xref: /freebsd/sys/netinet/tcp_reass.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_input.h"
40 #include "opt_tcp_sack.h"
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/mac.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>		/* for proc0 declaration */
48 #include <sys/protosw.h>
49 #include <sys/signalvar.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 
56 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70 #include <netinet/ip_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/in6_pcb.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #ifdef TCPDEBUG
84 #include <netinet/tcp_debug.h>
85 #endif /* TCPDEBUG */
86 
87 #ifdef FAST_IPSEC
88 #include <netipsec/ipsec.h>
89 #include <netipsec/ipsec6.h>
90 #endif /*FAST_IPSEC*/
91 
92 #ifdef IPSEC
93 #include <netinet6/ipsec.h>
94 #include <netinet6/ipsec6.h>
95 #include <netkey/key.h>
96 #endif /*IPSEC*/
97 
98 #include <machine/in_cksum.h>
99 
100 static const int tcprexmtthresh = 3;
101 
102 struct	tcpstat tcpstat;
103 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
104     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105 
106 static int log_in_vain = 0;
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108     &log_in_vain, 0, "Log all incoming TCP connections");
109 
110 static int blackhole = 0;
111 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
112 	&blackhole, 0, "Do not send RST when dropping refused connections");
113 
114 int tcp_delack_enabled = 1;
115 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
116     &tcp_delack_enabled, 0,
117     "Delay ACK to try and piggyback it onto a data packet");
118 
119 #ifdef TCP_DROP_SYNFIN
120 static int drop_synfin = 0;
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
122     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
123 #endif
124 
125 static int tcp_do_rfc3042 = 1;
126 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
127     &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
128 
129 static int tcp_do_rfc3390 = 1;
130 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
131     &tcp_do_rfc3390, 0,
132     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
133 
134 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
135 	    "TCP Segment Reassembly Queue");
136 
137 static int tcp_reass_maxseg = 0;
138 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
139 	   &tcp_reass_maxseg, 0,
140 	   "Global maximum number of TCP Segments in Reassembly Queue");
141 
142 int tcp_reass_qsize = 0;
143 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
144 	   &tcp_reass_qsize, 0,
145 	   "Global number of TCP Segments currently in Reassembly Queue");
146 
147 static int tcp_reass_maxqlen = 48;
148 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
149 	   &tcp_reass_maxqlen, 0,
150 	   "Maximum number of TCP Segments per individual Reassembly Queue");
151 
152 static int tcp_reass_overflows = 0;
153 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
154 	   &tcp_reass_overflows, 0,
155 	   "Global number of TCP Segment Reassembly Queue Overflows");
156 
157 static int tcp_sack_recovery_initburst = 3;
158 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO,
159 	   initburst, CTLFLAG_RW,
160 	   &tcp_sack_recovery_initburst, 0,
161 	   "Initial Number of Rexmits when sack recovery is set up");
162 
163 struct inpcbhead tcb;
164 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
165 struct inpcbinfo tcbinfo;
166 struct mtx	*tcbinfo_mtx;
167 
168 static void	 tcp_dooptions(struct tcpcb *, struct tcpopt *, u_char *,
169 		     int, int, struct tcphdr *);
170 
171 static void	 tcp_pulloutofband(struct socket *,
172 		     struct tcphdr *, struct mbuf *, int);
173 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
174 		     struct mbuf *);
175 static void	 tcp_xmit_timer(struct tcpcb *, int);
176 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
177 static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
178 		     struct tcphdr *, struct mbuf *, int);
179 
180 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
181 #ifdef INET6
182 #define ND6_HINT(tp) \
183 do { \
184 	if ((tp) && (tp)->t_inpcb && \
185 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
186 		nd6_nud_hint(NULL, NULL, 0); \
187 } while (0)
188 #else
189 #define ND6_HINT(tp)
190 #endif
191 
192 /*
193  * Indicate whether this ack should be delayed.  We can delay the ack if
194  *	- there is no delayed ack timer in progress and
195  *	- our last ack wasn't a 0-sized window.  We never want to delay
196  *	  the ack that opens up a 0-sized window and
197  *		- delayed acks are enabled or
198  *		- this is a half-synchronized T/TCP connection.
199  */
200 #define DELAY_ACK(tp)							\
201 	((!callout_active(tp->tt_delack) &&				\
202 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
203 	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
204 
205 /* Initialize TCP reassembly queue */
206 uma_zone_t	tcp_reass_zone;
207 void
208 tcp_reass_init()
209 {
210 	tcp_reass_maxseg = nmbclusters / 16;
211 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
212 	    &tcp_reass_maxseg);
213 	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
214 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
216 }
217 
218 static int
219 tcp_reass(tp, th, tlenp, m)
220 	register struct tcpcb *tp;
221 	register struct tcphdr *th;
222 	int *tlenp;
223 	struct mbuf *m;
224 {
225 	struct tseg_qent *q;
226 	struct tseg_qent *p = NULL;
227 	struct tseg_qent *nq;
228 	struct tseg_qent *te = NULL;
229 	struct socket *so = tp->t_inpcb->inp_socket;
230 	int flags;
231 
232 	INP_LOCK_ASSERT(tp->t_inpcb);
233 
234 	/*
235 	 * XXX: tcp_reass() is rather inefficient with its data structures
236 	 * and should be rewritten (see NetBSD for optimizations).  While
237 	 * doing that it should move to its own file tcp_reass.c.
238 	 */
239 
240 	/*
241 	 * Call with th==NULL after become established to
242 	 * force pre-ESTABLISHED data up to user socket.
243 	 */
244 	if (th == NULL)
245 		goto present;
246 
247 	/*
248 	 * Limit the number of segments in the reassembly queue to prevent
249 	 * holding on to too many segments (and thus running out of mbufs).
250 	 * Make sure to let the missing segment through which caused this
251 	 * queue.  Always keep one global queue entry spare to be able to
252 	 * process the missing segment.
253 	 */
254 	if (th->th_seq != tp->rcv_nxt &&
255 	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
256 	     tp->t_segqlen >= tcp_reass_maxqlen)) {
257 		tcp_reass_overflows++;
258 		tcpstat.tcps_rcvmemdrop++;
259 		m_freem(m);
260 		return (0);
261 	}
262 
263 	/*
264 	 * Allocate a new queue entry. If we can't, or hit the zone limit
265 	 * just drop the pkt.
266 	 */
267 	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
268 	if (te == NULL) {
269 		tcpstat.tcps_rcvmemdrop++;
270 		m_freem(m);
271 		return (0);
272 	}
273 	tp->t_segqlen++;
274 	tcp_reass_qsize++;
275 
276 	/*
277 	 * Find a segment which begins after this one does.
278 	 */
279 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
280 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
281 			break;
282 		p = q;
283 	}
284 
285 	/*
286 	 * If there is a preceding segment, it may provide some of
287 	 * our data already.  If so, drop the data from the incoming
288 	 * segment.  If it provides all of our data, drop us.
289 	 */
290 	if (p != NULL) {
291 		register int i;
292 		/* conversion to int (in i) handles seq wraparound */
293 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
294 		if (i > 0) {
295 			if (i >= *tlenp) {
296 				tcpstat.tcps_rcvduppack++;
297 				tcpstat.tcps_rcvdupbyte += *tlenp;
298 				m_freem(m);
299 				uma_zfree(tcp_reass_zone, te);
300 				tp->t_segqlen--;
301 				tcp_reass_qsize--;
302 				/*
303 				 * Try to present any queued data
304 				 * at the left window edge to the user.
305 				 * This is needed after the 3-WHS
306 				 * completes.
307 				 */
308 				goto present;	/* ??? */
309 			}
310 			m_adj(m, i);
311 			*tlenp -= i;
312 			th->th_seq += i;
313 		}
314 	}
315 	tcpstat.tcps_rcvoopack++;
316 	tcpstat.tcps_rcvoobyte += *tlenp;
317 
318 	/*
319 	 * While we overlap succeeding segments trim them or,
320 	 * if they are completely covered, dequeue them.
321 	 */
322 	while (q) {
323 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
324 		if (i <= 0)
325 			break;
326 		if (i < q->tqe_len) {
327 			q->tqe_th->th_seq += i;
328 			q->tqe_len -= i;
329 			m_adj(q->tqe_m, i);
330 			break;
331 		}
332 
333 		nq = LIST_NEXT(q, tqe_q);
334 		LIST_REMOVE(q, tqe_q);
335 		m_freem(q->tqe_m);
336 		uma_zfree(tcp_reass_zone, q);
337 		tp->t_segqlen--;
338 		tcp_reass_qsize--;
339 		q = nq;
340 	}
341 
342 	/* Insert the new segment queue entry into place. */
343 	te->tqe_m = m;
344 	te->tqe_th = th;
345 	te->tqe_len = *tlenp;
346 
347 	if (p == NULL) {
348 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
349 	} else {
350 		LIST_INSERT_AFTER(p, te, tqe_q);
351 	}
352 
353 present:
354 	/*
355 	 * Present data to user, advancing rcv_nxt through
356 	 * completed sequence space.
357 	 */
358 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
359 		return (0);
360 	q = LIST_FIRST(&tp->t_segq);
361 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
362 		return (0);
363 	SOCKBUF_LOCK(&so->so_rcv);
364 	do {
365 		tp->rcv_nxt += q->tqe_len;
366 		flags = q->tqe_th->th_flags & TH_FIN;
367 		nq = LIST_NEXT(q, tqe_q);
368 		LIST_REMOVE(q, tqe_q);
369 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
370 			m_freem(q->tqe_m);
371 		else
372 			sbappendstream_locked(&so->so_rcv, q->tqe_m);
373 		uma_zfree(tcp_reass_zone, q);
374 		tp->t_segqlen--;
375 		tcp_reass_qsize--;
376 		q = nq;
377 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
378 	ND6_HINT(tp);
379 	sorwakeup_locked(so);
380 	return (flags);
381 }
382 
383 /*
384  * TCP input routine, follows pages 65-76 of the
385  * protocol specification dated September, 1981 very closely.
386  */
387 #ifdef INET6
388 int
389 tcp6_input(mp, offp, proto)
390 	struct mbuf **mp;
391 	int *offp, proto;
392 {
393 	register struct mbuf *m = *mp;
394 	struct in6_ifaddr *ia6;
395 
396 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
397 
398 	/*
399 	 * draft-itojun-ipv6-tcp-to-anycast
400 	 * better place to put this in?
401 	 */
402 	ia6 = ip6_getdstifaddr(m);
403 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
404 		struct ip6_hdr *ip6;
405 
406 		ip6 = mtod(m, struct ip6_hdr *);
407 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
408 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
409 		return IPPROTO_DONE;
410 	}
411 
412 	tcp_input(m, *offp);
413 	return IPPROTO_DONE;
414 }
415 #endif
416 
417 void
418 tcp_input(m, off0)
419 	register struct mbuf *m;
420 	int off0;
421 {
422 	register struct tcphdr *th;
423 	register struct ip *ip = NULL;
424 	register struct ipovly *ipov;
425 	register struct inpcb *inp = NULL;
426 	u_char *optp = NULL;
427 	int optlen = 0;
428 	int len, tlen, off;
429 	int drop_hdrlen;
430 	register struct tcpcb *tp = 0;
431 	register int thflags;
432 	struct socket *so = 0;
433 	int todrop, acked, ourfinisacked, needoutput = 0;
434 	u_long tiwin;
435 	struct tcpopt to;		/* options in this segment */
436 	int headlocked = 0;
437 #ifdef IPFIREWALL_FORWARD
438 	struct m_tag *fwd_tag;
439 #endif
440 	int rstreason; /* For badport_bandlim accounting purposes */
441 
442 	struct ip6_hdr *ip6 = NULL;
443 #ifdef INET6
444 	int isipv6;
445 #else
446 	const int isipv6 = 0;
447 #endif
448 
449 #ifdef TCPDEBUG
450 	/*
451 	 * The size of tcp_saveipgen must be the size of the max ip header,
452 	 * now IPv6.
453 	 */
454 	u_char tcp_saveipgen[40];
455 	struct tcphdr tcp_savetcp;
456 	short ostate = 0;
457 #endif
458 
459 #ifdef INET6
460 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
461 #endif
462 	bzero((char *)&to, sizeof(to));
463 
464 	tcpstat.tcps_rcvtotal++;
465 
466 	if (isipv6) {
467 #ifdef INET6
468 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
469 		ip6 = mtod(m, struct ip6_hdr *);
470 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
471 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
472 			tcpstat.tcps_rcvbadsum++;
473 			goto drop;
474 		}
475 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
476 
477 		/*
478 		 * Be proactive about unspecified IPv6 address in source.
479 		 * As we use all-zero to indicate unbounded/unconnected pcb,
480 		 * unspecified IPv6 address can be used to confuse us.
481 		 *
482 		 * Note that packets with unspecified IPv6 destination is
483 		 * already dropped in ip6_input.
484 		 */
485 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
486 			/* XXX stat */
487 			goto drop;
488 		}
489 #else
490 		th = NULL;		/* XXX: avoid compiler warning */
491 #endif
492 	} else {
493 		/*
494 		 * Get IP and TCP header together in first mbuf.
495 		 * Note: IP leaves IP header in first mbuf.
