1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_ipfw.h" /* for ipfw_fwd */ 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_ipsec.h" 37 #include "opt_mac.h" 38 #include "opt_tcpdebug.h" 39 #include "opt_tcp_input.h" 40 #include "opt_tcp_sack.h" 41 42 #include <sys/param.h> 43 #include <sys/kernel.h> 44 #include <sys/mac.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/proc.h> /* for proc0 declaration */ 48 #include <sys/protosw.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/syslog.h> 54 #include <sys/systm.h> 55 56 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */ 57 58 #include <vm/uma.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_pcb.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */ 69 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 70 #include <netinet/ip_var.h> 71 #include <netinet/ip_options.h> 72 #include <netinet/ip6.h> 73 #include <netinet/icmp6.h> 74 #include <netinet6/in6_pcb.h> 75 #include <netinet6/ip6_var.h> 76 #include <netinet6/nd6.h> 77 #include <netinet/tcp.h> 78 #include <netinet/tcp_fsm.h> 79 #include <netinet/tcp_seq.h> 80 #include <netinet/tcp_timer.h> 81 #include <netinet/tcp_var.h> 82 #include <netinet6/tcp6_var.h> 83 #include <netinet/tcpip.h> 84 #ifdef TCPDEBUG 85 #include <netinet/tcp_debug.h> 86 #endif /* TCPDEBUG */ 87 88 #ifdef FAST_IPSEC 89 #include <netipsec/ipsec.h> 90 #include <netipsec/ipsec6.h> 91 #endif /*FAST_IPSEC*/ 92 93 #ifdef IPSEC 94 #include <netinet6/ipsec.h> 95 #include <netinet6/ipsec6.h> 96 #include <netkey/key.h> 97 #endif /*IPSEC*/ 98 99 #include <machine/in_cksum.h> 100 101 static const int tcprexmtthresh = 3; 102 103 struct tcpstat tcpstat; 104 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW, 105 &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); 106 107 static int log_in_vain = 0; 108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW, 109 &log_in_vain, 0, "Log all incoming TCP connections"); 110 111 static int blackhole = 0; 112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW, 113 &blackhole, 0, "Do not send RST when dropping refused connections"); 114 115 int tcp_delack_enabled = 1; 116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW, 117 &tcp_delack_enabled, 0, 118 "Delay ACK to try and piggyback it onto a data packet"); 119 120 #ifdef TCP_DROP_SYNFIN 121 static int drop_synfin = 0; 122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW, 123 &drop_synfin, 0, "Drop TCP packets with SYN+FIN set"); 124 #endif 125 126 static int tcp_do_rfc3042 = 1; 127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW, 128 &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)"); 129 130 static int tcp_do_rfc3390 = 1; 131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW, 132 &tcp_do_rfc3390, 0, 133 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)"); 134 135 static int tcp_insecure_rst = 0; 136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW, 137 &tcp_insecure_rst, 0, 138 "Follow the old (insecure) criteria for accepting RST packets."); 139 140 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0, 141 "TCP Segment Reassembly Queue"); 142 143 static int tcp_reass_maxseg = 0; 144 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN, 145 &tcp_reass_maxseg, 0, 146 "Global maximum number of TCP Segments in Reassembly Queue"); 147 148 int tcp_reass_qsize = 0; 149 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD, 150 &tcp_reass_qsize, 0, 151 "Global number of TCP Segments currently in Reassembly Queue"); 152 153 static int tcp_reass_maxqlen = 48; 154 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW, 155 &tcp_reass_maxqlen, 0, 156 "Maximum number of TCP Segments per individual Reassembly Queue"); 157 158 static int tcp_reass_overflows = 0; 159 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD, 160 &tcp_reass_overflows, 0, 161 "Global number of TCP Segment Reassembly Queue Overflows"); 162 163 struct inpcbhead tcb; 164 #define tcb6 tcb /* for KAME src sync over BSD*'s */ 165 struct inpcbinfo tcbinfo; 166 struct mtx *tcbinfo_mtx; 167 168 static void tcp_dooptions(struct tcpopt *, u_char *, int, int); 169 170 static void tcp_pulloutofband(struct socket *, 171 struct tcphdr *, struct mbuf *, int); 172 static int tcp_reass(struct tcpcb *, struct tcphdr *, int *, 173 struct mbuf *); 174 static void tcp_xmit_timer(struct tcpcb *, int); 175 static void tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *); 176 static int tcp_timewait(struct tcptw *, struct tcpopt *, 177 struct tcphdr *, struct mbuf *, int); 178 179 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */ 180 #ifdef INET6 181 #define ND6_HINT(tp) \ 182 do { \ 183 if ((tp) && (tp)->t_inpcb && \ 184 ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \ 185 nd6_nud_hint(NULL, NULL, 0); \ 186 } while (0) 187 #else 188 #define ND6_HINT(tp) 189 #endif 190 191 /* 192 * Indicate whether this ack should be delayed. We can delay the ack if 193 * - there is no delayed ack timer in progress and 194 * - our last ack wasn't a 0-sized window. We never want to delay 195 * the ack that opens up a 0-sized window and 196 * - delayed acks are enabled or 197 * - this is a half-synchronized T/TCP connection. 198 */ 199 #define DELAY_ACK(tp) \ 200 ((!callout_active(tp->tt_delack) && \ 201 (tp->t_flags & TF_RXWIN0SENT) == 0) && \ 202 (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN))) 203 204 /* Initialize TCP reassembly queue */ 205 uma_zone_t tcp_reass_zone; 206 void 207 tcp_reass_init() 208 { 209 tcp_reass_maxseg = nmbclusters / 16; 210 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", 211 &tcp_reass_maxseg); 212 tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 214 uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg); 215 } 216 217 static int 218 tcp_reass(tp, th, tlenp, m) 219 register struct tcpcb *tp; 220 register struct tcphdr *th; 221 int *tlenp; 222 struct mbuf *m; 223 { 224 struct tseg_qent *q; 225 struct tseg_qent *p = NULL; 226 struct tseg_qent *nq; 227 struct tseg_qent *te = NULL; 228 struct socket *so = tp->t_inpcb->inp_socket; 229 int flags; 230 231 INP_LOCK_ASSERT(tp->t_inpcb); 232 233 /* 234 * XXX: tcp_reass() is rather inefficient with its data structures 235 * and should be rewritten (see NetBSD for optimizations). While 236 * doing that it should move to its own file tcp_reass.c. 237 */ 238 239 /* 240 * Call with th==NULL after become established to 241 * force pre-ESTABLISHED data up to user socket. 242 */ 243 if (th == NULL) 244 goto present; 245 246 /* 247 * Limit the number of segments in the reassembly queue to prevent 248 * holding on to too many segments (and thus running out of mbufs). 249 * Make sure to let the missing segment through which caused this 250 * queue. Always keep one global queue entry spare to be able to 251 * process the missing segment. 252 */ 253 if (th->th_seq != tp->rcv_nxt && 254 (tcp_reass_qsize + 1 >= tcp_reass_maxseg || 255 tp->t_segqlen >= tcp_reass_maxqlen)) { 256 tcp_reass_overflows++; 257 tcpstat.tcps_rcvmemdrop++; 258 m_freem(m); 259 *tlenp = 0; 260 return (0); 261 } 262 263 /* 264 * Allocate a new queue entry. If we can't, or hit the zone limit 265 * just drop the pkt. 266 */ 267 te = uma_zalloc(tcp_reass_zone, M_NOWAIT); 268 if (te == NULL) { 269 tcpstat.tcps_rcvmemdrop++; 270 m_freem(m); 271 *tlenp = 0; 272 return (0); 273 } 274 tp->t_segqlen++; 275 tcp_reass_qsize++; 276 277 /* 278 * Find a segment which begins after this one does. 279 */ 280 LIST_FOREACH(q, &tp->t_segq, tqe_q) { 281 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) 282 break; 283 p = q; 284 } 285 286 /* 287 * If there is a preceding segment, it may provide some of 288 * our data already. If so, drop the data from the incoming 289 * segment. If it provides all of our data, drop us. 290 */ 291 if (p != NULL) { 292 register int i; 293 /* conversion to int (in i) handles seq wraparound */ 294 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq; 295 if (i > 0) { 296 if (i >= *tlenp) { 297 tcpstat.tcps_rcvduppack++; 298 tcpstat.tcps_rcvdupbyte += *tlenp; 299 m_freem(m); 300 uma_zfree(tcp_reass_zone, te); 301 tp->t_segqlen--; 302 tcp_reass_qsize--; 303 /* 304 * Try to present any queued data 305 * at the left window edge to the user. 306 * This is needed after the 3-WHS 307 * completes. 308 */ 309 goto present; /* ??? */ 310 } 311 m_adj(m, i); 312 *tlenp -= i; 313 th->th_seq += i; 314 } 315 } 316 tcpstat.tcps_rcvoopack++; 317 tcpstat.tcps_rcvoobyte += *tlenp; 318 319 /* 320 * While we overlap succeeding segments trim them or, 321 * if they are completely covered, dequeue them. 322 */ 323 while (q) { 324 register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq; 325 if (i <= 0) 326 break; 327 if (i < q->tqe_len) { 328 q->tqe_th->th_seq += i; 329 q->tqe_len -= i; 330 m_adj(q->tqe_m, i); 331 break; 332 } 333 334 nq = LIST_NEXT(q, tqe_q); 335 LIST_REMOVE(q, tqe_q); 336 m_freem(q->tqe_m); 337 uma_zfree(tcp_reass_zone, q); 338 tp->t_segqlen--; 339 tcp_reass_qsize--; 340 q = nq; 341 } 342 343 /* Insert the new segment queue entry into place. */ 344 te->tqe_m = m; 345 te->tqe_th = th; 346 te->tqe_len = *tlenp; 347 348 if (p == NULL) { 349 LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q); 350 } else { 351 LIST_INSERT_AFTER(p, te, tqe_q); 352 } 353 354 present: 355 /* 356 * Present data to user, advancing rcv_nxt through 357 * completed sequence space. 358 */ 359 if (!TCPS_HAVEESTABLISHED(tp->t_state)) 360 return (0); 361 q = LIST_FIRST(&tp->t_segq); 362 if (!q || q->tqe_th->th_seq != tp->rcv_nxt) 363 return (0); 364 SOCKBUF_LOCK(&so->so_rcv); 365 do { 366 tp->rcv_nxt += q->tqe_len; 367 flags = q->tqe_th->th_flags & TH_FIN; 368 nq = LIST_NEXT(q, tqe_q); 369 LIST_REMOVE(q, tqe_q); 370 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 371 m_freem(q->tqe_m); 372 else 373 sbappendstream_locked(&so->so_rcv, q->tqe_m); 374 uma_zfree(tcp_reass_zone, q); 375 tp->t_segqlen--; 376 tcp_reass_qsize--; 377 q = nq; 378 } while (q && q->tqe_th->th_seq == tp->rcv_nxt); 379 ND6_HINT(tp); 380 sorwakeup_locked(so); 381 return (flags); 382 } 383 384 /* 385 * TCP input routine, follows pages 65-76 of the 386 * protocol specification dated September, 1981 very closely. 