xref: /freebsd/sys/netinet/tcp_reass.c (revision 6780ab54325a71e7e70112b11657973edde8655e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_tcp_input.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/protosw.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/systm.h>
57 
58 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70 #include <netinet/ip_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/in6_pcb.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #ifdef TCPDEBUG
84 #include <netinet/tcp_debug.h>
85 #endif /* TCPDEBUG */
86 
87 #ifdef FAST_IPSEC
88 #include <netipsec/ipsec.h>
89 #include <netipsec/ipsec6.h>
90 #endif /*FAST_IPSEC*/
91 
92 #ifdef IPSEC
93 #include <netinet6/ipsec.h>
94 #include <netinet6/ipsec6.h>
95 #include <netkey/key.h>
96 #endif /*IPSEC*/
97 
98 #include <machine/in_cksum.h>
99 
100 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
101 
102 static const int tcprexmtthresh = 3;
103 tcp_cc	tcp_ccgen;
104 
105 struct	tcpstat tcpstat;
106 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
107     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
108 
109 static int log_in_vain = 0;
110 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
111     &log_in_vain, 0, "Log all incoming TCP connections");
112 
113 static int blackhole = 0;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
115 	&blackhole, 0, "Do not send RST when dropping refused connections");
116 
117 int tcp_delack_enabled = 1;
118 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
119     &tcp_delack_enabled, 0,
120     "Delay ACK to try and piggyback it onto a data packet");
121 
122 #ifdef TCP_DROP_SYNFIN
123 static int drop_synfin = 0;
124 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
125     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
126 #endif
127 
128 struct inpcbhead tcb;
129 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
130 struct inpcbinfo tcbinfo;
131 struct mtx	*tcbinfo_mtx;
132 
133 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
134 static void	 tcp_pulloutofband(struct socket *,
135 		     struct tcphdr *, struct mbuf *, int);
136 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
137 		     struct mbuf *);
138 static void	 tcp_xmit_timer(struct tcpcb *, int);
139 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
140 
141 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
142 #ifdef INET6
143 #define ND6_HINT(tp) \
144 do { \
145 	if ((tp) && (tp)->t_inpcb && \
146 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
147 	    (tp)->t_inpcb->in6p_route.ro_rt) \
148 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
149 } while (0)
150 #else
151 #define ND6_HINT(tp)
152 #endif
153 
154 /*
155  * Indicate whether this ack should be delayed.  We can delay the ack if
156  *	- delayed acks are enabled and
157  *	- there is no delayed ack timer in progress and
158  *	- our last ack wasn't a 0-sized window.  We never want to delay
159  *	  the ack that opens up a 0-sized window.
160  */
161 #define DELAY_ACK(tp) \
162 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
163 	(tp->t_flags & TF_RXWIN0SENT) == 0)
164 
165 static int
166 tcp_reass(tp, th, tlenp, m)
167 	register struct tcpcb *tp;
168 	register struct tcphdr *th;
169 	int *tlenp;
170 	struct mbuf *m;
171 {
172 	struct tseg_qent *q;
173 	struct tseg_qent *p = NULL;
174 	struct tseg_qent *nq;
175 	struct tseg_qent *te;
176 	struct socket *so = tp->t_inpcb->inp_socket;
177 	int flags;
178 
179 	/*
180 	 * Call with th==0 after become established to
181 	 * force pre-ESTABLISHED data up to user socket.
182 	 */
183 	if (th == 0)
184 		goto present;
185 
186 	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
187 	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
188 	       M_NOWAIT);
189 	if (te == NULL) {
190 		tcpstat.tcps_rcvmemdrop++;
191 		m_freem(m);
192 		return (0);
193 	}
194 
195 	/*
196 	 * Find a segment which begins after this one does.
197 	 */
198 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
199 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
200 			break;
201 		p = q;
202 	}
203 
204 	/*
205 	 * If there is a preceding segment, it may provide some of
206 	 * our data already.  If so, drop the data from the incoming
207 	 * segment.  If it provides all of our data, drop us.
208 	 */
209 	if (p != NULL) {
210 		register int i;
211 		/* conversion to int (in i) handles seq wraparound */
212 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
213 		if (i > 0) {
214 			if (i >= *tlenp) {
215 				tcpstat.tcps_rcvduppack++;
216 				tcpstat.tcps_rcvdupbyte += *tlenp;
217 				m_freem(m);
218 				FREE(te, M_TSEGQ);
219 				/*
220 				 * Try to present any queued data
221 				 * at the left window edge to the user.
222 				 * This is needed after the 3-WHS
223 				 * completes.
224 				 */
225 				goto present;	/* ??? */
226 			}
227 			m_adj(m, i);
228 			*tlenp -= i;
229 			th->th_seq += i;
230 		}
231 	}
232 	tcpstat.tcps_rcvoopack++;
233 	tcpstat.tcps_rcvoobyte += *tlenp;
234 
235 	/*
236 	 * While we overlap succeeding segments trim them or,
237 	 * if they are completely covered, dequeue them.
238 	 */
239 	while (q) {
240 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
241 		if (i <= 0)
242 			break;
243 		if (i < q->tqe_len) {
244 			q->tqe_th->th_seq += i;
245 			q->tqe_len -= i;
246 			m_adj(q->tqe_m, i);
247 			break;
248 		}
249 
250 		nq = LIST_NEXT(q, tqe_q);
251 		LIST_REMOVE(q, tqe_q);
252 		m_freem(q->tqe_m);
253 		FREE(q, M_TSEGQ);
254 		q = nq;
255 	}
256 
257 	/* Insert the new segment queue entry into place. */
258 	te->tqe_m = m;
259 	te->tqe_th = th;
260 	te->tqe_len = *tlenp;
261 
262 	if (p == NULL) {
263 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
264 	} else {
265 		LIST_INSERT_AFTER(p, te, tqe_q);
266 	}
267 
268 present:
269 	/*
270 	 * Present data to user, advancing rcv_nxt through
271 	 * completed sequence space.
272 	 */
273 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
274 		return (0);
275 	q = LIST_FIRST(&tp->t_segq);
276 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
277 		return (0);
278 	do {
279 		tp->rcv_nxt += q->tqe_len;
280 		flags = q->tqe_th->th_flags & TH_FIN;
281 		nq = LIST_NEXT(q, tqe_q);
282 		LIST_REMOVE(q, tqe_q);
283 		if (so->so_state & SS_CANTRCVMORE)
284 			m_freem(q->tqe_m);
285 		else
286 			sbappend(&so->so_rcv, q->tqe_m);
287 		FREE(q, M_TSEGQ);
288 		q = nq;
289 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
290 	ND6_HINT(tp);
291 	sorwakeup(so);
292 	return (flags);
293 }
294 
295 /*
296  * TCP input routine, follows pages 65-76 of the
297  * protocol specification dated September, 1981 very closely.
298  */
299 #ifdef INET6
300 int
301 tcp6_input(mp, offp, proto)
302 	struct mbuf **mp;
303 	int *offp, proto;
304 {
305 	register struct mbuf *m = *mp;
306 	struct in6_ifaddr *ia6;
307 
308 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
309 
310 	/*
311 	 * draft-itojun-ipv6-tcp-to-anycast
312 	 * better place to put this in?
313 	 */
314 	ia6 = ip6_getdstifaddr(m);
315 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
316 		struct ip6_hdr *ip6;
317 
318 		ip6 = mtod(m, struct ip6_hdr *);
319 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
320 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
321 		return IPPROTO_DONE;
322 	}
323 
324 	tcp_input(m, *offp);
325 	return IPPROTO_DONE;
326 }
327 #endif
328 
329 void
330 tcp_input(m, off0)
331 	register struct mbuf *m;
332 	int off0;
333 {
334 	register struct tcphdr *th;
335 	register struct ip *ip = NULL;
336 	register struct ipovly *ipov;
337 	register struct inpcb *inp = NULL;
338 	u_char *optp = NULL;
339 	int optlen = 0;
340 	int len, tlen, off;
341 	int drop_hdrlen;
342 	register struct tcpcb *tp = 0;
343 	register int thflags;
344 	struct socket *so = 0;
345 	int todrop, acked, ourfinisacked, needoutput = 0;
346 	u_long tiwin;
347 	struct tcpopt to;		/* options in this segment */
348 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
349 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
350 	int headlocked = 0;
351 	struct sockaddr_in *next_hop = NULL;
352 	int rstreason; /* For badport_bandlim accounting purposes */
353 
354 	struct ip6_hdr *ip6 = NULL;
355 #ifdef INET6
356 	int isipv6;
357 #else
358 	const int isipv6 = 0;
359 #endif
360 
361 #ifdef TCPDEBUG
362 	/*
363 	 * The size of tcp_saveipgen must be the size of the max ip header,
364 	 * now IPv6.
365 	 */
366 	u_char tcp_saveipgen[40];
367 	struct tcphdr tcp_savetcp;
368 	short ostate = 0;
369 #endif
370 
371 	/* Grab info from MT_TAG mbufs prepended to the chain. */
372 	for (;m && m->m_type == MT_TAG; m = m->m_next) {
373 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
374 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
375 	}
376 #ifdef INET6
377 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
378 #endif
379 	bzero((char *)&to, sizeof(to));
380 
381 	tcpstat.tcps_rcvtotal++;
382 
383 	if (isipv6) {
384 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
385 		ip6 = mtod(m, struct ip6_hdr *);
386 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
387 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
388 			tcpstat.tcps_rcvbadsum++;
389 			goto drop;
390 		}
391 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
392 
393 		/*
394 		 * Be proactive about unspecified IPv6 address in source.
395 		 * As we use all-zero to indicate unbounded/unconnected pcb,
396 		 * unspecified IPv6 address can be used to confuse us.
397 		 *
398 		 * Note that packets with unspecified IPv6 destination is
399 		 * already dropped in ip6_input.
400 		 */
401 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
402 			/* XXX stat */
403 			goto drop;
404 		}
405 	} else {
406 		/*
407 		 * Get IP and TCP header together in first mbuf.
408 		 * Note: IP leaves IP header in first mbuf.
409 		 */
410 		if (off0 > sizeof (struct ip)) {
411 			ip_stripoptions(m, (struct mbuf *)0);
412 			off0 = sizeof(struct ip);
413 		}
414 		if (m->m_len < sizeof (struct tcpiphdr)) {
415 			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
416 				tcpstat.tcps_rcvshort++;
417 				return;
418 			}
419 		}
420 		ip = mtod(m, struct ip *);
421 		ipov = (struct ipovly *)ip;
422 		th = (struct tcphdr *)((caddr_t)ip + off0);
423 		tlen = ip->ip_len;
424 
425 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
426 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
427 				th->th_sum = m->m_pkthdr.csum_data;
428 			else
429 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
430 						ip->ip_dst.s_addr,
431 						htonl(m->m_pkthdr.csum_data +
432 							ip->ip_len +
433 							IPPROTO_TCP));
434 			th->th_sum ^= 0xffff;
435 		} else {
436 			/*
437 			 * Checksum extended TCP header and data.
438 			 */
439 			len = sizeof (struct ip) + tlen;
440 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
441 			ipov->ih_len = (u_short)tlen;
442 			ipov->ih_len = htons(ipov->ih_len);
443 			th->th_sum = in_cksum(m, len);
444 		}
445 		if (th->th_sum) {
446 			tcpstat.tcps_rcvbadsum++;
447 			goto drop;
448 		}
449 #ifdef INET6
450 		/* Re-initialization for later version check */
451 		ip->ip_v = IPVERSION;
452 #endif
453 	}
454 
455 	/*
456 	 * Check that TCP offset makes sense,
457 	 * pull out TCP options and adjust length.		XXX
458 	 */
459 	off = th->th_off << 2;
460 	if (off < sizeof (struct tcphdr) || off > tlen) {
461 		tcpstat.tcps_rcvbadoff++;
462 		goto drop;
463 	}
464 	tlen -= off;	/* tlen is used instead of ti->ti_len */
465 	if (off > sizeof (struct tcphdr)) {
466 		if (isipv6) {
467 			IP6_EXTHDR_CHECK(m, off0, off, );
468 			ip6 = mtod(m, struct ip6_hdr *);
469 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
470 		} else {
471 			if (m->m_len < sizeof(struct ip) + off) {
472 				if ((m = m_pullup(m, sizeof (struct ip) + off))
473 						== 0) {
474 					tcpstat.tcps_rcvshort++;
475 					return;
476 				}
477 				ip = mtod(m, struct ip *);
478 				ipov = (struct ipovly *)ip;
479 				th = (struct tcphdr *)((caddr_t)ip + off0);
480 			}
481 		}
482 		optlen = off - sizeof (struct tcphdr);
483 		optp = (u_char *)(th + 1);
484 	}
485 	thflags = th->th_flags;
486 
487 #ifdef TCP_DROP_SYNFIN
488 	/*
489 	 * If the drop_synfin option is enabled, drop all packets with
490 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
491 	 * identifying the TCP/IP stack.