496 		 */
497 		if (off0 > sizeof (struct ip)) {
498 			ip_stripoptions(m, (struct mbuf *)0);
499 			off0 = sizeof(struct ip);
500 		}
501 		if (m->m_len < sizeof (struct tcpiphdr)) {
502 			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
503 				tcpstat.tcps_rcvshort++;
504 				return;
505 			}
506 		}
507 		ip = mtod(m, struct ip *);
508 		ipov = (struct ipovly *)ip;
509 		th = (struct tcphdr *)((caddr_t)ip + off0);
510 		tlen = ip->ip_len;
511 
512 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
513 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
514 				th->th_sum = m->m_pkthdr.csum_data;
515 			else
516 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
517 						ip->ip_dst.s_addr,
518 						htonl(m->m_pkthdr.csum_data +
519 							ip->ip_len +
520 							IPPROTO_TCP));
521 			th->th_sum ^= 0xffff;
522 #ifdef TCPDEBUG
523 			ipov->ih_len = (u_short)tlen;
524 			ipov->ih_len = htons(ipov->ih_len);
525 #endif
526 		} else {
527 			/*
528 			 * Checksum extended TCP header and data.
529 			 */
530 			len = sizeof (struct ip) + tlen;
531 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
532 			ipov->ih_len = (u_short)tlen;
533 			ipov->ih_len = htons(ipov->ih_len);
534 			th->th_sum = in_cksum(m, len);
535 		}
536 		if (th->th_sum) {
537 			tcpstat.tcps_rcvbadsum++;
538 			goto drop;
539 		}
540 #ifdef INET6
541 		/* Re-initialization for later version check */
542 		ip->ip_v = IPVERSION;
543 #endif
544 	}
545 
546 	/*
547 	 * Check that TCP offset makes sense,
548 	 * pull out TCP options and adjust length.		XXX
549 	 */
550 	off = th->th_off << 2;
551 	if (off < sizeof (struct tcphdr) || off > tlen) {
552 		tcpstat.tcps_rcvbadoff++;
553 		goto drop;
554 	}
555 	tlen -= off;	/* tlen is used instead of ti->ti_len */
556 	if (off > sizeof (struct tcphdr)) {
557 		if (isipv6) {
558 #ifdef INET6
559 			IP6_EXTHDR_CHECK(m, off0, off, );
560 			ip6 = mtod(m, struct ip6_hdr *);
561 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
562 #endif
563 		} else {
564 			if (m->m_len < sizeof(struct ip) + off) {
565 				if ((m = m_pullup(m, sizeof (struct ip) + off))
566 						== 0) {
567 					tcpstat.tcps_rcvshort++;
568 					return;
569 				}
570 				ip = mtod(m, struct ip *);
571 				ipov = (struct ipovly *)ip;
572 				th = (struct tcphdr *)((caddr_t)ip + off0);
573 			}
574 		}
575 		optlen = off - sizeof (struct tcphdr);
576 		optp = (u_char *)(th + 1);
577 	}
578 	thflags = th->th_flags;
579 
580 #ifdef TCP_DROP_SYNFIN
581 	/*
582 	 * If the drop_synfin option is enabled, drop all packets with
583 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
584 	 * identifying the TCP/IP stack.
585 	 *
586 	 * This is a violation of the TCP specification.
587 	 */
588 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
589 		goto drop;
590 #endif
591 
592 	/*
593 	 * Convert TCP protocol specific fields to host format.
594 	 */
595 	th->th_seq = ntohl(th->th_seq);
596 	th->th_ack = ntohl(th->th_ack);
597 	th->th_win = ntohs(th->th_win);
598 	th->th_urp = ntohs(th->th_urp);
599 
600 	/*
601 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
602 	 * until after ip6_savecontrol() is called and before other functions
603 	 * which don't want those proto headers.
604 	 * Because ip6_savecontrol() is going to parse the mbuf to
605 	 * search for data to be passed up to user-land, it wants mbuf
606 	 * parameters to be unchanged.
607 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
608 	 * latest version of the advanced API (20020110).
609 	 */
610 	drop_hdrlen = off0 + off;
611 
612 	/*
613 	 * Locate pcb for segment.
614 	 */
615 	INP_INFO_WLOCK(&tcbinfo);
616 	headlocked = 1;
617 findpcb:
618 	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
619 #ifdef IPFIREWALL_FORWARD
620 	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
621 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
622 
623 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
624 		struct sockaddr_in *next_hop;
625 
626 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
627 		/*
628 		 * Transparently forwarded. Pretend to be the destination.
629 		 * already got one like this?
630 		 */
631 		inp = in_pcblookup_hash(&tcbinfo,
632 					ip->ip_src, th->th_sport,
633 					ip->ip_dst, th->th_dport,
634 					0, m->m_pkthdr.rcvif);
635 		if (!inp) {
636 			/* It's new.  Try to find the ambushing socket. */
637 			inp = in_pcblookup_hash(&tcbinfo,
638 						ip->ip_src, th->th_sport,
639 						next_hop->sin_addr,
640 						next_hop->sin_port ?
641 						    ntohs(next_hop->sin_port) :
642 						    th->th_dport,
643 						1, m->m_pkthdr.rcvif);
644 		}
645 		/* Remove the tag from the packet.  We don't need it anymore. */
646 		m_tag_delete(m, fwd_tag);
647 	} else {
648 #endif /* IPFIREWALL_FORWARD */
649 		if (isipv6) {
650 #ifdef INET6
651 			inp = in6_pcblookup_hash(&tcbinfo,
652 						 &ip6->ip6_src, th->th_sport,
653 						 &ip6->ip6_dst, th->th_dport,
654 						 1, m->m_pkthdr.rcvif);
655 #endif
656 		} else
657 			inp = in_pcblookup_hash(&tcbinfo,
658 						ip->ip_src, th->th_sport,
659 						ip->ip_dst, th->th_dport,
660 						1, m->m_pkthdr.rcvif);
661 #ifdef IPFIREWALL_FORWARD
662 	}
663 #endif /* IPFIREWALL_FORWARD */
664 
665 #if defined(IPSEC) || defined(FAST_IPSEC)
666 #ifdef INET6
667 	if (isipv6) {
668 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
669 #ifdef IPSEC
670 			ipsec6stat.in_polvio++;
671 #endif
672 			goto drop;
673 		}
674 	} else
675 #endif /* INET6 */
676 	if (inp != NULL && ipsec4_in_reject(m, inp)) {
677 #ifdef IPSEC
678 		ipsecstat.in_polvio++;
679 #endif
680 		goto drop;
681 	}
682 #endif /*IPSEC || FAST_IPSEC*/
683 
684 	/*
685 	 * If the state is CLOSED (i.e., TCB does not exist) then
686 	 * all data in the incoming segment is discarded.
687 	 * If the TCB exists but is in CLOSED state, it is embryonic,
688 	 * but should either do a listen or a connect soon.
689 	 */
690 	if (inp == NULL) {
691 		if (log_in_vain) {
692 #ifdef INET6
693 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
694 #else
695 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
696 #endif
697 
698 			if (isipv6) {
699 #ifdef INET6
700 				strcpy(dbuf, "[");
701 				strcpy(sbuf, "[");
702 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
703 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
704 				strcat(dbuf, "]");
705 				strcat(sbuf, "]");
706 #endif
707 			} else {
708 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
709 				strcpy(sbuf, inet_ntoa(ip->ip_src));
710 			}
711 			switch (log_in_vain) {
712 			case 1:
713 				if ((thflags & TH_SYN) == 0)
714 					break;
715 				/* FALLTHROUGH */
716 			case 2:
717 				log(LOG_INFO,
718 				    "Connection attempt to TCP %s:%d "
719 				    "from %s:%d flags:0x%02x\n",
720 				    dbuf, ntohs(th->th_dport), sbuf,
721 				    ntohs(th->th_sport), thflags);
722 				break;
723 			default:
724 				break;
725 			}
726 		}
727 		if (blackhole) {
728 			switch (blackhole) {
729 			case 1:
730 				if (thflags & TH_SYN)
731 					goto drop;
732 				break;
733 			case 2:
734 				goto drop;
735 			default:
736 				goto drop;
737 			}
738 		}
739 		rstreason = BANDLIM_RST_CLOSEDPORT;
740 		goto dropwithreset;
741 	}
742 	INP_LOCK(inp);
743 	if (inp->inp_vflag & INP_TIMEWAIT) {
744 		/*
745 		 * The only option of relevance is TOF_CC, and only if
746 		 * present in a SYN segment.  See tcp_timewait().
747 		 */
748 		if (thflags & TH_SYN)
749 			tcp_dooptions((struct tcpcb *)NULL, &to, optp, optlen, 1, th);
750 		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
751 		    &to, th, m, tlen))
752 			goto findpcb;
753 		/*
754 		 * tcp_timewait unlocks inp.
755 		 */
756 		INP_INFO_WUNLOCK(&tcbinfo);
757 		return;
758 	}
759 	tp = intotcpcb(inp);
760 	if (tp == 0) {
761 		INP_UNLOCK(inp);
762 		rstreason = BANDLIM_RST_CLOSEDPORT;
763 		goto dropwithreset;
764 	}
765 	if (tp->t_state == TCPS_CLOSED)
766 		goto drop;
767 
768 	/* Unscale the window into a 32-bit value. */
769 	if ((thflags & TH_SYN) == 0)
770 		tiwin = th->th_win << tp->snd_scale;
771 	else
772 		tiwin = th->th_win;
773 
774 #ifdef MAC
775 	INP_LOCK_ASSERT(inp);
776 	if (mac_check_inpcb_deliver(inp, m))
777 		goto drop;
778 #endif
779 	so = inp->inp_socket;
780 #ifdef TCPDEBUG
781 	if (so->so_options & SO_DEBUG) {
782 		ostate = tp->t_state;
783 		if (isipv6)
784 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
785 		else
786 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
787 		tcp_savetcp = *th;
788 	}
789 #endif
790 	if (so->so_options & SO_ACCEPTCONN) {
791 		struct in_conninfo inc;
792 
793 #ifdef INET6
794 		inc.inc_isipv6 = isipv6;
795 #endif
796 		if (isipv6) {
797 			inc.inc6_faddr = ip6->ip6_src;
798 			inc.inc6_laddr = ip6->ip6_dst;
799 		} else {
800 			inc.inc_faddr = ip->ip_src;
801 			inc.inc_laddr = ip->ip_dst;
802 		}
803 		inc.inc_fport = th->th_sport;
804 		inc.inc_lport = th->th_dport;
805 
806 	        /*
807 	         * If the state is LISTEN then ignore segment if it contains
808 		 * a RST.  If the segment contains an ACK then it is bad and
809 		 * send a RST.  If it does not contain a SYN then it is not
810 		 * interesting; drop it.
811 		 *
812 		 * If the state is SYN_RECEIVED (syncache) and seg contains
813 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
814 		 * contains a RST, check the sequence number to see if it
815 		 * is a valid reset segment.
816 		 */
817 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
818 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
819 				if (!syncache_expand(&inc, th, &so, m)) {
820 					/*
821 					 * No syncache entry, or ACK was not
822 					 * for our SYN/ACK.  Send a RST.
823 					 */
824 					tcpstat.tcps_badsyn++;
825 					rstreason = BANDLIM_RST_OPENPORT;
826 					goto dropwithreset;
827 				}
828 				if (so == NULL) {
829 					/*
830 					 * Could not complete 3-way handshake,
831 					 * connection is being closed down, and
832 					 * syncache will free mbuf.
833 					 */
834 					INP_UNLOCK(inp);
835 					INP_INFO_WUNLOCK(&tcbinfo);
836 					return;
837 				}
838 				/*
839 				 * Socket is created in state SYN_RECEIVED.
840 				 * Continue processing segment.
841 				 */
842 				INP_UNLOCK(inp);
843 				inp = sotoinpcb(so);
844 				INP_LOCK(inp);
845 				tp = intotcpcb(inp);
846 				/*
847 				 * This is what would have happened in
848 				 * tcp_output() when the SYN,ACK was sent.
849 				 */
850 				tp->snd_up = tp->snd_una;
851 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
852 				tp->last_ack_sent = tp->rcv_nxt;
853 				/*
854 				 * RFC1323: The window in SYN & SYN/ACK
855 				 * segments is never scaled.
856 				 */
857 				tp->snd_wnd = tiwin;	/* unscaled */
858 				goto after_listen;
859 			}
860 			if (thflags & TH_RST) {
861 				syncache_chkrst(&inc, th);
862 				goto drop;
863 			}
864 			if (thflags & TH_ACK) {
865 				syncache_badack(&inc);
866 				tcpstat.tcps_badsyn++;
867 				rstreason = BANDLIM_RST_OPENPORT;
868 				goto dropwithreset;
869 			}
870 			goto drop;
871 		}
872 
873 		/*
874 		 * Segment's flags are (SYN) or (SYN|FIN).
875 		 */
876 #ifdef INET6
877 		/*
878 		 * If deprecated address is forbidden,
879 		 * we do not accept SYN to deprecated interface
880 		 * address to prevent any new inbound connection from
881 		 * getting established.
882 		 * When we do not accept SYN, we send a TCP RST,
883 		 * with deprecated source address (instead of dropping
884 		 * it).  We compromise it as it is much better for peer
885 		 * to send a RST, and RST will be the final packet
886 		 * for the exchange.
887 		 *
888 		 * If we do not forbid deprecated addresses, we accept
889 		 * the SYN packet.  RFC2462 does not suggest dropping
890 		 * SYN in this case.
891 		 * If we decipher RFC2462 5.5.4, it says like this:
892 		 * 1. use of deprecated addr with existing
893 		 *    communication is okay - "SHOULD continue to be
894 		 *    used"
895 		 * 2. use of it with new communication:
896 		 *   (2a) "SHOULD NOT be used if alternate address
897 		 *        with sufficient scope is available"
898 		 *   (2b) nothing mentioned otherwise.
899 		 * Here we fall into (2b) case as we have no choice in
900 		 * our source address selection - we must obey the peer.
901 		 *
902 		 * The wording in RFC2462 is confusing, and there are
903 		 * multiple description text for deprecated address
904 		 * handling - worse, they are not exactly the same.
