1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_ipfw.h" /* for ipfw_fwd */ 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 #include "opt_tcp_input.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/kernel.h> 46 #include <sys/sysctl.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/proc.h> /* for proc0 declaration */ 50 #include <sys/protosw.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/syslog.h> 54 55 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */ 56 57 #include <net/if.h> 58 #include <net/route.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_systm.h> 62 #include <netinet/ip.h> 63 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */ 64 #include <netinet/in_var.h> 65 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 66 #include <netinet/in_pcb.h> 67 #include <netinet/ip_var.h> 68 #ifdef INET6 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <netinet6/nd6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/in6_pcb.h> 74 #endif 75 #include <netinet/tcp.h> 76 #include <netinet/tcp_fsm.h> 77 #include <netinet/tcp_seq.h> 78 #include <netinet/tcp_timer.h> 79 #include <netinet/tcp_var.h> 80 #ifdef INET6 81 #include <netinet6/tcp6_var.h> 82 #endif 83 #include <netinet/tcpip.h> 84 #ifdef TCPDEBUG 85 #include <netinet/tcp_debug.h> 86 87 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */ 88 struct tcphdr tcp_savetcp; 89 #endif /* TCPDEBUG */ 90 91 #ifdef IPSEC 92 #include <netinet6/ipsec.h> 93 #ifdef INET6 94 #include <netinet6/ipsec6.h> 95 #endif 96 #include <netkey/key.h> 97 #endif /*IPSEC*/ 98 99 #include <machine/in_cksum.h> 100 101 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry"); 102 103 static int tcprexmtthresh = 3; 104 tcp_seq tcp_iss; 105 tcp_cc tcp_ccgen; 106 107 struct tcpstat tcpstat; 108 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW, 109 &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); 110 111 static int log_in_vain = 0; 112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW, 113 &log_in_vain, 0, "Log all incoming TCP connections"); 114 115 static int blackhole = 0; 116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW, 117 &blackhole, 0, "Do not send RST when dropping refused connections"); 118 119 int tcp_delack_enabled = 1; 120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW, 121 &tcp_delack_enabled, 0, 122 "Delay ACK to try and piggyback it onto a data packet"); 123 124 int tcp_lq_overflow = 1; 125 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW, 126 &tcp_lq_overflow, 0, 127 "Listen Queue Overflow"); 128 129 #ifdef TCP_DROP_SYNFIN 130 static int drop_synfin = 0; 131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW, 132 &drop_synfin, 0, "Drop TCP packets with SYN+FIN set"); 133 #endif 134 135 struct inpcbhead tcb; 136 #define tcb6 tcb /* for KAME src sync over BSD*'s */ 137 struct inpcbinfo tcbinfo; 138 139 static void tcp_dooptions __P((struct tcpcb *, 140 u_char *, int, struct tcphdr *, struct tcpopt *)); 141 static void tcp_pulloutofband __P((struct socket *, 142 struct tcphdr *, struct mbuf *, int)); 143 static int tcp_reass __P((struct tcpcb *, struct tcphdr *, int *, 144 struct mbuf *)); 145 static void tcp_xmit_timer __P((struct tcpcb *, int)); 146 static int tcp_newreno __P((struct tcpcb *, struct tcphdr *)); 147 148 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */ 149 #ifdef INET6 150 #define ND6_HINT(tp) \ 151 do { \ 152 if ((tp) && (tp)->t_inpcb && \ 153 ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \ 154 (tp)->t_inpcb->in6p_route.ro_rt) \ 155 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \ 156 } while (0) 157 #else 158 #define ND6_HINT(tp) 159 #endif 160 161 /* 162 * Indicate whether this ack should be delayed. 163 */ 164 #define DELAY_ACK(tp) \ 165 (tcp_delack_enabled && !callout_pending(tp->tt_delack)) 166 167 static int 168 tcp_reass(tp, th, tlenp, m) 169 register struct tcpcb *tp; 170 register struct tcphdr *th; 171 int *tlenp; 172 struct mbuf *m; 173 { 174 struct tseg_qent *q; 175 struct tseg_qent *p = NULL; 176 struct tseg_qent *nq; 177 struct tseg_qent *te; 178 struct socket *so = tp->t_inpcb->inp_socket; 179 int flags; 180 181 /* 182 * Call with th==0 after become established to 183 * force pre-ESTABLISHED data up to user socket. 184 */ 185 if (th == 0) 186 goto present; 187 188 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */ 189 MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ, 190 M_NOWAIT); 191 if (te == NULL) { 192 tcpstat.tcps_rcvmemdrop++; 193 m_freem(m); 194 return (0); 195 } 196 197 /* 198 * Find a segment which begins after this one does. 199 */ 200 LIST_FOREACH(q, &tp->t_segq, tqe_q) { 201 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) 202 break; 203 p = q; 204 } 205 206 /* 207 * If there is a preceding segment, it may provide some of 208 * our data already. If so, drop the data from the incoming 209 * segment. If it provides all of our data, drop us. 210 */ 211 if (p != NULL) { 212 register int i; 213 /* conversion to int (in i) handles seq wraparound */ 214 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq; 215 if (i > 0) { 216 if (i >= *tlenp) { 217 tcpstat.tcps_rcvduppack++; 218 tcpstat.tcps_rcvdupbyte += *tlenp; 219 m_freem(m); 220 FREE(te, M_TSEGQ); 221 /* 222 * Try to present any queued data 223 * at the left window edge to the user. 224 * This is needed after the 3-WHS 225 * completes. 226 */ 227 goto present; /* ??? */ 228 } 229 m_adj(m, i); 230 *tlenp -= i; 231 th->th_seq += i; 232 } 233 } 234 tcpstat.tcps_rcvoopack++; 235 tcpstat.tcps_rcvoobyte += *tlenp; 236 237 /* 238 * While we overlap succeeding segments trim them or, 239 * if they are completely covered, dequeue them. 240 */ 241 while (q) { 242 register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq; 243 if (i <= 0) 244 break; 245 if (i < q->tqe_len) { 246 q->tqe_th->th_seq += i; 247 q->tqe_len -= i; 248 m_adj(q->tqe_m, i); 249 break; 250 } 251 252 nq = LIST_NEXT(q, tqe_q); 253 LIST_REMOVE(q, tqe_q); 254 m_freem(q->tqe_m); 255 FREE(q, M_TSEGQ); 256 q = nq; 257 } 258 259 /* Insert the new segment queue entry into place. */ 260 te->tqe_m = m; 261 te->tqe_th = th; 262 te->tqe_len = *tlenp; 263 264 if (p == NULL) { 265 LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q); 266 } else { 267 LIST_INSERT_AFTER(p, te, tqe_q); 268 } 269 270 present: 271 /* 272 * Present data to user, advancing rcv_nxt through 273 * completed sequence space. 274 */ 275 if (!TCPS_HAVEESTABLISHED(tp->t_state)) 276 return (0); 277 q = LIST_FIRST(&tp->t_segq); 278 if (!q || q->tqe_th->th_seq != tp->rcv_nxt) 279 return (0); 280 do { 281 tp->rcv_nxt += q->tqe_len; 282 flags = q->tqe_th->th_flags & TH_FIN; 283 nq = LIST_NEXT(q, tqe_q); 284 LIST_REMOVE(q, tqe_q); 285 if (so->so_state & SS_CANTRCVMORE) 286 m_freem(q->tqe_m); 287 else 288 sbappend(&so->so_rcv, q->tqe_m); 289 FREE(q, M_TSEGQ); 290 q = nq; 291 } while (q && q->tqe_th->th_seq == tp->rcv_nxt); 292 ND6_HINT(tp); 293 sorwakeup(so); 294 return (flags); 295 } 296 297 /* 298 * TCP input routine, follows pages 65-76 of the 299 * protocol specification dated September, 1981 very closely. 300 */ 301 #ifdef INET6 302 int 303 tcp6_input(mp, offp, proto) 304 struct mbuf **mp; 305 int *offp, proto; 306 { 307 register struct mbuf *m = *mp; 308 struct in6_ifaddr *ia6; 309 310 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE); 311 312 /* 313 * draft-itojun-ipv6-tcp-to-anycast 314 * better place to put this in? 315 */ 316 ia6 = ip6_getdstifaddr(m); 317 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { 318 struct ip6_hdr *ip6; 319 320 ip6 = mtod(m, struct ip6_hdr *); 321 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 322 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); 323 return IPPROTO_DONE; 324 } 325 326 tcp_input(m, *offp, proto); 327 return IPPROTO_DONE; 328 } 329 #endif 330 331 void 332 tcp_input(m, off0, proto) 333 register struct mbuf *m; 334 int off0, proto; 335 { 336 register struct tcphdr *th; 337 register struct ip *ip = NULL; 338 register struct ipovly *ipov; 339 register struct inpcb *inp; 340 u_char *optp = NULL; 341 int optlen = 0; 342 int len, tlen, off; 343 int drop_hdrlen; 344 register struct tcpcb *tp = 0; 345 register int thflags; 346 struct socket *so = 0; 347 int todrop, acked, ourfinisacked, needoutput = 0; 348 struct in_addr laddr; 349 #ifdef INET6 350 struct in6_addr laddr6; 351 #endif 352 int dropsocket = 0; 353 int iss = 0; 354 u_long tiwin; 355 struct tcpopt to; /* options in this segment */ 356 struct rmxp_tao *taop; /* pointer to our TAO cache entry */ 357 struct rmxp_tao tao_noncached; /* in case there's no cached entry */ 358 #ifdef TCPDEBUG 359 short ostate = 0; 360 #endif 361 #ifdef INET6 362 struct ip6_hdr *ip6 = NULL; 363 int isipv6; 364 #endif /* INET6 */ 365 int rstreason; /* For badport_bandlim accounting purposes */ 366 367 #ifdef INET6 368 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 369 #endif 370 bzero((char *)&to, sizeof(to)); 371 372 tcpstat.tcps_rcvtotal++; 373 374 #ifdef INET6 375 if (isipv6) { 376 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */ 377 ip6 = mtod(m, struct ip6_hdr *); 378 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; 379 if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) { 380 tcpstat.tcps_rcvbadsum++; 381 goto drop; 382 } 383 th = (struct tcphdr *)((caddr_t)ip6 + off0); 384 385 /* 386 * Be proactive about unspecified IPv6 address in source. 387 * As we use all-zero to indicate unbounded/unconnected pcb, 388 * unspecified IPv6 address can be used to confuse us. 389 * 390 * Note that packets with unspecified IPv6 destination is 391 * already dropped in ip6_input. 