387 */ 388 #ifdef INET6 389 int 390 tcp6_input(mp, offp, proto) 391 struct mbuf **mp; 392 int *offp, proto; 393 { 394 register struct mbuf *m = *mp; 395 struct in6_ifaddr *ia6; 396 397 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE); 398 399 /* 400 * draft-itojun-ipv6-tcp-to-anycast 401 * better place to put this in? 402 */ 403 ia6 = ip6_getdstifaddr(m); 404 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { 405 struct ip6_hdr *ip6; 406 407 ip6 = mtod(m, struct ip6_hdr *); 408 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 409 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); 410 return IPPROTO_DONE; 411 } 412 413 tcp_input(m, *offp); 414 return IPPROTO_DONE; 415 } 416 #endif 417 418 void 419 tcp_input(m, off0) 420 register struct mbuf *m; 421 int off0; 422 { 423 register struct tcphdr *th; 424 register struct ip *ip = NULL; 425 register struct ipovly *ipov; 426 register struct inpcb *inp = NULL; 427 u_char *optp = NULL; 428 int optlen = 0; 429 int len, tlen, off; 430 int drop_hdrlen; 431 register struct tcpcb *tp = 0; 432 register int thflags; 433 struct socket *so = 0; 434 int todrop, acked, ourfinisacked, needoutput = 0; 435 u_long tiwin; 436 struct tcpopt to; /* options in this segment */ 437 int headlocked = 0; 438 #ifdef IPFIREWALL_FORWARD 439 struct m_tag *fwd_tag; 440 #endif 441 int rstreason; /* For badport_bandlim accounting purposes */ 442 443 struct ip6_hdr *ip6 = NULL; 444 #ifdef INET6 445 int isipv6; 446 #else 447 const int isipv6 = 0; 448 #endif 449 450 #ifdef TCPDEBUG 451 /* 452 * The size of tcp_saveipgen must be the size of the max ip header, 453 * now IPv6. 454 */ 455 u_char tcp_saveipgen[40]; 456 struct tcphdr tcp_savetcp; 457 short ostate = 0; 458 #endif 459 460 #ifdef INET6 461 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 462 #endif 463 bzero((char *)&to, sizeof(to)); 464 465 tcpstat.tcps_rcvtotal++; 466 467 if (isipv6) { 468 #ifdef INET6 469 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */ 470 ip6 = mtod(m, struct ip6_hdr *); 471 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; 472 if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) { 473 tcpstat.tcps_rcvbadsum++; 474 goto drop; 475 } 476 th = (struct tcphdr *)((caddr_t)ip6 + off0); 477 478 /* 479 * Be proactive about unspecified IPv6 address in source. 480 * As we use all-zero to indicate unbounded/unconnected pcb, 481 * unspecified IPv6 address can be used to confuse us. 482 * 483 * Note that packets with unspecified IPv6 destination is 484 * already dropped in ip6_input. 485 */ 486 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 487 /* XXX stat */ 488 goto drop; 489 } 490 #else 491 th = NULL; /* XXX: avoid compiler warning */ 492 #endif 493 } else { 494 /* 495 * Get IP and TCP header together in first mbuf. 496 * Note: IP leaves IP header in first mbuf. 497 */ 498 if (off0 > sizeof (struct ip)) { 499 ip_stripoptions(m, (struct mbuf *)0); 500 off0 = sizeof(struct ip); 501 } 502 if (m->m_len < sizeof (struct tcpiphdr)) { 503 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { 504 tcpstat.tcps_rcvshort++; 505 return; 506 } 507 } 508 ip = mtod(m, struct ip *); 509 ipov = (struct ipovly *)ip; 510 th = (struct tcphdr *)((caddr_t)ip + off0); 511 tlen = ip->ip_len; 512 513 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 514 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 515 th->th_sum = m->m_pkthdr.csum_data; 516 else 517 th->th_sum = in_pseudo(ip->ip_src.s_addr, 518 ip->ip_dst.s_addr, 519 htonl(m->m_pkthdr.csum_data + 520 ip->ip_len + 521 IPPROTO_TCP)); 522 th->th_sum ^= 0xffff; 523 #ifdef TCPDEBUG 524 ipov->ih_len = (u_short)tlen; 525 ipov->ih_len = htons(ipov->ih_len); 526 #endif 527 } else { 528 /* 529 * Checksum extended TCP header and data. 530 */ 531 len = sizeof (struct ip) + tlen; 532 bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); 533 ipov->ih_len = (u_short)tlen; 534 ipov->ih_len = htons(ipov->ih_len); 535 th->th_sum = in_cksum(m, len); 536 } 537 if (th->th_sum) { 538 tcpstat.tcps_rcvbadsum++; 539 goto drop; 540 } 541 #ifdef INET6 542 /* Re-initialization for later version check */ 543 ip->ip_v = IPVERSION; 544 #endif 545 } 546 547 /* 548 * Check that TCP offset makes sense, 549 * pull out TCP options and adjust length. XXX 550 */ 551 off = th->th_off << 2; 552 if (off < sizeof (struct tcphdr) || off > tlen) { 553 tcpstat.tcps_rcvbadoff++; 554 goto drop; 555 } 556 tlen -= off; /* tlen is used instead of ti->ti_len */ 557 if (off > sizeof (struct tcphdr)) { 558 if (isipv6) { 559 #ifdef INET6 560 IP6_EXTHDR_CHECK(m, off0, off, ); 561 ip6 = mtod(m, struct ip6_hdr *); 562 th = (struct tcphdr *)((caddr_t)ip6 + off0); 563 #endif 564 } else { 565 if (m->m_len < sizeof(struct ip) + off) { 566 if ((m = m_pullup(m, sizeof (struct ip) + off)) 567 == 0) { 568 tcpstat.tcps_rcvshort++; 569 return; 570 } 571 ip = mtod(m, struct ip *); 572 ipov = (struct ipovly *)ip; 573 th = (struct tcphdr *)((caddr_t)ip + off0); 574 } 575 } 576 optlen = off - sizeof (struct tcphdr); 577 optp = (u_char *)(th + 1); 578 } 579 thflags = th->th_flags; 580 581 #ifdef TCP_DROP_SYNFIN 582 /* 583 * If the drop_synfin option is enabled, drop all packets with 584 * both the SYN and FIN bits set. This prevents e.g. nmap from 585 * identifying the TCP/IP stack. 586 * 587 * This is a violation of the TCP specification. 588 */ 589 if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN)) 590 goto drop; 591 #endif 592 593 /* 594 * Convert TCP protocol specific fields to host format. 595 */ 596 th->th_seq = ntohl(th->th_seq); 597 th->th_ack = ntohl(th->th_ack); 598 th->th_win = ntohs(th->th_win); 599 th->th_urp = ntohs(th->th_urp); 600 601 /* 602 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options, 603 * until after ip6_savecontrol() is called and before other functions 604 * which don't want those proto headers. 605 * Because ip6_savecontrol() is going to parse the mbuf to 606 * search for data to be passed up to user-land, it wants mbuf 607 * parameters to be unchanged. 608 * XXX: the call of ip6_savecontrol() has been obsoleted based on 609 * latest version of the advanced API (20020110). 610 */ 611 drop_hdrlen = off0 + off; 612 613 /* 614 * Locate pcb for segment. 615 */ 616 INP_INFO_WLOCK(&tcbinfo); 617 headlocked = 1; 618 findpcb: 619 KASSERT(headlocked, ("tcp_input: findpcb: head not locked")); 620 #ifdef IPFIREWALL_FORWARD 621 /* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ 622 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 623 624 if (fwd_tag != NULL && isipv6 == 0) { /* IPv6 support is not yet */ 625 struct sockaddr_in *next_hop; 626 627 next_hop = (struct sockaddr_in *)(fwd_tag+1); 628 /* 629 * Transparently forwarded. Pretend to be the destination. 630 * already got one like this? 631 */ 632 inp = in_pcblookup_hash(&tcbinfo, 633 ip->ip_src, th->th_sport, 634 ip->ip_dst, th->th_dport, 635 0, m->m_pkthdr.rcvif); 636 if (!inp) { 637 /* It's new. Try to find the ambushing socket. */ 638 inp = in_pcblookup_hash(&tcbinfo, 639 ip->ip_src, th->th_sport, 640 next_hop->sin_addr, 641 next_hop->sin_port ? 642 ntohs(next_hop->sin_port) : 643 th->th_dport, 644 1, m->m_pkthdr.rcvif); 645 } 646 /* Remove the tag from the packet. We don't need it anymore. */ 647 m_tag_delete(m, fwd_tag); 648 } else { 649 #endif /* IPFIREWALL_FORWARD */ 650 if (isipv6) { 651 #ifdef INET6 652 inp = in6_pcblookup_hash(&tcbinfo, 653 &ip6->ip6_src, th->th_sport, 654 &ip6->ip6_dst, th->th_dport, 655 1, m->m_pkthdr.rcvif); 656 #endif 657 } else 658 inp = in_pcblookup_hash(&tcbinfo, 659 ip->ip_src, th->th_sport, 660 ip->ip_dst, th->th_dport, 661 1, m->m_pkthdr.rcvif); 662 #ifdef IPFIREWALL_FORWARD 663 } 664 #endif /* IPFIREWALL_FORWARD */ 665 666 #if defined(IPSEC) || defined(FAST_IPSEC) 667 #ifdef INET6 668 if (isipv6) { 669 if (inp != NULL && ipsec6_in_reject(m, inp)) { 670 #ifdef IPSEC 671 ipsec6stat.in_polvio++; 672 #endif 673 goto drop; 674 } 675 } else 676 #endif /* INET6 */ 677 if (inp != NULL && ipsec4_in_reject(m, inp)) { 678 #ifdef IPSEC 679 ipsecstat.in_polvio++; 680 #endif 681 goto drop; 682 } 683 #endif /*IPSEC || FAST_IPSEC*/ 684 685 /* 686 * If the state is CLOSED (i.e., TCB does not exist) then 687 * all data in the incoming segment is discarded. 688 * If the TCB exists but is in CLOSED state, it is embryonic, 689 * but should either do a listen or a connect soon. 690 */ 691 if (inp == NULL) { 692 if (log_in_vain) { 693 #ifdef INET6 694 char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2]; 695 #else 696 char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"]; 697 #endif 698 699 if (isipv6) { 700 #ifdef INET6 701 strcpy(dbuf, "["); 702 strcpy(sbuf, "["); 703 strcat(dbuf, ip6_sprintf(&ip6->ip6_dst)); 704 strcat(sbuf, ip6_sprintf(&ip6->ip6_src)); 705 strcat(dbuf, "]"); 706 strcat(sbuf, "]"); 707 #endif 708 } else { 709 strcpy(dbuf, inet_ntoa(ip->ip_dst)); 710 strcpy(sbuf, inet_ntoa(ip->ip_src)); 711 } 712 switch (log_in_vain) { 713 case 1: 714 if ((thflags & TH_SYN) == 0) 715 break; 716 /* FALLTHROUGH */ 717 case 2: 718 log(LOG_INFO, 719 "Connection attempt to TCP %s:%d " 720 "from %s:%d flags:0x%02x\n", 721 dbuf, ntohs(th->th_dport), sbuf, 722 ntohs(th->th_sport), thflags); 723 break; 724 default: 725 break; 726 } 727 } 728 if (blackhole) { 729 switch (blackhole) { 730 case 1: 731 if (thflags & TH_SYN) 732 goto drop; 733 break; 734 case 2: 735 goto drop; 736 default: 737 goto drop; 738 } 739 } 740 rstreason = BANDLIM_RST_CLOSEDPORT; 741 goto dropwithreset; 742 } 743 INP_LOCK(inp); 744 745 /* Check the minimum TTL for socket. */ 746 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) 747 goto drop; 748 749 if (inp->inp_vflag & INP_TIMEWAIT) { 750 /* 751 * The only option of relevance is TOF_CC, and only if 752 * present in a SYN segment. See tcp_timewait(). 