xref: /freebsd/sys/netinet/tcp_reass.c (revision 6e8394b8baa7d5d9153ab90de6824bcd19b3b4e1)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  *	$Id: tcp_input.c,v 1.85 1999/05/03 23:57:30 billf Exp $
35  */
36 
37 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
38 #include "opt_tcpdebug.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/proc.h>		/* for proc0 declaration */
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/syslog.h>
51 
52 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
53 
54 #include <net/if.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
61 #include <netinet/in_pcb.h>
62 #include <netinet/ip_var.h>
63 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
64 #include <netinet/tcp.h>
65 #include <netinet/tcp_fsm.h>
66 #include <netinet/tcp_seq.h>
67 #include <netinet/tcp_timer.h>
68 #include <netinet/tcp_var.h>
69 #include <netinet/tcpip.h>
70 #ifdef TCPDEBUG
71 #include <netinet/tcp_debug.h>
72 static struct	tcpiphdr tcp_saveti;
73 #endif
74 
75 static int	tcprexmtthresh = 3;
76 tcp_seq	tcp_iss;
77 tcp_cc	tcp_ccgen;
78 
79 struct	tcpstat tcpstat;
80 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD,
81     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
82 
83 static int log_in_vain = 0;
84 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
85     &log_in_vain, 0, "Log all incoming TCP connections");
86 
87 int tcp_delack_enabled = 1;
88 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
89     &tcp_delack_enabled, 0,
90     "Delay ACK to try and piggyback it onto a data packet");
91 
92 u_long	tcp_now;
93 struct inpcbhead tcb;
94 struct inpcbinfo tcbinfo;
95 
96 static void	 tcp_dooptions __P((struct tcpcb *,
97 	    u_char *, int, struct tcpiphdr *, struct tcpopt *));
98 static void	 tcp_pulloutofband __P((struct socket *,
99 	    struct tcpiphdr *, struct mbuf *));
100 static int	 tcp_reass __P((struct tcpcb *, struct tcpiphdr *, struct mbuf *));
101 static void	 tcp_xmit_timer __P((struct tcpcb *, int));
102 
103 
104 /*
105  * Insert segment ti into reassembly queue of tcp with
106  * control block tp.  Return TH_FIN if reassembly now includes
107  * a segment with FIN.  The macro form does the common case inline
108  * (segment is the next to be received on an established connection,
109  * and the queue is empty), avoiding linkage into and removal
110  * from the queue and repetition of various conversions.
111  * Set DELACK for segments received in order, but ack immediately
112  * when segments are out of order (so fast retransmit can work).
113  */
114 #define	TCP_REASS(tp, ti, m, so, flags) { \
115 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
116 	    (tp)->t_segq == NULL && \
117 	    (tp)->t_state == TCPS_ESTABLISHED) { \
118 		if (tcp_delack_enabled) \
119 			tp->t_flags |= TF_DELACK; \
120 		else \
121 			tp->t_flags |= TF_ACKNOW; \
122 		(tp)->rcv_nxt += (ti)->ti_len; \
123 		flags = (ti)->ti_flags & TH_FIN; \
124 		tcpstat.tcps_rcvpack++;\
125 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
126 		sbappend(&(so)->so_rcv, (m)); \
127 		sorwakeup(so); \
128 	} else { \
129 		(flags) = tcp_reass((tp), (ti), (m)); \
130 		tp->t_flags |= TF_ACKNOW; \
131 	} \
132 }
133 
134 static int
135 tcp_reass(tp, ti, m)
136 	register struct tcpcb *tp;
137 	register struct tcpiphdr *ti;
138 	struct mbuf *m;
139 {
140 	struct mbuf *q;
141 	struct mbuf *p;
142 	struct mbuf *nq;
143 	struct socket *so = tp->t_inpcb->inp_socket;
144 	int flags;
145 
146 #define GETTCP(m)	((struct tcpiphdr *)m->m_pkthdr.header)
147 
148 	/*
149 	 * Call with ti==0 after become established to
150 	 * force pre-ESTABLISHED data up to user socket.
151 	 */
152 	if (ti == 0)
153 		goto present;
154 
155 	m->m_pkthdr.header = ti;
156 
157 	/*
158 	 * Find a segment which begins after this one does.
159 	 */
160 	for (q = tp->t_segq, p = NULL; q; p = q, q = q->m_nextpkt)
161 		if (SEQ_GT(GETTCP(q)->ti_seq, ti->ti_seq))
162 			break;
163 
164 	/*
165 	 * If there is a preceding segment, it may provide some of
166 	 * our data already.  If so, drop the data from the incoming
167 	 * segment.  If it provides all of our data, drop us.
168 	 */
169 	if (p != NULL) {
170 		register int i;
171 		/* conversion to int (in i) handles seq wraparound */
172 		i = GETTCP(p)->ti_seq + GETTCP(p)->ti_len - ti->ti_seq;
173 		if (i > 0) {
174 			if (i >= ti->ti_len) {
175 				tcpstat.tcps_rcvduppack++;
176 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
177 				m_freem(m);
178 				/*
179 				 * Try to present any queued data
180 				 * at the left window edge to the user.
181 				 * This is needed after the 3-WHS
182 				 * completes.
183 				 */
184 				goto present;	/* ??? */
185 			}
186 			m_adj(m, i);
187 			ti->ti_len -= i;
188 			ti->ti_seq += i;
189 		}
190 	}
191 	tcpstat.tcps_rcvoopack++;
192 	tcpstat.tcps_rcvoobyte += ti->ti_len;
193 
194 	/*
195 	 * While we overlap succeeding segments trim them or,
196 	 * if they are completely covered, dequeue them.
197 	 */
198 	while (q) {
199 		register int i = (ti->ti_seq + ti->ti_len) - GETTCP(q)->ti_seq;
200 		if (i <= 0)
201 			break;
202 		if (i < GETTCP(q)->ti_len) {
203 			GETTCP(q)->ti_seq += i;
204 			GETTCP(q)->ti_len -= i;
205 			m_adj(q, i);
206 			break;
207 		}
208 
209 		nq = q->m_nextpkt;
210 		if (p)
211 			p->m_nextpkt = nq;
212 		else
213 			tp->t_segq = nq;
214 		m_freem(q);
215 		q = nq;
216 	}
217 
218 	if (p == NULL) {
219 		m->m_nextpkt = tp->t_segq;
220 		tp->t_segq = m;
221 	} else {
222 		m->m_nextpkt = p->m_nextpkt;
223 		p->m_nextpkt = m;
224 	}
225 
226 present:
227 	/*
228 	 * Present data to user, advancing rcv_nxt through
229 	 * completed sequence space.
230 	 */
231 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
232 		return (0);
233 	q = tp->t_segq;
234 	if (!q || GETTCP(q)->ti_seq != tp->rcv_nxt)
235 		return (0);
236 	do {
237 		tp->rcv_nxt += GETTCP(q)->ti_len;
238 		flags = GETTCP(q)->ti_flags & TH_FIN;
239 		nq = q->m_nextpkt;
240 		tp->t_segq = nq;
241 		q->m_nextpkt = NULL;
242 		if (so->so_state & SS_CANTRCVMORE)
243 			m_freem(q);
244 		else
245 			sbappend(&so->so_rcv, q);
246 		q = nq;
247 	} while (q && GETTCP(q)->ti_seq == tp->rcv_nxt);
248 	sorwakeup(so);
249 	return (flags);
250 
251 #undef GETTCP
252 }
253 
254 /*
255  * TCP input routine, follows pages 65-76 of the
256  * protocol specification dated September, 1981 very closely.
257  */
258 void
259 tcp_input(m, iphlen)
260 	register struct mbuf *m;
261 	int iphlen;
262 {
263 	register struct tcpiphdr *ti;
264 	register struct inpcb *inp;
265 	u_char *optp = NULL;
266 	int optlen = 0;
267 	int len, tlen, off;
268 	register struct tcpcb *tp = 0;
269 	register int tiflags;
270 	struct socket *so = 0;
271 	int todrop, acked, ourfinisacked, needoutput = 0;
272 	struct in_addr laddr;
273 	int dropsocket = 0;
274 	int iss = 0;
275 	u_long tiwin;
276 	struct tcpopt to;		/* options in this segment */
277 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
278 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
279 #ifdef TCPDEBUG
280 	short ostate = 0;
281 #endif
282 
283 	bzero((char *)&to, sizeof(to));
284 
285 	tcpstat.tcps_rcvtotal++;
286 	/*
287 	 * Get IP and TCP header together in first mbuf.
288 	 * Note: IP leaves IP header in first mbuf.
289 	 */
290 	ti = mtod(m, struct tcpiphdr *);
291 	if (iphlen > sizeof (struct ip))
292 		ip_stripoptions(m, (struct mbuf *)0);
293 	if (m->m_len < sizeof (struct tcpiphdr)) {
294 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
295 			tcpstat.tcps_rcvshort++;
296 			return;
297 		}
298 		ti = mtod(m, struct tcpiphdr *);
299 	}
300 
301 	/*
302 	 * Checksum extended TCP header and data.
303 	 */
304 	tlen = ((struct ip *)ti)->ip_len;
305 	len = sizeof (struct ip) + tlen;
306 	bzero(ti->ti_x1, sizeof(ti->ti_x1));
307 	ti->ti_len = (u_short)tlen;
308 	HTONS(ti->ti_len);
309 	ti->ti_sum = in_cksum(m, len);
310 	if (ti->ti_sum) {
311 		tcpstat.tcps_rcvbadsum++;
312 		goto drop;
313 	}
314 
315 	/*
316 	 * Check that TCP offset makes sense,
317 	 * pull out TCP options and adjust length.		XXX
318 	 */
319 	off = ti->ti_off << 2;
320 	if (off < sizeof (struct tcphdr) || off > tlen) {
321 		tcpstat.tcps_rcvbadoff++;
322 		goto drop;
323 	}
324 	tlen -= off;
325 	ti->ti_len = tlen;
326 	if (off > sizeof (struct tcphdr)) {
327 		if (m->m_len < sizeof(struct ip) + off) {
328 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
329 				tcpstat.tcps_rcvshort++;
330 				return;
331 			}
332 			ti = mtod(m, struct tcpiphdr *);
333 		}
334 		optlen = off - sizeof (struct tcphdr);
335 		optp = mtod(m, u_char *) + sizeof (struct tcpiphdr);
336 	}
337 	tiflags = ti->ti_flags;
338 
339 	/*
340 	 * Convert TCP protocol specific fields to host format.
