_INFO_WUNLOCK(&tcbinfo);
740 		return;
741 	}
742 	tp = intotcpcb(inp);
743 	if (tp == 0) {
744 		INP_UNLOCK(inp);
745 		rstreason = BANDLIM_RST_CLOSEDPORT;
746 		goto dropwithreset;
747 	}
748 	if (tp->t_state == TCPS_CLOSED)
749 		goto drop;
750 
751 	/* Unscale the window into a 32-bit value. */
752 	if ((thflags & TH_SYN) == 0)
753 		tiwin = th->th_win << tp->snd_scale;
754 	else
755 		tiwin = th->th_win;
756 
757 #ifdef MAC
758 	INP_LOCK_ASSERT(inp);
759 	if (mac_check_inpcb_deliver(inp, m))
760 		goto drop;
761 #endif
762 	so = inp->inp_socket;
763 #ifdef TCPDEBUG
764 	if (so->so_options & SO_DEBUG) {
765 		ostate = tp->t_state;
766 		if (isipv6)
767 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
768 		else
769 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
770 		tcp_savetcp = *th;
771 	}
772 #endif
773 	if (so->so_options & SO_ACCEPTCONN) {
774 		struct in_conninfo inc;
775 
776 #ifdef INET6
777 		inc.inc_isipv6 = isipv6;
778 #endif
779 		if (isipv6) {
780 			inc.inc6_faddr = ip6->ip6_src;
781 			inc.inc6_laddr = ip6->ip6_dst;
782 		} else {
783 			inc.inc_faddr = ip->ip_src;
784 			inc.inc_laddr = ip->ip_dst;
785 		}
786 		inc.inc_fport = th->th_sport;
787 		inc.inc_lport = th->th_dport;
788 
789 	        /*
790 	         * If the state is LISTEN then ignore segment if it contains
791 		 * a RST.  If the segment contains an ACK then it is bad and
792 		 * send a RST.  If it does not contain a SYN then it is not
793 		 * interesting; drop it.
794 		 *
795 		 * If the state is SYN_RECEIVED (syncache) and seg contains
796 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
797 		 * contains a RST, check the sequence number to see if it
798 		 * is a valid reset segment.
799 		 */
800 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
801 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
802 				if (!syncache_expand(&inc, th, &so, m)) {
803 					/*
804 					 * No syncache entry, or ACK was not
805 					 * for our SYN/ACK.  Send a RST.
806 					 */
807 					tcpstat.tcps_badsyn++;
808 					rstreason = BANDLIM_RST_OPENPORT;
809 					goto dropwithreset;
810 				}
811 				if (so == NULL) {
812 					/*
813 					 * Could not complete 3-way handshake,
814 					 * connection is being closed down, and
815 					 * syncache will free mbuf.
816 					 */
817 					INP_UNLOCK(inp);
818 					INP_INFO_WUNLOCK(&tcbinfo);
819 					return;
820 				}
821 				/*
822 				 * Socket is created in state SYN_RECEIVED.
823 				 * Continue processing segment.
824 				 */
825 				INP_UNLOCK(inp);
826 				inp = sotoinpcb(so);
827 				INP_LOCK(inp);
828 				tp = intotcpcb(inp);
829 				/*
830 				 * This is what would have happened in
831 				 * tcp_output() when the SYN,ACK was sent.
832 				 */
833 				tp->snd_up = tp->snd_una;
834 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
835 				tp->last_ack_sent = tp->rcv_nxt;
836 				/*
837 				 * RFC1323: The window in SYN & SYN/ACK
838 				 * segments is never scaled.
839 				 */
840 				tp->snd_wnd = tiwin;	/* unscaled */
841 				goto after_listen;
842 			}
843 			if (thflags & TH_RST) {
844 				syncache_chkrst(&inc, th);
845 				goto drop;
846 			}
847 			if (thflags & TH_ACK) {
848 				syncache_badack(&inc);
849 				tcpstat.tcps_badsyn++;
850 				rstreason = BANDLIM_RST_OPENPORT;
851 				goto dropwithreset;
852 			}
853 			goto drop;
854 		}
855 
856 		/*
857 		 * Segment's flags are (SYN) or (SYN|FIN).
858 		 */
859 #ifdef INET6
860 		/*
861 		 * If deprecated address is forbidden,
862 		 * we do not accept SYN to deprecated interface
863 		 * address to prevent any new inbound connection from
864 		 * getting established.
865 		 * When we do not accept SYN, we send a TCP RST,
866 		 * with deprecated source address (instead of dropping
867 		 * it).  We compromise it as it is much better for peer
868 		 * to send a RST, and RST will be the final packet
869 		 * for the exchange.
870 		 *
871 		 * If we do not forbid deprecated addresses, we accept
872 		 * the SYN packet.  RFC2462 does not suggest dropping
873 		 * SYN in this case.
874 		 * If we decipher RFC2462 5.5.4, it says like this:
875 		 * 1. use of deprecated addr with existing
876 		 *    communication is okay - "SHOULD continue to be
877 		 *    used"
878 		 * 2. use of it with new communication:
879 		 *   (2a) "SHOULD NOT be used if alternate address
880 		 *        with sufficient scope is available"
881 		 *   (2b) nothing mentioned otherwise.
882 		 * Here we fall into (2b) case as we have no choice in
883 		 * our source address selection - we must obey the peer.
884 		 *
885 		 * The wording in RFC2462 is confusing, and there are
886 		 * multiple description text for deprecated address
887 		 * handling - worse, they are not exactly the same.
888 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
889 		 */
890 		if (isipv6 && !ip6_use_deprecated) {
891 			struct in6_ifaddr *ia6;
892 
893 			if ((ia6 = ip6_getdstifaddr(m)) &&
894 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
895 				INP_UNLOCK(inp);
896 				tp = NULL;
897 				rstreason = BANDLIM_RST_OPENPORT;
898 				goto dropwithreset;
899 			}
900 		}
901 #endif
902 		/*
903 		 * If it is from this socket, drop it, it must be forged.
904 		 * Don't bother responding if the destination was a broadcast.
905 		 */
906 		if (th->th_dport == th->th_sport) {
907 			if (isipv6) {
908 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
909 						       &ip6->ip6_src))
910 					goto drop;
911 			} else {
912 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
913 					goto drop;
914 			}
915 		}
916 		/*
917 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
918 		 *
919 		 * Note that it is quite possible to receive unicast
920 		 * link-layer packets with a broadcast IP address. Use
921 		 * in_broadcast() to find them.
922 		 */
923 		if (m->m_flags & (M_BCAST|M_MCAST))
924 			goto drop;
925 		if (isipv6) {
926 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
927 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
928 				goto drop;
929 		} else {
930 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
931 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
932 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
933 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
934 				goto drop;
935 		}
936 		/*
937 		 * SYN appears to be valid; create compressed TCP state
938 		 * for syncache, or perform t/tcp connection.
939 		 */
940 		if (so->so_qlen <= so->so_qlimit) {
941 #ifdef TCPDEBUG
942 			if (so->so_options & SO_DEBUG)
943 				tcp_trace(TA_INPUT, ostate, tp,
944 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
945 #endif
946 			tcp_dooptions(tp, &to, optp, optlen, 1, th);
947 			if (!syncache_add(&inc, &to, th, &so, m))
948 				goto drop;
949 			if (so == NULL) {
950 				/*
951 				 * Entry added to syncache, mbuf used to
952 				 * send SYN,ACK packet.
953 				 */
954 				KASSERT(headlocked, ("headlocked"));
955 				INP_UNLOCK(inp);
956 				INP_INFO_WUNLOCK(&tcbinfo);
957 				return;
958 			}
959 			/*
960 			 * Segment passed TAO tests.
961 			 */
962 			INP_UNLOCK(inp);
963 			inp = sotoinpcb(so);
964 			INP_LOCK(inp);
965 			tp = intotcpcb(inp);
966 			tp->snd_wnd = tiwin;
967 			tp->t_starttime = ticks;
968 			tp->t_state = TCPS_ESTABLISHED;
969 
970 			/*
971 			 * T/TCP logic:
972 			 * If there is a FIN or if there is data, then
973 			 * delay SYN,ACK(SYN) in the hope of piggy-backing
974 			 * it on a response segment.  Otherwise must send
975 			 * ACK now in case the other side is slow starting.
976 			 */
977 			if (thflags & TH_FIN || tlen != 0)
978 				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
979 			else
980 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
981 			tcpstat.tcps_connects++;
982 			soisconnected(so);
983 			goto trimthenstep6;
984 		}
985 		goto drop;
986 	}
987 after_listen:
988 
989 	/* XXX temp debugging */
990 	/* should not happen - syncache should pick up these connections */
991 	if (tp->t_state == TCPS_LISTEN)
992 		panic("tcp_input: TCPS_LISTEN");
993 
994 	/*
995 	 * This is the second part of the MSS DoS prevention code (after
996 	 * minmss on the sending side) and it deals with too many too small
997 	 * tcp packets in a too short timeframe (1 second).
998 	 *
999 	 * For every full second we count the number of received packets
1000 	 * and bytes. If we get a lot of packets per second for this connection
1001 	 * (tcp_minmssoverload) we take a closer look at it and compute the
1002 	 * average packet size for the past second. If that is less than
1003 	 * tcp_minmss we get too many packets with very small payload which
1004 	 * is not good and burdens our system (and every packet generates
1005 	 * a wakeup to the process connected to our socket). We can reasonable
1006 	 * expect this to be small packet DoS attack to exhaust our CPU
1007 	 * cycles.
1008 	 *
1009 	 * Care has to be taken for the minimum packet overload value. This
1010 	 * value defines the minimum number of packets per second before we
1011 	 * start to worry. This must not be too low to avoid killing for
1012 	 * example interactive connections with many small packets like
1013 	 * telnet or SSH.
1014 	 *
1015 	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1016 	 * this check.
1017 	 *
1018 	 * Account for packet if payload packet, skip over ACK, etc.
1019 	 */
1020 	if (tcp_minmss && tcp_minmssoverload &&
1021 	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1022 		if (tp->rcv_second > ticks) {
1023 			tp->rcv_pps++;
1024 			tp->rcv_byps += tlen + off;
1025 			if (tp->rcv_pps > tcp_minmssoverload) {
1026 				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1027 					printf("too many small tcp packets from "
1028 					       "%s:%u, av. %lubyte/packet, "
1029 					       "dropping connection\n",
1030 #ifdef INET6
1031 						isipv6 ?
1032 						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1033 #endif
1034 						inet_ntoa(inp->inp_inc.inc_faddr),
1035 						inp->inp_inc.inc_fport,
1036 						tp->rcv_byps / tp->rcv_pps);
1037 					tp = tcp_drop(tp, ECONNRESET);
1038 					tcpstat.tcps_minmssdrops++;
1039 					goto drop;
1040 				}
1041 			}
1042 		} else {
1043 			tp->rcv_second = ticks + hz;
1044 			tp->rcv_pps = 1;
1045 			tp->rcv_byps = tlen + off;
1046 		}
1047 	}
1048 
1049 	/*
1050 	 * Segment received on connection.
1051 	 * Reset idle time and keep-alive timer.
1052 	 */
1053 	tp->t_rcvtime = ticks;
1054 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1055 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1056 
1057 	/*
1058 	 * Process options only when we get SYN/ACK back. The SYN case
1059 	 * for incoming connections is handled in tcp_syncache.
1060 	 * XXX this is traditional behavior, may need to be cleaned up.