753 */ 754 if (thflags & TH_SYN) 755 tcp_dooptions(&to, optp, optlen, 1); 756 if (tcp_timewait((struct tcptw *)inp->inp_ppcb, 757 &to, th, m, tlen)) 758 goto findpcb; 759 /* 760 * tcp_timewait unlocks inp. 761 */ 762 INP_INFO_WUNLOCK(&tcbinfo); 763 return; 764 } 765 tp = intotcpcb(inp); 766 if (tp == 0) { 767 INP_UNLOCK(inp); 768 rstreason = BANDLIM_RST_CLOSEDPORT; 769 goto dropwithreset; 770 } 771 if (tp->t_state == TCPS_CLOSED) 772 goto drop; 773 774 /* Unscale the window into a 32-bit value. */ 775 if ((thflags & TH_SYN) == 0) 776 tiwin = th->th_win << tp->snd_scale; 777 else 778 tiwin = th->th_win; 779 780 #ifdef MAC 781 INP_LOCK_ASSERT(inp); 782 if (mac_check_inpcb_deliver(inp, m)) 783 goto drop; 784 #endif 785 so = inp->inp_socket; 786 #ifdef TCPDEBUG 787 if (so->so_options & SO_DEBUG) { 788 ostate = tp->t_state; 789 if (isipv6) 790 bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6)); 791 else 792 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); 793 tcp_savetcp = *th; 794 } 795 #endif 796 if (so->so_options & SO_ACCEPTCONN) { 797 struct in_conninfo inc; 798 799 #ifdef INET6 800 inc.inc_isipv6 = isipv6; 801 #endif 802 if (isipv6) { 803 inc.inc6_faddr = ip6->ip6_src; 804 inc.inc6_laddr = ip6->ip6_dst; 805 } else { 806 inc.inc_faddr = ip->ip_src; 807 inc.inc_laddr = ip->ip_dst; 808 } 809 inc.inc_fport = th->th_sport; 810 inc.inc_lport = th->th_dport; 811 812 /* 813 * If the state is LISTEN then ignore segment if it contains 814 * a RST. If the segment contains an ACK then it is bad and 815 * send a RST. If it does not contain a SYN then it is not 816 * interesting; drop it. 817 * 818 * If the state is SYN_RECEIVED (syncache) and seg contains 819 * an ACK, but not for our SYN/ACK, send a RST. If the seg 820 * contains a RST, check the sequence number to see if it 821 * is a valid reset segment. 822 */ 823 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { 824 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) { 825 if (!syncache_expand(&inc, th, &so, m)) { 826 /* 827 * No syncache entry, or ACK was not 828 * for our SYN/ACK. Send a RST. 829 */ 830 tcpstat.tcps_badsyn++; 831 rstreason = BANDLIM_RST_OPENPORT; 832 goto dropwithreset; 833 } 834 if (so == NULL) { 835 /* 836 * Could not complete 3-way handshake, 837 * connection is being closed down, and 838 * syncache will free mbuf. 839 */ 840 INP_UNLOCK(inp); 841 INP_INFO_WUNLOCK(&tcbinfo); 842 return; 843 } 844 /* 845 * Socket is created in state SYN_RECEIVED. 846 * Continue processing segment. 847 */ 848 INP_UNLOCK(inp); 849 inp = sotoinpcb(so); 850 INP_LOCK(inp); 851 tp = intotcpcb(inp); 852 /* 853 * This is what would have happened in 854 * tcp_output() when the SYN,ACK was sent. 855 */ 856 tp->snd_up = tp->snd_una; 857 tp->snd_max = tp->snd_nxt = tp->iss + 1; 858 tp->last_ack_sent = tp->rcv_nxt; 859 /* 860 * RFC1323: The window in SYN & SYN/ACK 861 * segments is never scaled. 862 */ 863 tp->snd_wnd = tiwin; /* unscaled */ 864 goto after_listen; 865 } 866 if (thflags & TH_RST) { 867 syncache_chkrst(&inc, th); 868 goto drop; 869 } 870 if (thflags & TH_ACK) { 871 syncache_badack(&inc); 872 tcpstat.tcps_badsyn++; 873 rstreason = BANDLIM_RST_OPENPORT; 874 goto dropwithreset; 875 } 876 goto drop; 877 } 878 879 /* 880 * Segment's flags are (SYN) or (SYN|FIN). 881 */ 882 #ifdef INET6 883 /* 884 * If deprecated address is forbidden, 885 * we do not accept SYN to deprecated interface 886 * address to prevent any new inbound connection from 887 * getting established. 888 * When we do not accept SYN, we send a TCP RST, 889 * with deprecated source address (instead of dropping 890 * it). We compromise it as it is much better for peer 891 * to send a RST, and RST will be the final packet 892 * for the exchange. 893 * 894 * If we do not forbid deprecated addresses, we accept 895 * the SYN packet. RFC2462 does not suggest dropping 896 * SYN in this case. 897 * If we decipher RFC2462 5.5.4, it says like this: 898 * 1. use of deprecated addr with existing 899 * communication is okay - "SHOULD continue to be 900 * used" 901 * 2. use of it with new communication: 902 * (2a) "SHOULD NOT be used if alternate address 903 * with sufficient scope is available" 904 * (2b) nothing mentioned otherwise. 905 * Here we fall into (2b) case as we have no choice in 906 * our source address selection - we must obey the peer. 907 * 908 * The wording in RFC2462 is confusing, and there are 909 * multiple description text for deprecated address 910 * handling - worse, they are not exactly the same. 911 * I believe 5.5.4 is the best one, so we follow 5.5.4. 912 */ 913 if (isipv6 && !ip6_use_deprecated) { 914 struct in6_ifaddr *ia6; 915 916 if ((ia6 = ip6_getdstifaddr(m)) && 917 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { 918 INP_UNLOCK(inp); 919 tp = NULL; 920 rstreason = BANDLIM_RST_OPENPORT; 921 goto dropwithreset; 922 } 923 } 924 #endif 925 /* 926 * If it is from this socket, drop it, it must be forged. 927 * Don't bother responding if the destination was a broadcast. 928 */ 929 if (th->th_dport == th->th_sport) { 930 if (isipv6) { 931 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, 932 &ip6->ip6_src)) 933 goto drop; 934 } else { 935 if (ip->ip_dst.s_addr == ip->ip_src.s_addr) 936 goto drop; 937 } 938 } 939 /* 940 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN 941 * 942 * Note that it is quite possible to receive unicast 943 * link-layer packets with a broadcast IP address. Use 944 * in_broadcast() to find them. 945 */ 946 if (m->m_flags & (M_BCAST|M_MCAST)) 947 goto drop; 948 if (isipv6) { 949 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 950 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 951 goto drop; 952 } else { 953 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 954 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 955 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 956 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 957 goto drop; 958 } 959 /* 960 * SYN appears to be valid; create compressed TCP state 961 * for syncache, or perform t/tcp connection. 962 */ 963 if (so->so_qlen <= so->so_qlimit) { 964 #ifdef TCPDEBUG 965 if (so->so_options & SO_DEBUG) 966 tcp_trace(TA_INPUT, ostate, tp, 967 (void *)tcp_saveipgen, &tcp_savetcp, 0); 968 #endif 969 tcp_dooptions(&to, optp, optlen, 1); 970 if (!syncache_add(&inc, &to, th, &so, m)) 971 goto drop; 972 if (so == NULL) { 973 /* 974 * Entry added to syncache, mbuf used to 975 * send SYN,ACK packet. 976 */ 977 KASSERT(headlocked, ("headlocked")); 978 INP_UNLOCK(inp); 979 INP_INFO_WUNLOCK(&tcbinfo); 980 return; 981 } 982 /* 983 * Segment passed TAO tests. 984 */ 985 INP_UNLOCK(inp); 986 inp = sotoinpcb(so); 987 INP_LOCK(inp); 988 tp = intotcpcb(inp); 989 tp->snd_wnd = tiwin; 990 tp->t_starttime = ticks; 991 tp->t_state = TCPS_ESTABLISHED; 992 993 /* 994 * T/TCP logic: 995 * If there is a FIN or if there is data, then 996 * delay SYN,ACK(SYN) in the hope of piggy-backing 997 * it on a response segment. Otherwise must send 998 * ACK now in case the other side is slow starting. 999 */ 1000 if (thflags & TH_FIN || tlen != 0) 1001 tp->t_flags |= (TF_DELACK | TF_NEEDSYN); 1002 else 1003 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 1004 tcpstat.tcps_connects++; 1005 soisconnected(so); 1006 goto trimthenstep6; 1007 } 1008 goto drop; 1009 } 1010 after_listen: 1011 KASSERT(headlocked, ("tcp_input: after_listen: head not locked")); 1012 INP_LOCK_ASSERT(inp); 1013 1014 /* Syncache takes care of sockets in the listen state. */ 1015 KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN")); 1016 1017 /* 1018 * This is the second part of the MSS DoS prevention code (after 1019 * minmss on the sending side) and it deals with too many too small 1020 * tcp packets in a too short timeframe (1 second). 1021 * 1022 * For every full second we count the number of received packets 1023 * and bytes. If we get a lot of packets per second for this connection 1024 * (tcp_minmssoverload) we take a closer look at it and compute the 1025 * average packet size for the past second. If that is less than 1026 * tcp_minmss we get too many packets with very small payload which 1027 * is not good and burdens our system (and every packet generates 1028 * a wakeup to the process connected to our socket). We can reasonable 1029 * expect this to be small packet DoS attack to exhaust our CPU 1030 * cycles. 1031 * 1032 * Care has to be taken for the minimum packet overload value. This 1033 * value defines the minimum number of packets per second before we 1034 * start to worry. This must not be too low to avoid killing for 1035 * example interactive connections with many small packets like 1036 * telnet or SSH. 1037 * 1038 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables 1039 * this check. 1040 * 1041 * Account for packet if payload packet, skip over ACK, etc. 1042 */ 1043 if (tcp_minmss && tcp_minmssoverload && 1044 tp->t_state == TCPS_ESTABLISHED && tlen > 0) { 1045 if ((unsigned int)(tp->rcv_second - ticks) < hz) { 1046 tp->rcv_pps++; 1047 tp->rcv_byps += tlen + off; 1048 if (tp->rcv_pps > tcp_minmssoverload) { 1049 if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) { 1050 printf("too many small tcp packets from " 1051 "%s:%u, av. %lubyte/packet, " 1052 "dropping connection\n", 1053 #ifdef INET6 1054 isipv6 ? 1055 ip6_sprintf(&inp->inp_inc.inc6_faddr) : 1056 #endif 1057 inet_ntoa(inp->inp_inc.inc_faddr), 1058 inp->inp_inc.inc_fport, 1059 tp->rcv_byps / tp->rcv_pps); 1060 KASSERT(headlocked, ("tcp_input: " 1061 "after_listen: tcp_drop: head " 1062 "not locked")); 1063 tp = tcp_drop(tp, ECONNRESET); 1064 tcpstat.tcps_minmssdrops++; 1065 goto drop; 1066 } 1067 } 1068 } else { 1069 tp->rcv_second = ticks + hz; 1070 tp->rcv_pps = 1; 1071 tp->rcv_byps = tlen + off; 1072 } 1073 } 1074 1075 /* 1076 * Segment received on connection. 