341 	 */
342 	NTOHL(ti->ti_seq);
343 	NTOHL(ti->ti_ack);
344 	NTOHS(ti->ti_win);
345 	NTOHS(ti->ti_urp);
346 
347 	/*
348 	 * Drop TCP, IP headers and TCP options.
349 	 */
350 	m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
351 	m->m_len  -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
352 
353 	/*
354 	 * Locate pcb for segment.
355 	 */
356 findpcb:
357 #ifdef IPFIREWALL_FORWARD
358 	if (ip_fw_fwd_addr != NULL) {
359 		/*
360 		 * Diverted. Pretend to be the destination.
361 		 * already got one like this?
362 		 */
363 		inp = in_pcblookup_hash(&tcbinfo, ti->ti_src, ti->ti_sport,
364 			ti->ti_dst, ti->ti_dport, 0);
365 		if (!inp) {
366 			/*
367 			 * No, then it's new. Try find the ambushing socket
368 			 */
369 			if (!ip_fw_fwd_addr->sin_port) {
370 				inp = in_pcblookup_hash(&tcbinfo, ti->ti_src,
371 				    ti->ti_sport, ip_fw_fwd_addr->sin_addr,
372 				    ti->ti_dport, 1);
373 			} else {
374 				inp = in_pcblookup_hash(&tcbinfo,
375 				    ti->ti_src, ti->ti_sport,
376 	    			    ip_fw_fwd_addr->sin_addr,
377 				    ntohs(ip_fw_fwd_addr->sin_port), 1);
378 			}
379 		}
380 		ip_fw_fwd_addr = NULL;
381 	} else
382 #endif	/* IPFIREWALL_FORWARD */
383 
384 	inp = in_pcblookup_hash(&tcbinfo, ti->ti_src, ti->ti_sport,
385 	    ti->ti_dst, ti->ti_dport, 1);
386 
387 	/*
388 	 * If the state is CLOSED (i.e., TCB does not exist) then
389 	 * all data in the incoming segment is discarded.
390 	 * If the TCB exists but is in CLOSED state, it is embryonic,
391 	 * but should either do a listen or a connect soon.
392 	 */
393 	if (inp == NULL) {
394 		if (log_in_vain && tiflags & TH_SYN) {
395 			char buf[4*sizeof "123"];
396 
397 			strcpy(buf, inet_ntoa(ti->ti_dst));
398 			log(LOG_INFO,
399 			    "Connection attempt to TCP %s:%d from %s:%d\n",
400 			    buf, ntohs(ti->ti_dport), inet_ntoa(ti->ti_src),
401 			    ntohs(ti->ti_sport));
402 		}
403 #ifdef ICMP_BANDLIM
404 		if (badport_bandlim(1) < 0)
405 			goto drop;
406 #endif
407 		goto dropwithreset;
408 	}
409 	tp = intotcpcb(inp);
410 	if (tp == 0)
411 		goto dropwithreset;
412 	if (tp->t_state == TCPS_CLOSED)
413 		goto drop;
414 
415 	/* Unscale the window into a 32-bit value. */
416 	if ((tiflags & TH_SYN) == 0)
417 		tiwin = ti->ti_win << tp->snd_scale;
418 	else
419 		tiwin = ti->ti_win;
420 
421 	so = inp->inp_socket;
422 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
423 #ifdef TCPDEBUG
424 		if (so->so_options & SO_DEBUG) {
425 			ostate = tp->t_state;
426 			tcp_saveti = *ti;
427 		}
428 #endif
429 		if (so->so_options & SO_ACCEPTCONN) {
430 			register struct tcpcb *tp0 = tp;
431 			struct socket *so2;
432 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
433 				/*
434 				 * Note: dropwithreset makes sure we don't
435 				 * send a RST in response to a RST.
436 				 */
437 				if (tiflags & TH_ACK) {
438 					tcpstat.tcps_badsyn++;
439 					goto dropwithreset;
440 				}
441 				goto drop;
442 			}
443 			so2 = sonewconn(so, 0);
444 			if (so2 == 0) {
445 				tcpstat.tcps_listendrop++;
446 				so2 = sodropablereq(so);
447 				if (so2) {
448 					tcp_drop(sototcpcb(so2), ETIMEDOUT);
449 					so2 = sonewconn(so, 0);
450 				}
451 				if (!so2)
452 					goto drop;
453 			}
454 			so = so2;
455 			/*
456 			 * This is ugly, but ....
457 			 *
458 			 * Mark socket as temporary until we're
459 			 * committed to keeping it.  The code at
460 			 * ``drop'' and ``dropwithreset'' check the
461 			 * flag dropsocket to see if the temporary
462 			 * socket created here should be discarded.
463 			 * We mark the socket as discardable until
464 			 * we're committed to it below in TCPS_LISTEN.
465 			 */
466 			dropsocket++;
467 			inp = (struct inpcb *)so->so_pcb;
468 			inp->inp_laddr = ti->ti_dst;
469 			inp->inp_lport = ti->ti_dport;
470 			if (in_pcbinshash(inp) != 0) {
471 				/*
472 				 * Undo the assignments above if we failed to put
473 				 * the PCB on the hash lists.
474 				 */
475 				inp->inp_laddr.s_addr = INADDR_ANY;
476 				inp->inp_lport = 0;
477 				goto drop;
478 			}
479 			inp->inp_options = ip_srcroute();
480 			tp = intotcpcb(inp);
481 			tp->t_state = TCPS_LISTEN;
482 			tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT);
483 
484 			/* Compute proper scaling value from buffer space */
485 			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
486 			   TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
487 				tp->request_r_scale++;
488 		}
489 	}
490 
491 	/*
492 	 * Segment received on connection.
493 	 * Reset idle time and keep-alive timer.
494 	 */
495 	tp->t_idle = 0;
496 	if (TCPS_HAVEESTABLISHED(tp->t_state))
497 		tp->t_timer[TCPT_KEEP] = tcp_keepidle;
498 
499 	/*
500 	 * Process options if not in LISTEN state,
501 	 * else do it below (after getting remote address).
502 	 */
503 	if (tp->t_state != TCPS_LISTEN)
504 		tcp_dooptions(tp, optp, optlen, ti, &to);
505 
506 	/*
507 	 * Header prediction: check for the two common cases
508 	 * of a uni-directional data xfer.  If the packet has
509 	 * no control flags, is in-sequence, the window didn't
510 	 * change and we're not retransmitting, it's a
511 	 * candidate.  If the length is zero and the ack moved
512 	 * forward, we're the sender side of the xfer.  Just
513 	 * free the data acked & wake any higher level process
514 	 * that was blocked waiting for space.  If the length
515 	 * is non-zero and the ack didn't move, we're the
516 	 * receiver side.  If we're getting packets in-order
517 	 * (the reassembly queue is empty), add the data to
518 	 * the socket buffer and note that we need a delayed ack.
519 	 * Make sure that the hidden state-flags are also off.
520 	 * Since we check for TCPS_ESTABLISHED above, it can only
521 	 * be TH_NEEDSYN.
522 	 */
523 	if (tp->t_state == TCPS_ESTABLISHED &&
524 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
525 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
526 	    ((to.to_flag & TOF_TS) == 0 ||
527 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
528 	    /*
529 	     * Using the CC option is compulsory if once started:
530 	     *   the segment is OK if no T/TCP was negotiated or
531 	     *   if the segment has a CC option equal to CCrecv
532 	     */
533 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
534 	     ((to.to_flag & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
535 	    ti->ti_seq == tp->rcv_nxt &&
536 	    tiwin && tiwin == tp->snd_wnd &&
537 	    tp->snd_nxt == tp->snd_max) {
538 
539 		/*
540 		 * If last ACK falls within this segment's sequence numbers,
541 		 * record the timestamp.
542 		 * NOTE that the test is modified according to the latest
543 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
544 		 */
545 		if ((to.to_flag & TOF_TS) != 0 &&
546 		   SEQ_LEQ(ti->ti_seq, tp->last_ack_sent)) {
547 			tp->ts_recent_age = tcp_now;
548 			tp->ts_recent = to.to_tsval;
549 		}
550 
551 		if (ti->ti_len == 0) {
552 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
553 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
554 			    tp->snd_cwnd >= tp->snd_wnd &&
555 			    tp->t_dupacks < tcprexmtthresh) {
556 				/*
557 				 * this is a pure ack for outstanding data.
558 				 */
559 				++tcpstat.tcps_predack;
560 				if ((to.to_flag & TOF_TS) != 0)
561 					tcp_xmit_timer(tp,
562 					    tcp_now - to.to_tsecr + 1);
563 				else if (tp->t_rtt &&
564 					    SEQ_GT(ti->ti_ack, tp->t_rtseq))
565 					tcp_xmit_timer(tp, tp->t_rtt);
566 				acked = ti->ti_ack - tp->snd_una;
567 				tcpstat.tcps_rcvackpack++;
568 				tcpstat.tcps_rcvackbyte += acked;
569 				sbdrop(&so->so_snd, acked);
570 				tp->snd_una = ti->ti_ack;
571 				m_freem(m);
572 
573 				/*
574 				 * If all outstanding data are acked, stop
575 				 * retransmit timer, otherwise restart timer
576 				 * using current (possibly backed-off) value.
577 				 * If process is waiting for space,
578 				 * wakeup/selwakeup/signal.  If data
579 				 * are ready to send, let tcp_output
580 				 * decide between more output or persist.
581 				 */
582 				if (tp->snd_una == tp->snd_max)
583 					tp->t_timer[TCPT_REXMT] = 0;
584 				else if (tp->t_timer[TCPT_PERSIST] == 0)
585 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
586 
587 				sowwakeup(so);
588 				if (so->so_snd.sb_cc)
589 					(void) tcp_output(tp);
590 				return;
591 			}
592 		} else if (ti->ti_ack == tp->snd_una &&
593 		    tp->t_segq == NULL &&
594 		    ti->ti_len <= sbspace(&so->so_rcv)) {
595 			/*
596 			 * this is a pure, in-sequence data packet
597 			 * with nothing on the reassembly queue and
598 			 * we have enough buffer space to take it.
