xref: /freebsd/sys/netinet/tcp_reass.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 #include "opt_tcp_input.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syslog.h>
54 
55 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
56 
57 #include <net/if.h>
58 #include <net/route.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
64 #include <netinet/in_var.h>
65 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
66 #include <netinet/in_pcb.h>
67 #include <netinet/ip_var.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <netinet6/nd6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/tcp.h>
76 #include <netinet/tcp_fsm.h>
77 #include <netinet/tcp_seq.h>
78 #include <netinet/tcp_timer.h>
79 #include <netinet/tcp_var.h>
80 #ifdef INET6
81 #include <netinet6/tcp6_var.h>
82 #endif
83 #include <netinet/tcpip.h>
84 #ifdef TCPDEBUG
85 #include <netinet/tcp_debug.h>
86 
87 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
88 struct tcphdr tcp_savetcp;
89 #endif /* TCPDEBUG */
90 
91 #ifdef IPSEC
92 #include <netinet6/ipsec.h>
93 #ifdef INET6
94 #include <netinet6/ipsec6.h>
95 #endif
96 #include <netkey/key.h>
97 #endif /*IPSEC*/
98 
99 #include <machine/in_cksum.h>
100 
101 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
102 
103 static int	tcprexmtthresh = 3;
104 tcp_seq	tcp_iss;
105 tcp_cc	tcp_ccgen;
106 
107 struct	tcpstat tcpstat;
108 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
109     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
110 
111 static int log_in_vain = 0;
112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
113     &log_in_vain, 0, "Log all incoming TCP connections");
114 
115 static int blackhole = 0;
116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
117 	&blackhole, 0, "Do not send RST when dropping refused connections");
118 
119 int tcp_delack_enabled = 1;
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
121     &tcp_delack_enabled, 0,
122     "Delay ACK to try and piggyback it onto a data packet");
123 
124 int tcp_lq_overflow = 1;
125 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW,
126     &tcp_lq_overflow, 0,
127     "Listen Queue Overflow");
128 
129 #ifdef TCP_DROP_SYNFIN
130 static int drop_synfin = 0;
131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
132     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
133 #endif
134 
135 struct inpcbhead tcb;
136 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
137 struct inpcbinfo tcbinfo;
138 
139 static void	 tcp_dooptions __P((struct tcpcb *,
140 	    u_char *, int, struct tcphdr *, struct tcpopt *));
141 static void	 tcp_pulloutofband __P((struct socket *,
142 	    struct tcphdr *, struct mbuf *, int));
143 static int	 tcp_reass __P((struct tcpcb *, struct tcphdr *, int *,
144 				struct mbuf *));
145 static void	 tcp_xmit_timer __P((struct tcpcb *, int));
146 static int	 tcp_newreno __P((struct tcpcb *, struct tcphdr *));
147 
148 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
149 #ifdef INET6
150 #define ND6_HINT(tp) \
151 do { \
152 	if ((tp) && (tp)->t_inpcb && \
153 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
154 	    (tp)->t_inpcb->in6p_route.ro_rt) \
155 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
156 } while (0)
157 #else
158 #define ND6_HINT(tp)
159 #endif
160 
161 /*
162  * Indicate whether this ack should be delayed.
163  */
164 #define DELAY_ACK(tp) \
165 	(tcp_delack_enabled && !callout_pending(tp->tt_delack))
166 
167 static int
168 tcp_reass(tp, th, tlenp, m)
169 	register struct tcpcb *tp;
170 	register struct tcphdr *th;
171 	int *tlenp;
172 	struct mbuf *m;
173 {
174 	struct tseg_qent *q;
175 	struct tseg_qent *p = NULL;
176 	struct tseg_qent *nq;
177 	struct tseg_qent *te;
178 	struct socket *so = tp->t_inpcb->inp_socket;
179 	int flags;
180 
181 	/*
182 	 * Call with th==0 after become established to
183 	 * force pre-ESTABLISHED data up to user socket.
184 	 */
185 	if (th == 0)
186 		goto present;
187 
188 	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
189 	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
190 	       M_NOWAIT);
191 	if (te == NULL) {
192 		tcpstat.tcps_rcvmemdrop++;
193 		m_freem(m);
194 		return (0);
195 	}
196 
197 	/*
198 	 * Find a segment which begins after this one does.
199 	 */
200 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
201 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
202 			break;
203 		p = q;
204 	}
205 
206 	/*
207 	 * If there is a preceding segment, it may provide some of
208 	 * our data already.  If so, drop the data from the incoming
209 	 * segment.  If it provides all of our data, drop us.
210 	 */
211 	if (p != NULL) {
212 		register int i;
213 		/* conversion to int (in i) handles seq wraparound */
214 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
215 		if (i > 0) {
216 			if (i >= *tlenp) {
217 				tcpstat.tcps_rcvduppack++;
218 				tcpstat.tcps_rcvdupbyte += *tlenp;
219 				m_freem(m);
220 				FREE(te, M_TSEGQ);
221 				/*
222 				 * Try to present any queued data
223 				 * at the left window edge to the user.
224 				 * This is needed after the 3-WHS
225 				 * completes.
226 				 */
227 				goto present;	/* ??? */
228 			}
229 			m_adj(m, i);
230 			*tlenp -= i;
231 			th->th_seq += i;
232 		}
233 	}
234 	tcpstat.tcps_rcvoopack++;
235 	tcpstat.tcps_rcvoobyte += *tlenp;
236 
237 	/*
238 	 * While we overlap succeeding segments trim them or,
239 	 * if they are completely covered, dequeue them.
240 	 */
241 	while (q) {
242 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
243 		if (i <= 0)
244 			break;
245 		if (i < q->tqe_len) {
246 			q->tqe_th->th_seq += i;
247 			q->tqe_len -= i;
248 			m_adj(q->tqe_m, i);
249 			break;
250 		}
251 
252 		nq = LIST_NEXT(q, tqe_q);
253 		LIST_REMOVE(q, tqe_q);
254 		m_freem(q->tqe_m);
255 		FREE(q, M_TSEGQ);
256 		q = nq;
257 	}
258 
259 	/* Insert the new segment queue entry into place. */
260 	te->tqe_m = m;
261 	te->tqe_th = th;
262 	te->tqe_len = *tlenp;
263 
264 	if (p == NULL) {
265 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
266 	} else {
267 		LIST_INSERT_AFTER(p, te, tqe_q);
268 	}
269 
270 present:
271 	/*
272 	 * Present data to user, advancing rcv_nxt through
273 	 * completed sequence space.
274 	 */
275 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
276 		return (0);
277 	q = LIST_FIRST(&tp->t_segq);
278 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
279 		return (0);
280 	do {
281 		tp->rcv_nxt += q->tqe_len;
282 		flags = q->tqe_th->th_flags & TH_FIN;
283 		nq = LIST_NEXT(q, tqe_q);
284 		LIST_REMOVE(q, tqe_q);
285 		if (so->so_state & SS_CANTRCVMORE)
286 			m_freem(q->tqe_m);
287 		else
288 			sbappend(&so->so_rcv, q->tqe_m);
289 		FREE(q, M_TSEGQ);
290 		q = nq;
291 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
292 	ND6_HINT(tp);
293 	sorwakeup(so);
294 	return (flags);
295 }
296 
297 /*
298  * TCP input routine, follows pages 65-76 of the
299  * protocol specification dated September, 1981 very closely.
300  */
301 #ifdef INET6
302 int
303 tcp6_input(mp, offp, proto)
304 	struct mbuf **mp;
305 	int *offp, proto;
306 {
307 	register struct mbuf *m = *mp;
308 	struct in6_ifaddr *ia6;
309 
310 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
311 
312 	/*
313 	 * draft-itojun-ipv6-tcp-to-anycast
314 	 * better place to put this in?
315 	 */
316 	ia6 = ip6_getdstifaddr(m);
317 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
318 		struct ip6_hdr *ip6;
319 
320 		ip6 = mtod(m, struct ip6_hdr *);
321 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
322 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
323 		return IPPROTO_DONE;
324 	}
325 
326 	tcp_input(m, *offp, proto);
327 	return IPPROTO_DONE;
328 }
329 #endif
330 
331 void
332 tcp_input(m, off0, proto)
333 	register struct mbuf *m;
334 	int off0, proto;
335 {
336 	register struct tcphdr *th;
337 	register struct ip *ip = NULL;
338 	register struct ipovly *ipov;
339 	register struct inpcb *inp;
340 	u_char *optp = NULL;
341 	int optlen = 0;
342 	int len, tlen, off;
343 	int drop_hdrlen;
344 	register struct tcpcb *tp = 0;
345 	register int thflags;
346 	struct socket *so = 0;
347 	int todrop, acked, ourfinisacked, needoutput = 0;
348 	struct in_addr laddr;
349 #ifdef INET6
350 	struct in6_addr laddr6;
351 #endif
352 	int dropsocket = 0;
353 	int iss = 0;
354 	u_long tiwin;
355 	struct tcpopt to;		/* options in this segment */
356 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
357 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
358 #ifdef TCPDEBUG
359 	short ostate = 0;
360 #endif
361 #ifdef INET6
362 	struct ip6_hdr *ip6 = NULL;
363 	int isipv6;
364 #endif /* INET6 */
365 	int rstreason; /* For badport_bandlim accounting purposes */
366 
367 #ifdef INET6
368 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
369 #endif
370 	bzero((char *)&to, sizeof(to));
371 
372 	tcpstat.tcps_rcvtotal++;
373 
374 #ifdef INET6
375 	if (isipv6) {
376 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
377 		ip6 = mtod(m, struct ip6_hdr *);
378 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
379 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
380 			tcpstat.tcps_rcvbadsum++;
381 			goto drop;
382 		}
383 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
384 
385 		/*
386 		 * Be proactive about unspecified IPv6 address in source.
387 		 * As we use all-zero to indicate unbounded/unconnected pcb,
388 		 * unspecified IPv6 address can be used to confuse us.
389 		 *
390 		 * Note that packets with unspecified IPv6 destination is
391 		 * already dropped in ip6_input.
392 		 */
393 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
394 			/* XXX stat */
395 			goto drop;
396 		}
397 	} else
398 #endif /* INET6 */
399       {
400 	/*
401 	 * Get IP and TCP header together in first mbuf.
402 	 * Note: IP leaves IP header in first mbuf.
403 	 */
404 	if (off0 > sizeof (struct ip)) {
405 		ip_stripoptions(m, (struct mbuf *)0);
406 		off0 = sizeof(struct ip);
407 	}
408 	if (m->m_len < sizeof (struct tcpiphdr)) {
409 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
410 			tcpstat.tcps_rcvshort++;
411 			return;
412 		}
413 	}
414 	ip = mtod(m, struct ip *);
415 	ipov = (struct ipovly *)ip;
416 	th = (struct tcphdr *)((caddr_t)ip + off0);
417 	tlen = ip->ip_len;
418 
419 	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
420 		if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
421                 	th->th_sum = m->m_pkthdr.csum_data;
422 		else
423 	                th->th_sum = in_pseudo(ip->ip_src.s_addr,
424 			    ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data +
425 			    ip->ip_len + IPPROTO_TCP));
426 		th->th_sum ^= 0xffff;
427 	} else {
428 		/*
429 		 * Checksum extended TCP header and data.
430 		 */
431 		len = sizeof (struct ip) + tlen;
432 		bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
433 		ipov->ih_len = (u_short)tlen;
434 		HTONS(ipov->ih_len);
435 		th->th_sum = in_cksum(m, len);
436 	}
437 	if (th->th_sum) {
438 		tcpstat.tcps_rcvbadsum++;
439 		goto drop;
440 	}
441 #ifdef INET6
442 	/* Re-initialization for later version check */
443 	ip->ip_v = IPVERSION;
444 #endif
445       }
446 
447 	/*
448 	 * Check that TCP offset makes sense,
449 	 * pull out TCP options and adjust length.		XXX
450 	 */
451 	off = th->th_off << 2;
452 	if (off < sizeof (struct tcphdr) || off > tlen) {
453 		tcpstat.tcps_rcvbadoff++;
454 		goto drop;
455 	}
456 	tlen -= off;	/* tlen is used instead of ti->ti_len */
457 	if (off > sizeof (struct tcphdr)) {
458 #ifdef INET6
459 		if (isipv6) {
460 			IP6_EXTHDR_CHECK(m, off0, off, );
461 			ip6 = mtod(m, struct ip6_hdr *);
462 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
463 		} else
464 #endif /* INET6 */
465 	      {
466 		if (m->m_len < sizeof(struct ip) + off) {
467 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
468 				tcpstat.tcps_rcvshort++;
469 				return;
470 			}
471 			ip = mtod(m, struct ip *);
472 			ipov = (struct ipovly *)ip;
473 			th = (struct tcphdr *)((caddr_t)ip + off0);
474 		}
475 	      }
476 		optlen = off - sizeof (struct tcphdr);
477 		optp = (u_char *)(th + 1);
478 	}
479 	thflags = th->th_flags;
480 
481 #ifdef TCP_DROP_SYNFIN
482 	/*
483 	 * If the drop_synfin option is enabled, drop all packets with
484 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
485 	 * identifying the TCP/IP stack.