492 	 *
493 	 * This is a violation of the TCP specification.
494 	 */
495 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
496 		goto drop;
497 #endif
498 
499 	/*
500 	 * Convert TCP protocol specific fields to host format.
501 	 */
502 	th->th_seq = ntohl(th->th_seq);
503 	th->th_ack = ntohl(th->th_ack);
504 	th->th_win = ntohs(th->th_win);
505 	th->th_urp = ntohs(th->th_urp);
506 
507 	/*
508 	 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
509 	 * until after ip6_savecontrol() is called and before other functions
510 	 * which don't want those proto headers.
511 	 * Because ip6_savecontrol() is going to parse the mbuf to
512 	 * search for data to be passed up to user-land, it wants mbuf
513 	 * parameters to be unchanged.
514 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
515 	 * latest version of the advanced API (20020110).
516 	 */
517 	drop_hdrlen = off0 + off;
518 
519 	/*
520 	 * Locate pcb for segment.
521 	 */
522 	INP_INFO_WLOCK(&tcbinfo);
523 	headlocked = 1;
524 findpcb:
525 	/* IPFIREWALL_FORWARD section */
526 	if (next_hop != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
527 		/*
528 		 * Transparently forwarded. Pretend to be the destination.
529 		 * already got one like this?
530 		 */
531 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
532 					ip->ip_dst, th->th_dport,
533 					0, m->m_pkthdr.rcvif);
534 		if (!inp) {
535 			/* It's new.  Try find the ambushing socket. */
536 			inp = in_pcblookup_hash(&tcbinfo,
537 						ip->ip_src, th->th_sport,
538 						next_hop->sin_addr,
539 						next_hop->sin_port ?
540 						    ntohs(next_hop->sin_port) :
541 						    th->th_dport,
542 						1, m->m_pkthdr.rcvif);
543 		}
544 	} else {
545 		if (isipv6)
546 			inp = in6_pcblookup_hash(&tcbinfo,
547 						 &ip6->ip6_src, th->th_sport,
548 						 &ip6->ip6_dst, th->th_dport,
549 						 1, m->m_pkthdr.rcvif);
550 		else
551 			inp = in_pcblookup_hash(&tcbinfo,
552 						ip->ip_src, th->th_sport,
553 						ip->ip_dst, th->th_dport,
554 						1, m->m_pkthdr.rcvif);
555       }
556 
557 #ifdef IPSEC
558 	if (isipv6) {
559 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
560 			ipsec6stat.in_polvio++;
561 			goto drop;
562 		}
563 	} else {
564 		if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
565 			ipsecstat.in_polvio++;
566 			goto drop;
567 		}
568 	}
569 #endif
570 #ifdef FAST_IPSEC
571 	if (isipv6) {
572 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
573 			goto drop;
574 		}
575 	} else
576 	if (inp != NULL && ipsec4_in_reject(m, inp)) {
577 		goto drop;
578 	}
579 #endif /*FAST_IPSEC*/
580 
581 	/*
582 	 * If the state is CLOSED (i.e., TCB does not exist) then
583 	 * all data in the incoming segment is discarded.
584 	 * If the TCB exists but is in CLOSED state, it is embryonic,
585 	 * but should either do a listen or a connect soon.
586 	 */
587 	if (inp == NULL) {
588 		if (log_in_vain) {
589 #ifdef INET6
590 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
591 #else
592 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
593 #endif
594 
595 			if (isipv6) {
596 				strcpy(dbuf, "[");
597 				strcpy(sbuf, "[");
598 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
599 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
600 				strcat(dbuf, "]");
601 				strcat(sbuf, "]");
602 			} else {
603 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
604 				strcpy(sbuf, inet_ntoa(ip->ip_src));
605 			}
606 			switch (log_in_vain) {
607 			case 1:
608 				if ((thflags & TH_SYN) == 0)
609 					break;
610 			case 2:
611 				log(LOG_INFO,
612 				    "Connection attempt to TCP %s:%d "
613 				    "from %s:%d flags:0x%02x\n",
614 				    dbuf, ntohs(th->th_dport), sbuf,
615 				    ntohs(th->th_sport), thflags);
616 				break;
617 			default:
618 				break;
619 			}
620 		}
621 		if (blackhole) {
622 			switch (blackhole) {
623 			case 1:
624 				if (thflags & TH_SYN)
625 					goto drop;
626 				break;
627 			case 2:
628 				goto drop;
629 			default:
630 				goto drop;
631 			}
632 		}
633 		rstreason = BANDLIM_RST_CLOSEDPORT;
634 		goto dropwithreset;
635 	}
636 	INP_LOCK(inp);
637 	tp = intotcpcb(inp);
638 	if (tp == 0) {
639 		INP_UNLOCK(inp);
640 		rstreason = BANDLIM_RST_CLOSEDPORT;
641 		goto dropwithreset;
642 	}
643 	if (tp->t_state == TCPS_CLOSED)
644 		goto drop;
645 
646 	/* Unscale the window into a 32-bit value. */
647 	if ((thflags & TH_SYN) == 0)
648 		tiwin = th->th_win << tp->snd_scale;
649 	else
650 		tiwin = th->th_win;
651 
652 	so = inp->inp_socket;
653 #ifdef MAC
654 	if (mac_check_socket_deliver(so, m))
655 		goto drop;
656 #endif
657 #ifdef TCPDEBUG
658 	if (so->so_options & SO_DEBUG) {
659 		ostate = tp->t_state;
660 		if (isipv6)
661 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
662 		else
663 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
664 		tcp_savetcp = *th;
665 	}
666 #endif
667 	if (so->so_options & SO_ACCEPTCONN) {
668 		struct in_conninfo inc;
669 
670 #ifdef INET6
671 		inc.inc_isipv6 = isipv6;
672 #endif
673 		if (isipv6) {
674 			inc.inc6_faddr = ip6->ip6_src;
675 			inc.inc6_laddr = ip6->ip6_dst;
676 			inc.inc6_route.ro_rt = NULL;		/* XXX */
677 		} else {
678 			inc.inc_faddr = ip->ip_src;
679 			inc.inc_laddr = ip->ip_dst;
680 			inc.inc_route.ro_rt = NULL;		/* XXX */
681 		}
682 		inc.inc_fport = th->th_sport;
683 		inc.inc_lport = th->th_dport;
684 
685 	        /*
686 	         * If the state is LISTEN then ignore segment if it contains
687 		 * a RST.  If the segment contains an ACK then it is bad and
688 		 * send a RST.  If it does not contain a SYN then it is not
689 		 * interesting; drop it.
690 		 *
691 		 * If the state is SYN_RECEIVED (syncache) and seg contains
692 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
693 		 * contains a RST, check the sequence number to see if it
694 		 * is a valid reset segment.
695 		 */
696 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
697 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
698 				if (!syncache_expand(&inc, th, &so, m)) {
699 					/*
700 					 * No syncache entry, or ACK was not
701 					 * for our SYN/ACK.  Send a RST.
702 					 */
703 					tcpstat.tcps_badsyn++;
704 					rstreason = BANDLIM_RST_OPENPORT;
705 					goto dropwithreset;
706 				}
707 				if (so == NULL) {
708 					/*
709 					 * Could not complete 3-way handshake,
710 					 * connection is being closed down, and
711 					 * syncache will free mbuf.
712 					 */
713 					INP_UNLOCK(inp);
714 					INP_INFO_WUNLOCK(&tcbinfo);
715 					return;
716 				}
717 				/*
718 				 * Socket is created in state SYN_RECEIVED.
719 				 * Continue processing segment.
720 				 */
721 				INP_UNLOCK(inp);
722 				inp = sotoinpcb(so);
723 				INP_LOCK(inp);
724 				tp = intotcpcb(inp);
725 				/*
726 				 * This is what would have happened in
727 				 * tcp_output() when the SYN,ACK was sent.
728 				 */
729 				tp->snd_up = tp->snd_una;
730 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
731 				tp->last_ack_sent = tp->rcv_nxt;
732 /*
733  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
734  * until the _second_ ACK is received:
735  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
736  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
737  *        move to ESTAB, set snd_wnd to tiwin.
738  */
739 				tp->snd_wnd = tiwin;	/* unscaled */
740 				goto after_listen;
741 			}
742 			if (thflags & TH_RST) {
743 				syncache_chkrst(&inc, th);
744 				goto drop;
745 			}
746 			if (thflags & TH_ACK) {
747 				syncache_badack(&inc);
748 				tcpstat.tcps_badsyn++;
749 				rstreason = BANDLIM_RST_OPENPORT;
750 				goto dropwithreset;
751 			}
752 			goto drop;
753 		}
754 
755 		/*
756 		 * Segment's flags are (SYN) or (SYN|FIN).
757 		 */
758 #ifdef INET6
759 		/*
760 		 * If deprecated address is forbidden,
761 		 * we do not accept SYN to deprecated interface
762 		 * address to prevent any new inbound connection from
763 		 * getting established.
764 		 * When we do not accept SYN, we send a TCP RST,
765 		 * with deprecated source address (instead of dropping
766 		 * it).  We compromise it as it is much better for peer
767 		 * to send a RST, and RST will be the final packet
768 		 * for the exchange.
769 		 *
770 		 * If we do not forbid deprecated addresses, we accept
771 		 * the SYN packet.  RFC2462 does not suggest dropping
772 		 * SYN in this case.
773 		 * If we decipher RFC2462 5.5.4, it says like this:
774 		 * 1. use of deprecated addr with existing
775 		 *    communication is okay - "SHOULD continue to be
776 		 *    used"
777 		 * 2. use of it with new communication:
778 		 *   (2a) "SHOULD NOT be used if alternate address
779 		 *        with sufficient scope is available"
780 		 *   (2b) nothing mentioned otherwise.
781 		 * Here we fall into (2b) case as we have no choice in
782 		 * our source address selection - we must obey the peer.
783 		 *
784 		 * The wording in RFC2462 is confusing, and there are
785 		 * multiple description text for deprecated address
786 		 * handling - worse, they are not exactly the same.
787 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
788 		 */
789 		if (isipv6 && !ip6_use_deprecated) {
790 			struct in6_ifaddr *ia6;
791 
792 			if ((ia6 = ip6_getdstifaddr(m)) &&
793 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
794 				INP_UNLOCK(inp);
795 				tp = NULL;
796 				rstreason = BANDLIM_RST_OPENPORT;
797 				goto dropwithreset;
798 			}
799 		}
800 #endif
801 		/*
802 		 * If it is from this socket, drop it, it must be forged.
803 		 * Don't bother responding if the destination was a broadcast.
804 		 */
805 		if (th->th_dport == th->th_sport) {
806 			if (isipv6) {
807 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
808 						       &ip6->ip6_src))
809 					goto drop;
810 			} else {
811 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
812 					goto drop;
813 			}
814 		}
815 		/*
816 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
817 		 *
818 		 * Note that it is quite possible to receive unicast
819 		 * link-layer packets with a broadcast IP address. Use
820 		 * in_broadcast() to find them.
821 		 */
822 		if (m->m_flags & (M_BCAST|M_MCAST))
823 			goto drop;
824 		if (isipv6) {
825 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
826 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
827 				goto drop;
828 		} else {
829 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
830 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
831 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
832 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
833 				goto drop;
834 		}
835 		/*
836 		 * SYN appears to be valid; create compressed TCP state
837 		 * for syncache, or perform t/tcp connection.