599 			 */
600 			++tcpstat.tcps_preddat;
601 			tp->rcv_nxt += ti->ti_len;
602 			tcpstat.tcps_rcvpack++;
603 			tcpstat.tcps_rcvbyte += ti->ti_len;
604 			/*
605 			 * Add data to socket buffer.
606 			 */
607 			sbappend(&so->so_rcv, m);
608 			sorwakeup(so);
609 			if (tcp_delack_enabled) {
610 				tp->t_flags |= TF_DELACK;
611 			} else {
612 				tp->t_flags |= TF_ACKNOW;
613 				tcp_output(tp);
614 			}
615 			return;
616 		}
617 	}
618 
619 	/*
620 	 * Calculate amount of space in receive window,
621 	 * and then do TCP input processing.
622 	 * Receive window is amount of space in rcv queue,
623 	 * but not less than advertised window.
624 	 */
625 	{ int win;
626 
627 	win = sbspace(&so->so_rcv);
628 	if (win < 0)
629 		win = 0;
630 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
631 	}
632 
633 	switch (tp->t_state) {
634 
635 	/*
636 	 * If the state is LISTEN then ignore segment if it contains an RST.
637 	 * If the segment contains an ACK then it is bad and send a RST.
638 	 * If it does not contain a SYN then it is not interesting; drop it.
639 	 * If it is from this socket, drop it, it must be forged.
640 	 * Don't bother responding if the destination was a broadcast.
641 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
642 	 * tp->iss, and send a segment:
643 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
644 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
645 	 * Fill in remote peer address fields if not previously specified.
646 	 * Enter SYN_RECEIVED state, and process any other fields of this
647 	 * segment in this state.
648 	 */
649 	case TCPS_LISTEN: {
650 		register struct sockaddr_in *sin;
651 
652 		if (tiflags & TH_RST)
653 			goto drop;
654 		if (tiflags & TH_ACK)
655 			goto dropwithreset;
656 		if ((tiflags & TH_SYN) == 0)
657 			goto drop;
658 		if ((ti->ti_dport == ti->ti_sport) &&
659 		    (ti->ti_dst.s_addr == ti->ti_src.s_addr))
660 			goto drop;
661 		/*
662 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
663 		 * in_broadcast() should never return true on a received
664 		 * packet with M_BCAST not set.
665 		 */
666 		if (m->m_flags & (M_BCAST|M_MCAST) ||
667 		    IN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
668 			goto drop;
669 		MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
670 		       M_NOWAIT);
671 		if (sin == NULL)
672 			goto drop;
673 		sin->sin_family = AF_INET;
674 		sin->sin_len = sizeof(*sin);
675 		sin->sin_addr = ti->ti_src;
676 		sin->sin_port = ti->ti_sport;
677 		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
678 		laddr = inp->inp_laddr;
679 		if (inp->inp_laddr.s_addr == INADDR_ANY)
680 			inp->inp_laddr = ti->ti_dst;
681 		if (in_pcbconnect(inp, (struct sockaddr *)sin, &proc0)) {
682 			inp->inp_laddr = laddr;
683 			FREE(sin, M_SONAME);
684 			goto drop;
685 		}
686 		FREE(sin, M_SONAME);
687 		tp->t_template = tcp_template(tp);
688 		if (tp->t_template == 0) {
689 			tp = tcp_drop(tp, ENOBUFS);
690 			dropsocket = 0;		/* socket is already gone */
691 			goto drop;
692 		}
693 		if ((taop = tcp_gettaocache(inp)) == NULL) {
694 			taop = &tao_noncached;
695 			bzero(taop, sizeof(*taop));
696 		}
697 		tcp_dooptions(tp, optp, optlen, ti, &to);
698 		if (iss)
699 			tp->iss = iss;
700 		else
701 			tp->iss = tcp_iss;
702 		tcp_iss += TCP_ISSINCR/4;
703 		tp->irs = ti->ti_seq;
704 		tcp_sendseqinit(tp);
705 		tcp_rcvseqinit(tp);
706 		/*
707 		 * Initialization of the tcpcb for transaction;
708 		 *   set SND.WND = SEG.WND,
709 		 *   initialize CCsend and CCrecv.
710 		 */
711 		tp->snd_wnd = tiwin;	/* initial send-window */
712 		tp->cc_send = CC_INC(tcp_ccgen);
713 		tp->cc_recv = to.to_cc;
714 		/*
715 		 * Perform TAO test on incoming CC (SEG.CC) option, if any.
716 		 * - compare SEG.CC against cached CC from the same host,
717 		 *	if any.
718 		 * - if SEG.CC > chached value, SYN must be new and is accepted
719 		 *	immediately: save new CC in the cache, mark the socket
720 		 *	connected, enter ESTABLISHED state, turn on flag to
721 		 *	send a SYN in the next segment.
722 		 *	A virtual advertised window is set in rcv_adv to
723 		 *	initialize SWS prevention.  Then enter normal segment
724 		 *	processing: drop SYN, process data and FIN.
725 		 * - otherwise do a normal 3-way handshake.
726 		 */
727 		if ((to.to_flag & TOF_CC) != 0) {
728 		    if (((tp->t_flags & TF_NOPUSH) != 0) &&
729 			taop->tao_cc != 0 && CC_GT(to.to_cc, taop->tao_cc)) {
730 
731 			taop->tao_cc = to.to_cc;
732 			tp->t_state = TCPS_ESTABLISHED;
733 
734 			/*
735 			 * If there is a FIN, or if there is data and the
736 			 * connection is local, then delay SYN,ACK(SYN) in
737 			 * the hope of piggy-backing it on a response
738 			 * segment.  Otherwise must send ACK now in case
739 			 * the other side is slow starting.
740 			 */
741 			if (tcp_delack_enabled && ((tiflags & TH_FIN) || (ti->ti_len != 0 &&
742 			    in_localaddr(inp->inp_faddr))))
743 				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
744 			else
745 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
746 
747 			/*
748 			 * Limit the `virtual advertised window' to TCP_MAXWIN
749 			 * here.  Even if we requested window scaling, it will
750 			 * become effective only later when our SYN is acked.
751 			 */
752 			tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN);
753 			tcpstat.tcps_connects++;
754 			soisconnected(so);
755 			tp->t_timer[TCPT_KEEP] = tcp_keepinit;
756 			dropsocket = 0;		/* committed to socket */
757 			tcpstat.tcps_accepts++;
758 			goto trimthenstep6;
759 		    }
760 		/* else do standard 3-way handshake */
761 		} else {
762 		    /*
763 		     * No CC option, but maybe CC.NEW:
764 		     *   invalidate cached value.
765 		     */
766 		     taop->tao_cc = 0;
767 		}
768 		/*
769 		 * TAO test failed or there was no CC option,
770 		 *    do a standard 3-way handshake.
771 		 */
772 		tp->t_flags |= TF_ACKNOW;
773 		tp->t_state = TCPS_SYN_RECEIVED;
774 		tp->t_timer[TCPT_KEEP] = tcp_keepinit;
775 		dropsocket = 0;		/* committed to socket */
776 		tcpstat.tcps_accepts++;
777 		goto trimthenstep6;
778 		}
779 
780 	/*
781 	 * If the state is SYN_RECEIVED:
782 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
783 	 */
784 	case TCPS_SYN_RECEIVED:
785 		if ((tiflags & TH_ACK) &&
786 		    (SEQ_LEQ(ti->ti_ack, tp->snd_una) ||
787 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
788 				goto dropwithreset;
789 		break;
790 
791 	/*
792 	 * If the state is SYN_SENT:
793 	 *	if seg contains an ACK, but not for our SYN, drop the input.
794 	 *	if seg contains a RST, then drop the connection.
795 	 *	if seg does not contain SYN, then drop it.
796 	 * Otherwise this is an acceptable SYN segment
797 	 *	initialize tp->rcv_nxt and tp->irs
798 	 *	if seg contains ack then advance tp->snd_una
799 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
800 	 *	arrange for segment to be acked (eventually)
801 	 *	continue processing rest of data/controls, beginning with URG
802 	 */
803 	case TCPS_SYN_SENT:
804 		if ((taop = tcp_gettaocache(inp)) == NULL) {
805 			taop = &tao_noncached;
806 			bzero(taop, sizeof(*taop));
807 		}
808 
809 		if ((tiflags & TH_ACK) &&
810 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
811 		     SEQ_GT(ti->ti_ack, tp->snd_max))) {
812 			/*
813 			 * If we have a cached CCsent for the remote host,
814 			 * hence we haven't just crashed and restarted,
815 			 * do not send a RST.  This may be a retransmission
816 			 * from the other side after our earlier ACK was lost.
817 			 * Our new SYN, when it arrives, will serve as the
818 			 * needed ACK.
819 			 */
820 			if (taop->tao_ccsent != 0)
821 				goto drop;
822 			else
823 				goto dropwithreset;
824 		}
825 		if (tiflags & TH_RST) {
826 			if (tiflags & TH_ACK)
827 				tp = tcp_drop(tp, ECONNREFUSED);
828 			goto drop;
829 		}
830 		if ((tiflags & TH_SYN) == 0)
831 			goto drop;
832 		tp->snd_wnd = ti->ti_win;	/* initial send window */
833 		tp->cc_recv = to.to_cc;		/* foreign CC */
834 
835 		tp->irs = ti->ti_seq;
836 		tcp_rcvseqinit(tp);
837 		if (tiflags & TH_ACK) {
838 			/*
839 			 * Our SYN was acked.  If segment contains CC.ECHO
840 			 * option, check it to make sure this segment really
841 			 * matches our SYN.  If not, just drop it as old
842 			 * duplicate, but send an RST if we're still playing
843 			 * by the old rules.  If no CC.ECHO option, make sure
844 			 * we don't get fooled into using T/TCP.
845 			 */
846 			if (to.to_flag & TOF_CCECHO) {
847 				if (tp->cc_send != to.to_ccecho) {
848 					if (taop->tao_ccsent != 0)
849 						goto drop;
850 					else
851 						goto dropwithreset;
852 				}
853 			} else
854 				tp->t_flags &= ~TF_RCVD_CC;
855 			tcpstat.tcps_connects++;
856 			soisconnected(so);
857 			/* Do window scaling on this connection? */
858 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
859 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
860 				tp->snd_scale = tp->requested_s_scale;
861 				tp->rcv_scale = tp->request_r_scale;
862 			}
863 			/* Segment is acceptable, update cache if undefined. */
864 			if (taop->tao_ccsent == 0)
865 				taop->tao_ccsent = to.to_ccecho;
866 
867 			tp->rcv_adv += tp->rcv_wnd;
868 			tp->snd_una++;		/* SYN is acked */
869 			/*
870 			 * If there's data, delay ACK; if there's also a FIN
871 			 * ACKNOW will be turned on later.
