xref: /freebsd/sys/netinet/tcp_reass.c (revision 7dfd9569a2f0637fb9a48157b1c1bfe5709faee3)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_input.h"
40 #include "opt_tcp_sack.h"
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/mac.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>		/* for proc0 declaration */
48 #include <sys/protosw.h>
49 #include <sys/signalvar.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 
56 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
69 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_options.h>
72 #include <netinet/ip6.h>
73 #include <netinet/icmp6.h>
74 #include <netinet6/in6_pcb.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/nd6.h>
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_fsm.h>
79 #include <netinet/tcp_seq.h>
80 #include <netinet/tcp_timer.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet6/tcp6_var.h>
83 #include <netinet/tcpip.h>
84 #ifdef TCPDEBUG
85 #include <netinet/tcp_debug.h>
86 #endif /* TCPDEBUG */
87 
88 #ifdef FAST_IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/ipsec6.h>
91 #endif /*FAST_IPSEC*/
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #include <netinet6/ipsec6.h>
96 #include <netkey/key.h>
97 #endif /*IPSEC*/
98 
99 #include <machine/in_cksum.h>
100 
101 static const int tcprexmtthresh = 3;
102 
103 struct	tcpstat tcpstat;
104 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
105     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
106 
107 static int log_in_vain = 0;
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
109     &log_in_vain, 0, "Log all incoming TCP connections");
110 
111 static int blackhole = 0;
112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
113 	&blackhole, 0, "Do not send RST when dropping refused connections");
114 
115 int tcp_delack_enabled = 1;
116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
117     &tcp_delack_enabled, 0,
118     "Delay ACK to try and piggyback it onto a data packet");
119 
120 #ifdef TCP_DROP_SYNFIN
121 static int drop_synfin = 0;
122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
123     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
124 #endif
125 
126 static int tcp_do_rfc3042 = 1;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
128     &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
129 
130 static int tcp_do_rfc3390 = 1;
131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
132     &tcp_do_rfc3390, 0,
133     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
134 
135 static int tcp_insecure_rst = 0;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
137     &tcp_insecure_rst, 0,
138     "Follow the old (insecure) criteria for accepting RST packets.");
139 
140 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
141 	    "TCP Segment Reassembly Queue");
142 
143 static int tcp_reass_maxseg = 0;
144 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
145 	   &tcp_reass_maxseg, 0,
146 	   "Global maximum number of TCP Segments in Reassembly Queue");
147 
148 int tcp_reass_qsize = 0;
149 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
150 	   &tcp_reass_qsize, 0,
151 	   "Global number of TCP Segments currently in Reassembly Queue");
152 
153 static int tcp_reass_maxqlen = 48;
154 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
155 	   &tcp_reass_maxqlen, 0,
156 	   "Maximum number of TCP Segments per individual Reassembly Queue");
157 
158 static int tcp_reass_overflows = 0;
159 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
160 	   &tcp_reass_overflows, 0,
161 	   "Global number of TCP Segment Reassembly Queue Overflows");
162 
163 struct inpcbhead tcb;
164 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
165 struct inpcbinfo tcbinfo;
166 struct mtx	*tcbinfo_mtx;
167 
168 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
169 
170 static void	 tcp_pulloutofband(struct socket *,
171 		     struct tcphdr *, struct mbuf *, int);
172 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
173 		     struct mbuf *);
174 static void	 tcp_xmit_timer(struct tcpcb *, int);
175 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
176 static int	 tcp_timewait(struct inpcb *, struct tcpopt *,
177 		     struct tcphdr *, struct mbuf *, int);
178 
179 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
180 #ifdef INET6
181 #define ND6_HINT(tp) \
182 do { \
183 	if ((tp) && (tp)->t_inpcb && \
184 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
185 		nd6_nud_hint(NULL, NULL, 0); \
186 } while (0)
187 #else
188 #define ND6_HINT(tp)
189 #endif
190 
191 /*
192  * Indicate whether this ack should be delayed.  We can delay the ack if
193  *	- there is no delayed ack timer in progress and
194  *	- our last ack wasn't a 0-sized window.  We never want to delay
195  *	  the ack that opens up a 0-sized window and
196  *		- delayed acks are enabled or
197  *		- this is a half-synchronized T/TCP connection.
198  */
199 #define DELAY_ACK(tp)							\
200 	((!callout_active(tp->tt_delack) &&				\
201 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
202 	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
203 
204 /* Initialize TCP reassembly queue */
205 static void
206 tcp_reass_zone_change(void *tag)
207 {
208 
209 	tcp_reass_maxseg = nmbclusters / 16;
210 	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
211 }
212 
213 uma_zone_t	tcp_reass_zone;
214 void
215 tcp_reass_init()
216 {
217 	tcp_reass_maxseg = nmbclusters / 16;
218 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
219 	    &tcp_reass_maxseg);
220 	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
221 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
223 	EVENTHANDLER_REGISTER(nmbclusters_change,
224 	    tcp_reass_zone_change, NULL, EVENTHANDLER_PRI_ANY);
225 }
226 
227 static int
228 tcp_reass(tp, th, tlenp, m)
229 	register struct tcpcb *tp;
230 	register struct tcphdr *th;
231 	int *tlenp;
232 	struct mbuf *m;
233 {
234 	struct tseg_qent *q;
235 	struct tseg_qent *p = NULL;
236 	struct tseg_qent *nq;
237 	struct tseg_qent *te = NULL;
238 	struct socket *so = tp->t_inpcb->inp_socket;
239 	int flags;
240 
241 	INP_LOCK_ASSERT(tp->t_inpcb);
242 
243 	/*
244 	 * XXX: tcp_reass() is rather inefficient with its data structures
245 	 * and should be rewritten (see NetBSD for optimizations).  While
246 	 * doing that it should move to its own file tcp_reass.c.
247 	 */
248 
249 	/*
250 	 * Call with th==NULL after become established to
251 	 * force pre-ESTABLISHED data up to user socket.
252 	 */
253 	if (th == NULL)
254 		goto present;
255 
256 	/*
257 	 * Limit the number of segments in the reassembly queue to prevent
258 	 * holding on to too many segments (and thus running out of mbufs).
259 	 * Make sure to let the missing segment through which caused this
260 	 * queue.  Always keep one global queue entry spare to be able to
261 	 * process the missing segment.
262 	 */
263 	if (th->th_seq != tp->rcv_nxt &&
264 	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
265 	     tp->t_segqlen >= tcp_reass_maxqlen)) {
266 		tcp_reass_overflows++;
267 		tcpstat.tcps_rcvmemdrop++;
268 		m_freem(m);
269 		*tlenp = 0;
270 		return (0);
271 	}
272 
273 	/*
274 	 * Allocate a new queue entry. If we can't, or hit the zone limit
275 	 * just drop the pkt.
276 	 */
277 	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
278 	if (te == NULL) {
279 		tcpstat.tcps_rcvmemdrop++;
280 		m_freem(m);
281 		*tlenp = 0;
282 		return (0);
283 	}
284 	tp->t_segqlen++;
285 	tcp_reass_qsize++;
286 
287 	/*
288 	 * Find a segment which begins after this one does.
289 	 */
290 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
291 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
292 			break;
293 		p = q;
294 	}
295 
296 	/*
297 	 * If there is a preceding segment, it may provide some of
298 	 * our data already.  If so, drop the data from the incoming
299 	 * segment.  If it provides all of our data, drop us.
300 	 */
301 	if (p != NULL) {
302 		register int i;
303 		/* conversion to int (in i) handles seq wraparound */
304 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
305 		if (i > 0) {
306 			if (i >= *tlenp) {
307 				tcpstat.tcps_rcvduppack++;
308 				tcpstat.tcps_rcvdupbyte += *tlenp;
309 				m_freem(m);
310 				uma_zfree(tcp_reass_zone, te);
311 				tp->t_segqlen--;
312 				tcp_reass_qsize--;
313 				/*
314 				 * Try to present any queued data
315 				 * at the left window edge to the user.
316 				 * This is needed after the 3-WHS
317 				 * completes.
318 				 */
319 				goto present;	/* ??? */
320 			}
321 			m_adj(m, i);
322 			*tlenp -= i;
323 			th->th_seq += i;
324 		}
325 	}
326 	tcpstat.tcps_rcvoopack++;
327 	tcpstat.tcps_rcvoobyte += *tlenp;
328 
329 	/*
330 	 * While we overlap succeeding segments trim them or,
331 	 * if they are completely covered, dequeue them.
332 	 */
333 	while (q) {
334 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
335 		if (i <= 0)
336 			break;
337 		if (i < q->tqe_len) {
338 			q->tqe_th->th_seq += i;
339 			q->tqe_len -= i;
340 			m_adj(q->tqe_m, i);
341 			break;
342 		}
343 
344 		nq = LIST_NEXT(q, tqe_q);
345 		LIST_REMOVE(q, tqe_q);
346 		m_freem(q->tqe_m);
347 		uma_zfree(tcp_reass_zone, q);
348 		tp->t_segqlen--;
349 		tcp_reass_qsize--;
350 		q = nq;
351 	}
352 
353 	/* Insert the new segment queue entry into place. */
354 	te->tqe_m = m;
355 	te->tqe_th = th;
356 	te->tqe_len = *tlenp;
357 
358 	if (p == NULL) {
359 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
360 	} else {
361 		LIST_INSERT_AFTER(p, te, tqe_q);
362 	}
363 
364 present:
365 	/*
366 	 * Present data to user, advancing rcv_nxt through
367 	 * completed sequence space.
368 	 */
369 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
370 		return (0);
371 	q = LIST_FIRST(&tp->t_segq);
372 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
373 		return (0);
374 	SOCKBUF_LOCK(&so->so_rcv);
375 	do {
376 		tp->rcv_nxt += q->tqe_len;
377 		flags = q->tqe_th->th_flags & TH_FIN;
378 		nq = LIST_NEXT(q, tqe_q);
379 		LIST_REMOVE(q, tqe_q);
380 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
381 			m_freem(q->tqe_m);
382 		else
383 			sbappendstream_locked(&so->so_rcv, q->tqe_m);
384 		uma_zfree(tcp_reass_zone, q);
385 		tp->t_segqlen--;
386 		tcp_reass_qsize--;
387 		q = nq;
388 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
389 	ND6_HINT(tp);
390 	sorwakeup_locked(so);
391 	return (flags);
392 }
393 
394 /*
395  * TCP input routine, follows pages 65-76 of the
396  * protocol specification dated September, 1981 very closely.
397  */
398 #ifdef INET6
399 int
400 tcp6_input(mp, offp, proto)
401 	struct mbuf **mp;
402 	int *offp, proto;
403 {
404 	register struct mbuf *m = *mp;
405 	struct in6_ifaddr *ia6;
406 
407 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
408 
409 	/*
410 	 * draft-itojun-ipv6-tcp-to-anycast
411 	 * better place to put this in?
412 	 */
413 	ia6 = ip6_getdstifaddr(m);
414 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
415 		struct ip6_hdr *ip6;
416 
417 		ip6 = mtod(m, struct ip6_hdr *);
418 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
419 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
420 		return IPPROTO_DONE;
421 	}
422 
423 	tcp_input(m, *offp);
424 	return IPPROTO_DONE;
425 }
426 #endif
427 
428 void
429 tcp_input(m, off0)
430 	register struct mbuf *m;
431 	int off0;
432 {
433 	register struct tcphdr *th;
434 	register struct ip *ip = NULL;
435 	register struct ipovly *ipov;
436 	register struct inpcb *inp = NULL;
437 	u_char *optp = NULL;
438 	int optlen = 0;
439 	int len, tlen, off;
440 	int drop_hdrlen;
441 	register struct tcpcb *tp = 0;
442 	register int thflags;
443 	struct socket *so = 0;
444 	int todrop, acked, ourfinisacked, needoutput = 0;
445 	u_long tiwin;
446 	struct tcpopt to;		/* options in this segment */
447 	int headlocked = 0;
448 #ifdef IPFIREWALL_FORWARD
449 	struct m_tag *fwd_tag;
450 #endif
451 	int rstreason; /* For badport_bandlim accounting purposes */
452 
453 	struct ip6_hdr *ip6 = NULL;
454 #ifdef INET6
455 	int isipv6;
456 #else
457 	const int isipv6 = 0;
458 #endif
459 
460 #ifdef TCPDEBUG
461 	/*
462 	 * The size of tcp_saveipgen must be the size of the max ip header,
463 	 * now IPv6.
464 	 */
465 	u_char tcp_saveipgen[40];
466 	struct tcphdr tcp_savetcp;
467 	short ostate = 0;
468 #endif
469 
470 #ifdef INET6
471 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
472 #endif
473 	bzero((char *)&to, sizeof(to));
474 
475 	tcpstat.tcps_rcvtotal++;
476 
477 	if (isipv6) {
478 #ifdef INET6
479 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
480 		ip6 = mtod(m, struct ip6_hdr *);
481 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
482 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
483 			tcpstat.tcps_rcvbadsum++;
484 			goto drop;
485 		}
486 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
487 
488 		/*
489 		 * Be proactive about unspecified IPv6 address in source.
490 		 * As we use all-zero to indicate unbounded/unconnected pcb,
491 		 * unspecified IPv6 address can be used to confuse us.
492 		 *
493 		 * Note that packets with unspecified IPv6 destination is
494 		 * already dropped in ip6_input.
495 		 */
496 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
497 			/* XXX stat */
498 			goto drop;
499 		}
500 #else
501 		th = NULL;		/* XXX: avoid compiler warning */
502 #endif
503 	} else {
504 		/*
505 		 * Get IP and TCP header together in first mbuf.
506 		 * Note: IP leaves IP header in first mbuf.
507 		 */
508 		if (off0 > sizeof (struct ip)) {
509 			ip_stripoptions(m, (struct mbuf *)0);
510 			off0 = sizeof(struct ip);
511 		}
512 		if (m->m_len < sizeof (struct tcpiphdr)) {
513 			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
514 				tcpstat.tcps_rcvshort++;
515 				return;
516 			}
517 		}
518 		ip = mtod(m, struct ip *);
519 		ipov = (struct ipovly *)ip;
520 		th = (struct tcphdr *)((caddr_t)ip + off0);
521 		tlen = ip->ip_len;
522 
523 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
524 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
525 				th->th_sum = m->m_pkthdr.csum_data;
526 			else
527 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
528 						ip->ip_dst.s_addr,
529 						htonl(m->m_pkthdr.csum_data +
530 							ip->ip_len +
531 							IPPROTO_TCP));
532 			th->th_sum ^= 0xffff;
533 #ifdef TCPDEBUG
534 			ipov->ih_len = (u_short)tlen;
535 			ipov->ih_len = htons(ipov->ih_len);
536 #endif
537 		} else {
538 			/*
539 			 * Checksum extended TCP header and data.