838 		 */
839 		if (so->so_qlen <= so->so_qlimit) {
840 			tcp_dooptions(&to, optp, optlen, 1);
841 			if (!syncache_add(&inc, &to, th, &so, m))
842 				goto drop;
843 			if (so == NULL) {
844 				/*
845 				 * Entry added to syncache, mbuf used to
846 				 * send SYN,ACK packet.
847 				 */
848 				KASSERT(headlocked, ("headlocked"));
849 				INP_UNLOCK(inp);
850 				INP_INFO_WUNLOCK(&tcbinfo);
851 				return;
852 			}
853 			/*
854 			 * Segment passed TAO tests.
855 			 */
856 			INP_UNLOCK(inp);
857 			inp = sotoinpcb(so);
858 			INP_LOCK(inp);
859 			tp = intotcpcb(inp);
860 			tp->snd_wnd = tiwin;
861 			tp->t_starttime = ticks;
862 			tp->t_state = TCPS_ESTABLISHED;
863 
864 			/*
865 			 * If there is a FIN, or if there is data and the
866 			 * connection is local, then delay SYN,ACK(SYN) in
867 			 * the hope of piggy-backing it on a response
868 			 * segment.  Otherwise must send ACK now in case
869 			 * the other side is slow starting.
870 			 */
871 			if (DELAY_ACK(tp) &&
872 			    ((thflags & TH_FIN) ||
873 			     (tlen != 0 &&
874 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
875 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
876 				callout_reset(tp->tt_delack, tcp_delacktime,
877 						tcp_timer_delack, tp);
878 				tp->t_flags |= TF_NEEDSYN;
879 			} else
880 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
881 
882 			tcpstat.tcps_connects++;
883 			soisconnected(so);
884 			goto trimthenstep6;
885 		}
886 		goto drop;
887 	}
888 after_listen:
889 
890 /* XXX temp debugging */
891 	/* should not happen - syncache should pick up these connections */
892 	if (tp->t_state == TCPS_LISTEN)
893 		panic("tcp_input: TCPS_LISTEN");
894 
895 	/*
896 	 * Segment received on connection.
897 	 * Reset idle time and keep-alive timer.
898 	 */
899 	tp->t_rcvtime = ticks;
900 	if (TCPS_HAVEESTABLISHED(tp->t_state))
901 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
902 
903 	/*
904 	 * Process options.
905 	 * XXX this is tradtitional behavior, may need to be cleaned up.
906 	 */
907 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
908 	if (thflags & TH_SYN) {
909 		if (to.to_flags & TOF_SCALE) {
910 			tp->t_flags |= TF_RCVD_SCALE;
911 			tp->requested_s_scale = to.to_requested_s_scale;
912 		}
913 		if (to.to_flags & TOF_TS) {
914 			tp->t_flags |= TF_RCVD_TSTMP;
915 			tp->ts_recent = to.to_tsval;
916 			tp->ts_recent_age = ticks;
917 		}
918 		if (to.to_flags & (TOF_CC|TOF_CCNEW))
919 			tp->t_flags |= TF_RCVD_CC;
920 		if (to.to_flags & TOF_MSS)
921 			tcp_mss(tp, to.to_mss);
922 	}
923 
924 	/*
925 	 * Header prediction: check for the two common cases
926 	 * of a uni-directional data xfer.  If the packet has
927 	 * no control flags, is in-sequence, the window didn't
928 	 * change and we're not retransmitting, it's a
929 	 * candidate.  If the length is zero and the ack moved
930 	 * forward, we're the sender side of the xfer.  Just
931 	 * free the data acked & wake any higher level process
932 	 * that was blocked waiting for space.  If the length
933 	 * is non-zero and the ack didn't move, we're the
934 	 * receiver side.  If we're getting packets in-order
935 	 * (the reassembly queue is empty), add the data to
936 	 * the socket buffer and note that we need a delayed ack.
937 	 * Make sure that the hidden state-flags are also off.
938 	 * Since we check for TCPS_ESTABLISHED above, it can only
939 	 * be TH_NEEDSYN.
940 	 */
941 	if (tp->t_state == TCPS_ESTABLISHED &&
942 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
943 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
944 	    ((to.to_flags & TOF_TS) == 0 ||
945 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
946 	    /*
947 	     * Using the CC option is compulsory if once started:
948 	     *   the segment is OK if no T/TCP was negotiated or
949 	     *   if the segment has a CC option equal to CCrecv
950 	     */
951 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
952 	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
953 	    th->th_seq == tp->rcv_nxt &&
954 	    tiwin && tiwin == tp->snd_wnd &&
955 	    tp->snd_nxt == tp->snd_max) {
956 
957 		/*
958 		 * If last ACK falls within this segment's sequence numbers,
959 		 * record the timestamp.
960 		 * NOTE that the test is modified according to the latest
961 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
962 		 */
963 		if ((to.to_flags & TOF_TS) != 0 &&
964 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
965 			tp->ts_recent_age = ticks;
966 			tp->ts_recent = to.to_tsval;
967 		}
968 
969 		if (tlen == 0) {
970 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
971 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
972 			    tp->snd_cwnd >= tp->snd_wnd &&
973 			    ((!tcp_do_newreno &&
974 			      tp->t_dupacks < tcprexmtthresh) ||
975 			     (tcp_do_newreno &&
976 			      !SEQ_LT(tp->snd_una, tp->snd_recover)))) {
977 				KASSERT(headlocked, ("headlocked"));
978 				INP_INFO_WUNLOCK(&tcbinfo);
979 				headlocked = 0;
980 				/*
981 				 * this is a pure ack for outstanding data.
982 				 */
983 				++tcpstat.tcps_predack;
984 				/*
985 				 * "bad retransmit" recovery
986 				 */
987 				if (tp->t_rxtshift == 1 &&
988 				    ticks < tp->t_badrxtwin) {
989 					++tcpstat.tcps_sndrexmitbad;
990 					tp->snd_cwnd = tp->snd_cwnd_prev;
991 					tp->snd_ssthresh =
992 					    tp->snd_ssthresh_prev;
993 					tp->snd_high = tp->snd_high_prev;
994 					tp->snd_nxt = tp->snd_max;
995 					tp->t_badrxtwin = 0;
996 				}
997 
998 				/*
999 				 * Recalculate the transmit timer / rtt.
1000 				 *
1001 				 * Some boxes send broken timestamp replies
1002 				 * during the SYN+ACK phase, ignore
1003 				 * timestamps of 0 or we could calculate a
1004 				 * huge RTT and blow up the retransmit timer.
1005 				 */
1006 				if ((to.to_flags & TOF_TS) != 0 &&
1007 				    to.to_tsecr) {
1008 					tcp_xmit_timer(tp,
1009 					    ticks - to.to_tsecr + 1);
1010 				} else if (tp->t_rtttime &&
1011 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1012 					tcp_xmit_timer(tp,
1013 							ticks - tp->t_rtttime);
1014 				}
1015 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1016 				acked = th->th_ack - tp->snd_una;
1017 				tcpstat.tcps_rcvackpack++;
1018 				tcpstat.tcps_rcvackbyte += acked;
1019 				sbdrop(&so->so_snd, acked);
1020 				if (SEQ_GT(tp->snd_una, tp->snd_high) &&
1021 				    SEQ_LEQ(th->th_ack, tp->snd_high))
1022 					tp->snd_high = th->th_ack - 1;
1023 				tp->snd_una = tp->snd_recover = th->th_ack;
1024 				/*
1025 				 * pull snd_wl2 up to prevent seq wrap relative
1026 				 * to th_ack.
1027 				 */
1028 				tp->snd_wl2 = th->th_ack;
1029 				tp->t_dupacks = 0;
1030 				m_freem(m);
1031 				ND6_HINT(tp); /* some progress has been done */
1032 
1033 				/*
1034 				 * If all outstanding data are acked, stop
1035 				 * retransmit timer, otherwise restart timer
1036 				 * using current (possibly backed-off) value.
1037 				 * If process is waiting for space,
1038 				 * wakeup/selwakeup/signal.  If data
1039 				 * are ready to send, let tcp_output
1040 				 * decide between more output or persist.
1041 				 */
1042 				if (tp->snd_una == tp->snd_max)
1043 					callout_stop(tp->tt_rexmt);
1044 				else if (!callout_active(tp->tt_persist))
1045 					callout_reset(tp->tt_rexmt,
1046 						      tp->t_rxtcur,
1047 						      tcp_timer_rexmt, tp);
1048 
1049 				sowwakeup(so);
1050 				if (so->so_snd.sb_cc)
1051 					(void) tcp_output(tp);
1052 				INP_UNLOCK(inp);
1053 				return;
1054 			}
1055 		} else if (th->th_ack == tp->snd_una &&
1056 		    LIST_EMPTY(&tp->t_segq) &&
1057 		    tlen <= sbspace(&so->so_rcv)) {
1058 			KASSERT(headlocked, ("headlocked"));
1059 			INP_INFO_WUNLOCK(&tcbinfo);
1060 			headlocked = 0;
1061 			/*
1062 			 * this is a pure, in-sequence data packet
1063 			 * with nothing on the reassembly queue and
1064 			 * we have enough buffer space to take it.
1065 			 */
1066 			++tcpstat.tcps_preddat;
1067 			tp->rcv_nxt += tlen;
1068 			/*
1069 			 * Pull snd_wl1 up to prevent seq wrap relative to
1070 			 * th_seq.
1071 			 */
1072 			tp->snd_wl1 = th->th_seq;
1073 			/*
1074 			 * Pull rcv_up up to prevent seq wrap relative to
1075 			 * rcv_nxt.
1076 			 */
1077 			tp->rcv_up = tp->rcv_nxt;
1078 			tcpstat.tcps_rcvpack++;
1079 			tcpstat.tcps_rcvbyte += tlen;
1080 			ND6_HINT(tp);	/* some progress has been done */
1081 			/*
1082 			 * Add data to socket buffer.
1083 			 */
1084 			if (so->so_state & SS_CANTRCVMORE) {
1085 				m_freem(m);
1086 			} else {
1087 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1088 				sbappend(&so->so_rcv, m);
1089 			}
1090 			sorwakeup(so);
1091 			if (DELAY_ACK(tp)) {
1092 	                        callout_reset(tp->tt_delack, tcp_delacktime,
1093 	                            tcp_timer_delack, tp);
1094 			} else {
1095 				tp->t_flags |= TF_ACKNOW;
1096 				tcp_output(tp);
1097 			}
1098 			INP_UNLOCK(inp);
1099 			return;
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Calculate amount of space in receive window,
1105 	 * and then do TCP input processing.
1106 	 * Receive window is amount of space in rcv queue,
1107 	 * but not less than advertised window.
1108 	 */
1109 	{ int win;
1110 
1111 	win = sbspace(&so->so_rcv);
1112 	if (win < 0)
1113 		win = 0;
1114 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1115 	}
1116 
1117 	switch (tp->t_state) {
1118 
1119 	/*
1120 	 * If the state is SYN_RECEIVED:
1121 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1122 	 */
1123 	case TCPS_SYN_RECEIVED:
1124 		if ((thflags & TH_ACK) &&
1125 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1126 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1127 				rstreason = BANDLIM_RST_OPENPORT;
1128 				goto dropwithreset;
1129 		}
1130 		break;
1131 
1132 	/*
1133 	 * If the state is SYN_SENT:
1134 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1135 	 *	if seg contains a RST, then drop the connection.
1136 	 *	if seg does not contain SYN, then drop it.
1137 	 * Otherwise this is an acceptable SYN segment
1138 	 *	initialize tp->rcv_nxt and tp->irs
1139 	 *	if seg contains ack then advance tp->snd_una
1140 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1141 	 *	arrange for segment to be acked (eventually)
1142 	 *	continue processing rest of data/controls, beginning with URG
1143 	 */
1144 	case TCPS_SYN_SENT:
1145 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1146 			taop = &tao_noncached;
1147 			bzero(taop, sizeof(*taop));
1148 		}
1149 
1150 		if ((thflags & TH_ACK) &&
1151 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1152 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1153 			/*
1154 			 * If we have a cached CCsent for the remote host,
1155 			 * hence we haven't just crashed and restarted,
1156 			 * do not send a RST.  This may be a retransmission
1157 			 * from the other side after our earlier ACK was lost.