1077 * Reset idle time and keep-alive timer. 1078 */ 1079 tp->t_rcvtime = ticks; 1080 if (TCPS_HAVEESTABLISHED(tp->t_state)) 1081 callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp); 1082 1083 /* 1084 * Process options only when we get SYN/ACK back. The SYN case 1085 * for incoming connections is handled in tcp_syncache. 1086 * XXX this is traditional behavior, may need to be cleaned up. 1087 */ 1088 tcp_dooptions(&to, optp, optlen, thflags & TH_SYN); 1089 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 1090 if (to.to_flags & TOF_SCALE) { 1091 tp->t_flags |= TF_RCVD_SCALE; 1092 tp->requested_s_scale = to.to_requested_s_scale; 1093 } 1094 if (to.to_flags & TOF_TS) { 1095 tp->t_flags |= TF_RCVD_TSTMP; 1096 tp->ts_recent = to.to_tsval; 1097 tp->ts_recent_age = ticks; 1098 } 1099 if (to.to_flags & TOF_MSS) 1100 tcp_mss(tp, to.to_mss); 1101 if (tp->sack_enable) { 1102 if (!(to.to_flags & TOF_SACK)) 1103 tp->sack_enable = 0; 1104 else 1105 tp->t_flags |= TF_SACK_PERMIT; 1106 } 1107 1108 } 1109 1110 /* 1111 * Header prediction: check for the two common cases 1112 * of a uni-directional data xfer. If the packet has 1113 * no control flags, is in-sequence, the window didn't 1114 * change and we're not retransmitting, it's a 1115 * candidate. If the length is zero and the ack moved 1116 * forward, we're the sender side of the xfer. Just 1117 * free the data acked & wake any higher level process 1118 * that was blocked waiting for space. If the length 1119 * is non-zero and the ack didn't move, we're the 1120 * receiver side. If we're getting packets in-order 1121 * (the reassembly queue is empty), add the data to 1122 * the socket buffer and note that we need a delayed ack. 1123 * Make sure that the hidden state-flags are also off. 1124 * Since we check for TCPS_ESTABLISHED above, it can only 1125 * be TH_NEEDSYN. 1126 */ 1127 if (tp->t_state == TCPS_ESTABLISHED && 1128 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 1129 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && 1130 ((to.to_flags & TOF_TS) == 0 || 1131 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) && 1132 th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd && 1133 tp->snd_nxt == tp->snd_max) { 1134 1135 /* 1136 * If last ACK falls within this segment's sequence numbers, 1137 * record the timestamp. 1138 * NOTE that the test is modified according to the latest 1139 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 1140 */ 1141 if ((to.to_flags & TOF_TS) != 0 && 1142 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 1143 tp->ts_recent_age = ticks; 1144 tp->ts_recent = to.to_tsval; 1145 } 1146 1147 if (tlen == 0) { 1148 if (SEQ_GT(th->th_ack, tp->snd_una) && 1149 SEQ_LEQ(th->th_ack, tp->snd_max) && 1150 tp->snd_cwnd >= tp->snd_wnd && 1151 ((!tcp_do_newreno && !tp->sack_enable && 1152 tp->t_dupacks < tcprexmtthresh) || 1153 ((tcp_do_newreno || tp->sack_enable) && 1154 !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 && 1155 TAILQ_EMPTY(&tp->snd_holes)))) { 1156 KASSERT(headlocked, ("headlocked")); 1157 INP_INFO_WUNLOCK(&tcbinfo); 1158 headlocked = 0; 1159 /* 1160 * this is a pure ack for outstanding data. 1161 */ 1162 ++tcpstat.tcps_predack; 1163 /* 1164 * "bad retransmit" recovery 1165 */ 1166 if (tp->t_rxtshift == 1 && 1167 ticks < tp->t_badrxtwin) { 1168 ++tcpstat.tcps_sndrexmitbad; 1169 tp->snd_cwnd = tp->snd_cwnd_prev; 1170 tp->snd_ssthresh = 1171 tp->snd_ssthresh_prev; 1172 tp->snd_recover = tp->snd_recover_prev; 1173 if (tp->t_flags & TF_WASFRECOVERY) 1174 ENTER_FASTRECOVERY(tp); 1175 tp->snd_nxt = tp->snd_max; 1176 tp->t_badrxtwin = 0; 1177 } 1178 1179 /* 1180 * Recalculate the transmit timer / rtt. 1181 * 1182 * Some boxes send broken timestamp replies 1183 * during the SYN+ACK phase, ignore 1184 * timestamps of 0 or we could calculate a 1185 * huge RTT and blow up the retransmit timer. 1186 */ 1187 if ((to.to_flags & TOF_TS) != 0 && 1188 to.to_tsecr) { 1189 tcp_xmit_timer(tp, 1190 ticks - to.to_tsecr + 1); 1191 } else if (tp->t_rtttime && 1192 SEQ_GT(th->th_ack, tp->t_rtseq)) { 1193 tcp_xmit_timer(tp, 1194 ticks - tp->t_rtttime); 1195 } 1196 tcp_xmit_bandwidth_limit(tp, th->th_ack); 1197 acked = th->th_ack - tp->snd_una; 1198 tcpstat.tcps_rcvackpack++; 1199 tcpstat.tcps_rcvackbyte += acked; 1200 sbdrop(&so->so_snd, acked); 1201 if (SEQ_GT(tp->snd_una, tp->snd_recover) && 1202 SEQ_LEQ(th->th_ack, tp->snd_recover)) 1203 tp->snd_recover = th->th_ack - 1; 1204 tp->snd_una = th->th_ack; 1205 /* 1206 * pull snd_wl2 up to prevent seq wrap relative 1207 * to th_ack. 1208 */ 1209 tp->snd_wl2 = th->th_ack; 1210 tp->t_dupacks = 0; 1211 m_freem(m); 1212 ND6_HINT(tp); /* some progress has been done */ 1213 1214 /* 1215 * If all outstanding data are acked, stop 1216 * retransmit timer, otherwise restart timer 1217 * using current (possibly backed-off) value. 1218 * If process is waiting for space, 1219 * wakeup/selwakeup/signal. If data 1220 * are ready to send, let tcp_output 1221 * decide between more output or persist. 1222 1223 #ifdef TCPDEBUG 1224 if (so->so_options & SO_DEBUG) 1225 tcp_trace(TA_INPUT, ostate, tp, 1226 (void *)tcp_saveipgen, 1227 &tcp_savetcp, 0); 1228 #endif 1229 */ 1230 if (tp->snd_una == tp->snd_max) 1231 callout_stop(tp->tt_rexmt); 1232 else if (!callout_active(tp->tt_persist)) 1233 callout_reset(tp->tt_rexmt, 1234 tp->t_rxtcur, 1235 tcp_timer_rexmt, tp); 1236 1237 sowwakeup(so); 1238 if (so->so_snd.sb_cc) 1239 (void) tcp_output(tp); 1240 goto check_delack; 1241 } 1242 } else if (th->th_ack == tp->snd_una && 1243 LIST_EMPTY(&tp->t_segq) && 1244 tlen <= sbspace(&so->so_rcv)) { 1245 KASSERT(headlocked, ("headlocked")); 1246 INP_INFO_WUNLOCK(&tcbinfo); 1247 headlocked = 0; 1248 /* 1249 * this is a pure, in-sequence data packet 1250 * with nothing on the reassembly queue and 1251 * we have enough buffer space to take it. 1252 */ 1253 /* Clean receiver SACK report if present */ 1254 if (tp->sack_enable && tp->rcv_numsacks) 1255 tcp_clean_sackreport(tp); 1256 ++tcpstat.tcps_preddat; 1257 tp->rcv_nxt += tlen; 1258 /* 1259 * Pull snd_wl1 up to prevent seq wrap relative to 1260 * th_seq. 1261 */ 1262 tp->snd_wl1 = th->th_seq; 1263 /* 1264 * Pull rcv_up up to prevent seq wrap relative to 1265 * rcv_nxt. 1266 */ 1267 tp->rcv_up = tp->rcv_nxt; 1268 tcpstat.tcps_rcvpack++; 1269 tcpstat.tcps_rcvbyte += tlen; 1270 ND6_HINT(tp); /* some progress has been done */ 1271 /* 1272 #ifdef TCPDEBUG 1273 if (so->so_options & SO_DEBUG) 1274 tcp_trace(TA_INPUT, ostate, tp, 1275 (void *)tcp_saveipgen, &tcp_savetcp, 0); 1276 #endif 1277 * Add data to socket buffer. 1278 */ 1279 SOCKBUF_LOCK(&so->so_rcv); 1280 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1281 m_freem(m); 1282 } else { 1283 m_adj(m, drop_hdrlen); /* delayed header drop */ 1284 sbappendstream_locked(&so->so_rcv, m); 1285 } 1286 sorwakeup_locked(so); 1287 if (DELAY_ACK(tp)) { 1288 tp->t_flags |= TF_DELACK; 1289 } else { 1290 tp->t_flags |= TF_ACKNOW; 1291 tcp_output(tp); 1292 } 1293 goto check_delack; 1294 } 1295 } 1296 1297 /* 1298 * Calculate amount of space in receive window, 1299 * and then do TCP input processing. 1300 * Receive window is amount of space in rcv queue, 1301 * but not less than advertised window. 1302 */ 1303 { int win; 1304 1305 win = sbspace(&so->so_rcv); 1306 if (win < 0) 1307 win = 0; 1308 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 1309 } 1310 1311 switch (tp->t_state) { 1312 1313 /* 1314 * If the state is SYN_RECEIVED: 1315 * if seg contains an ACK, but not for our SYN/ACK, send a RST. 1316 */ 1317 case TCPS_SYN_RECEIVED: 1318 if ((thflags & TH_ACK) && 1319 (SEQ_LEQ(th->th_ack, tp->snd_una) || 1320 SEQ_GT(th->th_ack, tp->snd_max))) { 1321 rstreason = BANDLIM_RST_OPENPORT; 1322 goto dropwithreset; 1323 } 1324 break; 1325 1326 /* 1327 * If the state is SYN_SENT: 1328 * if seg contains an ACK, but not for our SYN, drop the input. 1329 * if seg contains a RST, then drop the connection. 1330 * if seg does not contain SYN, then drop it. 1331 * Otherwise this is an acceptable SYN segment 1332 * initialize tp->rcv_nxt and tp->irs 1333 * if seg contains ack then advance tp->snd_una 1334 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 1335 * arrange for segment to be acked (eventually) 1336 * continue processing rest of data/controls, beginning with URG 1337 */ 1338 case TCPS_SYN_SENT: 1339 if ((thflags & TH_ACK) && 1340 (SEQ_LEQ(th->th_ack, tp->iss) || 1341 SEQ_GT(th->th_ack, tp->snd_max))) { 1342 rstreason = BANDLIM_UNLIMITED; 1343 goto dropwithreset; 1344 } 1345 if (thflags & TH_RST) { 1346 if (thflags & TH_ACK) { 1347 KASSERT(headlocked, ("tcp_input: after_listen" 1348 ": tcp_drop.2: head not locked")); 1349 tp = tcp_drop(tp, ECONNREFUSED); 1350 } 1351 goto drop; 1352 } 1353 if ((thflags & TH_SYN) == 0) 1354 goto drop; 1355 tp->snd_wnd = th->th_win; /* initial send window */ 1356 1357 tp->irs = th->th_seq; 1358 tcp_rcvseqinit(tp); 1359 if (thflags & TH_ACK) { 1360 tcpstat.tcps_connects++; 1361 soisconnected(so); 1362 #ifdef MAC 1363 SOCK_LOCK(so); 1364 mac_set_socket_peer_from_mbuf(m, so); 1365 SOCK_UNLOCK(so); 1366 #endif 1367 /* Do window scaling on this connection? */ 1368 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 1369 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 1370 tp->snd_scale = tp->requested_s_scale; 1371 tp->rcv_scale = tp->request_r_scale; 1372 } 1373 tp->rcv_adv += tp->rcv_wnd; 1374 tp->snd_una++; /* SYN is acked */ 1375 /* 1376 * If there's data, delay ACK; if there's also a FIN 1377 * ACKNOW will be turned on later. 1378 */ 1379 if (DELAY_ACK(tp) && tlen != 0) 1380 callout_reset(tp->tt_delack, tcp_delacktime, 1381 tcp_timer_delack, tp); 1382 else 1383 tp->t_flags |= TF_ACKNOW; 1384 /* 1385 * Received <SYN,ACK> in SYN_SENT[*] state. 