1061 	 */
1062 	tcp_dooptions(tp, &to, optp, optlen, thflags & TH_SYN, th);
1063 	if (thflags & TH_SYN) {
1064 		if (to.to_flags & TOF_SCALE) {
1065 			tp->t_flags |= TF_RCVD_SCALE;
1066 			tp->requested_s_scale = to.to_requested_s_scale;
1067 		}
1068 		if (to.to_flags & TOF_TS) {
1069 			tp->t_flags |= TF_RCVD_TSTMP;
1070 			tp->ts_recent = to.to_tsval;
1071 			tp->ts_recent_age = ticks;
1072 		}
1073 		if (to.to_flags & (TOF_CC|TOF_CCNEW))
1074 			tp->t_flags |= TF_RCVD_CC;
1075 		if (to.to_flags & TOF_MSS)
1076 			tcp_mss(tp, to.to_mss);
1077 		if (tp->sack_enable) {
1078 			if (!(to.to_flags & TOF_SACK))
1079 				tp->sack_enable = 0;
1080 			else
1081 				tp->t_flags |= TF_SACK_PERMIT;
1082 		}
1083 
1084 	}
1085 
1086 	if (tp->sack_enable) {
1087 		/* Delete stale (cumulatively acked) SACK holes */
1088 		tcp_del_sackholes(tp, th);
1089 		tp->rcv_laststart = th->th_seq; /* last recv'd segment*/
1090 		tp->rcv_lastend = th->th_seq + tlen;
1091 	}
1092 
1093 	/*
1094 	 * Header prediction: check for the two common cases
1095 	 * of a uni-directional data xfer.  If the packet has
1096 	 * no control flags, is in-sequence, the window didn't
1097 	 * change and we're not retransmitting, it's a
1098 	 * candidate.  If the length is zero and the ack moved
1099 	 * forward, we're the sender side of the xfer.  Just
1100 	 * free the data acked & wake any higher level process
1101 	 * that was blocked waiting for space.  If the length
1102 	 * is non-zero and the ack didn't move, we're the
1103 	 * receiver side.  If we're getting packets in-order
1104 	 * (the reassembly queue is empty), add the data to
1105 	 * the socket buffer and note that we need a delayed ack.
1106 	 * Make sure that the hidden state-flags are also off.
1107 	 * Since we check for TCPS_ESTABLISHED above, it can only
1108 	 * be TH_NEEDSYN.
1109 	 */
1110 	if (tp->t_state == TCPS_ESTABLISHED &&
1111 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1112 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1113 	    ((to.to_flags & TOF_TS) == 0 ||
1114 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1115 	    /*
1116 	     * Using the CC option is compulsory if once started:
1117 	     *   the segment is OK if no T/TCP was negotiated or
1118 	     *   if the segment has a CC option equal to CCrecv
1119 	     */
1120 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1121 	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
1122 	    th->th_seq == tp->rcv_nxt &&
1123 	    tiwin && tiwin == tp->snd_wnd &&
1124 	    tp->snd_nxt == tp->snd_max) {
1125 
1126 		/*
1127 		 * If last ACK falls within this segment's sequence numbers,
1128 		 * record the timestamp.
1129 		 * NOTE that the test is modified according to the latest
1130 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1131 		 */
1132 		if ((to.to_flags & TOF_TS) != 0 &&
1133 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1134 			tp->ts_recent_age = ticks;
1135 			tp->ts_recent = to.to_tsval;
1136 		}
1137 
1138 		if (tlen == 0) {
1139 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1140 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1141 			    tp->snd_cwnd >= tp->snd_wnd &&
1142 			    ((!tcp_do_newreno && !tp->sack_enable &&
1143 			      tp->t_dupacks < tcprexmtthresh) ||
1144 			     ((tcp_do_newreno || tp->sack_enable) &&
1145 			      !IN_FASTRECOVERY(tp)))) {
1146 				KASSERT(headlocked, ("headlocked"));
1147 				INP_INFO_WUNLOCK(&tcbinfo);
1148 				/*
1149 				 * this is a pure ack for outstanding data.
1150 				 */
1151 				++tcpstat.tcps_predack;
1152 				/*
1153 				 * "bad retransmit" recovery
1154 				 */
1155 				if (tp->t_rxtshift == 1 &&
1156 				    ticks < tp->t_badrxtwin) {
1157 					++tcpstat.tcps_sndrexmitbad;
1158 					tp->snd_cwnd = tp->snd_cwnd_prev;
1159 					tp->snd_ssthresh =
1160 					    tp->snd_ssthresh_prev;
1161 					tp->snd_recover = tp->snd_recover_prev;
1162 					if (tp->t_flags & TF_WASFRECOVERY)
1163 					    ENTER_FASTRECOVERY(tp);
1164 					tp->snd_nxt = tp->snd_max;
1165 					tp->t_badrxtwin = 0;
1166 				}
1167 
1168 				/*
1169 				 * Recalculate the transmit timer / rtt.
1170 				 *
1171 				 * Some boxes send broken timestamp replies
1172 				 * during the SYN+ACK phase, ignore
1173 				 * timestamps of 0 or we could calculate a
1174 				 * huge RTT and blow up the retransmit timer.
1175 				 */
1176 				if ((to.to_flags & TOF_TS) != 0 &&
1177 				    to.to_tsecr) {
1178 					tcp_xmit_timer(tp,
1179 					    ticks - to.to_tsecr + 1);
1180 				} else if (tp->t_rtttime &&
1181 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1182 					tcp_xmit_timer(tp,
1183 							ticks - tp->t_rtttime);
1184 				}
1185 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1186 				acked = th->th_ack - tp->snd_una;
1187 				tcpstat.tcps_rcvackpack++;
1188 				tcpstat.tcps_rcvackbyte += acked;
1189 				sbdrop(&so->so_snd, acked);
1190 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1191 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1192 					tp->snd_recover = th->th_ack - 1;
1193 				tp->snd_una = th->th_ack;
1194 				/*
1195 				 * pull snd_wl2 up to prevent seq wrap relative
1196 				 * to th_ack.
1197 				 */
1198 				tp->snd_wl2 = th->th_ack;
1199 				tp->t_dupacks = 0;
1200 				m_freem(m);
1201 				ND6_HINT(tp); /* some progress has been done */
1202 
1203 				/*
1204 				 * If all outstanding data are acked, stop
1205 				 * retransmit timer, otherwise restart timer
1206 				 * using current (possibly backed-off) value.
1207 				 * If process is waiting for space,
1208 				 * wakeup/selwakeup/signal.  If data
1209 				 * are ready to send, let tcp_output
1210 				 * decide between more output or persist.
1211 
1212 #ifdef TCPDEBUG
1213 				if (so->so_options & SO_DEBUG)
1214 					tcp_trace(TA_INPUT, ostate, tp,
1215 					    (void *)tcp_saveipgen,
1216 					    &tcp_savetcp, 0);
1217 #endif
1218 				 */
1219 				if (tp->snd_una == tp->snd_max)
1220 					callout_stop(tp->tt_rexmt);
1221 				else if (!callout_active(tp->tt_persist))
1222 					callout_reset(tp->tt_rexmt,
1223 						      tp->t_rxtcur,
1224 						      tcp_timer_rexmt, tp);
1225 
1226 				sowwakeup(so);
1227 				if (so->so_snd.sb_cc)
1228 					(void) tcp_output(tp);
1229 				goto check_delack;
1230 			}
1231 		} else if (th->th_ack == tp->snd_una &&
1232 		    LIST_EMPTY(&tp->t_segq) &&
1233 		    tlen <= sbspace(&so->so_rcv)) {
1234 			KASSERT(headlocked, ("headlocked"));
1235 			INP_INFO_WUNLOCK(&tcbinfo);
1236 			/*
1237 			 * this is a pure, in-sequence data packet
1238 			 * with nothing on the reassembly queue and
1239 			 * we have enough buffer space to take it.
1240 			 */
1241 			/* Clean receiver SACK report if present */
1242 			if (tp->sack_enable && tp->rcv_numsacks)
1243 				tcp_clean_sackreport(tp);
1244 			++tcpstat.tcps_preddat;
1245 			tp->rcv_nxt += tlen;
1246 			/*
1247 			 * Pull snd_wl1 up to prevent seq wrap relative to
1248 			 * th_seq.
1249 			 */
1250 			tp->snd_wl1 = th->th_seq;
1251 			/*
1252 			 * Pull rcv_up up to prevent seq wrap relative to
1253 			 * rcv_nxt.
1254 			 */
1255 			tp->rcv_up = tp->rcv_nxt;
1256 			tcpstat.tcps_rcvpack++;
1257 			tcpstat.tcps_rcvbyte += tlen;
1258 			ND6_HINT(tp);	/* some progress has been done */
1259 			/*
1260 #ifdef TCPDEBUG
1261 			if (so->so_options & SO_DEBUG)
1262 				tcp_trace(TA_INPUT, ostate, tp,
1263 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1264 #endif
1265 			 * Add data to socket buffer.
1266 			 */
1267 			/* Unlocked read. */
1268 			SOCKBUF_LOCK(&so->so_rcv);
1269 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1270 				m_freem(m);
1271 			} else {
1272 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1273 				sbappendstream_locked(&so->so_rcv, m);
1274 			}
1275 			sorwakeup_locked(so);
1276 			if (DELAY_ACK(tp)) {
1277 				tp->t_flags |= TF_DELACK;
1278 			} else {
1279 				tp->t_flags |= TF_ACKNOW;
1280 				tcp_output(tp);
1281 			}
1282 			goto check_delack;
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * Calculate amount of space in receive window,
1288 	 * and then do TCP input processing.
1289 	 * Receive window is amount of space in rcv queue,
1290 	 * but not less than advertised window.
1291 	 */
1292 	{ int win;
1293 
1294 	win = sbspace(&so->so_rcv);
1295 	if (win < 0)
1296 		win = 0;
1297 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1298 	}
1299 
1300 	switch (tp->t_state) {
1301 
1302 	/*
1303 	 * If the state is SYN_RECEIVED:
1304 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1305 	 */
1306 	case TCPS_SYN_RECEIVED:
1307 		if ((thflags & TH_ACK) &&
1308 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1309 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1310 				rstreason = BANDLIM_RST_OPENPORT;
1311 				goto dropwithreset;
1312 		}
1313 		break;
1314 
1315 	/*
1316 	 * If the state is SYN_SENT:
1317 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1318 	 *	if seg contains a RST, then drop the connection.
1319 	 *	if seg does not contain SYN, then drop it.
1320 	 * Otherwise this is an acceptable SYN segment
1321 	 *	initialize tp->rcv_nxt and tp->irs
1322 	 *	if seg contains ack then advance tp->snd_una
1323 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1324 	 *	arrange for segment to be acked (eventually)
1325 	 *	continue processing rest of data/controls, beginning with URG
1326 	 */
1327 	case TCPS_SYN_SENT:
1328 		if (tcp_do_rfc1644)
1329 			tcp_hc_gettao(&inp->inp_inc, &tao);
1330 
1331 		if ((thflags & TH_ACK) &&
1332 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1333 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1334 			/*
1335 			 * If we have a cached CCsent for the remote host,
1336 			 * hence we haven't just crashed and restarted,
1337 			 * do not send a RST.  This may be a retransmission
1338 			 * from the other side after our earlier ACK was lost.
1339 			 * Our new SYN, when it arrives, will serve as the
1340 			 * needed ACK.
1341 			 */
1342 			if (tao.tao_ccsent != 0)
1343 				goto drop;
1344 			else {
1345 				rstreason = BANDLIM_UNLIMITED;
1346 				goto dropwithreset;
1347 			}
1348 		}
1349 		if (thflags & TH_RST) {
1350 			if (thflags & TH_ACK)
1351 				tp = tcp_drop(tp, ECONNREFUSED);
1352 			goto drop;
1353 		}
1354 		if ((thflags & TH_SYN) == 0)
1355 			goto drop;
1356 		tp->snd_wnd = th->th_win;	/* initial send window */
1357 		tp->cc_recv = to.to_cc;		/* foreign CC */
1358 
1359 		tp->irs = th->th_seq;
1360 		tcp_rcvseqinit(tp);
1361 		if (thflags & TH_ACK) {
1362 			/*
1363 			 * Our SYN was acked.  If segment contains CC.ECHO
1364 			 * option, check it to make sure this segment really
1365 			 * matches our SYN.  If not, just drop it as old
1366 			 * duplicate, but send an RST if we're still playing
1367 			 * by the old rules.  If no CC.ECHO option, make sure
1368 			 * we don't get fooled into using T/TCP.