540 			 */
541 			len = sizeof (struct ip) + tlen;
542 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
543 			ipov->ih_len = (u_short)tlen;
544 			ipov->ih_len = htons(ipov->ih_len);
545 			th->th_sum = in_cksum(m, len);
546 		}
547 		if (th->th_sum) {
548 			tcpstat.tcps_rcvbadsum++;
549 			goto drop;
550 		}
551 #ifdef INET6
552 		/* Re-initialization for later version check */
553 		ip->ip_v = IPVERSION;
554 #endif
555 	}
556 
557 	/*
558 	 * Check that TCP offset makes sense,
559 	 * pull out TCP options and adjust length.		XXX
560 	 */
561 	off = th->th_off << 2;
562 	if (off < sizeof (struct tcphdr) || off > tlen) {
563 		tcpstat.tcps_rcvbadoff++;
564 		goto drop;
565 	}
566 	tlen -= off;	/* tlen is used instead of ti->ti_len */
567 	if (off > sizeof (struct tcphdr)) {
568 		if (isipv6) {
569 #ifdef INET6
570 			IP6_EXTHDR_CHECK(m, off0, off, );
571 			ip6 = mtod(m, struct ip6_hdr *);
572 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
573 #endif
574 		} else {
575 			if (m->m_len < sizeof(struct ip) + off) {
576 				if ((m = m_pullup(m, sizeof (struct ip) + off))
577 						== 0) {
578 					tcpstat.tcps_rcvshort++;
579 					return;
580 				}
581 				ip = mtod(m, struct ip *);
582 				ipov = (struct ipovly *)ip;
583 				th = (struct tcphdr *)((caddr_t)ip + off0);
584 			}
585 		}
586 		optlen = off - sizeof (struct tcphdr);
587 		optp = (u_char *)(th + 1);
588 	}
589 	thflags = th->th_flags;
590 
591 #ifdef TCP_DROP_SYNFIN
592 	/*
593 	 * If the drop_synfin option is enabled, drop all packets with
594 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
595 	 * identifying the TCP/IP stack.
596 	 *
597 	 * This is a violation of the TCP specification.
598 	 */
599 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
600 		goto drop;
601 #endif
602 
603 	/*
604 	 * Convert TCP protocol specific fields to host format.
605 	 */
606 	th->th_seq = ntohl(th->th_seq);
607 	th->th_ack = ntohl(th->th_ack);
608 	th->th_win = ntohs(th->th_win);
609 	th->th_urp = ntohs(th->th_urp);
610 
611 	/*
612 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
613 	 * until after ip6_savecontrol() is called and before other functions
614 	 * which don't want those proto headers.
615 	 * Because ip6_savecontrol() is going to parse the mbuf to
616 	 * search for data to be passed up to user-land, it wants mbuf
617 	 * parameters to be unchanged.
618 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
619 	 * latest version of the advanced API (20020110).
620 	 */
621 	drop_hdrlen = off0 + off;
622 
623 	/*
624 	 * Locate pcb for segment.
625 	 */
626 	INP_INFO_WLOCK(&tcbinfo);
627 	headlocked = 1;
628 findpcb:
629 	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
630 #ifdef IPFIREWALL_FORWARD
631 	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
632 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
633 
634 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
635 		struct sockaddr_in *next_hop;
636 
637 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
638 		/*
639 		 * Transparently forwarded. Pretend to be the destination.
640 		 * already got one like this?
641 		 */
642 		inp = in_pcblookup_hash(&tcbinfo,
643 					ip->ip_src, th->th_sport,
644 					ip->ip_dst, th->th_dport,
645 					0, m->m_pkthdr.rcvif);
646 		if (!inp) {
647 			/* It's new.  Try to find the ambushing socket. */
648 			inp = in_pcblookup_hash(&tcbinfo,
649 						ip->ip_src, th->th_sport,
650 						next_hop->sin_addr,
651 						next_hop->sin_port ?
652 						    ntohs(next_hop->sin_port) :
653 						    th->th_dport,
654 						1, m->m_pkthdr.rcvif);
655 		}
656 		/* Remove the tag from the packet.  We don't need it anymore. */
657 		m_tag_delete(m, fwd_tag);
658 	} else {
659 #endif /* IPFIREWALL_FORWARD */
660 		if (isipv6) {
661 #ifdef INET6
662 			inp = in6_pcblookup_hash(&tcbinfo,
663 						 &ip6->ip6_src, th->th_sport,
664 						 &ip6->ip6_dst, th->th_dport,
665 						 1, m->m_pkthdr.rcvif);
666 #endif
667 		} else
668 			inp = in_pcblookup_hash(&tcbinfo,
669 						ip->ip_src, th->th_sport,
670 						ip->ip_dst, th->th_dport,
671 						1, m->m_pkthdr.rcvif);
672 #ifdef IPFIREWALL_FORWARD
673 	}
674 #endif /* IPFIREWALL_FORWARD */
675 
676 #if defined(IPSEC) || defined(FAST_IPSEC)
677 #ifdef INET6
678 	if (isipv6) {
679 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
680 #ifdef IPSEC
681 			ipsec6stat.in_polvio++;
682 #endif
683 			goto drop;
684 		}
685 	} else
686 #endif /* INET6 */
687 	if (inp != NULL && ipsec4_in_reject(m, inp)) {
688 #ifdef IPSEC
689 		ipsecstat.in_polvio++;
690 #endif
691 		goto drop;
692 	}
693 #endif /*IPSEC || FAST_IPSEC*/
694 
695 	/*
696 	 * If the state is CLOSED (i.e., TCB does not exist) then
697 	 * all data in the incoming segment is discarded.
698 	 * If the TCB exists but is in CLOSED state, it is embryonic,
699 	 * but should either do a listen or a connect soon.
700 	 */
701 	if (inp == NULL) {
702 		if (log_in_vain) {
703 #ifdef INET6
704 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
705 #else
706 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
707 #endif
708 
709 			if (isipv6) {
710 #ifdef INET6
711 				strcpy(dbuf, "[");
712 				strcpy(sbuf, "[");
713 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
714 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
715 				strcat(dbuf, "]");
716 				strcat(sbuf, "]");
717 #endif
718 			} else {
719 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
720 				strcpy(sbuf, inet_ntoa(ip->ip_src));
721 			}
722 			switch (log_in_vain) {
723 			case 1:
724 				if ((thflags & TH_SYN) == 0)
725 					break;
726 				/* FALLTHROUGH */
727 			case 2:
728 				log(LOG_INFO,
729 				    "Connection attempt to TCP %s:%d "
730 				    "from %s:%d flags:0x%02x\n",
731 				    dbuf, ntohs(th->th_dport), sbuf,
732 				    ntohs(th->th_sport), thflags);
733 				break;
734 			default:
735 				break;
736 			}
737 		}
738 		if (blackhole) {
739 			switch (blackhole) {
740 			case 1:
741 				if (thflags & TH_SYN)
742 					goto drop;
743 				break;
744 			case 2:
745 				goto drop;
746 			default:
747 				goto drop;
748 			}
749 		}
750 		rstreason = BANDLIM_RST_CLOSEDPORT;
751 		goto dropwithreset;
752 	}
753 	INP_LOCK(inp);
754 
755 	/* Check the minimum TTL for socket. */
756 	if (inp->inp_ip_minttl != 0) {
757 #ifdef INET6
758 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
759 			goto drop;
760 		else
761 #endif
762 		if (inp->inp_ip_minttl > ip->ip_ttl)
763 			goto drop;
764 	}
765 
766 	if (inp->inp_vflag & INP_TIMEWAIT) {
767 		/*
768 		 * The only option of relevance is TOF_CC, and only if
769 		 * present in a SYN segment.  See tcp_timewait().
770 		 */
771 		if (thflags & TH_SYN)
772 			tcp_dooptions(&to, optp, optlen, 1);
773 		if (tcp_timewait(inp, &to, th, m, tlen))
774 			goto findpcb;
775 		/*
776 		 * tcp_timewait unlocks inp.
777 		 */
778 		INP_INFO_WUNLOCK(&tcbinfo);
779 		return;
780 	}
781 	tp = intotcpcb(inp);
782 	if (tp == 0) {
783 		INP_UNLOCK(inp);
784 		rstreason = BANDLIM_RST_CLOSEDPORT;
785 		goto dropwithreset;
786 	}
787 	if (tp->t_state == TCPS_CLOSED)
788 		goto drop;
789 
790 #ifdef MAC
791 	INP_LOCK_ASSERT(inp);
792 	if (mac_check_inpcb_deliver(inp, m))
793 		goto drop;
794 #endif
795 	so = inp->inp_socket;
796 	KASSERT(so != NULL, ("tcp_input: so == NULL"));
797 #ifdef TCPDEBUG
798 	if (so->so_options & SO_DEBUG) {
799 		ostate = tp->t_state;
800 		if (isipv6)
801 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
802 		else
803 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
804 		tcp_savetcp = *th;
805 	}
806 #endif
807 	if (so->so_options & SO_ACCEPTCONN) {
808 		struct in_conninfo inc;
809 
810 #ifdef INET6
811 		inc.inc_isipv6 = isipv6;
812 #endif
813 		if (isipv6) {
814 			inc.inc6_faddr = ip6->ip6_src;
815 			inc.inc6_laddr = ip6->ip6_dst;
816 		} else {
817 			inc.inc_faddr = ip->ip_src;
818 			inc.inc_laddr = ip->ip_dst;
819 		}
820 		inc.inc_fport = th->th_sport;
821 		inc.inc_lport = th->th_dport;
822 
823 	        /*
824 	         * If the state is LISTEN then ignore segment if it contains
825 		 * a RST.  If the segment contains an ACK then it is bad and
826 		 * send a RST.  If it does not contain a SYN then it is not
827 		 * interesting; drop it.
828 		 *
829 		 * If the state is SYN_RECEIVED (syncache) and seg contains
830 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
831 		 * contains a RST, check the sequence number to see if it
832 		 * is a valid reset segment.
833 		 */
834 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
835 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
836 				if (!syncache_expand(&inc, th, &so, m)) {
837 					/*
838 					 * No syncache entry, or ACK was not
839 					 * for our SYN/ACK.  Send a RST.
840 					 */
841 					tcpstat.tcps_badsyn++;
842 					rstreason = BANDLIM_RST_OPENPORT;
843 					goto dropwithreset;
844 				}
845 				if (so == NULL) {
846 					/*
847 					 * Could not complete 3-way handshake,
848 					 * connection is being closed down, and
849 					 * syncache has free'd mbuf.
850 					 */
851 					INP_UNLOCK(inp);
852 					INP_INFO_WUNLOCK(&tcbinfo);
853 					return;
854 				}
855 				/*
856 				 * Socket is created in state SYN_RECEIVED.
857 				 * Continue processing segment.
858 				 */
859 				INP_UNLOCK(inp);
860 				inp = sotoinpcb(so);
861 				INP_LOCK(inp);
862 				tp = intotcpcb(inp);
863 				/*
864 				 * This is what would have happened in
865 				 * tcp_output() when the SYN,ACK was sent.
866 				 */
867 				tp->snd_up = tp->snd_una;
868 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
869 				tp->last_ack_sent = tp->rcv_nxt;
870 				goto after_listen;
871 			}
872 			if (thflags & TH_RST) {
873 				syncache_chkrst(&inc, th);
874 				goto drop;
875 			}
876 			if (thflags & TH_ACK) {
877 				syncache_badack(&inc);
878 				tcpstat.tcps_badsyn++;
879 				rstreason = BANDLIM_RST_OPENPORT;
880 				goto dropwithreset;
881 			}
882 			goto drop;
883 		}
884 
885 		/*
886 		 * Segment's flags are (SYN) or (SYN|FIN).
887 		 */
888 #ifdef INET6
889 		/*
890 		 * If deprecated address is forbidden,
891 		 * we do not accept SYN to deprecated interface
892 		 * address to prevent any new inbound connection from
893 		 * getting established.
894 		 * When we do not accept SYN, we send a TCP RST,
895 		 * with deprecated source address (instead of dropping
896 		 * it).  We compromise it as it is much better for peer
897 		 * to send a RST, and RST will be the final packet
898 		 * for the exchange.
899 		 *
900 		 * If we do not forbid deprecated addresses, we accept
901 		 * the SYN packet.  RFC2462 does not suggest dropping
902 		 * SYN in this case.
903 		 * If we decipher RFC2462 5.5.4, it says like this:
904 		 * 1. use of deprecated addr with existing
905 		 *    communication is okay - "SHOULD continue to be
906 		 *    used"
907 		 * 2. use of it with new communication:
908 		 *   (2a) "SHOULD NOT be used if alternate address
909 		 *        with sufficient scope is available"
910 		 *   (2b) nothing mentioned otherwise.
911 		 * Here we fall into (2b) case as we have no choice in
912 		 * our source address selection - we must obey the peer.
913 		 *
914 		 * The wording in RFC2462 is confusing, and there are
915 		 * multiple description text for deprecated address
916 		 * handling - worse, they are not exactly the same.
917 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
918 		 */
919 		if (isipv6 && !ip6_use_deprecated) {
920 			struct in6_ifaddr *ia6;
921 
922 			if ((ia6 = ip6_getdstifaddr(m)) &&
923 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
924 				INP_UNLOCK(inp);
925 				tp = NULL;
926 				rstreason = BANDLIM_RST_OPENPORT;
927 				goto dropwithreset;
928 			}
929 		}
930 #endif
931 		/*
932 		 * If it is from this socket, drop it, it must be forged.
933 		 * Don't bother responding if the destination was a broadcast.