1386 * Transitions: 1387 * SYN_SENT --> ESTABLISHED 1388 * SYN_SENT* --> FIN_WAIT_1 1389 */ 1390 tp->t_starttime = ticks; 1391 if (tp->t_flags & TF_NEEDFIN) { 1392 tp->t_state = TCPS_FIN_WAIT_1; 1393 tp->t_flags &= ~TF_NEEDFIN; 1394 thflags &= ~TH_SYN; 1395 } else { 1396 tp->t_state = TCPS_ESTABLISHED; 1397 callout_reset(tp->tt_keep, tcp_keepidle, 1398 tcp_timer_keep, tp); 1399 } 1400 } else { 1401 /* 1402 * Received initial SYN in SYN-SENT[*] state => 1403 * simultaneous open. If segment contains CC option 1404 * and there is a cached CC, apply TAO test. 1405 * If it succeeds, connection is * half-synchronized. 1406 * Otherwise, do 3-way handshake: 1407 * SYN-SENT -> SYN-RECEIVED 1408 * SYN-SENT* -> SYN-RECEIVED* 1409 * If there was no CC option, clear cached CC value. 1410 */ 1411 tp->t_flags |= TF_ACKNOW; 1412 callout_stop(tp->tt_rexmt); 1413 tp->t_state = TCPS_SYN_RECEIVED; 1414 } 1415 1416 trimthenstep6: 1417 KASSERT(headlocked, ("tcp_input: trimthenstep6: head not " 1418 "locked")); 1419 INP_LOCK_ASSERT(inp); 1420 1421 /* 1422 * Advance th->th_seq to correspond to first data byte. 1423 * If data, trim to stay within window, 1424 * dropping FIN if necessary. 1425 */ 1426 th->th_seq++; 1427 if (tlen > tp->rcv_wnd) { 1428 todrop = tlen - tp->rcv_wnd; 1429 m_adj(m, -todrop); 1430 tlen = tp->rcv_wnd; 1431 thflags &= ~TH_FIN; 1432 tcpstat.tcps_rcvpackafterwin++; 1433 tcpstat.tcps_rcvbyteafterwin += todrop; 1434 } 1435 tp->snd_wl1 = th->th_seq - 1; 1436 tp->rcv_up = th->th_seq; 1437 /* 1438 * Client side of transaction: already sent SYN and data. 1439 * If the remote host used T/TCP to validate the SYN, 1440 * our data will be ACK'd; if so, enter normal data segment 1441 * processing in the middle of step 5, ack processing. 1442 * Otherwise, goto step 6. 1443 */ 1444 if (thflags & TH_ACK) 1445 goto process_ACK; 1446 1447 goto step6; 1448 1449 /* 1450 * If the state is LAST_ACK or CLOSING or TIME_WAIT: 1451 * do normal processing. 1452 * 1453 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. 1454 */ 1455 case TCPS_LAST_ACK: 1456 case TCPS_CLOSING: 1457 case TCPS_TIME_WAIT: 1458 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait")); 1459 break; /* continue normal processing */ 1460 } 1461 1462 /* 1463 * States other than LISTEN or SYN_SENT. 1464 * First check the RST flag and sequence number since reset segments 1465 * are exempt from the timestamp and connection count tests. This 1466 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix 1467 * below which allowed reset segments in half the sequence space 1468 * to fall though and be processed (which gives forged reset 1469 * segments with a random sequence number a 50 percent chance of 1470 * killing a connection). 1471 * Then check timestamp, if present. 1472 * Then check the connection count, if present. 1473 * Then check that at least some bytes of segment are within 1474 * receive window. If segment begins before rcv_nxt, 1475 * drop leading data (and SYN); if nothing left, just ack. 1476 * 1477 * 1478 * If the RST bit is set, check the sequence number to see 1479 * if this is a valid reset segment. 1480 * RFC 793 page 37: 1481 * In all states except SYN-SENT, all reset (RST) segments 1482 * are validated by checking their SEQ-fields. A reset is 1483 * valid if its sequence number is in the window. 1484 * Note: this does not take into account delayed ACKs, so 1485 * we should test against last_ack_sent instead of rcv_nxt. 1486 * The sequence number in the reset segment is normally an 1487 * echo of our outgoing acknowlegement numbers, but some hosts 1488 * send a reset with the sequence number at the rightmost edge 1489 * of our receive window, and we have to handle this case. 1490 * Note 2: Paul Watson's paper "Slipping in the Window" has shown 1491 * that brute force RST attacks are possible. To combat this, 1492 * we use a much stricter check while in the ESTABLISHED state, 1493 * only accepting RSTs where the sequence number is equal to 1494 * last_ack_sent. In all other states (the states in which a 1495 * RST is more likely), the more permissive check is used. 1496 * If we have multiple segments in flight, the intial reset 1497 * segment sequence numbers will be to the left of last_ack_sent, 1498 * but they will eventually catch up. 1499 * In any case, it never made sense to trim reset segments to 1500 * fit the receive window since RFC 1122 says: 1501 * 4.2.2.12 RST Segment: RFC-793 Section 3.4 1502 * 1503 * A TCP SHOULD allow a received RST segment to include data. 1504 * 1505 * DISCUSSION 1506 * It has been suggested that a RST segment could contain 1507 * ASCII text that encoded and explained the cause of the 1508 * RST. No standard has yet been established for such 1509 * data. 1510 * 1511 * If the reset segment passes the sequence number test examine 1512 * the state: 1513 * SYN_RECEIVED STATE: 1514 * If passive open, return to LISTEN state. 1515 * If active open, inform user that connection was refused. 1516 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES: 1517 * Inform user that connection was reset, and close tcb. 1518 * CLOSING, LAST_ACK STATES: 1519 * Close the tcb. 1520 * TIME_WAIT STATE: 1521 * Drop the segment - see Stevens, vol. 2, p. 964 and 1522 * RFC 1337. 1523 */ 1524 if (thflags & TH_RST) { 1525 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && 1526 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || 1527 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) { 1528 switch (tp->t_state) { 1529 1530 case TCPS_SYN_RECEIVED: 1531 so->so_error = ECONNREFUSED; 1532 goto close; 1533 1534 case TCPS_ESTABLISHED: 1535 if (tp->last_ack_sent != th->th_seq && 1536 tcp_insecure_rst == 0) { 1537 tcpstat.tcps_badrst++; 1538 goto drop; 1539 } 1540 case TCPS_FIN_WAIT_1: 1541 case TCPS_FIN_WAIT_2: 1542 case TCPS_CLOSE_WAIT: 1543 so->so_error = ECONNRESET; 1544 close: 1545 tp->t_state = TCPS_CLOSED; 1546 tcpstat.tcps_drops++; 1547 KASSERT(headlocked, ("tcp_input: " 1548 "trimthenstep6: tcp_close: head not " 1549 "locked")); 1550 tp = tcp_close(tp); 1551 break; 1552 1553 case TCPS_CLOSING: 1554 case TCPS_LAST_ACK: 1555 KASSERT(headlocked, ("trimthenstep6: " 1556 "tcp_close.2: head not locked")); 1557 tp = tcp_close(tp); 1558 break; 1559 1560 case TCPS_TIME_WAIT: 1561 KASSERT(tp->t_state != TCPS_TIME_WAIT, 1562 ("timewait")); 1563 break; 1564 } 1565 } 1566 goto drop; 1567 } 1568 1569 /* 1570 * RFC 1323 PAWS: If we have a timestamp reply on this segment 1571 * and it's less than ts_recent, drop it. 1572 */ 1573 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && 1574 TSTMP_LT(to.to_tsval, tp->ts_recent)) { 1575 1576 /* Check to see if ts_recent is over 24 days old. */ 1577 if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) { 1578 /* 1579 * Invalidate ts_recent. If this segment updates 1580 * ts_recent, the age will be reset later and ts_recent 1581 * will get a valid value. If it does not, setting 1582 * ts_recent to zero will at least satisfy the 1583 * requirement that zero be placed in the timestamp 1584 * echo reply when ts_recent isn't valid. The 1585 * age isn't reset until we get a valid ts_recent 1586 * because we don't want out-of-order segments to be 1587 * dropped when ts_recent is old. 1588 */ 1589 tp->ts_recent = 0; 1590 } else { 1591 tcpstat.tcps_rcvduppack++; 1592 tcpstat.tcps_rcvdupbyte += tlen; 1593 tcpstat.tcps_pawsdrop++; 1594 if (tlen) 1595 goto dropafterack; 1596 goto drop; 1597 } 1598 } 1599 1600 /* 1601 * In the SYN-RECEIVED state, validate that the packet belongs to 1602 * this connection before trimming the data to fit the receive 1603 * window. Check the sequence number versus IRS since we know 1604 * the sequence numbers haven't wrapped. This is a partial fix 1605 * for the "LAND" DoS attack. 1606 */ 1607 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { 1608 rstreason = BANDLIM_RST_OPENPORT; 1609 goto dropwithreset; 1610 } 1611 1612 todrop = tp->rcv_nxt - th->th_seq; 1613 if (todrop > 0) { 1614 if (thflags & TH_SYN) { 1615 thflags &= ~TH_SYN; 1616 th->th_seq++; 1617 if (th->th_urp > 1) 1618 th->th_urp--; 1619 else 1620 thflags &= ~TH_URG; 1621 todrop--; 1622 } 1623 /* 1624 * Following if statement from Stevens, vol. 2, p. 960. 1625 */ 1626 if (todrop > tlen 1627 || (todrop == tlen && (thflags & TH_FIN) == 0)) { 1628 /* 1629 * Any valid FIN must be to the left of the window. 1630 * At this point the FIN must be a duplicate or out 1631 * of sequence; drop it. 1632 */ 1633 thflags &= ~TH_FIN; 1634 1635 /* 1636 * Send an ACK to resynchronize and drop any data. 1637 * But keep on processing for RST or ACK. 1638 */ 1639 tp->t_flags |= TF_ACKNOW; 1640 todrop = tlen; 1641 tcpstat.tcps_rcvduppack++; 1642 tcpstat.tcps_rcvdupbyte += todrop; 1643 } else { 1644 tcpstat.tcps_rcvpartduppack++; 1645 tcpstat.tcps_rcvpartdupbyte += todrop; 1646 } 1647 drop_hdrlen += todrop; /* drop from the top afterwards */ 1648 th->th_seq += todrop; 1649 tlen -= todrop; 1650 if (th->th_urp > todrop) 1651 th->th_urp -= todrop; 1652 else { 1653 thflags &= ~TH_URG; 1654 th->th_urp = 0; 1655 } 1656 } 1657 1658 /* 1659 * If new data are received on a connection after the 1660 * user processes are gone, then RST the other end. 1661 */ 1662 if ((so->so_state & SS_NOFDREF) && 1663 tp->t_state > TCPS_CLOSE_WAIT && tlen) { 1664 KASSERT(headlocked, ("trimthenstep6: tcp_close.3: head not " 1665 "locked")); 1666 tp = tcp_close(tp); 1667 tcpstat.tcps_rcvafterclose++; 1668 rstreason = BANDLIM_UNLIMITED; 1669 goto dropwithreset; 1670 } 1671 1672 /* 1673 * If segment ends after window, drop trailing data 1674 * (and PUSH and FIN); if nothing left, just ACK. 1675 */ 1676 todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd); 1677 if (todrop > 0) { 1678 tcpstat.tcps_rcvpackafterwin++; 1679 if (todrop >= tlen) { 1680 tcpstat.tcps_rcvbyteafterwin += tlen; 1681 /* 1682 * If a new connection request is received 1683 * while in TIME_WAIT, drop the old connection 1684 * and start over if the sequence numbers 1685 * are above the previous ones. 1686 */ 1687 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait")); 1688 if (thflags & TH_SYN && 1689 tp->t_state == TCPS_TIME_WAIT && 1690 SEQ_GT(th->th_seq, tp->rcv_nxt)) { 1691 KASSERT(headlocked, ("trimthenstep6: " 1692 "tcp_close.4: head not locked")); 1693 tp = tcp_close(tp); 1694 goto findpcb; 1695 } 1696 /* 1697 * If window is closed can only take segments at 1698 * window edge, and have to drop data and PUSH from 1699 * incoming segments. Continue processing, but 1700 * remember to ack. Otherwise, drop segment 1701 * and ack. 1702 */ 1703 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { 1704 tp->t_flags |= TF_ACKNOW; 1705 tcpstat.tcps_rcvwinprobe++; 1706 } else 1707 goto dropafterack; 1708 } else 1709 tcpstat.tcps_rcvbyteafterwin += todrop; 1710 m_adj(m, -todrop); 1711 tlen -= todrop; 1712 thflags &= ~(TH_PUSH|TH_FIN); 1713 } 1714 1715 /* 1716 * If last ACK falls within this segment's sequence numbers, 1717 * record its timestamp. 