392 */ 393 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 394 /* XXX stat */ 395 goto drop; 396 } 397 } else 398 #endif /* INET6 */ 399 { 400 /* 401 * Get IP and TCP header together in first mbuf. 402 * Note: IP leaves IP header in first mbuf. 403 */ 404 if (off0 > sizeof (struct ip)) { 405 ip_stripoptions(m, (struct mbuf *)0); 406 off0 = sizeof(struct ip); 407 } 408 if (m->m_len < sizeof (struct tcpiphdr)) { 409 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { 410 tcpstat.tcps_rcvshort++; 411 return; 412 } 413 } 414 ip = mtod(m, struct ip *); 415 ipov = (struct ipovly *)ip; 416 th = (struct tcphdr *)((caddr_t)ip + off0); 417 tlen = ip->ip_len; 418 419 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 420 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 421 th->th_sum = m->m_pkthdr.csum_data; 422 else 423 th->th_sum = in_pseudo(ip->ip_src.s_addr, 424 ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data + 425 ip->ip_len + IPPROTO_TCP)); 426 th->th_sum ^= 0xffff; 427 } else { 428 /* 429 * Checksum extended TCP header and data. 430 */ 431 len = sizeof (struct ip) + tlen; 432 bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); 433 ipov->ih_len = (u_short)tlen; 434 HTONS(ipov->ih_len); 435 th->th_sum = in_cksum(m, len); 436 } 437 if (th->th_sum) { 438 tcpstat.tcps_rcvbadsum++; 439 goto drop; 440 } 441 #ifdef INET6 442 /* Re-initialization for later version check */ 443 ip->ip_v = IPVERSION; 444 #endif 445 } 446 447 /* 448 * Check that TCP offset makes sense, 449 * pull out TCP options and adjust length. XXX 450 */ 451 off = th->th_off << 2; 452 if (off < sizeof (struct tcphdr) || off > tlen) { 453 tcpstat.tcps_rcvbadoff++; 454 goto drop; 455 } 456 tlen -= off; /* tlen is used instead of ti->ti_len */ 457 if (off > sizeof (struct tcphdr)) { 458 #ifdef INET6 459 if (isipv6) { 460 IP6_EXTHDR_CHECK(m, off0, off, ); 461 ip6 = mtod(m, struct ip6_hdr *); 462 th = (struct tcphdr *)((caddr_t)ip6 + off0); 463 } else 464 #endif /* INET6 */ 465 { 466 if (m->m_len < sizeof(struct ip) + off) { 467 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) { 468 tcpstat.tcps_rcvshort++; 469 return; 470 } 471 ip = mtod(m, struct ip *); 472 ipov = (struct ipovly *)ip; 473 th = (struct tcphdr *)((caddr_t)ip + off0); 474 } 475 } 476 optlen = off - sizeof (struct tcphdr); 477 optp = (u_char *)(th + 1); 478 } 479 thflags = th->th_flags; 480 481 #ifdef TCP_DROP_SYNFIN 482 /* 483 * If the drop_synfin option is enabled, drop all packets with 484 * both the SYN and FIN bits set. This prevents e.g. nmap from 485 * identifying the TCP/IP stack. 486 * 487 * This is a violation of the TCP specification. 488 */ 489 if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN)) 490 goto drop; 491 #endif 492 493 /* 494 * Convert TCP protocol specific fields to host format. 495 */ 496 NTOHL(th->th_seq); 497 NTOHL(th->th_ack); 498 NTOHS(th->th_win); 499 NTOHS(th->th_urp); 500 501 /* 502 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options, 503 * until after ip6_savecontrol() is called and before other functions 504 * which don't want those proto headers. 505 * Because ip6_savecontrol() is going to parse the mbuf to 506 * search for data to be passed up to user-land, it wants mbuf 507 * parameters to be unchanged. 508 */ 509 drop_hdrlen = off0 + off; 510 511 /* 512 * Locate pcb for segment. 513 */ 514 findpcb: 515 #ifdef IPFIREWALL_FORWARD 516 if (ip_fw_fwd_addr != NULL 517 #ifdef INET6 518 && isipv6 == NULL /* IPv6 support is not yet */ 519 #endif /* INET6 */ 520 ) { 521 /* 522 * Diverted. Pretend to be the destination. 523 * already got one like this? 524 */ 525 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport, 526 ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif); 527 if (!inp) { 528 /* 529 * No, then it's new. Try find the ambushing socket 530 */ 531 if (!ip_fw_fwd_addr->sin_port) { 532 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, 533 th->th_sport, ip_fw_fwd_addr->sin_addr, 534 th->th_dport, 1, m->m_pkthdr.rcvif); 535 } else { 536 inp = in_pcblookup_hash(&tcbinfo, 537 ip->ip_src, th->th_sport, 538 ip_fw_fwd_addr->sin_addr, 539 ntohs(ip_fw_fwd_addr->sin_port), 1, 540 m->m_pkthdr.rcvif); 541 } 542 } 543 ip_fw_fwd_addr = NULL; 544 } else 545 #endif /* IPFIREWALL_FORWARD */ 546 { 547 #ifdef INET6 548 if (isipv6) 549 inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport, 550 &ip6->ip6_dst, th->th_dport, 1, 551 m->m_pkthdr.rcvif); 552 else 553 #endif /* INET6 */ 554 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport, 555 ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif); 556 } 557 558 #ifdef IPSEC 559 #ifdef INET6 560 if (isipv6) { 561 if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) { 562 ipsec6stat.in_polvio++; 563 goto drop; 564 } 565 } else 566 #endif /* INET6 */ 567 if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) { 568 ipsecstat.in_polvio++; 569 goto drop; 570 } 571 #endif /*IPSEC*/ 572 573 /* 574 * If the state is CLOSED (i.e., TCB does not exist) then 575 * all data in the incoming segment is discarded. 576 * If the TCB exists but is in CLOSED state, it is embryonic, 577 * but should either do a listen or a connect soon. 578 */ 579 if (inp == NULL) { 580 if (log_in_vain) { 581 #ifdef INET6 582 char dbuf[INET6_ADDRSTRLEN], sbuf[INET6_ADDRSTRLEN]; 583 #else /* INET6 */ 584 char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"]; 585 #endif /* INET6 */ 586 587 #ifdef INET6 588 if (isipv6) { 589 strcpy(dbuf, ip6_sprintf(&ip6->ip6_dst)); 590 strcpy(sbuf, ip6_sprintf(&ip6->ip6_src)); 591 } else 592 #endif 593 { 594 strcpy(dbuf, inet_ntoa(ip->ip_dst)); 595 strcpy(sbuf, inet_ntoa(ip->ip_src)); 596 } 597 switch (log_in_vain) { 598 case 1: 599 if(thflags & TH_SYN) 600 log(LOG_INFO, 601 "Connection attempt to TCP %s:%d from %s:%d\n", 602 dbuf, ntohs(th->th_dport), 603 sbuf, 604 ntohs(th->th_sport)); 605 break; 606 case 2: 607 log(LOG_INFO, 608 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n", 609 dbuf, ntohs(th->th_dport), sbuf, 610 ntohs(th->th_sport), thflags); 611 break; 612 default: 613 break; 614 } 615 } 616 if (blackhole) { 617 switch (blackhole) { 618 case 1: 619 if (thflags & TH_SYN) 620 goto drop; 621 break; 622 case 2: 623 goto drop; 624 default: 625 goto drop; 626 } 627 } 628 rstreason = BANDLIM_RST_CLOSEDPORT; 629 goto dropwithreset; 630 } 631 tp = intotcpcb(inp); 632 if (tp == 0) { 633 rstreason = BANDLIM_RST_CLOSEDPORT; 634 goto dropwithreset; 635 } 636 if (tp->t_state == TCPS_CLOSED) 637 goto drop; 638 639 /* Unscale the window into a 32-bit value. */ 640 if ((thflags & TH_SYN) == 0) 641 tiwin = th->th_win << tp->snd_scale; 642 else 643 tiwin = th->th_win; 644 645 so = inp->inp_socket; 646 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { 647 #ifdef TCPDEBUG 648 if (so->so_options & SO_DEBUG) { 649 ostate = tp->t_state; 650 #ifdef INET6 651 if (isipv6) 652 bcopy((char *)ip6, (char *)tcp_saveipgen, 653 sizeof(*ip6)); 654 else 655 #endif /* INET6 */ 656 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); 657 tcp_savetcp = *th; 658 } 659 #endif 660 if (so->so_options & SO_ACCEPTCONN) { 661 register struct tcpcb *tp0 = tp; 662 struct socket *so2; 663 #ifdef IPSEC 664 struct socket *oso; 665 #endif 666 #ifdef INET6 667 struct inpcb *oinp = sotoinpcb(so); 668 #endif /* INET6 */ 669 670 #ifndef IPSEC 671 /* 672 * Current IPsec implementation makes incorrect IPsec 673 * cache if this check is done here. 674 * So delay this until duplicated socket is created. 675 */ 676 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { 677 /* 678 * Note: dropwithreset makes sure we don't 679 * send a RST in response to a RST. 680 */ 681 if (thflags & TH_ACK) { 682 tcpstat.tcps_badsyn++; 683 rstreason = BANDLIM_RST_OPENPORT; 684 goto dropwithreset; 685 } 686 goto drop; 687 } 688 #endif 689 690 #ifdef INET6 691 /* 692 * If deprecated address is forbidden, 693 * we do not accept SYN to deprecated interface 694 * address to prevent any new inbound connection from 695 * getting established. 696 * When we do not accept SYN, we send a TCP RST, 697 * with deprecated source address (instead of dropping 698 * it). We compromise it as it is much better for peer 699 * to send a RST, and RST will be the final packet 700 * for the exchange. 701 * 702 * If we do not forbid deprecated addresses, we accept 703 * the SYN packet. RFC2462 does not suggest dropping 704 * SYN in this case. 705 * If we decipher RFC2462 5.5.4, it says like this: 706 * 1. use of deprecated addr with existing 707 * communication is okay - "SHOULD continue to be 708 * used" 709 * 2. use of it with new communication: 710 * (2a) "SHOULD NOT be used if alternate address 711 * with sufficient scope is available" 712 * (2b) nothing mentioned otherwise. 713 * Here we fall into (2b) case as we have no choice in 714 * our source address selection - we must obey the peer. 715 * 716 * The wording in RFC2462 is confusing, and there are 717 * multiple description text for deprecated address 718 * handling - worse, they are not exactly the same. 719 * I believe 5.5.4 is the best one, so we follow 5.5.4. 720 */ 721 if (isipv6 && !ip6_use_deprecated) { 722 struct in6_ifaddr *ia6; 723 724 if ((ia6 = ip6_getdstifaddr(m)) && 725 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { 726 tp = NULL; 727 rstreason = BANDLIM_RST_OPENPORT; 728 goto dropwithreset; 729 } 730 } 731 #endif 732 733 so2 = sonewconn(so, 0); 734 if (so2 == 0) { 735 /* 736 * If we were unable to create a new socket 737 * for this SYN, we call sodropablereq to 738 * see if there are any other sockets we 739 * can kick out of the listen queue. If 740 * so, we'll silently drop the socket 741 * sodropablereq told us to drop and 742 * create a new one. 743 * 744 * If sodropablereq returns 0, we'll 745 * simply drop the incoming SYN, as we 746 * can not allocate a socket for it. 747 */ 748 tcpstat.tcps_listendrop++; 749 so2 = sodropablereq(so); 750 if (so2) { 751 if (tcp_lq_overflow) 752 sototcpcb(so2)->t_flags |= 753 TF_LQ_OVERFLOW; 754 tcp_close(sototcpcb(so2)); 755 so2 = sonewconn(so, 0); 756 } 757 if (!so2) 758 goto drop; 759 } 760 #ifdef IPSEC 761 oso = so; 762 #endif 763 so = so2; 764 /* 765 * This is ugly, but .... 766 * 767 * Mark socket as temporary until we're 768 * committed to keeping it. The code at 769 * ``drop'' and ``dropwithreset'' check the 770 * flag dropsocket to see if the temporary 771 * socket created here should be discarded. 772 * We mark the socket as discardable until 773 * we're committed to it below in TCPS_LISTEN. 774 */ 775 dropsocket++; 776 inp = (struct inpcb *)so->so_pcb; 777 #ifdef INET6 778 if (isipv6) 779 inp->in6p_laddr = ip6->ip6_dst; 780 else { 781 inp->inp_vflag &= ~INP_IPV6; 782 inp->inp_vflag |= INP_IPV4; 783 #endif /* INET6 */ 784 inp->inp_laddr = ip->ip_dst; 785 #ifdef INET6 786 } 787 #endif /* INET6 */ 788 inp->inp_lport = th->th_dport; 789 if (in_pcbinshash(inp) != 0) { 790 /* 791 * Undo the assignments above if we failed to 792 * put the PCB on the hash lists. 793 */ 794 #ifdef INET6 795 if (isipv6) 796 inp->in6p_laddr = in6addr_any; 797 else 798 #endif /* INET6 */ 799 inp->inp_laddr.s_addr = INADDR_ANY; 800 inp->inp_lport = 0; 801 goto drop; 802 } 803 #ifdef IPSEC 804 /* 805 * To avoid creating incorrectly cached IPsec 806 * association, this is need to be done here. 807 * 808 * Subject: (KAME-snap 748) 809 * From: Wayne Knowles <w.knowles@niwa.cri.nz> 810 * ftp://ftp.kame.net/pub/mail-list/snap-users/748 811 */ 812 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { 813 /* 814 * Note: dropwithreset makes sure we don't 815 * send a RST in response to a RST. 816 */ 817 if (thflags & TH_ACK) { 818 tcpstat.tcps_badsyn++; 819 rstreason = BANDLIM_RST_OPENPORT; 820 goto dropwithreset; 821 } 822 goto drop; 823 } 824 #endif 825 #ifdef INET6 826 if (isipv6) { 827 /* 828 * Inherit socket options from the listening 829 * socket. 