905 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
906 		 */
907 		if (isipv6 && !ip6_use_deprecated) {
908 			struct in6_ifaddr *ia6;
909 
910 			if ((ia6 = ip6_getdstifaddr(m)) &&
911 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
912 				INP_UNLOCK(inp);
913 				tp = NULL;
914 				rstreason = BANDLIM_RST_OPENPORT;
915 				goto dropwithreset;
916 			}
917 		}
918 #endif
919 		/*
920 		 * If it is from this socket, drop it, it must be forged.
921 		 * Don't bother responding if the destination was a broadcast.
922 		 */
923 		if (th->th_dport == th->th_sport) {
924 			if (isipv6) {
925 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
926 						       &ip6->ip6_src))
927 					goto drop;
928 			} else {
929 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
930 					goto drop;
931 			}
932 		}
933 		/*
934 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
935 		 *
936 		 * Note that it is quite possible to receive unicast
937 		 * link-layer packets with a broadcast IP address. Use
938 		 * in_broadcast() to find them.
939 		 */
940 		if (m->m_flags & (M_BCAST|M_MCAST))
941 			goto drop;
942 		if (isipv6) {
943 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
944 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
945 				goto drop;
946 		} else {
947 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
948 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
949 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
950 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
951 				goto drop;
952 		}
953 		/*
954 		 * SYN appears to be valid; create compressed TCP state
955 		 * for syncache, or perform t/tcp connection.
956 		 */
957 		if (so->so_qlen <= so->so_qlimit) {
958 #ifdef TCPDEBUG
959 			if (so->so_options & SO_DEBUG)
960 				tcp_trace(TA_INPUT, ostate, tp,
961 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
962 #endif
963 			tcp_dooptions(tp, &to, optp, optlen, 1, th);
964 			if (!syncache_add(&inc, &to, th, &so, m))
965 				goto drop;
966 			if (so == NULL) {
967 				/*
968 				 * Entry added to syncache, mbuf used to
969 				 * send SYN,ACK packet.
970 				 */
971 				KASSERT(headlocked, ("headlocked"));
972 				INP_UNLOCK(inp);
973 				INP_INFO_WUNLOCK(&tcbinfo);
974 				return;
975 			}
976 			/*
977 			 * Segment passed TAO tests.
978 			 */
979 			INP_UNLOCK(inp);
980 			inp = sotoinpcb(so);
981 			INP_LOCK(inp);
982 			tp = intotcpcb(inp);
983 			tp->snd_wnd = tiwin;
984 			tp->t_starttime = ticks;
985 			tp->t_state = TCPS_ESTABLISHED;
986 
987 			/*
988 			 * T/TCP logic:
989 			 * If there is a FIN or if there is data, then
990 			 * delay SYN,ACK(SYN) in the hope of piggy-backing
991 			 * it on a response segment.  Otherwise must send
992 			 * ACK now in case the other side is slow starting.
993 			 */
994 			if (thflags & TH_FIN || tlen != 0)
995 				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
996 			else
997 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
998 			tcpstat.tcps_connects++;
999 			soisconnected(so);
1000 			goto trimthenstep6;
1001 		}
1002 		goto drop;
1003 	}
1004 after_listen:
1005 	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1006 	INP_LOCK_ASSERT(inp);
1007 
1008 	/* XXX temp debugging */
1009 	/* should not happen - syncache should pick up these connections */
1010 	if (tp->t_state == TCPS_LISTEN)
1011 		panic("tcp_input: TCPS_LISTEN");
1012 
1013 	/*
1014 	 * This is the second part of the MSS DoS prevention code (after
1015 	 * minmss on the sending side) and it deals with too many too small
1016 	 * tcp packets in a too short timeframe (1 second).
1017 	 *
1018 	 * For every full second we count the number of received packets
1019 	 * and bytes. If we get a lot of packets per second for this connection
1020 	 * (tcp_minmssoverload) we take a closer look at it and compute the
1021 	 * average packet size for the past second. If that is less than
1022 	 * tcp_minmss we get too many packets with very small payload which
1023 	 * is not good and burdens our system (and every packet generates
1024 	 * a wakeup to the process connected to our socket). We can reasonable
1025 	 * expect this to be small packet DoS attack to exhaust our CPU
1026 	 * cycles.
1027 	 *
1028 	 * Care has to be taken for the minimum packet overload value. This
1029 	 * value defines the minimum number of packets per second before we
1030 	 * start to worry. This must not be too low to avoid killing for
1031 	 * example interactive connections with many small packets like
1032 	 * telnet or SSH.
1033 	 *
1034 	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1035 	 * this check.
1036 	 *
1037 	 * Account for packet if payload packet, skip over ACK, etc.
1038 	 */
1039 	if (tcp_minmss && tcp_minmssoverload &&
1040 	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1041 		if (tp->rcv_second > ticks) {
1042 			tp->rcv_pps++;
1043 			tp->rcv_byps += tlen + off;
1044 			if (tp->rcv_pps > tcp_minmssoverload) {
1045 				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1046 					printf("too many small tcp packets from "
1047 					       "%s:%u, av. %lubyte/packet, "
1048 					       "dropping connection\n",
1049 #ifdef INET6
1050 						isipv6 ?
1051 						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1052 #endif
1053 						inet_ntoa(inp->inp_inc.inc_faddr),
1054 						inp->inp_inc.inc_fport,
1055 						tp->rcv_byps / tp->rcv_pps);
1056 					tp = tcp_drop(tp, ECONNRESET);
1057 					tcpstat.tcps_minmssdrops++;
1058 					goto drop;
1059 				}
1060 			}
1061 		} else {
1062 			tp->rcv_second = ticks + hz;
1063 			tp->rcv_pps = 1;
1064 			tp->rcv_byps = tlen + off;
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * Segment received on connection.
1070 	 * Reset idle time and keep-alive timer.
1071 	 */
1072 	tp->t_rcvtime = ticks;
1073 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1074 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1075 
1076 	/*
1077 	 * Process options only when we get SYN/ACK back. The SYN case
1078 	 * for incoming connections is handled in tcp_syncache.
1079 	 * XXX this is traditional behavior, may need to be cleaned up.
1080 	 */
1081 	tcp_dooptions(tp, &to, optp, optlen, thflags & TH_SYN, th);
1082 	if (thflags & TH_SYN) {
1083 		if (to.to_flags & TOF_SCALE) {
1084 			tp->t_flags |= TF_RCVD_SCALE;
1085 			tp->requested_s_scale = to.to_requested_s_scale;
1086 		}
1087 		if (to.to_flags & TOF_TS) {
1088 			tp->t_flags |= TF_RCVD_TSTMP;
1089 			tp->ts_recent = to.to_tsval;
1090 			tp->ts_recent_age = ticks;
1091 		}
1092 		if (to.to_flags & TOF_MSS)
1093 			tcp_mss(tp, to.to_mss);
1094 		if (tp->sack_enable) {
1095 			if (!(to.to_flags & TOF_SACK))
1096 				tp->sack_enable = 0;
1097 			else
1098 				tp->t_flags |= TF_SACK_PERMIT;
1099 		}
1100 
1101 	}
1102 
1103 	if (tp->sack_enable) {
1104 		/* Delete stale (cumulatively acked) SACK holes */
1105 		tcp_del_sackholes(tp, th);
1106 		tp->rcv_laststart = th->th_seq; /* last recv'd segment*/
1107 		tp->rcv_lastend = th->th_seq + tlen;
1108 	}
1109 
1110 	/*
1111 	 * Header prediction: check for the two common cases
1112 	 * of a uni-directional data xfer.  If the packet has
1113 	 * no control flags, is in-sequence, the window didn't
1114 	 * change and we're not retransmitting, it's a
1115 	 * candidate.  If the length is zero and the ack moved
1116 	 * forward, we're the sender side of the xfer.  Just
1117 	 * free the data acked & wake any higher level process
1118 	 * that was blocked waiting for space.  If the length
1119 	 * is non-zero and the ack didn't move, we're the
1120 	 * receiver side.  If we're getting packets in-order
1121 	 * (the reassembly queue is empty), add the data to
1122 	 * the socket buffer and note that we need a delayed ack.
1123 	 * Make sure that the hidden state-flags are also off.
1124 	 * Since we check for TCPS_ESTABLISHED above, it can only
1125 	 * be TH_NEEDSYN.
1126 	 */
1127 	if (tp->t_state == TCPS_ESTABLISHED &&
1128 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1129 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1130 	    ((to.to_flags & TOF_TS) == 0 ||
1131 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1132 	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1133 	     tp->snd_nxt == tp->snd_max) {
1134 
1135 		/*
1136 		 * If last ACK falls within this segment's sequence numbers,
1137 		 * record the timestamp.
1138 		 * NOTE that the test is modified according to the latest
1139 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1140 		 */
1141 		if ((to.to_flags & TOF_TS) != 0 &&
1142 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1143 			tp->ts_recent_age = ticks;
1144 			tp->ts_recent = to.to_tsval;
1145 		}
1146 
1147 		if (tlen == 0) {
1148 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1149 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1150 			    tp->snd_cwnd >= tp->snd_wnd &&
1151 			    ((!tcp_do_newreno && !tp->sack_enable &&
1152 			      tp->t_dupacks < tcprexmtthresh) ||
1153 			     ((tcp_do_newreno || tp->sack_enable) &&
1154 			      !IN_FASTRECOVERY(tp)))) {
1155 				KASSERT(headlocked, ("headlocked"));
1156 				/*
1157 				 * this is a pure ack for outstanding data.
1158 				 */
1159 				++tcpstat.tcps_predack;
1160 				/*
1161 				 * "bad retransmit" recovery
1162 				 */
1163 				if (tp->t_rxtshift == 1 &&
1164 				    ticks < tp->t_badrxtwin) {
1165 					++tcpstat.tcps_sndrexmitbad;
1166 					tp->snd_cwnd = tp->snd_cwnd_prev;
1167 					tp->snd_ssthresh =
1168 					    tp->snd_ssthresh_prev;
1169 					tp->snd_recover = tp->snd_recover_prev;
1170 					if (tp->t_flags & TF_WASFRECOVERY)
1171 					    ENTER_FASTRECOVERY(tp);
1172 					tp->snd_nxt = tp->snd_max;
1173 					tp->t_badrxtwin = 0;
1174 				}
1175 
1176 				/*
1177 				 * Recalculate the transmit timer / rtt.
1178 				 *
1179 				 * Some boxes send broken timestamp replies
1180 				 * during the SYN+ACK phase, ignore
1181 				 * timestamps of 0 or we could calculate a
1182 				 * huge RTT and blow up the retransmit timer.
1183 				 */
1184 				if ((to.to_flags & TOF_TS) != 0 &&
1185 				    to.to_tsecr) {
1186 					tcp_xmit_timer(tp,
1187 					    ticks - to.to_tsecr + 1);
1188 				} else if (tp->t_rtttime &&
1189 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1190 					tcp_xmit_timer(tp,
1191 							ticks - tp->t_rtttime);
1192 				}
1193 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1194 				acked = th->th_ack - tp->snd_una;
1195 				tcpstat.tcps_rcvackpack++;
1196 				tcpstat.tcps_rcvackbyte += acked;
1197 				sbdrop(&so->so_snd, acked);
1198 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1199 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1200 					tp->snd_recover = th->th_ack - 1;
1201 				tp->snd_una = th->th_ack;
1202 				/*
1203 				 * pull snd_wl2 up to prevent seq wrap relative
1204 				 * to th_ack.
1205 				 */
1206 				tp->snd_wl2 = th->th_ack;
1207 				tp->t_dupacks = 0;
1208 				m_freem(m);
1209 				ND6_HINT(tp); /* some progress has been done */
1210 
1211 				/*
1212 				 * If all outstanding data are acked, stop
1213 				 * retransmit timer, otherwise restart timer
1214 				 * using current (possibly backed-off) value.
1215 				 * If process is waiting for space,
1216 				 * wakeup/selwakeup/signal.  If data
1217 				 * are ready to send, let tcp_output
1218 				 * decide between more output or persist.
1219 
1220 #ifdef TCPDEBUG
1221 				if (so->so_options & SO_DEBUG)
1222 					tcp_trace(TA_INPUT, ostate, tp,
1223 					    (void *)tcp_saveipgen,
1224 					    &tcp_savetcp, 0);
1225 #endif
1226 				 */
1227 				if (tp->snd_una == tp->snd_max)
1228 					callout_stop(tp->tt_rexmt);
1229 				else if (!callout_active(tp->tt_persist))
1230 					callout_reset(tp->tt_rexmt,
1231 						      tp->t_rxtcur,
1232 						      tcp_timer_rexmt, tp);
1233 
1234 				sowwakeup(so);
1235 				if (so->so_snd.sb_cc)
1236 					(void) tcp_output(tp);
1237 				goto check_delack;
1238 			}
1239 		} else if (th->th_ack == tp->snd_una &&
1240 		    LIST_EMPTY(&tp->t_segq) &&
1241 		    tlen <= sbspace(&so->so_rcv)) {
1242 			KASSERT(headlocked, ("headlocked"));
1243 			/*
1244 			 * this is a pure, in-sequence data packet
1245 			 * with nothing on the reassembly queue and
1246 			 * we have enough buffer space to take it.
1247 			 */
1248 			/* Clean receiver SACK report if present */
1249 			if (tp->sack_enable && tp->rcv_numsacks)
1250 				tcp_clean_sackreport(tp);
1251 			++tcpstat.tcps_preddat;
1252 			tp->rcv_nxt += tlen;
1253 			/*
1254 			 * Pull snd_wl1 up to prevent seq wrap relative to
1255 			 * th_seq.
1256 			 */
1257 			tp->snd_wl1 = th->th_seq;
1258 			/*
1259 			 * Pull rcv_up up to prevent seq wrap relative to
1260 			 * rcv_nxt.