1369 			 */
1370 			if (to.to_flags & TOF_CCECHO) {
1371 				if (tp->cc_send != to.to_ccecho) {
1372 					if (tao.tao_ccsent != 0)
1373 						goto drop;
1374 					else {
1375 						rstreason = BANDLIM_UNLIMITED;
1376 						goto dropwithreset;
1377 					}
1378 				}
1379 			} else
1380 				tp->t_flags &= ~TF_RCVD_CC;
1381 			tcpstat.tcps_connects++;
1382 			soisconnected(so);
1383 #ifdef MAC
1384 			SOCK_LOCK(so);
1385 			mac_set_socket_peer_from_mbuf(m, so);
1386 			SOCK_UNLOCK(so);
1387 #endif
1388 			/* Do window scaling on this connection? */
1389 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1390 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1391 				tp->snd_scale = tp->requested_s_scale;
1392 				tp->rcv_scale = tp->request_r_scale;
1393 			}
1394 			/* Segment is acceptable, update cache if undefined. */
1395 			if (tao.tao_ccsent == 0 && tcp_do_rfc1644)
1396 				tcp_hc_updatetao(&inp->inp_inc, TCP_HC_TAO_CCSENT, to.to_ccecho, 0);
1397 
1398 			tp->rcv_adv += tp->rcv_wnd;
1399 			tp->snd_una++;		/* SYN is acked */
1400 			/*
1401 			 * If there's data, delay ACK; if there's also a FIN
1402 			 * ACKNOW will be turned on later.
1403 			 */
1404 			if (DELAY_ACK(tp) && tlen != 0)
1405                                 callout_reset(tp->tt_delack, tcp_delacktime,
1406                                     tcp_timer_delack, tp);
1407 			else
1408 				tp->t_flags |= TF_ACKNOW;
1409 			/*
1410 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1411 			 * Transitions:
1412 			 *	SYN_SENT  --> ESTABLISHED
1413 			 *	SYN_SENT* --> FIN_WAIT_1
1414 			 */
1415 			tp->t_starttime = ticks;
1416 			if (tp->t_flags & TF_NEEDFIN) {
1417 				tp->t_state = TCPS_FIN_WAIT_1;
1418 				tp->t_flags &= ~TF_NEEDFIN;
1419 				thflags &= ~TH_SYN;
1420 			} else {
1421 				tp->t_state = TCPS_ESTABLISHED;
1422 				callout_reset(tp->tt_keep, tcp_keepidle,
1423 					      tcp_timer_keep, tp);
1424 			}
1425 		} else {
1426 			/*
1427 		 	 * Received initial SYN in SYN-SENT[*] state =>
1428 		 	 * simultaneous open.  If segment contains CC option
1429 		 	 * and there is a cached CC, apply TAO test.
1430 		 	 * If it succeeds, connection is * half-synchronized.
1431 		 	 * Otherwise, do 3-way handshake:
1432 		 	 *        SYN-SENT -> SYN-RECEIVED
1433 		 	 *        SYN-SENT* -> SYN-RECEIVED*
1434 		 	 * If there was no CC option, clear cached CC value.
1435 		 	 */
1436 			tp->t_flags |= TF_ACKNOW;
1437 			callout_stop(tp->tt_rexmt);
1438 			if (to.to_flags & TOF_CC) {
1439 				if (tao.tao_cc != 0 &&
1440 				    CC_GT(to.to_cc, tao.tao_cc)) {
1441 					/*
1442 					 * update cache and make transition:
1443 					 *        SYN-SENT -> ESTABLISHED*
1444 					 *        SYN-SENT* -> FIN-WAIT-1*
1445 					 */
1446 					tao.tao_cc = to.to_cc;
1447 					tcp_hc_updatetao(&inp->inp_inc,
1448 						TCP_HC_TAO_CC, to.to_cc, 0);
1449 					tp->t_starttime = ticks;
1450 					if (tp->t_flags & TF_NEEDFIN) {
1451 						tp->t_state = TCPS_FIN_WAIT_1;
1452 						tp->t_flags &= ~TF_NEEDFIN;
1453 					} else {
1454 						tp->t_state = TCPS_ESTABLISHED;
1455 						callout_reset(tp->tt_keep,
1456 							      tcp_keepidle,
1457 							      tcp_timer_keep,
1458 							      tp);
1459 					}
1460 					tp->t_flags |= TF_NEEDSYN;
1461 				} else
1462 					tp->t_state = TCPS_SYN_RECEIVED;
1463 			} else {
1464 				if (tcp_do_rfc1644) {
1465 					/* CC.NEW or no option => invalidate cache */
1466 					tao.tao_cc = 0;
1467 					tcp_hc_updatetao(&inp->inp_inc,
1468 						TCP_HC_TAO_CC, to.to_cc, 0);
1469 				}
1470 				tp->t_state = TCPS_SYN_RECEIVED;
1471 			}
1472 		}
1473 
1474 trimthenstep6:
1475 		/*
1476 		 * Advance th->th_seq to correspond to first data byte.
1477 		 * If data, trim to stay within window,
1478 		 * dropping FIN if necessary.
1479 		 */
1480 		th->th_seq++;
1481 		if (tlen > tp->rcv_wnd) {
1482 			todrop = tlen - tp->rcv_wnd;
1483 			m_adj(m, -todrop);
1484 			tlen = tp->rcv_wnd;
1485 			thflags &= ~TH_FIN;
1486 			tcpstat.tcps_rcvpackafterwin++;
1487 			tcpstat.tcps_rcvbyteafterwin += todrop;
1488 		}
1489 		tp->snd_wl1 = th->th_seq - 1;
1490 		tp->rcv_up = th->th_seq;
1491 		/*
1492 		 * Client side of transaction: already sent SYN and data.
1493 		 * If the remote host used T/TCP to validate the SYN,
1494 		 * our data will be ACK'd; if so, enter normal data segment
1495 		 * processing in the middle of step 5, ack processing.
1496 		 * Otherwise, goto step 6.
1497 		 */
1498  		if (thflags & TH_ACK)
1499 			goto process_ACK;
1500 
1501 		goto step6;
1502 
1503 	/*
1504 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1505 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1506 	 *              if state == TIME_WAIT and connection duration > MSL,
1507 	 *                  drop packet and send RST;
1508 	 *
1509 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1510 	 *		    ack the FIN (and data) in retransmission queue.
1511 	 *                  Complete close and delete TCPCB.  Then reprocess
1512 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1513 	 *
1514 	 *		else must be old SYN; drop it.
1515 	 *      else do normal processing.
1516 	 */
1517 	case TCPS_LAST_ACK:
1518 	case TCPS_CLOSING:
1519 	case TCPS_TIME_WAIT:
1520 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1521 		if ((thflags & TH_SYN) &&
1522 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1523 			if (tp->t_state == TCPS_TIME_WAIT &&
1524 					(ticks - tp->t_starttime) > tcp_msl) {
1525 				rstreason = BANDLIM_UNLIMITED;
1526 				goto dropwithreset;
1527 			}
1528 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1529 				tp = tcp_close(tp);
1530 				goto findpcb;
1531 			}
1532 			else
1533 				goto drop;
1534 		}
1535  		break;  /* continue normal processing */
1536 	}
1537 
1538 	/*
1539 	 * States other than LISTEN or SYN_SENT.
1540 	 * First check the RST flag and sequence number since reset segments
1541 	 * are exempt from the timestamp and connection count tests.  This
1542 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1543 	 * below which allowed reset segments in half the sequence space
1544 	 * to fall though and be processed (which gives forged reset
1545 	 * segments with a random sequence number a 50 percent chance of
1546 	 * killing a connection).
1547 	 * Then check timestamp, if present.
1548 	 * Then check the connection count, if present.
1549 	 * Then check that at least some bytes of segment are within
1550 	 * receive window.  If segment begins before rcv_nxt,
1551 	 * drop leading data (and SYN); if nothing left, just ack.
1552 	 *
1553 	 *
1554 	 * If the RST bit is set, check the sequence number to see
1555 	 * if this is a valid reset segment.
1556 	 * RFC 793 page 37:
1557 	 *   In all states except SYN-SENT, all reset (RST) segments
1558 	 *   are validated by checking their SEQ-fields.  A reset is
1559 	 *   valid if its sequence number is in the window.
1560 	 * Note: this does not take into account delayed ACKs, so
1561 	 *   we should test against last_ack_sent instead of rcv_nxt.
1562 	 *   The sequence number in the reset segment is normally an
1563 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1564 	 *   send a reset with the sequence number at the rightmost edge
1565 	 *   of our receive window, and we have to handle this case.
1566 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1567 	 *   that brute force RST attacks are possible.  To combat this,
1568 	 *   we use a much stricter check while in the ESTABLISHED state,
1569 	 *   only accepting RSTs where the sequence number is equal to
1570 	 *   last_ack_sent.  In all other states (the states in which a
1571 	 *   RST is more likely), the more permissive check is used.
1572 	 * If we have multiple segments in flight, the intial reset
1573 	 * segment sequence numbers will be to the left of last_ack_sent,
1574 	 * but they will eventually catch up.
1575 	 * In any case, it never made sense to trim reset segments to
1576 	 * fit the receive window since RFC 1122 says:
1577 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1578 	 *
1579 	 *    A TCP SHOULD allow a received RST segment to include data.
1580 	 *
1581 	 *    DISCUSSION
1582 	 *         It has been suggested that a RST segment could contain
1583 	 *         ASCII text that encoded and explained the cause of the
1584 	 *         RST.  No standard has yet been established for such
1585 	 *         data.
1586 	 *
1587 	 * If the reset segment passes the sequence number test examine
1588 	 * the state:
1589 	 *    SYN_RECEIVED STATE:
1590 	 *	If passive open, return to LISTEN state.
1591 	 *	If active open, inform user that connection was refused.
1592 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1593 	 *	Inform user that connection was reset, and close tcb.
1594 	 *    CLOSING, LAST_ACK STATES:
1595 	 *	Close the tcb.
1596 	 *    TIME_WAIT STATE:
1597 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1598 	 *      RFC 1337.
1599 	 */
1600 	if (thflags & TH_RST) {
1601 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1602 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1603 			switch (tp->t_state) {
1604 
1605 			case TCPS_SYN_RECEIVED:
1606 				so->so_error = ECONNREFUSED;
1607 				goto close;
1608 
1609 			case TCPS_ESTABLISHED:
1610 				if (tp->last_ack_sent != th->th_seq) {
1611 					tcpstat.tcps_badrst++;
1612 					goto drop;
1613 				}
1614 			case TCPS_FIN_WAIT_1:
1615 			case TCPS_FIN_WAIT_2:
1616 			case TCPS_CLOSE_WAIT:
1617 				so->so_error = ECONNRESET;
1618 			close:
1619 				tp->t_state = TCPS_CLOSED;
1620 				tcpstat.tcps_drops++;
1621 				tp = tcp_close(tp);
1622 				break;
1623 
1624 			case TCPS_CLOSING:
1625 			case TCPS_LAST_ACK:
1626 				tp = tcp_close(tp);
1627 				break;
1628 
1629 			case TCPS_TIME_WAIT:
1630 				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1631 				    ("timewait"));
1632 				break;
1633 			}
1634 		}
1635 		goto drop;
1636 	}
1637 
1638 	/*
1639 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1640 	 * and it's less than ts_recent, drop it.
1641 	 */
1642 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1643 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1644 
1645 		/* Check to see if ts_recent is over 24 days old.  */
1646 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1647 			/*
1648 			 * Invalidate ts_recent.  If this segment updates
1649 			 * ts_recent, the age will be reset later and ts_recent
1650 			 * will get a valid value.  If it does not, setting
1651 			 * ts_recent to zero will at least satisfy the
1652 			 * requirement that zero be placed in the timestamp
1653 			 * echo reply when ts_recent isn't valid.  The
1654 			 * age isn't reset until we get a valid ts_recent
1655 			 * because we don't want out-of-order segments to be
1656 			 * dropped when ts_recent is old.