1718 * NOTE: 1719 * 1) That the test incorporates suggestions from the latest 1720 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 1721 * 2) That updating only on newer timestamps interferes with 1722 * our earlier PAWS tests, so this check should be solely 1723 * predicated on the sequence space of this segment. 1724 * 3) That we modify the segment boundary check to be 1725 * Last.ACK.Sent <= SEG.SEQ + SEG.Len 1726 * instead of RFC1323's 1727 * Last.ACK.Sent < SEG.SEQ + SEG.Len, 1728 * This modified check allows us to overcome RFC1323's 1729 * limitations as described in Stevens TCP/IP Illustrated 1730 * Vol. 2 p.869. In such cases, we can still calculate the 1731 * RTT correctly when RCV.NXT == Last.ACK.Sent. 1732 */ 1733 if ((to.to_flags & TOF_TS) != 0 && 1734 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 1735 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 1736 ((thflags & (TH_SYN|TH_FIN)) != 0))) { 1737 tp->ts_recent_age = ticks; 1738 tp->ts_recent = to.to_tsval; 1739 } 1740 1741 /* 1742 * If a SYN is in the window, then this is an 1743 * error and we send an RST and drop the connection. 1744 */ 1745 if (thflags & TH_SYN) { 1746 KASSERT(headlocked, ("tcp_input: tcp_drop: trimthenstep6: " 1747 "head not locked")); 1748 tp = tcp_drop(tp, ECONNRESET); 1749 rstreason = BANDLIM_UNLIMITED; 1750 goto drop; 1751 } 1752 1753 /* 1754 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN 1755 * flag is on (half-synchronized state), then queue data for 1756 * later processing; else drop segment and return. 1757 */ 1758 if ((thflags & TH_ACK) == 0) { 1759 if (tp->t_state == TCPS_SYN_RECEIVED || 1760 (tp->t_flags & TF_NEEDSYN)) 1761 goto step6; 1762 else 1763 goto drop; 1764 } 1765 1766 /* 1767 * Ack processing. 1768 */ 1769 switch (tp->t_state) { 1770 1771 /* 1772 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter 1773 * ESTABLISHED state and continue processing. 1774 * The ACK was checked above. 1775 */ 1776 case TCPS_SYN_RECEIVED: 1777 1778 tcpstat.tcps_connects++; 1779 soisconnected(so); 1780 /* Do window scaling? */ 1781 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 1782 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 1783 tp->snd_scale = tp->requested_s_scale; 1784 tp->rcv_scale = tp->request_r_scale; 1785 } 1786 /* 1787 * Make transitions: 1788 * SYN-RECEIVED -> ESTABLISHED 1789 * SYN-RECEIVED* -> FIN-WAIT-1 1790 */ 1791 tp->t_starttime = ticks; 1792 if (tp->t_flags & TF_NEEDFIN) { 1793 tp->t_state = TCPS_FIN_WAIT_1; 1794 tp->t_flags &= ~TF_NEEDFIN; 1795 } else { 1796 tp->t_state = TCPS_ESTABLISHED; 1797 callout_reset(tp->tt_keep, tcp_keepidle, 1798 tcp_timer_keep, tp); 1799 } 1800 /* 1801 * If segment contains data or ACK, will call tcp_reass() 1802 * later; if not, do so now to pass queued data to user. 1803 */ 1804 if (tlen == 0 && (thflags & TH_FIN) == 0) 1805 (void) tcp_reass(tp, (struct tcphdr *)0, 0, 1806 (struct mbuf *)0); 1807 tp->snd_wl1 = th->th_seq - 1; 1808 /* FALLTHROUGH */ 1809 1810 /* 1811 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 1812 * ACKs. If the ack is in the range 1813 * tp->snd_una < th->th_ack <= tp->snd_max 1814 * then advance tp->snd_una to th->th_ack and drop 1815 * data from the retransmission queue. If this ACK reflects 1816 * more up to date window information we update our window information. 1817 */ 1818 case TCPS_ESTABLISHED: 1819 case TCPS_FIN_WAIT_1: 1820 case TCPS_FIN_WAIT_2: 1821 case TCPS_CLOSE_WAIT: 1822 case TCPS_CLOSING: 1823 case TCPS_LAST_ACK: 1824 case TCPS_TIME_WAIT: 1825 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait")); 1826 if (SEQ_GT(th->th_ack, tp->snd_max)) { 1827 tcpstat.tcps_rcvacktoomuch++; 1828 goto dropafterack; 1829 } 1830 if (tp->sack_enable && 1831 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) 1832 tcp_sack_doack(tp, &to, th->th_ack); 1833 if (SEQ_LEQ(th->th_ack, tp->snd_una)) { 1834 if (tlen == 0 && tiwin == tp->snd_wnd) { 1835 tcpstat.tcps_rcvdupack++; 1836 /* 1837 * If we have outstanding data (other than 1838 * a window probe), this is a completely 1839 * duplicate ack (ie, window info didn't 1840 * change), the ack is the biggest we've 1841 * seen and we've seen exactly our rexmt 1842 * threshhold of them, assume a packet 1843 * has been dropped and retransmit it. 1844 * Kludge snd_nxt & the congestion 1845 * window so we send only this one 1846 * packet. 1847 * 1848 * We know we're losing at the current 1849 * window size so do congestion avoidance 1850 * (set ssthresh to half the current window 1851 * and pull our congestion window back to 1852 * the new ssthresh). 1853 * 1854 * Dup acks mean that packets have left the 1855 * network (they're now cached at the receiver) 1856 * so bump cwnd by the amount in the receiver 1857 * to keep a constant cwnd packets in the 1858 * network. 1859 */ 1860 if (!callout_active(tp->tt_rexmt) || 1861 th->th_ack != tp->snd_una) 1862 tp->t_dupacks = 0; 1863 else if (++tp->t_dupacks > tcprexmtthresh || 1864 ((tcp_do_newreno || tp->sack_enable) && 1865 IN_FASTRECOVERY(tp))) { 1866 if (tp->sack_enable && IN_FASTRECOVERY(tp)) { 1867 int awnd; 1868 1869 /* 1870 * Compute the amount of data in flight first. 1871 * We can inject new data into the pipe iff 1872 * we have less than 1/2 the original window's 1873 * worth of data in flight. 1874 */ 1875 awnd = (tp->snd_nxt - tp->snd_fack) + 1876 tp->sackhint.sack_bytes_rexmit; 1877 if (awnd < tp->snd_ssthresh) { 1878 tp->snd_cwnd += tp->t_maxseg; 1879 if (tp->snd_cwnd > tp->snd_ssthresh) 1880 tp->snd_cwnd = tp->snd_ssthresh; 1881 } 1882 } else 1883 tp->snd_cwnd += tp->t_maxseg; 1884 (void) tcp_output(tp); 1885 goto drop; 1886 } else if (tp->t_dupacks == tcprexmtthresh) { 1887 tcp_seq onxt = tp->snd_nxt; 1888 u_int win; 1889 1890 /* 1891 * If we're doing sack, check to 1892 * see if we're already in sack 1893 * recovery. If we're not doing sack, 1894 * check to see if we're in newreno 1895 * recovery. 1896 */ 1897 if (tp->sack_enable) { 1898 if (IN_FASTRECOVERY(tp)) { 1899 tp->t_dupacks = 0; 1900 break; 1901 } 1902 } else if (tcp_do_newreno) { 1903 if (SEQ_LEQ(th->th_ack, 1904 tp->snd_recover)) { 1905 tp->t_dupacks = 0; 1906 break; 1907 } 1908 } 1909 win = min(tp->snd_wnd, tp->snd_cwnd) / 1910 2 / tp->t_maxseg; 1911 if (win < 2) 1912 win = 2; 1913 tp->snd_ssthresh = win * tp->t_maxseg; 1914 ENTER_FASTRECOVERY(tp); 1915 tp->snd_recover = tp->snd_max; 1916 callout_stop(tp->tt_rexmt); 1917 tp->t_rtttime = 0; 1918 if (tp->sack_enable) { 1919 tcpstat.tcps_sack_recovery_episode++; 1920 tp->sack_newdata = tp->snd_nxt; 1921 tp->snd_cwnd = tp->t_maxseg; 1922 (void) tcp_output(tp); 1923 goto drop; 1924 } 1925 tp->snd_nxt = th->th_ack; 1926 tp->snd_cwnd = tp->t_maxseg; 1927 (void) tcp_output(tp); 1928 KASSERT(tp->snd_limited <= 2, 1929 ("tp->snd_limited too big")); 1930 tp->snd_cwnd = tp->snd_ssthresh + 1931 tp->t_maxseg * 1932 (tp->t_dupacks - tp->snd_limited); 1933 if (SEQ_GT(onxt, tp->snd_nxt)) 1934 tp->snd_nxt = onxt; 1935 goto drop; 1936 } else if (tcp_do_rfc3042) { 1937 u_long oldcwnd = tp->snd_cwnd; 1938 tcp_seq oldsndmax = tp->snd_max; 1939 u_int sent; 1940 1941 KASSERT(tp->t_dupacks == 1 || 1942 tp->t_dupacks == 2, 1943 ("dupacks not 1 or 2")); 1944 if (tp->t_dupacks == 1) 1945 tp->snd_limited = 0; 1946 tp->snd_cwnd = 1947 (tp->snd_nxt - tp->snd_una) + 1948 (tp->t_dupacks - tp->snd_limited) * 1949 tp->t_maxseg; 1950 (void) tcp_output(tp); 1951 sent = tp->snd_max - oldsndmax; 1952 if (sent > tp->t_maxseg) { 1953 KASSERT((tp->t_dupacks == 2 && 1954 tp->snd_limited == 0) || 1955 (sent == tp->t_maxseg + 1 && 1956 tp->t_flags & TF_SENTFIN), 1957 ("sent too much")); 1958 tp->snd_limited = 2; 1959 } else if (sent > 0) 1960 ++tp->snd_limited; 1961 tp->snd_cwnd = oldcwnd; 1962 goto drop; 1963 } 1964 } else 1965 tp->t_dupacks = 0; 1966 break; 1967 } 1968 1969 KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una")); 1970 1971 /* 1972 * If the congestion window was inflated to account 1973 * for the other side's cached packets, retract it. 1974 */ 1975 if (tcp_do_newreno || tp->sack_enable) { 1976 if (IN_FASTRECOVERY(tp)) { 1977 if (SEQ_LT(th->th_ack, tp->snd_recover)) { 1978 if (tp->sack_enable) 1979 tcp_sack_partialack(tp, th); 1980 else 1981 tcp_newreno_partial_ack(tp, th); 1982 } else { 1983 /* 1984 * Out of fast recovery. 1985 * Window inflation should have left us 1986 * with approximately snd_ssthresh 1987 * outstanding data. 1988 * But in case we would be inclined to 1989 * send a burst, better to do it via 1990 * the slow start mechanism. 