830 * Note that in6p_inputopts are not (even 831 * should not be) copied, since it stores 832 * previously received options and is used to 833 * detect if each new option is different than 834 * the previous one and hence should be passed 835 * to a user. 836 * If we copied in6p_inputopts, a user would 837 * not be able to receive options just after 838 * calling the accept system call. 839 */ 840 inp->inp_flags |= 841 oinp->inp_flags & INP_CONTROLOPTS; 842 if (oinp->in6p_outputopts) 843 inp->in6p_outputopts = 844 ip6_copypktopts(oinp->in6p_outputopts, 845 M_NOWAIT); 846 } else 847 #endif /* INET6 */ 848 inp->inp_options = ip_srcroute(); 849 #ifdef IPSEC 850 /* copy old policy into new socket's */ 851 if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, 852 inp->inp_sp)) 853 printf("tcp_input: could not copy policy\n"); 854 #endif 855 tp = intotcpcb(inp); 856 tp->t_state = TCPS_LISTEN; 857 tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT); 858 859 /* Compute proper scaling value from buffer space */ 860 while (tp->request_r_scale < TCP_MAX_WINSHIFT && 861 TCP_MAXWIN << tp->request_r_scale < 862 so->so_rcv.sb_hiwat) 863 tp->request_r_scale++; 864 } 865 } 866 867 /* 868 * Segment received on connection. 869 * Reset idle time and keep-alive timer. 870 */ 871 tp->t_rcvtime = ticks; 872 if (TCPS_HAVEESTABLISHED(tp->t_state)) 873 callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp); 874 875 /* 876 * Process options if not in LISTEN state, 877 * else do it below (after getting remote address). 878 */ 879 if (tp->t_state != TCPS_LISTEN) 880 tcp_dooptions(tp, optp, optlen, th, &to); 881 882 /* 883 * Header prediction: check for the two common cases 884 * of a uni-directional data xfer. If the packet has 885 * no control flags, is in-sequence, the window didn't 886 * change and we're not retransmitting, it's a 887 * candidate. If the length is zero and the ack moved 888 * forward, we're the sender side of the xfer. Just 889 * free the data acked & wake any higher level process 890 * that was blocked waiting for space. If the length 891 * is non-zero and the ack didn't move, we're the 892 * receiver side. If we're getting packets in-order 893 * (the reassembly queue is empty), add the data to 894 * the socket buffer and note that we need a delayed ack. 895 * Make sure that the hidden state-flags are also off. 896 * Since we check for TCPS_ESTABLISHED above, it can only 897 * be TH_NEEDSYN. 898 */ 899 if (tp->t_state == TCPS_ESTABLISHED && 900 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 901 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && 902 ((to.to_flag & TOF_TS) == 0 || 903 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) && 904 /* 905 * Using the CC option is compulsory if once started: 906 * the segment is OK if no T/TCP was negotiated or 907 * if the segment has a CC option equal to CCrecv 908 */ 909 ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) || 910 ((to.to_flag & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) && 911 th->th_seq == tp->rcv_nxt && 912 tiwin && tiwin == tp->snd_wnd && 913 tp->snd_nxt == tp->snd_max) { 914 915 /* 916 * If last ACK falls within this segment's sequence numbers, 917 * record the timestamp. 918 * NOTE that the test is modified according to the latest 919 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 920 */ 921 if ((to.to_flag & TOF_TS) != 0 && 922 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 923 tp->ts_recent_age = ticks; 924 tp->ts_recent = to.to_tsval; 925 } 926 927 if (tlen == 0) { 928 if (SEQ_GT(th->th_ack, tp->snd_una) && 929 SEQ_LEQ(th->th_ack, tp->snd_max) && 930 tp->snd_cwnd >= tp->snd_wnd && 931 tp->t_dupacks < tcprexmtthresh) { 932 /* 933 * this is a pure ack for outstanding data. 934 */ 935 ++tcpstat.tcps_predack; 936 /* 937 * "bad retransmit" recovery 938 */ 939 if (tp->t_rxtshift == 1 && 940 ticks < tp->t_badrxtwin) { 941 tp->snd_cwnd = tp->snd_cwnd_prev; 942 tp->snd_ssthresh = 943 tp->snd_ssthresh_prev; 944 tp->snd_nxt = tp->snd_max; 945 tp->t_badrxtwin = 0; 946 } 947 if ((to.to_flag & TOF_TS) != 0) 948 tcp_xmit_timer(tp, 949 ticks - to.to_tsecr + 1); 950 else if (tp->t_rtttime && 951 SEQ_GT(th->th_ack, tp->t_rtseq)) 952 tcp_xmit_timer(tp, ticks - tp->t_rtttime); 953 acked = th->th_ack - tp->snd_una; 954 tcpstat.tcps_rcvackpack++; 955 tcpstat.tcps_rcvackbyte += acked; 956 sbdrop(&so->so_snd, acked); 957 tp->snd_una = th->th_ack; 958 m_freem(m); 959 ND6_HINT(tp); /* some progress has been done */ 960 961 /* 962 * If all outstanding data are acked, stop 963 * retransmit timer, otherwise restart timer 964 * using current (possibly backed-off) value. 965 * If process is waiting for space, 966 * wakeup/selwakeup/signal. If data 967 * are ready to send, let tcp_output 968 * decide between more output or persist. 969 */ 970 if (tp->snd_una == tp->snd_max) 971 callout_stop(tp->tt_rexmt); 972 else if (!callout_active(tp->tt_persist)) 973 callout_reset(tp->tt_rexmt, 974 tp->t_rxtcur, 975 tcp_timer_rexmt, tp); 976 977 sowwakeup(so); 978 if (so->so_snd.sb_cc) 979 (void) tcp_output(tp); 980 return; 981 } 982 } else if (th->th_ack == tp->snd_una && 983 LIST_EMPTY(&tp->t_segq) && 984 tlen <= sbspace(&so->so_rcv)) { 985 /* 986 * this is a pure, in-sequence data packet 987 * with nothing on the reassembly queue and 988 * we have enough buffer space to take it. 989 */ 990 ++tcpstat.tcps_preddat; 991 tp->rcv_nxt += tlen; 992 tcpstat.tcps_rcvpack++; 993 tcpstat.tcps_rcvbyte += tlen; 994 ND6_HINT(tp); /* some progress has been done */ 995 /* 996 * Add data to socket buffer. 997 */ 998 m_adj(m, drop_hdrlen); /* delayed header drop */ 999 sbappend(&so->so_rcv, m); 1000 sorwakeup(so); 1001 if (DELAY_ACK(tp)) { 1002 callout_reset(tp->tt_delack, tcp_delacktime, 1003 tcp_timer_delack, tp); 1004 } else { 1005 tp->t_flags |= TF_ACKNOW; 1006 tcp_output(tp); 1007 } 1008 return; 1009 } 1010 } 1011 1012 /* 1013 * Calculate amount of space in receive window, 1014 * and then do TCP input processing. 1015 * Receive window is amount of space in rcv queue, 1016 * but not less than advertised window. 1017 */ 1018 { int win; 1019 1020 win = sbspace(&so->so_rcv); 1021 if (win < 0) 1022 win = 0; 1023 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 1024 } 1025 1026 switch (tp->t_state) { 1027 1028 /* 1029 * If the state is LISTEN then ignore segment if it contains an RST. 1030 * If the segment contains an ACK then it is bad and send a RST. 1031 * If it does not contain a SYN then it is not interesting; drop it. 1032 * If it is from this socket, drop it, it must be forged. 1033 * Don't bother responding if the destination was a broadcast. 1034 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial 1035 * tp->iss, and send a segment: 1036 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> 1037 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. 1038 * Fill in remote peer address fields if not previously specified. 1039 * Enter SYN_RECEIVED state, and process any other fields of this 1040 * segment in this state. 1041 */ 1042 case TCPS_LISTEN: { 1043 register struct sockaddr_in *sin; 1044 #ifdef INET6 1045 register struct sockaddr_in6 *sin6; 1046 #endif 1047 1048 if (thflags & TH_RST) 1049 goto drop; 1050 if (thflags & TH_ACK) { 1051 rstreason = BANDLIM_RST_OPENPORT; 1052 goto dropwithreset; 1053 } 1054 if ((thflags & TH_SYN) == 0) 1055 goto drop; 1056 if (th->th_dport == th->th_sport) { 1057 #ifdef INET6 1058 if (isipv6) { 1059 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, 1060 &ip6->ip6_src)) 1061 goto drop; 1062 } else 1063 #endif /* INET6 */ 1064 if (ip->ip_dst.s_addr == ip->ip_src.s_addr) 1065 goto drop; 1066 } 1067 /* 1068 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN 1069 * in_broadcast() should never return true on a received 1070 * packet with M_BCAST not set. 1071 * 1072 * Packets with a multicast source address should also 1073 * be discarded. 1074 */ 1075 if (m->m_flags & (M_BCAST|M_MCAST)) 1076 goto drop; 1077 #ifdef INET6 1078 if (isipv6) { 1079 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 1080 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 1081 goto drop; 1082 } else 1083 #endif 1084 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 1085 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 1086 ip->ip_src.s_addr == htonl(INADDR_BROADCAST)) 1087 goto drop; 1088 #ifdef INET6 1089 if (isipv6) { 1090 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6, 1091 M_SONAME, M_NOWAIT | M_ZERO); 1092 if (sin6 == NULL) 1093 goto drop; 1094 sin6->sin6_family = AF_INET6; 1095 sin6->sin6_len = sizeof(*sin6); 1096 sin6->sin6_addr = ip6->ip6_src; 1097 sin6->sin6_port = th->th_sport; 1098 laddr6 = inp->in6p_laddr; 1099 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) 1100 inp->in6p_laddr = ip6->ip6_dst; 1101 if (in6_pcbconnect(inp, (struct sockaddr *)sin6, 1102 &proc0)) { 1103 inp->in6p_laddr = laddr6; 1104 FREE(sin6, M_SONAME); 1105 goto drop; 1106 } 1107 FREE(sin6, M_SONAME); 1108 } else 1109 #endif 1110 { 1111 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, 1112 M_NOWAIT); 1113 if (sin == NULL) 1114 goto drop; 1115 sin->sin_family = AF_INET; 1116 sin->sin_len = sizeof(*sin); 1117 sin->sin_addr = ip->ip_src; 1118 sin->sin_port = th->th_sport; 1119 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); 1120 laddr = inp->inp_laddr; 1121 if (inp->inp_laddr.s_addr == INADDR_ANY) 1122 inp->inp_laddr = ip->ip_dst; 1123 if (in_pcbconnect(inp, (struct sockaddr *)sin, &proc0)) { 1124 inp->inp_laddr = laddr; 1125 FREE(sin, M_SONAME); 1126 goto drop; 1127 } 1128 FREE(sin, M_SONAME); 1129 } 1130 if ((taop = tcp_gettaocache(inp)) == NULL) { 1131 taop = &tao_noncached; 1132 bzero(taop, sizeof(*taop)); 1133 } 1134 tcp_dooptions(tp, optp, optlen, th, &to); 1135 if (iss) 1136 tp->iss = iss; 1137 else { 1138 tp->iss = tcp_rndiss_next(); 1139 } 1140 tp->irs = th->th_seq; 1141 tcp_sendseqinit(tp); 1142 tcp_rcvseqinit(tp); 1143 tp->snd_recover = tp->snd_una; 1144 /* 1145 * Initialization of the tcpcb for transaction; 1146 * set SND.WND = SEG.WND, 1147 * initialize CCsend and CCrecv. 1148 */ 1149 tp->snd_wnd = tiwin; /* initial send-window */ 1150 tp->cc_send = CC_INC(tcp_ccgen); 1151 tp->cc_recv = to.to_cc; 1152 /* 1153 * Perform TAO test on incoming CC (SEG.CC) option, if any. 1154 * - compare SEG.CC against cached CC from the same host, 1155 * if any. 1156 * - if SEG.CC > chached value, SYN must be new and is accepted 1157 * immediately: save new CC in the cache, mark the socket 1158 * connected, enter ESTABLISHED state, turn on flag to 1159 * send a SYN in the next segment. 1160 * A virtual advertised window is set in rcv_adv to 1161 * initialize SWS prevention. Then enter normal segment 1162 * processing: drop SYN, process data and FIN. 1163 * - otherwise do a normal 3-way handshake. 1164 */ 1165 if ((to.to_flag & TOF_CC) != 0) { 1166 if (((tp->t_flags & TF_NOPUSH) != 0) && 1167 taop->tao_cc != 0 && CC_GT(to.to_cc, taop->tao_cc)) { 1168 1169 taop->tao_cc = to.to_cc; 1170 tp->t_starttime = ticks; 1171 tp->t_state = TCPS_ESTABLISHED; 1172 1173 /* 1174 * If there is a FIN, or if there is data and the 1175 * connection is local, then delay SYN,ACK(SYN) in 1176 * the hope of piggy-backing it on a response 1177 * segment. Otherwise must send ACK now in case 1178 * the other side is slow starting. 