1657 			 */
1658 			tp->ts_recent = 0;
1659 		} else {
1660 			tcpstat.tcps_rcvduppack++;
1661 			tcpstat.tcps_rcvdupbyte += tlen;
1662 			tcpstat.tcps_pawsdrop++;
1663 			if (tlen)
1664 				goto dropafterack;
1665 			goto drop;
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * T/TCP mechanism
1671 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1672 	 *   or if its CC is wrong then drop the segment.
1673 	 *   RST segments do not have to comply with this.
1674 	 */
1675 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1676 	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1677  		goto dropafterack;
1678 
1679 	/*
1680 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1681 	 * this connection before trimming the data to fit the receive
1682 	 * window.  Check the sequence number versus IRS since we know
1683 	 * the sequence numbers haven't wrapped.  This is a partial fix
1684 	 * for the "LAND" DoS attack.
1685 	 */
1686 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1687 		rstreason = BANDLIM_RST_OPENPORT;
1688 		goto dropwithreset;
1689 	}
1690 
1691 	todrop = tp->rcv_nxt - th->th_seq;
1692 	if (todrop > 0) {
1693 		if (thflags & TH_SYN) {
1694 			thflags &= ~TH_SYN;
1695 			th->th_seq++;
1696 			if (th->th_urp > 1)
1697 				th->th_urp--;
1698 			else
1699 				thflags &= ~TH_URG;
1700 			todrop--;
1701 		}
1702 		/*
1703 		 * Following if statement from Stevens, vol. 2, p. 960.
1704 		 */
1705 		if (todrop > tlen
1706 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1707 			/*
1708 			 * Any valid FIN must be to the left of the window.
1709 			 * At this point the FIN must be a duplicate or out
1710 			 * of sequence; drop it.
1711 			 */
1712 			thflags &= ~TH_FIN;
1713 
1714 			/*
1715 			 * Send an ACK to resynchronize and drop any data.
1716 			 * But keep on processing for RST or ACK.
1717 			 */
1718 			tp->t_flags |= TF_ACKNOW;
1719 			todrop = tlen;
1720 			tcpstat.tcps_rcvduppack++;
1721 			tcpstat.tcps_rcvdupbyte += todrop;
1722 		} else {
1723 			tcpstat.tcps_rcvpartduppack++;
1724 			tcpstat.tcps_rcvpartdupbyte += todrop;
1725 		}
1726 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1727 		th->th_seq += todrop;
1728 		tlen -= todrop;
1729 		if (th->th_urp > todrop)
1730 			th->th_urp -= todrop;
1731 		else {
1732 			thflags &= ~TH_URG;
1733 			th->th_urp = 0;
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * If new data are received on a connection after the
1739 	 * user processes are gone, then RST the other end.
1740 	 */
1741 	if ((so->so_state & SS_NOFDREF) &&
1742 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1743 		tp = tcp_close(tp);
1744 		tcpstat.tcps_rcvafterclose++;
1745 		rstreason = BANDLIM_UNLIMITED;
1746 		goto dropwithreset;
1747 	}
1748 
1749 	/*
1750 	 * If segment ends after window, drop trailing data
1751 	 * (and PUSH and FIN); if nothing left, just ACK.
1752 	 */
1753 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1754 	if (todrop > 0) {
1755 		tcpstat.tcps_rcvpackafterwin++;
1756 		if (todrop >= tlen) {
1757 			tcpstat.tcps_rcvbyteafterwin += tlen;
1758 			/*
1759 			 * If a new connection request is received
1760 			 * while in TIME_WAIT, drop the old connection
1761 			 * and start over if the sequence numbers
1762 			 * are above the previous ones.
1763 			 */
1764 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1765 			if (thflags & TH_SYN &&
1766 			    tp->t_state == TCPS_TIME_WAIT &&
1767 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1768 				tp = tcp_close(tp);
1769 				goto findpcb;
1770 			}
1771 			/*
1772 			 * If window is closed can only take segments at
1773 			 * window edge, and have to drop data and PUSH from
1774 			 * incoming segments.  Continue processing, but
1775 			 * remember to ack.  Otherwise, drop segment
1776 			 * and ack.
1777 			 */
1778 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1779 				tp->t_flags |= TF_ACKNOW;
1780 				tcpstat.tcps_rcvwinprobe++;
1781 			} else
1782 				goto dropafterack;
1783 		} else
1784 			tcpstat.tcps_rcvbyteafterwin += todrop;
1785 		m_adj(m, -todrop);
1786 		tlen -= todrop;
1787 		thflags &= ~(TH_PUSH|TH_FIN);
1788 	}
1789 
1790 	/*
1791 	 * If last ACK falls within this segment's sequence numbers,
1792 	 * record its timestamp.
1793 	 * NOTE that the test is modified according to the latest
1794 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1795 	 */
1796 	if ((to.to_flags & TOF_TS) != 0 &&
1797 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1798 		tp->ts_recent_age = ticks;
1799 		tp->ts_recent = to.to_tsval;
1800 	}
1801 
1802 	/*
1803 	 * If a SYN is in the window, then this is an
1804 	 * error and we send an RST and drop the connection.
1805 	 */
1806 	if (thflags & TH_SYN) {
1807 		tp = tcp_drop(tp, ECONNRESET);
1808 		rstreason = BANDLIM_UNLIMITED;
1809 		goto drop;
1810 	}
1811 
1812 	/*
1813 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1814 	 * flag is on (half-synchronized state), then queue data for
1815 	 * later processing; else drop segment and return.
1816 	 */
1817 	if ((thflags & TH_ACK) == 0) {
1818 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1819 		    (tp->t_flags & TF_NEEDSYN))
1820 			goto step6;
1821 		else
1822 			goto drop;
1823 	}
1824 
1825 	/*
1826 	 * Ack processing.
1827 	 */
1828 	switch (tp->t_state) {
1829 
1830 	/*
1831 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1832 	 * ESTABLISHED state and continue processing.
1833 	 * The ACK was checked above.
1834 	 */
1835 	case TCPS_SYN_RECEIVED:
1836 
1837 		tcpstat.tcps_connects++;
1838 		soisconnected(so);
1839 		/* Do window scaling? */
1840 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1841 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1842 			tp->snd_scale = tp->requested_s_scale;
1843 			tp->rcv_scale = tp->request_r_scale;
1844 		}
1845 		/*
1846 		 * Upon successful completion of 3-way handshake,
1847 		 * update cache.CC, pass any queued data to the user,
1848 		 * and advance state appropriately.
1849 		 */
1850 		if (tcp_do_rfc1644) {
1851 			tao.tao_cc = tp->cc_recv;
1852 			tcp_hc_updatetao(&inp->inp_inc, TCP_HC_TAO_CC,
1853 					 tp->cc_recv, 0);
1854 		}
1855 		/*
1856 		 * Make transitions:
1857 		 *      SYN-RECEIVED  -> ESTABLISHED
1858 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1859 		 */
1860 		tp->t_starttime = ticks;
1861 		if (tp->t_flags & TF_NEEDFIN) {
1862 			tp->t_state = TCPS_FIN_WAIT_1;
1863 			tp->t_flags &= ~TF_NEEDFIN;
1864 		} else {
1865 			tp->t_state = TCPS_ESTABLISHED;
1866 			callout_reset(tp->tt_keep, tcp_keepidle,
1867 				      tcp_timer_keep, tp);
1868 		}
1869 		/*
1870 		 * If segment contains data or ACK, will call tcp_reass()
1871 		 * later; if not, do so now to pass queued data to user.
1872 		 */
1873 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1874 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1875 			    (struct mbuf *)0);
1876 		tp->snd_wl1 = th->th_seq - 1;
1877 		/* FALLTHROUGH */
1878 
1879 	/*
1880 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1881 	 * ACKs.  If the ack is in the range
1882 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1883 	 * then advance tp->snd_una to th->th_ack and drop
1884 	 * data from the retransmission queue.  If this ACK reflects
1885 	 * more up to date window information we update our window information.
1886 	 */
1887 	case TCPS_ESTABLISHED:
1888 	case TCPS_FIN_WAIT_1:
1889 	case TCPS_FIN_WAIT_2:
1890 	case TCPS_CLOSE_WAIT:
1891 	case TCPS_CLOSING:
1892 	case TCPS_LAST_ACK:
1893 	case TCPS_TIME_WAIT:
1894 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1895 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1896 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1897 				tcpstat.tcps_rcvdupack++;
1898 				/*
1899 				 * If we have outstanding data (other than
1900 				 * a window probe), this is a completely
1901 				 * duplicate ack (ie, window info didn't
1902 				 * change), the ack is the biggest we've
1903 				 * seen and we've seen exactly our rexmt
1904 				 * threshhold of them, assume a packet
1905 				 * has been dropped and retransmit it.
1906 				 * Kludge snd_nxt & the congestion
1907 				 * window so we send only this one
1908 				 * packet.
1909 				 *
1910 				 * We know we're losing at the current
1911 				 * window size so do congestion avoidance
1912 				 * (set ssthresh to half the current window
1913 				 * and pull our congestion window back to
1914 				 * the new ssthresh).
1915 				 *
1916 				 * Dup acks mean that packets have left the
1917 				 * network (they're now cached at the receiver)
1918 				 * so bump cwnd by the amount in the receiver
1919 				 * to keep a constant cwnd packets in the
1920 				 * network.
1921 				 */
1922 				if (!callout_active(tp->tt_rexmt) ||
1923 				    th->th_ack != tp->snd_una)
1924 					tp->t_dupacks = 0;
1925 				else if (++tp->t_dupacks > tcprexmtthresh ||
1926 					 ((tcp_do_newreno || tp->sack_enable) &&
1927 					  IN_FASTRECOVERY(tp))) {
1928 					tp->snd_cwnd += tp->t_maxseg;
1929 					(void) tcp_output(tp);
1930 					goto drop;
1931 				} else if (tp->t_dupacks == tcprexmtthresh) {
1932 					tcp_seq onxt = tp->snd_nxt;
1933 					u_int win;
1934 
1935 					/*
1936 					 * If we're doing sack, check to
1937 					 * see if we're already in sack
1938 					 * recovery. If we're not doing sack,
1939 					 * check to see if we're in newreno
1940 					 * recovery.