486 	 *
487 	 * This is a violation of the TCP specification.
488 	 */
489 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
490 		goto drop;
491 #endif
492 
493 	/*
494 	 * Convert TCP protocol specific fields to host format.
495 	 */
496 	NTOHL(th->th_seq);
497 	NTOHL(th->th_ack);
498 	NTOHS(th->th_win);
499 	NTOHS(th->th_urp);
500 
501 	/*
502 	 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
503 	 * until after ip6_savecontrol() is called and before other functions
504 	 * which don't want those proto headers.
505 	 * Because ip6_savecontrol() is going to parse the mbuf to
506 	 * search for data to be passed up to user-land, it wants mbuf
507 	 * parameters to be unchanged.
508 	 */
509 	drop_hdrlen = off0 + off;
510 
511 	/*
512 	 * Locate pcb for segment.
513 	 */
514 findpcb:
515 #ifdef IPFIREWALL_FORWARD
516 	if (ip_fw_fwd_addr != NULL
517 #ifdef INET6
518 	    && isipv6 == NULL /* IPv6 support is not yet */
519 #endif /* INET6 */
520 	    ) {
521 		/*
522 		 * Diverted. Pretend to be the destination.
523 		 * already got one like this?
524 		 */
525 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
526 			ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
527 		if (!inp) {
528 			/*
529 			 * No, then it's new. Try find the ambushing socket
530 			 */
531 			if (!ip_fw_fwd_addr->sin_port) {
532 				inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
533 				    th->th_sport, ip_fw_fwd_addr->sin_addr,
534 				    th->th_dport, 1, m->m_pkthdr.rcvif);
535 			} else {
536 				inp = in_pcblookup_hash(&tcbinfo,
537 				    ip->ip_src, th->th_sport,
538 	    			    ip_fw_fwd_addr->sin_addr,
539 				    ntohs(ip_fw_fwd_addr->sin_port), 1,
540 				    m->m_pkthdr.rcvif);
541 			}
542 		}
543 		ip_fw_fwd_addr = NULL;
544 	} else
545 #endif	/* IPFIREWALL_FORWARD */
546       {
547 #ifdef INET6
548 	if (isipv6)
549 		inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
550 					 &ip6->ip6_dst, th->th_dport, 1,
551 					 m->m_pkthdr.rcvif);
552 	else
553 #endif /* INET6 */
554 	inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
555 	    ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
556       }
557 
558 #ifdef IPSEC
559 #ifdef INET6
560 	if (isipv6) {
561 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
562 			ipsec6stat.in_polvio++;
563 			goto drop;
564 		}
565 	} else
566 #endif /* INET6 */
567 	if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
568 		ipsecstat.in_polvio++;
569 		goto drop;
570 	}
571 #endif /*IPSEC*/
572 
573 	/*
574 	 * If the state is CLOSED (i.e., TCB does not exist) then
575 	 * all data in the incoming segment is discarded.
576 	 * If the TCB exists but is in CLOSED state, it is embryonic,
577 	 * but should either do a listen or a connect soon.
578 	 */
579 	if (inp == NULL) {
580 		if (log_in_vain) {
581 #ifdef INET6
582 			char dbuf[INET6_ADDRSTRLEN], sbuf[INET6_ADDRSTRLEN];
583 #else /* INET6 */
584 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
585 #endif /* INET6 */
586 
587 #ifdef INET6
588 			if (isipv6) {
589 				strcpy(dbuf, ip6_sprintf(&ip6->ip6_dst));
590 				strcpy(sbuf, ip6_sprintf(&ip6->ip6_src));
591 			} else
592 #endif
593 		      {
594 			strcpy(dbuf, inet_ntoa(ip->ip_dst));
595 			strcpy(sbuf, inet_ntoa(ip->ip_src));
596 		      }
597 			switch (log_in_vain) {
598 			case 1:
599 				if(thflags & TH_SYN)
600 					log(LOG_INFO,
601 			    		"Connection attempt to TCP %s:%d from %s:%d\n",
602 			    		dbuf, ntohs(th->th_dport),
603 					sbuf,
604 					ntohs(th->th_sport));
605 				break;
606 			case 2:
607 				log(LOG_INFO,
608 			    	"Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
609 			    	dbuf, ntohs(th->th_dport), sbuf,
610 			    	ntohs(th->th_sport), thflags);
611 				break;
612 			default:
613 				break;
614 			}
615 		}
616 		if (blackhole) {
617 			switch (blackhole) {
618 			case 1:
619 				if (thflags & TH_SYN)
620 					goto drop;
621 				break;
622 			case 2:
623 				goto drop;
624 			default:
625 				goto drop;
626 			}
627 		}
628 		rstreason = BANDLIM_RST_CLOSEDPORT;
629 		goto dropwithreset;
630 	}
631 	tp = intotcpcb(inp);
632 	if (tp == 0) {
633 		rstreason = BANDLIM_RST_CLOSEDPORT;
634 		goto dropwithreset;
635 	}
636 	if (tp->t_state == TCPS_CLOSED)
637 		goto drop;
638 
639 	/* Unscale the window into a 32-bit value. */
640 	if ((thflags & TH_SYN) == 0)
641 		tiwin = th->th_win << tp->snd_scale;
642 	else
643 		tiwin = th->th_win;
644 
645 	so = inp->inp_socket;
646 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
647 #ifdef TCPDEBUG
648 		if (so->so_options & SO_DEBUG) {
649 			ostate = tp->t_state;
650 #ifdef INET6
651 			if (isipv6)
652 				bcopy((char *)ip6, (char *)tcp_saveipgen,
653 				      sizeof(*ip6));
654 			else
655 #endif /* INET6 */
656 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
657 			tcp_savetcp = *th;
658 		}
659 #endif
660 		if (so->so_options & SO_ACCEPTCONN) {
661 			register struct tcpcb *tp0 = tp;
662 			struct socket *so2;
663 #ifdef IPSEC
664 			struct socket *oso;
665 #endif
666 #ifdef INET6
667 			struct inpcb *oinp = sotoinpcb(so);
668 #endif /* INET6 */
669 
670 #ifndef IPSEC
671 			/*
672 			 * Current IPsec implementation makes incorrect IPsec
673 			 * cache if this check is done here.
674 			 * So delay this until duplicated socket is created.
675 			 */
676 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
677 				/*
678 				 * Note: dropwithreset makes sure we don't
679 				 * send a RST in response to a RST.
680 				 */
681 				if (thflags & TH_ACK) {
682 					tcpstat.tcps_badsyn++;
683 					rstreason = BANDLIM_RST_OPENPORT;
684 					goto dropwithreset;
685 				}
686 				goto drop;
687 			}
688 #endif
689 
690 #ifdef INET6
691 			/*
692 			 * If deprecated address is forbidden,
693 			 * we do not accept SYN to deprecated interface
694 			 * address to prevent any new inbound connection from
695 			 * getting established.
696 			 * When we do not accept SYN, we send a TCP RST,
697 			 * with deprecated source address (instead of dropping
698 			 * it).  We compromise it as it is much better for peer
699 			 * to send a RST, and RST will be the final packet
700 			 * for the exchange.
701 			 *
702 			 * If we do not forbid deprecated addresses, we accept
703 			 * the SYN packet.  RFC2462 does not suggest dropping
704 			 * SYN in this case.
705 			 * If we decipher RFC2462 5.5.4, it says like this:
706 			 * 1. use of deprecated addr with existing
707 			 *    communication is okay - "SHOULD continue to be
708 			 *    used"
709 			 * 2. use of it with new communication:
710 			 *   (2a) "SHOULD NOT be used if alternate address
711 			 *        with sufficient scope is available"
712 			 *   (2b) nothing mentioned otherwise.
713 			 * Here we fall into (2b) case as we have no choice in
714 			 * our source address selection - we must obey the peer.
715 			 *
716 			 * The wording in RFC2462 is confusing, and there are
717 			 * multiple description text for deprecated address
718 			 * handling - worse, they are not exactly the same.
719 			 * I believe 5.5.4 is the best one, so we follow 5.5.4.
720 			 */
721 			if (isipv6 && !ip6_use_deprecated) {
722 				struct in6_ifaddr *ia6;
723 
724 				if ((ia6 = ip6_getdstifaddr(m)) &&
725 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
726 					tp = NULL;
727 					rstreason = BANDLIM_RST_OPENPORT;
728 					goto dropwithreset;
729 				}
730 			}
731 #endif
732 
733 			so2 = sonewconn(so, 0);
734 			if (so2 == 0) {
735 				/*
736 				 * If we were unable to create a new socket
737 				 * for this SYN, we call sodropablereq to
738 				 * see if there are any other sockets we
739 				 * can kick out of the listen queue.  If
740 				 * so, we'll silently drop the socket
741 				 * sodropablereq told us to drop and
742 				 * create a new one.
743 				 *
744 				 * If sodropablereq returns 0, we'll
745 				 * simply drop the incoming SYN, as we
746 				 * can not allocate a socket for it.
747 				 */
748 				tcpstat.tcps_listendrop++;
749 				so2 = sodropablereq(so);
750 				if (so2) {
751 					if (tcp_lq_overflow)
752 						sototcpcb(so2)->t_flags |=
753 						    TF_LQ_OVERFLOW;
754 					tcp_close(sototcpcb(so2));
755 					so2 = sonewconn(so, 0);
756 				}
757 				if (!so2)
758 					goto drop;
759 			}
760 #ifdef IPSEC
761 			oso = so;
762 #endif
763 			so = so2;
764 			/*
765 			 * This is ugly, but ....
766 			 *
767 			 * Mark socket as temporary until we're
768 			 * committed to keeping it.  The code at
769 			 * ``drop'' and ``dropwithreset'' check the
770 			 * flag dropsocket to see if the temporary
771 			 * socket created here should be discarded.
772 			 * We mark the socket as discardable until
773 			 * we're committed to it below in TCPS_LISTEN.
774 			 */
775 			dropsocket++;
776 			inp = (struct inpcb *)so->so_pcb;
777 #ifdef INET6
778 			if (isipv6)
779 				inp->in6p_laddr = ip6->ip6_dst;
780 			else {
781 				inp->inp_vflag &= ~INP_IPV6;
782 				inp->inp_vflag |= INP_IPV4;
783 #endif /* INET6 */
784 			inp->inp_laddr = ip->ip_dst;
785 #ifdef INET6
786 			}
787 #endif /* INET6 */
788 			inp->inp_lport = th->th_dport;
789 			if (in_pcbinshash(inp) != 0) {
790 				/*
791 				 * Undo the assignments above if we failed to
792 				 * put the PCB on the hash lists.
793 				 */
794 #ifdef INET6
795 				if (isipv6)
796 					inp->in6p_laddr = in6addr_any;
797 				else
798 #endif /* INET6 */
799 				inp->inp_laddr.s_addr = INADDR_ANY;
800 				inp->inp_lport = 0;
801 				goto drop;
802 			}
803 #ifdef IPSEC
804 			/*
805 			 * To avoid creating incorrectly cached IPsec
806 			 * association, this is need to be done here.
807 			 *
808 			 * Subject: (KAME-snap 748)
809 			 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
810 			 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
811 			 */
812 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
813 				/*
814 				 * Note: dropwithreset makes sure we don't
815 				 * send a RST in response to a RST.
816 				 */
817 				if (thflags & TH_ACK) {
818 					tcpstat.tcps_badsyn++;
819 					rstreason = BANDLIM_RST_OPENPORT;
820 					goto dropwithreset;
821 				}
822 				goto drop;
823 			}
824 #endif
825 #ifdef INET6
826 			if (isipv6) {
827   				/*
828  				 * Inherit socket options from the listening
829   				 * socket.
830  				 * Note that in6p_inputopts are not (even
831  				 * should not be) copied, since it stores
832 				 * previously received options and is used to
833  				 * detect if each new option is different than
834  				 * the previous one and hence should be passed
835  				 * to a user.
836  				 * If we copied in6p_inputopts, a user would
837  				 * not be able to receive options just after
838  				 * calling the accept system call.
839  				 */
840 				inp->inp_flags |=
841 					oinp->inp_flags & INP_CONTROLOPTS;
842  				if (oinp->in6p_outputopts)
843  					inp->in6p_outputopts =
844  						ip6_copypktopts(oinp->in6p_outputopts,
845  								M_NOWAIT);
846 			} else
847 #endif /* INET6 */
848 			inp->inp_options = ip_srcroute();
849 #ifdef IPSEC
850 			/* copy old policy into new socket's */
851 			if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp,
852 			                      inp->inp_sp))
853 				printf("tcp_input: could not copy policy\n");
854 #endif
855 			tp = intotcpcb(inp);
856 			tp->t_state = TCPS_LISTEN;
857 			tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT);
858 
859 			/* Compute proper scaling value from buffer space */
860 			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
861 			   TCP_MAXWIN << tp->request_r_scale <
862 			   so->so_rcv.sb_hiwat)
863 				tp->request_r_scale++;
864 		}
865 	}
866 
867 	/*
868 	 * Segment received on connection.