934 		 */
935 		if (th->th_dport == th->th_sport) {
936 			if (isipv6) {
937 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
938 						       &ip6->ip6_src))
939 					goto drop;
940 			} else {
941 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
942 					goto drop;
943 			}
944 		}
945 		/*
946 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
947 		 *
948 		 * Note that it is quite possible to receive unicast
949 		 * link-layer packets with a broadcast IP address. Use
950 		 * in_broadcast() to find them.
951 		 */
952 		if (m->m_flags & (M_BCAST|M_MCAST))
953 			goto drop;
954 		if (isipv6) {
955 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
956 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
957 				goto drop;
958 		} else {
959 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
960 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
961 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
962 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
963 				goto drop;
964 		}
965 		/*
966 		 * SYN appears to be valid; create compressed TCP state
967 		 * for syncache, or perform t/tcp connection.
968 		 */
969 		if (so->so_qlen <= so->so_qlimit) {
970 #ifdef TCPDEBUG
971 			if (so->so_options & SO_DEBUG)
972 				tcp_trace(TA_INPUT, ostate, tp,
973 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
974 #endif
975 			tcp_dooptions(&to, optp, optlen, 1);
976 			if (!syncache_add(&inc, &to, th, &so, m))
977 				goto drop;
978 			if (so == NULL) {
979 				/*
980 				 * Entry added to syncache, mbuf used to
981 				 * send SYN,ACK packet.
982 				 */
983 				KASSERT(headlocked, ("headlocked"));
984 				INP_UNLOCK(inp);
985 				INP_INFO_WUNLOCK(&tcbinfo);
986 				return;
987 			}
988 			/*
989 			 * Segment passed TAO tests.
990 			 * XXX: Can't happen at the moment.
991 			 */
992 			INP_UNLOCK(inp);
993 			inp = sotoinpcb(so);
994 			INP_LOCK(inp);
995 			tp = intotcpcb(inp);
996 			tp->t_starttime = ticks;
997 			tp->t_state = TCPS_ESTABLISHED;
998 
999 			/*
1000 			 * T/TCP logic:
1001 			 * If there is a FIN or if there is data, then
1002 			 * delay SYN,ACK(SYN) in the hope of piggy-backing
1003 			 * it on a response segment.  Otherwise must send
1004 			 * ACK now in case the other side is slow starting.
1005 			 */
1006 			if (thflags & TH_FIN || tlen != 0)
1007 				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
1008 			else
1009 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1010 			tiwin = th->th_win << tp->snd_scale;
1011 			tcpstat.tcps_connects++;
1012 			soisconnected(so);
1013 			goto trimthenstep6;
1014 		}
1015 		goto drop;
1016 	}
1017 after_listen:
1018 	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1019 	INP_LOCK_ASSERT(inp);
1020 
1021 	/* Syncache takes care of sockets in the listen state. */
1022 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN"));
1023 
1024 	/*
1025 	 * This is the second part of the MSS DoS prevention code (after
1026 	 * minmss on the sending side) and it deals with too many too small
1027 	 * tcp packets in a too short timeframe (1 second).
1028 	 *
1029 	 * For every full second we count the number of received packets
1030 	 * and bytes. If we get a lot of packets per second for this connection
1031 	 * (tcp_minmssoverload) we take a closer look at it and compute the
1032 	 * average packet size for the past second. If that is less than
1033 	 * tcp_minmss we get too many packets with very small payload which
1034 	 * is not good and burdens our system (and every packet generates
1035 	 * a wakeup to the process connected to our socket). We can reasonable
1036 	 * expect this to be small packet DoS attack to exhaust our CPU
1037 	 * cycles.
1038 	 *
1039 	 * Care has to be taken for the minimum packet overload value. This
1040 	 * value defines the minimum number of packets per second before we
1041 	 * start to worry. This must not be too low to avoid killing for
1042 	 * example interactive connections with many small packets like
1043 	 * telnet or SSH.
1044 	 *
1045 	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1046 	 * this check.
1047 	 *
1048 	 * Account for packet if payload packet, skip over ACK, etc.
1049 	 */
1050 	if (tcp_minmss && tcp_minmssoverload &&
1051 	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1052 		if ((unsigned int)(tp->rcv_second - ticks) < hz) {
1053 			tp->rcv_pps++;
1054 			tp->rcv_byps += tlen + off;
1055 			if (tp->rcv_pps > tcp_minmssoverload) {
1056 				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1057 					printf("too many small tcp packets from "
1058 					       "%s:%u, av. %lubyte/packet, "
1059 					       "dropping connection\n",
1060 #ifdef INET6
1061 						isipv6 ?
1062 						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1063 #endif
1064 						inet_ntoa(inp->inp_inc.inc_faddr),
1065 						inp->inp_inc.inc_fport,
1066 						tp->rcv_byps / tp->rcv_pps);
1067 					KASSERT(headlocked, ("tcp_input: "
1068 					    "after_listen: tcp_drop: head "
1069 					    "not locked"));
1070 					tp = tcp_drop(tp, ECONNRESET);
1071 					tcpstat.tcps_minmssdrops++;
1072 					goto drop;
1073 				}
1074 			}
1075 		} else {
1076 			tp->rcv_second = ticks + hz;
1077 			tp->rcv_pps = 1;
1078 			tp->rcv_byps = tlen + off;
1079 		}
1080 	}
1081 
1082 	/*
1083 	 * Segment received on connection.
1084 	 * Reset idle time and keep-alive timer.
1085 	 */
1086 	tp->t_rcvtime = ticks;
1087 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1088 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1089 
1090 	/*
1091 	 * Unscale the window into a 32-bit value.
1092 	 * This value is bogus for the TCPS_SYN_SENT state
1093 	 * and is overwritten later.
1094 	 */
1095 	tiwin = th->th_win << tp->snd_scale;
1096 
1097 	/*
1098 	 * Process options only when we get SYN/ACK back. The SYN case
1099 	 * for incoming connections is handled in tcp_syncache.
1100 	 * XXX this is traditional behavior, may need to be cleaned up.
1101 	 */
1102 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
1103 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1104 		if ((to.to_flags & TOF_SCALE) &&
1105 		    (tp->t_flags & TF_REQ_SCALE)) {
1106 			tp->t_flags |= TF_RCVD_SCALE;
1107 			tp->snd_scale = to.to_requested_s_scale;
1108 			tp->snd_wnd = th->th_win << tp->snd_scale;
1109 			tiwin = tp->snd_wnd;
1110 		}
1111 		if (to.to_flags & TOF_TS) {
1112 			tp->t_flags |= TF_RCVD_TSTMP;
1113 			tp->ts_recent = to.to_tsval;
1114 			tp->ts_recent_age = ticks;
1115 		}
1116 		if (to.to_flags & TOF_MSS)
1117 			tcp_mss(tp, to.to_mss);
1118 		if (tp->sack_enable) {
1119 			if (!(to.to_flags & TOF_SACK))
1120 				tp->sack_enable = 0;
1121 			else
1122 				tp->t_flags |= TF_SACK_PERMIT;
1123 		}
1124 
1125 	}
1126 
1127 	/*
1128 	 * Header prediction: check for the two common cases
1129 	 * of a uni-directional data xfer.  If the packet has
1130 	 * no control flags, is in-sequence, the window didn't
1131 	 * change and we're not retransmitting, it's a
1132 	 * candidate.  If the length is zero and the ack moved
1133 	 * forward, we're the sender side of the xfer.  Just
1134 	 * free the data acked & wake any higher level process
1135 	 * that was blocked waiting for space.  If the length
1136 	 * is non-zero and the ack didn't move, we're the
1137 	 * receiver side.  If we're getting packets in-order
1138 	 * (the reassembly queue is empty), add the data to
1139 	 * the socket buffer and note that we need a delayed ack.
1140 	 * Make sure that the hidden state-flags are also off.
1141 	 * Since we check for TCPS_ESTABLISHED above, it can only
1142 	 * be TH_NEEDSYN.
1143 	 */
1144 	if (tp->t_state == TCPS_ESTABLISHED &&
1145 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1146 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1147 	    ((to.to_flags & TOF_TS) == 0 ||
1148 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1149 	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1150 	     tp->snd_nxt == tp->snd_max) {
1151 
1152 		/*
1153 		 * If last ACK falls within this segment's sequence numbers,
1154 		 * record the timestamp.
1155 		 * NOTE that the test is modified according to the latest
1156 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1157 		 */
1158 		if ((to.to_flags & TOF_TS) != 0 &&
1159 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1160 			tp->ts_recent_age = ticks;
1161 			tp->ts_recent = to.to_tsval;
1162 		}
1163 
1164 		if (tlen == 0) {
1165 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1166 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1167 			    tp->snd_cwnd >= tp->snd_wnd &&
1168 			    ((!tcp_do_newreno && !tp->sack_enable &&
1169 			      tp->t_dupacks < tcprexmtthresh) ||
1170 			     ((tcp_do_newreno || tp->sack_enable) &&
1171 			      !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 &&
1172 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1173 				KASSERT(headlocked, ("headlocked"));
1174 				INP_INFO_WUNLOCK(&tcbinfo);
1175 				headlocked = 0;
1176 				/*
1177 				 * this is a pure ack for outstanding data.
1178 				 */
1179 				++tcpstat.tcps_predack;
1180 				/*
1181 				 * "bad retransmit" recovery
1182 				 */
1183 				if (tp->t_rxtshift == 1 &&
1184 				    ticks < tp->t_badrxtwin) {
1185 					++tcpstat.tcps_sndrexmitbad;
1186 					tp->snd_cwnd = tp->snd_cwnd_prev;
1187 					tp->snd_ssthresh =
1188 					    tp->snd_ssthresh_prev;
1189 					tp->snd_recover = tp->snd_recover_prev;
1190 					if (tp->t_flags & TF_WASFRECOVERY)
1191 					    ENTER_FASTRECOVERY(tp);
1192 					tp->snd_nxt = tp->snd_max;
1193 					tp->t_badrxtwin = 0;
1194 				}
1195 
1196 				/*
1197 				 * Recalculate the transmit timer / rtt.
1198 				 *
1199 				 * Some boxes send broken timestamp replies
1200 				 * during the SYN+ACK phase, ignore
1201 				 * timestamps of 0 or we could calculate a
1202 				 * huge RTT and blow up the retransmit timer.
1203 				 */
1204 				if ((to.to_flags & TOF_TS) != 0 &&
1205 				    to.to_tsecr) {
1206 					if (!tp->t_rttlow ||
1207 					    tp->t_rttlow > ticks - to.to_tsecr)
1208 						tp->t_rttlow = ticks - to.to_tsecr;
1209 					tcp_xmit_timer(tp,
1210 					    ticks - to.to_tsecr + 1);
1211 				} else if (tp->t_rtttime &&
1212 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1213 					if (!tp->t_rttlow ||
1214 					    tp->t_rttlow > ticks - tp->t_rtttime)
1215 						tp->t_rttlow = ticks - tp->t_rtttime;
1216 					tcp_xmit_timer(tp,
1217 							ticks - tp->t_rtttime);
1218 				}
1219 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1220 				acked = th->th_ack - tp->snd_una;
1221 				tcpstat.tcps_rcvackpack++;
1222 				tcpstat.tcps_rcvackbyte += acked;
1223 				sbdrop(&so->so_snd, acked);
1224 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1225 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1226 					tp->snd_recover = th->th_ack - 1;
1227 				tp->snd_una = th->th_ack;
1228 				/*
1229 				 * pull snd_wl2 up to prevent seq wrap relative
1230 				 * to th_ack.
1231 				 */
1232 				tp->snd_wl2 = th->th_ack;
1233 				tp->t_dupacks = 0;
1234 				m_freem(m);
1235 				ND6_HINT(tp); /* some progress has been done */
1236 
1237 				/*
1238 				 * If all outstanding data are acked, stop
1239 				 * retransmit timer, otherwise restart timer
1240 				 * using current (possibly backed-off) value.
1241 				 * If process is waiting for space,
1242 				 * wakeup/selwakeup/signal.  If data
1243 				 * are ready to send, let tcp_output
1244 				 * decide between more output or persist.
1245 
1246 #ifdef TCPDEBUG
1247 				if (so->so_options & SO_DEBUG)
1248 					tcp_trace(TA_INPUT, ostate, tp,
1249 					    (void *)tcp_saveipgen,
1250 					    &tcp_savetcp, 0);
1251 #endif
1252 				 */
1253 				if (tp->snd_una == tp->snd_max)
1254 					callout_stop(tp->tt_rexmt);
1255 				else if (!callout_active(tp->tt_persist))
1256 					callout_reset(tp->tt_rexmt,
1257 						      tp->t_rxtcur,
1258 						      tcp_timer_rexmt, tp);
1259 
1260 				sowwakeup(so);
1261 				if (so->so_snd.sb_cc)
1262 					(void) tcp_output(tp);
1263 				goto check_delack;
1264 			}
1265 		} else if (th->th_ack == tp->snd_una &&
1266 		    LIST_EMPTY(&tp->t_segq) &&
1267 		    tlen <= sbspace(&so->so_rcv)) {
1268 			KASSERT(headlocked, ("headlocked"));
1269 			INP_INFO_WUNLOCK(&tcbinfo);
1270 			headlocked = 0;
1271 			/*
1272 			 * this is a pure, in-sequence data packet
1273 			 * with nothing on the reassembly queue and
1274 			 * we have enough buffer space to take it.
1275 			 */
1276 			/* Clean receiver SACK report if present */
1277 			if (tp->sack_enable && tp->rcv_numsacks)
1278 				tcp_clean_sackreport(tp);
1279 			++tcpstat.tcps_preddat;
1280 			tp->rcv_nxt += tlen;
1281 			/*
1282 			 * Pull snd_wl1 up to prevent seq wrap relative to
1283 			 * th_seq.
1284 			 */
1285 			tp->snd_wl1 = th->th_seq;
1286 			/*
1287 			 * Pull rcv_up up to prevent seq wrap relative to
1288 			 * rcv_nxt.
1289 			 */
1290 			tp->rcv_up = tp->rcv_nxt;
1291 			tcpstat.tcps_rcvpack++;
1292 			tcpstat.tcps_rcvbyte += tlen;
1293 			ND6_HINT(tp);	/* some progress has been done */
1294 			/*
1295 #ifdef TCPDEBUG
1296 			if (so->so_options & SO_DEBUG)
1297 				tcp_trace(TA_INPUT, ostate, tp,
1298 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1299 #endif
1300 			 * Add data to socket buffer.