1941 					 */
1942 					if (tp->sack_enable) {
1943 						if (IN_FASTRECOVERY(tp)) {
1944 							tp->t_dupacks = 0;
1945 							break;
1946 						}
1947 					} else if (tcp_do_newreno) {
1948 						if (SEQ_LEQ(th->th_ack,
1949 						    tp->snd_recover)) {
1950 							tp->t_dupacks = 0;
1951 							break;
1952 						}
1953 					}
1954 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1955 					    2 / tp->t_maxseg;
1956 					if (win < 2)
1957 						win = 2;
1958 					tp->snd_ssthresh = win * tp->t_maxseg;
1959 					ENTER_FASTRECOVERY(tp);
1960 					tp->snd_recover = tp->snd_max;
1961 					callout_stop(tp->tt_rexmt);
1962 					tp->t_rtttime = 0;
1963 					if (tp->sack_enable) {
1964 						tcpstat.tcps_sack_recovery_episode++;
1965 						tp->snd_cwnd =
1966 						    tp->t_maxseg *
1967 						    tp->t_dupacks;
1968 						(void) tcp_output(tp);
1969 						tp->snd_cwnd +=
1970 						    tp->snd_ssthresh;
1971 						goto drop;
1972 					}
1973 
1974 					tp->snd_nxt = th->th_ack;
1975 					tp->snd_cwnd = tp->t_maxseg;
1976 					(void) tcp_output(tp);
1977 					KASSERT(tp->snd_limited <= 2,
1978 					    ("tp->snd_limited too big"));
1979 					tp->snd_cwnd = tp->snd_ssthresh +
1980 					     tp->t_maxseg *
1981 					     (tp->t_dupacks - tp->snd_limited);
1982 					if (SEQ_GT(onxt, tp->snd_nxt))
1983 						tp->snd_nxt = onxt;
1984 					goto drop;
1985 				} else if (tcp_do_rfc3042) {
1986 					u_long oldcwnd = tp->snd_cwnd;
1987 					tcp_seq oldsndmax = tp->snd_max;
1988 					u_int sent;
1989 
1990 					KASSERT(tp->t_dupacks == 1 ||
1991 					    tp->t_dupacks == 2,
1992 					    ("dupacks not 1 or 2"));
1993 					if (tp->t_dupacks == 1)
1994 						tp->snd_limited = 0;
1995 					tp->snd_cwnd =
1996 					    (tp->snd_nxt - tp->snd_una) +
1997 					    (tp->t_dupacks - tp->snd_limited) *
1998 					    tp->t_maxseg;
1999 					(void) tcp_output(tp);
2000 					sent = tp->snd_max - oldsndmax;
2001 					if (sent > tp->t_maxseg) {
2002 						KASSERT((tp->t_dupacks == 2 &&
2003 						    tp->snd_limited == 0) ||
2004 						   (sent == tp->t_maxseg + 1 &&
2005 						    tp->t_flags & TF_SENTFIN),
2006 						    ("sent too much"));
2007 						tp->snd_limited = 2;
2008 					} else if (sent > 0)
2009 						++tp->snd_limited;
2010 					tp->snd_cwnd = oldcwnd;
2011 					goto drop;
2012 				}
2013 			} else
2014 				tp->t_dupacks = 0;
2015 			break;
2016 		}
2017 
2018 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2019 
2020 		/*
2021 		 * If the congestion window was inflated to account
2022 		 * for the other side's cached packets, retract it.
2023 		 */
2024 		if (tcp_do_newreno || tp->sack_enable) {
2025 			if (IN_FASTRECOVERY(tp)) {
2026 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2027 					if (tp->sack_enable)
2028 						tcp_sack_partialack(tp, th);
2029 					else
2030 						tcp_newreno_partial_ack(tp, th);
2031 				} else {
2032 					/*
2033 					 * Out of fast recovery.
2034 					 * Window inflation should have left us
2035 					 * with approximately snd_ssthresh
2036 					 * outstanding data.
2037 					 * But in case we would be inclined to
2038 					 * send a burst, better to do it via
2039 					 * the slow start mechanism.
2040 					 */
2041 					if (SEQ_GT(th->th_ack +
2042 							tp->snd_ssthresh,
2043 						   tp->snd_max))
2044 						tp->snd_cwnd = tp->snd_max -
2045 								th->th_ack +
2046 								tp->t_maxseg;
2047 					else
2048 						tp->snd_cwnd = tp->snd_ssthresh;
2049 				}
2050 			}
2051                 } else {
2052                         if (tp->t_dupacks >= tcprexmtthresh &&
2053                             tp->snd_cwnd > tp->snd_ssthresh)
2054 				tp->snd_cwnd = tp->snd_ssthresh;
2055                 }
2056 		tp->t_dupacks = 0;
2057 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2058 			tcpstat.tcps_rcvacktoomuch++;
2059 			goto dropafterack;
2060 		}
2061 		/*
2062 		 * If we reach this point, ACK is not a duplicate,
2063 		 *     i.e., it ACKs something we sent.
2064 		 */
2065 		if (tp->t_flags & TF_NEEDSYN) {
2066 			/*
2067 			 * T/TCP: Connection was half-synchronized, and our
2068 			 * SYN has been ACK'd (so connection is now fully
2069 			 * synchronized).  Go to non-starred state,
2070 			 * increment snd_una for ACK of SYN, and check if
2071 			 * we can do window scaling.
2072 			 */
2073 			tp->t_flags &= ~TF_NEEDSYN;
2074 			tp->snd_una++;
2075 			/* Do window scaling? */
2076 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2077 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2078 				tp->snd_scale = tp->requested_s_scale;
2079 				tp->rcv_scale = tp->request_r_scale;
2080 			}
2081 		}
2082 
2083 process_ACK:
2084 		acked = th->th_ack - tp->snd_una;
2085 		tcpstat.tcps_rcvackpack++;
2086 		tcpstat.tcps_rcvackbyte += acked;
2087 
2088 		/*
2089 		 * If we just performed our first retransmit, and the ACK
2090 		 * arrives within our recovery window, then it was a mistake
2091 		 * to do the retransmit in the first place.  Recover our
2092 		 * original cwnd and ssthresh, and proceed to transmit where
2093 		 * we left off.
2094 		 */
2095 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2096 			++tcpstat.tcps_sndrexmitbad;
2097 			tp->snd_cwnd = tp->snd_cwnd_prev;
2098 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2099 			tp->snd_recover = tp->snd_recover_prev;
2100 			if (tp->t_flags & TF_WASFRECOVERY)
2101 				ENTER_FASTRECOVERY(tp);
2102 			tp->snd_nxt = tp->snd_max;
2103 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2104 		}
2105 
2106 		/*
2107 		 * If we have a timestamp reply, update smoothed
2108 		 * round trip time.  If no timestamp is present but
2109 		 * transmit timer is running and timed sequence
2110 		 * number was acked, update smoothed round trip time.
2111 		 * Since we now have an rtt measurement, cancel the
2112 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2113 		 * Recompute the initial retransmit timer.
2114 		 *
2115 		 * Some boxes send broken timestamp replies
2116 		 * during the SYN+ACK phase, ignore
2117 		 * timestamps of 0 or we could calculate a
2118 		 * huge RTT and blow up the retransmit timer.
2119 		 */
2120 		if ((to.to_flags & TOF_TS) != 0 &&
2121 		    to.to_tsecr) {
2122 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2123 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2124 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2125 		}
2126 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2127 
2128 		/*
2129 		 * If all outstanding data is acked, stop retransmit
2130 		 * timer and remember to restart (more output or persist).
2131 		 * If there is more data to be acked, restart retransmit
2132 		 * timer, using current (possibly backed-off) value.
2133 		 */
2134 		if (th->th_ack == tp->snd_max) {
2135 			callout_stop(tp->tt_rexmt);
2136 			needoutput = 1;
2137 		} else if (!callout_active(tp->tt_persist))
2138 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2139 				      tcp_timer_rexmt, tp);
2140 
2141 		/*
2142 		 * If no data (only SYN) was ACK'd,
2143 		 *    skip rest of ACK processing.
2144 		 */
2145 		if (acked == 0)
2146 			goto step6;
2147 
2148 		/*
2149 		 * When new data is acked, open the congestion window.
2150 		 * If the window gives us less than ssthresh packets
2151 		 * in flight, open exponentially (maxseg per packet).
2152 		 * Otherwise open linearly: maxseg per window
2153 		 * (maxseg^2 / cwnd per packet).
2154 		 */
2155 		if ((!tcp_do_newreno && !tp->sack_enable) ||
2156 		    !IN_FASTRECOVERY(tp)) {
2157 			register u_int cw = tp->snd_cwnd;
2158 			register u_int incr = tp->t_maxseg;
2159 			if (cw > tp->snd_ssthresh)
2160 				incr = incr * incr / cw;
2161 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2162 		}
2163 		SOCKBUF_LOCK(&so->so_snd);
2164 		if (acked > so->so_snd.sb_cc) {
2165 			tp->snd_wnd -= so->so_snd.sb_cc;
2166 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2167 			ourfinisacked = 1;
2168 		} else {
2169 			sbdrop_locked(&so->so_snd, acked);
2170 			tp->snd_wnd -= acked;
2171 			ourfinisacked = 0;
2172 		}
2173 		sowwakeup_locked(so);
2174 		/* detect una wraparound */
2175 		if ((tcp_do_newreno || tp->sack_enable) &&
2176 		    !IN_FASTRECOVERY(tp) &&
2177 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2178 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2179 			tp->snd_recover = th->th_ack - 1;
2180 		if ((tcp_do_newreno || tp->sack_enable) &&
2181 		    IN_FASTRECOVERY(tp) &&
2182 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2183 			EXIT_FASTRECOVERY(tp);
2184 		tp->snd_una = th->th_ack;
2185 		if (tp->sack_enable) {
2186 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2187 				tp->snd_recover = tp->snd_una;
2188 		}
2189 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2190 			tp->snd_nxt = tp->snd_una;
2191 
2192 		switch (tp->t_state) {
2193 
2194 		/*
2195 		 * In FIN_WAIT_1 STATE in addition to the processing
2196 		 * for the ESTABLISHED state if our FIN is now acknowledged
2197 		 * then enter FIN_WAIT_2.
2198 		 */
2199 		case TCPS_FIN_WAIT_1:
2200 			if (ourfinisacked) {
2201 				/*
2202 				 * If we can't receive any more
2203 				 * data, then closing user can proceed.
2204 				 * Starting the timer is contrary to the
2205 				 * specification, but if we don't get a FIN
2206 				 * we'll hang forever.
2207 				 */
2208 		/* XXXjl
2209 		 * we should release the tp also, and use a
2210 		 * compressed state.
2211 		 */
2212 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2213 					soisdisconnected(so);
2214 					callout_reset(tp->tt_2msl, tcp_maxidle,
2215 						      tcp_timer_2msl, tp);
2216 				}
2217 				tp->t_state = TCPS_FIN_WAIT_2;
2218 			}
2219 			break;
2220 
2221 	 	/*
2222 		 * In CLOSING STATE in addition to the processing for
2223 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2224 		 * then enter the TIME-WAIT state, otherwise ignore
2225 		 * the segment.
2226 		 */
2227 		case TCPS_CLOSING:
2228 			if (ourfinisacked) {
2229 				KASSERT(headlocked, ("headlocked"));
2230 				tcp_twstart(tp);
2231 				INP_INFO_WUNLOCK(&tcbinfo);
2232 				m_freem(m);
2233 				return;
2234 			}
2235 			break;
2236 
2237 		/*
2238 		 * In LAST_ACK, we may still be waiting for data to drain
2239 		 * and/or to be acked, as well as for the ack of our FIN.
2240 		 * If our FIN is now acknowledged, delete the TCB,
2241 		 * enter the closed state and return.
2242 		 */
2243 		case TCPS_LAST_ACK:
2244 			if (ourfinisacked) {
2245 				tp = tcp_close(tp);
2246 				goto drop;
2247 			}
2248 			break;
2249 
2250 		/*
2251 		 * In TIME_WAIT state the only thing that should arrive
2252 		 * is a retransmission of the remote FIN.  Acknowledge
2253 		 * it and restart the finack timer.
2254 		 */
2255 		case TCPS_TIME_WAIT:
2256 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2257 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2258 				      tcp_timer_2msl, tp);
2259 			goto dropafterack;
2260 		}
2261 	}
2262 
2263 step6:
2264 	/*
2265 	 * Update window information.
2266 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2267 	 */
2268 	if ((thflags & TH_ACK) &&
2269 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2270 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2271 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2272 		/* keep track of pure window updates */
2273 		if (tlen == 0 &&
2274 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2275 			tcpstat.tcps_rcvwinupd++;
2276 		tp->snd_wnd = tiwin;
2277 		tp->snd_wl1 = th->th_seq;
2278 		tp->snd_wl2 = th->th_ack;
2279 		if (tp->snd_wnd > tp->max_sndwnd)
2280 			tp->max_sndwnd = tp->snd_wnd;
2281 		needoutput = 1;
2282 	}
2283 
2284 	/*
2285 	 * Process segments with URG.
2286 	 */
2287 	if ((thflags & TH_URG) && th->th_urp &&
2288 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2289 		/*
2290 		 * This is a kludge, but if we receive and accept
2291 		 * random urgent pointers, we'll crash in
2292 		 * soreceive.  It's hard to imagine someone
2293 		 * actually wanting to send this much urgent data.