1158 			 * Our new SYN, when it arrives, will serve as the
1159 			 * needed ACK.
1160 			 */
1161 			if (taop->tao_ccsent != 0)
1162 				goto drop;
1163 			else {
1164 				rstreason = BANDLIM_UNLIMITED;
1165 				goto dropwithreset;
1166 			}
1167 		}
1168 		if (thflags & TH_RST) {
1169 			if (thflags & TH_ACK)
1170 				tp = tcp_drop(tp, ECONNREFUSED);
1171 			goto drop;
1172 		}
1173 		if ((thflags & TH_SYN) == 0)
1174 			goto drop;
1175 		tp->snd_wnd = th->th_win;	/* initial send window */
1176 		tp->cc_recv = to.to_cc;		/* foreign CC */
1177 
1178 		tp->irs = th->th_seq;
1179 		tcp_rcvseqinit(tp);
1180 		if (thflags & TH_ACK) {
1181 			/*
1182 			 * Our SYN was acked.  If segment contains CC.ECHO
1183 			 * option, check it to make sure this segment really
1184 			 * matches our SYN.  If not, just drop it as old
1185 			 * duplicate, but send an RST if we're still playing
1186 			 * by the old rules.  If no CC.ECHO option, make sure
1187 			 * we don't get fooled into using T/TCP.
1188 			 */
1189 			if (to.to_flags & TOF_CCECHO) {
1190 				if (tp->cc_send != to.to_ccecho) {
1191 					if (taop->tao_ccsent != 0)
1192 						goto drop;
1193 					else {
1194 						rstreason = BANDLIM_UNLIMITED;
1195 						goto dropwithreset;
1196 					}
1197 				}
1198 			} else
1199 				tp->t_flags &= ~TF_RCVD_CC;
1200 			tcpstat.tcps_connects++;
1201 			soisconnected(so);
1202 #ifdef MAC
1203 			mac_set_socket_peer_from_mbuf(m, so);
1204 #endif
1205 			/* Do window scaling on this connection? */
1206 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1207 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1208 				tp->snd_scale = tp->requested_s_scale;
1209 				tp->rcv_scale = tp->request_r_scale;
1210 			}
1211 			/* Segment is acceptable, update cache if undefined. */
1212 			if (taop->tao_ccsent == 0)
1213 				taop->tao_ccsent = to.to_ccecho;
1214 
1215 			tp->rcv_adv += tp->rcv_wnd;
1216 			tp->snd_una++;		/* SYN is acked */
1217 			/*
1218 			 * If there's data, delay ACK; if there's also a FIN
1219 			 * ACKNOW will be turned on later.
1220 			 */
1221 			if (DELAY_ACK(tp) && tlen != 0)
1222                                 callout_reset(tp->tt_delack, tcp_delacktime,
1223                                     tcp_timer_delack, tp);
1224 			else
1225 				tp->t_flags |= TF_ACKNOW;
1226 			/*
1227 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1228 			 * Transitions:
1229 			 *	SYN_SENT  --> ESTABLISHED
1230 			 *	SYN_SENT* --> FIN_WAIT_1
1231 			 */
1232 			tp->t_starttime = ticks;
1233 			if (tp->t_flags & TF_NEEDFIN) {
1234 				tp->t_state = TCPS_FIN_WAIT_1;
1235 				tp->t_flags &= ~TF_NEEDFIN;
1236 				thflags &= ~TH_SYN;
1237 			} else {
1238 				tp->t_state = TCPS_ESTABLISHED;
1239 				callout_reset(tp->tt_keep, tcp_keepidle,
1240 					      tcp_timer_keep, tp);
1241 			}
1242 		} else {
1243 			/*
1244 		 	 * Received initial SYN in SYN-SENT[*] state =>
1245 		 	 * simultaneous open.  If segment contains CC option
1246 		 	 * and there is a cached CC, apply TAO test.
1247 		 	 * If it succeeds, connection is * half-synchronized.
1248 		 	 * Otherwise, do 3-way handshake:
1249 		 	 *        SYN-SENT -> SYN-RECEIVED
1250 		 	 *        SYN-SENT* -> SYN-RECEIVED*
1251 		 	 * If there was no CC option, clear cached CC value.
1252 		 	 */
1253 			tp->t_flags |= TF_ACKNOW;
1254 			callout_stop(tp->tt_rexmt);
1255 			if (to.to_flags & TOF_CC) {
1256 				if (taop->tao_cc != 0 &&
1257 				    CC_GT(to.to_cc, taop->tao_cc)) {
1258 					/*
1259 					 * update cache and make transition:
1260 					 *        SYN-SENT -> ESTABLISHED*
1261 					 *        SYN-SENT* -> FIN-WAIT-1*
1262 					 */
1263 					taop->tao_cc = to.to_cc;
1264 					tp->t_starttime = ticks;
1265 					if (tp->t_flags & TF_NEEDFIN) {
1266 						tp->t_state = TCPS_FIN_WAIT_1;
1267 						tp->t_flags &= ~TF_NEEDFIN;
1268 					} else {
1269 						tp->t_state = TCPS_ESTABLISHED;
1270 						callout_reset(tp->tt_keep,
1271 							      tcp_keepidle,
1272 							      tcp_timer_keep,
1273 							      tp);
1274 					}
1275 					tp->t_flags |= TF_NEEDSYN;
1276 				} else
1277 					tp->t_state = TCPS_SYN_RECEIVED;
1278 			} else {
1279 				/* CC.NEW or no option => invalidate cache */
1280 				taop->tao_cc = 0;
1281 				tp->t_state = TCPS_SYN_RECEIVED;
1282 			}
1283 		}
1284 
1285 trimthenstep6:
1286 		/*
1287 		 * Advance th->th_seq to correspond to first data byte.
1288 		 * If data, trim to stay within window,
1289 		 * dropping FIN if necessary.
1290 		 */
1291 		th->th_seq++;
1292 		if (tlen > tp->rcv_wnd) {
1293 			todrop = tlen - tp->rcv_wnd;
1294 			m_adj(m, -todrop);
1295 			tlen = tp->rcv_wnd;
1296 			thflags &= ~TH_FIN;
1297 			tcpstat.tcps_rcvpackafterwin++;
1298 			tcpstat.tcps_rcvbyteafterwin += todrop;
1299 		}
1300 		tp->snd_wl1 = th->th_seq - 1;
1301 		tp->rcv_up = th->th_seq;
1302 		/*
1303 		 * Client side of transaction: already sent SYN and data.
1304 		 * If the remote host used T/TCP to validate the SYN,
1305 		 * our data will be ACK'd; if so, enter normal data segment
1306 		 * processing in the middle of step 5, ack processing.
1307 		 * Otherwise, goto step 6.
1308 		 */
1309  		if (thflags & TH_ACK)
1310 			goto process_ACK;
1311 
1312 		goto step6;
1313 
1314 	/*
1315 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1316 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1317 	 *              if state == TIME_WAIT and connection duration > MSL,
1318 	 *                  drop packet and send RST;
1319 	 *
1320 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1321 	 *		    ack the FIN (and data) in retransmission queue.
1322 	 *                  Complete close and delete TCPCB.  Then reprocess
1323 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1324 	 *
1325 	 *		else must be old SYN; drop it.
1326 	 *      else do normal processing.
1327 	 */
1328 	case TCPS_LAST_ACK:
1329 	case TCPS_CLOSING:
1330 	case TCPS_TIME_WAIT:
1331 		if ((thflags & TH_SYN) &&
1332 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1333 			if (tp->t_state == TCPS_TIME_WAIT &&
1334 					(ticks - tp->t_starttime) > tcp_msl) {
1335 				rstreason = BANDLIM_UNLIMITED;
1336 				goto dropwithreset;
1337 			}
1338 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1339 				tp = tcp_close(tp);
1340 				goto findpcb;
1341 			}
1342 			else
1343 				goto drop;
1344 		}
1345  		break;  /* continue normal processing */
1346 	}
1347 
1348 	/*
1349 	 * States other than LISTEN or SYN_SENT.
1350 	 * First check the RST flag and sequence number since reset segments
1351 	 * are exempt from the timestamp and connection count tests.  This
1352 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1353 	 * below which allowed reset segments in half the sequence space
1354 	 * to fall though and be processed (which gives forged reset
1355 	 * segments with a random sequence number a 50 percent chance of
1356 	 * killing a connection).
1357 	 * Then check timestamp, if present.
1358 	 * Then check the connection count, if present.
1359 	 * Then check that at least some bytes of segment are within
1360 	 * receive window.  If segment begins before rcv_nxt,
1361 	 * drop leading data (and SYN); if nothing left, just ack.
1362 	 *
1363 	 *
1364 	 * If the RST bit is set, check the sequence number to see
1365 	 * if this is a valid reset segment.
1366 	 * RFC 793 page 37:
1367 	 *   In all states except SYN-SENT, all reset (RST) segments
1368 	 *   are validated by checking their SEQ-fields.  A reset is
1369 	 *   valid if its sequence number is in the window.
1370 	 * Note: this does not take into account delayed ACKs, so
1371 	 *   we should test against last_ack_sent instead of rcv_nxt.
1372 	 *   The sequence number in the reset segment is normally an
1373 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1374 	 *   send a reset with the sequence number at the rightmost edge
1375 	 *   of our receive window, and we have to handle this case.
1376 	 * If we have multiple segments in flight, the intial reset
1377 	 * segment sequence numbers will be to the left of last_ack_sent,
1378 	 * but they will eventually catch up.
1379 	 * In any case, it never made sense to trim reset segments to
1380 	 * fit the receive window since RFC 1122 says:
1381 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1382 	 *
1383 	 *    A TCP SHOULD allow a received RST segment to include data.
1384 	 *
1385 	 *    DISCUSSION
1386 	 *         It has been suggested that a RST segment could contain
1387 	 *         ASCII text that encoded and explained the cause of the
1388 	 *         RST.  No standard has yet been established for such
1389 	 *         data.
1390 	 *
1391 	 * If the reset segment passes the sequence number test examine
1392 	 * the state:
1393 	 *    SYN_RECEIVED STATE:
1394 	 *	If passive open, return to LISTEN state.
1395 	 *	If active open, inform user that connection was refused.
1396 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1397 	 *	Inform user that connection was reset, and close tcb.
1398 	 *    CLOSING, LAST_ACK STATES:
1399 	 *	Close the tcb.
1400 	 *    TIME_WAIT STATE:
1401 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1402 	 *      RFC 1337.
1403 	 */
1404 	if (thflags & TH_RST) {
1405 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1406 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1407 			switch (tp->t_state) {
1408 
1409 			case TCPS_SYN_RECEIVED:
1410 				so->so_error = ECONNREFUSED;
1411 				goto close;
1412 
1413 			case TCPS_ESTABLISHED:
1414 			case TCPS_FIN_WAIT_1:
1415 			case TCPS_FIN_WAIT_2:
1416 			case TCPS_CLOSE_WAIT:
1417 				so->so_error = ECONNRESET;
1418 			close:
1419 				tp->t_state = TCPS_CLOSED;
1420 				tcpstat.tcps_drops++;
1421 				tp = tcp_close(tp);
1422 				break;
1423 
1424 			case TCPS_CLOSING:
1425 			case TCPS_LAST_ACK:
1426 				tp = tcp_close(tp);
1427 				break;
1428 
1429 			case TCPS_TIME_WAIT:
1430 				break;
1431 			}
1432 		}
1433 		goto drop;
1434 	}
1435 
1436 	/*
1437 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1438 	 * and it's less than ts_recent, drop it.
1439 	 */
1440 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1441 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1442 
1443 		/* Check to see if ts_recent is over 24 days old.  */
1444 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1445 			/*
1446 			 * Invalidate ts_recent.  If this segment updates
1447 			 * ts_recent, the age will be reset later and ts_recent
1448 			 * will get a valid value.  If it does not, setting
1449 			 * ts_recent to zero will at least satisfy the
1450 			 * requirement that zero be placed in the timestamp
1451 			 * echo reply when ts_recent isn't valid.  The
1452 			 * age isn't reset until we get a valid ts_recent
1453 			 * because we don't want out-of-order segments to be
1454 			 * dropped when ts_recent is old.