1179 */ 1180 if (DELAY_ACK(tp) && ((thflags & TH_FIN) || 1181 (tlen != 0 && 1182 #ifdef INET6 1183 ((isipv6 && in6_localaddr(&inp->in6p_faddr)) 1184 || 1185 (!isipv6 && 1186 #endif 1187 in_localaddr(inp->inp_faddr) 1188 #ifdef INET6 1189 )) 1190 #endif 1191 ))) { 1192 callout_reset(tp->tt_delack, tcp_delacktime, 1193 tcp_timer_delack, tp); 1194 tp->t_flags |= TF_NEEDSYN; 1195 } else 1196 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 1197 1198 /* 1199 * Limit the `virtual advertised window' to TCP_MAXWIN 1200 * here. Even if we requested window scaling, it will 1201 * become effective only later when our SYN is acked. 1202 */ 1203 tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN); 1204 tcpstat.tcps_connects++; 1205 soisconnected(so); 1206 callout_reset(tp->tt_keep, tcp_keepinit, 1207 tcp_timer_keep, tp); 1208 dropsocket = 0; /* committed to socket */ 1209 tcpstat.tcps_accepts++; 1210 goto trimthenstep6; 1211 } 1212 /* else do standard 3-way handshake */ 1213 } else { 1214 /* 1215 * No CC option, but maybe CC.NEW: 1216 * invalidate cached value. 1217 */ 1218 taop->tao_cc = 0; 1219 } 1220 /* 1221 * TAO test failed or there was no CC option, 1222 * do a standard 3-way handshake. 1223 */ 1224 tp->t_flags |= TF_ACKNOW; 1225 tp->t_state = TCPS_SYN_RECEIVED; 1226 callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp); 1227 dropsocket = 0; /* committed to socket */ 1228 tcpstat.tcps_accepts++; 1229 goto trimthenstep6; 1230 } 1231 1232 /* 1233 * If the state is SYN_RECEIVED: 1234 * if seg contains an ACK, but not for our SYN/ACK, send a RST. 1235 */ 1236 case TCPS_SYN_RECEIVED: 1237 if ((thflags & TH_ACK) && 1238 (SEQ_LEQ(th->th_ack, tp->snd_una) || 1239 SEQ_GT(th->th_ack, tp->snd_max))) { 1240 rstreason = BANDLIM_RST_OPENPORT; 1241 goto dropwithreset; 1242 } 1243 break; 1244 1245 /* 1246 * If the state is SYN_SENT: 1247 * if seg contains an ACK, but not for our SYN, drop the input. 1248 * if seg contains a RST, then drop the connection. 1249 * if seg does not contain SYN, then drop it. 1250 * Otherwise this is an acceptable SYN segment 1251 * initialize tp->rcv_nxt and tp->irs 1252 * if seg contains ack then advance tp->snd_una 1253 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 1254 * arrange for segment to be acked (eventually) 1255 * continue processing rest of data/controls, beginning with URG 1256 */ 1257 case TCPS_SYN_SENT: 1258 if ((taop = tcp_gettaocache(inp)) == NULL) { 1259 taop = &tao_noncached; 1260 bzero(taop, sizeof(*taop)); 1261 } 1262 1263 if ((thflags & TH_ACK) && 1264 (SEQ_LEQ(th->th_ack, tp->iss) || 1265 SEQ_GT(th->th_ack, tp->snd_max))) { 1266 /* 1267 * If we have a cached CCsent for the remote host, 1268 * hence we haven't just crashed and restarted, 1269 * do not send a RST. This may be a retransmission 1270 * from the other side after our earlier ACK was lost. 1271 * Our new SYN, when it arrives, will serve as the 1272 * needed ACK. 1273 */ 1274 if (taop->tao_ccsent != 0) 1275 goto drop; 1276 else { 1277 rstreason = BANDLIM_UNLIMITED; 1278 goto dropwithreset; 1279 } 1280 } 1281 if (thflags & TH_RST) { 1282 if (thflags & TH_ACK) 1283 tp = tcp_drop(tp, ECONNREFUSED); 1284 goto drop; 1285 } 1286 if ((thflags & TH_SYN) == 0) 1287 goto drop; 1288 tp->snd_wnd = th->th_win; /* initial send window */ 1289 tp->cc_recv = to.to_cc; /* foreign CC */ 1290 1291 tp->irs = th->th_seq; 1292 tcp_rcvseqinit(tp); 1293 if (thflags & TH_ACK) { 1294 /* 1295 * Our SYN was acked. If segment contains CC.ECHO 1296 * option, check it to make sure this segment really 1297 * matches our SYN. If not, just drop it as old 1298 * duplicate, but send an RST if we're still playing 1299 * by the old rules. If no CC.ECHO option, make sure 1300 * we don't get fooled into using T/TCP. 1301 */ 1302 if (to.to_flag & TOF_CCECHO) { 1303 if (tp->cc_send != to.to_ccecho) { 1304 if (taop->tao_ccsent != 0) 1305 goto drop; 1306 else { 1307 rstreason = BANDLIM_UNLIMITED; 1308 goto dropwithreset; 1309 } 1310 } 1311 } else 1312 tp->t_flags &= ~TF_RCVD_CC; 1313 tcpstat.tcps_connects++; 1314 soisconnected(so); 1315 /* Do window scaling on this connection? */ 1316 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 1317 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 1318 tp->snd_scale = tp->requested_s_scale; 1319 tp->rcv_scale = tp->request_r_scale; 1320 } 1321 /* Segment is acceptable, update cache if undefined. */ 1322 if (taop->tao_ccsent == 0) 1323 taop->tao_ccsent = to.to_ccecho; 1324 1325 tp->rcv_adv += tp->rcv_wnd; 1326 tp->snd_una++; /* SYN is acked */ 1327 /* 1328 * If there's data, delay ACK; if there's also a FIN 1329 * ACKNOW will be turned on later. 1330 */ 1331 if (DELAY_ACK(tp) && tlen != 0) 1332 callout_reset(tp->tt_delack, tcp_delacktime, 1333 tcp_timer_delack, tp); 1334 else 1335 tp->t_flags |= TF_ACKNOW; 1336 /* 1337 * Received <SYN,ACK> in SYN_SENT[*] state. 1338 * Transitions: 1339 * SYN_SENT --> ESTABLISHED 1340 * SYN_SENT* --> FIN_WAIT_1 1341 */ 1342 tp->t_starttime = ticks; 1343 if (tp->t_flags & TF_NEEDFIN) { 1344 tp->t_state = TCPS_FIN_WAIT_1; 1345 tp->t_flags &= ~TF_NEEDFIN; 1346 thflags &= ~TH_SYN; 1347 } else { 1348 tp->t_state = TCPS_ESTABLISHED; 1349 callout_reset(tp->tt_keep, tcp_keepidle, 1350 tcp_timer_keep, tp); 1351 } 1352 } else { 1353 /* 1354 * Received initial SYN in SYN-SENT[*] state => simul- 1355 * taneous open. If segment contains CC option and there is 1356 * a cached CC, apply TAO test; if it succeeds, connection is 1357 * half-synchronized. Otherwise, do 3-way handshake: 1358 * SYN-SENT -> SYN-RECEIVED 1359 * SYN-SENT* -> SYN-RECEIVED* 1360 * If there was no CC option, clear cached CC value. 1361 */ 1362 tp->t_flags |= TF_ACKNOW; 1363 callout_stop(tp->tt_rexmt); 1364 if (to.to_flag & TOF_CC) { 1365 if (taop->tao_cc != 0 && 1366 CC_GT(to.to_cc, taop->tao_cc)) { 1367 /* 1368 * update cache and make transition: 1369 * SYN-SENT -> ESTABLISHED* 1370 * SYN-SENT* -> FIN-WAIT-1* 1371 */ 1372 taop->tao_cc = to.to_cc; 1373 tp->t_starttime = ticks; 1374 if (tp->t_flags & TF_NEEDFIN) { 1375 tp->t_state = TCPS_FIN_WAIT_1; 1376 tp->t_flags &= ~TF_NEEDFIN; 1377 } else { 1378 tp->t_state = TCPS_ESTABLISHED; 1379 callout_reset(tp->tt_keep, 1380 tcp_keepidle, 1381 tcp_timer_keep, 1382 tp); 1383 } 1384 tp->t_flags |= TF_NEEDSYN; 1385 } else 1386 tp->t_state = TCPS_SYN_RECEIVED; 1387 } else { 1388 /* CC.NEW or no option => invalidate cache */ 1389 taop->tao_cc = 0; 1390 tp->t_state = TCPS_SYN_RECEIVED; 1391 } 1392 } 1393 1394 trimthenstep6: 1395 /* 1396 * Advance th->th_seq to correspond to first data byte. 1397 * If data, trim to stay within window, 1398 * dropping FIN if necessary. 1399 */ 1400 th->th_seq++; 1401 if (tlen > tp->rcv_wnd) { 1402 todrop = tlen - tp->rcv_wnd; 1403 m_adj(m, -todrop); 1404 tlen = tp->rcv_wnd; 1405 thflags &= ~TH_FIN; 1406 tcpstat.tcps_rcvpackafterwin++; 1407 tcpstat.tcps_rcvbyteafterwin += todrop; 1408 } 1409 tp->snd_wl1 = th->th_seq - 1; 1410 tp->rcv_up = th->th_seq; 1411 /* 1412 * Client side of transaction: already sent SYN and data. 1413 * If the remote host used T/TCP to validate the SYN, 1414 * our data will be ACK'd; if so, enter normal data segment 1415 * processing in the middle of step 5, ack processing. 1416 * Otherwise, goto step 6. 1417 */ 1418 if (thflags & TH_ACK) 1419 goto process_ACK; 1420 goto step6; 1421 /* 1422 * If the state is LAST_ACK or CLOSING or TIME_WAIT: 1423 * if segment contains a SYN and CC [not CC.NEW] option: 1424 * if state == TIME_WAIT and connection duration > MSL, 1425 * drop packet and send RST; 1426 * 1427 * if SEG.CC > CCrecv then is new SYN, and can implicitly 1428 * ack the FIN (and data) in retransmission queue. 1429 * Complete close and delete TCPCB. Then reprocess 1430 * segment, hoping to find new TCPCB in LISTEN state; 1431 * 1432 * else must be old SYN; drop it. 1433 * else do normal processing. 1434 */ 1435 case TCPS_LAST_ACK: 1436 case TCPS_CLOSING: 1437 case TCPS_TIME_WAIT: 1438 if ((thflags & TH_SYN) && 1439 (to.to_flag & TOF_CC) && tp->cc_recv != 0) { 1440 if (tp->t_state == TCPS_TIME_WAIT && 1441 (ticks - tp->t_starttime) > tcp_msl) { 1442 rstreason = BANDLIM_UNLIMITED; 1443 goto dropwithreset; 1444 } 1445 if (CC_GT(to.to_cc, tp->cc_recv)) { 1446 tp = tcp_close(tp); 1447 goto findpcb; 1448 } 1449 else 1450 goto drop; 1451 } 1452 break; /* continue normal processing */ 1453 } 1454 1455 /* 1456 * States other than LISTEN or SYN_SENT. 1457 * First check the RST flag and sequence number since reset segments 1458 * are exempt from the timestamp and connection count tests. This 1459 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix 1460 * below which allowed reset segments in half the sequence space 1461 * to fall though and be processed (which gives forged reset 1462 * segments with a random sequence number a 50 percent chance of 1463 * killing a connection). 1464 * Then check timestamp, if present. 1465 * Then check the connection count, if present. 1466 * Then check that at least some bytes of segment are within 1467 * receive window. If segment begins before rcv_nxt, 1468 * drop leading data (and SYN); if nothing left, just ack. 1469 * 1470 * 1471 * If the RST bit is set, check the sequence number to see 1472 * if this is a valid reset segment. 1473 * RFC 793 page 37: 1474 * In all states except SYN-SENT, all reset (RST) segments 1475 * are validated by checking their SEQ-fields. A reset is 1476 * valid if its sequence number is in the window. 1477 * Note: this does not take into account delayed ACKs, so 1478 * we should test against last_ack_sent instead of rcv_nxt. 1479 * The sequence number in the reset segment is normally an 1480 * echo of our outgoing acknowlegement numbers, but some hosts 1481 * send a reset with the sequence number at the rightmost edge 1482 * of our receive window, and we have to handle this case. 1483 * If we have multiple segments in flight, the intial reset 1484 * segment sequence numbers will be to the left of last_ack_sent, 1485 * but they will eventually catch up. 1486 * In any case, it never made sense to trim reset segments to 1487 * fit the receive window since RFC 1122 says: 1488 * 4.2.2.12 RST Segment: RFC-793 Section 3.4 1489 * 1490 * A TCP SHOULD allow a received RST segment to include data. 1491 * 1492 * DISCUSSION 1493 * It has been suggested that a RST segment could contain 1494 * ASCII text that encoded and explained the cause of the 1495 * RST. No standard has yet been established for such 1496 * data. 1497 * 1498 * If the reset segment passes the sequence number test examine 1499 * the state: 1500 * SYN_RECEIVED STATE: 1501 * If passive open, return to LISTEN state. 1502 * If active open, inform user that connection was refused. 