2294 		 */
2295 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2296 			th->th_urp = 0;			/* XXX */
2297 			thflags &= ~TH_URG;		/* XXX */
2298 			goto dodata;			/* XXX */
2299 		}
2300 		/*
2301 		 * If this segment advances the known urgent pointer,
2302 		 * then mark the data stream.  This should not happen
2303 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2304 		 * a FIN has been received from the remote side.
2305 		 * In these states we ignore the URG.
2306 		 *
2307 		 * According to RFC961 (Assigned Protocols),
2308 		 * the urgent pointer points to the last octet
2309 		 * of urgent data.  We continue, however,
2310 		 * to consider it to indicate the first octet
2311 		 * of data past the urgent section as the original
2312 		 * spec states (in one of two places).
2313 		 */
2314 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2315 			tp->rcv_up = th->th_seq + th->th_urp;
2316 			SOCKBUF_LOCK(&so->so_rcv);
2317 			so->so_oobmark = so->so_rcv.sb_cc +
2318 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2319 			if (so->so_oobmark == 0)
2320 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2321 			SOCKBUF_UNLOCK(&so->so_rcv);
2322 			sohasoutofband(so);
2323 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2324 		}
2325 		/*
2326 		 * Remove out of band data so doesn't get presented to user.
2327 		 * This can happen independent of advancing the URG pointer,
2328 		 * but if two URG's are pending at once, some out-of-band
2329 		 * data may creep in... ick.
2330 		 */
2331 		if (th->th_urp <= (u_long)tlen &&
2332 		    !(so->so_options & SO_OOBINLINE)) {
2333 			/* hdr drop is delayed */
2334 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2335 		}
2336 	} else {
2337 		/*
2338 		 * If no out of band data is expected,
2339 		 * pull receive urgent pointer along
2340 		 * with the receive window.
2341 		 */
2342 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2343 			tp->rcv_up = tp->rcv_nxt;
2344 	}
2345 dodata:							/* XXX */
2346 	KASSERT(headlocked, ("headlocked"));
2347 	/*
2348 	 * Process the segment text, merging it into the TCP sequencing queue,
2349 	 * and arranging for acknowledgment of receipt if necessary.
2350 	 * This process logically involves adjusting tp->rcv_wnd as data
2351 	 * is presented to the user (this happens in tcp_usrreq.c,
2352 	 * case PRU_RCVD).  If a FIN has already been received on this
2353 	 * connection then we just ignore the text.
2354 	 */
2355 	if ((tlen || (thflags & TH_FIN)) &&
2356 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2357 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2358 		/*
2359 		 * Insert segment which includes th into TCP reassembly queue
2360 		 * with control block tp.  Set thflags to whether reassembly now
2361 		 * includes a segment with FIN.  This handles the common case
2362 		 * inline (segment is the next to be received on an established
2363 		 * connection, and the queue is empty), avoiding linkage into
2364 		 * and removal from the queue and repetition of various
2365 		 * conversions.
2366 		 * Set DELACK for segments received in order, but ack
2367 		 * immediately when segments are out of order (so
2368 		 * fast retransmit can work).
2369 		 */
2370 		if (th->th_seq == tp->rcv_nxt &&
2371 		    LIST_EMPTY(&tp->t_segq) &&
2372 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2373 			if (DELAY_ACK(tp))
2374 				tp->t_flags |= TF_DELACK;
2375 			else
2376 				tp->t_flags |= TF_ACKNOW;
2377 			tp->rcv_nxt += tlen;
2378 			thflags = th->th_flags & TH_FIN;
2379 			tcpstat.tcps_rcvpack++;
2380 			tcpstat.tcps_rcvbyte += tlen;
2381 			ND6_HINT(tp);
2382 			/* Unlocked read. */
2383 			SOCKBUF_LOCK(&so->so_rcv);
2384 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2385 				m_freem(m);
2386 			else
2387 				sbappendstream_locked(&so->so_rcv, m);
2388 			sorwakeup_locked(so);
2389 		} else {
2390 			thflags = tcp_reass(tp, th, &tlen, m);
2391 			tp->t_flags |= TF_ACKNOW;
2392 		}
2393 			if (tp->sack_enable)
2394 				tcp_update_sack_list(tp);
2395 		/*
2396 		 * Note the amount of data that peer has sent into
2397 		 * our window, in order to estimate the sender's
2398 		 * buffer size.
2399 		 */
2400 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2401 	} else {
2402 		m_freem(m);
2403 		thflags &= ~TH_FIN;
2404 	}
2405 
2406 	/*
2407 	 * If FIN is received ACK the FIN and let the user know
2408 	 * that the connection is closing.
2409 	 */
2410 	if (thflags & TH_FIN) {
2411 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2412 			socantrcvmore(so);
2413 			/*
2414 			 * If connection is half-synchronized
2415 			 * (ie NEEDSYN flag on) then delay ACK,
2416 			 * so it may be piggybacked when SYN is sent.
2417 			 * Otherwise, since we received a FIN then no
2418 			 * more input can be expected, send ACK now.
2419 			 */
2420 			if (tp->t_flags & TF_NEEDSYN)
2421 				tp->t_flags |= TF_DELACK;
2422 			else
2423 				tp->t_flags |= TF_ACKNOW;
2424 			tp->rcv_nxt++;
2425 		}
2426 		switch (tp->t_state) {
2427 
2428 	 	/*
2429 		 * In SYN_RECEIVED and ESTABLISHED STATES
2430 		 * enter the CLOSE_WAIT state.
2431 		 */
2432 		case TCPS_SYN_RECEIVED:
2433 			tp->t_starttime = ticks;
2434 			/*FALLTHROUGH*/
2435 		case TCPS_ESTABLISHED:
2436 			tp->t_state = TCPS_CLOSE_WAIT;
2437 			break;
2438 
2439 	 	/*
2440 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2441 		 * enter the CLOSING state.
2442 		 */
2443 		case TCPS_FIN_WAIT_1:
2444 			tp->t_state = TCPS_CLOSING;
2445 			break;
2446 
2447 	 	/*
2448 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2449 		 * starting the time-wait timer, turning off the other
2450 		 * standard timers.
2451 		 */
2452 		case TCPS_FIN_WAIT_2:
2453 			KASSERT(headlocked == 1, ("headlocked should be 1"));
2454 			tcp_twstart(tp);
2455 			INP_INFO_WUNLOCK(&tcbinfo);
2456 			return;
2457 
2458 		/*
2459 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2460 		 */
2461 		case TCPS_TIME_WAIT:
2462 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2463 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2464 				      tcp_timer_2msl, tp);
2465 			break;
2466 		}
2467 	}
2468 	INP_INFO_WUNLOCK(&tcbinfo);
2469 #ifdef TCPDEBUG
2470 	if (so->so_options & SO_DEBUG)
2471 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2472 			  &tcp_savetcp, 0);
2473 #endif
2474 
2475 	/*
2476 	 * Return any desired output.
2477 	 */
2478 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2479 		(void) tcp_output(tp);
2480 
2481 check_delack:
2482 	if (tp->t_flags & TF_DELACK) {
2483 		tp->t_flags &= ~TF_DELACK;
2484 		callout_reset(tp->tt_delack, tcp_delacktime,
2485 		    tcp_timer_delack, tp);
2486 	}
2487 	INP_UNLOCK(inp);
2488 	return;
2489 
2490 dropafterack:
2491 	/*
2492 	 * Generate an ACK dropping incoming segment if it occupies
2493 	 * sequence space, where the ACK reflects our state.
2494 	 *
2495 	 * We can now skip the test for the RST flag since all
2496 	 * paths to this code happen after packets containing
2497 	 * RST have been dropped.
2498 	 *
2499 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2500 	 * segment we received passes the SYN-RECEIVED ACK test.
2501 	 * If it fails send a RST.  This breaks the loop in the
2502 	 * "LAND" DoS attack, and also prevents an ACK storm
2503 	 * between two listening ports that have been sent forged
2504 	 * SYN segments, each with the source address of the other.
2505 	 */
2506 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2507 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2508 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2509 		rstreason = BANDLIM_RST_OPENPORT;
2510 		goto dropwithreset;
2511 	}
2512 #ifdef TCPDEBUG
2513 	if (so->so_options & SO_DEBUG)
2514 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2515 			  &tcp_savetcp, 0);
2516 #endif
2517 	KASSERT(headlocked, ("headlocked should be 1"));
2518 	INP_INFO_WUNLOCK(&tcbinfo);
2519 	m_freem(m);
2520 	tp->t_flags |= TF_ACKNOW;
2521 	(void) tcp_output(tp);
2522 	INP_UNLOCK(inp);
2523 	return;
2524 
2525 dropwithreset:
2526 	/*
2527 	 * Generate a RST, dropping incoming segment.
2528 	 * Make ACK acceptable to originator of segment.
2529 	 * Don't bother to respond if destination was broadcast/multicast.
2530 	 */
2531 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2532 		goto drop;
2533 	if (isipv6) {
2534 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2535 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2536 			goto drop;
2537 	} else {
2538 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2539 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2540 	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2541 	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2542 			goto drop;
2543 	}
2544 	/* IPv6 anycast check is done at tcp6_input() */
2545 
2546 	/*
2547 	 * Perform bandwidth limiting.
2548 	 */
2549 	if (badport_bandlim(rstreason) < 0)
2550 		goto drop;
2551 
2552 #ifdef TCPDEBUG
2553 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2554 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2555 			  &tcp_savetcp, 0);
2556 #endif
2557 
2558 	if (thflags & TH_ACK)
2559 		/* mtod() below is safe as long as hdr dropping is delayed */
2560 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2561 			    TH_RST);
2562 	else {
2563 		if (thflags & TH_SYN)
2564 			tlen++;
2565 		/* mtod() below is safe as long as hdr dropping is delayed */
2566 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2567 			    (tcp_seq)0, TH_RST|TH_ACK);
2568 	}
2569 
2570 	if (tp)
2571 		INP_UNLOCK(inp);
2572 	if (headlocked)
2573 		INP_INFO_WUNLOCK(&tcbinfo);
2574 	return;
2575 
2576 drop:
2577 	/*
2578 	 * Drop space held by incoming segment and return.
2579 	 */
2580 #ifdef TCPDEBUG
2581 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2582 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2583 			  &tcp_savetcp, 0);
2584 #endif
2585 	if (tp)
2586 		INP_UNLOCK(inp);
2587 	m_freem(m);
2588 	if (headlocked)
2589 		INP_INFO_WUNLOCK(&tcbinfo);
2590 	return;
2591 }
2592 
2593 /*
2594  * Parse TCP options and place in tcpopt.