1455 			 */
1456 			tp->ts_recent = 0;
1457 		} else {
1458 			tcpstat.tcps_rcvduppack++;
1459 			tcpstat.tcps_rcvdupbyte += tlen;
1460 			tcpstat.tcps_pawsdrop++;
1461 			if (tlen)
1462 				goto dropafterack;
1463 			goto drop;
1464 		}
1465 	}
1466 
1467 	/*
1468 	 * T/TCP mechanism
1469 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1470 	 *   or if its CC is wrong then drop the segment.
1471 	 *   RST segments do not have to comply with this.
1472 	 */
1473 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1474 	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1475  		goto dropafterack;
1476 
1477 	/*
1478 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1479 	 * this connection before trimming the data to fit the receive
1480 	 * window.  Check the sequence number versus IRS since we know
1481 	 * the sequence numbers haven't wrapped.  This is a partial fix
1482 	 * for the "LAND" DoS attack.
1483 	 */
1484 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1485 		rstreason = BANDLIM_RST_OPENPORT;
1486 		goto dropwithreset;
1487 	}
1488 
1489 	todrop = tp->rcv_nxt - th->th_seq;
1490 	if (todrop > 0) {
1491 		if (thflags & TH_SYN) {
1492 			thflags &= ~TH_SYN;
1493 			th->th_seq++;
1494 			if (th->th_urp > 1)
1495 				th->th_urp--;
1496 			else
1497 				thflags &= ~TH_URG;
1498 			todrop--;
1499 		}
1500 		/*
1501 		 * Following if statement from Stevens, vol. 2, p. 960.
1502 		 */
1503 		if (todrop > tlen
1504 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1505 			/*
1506 			 * Any valid FIN must be to the left of the window.
1507 			 * At this point the FIN must be a duplicate or out
1508 			 * of sequence; drop it.
1509 			 */
1510 			thflags &= ~TH_FIN;
1511 
1512 			/*
1513 			 * Send an ACK to resynchronize and drop any data.
1514 			 * But keep on processing for RST or ACK.
1515 			 */
1516 			tp->t_flags |= TF_ACKNOW;
1517 			todrop = tlen;
1518 			tcpstat.tcps_rcvduppack++;
1519 			tcpstat.tcps_rcvdupbyte += todrop;
1520 		} else {
1521 			tcpstat.tcps_rcvpartduppack++;
1522 			tcpstat.tcps_rcvpartdupbyte += todrop;
1523 		}
1524 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1525 		th->th_seq += todrop;
1526 		tlen -= todrop;
1527 		if (th->th_urp > todrop)
1528 			th->th_urp -= todrop;
1529 		else {
1530 			thflags &= ~TH_URG;
1531 			th->th_urp = 0;
1532 		}
1533 	}
1534 
1535 	/*
1536 	 * If new data are received on a connection after the
1537 	 * user processes are gone, then RST the other end.
1538 	 */
1539 	if ((so->so_state & SS_NOFDREF) &&
1540 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1541 		tp = tcp_close(tp);
1542 		tcpstat.tcps_rcvafterclose++;
1543 		rstreason = BANDLIM_UNLIMITED;
1544 		goto dropwithreset;
1545 	}
1546 
1547 	/*
1548 	 * If segment ends after window, drop trailing data
1549 	 * (and PUSH and FIN); if nothing left, just ACK.
1550 	 */
1551 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1552 	if (todrop > 0) {
1553 		tcpstat.tcps_rcvpackafterwin++;
1554 		if (todrop >= tlen) {
1555 			tcpstat.tcps_rcvbyteafterwin += tlen;
1556 			/*
1557 			 * If a new connection request is received
1558 			 * while in TIME_WAIT, drop the old connection
1559 			 * and start over if the sequence numbers
1560 			 * are above the previous ones.
1561 			 */
1562 			if (thflags & TH_SYN &&
1563 			    tp->t_state == TCPS_TIME_WAIT &&
1564 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1565 				tp = tcp_close(tp);
1566 				goto findpcb;
1567 			}
1568 			/*
1569 			 * If window is closed can only take segments at
1570 			 * window edge, and have to drop data and PUSH from
1571 			 * incoming segments.  Continue processing, but
1572 			 * remember to ack.  Otherwise, drop segment
1573 			 * and ack.
1574 			 */
1575 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1576 				tp->t_flags |= TF_ACKNOW;
1577 				tcpstat.tcps_rcvwinprobe++;
1578 			} else
1579 				goto dropafterack;
1580 		} else
1581 			tcpstat.tcps_rcvbyteafterwin += todrop;
1582 		m_adj(m, -todrop);
1583 		tlen -= todrop;
1584 		thflags &= ~(TH_PUSH|TH_FIN);
1585 	}
1586 
1587 	/*
1588 	 * If last ACK falls within this segment's sequence numbers,
1589 	 * record its timestamp.
1590 	 * NOTE that the test is modified according to the latest
1591 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1592 	 */
1593 	if ((to.to_flags & TOF_TS) != 0 &&
1594 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1595 		tp->ts_recent_age = ticks;
1596 		tp->ts_recent = to.to_tsval;
1597 	}
1598 
1599 	/*
1600 	 * If a SYN is in the window, then this is an
1601 	 * error and we send an RST and drop the connection.
1602 	 */
1603 	if (thflags & TH_SYN) {
1604 		tp = tcp_drop(tp, ECONNRESET);
1605 		rstreason = BANDLIM_UNLIMITED;
1606 		goto dropwithreset;
1607 	}
1608 
1609 	/*
1610 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1611 	 * flag is on (half-synchronized state), then queue data for
1612 	 * later processing; else drop segment and return.
1613 	 */
1614 	if ((thflags & TH_ACK) == 0) {
1615 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1616 		    (tp->t_flags & TF_NEEDSYN))
1617 			goto step6;
1618 		else
1619 			goto drop;
1620 	}
1621 
1622 	/*
1623 	 * Ack processing.
1624 	 */
1625 	switch (tp->t_state) {
1626 
1627 	/*
1628 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1629 	 * ESTABLISHED state and continue processing.
1630 	 * The ACK was checked above.
1631 	 */
1632 	case TCPS_SYN_RECEIVED:
1633 
1634 		tcpstat.tcps_connects++;
1635 		soisconnected(so);
1636 		/* Do window scaling? */
1637 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1638 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1639 			tp->snd_scale = tp->requested_s_scale;
1640 			tp->rcv_scale = tp->request_r_scale;
1641 		}
1642 		/*
1643 		 * Upon successful completion of 3-way handshake,
1644 		 * update cache.CC if it was undefined, pass any queued
1645 		 * data to the user, and advance state appropriately.
1646 		 */
1647 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1648 		    taop->tao_cc == 0)
1649 			taop->tao_cc = tp->cc_recv;
1650 
1651 		/*
1652 		 * Make transitions:
1653 		 *      SYN-RECEIVED  -> ESTABLISHED
1654 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1655 		 */
1656 		tp->t_starttime = ticks;
1657 		if (tp->t_flags & TF_NEEDFIN) {
1658 			tp->t_state = TCPS_FIN_WAIT_1;
1659 			tp->t_flags &= ~TF_NEEDFIN;
1660 		} else {
1661 			tp->t_state = TCPS_ESTABLISHED;
1662 			callout_reset(tp->tt_keep, tcp_keepidle,
1663 				      tcp_timer_keep, tp);
1664 		}
1665 		/*
1666 		 * If segment contains data or ACK, will call tcp_reass()
1667 		 * later; if not, do so now to pass queued data to user.
1668 		 */
1669 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1670 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1671 			    (struct mbuf *)0);
1672 		tp->snd_wl1 = th->th_seq - 1;
1673 		/* FALLTHROUGH */
1674 
1675 	/*
1676 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1677 	 * ACKs.  If the ack is in the range
1678 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1679 	 * then advance tp->snd_una to th->th_ack and drop
1680 	 * data from the retransmission queue.  If this ACK reflects
1681 	 * more up to date window information we update our window information.
1682 	 */
1683 	case TCPS_ESTABLISHED:
1684 	case TCPS_FIN_WAIT_1:
1685 	case TCPS_FIN_WAIT_2:
1686 	case TCPS_CLOSE_WAIT:
1687 	case TCPS_CLOSING:
1688 	case TCPS_LAST_ACK:
1689 	case TCPS_TIME_WAIT:
1690 
1691 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1692 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1693 				tcpstat.tcps_rcvdupack++;
1694 				/*
1695 				 * If we have outstanding data (other than
1696 				 * a window probe), this is a completely
1697 				 * duplicate ack (ie, window info didn't
1698 				 * change), the ack is the biggest we've
1699 				 * seen and we've seen exactly our rexmt
1700 				 * threshhold of them, assume a packet
1701 				 * has been dropped and retransmit it.
1702 				 * Kludge snd_nxt & the congestion
1703 				 * window so we send only this one
1704 				 * packet.
1705 				 *
1706 				 * We know we're losing at the current
1707 				 * window size so do congestion avoidance
1708 				 * (set ssthresh to half the current window
1709 				 * and pull our congestion window back to
1710 				 * the new ssthresh).
1711 				 *
1712 				 * Dup acks mean that packets have left the
1713 				 * network (they're now cached at the receiver)
1714 				 * so bump cwnd by the amount in the receiver
1715 				 * to keep a constant cwnd packets in the
1716 				 * network.
1717 				 */
1718 				if (!callout_active(tp->tt_rexmt) ||
1719 				    th->th_ack != tp->snd_una)
1720 					tp->t_dupacks = 0;
1721 				else if (++tp->t_dupacks > tcprexmtthresh ||
1722 					 (tcp_do_newreno &&
1723 					  SEQ_LT(tp->snd_una,
1724 					  	 tp->snd_recover))) {
1725 					tp->snd_cwnd += tp->t_maxseg;
1726 					(void) tcp_output(tp);
1727 					goto drop;
1728 				} else if (tp->t_dupacks == tcprexmtthresh) {
1729 					tcp_seq onxt = tp->snd_nxt;
1730 					u_int win;
1731 					if (tcp_do_newreno &&
1732 					    SEQ_LEQ(th->th_ack, tp->snd_high)) {
1733 						tp->t_dupacks = 0;
1734 						break;
1735 					}
1736 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1737 					    2 / tp->t_maxseg;
1738 					if (win < 2)
1739 						win = 2;
1740 					tp->snd_ssthresh = win * tp->t_maxseg;
1741 					tp->snd_recover = tp->snd_max;
1742 					callout_stop(tp->tt_rexmt);
1743 					tp->t_rtttime = 0;
1744 					tp->snd_nxt = th->th_ack;
1745 					tp->snd_cwnd = tp->t_maxseg;
1746 					(void) tcp_output(tp);
1747 					tp->snd_cwnd = tp->snd_ssthresh +
1748 						tp->t_maxseg * tp->t_dupacks;
1749 					if (SEQ_GT(onxt, tp->snd_nxt))
1750 						tp->snd_nxt = onxt;
1751 					goto drop;
1752 				}
1753 			} else
1754 				tp->t_dupacks = 0;
1755 			break;
1756 		}
1757 
1758 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1759 
1760 		/*
1761 		 * If the congestion window was inflated to account
1762 		 * for the other side's cached packets, retract it.
1763 		 */
1764 		if (tcp_do_newreno) {
1765 			if (SEQ_LT(tp->snd_una, tp->snd_recover)) {
1766 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1767 					tcp_newreno_partial_ack(tp, th);
1768 				} else {
1769 					/*
1770 					 * Window inflation should have left us
1771 					 * with approximately snd_ssthresh
1772 					 * outstanding data.
1773 					 * But in case we would be inclined to
1774 					 * send a burst, better to do it via
1775 					 * the slow start mechanism.