1301 			 */
1302 			SOCKBUF_LOCK(&so->so_rcv);
1303 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1304 				m_freem(m);
1305 			} else {
1306 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1307 				sbappendstream_locked(&so->so_rcv, m);
1308 			}
1309 			sorwakeup_locked(so);
1310 			if (DELAY_ACK(tp)) {
1311 				tp->t_flags |= TF_DELACK;
1312 			} else {
1313 				tp->t_flags |= TF_ACKNOW;
1314 				tcp_output(tp);
1315 			}
1316 			goto check_delack;
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * Calculate amount of space in receive window,
1322 	 * and then do TCP input processing.
1323 	 * Receive window is amount of space in rcv queue,
1324 	 * but not less than advertised window.
1325 	 */
1326 	{ int win;
1327 
1328 	win = sbspace(&so->so_rcv);
1329 	if (win < 0)
1330 		win = 0;
1331 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1332 	}
1333 
1334 	switch (tp->t_state) {
1335 
1336 	/*
1337 	 * If the state is SYN_RECEIVED:
1338 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1339 	 */
1340 	case TCPS_SYN_RECEIVED:
1341 		if ((thflags & TH_ACK) &&
1342 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1343 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1344 				rstreason = BANDLIM_RST_OPENPORT;
1345 				goto dropwithreset;
1346 		}
1347 		break;
1348 
1349 	/*
1350 	 * If the state is SYN_SENT:
1351 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1352 	 *	if seg contains a RST, then drop the connection.
1353 	 *	if seg does not contain SYN, then drop it.
1354 	 * Otherwise this is an acceptable SYN segment
1355 	 *	initialize tp->rcv_nxt and tp->irs
1356 	 *	if seg contains ack then advance tp->snd_una
1357 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1358 	 *	arrange for segment to be acked (eventually)
1359 	 *	continue processing rest of data/controls, beginning with URG
1360 	 */
1361 	case TCPS_SYN_SENT:
1362 		if ((thflags & TH_ACK) &&
1363 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1364 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1365 			rstreason = BANDLIM_UNLIMITED;
1366 			goto dropwithreset;
1367 		}
1368 		if (thflags & TH_RST) {
1369 			if (thflags & TH_ACK) {
1370 				KASSERT(headlocked, ("tcp_input: after_listen"
1371 				    ": tcp_drop.2: head not locked"));
1372 				tp = tcp_drop(tp, ECONNREFUSED);
1373 			}
1374 			goto drop;
1375 		}
1376 		if ((thflags & TH_SYN) == 0)
1377 			goto drop;
1378 
1379 		/* Initial send window, already scaled. */
1380 		tp->snd_wnd = th->th_win;
1381 
1382 		tp->irs = th->th_seq;
1383 		tcp_rcvseqinit(tp);
1384 		if (thflags & TH_ACK) {
1385 			tcpstat.tcps_connects++;
1386 			soisconnected(so);
1387 #ifdef MAC
1388 			SOCK_LOCK(so);
1389 			mac_set_socket_peer_from_mbuf(m, so);
1390 			SOCK_UNLOCK(so);
1391 #endif
1392 			/* Do window scaling on this connection? */
1393 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1394 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1395 				tp->rcv_scale = tp->request_r_scale;
1396 			}
1397 			tp->rcv_adv += tp->rcv_wnd;
1398 			tp->snd_una++;		/* SYN is acked */
1399 			/*
1400 			 * If there's data, delay ACK; if there's also a FIN
1401 			 * ACKNOW will be turned on later.
1402 			 */
1403 			if (DELAY_ACK(tp) && tlen != 0)
1404 				callout_reset(tp->tt_delack, tcp_delacktime,
1405 				    tcp_timer_delack, tp);
1406 			else
1407 				tp->t_flags |= TF_ACKNOW;
1408 			/*
1409 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1410 			 * Transitions:
1411 			 *	SYN_SENT  --> ESTABLISHED
1412 			 *	SYN_SENT* --> FIN_WAIT_1
1413 			 */
1414 			tp->t_starttime = ticks;
1415 			if (tp->t_flags & TF_NEEDFIN) {
1416 				tp->t_state = TCPS_FIN_WAIT_1;
1417 				tp->t_flags &= ~TF_NEEDFIN;
1418 				thflags &= ~TH_SYN;
1419 			} else {
1420 				tp->t_state = TCPS_ESTABLISHED;
1421 				callout_reset(tp->tt_keep, tcp_keepidle,
1422 					      tcp_timer_keep, tp);
1423 			}
1424 		} else {
1425 			/*
1426 			 * Received initial SYN in SYN-SENT[*] state =>
1427 			 * simultaneous open.  If segment contains CC option
1428 			 * and there is a cached CC, apply TAO test.
1429 			 * If it succeeds, connection is * half-synchronized.
1430 			 * Otherwise, do 3-way handshake:
1431 			 *        SYN-SENT -> SYN-RECEIVED
1432 			 *        SYN-SENT* -> SYN-RECEIVED*
1433 			 * If there was no CC option, clear cached CC value.
1434 			 */
1435 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1436 			callout_stop(tp->tt_rexmt);
1437 			tp->t_state = TCPS_SYN_RECEIVED;
1438 		}
1439 
1440 trimthenstep6:
1441 		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1442 		    "locked"));
1443 		INP_LOCK_ASSERT(inp);
1444 
1445 		/*
1446 		 * Advance th->th_seq to correspond to first data byte.
1447 		 * If data, trim to stay within window,
1448 		 * dropping FIN if necessary.
1449 		 */
1450 		th->th_seq++;
1451 		if (tlen > tp->rcv_wnd) {
1452 			todrop = tlen - tp->rcv_wnd;
1453 			m_adj(m, -todrop);
1454 			tlen = tp->rcv_wnd;
1455 			thflags &= ~TH_FIN;
1456 			tcpstat.tcps_rcvpackafterwin++;
1457 			tcpstat.tcps_rcvbyteafterwin += todrop;
1458 		}
1459 		tp->snd_wl1 = th->th_seq - 1;
1460 		tp->rcv_up = th->th_seq;
1461 		/*
1462 		 * Client side of transaction: already sent SYN and data.
1463 		 * If the remote host used T/TCP to validate the SYN,
1464 		 * our data will be ACK'd; if so, enter normal data segment
1465 		 * processing in the middle of step 5, ack processing.
1466 		 * Otherwise, goto step 6.
1467 		 */
1468 		if (thflags & TH_ACK)
1469 			goto process_ACK;
1470 
1471 		goto step6;
1472 
1473 	/*
1474 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1475 	 *      do normal processing.
1476 	 *
1477 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1478 	 */
1479 	case TCPS_LAST_ACK:
1480 	case TCPS_CLOSING:
1481 	case TCPS_TIME_WAIT:
1482 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1483 		break;  /* continue normal processing */
1484 	}
1485 
1486 	/*
1487 	 * States other than LISTEN or SYN_SENT.
1488 	 * First check the RST flag and sequence number since reset segments
1489 	 * are exempt from the timestamp and connection count tests.  This
1490 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1491 	 * below which allowed reset segments in half the sequence space
1492 	 * to fall though and be processed (which gives forged reset
1493 	 * segments with a random sequence number a 50 percent chance of
1494 	 * killing a connection).
1495 	 * Then check timestamp, if present.
1496 	 * Then check the connection count, if present.
1497 	 * Then check that at least some bytes of segment are within
1498 	 * receive window.  If segment begins before rcv_nxt,
1499 	 * drop leading data (and SYN); if nothing left, just ack.
1500 	 *
1501 	 *
1502 	 * If the RST bit is set, check the sequence number to see
1503 	 * if this is a valid reset segment.
1504 	 * RFC 793 page 37:
1505 	 *   In all states except SYN-SENT, all reset (RST) segments
1506 	 *   are validated by checking their SEQ-fields.  A reset is
1507 	 *   valid if its sequence number is in the window.
1508 	 * Note: this does not take into account delayed ACKs, so
1509 	 *   we should test against last_ack_sent instead of rcv_nxt.
1510 	 *   The sequence number in the reset segment is normally an
1511 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1512 	 *   send a reset with the sequence number at the rightmost edge
1513 	 *   of our receive window, and we have to handle this case.
1514 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1515 	 *   that brute force RST attacks are possible.  To combat this,
1516 	 *   we use a much stricter check while in the ESTABLISHED state,
1517 	 *   only accepting RSTs where the sequence number is equal to
1518 	 *   last_ack_sent.  In all other states (the states in which a
1519 	 *   RST is more likely), the more permissive check is used.
1520 	 * If we have multiple segments in flight, the intial reset
1521 	 * segment sequence numbers will be to the left of last_ack_sent,
1522 	 * but they will eventually catch up.
1523 	 * In any case, it never made sense to trim reset segments to
1524 	 * fit the receive window since RFC 1122 says:
1525 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1526 	 *
1527 	 *    A TCP SHOULD allow a received RST segment to include data.
1528 	 *
1529 	 *    DISCUSSION
1530 	 *         It has been suggested that a RST segment could contain
1531 	 *         ASCII text that encoded and explained the cause of the
1532 	 *         RST.  No standard has yet been established for such
1533 	 *         data.
1534 	 *
1535 	 * If the reset segment passes the sequence number test examine
1536 	 * the state:
1537 	 *    SYN_RECEIVED STATE:
1538 	 *	If passive open, return to LISTEN state.
1539 	 *	If active open, inform user that connection was refused.
1540 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1541 	 *	Inform user that connection was reset, and close tcb.
1542 	 *    CLOSING, LAST_ACK STATES:
1543 	 *	Close the tcb.
1544 	 *    TIME_WAIT STATE:
1545 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1546 	 *      RFC 1337.
1547 	 */
1548 	if (thflags & TH_RST) {
1549 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1550 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1551 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1552 			switch (tp->t_state) {
1553 
1554 			case TCPS_SYN_RECEIVED:
1555 				so->so_error = ECONNREFUSED;
1556 				goto close;
1557 
1558 			case TCPS_ESTABLISHED:
1559 				if (tp->last_ack_sent != th->th_seq &&
1560 			 	    tcp_insecure_rst == 0) {
1561 					tcpstat.tcps_badrst++;
1562 					goto drop;
1563 				}
1564 			case TCPS_FIN_WAIT_1:
1565 			case TCPS_FIN_WAIT_2:
1566 			case TCPS_CLOSE_WAIT:
1567 				so->so_error = ECONNRESET;
1568 			close:
1569 				tp->t_state = TCPS_CLOSED;
1570 				tcpstat.tcps_drops++;
1571 				KASSERT(headlocked, ("tcp_input: "
1572 				    "trimthenstep6: tcp_close: head not "
1573 				    "locked"));
1574 				tp = tcp_close(tp);
1575 				break;
1576 
1577 			case TCPS_CLOSING:
1578 			case TCPS_LAST_ACK:
1579 				KASSERT(headlocked, ("trimthenstep6: "
1580 				    "tcp_close.2: head not locked"));
1581 				tp = tcp_close(tp);
1582 				break;
1583 
1584 			case TCPS_TIME_WAIT:
1585 				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1586 				    ("timewait"));
1587 				break;
1588 			}
1589 		}
1590 		goto drop;
1591 	}
1592 
1593 	/*
1594 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1595 	 * and it's less than ts_recent, drop it.
1596 	 */
1597 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1598 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1599 
1600 		/* Check to see if ts_recent is over 24 days old.  */
1601 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1602 			/*
1603 			 * Invalidate ts_recent.  If this segment updates
1604 			 * ts_recent, the age will be reset later and ts_recent
1605 			 * will get a valid value.  If it does not, setting
1606 			 * ts_recent to zero will at least satisfy the
1607 			 * requirement that zero be placed in the timestamp
1608 			 * echo reply when ts_recent isn't valid.  The
1609 			 * age isn't reset until we get a valid ts_recent
1610 			 * because we don't want out-of-order segments to be
1611 			 * dropped when ts_recent is old.
1612 			 */
1613 			tp->ts_recent = 0;
1614 		} else {
1615 			tcpstat.tcps_rcvduppack++;
1616 			tcpstat.tcps_rcvdupbyte += tlen;
1617 			tcpstat.tcps_pawsdrop++;
1618 			if (tlen)
1619 				goto dropafterack;
1620 			goto drop;
1621 		}
1622 	}
1623 
1624 	/*
1625 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1626 	 * this connection before trimming the data to fit the receive
1627 	 * window.  Check the sequence number versus IRS since we know
1628 	 * the sequence numbers haven't wrapped.  This is a partial fix
1629 	 * for the "LAND" DoS attack.
1630 	 */
1631 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1632 		rstreason = BANDLIM_RST_OPENPORT;
1633 		goto dropwithreset;
1634 	}
1635 
1636 	todrop = tp->rcv_nxt - th->th_seq;
1637 	if (todrop > 0) {
1638 		if (thflags & TH_SYN) {
1639 			thflags &= ~TH_SYN;
1640 			th->th_seq++;
1641 			if (th->th_urp > 1)
1642 				th->th_urp--;
1643 			else
1644 				thflags &= ~TH_URG;
1645 			todrop--;
1646 		}
1647 		/*
1648 		 * Following if statement from Stevens, vol. 2, p. 960.
1649 		 */
1650 		if (todrop > tlen
1651 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1652 			/*
1653 			 * Any valid FIN must be to the left of the window.
1654 			 * At this point the FIN must be a duplicate or out
1655 			 * of sequence; drop it.
1656 			 */
1657 			thflags &= ~TH_FIN;
1658 
1659 			/*
1660 			 * Send an ACK to resynchronize and drop any data.
1661 			 * But keep on processing for RST or ACK.
1662 			 */
1663 			tp->t_flags |= TF_ACKNOW;
1664 			todrop = tlen;
1665 			tcpstat.tcps_rcvduppack++;
1666 			tcpstat.tcps_rcvdupbyte += todrop;
1667 		} else {
1668 			tcpstat.tcps_rcvpartduppack++;
1669 			tcpstat.tcps_rcvpartdupbyte += todrop;
1670 		}
1671 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1672 		th->th_seq += todrop;
1673 		tlen -= todrop;
1674 		if (th->th_urp > todrop)
1675 			th->th_urp -= todrop;
1676 		else {
1677 			thflags &= ~TH_URG;
1678 			th->th_urp = 0;
1679 		}
1680 	}
1681 
1682 	/*
1683 	 * If new data are received on a connection after the
1684 	 * user processes are gone, then RST the other end.