872 			 */
873 			if (tcp_delack_enabled && ti->ti_len != 0)
874 				tp->t_flags |= TF_DELACK;
875 			else
876 				tp->t_flags |= TF_ACKNOW;
877 			/*
878 			 * Received <SYN,ACK> in SYN_SENT[*] state.
879 			 * Transitions:
880 			 *	SYN_SENT  --> ESTABLISHED
881 			 *	SYN_SENT* --> FIN_WAIT_1
882 			 */
883 			if (tp->t_flags & TF_NEEDFIN) {
884 				tp->t_state = TCPS_FIN_WAIT_1;
885 				tp->t_flags &= ~TF_NEEDFIN;
886 				tiflags &= ~TH_SYN;
887 			} else {
888 				tp->t_state = TCPS_ESTABLISHED;
889 				tp->t_timer[TCPT_KEEP] = tcp_keepidle;
890 			}
891 		} else {
892 		/*
893 		 *  Received initial SYN in SYN-SENT[*] state => simul-
894 		 *  taneous open.  If segment contains CC option and there is
895 		 *  a cached CC, apply TAO test; if it succeeds, connection is
896 		 *  half-synchronized.  Otherwise, do 3-way handshake:
897 		 *        SYN-SENT -> SYN-RECEIVED
898 		 *        SYN-SENT* -> SYN-RECEIVED*
899 		 *  If there was no CC option, clear cached CC value.
900 		 */
901 			tp->t_flags |= TF_ACKNOW;
902 			tp->t_timer[TCPT_REXMT] = 0;
903 			if (to.to_flag & TOF_CC) {
904 				if (taop->tao_cc != 0 &&
905 				    CC_GT(to.to_cc, taop->tao_cc)) {
906 					/*
907 					 * update cache and make transition:
908 					 *        SYN-SENT -> ESTABLISHED*
909 					 *        SYN-SENT* -> FIN-WAIT-1*
910 					 */
911 					taop->tao_cc = to.to_cc;
912 					if (tp->t_flags & TF_NEEDFIN) {
913 						tp->t_state = TCPS_FIN_WAIT_1;
914 						tp->t_flags &= ~TF_NEEDFIN;
915 					} else {
916 						tp->t_state = TCPS_ESTABLISHED;
917 						tp->t_timer[TCPT_KEEP] = tcp_keepidle;
918 					}
919 					tp->t_flags |= TF_NEEDSYN;
920 				} else
921 					tp->t_state = TCPS_SYN_RECEIVED;
922 			} else {
923 				/* CC.NEW or no option => invalidate cache */
924 				taop->tao_cc = 0;
925 				tp->t_state = TCPS_SYN_RECEIVED;
926 			}
927 		}
928 
929 trimthenstep6:
930 		/*
931 		 * Advance ti->ti_seq to correspond to first data byte.
932 		 * If data, trim to stay within window,
933 		 * dropping FIN if necessary.
934 		 */
935 		ti->ti_seq++;
936 		if (ti->ti_len > tp->rcv_wnd) {
937 			todrop = ti->ti_len - tp->rcv_wnd;
938 			m_adj(m, -todrop);
939 			ti->ti_len = tp->rcv_wnd;
940 			tiflags &= ~TH_FIN;
941 			tcpstat.tcps_rcvpackafterwin++;
942 			tcpstat.tcps_rcvbyteafterwin += todrop;
943 		}
944 		tp->snd_wl1 = ti->ti_seq - 1;
945 		tp->rcv_up = ti->ti_seq;
946 		/*
947 		 *  Client side of transaction: already sent SYN and data.
948 		 *  If the remote host used T/TCP to validate the SYN,
949 		 *  our data will be ACK'd; if so, enter normal data segment
950 		 *  processing in the middle of step 5, ack processing.
951 		 *  Otherwise, goto step 6.
952 		 */
953  		if (tiflags & TH_ACK)
954 			goto process_ACK;
955 		goto step6;
956 	/*
957 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
958 	 *	if segment contains a SYN and CC [not CC.NEW] option:
959 	 *              if state == TIME_WAIT and connection duration > MSL,
960 	 *                  drop packet and send RST;
961 	 *
962 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
963 	 *		    ack the FIN (and data) in retransmission queue.
964 	 *                  Complete close and delete TCPCB.  Then reprocess
965 	 *                  segment, hoping to find new TCPCB in LISTEN state;
966 	 *
967 	 *		else must be old SYN; drop it.
968 	 *      else do normal processing.
969 	 */
970 	case TCPS_LAST_ACK:
971 	case TCPS_CLOSING:
972 	case TCPS_TIME_WAIT:
973 		if ((tiflags & TH_SYN) &&
974 		    (to.to_flag & TOF_CC) && tp->cc_recv != 0) {
975 			if (tp->t_state == TCPS_TIME_WAIT &&
976 					tp->t_duration > TCPTV_MSL)
977 				goto dropwithreset;
978 			if (CC_GT(to.to_cc, tp->cc_recv)) {
979 				tp = tcp_close(tp);
980 				goto findpcb;
981 			}
982 			else
983 				goto drop;
984 		}
985  		break;  /* continue normal processing */
986 	}
987 
988 	/*
989 	 * States other than LISTEN or SYN_SENT.
990 	 * First check the RST flag and sequence number since reset segments
991 	 * are exempt from the timestamp and connection count tests.  This
992 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
993 	 * below which allowed reset segments in half the sequence space
994 	 * to fall though and be processed (which gives forged reset
995 	 * segments with a random sequence number a 50 percent chance of
996 	 * killing a connection).
997 	 * Then check timestamp, if present.
998 	 * Then check the connection count, if present.
999 	 * Then check that at least some bytes of segment are within
1000 	 * receive window.  If segment begins before rcv_nxt,
1001 	 * drop leading data (and SYN); if nothing left, just ack.
1002 	 *
1003 	 *
1004 	 * If the RST bit is set, check the sequence number to see
1005 	 * if this is a valid reset segment.
1006 	 * RFC 793 page 37:
1007 	 *   In all states except SYN-SENT, all reset (RST) segments
1008 	 *   are validated by checking their SEQ-fields.  A reset is
1009 	 *   valid if its sequence number is in the window.
1010 	 * Note: this does not take into account delayed ACKs, so
1011 	 *   we should test against last_ack_sent instead of rcv_nxt.
1012 	 *   Also, it does not make sense to allow reset segments with
1013 	 *   sequence numbers greater than last_ack_sent to be processed
1014 	 *   since these sequence numbers are just the acknowledgement
1015 	 *   numbers in our outgoing packets being echoed back at us,
1016 	 *   and these acknowledgement numbers are monotonically
1017 	 *   increasing.
1018 	 * If we have multiple segments in flight, the intial reset
1019 	 * segment sequence numbers will be to the left of last_ack_sent,
1020 	 * but they will eventually catch up.
1021 	 * In any case, it never made sense to trim reset segments to
1022 	 * fit the receive window since RFC 1122 says:
1023 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1024 	 *
1025 	 *    A TCP SHOULD allow a received RST segment to include data.
1026 	 *
1027 	 *    DISCUSSION
1028 	 *         It has been suggested that a RST segment could contain
1029 	 *         ASCII text that encoded and explained the cause of the
1030 	 *         RST.  No standard has yet been established for such
1031 	 *         data.
1032 	 *
1033 	 * If the reset segment passes the sequence number test examine
1034 	 * the state:
1035 	 *    SYN_RECEIVED STATE:
1036 	 *	If passive open, return to LISTEN state.
1037 	 *	If active open, inform user that connection was refused.
1038 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1039 	 *	Inform user that connection was reset, and close tcb.
1040 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1041 	 *	Close the tcb.
1042 	 *    TIME_WAIT state:
1043 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1044 	 *      RFC 1337.
1045 	 */
1046 	if (tiflags & TH_RST) {
1047 		if (tp->last_ack_sent == ti->ti_seq) {
1048 			switch (tp->t_state) {
1049 
1050 			case TCPS_SYN_RECEIVED:
1051 				so->so_error = ECONNREFUSED;
1052 				goto close;
1053 
1054 			case TCPS_ESTABLISHED:
1055 			case TCPS_FIN_WAIT_1:
1056 			case TCPS_FIN_WAIT_2:
1057 			case TCPS_CLOSE_WAIT:
1058 				so->so_error = ECONNRESET;
1059 			close:
1060 				tp->t_state = TCPS_CLOSED;
1061 				tcpstat.tcps_drops++;
1062 				tp = tcp_close(tp);
1063 				break;
1064 
1065 			case TCPS_CLOSING:
1066 			case TCPS_LAST_ACK:
1067 				tp = tcp_close(tp);
1068 				break;
1069 
1070 			case TCPS_TIME_WAIT:
1071 				break;
1072 			}
1073 		}
1074 		goto drop;
1075 	}
1076 
1077 	/*
1078 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1079 	 * and it's less than ts_recent, drop it.
1080 	 */
1081 	if ((to.to_flag & TOF_TS) != 0 && tp->ts_recent &&
1082 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1083 
1084 		/* Check to see if ts_recent is over 24 days old.  */
1085 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1086 			/*
1087 			 * Invalidate ts_recent.  If this segment updates
1088 			 * ts_recent, the age will be reset later and ts_recent
1089 			 * will get a valid value.  If it does not, setting
1090 			 * ts_recent to zero will at least satisfy the
1091 			 * requirement that zero be placed in the timestamp
1092 			 * echo reply when ts_recent isn't valid.  The
1093 			 * age isn't reset until we get a valid ts_recent
1094 			 * because we don't want out-of-order segments to be
1095 			 * dropped when ts_recent is old.
1096 			 */
1097 			tp->ts_recent = 0;
1098 		} else {
1099 			tcpstat.tcps_rcvduppack++;
1100 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
1101 			tcpstat.tcps_pawsdrop++;
1102 			goto dropafterack;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * T/TCP mechanism
1108 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1109 	 *   or if its CC is wrong then drop the segment.