1991 */ 1992 if (SEQ_GT(th->th_ack + 1993 tp->snd_ssthresh, 1994 tp->snd_max)) 1995 tp->snd_cwnd = tp->snd_max - 1996 th->th_ack + 1997 tp->t_maxseg; 1998 else 1999 tp->snd_cwnd = tp->snd_ssthresh; 2000 } 2001 } 2002 } else { 2003 if (tp->t_dupacks >= tcprexmtthresh && 2004 tp->snd_cwnd > tp->snd_ssthresh) 2005 tp->snd_cwnd = tp->snd_ssthresh; 2006 } 2007 tp->t_dupacks = 0; 2008 /* 2009 * If we reach this point, ACK is not a duplicate, 2010 * i.e., it ACKs something we sent. 2011 */ 2012 if (tp->t_flags & TF_NEEDSYN) { 2013 /* 2014 * T/TCP: Connection was half-synchronized, and our 2015 * SYN has been ACK'd (so connection is now fully 2016 * synchronized). Go to non-starred state, 2017 * increment snd_una for ACK of SYN, and check if 2018 * we can do window scaling. 2019 */ 2020 tp->t_flags &= ~TF_NEEDSYN; 2021 tp->snd_una++; 2022 /* Do window scaling? */ 2023 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2024 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2025 tp->snd_scale = tp->requested_s_scale; 2026 tp->rcv_scale = tp->request_r_scale; 2027 } 2028 } 2029 2030 process_ACK: 2031 KASSERT(headlocked, ("tcp_input: process_ACK: head not " 2032 "locked")); 2033 INP_LOCK_ASSERT(inp); 2034 2035 acked = th->th_ack - tp->snd_una; 2036 tcpstat.tcps_rcvackpack++; 2037 tcpstat.tcps_rcvackbyte += acked; 2038 2039 /* 2040 * If we just performed our first retransmit, and the ACK 2041 * arrives within our recovery window, then it was a mistake 2042 * to do the retransmit in the first place. Recover our 2043 * original cwnd and ssthresh, and proceed to transmit where 2044 * we left off. 2045 */ 2046 if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) { 2047 ++tcpstat.tcps_sndrexmitbad; 2048 tp->snd_cwnd = tp->snd_cwnd_prev; 2049 tp->snd_ssthresh = tp->snd_ssthresh_prev; 2050 tp->snd_recover = tp->snd_recover_prev; 2051 if (tp->t_flags & TF_WASFRECOVERY) 2052 ENTER_FASTRECOVERY(tp); 2053 tp->snd_nxt = tp->snd_max; 2054 tp->t_badrxtwin = 0; /* XXX probably not required */ 2055 } 2056 2057 /* 2058 * If we have a timestamp reply, update smoothed 2059 * round trip time. If no timestamp is present but 2060 * transmit timer is running and timed sequence 2061 * number was acked, update smoothed round trip time. 2062 * Since we now have an rtt measurement, cancel the 2063 * timer backoff (cf., Phil Karn's retransmit alg.). 2064 * Recompute the initial retransmit timer. 2065 * 2066 * Some boxes send broken timestamp replies 2067 * during the SYN+ACK phase, ignore 2068 * timestamps of 0 or we could calculate a 2069 * huge RTT and blow up the retransmit timer. 2070 */ 2071 if ((to.to_flags & TOF_TS) != 0 && 2072 to.to_tsecr) { 2073 tcp_xmit_timer(tp, ticks - to.to_tsecr + 1); 2074 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { 2075 tcp_xmit_timer(tp, ticks - tp->t_rtttime); 2076 } 2077 tcp_xmit_bandwidth_limit(tp, th->th_ack); 2078 2079 /* 2080 * If all outstanding data is acked, stop retransmit 2081 * timer and remember to restart (more output or persist). 2082 * If there is more data to be acked, restart retransmit 2083 * timer, using current (possibly backed-off) value. 2084 */ 2085 if (th->th_ack == tp->snd_max) { 2086 callout_stop(tp->tt_rexmt); 2087 needoutput = 1; 2088 } else if (!callout_active(tp->tt_persist)) 2089 callout_reset(tp->tt_rexmt, tp->t_rxtcur, 2090 tcp_timer_rexmt, tp); 2091 2092 /* 2093 * If no data (only SYN) was ACK'd, 2094 * skip rest of ACK processing. 2095 */ 2096 if (acked == 0) 2097 goto step6; 2098 2099 /* 2100 * When new data is acked, open the congestion window. 2101 * If the window gives us less than ssthresh packets 2102 * in flight, open exponentially (maxseg per packet). 2103 * Otherwise open linearly: maxseg per window 2104 * (maxseg^2 / cwnd per packet). 2105 */ 2106 if ((!tcp_do_newreno && !tp->sack_enable) || 2107 !IN_FASTRECOVERY(tp)) { 2108 register u_int cw = tp->snd_cwnd; 2109 register u_int incr = tp->t_maxseg; 2110 if (cw > tp->snd_ssthresh) 2111 incr = incr * incr / cw; 2112 tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale); 2113 } 2114 SOCKBUF_LOCK(&so->so_snd); 2115 if (acked > so->so_snd.sb_cc) { 2116 tp->snd_wnd -= so->so_snd.sb_cc; 2117 sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc); 2118 ourfinisacked = 1; 2119 } else { 2120 sbdrop_locked(&so->so_snd, acked); 2121 tp->snd_wnd -= acked; 2122 ourfinisacked = 0; 2123 } 2124 sowwakeup_locked(so); 2125 /* detect una wraparound */ 2126 if ((tcp_do_newreno || tp->sack_enable) && 2127 !IN_FASTRECOVERY(tp) && 2128 SEQ_GT(tp->snd_una, tp->snd_recover) && 2129 SEQ_LEQ(th->th_ack, tp->snd_recover)) 2130 tp->snd_recover = th->th_ack - 1; 2131 if ((tcp_do_newreno || tp->sack_enable) && 2132 IN_FASTRECOVERY(tp) && 2133 SEQ_GEQ(th->th_ack, tp->snd_recover)) 2134 EXIT_FASTRECOVERY(tp); 2135 tp->snd_una = th->th_ack; 2136 if (tp->sack_enable) { 2137 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 2138 tp->snd_recover = tp->snd_una; 2139 } 2140 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 2141 tp->snd_nxt = tp->snd_una; 2142 2143 switch (tp->t_state) { 2144 2145 /* 2146 * In FIN_WAIT_1 STATE in addition to the processing 2147 * for the ESTABLISHED state if our FIN is now acknowledged 2148 * then enter FIN_WAIT_2. 2149 */ 2150 case TCPS_FIN_WAIT_1: 2151 if (ourfinisacked) { 2152 /* 2153 * If we can't receive any more 2154 * data, then closing user can proceed. 2155 * Starting the timer is contrary to the 2156 * specification, but if we don't get a FIN 2157 * we'll hang forever. 2158 */ 2159 /* XXXjl 2160 * we should release the tp also, and use a 2161 * compressed state. 2162 */ 2163 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2164 soisdisconnected(so); 2165 callout_reset(tp->tt_2msl, tcp_maxidle, 2166 tcp_timer_2msl, tp); 2167 } 2168 tp->t_state = TCPS_FIN_WAIT_2; 2169 } 2170 break; 2171 2172 /* 2173 * In CLOSING STATE in addition to the processing for 2174 * the ESTABLISHED state if the ACK acknowledges our FIN 2175 * then enter the TIME-WAIT state, otherwise ignore 2176 * the segment. 2177 */ 2178 case TCPS_CLOSING: 2179 if (ourfinisacked) { 2180 KASSERT(headlocked, ("tcp_input: process_ACK: " 2181 "head not locked")); 2182 tcp_twstart(tp); 2183 INP_INFO_WUNLOCK(&tcbinfo); 2184 m_freem(m); 2185 return; 2186 } 2187 break; 2188 2189 /* 2190 * In LAST_ACK, we may still be waiting for data to drain 2191 * and/or to be acked, as well as for the ack of our FIN. 2192 * If our FIN is now acknowledged, delete the TCB, 2193 * enter the closed state and return. 2194 */ 2195 case TCPS_LAST_ACK: 2196 if (ourfinisacked) { 2197 KASSERT(headlocked, ("tcp_input: process_ACK:" 2198 " tcp_close: head not locked")); 2199 tp = tcp_close(tp); 2200 goto drop; 2201 } 2202 break; 2203 2204 /* 2205 * In TIME_WAIT state the only thing that should arrive 2206 * is a retransmission of the remote FIN. Acknowledge 2207 * it and restart the finack timer. 2208 */ 2209 case TCPS_TIME_WAIT: 2210 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait")); 2211 callout_reset(tp->tt_2msl, 2 * tcp_msl, 2212 tcp_timer_2msl, tp); 2213 goto dropafterack; 2214 } 2215 } 2216 2217 step6: 2218 KASSERT(headlocked, ("tcp_input: step6: head not locked")); 2219 INP_LOCK_ASSERT(inp); 2220 2221 /* 2222 * Update window information. 2223 * Don't look at window if no ACK: TAC's send garbage on first SYN. 2224 */ 2225 if ((thflags & TH_ACK) && 2226 (SEQ_LT(tp->snd_wl1, th->th_seq) || 2227 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 2228 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 2229 /* keep track of pure window updates */ 2230 if (tlen == 0 && 2231 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 2232 tcpstat.tcps_rcvwinupd++; 2233 tp->snd_wnd = tiwin; 2234 tp->snd_wl1 = th->th_seq; 2235 tp->snd_wl2 = th->th_ack; 2236 if (tp->snd_wnd > tp->max_sndwnd) 2237 tp->max_sndwnd = tp->snd_wnd; 2238 needoutput = 1; 2239 } 2240 2241 /* 2242 * Process segments with URG. 2243 */ 2244 if ((thflags & TH_URG) && th->th_urp && 2245 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2246 /* 2247 * This is a kludge, but if we receive and accept 2248 * random urgent pointers, we'll crash in 2249 * soreceive. It's hard to imagine someone 2250 * actually wanting to send this much urgent data. 2251 */ 2252 SOCKBUF_LOCK(&so->so_rcv); 2253 if (th->th_urp + so->so_rcv.sb_cc > sb_max) { 2254 th->th_urp = 0; /* XXX */ 2255 thflags &= ~TH_URG; /* XXX */ 2256 SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */ 2257 goto dodata; /* XXX */ 2258 } 2259 /* 2260 * If this segment advances the known urgent pointer, 2261 * then mark the data stream. This should not happen 2262 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 2263 * a FIN has been received from the remote side. 2264 * In these states we ignore the URG. 2265 * 2266 * According to RFC961 (Assigned Protocols), 2267 * the urgent pointer points to the last octet 2268 * of urgent data. We continue, however, 2269 * to consider it to indicate the first octet 2270 * of data past the urgent section as the original 2271 * spec states (in one of two places). 2272 */ 2273 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { 2274 tp->rcv_up = th->th_seq + th->th_urp; 2275 so->so_oobmark = so->so_rcv.sb_cc + 2276 (tp->rcv_up - tp->rcv_nxt) - 1; 2277 if (so->so_oobmark == 0) 2278 so->so_rcv.sb_state |= SBS_RCVATMARK; 2279 sohasoutofband(so); 2280 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 2281 } 2282 SOCKBUF_UNLOCK(&so->so_rcv); 2283 /* 2284 * Remove out of band data so doesn't get presented to user. 2285 * This can happen independent of advancing the URG pointer, 2286 * but if two URG's are pending at once, some out-of-band 2287 * data may creep in... ick. 2288 */ 2289 if (th->th_urp <= (u_long)tlen && 2290 !(so->so_options & SO_OOBINLINE)) { 2291 /* hdr drop is delayed */ 2292 tcp_pulloutofband(so, th, m, drop_hdrlen); 2293 } 2294 } else { 2295 /* 2296 * If no out of band data is expected, 2297 * pull receive urgent pointer along 2298 * with the receive window. 