2595  */
2596 static void
2597 tcp_dooptions(tp, to, cp, cnt, is_syn, th)
2598 	struct tcpcb *tp;
2599 	struct tcpopt *to;
2600 	u_char *cp;
2601 	int cnt;
2602 	int is_syn;
2603 	struct tcphdr *th;
2604 {
2605 	int opt, optlen;
2606 
2607 	to->to_flags = 0;
2608 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2609 		opt = cp[0];
2610 		if (opt == TCPOPT_EOL)
2611 			break;
2612 		if (opt == TCPOPT_NOP)
2613 			optlen = 1;
2614 		else {
2615 			if (cnt < 2)
2616 				break;
2617 			optlen = cp[1];
2618 			if (optlen < 2 || optlen > cnt)
2619 				break;
2620 		}
2621 		switch (opt) {
2622 		case TCPOPT_MAXSEG:
2623 			if (optlen != TCPOLEN_MAXSEG)
2624 				continue;
2625 			if (!is_syn)
2626 				continue;
2627 			to->to_flags |= TOF_MSS;
2628 			bcopy((char *)cp + 2,
2629 			    (char *)&to->to_mss, sizeof(to->to_mss));
2630 			to->to_mss = ntohs(to->to_mss);
2631 			break;
2632 		case TCPOPT_WINDOW:
2633 			if (optlen != TCPOLEN_WINDOW)
2634 				continue;
2635 			if (! is_syn)
2636 				continue;
2637 			to->to_flags |= TOF_SCALE;
2638 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2639 			break;
2640 		case TCPOPT_TIMESTAMP:
2641 			if (optlen != TCPOLEN_TIMESTAMP)
2642 				continue;
2643 			to->to_flags |= TOF_TS;
2644 			bcopy((char *)cp + 2,
2645 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2646 			to->to_tsval = ntohl(to->to_tsval);
2647 			bcopy((char *)cp + 6,
2648 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2649 			to->to_tsecr = ntohl(to->to_tsecr);
2650 			break;
2651 		case TCPOPT_CC:
2652 			if (optlen != TCPOLEN_CC)
2653 				continue;
2654 			to->to_flags |= TOF_CC;
2655 			bcopy((char *)cp + 2,
2656 			    (char *)&to->to_cc, sizeof(to->to_cc));
2657 			to->to_cc = ntohl(to->to_cc);
2658 			break;
2659 		case TCPOPT_CCNEW:
2660 			if (optlen != TCPOLEN_CC)
2661 				continue;
2662 			if (!is_syn)
2663 				continue;
2664 			to->to_flags |= TOF_CCNEW;
2665 			bcopy((char *)cp + 2,
2666 			    (char *)&to->to_cc, sizeof(to->to_cc));
2667 			to->to_cc = ntohl(to->to_cc);
2668 			break;
2669 		case TCPOPT_CCECHO:
2670 			if (optlen != TCPOLEN_CC)
2671 				continue;
2672 			if (!is_syn)
2673 				continue;
2674 			to->to_flags |= TOF_CCECHO;
2675 			bcopy((char *)cp + 2,
2676 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2677 			to->to_ccecho = ntohl(to->to_ccecho);
2678 			break;
2679 #ifdef TCP_SIGNATURE
2680 		/*
2681 		 * XXX In order to reply to a host which has set the
2682 		 * TCP_SIGNATURE option in its initial SYN, we have to
2683 		 * record the fact that the option was observed here
2684 		 * for the syncache code to perform the correct response.
2685 		 */
2686 		case TCPOPT_SIGNATURE:
2687 			if (optlen != TCPOLEN_SIGNATURE)
2688 				continue;
2689 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2690 			break;
2691 #endif
2692 		case TCPOPT_SACK_PERMITTED:
2693 			if (!tcp_do_sack ||
2694 			    optlen != TCPOLEN_SACK_PERMITTED)
2695 				continue;
2696 			if (is_syn) {
2697 				/* MUST only be set on SYN */
2698 				to->to_flags |= TOF_SACK;
2699 			}
2700 			break;
2701 
2702 		case TCPOPT_SACK:
2703 			if (!tp || tcp_sack_option(tp, th, cp, optlen))
2704 				continue;
2705 			break;
2706 		default:
2707 			continue;
2708 		}
2709 	}
2710 }
2711 
2712 /*
2713  * Pull out of band byte out of a segment so
2714  * it doesn't appear in the user's data queue.
2715  * It is still reflected in the segment length for
2716  * sequencing purposes.
2717  */
2718 static void
2719 tcp_pulloutofband(so, th, m, off)
2720 	struct socket *so;
2721 	struct tcphdr *th;
2722 	register struct mbuf *m;
2723 	int off;		/* delayed to be droped hdrlen */
2724 {
2725 	int cnt = off + th->th_urp - 1;
2726 
2727 	while (cnt >= 0) {
2728 		if (m->m_len > cnt) {
2729 			char *cp = mtod(m, caddr_t) + cnt;
2730 			struct tcpcb *tp = sototcpcb(so);
2731 
2732 			tp->t_iobc = *cp;
2733 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2734 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2735 			m->m_len--;
2736 			if (m->m_flags & M_PKTHDR)
2737 				m->m_pkthdr.len--;
2738 			return;
2739 		}
2740 		cnt -= m->m_len;
2741 		m = m->m_next;
2742 		if (m == 0)
2743 			break;
2744 	}
2745 	panic("tcp_pulloutofband");
2746 }
2747 
2748 /*
2749  * Collect new round-trip time estimate
2750  * and update averages and current timeout.
2751  */
2752 static void
2753 tcp_xmit_timer(tp, rtt)
2754 	register struct tcpcb *tp;
2755 	int rtt;
2756 {
2757 	register int delta;
2758 
2759 	tcpstat.tcps_rttupdated++;
2760 	tp->t_rttupdated++;
2761 	if (tp->t_srtt != 0) {
2762 		/*
2763 		 * srtt is stored as fixed point with 5 bits after the
2764 		 * binary point (i.e., scaled by 8).  The following magic
2765 		 * is equivalent to the smoothing algorithm in rfc793 with
2766 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2767 		 * point).  Adjust rtt to origin 0.
2768 		 */
2769 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2770 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2771 
2772 		if ((tp->t_srtt += delta) <= 0)
2773 			tp->t_srtt = 1;
2774 
2775 		/*
2776 		 * We accumulate a smoothed rtt variance (actually, a
2777 		 * smoothed mean difference), then set the retransmit
2778 		 * timer to smoothed rtt + 4 times the smoothed variance.
2779 		 * rttvar is stored as fixed point with 4 bits after the
2780 		 * binary point (scaled by 16).  The following is
2781 		 * equivalent to rfc793 smoothing with an alpha of .75
2782 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2783 		 * rfc793's wired-in beta.
2784 		 */
2785 		if (delta < 0)
2786 			delta = -delta;
2787 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2788 		if ((tp->t_rttvar += delta) <= 0)
2789 			tp->t_rttvar = 1;
2790 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2791 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2792 	} else {
2793 		/*
2794 		 * No rtt measurement yet - use the unsmoothed rtt.
2795 		 * Set the variance to half the rtt (so our first
2796 		 * retransmit happens at 3*rtt).
2797 		 */
2798 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2799 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2800 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2801 	}
2802 	tp->t_rtttime = 0;
2803 	tp->t_rxtshift = 0;
2804 
2805 	/*
2806 	 * the retransmit should happen at rtt + 4 * rttvar.
2807 	 * Because of the way we do the smoothing, srtt and rttvar
2808 	 * will each average +1/2 tick of bias.  When we compute
2809 	 * the retransmit timer, we want 1/2 tick of rounding and
2810 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2811 	 * firing of the timer.  The bias will give us exactly the
2812 	 * 1.5 tick we need.  But, because the bias is
2813 	 * statistical, we have to test that we don't drop below
2814 	 * the minimum feasible timer (which is 2 ticks).
2815 	 */
2816 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2817 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2818 
2819 	/*
2820 	 * We received an ack for a packet that wasn't retransmitted;
2821 	 * it is probably safe to discard any error indications we've
2822 	 * received recently.  This isn't quite right, but close enough
2823 	 * for now (a route might have failed after we sent a segment,
2824 	 * and the return path might not be symmetrical).
2825 	 */
2826 	tp->t_softerror = 0;
2827 }
2828 
2829 /*
2830  * Determine a reasonable value for maxseg size.
2831  * If the route is known, check route for mtu.
2832  * If none, use an mss that can be handled on the outgoing
2833  * interface without forcing IP to fragment; if bigger than
2834  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2835  * to utilize large mbufs.  If no route is found, route has no mtu,
2836  * or the destination isn't local, use a default, hopefully conservative
2837  * size (usually 512 or the default IP max size, but no more than the mtu
2838  * of the interface), as we can't discover anything about intervening
2839  * gateways or networks.  We also initialize the congestion/slow start
2840  * window to be a single segment if the destination isn't local.
2841  * While looking at the routing entry, we also initialize other path-dependent
2842  * parameters from pre-set or cached values in the routing entry.
2843  *
2844  * Also take into account the space needed for options that we
2845  * send regularly.  Make maxseg shorter by that amount to assure
2846  * that we can send maxseg amount of data even when the options
2847  * are present.  Store the upper limit of the length of options plus
2848  * data in maxopd.
2849  *
2850  *
2851  * In case of T/TCP, we call this routine during implicit connection
2852  * setup as well (offer = -1), to initialize maxseg from the cached
2853  * MSS of our peer.
2854  *
2855  * NOTE that this routine is only called when we process an incoming
2856  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2857  */
2858 void
2859 tcp_mss(tp, offer)
2860 	struct tcpcb *tp;
2861 	int offer;
2862 {
2863 	int rtt, mss;
2864 	u_long bufsize;
2865 	u_long maxmtu;
2866 	struct inpcb *inp = tp->t_inpcb;
2867 	struct socket *so;
2868 	struct hc_metrics_lite metrics;
2869 	struct rmxp_tao tao;
2870 	int origoffer = offer;
2871 #ifdef INET6
2872 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2873 	size_t min_protoh = isipv6 ?
2874 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2875 			    sizeof (struct tcpiphdr);
2876 #else
2877 	const size_t min_protoh = sizeof(struct tcpiphdr);
2878 #endif
2879 	bzero(&tao, sizeof(tao));
2880 
2881 	/* initialize */
2882 #ifdef INET6
2883 	if (isipv6) {
2884 		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2885 		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2886 	} else
2887 #endif
2888 	{
2889 		maxmtu = tcp_maxmtu(&inp->inp_inc);
2890 		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2891 	}
2892 	so = inp->inp_socket;
2893 
2894 	/*
2895 	 * no route to sender, stay with default mss and return
2896 	 */
2897 	if (maxmtu == 0)
2898 		return;
2899 
2900 	/* what have we got? */
2901 	switch (offer) {
2902 		case 0:
2903 			/*
2904 			 * Offer == 0 means that there was no MSS on the SYN
2905 			 * segment, in this case we use tcp_mssdflt.
2906 			 */
2907 			offer =
2908 #ifdef INET6
2909 				isipv6 ? tcp_v6mssdflt :
2910 #endif
2911 				tcp_mssdflt;
2912 			break;
2913 
2914 		case -1:
2915 			/*
2916 			 * Offer == -1 means that we didn't receive SYN yet,
2917 			 * use cached value in that case;
2918 			 */
2919 			if (tcp_do_rfc1644)
2920 				tcp_hc_gettao(&inp->inp_inc, &tao);
2921 			if (tao.tao_mssopt != 0)
2922 				offer = tao.tao_mssopt;
2923 			/* FALLTHROUGH */
2924 
2925 		default:
2926 			/*
2927 			 * Prevent DoS attack with too small MSS. Round up
2928 			 * to at least minmss.
2929 			 */
2930 			offer = max(offer, tcp_minmss);
2931 			/*
2932 			 * Sanity check: make sure that maxopd will be large
2933 			 * enough to allow some data on segments even if the
2934 			 * all the option space is used (40bytes).  Otherwise
2935 			 * funny things may happen in tcp_output.
2936 			 */
2937 			offer = max(offer, 64);
2938 			if (tcp_do_rfc1644)
2939 				tcp_hc_updatetao(&inp->inp_inc,
2940 						 TCP_HC_TAO_MSSOPT, 0, offer);
2941 	}
2942 
2943 	/*
2944 	 * rmx information is now retrieved from tcp_hostcache
2945 	 */
2946 	tcp_hc_get(&inp->inp_inc, &metrics);
2947 
2948 	/*
2949 	 * if there's a discovered mtu int tcp hostcache, use it
2950 	 * else, use the link mtu.
2951 	 */
2952 	if (metrics.rmx_mtu)
2953 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2954 	else {
2955 #ifdef INET6
2956 		if (isipv6) {
2957 			mss = maxmtu - min_protoh;
2958 			if (!path_mtu_discovery &&
2959 			    !in6_localaddr(&inp->in6p_faddr))
2960 				mss = min(mss, tcp_v6mssdflt);
2961 		} else
2962 #endif
2963 		{
2964 			mss = maxmtu - min_protoh;
2965 			if (!path_mtu_discovery &&
2966 			    !in_localaddr(inp->inp_faddr))
2967 				mss = min(mss, tcp_mssdflt);
2968 		}
2969 	}
2970 	mss = min(mss, offer);
2971 
2972 	/*
2973 	 * maxopd stores the maximum length of data AND options
2974 	 * in a segment; maxseg is the amount of data in a normal
2975 	 * segment.  We need to store this value (maxopd) apart
2976 	 * from maxseg, because now every segment carries options
2977 	 * and thus we normally have somewhat less data in segments.