1110 	 *   RST segments do not have to comply with this.
1111 	 */
1112 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1113 	    ((to.to_flag & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1114  		goto dropafterack;
1115 
1116 	/*
1117 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1118 	 * this connection before trimming the data to fit the receive
1119 	 * window.  Check the sequence number versus IRS since we know
1120 	 * the sequence numbers haven't wrapped.  This is a partial fix
1121 	 * for the "LAND" DoS attack.
1122 	 */
1123 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(ti->ti_seq, tp->irs))
1124 		goto dropwithreset;
1125 
1126 	todrop = tp->rcv_nxt - ti->ti_seq;
1127 	if (todrop > 0) {
1128 		if (tiflags & TH_SYN) {
1129 			tiflags &= ~TH_SYN;
1130 			ti->ti_seq++;
1131 			if (ti->ti_urp > 1)
1132 				ti->ti_urp--;
1133 			else
1134 				tiflags &= ~TH_URG;
1135 			todrop--;
1136 		}
1137 		/*
1138 		 * Following if statement from Stevens, vol. 2, p. 960.
1139 		 */
1140 		if (todrop > ti->ti_len
1141 		    || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
1142 			/*
1143 			 * Any valid FIN must be to the left of the window.
1144 			 * At this point the FIN must be a duplicate or out
1145 			 * of sequence; drop it.
1146 			 */
1147 			tiflags &= ~TH_FIN;
1148 
1149 			/*
1150 			 * Send an ACK to resynchronize and drop any data.
1151 			 * But keep on processing for RST or ACK.
1152 			 */
1153 			tp->t_flags |= TF_ACKNOW;
1154 			todrop = ti->ti_len;
1155 			tcpstat.tcps_rcvduppack++;
1156 			tcpstat.tcps_rcvdupbyte += todrop;
1157 		} else {
1158 			tcpstat.tcps_rcvpartduppack++;
1159 			tcpstat.tcps_rcvpartdupbyte += todrop;
1160 		}
1161 		m_adj(m, todrop);
1162 		ti->ti_seq += todrop;
1163 		ti->ti_len -= todrop;
1164 		if (ti->ti_urp > todrop)
1165 			ti->ti_urp -= todrop;
1166 		else {
1167 			tiflags &= ~TH_URG;
1168 			ti->ti_urp = 0;
1169 		}
1170 	}
1171 
1172 	/*
1173 	 * If new data are received on a connection after the
1174 	 * user processes are gone, then RST the other end.
1175 	 */
1176 	if ((so->so_state & SS_NOFDREF) &&
1177 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
1178 		tp = tcp_close(tp);
1179 		tcpstat.tcps_rcvafterclose++;
1180 		goto dropwithreset;
1181 	}
1182 
1183 	/*
1184 	 * If segment ends after window, drop trailing data
1185 	 * (and PUSH and FIN); if nothing left, just ACK.
1186 	 */
1187 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
1188 	if (todrop > 0) {
1189 		tcpstat.tcps_rcvpackafterwin++;
1190 		if (todrop >= ti->ti_len) {
1191 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
1192 			/*
1193 			 * If a new connection request is received
1194 			 * while in TIME_WAIT, drop the old connection
1195 			 * and start over if the sequence numbers
1196 			 * are above the previous ones.
1197 			 */
1198 			if (tiflags & TH_SYN &&
1199 			    tp->t_state == TCPS_TIME_WAIT &&
1200 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
1201 				iss = tp->snd_nxt + TCP_ISSINCR;
1202 				tp = tcp_close(tp);
1203 				goto findpcb;
1204 			}
1205 			/*
1206 			 * If window is closed can only take segments at
1207 			 * window edge, and have to drop data and PUSH from
1208 			 * incoming segments.  Continue processing, but
1209 			 * remember to ack.  Otherwise, drop segment
1210 			 * and ack.
1211 			 */
1212 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
1213 				tp->t_flags |= TF_ACKNOW;
1214 				tcpstat.tcps_rcvwinprobe++;
1215 			} else
1216 				goto dropafterack;
1217 		} else
1218 			tcpstat.tcps_rcvbyteafterwin += todrop;
1219 		m_adj(m, -todrop);
1220 		ti->ti_len -= todrop;
1221 		tiflags &= ~(TH_PUSH|TH_FIN);
1222 	}
1223 
1224 	/*
1225 	 * If last ACK falls within this segment's sequence numbers,
1226 	 * record its timestamp.
1227 	 * NOTE that the test is modified according to the latest
1228 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1229 	 */
1230 	if ((to.to_flag & TOF_TS) != 0 &&
1231 	    SEQ_LEQ(ti->ti_seq, tp->last_ack_sent)) {
1232 		tp->ts_recent_age = tcp_now;
1233 		tp->ts_recent = to.to_tsval;
1234 	}
1235 
1236 	/*
1237 	 * If a SYN is in the window, then this is an
1238 	 * error and we send an RST and drop the connection.
1239 	 */
1240 	if (tiflags & TH_SYN) {
1241 		tp = tcp_drop(tp, ECONNRESET);
1242 		goto dropwithreset;
1243 	}
1244 
1245 	/*
1246 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1247 	 * flag is on (half-synchronized state), then queue data for
1248 	 * later processing; else drop segment and return.
1249 	 */
1250 	if ((tiflags & TH_ACK) == 0) {
1251 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1252 		    (tp->t_flags & TF_NEEDSYN))
1253 			goto step6;
1254 		else
1255 			goto drop;
1256 	}
1257 
1258 	/*
1259 	 * Ack processing.
1260 	 */
1261 	switch (tp->t_state) {
1262 
1263 	/*
1264 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1265 	 * ESTABLISHED state and continue processing.
1266 	 * The ACK was checked above.
1267 	 */
1268 	case TCPS_SYN_RECEIVED:
1269 
1270 		tcpstat.tcps_connects++;
1271 		soisconnected(so);
1272 		/* Do window scaling? */
1273 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1274 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1275 			tp->snd_scale = tp->requested_s_scale;
1276 			tp->rcv_scale = tp->request_r_scale;
1277 		}
1278 		/*
1279 		 * Upon successful completion of 3-way handshake,
1280 		 * update cache.CC if it was undefined, pass any queued
1281 		 * data to the user, and advance state appropriately.
1282 		 */
1283 		if ((taop = tcp_gettaocache(inp)) != NULL &&
1284 		    taop->tao_cc == 0)
1285 			taop->tao_cc = tp->cc_recv;
1286 
1287 		/*
1288 		 * Make transitions:
1289 		 *      SYN-RECEIVED  -> ESTABLISHED
1290 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1291 		 */
1292 		if (tp->t_flags & TF_NEEDFIN) {
1293 			tp->t_state = TCPS_FIN_WAIT_1;
1294 			tp->t_flags &= ~TF_NEEDFIN;
1295 		} else {
1296 			tp->t_state = TCPS_ESTABLISHED;
1297 			tp->t_timer[TCPT_KEEP] = tcp_keepidle;
1298 		}
1299 		/*
1300 		 * If segment contains data or ACK, will call tcp_reass()
1301 		 * later; if not, do so now to pass queued data to user.
1302 		 */
1303 		if (ti->ti_len == 0 && (tiflags & TH_FIN) == 0)
1304 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
1305 			    (struct mbuf *)0);
1306 		tp->snd_wl1 = ti->ti_seq - 1;
1307 		/* fall into ... */
1308 
1309 	/*
1310 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1311 	 * ACKs.  If the ack is in the range
1312 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
1313 	 * then advance tp->snd_una to ti->ti_ack and drop
1314 	 * data from the retransmission queue.  If this ACK reflects
1315 	 * more up to date window information we update our window information.
1316 	 */
1317 	case TCPS_ESTABLISHED:
1318 	case TCPS_FIN_WAIT_1:
1319 	case TCPS_FIN_WAIT_2:
1320 	case TCPS_CLOSE_WAIT:
1321 	case TCPS_CLOSING:
1322 	case TCPS_LAST_ACK:
1323 	case TCPS_TIME_WAIT:
1324 
1325 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1326 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1327 				tcpstat.tcps_rcvdupack++;
1328 				/*
1329 				 * If we have outstanding data (other than
1330 				 * a window probe), this is a completely
1331 				 * duplicate ack (ie, window info didn't
1332 				 * change), the ack is the biggest we've
1333 				 * seen and we've seen exactly our rexmt
1334 				 * threshhold of them, assume a packet
1335 				 * has been dropped and retransmit it.
1336 				 * Kludge snd_nxt & the congestion
1337 				 * window so we send only this one
1338 				 * packet.
1339 				 *
1340 				 * We know we're losing at the current
1341 				 * window size so do congestion avoidance
1342 				 * (set ssthresh to half the current window
1343 				 * and pull our congestion window back to
1344 				 * the new ssthresh).
1345 				 *
1346 				 * Dup acks mean that packets have left the
1347 				 * network (they're now cached at the receiver)
1348 				 * so bump cwnd by the amount in the receiver
1349 				 * to keep a constant cwnd packets in the
1350 				 * network.
1351 				 */
1352 				if (tp->t_timer[TCPT_REXMT] == 0 ||
1353 				    ti->ti_ack != tp->snd_una)
1354 					tp->t_dupacks = 0;
1355 				else if (++tp->t_dupacks == tcprexmtthresh) {
1356 					tcp_seq onxt = tp->snd_nxt;
1357 					u_int win =
1358 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1359 						tp->t_maxseg;
1360 
1361 					if (win < 2)
1362 						win = 2;
1363 					tp->snd_ssthresh = win * tp->t_maxseg;
1364 					tp->t_timer[TCPT_REXMT] = 0;
1365 					tp->t_rtt = 0;
1366 					tp->snd_nxt = ti->ti_ack;
1367 					tp->snd_cwnd = tp->t_maxseg;
1368 					(void) tcp_output(tp);
1369 					tp->snd_cwnd = tp->snd_ssthresh +
1370 					       tp->t_maxseg * tp->t_dupacks;
1371 					if (SEQ_GT(onxt, tp->snd_nxt))
1372 						tp->snd_nxt = onxt;
1373 					goto drop;
1374 				} else if (tp->t_dupacks > tcprexmtthresh) {
1375 					tp->snd_cwnd += tp->t_maxseg;
1376 					(void) tcp_output(tp);
1377 					goto drop;
1378 				}
1379 			} else
1380 				tp->t_dupacks = 0;
1381 			break;
1382 		}
1383 		/*
1384 		 * If the congestion window was inflated to account
1385 		 * for the other side's cached packets, retract it.