1261 			 */
1262 			tp->rcv_up = tp->rcv_nxt;
1263 			tcpstat.tcps_rcvpack++;
1264 			tcpstat.tcps_rcvbyte += tlen;
1265 			ND6_HINT(tp);	/* some progress has been done */
1266 			/*
1267 #ifdef TCPDEBUG
1268 			if (so->so_options & SO_DEBUG)
1269 				tcp_trace(TA_INPUT, ostate, tp,
1270 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1271 #endif
1272 			 * Add data to socket buffer.
1273 			 */
1274 			SOCKBUF_LOCK(&so->so_rcv);
1275 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1276 				m_freem(m);
1277 			} else {
1278 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1279 				sbappendstream_locked(&so->so_rcv, m);
1280 			}
1281 			sorwakeup_locked(so);
1282 			if (DELAY_ACK(tp)) {
1283 				tp->t_flags |= TF_DELACK;
1284 			} else {
1285 				tp->t_flags |= TF_ACKNOW;
1286 				tcp_output(tp);
1287 			}
1288 			goto check_delack;
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * Calculate amount of space in receive window,
1294 	 * and then do TCP input processing.
1295 	 * Receive window is amount of space in rcv queue,
1296 	 * but not less than advertised window.
1297 	 */
1298 	{ int win;
1299 
1300 	win = sbspace(&so->so_rcv);
1301 	if (win < 0)
1302 		win = 0;
1303 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1304 	}
1305 
1306 	switch (tp->t_state) {
1307 
1308 	/*
1309 	 * If the state is SYN_RECEIVED:
1310 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1311 	 */
1312 	case TCPS_SYN_RECEIVED:
1313 		if ((thflags & TH_ACK) &&
1314 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1315 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1316 				rstreason = BANDLIM_RST_OPENPORT;
1317 				goto dropwithreset;
1318 		}
1319 		break;
1320 
1321 	/*
1322 	 * If the state is SYN_SENT:
1323 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1324 	 *	if seg contains a RST, then drop the connection.
1325 	 *	if seg does not contain SYN, then drop it.
1326 	 * Otherwise this is an acceptable SYN segment
1327 	 *	initialize tp->rcv_nxt and tp->irs
1328 	 *	if seg contains ack then advance tp->snd_una
1329 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1330 	 *	arrange for segment to be acked (eventually)
1331 	 *	continue processing rest of data/controls, beginning with URG
1332 	 */
1333 	case TCPS_SYN_SENT:
1334 		if ((thflags & TH_ACK) &&
1335 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1336 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1337 			rstreason = BANDLIM_UNLIMITED;
1338 			goto dropwithreset;
1339 		}
1340 		if (thflags & TH_RST) {
1341 			if (thflags & TH_ACK)
1342 				tp = tcp_drop(tp, ECONNREFUSED);
1343 			goto drop;
1344 		}
1345 		if ((thflags & TH_SYN) == 0)
1346 			goto drop;
1347 		tp->snd_wnd = th->th_win;	/* initial send window */
1348 
1349 		tp->irs = th->th_seq;
1350 		tcp_rcvseqinit(tp);
1351 		if (thflags & TH_ACK) {
1352 			tcpstat.tcps_connects++;
1353 			soisconnected(so);
1354 #ifdef MAC
1355 			SOCK_LOCK(so);
1356 			mac_set_socket_peer_from_mbuf(m, so);
1357 			SOCK_UNLOCK(so);
1358 #endif
1359 			/* Do window scaling on this connection? */
1360 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1361 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1362 				tp->snd_scale = tp->requested_s_scale;
1363 				tp->rcv_scale = tp->request_r_scale;
1364 			}
1365 			tp->rcv_adv += tp->rcv_wnd;
1366 			tp->snd_una++;		/* SYN is acked */
1367 			/*
1368 			 * If there's data, delay ACK; if there's also a FIN
1369 			 * ACKNOW will be turned on later.
1370 			 */
1371 			if (DELAY_ACK(tp) && tlen != 0)
1372 				callout_reset(tp->tt_delack, tcp_delacktime,
1373 				    tcp_timer_delack, tp);
1374 			else
1375 				tp->t_flags |= TF_ACKNOW;
1376 			/*
1377 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1378 			 * Transitions:
1379 			 *	SYN_SENT  --> ESTABLISHED
1380 			 *	SYN_SENT* --> FIN_WAIT_1
1381 			 */
1382 			tp->t_starttime = ticks;
1383 			if (tp->t_flags & TF_NEEDFIN) {
1384 				tp->t_state = TCPS_FIN_WAIT_1;
1385 				tp->t_flags &= ~TF_NEEDFIN;
1386 				thflags &= ~TH_SYN;
1387 			} else {
1388 				tp->t_state = TCPS_ESTABLISHED;
1389 				callout_reset(tp->tt_keep, tcp_keepidle,
1390 					      tcp_timer_keep, tp);
1391 			}
1392 		} else {
1393 			/*
1394 			 * Received initial SYN in SYN-SENT[*] state =>
1395 			 * simultaneous open.  If segment contains CC option
1396 			 * and there is a cached CC, apply TAO test.
1397 			 * If it succeeds, connection is * half-synchronized.
1398 			 * Otherwise, do 3-way handshake:
1399 			 *        SYN-SENT -> SYN-RECEIVED
1400 			 *        SYN-SENT* -> SYN-RECEIVED*
1401 			 * If there was no CC option, clear cached CC value.
1402 			 */
1403 			tp->t_flags |= TF_ACKNOW;
1404 			callout_stop(tp->tt_rexmt);
1405 			tp->t_state = TCPS_SYN_RECEIVED;
1406 		}
1407 
1408 trimthenstep6:
1409 		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1410 		    "locked"));
1411 		INP_LOCK_ASSERT(inp);
1412 
1413 		/*
1414 		 * Advance th->th_seq to correspond to first data byte.
1415 		 * If data, trim to stay within window,
1416 		 * dropping FIN if necessary.
1417 		 */
1418 		th->th_seq++;
1419 		if (tlen > tp->rcv_wnd) {
1420 			todrop = tlen - tp->rcv_wnd;
1421 			m_adj(m, -todrop);
1422 			tlen = tp->rcv_wnd;
1423 			thflags &= ~TH_FIN;
1424 			tcpstat.tcps_rcvpackafterwin++;
1425 			tcpstat.tcps_rcvbyteafterwin += todrop;
1426 		}
1427 		tp->snd_wl1 = th->th_seq - 1;
1428 		tp->rcv_up = th->th_seq;
1429 		/*
1430 		 * Client side of transaction: already sent SYN and data.
1431 		 * If the remote host used T/TCP to validate the SYN,
1432 		 * our data will be ACK'd; if so, enter normal data segment
1433 		 * processing in the middle of step 5, ack processing.
1434 		 * Otherwise, goto step 6.
1435 		 */
1436 		if (thflags & TH_ACK)
1437 			goto process_ACK;
1438 
1439 		goto step6;
1440 
1441 	/*
1442 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1443 	 *      do normal processing.
1444 	 *
1445 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1446 	 */
1447 	case TCPS_LAST_ACK:
1448 	case TCPS_CLOSING:
1449 	case TCPS_TIME_WAIT:
1450 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1451 		break;  /* continue normal processing */
1452 	}
1453 
1454 	/*
1455 	 * States other than LISTEN or SYN_SENT.
1456 	 * First check the RST flag and sequence number since reset segments
1457 	 * are exempt from the timestamp and connection count tests.  This
1458 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1459 	 * below which allowed reset segments in half the sequence space
1460 	 * to fall though and be processed (which gives forged reset
1461 	 * segments with a random sequence number a 50 percent chance of
1462 	 * killing a connection).
1463 	 * Then check timestamp, if present.
1464 	 * Then check the connection count, if present.
1465 	 * Then check that at least some bytes of segment are within
1466 	 * receive window.  If segment begins before rcv_nxt,
1467 	 * drop leading data (and SYN); if nothing left, just ack.
1468 	 *
1469 	 *
1470 	 * If the RST bit is set, check the sequence number to see
1471 	 * if this is a valid reset segment.
1472 	 * RFC 793 page 37:
1473 	 *   In all states except SYN-SENT, all reset (RST) segments
1474 	 *   are validated by checking their SEQ-fields.  A reset is
1475 	 *   valid if its sequence number is in the window.
1476 	 * Note: this does not take into account delayed ACKs, so
1477 	 *   we should test against last_ack_sent instead of rcv_nxt.
1478 	 *   The sequence number in the reset segment is normally an
1479 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1480 	 *   send a reset with the sequence number at the rightmost edge
1481 	 *   of our receive window, and we have to handle this case.
1482 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1483 	 *   that brute force RST attacks are possible.  To combat this,
1484 	 *   we use a much stricter check while in the ESTABLISHED state,
1485 	 *   only accepting RSTs where the sequence number is equal to
1486 	 *   last_ack_sent.  In all other states (the states in which a
1487 	 *   RST is more likely), the more permissive check is used.
1488 	 * If we have multiple segments in flight, the intial reset
1489 	 * segment sequence numbers will be to the left of last_ack_sent,
1490 	 * but they will eventually catch up.
1491 	 * In any case, it never made sense to trim reset segments to
1492 	 * fit the receive window since RFC 1122 says:
1493 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1494 	 *
1495 	 *    A TCP SHOULD allow a received RST segment to include data.
1496 	 *
1497 	 *    DISCUSSION
1498 	 *         It has been suggested that a RST segment could contain
1499 	 *         ASCII text that encoded and explained the cause of the
1500 	 *         RST.  No standard has yet been established for such
1501 	 *         data.
1502 	 *
1503 	 * If the reset segment passes the sequence number test examine
1504 	 * the state:
1505 	 *    SYN_RECEIVED STATE:
1506 	 *	If passive open, return to LISTEN state.
1507 	 *	If active open, inform user that connection was refused.
1508 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1509 	 *	Inform user that connection was reset, and close tcb.
1510 	 *    CLOSING, LAST_ACK STATES:
1511 	 *	Close the tcb.
1512 	 *    TIME_WAIT STATE:
1513 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1514 	 *      RFC 1337.
1515 	 */
1516 	if (thflags & TH_RST) {
1517 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1518 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1519 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1520 			switch (tp->t_state) {
1521 
1522 			case TCPS_SYN_RECEIVED:
1523 				so->so_error = ECONNREFUSED;
1524 				goto close;
1525 
1526 			case TCPS_ESTABLISHED:
1527 				if (tp->last_ack_sent != th->th_seq) {
1528 					tcpstat.tcps_badrst++;
1529 					goto drop;
1530 				}
1531 			case TCPS_FIN_WAIT_1:
1532 			case TCPS_FIN_WAIT_2:
1533 			case TCPS_CLOSE_WAIT:
1534 				so->so_error = ECONNRESET;
1535 			close:
1536 				tp->t_state = TCPS_CLOSED;
1537 				tcpstat.tcps_drops++;
1538 				tp = tcp_close(tp);
1539 				break;
1540 
1541 			case TCPS_CLOSING:
1542 			case TCPS_LAST_ACK:
1543 				tp = tcp_close(tp);
1544 				break;
1545 
1546 			case TCPS_TIME_WAIT:
1547 				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1548 				    ("timewait"));
1549 				break;
1550 			}
1551 		}
1552 		goto drop;
1553 	}
1554 
1555 	/*
1556 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1557 	 * and it's less than ts_recent, drop it.
1558 	 */
1559 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1560 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1561 
1562 		/* Check to see if ts_recent is over 24 days old.  */
1563 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1564 			/*
1565 			 * Invalidate ts_recent.  If this segment updates
1566 			 * ts_recent, the age will be reset later and ts_recent
1567 			 * will get a valid value.  If it does not, setting
1568 			 * ts_recent to zero will at least satisfy the
1569 			 * requirement that zero be placed in the timestamp
1570 			 * echo reply when ts_recent isn't valid.  The
1571 			 * age isn't reset until we get a valid ts_recent
1572 			 * because we don't want out-of-order segments to be
1573 			 * dropped when ts_recent is old.
1574 			 */
1575 			tp->ts_recent = 0;
1576 		} else {
1577 			tcpstat.tcps_rcvduppack++;
1578 			tcpstat.tcps_rcvdupbyte += tlen;
1579 			tcpstat.tcps_pawsdrop++;
1580 			if (tlen)
1581 				goto dropafterack;
1582 			goto drop;
1583 		}
1584 	}
1585 
1586 	/*
1587 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1588 	 * this connection before trimming the data to fit the receive
1589 	 * window.  Check the sequence number versus IRS since we know
1590 	 * the sequence numbers haven't wrapped.  This is a partial fix
1591 	 * for the "LAND" DoS attack.
1592 	 */
1593 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1594 		rstreason = BANDLIM_RST_OPENPORT;
1595 		goto dropwithreset;
1596 	}
1597 
1598 	todrop = tp->rcv_nxt - th->th_seq;
1599 	if (todrop > 0) {
1600 		if (thflags & TH_SYN) {
1601 			thflags &= ~TH_SYN;
1602 			th->th_seq++;
1603 			if (th->th_urp > 1)
1604 				th->th_urp--;
1605 			else
1606 				thflags &= ~TH_URG;
1607 			todrop--;
1608 		}
1609 		/*
1610 		 * Following if statement from Stevens, vol. 2, p. 960.
1611 		 */
1612 		if (todrop > tlen
1613 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1614 			/*
1615 			 * Any valid FIN must be to the left of the window.
1616 			 * At this point the FIN must be a duplicate or out
1617 			 * of sequence; drop it.
1618 			 */
1619 			thflags &= ~TH_FIN;
1620 
1621 			/*
1622 			 * Send an ACK to resynchronize and drop any data.
1623 			 * But keep on processing for RST or ACK.