1776 					 */
1777 					if (SEQ_GT(th->th_ack +
1778 							tp->snd_ssthresh,
1779 						   tp->snd_max))
1780 						tp->snd_cwnd = tp->snd_max -
1781 								th->th_ack +
1782 								tp->t_maxseg;
1783 					else
1784 						tp->snd_cwnd = tp->snd_ssthresh;
1785 				}
1786 			}
1787                 } else {
1788                         if (tp->t_dupacks >= tcprexmtthresh &&
1789                             tp->snd_cwnd > tp->snd_ssthresh)
1790 				tp->snd_cwnd = tp->snd_ssthresh;
1791                 }
1792 		tp->t_dupacks = 0;
1793 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1794 			tcpstat.tcps_rcvacktoomuch++;
1795 			goto dropafterack;
1796 		}
1797 		/*
1798 		 * If we reach this point, ACK is not a duplicate,
1799 		 *     i.e., it ACKs something we sent.
1800 		 */
1801 		if (tp->t_flags & TF_NEEDSYN) {
1802 			/*
1803 			 * T/TCP: Connection was half-synchronized, and our
1804 			 * SYN has been ACK'd (so connection is now fully
1805 			 * synchronized).  Go to non-starred state,
1806 			 * increment snd_una for ACK of SYN, and check if
1807 			 * we can do window scaling.
1808 			 */
1809 			tp->t_flags &= ~TF_NEEDSYN;
1810 			tp->snd_una++;
1811 			/* Do window scaling? */
1812 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1813 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1814 				tp->snd_scale = tp->requested_s_scale;
1815 				tp->rcv_scale = tp->request_r_scale;
1816 			}
1817 		}
1818 
1819 process_ACK:
1820 		acked = th->th_ack - tp->snd_una;
1821 		tcpstat.tcps_rcvackpack++;
1822 		tcpstat.tcps_rcvackbyte += acked;
1823 
1824 		/*
1825 		 * If we just performed our first retransmit, and the ACK
1826 		 * arrives within our recovery window, then it was a mistake
1827 		 * to do the retransmit in the first place.  Recover our
1828 		 * original cwnd and ssthresh, and proceed to transmit where
1829 		 * we left off.
1830 		 */
1831 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1832 			++tcpstat.tcps_sndrexmitbad;
1833 			tp->snd_cwnd = tp->snd_cwnd_prev;
1834 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1835 			tp->snd_high = tp->snd_high_prev;
1836 			tp->snd_nxt = tp->snd_max;
1837 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1838 		}
1839 
1840 		/*
1841 		 * If we have a timestamp reply, update smoothed
1842 		 * round trip time.  If no timestamp is present but
1843 		 * transmit timer is running and timed sequence
1844 		 * number was acked, update smoothed round trip time.
1845 		 * Since we now have an rtt measurement, cancel the
1846 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1847 		 * Recompute the initial retransmit timer.
1848 		 *
1849 		 * Some boxes send broken timestamp replies
1850 		 * during the SYN+ACK phase, ignore
1851 		 * timestamps of 0 or we could calculate a
1852 		 * huge RTT and blow up the retransmit timer.
1853 		 */
1854 		if ((to.to_flags & TOF_TS) != 0 &&
1855 		    to.to_tsecr) {
1856 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1857 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1858 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1859 		}
1860 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1861 
1862 		/*
1863 		 * If all outstanding data is acked, stop retransmit
1864 		 * timer and remember to restart (more output or persist).
1865 		 * If there is more data to be acked, restart retransmit
1866 		 * timer, using current (possibly backed-off) value.
1867 		 */
1868 		if (th->th_ack == tp->snd_max) {
1869 			callout_stop(tp->tt_rexmt);
1870 			needoutput = 1;
1871 		} else if (!callout_active(tp->tt_persist))
1872 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1873 				      tcp_timer_rexmt, tp);
1874 
1875 		/*
1876 		 * If no data (only SYN) was ACK'd,
1877 		 *    skip rest of ACK processing.
1878 		 */
1879 		if (acked == 0)
1880 			goto step6;
1881 
1882 		/*
1883 		 * When new data is acked, open the congestion window.
1884 		 * If the window gives us less than ssthresh packets
1885 		 * in flight, open exponentially (maxseg per packet).
1886 		 * Otherwise open linearly: maxseg per window
1887 		 * (maxseg^2 / cwnd per packet).
1888 		 */
1889 		if (!tcp_do_newreno || SEQ_GEQ(tp->snd_una, tp->snd_recover)) {
1890 			register u_int cw = tp->snd_cwnd;
1891 			register u_int incr = tp->t_maxseg;
1892 			if (cw > tp->snd_ssthresh)
1893 				incr = incr * incr / cw;
1894 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
1895 		}
1896 		if (acked > so->so_snd.sb_cc) {
1897 			tp->snd_wnd -= so->so_snd.sb_cc;
1898 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1899 			ourfinisacked = 1;
1900 		} else {
1901 			sbdrop(&so->so_snd, acked);
1902 			tp->snd_wnd -= acked;
1903 			ourfinisacked = 0;
1904 		}
1905 		sowwakeup(so);
1906 		/* detect una wraparound */
1907 		if (SEQ_GEQ(tp->snd_una, tp->snd_recover) &&
1908 		    SEQ_LT(th->th_ack, tp->snd_recover))
1909 			tp->snd_recover = th->th_ack;
1910 		if (SEQ_GT(tp->snd_una, tp->snd_high) &&
1911 		    SEQ_LEQ(th->th_ack, tp->snd_high))
1912 			tp->snd_high = th->th_ack - 1;
1913 		tp->snd_una = th->th_ack;
1914 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1915 			tp->snd_nxt = tp->snd_una;
1916 
1917 		switch (tp->t_state) {
1918 
1919 		/*
1920 		 * In FIN_WAIT_1 STATE in addition to the processing
1921 		 * for the ESTABLISHED state if our FIN is now acknowledged
1922 		 * then enter FIN_WAIT_2.
1923 		 */
1924 		case TCPS_FIN_WAIT_1:
1925 			if (ourfinisacked) {
1926 				/*
1927 				 * If we can't receive any more
1928 				 * data, then closing user can proceed.
1929 				 * Starting the timer is contrary to the
1930 				 * specification, but if we don't get a FIN
1931 				 * we'll hang forever.
1932 				 */
1933 				if (so->so_state & SS_CANTRCVMORE) {
1934 					soisdisconnected(so);
1935 					callout_reset(tp->tt_2msl, tcp_maxidle,
1936 						      tcp_timer_2msl, tp);
1937 				}
1938 				tp->t_state = TCPS_FIN_WAIT_2;
1939 			}
1940 			break;
1941 
1942 	 	/*
1943 		 * In CLOSING STATE in addition to the processing for
1944 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1945 		 * then enter the TIME-WAIT state, otherwise ignore
1946 		 * the segment.
1947 		 */
1948 		case TCPS_CLOSING:
1949 			if (ourfinisacked) {
1950 				tp->t_state = TCPS_TIME_WAIT;
1951 				tcp_canceltimers(tp);
1952 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
1953 				if (tp->cc_recv != 0 &&
1954 				    (ticks - tp->t_starttime) < tcp_msl)
1955 					callout_reset(tp->tt_2msl,
1956 						      tp->t_rxtcur *
1957 						      TCPTV_TWTRUNC,
1958 						      tcp_timer_2msl, tp);
1959 				else
1960 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
1961 						      tcp_timer_2msl, tp);
1962 				soisdisconnected(so);
1963 			}
1964 			break;
1965 
1966 		/*
1967 		 * In LAST_ACK, we may still be waiting for data to drain
1968 		 * and/or to be acked, as well as for the ack of our FIN.
1969 		 * If our FIN is now acknowledged, delete the TCB,
1970 		 * enter the closed state and return.
1971 		 */
1972 		case TCPS_LAST_ACK:
1973 			if (ourfinisacked) {
1974 				tp = tcp_close(tp);
1975 				goto drop;
1976 			}
1977 			break;
1978 
1979 		/*
1980 		 * In TIME_WAIT state the only thing that should arrive
1981 		 * is a retransmission of the remote FIN.  Acknowledge
1982 		 * it and restart the finack timer.
1983 		 */
1984 		case TCPS_TIME_WAIT:
1985 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
1986 				      tcp_timer_2msl, tp);
1987 			goto dropafterack;
1988 		}
1989 	}
1990 
1991 step6:
1992 	/*
1993 	 * Update window information.
1994 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1995 	 */
1996 	if ((thflags & TH_ACK) &&
1997 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1998 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1999 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2000 		/* keep track of pure window updates */
2001 		if (tlen == 0 &&
2002 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2003 			tcpstat.tcps_rcvwinupd++;
2004 		tp->snd_wnd = tiwin;
2005 		tp->snd_wl1 = th->th_seq;
2006 		tp->snd_wl2 = th->th_ack;
2007 		if (tp->snd_wnd > tp->max_sndwnd)
2008 			tp->max_sndwnd = tp->snd_wnd;
2009 		needoutput = 1;
2010 	}
2011 
2012 	/*
2013 	 * Process segments with URG.
2014 	 */
2015 	if ((thflags & TH_URG) && th->th_urp &&
2016 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2017 		/*
2018 		 * This is a kludge, but if we receive and accept
2019 		 * random urgent pointers, we'll crash in
2020 		 * soreceive.  It's hard to imagine someone
2021 		 * actually wanting to send this much urgent data.
2022 		 */
2023 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2024 			th->th_urp = 0;			/* XXX */
2025 			thflags &= ~TH_URG;		/* XXX */
2026 			goto dodata;			/* XXX */
2027 		}
2028 		/*
2029 		 * If this segment advances the known urgent pointer,
2030 		 * then mark the data stream.  This should not happen
2031 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2032 		 * a FIN has been received from the remote side.
2033 		 * In these states we ignore the URG.
2034 		 *
2035 		 * According to RFC961 (Assigned Protocols),
2036 		 * the urgent pointer points to the last octet
2037 		 * of urgent data.  We continue, however,
2038 		 * to consider it to indicate the first octet
2039 		 * of data past the urgent section as the original
2040 		 * spec states (in one of two places).
2041 		 */
2042 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2043 			tp->rcv_up = th->th_seq + th->th_urp;
2044 			so->so_oobmark = so->so_rcv.sb_cc +
2045 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2046 			if (so->so_oobmark == 0)
2047 				so->so_state |= SS_RCVATMARK;
2048 			sohasoutofband(so);
2049 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2050 		}
2051 		/*
2052 		 * Remove out of band data so doesn't get presented to user.
2053 		 * This can happen independent of advancing the URG pointer,
2054 		 * but if two URG's are pending at once, some out-of-band
2055 		 * data may creep in... ick.
2056 		 */
2057 		if (th->th_urp <= (u_long)tlen &&
2058 		    !(so->so_options & SO_OOBINLINE)) {
2059 			/* hdr drop is delayed */
2060 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2061 		}
2062 	} else {
2063 		/*
2064 		 * If no out of band data is expected,
2065 		 * pull receive urgent pointer along
2066 		 * with the receive window.
2067 		 */
2068 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2069 			tp->rcv_up = tp->rcv_nxt;
2070 	}
2071 dodata:							/* XXX */
2072 	KASSERT(headlocked, ("headlocked"));
2073 	INP_INFO_WUNLOCK(&tcbinfo);
2074 	headlocked = 0;
2075 	/*
2076 	 * Process the segment text, merging it into the TCP sequencing queue,
2077 	 * and arranging for acknowledgment of receipt if necessary.
2078 	 * This process logically involves adjusting tp->rcv_wnd as data
2079 	 * is presented to the user (this happens in tcp_usrreq.c,
2080 	 * case PRU_RCVD).  If a FIN has already been received on this
2081 	 * connection then we just ignore the text.
2082 	 */
2083 	if ((tlen || (thflags & TH_FIN)) &&
2084 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2085 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2086 		/*
2087 		 * Insert segment which includes th into TCP reassembly queue
2088 		 * with control block tp.  Set thflags to whether reassembly now
2089 		 * includes a segment with FIN.  This handles the common case
2090 		 * inline (segment is the next to be received on an established
2091 		 * connection, and the queue is empty), avoiding linkage into
2092 		 * and removal from the queue and repetition of various
2093 		 * conversions.
2094 		 * Set DELACK for segments received in order, but ack
2095 		 * immediately when segments are out of order (so
2096 		 * fast retransmit can work).