1386 		 */
1387 		if (tp->t_dupacks >= tcprexmtthresh &&
1388 		    tp->snd_cwnd > tp->snd_ssthresh)
1389 			tp->snd_cwnd = tp->snd_ssthresh;
1390 		tp->t_dupacks = 0;
1391 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1392 			tcpstat.tcps_rcvacktoomuch++;
1393 			goto dropafterack;
1394 		}
1395 		/*
1396 		 *  If we reach this point, ACK is not a duplicate,
1397 		 *     i.e., it ACKs something we sent.
1398 		 */
1399 		if (tp->t_flags & TF_NEEDSYN) {
1400 			/*
1401 			 * T/TCP: Connection was half-synchronized, and our
1402 			 * SYN has been ACK'd (so connection is now fully
1403 			 * synchronized).  Go to non-starred state,
1404 			 * increment snd_una for ACK of SYN, and check if
1405 			 * we can do window scaling.
1406 			 */
1407 			tp->t_flags &= ~TF_NEEDSYN;
1408 			tp->snd_una++;
1409 			/* Do window scaling? */
1410 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1411 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1412 				tp->snd_scale = tp->requested_s_scale;
1413 				tp->rcv_scale = tp->request_r_scale;
1414 			}
1415 		}
1416 
1417 process_ACK:
1418 		acked = ti->ti_ack - tp->snd_una;
1419 		tcpstat.tcps_rcvackpack++;
1420 		tcpstat.tcps_rcvackbyte += acked;
1421 
1422 		/*
1423 		 * If we have a timestamp reply, update smoothed
1424 		 * round trip time.  If no timestamp is present but
1425 		 * transmit timer is running and timed sequence
1426 		 * number was acked, update smoothed round trip time.
1427 		 * Since we now have an rtt measurement, cancel the
1428 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1429 		 * Recompute the initial retransmit timer.
1430 		 */
1431 		if (to.to_flag & TOF_TS)
1432 			tcp_xmit_timer(tp, tcp_now - to.to_tsecr + 1);
1433 		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1434 			tcp_xmit_timer(tp,tp->t_rtt);
1435 
1436 		/*
1437 		 * If all outstanding data is acked, stop retransmit
1438 		 * timer and remember to restart (more output or persist).
1439 		 * If there is more data to be acked, restart retransmit
1440 		 * timer, using current (possibly backed-off) value.
1441 		 */
1442 		if (ti->ti_ack == tp->snd_max) {
1443 			tp->t_timer[TCPT_REXMT] = 0;
1444 			needoutput = 1;
1445 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
1446 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1447 
1448 		/*
1449 		 * If no data (only SYN) was ACK'd,
1450 		 *    skip rest of ACK processing.
1451 		 */
1452 		if (acked == 0)
1453 			goto step6;
1454 
1455 		/*
1456 		 * When new data is acked, open the congestion window.
1457 		 * If the window gives us less than ssthresh packets
1458 		 * in flight, open exponentially (maxseg per packet).
1459 		 * Otherwise open linearly: maxseg per window
1460 		 * (maxseg^2 / cwnd per packet).
1461 		 */
1462 		{
1463 		register u_int cw = tp->snd_cwnd;
1464 		register u_int incr = tp->t_maxseg;
1465 
1466 		if (cw > tp->snd_ssthresh)
1467 			incr = incr * incr / cw;
1468 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1469 		}
1470 		if (acked > so->so_snd.sb_cc) {
1471 			tp->snd_wnd -= so->so_snd.sb_cc;
1472 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1473 			ourfinisacked = 1;
1474 		} else {
1475 			sbdrop(&so->so_snd, acked);
1476 			tp->snd_wnd -= acked;
1477 			ourfinisacked = 0;
1478 		}
1479 		sowwakeup(so);
1480 		tp->snd_una = ti->ti_ack;
1481 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1482 			tp->snd_nxt = tp->snd_una;
1483 
1484 		switch (tp->t_state) {
1485 
1486 		/*
1487 		 * In FIN_WAIT_1 STATE in addition to the processing
1488 		 * for the ESTABLISHED state if our FIN is now acknowledged
1489 		 * then enter FIN_WAIT_2.
1490 		 */
1491 		case TCPS_FIN_WAIT_1:
1492 			if (ourfinisacked) {
1493 				/*
1494 				 * If we can't receive any more
1495 				 * data, then closing user can proceed.
1496 				 * Starting the timer is contrary to the
1497 				 * specification, but if we don't get a FIN
1498 				 * we'll hang forever.
1499 				 */
1500 				if (so->so_state & SS_CANTRCVMORE) {
1501 					soisdisconnected(so);
1502 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1503 				}
1504 				tp->t_state = TCPS_FIN_WAIT_2;
1505 			}
1506 			break;
1507 
1508 	 	/*
1509 		 * In CLOSING STATE in addition to the processing for
1510 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1511 		 * then enter the TIME-WAIT state, otherwise ignore
1512 		 * the segment.
1513 		 */
1514 		case TCPS_CLOSING:
1515 			if (ourfinisacked) {
1516 				tp->t_state = TCPS_TIME_WAIT;
1517 				tcp_canceltimers(tp);
1518 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
1519 				if (tp->cc_recv != 0 &&
1520 				    tp->t_duration < TCPTV_MSL)
1521 					tp->t_timer[TCPT_2MSL] =
1522 					    tp->t_rxtcur * TCPTV_TWTRUNC;
1523 				else
1524 					tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1525 				soisdisconnected(so);
1526 			}
1527 			break;
1528 
1529 		/*
1530 		 * In LAST_ACK, we may still be waiting for data to drain
1531 		 * and/or to be acked, as well as for the ack of our FIN.
1532 		 * If our FIN is now acknowledged, delete the TCB,
1533 		 * enter the closed state and return.
1534 		 */
1535 		case TCPS_LAST_ACK:
1536 			if (ourfinisacked) {
1537 				tp = tcp_close(tp);
1538 				goto drop;
1539 			}
1540 			break;
1541 
1542 		/*
1543 		 * In TIME_WAIT state the only thing that should arrive
1544 		 * is a retransmission of the remote FIN.  Acknowledge
1545 		 * it and restart the finack timer.
1546 		 */
1547 		case TCPS_TIME_WAIT:
1548 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1549 			goto dropafterack;
1550 		}
1551 	}
1552 
1553 step6:
1554 	/*
1555 	 * Update window information.
1556 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1557 	 */
1558 	if ((tiflags & TH_ACK) &&
1559 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
1560 	    (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1561 	     (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
1562 		/* keep track of pure window updates */
1563 		if (ti->ti_len == 0 &&
1564 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1565 			tcpstat.tcps_rcvwinupd++;
1566 		tp->snd_wnd = tiwin;
1567 		tp->snd_wl1 = ti->ti_seq;
1568 		tp->snd_wl2 = ti->ti_ack;
1569 		if (tp->snd_wnd > tp->max_sndwnd)
1570 			tp->max_sndwnd = tp->snd_wnd;
1571 		needoutput = 1;
1572 	}
1573 
1574 	/*
1575 	 * Process segments with URG.
1576 	 */
1577 	if ((tiflags & TH_URG) && ti->ti_urp &&
1578 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1579 		/*
1580 		 * This is a kludge, but if we receive and accept
1581 		 * random urgent pointers, we'll crash in
1582 		 * soreceive.  It's hard to imagine someone
1583 		 * actually wanting to send this much urgent data.
1584 		 */
1585 		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1586 			ti->ti_urp = 0;			/* XXX */
1587 			tiflags &= ~TH_URG;		/* XXX */
1588 			goto dodata;			/* XXX */
1589 		}
1590 		/*
1591 		 * If this segment advances the known urgent pointer,
1592 		 * then mark the data stream.  This should not happen
1593 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1594 		 * a FIN has been received from the remote side.
1595 		 * In these states we ignore the URG.
1596 		 *
1597 		 * According to RFC961 (Assigned Protocols),
1598 		 * the urgent pointer points to the last octet
1599 		 * of urgent data.  We continue, however,
1600 		 * to consider it to indicate the first octet
1601 		 * of data past the urgent section as the original
1602 		 * spec states (in one of two places).
1603 		 */
1604 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1605 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1606 			so->so_oobmark = so->so_rcv.sb_cc +
1607 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1608 			if (so->so_oobmark == 0)
1609 				so->so_state |= SS_RCVATMARK;
1610 			sohasoutofband(so);
1611 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1612 		}
1613 		/*
1614 		 * Remove out of band data so doesn't get presented to user.
1615 		 * This can happen independent of advancing the URG pointer,
1616 		 * but if two URG's are pending at once, some out-of-band
1617 		 * data may creep in... ick.
1618 		 */
1619 		if (ti->ti_urp <= (u_long)ti->ti_len
1620 #ifdef SO_OOBINLINE
1621 		     && (so->so_options & SO_OOBINLINE) == 0
1622 #endif
1623 		     )
1624 			tcp_pulloutofband(so, ti, m);
1625 	} else
1626 		/*
1627 		 * If no out of band data is expected,
1628 		 * pull receive urgent pointer along
1629 		 * with the receive window.
1630 		 */
1631 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1632 			tp->rcv_up = tp->rcv_nxt;
1633 dodata:							/* XXX */
1634 
1635 	/*
1636 	 * Process the segment text, merging it into the TCP sequencing queue,
1637 	 * and arranging for acknowledgment of receipt if necessary.
1638 	 * This process logically involves adjusting tp->rcv_wnd as data
1639 	 * is presented to the user (this happens in tcp_usrreq.c,
1640 	 * case PRU_RCVD).  If a FIN has already been received on this
1641 	 * connection then we just ignore the text.
1642 	 */
1643 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
1644 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1645 		TCP_REASS(tp, ti, m, so, tiflags);
1646 		/*
1647 		 * Note the amount of data that peer has sent into
1648 		 * our window, in order to estimate the sender's
1649 		 * buffer size.