1624 			 */
1625 			tp->t_flags |= TF_ACKNOW;
1626 			todrop = tlen;
1627 			tcpstat.tcps_rcvduppack++;
1628 			tcpstat.tcps_rcvdupbyte += todrop;
1629 		} else {
1630 			tcpstat.tcps_rcvpartduppack++;
1631 			tcpstat.tcps_rcvpartdupbyte += todrop;
1632 		}
1633 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1634 		th->th_seq += todrop;
1635 		tlen -= todrop;
1636 		if (th->th_urp > todrop)
1637 			th->th_urp -= todrop;
1638 		else {
1639 			thflags &= ~TH_URG;
1640 			th->th_urp = 0;
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * If new data are received on a connection after the
1646 	 * user processes are gone, then RST the other end.
1647 	 */
1648 	if ((so->so_state & SS_NOFDREF) &&
1649 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1650 		tp = tcp_close(tp);
1651 		tcpstat.tcps_rcvafterclose++;
1652 		rstreason = BANDLIM_UNLIMITED;
1653 		goto dropwithreset;
1654 	}
1655 
1656 	/*
1657 	 * If segment ends after window, drop trailing data
1658 	 * (and PUSH and FIN); if nothing left, just ACK.
1659 	 */
1660 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1661 	if (todrop > 0) {
1662 		tcpstat.tcps_rcvpackafterwin++;
1663 		if (todrop >= tlen) {
1664 			tcpstat.tcps_rcvbyteafterwin += tlen;
1665 			/*
1666 			 * If a new connection request is received
1667 			 * while in TIME_WAIT, drop the old connection
1668 			 * and start over if the sequence numbers
1669 			 * are above the previous ones.
1670 			 */
1671 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1672 			if (thflags & TH_SYN &&
1673 			    tp->t_state == TCPS_TIME_WAIT &&
1674 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1675 				tp = tcp_close(tp);
1676 				goto findpcb;
1677 			}
1678 			/*
1679 			 * If window is closed can only take segments at
1680 			 * window edge, and have to drop data and PUSH from
1681 			 * incoming segments.  Continue processing, but
1682 			 * remember to ack.  Otherwise, drop segment
1683 			 * and ack.
1684 			 */
1685 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1686 				tp->t_flags |= TF_ACKNOW;
1687 				tcpstat.tcps_rcvwinprobe++;
1688 			} else
1689 				goto dropafterack;
1690 		} else
1691 			tcpstat.tcps_rcvbyteafterwin += todrop;
1692 		m_adj(m, -todrop);
1693 		tlen -= todrop;
1694 		thflags &= ~(TH_PUSH|TH_FIN);
1695 	}
1696 
1697 	/*
1698 	 * If last ACK falls within this segment's sequence numbers,
1699 	 * record its timestamp.
1700 	 * NOTE that the test is modified according to the latest
1701 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1702 	 */
1703 	if ((to.to_flags & TOF_TS) != 0 &&
1704 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1705 		tp->ts_recent_age = ticks;
1706 		tp->ts_recent = to.to_tsval;
1707 	}
1708 
1709 	/*
1710 	 * If a SYN is in the window, then this is an
1711 	 * error and we send an RST and drop the connection.
1712 	 */
1713 	if (thflags & TH_SYN) {
1714 		tp = tcp_drop(tp, ECONNRESET);
1715 		rstreason = BANDLIM_UNLIMITED;
1716 		goto drop;
1717 	}
1718 
1719 	/*
1720 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1721 	 * flag is on (half-synchronized state), then queue data for
1722 	 * later processing; else drop segment and return.
1723 	 */
1724 	if ((thflags & TH_ACK) == 0) {
1725 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1726 		    (tp->t_flags & TF_NEEDSYN))
1727 			goto step6;
1728 		else
1729 			goto drop;
1730 	}
1731 
1732 	/*
1733 	 * Ack processing.
1734 	 */
1735 	switch (tp->t_state) {
1736 
1737 	/*
1738 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1739 	 * ESTABLISHED state and continue processing.
1740 	 * The ACK was checked above.
1741 	 */
1742 	case TCPS_SYN_RECEIVED:
1743 
1744 		tcpstat.tcps_connects++;
1745 		soisconnected(so);
1746 		/* Do window scaling? */
1747 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1748 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1749 			tp->snd_scale = tp->requested_s_scale;
1750 			tp->rcv_scale = tp->request_r_scale;
1751 		}
1752 		/*
1753 		 * Make transitions:
1754 		 *      SYN-RECEIVED  -> ESTABLISHED
1755 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1756 		 */
1757 		tp->t_starttime = ticks;
1758 		if (tp->t_flags & TF_NEEDFIN) {
1759 			tp->t_state = TCPS_FIN_WAIT_1;
1760 			tp->t_flags &= ~TF_NEEDFIN;
1761 		} else {
1762 			tp->t_state = TCPS_ESTABLISHED;
1763 			callout_reset(tp->tt_keep, tcp_keepidle,
1764 				      tcp_timer_keep, tp);
1765 		}
1766 		/*
1767 		 * If segment contains data or ACK, will call tcp_reass()
1768 		 * later; if not, do so now to pass queued data to user.
1769 		 */
1770 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1771 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1772 			    (struct mbuf *)0);
1773 		tp->snd_wl1 = th->th_seq - 1;
1774 		/* FALLTHROUGH */
1775 
1776 	/*
1777 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1778 	 * ACKs.  If the ack is in the range
1779 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1780 	 * then advance tp->snd_una to th->th_ack and drop
1781 	 * data from the retransmission queue.  If this ACK reflects
1782 	 * more up to date window information we update our window information.
1783 	 */
1784 	case TCPS_ESTABLISHED:
1785 	case TCPS_FIN_WAIT_1:
1786 	case TCPS_FIN_WAIT_2:
1787 	case TCPS_CLOSE_WAIT:
1788 	case TCPS_CLOSING:
1789 	case TCPS_LAST_ACK:
1790 	case TCPS_TIME_WAIT:
1791 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1792 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1793 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1794 				tcpstat.tcps_rcvdupack++;
1795 				/*
1796 				 * If we have outstanding data (other than
1797 				 * a window probe), this is a completely
1798 				 * duplicate ack (ie, window info didn't
1799 				 * change), the ack is the biggest we've
1800 				 * seen and we've seen exactly our rexmt
1801 				 * threshhold of them, assume a packet
1802 				 * has been dropped and retransmit it.
1803 				 * Kludge snd_nxt & the congestion
1804 				 * window so we send only this one
1805 				 * packet.
1806 				 *
1807 				 * We know we're losing at the current
1808 				 * window size so do congestion avoidance
1809 				 * (set ssthresh to half the current window
1810 				 * and pull our congestion window back to
1811 				 * the new ssthresh).
1812 				 *
1813 				 * Dup acks mean that packets have left the
1814 				 * network (they're now cached at the receiver)
1815 				 * so bump cwnd by the amount in the receiver
1816 				 * to keep a constant cwnd packets in the
1817 				 * network.
1818 				 */
1819 				if (!callout_active(tp->tt_rexmt) ||
1820 				    th->th_ack != tp->snd_una)
1821 					tp->t_dupacks = 0;
1822 				else if (++tp->t_dupacks > tcprexmtthresh ||
1823 					 ((tcp_do_newreno || tp->sack_enable) &&
1824 					  IN_FASTRECOVERY(tp))) {
1825 					tp->snd_cwnd += tp->t_maxseg;
1826 					(void) tcp_output(tp);
1827 					goto drop;
1828 				} else if (tp->t_dupacks == tcprexmtthresh) {
1829 					tcp_seq onxt = tp->snd_nxt;
1830 					u_int win;
1831 
1832 					/*
1833 					 * If we're doing sack, check to
1834 					 * see if we're already in sack
1835 					 * recovery. If we're not doing sack,
1836 					 * check to see if we're in newreno
1837 					 * recovery.
1838 					 */
1839 					if (tp->sack_enable) {
1840 						if (IN_FASTRECOVERY(tp)) {
1841 							tp->t_dupacks = 0;
1842 							break;
1843 						}
1844 					} else if (tcp_do_newreno) {
1845 						if (SEQ_LEQ(th->th_ack,
1846 						    tp->snd_recover)) {
1847 							tp->t_dupacks = 0;
1848 							break;
1849 						}
1850 					}
1851 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1852 					    2 / tp->t_maxseg;
1853 					if (win < 2)
1854 						win = 2;
1855 					tp->snd_ssthresh = win * tp->t_maxseg;
1856 					ENTER_FASTRECOVERY(tp);
1857 					tp->snd_recover = tp->snd_max;
1858 					callout_stop(tp->tt_rexmt);
1859 					tp->t_rtttime = 0;
1860 					if (tp->sack_enable) {
1861 						tcpstat.tcps_sack_recovery_episode++;
1862 						tp->sack_newdata = tp->snd_nxt;
1863 						tp->snd_cwnd =
1864 							tp->t_maxseg * tcp_sack_recovery_initburst;
1865 						(void) tcp_output(tp);
1866 						tp->snd_cwnd +=
1867 						    tp->snd_ssthresh;
1868 						goto drop;
1869 					}
1870 
1871 					tp->snd_nxt = th->th_ack;
1872 					tp->snd_cwnd = tp->t_maxseg;
1873 					(void) tcp_output(tp);
1874 					KASSERT(tp->snd_limited <= 2,
1875 					    ("tp->snd_limited too big"));
1876 					tp->snd_cwnd = tp->snd_ssthresh +
1877 					     tp->t_maxseg *
1878 					     (tp->t_dupacks - tp->snd_limited);
1879 					if (SEQ_GT(onxt, tp->snd_nxt))
1880 						tp->snd_nxt = onxt;
1881 					goto drop;
1882 				} else if (tcp_do_rfc3042) {
1883 					u_long oldcwnd = tp->snd_cwnd;
1884 					tcp_seq oldsndmax = tp->snd_max;
1885 					u_int sent;
1886 
1887 					KASSERT(tp->t_dupacks == 1 ||
1888 					    tp->t_dupacks == 2,
1889 					    ("dupacks not 1 or 2"));
1890 					if (tp->t_dupacks == 1)
1891 						tp->snd_limited = 0;
1892 					tp->snd_cwnd =
1893 					    (tp->snd_nxt - tp->snd_una) +
1894 					    (tp->t_dupacks - tp->snd_limited) *
1895 					    tp->t_maxseg;
1896 					(void) tcp_output(tp);
1897 					sent = tp->snd_max - oldsndmax;
1898 					if (sent > tp->t_maxseg) {
1899 						KASSERT((tp->t_dupacks == 2 &&
1900 						    tp->snd_limited == 0) ||
1901 						   (sent == tp->t_maxseg + 1 &&
1902 						    tp->t_flags & TF_SENTFIN),
1903 						    ("sent too much"));
1904 						tp->snd_limited = 2;
1905 					} else if (sent > 0)
1906 						++tp->snd_limited;
1907 					tp->snd_cwnd = oldcwnd;
1908 					goto drop;
1909 				}
1910 			} else
1911 				tp->t_dupacks = 0;
1912 			break;
1913 		}
1914 
1915 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1916 
1917 		/*
1918 		 * If the congestion window was inflated to account
1919 		 * for the other side's cached packets, retract it.
1920 		 */
1921 		if (tcp_do_newreno || tp->sack_enable) {
1922 			if (IN_FASTRECOVERY(tp)) {
1923 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1924 					if (tp->sack_enable)
1925 						tcp_sack_partialack(tp, th);
1926 					else
1927 						tcp_newreno_partial_ack(tp, th);
1928 				} else {
1929 					/*
1930 					 * Out of fast recovery.
1931 					 * Window inflation should have left us
1932 					 * with approximately snd_ssthresh
1933 					 * outstanding data.
1934 					 * But in case we would be inclined to
1935 					 * send a burst, better to do it via
1936 					 * the slow start mechanism.
1937 					 */
1938 					if (SEQ_GT(th->th_ack +
1939 							tp->snd_ssthresh,
1940 						   tp->snd_max))
1941 						tp->snd_cwnd = tp->snd_max -
1942 								th->th_ack +
1943 								tp->t_maxseg;
1944 					else
1945 						tp->snd_cwnd = tp->snd_ssthresh;
1946 				}
1947 			}
1948 		} else {
1949 			if (tp->t_dupacks >= tcprexmtthresh &&
1950 			    tp->snd_cwnd > tp->snd_ssthresh)
1951 				tp->snd_cwnd = tp->snd_ssthresh;
1952 		}
1953 		tp->t_dupacks = 0;
1954 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1955 			tcpstat.tcps_rcvacktoomuch++;
1956 			goto dropafterack;
1957 		}
1958 		/*
1959 		 * If we reach this point, ACK is not a duplicate,
1960 		 *     i.e., it ACKs something we sent.
1961 		 */
1962 		if (tp->t_flags & TF_NEEDSYN) {
1963 			/*
1964 			 * T/TCP: Connection was half-synchronized, and our
1965 			 * SYN has been ACK'd (so connection is now fully
1966 			 * synchronized).  Go to non-starred state,
1967 			 * increment snd_una for ACK of SYN, and check if
1968 			 * we can do window scaling.
1969 			 */
1970 			tp->t_flags &= ~TF_NEEDSYN;
1971 			tp->snd_una++;
1972 			/* Do window scaling? */
1973 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1974 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1975 				tp->snd_scale = tp->requested_s_scale;
1976 				tp->rcv_scale = tp->request_r_scale;
1977 			}
1978 		}
1979 
1980 process_ACK:
1981 		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
1982 		    "locked"));
1983 		INP_LOCK_ASSERT(inp);
1984 
1985 		acked = th->th_ack - tp->snd_una;
1986 		tcpstat.tcps_rcvackpack++;
1987 		tcpstat.tcps_rcvackbyte += acked;
1988 
1989 		/*
1990 		 * If we just performed our first retransmit, and the ACK
1991 		 * arrives within our recovery window, then it was a mistake
1992 		 * to do the retransmit in the first place.  Recover our
1993 		 * original cwnd and ssthresh, and proceed to transmit where
1994 		 * we left off.