1685 	 */
1686 	if ((so->so_state & SS_NOFDREF) &&
1687 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1688 		KASSERT(headlocked, ("trimthenstep6: tcp_close.3: head not "
1689 		    "locked"));
1690 		tp = tcp_close(tp);
1691 		tcpstat.tcps_rcvafterclose++;
1692 		rstreason = BANDLIM_UNLIMITED;
1693 		goto dropwithreset;
1694 	}
1695 
1696 	/*
1697 	 * If segment ends after window, drop trailing data
1698 	 * (and PUSH and FIN); if nothing left, just ACK.
1699 	 */
1700 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1701 	if (todrop > 0) {
1702 		tcpstat.tcps_rcvpackafterwin++;
1703 		if (todrop >= tlen) {
1704 			tcpstat.tcps_rcvbyteafterwin += tlen;
1705 			/*
1706 			 * If a new connection request is received
1707 			 * while in TIME_WAIT, drop the old connection
1708 			 * and start over if the sequence numbers
1709 			 * are above the previous ones.
1710 			 */
1711 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1712 			if (thflags & TH_SYN &&
1713 			    tp->t_state == TCPS_TIME_WAIT &&
1714 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1715 				KASSERT(headlocked, ("trimthenstep6: "
1716 				    "tcp_close.4: head not locked"));
1717 				tp = tcp_close(tp);
1718 				goto findpcb;
1719 			}
1720 			/*
1721 			 * If window is closed can only take segments at
1722 			 * window edge, and have to drop data and PUSH from
1723 			 * incoming segments.  Continue processing, but
1724 			 * remember to ack.  Otherwise, drop segment
1725 			 * and ack.
1726 			 */
1727 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1728 				tp->t_flags |= TF_ACKNOW;
1729 				tcpstat.tcps_rcvwinprobe++;
1730 			} else
1731 				goto dropafterack;
1732 		} else
1733 			tcpstat.tcps_rcvbyteafterwin += todrop;
1734 		m_adj(m, -todrop);
1735 		tlen -= todrop;
1736 		thflags &= ~(TH_PUSH|TH_FIN);
1737 	}
1738 
1739 	/*
1740 	 * If last ACK falls within this segment's sequence numbers,
1741 	 * record its timestamp.
1742 	 * NOTE:
1743 	 * 1) That the test incorporates suggestions from the latest
1744 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1745 	 * 2) That updating only on newer timestamps interferes with
1746 	 *    our earlier PAWS tests, so this check should be solely
1747 	 *    predicated on the sequence space of this segment.
1748 	 * 3) That we modify the segment boundary check to be
1749 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1750 	 *    instead of RFC1323's
1751 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1752 	 *    This modified check allows us to overcome RFC1323's
1753 	 *    limitations as described in Stevens TCP/IP Illustrated
1754 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1755 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1756 	 */
1757 	if ((to.to_flags & TOF_TS) != 0 &&
1758 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1759 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1760 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1761 		tp->ts_recent_age = ticks;
1762 		tp->ts_recent = to.to_tsval;
1763 	}
1764 
1765 	/*
1766 	 * If a SYN is in the window, then this is an
1767 	 * error and we send an RST and drop the connection.
1768 	 */
1769 	if (thflags & TH_SYN) {
1770 		KASSERT(headlocked, ("tcp_input: tcp_drop: trimthenstep6: "
1771 		    "head not locked"));
1772 		tp = tcp_drop(tp, ECONNRESET);
1773 		rstreason = BANDLIM_UNLIMITED;
1774 		goto drop;
1775 	}
1776 
1777 	/*
1778 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1779 	 * flag is on (half-synchronized state), then queue data for
1780 	 * later processing; else drop segment and return.
1781 	 */
1782 	if ((thflags & TH_ACK) == 0) {
1783 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1784 		    (tp->t_flags & TF_NEEDSYN))
1785 			goto step6;
1786 		else
1787 			goto drop;
1788 	}
1789 
1790 	/*
1791 	 * Ack processing.
1792 	 */
1793 	switch (tp->t_state) {
1794 
1795 	/*
1796 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1797 	 * ESTABLISHED state and continue processing.
1798 	 * The ACK was checked above.
1799 	 */
1800 	case TCPS_SYN_RECEIVED:
1801 
1802 		tcpstat.tcps_connects++;
1803 		soisconnected(so);
1804 		/* Do window scaling? */
1805 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1806 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1807 			tp->rcv_scale = tp->request_r_scale;
1808 			tp->snd_wnd = tiwin;
1809 		}
1810 		/*
1811 		 * Make transitions:
1812 		 *      SYN-RECEIVED  -> ESTABLISHED
1813 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1814 		 */
1815 		tp->t_starttime = ticks;
1816 		if (tp->t_flags & TF_NEEDFIN) {
1817 			tp->t_state = TCPS_FIN_WAIT_1;
1818 			tp->t_flags &= ~TF_NEEDFIN;
1819 		} else {
1820 			tp->t_state = TCPS_ESTABLISHED;
1821 			callout_reset(tp->tt_keep, tcp_keepidle,
1822 				      tcp_timer_keep, tp);
1823 		}
1824 		/*
1825 		 * If segment contains data or ACK, will call tcp_reass()
1826 		 * later; if not, do so now to pass queued data to user.
1827 		 */
1828 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1829 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1830 			    (struct mbuf *)0);
1831 		tp->snd_wl1 = th->th_seq - 1;
1832 		/* FALLTHROUGH */
1833 
1834 	/*
1835 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1836 	 * ACKs.  If the ack is in the range
1837 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1838 	 * then advance tp->snd_una to th->th_ack and drop
1839 	 * data from the retransmission queue.  If this ACK reflects
1840 	 * more up to date window information we update our window information.
1841 	 */
1842 	case TCPS_ESTABLISHED:
1843 	case TCPS_FIN_WAIT_1:
1844 	case TCPS_FIN_WAIT_2:
1845 	case TCPS_CLOSE_WAIT:
1846 	case TCPS_CLOSING:
1847 	case TCPS_LAST_ACK:
1848 	case TCPS_TIME_WAIT:
1849 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1850 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1851 			tcpstat.tcps_rcvacktoomuch++;
1852 			goto dropafterack;
1853 		}
1854 		if (tp->sack_enable &&
1855 		    (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
1856 			tcp_sack_doack(tp, &to, th->th_ack);
1857 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1858 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1859 				tcpstat.tcps_rcvdupack++;
1860 				/*
1861 				 * If we have outstanding data (other than
1862 				 * a window probe), this is a completely
1863 				 * duplicate ack (ie, window info didn't
1864 				 * change), the ack is the biggest we've
1865 				 * seen and we've seen exactly our rexmt
1866 				 * threshhold of them, assume a packet
1867 				 * has been dropped and retransmit it.
1868 				 * Kludge snd_nxt & the congestion
1869 				 * window so we send only this one
1870 				 * packet.
1871 				 *
1872 				 * We know we're losing at the current
1873 				 * window size so do congestion avoidance
1874 				 * (set ssthresh to half the current window
1875 				 * and pull our congestion window back to
1876 				 * the new ssthresh).
1877 				 *
1878 				 * Dup acks mean that packets have left the
1879 				 * network (they're now cached at the receiver)
1880 				 * so bump cwnd by the amount in the receiver
1881 				 * to keep a constant cwnd packets in the
1882 				 * network.
1883 				 */
1884 				if (!callout_active(tp->tt_rexmt) ||
1885 				    th->th_ack != tp->snd_una)
1886 					tp->t_dupacks = 0;
1887 				else if (++tp->t_dupacks > tcprexmtthresh ||
1888 					 ((tcp_do_newreno || tp->sack_enable) &&
1889 					  IN_FASTRECOVERY(tp))) {
1890                                         if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
1891 						int awnd;
1892 
1893 						/*
1894 						 * Compute the amount of data in flight first.
1895 						 * We can inject new data into the pipe iff
1896 						 * we have less than 1/2 the original window's
1897 						 * worth of data in flight.
1898 						 */
1899 						awnd = (tp->snd_nxt - tp->snd_fack) +
1900 							tp->sackhint.sack_bytes_rexmit;
1901 						if (awnd < tp->snd_ssthresh) {
1902 							tp->snd_cwnd += tp->t_maxseg;
1903 							if (tp->snd_cwnd > tp->snd_ssthresh)
1904 								tp->snd_cwnd = tp->snd_ssthresh;
1905 						}
1906 					} else
1907 						tp->snd_cwnd += tp->t_maxseg;
1908 					(void) tcp_output(tp);
1909 					goto drop;
1910 				} else if (tp->t_dupacks == tcprexmtthresh) {
1911 					tcp_seq onxt = tp->snd_nxt;
1912 					u_int win;
1913 
1914 					/*
1915 					 * If we're doing sack, check to
1916 					 * see if we're already in sack
1917 					 * recovery. If we're not doing sack,
1918 					 * check to see if we're in newreno
1919 					 * recovery.
1920 					 */
1921 					if (tp->sack_enable) {
1922 						if (IN_FASTRECOVERY(tp)) {
1923 							tp->t_dupacks = 0;
1924 							break;
1925 						}
1926 					} else if (tcp_do_newreno) {
1927 						if (SEQ_LEQ(th->th_ack,
1928 						    tp->snd_recover)) {
1929 							tp->t_dupacks = 0;
1930 							break;
1931 						}
1932 					}
1933 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1934 					    2 / tp->t_maxseg;
1935 					if (win < 2)
1936 						win = 2;
1937 					tp->snd_ssthresh = win * tp->t_maxseg;
1938 					ENTER_FASTRECOVERY(tp);
1939 					tp->snd_recover = tp->snd_max;
1940 					callout_stop(tp->tt_rexmt);
1941 					tp->t_rtttime = 0;
1942 					if (tp->sack_enable) {
1943 						tcpstat.tcps_sack_recovery_episode++;
1944 						tp->sack_newdata = tp->snd_nxt;
1945 						tp->snd_cwnd = tp->t_maxseg;
1946 						(void) tcp_output(tp);
1947 						goto drop;
1948 					}
1949 					tp->snd_nxt = th->th_ack;
1950 					tp->snd_cwnd = tp->t_maxseg;
1951 					(void) tcp_output(tp);
1952 					KASSERT(tp->snd_limited <= 2,
1953 					    ("tp->snd_limited too big"));
1954 					tp->snd_cwnd = tp->snd_ssthresh +
1955 					     tp->t_maxseg *
1956 					     (tp->t_dupacks - tp->snd_limited);
1957 					if (SEQ_GT(onxt, tp->snd_nxt))
1958 						tp->snd_nxt = onxt;
1959 					goto drop;
1960 				} else if (tcp_do_rfc3042) {
1961 					u_long oldcwnd = tp->snd_cwnd;
1962 					tcp_seq oldsndmax = tp->snd_max;
1963 					u_int sent;
1964 
1965 					KASSERT(tp->t_dupacks == 1 ||
1966 					    tp->t_dupacks == 2,
1967 					    ("dupacks not 1 or 2"));
1968 					if (tp->t_dupacks == 1)
1969 						tp->snd_limited = 0;
1970 					tp->snd_cwnd =
1971 					    (tp->snd_nxt - tp->snd_una) +
1972 					    (tp->t_dupacks - tp->snd_limited) *
1973 					    tp->t_maxseg;
1974 					(void) tcp_output(tp);
1975 					sent = tp->snd_max - oldsndmax;
1976 					if (sent > tp->t_maxseg) {
1977 						KASSERT((tp->t_dupacks == 2 &&
1978 						    tp->snd_limited == 0) ||
1979 						   (sent == tp->t_maxseg + 1 &&
1980 						    tp->t_flags & TF_SENTFIN),
1981 						    ("sent too much"));
1982 						tp->snd_limited = 2;
1983 					} else if (sent > 0)
1984 						++tp->snd_limited;
1985 					tp->snd_cwnd = oldcwnd;
1986 					goto drop;
1987 				}
1988 			} else
1989 				tp->t_dupacks = 0;
1990 			break;
1991 		}
1992 
1993 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1994 
1995 		/*
1996 		 * If the congestion window was inflated to account
1997 		 * for the other side's cached packets, retract it.
1998 		 */
1999 		if (tcp_do_newreno || tp->sack_enable) {
2000 			if (IN_FASTRECOVERY(tp)) {
2001 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2002 					if (tp->sack_enable)
2003 						tcp_sack_partialack(tp, th);
2004 					else
2005 						tcp_newreno_partial_ack(tp, th);
2006 				} else {
2007 					/*
2008 					 * Out of fast recovery.
2009 					 * Window inflation should have left us
2010 					 * with approximately snd_ssthresh
2011 					 * outstanding data.
2012 					 * But in case we would be inclined to
2013 					 * send a burst, better to do it via
2014 					 * the slow start mechanism.
2015 					 */
2016 					if (SEQ_GT(th->th_ack +
2017 							tp->snd_ssthresh,
2018 						   tp->snd_max))
2019 						tp->snd_cwnd = tp->snd_max -
2020 								th->th_ack +
2021 								tp->t_maxseg;
2022 					else
2023 						tp->snd_cwnd = tp->snd_ssthresh;
2024 				}
2025 			}
2026 		} else {
2027 			if (tp->t_dupacks >= tcprexmtthresh &&
2028 			    tp->snd_cwnd > tp->snd_ssthresh)
2029 				tp->snd_cwnd = tp->snd_ssthresh;
2030 		}
2031 		tp->t_dupacks = 0;
2032 		/*
2033 		 * If we reach this point, ACK is not a duplicate,
2034 		 *     i.e., it ACKs something we sent.
2035 		 */
2036 		if (tp->t_flags & TF_NEEDSYN) {
2037 			/*
2038 			 * T/TCP: Connection was half-synchronized, and our
2039 			 * SYN has been ACK'd (so connection is now fully
2040 			 * synchronized).  Go to non-starred state,
2041 			 * increment snd_una for ACK of SYN, and check if
2042 			 * we can do window scaling.