1650 		 */
1651 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1652 	} else {
1653 		m_freem(m);
1654 		tiflags &= ~TH_FIN;
1655 	}
1656 
1657 	/*
1658 	 * If FIN is received ACK the FIN and let the user know
1659 	 * that the connection is closing.
1660 	 */
1661 	if (tiflags & TH_FIN) {
1662 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1663 			socantrcvmore(so);
1664 			/*
1665 			 *  If connection is half-synchronized
1666 			 *  (ie NEEDSYN flag on) then delay ACK,
1667 			 *  so it may be piggybacked when SYN is sent.
1668 			 *  Otherwise, since we received a FIN then no
1669 			 *  more input can be expected, send ACK now.
1670 			 */
1671 			if (tcp_delack_enabled && (tp->t_flags & TF_NEEDSYN))
1672 				tp->t_flags |= TF_DELACK;
1673 			else
1674 				tp->t_flags |= TF_ACKNOW;
1675 			tp->rcv_nxt++;
1676 		}
1677 		switch (tp->t_state) {
1678 
1679 	 	/*
1680 		 * In SYN_RECEIVED and ESTABLISHED STATES
1681 		 * enter the CLOSE_WAIT state.
1682 		 */
1683 		case TCPS_SYN_RECEIVED:
1684 		case TCPS_ESTABLISHED:
1685 			tp->t_state = TCPS_CLOSE_WAIT;
1686 			break;
1687 
1688 	 	/*
1689 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1690 		 * enter the CLOSING state.
1691 		 */
1692 		case TCPS_FIN_WAIT_1:
1693 			tp->t_state = TCPS_CLOSING;
1694 			break;
1695 
1696 	 	/*
1697 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1698 		 * starting the time-wait timer, turning off the other
1699 		 * standard timers.
1700 		 */
1701 		case TCPS_FIN_WAIT_2:
1702 			tp->t_state = TCPS_TIME_WAIT;
1703 			tcp_canceltimers(tp);
1704 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
1705 			if (tp->cc_recv != 0 &&
1706 			    tp->t_duration < TCPTV_MSL) {
1707 				tp->t_timer[TCPT_2MSL] =
1708 				    tp->t_rxtcur * TCPTV_TWTRUNC;
1709 				/* For transaction client, force ACK now. */
1710 				tp->t_flags |= TF_ACKNOW;
1711 			}
1712 			else
1713 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1714 			soisdisconnected(so);
1715 			break;
1716 
1717 		/*
1718 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1719 		 */
1720 		case TCPS_TIME_WAIT:
1721 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1722 			break;
1723 		}
1724 	}
1725 #ifdef TCPDEBUG
1726 	if (so->so_options & SO_DEBUG)
1727 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1728 #endif
1729 
1730 	/*
1731 	 * Return any desired output.
1732 	 */
1733 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1734 		(void) tcp_output(tp);
1735 	return;
1736 
1737 dropafterack:
1738 	/*
1739 	 * Generate an ACK dropping incoming segment if it occupies
1740 	 * sequence space, where the ACK reflects our state.
1741 	 *
1742 	 * We can now skip the test for the RST flag since all
1743 	 * paths to this code happen after packets containing
1744 	 * RST have been dropped.
1745 	 *
1746 	 * In the SYN-RECEIVED state, don't send an ACK unless the
1747 	 * segment we received passes the SYN-RECEIVED ACK test.
1748 	 * If it fails send a RST.  This breaks the loop in the
1749 	 * "LAND" DoS attack, and also prevents an ACK storm
1750 	 * between two listening ports that have been sent forged
1751 	 * SYN segments, each with the source address of the other.
1752 	 */
1753 	if (tp->t_state == TCPS_SYN_RECEIVED && (tiflags & TH_ACK) &&
1754 	    (SEQ_GT(tp->snd_una, ti->ti_ack) ||
1755 	     SEQ_GT(ti->ti_ack, tp->snd_max)) )
1756 		goto dropwithreset;
1757 #ifdef TCPDEBUG
1758 	if (so->so_options & SO_DEBUG)
1759 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1760 #endif
1761 	m_freem(m);
1762 	tp->t_flags |= TF_ACKNOW;
1763 	(void) tcp_output(tp);
1764 	return;
1765 
1766 dropwithreset:
1767 	/*
1768 	 * Generate a RST, dropping incoming segment.
1769 	 * Make ACK acceptable to originator of segment.
1770 	 * Don't bother to respond if destination was broadcast/multicast.
1771 	 */
1772 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1773 	    IN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
1774 		goto drop;
1775 #ifdef TCPDEBUG
1776 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1777 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1778 #endif
1779 	if (tiflags & TH_ACK)
1780 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1781 	else {
1782 		if (tiflags & TH_SYN)
1783 			ti->ti_len++;
1784 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1785 		    TH_RST|TH_ACK);
1786 	}
1787 	/* destroy temporarily created socket */
1788 	if (dropsocket)
1789 		(void) soabort(so);
1790 	return;
1791 
1792 drop:
1793 	/*
1794 	 * Drop space held by incoming segment and return.
1795 	 */
1796 #ifdef TCPDEBUG
1797 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1798 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1799 #endif
1800 	m_freem(m);
1801 	/* destroy temporarily created socket */
1802 	if (dropsocket)
1803 		(void) soabort(so);
1804 	return;
1805 }
1806 
1807 static void
1808 tcp_dooptions(tp, cp, cnt, ti, to)
1809 	struct tcpcb *tp;
1810 	u_char *cp;
1811 	int cnt;
1812 	struct tcpiphdr *ti;
1813 	struct tcpopt *to;
1814 {
1815 	u_short mss = 0;
1816 	int opt, optlen;
1817 
1818 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1819 		opt = cp[0];
1820 		if (opt == TCPOPT_EOL)
1821 			break;
1822 		if (opt == TCPOPT_NOP)
1823 			optlen = 1;
1824 		else {
1825 			optlen = cp[1];
1826 			if (optlen <= 0)
1827 				break;
1828 		}
1829 		switch (opt) {
1830 
1831 		default:
1832 			continue;
1833 
1834 		case TCPOPT_MAXSEG:
1835 			if (optlen != TCPOLEN_MAXSEG)
1836 				continue;
1837 			if (!(ti->ti_flags & TH_SYN))
1838 				continue;
1839 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1840 			NTOHS(mss);
1841 			break;
1842 
1843 		case TCPOPT_WINDOW:
1844 			if (optlen != TCPOLEN_WINDOW)
1845 				continue;
1846 			if (!(ti->ti_flags & TH_SYN))
1847 				continue;
1848 			tp->t_flags |= TF_RCVD_SCALE;
1849 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1850 			break;
1851 
1852 		case TCPOPT_TIMESTAMP:
1853 			if (optlen != TCPOLEN_TIMESTAMP)
1854 				continue;
1855 			to->to_flag |= TOF_TS;
1856 			bcopy((char *)cp + 2,
1857 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
1858 			NTOHL(to->to_tsval);
1859 			bcopy((char *)cp + 6,
1860 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
1861 			NTOHL(to->to_tsecr);
1862 
1863 			/*
1864 			 * A timestamp received in a SYN makes
1865 			 * it ok to send timestamp requests and replies.
1866 			 */
1867 			if (ti->ti_flags & TH_SYN) {
1868 				tp->t_flags |= TF_RCVD_TSTMP;
1869 				tp->ts_recent = to->to_tsval;
1870 				tp->ts_recent_age = tcp_now;
1871 			}
1872 			break;
1873 		case TCPOPT_CC:
1874 			if (optlen != TCPOLEN_CC)
1875 				continue;
1876 			to->to_flag |= TOF_CC;
1877 			bcopy((char *)cp + 2,
1878 			    (char *)&to->to_cc, sizeof(to->to_cc));
1879 			NTOHL(to->to_cc);
1880 			/*
1881 			 * A CC or CC.new option received in a SYN makes
1882 			 * it ok to send CC in subsequent segments.
1883 			 */
1884 			if (ti->ti_flags & TH_SYN)
1885 				tp->t_flags |= TF_RCVD_CC;
1886 			break;
1887 		case TCPOPT_CCNEW:
1888 			if (optlen != TCPOLEN_CC)
1889 				continue;
1890 			if (!(ti->ti_flags & TH_SYN))
1891 				continue;
1892 			to->to_flag |= TOF_CCNEW;
1893 			bcopy((char *)cp + 2,
1894 			    (char *)&to->to_cc, sizeof(to->to_cc));
1895 			NTOHL(to->to_cc);
1896 			/*
1897 			 * A CC or CC.new option received in a SYN makes
1898 			 * it ok to send CC in subsequent segments.
1899 			 */
1900 			tp->t_flags |= TF_RCVD_CC;
1901 			break;
1902 		case TCPOPT_CCECHO:
1903 			if (optlen != TCPOLEN_CC)
1904 				continue;
1905 			if (!(ti->ti_flags & TH_SYN))
1906 				continue;
1907 			to->to_flag |= TOF_CCECHO;
1908 			bcopy((char *)cp + 2,
1909 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
1910 			NTOHL(to->to_ccecho);
1911 			break;
1912 		}
1913 	}
1914 	if (ti->ti_flags & TH_SYN)
1915 		tcp_mss(tp, mss);	/* sets t_maxseg */
1916 }
1917 
1918 /*
1919  * Pull out of band byte out of a segment so
1920  * it doesn't appear in the user's data queue.
1921  * It is still reflected in the segment length for
1922  * sequencing purposes.
1923  */
1924 static void
1925 tcp_pulloutofband(so, ti, m)
1926 	struct socket *so;
1927 	struct tcpiphdr *ti;
1928 	register struct mbuf *m;
1929 {
1930 	int cnt = ti->ti_urp - 1;
1931 
1932 	while (cnt >= 0) {
1933 		if (m->m_len > cnt) {
1934 			char *cp = mtod(m, caddr_t) + cnt;
1935 			struct tcpcb *tp = sototcpcb(so);
1936 
1937 			tp->t_iobc = *cp;
1938 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1939 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1940 			m->m_len--;
1941 			return;
1942 		}
1943 		cnt -= m->m_len;
1944 		m = m->m_next;
1945 		if (m == 0)
1946 			break;
1947 	}
1948 	panic("tcp_pulloutofband");
1949 }
1950 
1951 /*
1952  * Collect new round-trip time estimate
1953  * and update averages and current timeout.