2978 	 */
2979 	tp->t_maxopd = mss;
2980 
2981 	/*
2982 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2983 	 * were received yet.  In this case we just guess, otherwise
2984 	 * we do the same as before T/TCP.
2985 	 */
2986  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2987 	    (origoffer == -1 ||
2988 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2989 		mss -= TCPOLEN_TSTAMP_APPA;
2990  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2991 	    (origoffer == -1 ||
2992 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2993 		mss -= TCPOLEN_CC_APPA;
2994 	tp->t_maxseg = mss;
2995 
2996 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2997 		if (mss > MCLBYTES)
2998 			mss &= ~(MCLBYTES-1);
2999 #else
3000 		if (mss > MCLBYTES)
3001 			mss = mss / MCLBYTES * MCLBYTES;
3002 #endif
3003 	tp->t_maxseg = mss;
3004 
3005 	/*
3006 	 * If there's a pipesize, change the socket buffer to that size,
3007 	 * don't change if sb_hiwat is different than default (then it
3008 	 * has been changed on purpose with setsockopt).
3009 	 * Make the socket buffers an integral number of mss units;
3010 	 * if the mss is larger than the socket buffer, decrease the mss.
3011 	 */
3012 	SOCKBUF_LOCK(&so->so_snd);
3013 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3014 		bufsize = metrics.rmx_sendpipe;
3015 	else
3016 		bufsize = so->so_snd.sb_hiwat;
3017 	if (bufsize < mss)
3018 		mss = bufsize;
3019 	else {
3020 		bufsize = roundup(bufsize, mss);
3021 		if (bufsize > sb_max)
3022 			bufsize = sb_max;
3023 		if (bufsize > so->so_snd.sb_hiwat)
3024 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3025 	}
3026 	SOCKBUF_UNLOCK(&so->so_snd);
3027 	tp->t_maxseg = mss;
3028 
3029 	SOCKBUF_LOCK(&so->so_rcv);
3030 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3031 		bufsize = metrics.rmx_recvpipe;
3032 	else
3033 		bufsize = so->so_rcv.sb_hiwat;
3034 	if (bufsize > mss) {
3035 		bufsize = roundup(bufsize, mss);
3036 		if (bufsize > sb_max)
3037 			bufsize = sb_max;
3038 		if (bufsize > so->so_rcv.sb_hiwat)
3039 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3040 	}
3041 	SOCKBUF_UNLOCK(&so->so_rcv);
3042 	/*
3043 	 * While we're here, check the others too
3044 	 */
3045 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3046 		tp->t_srtt = rtt;
3047 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3048 		tcpstat.tcps_usedrtt++;
3049 		if (metrics.rmx_rttvar) {
3050 			tp->t_rttvar = metrics.rmx_rttvar;
3051 			tcpstat.tcps_usedrttvar++;
3052 		} else {
3053 			/* default variation is +- 1 rtt */
3054 			tp->t_rttvar =
3055 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3056 		}
3057 		TCPT_RANGESET(tp->t_rxtcur,
3058 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3059 			      tp->t_rttmin, TCPTV_REXMTMAX);
3060 	}
3061 	if (metrics.rmx_ssthresh) {
3062 		/*
3063 		 * There's some sort of gateway or interface
3064 		 * buffer limit on the path.  Use this to set
3065 		 * the slow start threshhold, but set the
3066 		 * threshold to no less than 2*mss.
3067 		 */
3068 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3069 		tcpstat.tcps_usedssthresh++;
3070 	}
3071 	if (metrics.rmx_bandwidth)
3072 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3073 
3074 	/*
3075 	 * Set the slow-start flight size depending on whether this
3076 	 * is a local network or not.
3077 	 *
3078 	 * Extend this so we cache the cwnd too and retrieve it here.
3079 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3080 	 * have previous experience with the remote host. Be careful
3081 	 * not make cwnd bigger than remote receive window or our own
3082 	 * send socket buffer. Maybe put some additional upper bound
3083 	 * on the retrieved cwnd. Should do incremental updates to
3084 	 * hostcache when cwnd collapses so next connection doesn't
3085 	 * overloads the path again.
3086 	 *
3087 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3088 	 * We currently check only in syncache_socket for that.
3089 	 */
3090 #define TCP_METRICS_CWND
3091 #ifdef TCP_METRICS_CWND
3092 	if (metrics.rmx_cwnd)
3093 		tp->snd_cwnd = max(mss,
3094 				min(metrics.rmx_cwnd / 2,
3095 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3096 	else
3097 #endif
3098 	if (tcp_do_rfc3390)
3099 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3100 #ifdef INET6
3101 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3102 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3103 #else
3104 	else if (in_localaddr(inp->inp_faddr))
3105 #endif
3106 		tp->snd_cwnd = mss * ss_fltsz_local;
3107 	else
3108 		tp->snd_cwnd = mss * ss_fltsz;
3109 }
3110 
3111 /*
3112  * Determine the MSS option to send on an outgoing SYN.
3113  */
3114 int
3115 tcp_mssopt(inc)
3116 	struct in_conninfo *inc;
3117 {
3118 	int mss = 0;
3119 	u_long maxmtu = 0;
3120 	u_long thcmtu = 0;
3121 	size_t min_protoh;
3122 #ifdef INET6
3123 	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3124 #endif
3125 
3126 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3127 
3128 #ifdef INET6
3129 	if (isipv6) {
3130 		mss = tcp_v6mssdflt;
3131 		maxmtu = tcp_maxmtu6(inc);
3132 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3133 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3134 	} else
3135 #endif
3136 	{
3137 		mss = tcp_mssdflt;
3138 		maxmtu = tcp_maxmtu(inc);
3139 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3140 		min_protoh = sizeof(struct tcpiphdr);
3141 	}
3142 	if (maxmtu && thcmtu)
3143 		mss = min(maxmtu, thcmtu) - min_protoh;
3144 	else if (maxmtu || thcmtu)
3145 		mss = max(maxmtu, thcmtu) - min_protoh;
3146 
3147 	return (mss);
3148 }
3149 
3150 
3151 /*
3152  * On a partial ack arrives, force the retransmission of the
3153  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3154  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3155  * be started again.
3156  */
3157 static void
3158 tcp_newreno_partial_ack(tp, th)
3159 	struct tcpcb *tp;
3160 	struct tcphdr *th;
3161 {
3162 	tcp_seq onxt = tp->snd_nxt;
3163 	u_long  ocwnd = tp->snd_cwnd;
3164 
3165 	callout_stop(tp->tt_rexmt);
3166 	tp->t_rtttime = 0;
3167 	tp->snd_nxt = th->th_ack;
3168 	/*
3169 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3170 	 * (tp->snd_una has not yet been updated when this function is called.)
3171 	 */
3172 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3173 	tp->t_flags |= TF_ACKNOW;
3174 	(void) tcp_output(tp);
3175 	tp->snd_cwnd = ocwnd;
3176 	if (SEQ_GT(onxt, tp->snd_nxt))
3177 		tp->snd_nxt = onxt;
3178 	/*
3179 	 * Partial window deflation.  Relies on fact that tp->snd_una
3180 	 * not updated yet.
3181 	 */
3182 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3183 }
3184 
3185 /*
3186  * Returns 1 if the TIME_WAIT state was killed and we should start over,
3187  * looking for a pcb in the listen state.  Returns 0 otherwise.
3188  */
3189 static int
3190 tcp_timewait(tw, to, th, m, tlen)
3191 	struct tcptw *tw;
3192 	struct tcpopt *to;
3193 	struct tcphdr *th;
3194 	struct mbuf *m;
3195 	int tlen;
3196 {
3197 	int thflags;
3198 	tcp_seq seq;
3199 #ifdef INET6
3200 	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3201 #else
3202 	const int isipv6 = 0;
3203 #endif
3204 
3205 	thflags = th->th_flags;
3206 
3207 	/*
3208 	 * NOTE: for FIN_WAIT_2 (to be added later),
3209 	 * must validate sequence number before accepting RST
3210 	 */
3211 
3212 	/*
3213 	 * If the segment contains RST:
3214 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3215 	 *      RFC 1337.
3216 	 */
3217 	if (thflags & TH_RST)
3218 		goto drop;
3219 
3220 	/*
3221 	 * If segment contains a SYN and CC [not CC.NEW] option:
3222 	 * 	if connection duration > MSL, drop packet and send RST;
3223 	 *
3224 	 *	if SEG.CC > CCrecv then is new SYN.
3225 	 *	    Complete close and delete TCPCB.  Then reprocess
3226 	 *	    segment, hoping to find new TCPCB in LISTEN state;
3227 	 *
3228 	 *	else must be old SYN; drop it.
3229 	 * else do normal processing.
3230 	 */
3231 	if ((thflags & TH_SYN) && (to->to_flags & TOF_CC) && tw->cc_recv != 0) {
3232 		if ((ticks - tw->t_starttime) > tcp_msl)
3233 			goto reset;
3234 		if (CC_GT(to->to_cc, tw->cc_recv)) {
3235 			(void) tcp_twclose(tw, 0);
3236 			return (1);
3237 		}
3238 		goto drop;
3239 	}
3240 
3241 #if 0
3242 /* PAWS not needed at the moment */
3243 	/*
3244 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3245 	 * and it's less than ts_recent, drop it.
3246 	 */
3247 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3248 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3249 		if ((thflags & TH_ACK) == 0)
3250 			goto drop;
3251 		goto ack;
3252 	}
3253 	/*
3254 	 * ts_recent is never updated because we never accept new segments.
3255 	 */
3256 #endif
3257 
3258 	/*
3259 	 * If a new connection request is received
3260 	 * while in TIME_WAIT, drop the old connection
3261 	 * and start over if the sequence numbers
3262 	 * are above the previous ones.
3263 	 */
3264 	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3265 		(void) tcp_twclose(tw, 0);
3266 		return (1);
3267 	}
3268 
3269 	/*
3270 	 * Drop the the segment if it does not contain an ACK.
3271 	 */
3272 	if ((thflags & TH_ACK) == 0)
3273 		goto drop;
3274 
3275 	/*
3276 	 * Reset the 2MSL timer if this is a duplicate FIN.
3277 	 */
3278 	if (thflags & TH_FIN) {
3279 		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3280 		if (seq + 1 == tw->rcv_nxt)
3281 			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3282 	}
3283 
3284 	/*
3285 	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3286 	 */
3287 	if (thflags != TH_ACK || tlen != 0 ||
3288 	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3289 		tcp_twrespond(tw, TH_ACK);
3290 	goto drop;
3291 
3292 reset:
3293 	/*
3294 	 * Generate a RST, dropping incoming segment.
3295 	 * Make ACK acceptable to originator of segment.
3296 	 * Don't bother to respond if destination was broadcast/multicast.
3297 	 */
3298 	if (m->m_flags & (M_BCAST|M_MCAST))
3299 		goto drop;
3300 	if (isipv6) {
3301 		struct ip6_hdr *ip6;
3302 
3303 		/* IPv6 anycast check is done at tcp6_input() */
3304 		ip6 = mtod(m, struct ip6_hdr *);
3305 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3306 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3307 			goto drop;
3308 	} else {
3309 		struct ip *ip;
3310 
3311 		ip = mtod(m, struct ip *);
3312 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3313 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3314 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3315 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3316 			goto drop;
3317 	}
3318 	if (thflags & TH_ACK) {
3319 		tcp_respond(NULL,
3320 		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3321 	} else {
3322 		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3323 		tcp_respond(NULL,
3324 		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3325 	}
3326 	INP_UNLOCK(tw->tw_inpcb);
3327 	return (0);
3328 
3329 drop:
3330 	INP_UNLOCK(tw->tw_inpcb);
3331 	m_freem(m);
3332 	return (0);
3333 }
3334