2043 			 */
2044 			tp->t_flags &= ~TF_NEEDSYN;
2045 			tp->snd_una++;
2046 			/* Do window scaling? */
2047 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2048 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2049 				tp->rcv_scale = tp->request_r_scale;
2050 				/* Send window already scaled. */
2051 			}
2052 		}
2053 
2054 process_ACK:
2055 		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
2056 		    "locked"));
2057 		INP_LOCK_ASSERT(inp);
2058 
2059 		acked = th->th_ack - tp->snd_una;
2060 		tcpstat.tcps_rcvackpack++;
2061 		tcpstat.tcps_rcvackbyte += acked;
2062 
2063 		/*
2064 		 * If we just performed our first retransmit, and the ACK
2065 		 * arrives within our recovery window, then it was a mistake
2066 		 * to do the retransmit in the first place.  Recover our
2067 		 * original cwnd and ssthresh, and proceed to transmit where
2068 		 * we left off.
2069 		 */
2070 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2071 			++tcpstat.tcps_sndrexmitbad;
2072 			tp->snd_cwnd = tp->snd_cwnd_prev;
2073 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2074 			tp->snd_recover = tp->snd_recover_prev;
2075 			if (tp->t_flags & TF_WASFRECOVERY)
2076 				ENTER_FASTRECOVERY(tp);
2077 			tp->snd_nxt = tp->snd_max;
2078 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2079 		}
2080 
2081 		/*
2082 		 * If we have a timestamp reply, update smoothed
2083 		 * round trip time.  If no timestamp is present but
2084 		 * transmit timer is running and timed sequence
2085 		 * number was acked, update smoothed round trip time.
2086 		 * Since we now have an rtt measurement, cancel the
2087 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2088 		 * Recompute the initial retransmit timer.
2089 		 *
2090 		 * Some boxes send broken timestamp replies
2091 		 * during the SYN+ACK phase, ignore
2092 		 * timestamps of 0 or we could calculate a
2093 		 * huge RTT and blow up the retransmit timer.
2094 		 */
2095 		if ((to.to_flags & TOF_TS) != 0 &&
2096 		    to.to_tsecr) {
2097 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2098 				tp->t_rttlow = ticks - to.to_tsecr;
2099 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2100 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2101 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2102 				tp->t_rttlow = ticks - tp->t_rtttime;
2103 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2104 		}
2105 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2106 
2107 		/*
2108 		 * If all outstanding data is acked, stop retransmit
2109 		 * timer and remember to restart (more output or persist).
2110 		 * If there is more data to be acked, restart retransmit
2111 		 * timer, using current (possibly backed-off) value.
2112 		 */
2113 		if (th->th_ack == tp->snd_max) {
2114 			callout_stop(tp->tt_rexmt);
2115 			needoutput = 1;
2116 		} else if (!callout_active(tp->tt_persist))
2117 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2118 				      tcp_timer_rexmt, tp);
2119 
2120 		/*
2121 		 * If no data (only SYN) was ACK'd,
2122 		 *    skip rest of ACK processing.
2123 		 */
2124 		if (acked == 0)
2125 			goto step6;
2126 
2127 		/*
2128 		 * When new data is acked, open the congestion window.
2129 		 * If the window gives us less than ssthresh packets
2130 		 * in flight, open exponentially (maxseg per packet).
2131 		 * Otherwise open linearly: maxseg per window
2132 		 * (maxseg^2 / cwnd per packet).
2133 		 */
2134 		if ((!tcp_do_newreno && !tp->sack_enable) ||
2135 		    !IN_FASTRECOVERY(tp)) {
2136 			register u_int cw = tp->snd_cwnd;
2137 			register u_int incr = tp->t_maxseg;
2138 			if (cw > tp->snd_ssthresh)
2139 				incr = incr * incr / cw;
2140 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2141 		}
2142 		SOCKBUF_LOCK(&so->so_snd);
2143 		if (acked > so->so_snd.sb_cc) {
2144 			tp->snd_wnd -= so->so_snd.sb_cc;
2145 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2146 			ourfinisacked = 1;
2147 		} else {
2148 			sbdrop_locked(&so->so_snd, acked);
2149 			tp->snd_wnd -= acked;
2150 			ourfinisacked = 0;
2151 		}
2152 		sowwakeup_locked(so);
2153 		/* detect una wraparound */
2154 		if ((tcp_do_newreno || tp->sack_enable) &&
2155 		    !IN_FASTRECOVERY(tp) &&
2156 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2157 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2158 			tp->snd_recover = th->th_ack - 1;
2159 		if ((tcp_do_newreno || tp->sack_enable) &&
2160 		    IN_FASTRECOVERY(tp) &&
2161 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2162 			EXIT_FASTRECOVERY(tp);
2163 		tp->snd_una = th->th_ack;
2164 		if (tp->sack_enable) {
2165 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2166 				tp->snd_recover = tp->snd_una;
2167 		}
2168 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2169 			tp->snd_nxt = tp->snd_una;
2170 
2171 		switch (tp->t_state) {
2172 
2173 		/*
2174 		 * In FIN_WAIT_1 STATE in addition to the processing
2175 		 * for the ESTABLISHED state if our FIN is now acknowledged
2176 		 * then enter FIN_WAIT_2.
2177 		 */
2178 		case TCPS_FIN_WAIT_1:
2179 			if (ourfinisacked) {
2180 				/*
2181 				 * If we can't receive any more
2182 				 * data, then closing user can proceed.
2183 				 * Starting the timer is contrary to the
2184 				 * specification, but if we don't get a FIN
2185 				 * we'll hang forever.
2186 				 */
2187 		/* XXXjl
2188 		 * we should release the tp also, and use a
2189 		 * compressed state.
2190 		 */
2191 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2192 					soisdisconnected(so);
2193 					callout_reset(tp->tt_2msl, tcp_maxidle,
2194 						      tcp_timer_2msl, tp);
2195 				}
2196 				tp->t_state = TCPS_FIN_WAIT_2;
2197 			}
2198 			break;
2199 
2200 		/*
2201 		 * In CLOSING STATE in addition to the processing for
2202 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2203 		 * then enter the TIME-WAIT state, otherwise ignore
2204 		 * the segment.
2205 		 */
2206 		case TCPS_CLOSING:
2207 			if (ourfinisacked) {
2208 				KASSERT(headlocked, ("tcp_input: process_ACK: "
2209 				    "head not locked"));
2210 				tcp_twstart(tp);
2211 				INP_INFO_WUNLOCK(&tcbinfo);
2212 				m_freem(m);
2213 				return;
2214 			}
2215 			break;
2216 
2217 		/*
2218 		 * In LAST_ACK, we may still be waiting for data to drain
2219 		 * and/or to be acked, as well as for the ack of our FIN.
2220 		 * If our FIN is now acknowledged, delete the TCB,
2221 		 * enter the closed state and return.
2222 		 */
2223 		case TCPS_LAST_ACK:
2224 			if (ourfinisacked) {
2225 				KASSERT(headlocked, ("tcp_input: process_ACK:"
2226 				    " tcp_close: head not locked"));
2227 				tp = tcp_close(tp);
2228 				goto drop;
2229 			}
2230 			break;
2231 
2232 		/*
2233 		 * In TIME_WAIT state the only thing that should arrive
2234 		 * is a retransmission of the remote FIN.  Acknowledge
2235 		 * it and restart the finack timer.
2236 		 */
2237 		case TCPS_TIME_WAIT:
2238 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2239 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2240 				      tcp_timer_2msl, tp);
2241 			goto dropafterack;
2242 		}
2243 	}
2244 
2245 step6:
2246 	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2247 	INP_LOCK_ASSERT(inp);
2248 
2249 	/*
2250 	 * Update window information.
2251 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2252 	 */
2253 	if ((thflags & TH_ACK) &&
2254 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2255 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2256 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2257 		/* keep track of pure window updates */
2258 		if (tlen == 0 &&
2259 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2260 			tcpstat.tcps_rcvwinupd++;
2261 		tp->snd_wnd = tiwin;
2262 		tp->snd_wl1 = th->th_seq;
2263 		tp->snd_wl2 = th->th_ack;
2264 		if (tp->snd_wnd > tp->max_sndwnd)
2265 			tp->max_sndwnd = tp->snd_wnd;
2266 		needoutput = 1;
2267 	}
2268 
2269 	/*
2270 	 * Process segments with URG.
2271 	 */
2272 	if ((thflags & TH_URG) && th->th_urp &&
2273 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2274 		/*
2275 		 * This is a kludge, but if we receive and accept
2276 		 * random urgent pointers, we'll crash in
2277 		 * soreceive.  It's hard to imagine someone
2278 		 * actually wanting to send this much urgent data.
2279 		 */
2280 		SOCKBUF_LOCK(&so->so_rcv);
2281 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2282 			th->th_urp = 0;			/* XXX */
2283 			thflags &= ~TH_URG;		/* XXX */
2284 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2285 			goto dodata;			/* XXX */
2286 		}
2287 		/*
2288 		 * If this segment advances the known urgent pointer,
2289 		 * then mark the data stream.  This should not happen
2290 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2291 		 * a FIN has been received from the remote side.
2292 		 * In these states we ignore the URG.
2293 		 *
2294 		 * According to RFC961 (Assigned Protocols),
2295 		 * the urgent pointer points to the last octet
2296 		 * of urgent data.  We continue, however,
2297 		 * to consider it to indicate the first octet
2298 		 * of data past the urgent section as the original
2299 		 * spec states (in one of two places).
2300 		 */
2301 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2302 			tp->rcv_up = th->th_seq + th->th_urp;
2303 			so->so_oobmark = so->so_rcv.sb_cc +
2304 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2305 			if (so->so_oobmark == 0)
2306 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2307 			sohasoutofband(so);
2308 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2309 		}
2310 		SOCKBUF_UNLOCK(&so->so_rcv);
2311 		/*
2312 		 * Remove out of band data so doesn't get presented to user.
2313 		 * This can happen independent of advancing the URG pointer,
2314 		 * but if two URG's are pending at once, some out-of-band
2315 		 * data may creep in... ick.
2316 		 */
2317 		if (th->th_urp <= (u_long)tlen &&
2318 		    !(so->so_options & SO_OOBINLINE)) {
2319 			/* hdr drop is delayed */
2320 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2321 		}
2322 	} else {
2323 		/*
2324 		 * If no out of band data is expected,
2325 		 * pull receive urgent pointer along
2326 		 * with the receive window.
2327 		 */
2328 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2329 			tp->rcv_up = tp->rcv_nxt;
2330 	}
2331 dodata:							/* XXX */
2332 	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2333 	INP_LOCK_ASSERT(inp);
2334 
2335 	/*
2336 	 * Process the segment text, merging it into the TCP sequencing queue,
2337 	 * and arranging for acknowledgment of receipt if necessary.
2338 	 * This process logically involves adjusting tp->rcv_wnd as data
2339 	 * is presented to the user (this happens in tcp_usrreq.c,
2340 	 * case PRU_RCVD).  If a FIN has already been received on this
2341 	 * connection then we just ignore the text.
2342 	 */
2343 	if ((tlen || (thflags & TH_FIN)) &&
2344 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2345 		tcp_seq save_start = th->th_seq;
2346 		tcp_seq save_end = th->th_seq + tlen;
2347 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2348 		/*
2349 		 * Insert segment which includes th into TCP reassembly queue
2350 		 * with control block tp.  Set thflags to whether reassembly now
2351 		 * includes a segment with FIN.  This handles the common case
2352 		 * inline (segment is the next to be received on an established
2353 		 * connection, and the queue is empty), avoiding linkage into
2354 		 * and removal from the queue and repetition of various
2355 		 * conversions.
2356 		 * Set DELACK for segments received in order, but ack
2357 		 * immediately when segments are out of order (so
2358 		 * fast retransmit can work).
2359 		 */
2360 		if (th->th_seq == tp->rcv_nxt &&
2361 		    LIST_EMPTY(&tp->t_segq) &&
2362 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2363 			if (DELAY_ACK(tp))
2364 				tp->t_flags |= TF_DELACK;
2365 			else
2366 				tp->t_flags |= TF_ACKNOW;
2367 			tp->rcv_nxt += tlen;
2368 			thflags = th->th_flags & TH_FIN;
2369 			tcpstat.tcps_rcvpack++;
2370 			tcpstat.tcps_rcvbyte += tlen;
2371 			ND6_HINT(tp);
2372 			SOCKBUF_LOCK(&so->so_rcv);
2373 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2374 				m_freem(m);
2375 			else
2376 				sbappendstream_locked(&so->so_rcv, m);
2377 			sorwakeup_locked(so);
2378 		} else {
2379 			thflags = tcp_reass(tp, th, &tlen, m);
2380 			tp->t_flags |= TF_ACKNOW;
2381 		}
2382 		if (tlen > 0 && tp->sack_enable)
2383 			tcp_update_sack_list(tp, save_start, save_end);
2384 		/*
2385 		 * Note the amount of data that peer has sent into
2386 		 * our window, in order to estimate the sender's
2387 		 * buffer size.
2388 		 */
2389 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2390 	} else {
2391 		m_freem(m);
2392 		thflags &= ~TH_FIN;
2393 	}
2394 
2395 	/*
2396 	 * If FIN is received ACK the FIN and let the user know
2397 	 * that the connection is closing.
2398 	 */
2399 	if (thflags & TH_FIN) {
2400 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2401 			socantrcvmore(so);
2402 			/*
2403 			 * If connection is half-synchronized
2404 			 * (ie NEEDSYN flag on) then delay ACK,
2405 			 * so it may be piggybacked when SYN is sent.
2406 			 * Otherwise, since we received a FIN then no
2407 			 * more input can be expected, send ACK now.
2408 			 */
2409 			if (tp->t_flags & TF_NEEDSYN)
2410 				tp->t_flags |= TF_DELACK;
2411 			else
2412 				tp->t_flags |= TF_ACKNOW;
2413 			tp->rcv_nxt++;
2414 		}
2415 		switch (tp->t_state) {
2416 
2417 		/*
2418 		 * In SYN_RECEIVED and ESTABLISHED STATES
2419 		 * enter the CLOSE_WAIT state.
2420 		 */
2421 		case TCPS_SYN_RECEIVED:
2422 			tp->t_starttime = ticks;
2423 			/*FALLTHROUGH*/
2424 		case TCPS_ESTABLISHED:
2425 			tp->t_state = TCPS_CLOSE_WAIT;
2426 			break;
2427 
2428 		/*
2429 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2430 		 * enter the CLOSING state.