869 	 * Reset idle time and keep-alive timer.
870 	 */
871 	tp->t_rcvtime = ticks;
872 	if (TCPS_HAVEESTABLISHED(tp->t_state))
873 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
874 
875 	/*
876 	 * Process options if not in LISTEN state,
877 	 * else do it below (after getting remote address).
878 	 */
879 	if (tp->t_state != TCPS_LISTEN)
880 		tcp_dooptions(tp, optp, optlen, th, &to);
881 
882 	/*
883 	 * Header prediction: check for the two common cases
884 	 * of a uni-directional data xfer.  If the packet has
885 	 * no control flags, is in-sequence, the window didn't
886 	 * change and we're not retransmitting, it's a
887 	 * candidate.  If the length is zero and the ack moved
888 	 * forward, we're the sender side of the xfer.  Just
889 	 * free the data acked & wake any higher level process
890 	 * that was blocked waiting for space.  If the length
891 	 * is non-zero and the ack didn't move, we're the
892 	 * receiver side.  If we're getting packets in-order
893 	 * (the reassembly queue is empty), add the data to
894 	 * the socket buffer and note that we need a delayed ack.
895 	 * Make sure that the hidden state-flags are also off.
896 	 * Since we check for TCPS_ESTABLISHED above, it can only
897 	 * be TH_NEEDSYN.
898 	 */
899 	if (tp->t_state == TCPS_ESTABLISHED &&
900 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
901 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
902 	    ((to.to_flag & TOF_TS) == 0 ||
903 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
904 	    /*
905 	     * Using the CC option is compulsory if once started:
906 	     *   the segment is OK if no T/TCP was negotiated or
907 	     *   if the segment has a CC option equal to CCrecv
908 	     */
909 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
910 	     ((to.to_flag & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
911 	    th->th_seq == tp->rcv_nxt &&
912 	    tiwin && tiwin == tp->snd_wnd &&
913 	    tp->snd_nxt == tp->snd_max) {
914 
915 		/*
916 		 * If last ACK falls within this segment's sequence numbers,
917 		 * record the timestamp.
918 		 * NOTE that the test is modified according to the latest
919 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
920 		 */
921 		if ((to.to_flag & TOF_TS) != 0 &&
922 		   SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
923 			tp->ts_recent_age = ticks;
924 			tp->ts_recent = to.to_tsval;
925 		}
926 
927 		if (tlen == 0) {
928 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
929 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
930 			    tp->snd_cwnd >= tp->snd_wnd &&
931 			    tp->t_dupacks < tcprexmtthresh) {
932 				/*
933 				 * this is a pure ack for outstanding data.
934 				 */
935 				++tcpstat.tcps_predack;
936 				/*
937 				 * "bad retransmit" recovery
938 				 */
939 				if (tp->t_rxtshift == 1 &&
940 				    ticks < tp->t_badrxtwin) {
941 					tp->snd_cwnd = tp->snd_cwnd_prev;
942 					tp->snd_ssthresh =
943 					    tp->snd_ssthresh_prev;
944 					tp->snd_nxt = tp->snd_max;
945 					tp->t_badrxtwin = 0;
946 				}
947 				if ((to.to_flag & TOF_TS) != 0)
948 					tcp_xmit_timer(tp,
949 					    ticks - to.to_tsecr + 1);
950 				else if (tp->t_rtttime &&
951 					    SEQ_GT(th->th_ack, tp->t_rtseq))
952 					tcp_xmit_timer(tp, ticks - tp->t_rtttime);
953 				acked = th->th_ack - tp->snd_una;
954 				tcpstat.tcps_rcvackpack++;
955 				tcpstat.tcps_rcvackbyte += acked;
956 				sbdrop(&so->so_snd, acked);
957 				tp->snd_una = th->th_ack;
958 				m_freem(m);
959 				ND6_HINT(tp); /* some progress has been done */
960 
961 				/*
962 				 * If all outstanding data are acked, stop
963 				 * retransmit timer, otherwise restart timer
964 				 * using current (possibly backed-off) value.
965 				 * If process is waiting for space,
966 				 * wakeup/selwakeup/signal.  If data
967 				 * are ready to send, let tcp_output
968 				 * decide between more output or persist.
969 				 */
970 				if (tp->snd_una == tp->snd_max)
971 					callout_stop(tp->tt_rexmt);
972 				else if (!callout_active(tp->tt_persist))
973 					callout_reset(tp->tt_rexmt,
974 						      tp->t_rxtcur,
975 						      tcp_timer_rexmt, tp);
976 
977 				sowwakeup(so);
978 				if (so->so_snd.sb_cc)
979 					(void) tcp_output(tp);
980 				return;
981 			}
982 		} else if (th->th_ack == tp->snd_una &&
983 		    LIST_EMPTY(&tp->t_segq) &&
984 		    tlen <= sbspace(&so->so_rcv)) {
985 			/*
986 			 * this is a pure, in-sequence data packet
987 			 * with nothing on the reassembly queue and
988 			 * we have enough buffer space to take it.
989 			 */
990 			++tcpstat.tcps_preddat;
991 			tp->rcv_nxt += tlen;
992 			tcpstat.tcps_rcvpack++;
993 			tcpstat.tcps_rcvbyte += tlen;
994 			ND6_HINT(tp);	/* some progress has been done */
995 			/*
996 			 * Add data to socket buffer.
997 			 */
998 			m_adj(m, drop_hdrlen);	/* delayed header drop */
999 			sbappend(&so->so_rcv, m);
1000 			sorwakeup(so);
1001 			if (DELAY_ACK(tp)) {
1002 	                        callout_reset(tp->tt_delack, tcp_delacktime,
1003 	                            tcp_timer_delack, tp);
1004 			} else {
1005 				tp->t_flags |= TF_ACKNOW;
1006 				tcp_output(tp);
1007 			}
1008 			return;
1009 		}
1010 	}
1011 
1012 	/*
1013 	 * Calculate amount of space in receive window,
1014 	 * and then do TCP input processing.
1015 	 * Receive window is amount of space in rcv queue,
1016 	 * but not less than advertised window.
1017 	 */
1018 	{ int win;
1019 
1020 	win = sbspace(&so->so_rcv);
1021 	if (win < 0)
1022 		win = 0;
1023 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1024 	}
1025 
1026 	switch (tp->t_state) {
1027 
1028 	/*
1029 	 * If the state is LISTEN then ignore segment if it contains an RST.
1030 	 * If the segment contains an ACK then it is bad and send a RST.
1031 	 * If it does not contain a SYN then it is not interesting; drop it.
1032 	 * If it is from this socket, drop it, it must be forged.
1033 	 * Don't bother responding if the destination was a broadcast.
1034 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1035 	 * tp->iss, and send a segment:
1036 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1037 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1038 	 * Fill in remote peer address fields if not previously specified.
1039 	 * Enter SYN_RECEIVED state, and process any other fields of this
1040 	 * segment in this state.
1041 	 */
1042 	case TCPS_LISTEN: {
1043 		register struct sockaddr_in *sin;
1044 #ifdef INET6
1045 		register struct sockaddr_in6 *sin6;
1046 #endif
1047 
1048 		if (thflags & TH_RST)
1049 			goto drop;
1050 		if (thflags & TH_ACK) {
1051 			rstreason = BANDLIM_RST_OPENPORT;
1052 			goto dropwithreset;
1053 		}
1054 		if ((thflags & TH_SYN) == 0)
1055 			goto drop;
1056 		if (th->th_dport == th->th_sport) {
1057 #ifdef INET6
1058 			if (isipv6) {
1059 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1060 						       &ip6->ip6_src))
1061 					goto drop;
1062 			} else
1063 #endif /* INET6 */
1064 			if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1065 				goto drop;
1066 		}
1067 		/*
1068 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1069 		 * in_broadcast() should never return true on a received
1070 		 * packet with M_BCAST not set.
1071  		 *
1072  		 * Packets with a multicast source address should also
1073  		 * be discarded.
1074 		 */
1075 		if (m->m_flags & (M_BCAST|M_MCAST))
1076 			goto drop;
1077 #ifdef INET6
1078 		if (isipv6) {
1079 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1080 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1081 				goto drop;
1082 		} else
1083 #endif
1084 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1085 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1086 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
1087 			goto drop;
1088 #ifdef INET6
1089 		if (isipv6) {
1090 			MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
1091 			       M_SONAME, M_NOWAIT | M_ZERO);
1092 			if (sin6 == NULL)
1093 				goto drop;
1094 			sin6->sin6_family = AF_INET6;
1095 			sin6->sin6_len = sizeof(*sin6);
1096 			sin6->sin6_addr = ip6->ip6_src;
1097 			sin6->sin6_port = th->th_sport;
1098 			laddr6 = inp->in6p_laddr;
1099 			if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1100 				inp->in6p_laddr = ip6->ip6_dst;
1101 			if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
1102 					   &proc0)) {
1103 				inp->in6p_laddr = laddr6;
1104 				FREE(sin6, M_SONAME);
1105 				goto drop;
1106 			}
1107 			FREE(sin6, M_SONAME);
1108 		} else
1109 #endif
1110 	      {
1111 		MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
1112 		       M_NOWAIT);
1113 		if (sin == NULL)
1114 			goto drop;
1115 		sin->sin_family = AF_INET;
1116 		sin->sin_len = sizeof(*sin);
1117 		sin->sin_addr = ip->ip_src;
1118 		sin->sin_port = th->th_sport;
1119 		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1120 		laddr = inp->inp_laddr;
1121 		if (inp->inp_laddr.s_addr == INADDR_ANY)
1122 			inp->inp_laddr = ip->ip_dst;
1123 		if (in_pcbconnect(inp, (struct sockaddr *)sin, &proc0)) {
1124 			inp->inp_laddr = laddr;
1125 			FREE(sin, M_SONAME);
1126 			goto drop;
1127 		}
1128 		FREE(sin, M_SONAME);
1129 	      }
1130 		if ((taop = tcp_gettaocache(inp)) == NULL) {
1131 			taop = &tao_noncached;
1132 			bzero(taop, sizeof(*taop));
1133 		}
1134 		tcp_dooptions(tp, optp, optlen, th, &to);
1135 		if (iss)
1136 			tp->iss = iss;
1137 		else {
1138 			tp->iss = tcp_rndiss_next();
1139  		}
1140 		tp->irs = th->th_seq;
1141 		tcp_sendseqinit(tp);
1142 		tcp_rcvseqinit(tp);
1143 		tp->snd_recover = tp->snd_una;
1144 		/*
1145 		 * Initialization of the tcpcb for transaction;
1146 		 *   set SND.WND = SEG.WND,
1147 		 *   initialize CCsend and CCrecv.
1148 		 */
1149 		tp->snd_wnd = tiwin;	/* initial send-window */
1150 		tp->cc_send = CC_INC(tcp_ccgen);
1151 		tp->cc_recv = to.to_cc;
1152 		/*
1153 		 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1154 		 * - compare SEG.CC against cached CC from the same host,
1155 		 *	if any.
1156 		 * - if SEG.CC > chached value, SYN must be new and is accepted
1157 		 *	immediately: save new CC in the cache, mark the socket
1158 		 *	connected, enter ESTABLISHED state, turn on flag to
1159 		 *	send a SYN in the next segment.
1160 		 *	A virtual advertised window is set in rcv_adv to
1161 		 *	initialize SWS prevention.  Then enter normal segment
1162 		 *	processing: drop SYN, process data and FIN.
1163 		 * - otherwise do a normal 3-way handshake.
1164 		 */
1165 		if ((to.to_flag & TOF_CC) != 0) {
1166 		    if (((tp->t_flags & TF_NOPUSH) != 0) &&
1167 			taop->tao_cc != 0 && CC_GT(to.to_cc, taop->tao_cc)) {
1168 
1169 			taop->tao_cc = to.to_cc;
1170 			tp->t_starttime = ticks;
1171 			tp->t_state = TCPS_ESTABLISHED;
1172 
1173 			/*
1174 			 * If there is a FIN, or if there is data and the
1175 			 * connection is local, then delay SYN,ACK(SYN) in
1176 			 * the hope of piggy-backing it on a response
1177 			 * segment.  Otherwise must send ACK now in case
1178 			 * the other side is slow starting.