1995 		 */
1996 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1997 			++tcpstat.tcps_sndrexmitbad;
1998 			tp->snd_cwnd = tp->snd_cwnd_prev;
1999 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2000 			tp->snd_recover = tp->snd_recover_prev;
2001 			if (tp->t_flags & TF_WASFRECOVERY)
2002 				ENTER_FASTRECOVERY(tp);
2003 			tp->snd_nxt = tp->snd_max;
2004 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2005 		}
2006 
2007 		/*
2008 		 * If we have a timestamp reply, update smoothed
2009 		 * round trip time.  If no timestamp is present but
2010 		 * transmit timer is running and timed sequence
2011 		 * number was acked, update smoothed round trip time.
2012 		 * Since we now have an rtt measurement, cancel the
2013 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2014 		 * Recompute the initial retransmit timer.
2015 		 *
2016 		 * Some boxes send broken timestamp replies
2017 		 * during the SYN+ACK phase, ignore
2018 		 * timestamps of 0 or we could calculate a
2019 		 * huge RTT and blow up the retransmit timer.
2020 		 */
2021 		if ((to.to_flags & TOF_TS) != 0 &&
2022 		    to.to_tsecr) {
2023 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2024 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2025 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2026 		}
2027 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2028 
2029 		/*
2030 		 * If all outstanding data is acked, stop retransmit
2031 		 * timer and remember to restart (more output or persist).
2032 		 * If there is more data to be acked, restart retransmit
2033 		 * timer, using current (possibly backed-off) value.
2034 		 */
2035 		if (th->th_ack == tp->snd_max) {
2036 			callout_stop(tp->tt_rexmt);
2037 			needoutput = 1;
2038 		} else if (!callout_active(tp->tt_persist))
2039 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2040 				      tcp_timer_rexmt, tp);
2041 
2042 		/*
2043 		 * If no data (only SYN) was ACK'd,
2044 		 *    skip rest of ACK processing.
2045 		 */
2046 		if (acked == 0)
2047 			goto step6;
2048 
2049 		/*
2050 		 * When new data is acked, open the congestion window.
2051 		 * If the window gives us less than ssthresh packets
2052 		 * in flight, open exponentially (maxseg per packet).
2053 		 * Otherwise open linearly: maxseg per window
2054 		 * (maxseg^2 / cwnd per packet).
2055 		 */
2056 		if ((!tcp_do_newreno && !tp->sack_enable) ||
2057 		    !IN_FASTRECOVERY(tp)) {
2058 			register u_int cw = tp->snd_cwnd;
2059 			register u_int incr = tp->t_maxseg;
2060 			if (cw > tp->snd_ssthresh)
2061 				incr = incr * incr / cw;
2062 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2063 		}
2064 		SOCKBUF_LOCK(&so->so_snd);
2065 		if (acked > so->so_snd.sb_cc) {
2066 			tp->snd_wnd -= so->so_snd.sb_cc;
2067 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2068 			ourfinisacked = 1;
2069 		} else {
2070 			sbdrop_locked(&so->so_snd, acked);
2071 			tp->snd_wnd -= acked;
2072 			ourfinisacked = 0;
2073 		}
2074 		sowwakeup_locked(so);
2075 		/* detect una wraparound */
2076 		if ((tcp_do_newreno || tp->sack_enable) &&
2077 		    !IN_FASTRECOVERY(tp) &&
2078 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2079 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2080 			tp->snd_recover = th->th_ack - 1;
2081 		if ((tcp_do_newreno || tp->sack_enable) &&
2082 		    IN_FASTRECOVERY(tp) &&
2083 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2084 			EXIT_FASTRECOVERY(tp);
2085 		tp->snd_una = th->th_ack;
2086 		if (tp->sack_enable) {
2087 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2088 				tp->snd_recover = tp->snd_una;
2089 		}
2090 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2091 			tp->snd_nxt = tp->snd_una;
2092 
2093 		switch (tp->t_state) {
2094 
2095 		/*
2096 		 * In FIN_WAIT_1 STATE in addition to the processing
2097 		 * for the ESTABLISHED state if our FIN is now acknowledged
2098 		 * then enter FIN_WAIT_2.
2099 		 */
2100 		case TCPS_FIN_WAIT_1:
2101 			if (ourfinisacked) {
2102 				/*
2103 				 * If we can't receive any more
2104 				 * data, then closing user can proceed.
2105 				 * Starting the timer is contrary to the
2106 				 * specification, but if we don't get a FIN
2107 				 * we'll hang forever.
2108 				 */
2109 		/* XXXjl
2110 		 * we should release the tp also, and use a
2111 		 * compressed state.
2112 		 */
2113 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2114 					soisdisconnected(so);
2115 					callout_reset(tp->tt_2msl, tcp_maxidle,
2116 						      tcp_timer_2msl, tp);
2117 				}
2118 				tp->t_state = TCPS_FIN_WAIT_2;
2119 			}
2120 			break;
2121 
2122 		/*
2123 		 * In CLOSING STATE in addition to the processing for
2124 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2125 		 * then enter the TIME-WAIT state, otherwise ignore
2126 		 * the segment.
2127 		 */
2128 		case TCPS_CLOSING:
2129 			if (ourfinisacked) {
2130 				KASSERT(headlocked, ("tcp_input: process_ACK: "
2131 				    "head not locked"));
2132 				tcp_twstart(tp);
2133 				INP_INFO_WUNLOCK(&tcbinfo);
2134 				m_freem(m);
2135 				return;
2136 			}
2137 			break;
2138 
2139 		/*
2140 		 * In LAST_ACK, we may still be waiting for data to drain
2141 		 * and/or to be acked, as well as for the ack of our FIN.
2142 		 * If our FIN is now acknowledged, delete the TCB,
2143 		 * enter the closed state and return.
2144 		 */
2145 		case TCPS_LAST_ACK:
2146 			if (ourfinisacked) {
2147 				tp = tcp_close(tp);
2148 				goto drop;
2149 			}
2150 			break;
2151 
2152 		/*
2153 		 * In TIME_WAIT state the only thing that should arrive
2154 		 * is a retransmission of the remote FIN.  Acknowledge
2155 		 * it and restart the finack timer.
2156 		 */
2157 		case TCPS_TIME_WAIT:
2158 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2159 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2160 				      tcp_timer_2msl, tp);
2161 			goto dropafterack;
2162 		}
2163 	}
2164 
2165 step6:
2166 	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2167 	INP_LOCK_ASSERT(inp);
2168 
2169 	/*
2170 	 * Update window information.
2171 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2172 	 */
2173 	if ((thflags & TH_ACK) &&
2174 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2175 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2176 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2177 		/* keep track of pure window updates */
2178 		if (tlen == 0 &&
2179 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2180 			tcpstat.tcps_rcvwinupd++;
2181 		tp->snd_wnd = tiwin;
2182 		tp->snd_wl1 = th->th_seq;
2183 		tp->snd_wl2 = th->th_ack;
2184 		if (tp->snd_wnd > tp->max_sndwnd)
2185 			tp->max_sndwnd = tp->snd_wnd;
2186 		needoutput = 1;
2187 	}
2188 
2189 	/*
2190 	 * Process segments with URG.
2191 	 */
2192 	if ((thflags & TH_URG) && th->th_urp &&
2193 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2194 		/*
2195 		 * This is a kludge, but if we receive and accept
2196 		 * random urgent pointers, we'll crash in
2197 		 * soreceive.  It's hard to imagine someone
2198 		 * actually wanting to send this much urgent data.
2199 		 */
2200 		SOCKBUF_LOCK(&so->so_rcv);
2201 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2202 			th->th_urp = 0;			/* XXX */
2203 			thflags &= ~TH_URG;		/* XXX */
2204 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2205 			goto dodata;			/* XXX */
2206 		}
2207 		/*
2208 		 * If this segment advances the known urgent pointer,
2209 		 * then mark the data stream.  This should not happen
2210 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2211 		 * a FIN has been received from the remote side.
2212 		 * In these states we ignore the URG.
2213 		 *
2214 		 * According to RFC961 (Assigned Protocols),
2215 		 * the urgent pointer points to the last octet
2216 		 * of urgent data.  We continue, however,
2217 		 * to consider it to indicate the first octet
2218 		 * of data past the urgent section as the original
2219 		 * spec states (in one of two places).
2220 		 */
2221 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2222 			tp->rcv_up = th->th_seq + th->th_urp;
2223 			so->so_oobmark = so->so_rcv.sb_cc +
2224 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2225 			if (so->so_oobmark == 0)
2226 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2227 			sohasoutofband(so);
2228 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2229 		}
2230 		SOCKBUF_UNLOCK(&so->so_rcv);
2231 		/*
2232 		 * Remove out of band data so doesn't get presented to user.
2233 		 * This can happen independent of advancing the URG pointer,
2234 		 * but if two URG's are pending at once, some out-of-band
2235 		 * data may creep in... ick.
2236 		 */
2237 		if (th->th_urp <= (u_long)tlen &&
2238 		    !(so->so_options & SO_OOBINLINE)) {
2239 			/* hdr drop is delayed */
2240 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2241 		}
2242 	} else {
2243 		/*
2244 		 * If no out of band data is expected,
2245 		 * pull receive urgent pointer along
2246 		 * with the receive window.
2247 		 */
2248 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2249 			tp->rcv_up = tp->rcv_nxt;
2250 	}
2251 dodata:							/* XXX */
2252 	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2253 	INP_LOCK_ASSERT(inp);
2254 
2255 	/*
2256 	 * Process the segment text, merging it into the TCP sequencing queue,
2257 	 * and arranging for acknowledgment of receipt if necessary.
2258 	 * This process logically involves adjusting tp->rcv_wnd as data
2259 	 * is presented to the user (this happens in tcp_usrreq.c,
2260 	 * case PRU_RCVD).  If a FIN has already been received on this
2261 	 * connection then we just ignore the text.
2262 	 */
2263 	if ((tlen || (thflags & TH_FIN)) &&
2264 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2265 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2266 		/*
2267 		 * Insert segment which includes th into TCP reassembly queue
2268 		 * with control block tp.  Set thflags to whether reassembly now
2269 		 * includes a segment with FIN.  This handles the common case
2270 		 * inline (segment is the next to be received on an established
2271 		 * connection, and the queue is empty), avoiding linkage into
2272 		 * and removal from the queue and repetition of various
2273 		 * conversions.
2274 		 * Set DELACK for segments received in order, but ack
2275 		 * immediately when segments are out of order (so
2276 		 * fast retransmit can work).
2277 		 */
2278 		if (th->th_seq == tp->rcv_nxt &&
2279 		    LIST_EMPTY(&tp->t_segq) &&
2280 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2281 			if (DELAY_ACK(tp))
2282 				tp->t_flags |= TF_DELACK;
2283 			else
2284 				tp->t_flags |= TF_ACKNOW;
2285 			tp->rcv_nxt += tlen;
2286 			thflags = th->th_flags & TH_FIN;
2287 			tcpstat.tcps_rcvpack++;
2288 			tcpstat.tcps_rcvbyte += tlen;
2289 			ND6_HINT(tp);
2290 			SOCKBUF_LOCK(&so->so_rcv);
2291 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2292 				m_freem(m);
2293 			else
2294 				sbappendstream_locked(&so->so_rcv, m);
2295 			sorwakeup_locked(so);
2296 		} else {
2297 			thflags = tcp_reass(tp, th, &tlen, m);
2298 			tp->t_flags |= TF_ACKNOW;
2299 		}
2300 			if (tp->sack_enable)
2301 				tcp_update_sack_list(tp);
2302 		/*
2303 		 * Note the amount of data that peer has sent into
2304 		 * our window, in order to estimate the sender's
2305 		 * buffer size.
2306 		 */
2307 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2308 	} else {
2309 		m_freem(m);
2310 		thflags &= ~TH_FIN;
2311 	}
2312 
2313 	/*
2314 	 * If FIN is received ACK the FIN and let the user know
2315 	 * that the connection is closing.
2316 	 */
2317 	if (thflags & TH_FIN) {
2318 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2319 			socantrcvmore(so);
2320 			/*
2321 			 * If connection is half-synchronized
2322 			 * (ie NEEDSYN flag on) then delay ACK,
2323 			 * so it may be piggybacked when SYN is sent.
2324 			 * Otherwise, since we received a FIN then no
2325 			 * more input can be expected, send ACK now.
2326 			 */
2327 			if (tp->t_flags & TF_NEEDSYN)
2328 				tp->t_flags |= TF_DELACK;
2329 			else
2330 				tp->t_flags |= TF_ACKNOW;
2331 			tp->rcv_nxt++;
2332 		}
2333 		switch (tp->t_state) {
2334 
2335 		/*
2336 		 * In SYN_RECEIVED and ESTABLISHED STATES
2337 		 * enter the CLOSE_WAIT state.
2338 		 */
2339 		case TCPS_SYN_RECEIVED:
2340 			tp->t_starttime = ticks;
2341 			/*FALLTHROUGH*/
2342 		case TCPS_ESTABLISHED:
2343 			tp->t_state = TCPS_CLOSE_WAIT;
2344 			break;
2345 
2346 		/*
2347 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2348 		 * enter the CLOSING state.
2349 		 */
2350 		case TCPS_FIN_WAIT_1:
2351 			tp->t_state = TCPS_CLOSING;
2352 			break;
2353 
2354 		/*
2355 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2356 		 * starting the time-wait timer, turning off the other
2357 		 * standard timers.