2431 		 */
2432 		case TCPS_FIN_WAIT_1:
2433 			tp->t_state = TCPS_CLOSING;
2434 			break;
2435 
2436 		/*
2437 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2438 		 * starting the time-wait timer, turning off the other
2439 		 * standard timers.
2440 		 */
2441 		case TCPS_FIN_WAIT_2:
2442 			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2443 			    "TCP_FIN_WAIT_2: head not locked"));
2444 			tcp_twstart(tp);
2445 			INP_INFO_WUNLOCK(&tcbinfo);
2446 			return;
2447 
2448 		/*
2449 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2450 		 */
2451 		case TCPS_TIME_WAIT:
2452 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2453 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2454 				      tcp_timer_2msl, tp);
2455 			break;
2456 		}
2457 	}
2458 	INP_INFO_WUNLOCK(&tcbinfo);
2459 	headlocked = 0;
2460 #ifdef TCPDEBUG
2461 	if (so->so_options & SO_DEBUG)
2462 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2463 			  &tcp_savetcp, 0);
2464 #endif
2465 
2466 	/*
2467 	 * Return any desired output.
2468 	 */
2469 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2470 		(void) tcp_output(tp);
2471 
2472 check_delack:
2473 	KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked"));
2474 	INP_LOCK_ASSERT(inp);
2475 	if (tp->t_flags & TF_DELACK) {
2476 		tp->t_flags &= ~TF_DELACK;
2477 		callout_reset(tp->tt_delack, tcp_delacktime,
2478 		    tcp_timer_delack, tp);
2479 	}
2480 	INP_UNLOCK(inp);
2481 	return;
2482 
2483 dropafterack:
2484 	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2485 	/*
2486 	 * Generate an ACK dropping incoming segment if it occupies
2487 	 * sequence space, where the ACK reflects our state.
2488 	 *
2489 	 * We can now skip the test for the RST flag since all
2490 	 * paths to this code happen after packets containing
2491 	 * RST have been dropped.
2492 	 *
2493 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2494 	 * segment we received passes the SYN-RECEIVED ACK test.
2495 	 * If it fails send a RST.  This breaks the loop in the
2496 	 * "LAND" DoS attack, and also prevents an ACK storm
2497 	 * between two listening ports that have been sent forged
2498 	 * SYN segments, each with the source address of the other.
2499 	 */
2500 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2501 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2502 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2503 		rstreason = BANDLIM_RST_OPENPORT;
2504 		goto dropwithreset;
2505 	}
2506 #ifdef TCPDEBUG
2507 	if (so->so_options & SO_DEBUG)
2508 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2509 			  &tcp_savetcp, 0);
2510 #endif
2511 	KASSERT(headlocked, ("headlocked should be 1"));
2512 	INP_INFO_WUNLOCK(&tcbinfo);
2513 	tp->t_flags |= TF_ACKNOW;
2514 	(void) tcp_output(tp);
2515 	INP_UNLOCK(inp);
2516 	m_freem(m);
2517 	return;
2518 
2519 dropwithreset:
2520 	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2521 	/*
2522 	 * Generate a RST, dropping incoming segment.
2523 	 * Make ACK acceptable to originator of segment.
2524 	 * Don't bother to respond if destination was broadcast/multicast.
2525 	 */
2526 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2527 		goto drop;
2528 	if (isipv6) {
2529 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2530 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2531 			goto drop;
2532 	} else {
2533 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2534 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2535 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2536 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2537 			goto drop;
2538 	}
2539 	/* IPv6 anycast check is done at tcp6_input() */
2540 
2541 	/*
2542 	 * Perform bandwidth limiting.
2543 	 */
2544 	if (badport_bandlim(rstreason) < 0)
2545 		goto drop;
2546 
2547 #ifdef TCPDEBUG
2548 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2549 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2550 			  &tcp_savetcp, 0);
2551 #endif
2552 
2553 	if (thflags & TH_ACK)
2554 		/* mtod() below is safe as long as hdr dropping is delayed */
2555 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2556 			    TH_RST);
2557 	else {
2558 		if (thflags & TH_SYN)
2559 			tlen++;
2560 		/* mtod() below is safe as long as hdr dropping is delayed */
2561 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2562 			    (tcp_seq)0, TH_RST|TH_ACK);
2563 	}
2564 
2565 	if (tp != NULL)
2566 		INP_UNLOCK(inp);
2567 	if (headlocked)
2568 		INP_INFO_WUNLOCK(&tcbinfo);
2569 	return;
2570 
2571 drop:
2572 	/*
2573 	 * Drop space held by incoming segment and return.
2574 	 */
2575 #ifdef TCPDEBUG
2576 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2577 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2578 			  &tcp_savetcp, 0);
2579 #endif
2580 	if (tp != NULL)
2581 		INP_UNLOCK(inp);
2582 	if (headlocked)
2583 		INP_INFO_WUNLOCK(&tcbinfo);
2584 	m_freem(m);
2585 	return;
2586 }
2587 
2588 /*
2589  * Parse TCP options and place in tcpopt.
2590  */
2591 static void
2592 tcp_dooptions(to, cp, cnt, is_syn)
2593 	struct tcpopt *to;
2594 	u_char *cp;
2595 	int cnt;
2596 	int is_syn;
2597 {
2598 	int opt, optlen;
2599 
2600 	to->to_flags = 0;
2601 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2602 		opt = cp[0];
2603 		if (opt == TCPOPT_EOL)
2604 			break;
2605 		if (opt == TCPOPT_NOP)
2606 			optlen = 1;
2607 		else {
2608 			if (cnt < 2)
2609 				break;
2610 			optlen = cp[1];
2611 			if (optlen < 2 || optlen > cnt)
2612 				break;
2613 		}
2614 		switch (opt) {
2615 		case TCPOPT_MAXSEG:
2616 			if (optlen != TCPOLEN_MAXSEG)
2617 				continue;
2618 			if (!is_syn)
2619 				continue;
2620 			to->to_flags |= TOF_MSS;
2621 			bcopy((char *)cp + 2,
2622 			    (char *)&to->to_mss, sizeof(to->to_mss));
2623 			to->to_mss = ntohs(to->to_mss);
2624 			break;
2625 		case TCPOPT_WINDOW:
2626 			if (optlen != TCPOLEN_WINDOW)
2627 				continue;
2628 			if (! is_syn)
2629 				continue;
2630 			to->to_flags |= TOF_SCALE;
2631 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2632 			break;
2633 		case TCPOPT_TIMESTAMP:
2634 			if (optlen != TCPOLEN_TIMESTAMP)
2635 				continue;
2636 			to->to_flags |= TOF_TS;
2637 			bcopy((char *)cp + 2,
2638 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2639 			to->to_tsval = ntohl(to->to_tsval);
2640 			bcopy((char *)cp + 6,
2641 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2642 			to->to_tsecr = ntohl(to->to_tsecr);
2643 			/*
2644 			 * If echoed timestamp is later than the current time,
2645 			 * fall back to non RFC1323 RTT calculation.
2646 			 */
2647 			if ((to->to_tsecr != 0) && TSTMP_GT(to->to_tsecr, ticks))
2648 				to->to_tsecr = 0;
2649 			break;
2650 #ifdef TCP_SIGNATURE
2651 		/*
2652 		 * XXX In order to reply to a host which has set the
2653 		 * TCP_SIGNATURE option in its initial SYN, we have to
2654 		 * record the fact that the option was observed here
2655 		 * for the syncache code to perform the correct response.
2656 		 */
2657 		case TCPOPT_SIGNATURE:
2658 			if (optlen != TCPOLEN_SIGNATURE)
2659 				continue;
2660 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2661 			break;
2662 #endif
2663 		case TCPOPT_SACK_PERMITTED:
2664 			if (!tcp_do_sack ||
2665 			    optlen != TCPOLEN_SACK_PERMITTED)
2666 				continue;
2667 			if (is_syn) {
2668 				/* MUST only be set on SYN */
2669 				to->to_flags |= TOF_SACK;
2670 			}
2671 			break;
2672 		case TCPOPT_SACK:
2673 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2674 				continue;
2675 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2676 			to->to_sacks = cp + 2;
2677 			tcpstat.tcps_sack_rcv_blocks++;
2678 			break;
2679 		default:
2680 			continue;
2681 		}
2682 	}
2683 }
2684 
2685 /*
2686  * Pull out of band byte out of a segment so
2687  * it doesn't appear in the user's data queue.
2688  * It is still reflected in the segment length for
2689  * sequencing purposes.
2690  */
2691 static void
2692 tcp_pulloutofband(so, th, m, off)
2693 	struct socket *so;
2694 	struct tcphdr *th;
2695 	register struct mbuf *m;
2696 	int off;		/* delayed to be droped hdrlen */
2697 {
2698 	int cnt = off + th->th_urp - 1;
2699 
2700 	while (cnt >= 0) {
2701 		if (m->m_len > cnt) {
2702 			char *cp = mtod(m, caddr_t) + cnt;
2703 			struct tcpcb *tp = sototcpcb(so);
2704 
2705 			tp->t_iobc = *cp;
2706 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2707 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2708 			m->m_len--;
2709 			if (m->m_flags & M_PKTHDR)
2710 				m->m_pkthdr.len--;
2711 			return;
2712 		}
2713 		cnt -= m->m_len;
2714 		m = m->m_next;
2715 		if (m == 0)
2716 			break;
2717 	}
2718 	panic("tcp_pulloutofband");
2719 }
2720 
2721 /*
2722  * Collect new round-trip time estimate
2723  * and update averages and current timeout.
2724  */
2725 static void
2726 tcp_xmit_timer(tp, rtt)
2727 	register struct tcpcb *tp;
2728 	int rtt;
2729 {
2730 	register int delta;
2731 
2732 	INP_LOCK_ASSERT(tp->t_inpcb);
2733 
2734 	tcpstat.tcps_rttupdated++;
2735 	tp->t_rttupdated++;
2736 	if (tp->t_srtt != 0) {
2737 		/*
2738 		 * srtt is stored as fixed point with 5 bits after the
2739 		 * binary point (i.e., scaled by 8).  The following magic
2740 		 * is equivalent to the smoothing algorithm in rfc793 with
2741 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2742 		 * point).  Adjust rtt to origin 0.
2743 		 */
2744 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2745 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2746 
2747 		if ((tp->t_srtt += delta) <= 0)
2748 			tp->t_srtt = 1;
2749 
2750 		/*
2751 		 * We accumulate a smoothed rtt variance (actually, a
2752 		 * smoothed mean difference), then set the retransmit
2753 		 * timer to smoothed rtt + 4 times the smoothed variance.
2754 		 * rttvar is stored as fixed point with 4 bits after the
2755 		 * binary point (scaled by 16).  The following is
2756 		 * equivalent to rfc793 smoothing with an alpha of .75
2757 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2758 		 * rfc793's wired-in beta.
2759 		 */
2760 		if (delta < 0)
2761 			delta = -delta;
2762 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2763 		if ((tp->t_rttvar += delta) <= 0)
2764 			tp->t_rttvar = 1;
2765 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2766 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2767 	} else {
2768 		/*
2769 		 * No rtt measurement yet - use the unsmoothed rtt.
2770 		 * Set the variance to half the rtt (so our first
2771 		 * retransmit happens at 3*rtt).
2772 		 */
2773 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2774 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2775 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2776 	}
2777 	tp->t_rtttime = 0;
2778 	tp->t_rxtshift = 0;
2779 
2780 	/*
2781 	 * the retransmit should happen at rtt + 4 * rttvar.
2782 	 * Because of the way we do the smoothing, srtt and rttvar
2783 	 * will each average +1/2 tick of bias.  When we compute
2784 	 * the retransmit timer, we want 1/2 tick of rounding and
2785 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2786 	 * firing of the timer.  The bias will give us exactly the
2787 	 * 1.5 tick we need.  But, because the bias is
2788 	 * statistical, we have to test that we don't drop below
2789 	 * the minimum feasible timer (which is 2 ticks).
2790 	 */
2791 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2792 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2793 
2794 	/*
2795 	 * We received an ack for a packet that wasn't retransmitted;
2796 	 * it is probably safe to discard any error indications we've
2797 	 * received recently.  This isn't quite right, but close enough
2798 	 * for now (a route might have failed after we sent a segment,
2799 	 * and the return path might not be symmetrical).
2800 	 */
2801 	tp->t_softerror = 0;
2802 }
2803 
2804 /*
2805  * Determine a reasonable value for maxseg size.
2806  * If the route is known, check route for mtu.
2807  * If none, use an mss that can be handled on the outgoing
2808  * interface without forcing IP to fragment; if bigger than
2809  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2810  * to utilize large mbufs.  If no route is found, route has no mtu,
2811  * or the destination isn't local, use a default, hopefully conservative
2812  * size (usually 512 or the default IP max size, but no more than the mtu
2813  * of the interface), as we can't discover anything about intervening
2814  * gateways or networks.  We also initialize the congestion/slow start
2815  * window to be a single segment if the destination isn't local.
2816  * While looking at the routing entry, we also initialize other path-dependent
2817  * parameters from pre-set or cached values in the routing entry.
2818  *
2819  * Also take into account the space needed for options that we
2820  * send regularly.  Make maxseg shorter by that amount to assure
2821  * that we can send maxseg amount of data even when the options
2822  * are present.  Store the upper limit of the length of options plus
2823  * data in maxopd.
2824  *
2825  *
2826  * In case of T/TCP, we call this routine during implicit connection
2827  * setup as well (offer = -1), to initialize maxseg from the cached
2828  * MSS of our peer.
2829  *
2830  * NOTE that this routine is only called when we process an incoming
2831  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2832  */
2833 void
2834 tcp_mss(tp, offer)
2835 	struct tcpcb *tp;
2836 	int offer;
2837 {
2838 	int rtt, mss;
2839 	u_long bufsize;
2840 	u_long maxmtu;
2841 	struct inpcb *inp = tp->t_inpcb;
2842 	struct socket *so;
2843 	struct hc_metrics_lite metrics;
2844 	int origoffer = offer;
2845 #ifdef INET6
2846 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2847 	size_t min_protoh = isipv6 ?