1179 			 */
1180 			if (DELAY_ACK(tp) && ((thflags & TH_FIN) ||
1181 			    (tlen != 0 &&
1182 #ifdef INET6
1183 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr))
1184 			      ||
1185 			      (!isipv6 &&
1186 #endif
1187 			    in_localaddr(inp->inp_faddr)
1188 #ifdef INET6
1189 			       ))
1190 #endif
1191 			     ))) {
1192                                 callout_reset(tp->tt_delack, tcp_delacktime,
1193                                     tcp_timer_delack, tp);
1194 				tp->t_flags |= TF_NEEDSYN;
1195 			} else
1196 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1197 
1198 			/*
1199 			 * Limit the `virtual advertised window' to TCP_MAXWIN
1200 			 * here.  Even if we requested window scaling, it will
1201 			 * become effective only later when our SYN is acked.
1202 			 */
1203 			tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN);
1204 			tcpstat.tcps_connects++;
1205 			soisconnected(so);
1206 			callout_reset(tp->tt_keep, tcp_keepinit,
1207 				      tcp_timer_keep, tp);
1208 			dropsocket = 0;		/* committed to socket */
1209 			tcpstat.tcps_accepts++;
1210 			goto trimthenstep6;
1211 		    }
1212 		/* else do standard 3-way handshake */
1213 		} else {
1214 		    /*
1215 		     * No CC option, but maybe CC.NEW:
1216 		     *   invalidate cached value.
1217 		     */
1218 		     taop->tao_cc = 0;
1219 		}
1220 		/*
1221 		 * TAO test failed or there was no CC option,
1222 		 *    do a standard 3-way handshake.
1223 		 */
1224 		tp->t_flags |= TF_ACKNOW;
1225 		tp->t_state = TCPS_SYN_RECEIVED;
1226 		callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
1227 		dropsocket = 0;		/* committed to socket */
1228 		tcpstat.tcps_accepts++;
1229 		goto trimthenstep6;
1230 		}
1231 
1232 	/*
1233 	 * If the state is SYN_RECEIVED:
1234 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1235 	 */
1236 	case TCPS_SYN_RECEIVED:
1237 		if ((thflags & TH_ACK) &&
1238 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1239 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1240 				rstreason = BANDLIM_RST_OPENPORT;
1241 				goto dropwithreset;
1242 		}
1243 		break;
1244 
1245 	/*
1246 	 * If the state is SYN_SENT:
1247 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1248 	 *	if seg contains a RST, then drop the connection.
1249 	 *	if seg does not contain SYN, then drop it.
1250 	 * Otherwise this is an acceptable SYN segment
1251 	 *	initialize tp->rcv_nxt and tp->irs
1252 	 *	if seg contains ack then advance tp->snd_una
1253 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1254 	 *	arrange for segment to be acked (eventually)
1255 	 *	continue processing rest of data/controls, beginning with URG
1256 	 */
1257 	case TCPS_SYN_SENT:
1258 		if ((taop = tcp_gettaocache(inp)) == NULL) {
1259 			taop = &tao_noncached;
1260 			bzero(taop, sizeof(*taop));
1261 		}
1262 
1263 		if ((thflags & TH_ACK) &&
1264 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1265 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1266 			/*
1267 			 * If we have a cached CCsent for the remote host,
1268 			 * hence we haven't just crashed and restarted,
1269 			 * do not send a RST.  This may be a retransmission
1270 			 * from the other side after our earlier ACK was lost.
1271 			 * Our new SYN, when it arrives, will serve as the
1272 			 * needed ACK.
1273 			 */
1274 			if (taop->tao_ccsent != 0)
1275 				goto drop;
1276 			else {
1277 				rstreason = BANDLIM_UNLIMITED;
1278 				goto dropwithreset;
1279 			}
1280 		}
1281 		if (thflags & TH_RST) {
1282 			if (thflags & TH_ACK)
1283 				tp = tcp_drop(tp, ECONNREFUSED);
1284 			goto drop;
1285 		}
1286 		if ((thflags & TH_SYN) == 0)
1287 			goto drop;
1288 		tp->snd_wnd = th->th_win;	/* initial send window */
1289 		tp->cc_recv = to.to_cc;		/* foreign CC */
1290 
1291 		tp->irs = th->th_seq;
1292 		tcp_rcvseqinit(tp);
1293 		if (thflags & TH_ACK) {
1294 			/*
1295 			 * Our SYN was acked.  If segment contains CC.ECHO
1296 			 * option, check it to make sure this segment really
1297 			 * matches our SYN.  If not, just drop it as old
1298 			 * duplicate, but send an RST if we're still playing
1299 			 * by the old rules.  If no CC.ECHO option, make sure
1300 			 * we don't get fooled into using T/TCP.
1301 			 */
1302 			if (to.to_flag & TOF_CCECHO) {
1303 				if (tp->cc_send != to.to_ccecho) {
1304 					if (taop->tao_ccsent != 0)
1305 						goto drop;
1306 					else {
1307 						rstreason = BANDLIM_UNLIMITED;
1308 						goto dropwithreset;
1309 					}
1310 				}
1311 			} else
1312 				tp->t_flags &= ~TF_RCVD_CC;
1313 			tcpstat.tcps_connects++;
1314 			soisconnected(so);
1315 			/* Do window scaling on this connection? */
1316 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1317 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1318 				tp->snd_scale = tp->requested_s_scale;
1319 				tp->rcv_scale = tp->request_r_scale;
1320 			}
1321 			/* Segment is acceptable, update cache if undefined. */
1322 			if (taop->tao_ccsent == 0)
1323 				taop->tao_ccsent = to.to_ccecho;
1324 
1325 			tp->rcv_adv += tp->rcv_wnd;
1326 			tp->snd_una++;		/* SYN is acked */
1327 			/*
1328 			 * If there's data, delay ACK; if there's also a FIN
1329 			 * ACKNOW will be turned on later.
1330 			 */
1331 			if (DELAY_ACK(tp) && tlen != 0)
1332                                 callout_reset(tp->tt_delack, tcp_delacktime,
1333                                     tcp_timer_delack, tp);
1334 			else
1335 				tp->t_flags |= TF_ACKNOW;
1336 			/*
1337 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1338 			 * Transitions:
1339 			 *	SYN_SENT  --> ESTABLISHED
1340 			 *	SYN_SENT* --> FIN_WAIT_1
1341 			 */
1342 			tp->t_starttime = ticks;
1343 			if (tp->t_flags & TF_NEEDFIN) {
1344 				tp->t_state = TCPS_FIN_WAIT_1;
1345 				tp->t_flags &= ~TF_NEEDFIN;
1346 				thflags &= ~TH_SYN;
1347 			} else {
1348 				tp->t_state = TCPS_ESTABLISHED;
1349 				callout_reset(tp->tt_keep, tcp_keepidle,
1350 					      tcp_timer_keep, tp);
1351 			}
1352 		} else {
1353 		/*
1354 		 *  Received initial SYN in SYN-SENT[*] state => simul-
1355 		 *  taneous open.  If segment contains CC option and there is
1356 		 *  a cached CC, apply TAO test; if it succeeds, connection is
1357 		 *  half-synchronized.  Otherwise, do 3-way handshake:
1358 		 *        SYN-SENT -> SYN-RECEIVED
1359 		 *        SYN-SENT* -> SYN-RECEIVED*
1360 		 *  If there was no CC option, clear cached CC value.
1361 		 */
1362 			tp->t_flags |= TF_ACKNOW;
1363 			callout_stop(tp->tt_rexmt);
1364 			if (to.to_flag & TOF_CC) {
1365 				if (taop->tao_cc != 0 &&
1366 				    CC_GT(to.to_cc, taop->tao_cc)) {
1367 					/*
1368 					 * update cache and make transition:
1369 					 *        SYN-SENT -> ESTABLISHED*
1370 					 *        SYN-SENT* -> FIN-WAIT-1*
1371 					 */
1372 					taop->tao_cc = to.to_cc;
1373 					tp->t_starttime = ticks;
1374 					if (tp->t_flags & TF_NEEDFIN) {
1375 						tp->t_state = TCPS_FIN_WAIT_1;
1376 						tp->t_flags &= ~TF_NEEDFIN;
1377 					} else {
1378 						tp->t_state = TCPS_ESTABLISHED;
1379 						callout_reset(tp->tt_keep,
1380 							      tcp_keepidle,
1381 							      tcp_timer_keep,
1382 							      tp);
1383 					}
1384 					tp->t_flags |= TF_NEEDSYN;
1385 				} else
1386 					tp->t_state = TCPS_SYN_RECEIVED;
1387 			} else {
1388 				/* CC.NEW or no option => invalidate cache */
1389 				taop->tao_cc = 0;
1390 				tp->t_state = TCPS_SYN_RECEIVED;
1391 			}
1392 		}
1393 
1394 trimthenstep6:
1395 		/*
1396 		 * Advance th->th_seq to correspond to first data byte.
1397 		 * If data, trim to stay within window,
1398 		 * dropping FIN if necessary.
1399 		 */
1400 		th->th_seq++;
1401 		if (tlen > tp->rcv_wnd) {
1402 			todrop = tlen - tp->rcv_wnd;
1403 			m_adj(m, -todrop);
1404 			tlen = tp->rcv_wnd;
1405 			thflags &= ~TH_FIN;
1406 			tcpstat.tcps_rcvpackafterwin++;
1407 			tcpstat.tcps_rcvbyteafterwin += todrop;
1408 		}
1409 		tp->snd_wl1 = th->th_seq - 1;
1410 		tp->rcv_up = th->th_seq;
1411 		/*
1412 		 *  Client side of transaction: already sent SYN and data.
1413 		 *  If the remote host used T/TCP to validate the SYN,
1414 		 *  our data will be ACK'd; if so, enter normal data segment
1415 		 *  processing in the middle of step 5, ack processing.
1416 		 *  Otherwise, goto step 6.
1417 		 */
1418  		if (thflags & TH_ACK)
1419 			goto process_ACK;
1420 		goto step6;
1421 	/*
1422 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1423 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1424 	 *              if state == TIME_WAIT and connection duration > MSL,
1425 	 *                  drop packet and send RST;
1426 	 *
1427 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1428 	 *		    ack the FIN (and data) in retransmission queue.
1429 	 *                  Complete close and delete TCPCB.  Then reprocess
1430 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1431 	 *
1432 	 *		else must be old SYN; drop it.
1433 	 *      else do normal processing.
1434 	 */
1435 	case TCPS_LAST_ACK:
1436 	case TCPS_CLOSING:
1437 	case TCPS_TIME_WAIT:
1438 		if ((thflags & TH_SYN) &&
1439 		    (to.to_flag & TOF_CC) && tp->cc_recv != 0) {
1440 			if (tp->t_state == TCPS_TIME_WAIT &&
1441 					(ticks - tp->t_starttime) > tcp_msl) {
1442 				rstreason = BANDLIM_UNLIMITED;
1443 				goto dropwithreset;
1444 			}
1445 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1446 				tp = tcp_close(tp);
1447 				goto findpcb;
1448 			}
1449 			else
1450 				goto drop;
1451 		}
1452  		break;  /* continue normal processing */
1453 	}
1454 
1455 	/*
1456 	 * States other than LISTEN or SYN_SENT.
1457 	 * First check the RST flag and sequence number since reset segments
1458 	 * are exempt from the timestamp and connection count tests.  This
1459 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1460 	 * below which allowed reset segments in half the sequence space
1461 	 * to fall though and be processed (which gives forged reset
1462 	 * segments with a random sequence number a 50 percent chance of
1463 	 * killing a connection).
1464 	 * Then check timestamp, if present.
1465 	 * Then check the connection count, if present.
1466 	 * Then check that at least some bytes of segment are within
1467 	 * receive window.  If segment begins before rcv_nxt,
1468 	 * drop leading data (and SYN); if nothing left, just ack.
1469 	 *
1470 	 *
1471 	 * If the RST bit is set, check the sequence number to see
1472 	 * if this is a valid reset segment.
1473 	 * RFC 793 page 37:
1474 	 *   In all states except SYN-SENT, all reset (RST) segments
1475 	 *   are validated by checking their SEQ-fields.  A reset is
1476 	 *   valid if its sequence number is in the window.
1477 	 * Note: this does not take into account delayed ACKs, so
1478 	 *   we should test against last_ack_sent instead of rcv_nxt.
1479 	 *   The sequence number in the reset segment is normally an
1480 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1481 	 *   send a reset with the sequence number at the rightmost edge
1482 	 *   of our receive window, and we have to handle this case.
1483 	 * If we have multiple segments in flight, the intial reset
1484 	 * segment sequence numbers will be to the left of last_ack_sent,
1485 	 * but they will eventually catch up.
1486 	 * In any case, it never made sense to trim reset segments to
1487 	 * fit the receive window since RFC 1122 says:
1488 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1489 	 *
1490 	 *    A TCP SHOULD allow a received RST segment to include data.
1491 	 *
1492 	 *    DISCUSSION
1493 	 *         It has been suggested that a RST segment could contain
1494 	 *         ASCII text that encoded and explained the cause of the
1495 	 *         RST.  No standard has yet been established for such
1496 	 *         data.