2358 		 */
2359 		case TCPS_FIN_WAIT_2:
2360 			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2361 			    "TCP_FIN_WAIT_2: head not locked"));
2362 			tcp_twstart(tp);
2363 			INP_INFO_WUNLOCK(&tcbinfo);
2364 			return;
2365 
2366 		/*
2367 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2368 		 */
2369 		case TCPS_TIME_WAIT:
2370 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2371 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2372 				      tcp_timer_2msl, tp);
2373 			break;
2374 		}
2375 	}
2376 #ifdef TCPDEBUG
2377 	if (so->so_options & SO_DEBUG)
2378 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2379 			  &tcp_savetcp, 0);
2380 #endif
2381 
2382 	/*
2383 	 * Return any desired output.
2384 	 */
2385 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2386 		(void) tcp_output(tp);
2387 
2388 check_delack:
2389 	KASSERT(headlocked == 1, ("tcp_input: check_delack: head not locked"));
2390 	INP_LOCK_ASSERT(inp);
2391 	if (tp->t_flags & TF_DELACK) {
2392 		tp->t_flags &= ~TF_DELACK;
2393 		callout_reset(tp->tt_delack, tcp_delacktime,
2394 		    tcp_timer_delack, tp);
2395 	}
2396 	INP_UNLOCK(inp);
2397 	INP_INFO_WUNLOCK(&tcbinfo);
2398 	return;
2399 
2400 dropafterack:
2401 	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2402 	/*
2403 	 * Generate an ACK dropping incoming segment if it occupies
2404 	 * sequence space, where the ACK reflects our state.
2405 	 *
2406 	 * We can now skip the test for the RST flag since all
2407 	 * paths to this code happen after packets containing
2408 	 * RST have been dropped.
2409 	 *
2410 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2411 	 * segment we received passes the SYN-RECEIVED ACK test.
2412 	 * If it fails send a RST.  This breaks the loop in the
2413 	 * "LAND" DoS attack, and also prevents an ACK storm
2414 	 * between two listening ports that have been sent forged
2415 	 * SYN segments, each with the source address of the other.
2416 	 */
2417 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2418 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2419 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2420 		rstreason = BANDLIM_RST_OPENPORT;
2421 		goto dropwithreset;
2422 	}
2423 #ifdef TCPDEBUG
2424 	if (so->so_options & SO_DEBUG)
2425 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2426 			  &tcp_savetcp, 0);
2427 #endif
2428 	KASSERT(headlocked, ("headlocked should be 1"));
2429 	tp->t_flags |= TF_ACKNOW;
2430 	(void) tcp_output(tp);
2431 	INP_UNLOCK(inp);
2432 	INP_INFO_WUNLOCK(&tcbinfo);
2433 	m_freem(m);
2434 	return;
2435 
2436 dropwithreset:
2437 	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2438 	/*
2439 	 * Generate a RST, dropping incoming segment.
2440 	 * Make ACK acceptable to originator of segment.
2441 	 * Don't bother to respond if destination was broadcast/multicast.
2442 	 */
2443 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2444 		goto drop;
2445 	if (isipv6) {
2446 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2447 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2448 			goto drop;
2449 	} else {
2450 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2451 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2452 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2453 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2454 			goto drop;
2455 	}
2456 	/* IPv6 anycast check is done at tcp6_input() */
2457 
2458 	/*
2459 	 * Perform bandwidth limiting.
2460 	 */
2461 	if (badport_bandlim(rstreason) < 0)
2462 		goto drop;
2463 
2464 #ifdef TCPDEBUG
2465 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2466 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2467 			  &tcp_savetcp, 0);
2468 #endif
2469 
2470 	if (thflags & TH_ACK)
2471 		/* mtod() below is safe as long as hdr dropping is delayed */
2472 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2473 			    TH_RST);
2474 	else {
2475 		if (thflags & TH_SYN)
2476 			tlen++;
2477 		/* mtod() below is safe as long as hdr dropping is delayed */
2478 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2479 			    (tcp_seq)0, TH_RST|TH_ACK);
2480 	}
2481 
2482 	if (tp)
2483 		INP_UNLOCK(inp);
2484 	if (headlocked)
2485 		INP_INFO_WUNLOCK(&tcbinfo);
2486 	return;
2487 
2488 drop:
2489 	/*
2490 	 * Drop space held by incoming segment and return.
2491 	 */
2492 #ifdef TCPDEBUG
2493 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2494 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2495 			  &tcp_savetcp, 0);
2496 #endif
2497 	if (tp)
2498 		INP_UNLOCK(inp);
2499 	if (headlocked)
2500 		INP_INFO_WUNLOCK(&tcbinfo);
2501 	m_freem(m);
2502 	return;
2503 }
2504 
2505 /*
2506  * Parse TCP options and place in tcpopt.
2507  */
2508 static void
2509 tcp_dooptions(tp, to, cp, cnt, is_syn, th)
2510 	struct tcpcb *tp;
2511 	struct tcpopt *to;
2512 	u_char *cp;
2513 	int cnt;
2514 	int is_syn;
2515 	struct tcphdr *th;
2516 {
2517 	int opt, optlen;
2518 
2519 	to->to_flags = 0;
2520 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2521 		opt = cp[0];
2522 		if (opt == TCPOPT_EOL)
2523 			break;
2524 		if (opt == TCPOPT_NOP)
2525 			optlen = 1;
2526 		else {
2527 			if (cnt < 2)
2528 				break;
2529 			optlen = cp[1];
2530 			if (optlen < 2 || optlen > cnt)
2531 				break;
2532 		}
2533 		switch (opt) {
2534 		case TCPOPT_MAXSEG:
2535 			if (optlen != TCPOLEN_MAXSEG)
2536 				continue;
2537 			if (!is_syn)
2538 				continue;
2539 			to->to_flags |= TOF_MSS;
2540 			bcopy((char *)cp + 2,
2541 			    (char *)&to->to_mss, sizeof(to->to_mss));
2542 			to->to_mss = ntohs(to->to_mss);
2543 			break;
2544 		case TCPOPT_WINDOW:
2545 			if (optlen != TCPOLEN_WINDOW)
2546 				continue;
2547 			if (! is_syn)
2548 				continue;
2549 			to->to_flags |= TOF_SCALE;
2550 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2551 			break;
2552 		case TCPOPT_TIMESTAMP:
2553 			if (optlen != TCPOLEN_TIMESTAMP)
2554 				continue;
2555 			to->to_flags |= TOF_TS;
2556 			bcopy((char *)cp + 2,
2557 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2558 			to->to_tsval = ntohl(to->to_tsval);
2559 			bcopy((char *)cp + 6,
2560 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2561 			to->to_tsecr = ntohl(to->to_tsecr);
2562 			break;
2563 #ifdef TCP_SIGNATURE
2564 		/*
2565 		 * XXX In order to reply to a host which has set the
2566 		 * TCP_SIGNATURE option in its initial SYN, we have to
2567 		 * record the fact that the option was observed here
2568 		 * for the syncache code to perform the correct response.
2569 		 */
2570 		case TCPOPT_SIGNATURE:
2571 			if (optlen != TCPOLEN_SIGNATURE)
2572 				continue;
2573 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2574 			break;
2575 #endif
2576 		case TCPOPT_SACK_PERMITTED:
2577 			if (!tcp_do_sack ||
2578 			    optlen != TCPOLEN_SACK_PERMITTED)
2579 				continue;
2580 			if (is_syn) {
2581 				/* MUST only be set on SYN */
2582 				to->to_flags |= TOF_SACK;
2583 			}
2584 			break;
2585 
2586 		case TCPOPT_SACK:
2587 			if (!tp || tcp_sack_option(tp, th, cp, optlen))
2588 				continue;
2589 			break;
2590 		default:
2591 			continue;
2592 		}
2593 	}
2594 }
2595 
2596 /*
2597  * Pull out of band byte out of a segment so
2598  * it doesn't appear in the user's data queue.
2599  * It is still reflected in the segment length for
2600  * sequencing purposes.
2601  */
2602 static void
2603 tcp_pulloutofband(so, th, m, off)
2604 	struct socket *so;
2605 	struct tcphdr *th;
2606 	register struct mbuf *m;
2607 	int off;		/* delayed to be droped hdrlen */
2608 {
2609 	int cnt = off + th->th_urp - 1;
2610 
2611 	while (cnt >= 0) {
2612 		if (m->m_len > cnt) {
2613 			char *cp = mtod(m, caddr_t) + cnt;
2614 			struct tcpcb *tp = sototcpcb(so);
2615 
2616 			tp->t_iobc = *cp;
2617 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2618 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2619 			m->m_len--;
2620 			if (m->m_flags & M_PKTHDR)
2621 				m->m_pkthdr.len--;
2622 			return;
2623 		}
2624 		cnt -= m->m_len;
2625 		m = m->m_next;
2626 		if (m == 0)
2627 			break;
2628 	}
2629 	panic("tcp_pulloutofband");
2630 }
2631 
2632 /*
2633  * Collect new round-trip time estimate
2634  * and update averages and current timeout.
2635  */
2636 static void
2637 tcp_xmit_timer(tp, rtt)
2638 	register struct tcpcb *tp;
2639 	int rtt;
2640 {
2641 	register int delta;
2642 
2643 	INP_LOCK_ASSERT(tp->t_inpcb);
2644 
2645 	tcpstat.tcps_rttupdated++;
2646 	tp->t_rttupdated++;
2647 	if (tp->t_srtt != 0) {
2648 		/*
2649 		 * srtt is stored as fixed point with 5 bits after the
2650 		 * binary point (i.e., scaled by 8).  The following magic
2651 		 * is equivalent to the smoothing algorithm in rfc793 with
2652 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2653 		 * point).  Adjust rtt to origin 0.
2654 		 */
2655 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2656 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2657 
2658 		if ((tp->t_srtt += delta) <= 0)
2659 			tp->t_srtt = 1;
2660 
2661 		/*
2662 		 * We accumulate a smoothed rtt variance (actually, a
2663 		 * smoothed mean difference), then set the retransmit
2664 		 * timer to smoothed rtt + 4 times the smoothed variance.
2665 		 * rttvar is stored as fixed point with 4 bits after the
2666 		 * binary point (scaled by 16).  The following is
2667 		 * equivalent to rfc793 smoothing with an alpha of .75
2668 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2669 		 * rfc793's wired-in beta.
2670 		 */
2671 		if (delta < 0)
2672 			delta = -delta;
2673 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2674 		if ((tp->t_rttvar += delta) <= 0)
2675 			tp->t_rttvar = 1;
2676 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2677 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2678 	} else {
2679 		/*
2680 		 * No rtt measurement yet - use the unsmoothed rtt.
2681 		 * Set the variance to half the rtt (so our first
2682 		 * retransmit happens at 3*rtt).
2683 		 */
2684 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2685 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2686 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2687 	}
2688 	tp->t_rtttime = 0;
2689 	tp->t_rxtshift = 0;
2690 
2691 	/*
2692 	 * the retransmit should happen at rtt + 4 * rttvar.
2693 	 * Because of the way we do the smoothing, srtt and rttvar
2694 	 * will each average +1/2 tick of bias.  When we compute
2695 	 * the retransmit timer, we want 1/2 tick of rounding and
2696 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2697 	 * firing of the timer.  The bias will give us exactly the
2698 	 * 1.5 tick we need.  But, because the bias is
2699 	 * statistical, we have to test that we don't drop below
2700 	 * the minimum feasible timer (which is 2 ticks).
2701 	 */
2702 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2703 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2704 
2705 	/*
2706 	 * We received an ack for a packet that wasn't retransmitted;
2707 	 * it is probably safe to discard any error indications we've
2708 	 * received recently.  This isn't quite right, but close enough
2709 	 * for now (a route might have failed after we sent a segment,
2710 	 * and the return path might not be symmetrical).
2711 	 */
2712 	tp->t_softerror = 0;
2713 }
2714 
2715 /*
2716  * Determine a reasonable value for maxseg size.
2717  * If the route is known, check route for mtu.
2718  * If none, use an mss that can be handled on the outgoing
2719  * interface without forcing IP to fragment; if bigger than
2720  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2721  * to utilize large mbufs.  If no route is found, route has no mtu,
2722  * or the destination isn't local, use a default, hopefully conservative
2723  * size (usually 512 or the default IP max size, but no more than the mtu
2724  * of the interface), as we can't discover anything about intervening
2725  * gateways or networks.  We also initialize the congestion/slow start
2726  * window to be a single segment if the destination isn't local.
2727  * While looking at the routing entry, we also initialize other path-dependent
2728  * parameters from pre-set or cached values in the routing entry.
2729  *
2730  * Also take into account the space needed for options that we
2731  * send regularly.  Make maxseg shorter by that amount to assure
2732  * that we can send maxseg amount of data even when the options
2733  * are present.  Store the upper limit of the length of options plus
2734  * data in maxopd.
2735  *
2736  *
2737  * In case of T/TCP, we call this routine during implicit connection
2738  * setup as well (offer = -1), to initialize maxseg from the cached
2739  * MSS of our peer.
2740  *
2741  * NOTE that this routine is only called when we process an incoming
2742  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2743  */
2744 void
2745 tcp_mss(tp, offer)
2746 	struct tcpcb *tp;
2747 	int offer;
2748 {
2749 	int rtt, mss;
2750 	u_long bufsize;
2751 	u_long maxmtu;
2752 	struct inpcb *inp = tp->t_inpcb;
2753 	struct socket *so;
2754 	struct hc_metrics_lite metrics;
2755 	int origoffer = offer;
2756 #ifdef INET6
2757 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2758 	size_t min_protoh = isipv6 ?