1503 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: 1504 * Inform user that connection was reset, and close tcb. 1505 * CLOSING, LAST_ACK STATES: 1506 * Close the tcb. 1507 * TIME_WAIT STATE: 1508 * Drop the segment - see Stevens, vol. 2, p. 964 and 1509 * RFC 1337. 1510 */ 1511 if (thflags & TH_RST) { 1512 if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) && 1513 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { 1514 switch (tp->t_state) { 1515 1516 case TCPS_SYN_RECEIVED: 1517 so->so_error = ECONNREFUSED; 1518 goto close; 1519 1520 case TCPS_ESTABLISHED: 1521 case TCPS_FIN_WAIT_1: 1522 case TCPS_FIN_WAIT_2: 1523 case TCPS_CLOSE_WAIT: 1524 so->so_error = ECONNRESET; 1525 close: 1526 tp->t_state = TCPS_CLOSED; 1527 tcpstat.tcps_drops++; 1528 tp = tcp_close(tp); 1529 break; 1530 1531 case TCPS_CLOSING: 1532 case TCPS_LAST_ACK: 1533 tp = tcp_close(tp); 1534 break; 1535 1536 case TCPS_TIME_WAIT: 1537 break; 1538 } 1539 } 1540 goto drop; 1541 } 1542 1543 /* 1544 * RFC 1323 PAWS: If we have a timestamp reply on this segment 1545 * and it's less than ts_recent, drop it. 1546 */ 1547 if ((to.to_flag & TOF_TS) != 0 && tp->ts_recent && 1548 TSTMP_LT(to.to_tsval, tp->ts_recent)) { 1549 1550 /* Check to see if ts_recent is over 24 days old. */ 1551 if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) { 1552 /* 1553 * Invalidate ts_recent. If this segment updates 1554 * ts_recent, the age will be reset later and ts_recent 1555 * will get a valid value. If it does not, setting 1556 * ts_recent to zero will at least satisfy the 1557 * requirement that zero be placed in the timestamp 1558 * echo reply when ts_recent isn't valid. The 1559 * age isn't reset until we get a valid ts_recent 1560 * because we don't want out-of-order segments to be 1561 * dropped when ts_recent is old. 1562 */ 1563 tp->ts_recent = 0; 1564 } else { 1565 tcpstat.tcps_rcvduppack++; 1566 tcpstat.tcps_rcvdupbyte += tlen; 1567 tcpstat.tcps_pawsdrop++; 1568 goto dropafterack; 1569 } 1570 } 1571 1572 /* 1573 * T/TCP mechanism 1574 * If T/TCP was negotiated and the segment doesn't have CC, 1575 * or if its CC is wrong then drop the segment. 1576 * RST segments do not have to comply with this. 1577 */ 1578 if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) && 1579 ((to.to_flag & TOF_CC) == 0 || tp->cc_recv != to.to_cc)) 1580 goto dropafterack; 1581 1582 /* 1583 * In the SYN-RECEIVED state, validate that the packet belongs to 1584 * this connection before trimming the data to fit the receive 1585 * window. Check the sequence number versus IRS since we know 1586 * the sequence numbers haven't wrapped. This is a partial fix 1587 * for the "LAND" DoS attack. 1588 */ 1589 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { 1590 rstreason = BANDLIM_RST_OPENPORT; 1591 goto dropwithreset; 1592 } 1593 1594 todrop = tp->rcv_nxt - th->th_seq; 1595 if (todrop > 0) { 1596 if (thflags & TH_SYN) { 1597 thflags &= ~TH_SYN; 1598 th->th_seq++; 1599 if (th->th_urp > 1) 1600 th->th_urp--; 1601 else 1602 thflags &= ~TH_URG; 1603 todrop--; 1604 } 1605 /* 1606 * Following if statement from Stevens, vol. 2, p. 960. 1607 */ 1608 if (todrop > tlen 1609 || (todrop == tlen && (thflags & TH_FIN) == 0)) { 1610 /* 1611 * Any valid FIN must be to the left of the window. 1612 * At this point the FIN must be a duplicate or out 1613 * of sequence; drop it. 1614 */ 1615 thflags &= ~TH_FIN; 1616 1617 /* 1618 * Send an ACK to resynchronize and drop any data. 1619 * But keep on processing for RST or ACK. 1620 */ 1621 tp->t_flags |= TF_ACKNOW; 1622 todrop = tlen; 1623 tcpstat.tcps_rcvduppack++; 1624 tcpstat.tcps_rcvdupbyte += todrop; 1625 } else { 1626 tcpstat.tcps_rcvpartduppack++; 1627 tcpstat.tcps_rcvpartdupbyte += todrop; 1628 } 1629 drop_hdrlen += todrop; /* drop from the top afterwards */ 1630 th->th_seq += todrop; 1631 tlen -= todrop; 1632 if (th->th_urp > todrop) 1633 th->th_urp -= todrop; 1634 else { 1635 thflags &= ~TH_URG; 1636 th->th_urp = 0; 1637 } 1638 } 1639 1640 /* 1641 * If new data are received on a connection after the 1642 * user processes are gone, then RST the other end. 1643 */ 1644 if ((so->so_state & SS_NOFDREF) && 1645 tp->t_state > TCPS_CLOSE_WAIT && tlen) { 1646 tp = tcp_close(tp); 1647 tcpstat.tcps_rcvafterclose++; 1648 rstreason = BANDLIM_UNLIMITED; 1649 goto dropwithreset; 1650 } 1651 1652 /* 1653 * If segment ends after window, drop trailing data 1654 * (and PUSH and FIN); if nothing left, just ACK. 1655 */ 1656 todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd); 1657 if (todrop > 0) { 1658 tcpstat.tcps_rcvpackafterwin++; 1659 if (todrop >= tlen) { 1660 tcpstat.tcps_rcvbyteafterwin += tlen; 1661 /* 1662 * If a new connection request is received 1663 * while in TIME_WAIT, drop the old connection 1664 * and start over if the sequence numbers 1665 * are above the previous ones. 1666 */ 1667 if (thflags & TH_SYN && 1668 tp->t_state == TCPS_TIME_WAIT && 1669 SEQ_GT(th->th_seq, tp->rcv_nxt)) { 1670 iss = tcp_rndiss_next(); 1671 tp = tcp_close(tp); 1672 goto findpcb; 1673 } 1674 /* 1675 * If window is closed can only take segments at 1676 * window edge, and have to drop data and PUSH from 1677 * incoming segments. Continue processing, but 1678 * remember to ack. Otherwise, drop segment 1679 * and ack. 1680 */ 1681 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { 1682 tp->t_flags |= TF_ACKNOW; 1683 tcpstat.tcps_rcvwinprobe++; 1684 } else 1685 goto dropafterack; 1686 } else 1687 tcpstat.tcps_rcvbyteafterwin += todrop; 1688 m_adj(m, -todrop); 1689 tlen -= todrop; 1690 thflags &= ~(TH_PUSH|TH_FIN); 1691 } 1692 1693 /* 1694 * If last ACK falls within this segment's sequence numbers, 1695 * record its timestamp. 1696 * NOTE that the test is modified according to the latest 1697 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 1698 */ 1699 if ((to.to_flag & TOF_TS) != 0 && 1700 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 1701 tp->ts_recent_age = ticks; 1702 tp->ts_recent = to.to_tsval; 1703 } 1704 1705 /* 1706 * If a SYN is in the window, then this is an 1707 * error and we send an RST and drop the connection. 1708 */ 1709 if (thflags & TH_SYN) { 1710 tp = tcp_drop(tp, ECONNRESET); 1711 rstreason = BANDLIM_UNLIMITED; 1712 goto dropwithreset; 1713 } 1714 1715 /* 1716 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN 1717 * flag is on (half-synchronized state), then queue data for 1718 * later processing; else drop segment and return. 1719 */ 1720 if ((thflags & TH_ACK) == 0) { 1721 if (tp->t_state == TCPS_SYN_RECEIVED || 1722 (tp->t_flags & TF_NEEDSYN)) 1723 goto step6; 1724 else 1725 goto drop; 1726 } 1727 1728 /* 1729 * Ack processing. 1730 */ 1731 switch (tp->t_state) { 1732 1733 /* 1734 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter 1735 * ESTABLISHED state and continue processing. 1736 * The ACK was checked above. 1737 */ 1738 case TCPS_SYN_RECEIVED: 1739 1740 tcpstat.tcps_connects++; 1741 soisconnected(so); 1742 /* Do window scaling? */ 1743 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 1744 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 1745 tp->snd_scale = tp->requested_s_scale; 1746 tp->rcv_scale = tp->request_r_scale; 1747 } 1748 /* 1749 * Upon successful completion of 3-way handshake, 1750 * update cache.CC if it was undefined, pass any queued 1751 * data to the user, and advance state appropriately. 1752 */ 1753 if ((taop = tcp_gettaocache(inp)) != NULL && 1754 taop->tao_cc == 0) 1755 taop->tao_cc = tp->cc_recv; 1756 1757 /* 1758 * Make transitions: 1759 * SYN-RECEIVED -> ESTABLISHED 1760 * SYN-RECEIVED* -> FIN-WAIT-1 1761 */ 1762 tp->t_starttime = ticks; 1763 if (tp->t_flags & TF_NEEDFIN) { 1764 tp->t_state = TCPS_FIN_WAIT_1; 1765 tp->t_flags &= ~TF_NEEDFIN; 1766 } else { 1767 tp->t_state = TCPS_ESTABLISHED; 1768 callout_reset(tp->tt_keep, tcp_keepidle, 1769 tcp_timer_keep, tp); 1770 } 1771 /* 1772 * If segment contains data or ACK, will call tcp_reass() 1773 * later; if not, do so now to pass queued data to user. 1774 */ 1775 if (tlen == 0 && (thflags & TH_FIN) == 0) 1776 (void) tcp_reass(tp, (struct tcphdr *)0, 0, 1777 (struct mbuf *)0); 1778 tp->snd_wl1 = th->th_seq - 1; 1779 /* fall into ... */ 1780 1781 /* 1782 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 1783 * ACKs. If the ack is in the range 1784 * tp->snd_una < th->th_ack <= tp->snd_max 1785 * then advance tp->snd_una to th->th_ack and drop 1786 * data from the retransmission queue. If this ACK reflects 1787 * more up to date window information we update our window information. 1788 */ 1789 case TCPS_ESTABLISHED: 1790 case TCPS_FIN_WAIT_1: 1791 case TCPS_FIN_WAIT_2: 1792 case TCPS_CLOSE_WAIT: 1793 case TCPS_CLOSING: 1794 case TCPS_LAST_ACK: 1795 case TCPS_TIME_WAIT: 1796 1797 if (SEQ_LEQ(th->th_ack, tp->snd_una)) { 1798 if (tlen == 0 && tiwin == tp->snd_wnd) { 1799 tcpstat.tcps_rcvdupack++; 1800 /* 1801 * If we have outstanding data (other than 1802 * a window probe), this is a completely 1803 * duplicate ack (ie, window info didn't 1804 * change), the ack is the biggest we've 1805 * seen and we've seen exactly our rexmt 1806 * threshhold of them, assume a packet 1807 * has been dropped and retransmit it. 1808 * Kludge snd_nxt & the congestion 1809 * window so we send only this one 1810 * packet. 1811 * 1812 * We know we're losing at the current 1813 * window size so do congestion avoidance 1814 * (set ssthresh to half the current window 1815 * and pull our congestion window back to 1816 * the new ssthresh). 1817 * 1818 * Dup acks mean that packets have left the 1819 * network (they're now cached at the receiver) 1820 * so bump cwnd by the amount in the receiver 1821 * to keep a constant cwnd packets in the 1822 * network. 1823 */ 1824 if (!callout_active(tp->tt_rexmt) || 1825 th->th_ack != tp->snd_una) 1826 tp->t_dupacks = 0; 1827 else if (++tp->t_dupacks == tcprexmtthresh) { 1828 tcp_seq onxt = tp->snd_nxt; 1829 u_int win = 1830 min(tp->snd_wnd, tp->snd_cwnd) / 2 / 1831 tp->t_maxseg; 1832 if (tcp_do_newreno && SEQ_LT(th->th_ack, 1833 tp->snd_recover)) { 1834 /* False retransmit, should not 1835 * cut window 1836 */ 1837 tp->snd_cwnd += tp->t_maxseg; 1838 tp->t_dupacks = 0; 1839 (void) tcp_output(tp); 1840 goto drop; 1841 } 1842 if (win < 2) 1843 win = 2; 1844 tp->snd_ssthresh = win * tp->t_maxseg; 1845 tp->snd_recover = tp->snd_max; 1846 callout_stop(tp->tt_rexmt); 1847 tp->t_rtttime = 0; 1848 tp->snd_nxt = th->th_ack; 1849 tp->snd_cwnd = tp->t_maxseg; 1850 (void) tcp_output(tp); 1851 tp->snd_cwnd = tp->snd_ssthresh + 1852 tp->t_maxseg * tp->t_dupacks; 1853 if (SEQ_GT(onxt, tp->snd_nxt)) 1854 tp->snd_nxt = onxt; 1855 goto drop; 1856 } else if (tp->t_dupacks > tcprexmtthresh) { 1857 tp->snd_cwnd += tp->t_maxseg; 1858 (void) tcp_output(tp); 1859 goto drop; 1860 } 1861 } else 1862 tp->t_dupacks = 0; 1863 break; 1864 } 1865 /* 1866 * If the congestion window was inflated to account 1867 * for the other side's cached packets, retract it. 1868 */ 1869 if (tcp_do_newreno == 0) { 1870 if (tp->t_dupacks >= tcprexmtthresh && 1871 tp->snd_cwnd > tp->snd_ssthresh) 1872 tp->snd_cwnd = tp->snd_ssthresh; 1873 tp->t_dupacks = 0; 1874 } else if (tp->t_dupacks >= tcprexmtthresh && 1875 !tcp_newreno(tp, th)) { 1876 /* 1877 * Window inflation should have left us with approx. 