1497 	 *
1498 	 * If the reset segment passes the sequence number test examine
1499 	 * the state:
1500 	 *    SYN_RECEIVED STATE:
1501 	 *	If passive open, return to LISTEN state.
1502 	 *	If active open, inform user that connection was refused.
1503 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1504 	 *	Inform user that connection was reset, and close tcb.
1505 	 *    CLOSING, LAST_ACK STATES:
1506 	 *	Close the tcb.
1507 	 *    TIME_WAIT STATE:
1508 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1509 	 *      RFC 1337.
1510 	 */
1511 	if (thflags & TH_RST) {
1512 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1513 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1514 			switch (tp->t_state) {
1515 
1516 			case TCPS_SYN_RECEIVED:
1517 				so->so_error = ECONNREFUSED;
1518 				goto close;
1519 
1520 			case TCPS_ESTABLISHED:
1521 			case TCPS_FIN_WAIT_1:
1522 			case TCPS_FIN_WAIT_2:
1523 			case TCPS_CLOSE_WAIT:
1524 				so->so_error = ECONNRESET;
1525 			close:
1526 				tp->t_state = TCPS_CLOSED;
1527 				tcpstat.tcps_drops++;
1528 				tp = tcp_close(tp);
1529 				break;
1530 
1531 			case TCPS_CLOSING:
1532 			case TCPS_LAST_ACK:
1533 				tp = tcp_close(tp);
1534 				break;
1535 
1536 			case TCPS_TIME_WAIT:
1537 				break;
1538 			}
1539 		}
1540 		goto drop;
1541 	}
1542 
1543 	/*
1544 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1545 	 * and it's less than ts_recent, drop it.
1546 	 */
1547 	if ((to.to_flag & TOF_TS) != 0 && tp->ts_recent &&
1548 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1549 
1550 		/* Check to see if ts_recent is over 24 days old.  */
1551 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1552 			/*
1553 			 * Invalidate ts_recent.  If this segment updates
1554 			 * ts_recent, the age will be reset later and ts_recent
1555 			 * will get a valid value.  If it does not, setting
1556 			 * ts_recent to zero will at least satisfy the
1557 			 * requirement that zero be placed in the timestamp
1558 			 * echo reply when ts_recent isn't valid.  The
1559 			 * age isn't reset until we get a valid ts_recent
1560 			 * because we don't want out-of-order segments to be
1561 			 * dropped when ts_recent is old.
1562 			 */
1563 			tp->ts_recent = 0;
1564 		} else {
1565 			tcpstat.tcps_rcvduppack++;
1566 			tcpstat.tcps_rcvdupbyte += tlen;
1567 			tcpstat.tcps_pawsdrop++;
1568 			goto dropafterack;
1569 		}
1570 	}
1571 
1572 	/*
1573 	 * T/TCP mechanism
1574 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1575 	 *   or if its CC is wrong then drop the segment.
1576 	 *   RST segments do not have to comply with this.
1577 	 */
1578 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1579 	    ((to.to_flag & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1580  		goto dropafterack;
1581 
1582 	/*
1583 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1584 	 * this connection before trimming the data to fit the receive
1585 	 * window.  Check the sequence number versus IRS since we know
1586 	 * the sequence numbers haven't wrapped.  This is a partial fix
1587 	 * for the "LAND" DoS attack.
1588 	 */
1589 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1590 		rstreason = BANDLIM_RST_OPENPORT;
1591 		goto dropwithreset;
1592 	}
1593 
1594 	todrop = tp->rcv_nxt - th->th_seq;
1595 	if (todrop > 0) {
1596 		if (thflags & TH_SYN) {
1597 			thflags &= ~TH_SYN;
1598 			th->th_seq++;
1599 			if (th->th_urp > 1)
1600 				th->th_urp--;
1601 			else
1602 				thflags &= ~TH_URG;
1603 			todrop--;
1604 		}
1605 		/*
1606 		 * Following if statement from Stevens, vol. 2, p. 960.
1607 		 */
1608 		if (todrop > tlen
1609 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1610 			/*
1611 			 * Any valid FIN must be to the left of the window.
1612 			 * At this point the FIN must be a duplicate or out
1613 			 * of sequence; drop it.
1614 			 */
1615 			thflags &= ~TH_FIN;
1616 
1617 			/*
1618 			 * Send an ACK to resynchronize and drop any data.
1619 			 * But keep on processing for RST or ACK.
1620 			 */
1621 			tp->t_flags |= TF_ACKNOW;
1622 			todrop = tlen;
1623 			tcpstat.tcps_rcvduppack++;
1624 			tcpstat.tcps_rcvdupbyte += todrop;
1625 		} else {
1626 			tcpstat.tcps_rcvpartduppack++;
1627 			tcpstat.tcps_rcvpartdupbyte += todrop;
1628 		}
1629 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1630 		th->th_seq += todrop;
1631 		tlen -= todrop;
1632 		if (th->th_urp > todrop)
1633 			th->th_urp -= todrop;
1634 		else {
1635 			thflags &= ~TH_URG;
1636 			th->th_urp = 0;
1637 		}
1638 	}
1639 
1640 	/*
1641 	 * If new data are received on a connection after the
1642 	 * user processes are gone, then RST the other end.
1643 	 */
1644 	if ((so->so_state & SS_NOFDREF) &&
1645 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1646 		tp = tcp_close(tp);
1647 		tcpstat.tcps_rcvafterclose++;
1648 		rstreason = BANDLIM_UNLIMITED;
1649 		goto dropwithreset;
1650 	}
1651 
1652 	/*
1653 	 * If segment ends after window, drop trailing data
1654 	 * (and PUSH and FIN); if nothing left, just ACK.
1655 	 */
1656 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1657 	if (todrop > 0) {
1658 		tcpstat.tcps_rcvpackafterwin++;
1659 		if (todrop >= tlen) {
1660 			tcpstat.tcps_rcvbyteafterwin += tlen;
1661 			/*
1662 			 * If a new connection request is received
1663 			 * while in TIME_WAIT, drop the old connection
1664 			 * and start over if the sequence numbers
1665 			 * are above the previous ones.
1666 			 */
1667 			if (thflags & TH_SYN &&
1668 			    tp->t_state == TCPS_TIME_WAIT &&
1669 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1670 				iss = tcp_rndiss_next();
1671 				tp = tcp_close(tp);
1672 				goto findpcb;
1673 			}
1674 			/*
1675 			 * If window is closed can only take segments at
1676 			 * window edge, and have to drop data and PUSH from
1677 			 * incoming segments.  Continue processing, but
1678 			 * remember to ack.  Otherwise, drop segment
1679 			 * and ack.
1680 			 */
1681 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1682 				tp->t_flags |= TF_ACKNOW;
1683 				tcpstat.tcps_rcvwinprobe++;
1684 			} else
1685 				goto dropafterack;
1686 		} else
1687 			tcpstat.tcps_rcvbyteafterwin += todrop;
1688 		m_adj(m, -todrop);
1689 		tlen -= todrop;
1690 		thflags &= ~(TH_PUSH|TH_FIN);
1691 	}
1692 
1693 	/*
1694 	 * If last ACK falls within this segment's sequence numbers,
1695 	 * record its timestamp.
1696 	 * NOTE that the test is modified according to the latest
1697 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1698 	 */
1699 	if ((to.to_flag & TOF_TS) != 0 &&
1700 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1701 		tp->ts_recent_age = ticks;
1702 		tp->ts_recent = to.to_tsval;
1703 	}
1704 
1705 	/*
1706 	 * If a SYN is in the window, then this is an
1707 	 * error and we send an RST and drop the connection.
1708 	 */
1709 	if (thflags & TH_SYN) {
1710 		tp = tcp_drop(tp, ECONNRESET);
1711 		rstreason = BANDLIM_UNLIMITED;
1712 		goto dropwithreset;
1713 	}
1714 
1715 	/*
1716 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1717 	 * flag is on (half-synchronized state), then queue data for
1718 	 * later processing; else drop segment and return.
1719 	 */
1720 	if ((thflags & TH_ACK) == 0) {
1721 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1722 		    (tp->t_flags & TF_NEEDSYN))
1723 			goto step6;
1724 		else
1725 			goto drop;
1726 	}
1727 
1728 	/*
1729 	 * Ack processing.
1730 	 */
1731 	switch (tp->t_state) {
1732 
1733 	/*
1734 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1735 	 * ESTABLISHED state and continue processing.
1736 	 * The ACK was checked above.
1737 	 */
1738 	case TCPS_SYN_RECEIVED:
1739 
1740 		tcpstat.tcps_connects++;
1741 		soisconnected(so);
1742 		/* Do window scaling? */
1743 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1744 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1745 			tp->snd_scale = tp->requested_s_scale;
1746 			tp->rcv_scale = tp->request_r_scale;
1747 		}
1748 		/*
1749 		 * Upon successful completion of 3-way handshake,
1750 		 * update cache.CC if it was undefined, pass any queued
1751 		 * data to the user, and advance state appropriately.
1752 		 */
1753 		if ((taop = tcp_gettaocache(inp)) != NULL &&
1754 		    taop->tao_cc == 0)
1755 			taop->tao_cc = tp->cc_recv;
1756 
1757 		/*
1758 		 * Make transitions:
1759 		 *      SYN-RECEIVED  -> ESTABLISHED
1760 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1761 		 */
1762 		tp->t_starttime = ticks;
1763 		if (tp->t_flags & TF_NEEDFIN) {
1764 			tp->t_state = TCPS_FIN_WAIT_1;
1765 			tp->t_flags &= ~TF_NEEDFIN;
1766 		} else {
1767 			tp->t_state = TCPS_ESTABLISHED;
1768 			callout_reset(tp->tt_keep, tcp_keepidle,
1769 				      tcp_timer_keep, tp);
1770 		}
1771 		/*
1772 		 * If segment contains data or ACK, will call tcp_reass()
1773 		 * later; if not, do so now to pass queued data to user.
1774 		 */
1775 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1776 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1777 			    (struct mbuf *)0);
1778 		tp->snd_wl1 = th->th_seq - 1;
1779 		/* fall into ... */
1780 
1781 	/*
1782 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1783 	 * ACKs.  If the ack is in the range
1784 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1785 	 * then advance tp->snd_una to th->th_ack and drop
1786 	 * data from the retransmission queue.  If this ACK reflects
1787 	 * more up to date window information we update our window information.
1788 	 */
1789 	case TCPS_ESTABLISHED:
1790 	case TCPS_FIN_WAIT_1:
1791 	case TCPS_FIN_WAIT_2:
1792 	case TCPS_CLOSE_WAIT:
1793 	case TCPS_CLOSING:
1794 	case TCPS_LAST_ACK:
1795 	case TCPS_TIME_WAIT:
1796 
1797 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1798 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1799 				tcpstat.tcps_rcvdupack++;
1800 				/*
1801 				 * If we have outstanding data (other than
1802 				 * a window probe), this is a completely
1803 				 * duplicate ack (ie, window info didn't
1804 				 * change), the ack is the biggest we've
1805 				 * seen and we've seen exactly our rexmt
1806 				 * threshhold of them, assume a packet
1807 				 * has been dropped and retransmit it.
1808 				 * Kludge snd_nxt & the congestion
1809 				 * window so we send only this one
1810 				 * packet.
1811 				 *
1812 				 * We know we're losing at the current
1813 				 * window size so do congestion avoidance
1814 				 * (set ssthresh to half the current window
1815 				 * and pull our congestion window back to
1816 				 * the new ssthresh).
1817 				 *
1818 				 * Dup acks mean that packets have left the
1819 				 * network (they're now cached at the receiver)
1820 				 * so bump cwnd by the amount in the receiver
1821 				 * to keep a constant cwnd packets in the
1822 				 * network.
1823 				 */
1824 				if (!callout_active(tp->tt_rexmt) ||
1825 				    th->th_ack != tp->snd_una)
1826 					tp->t_dupacks = 0;
1827 				else if (++tp->t_dupacks == tcprexmtthresh) {
1828 					tcp_seq onxt = tp->snd_nxt;
1829 					u_int win =
1830 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1831 						tp->t_maxseg;
1832 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1833 					    tp->snd_recover)) {
1834 						/* False retransmit, should not
1835 						 * cut window
1836 						 */
1837 						tp->snd_cwnd += tp->t_maxseg;
1838 						tp->t_dupacks = 0;
1839 						(void) tcp_output(tp);
1840 						goto drop;
1841 					}
1842 					if (win < 2)
1843 						win = 2;
1844 					tp->snd_ssthresh = win * tp->t_maxseg;
1845 					tp->snd_recover = tp->snd_max;
1846 					callout_stop(tp->tt_rexmt);
1847 					tp->t_rtttime = 0;
1848 					tp->snd_nxt = th->th_ack;
1849 					tp->snd_cwnd = tp->t_maxseg;
1850 					(void) tcp_output(tp);
1851 					tp->snd_cwnd = tp->snd_ssthresh +
1852 					       tp->t_maxseg * tp->t_dupacks;
1853 					if (SEQ_GT(onxt, tp->snd_nxt))
1854 						tp->snd_nxt = onxt;
1855 					goto drop;
1856 				} else if (tp->t_dupacks > tcprexmtthresh) {
1857 					tp->snd_cwnd += tp->t_maxseg;
1858 					(void) tcp_output(tp);
1859 					goto drop;
1860 				}
1861 			} else
1862 				tp->t_dupacks = 0;
1863 			break;
1864 		}
1865 		/*
1866 		 * If the congestion window was inflated to account
1867 		 * for the other side's cached packets, retract it.