1954  */
1955 static void
1956 tcp_xmit_timer(tp, rtt)
1957 	register struct tcpcb *tp;
1958 	short rtt;
1959 {
1960 	register int delta;
1961 
1962 	tcpstat.tcps_rttupdated++;
1963 	tp->t_rttupdated++;
1964 	if (tp->t_srtt != 0) {
1965 		/*
1966 		 * srtt is stored as fixed point with 5 bits after the
1967 		 * binary point (i.e., scaled by 8).  The following magic
1968 		 * is equivalent to the smoothing algorithm in rfc793 with
1969 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1970 		 * point).  Adjust rtt to origin 0.
1971 		 */
1972 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
1973 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
1974 
1975 		if ((tp->t_srtt += delta) <= 0)
1976 			tp->t_srtt = 1;
1977 
1978 		/*
1979 		 * We accumulate a smoothed rtt variance (actually, a
1980 		 * smoothed mean difference), then set the retransmit
1981 		 * timer to smoothed rtt + 4 times the smoothed variance.
1982 		 * rttvar is stored as fixed point with 4 bits after the
1983 		 * binary point (scaled by 16).  The following is
1984 		 * equivalent to rfc793 smoothing with an alpha of .75
1985 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1986 		 * rfc793's wired-in beta.
1987 		 */
1988 		if (delta < 0)
1989 			delta = -delta;
1990 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
1991 		if ((tp->t_rttvar += delta) <= 0)
1992 			tp->t_rttvar = 1;
1993 	} else {
1994 		/*
1995 		 * No rtt measurement yet - use the unsmoothed rtt.
1996 		 * Set the variance to half the rtt (so our first
1997 		 * retransmit happens at 3*rtt).
1998 		 */
1999 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2000 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2001 	}
2002 	tp->t_rtt = 0;
2003 	tp->t_rxtshift = 0;
2004 
2005 	/*
2006 	 * the retransmit should happen at rtt + 4 * rttvar.
2007 	 * Because of the way we do the smoothing, srtt and rttvar
2008 	 * will each average +1/2 tick of bias.  When we compute
2009 	 * the retransmit timer, we want 1/2 tick of rounding and
2010 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2011 	 * firing of the timer.  The bias will give us exactly the
2012 	 * 1.5 tick we need.  But, because the bias is
2013 	 * statistical, we have to test that we don't drop below
2014 	 * the minimum feasible timer (which is 2 ticks).
2015 	 */
2016 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2017 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2018 
2019 	/*
2020 	 * We received an ack for a packet that wasn't retransmitted;
2021 	 * it is probably safe to discard any error indications we've
2022 	 * received recently.  This isn't quite right, but close enough
2023 	 * for now (a route might have failed after we sent a segment,
2024 	 * and the return path might not be symmetrical).
2025 	 */
2026 	tp->t_softerror = 0;
2027 }
2028 
2029 /*
2030  * Determine a reasonable value for maxseg size.
2031  * If the route is known, check route for mtu.
2032  * If none, use an mss that can be handled on the outgoing
2033  * interface without forcing IP to fragment; if bigger than
2034  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2035  * to utilize large mbufs.  If no route is found, route has no mtu,
2036  * or the destination isn't local, use a default, hopefully conservative
2037  * size (usually 512 or the default IP max size, but no more than the mtu
2038  * of the interface), as we can't discover anything about intervening
2039  * gateways or networks.  We also initialize the congestion/slow start
2040  * window to be a single segment if the destination isn't local.
2041  * While looking at the routing entry, we also initialize other path-dependent
2042  * parameters from pre-set or cached values in the routing entry.
2043  *
2044  * Also take into account the space needed for options that we
2045  * send regularly.  Make maxseg shorter by that amount to assure
2046  * that we can send maxseg amount of data even when the options
2047  * are present.  Store the upper limit of the length of options plus
2048  * data in maxopd.
2049  *
2050  * NOTE that this routine is only called when we process an incoming
2051  * segment, for outgoing segments only tcp_mssopt is called.
2052  *
2053  * In case of T/TCP, we call this routine during implicit connection
2054  * setup as well (offer = -1), to initialize maxseg from the cached
2055  * MSS of our peer.
2056  */
2057 void
2058 tcp_mss(tp, offer)
2059 	struct tcpcb *tp;
2060 	int offer;
2061 {
2062 	register struct rtentry *rt;
2063 	struct ifnet *ifp;
2064 	register int rtt, mss;
2065 	u_long bufsize;
2066 	struct inpcb *inp;
2067 	struct socket *so;
2068 	struct rmxp_tao *taop;
2069 	int origoffer = offer;
2070 
2071 	inp = tp->t_inpcb;
2072 	if ((rt = tcp_rtlookup(inp)) == NULL) {
2073 		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2074 		return;
2075 	}
2076 	ifp = rt->rt_ifp;
2077 	so = inp->inp_socket;
2078 
2079 	taop = rmx_taop(rt->rt_rmx);
2080 	/*
2081 	 * Offer == -1 means that we didn't receive SYN yet,
2082 	 * use cached value in that case;
2083 	 */
2084 	if (offer == -1)
2085 		offer = taop->tao_mssopt;
2086 	/*
2087 	 * Offer == 0 means that there was no MSS on the SYN segment,
2088 	 * in this case we use tcp_mssdflt.
2089 	 */
2090 	if (offer == 0)
2091 		offer = tcp_mssdflt;
2092 	else
2093 		/*
2094 		 * Sanity check: make sure that maxopd will be large
2095 		 * enough to allow some data on segments even is the
2096 		 * all the option space is used (40bytes).  Otherwise
2097 		 * funny things may happen in tcp_output.
2098 		 */
2099 		offer = max(offer, 64);
2100 	taop->tao_mssopt = offer;
2101 
2102 	/*
2103 	 * While we're here, check if there's an initial rtt
2104 	 * or rttvar.  Convert from the route-table units
2105 	 * to scaled multiples of the slow timeout timer.
2106 	 */
2107 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2108 		/*
2109 		 * XXX the lock bit for RTT indicates that the value
2110 		 * is also a minimum value; this is subject to time.
2111 		 */
2112 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2113 			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
2114 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
2115 		tcpstat.tcps_usedrtt++;
2116 		if (rt->rt_rmx.rmx_rttvar) {
2117 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2118 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
2119 			tcpstat.tcps_usedrttvar++;
2120 		} else {
2121 			/* default variation is +- 1 rtt */
2122 			tp->t_rttvar =
2123 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2124 		}
2125 		TCPT_RANGESET(tp->t_rxtcur,
2126 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2127 		    tp->t_rttmin, TCPTV_REXMTMAX);
2128 	}
2129 	/*
2130 	 * if there's an mtu associated with the route, use it
2131 	 */
2132 	if (rt->rt_rmx.rmx_mtu)
2133 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
2134 	else
2135 	{
2136 		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
2137 		if (!in_localaddr(inp->inp_faddr))
2138 			mss = min(mss, tcp_mssdflt);
2139 	}
2140 	mss = min(mss, offer);
2141 	/*
2142 	 * maxopd stores the maximum length of data AND options
2143 	 * in a segment; maxseg is the amount of data in a normal
2144 	 * segment.  We need to store this value (maxopd) apart
2145 	 * from maxseg, because now every segment carries options
2146 	 * and thus we normally have somewhat less data in segments.
2147 	 */
2148 	tp->t_maxopd = mss;
2149 
2150 	/*
2151 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2152 	 * were received yet.  In this case we just guess, otherwise
2153 	 * we do the same as before T/TCP.
2154 	 */
2155  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2156 	    (origoffer == -1 ||
2157 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2158 		mss -= TCPOLEN_TSTAMP_APPA;
2159  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2160 	    (origoffer == -1 ||
2161 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2162 		mss -= TCPOLEN_CC_APPA;
2163 
2164 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2165 		if (mss > MCLBYTES)
2166 			mss &= ~(MCLBYTES-1);
2167 #else
2168 		if (mss > MCLBYTES)
2169 			mss = mss / MCLBYTES * MCLBYTES;
2170 #endif
2171 	/*
2172 	 * If there's a pipesize, change the socket buffer
2173 	 * to that size.  Make the socket buffers an integral
2174 	 * number of mss units; if the mss is larger than
2175 	 * the socket buffer, decrease the mss.
2176 	 */
2177 #ifdef RTV_SPIPE
2178 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2179 #endif
2180 		bufsize = so->so_snd.sb_hiwat;
2181 	if (bufsize < mss)
2182 		mss = bufsize;
2183 	else {
2184 		bufsize = roundup(bufsize, mss);
2185 		if (bufsize > sb_max)
2186 			bufsize = sb_max;
2187 		(void)sbreserve(&so->so_snd, bufsize);
2188 	}
2189 	tp->t_maxseg = mss;
2190 
2191 #ifdef RTV_RPIPE
2192 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2193 #endif
2194 		bufsize = so->so_rcv.sb_hiwat;
2195 	if (bufsize > mss) {
2196 		bufsize = roundup(bufsize, mss);
2197 		if (bufsize > sb_max)
2198 			bufsize = sb_max;
2199 		(void)sbreserve(&so->so_rcv, bufsize);
2200 	}
2201 	/*
2202 	 * Don't force slow-start on local network.
2203 	 */
2204 	if (!in_localaddr(inp->inp_faddr))
2205 		tp->snd_cwnd = mss;
2206 
2207 	if (rt->rt_rmx.rmx_ssthresh) {
2208 		/*
2209 		 * There's some sort of gateway or interface
2210 		 * buffer limit on the path.  Use this to set
2211 		 * the slow start threshhold, but set the
2212 		 * threshold to no less than 2*mss.
2213 		 */
2214 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2215 		tcpstat.tcps_usedssthresh++;
2216 	}
2217 }
2218 
2219 /*
2220  * Determine the MSS option to send on an outgoing SYN.
2221  */
2222 int
2223 tcp_mssopt(tp)
2224 	struct tcpcb *tp;
2225 {
2226 	struct rtentry *rt;
2227 
2228 	rt = tcp_rtlookup(tp->t_inpcb);
2229 	if (rt == NULL)
2230 		return tcp_mssdflt;
2231 
2232 	return rt->rt_ifp->if_mtu - sizeof(struct tcpiphdr);
2233 }
2234