1878 * snd_ssthresh outstanding data. But in case we 1879 * would be inclined to send a burst, better to do 1880 * it via the slow start mechanism. 1881 */ 1882 if (SEQ_GT(th->th_ack + tp->snd_ssthresh, tp->snd_max)) 1883 tp->snd_cwnd = 1884 tp->snd_max - th->th_ack + tp->t_maxseg; 1885 else 1886 tp->snd_cwnd = tp->snd_ssthresh; 1887 tp->t_dupacks = 0; 1888 } 1889 if (SEQ_GT(th->th_ack, tp->snd_max)) { 1890 tcpstat.tcps_rcvacktoomuch++; 1891 goto dropafterack; 1892 } 1893 /* 1894 * If we reach this point, ACK is not a duplicate, 1895 * i.e., it ACKs something we sent. 1896 */ 1897 if (tp->t_flags & TF_NEEDSYN) { 1898 /* 1899 * T/TCP: Connection was half-synchronized, and our 1900 * SYN has been ACK'd (so connection is now fully 1901 * synchronized). Go to non-starred state, 1902 * increment snd_una for ACK of SYN, and check if 1903 * we can do window scaling. 1904 */ 1905 tp->t_flags &= ~TF_NEEDSYN; 1906 tp->snd_una++; 1907 /* Do window scaling? */ 1908 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 1909 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 1910 tp->snd_scale = tp->requested_s_scale; 1911 tp->rcv_scale = tp->request_r_scale; 1912 } 1913 } 1914 1915 process_ACK: 1916 acked = th->th_ack - tp->snd_una; 1917 tcpstat.tcps_rcvackpack++; 1918 tcpstat.tcps_rcvackbyte += acked; 1919 1920 /* 1921 * If we just performed our first retransmit, and the ACK 1922 * arrives within our recovery window, then it was a mistake 1923 * to do the retransmit in the first place. Recover our 1924 * original cwnd and ssthresh, and proceed to transmit where 1925 * we left off. 1926 */ 1927 if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) { 1928 tp->snd_cwnd = tp->snd_cwnd_prev; 1929 tp->snd_ssthresh = tp->snd_ssthresh_prev; 1930 tp->snd_nxt = tp->snd_max; 1931 tp->t_badrxtwin = 0; /* XXX probably not required */ 1932 } 1933 1934 /* 1935 * If we have a timestamp reply, update smoothed 1936 * round trip time. If no timestamp is present but 1937 * transmit timer is running and timed sequence 1938 * number was acked, update smoothed round trip time. 1939 * Since we now have an rtt measurement, cancel the 1940 * timer backoff (cf., Phil Karn's retransmit alg.). 1941 * Recompute the initial retransmit timer. 1942 */ 1943 if (to.to_flag & TOF_TS) 1944 tcp_xmit_timer(tp, ticks - to.to_tsecr + 1); 1945 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) 1946 tcp_xmit_timer(tp, ticks - tp->t_rtttime); 1947 1948 /* 1949 * If all outstanding data is acked, stop retransmit 1950 * timer and remember to restart (more output or persist). 1951 * If there is more data to be acked, restart retransmit 1952 * timer, using current (possibly backed-off) value. 1953 */ 1954 if (th->th_ack == tp->snd_max) { 1955 callout_stop(tp->tt_rexmt); 1956 needoutput = 1; 1957 } else if (!callout_active(tp->tt_persist)) 1958 callout_reset(tp->tt_rexmt, tp->t_rxtcur, 1959 tcp_timer_rexmt, tp); 1960 1961 /* 1962 * If no data (only SYN) was ACK'd, 1963 * skip rest of ACK processing. 1964 */ 1965 if (acked == 0) 1966 goto step6; 1967 1968 /* 1969 * When new data is acked, open the congestion window. 1970 * If the window gives us less than ssthresh packets 1971 * in flight, open exponentially (maxseg per packet). 1972 * Otherwise open linearly: maxseg per window 1973 * (maxseg^2 / cwnd per packet). 1974 */ 1975 { 1976 register u_int cw = tp->snd_cwnd; 1977 register u_int incr = tp->t_maxseg; 1978 1979 if (cw > tp->snd_ssthresh) 1980 incr = incr * incr / cw; 1981 /* 1982 * If t_dupacks != 0 here, it indicates that we are still 1983 * in NewReno fast recovery mode, so we leave the congestion 1984 * window alone. 1985 */ 1986 if (tcp_do_newreno == 0 || tp->t_dupacks == 0) 1987 tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale); 1988 } 1989 if (acked > so->so_snd.sb_cc) { 1990 tp->snd_wnd -= so->so_snd.sb_cc; 1991 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); 1992 ourfinisacked = 1; 1993 } else { 1994 sbdrop(&so->so_snd, acked); 1995 tp->snd_wnd -= acked; 1996 ourfinisacked = 0; 1997 } 1998 sowwakeup(so); 1999 tp->snd_una = th->th_ack; 2000 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 2001 tp->snd_nxt = tp->snd_una; 2002 2003 switch (tp->t_state) { 2004 2005 /* 2006 * In FIN_WAIT_1 STATE in addition to the processing 2007 * for the ESTABLISHED state if our FIN is now acknowledged 2008 * then enter FIN_WAIT_2. 2009 */ 2010 case TCPS_FIN_WAIT_1: 2011 if (ourfinisacked) { 2012 /* 2013 * If we can't receive any more 2014 * data, then closing user can proceed. 2015 * Starting the timer is contrary to the 2016 * specification, but if we don't get a FIN 2017 * we'll hang forever. 2018 */ 2019 if (so->so_state & SS_CANTRCVMORE) { 2020 soisdisconnected(so); 2021 callout_reset(tp->tt_2msl, tcp_maxidle, 2022 tcp_timer_2msl, tp); 2023 } 2024 tp->t_state = TCPS_FIN_WAIT_2; 2025 } 2026 break; 2027 2028 /* 2029 * In CLOSING STATE in addition to the processing for 2030 * the ESTABLISHED state if the ACK acknowledges our FIN 2031 * then enter the TIME-WAIT state, otherwise ignore 2032 * the segment. 2033 */ 2034 case TCPS_CLOSING: 2035 if (ourfinisacked) { 2036 tp->t_state = TCPS_TIME_WAIT; 2037 tcp_canceltimers(tp); 2038 /* Shorten TIME_WAIT [RFC-1644, p.28] */ 2039 if (tp->cc_recv != 0 && 2040 (ticks - tp->t_starttime) < tcp_msl) 2041 callout_reset(tp->tt_2msl, 2042 tp->t_rxtcur * 2043 TCPTV_TWTRUNC, 2044 tcp_timer_2msl, tp); 2045 else 2046 callout_reset(tp->tt_2msl, 2 * tcp_msl, 2047 tcp_timer_2msl, tp); 2048 soisdisconnected(so); 2049 } 2050 break; 2051 2052 /* 2053 * In LAST_ACK, we may still be waiting for data to drain 2054 * and/or to be acked, as well as for the ack of our FIN. 2055 * If our FIN is now acknowledged, delete the TCB, 2056 * enter the closed state and return. 2057 */ 2058 case TCPS_LAST_ACK: 2059 if (ourfinisacked) { 2060 tp = tcp_close(tp); 2061 goto drop; 2062 } 2063 break; 2064 2065 /* 2066 * In TIME_WAIT state the only thing that should arrive 2067 * is a retransmission of the remote FIN. Acknowledge 2068 * it and restart the finack timer. 2069 */ 2070 case TCPS_TIME_WAIT: 2071 callout_reset(tp->tt_2msl, 2 * tcp_msl, 2072 tcp_timer_2msl, tp); 2073 goto dropafterack; 2074 } 2075 } 2076 2077 step6: 2078 /* 2079 * Update window information. 2080 * Don't look at window if no ACK: TAC's send garbage on first SYN. 2081 */ 2082 if ((thflags & TH_ACK) && 2083 (SEQ_LT(tp->snd_wl1, th->th_seq) || 2084 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 2085 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 2086 /* keep track of pure window updates */ 2087 if (tlen == 0 && 2088 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 2089 tcpstat.tcps_rcvwinupd++; 2090 tp->snd_wnd = tiwin; 2091 tp->snd_wl1 = th->th_seq; 2092 tp->snd_wl2 = th->th_ack; 2093 if (tp->snd_wnd > tp->max_sndwnd) 2094 tp->max_sndwnd = tp->snd_wnd; 2095 needoutput = 1; 2096 } 2097 2098 /* 2099 * Process segments with URG. 2100 */ 2101 if ((thflags & TH_URG) && th->th_urp && 2102 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2103 /* 2104 * This is a kludge, but if we receive and accept 2105 * random urgent pointers, we'll crash in 2106 * soreceive. It's hard to imagine someone 2107 * actually wanting to send this much urgent data. 2108 */ 2109 if (th->th_urp + so->so_rcv.sb_cc > sb_max) { 2110 th->th_urp = 0; /* XXX */ 2111 thflags &= ~TH_URG; /* XXX */ 2112 goto dodata; /* XXX */ 2113 } 2114 /* 2115 * If this segment advances the known urgent pointer, 2116 * then mark the data stream. This should not happen 2117 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 2118 * a FIN has been received from the remote side. 2119 * In these states we ignore the URG. 2120 * 2121 * According to RFC961 (Assigned Protocols), 2122 * the urgent pointer points to the last octet 2123 * of urgent data. We continue, however, 2124 * to consider it to indicate the first octet 2125 * of data past the urgent section as the original 2126 * spec states (in one of two places). 2127 */ 2128 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { 2129 tp->rcv_up = th->th_seq + th->th_urp; 2130 so->so_oobmark = so->so_rcv.sb_cc + 2131 (tp->rcv_up - tp->rcv_nxt) - 1; 2132 if (so->so_oobmark == 0) 2133 so->so_state |= SS_RCVATMARK; 2134 sohasoutofband(so); 2135 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 2136 } 2137 /* 2138 * Remove out of band data so doesn't get presented to user. 2139 * This can happen independent of advancing the URG pointer, 2140 * but if two URG's are pending at once, some out-of-band 2141 * data may creep in... ick. 2142 */ 2143 if (th->th_urp <= (u_long)tlen 2144 #ifdef SO_OOBINLINE 2145 && (so->so_options & SO_OOBINLINE) == 0 2146 #endif 2147 ) 2148 tcp_pulloutofband(so, th, m, 2149 drop_hdrlen); /* hdr drop is delayed */ 2150 } else 2151 /* 2152 * If no out of band data is expected, 2153 * pull receive urgent pointer along 2154 * with the receive window. 2155 */ 2156 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 2157 tp->rcv_up = tp->rcv_nxt; 2158 dodata: /* XXX */ 2159 2160 /* 2161 * Process the segment text, merging it into the TCP sequencing queue, 2162 * and arranging for acknowledgment of receipt if necessary. 2163 * This process logically involves adjusting tp->rcv_wnd as data 2164 * is presented to the user (this happens in tcp_usrreq.c, 2165 * case PRU_RCVD). If a FIN has already been received on this 2166 * connection then we just ignore the text. 2167 */ 2168 if ((tlen || (thflags&TH_FIN)) && 2169 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2170 m_adj(m, drop_hdrlen); /* delayed header drop */ 2171 /* 2172 * Insert segment which inludes th into reassembly queue of tcp with 2173 * control block tp. Return TH_FIN if reassembly now includes 2174 * a segment with FIN. This handle the common case inline (segment 2175 * is the next to be received on an established connection, and the 2176 * queue is empty), avoiding linkage into and removal from the queue 2177 * and repetition of various conversions. 2178 * Set DELACK for segments received in order, but ack immediately 2179 * when segments are out of order (so fast retransmit can work). 2180 */ 2181 if (th->th_seq == tp->rcv_nxt && 2182 LIST_EMPTY(&tp->t_segq) && 2183 TCPS_HAVEESTABLISHED(tp->t_state)) { 2184 if (DELAY_ACK(tp)) 2185 callout_reset(tp->tt_delack, tcp_delacktime, 2186 tcp_timer_delack, tp); 2187 else 2188 tp->t_flags |= TF_ACKNOW; 2189 tp->rcv_nxt += tlen; 2190 thflags = th->th_flags & TH_FIN; 2191 tcpstat.tcps_rcvpack++; 2192 tcpstat.tcps_rcvbyte += tlen; 2193 ND6_HINT(tp); 2194 sbappend(&so->so_rcv, m); 2195 sorwakeup(so); 2196 } else { 2197 thflags = tcp_reass(tp, th, &tlen, m); 2198 tp->t_flags |= TF_ACKNOW; 2199 } 2200 2201 /* 2202 * Note the amount of data that peer has sent into 2203 * our window, in order to estimate the sender's 2204 * buffer size. 2205 */ 2206 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 2207 } else { 2208 m_freem(m); 2209 thflags &= ~TH_FIN; 2210 } 2211 2212 /* 2213 * If FIN is received ACK the FIN and let the user know 2214 * that the connection is closing. 