1868 		 */
1869 		if (tcp_do_newreno == 0) {
1870                         if (tp->t_dupacks >= tcprexmtthresh &&
1871                                 tp->snd_cwnd > tp->snd_ssthresh)
1872                                 tp->snd_cwnd = tp->snd_ssthresh;
1873                         tp->t_dupacks = 0;
1874                 } else if (tp->t_dupacks >= tcprexmtthresh &&
1875 		    !tcp_newreno(tp, th)) {
1876                         /*
1877                          * Window inflation should have left us with approx.
1878                          * snd_ssthresh outstanding data.  But in case we
1879                          * would be inclined to send a burst, better to do
1880                          * it via the slow start mechanism.
1881                          */
1882 			if (SEQ_GT(th->th_ack + tp->snd_ssthresh, tp->snd_max))
1883                                 tp->snd_cwnd =
1884 				    tp->snd_max - th->th_ack + tp->t_maxseg;
1885 			else
1886                         	tp->snd_cwnd = tp->snd_ssthresh;
1887                         tp->t_dupacks = 0;
1888                 }
1889 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1890 			tcpstat.tcps_rcvacktoomuch++;
1891 			goto dropafterack;
1892 		}
1893 		/*
1894 		 *  If we reach this point, ACK is not a duplicate,
1895 		 *     i.e., it ACKs something we sent.
1896 		 */
1897 		if (tp->t_flags & TF_NEEDSYN) {
1898 			/*
1899 			 * T/TCP: Connection was half-synchronized, and our
1900 			 * SYN has been ACK'd (so connection is now fully
1901 			 * synchronized).  Go to non-starred state,
1902 			 * increment snd_una for ACK of SYN, and check if
1903 			 * we can do window scaling.
1904 			 */
1905 			tp->t_flags &= ~TF_NEEDSYN;
1906 			tp->snd_una++;
1907 			/* Do window scaling? */
1908 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1909 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1910 				tp->snd_scale = tp->requested_s_scale;
1911 				tp->rcv_scale = tp->request_r_scale;
1912 			}
1913 		}
1914 
1915 process_ACK:
1916 		acked = th->th_ack - tp->snd_una;
1917 		tcpstat.tcps_rcvackpack++;
1918 		tcpstat.tcps_rcvackbyte += acked;
1919 
1920 		/*
1921 		 * If we just performed our first retransmit, and the ACK
1922 		 * arrives within our recovery window, then it was a mistake
1923 		 * to do the retransmit in the first place.  Recover our
1924 		 * original cwnd and ssthresh, and proceed to transmit where
1925 		 * we left off.
1926 		 */
1927 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1928 			tp->snd_cwnd = tp->snd_cwnd_prev;
1929 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1930 			tp->snd_nxt = tp->snd_max;
1931 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1932 		}
1933 
1934 		/*
1935 		 * If we have a timestamp reply, update smoothed
1936 		 * round trip time.  If no timestamp is present but
1937 		 * transmit timer is running and timed sequence
1938 		 * number was acked, update smoothed round trip time.
1939 		 * Since we now have an rtt measurement, cancel the
1940 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1941 		 * Recompute the initial retransmit timer.
1942 		 */
1943 		if (to.to_flag & TOF_TS)
1944 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1945 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1946 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1947 
1948 		/*
1949 		 * If all outstanding data is acked, stop retransmit
1950 		 * timer and remember to restart (more output or persist).
1951 		 * If there is more data to be acked, restart retransmit
1952 		 * timer, using current (possibly backed-off) value.
1953 		 */
1954 		if (th->th_ack == tp->snd_max) {
1955 			callout_stop(tp->tt_rexmt);
1956 			needoutput = 1;
1957 		} else if (!callout_active(tp->tt_persist))
1958 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1959 				      tcp_timer_rexmt, tp);
1960 
1961 		/*
1962 		 * If no data (only SYN) was ACK'd,
1963 		 *    skip rest of ACK processing.
1964 		 */
1965 		if (acked == 0)
1966 			goto step6;
1967 
1968 		/*
1969 		 * When new data is acked, open the congestion window.
1970 		 * If the window gives us less than ssthresh packets
1971 		 * in flight, open exponentially (maxseg per packet).
1972 		 * Otherwise open linearly: maxseg per window
1973 		 * (maxseg^2 / cwnd per packet).
1974 		 */
1975 		{
1976 		register u_int cw = tp->snd_cwnd;
1977 		register u_int incr = tp->t_maxseg;
1978 
1979 		if (cw > tp->snd_ssthresh)
1980 			incr = incr * incr / cw;
1981 		/*
1982 		 * If t_dupacks != 0 here, it indicates that we are still
1983 		 * in NewReno fast recovery mode, so we leave the congestion
1984 		 * window alone.
1985 		 */
1986 		if (tcp_do_newreno == 0 || tp->t_dupacks == 0)
1987 			tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
1988 		}
1989 		if (acked > so->so_snd.sb_cc) {
1990 			tp->snd_wnd -= so->so_snd.sb_cc;
1991 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1992 			ourfinisacked = 1;
1993 		} else {
1994 			sbdrop(&so->so_snd, acked);
1995 			tp->snd_wnd -= acked;
1996 			ourfinisacked = 0;
1997 		}
1998 		sowwakeup(so);
1999 		tp->snd_una = th->th_ack;
2000 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2001 			tp->snd_nxt = tp->snd_una;
2002 
2003 		switch (tp->t_state) {
2004 
2005 		/*
2006 		 * In FIN_WAIT_1 STATE in addition to the processing
2007 		 * for the ESTABLISHED state if our FIN is now acknowledged
2008 		 * then enter FIN_WAIT_2.
2009 		 */
2010 		case TCPS_FIN_WAIT_1:
2011 			if (ourfinisacked) {
2012 				/*
2013 				 * If we can't receive any more
2014 				 * data, then closing user can proceed.
2015 				 * Starting the timer is contrary to the
2016 				 * specification, but if we don't get a FIN
2017 				 * we'll hang forever.
2018 				 */
2019 				if (so->so_state & SS_CANTRCVMORE) {
2020 					soisdisconnected(so);
2021 					callout_reset(tp->tt_2msl, tcp_maxidle,
2022 						      tcp_timer_2msl, tp);
2023 				}
2024 				tp->t_state = TCPS_FIN_WAIT_2;
2025 			}
2026 			break;
2027 
2028 	 	/*
2029 		 * In CLOSING STATE in addition to the processing for
2030 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2031 		 * then enter the TIME-WAIT state, otherwise ignore
2032 		 * the segment.
2033 		 */
2034 		case TCPS_CLOSING:
2035 			if (ourfinisacked) {
2036 				tp->t_state = TCPS_TIME_WAIT;
2037 				tcp_canceltimers(tp);
2038 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2039 				if (tp->cc_recv != 0 &&
2040 				    (ticks - tp->t_starttime) < tcp_msl)
2041 					callout_reset(tp->tt_2msl,
2042 						      tp->t_rxtcur *
2043 						      TCPTV_TWTRUNC,
2044 						      tcp_timer_2msl, tp);
2045 				else
2046 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2047 						      tcp_timer_2msl, tp);
2048 				soisdisconnected(so);
2049 			}
2050 			break;
2051 
2052 		/*
2053 		 * In LAST_ACK, we may still be waiting for data to drain
2054 		 * and/or to be acked, as well as for the ack of our FIN.
2055 		 * If our FIN is now acknowledged, delete the TCB,
2056 		 * enter the closed state and return.
2057 		 */
2058 		case TCPS_LAST_ACK:
2059 			if (ourfinisacked) {
2060 				tp = tcp_close(tp);
2061 				goto drop;
2062 			}
2063 			break;
2064 
2065 		/*
2066 		 * In TIME_WAIT state the only thing that should arrive
2067 		 * is a retransmission of the remote FIN.  Acknowledge
2068 		 * it and restart the finack timer.
2069 		 */
2070 		case TCPS_TIME_WAIT:
2071 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2072 				      tcp_timer_2msl, tp);
2073 			goto dropafterack;
2074 		}
2075 	}
2076 
2077 step6:
2078 	/*
2079 	 * Update window information.
2080 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2081 	 */
2082 	if ((thflags & TH_ACK) &&
2083 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2084 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2085 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2086 		/* keep track of pure window updates */
2087 		if (tlen == 0 &&
2088 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2089 			tcpstat.tcps_rcvwinupd++;
2090 		tp->snd_wnd = tiwin;
2091 		tp->snd_wl1 = th->th_seq;
2092 		tp->snd_wl2 = th->th_ack;
2093 		if (tp->snd_wnd > tp->max_sndwnd)
2094 			tp->max_sndwnd = tp->snd_wnd;
2095 		needoutput = 1;
2096 	}
2097 
2098 	/*
2099 	 * Process segments with URG.
2100 	 */
2101 	if ((thflags & TH_URG) && th->th_urp &&
2102 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2103 		/*
2104 		 * This is a kludge, but if we receive and accept
2105 		 * random urgent pointers, we'll crash in
2106 		 * soreceive.  It's hard to imagine someone
2107 		 * actually wanting to send this much urgent data.
2108 		 */
2109 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2110 			th->th_urp = 0;			/* XXX */
2111 			thflags &= ~TH_URG;		/* XXX */
2112 			goto dodata;			/* XXX */
2113 		}
2114 		/*
2115 		 * If this segment advances the known urgent pointer,
2116 		 * then mark the data stream.  This should not happen
2117 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2118 		 * a FIN has been received from the remote side.
2119 		 * In these states we ignore the URG.
2120 		 *
2121 		 * According to RFC961 (Assigned Protocols),
2122 		 * the urgent pointer points to the last octet
2123 		 * of urgent data.  We continue, however,
2124 		 * to consider it to indicate the first octet
2125 		 * of data past the urgent section as the original
2126 		 * spec states (in one of two places).
2127 		 */
2128 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2129 			tp->rcv_up = th->th_seq + th->th_urp;
2130 			so->so_oobmark = so->so_rcv.sb_cc +
2131 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2132 			if (so->so_oobmark == 0)
2133 				so->so_state |= SS_RCVATMARK;
2134 			sohasoutofband(so);
2135 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2136 		}
2137 		/*
2138 		 * Remove out of band data so doesn't get presented to user.
2139 		 * This can happen independent of advancing the URG pointer,
2140 		 * but if two URG's are pending at once, some out-of-band
2141 		 * data may creep in... ick.
2142 		 */
2143 		if (th->th_urp <= (u_long)tlen
2144 #ifdef SO_OOBINLINE
2145 		     && (so->so_options & SO_OOBINLINE) == 0
2146 #endif
2147 		     )
2148 			tcp_pulloutofband(so, th, m,
2149 				drop_hdrlen);	/* hdr drop is delayed */
2150 	} else
2151 		/*
2152 		 * If no out of band data is expected,
2153 		 * pull receive urgent pointer along
2154 		 * with the receive window.
2155 		 */
2156 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2157 			tp->rcv_up = tp->rcv_nxt;
2158 dodata:							/* XXX */
2159 
2160 	/*
2161 	 * Process the segment text, merging it into the TCP sequencing queue,
2162 	 * and arranging for acknowledgment of receipt if necessary.
2163 	 * This process logically involves adjusting tp->rcv_wnd as data
2164 	 * is presented to the user (this happens in tcp_usrreq.c,
2165 	 * case PRU_RCVD).  If a FIN has already been received on this
2166 	 * connection then we just ignore the text.
2167 	 */
2168 	if ((tlen || (thflags&TH_FIN)) &&
2169 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2170 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2171 		/*
2172 		 * Insert segment which inludes th into reassembly queue of tcp with
2173 		 * control block tp.  Return TH_FIN if reassembly now includes
2174 		 * a segment with FIN.  This handle the common case inline (segment
2175 		 * is the next to be received on an established connection, and the
2176 		 * queue is empty), avoiding linkage into and removal from the queue
2177 		 * and repetition of various conversions.
2178 		 * Set DELACK for segments received in order, but ack immediately
2179 		 * when segments are out of order (so fast retransmit can work).