2848 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2849 			    sizeof (struct tcpiphdr);
2850 #else
2851 	const size_t min_protoh = sizeof(struct tcpiphdr);
2852 #endif
2853 
2854 	/* initialize */
2855 #ifdef INET6
2856 	if (isipv6) {
2857 		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2858 		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2859 	} else
2860 #endif
2861 	{
2862 		maxmtu = tcp_maxmtu(&inp->inp_inc);
2863 		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2864 	}
2865 	so = inp->inp_socket;
2866 
2867 	/*
2868 	 * no route to sender, stay with default mss and return
2869 	 */
2870 	if (maxmtu == 0)
2871 		return;
2872 
2873 	/* what have we got? */
2874 	switch (offer) {
2875 		case 0:
2876 			/*
2877 			 * Offer == 0 means that there was no MSS on the SYN
2878 			 * segment, in this case we use tcp_mssdflt.
2879 			 */
2880 			offer =
2881 #ifdef INET6
2882 				isipv6 ? tcp_v6mssdflt :
2883 #endif
2884 				tcp_mssdflt;
2885 			break;
2886 
2887 		case -1:
2888 			/*
2889 			 * Offer == -1 means that we didn't receive SYN yet.
2890 			 */
2891 			/* FALLTHROUGH */
2892 
2893 		default:
2894 			/*
2895 			 * Prevent DoS attack with too small MSS. Round up
2896 			 * to at least minmss.
2897 			 */
2898 			offer = max(offer, tcp_minmss);
2899 			/*
2900 			 * Sanity check: make sure that maxopd will be large
2901 			 * enough to allow some data on segments even if the
2902 			 * all the option space is used (40bytes).  Otherwise
2903 			 * funny things may happen in tcp_output.
2904 			 */
2905 			offer = max(offer, 64);
2906 	}
2907 
2908 	/*
2909 	 * rmx information is now retrieved from tcp_hostcache
2910 	 */
2911 	tcp_hc_get(&inp->inp_inc, &metrics);
2912 
2913 	/*
2914 	 * if there's a discovered mtu int tcp hostcache, use it
2915 	 * else, use the link mtu.
2916 	 */
2917 	if (metrics.rmx_mtu)
2918 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2919 	else {
2920 #ifdef INET6
2921 		if (isipv6) {
2922 			mss = maxmtu - min_protoh;
2923 			if (!path_mtu_discovery &&
2924 			    !in6_localaddr(&inp->in6p_faddr))
2925 				mss = min(mss, tcp_v6mssdflt);
2926 		} else
2927 #endif
2928 		{
2929 			mss = maxmtu - min_protoh;
2930 			if (!path_mtu_discovery &&
2931 			    !in_localaddr(inp->inp_faddr))
2932 				mss = min(mss, tcp_mssdflt);
2933 		}
2934 	}
2935 	mss = min(mss, offer);
2936 
2937 	/*
2938 	 * maxopd stores the maximum length of data AND options
2939 	 * in a segment; maxseg is the amount of data in a normal
2940 	 * segment.  We need to store this value (maxopd) apart
2941 	 * from maxseg, because now every segment carries options
2942 	 * and thus we normally have somewhat less data in segments.
2943 	 */
2944 	tp->t_maxopd = mss;
2945 
2946 	/*
2947 	 * origoffer==-1 indicates, that no segments were received yet.
2948 	 * In this case we just guess.
2949 	 */
2950 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2951 	    (origoffer == -1 ||
2952 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2953 		mss -= TCPOLEN_TSTAMP_APPA;
2954 	tp->t_maxseg = mss;
2955 
2956 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2957 		if (mss > MCLBYTES)
2958 			mss &= ~(MCLBYTES-1);
2959 #else
2960 		if (mss > MCLBYTES)
2961 			mss = mss / MCLBYTES * MCLBYTES;
2962 #endif
2963 	tp->t_maxseg = mss;
2964 
2965 	/*
2966 	 * If there's a pipesize, change the socket buffer to that size,
2967 	 * don't change if sb_hiwat is different than default (then it
2968 	 * has been changed on purpose with setsockopt).
2969 	 * Make the socket buffers an integral number of mss units;
2970 	 * if the mss is larger than the socket buffer, decrease the mss.
2971 	 */
2972 	SOCKBUF_LOCK(&so->so_snd);
2973 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2974 		bufsize = metrics.rmx_sendpipe;
2975 	else
2976 		bufsize = so->so_snd.sb_hiwat;
2977 	if (bufsize < mss)
2978 		mss = bufsize;
2979 	else {
2980 		bufsize = roundup(bufsize, mss);
2981 		if (bufsize > sb_max)
2982 			bufsize = sb_max;
2983 		if (bufsize > so->so_snd.sb_hiwat)
2984 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2985 	}
2986 	SOCKBUF_UNLOCK(&so->so_snd);
2987 	tp->t_maxseg = mss;
2988 
2989 	SOCKBUF_LOCK(&so->so_rcv);
2990 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2991 		bufsize = metrics.rmx_recvpipe;
2992 	else
2993 		bufsize = so->so_rcv.sb_hiwat;
2994 	if (bufsize > mss) {
2995 		bufsize = roundup(bufsize, mss);
2996 		if (bufsize > sb_max)
2997 			bufsize = sb_max;
2998 		if (bufsize > so->so_rcv.sb_hiwat)
2999 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3000 	}
3001 	SOCKBUF_UNLOCK(&so->so_rcv);
3002 	/*
3003 	 * While we're here, check the others too
3004 	 */
3005 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3006 		tp->t_srtt = rtt;
3007 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3008 		tcpstat.tcps_usedrtt++;
3009 		if (metrics.rmx_rttvar) {
3010 			tp->t_rttvar = metrics.rmx_rttvar;
3011 			tcpstat.tcps_usedrttvar++;
3012 		} else {
3013 			/* default variation is +- 1 rtt */
3014 			tp->t_rttvar =
3015 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3016 		}
3017 		TCPT_RANGESET(tp->t_rxtcur,
3018 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3019 			      tp->t_rttmin, TCPTV_REXMTMAX);
3020 	}
3021 	if (metrics.rmx_ssthresh) {
3022 		/*
3023 		 * There's some sort of gateway or interface
3024 		 * buffer limit on the path.  Use this to set
3025 		 * the slow start threshhold, but set the
3026 		 * threshold to no less than 2*mss.
3027 		 */
3028 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3029 		tcpstat.tcps_usedssthresh++;
3030 	}
3031 	if (metrics.rmx_bandwidth)
3032 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3033 
3034 	/*
3035 	 * Set the slow-start flight size depending on whether this
3036 	 * is a local network or not.
3037 	 *
3038 	 * Extend this so we cache the cwnd too and retrieve it here.
3039 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3040 	 * have previous experience with the remote host. Be careful
3041 	 * not make cwnd bigger than remote receive window or our own
3042 	 * send socket buffer. Maybe put some additional upper bound
3043 	 * on the retrieved cwnd. Should do incremental updates to
3044 	 * hostcache when cwnd collapses so next connection doesn't
3045 	 * overloads the path again.
3046 	 *
3047 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3048 	 * We currently check only in syncache_socket for that.
3049 	 */
3050 #define TCP_METRICS_CWND
3051 #ifdef TCP_METRICS_CWND
3052 	if (metrics.rmx_cwnd)
3053 		tp->snd_cwnd = max(mss,
3054 				min(metrics.rmx_cwnd / 2,
3055 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3056 	else
3057 #endif
3058 	if (tcp_do_rfc3390)
3059 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3060 #ifdef INET6
3061 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3062 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3063 #else
3064 	else if (in_localaddr(inp->inp_faddr))
3065 #endif
3066 		tp->snd_cwnd = mss * ss_fltsz_local;
3067 	else
3068 		tp->snd_cwnd = mss * ss_fltsz;
3069 }
3070 
3071 /*
3072  * Determine the MSS option to send on an outgoing SYN.
3073  */
3074 int
3075 tcp_mssopt(inc)
3076 	struct in_conninfo *inc;
3077 {
3078 	int mss = 0;
3079 	u_long maxmtu = 0;
3080 	u_long thcmtu = 0;
3081 	size_t min_protoh;
3082 #ifdef INET6
3083 	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3084 #endif
3085 
3086 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3087 
3088 #ifdef INET6
3089 	if (isipv6) {
3090 		mss = tcp_v6mssdflt;
3091 		maxmtu = tcp_maxmtu6(inc);
3092 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3093 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3094 	} else
3095 #endif
3096 	{
3097 		mss = tcp_mssdflt;
3098 		maxmtu = tcp_maxmtu(inc);
3099 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3100 		min_protoh = sizeof(struct tcpiphdr);
3101 	}
3102 	if (maxmtu && thcmtu)
3103 		mss = min(maxmtu, thcmtu) - min_protoh;
3104 	else if (maxmtu || thcmtu)
3105 		mss = max(maxmtu, thcmtu) - min_protoh;
3106 
3107 	return (mss);
3108 }
3109 
3110 
3111 /*
3112  * On a partial ack arrives, force the retransmission of the
3113  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3114  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3115  * be started again.
3116  */
3117 static void
3118 tcp_newreno_partial_ack(tp, th)
3119 	struct tcpcb *tp;
3120 	struct tcphdr *th;
3121 {
3122 	tcp_seq onxt = tp->snd_nxt;
3123 	u_long  ocwnd = tp->snd_cwnd;
3124 
3125 	callout_stop(tp->tt_rexmt);
3126 	tp->t_rtttime = 0;
3127 	tp->snd_nxt = th->th_ack;
3128 	/*
3129 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3130 	 * (tp->snd_una has not yet been updated when this function is called.)
3131 	 */
3132 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3133 	tp->t_flags |= TF_ACKNOW;
3134 	(void) tcp_output(tp);
3135 	tp->snd_cwnd = ocwnd;
3136 	if (SEQ_GT(onxt, tp->snd_nxt))
3137 		tp->snd_nxt = onxt;
3138 	/*
3139 	 * Partial window deflation.  Relies on fact that tp->snd_una
3140 	 * not updated yet.
3141 	 */
3142 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3143 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3144 	else
3145 		tp->snd_cwnd = 0;
3146 	tp->snd_cwnd += tp->t_maxseg;
3147 }
3148 
3149 /*
3150  * Returns 1 if the TIME_WAIT state was killed and we should start over,
3151  * looking for a pcb in the listen state.  Returns 0 otherwise.
3152  */
3153 static int
3154 tcp_timewait(inp, to, th, m, tlen)
3155 	struct inpcb *inp;
3156 	struct tcpopt *to;
3157 	struct tcphdr *th;
3158 	struct mbuf *m;
3159 	int tlen;
3160 {
3161 	struct tcptw *tw;
3162 	int thflags;
3163 	tcp_seq seq;
3164 #ifdef INET6
3165 	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3166 #else
3167 	const int isipv6 = 0;
3168 #endif
3169 
3170 	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3171 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3172 	INP_LOCK_ASSERT(inp);
3173 
3174 	/*
3175 	 * XXXRW: Time wait state for inpcb has been recycled, but inpcb is
3176 	 * still present.  This is undesirable, but temporarily necessary
3177 	 * until we work out how to handle inpcb's who's timewait state has
3178 	 * been removed.
3179 	 */
3180 	tw = intotw(inp);
3181 	if (tw == NULL)
3182 		goto drop;
3183 
3184 	thflags = th->th_flags;
3185 
3186 	/*
3187 	 * NOTE: for FIN_WAIT_2 (to be added later),
3188 	 * must validate sequence number before accepting RST
3189 	 */
3190 
3191 	/*
3192 	 * If the segment contains RST:
3193 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3194 	 *      RFC 1337.
3195 	 */
3196 	if (thflags & TH_RST)
3197 		goto drop;
3198 
3199 #if 0
3200 /* PAWS not needed at the moment */
3201 	/*
3202 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3203 	 * and it's less than ts_recent, drop it.
3204 	 */
3205 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3206 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3207 		if ((thflags & TH_ACK) == 0)
3208 			goto drop;
3209 		goto ack;
3210 	}
3211 	/*
3212 	 * ts_recent is never updated because we never accept new segments.
3213 	 */
3214 #endif
3215 
3216 	/*
3217 	 * If a new connection request is received
3218 	 * while in TIME_WAIT, drop the old connection
3219 	 * and start over if the sequence numbers
3220 	 * are above the previous ones.
3221 	 */
3222 	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3223 		tcp_twclose(tw, 0);
3224 		return (1);
3225 	}
3226 
3227 	/*
3228 	 * Drop the the segment if it does not contain an ACK.
3229 	 */
3230 	if ((thflags & TH_ACK) == 0)
3231 		goto drop;
3232 
3233 	/*
3234 	 * Reset the 2MSL timer if this is a duplicate FIN.
3235 	 */
3236 	if (thflags & TH_FIN) {
3237 		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3238 		if (seq + 1 == tw->rcv_nxt)
3239 			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3240 	}
3241 
3242 	/*
3243 	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3244 	 */
3245 	if (thflags != TH_ACK || tlen != 0 ||
3246 	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3247 		tcp_twrespond(tw, TH_ACK);
3248 	goto drop;
3249 
3250 	/*
3251 	 * Generate a RST, dropping incoming segment.
3252 	 * Make ACK acceptable to originator of segment.
3253 	 * Don't bother to respond if destination was broadcast/multicast.
3254 	 */
3255 	if (m->m_flags & (M_BCAST|M_MCAST))
3256 		goto drop;
3257 	if (isipv6) {
3258 		struct ip6_hdr *ip6;
3259 
3260 		/* IPv6 anycast check is done at tcp6_input() */
3261 		ip6 = mtod(m, struct ip6_hdr *);
3262 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3263 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3264 			goto drop;
3265 	} else {
3266 		struct ip *ip;
3267 
3268 		ip = mtod(m, struct ip *);
3269 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3270 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3271 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3272 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3273 			goto drop;
3274 	}
3275 	if (thflags & TH_ACK) {
3276 		tcp_respond(NULL,
3277 		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3278 	} else {
3279 		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3280 		tcp_respond(NULL,
3281 		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3282 	}
3283 	INP_UNLOCK(inp);
3284 	return (0);
3285 
3286 drop:
3287 	INP_UNLOCK(inp);
3288 	m_freem(m);
3289 	return (0);
3290 }
3291