2097 		 */
2098 		if (th->th_seq == tp->rcv_nxt &&
2099 		    LIST_EMPTY(&tp->t_segq) &&
2100 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2101 			if (DELAY_ACK(tp))
2102 				callout_reset(tp->tt_delack, tcp_delacktime,
2103 					      tcp_timer_delack, tp);
2104 			else
2105 				tp->t_flags |= TF_ACKNOW;
2106 			tp->rcv_nxt += tlen;
2107 			thflags = th->th_flags & TH_FIN;
2108 			tcpstat.tcps_rcvpack++;
2109 			tcpstat.tcps_rcvbyte += tlen;
2110 			ND6_HINT(tp);
2111 			if (so->so_state & SS_CANTRCVMORE)
2112 				m_freem(m);
2113 			else
2114 				sbappend(&so->so_rcv, m);
2115 			sorwakeup(so);
2116 		} else {
2117 			thflags = tcp_reass(tp, th, &tlen, m);
2118 			tp->t_flags |= TF_ACKNOW;
2119 		}
2120 
2121 		/*
2122 		 * Note the amount of data that peer has sent into
2123 		 * our window, in order to estimate the sender's
2124 		 * buffer size.
2125 		 */
2126 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2127 	} else {
2128 		m_freem(m);
2129 		thflags &= ~TH_FIN;
2130 	}
2131 
2132 	/*
2133 	 * If FIN is received ACK the FIN and let the user know
2134 	 * that the connection is closing.
2135 	 */
2136 	if (thflags & TH_FIN) {
2137 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2138 			socantrcvmore(so);
2139 			/*
2140 			 * If connection is half-synchronized
2141 			 * (ie NEEDSYN flag on) then delay ACK,
2142 			 * so it may be piggybacked when SYN is sent.
2143 			 * Otherwise, since we received a FIN then no
2144 			 * more input can be expected, send ACK now.
2145 			 */
2146 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2147                                 callout_reset(tp->tt_delack, tcp_delacktime,
2148                                     tcp_timer_delack, tp);
2149 			else
2150 				tp->t_flags |= TF_ACKNOW;
2151 			tp->rcv_nxt++;
2152 		}
2153 		switch (tp->t_state) {
2154 
2155 	 	/*
2156 		 * In SYN_RECEIVED and ESTABLISHED STATES
2157 		 * enter the CLOSE_WAIT state.
2158 		 */
2159 		case TCPS_SYN_RECEIVED:
2160 			tp->t_starttime = ticks;
2161 			/*FALLTHROUGH*/
2162 		case TCPS_ESTABLISHED:
2163 			tp->t_state = TCPS_CLOSE_WAIT;
2164 			break;
2165 
2166 	 	/*
2167 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2168 		 * enter the CLOSING state.
2169 		 */
2170 		case TCPS_FIN_WAIT_1:
2171 			tp->t_state = TCPS_CLOSING;
2172 			break;
2173 
2174 	 	/*
2175 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2176 		 * starting the time-wait timer, turning off the other
2177 		 * standard timers.
2178 		 */
2179 		case TCPS_FIN_WAIT_2:
2180 			tp->t_state = TCPS_TIME_WAIT;
2181 			tcp_canceltimers(tp);
2182 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2183 			if (tp->cc_recv != 0 &&
2184 			    (ticks - tp->t_starttime) < tcp_msl) {
2185 				callout_reset(tp->tt_2msl,
2186 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2187 					      tcp_timer_2msl, tp);
2188 				/* For transaction client, force ACK now. */
2189 				tp->t_flags |= TF_ACKNOW;
2190 			}
2191 			else
2192 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2193 					      tcp_timer_2msl, tp);
2194 			soisdisconnected(so);
2195 			break;
2196 
2197 		/*
2198 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2199 		 */
2200 		case TCPS_TIME_WAIT:
2201 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2202 				      tcp_timer_2msl, tp);
2203 			break;
2204 		}
2205 	}
2206 #ifdef TCPDEBUG
2207 	if (so->so_options & SO_DEBUG)
2208 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2209 			  &tcp_savetcp, 0);
2210 #endif
2211 
2212 	/*
2213 	 * Return any desired output.
2214 	 */
2215 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2216 		(void) tcp_output(tp);
2217 	INP_UNLOCK(inp);
2218 	return;
2219 
2220 dropafterack:
2221 	/*
2222 	 * Generate an ACK dropping incoming segment if it occupies
2223 	 * sequence space, where the ACK reflects our state.
2224 	 *
2225 	 * We can now skip the test for the RST flag since all
2226 	 * paths to this code happen after packets containing
2227 	 * RST have been dropped.
2228 	 *
2229 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2230 	 * segment we received passes the SYN-RECEIVED ACK test.
2231 	 * If it fails send a RST.  This breaks the loop in the
2232 	 * "LAND" DoS attack, and also prevents an ACK storm
2233 	 * between two listening ports that have been sent forged
2234 	 * SYN segments, each with the source address of the other.
2235 	 */
2236 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2237 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2238 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2239 		rstreason = BANDLIM_RST_OPENPORT;
2240 		goto dropwithreset;
2241 	}
2242 #ifdef TCPDEBUG
2243 	if (so->so_options & SO_DEBUG)
2244 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2245 			  &tcp_savetcp, 0);
2246 #endif
2247 	if (headlocked)
2248 		INP_INFO_WUNLOCK(&tcbinfo);
2249 	m_freem(m);
2250 	tp->t_flags |= TF_ACKNOW;
2251 	(void) tcp_output(tp);
2252 	INP_UNLOCK(inp);
2253 	return;
2254 
2255 dropwithreset:
2256 	/*
2257 	 * Generate a RST, dropping incoming segment.
2258 	 * Make ACK acceptable to originator of segment.
2259 	 * Don't bother to respond if destination was broadcast/multicast.
2260 	 */
2261 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2262 		goto drop;
2263 	if (isipv6) {
2264 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2265 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2266 			goto drop;
2267 	} else {
2268 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2269 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2270 	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2271 	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2272 			goto drop;
2273 	}
2274 	/* IPv6 anycast check is done at tcp6_input() */
2275 
2276 	/*
2277 	 * Perform bandwidth limiting.
2278 	 */
2279 	if (badport_bandlim(rstreason) < 0)
2280 		goto drop;
2281 
2282 #ifdef TCPDEBUG
2283 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2284 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2285 			  &tcp_savetcp, 0);
2286 #endif
2287 
2288 	if (tp)
2289 		INP_UNLOCK(inp);
2290 
2291 	if (thflags & TH_ACK)
2292 		/* mtod() below is safe as long as hdr dropping is delayed */
2293 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2294 			    TH_RST);
2295 	else {
2296 		if (thflags & TH_SYN)
2297 			tlen++;
2298 		/* mtod() below is safe as long as hdr dropping is delayed */
2299 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2300 			    (tcp_seq)0, TH_RST|TH_ACK);
2301 	}
2302 	if (headlocked)
2303 		INP_INFO_WUNLOCK(&tcbinfo);
2304 	return;
2305 
2306 drop:
2307 	/*
2308 	 * Drop space held by incoming segment and return.
2309 	 */
2310 #ifdef TCPDEBUG
2311 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2312 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2313 			  &tcp_savetcp, 0);
2314 #endif
2315 	if (tp)
2316 		INP_UNLOCK(inp);
2317 	m_freem(m);
2318 	if (headlocked)
2319 		INP_INFO_WUNLOCK(&tcbinfo);
2320 	return;
2321 }
2322 
2323 /*
2324  * Parse TCP options and place in tcpopt.
2325  */
2326 static void
2327 tcp_dooptions(to, cp, cnt, is_syn)
2328 	struct tcpopt *to;
2329 	u_char *cp;
2330 	int cnt;
2331 {
2332 	int opt, optlen;
2333 
2334 	to->to_flags = 0;
2335 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2336 		opt = cp[0];
2337 		if (opt == TCPOPT_EOL)
2338 			break;
2339 		if (opt == TCPOPT_NOP)
2340 			optlen = 1;
2341 		else {
2342 			if (cnt < 2)
2343 				break;
2344 			optlen = cp[1];
2345 			if (optlen < 2 || optlen > cnt)
2346 				break;
2347 		}
2348 		switch (opt) {
2349 		case TCPOPT_MAXSEG:
2350 			if (optlen != TCPOLEN_MAXSEG)
2351 				continue;
2352 			if (!is_syn)
2353 				continue;
2354 			to->to_flags |= TOF_MSS;
2355 			bcopy((char *)cp + 2,
2356 			    (char *)&to->to_mss, sizeof(to->to_mss));
2357 			to->to_mss = ntohs(to->to_mss);
2358 			break;
2359 		case TCPOPT_WINDOW:
2360 			if (optlen != TCPOLEN_WINDOW)
2361 				continue;
2362 			if (! is_syn)
2363 				continue;
2364 			to->to_flags |= TOF_SCALE;
2365 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2366 			break;
2367 		case TCPOPT_TIMESTAMP:
2368 			if (optlen != TCPOLEN_TIMESTAMP)
2369 				continue;
2370 			to->to_flags |= TOF_TS;
2371 			bcopy((char *)cp + 2,
2372 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2373 			to->to_tsval = ntohl(to->to_tsval);
2374 			bcopy((char *)cp + 6,
2375 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2376 			to->to_tsecr = ntohl(to->to_tsecr);
2377 			break;
2378 		case TCPOPT_CC:
2379 			if (optlen != TCPOLEN_CC)
2380 				continue;
2381 			to->to_flags |= TOF_CC;
2382 			bcopy((char *)cp + 2,
2383 			    (char *)&to->to_cc, sizeof(to->to_cc));
2384 			to->to_cc = ntohl(to->to_cc);
2385 			break;
2386 		case TCPOPT_CCNEW:
2387 			if (optlen != TCPOLEN_CC)
2388 				continue;
2389 			if (!is_syn)
2390 				continue;
2391 			to->to_flags |= TOF_CCNEW;
2392 			bcopy((char *)cp + 2,
2393 			    (char *)&to->to_cc, sizeof(to->to_cc));
2394 			to->to_cc = ntohl(to->to_cc);
2395 			break;
2396 		case TCPOPT_CCECHO:
2397 			if (optlen != TCPOLEN_CC)
2398 				continue;
2399 			if (!is_syn)
2400 				continue;
2401 			to->to_flags |= TOF_CCECHO;
2402 			bcopy((char *)cp + 2,
2403 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2404 			to->to_ccecho = ntohl(to->to_ccecho);
2405 			break;
2406 		default:
2407 			continue;
2408 		}
2409 	}
2410 }
2411 
2412 /*
2413  * Pull out of band byte out of a segment so
2414  * it doesn't appear in the user's data queue.
2415  * It is still reflected in the segment length for
2416  * sequencing purposes.
2417  */
2418 static void
2419 tcp_pulloutofband(so, th, m, off)
2420 	struct socket *so;
2421 	struct tcphdr *th;
2422 	register struct mbuf *m;
2423 	int off;		/* delayed to be droped hdrlen */
2424 {
2425 	int cnt = off + th->th_urp - 1;
2426 
2427 	while (cnt >= 0) {
2428 		if (m->m_len > cnt) {
2429 			char *cp = mtod(m, caddr_t) + cnt;
2430 			struct tcpcb *tp = sototcpcb(so);
2431 
2432 			tp->t_iobc = *cp;
2433 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2434 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2435 			m->m_len--;
2436 			if (m->m_flags & M_PKTHDR)
2437 				m->m_pkthdr.len--;
2438 			return;
2439 		}
2440 		cnt -= m->m_len;
2441 		m = m->m_next;
2442 		if (m == 0)
2443 			break;
2444 	}
2445 	panic("tcp_pulloutofband");
2446 }
2447 
2448 /*
2449  * Collect new round-trip time estimate
2450  * and update averages and current timeout.
2451  */
2452 static void
2453 tcp_xmit_timer(tp, rtt)
2454 	register struct tcpcb *tp;
2455 	int rtt;
2456 {
2457 	register int delta;
2458 
2459 	tcpstat.tcps_rttupdated++;
2460 	tp->t_rttupdated++;
2461 	if (tp->t_srtt != 0) {
2462 		/*
2463 		 * srtt is stored as fixed point with 5 bits after the
2464 		 * binary point (i.e., scaled by 8).  The following magic
2465 		 * is equivalent to the smoothing algorithm in rfc793 with
2466 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2467 		 * point).  Adjust rtt to origin 0.