2215 */ 2216 if (thflags & TH_FIN) { 2217 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2218 socantrcvmore(so); 2219 /* 2220 * If connection is half-synchronized 2221 * (ie NEEDSYN flag on) then delay ACK, 2222 * so it may be piggybacked when SYN is sent. 2223 * Otherwise, since we received a FIN then no 2224 * more input can be expected, send ACK now. 2225 */ 2226 if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) 2227 callout_reset(tp->tt_delack, tcp_delacktime, 2228 tcp_timer_delack, tp); 2229 else 2230 tp->t_flags |= TF_ACKNOW; 2231 tp->rcv_nxt++; 2232 } 2233 switch (tp->t_state) { 2234 2235 /* 2236 * In SYN_RECEIVED and ESTABLISHED STATES 2237 * enter the CLOSE_WAIT state. 2238 */ 2239 case TCPS_SYN_RECEIVED: 2240 tp->t_starttime = ticks; 2241 /*FALLTHROUGH*/ 2242 case TCPS_ESTABLISHED: 2243 tp->t_state = TCPS_CLOSE_WAIT; 2244 break; 2245 2246 /* 2247 * If still in FIN_WAIT_1 STATE FIN has not been acked so 2248 * enter the CLOSING state. 2249 */ 2250 case TCPS_FIN_WAIT_1: 2251 tp->t_state = TCPS_CLOSING; 2252 break; 2253 2254 /* 2255 * In FIN_WAIT_2 state enter the TIME_WAIT state, 2256 * starting the time-wait timer, turning off the other 2257 * standard timers. 2258 */ 2259 case TCPS_FIN_WAIT_2: 2260 tp->t_state = TCPS_TIME_WAIT; 2261 tcp_canceltimers(tp); 2262 /* Shorten TIME_WAIT [RFC-1644, p.28] */ 2263 if (tp->cc_recv != 0 && 2264 (ticks - tp->t_starttime) < tcp_msl) { 2265 callout_reset(tp->tt_2msl, 2266 tp->t_rxtcur * TCPTV_TWTRUNC, 2267 tcp_timer_2msl, tp); 2268 /* For transaction client, force ACK now. */ 2269 tp->t_flags |= TF_ACKNOW; 2270 } 2271 else 2272 callout_reset(tp->tt_2msl, 2 * tcp_msl, 2273 tcp_timer_2msl, tp); 2274 soisdisconnected(so); 2275 break; 2276 2277 /* 2278 * In TIME_WAIT state restart the 2 MSL time_wait timer. 2279 */ 2280 case TCPS_TIME_WAIT: 2281 callout_reset(tp->tt_2msl, 2 * tcp_msl, 2282 tcp_timer_2msl, tp); 2283 break; 2284 } 2285 } 2286 #ifdef TCPDEBUG 2287 if (so->so_options & SO_DEBUG) 2288 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, 2289 &tcp_savetcp, 0); 2290 #endif 2291 2292 /* 2293 * Return any desired output. 2294 */ 2295 if (needoutput || (tp->t_flags & TF_ACKNOW)) 2296 (void) tcp_output(tp); 2297 return; 2298 2299 dropafterack: 2300 /* 2301 * Generate an ACK dropping incoming segment if it occupies 2302 * sequence space, where the ACK reflects our state. 2303 * 2304 * We can now skip the test for the RST flag since all 2305 * paths to this code happen after packets containing 2306 * RST have been dropped. 2307 * 2308 * In the SYN-RECEIVED state, don't send an ACK unless the 2309 * segment we received passes the SYN-RECEIVED ACK test. 2310 * If it fails send a RST. This breaks the loop in the 2311 * "LAND" DoS attack, and also prevents an ACK storm 2312 * between two listening ports that have been sent forged 2313 * SYN segments, each with the source address of the other. 2314 */ 2315 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && 2316 (SEQ_GT(tp->snd_una, th->th_ack) || 2317 SEQ_GT(th->th_ack, tp->snd_max)) ) { 2318 rstreason = BANDLIM_RST_OPENPORT; 2319 goto dropwithreset; 2320 } 2321 #ifdef TCPDEBUG 2322 if (so->so_options & SO_DEBUG) 2323 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 2324 &tcp_savetcp, 0); 2325 #endif 2326 m_freem(m); 2327 tp->t_flags |= TF_ACKNOW; 2328 (void) tcp_output(tp); 2329 return; 2330 2331 dropwithreset: 2332 /* 2333 * Generate a RST, dropping incoming segment. 2334 * Make ACK acceptable to originator of segment. 2335 * Don't bother to respond if destination was broadcast/multicast. 2336 */ 2337 if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) 2338 goto drop; 2339 #ifdef INET6 2340 if (isipv6) { 2341 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 2342 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 2343 goto drop; 2344 } else 2345 #endif /* INET6 */ 2346 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 2347 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 2348 ip->ip_src.s_addr == htonl(INADDR_BROADCAST)) 2349 goto drop; 2350 /* IPv6 anycast check is done at tcp6_input() */ 2351 2352 /* 2353 * Perform bandwidth limiting. 2354 */ 2355 if (badport_bandlim(rstreason) < 0) 2356 goto drop; 2357 2358 #ifdef TCPDEBUG 2359 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 2360 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 2361 &tcp_savetcp, 0); 2362 #endif 2363 if (thflags & TH_ACK) 2364 /* mtod() below is safe as long as hdr dropping is delayed */ 2365 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack, 2366 TH_RST); 2367 else { 2368 if (thflags & TH_SYN) 2369 tlen++; 2370 /* mtod() below is safe as long as hdr dropping is delayed */ 2371 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, 2372 (tcp_seq)0, TH_RST|TH_ACK); 2373 } 2374 /* destroy temporarily created socket */ 2375 if (dropsocket) 2376 (void) soabort(so); 2377 return; 2378 2379 drop: 2380 /* 2381 * Drop space held by incoming segment and return. 2382 */ 2383 #ifdef TCPDEBUG 2384 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 2385 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 2386 &tcp_savetcp, 0); 2387 #endif 2388 m_freem(m); 2389 /* destroy temporarily created socket */ 2390 if (dropsocket) 2391 (void) soabort(so); 2392 return; 2393 } 2394 2395 static void 2396 tcp_dooptions(tp, cp, cnt, th, to) 2397 struct tcpcb *tp; 2398 u_char *cp; 2399 int cnt; 2400 struct tcphdr *th; 2401 struct tcpopt *to; 2402 { 2403 u_short mss = 0; 2404 int opt, optlen; 2405 2406 for (; cnt > 0; cnt -= optlen, cp += optlen) { 2407 opt = cp[0]; 2408 if (opt == TCPOPT_EOL) 2409 break; 2410 if (opt == TCPOPT_NOP) 2411 optlen = 1; 2412 else { 2413 if (cnt < 2) 2414 break; 2415 optlen = cp[1]; 2416 if (optlen < 2 || optlen > cnt) 2417 break; 2418 } 2419 switch (opt) { 2420 2421 default: 2422 continue; 2423 2424 case TCPOPT_MAXSEG: 2425 if (optlen != TCPOLEN_MAXSEG) 2426 continue; 2427 if (!(th->th_flags & TH_SYN)) 2428 continue; 2429 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss)); 2430 NTOHS(mss); 2431 break; 2432 2433 case TCPOPT_WINDOW: 2434 if (optlen != TCPOLEN_WINDOW) 2435 continue; 2436 if (!(th->th_flags & TH_SYN)) 2437 continue; 2438 tp->t_flags |= TF_RCVD_SCALE; 2439 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); 2440 break; 2441 2442 case TCPOPT_TIMESTAMP: 2443 if (optlen != TCPOLEN_TIMESTAMP) 2444 continue; 2445 to->to_flag |= TOF_TS; 2446 bcopy((char *)cp + 2, 2447 (char *)&to->to_tsval, sizeof(to->to_tsval)); 2448 NTOHL(to->to_tsval); 2449 bcopy((char *)cp + 6, 2450 (char *)&to->to_tsecr, sizeof(to->to_tsecr)); 2451 NTOHL(to->to_tsecr); 2452 2453 /* 2454 * A timestamp received in a SYN makes 2455 * it ok to send timestamp requests and replies. 2456 */ 2457 if (th->th_flags & TH_SYN) { 2458 tp->t_flags |= TF_RCVD_TSTMP; 2459 tp->ts_recent = to->to_tsval; 2460 tp->ts_recent_age = ticks; 2461 } 2462 break; 2463 case TCPOPT_CC: 2464 if (optlen != TCPOLEN_CC) 2465 continue; 2466 to->to_flag |= TOF_CC; 2467 bcopy((char *)cp + 2, 2468 (char *)&to->to_cc, sizeof(to->to_cc)); 2469 NTOHL(to->to_cc); 2470 /* 2471 * A CC or CC.new option received in a SYN makes 2472 * it ok to send CC in subsequent segments. 2473 */ 2474 if (th->th_flags & TH_SYN) 2475 tp->t_flags |= TF_RCVD_CC; 2476 break; 2477 case TCPOPT_CCNEW: 2478 if (optlen != TCPOLEN_CC) 2479 continue; 2480 if (!(th->th_flags & TH_SYN)) 2481 continue; 2482 to->to_flag |= TOF_CCNEW; 2483 bcopy((char *)cp + 2, 2484 (char *)&to->to_cc, sizeof(to->to_cc)); 2485 NTOHL(to->to_cc); 2486 /* 2487 * A CC or CC.new option received in a SYN makes 2488 * it ok to send CC in subsequent segments. 2489 */ 2490 tp->t_flags |= TF_RCVD_CC; 2491 break; 2492 case TCPOPT_CCECHO: 2493 if (optlen != TCPOLEN_CC) 2494 continue; 2495 if (!(th->th_flags & TH_SYN)) 2496 continue; 2497 to->to_flag |= TOF_CCECHO; 2498 bcopy((char *)cp + 2, 2499 (char *)&to->to_ccecho, sizeof(to->to_ccecho)); 2500 NTOHL(to->to_ccecho); 2501 break; 2502 } 2503 } 2504 if (th->th_flags & TH_SYN) 2505 tcp_mss(tp, mss); /* sets t_maxseg */ 2506 } 2507 2508 /* 2509 * Pull out of band byte out of a segment so 2510 * it doesn't appear in the user's data queue. 2511 * It is still reflected in the segment length for 2512 * sequencing purposes. 2513 */ 2514 static void 2515 tcp_pulloutofband(so, th, m, off) 2516 struct socket *so; 2517 struct tcphdr *th; 2518 register struct mbuf *m; 2519 int off; /* delayed to be droped hdrlen */ 2520 { 2521 int cnt = off + th->th_urp - 1; 2522 2523 while (cnt >= 0) { 2524 if (m->m_len > cnt) { 2525 char *cp = mtod(m, caddr_t) + cnt; 2526 struct tcpcb *tp = sototcpcb(so); 2527 2528 tp->t_iobc = *cp; 2529 tp->t_oobflags |= TCPOOB_HAVEDATA; 2530 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 2531 m->m_len--; 2532 if (m->m_flags & M_PKTHDR) 2533 m->m_pkthdr.len--; 2534 return; 2535 } 2536 cnt -= m->m_len; 2537 m = m->m_next; 2538 if (m == 0) 2539 break; 2540 } 2541 panic("tcp_pulloutofband"); 2542 } 2543 2544 /* 2545 * Collect new round-trip time estimate 2546 * and update averages and current timeout. 2547 */ 2548 static void 2549 tcp_xmit_timer(tp, rtt) 2550 register struct tcpcb *tp; 2551 int rtt; 2552 { 2553 register int delta; 2554 2555 tcpstat.tcps_rttupdated++; 2556 tp->t_rttupdated++; 2557 if (tp->t_srtt != 0) { 2558 /* 2559 * srtt is stored as fixed point with 5 bits after the 2560 * binary point (i.e., scaled by 8). The following magic 2561 * is equivalent to the smoothing algorithm in rfc793 with 2562 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 2563 * point). Adjust rtt to origin 0. 2564 */ 2565 delta = ((rtt - 1) << TCP_DELTA_SHIFT) 2566 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); 2567 2568 if ((tp->t_srtt += delta) <= 0) 2569 tp->t_srtt = 1; 2570 2571 /* 2572 * We accumulate a smoothed rtt variance (actually, a 2573 * smoothed mean difference), then set the retransmit 2574 * timer to smoothed rtt + 4 times the smoothed variance. 2575 * rttvar is stored as fixed point with 4 bits after the 2576 * binary point (scaled by 16). The following is 2577 * equivalent to rfc793 smoothing with an alpha of .75 2578 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 2579 * rfc793's wired-in beta. 2580 */ 2581 if (delta < 0) 2582 delta = -delta; 2583 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); 2584 if ((tp->t_rttvar += delta) <= 0) 2585 tp->t_rttvar = 1; 2586 } else { 2587 /* 2588 * No rtt measurement yet - use the unsmoothed rtt. 2589 * Set the variance to half the rtt (so our first 2590 * retransmit happens at 3*rtt). 