2180 		 */
2181 		if (th->th_seq == tp->rcv_nxt &&
2182 		    LIST_EMPTY(&tp->t_segq) &&
2183 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2184 			if (DELAY_ACK(tp))
2185 				callout_reset(tp->tt_delack, tcp_delacktime,
2186 				    tcp_timer_delack, tp);
2187 			else
2188 				tp->t_flags |= TF_ACKNOW;
2189 			tp->rcv_nxt += tlen;
2190 			thflags = th->th_flags & TH_FIN;
2191 			tcpstat.tcps_rcvpack++;
2192 			tcpstat.tcps_rcvbyte += tlen;
2193 			ND6_HINT(tp);
2194 			sbappend(&so->so_rcv, m);
2195 			sorwakeup(so);
2196 		} else {
2197 			thflags = tcp_reass(tp, th, &tlen, m);
2198 			tp->t_flags |= TF_ACKNOW;
2199 		}
2200 
2201 		/*
2202 		 * Note the amount of data that peer has sent into
2203 		 * our window, in order to estimate the sender's
2204 		 * buffer size.
2205 		 */
2206 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2207 	} else {
2208 		m_freem(m);
2209 		thflags &= ~TH_FIN;
2210 	}
2211 
2212 	/*
2213 	 * If FIN is received ACK the FIN and let the user know
2214 	 * that the connection is closing.
2215 	 */
2216 	if (thflags & TH_FIN) {
2217 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2218 			socantrcvmore(so);
2219 			/*
2220 			 *  If connection is half-synchronized
2221 			 *  (ie NEEDSYN flag on) then delay ACK,
2222 			 *  so it may be piggybacked when SYN is sent.
2223 			 *  Otherwise, since we received a FIN then no
2224 			 *  more input can be expected, send ACK now.
2225 			 */
2226 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2227                                 callout_reset(tp->tt_delack, tcp_delacktime,
2228                                     tcp_timer_delack, tp);
2229 			else
2230 				tp->t_flags |= TF_ACKNOW;
2231 			tp->rcv_nxt++;
2232 		}
2233 		switch (tp->t_state) {
2234 
2235 	 	/*
2236 		 * In SYN_RECEIVED and ESTABLISHED STATES
2237 		 * enter the CLOSE_WAIT state.
2238 		 */
2239 		case TCPS_SYN_RECEIVED:
2240 			tp->t_starttime = ticks;
2241 			/*FALLTHROUGH*/
2242 		case TCPS_ESTABLISHED:
2243 			tp->t_state = TCPS_CLOSE_WAIT;
2244 			break;
2245 
2246 	 	/*
2247 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2248 		 * enter the CLOSING state.
2249 		 */
2250 		case TCPS_FIN_WAIT_1:
2251 			tp->t_state = TCPS_CLOSING;
2252 			break;
2253 
2254 	 	/*
2255 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2256 		 * starting the time-wait timer, turning off the other
2257 		 * standard timers.
2258 		 */
2259 		case TCPS_FIN_WAIT_2:
2260 			tp->t_state = TCPS_TIME_WAIT;
2261 			tcp_canceltimers(tp);
2262 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2263 			if (tp->cc_recv != 0 &&
2264 			    (ticks - tp->t_starttime) < tcp_msl) {
2265 				callout_reset(tp->tt_2msl,
2266 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2267 					      tcp_timer_2msl, tp);
2268 				/* For transaction client, force ACK now. */
2269 				tp->t_flags |= TF_ACKNOW;
2270 			}
2271 			else
2272 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2273 					      tcp_timer_2msl, tp);
2274 			soisdisconnected(so);
2275 			break;
2276 
2277 		/*
2278 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2279 		 */
2280 		case TCPS_TIME_WAIT:
2281 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2282 				      tcp_timer_2msl, tp);
2283 			break;
2284 		}
2285 	}
2286 #ifdef TCPDEBUG
2287 	if (so->so_options & SO_DEBUG)
2288 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2289 			  &tcp_savetcp, 0);
2290 #endif
2291 
2292 	/*
2293 	 * Return any desired output.
2294 	 */
2295 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2296 		(void) tcp_output(tp);
2297 	return;
2298 
2299 dropafterack:
2300 	/*
2301 	 * Generate an ACK dropping incoming segment if it occupies
2302 	 * sequence space, where the ACK reflects our state.
2303 	 *
2304 	 * We can now skip the test for the RST flag since all
2305 	 * paths to this code happen after packets containing
2306 	 * RST have been dropped.
2307 	 *
2308 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2309 	 * segment we received passes the SYN-RECEIVED ACK test.
2310 	 * If it fails send a RST.  This breaks the loop in the
2311 	 * "LAND" DoS attack, and also prevents an ACK storm
2312 	 * between two listening ports that have been sent forged
2313 	 * SYN segments, each with the source address of the other.
2314 	 */
2315 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2316 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2317 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2318 		rstreason = BANDLIM_RST_OPENPORT;
2319 		goto dropwithreset;
2320 	}
2321 #ifdef TCPDEBUG
2322 	if (so->so_options & SO_DEBUG)
2323 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2324 			  &tcp_savetcp, 0);
2325 #endif
2326 	m_freem(m);
2327 	tp->t_flags |= TF_ACKNOW;
2328 	(void) tcp_output(tp);
2329 	return;
2330 
2331 dropwithreset:
2332 	/*
2333 	 * Generate a RST, dropping incoming segment.
2334 	 * Make ACK acceptable to originator of segment.
2335 	 * Don't bother to respond if destination was broadcast/multicast.
2336 	 */
2337 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2338 		goto drop;
2339 #ifdef INET6
2340 	if (isipv6) {
2341 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2342 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2343 			goto drop;
2344 	} else
2345 #endif /* INET6 */
2346 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2347 	    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2348 	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
2349 		goto drop;
2350 	/* IPv6 anycast check is done at tcp6_input() */
2351 
2352 	/*
2353 	 * Perform bandwidth limiting.
2354 	 */
2355 	if (badport_bandlim(rstreason) < 0)
2356 		goto drop;
2357 
2358 #ifdef TCPDEBUG
2359 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2360 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2361 			  &tcp_savetcp, 0);
2362 #endif
2363 	if (thflags & TH_ACK)
2364 		/* mtod() below is safe as long as hdr dropping is delayed */
2365 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2366 			    TH_RST);
2367 	else {
2368 		if (thflags & TH_SYN)
2369 			tlen++;
2370 		/* mtod() below is safe as long as hdr dropping is delayed */
2371 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2372 			    (tcp_seq)0, TH_RST|TH_ACK);
2373 	}
2374 	/* destroy temporarily created socket */
2375 	if (dropsocket)
2376 		(void) soabort(so);
2377 	return;
2378 
2379 drop:
2380 	/*
2381 	 * Drop space held by incoming segment and return.
2382 	 */
2383 #ifdef TCPDEBUG
2384 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2385 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2386 			  &tcp_savetcp, 0);
2387 #endif
2388 	m_freem(m);
2389 	/* destroy temporarily created socket */
2390 	if (dropsocket)
2391 		(void) soabort(so);
2392 	return;
2393 }
2394 
2395 static void
2396 tcp_dooptions(tp, cp, cnt, th, to)
2397 	struct tcpcb *tp;
2398 	u_char *cp;
2399 	int cnt;
2400 	struct tcphdr *th;
2401 	struct tcpopt *to;
2402 {
2403 	u_short mss = 0;
2404 	int opt, optlen;
2405 
2406 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2407 		opt = cp[0];
2408 		if (opt == TCPOPT_EOL)
2409 			break;
2410 		if (opt == TCPOPT_NOP)
2411 			optlen = 1;
2412 		else {
2413 			if (cnt < 2)
2414 				break;
2415 			optlen = cp[1];
2416 			if (optlen < 2 || optlen > cnt)
2417 				break;
2418 		}
2419 		switch (opt) {
2420 
2421 		default:
2422 			continue;
2423 
2424 		case TCPOPT_MAXSEG:
2425 			if (optlen != TCPOLEN_MAXSEG)
2426 				continue;
2427 			if (!(th->th_flags & TH_SYN))
2428 				continue;
2429 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2430 			NTOHS(mss);
2431 			break;
2432 
2433 		case TCPOPT_WINDOW:
2434 			if (optlen != TCPOLEN_WINDOW)
2435 				continue;
2436 			if (!(th->th_flags & TH_SYN))
2437 				continue;
2438 			tp->t_flags |= TF_RCVD_SCALE;
2439 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2440 			break;
2441 
2442 		case TCPOPT_TIMESTAMP:
2443 			if (optlen != TCPOLEN_TIMESTAMP)
2444 				continue;
2445 			to->to_flag |= TOF_TS;
2446 			bcopy((char *)cp + 2,
2447 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2448 			NTOHL(to->to_tsval);
2449 			bcopy((char *)cp + 6,
2450 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2451 			NTOHL(to->to_tsecr);
2452 
2453 			/*
2454 			 * A timestamp received in a SYN makes
2455 			 * it ok to send timestamp requests and replies.
2456 			 */
2457 			if (th->th_flags & TH_SYN) {
2458 				tp->t_flags |= TF_RCVD_TSTMP;
2459 				tp->ts_recent = to->to_tsval;
2460 				tp->ts_recent_age = ticks;
2461 			}
2462 			break;
2463 		case TCPOPT_CC:
2464 			if (optlen != TCPOLEN_CC)
2465 				continue;
2466 			to->to_flag |= TOF_CC;
2467 			bcopy((char *)cp + 2,
2468 			    (char *)&to->to_cc, sizeof(to->to_cc));
2469 			NTOHL(to->to_cc);
2470 			/*
2471 			 * A CC or CC.new option received in a SYN makes
2472 			 * it ok to send CC in subsequent segments.
2473 			 */
2474 			if (th->th_flags & TH_SYN)
2475 				tp->t_flags |= TF_RCVD_CC;
2476 			break;
2477 		case TCPOPT_CCNEW:
2478 			if (optlen != TCPOLEN_CC)
2479 				continue;
2480 			if (!(th->th_flags & TH_SYN))
2481 				continue;
2482 			to->to_flag |= TOF_CCNEW;
2483 			bcopy((char *)cp + 2,
2484 			    (char *)&to->to_cc, sizeof(to->to_cc));
2485 			NTOHL(to->to_cc);
2486 			/*
2487 			 * A CC or CC.new option received in a SYN makes
2488 			 * it ok to send CC in subsequent segments.
2489 			 */
2490 			tp->t_flags |= TF_RCVD_CC;
2491 			break;
2492 		case TCPOPT_CCECHO:
2493 			if (optlen != TCPOLEN_CC)
2494 				continue;
2495 			if (!(th->th_flags & TH_SYN))
2496 				continue;
2497 			to->to_flag |= TOF_CCECHO;
2498 			bcopy((char *)cp + 2,
2499 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2500 			NTOHL(to->to_ccecho);
2501 			break;
2502 		}
2503 	}
2504 	if (th->th_flags & TH_SYN)
2505 		tcp_mss(tp, mss);	/* sets t_maxseg */
2506 }
2507 
2508 /*
2509  * Pull out of band byte out of a segment so
2510  * it doesn't appear in the user's data queue.
2511  * It is still reflected in the segment length for
2512  * sequencing purposes.
2513  */
2514 static void
2515 tcp_pulloutofband(so, th, m, off)
2516 	struct socket *so;
2517 	struct tcphdr *th;
2518 	register struct mbuf *m;
2519 	int off;		/* delayed to be droped hdrlen */
2520 {
2521 	int cnt = off + th->th_urp - 1;
2522 
2523 	while (cnt >= 0) {
2524 		if (m->m_len > cnt) {
2525 			char *cp = mtod(m, caddr_t) + cnt;
2526 			struct tcpcb *tp = sototcpcb(so);
2527 
2528 			tp->t_iobc = *cp;
2529 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2530 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2531 			m->m_len--;
2532 			if (m->m_flags & M_PKTHDR)
2533 				m->m_pkthdr.len--;
2534 			return;
2535 		}
2536 		cnt -= m->m_len;
2537 		m = m->m_next;
2538 		if (m == 0)
2539 			break;
2540 	}
2541 	panic("tcp_pulloutofband");
2542 }
2543 
2544 /*
2545  * Collect new round-trip time estimate
2546  * and update averages and current timeout.
2547  */
2548 static void
2549 tcp_xmit_timer(tp, rtt)
2550 	register struct tcpcb *tp;
2551 	int rtt;
2552 {
2553 	register int delta;
2554 
2555 	tcpstat.tcps_rttupdated++;
2556 	tp->t_rttupdated++;
2557 	if (tp->t_srtt != 0) {
2558 		/*
2559 		 * srtt is stored as fixed point with 5 bits after the
2560 		 * binary point (i.e., scaled by 8).  The following magic
2561 		 * is equivalent to the smoothing algorithm in rfc793 with
2562 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2563 		 * point).  Adjust rtt to origin 0.