2759 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2760 			    sizeof (struct tcpiphdr);
2761 #else
2762 	const size_t min_protoh = sizeof(struct tcpiphdr);
2763 #endif
2764 
2765 	/* initialize */
2766 #ifdef INET6
2767 	if (isipv6) {
2768 		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2769 		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2770 	} else
2771 #endif
2772 	{
2773 		maxmtu = tcp_maxmtu(&inp->inp_inc);
2774 		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2775 	}
2776 	so = inp->inp_socket;
2777 
2778 	/*
2779 	 * no route to sender, stay with default mss and return
2780 	 */
2781 	if (maxmtu == 0)
2782 		return;
2783 
2784 	/* what have we got? */
2785 	switch (offer) {
2786 		case 0:
2787 			/*
2788 			 * Offer == 0 means that there was no MSS on the SYN
2789 			 * segment, in this case we use tcp_mssdflt.
2790 			 */
2791 			offer =
2792 #ifdef INET6
2793 				isipv6 ? tcp_v6mssdflt :
2794 #endif
2795 				tcp_mssdflt;
2796 			break;
2797 
2798 		case -1:
2799 			/*
2800 			 * Offer == -1 means that we didn't receive SYN yet.
2801 			 */
2802 			/* FALLTHROUGH */
2803 
2804 		default:
2805 			/*
2806 			 * Prevent DoS attack with too small MSS. Round up
2807 			 * to at least minmss.
2808 			 */
2809 			offer = max(offer, tcp_minmss);
2810 			/*
2811 			 * Sanity check: make sure that maxopd will be large
2812 			 * enough to allow some data on segments even if the
2813 			 * all the option space is used (40bytes).  Otherwise
2814 			 * funny things may happen in tcp_output.
2815 			 */
2816 			offer = max(offer, 64);
2817 	}
2818 
2819 	/*
2820 	 * rmx information is now retrieved from tcp_hostcache
2821 	 */
2822 	tcp_hc_get(&inp->inp_inc, &metrics);
2823 
2824 	/*
2825 	 * if there's a discovered mtu int tcp hostcache, use it
2826 	 * else, use the link mtu.
2827 	 */
2828 	if (metrics.rmx_mtu)
2829 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2830 	else {
2831 #ifdef INET6
2832 		if (isipv6) {
2833 			mss = maxmtu - min_protoh;
2834 			if (!path_mtu_discovery &&
2835 			    !in6_localaddr(&inp->in6p_faddr))
2836 				mss = min(mss, tcp_v6mssdflt);
2837 		} else
2838 #endif
2839 		{
2840 			mss = maxmtu - min_protoh;
2841 			if (!path_mtu_discovery &&
2842 			    !in_localaddr(inp->inp_faddr))
2843 				mss = min(mss, tcp_mssdflt);
2844 		}
2845 	}
2846 	mss = min(mss, offer);
2847 
2848 	/*
2849 	 * maxopd stores the maximum length of data AND options
2850 	 * in a segment; maxseg is the amount of data in a normal
2851 	 * segment.  We need to store this value (maxopd) apart
2852 	 * from maxseg, because now every segment carries options
2853 	 * and thus we normally have somewhat less data in segments.
2854 	 */
2855 	tp->t_maxopd = mss;
2856 
2857 	/*
2858 	 * origoffer==-1 indicates, that no segments were received yet.
2859 	 * In this case we just guess.
2860 	 */
2861 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2862 	    (origoffer == -1 ||
2863 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2864 		mss -= TCPOLEN_TSTAMP_APPA;
2865 	tp->t_maxseg = mss;
2866 
2867 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2868 		if (mss > MCLBYTES)
2869 			mss &= ~(MCLBYTES-1);
2870 #else
2871 		if (mss > MCLBYTES)
2872 			mss = mss / MCLBYTES * MCLBYTES;
2873 #endif
2874 	tp->t_maxseg = mss;
2875 
2876 	/*
2877 	 * If there's a pipesize, change the socket buffer to that size,
2878 	 * don't change if sb_hiwat is different than default (then it
2879 	 * has been changed on purpose with setsockopt).
2880 	 * Make the socket buffers an integral number of mss units;
2881 	 * if the mss is larger than the socket buffer, decrease the mss.
2882 	 */
2883 	SOCKBUF_LOCK(&so->so_snd);
2884 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2885 		bufsize = metrics.rmx_sendpipe;
2886 	else
2887 		bufsize = so->so_snd.sb_hiwat;
2888 	if (bufsize < mss)
2889 		mss = bufsize;
2890 	else {
2891 		bufsize = roundup(bufsize, mss);
2892 		if (bufsize > sb_max)
2893 			bufsize = sb_max;
2894 		if (bufsize > so->so_snd.sb_hiwat)
2895 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2896 	}
2897 	SOCKBUF_UNLOCK(&so->so_snd);
2898 	tp->t_maxseg = mss;
2899 
2900 	SOCKBUF_LOCK(&so->so_rcv);
2901 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2902 		bufsize = metrics.rmx_recvpipe;
2903 	else
2904 		bufsize = so->so_rcv.sb_hiwat;
2905 	if (bufsize > mss) {
2906 		bufsize = roundup(bufsize, mss);
2907 		if (bufsize > sb_max)
2908 			bufsize = sb_max;
2909 		if (bufsize > so->so_rcv.sb_hiwat)
2910 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2911 	}
2912 	SOCKBUF_UNLOCK(&so->so_rcv);
2913 	/*
2914 	 * While we're here, check the others too
2915 	 */
2916 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2917 		tp->t_srtt = rtt;
2918 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2919 		tcpstat.tcps_usedrtt++;
2920 		if (metrics.rmx_rttvar) {
2921 			tp->t_rttvar = metrics.rmx_rttvar;
2922 			tcpstat.tcps_usedrttvar++;
2923 		} else {
2924 			/* default variation is +- 1 rtt */
2925 			tp->t_rttvar =
2926 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2927 		}
2928 		TCPT_RANGESET(tp->t_rxtcur,
2929 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2930 			      tp->t_rttmin, TCPTV_REXMTMAX);
2931 	}
2932 	if (metrics.rmx_ssthresh) {
2933 		/*
2934 		 * There's some sort of gateway or interface
2935 		 * buffer limit on the path.  Use this to set
2936 		 * the slow start threshhold, but set the
2937 		 * threshold to no less than 2*mss.
2938 		 */
2939 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
2940 		tcpstat.tcps_usedssthresh++;
2941 	}
2942 	if (metrics.rmx_bandwidth)
2943 		tp->snd_bandwidth = metrics.rmx_bandwidth;
2944 
2945 	/*
2946 	 * Set the slow-start flight size depending on whether this
2947 	 * is a local network or not.
2948 	 *
2949 	 * Extend this so we cache the cwnd too and retrieve it here.
2950 	 * Make cwnd even bigger than RFC3390 suggests but only if we
2951 	 * have previous experience with the remote host. Be careful
2952 	 * not make cwnd bigger than remote receive window or our own
2953 	 * send socket buffer. Maybe put some additional upper bound
2954 	 * on the retrieved cwnd. Should do incremental updates to
2955 	 * hostcache when cwnd collapses so next connection doesn't
2956 	 * overloads the path again.
2957 	 *
2958 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
2959 	 * We currently check only in syncache_socket for that.
2960 	 */
2961 #define TCP_METRICS_CWND
2962 #ifdef TCP_METRICS_CWND
2963 	if (metrics.rmx_cwnd)
2964 		tp->snd_cwnd = max(mss,
2965 				min(metrics.rmx_cwnd / 2,
2966 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
2967 	else
2968 #endif
2969 	if (tcp_do_rfc3390)
2970 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2971 #ifdef INET6
2972 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2973 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2974 #else
2975 	else if (in_localaddr(inp->inp_faddr))
2976 #endif
2977 		tp->snd_cwnd = mss * ss_fltsz_local;
2978 	else
2979 		tp->snd_cwnd = mss * ss_fltsz;
2980 }
2981 
2982 /*
2983  * Determine the MSS option to send on an outgoing SYN.
2984  */
2985 int
2986 tcp_mssopt(inc)
2987 	struct in_conninfo *inc;
2988 {
2989 	int mss = 0;
2990 	u_long maxmtu = 0;
2991 	u_long thcmtu = 0;
2992 	size_t min_protoh;
2993 #ifdef INET6
2994 	int isipv6 = inc->inc_isipv6 ? 1 : 0;
2995 #endif
2996 
2997 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
2998 
2999 #ifdef INET6
3000 	if (isipv6) {
3001 		mss = tcp_v6mssdflt;
3002 		maxmtu = tcp_maxmtu6(inc);
3003 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3004 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3005 	} else
3006 #endif
3007 	{
3008 		mss = tcp_mssdflt;
3009 		maxmtu = tcp_maxmtu(inc);
3010 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3011 		min_protoh = sizeof(struct tcpiphdr);
3012 	}
3013 	if (maxmtu && thcmtu)
3014 		mss = min(maxmtu, thcmtu) - min_protoh;
3015 	else if (maxmtu || thcmtu)
3016 		mss = max(maxmtu, thcmtu) - min_protoh;
3017 
3018 	return (mss);
3019 }
3020 
3021 
3022 /*
3023  * On a partial ack arrives, force the retransmission of the
3024  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3025  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3026  * be started again.
3027  */
3028 static void
3029 tcp_newreno_partial_ack(tp, th)
3030 	struct tcpcb *tp;
3031 	struct tcphdr *th;
3032 {
3033 	tcp_seq onxt = tp->snd_nxt;
3034 	u_long  ocwnd = tp->snd_cwnd;
3035 
3036 	callout_stop(tp->tt_rexmt);
3037 	tp->t_rtttime = 0;
3038 	tp->snd_nxt = th->th_ack;
3039 	/*
3040 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3041 	 * (tp->snd_una has not yet been updated when this function is called.)
3042 	 */
3043 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3044 	tp->t_flags |= TF_ACKNOW;
3045 	(void) tcp_output(tp);
3046 	tp->snd_cwnd = ocwnd;
3047 	if (SEQ_GT(onxt, tp->snd_nxt))
3048 		tp->snd_nxt = onxt;
3049 	/*
3050 	 * Partial window deflation.  Relies on fact that tp->snd_una
3051 	 * not updated yet.
3052 	 */
3053 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3054 }
3055 
3056 /*
3057  * Returns 1 if the TIME_WAIT state was killed and we should start over,
3058  * looking for a pcb in the listen state.  Returns 0 otherwise.
3059  */
3060 static int
3061 tcp_timewait(tw, to, th, m, tlen)
3062 	struct tcptw *tw;
3063 	struct tcpopt *to;
3064 	struct tcphdr *th;
3065 	struct mbuf *m;
3066 	int tlen;
3067 {
3068 	int thflags;
3069 	tcp_seq seq;
3070 #ifdef INET6
3071 	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3072 #else
3073 	const int isipv6 = 0;
3074 #endif
3075 
3076 	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3077 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3078 	INP_LOCK_ASSERT(tw->tw_inpcb);
3079 
3080 	thflags = th->th_flags;
3081 
3082 	/*
3083 	 * NOTE: for FIN_WAIT_2 (to be added later),
3084 	 * must validate sequence number before accepting RST
3085 	 */
3086 
3087 	/*
3088 	 * If the segment contains RST:
3089 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3090 	 *      RFC 1337.
3091 	 */
3092 	if (thflags & TH_RST)
3093 		goto drop;
3094 
3095 #if 0
3096 /* PAWS not needed at the moment */
3097 	/*
3098 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3099 	 * and it's less than ts_recent, drop it.
3100 	 */
3101 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3102 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3103 		if ((thflags & TH_ACK) == 0)
3104 			goto drop;
3105 		goto ack;
3106 	}
3107 	/*
3108 	 * ts_recent is never updated because we never accept new segments.
3109 	 */
3110 #endif
3111 
3112 	/*
3113 	 * If a new connection request is received
3114 	 * while in TIME_WAIT, drop the old connection
3115 	 * and start over if the sequence numbers
3116 	 * are above the previous ones.
3117 	 */
3118 	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3119 		(void) tcp_twclose(tw, 0);
3120 		return (1);
3121 	}
3122 
3123 	/*
3124 	 * Drop the the segment if it does not contain an ACK.
3125 	 */
3126 	if ((thflags & TH_ACK) == 0)
3127 		goto drop;
3128 
3129 	/*
3130 	 * Reset the 2MSL timer if this is a duplicate FIN.
3131 	 */
3132 	if (thflags & TH_FIN) {
3133 		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3134 		if (seq + 1 == tw->rcv_nxt)
3135 			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3136 	}
3137 
3138 	/*
3139 	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3140 	 */
3141 	if (thflags != TH_ACK || tlen != 0 ||
3142 	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3143 		tcp_twrespond(tw, TH_ACK);
3144 	goto drop;
3145 
3146 	/*
3147 	 * Generate a RST, dropping incoming segment.
3148 	 * Make ACK acceptable to originator of segment.
3149 	 * Don't bother to respond if destination was broadcast/multicast.
3150 	 */
3151 	if (m->m_flags & (M_BCAST|M_MCAST))
3152 		goto drop;
3153 	if (isipv6) {
3154 		struct ip6_hdr *ip6;
3155 
3156 		/* IPv6 anycast check is done at tcp6_input() */
3157 		ip6 = mtod(m, struct ip6_hdr *);
3158 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3159 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3160 			goto drop;
3161 	} else {
3162 		struct ip *ip;
3163 
3164 		ip = mtod(m, struct ip *);
3165 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3166 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3167 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3168 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3169 			goto drop;
3170 	}
3171 	if (thflags & TH_ACK) {
3172 		tcp_respond(NULL,
3173 		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3174 	} else {
3175 		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3176 		tcp_respond(NULL,
3177 		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3178 	}
3179 	INP_UNLOCK(tw->tw_inpcb);
3180 	return (0);
3181 
3182 drop:
3183 	INP_UNLOCK(tw->tw_inpcb);
3184 	m_freem(m);
3185 	return (0);
3186 }
3187