2591 */ 2592 tp->t_srtt = rtt << TCP_RTT_SHIFT; 2593 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); 2594 } 2595 tp->t_rtttime = 0; 2596 tp->t_rxtshift = 0; 2597 2598 /* 2599 * the retransmit should happen at rtt + 4 * rttvar. 2600 * Because of the way we do the smoothing, srtt and rttvar 2601 * will each average +1/2 tick of bias. When we compute 2602 * the retransmit timer, we want 1/2 tick of rounding and 2603 * 1 extra tick because of +-1/2 tick uncertainty in the 2604 * firing of the timer. The bias will give us exactly the 2605 * 1.5 tick we need. But, because the bias is 2606 * statistical, we have to test that we don't drop below 2607 * the minimum feasible timer (which is 2 ticks). 2608 */ 2609 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 2610 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); 2611 2612 /* 2613 * We received an ack for a packet that wasn't retransmitted; 2614 * it is probably safe to discard any error indications we've 2615 * received recently. This isn't quite right, but close enough 2616 * for now (a route might have failed after we sent a segment, 2617 * and the return path might not be symmetrical). 2618 */ 2619 tp->t_softerror = 0; 2620 } 2621 2622 /* 2623 * Determine a reasonable value for maxseg size. 2624 * If the route is known, check route for mtu. 2625 * If none, use an mss that can be handled on the outgoing 2626 * interface without forcing IP to fragment; if bigger than 2627 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES 2628 * to utilize large mbufs. If no route is found, route has no mtu, 2629 * or the destination isn't local, use a default, hopefully conservative 2630 * size (usually 512 or the default IP max size, but no more than the mtu 2631 * of the interface), as we can't discover anything about intervening 2632 * gateways or networks. We also initialize the congestion/slow start 2633 * window to be a single segment if the destination isn't local. 2634 * While looking at the routing entry, we also initialize other path-dependent 2635 * parameters from pre-set or cached values in the routing entry. 2636 * 2637 * Also take into account the space needed for options that we 2638 * send regularly. Make maxseg shorter by that amount to assure 2639 * that we can send maxseg amount of data even when the options 2640 * are present. Store the upper limit of the length of options plus 2641 * data in maxopd. 2642 * 2643 * NOTE that this routine is only called when we process an incoming 2644 * segment, for outgoing segments only tcp_mssopt is called. 2645 * 2646 * In case of T/TCP, we call this routine during implicit connection 2647 * setup as well (offer = -1), to initialize maxseg from the cached 2648 * MSS of our peer. 2649 */ 2650 void 2651 tcp_mss(tp, offer) 2652 struct tcpcb *tp; 2653 int offer; 2654 { 2655 register struct rtentry *rt; 2656 struct ifnet *ifp; 2657 register int rtt, mss; 2658 u_long bufsize; 2659 struct inpcb *inp; 2660 struct socket *so; 2661 struct rmxp_tao *taop; 2662 int origoffer = offer; 2663 #ifdef INET6 2664 int isipv6; 2665 int min_protoh; 2666 #endif 2667 2668 inp = tp->t_inpcb; 2669 #ifdef INET6 2670 isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; 2671 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) 2672 : sizeof (struct tcpiphdr); 2673 #else 2674 #define min_protoh (sizeof (struct tcpiphdr)) 2675 #endif 2676 #ifdef INET6 2677 if (isipv6) 2678 rt = tcp_rtlookup6(inp); 2679 else 2680 #endif 2681 rt = tcp_rtlookup(inp); 2682 if (rt == NULL) { 2683 tp->t_maxopd = tp->t_maxseg = 2684 #ifdef INET6 2685 isipv6 ? tcp_v6mssdflt : 2686 #endif /* INET6 */ 2687 tcp_mssdflt; 2688 return; 2689 } 2690 ifp = rt->rt_ifp; 2691 so = inp->inp_socket; 2692 2693 taop = rmx_taop(rt->rt_rmx); 2694 /* 2695 * Offer == -1 means that we didn't receive SYN yet, 2696 * use cached value in that case; 2697 */ 2698 if (offer == -1) 2699 offer = taop->tao_mssopt; 2700 /* 2701 * Offer == 0 means that there was no MSS on the SYN segment, 2702 * in this case we use tcp_mssdflt. 2703 */ 2704 if (offer == 0) 2705 offer = 2706 #ifdef INET6 2707 isipv6 ? tcp_v6mssdflt : 2708 #endif /* INET6 */ 2709 tcp_mssdflt; 2710 else 2711 /* 2712 * Sanity check: make sure that maxopd will be large 2713 * enough to allow some data on segments even is the 2714 * all the option space is used (40bytes). Otherwise 2715 * funny things may happen in tcp_output. 2716 */ 2717 offer = max(offer, 64); 2718 taop->tao_mssopt = offer; 2719 2720 /* 2721 * While we're here, check if there's an initial rtt 2722 * or rttvar. Convert from the route-table units 2723 * to scaled multiples of the slow timeout timer. 2724 */ 2725 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) { 2726 /* 2727 * XXX the lock bit for RTT indicates that the value 2728 * is also a minimum value; this is subject to time. 2729 */ 2730 if (rt->rt_rmx.rmx_locks & RTV_RTT) 2731 tp->t_rttmin = rtt / (RTM_RTTUNIT / hz); 2732 tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE)); 2733 tcpstat.tcps_usedrtt++; 2734 if (rt->rt_rmx.rmx_rttvar) { 2735 tp->t_rttvar = rt->rt_rmx.rmx_rttvar / 2736 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE)); 2737 tcpstat.tcps_usedrttvar++; 2738 } else { 2739 /* default variation is +- 1 rtt */ 2740 tp->t_rttvar = 2741 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 2742 } 2743 TCPT_RANGESET(tp->t_rxtcur, 2744 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 2745 tp->t_rttmin, TCPTV_REXMTMAX); 2746 } 2747 /* 2748 * if there's an mtu associated with the route, use it 2749 * else, use the link mtu. 2750 */ 2751 if (rt->rt_rmx.rmx_mtu) 2752 mss = rt->rt_rmx.rmx_mtu - min_protoh; 2753 else 2754 { 2755 mss = 2756 #ifdef INET6 2757 (isipv6 ? nd_ifinfo[rt->rt_ifp->if_index].linkmtu : 2758 #endif 2759 ifp->if_mtu 2760 #ifdef INET6 2761 ) 2762 #endif 2763 - min_protoh; 2764 #ifdef INET6 2765 if (isipv6) { 2766 if (!in6_localaddr(&inp->in6p_faddr)) 2767 mss = min(mss, tcp_v6mssdflt); 2768 } else 2769 #endif 2770 if (!in_localaddr(inp->inp_faddr)) 2771 mss = min(mss, tcp_mssdflt); 2772 } 2773 mss = min(mss, offer); 2774 /* 2775 * maxopd stores the maximum length of data AND options 2776 * in a segment; maxseg is the amount of data in a normal 2777 * segment. We need to store this value (maxopd) apart 2778 * from maxseg, because now every segment carries options 2779 * and thus we normally have somewhat less data in segments. 2780 */ 2781 tp->t_maxopd = mss; 2782 2783 /* 2784 * In case of T/TCP, origoffer==-1 indicates, that no segments 2785 * were received yet. In this case we just guess, otherwise 2786 * we do the same as before T/TCP. 2787 */ 2788 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 2789 (origoffer == -1 || 2790 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) 2791 mss -= TCPOLEN_TSTAMP_APPA; 2792 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC && 2793 (origoffer == -1 || 2794 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)) 2795 mss -= TCPOLEN_CC_APPA; 2796 2797 #if (MCLBYTES & (MCLBYTES - 1)) == 0 2798 if (mss > MCLBYTES) 2799 mss &= ~(MCLBYTES-1); 2800 #else 2801 if (mss > MCLBYTES) 2802 mss = mss / MCLBYTES * MCLBYTES; 2803 #endif 2804 /* 2805 * If there's a pipesize, change the socket buffer 2806 * to that size. Make the socket buffers an integral 2807 * number of mss units; if the mss is larger than 2808 * the socket buffer, decrease the mss. 2809 */ 2810 #ifdef RTV_SPIPE 2811 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0) 2812 #endif 2813 bufsize = so->so_snd.sb_hiwat; 2814 if (bufsize < mss) 2815 mss = bufsize; 2816 else { 2817 bufsize = roundup(bufsize, mss); 2818 if (bufsize > sb_max) 2819 bufsize = sb_max; 2820 (void)sbreserve(&so->so_snd, bufsize, so, NULL); 2821 } 2822 tp->t_maxseg = mss; 2823 2824 #ifdef RTV_RPIPE 2825 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0) 2826 #endif 2827 bufsize = so->so_rcv.sb_hiwat; 2828 if (bufsize > mss) { 2829 bufsize = roundup(bufsize, mss); 2830 if (bufsize > sb_max) 2831 bufsize = sb_max; 2832 (void)sbreserve(&so->so_rcv, bufsize, so, NULL); 2833 } 2834 2835 /* 2836 * Set the slow-start flight size depending on whether this 2837 * is a local network or not. 2838 */ 2839 if ( 2840 #ifdef INET6 2841 (isipv6 && in6_localaddr(&inp->in6p_faddr)) || 2842 (!isipv6 && 2843 #endif 2844 in_localaddr(inp->inp_faddr) 2845 #ifdef INET6 2846 ) 2847 #endif 2848 ) 2849 tp->snd_cwnd = mss * ss_fltsz_local; 2850 else 2851 tp->snd_cwnd = mss * ss_fltsz; 2852 2853 if (rt->rt_rmx.rmx_ssthresh) { 2854 /* 2855 * There's some sort of gateway or interface 2856 * buffer limit on the path. Use this to set 2857 * the slow start threshhold, but set the 2858 * threshold to no less than 2*mss. 2859 */ 2860 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh); 2861 tcpstat.tcps_usedssthresh++; 2862 } 2863 } 2864 2865 /* 2866 * Determine the MSS option to send on an outgoing SYN. 2867 */ 2868 int 2869 tcp_mssopt(tp) 2870 struct tcpcb *tp; 2871 { 2872 struct rtentry *rt; 2873 #ifdef INET6 2874 int isipv6; 2875 int min_protoh; 2876 #endif 2877 2878 #ifdef INET6 2879 isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0; 2880 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) 2881 : sizeof (struct tcpiphdr); 2882 #else 2883 #define min_protoh (sizeof (struct tcpiphdr)) 2884 #endif 2885 #ifdef INET6 2886 if (isipv6) 2887 rt = tcp_rtlookup6(tp->t_inpcb); 2888 else 2889 #endif /* INET6 */ 2890 rt = tcp_rtlookup(tp->t_inpcb); 2891 if (rt == NULL) 2892 return 2893 #ifdef INET6 2894 isipv6 ? tcp_v6mssdflt : 2895 #endif /* INET6 */ 2896 tcp_mssdflt; 2897 2898 return rt->rt_ifp->if_mtu - min_protoh; 2899 } 2900 2901 2902 /* 2903 * Checks for partial ack. If partial ack arrives, force the retransmission 2904 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return 2905 * 1. By setting snd_nxt to ti_ack, this forces retransmission timer to 2906 * be started again. If the ack advances at least to tp->snd_recover, return 0. 2907 */ 2908 static int 2909 tcp_newreno(tp, th) 2910 struct tcpcb *tp; 2911 struct tcphdr *th; 2912 { 2913 if (SEQ_LT(th->th_ack, tp->snd_recover)) { 2914 tcp_seq onxt = tp->snd_nxt; 2915 u_long ocwnd = tp->snd_cwnd; 2916 2917 callout_stop(tp->tt_rexmt); 2918 tp->t_rtttime = 0; 2919 tp->snd_nxt = th->th_ack; 2920 /* 2921 * Set snd_cwnd to one segment beyond acknowledged offset 2922 * (tp->snd_una has not yet been updated when this function 2923 * is called) 2924 */ 2925 tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una); 2926 (void) tcp_output(tp); 2927 tp->snd_cwnd = ocwnd; 2928 if (SEQ_GT(onxt, tp->snd_nxt)) 2929 tp->snd_nxt = onxt; 2930 /* 2931 * Partial window deflation. Relies on fact that tp->snd_una 2932 * not updated yet. 2933 */ 2934 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg); 2935 return (1); 2936 } 2937 return (0); 2938 } 2939