2468 		 */
2469 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2470 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2471 
2472 		if ((tp->t_srtt += delta) <= 0)
2473 			tp->t_srtt = 1;
2474 
2475 		/*
2476 		 * We accumulate a smoothed rtt variance (actually, a
2477 		 * smoothed mean difference), then set the retransmit
2478 		 * timer to smoothed rtt + 4 times the smoothed variance.
2479 		 * rttvar is stored as fixed point with 4 bits after the
2480 		 * binary point (scaled by 16).  The following is
2481 		 * equivalent to rfc793 smoothing with an alpha of .75
2482 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2483 		 * rfc793's wired-in beta.
2484 		 */
2485 		if (delta < 0)
2486 			delta = -delta;
2487 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2488 		if ((tp->t_rttvar += delta) <= 0)
2489 			tp->t_rttvar = 1;
2490 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2491 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2492 	} else {
2493 		/*
2494 		 * No rtt measurement yet - use the unsmoothed rtt.
2495 		 * Set the variance to half the rtt (so our first
2496 		 * retransmit happens at 3*rtt).
2497 		 */
2498 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2499 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2500 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2501 	}
2502 	tp->t_rtttime = 0;
2503 	tp->t_rxtshift = 0;
2504 
2505 	/*
2506 	 * the retransmit should happen at rtt + 4 * rttvar.
2507 	 * Because of the way we do the smoothing, srtt and rttvar
2508 	 * will each average +1/2 tick of bias.  When we compute
2509 	 * the retransmit timer, we want 1/2 tick of rounding and
2510 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2511 	 * firing of the timer.  The bias will give us exactly the
2512 	 * 1.5 tick we need.  But, because the bias is
2513 	 * statistical, we have to test that we don't drop below
2514 	 * the minimum feasible timer (which is 2 ticks).
2515 	 */
2516 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2517 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2518 
2519 	/*
2520 	 * We received an ack for a packet that wasn't retransmitted;
2521 	 * it is probably safe to discard any error indications we've
2522 	 * received recently.  This isn't quite right, but close enough
2523 	 * for now (a route might have failed after we sent a segment,
2524 	 * and the return path might not be symmetrical).
2525 	 */
2526 	tp->t_softerror = 0;
2527 }
2528 
2529 /*
2530  * Determine a reasonable value for maxseg size.
2531  * If the route is known, check route for mtu.
2532  * If none, use an mss that can be handled on the outgoing
2533  * interface without forcing IP to fragment; if bigger than
2534  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2535  * to utilize large mbufs.  If no route is found, route has no mtu,
2536  * or the destination isn't local, use a default, hopefully conservative
2537  * size (usually 512 or the default IP max size, but no more than the mtu
2538  * of the interface), as we can't discover anything about intervening
2539  * gateways or networks.  We also initialize the congestion/slow start
2540  * window to be a single segment if the destination isn't local.
2541  * While looking at the routing entry, we also initialize other path-dependent
2542  * parameters from pre-set or cached values in the routing entry.
2543  *
2544  * Also take into account the space needed for options that we
2545  * send regularly.  Make maxseg shorter by that amount to assure
2546  * that we can send maxseg amount of data even when the options
2547  * are present.  Store the upper limit of the length of options plus
2548  * data in maxopd.
2549  *
2550  * NOTE that this routine is only called when we process an incoming
2551  * segment, for outgoing segments only tcp_mssopt is called.
2552  *
2553  * In case of T/TCP, we call this routine during implicit connection
2554  * setup as well (offer = -1), to initialize maxseg from the cached
2555  * MSS of our peer.
2556  */
2557 void
2558 tcp_mss(tp, offer)
2559 	struct tcpcb *tp;
2560 	int offer;
2561 {
2562 	register struct rtentry *rt;
2563 	struct ifnet *ifp;
2564 	register int rtt, mss;
2565 	u_long bufsize;
2566 	struct inpcb *inp = tp->t_inpcb;
2567 	struct socket *so;
2568 	struct rmxp_tao *taop;
2569 	int origoffer = offer;
2570 #ifdef INET6
2571 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2572 	size_t min_protoh = isipv6 ?
2573 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2574 			    sizeof (struct tcpiphdr);
2575 #else
2576 	const int isipv6 = 0;
2577 	const size_t min_protoh = sizeof (struct tcpiphdr);
2578 #endif
2579 
2580 	if (isipv6)
2581 		rt = tcp_rtlookup6(&inp->inp_inc);
2582 	else
2583 		rt = tcp_rtlookup(&inp->inp_inc);
2584 	if (rt == NULL) {
2585 		tp->t_maxopd = tp->t_maxseg =
2586 				isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2587 		return;
2588 	}
2589 	ifp = rt->rt_ifp;
2590 	so = inp->inp_socket;
2591 
2592 	taop = rmx_taop(rt->rt_rmx);
2593 	/*
2594 	 * Offer == -1 means that we didn't receive SYN yet,
2595 	 * use cached value in that case;
2596 	 */
2597 	if (offer == -1)
2598 		offer = taop->tao_mssopt;
2599 	/*
2600 	 * Offer == 0 means that there was no MSS on the SYN segment,
2601 	 * in this case we use tcp_mssdflt.
2602 	 */
2603 	if (offer == 0)
2604 		offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2605 	else
2606 		/*
2607 		 * Sanity check: make sure that maxopd will be large
2608 		 * enough to allow some data on segments even is the
2609 		 * all the option space is used (40bytes).  Otherwise
2610 		 * funny things may happen in tcp_output.
2611 		 */
2612 		offer = max(offer, 64);
2613 	taop->tao_mssopt = offer;
2614 
2615 	/*
2616 	 * While we're here, check if there's an initial rtt
2617 	 * or rttvar.  Convert from the route-table units
2618 	 * to scaled multiples of the slow timeout timer.
2619 	 */
2620 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2621 		/*
2622 		 * XXX the lock bit for RTT indicates that the value
2623 		 * is also a minimum value; this is subject to time.
2624 		 */
2625 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2626 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2627 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2628 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2629 		tcpstat.tcps_usedrtt++;
2630 		if (rt->rt_rmx.rmx_rttvar) {
2631 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2632 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2633 			tcpstat.tcps_usedrttvar++;
2634 		} else {
2635 			/* default variation is +- 1 rtt */
2636 			tp->t_rttvar =
2637 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2638 		}
2639 		TCPT_RANGESET(tp->t_rxtcur,
2640 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2641 			      tp->t_rttmin, TCPTV_REXMTMAX);
2642 	}
2643 	/*
2644 	 * if there's an mtu associated with the route, use it
2645 	 * else, use the link mtu.
2646 	 */
2647 	if (rt->rt_rmx.rmx_mtu)
2648 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2649 	else {
2650 		if (isipv6) {
2651 			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2652 				min_protoh;
2653 			if (!in6_localaddr(&inp->in6p_faddr))
2654 				mss = min(mss, tcp_v6mssdflt);
2655 		} else {
2656 			mss = ifp->if_mtu - min_protoh;
2657 			if (!in_localaddr(inp->inp_faddr))
2658 				mss = min(mss, tcp_mssdflt);
2659 		}
2660 	}
2661 	mss = min(mss, offer);
2662 	/*
2663 	 * maxopd stores the maximum length of data AND options
2664 	 * in a segment; maxseg is the amount of data in a normal
2665 	 * segment.  We need to store this value (maxopd) apart
2666 	 * from maxseg, because now every segment carries options
2667 	 * and thus we normally have somewhat less data in segments.
2668 	 */
2669 	tp->t_maxopd = mss;
2670 
2671 	/*
2672 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2673 	 * were received yet.  In this case we just guess, otherwise
2674 	 * we do the same as before T/TCP.
2675 	 */
2676  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2677 	    (origoffer == -1 ||
2678 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2679 		mss -= TCPOLEN_TSTAMP_APPA;
2680  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2681 	    (origoffer == -1 ||
2682 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2683 		mss -= TCPOLEN_CC_APPA;
2684 
2685 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2686 		if (mss > MCLBYTES)
2687 			mss &= ~(MCLBYTES-1);
2688 #else
2689 		if (mss > MCLBYTES)
2690 			mss = mss / MCLBYTES * MCLBYTES;
2691 #endif
2692 	/*
2693 	 * If there's a pipesize, change the socket buffer
2694 	 * to that size.  Make the socket buffers an integral
2695 	 * number of mss units; if the mss is larger than
2696 	 * the socket buffer, decrease the mss.
2697 	 */
2698 #ifdef RTV_SPIPE
2699 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2700 #endif
2701 		bufsize = so->so_snd.sb_hiwat;
2702 	if (bufsize < mss)
2703 		mss = bufsize;
2704 	else {
2705 		bufsize = roundup(bufsize, mss);
2706 		if (bufsize > sb_max)
2707 			bufsize = sb_max;
2708 		if (bufsize > so->so_snd.sb_hiwat)
2709 			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2710 	}
2711 	tp->t_maxseg = mss;
2712 
2713 #ifdef RTV_RPIPE
2714 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2715 #endif
2716 		bufsize = so->so_rcv.sb_hiwat;
2717 	if (bufsize > mss) {
2718 		bufsize = roundup(bufsize, mss);
2719 		if (bufsize > sb_max)
2720 			bufsize = sb_max;
2721 		if (bufsize > so->so_rcv.sb_hiwat)
2722 			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2723 	}
2724 
2725 	/*
2726 	 * Set the slow-start flight size depending on whether this
2727 	 * is a local network or not.
2728 	 */
2729 	if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2730 	    (!isipv6 && in_localaddr(inp->inp_faddr)))
2731 		tp->snd_cwnd = mss * ss_fltsz_local;
2732 	else
2733 		tp->snd_cwnd = mss * ss_fltsz;
2734 
2735 	if (rt->rt_rmx.rmx_ssthresh) {
2736 		/*
2737 		 * There's some sort of gateway or interface
2738 		 * buffer limit on the path.  Use this to set
2739 		 * the slow start threshhold, but set the
2740 		 * threshold to no less than 2*mss.
2741 		 */
2742 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2743 		tcpstat.tcps_usedssthresh++;
2744 	}
2745 }
2746 
2747 /*
2748  * Determine the MSS option to send on an outgoing SYN.
2749  */
2750 int
2751 tcp_mssopt(tp)
2752 	struct tcpcb *tp;
2753 {
2754 	struct rtentry *rt;
2755 #ifdef INET6
2756 	int isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2757 	size_t min_protoh = isipv6 ?
2758 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2759 			    sizeof (struct tcpiphdr);
2760 #else
2761 	const int isipv6 = 0;
2762 	const size_t min_protoh = sizeof (struct tcpiphdr);
2763 #endif
2764 
2765 	if (isipv6)
2766 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2767 	else
2768 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2769 	if (rt == NULL)
2770 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2771 
2772 	return (rt->rt_ifp->if_mtu - min_protoh);
2773 }
2774 
2775 
2776 /*
2777  * On a partial ack arrives, force the retransmission of the
2778  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2779  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2780  * be started again.
2781  */
2782 static void
2783 tcp_newreno_partial_ack(tp, th)
2784 	struct tcpcb *tp;
2785 	struct tcphdr *th;
2786 {
2787 	tcp_seq onxt = tp->snd_nxt;
2788 	u_long  ocwnd = tp->snd_cwnd;
2789 
2790 	callout_stop(tp->tt_rexmt);
2791 	tp->t_rtttime = 0;
2792 	tp->snd_nxt = th->th_ack;
2793 	/*
2794 	 * Set snd_cwnd to one segment beyond acknowledged offset.
2795 	 * (tp->snd_una has not yet been updated when this function is called.)
2796 	 */
2797 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2798 	tp->t_flags |= TF_ACKNOW;
2799 	(void) tcp_output(tp);
2800 	tp->snd_cwnd = ocwnd;
2801 	if (SEQ_GT(onxt, tp->snd_nxt))
2802 		tp->snd_nxt = onxt;
2803 	/*
2804 	 * Partial window deflation.  Relies on fact that tp->snd_una
2805 	 * not updated yet.
2806 	 */
2807 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2808 }
2809