2564 		 */
2565 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2566 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2567 
2568 		if ((tp->t_srtt += delta) <= 0)
2569 			tp->t_srtt = 1;
2570 
2571 		/*
2572 		 * We accumulate a smoothed rtt variance (actually, a
2573 		 * smoothed mean difference), then set the retransmit
2574 		 * timer to smoothed rtt + 4 times the smoothed variance.
2575 		 * rttvar is stored as fixed point with 4 bits after the
2576 		 * binary point (scaled by 16).  The following is
2577 		 * equivalent to rfc793 smoothing with an alpha of .75
2578 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2579 		 * rfc793's wired-in beta.
2580 		 */
2581 		if (delta < 0)
2582 			delta = -delta;
2583 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2584 		if ((tp->t_rttvar += delta) <= 0)
2585 			tp->t_rttvar = 1;
2586 	} else {
2587 		/*
2588 		 * No rtt measurement yet - use the unsmoothed rtt.
2589 		 * Set the variance to half the rtt (so our first
2590 		 * retransmit happens at 3*rtt).
2591 		 */
2592 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2593 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2594 	}
2595 	tp->t_rtttime = 0;
2596 	tp->t_rxtshift = 0;
2597 
2598 	/*
2599 	 * the retransmit should happen at rtt + 4 * rttvar.
2600 	 * Because of the way we do the smoothing, srtt and rttvar
2601 	 * will each average +1/2 tick of bias.  When we compute
2602 	 * the retransmit timer, we want 1/2 tick of rounding and
2603 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2604 	 * firing of the timer.  The bias will give us exactly the
2605 	 * 1.5 tick we need.  But, because the bias is
2606 	 * statistical, we have to test that we don't drop below
2607 	 * the minimum feasible timer (which is 2 ticks).
2608 	 */
2609 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2610 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2611 
2612 	/*
2613 	 * We received an ack for a packet that wasn't retransmitted;
2614 	 * it is probably safe to discard any error indications we've
2615 	 * received recently.  This isn't quite right, but close enough
2616 	 * for now (a route might have failed after we sent a segment,
2617 	 * and the return path might not be symmetrical).
2618 	 */
2619 	tp->t_softerror = 0;
2620 }
2621 
2622 /*
2623  * Determine a reasonable value for maxseg size.
2624  * If the route is known, check route for mtu.
2625  * If none, use an mss that can be handled on the outgoing
2626  * interface without forcing IP to fragment; if bigger than
2627  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2628  * to utilize large mbufs.  If no route is found, route has no mtu,
2629  * or the destination isn't local, use a default, hopefully conservative
2630  * size (usually 512 or the default IP max size, but no more than the mtu
2631  * of the interface), as we can't discover anything about intervening
2632  * gateways or networks.  We also initialize the congestion/slow start
2633  * window to be a single segment if the destination isn't local.
2634  * While looking at the routing entry, we also initialize other path-dependent
2635  * parameters from pre-set or cached values in the routing entry.
2636  *
2637  * Also take into account the space needed for options that we
2638  * send regularly.  Make maxseg shorter by that amount to assure
2639  * that we can send maxseg amount of data even when the options
2640  * are present.  Store the upper limit of the length of options plus
2641  * data in maxopd.
2642  *
2643  * NOTE that this routine is only called when we process an incoming
2644  * segment, for outgoing segments only tcp_mssopt is called.
2645  *
2646  * In case of T/TCP, we call this routine during implicit connection
2647  * setup as well (offer = -1), to initialize maxseg from the cached
2648  * MSS of our peer.
2649  */
2650 void
2651 tcp_mss(tp, offer)
2652 	struct tcpcb *tp;
2653 	int offer;
2654 {
2655 	register struct rtentry *rt;
2656 	struct ifnet *ifp;
2657 	register int rtt, mss;
2658 	u_long bufsize;
2659 	struct inpcb *inp;
2660 	struct socket *so;
2661 	struct rmxp_tao *taop;
2662 	int origoffer = offer;
2663 #ifdef INET6
2664 	int isipv6;
2665 	int min_protoh;
2666 #endif
2667 
2668 	inp = tp->t_inpcb;
2669 #ifdef INET6
2670 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2671 	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2672 			    : sizeof (struct tcpiphdr);
2673 #else
2674 #define min_protoh  (sizeof (struct tcpiphdr))
2675 #endif
2676 #ifdef INET6
2677 	if (isipv6)
2678 		rt = tcp_rtlookup6(inp);
2679 	else
2680 #endif
2681 	rt = tcp_rtlookup(inp);
2682 	if (rt == NULL) {
2683 		tp->t_maxopd = tp->t_maxseg =
2684 #ifdef INET6
2685 		isipv6 ? tcp_v6mssdflt :
2686 #endif /* INET6 */
2687 		tcp_mssdflt;
2688 		return;
2689 	}
2690 	ifp = rt->rt_ifp;
2691 	so = inp->inp_socket;
2692 
2693 	taop = rmx_taop(rt->rt_rmx);
2694 	/*
2695 	 * Offer == -1 means that we didn't receive SYN yet,
2696 	 * use cached value in that case;
2697 	 */
2698 	if (offer == -1)
2699 		offer = taop->tao_mssopt;
2700 	/*
2701 	 * Offer == 0 means that there was no MSS on the SYN segment,
2702 	 * in this case we use tcp_mssdflt.
2703 	 */
2704 	if (offer == 0)
2705 		offer =
2706 #ifdef INET6
2707 			isipv6 ? tcp_v6mssdflt :
2708 #endif /* INET6 */
2709 			tcp_mssdflt;
2710 	else
2711 		/*
2712 		 * Sanity check: make sure that maxopd will be large
2713 		 * enough to allow some data on segments even is the
2714 		 * all the option space is used (40bytes).  Otherwise
2715 		 * funny things may happen in tcp_output.
2716 		 */
2717 		offer = max(offer, 64);
2718 	taop->tao_mssopt = offer;
2719 
2720 	/*
2721 	 * While we're here, check if there's an initial rtt
2722 	 * or rttvar.  Convert from the route-table units
2723 	 * to scaled multiples of the slow timeout timer.
2724 	 */
2725 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2726 		/*
2727 		 * XXX the lock bit for RTT indicates that the value
2728 		 * is also a minimum value; this is subject to time.
2729 		 */
2730 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2731 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2732 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2733 		tcpstat.tcps_usedrtt++;
2734 		if (rt->rt_rmx.rmx_rttvar) {
2735 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2736 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2737 			tcpstat.tcps_usedrttvar++;
2738 		} else {
2739 			/* default variation is +- 1 rtt */
2740 			tp->t_rttvar =
2741 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2742 		}
2743 		TCPT_RANGESET(tp->t_rxtcur,
2744 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2745 			      tp->t_rttmin, TCPTV_REXMTMAX);
2746 	}
2747 	/*
2748 	 * if there's an mtu associated with the route, use it
2749 	 * else, use the link mtu.
2750 	 */
2751 	if (rt->rt_rmx.rmx_mtu)
2752 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2753 	else
2754 	{
2755 		mss =
2756 #ifdef INET6
2757 			(isipv6 ? nd_ifinfo[rt->rt_ifp->if_index].linkmtu :
2758 #endif
2759 			 ifp->if_mtu
2760 #ifdef INET6
2761 			 )
2762 #endif
2763 			- min_protoh;
2764 #ifdef INET6
2765 		if (isipv6) {
2766 			if (!in6_localaddr(&inp->in6p_faddr))
2767 				mss = min(mss, tcp_v6mssdflt);
2768 		} else
2769 #endif
2770 		if (!in_localaddr(inp->inp_faddr))
2771 			mss = min(mss, tcp_mssdflt);
2772 	}
2773 	mss = min(mss, offer);
2774 	/*
2775 	 * maxopd stores the maximum length of data AND options
2776 	 * in a segment; maxseg is the amount of data in a normal
2777 	 * segment.  We need to store this value (maxopd) apart
2778 	 * from maxseg, because now every segment carries options
2779 	 * and thus we normally have somewhat less data in segments.
2780 	 */
2781 	tp->t_maxopd = mss;
2782 
2783 	/*
2784 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2785 	 * were received yet.  In this case we just guess, otherwise
2786 	 * we do the same as before T/TCP.
2787 	 */
2788  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2789 	    (origoffer == -1 ||
2790 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2791 		mss -= TCPOLEN_TSTAMP_APPA;
2792  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2793 	    (origoffer == -1 ||
2794 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2795 		mss -= TCPOLEN_CC_APPA;
2796 
2797 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2798 		if (mss > MCLBYTES)
2799 			mss &= ~(MCLBYTES-1);
2800 #else
2801 		if (mss > MCLBYTES)
2802 			mss = mss / MCLBYTES * MCLBYTES;
2803 #endif
2804 	/*
2805 	 * If there's a pipesize, change the socket buffer
2806 	 * to that size.  Make the socket buffers an integral
2807 	 * number of mss units; if the mss is larger than
2808 	 * the socket buffer, decrease the mss.
2809 	 */
2810 #ifdef RTV_SPIPE
2811 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2812 #endif
2813 		bufsize = so->so_snd.sb_hiwat;
2814 	if (bufsize < mss)
2815 		mss = bufsize;
2816 	else {
2817 		bufsize = roundup(bufsize, mss);
2818 		if (bufsize > sb_max)
2819 			bufsize = sb_max;
2820 		(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2821 	}
2822 	tp->t_maxseg = mss;
2823 
2824 #ifdef RTV_RPIPE
2825 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2826 #endif
2827 		bufsize = so->so_rcv.sb_hiwat;
2828 	if (bufsize > mss) {
2829 		bufsize = roundup(bufsize, mss);
2830 		if (bufsize > sb_max)
2831 			bufsize = sb_max;
2832 		(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2833 	}
2834 
2835 	/*
2836 	 * Set the slow-start flight size depending on whether this
2837 	 * is a local network or not.
2838 	 */
2839 	if (
2840 #ifdef INET6
2841 	    (isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2842 	    (!isipv6 &&
2843 #endif
2844 	     in_localaddr(inp->inp_faddr)
2845 #ifdef INET6
2846 	     )
2847 #endif
2848 	    )
2849 		tp->snd_cwnd = mss * ss_fltsz_local;
2850 	else
2851 		tp->snd_cwnd = mss * ss_fltsz;
2852 
2853 	if (rt->rt_rmx.rmx_ssthresh) {
2854 		/*
2855 		 * There's some sort of gateway or interface
2856 		 * buffer limit on the path.  Use this to set
2857 		 * the slow start threshhold, but set the
2858 		 * threshold to no less than 2*mss.
2859 		 */
2860 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2861 		tcpstat.tcps_usedssthresh++;
2862 	}
2863 }
2864 
2865 /*
2866  * Determine the MSS option to send on an outgoing SYN.
2867  */
2868 int
2869 tcp_mssopt(tp)
2870 	struct tcpcb *tp;
2871 {
2872 	struct rtentry *rt;
2873 #ifdef INET6
2874 	int isipv6;
2875 	int min_protoh;
2876 #endif
2877 
2878 #ifdef INET6
2879 	isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2880 	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2881 			    : sizeof (struct tcpiphdr);
2882 #else
2883 #define min_protoh  (sizeof (struct tcpiphdr))
2884 #endif
2885 #ifdef INET6
2886 	if (isipv6)
2887 		rt = tcp_rtlookup6(tp->t_inpcb);
2888 	else
2889 #endif /* INET6 */
2890 	rt = tcp_rtlookup(tp->t_inpcb);
2891 	if (rt == NULL)
2892 		return
2893 #ifdef INET6
2894 			isipv6 ? tcp_v6mssdflt :
2895 #endif /* INET6 */
2896 			tcp_mssdflt;
2897 
2898 	return rt->rt_ifp->if_mtu - min_protoh;
2899 }
2900 
2901 
2902 /*
2903  * Checks for partial ack.  If partial ack arrives, force the retransmission
2904  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2905  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
2906  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2907  */
2908 static int
2909 tcp_newreno(tp, th)
2910 	struct tcpcb *tp;
2911 	struct tcphdr *th;
2912 {
2913 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2914 		tcp_seq onxt = tp->snd_nxt;
2915 		u_long  ocwnd = tp->snd_cwnd;
2916 
2917 		callout_stop(tp->tt_rexmt);
2918 		tp->t_rtttime = 0;
2919 		tp->snd_nxt = th->th_ack;
2920 		/*
2921 		 * Set snd_cwnd to one segment beyond acknowledged offset
2922 		 * (tp->snd_una has not yet been updated when this function
2923 		 *  is called)
2924 		 */
2925 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2926 		(void) tcp_output(tp);
2927 		tp->snd_cwnd = ocwnd;
2928 		if (SEQ_GT(onxt, tp->snd_nxt))
2929 			tp->snd_nxt = onxt;
2930 		/*
2931 		 * Partial window deflation.  Relies on fact that tp->snd_una
2932 		 * not updated yet.
2933 		 */
2934 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2935 		return (1);
2936 	}
2937 	return (0);
2938 }
2939