2299 */ 2300 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 2301 tp->rcv_up = tp->rcv_nxt; 2302 } 2303 dodata: /* XXX */ 2304 KASSERT(headlocked, ("tcp_input: dodata: head not locked")); 2305 INP_LOCK_ASSERT(inp); 2306 2307 /* 2308 * Process the segment text, merging it into the TCP sequencing queue, 2309 * and arranging for acknowledgment of receipt if necessary. 2310 * This process logically involves adjusting tp->rcv_wnd as data 2311 * is presented to the user (this happens in tcp_usrreq.c, 2312 * case PRU_RCVD). If a FIN has already been received on this 2313 * connection then we just ignore the text. 2314 */ 2315 if ((tlen || (thflags & TH_FIN)) && 2316 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2317 tcp_seq save_start = th->th_seq; 2318 tcp_seq save_end = th->th_seq + tlen; 2319 m_adj(m, drop_hdrlen); /* delayed header drop */ 2320 /* 2321 * Insert segment which includes th into TCP reassembly queue 2322 * with control block tp. Set thflags to whether reassembly now 2323 * includes a segment with FIN. This handles the common case 2324 * inline (segment is the next to be received on an established 2325 * connection, and the queue is empty), avoiding linkage into 2326 * and removal from the queue and repetition of various 2327 * conversions. 2328 * Set DELACK for segments received in order, but ack 2329 * immediately when segments are out of order (so 2330 * fast retransmit can work). 2331 */ 2332 if (th->th_seq == tp->rcv_nxt && 2333 LIST_EMPTY(&tp->t_segq) && 2334 TCPS_HAVEESTABLISHED(tp->t_state)) { 2335 if (DELAY_ACK(tp)) 2336 tp->t_flags |= TF_DELACK; 2337 else 2338 tp->t_flags |= TF_ACKNOW; 2339 tp->rcv_nxt += tlen; 2340 thflags = th->th_flags & TH_FIN; 2341 tcpstat.tcps_rcvpack++; 2342 tcpstat.tcps_rcvbyte += tlen; 2343 ND6_HINT(tp); 2344 SOCKBUF_LOCK(&so->so_rcv); 2345 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 2346 m_freem(m); 2347 else 2348 sbappendstream_locked(&so->so_rcv, m); 2349 sorwakeup_locked(so); 2350 } else { 2351 thflags = tcp_reass(tp, th, &tlen, m); 2352 tp->t_flags |= TF_ACKNOW; 2353 } 2354 if (tlen > 0 && tp->sack_enable) 2355 tcp_update_sack_list(tp, save_start, save_end); 2356 /* 2357 * Note the amount of data that peer has sent into 2358 * our window, in order to estimate the sender's 2359 * buffer size. 2360 */ 2361 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 2362 } else { 2363 m_freem(m); 2364 thflags &= ~TH_FIN; 2365 } 2366 2367 /* 2368 * If FIN is received ACK the FIN and let the user know 2369 * that the connection is closing. 2370 */ 2371 if (thflags & TH_FIN) { 2372 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2373 socantrcvmore(so); 2374 /* 2375 * If connection is half-synchronized 2376 * (ie NEEDSYN flag on) then delay ACK, 2377 * so it may be piggybacked when SYN is sent. 2378 * Otherwise, since we received a FIN then no 2379 * more input can be expected, send ACK now. 2380 */ 2381 if (tp->t_flags & TF_NEEDSYN) 2382 tp->t_flags |= TF_DELACK; 2383 else 2384 tp->t_flags |= TF_ACKNOW; 2385 tp->rcv_nxt++; 2386 } 2387 switch (tp->t_state) { 2388 2389 /* 2390 * In SYN_RECEIVED and ESTABLISHED STATES 2391 * enter the CLOSE_WAIT state. 2392 */ 2393 case TCPS_SYN_RECEIVED: 2394 tp->t_starttime = ticks; 2395 /*FALLTHROUGH*/ 2396 case TCPS_ESTABLISHED: 2397 tp->t_state = TCPS_CLOSE_WAIT; 2398 break; 2399 2400 /* 2401 * If still in FIN_WAIT_1 STATE FIN has not been acked so 2402 * enter the CLOSING state. 2403 */ 2404 case TCPS_FIN_WAIT_1: 2405 tp->t_state = TCPS_CLOSING; 2406 break; 2407 2408 /* 2409 * In FIN_WAIT_2 state enter the TIME_WAIT state, 2410 * starting the time-wait timer, turning off the other 2411 * standard timers. 2412 */ 2413 case TCPS_FIN_WAIT_2: 2414 KASSERT(headlocked == 1, ("tcp_input: dodata: " 2415 "TCP_FIN_WAIT_2: head not locked")); 2416 tcp_twstart(tp); 2417 INP_INFO_WUNLOCK(&tcbinfo); 2418 return; 2419 2420 /* 2421 * In TIME_WAIT state restart the 2 MSL time_wait timer. 2422 */ 2423 case TCPS_TIME_WAIT: 2424 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait")); 2425 callout_reset(tp->tt_2msl, 2 * tcp_msl, 2426 tcp_timer_2msl, tp); 2427 break; 2428 } 2429 } 2430 INP_INFO_WUNLOCK(&tcbinfo); 2431 headlocked = 0; 2432 #ifdef TCPDEBUG 2433 if (so->so_options & SO_DEBUG) 2434 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, 2435 &tcp_savetcp, 0); 2436 #endif 2437 2438 /* 2439 * Return any desired output. 2440 */ 2441 if (needoutput || (tp->t_flags & TF_ACKNOW)) 2442 (void) tcp_output(tp); 2443 2444 check_delack: 2445 KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked")); 2446 INP_LOCK_ASSERT(inp); 2447 if (tp->t_flags & TF_DELACK) { 2448 tp->t_flags &= ~TF_DELACK; 2449 callout_reset(tp->tt_delack, tcp_delacktime, 2450 tcp_timer_delack, tp); 2451 } 2452 INP_UNLOCK(inp); 2453 return; 2454 2455 dropafterack: 2456 KASSERT(headlocked, ("tcp_input: dropafterack: head not locked")); 2457 /* 2458 * Generate an ACK dropping incoming segment if it occupies 2459 * sequence space, where the ACK reflects our state. 2460 * 2461 * We can now skip the test for the RST flag since all 2462 * paths to this code happen after packets containing 2463 * RST have been dropped. 2464 * 2465 * In the SYN-RECEIVED state, don't send an ACK unless the 2466 * segment we received passes the SYN-RECEIVED ACK test. 2467 * If it fails send a RST. This breaks the loop in the 2468 * "LAND" DoS attack, and also prevents an ACK storm 2469 * between two listening ports that have been sent forged 2470 * SYN segments, each with the source address of the other. 2471 */ 2472 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && 2473 (SEQ_GT(tp->snd_una, th->th_ack) || 2474 SEQ_GT(th->th_ack, tp->snd_max)) ) { 2475 rstreason = BANDLIM_RST_OPENPORT; 2476 goto dropwithreset; 2477 } 2478 #ifdef TCPDEBUG 2479 if (so->so_options & SO_DEBUG) 2480 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 2481 &tcp_savetcp, 0); 2482 #endif 2483 KASSERT(headlocked, ("headlocked should be 1")); 2484 INP_INFO_WUNLOCK(&tcbinfo); 2485 tp->t_flags |= TF_ACKNOW; 2486 (void) tcp_output(tp); 2487 INP_UNLOCK(inp); 2488 m_freem(m); 2489 return; 2490 2491 dropwithreset: 2492 KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked")); 2493 /* 2494 * Generate a RST, dropping incoming segment. 2495 * Make ACK acceptable to originator of segment. 2496 * Don't bother to respond if destination was broadcast/multicast. 2497 */ 2498 if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) 2499 goto drop; 2500 if (isipv6) { 2501 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 2502 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 2503 goto drop; 2504 } else { 2505 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 2506 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 2507 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 2508 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 2509 goto drop; 2510 } 2511 /* IPv6 anycast check is done at tcp6_input() */ 2512 2513 /* 2514 * Perform bandwidth limiting. 2515 */ 2516 if (badport_bandlim(rstreason) < 0) 2517 goto drop; 2518 2519 #ifdef TCPDEBUG 2520 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 2521 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 2522 &tcp_savetcp, 0); 2523 #endif 2524 2525 if (thflags & TH_ACK) 2526 /* mtod() below is safe as long as hdr dropping is delayed */ 2527 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack, 2528 TH_RST); 2529 else { 2530 if (thflags & TH_SYN) 2531 tlen++; 2532 /* mtod() below is safe as long as hdr dropping is delayed */ 2533 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, 2534 (tcp_seq)0, TH_RST|TH_ACK); 2535 } 2536 2537 if (tp) 2538 INP_UNLOCK(inp); 2539 if (headlocked) 2540 INP_INFO_WUNLOCK(&tcbinfo); 2541 return; 2542 2543 drop: 2544 /* 2545 * Drop space held by incoming segment and return. 2546 */ 2547 #ifdef TCPDEBUG 2548 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 2549 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 2550 &tcp_savetcp, 0); 2551 #endif 2552 if (tp) 2553 INP_UNLOCK(inp); 2554 if (headlocked) 2555 INP_INFO_WUNLOCK(&tcbinfo); 2556 m_freem(m); 2557 return; 2558 } 2559 2560 /* 2561 * Parse TCP options and place in tcpopt. 2562 */ 2563 static void 2564 tcp_dooptions(to, cp, cnt, is_syn) 2565 struct tcpopt *to; 2566 u_char *cp; 2567 int cnt; 2568 int is_syn; 2569 { 2570 int opt, optlen; 2571 2572 to->to_flags = 0; 2573 for (; cnt > 0; cnt -= optlen, cp += optlen) { 2574 opt = cp[0]; 2575 if (opt == TCPOPT_EOL) 2576 break; 2577 if (opt == TCPOPT_NOP) 2578 optlen = 1; 2579 else { 2580 if (cnt < 2) 2581 break; 2582 optlen = cp[1]; 2583 if (optlen < 2 || optlen > cnt) 2584 break; 2585 } 2586 switch (opt) { 2587 case TCPOPT_MAXSEG: 2588 if (optlen != TCPOLEN_MAXSEG) 2589 continue; 2590 if (!is_syn) 2591 continue; 2592 to->to_flags |= TOF_MSS; 2593 bcopy((char *)cp + 2, 2594 (char *)&to->to_mss, sizeof(to->to_mss)); 2595 to->to_mss = ntohs(to->to_mss); 2596 break; 2597 case TCPOPT_WINDOW: 2598 if (optlen != TCPOLEN_WINDOW) 2599 continue; 2600 if (! is_syn) 2601 continue; 2602 to->to_flags |= TOF_SCALE; 2603 to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); 2604 break; 2605 case TCPOPT_TIMESTAMP: 2606 if (optlen != TCPOLEN_TIMESTAMP) 2607 continue; 2608 to->to_flags |= TOF_TS; 2609 bcopy((char *)cp + 2, 2610 (char *)&to->to_tsval, sizeof(to->to_tsval)); 2611 to->to_tsval = ntohl(to->to_tsval); 2612 bcopy((char *)cp + 6, 2613 (char *)&to->to_tsecr, sizeof(to->to_tsecr)); 2614 to->to_tsecr = ntohl(to->to_tsecr); 2615 /* 2616 * If echoed timestamp is later than the current time, 2617 * fall back to non RFC1323 RTT calculation. 2618 */ 2619 if ((to->to_tsecr != 0) && TSTMP_GT(to->to_tsecr, ticks)) 2620 to->to_tsecr = 0; 2621 break; 2622 #ifdef TCP_SIGNATURE 2623 /* 2624 * XXX In order to reply to a host which has set the 2625 * TCP_SIGNATURE option in its initial SYN, we have to 2626 * record the fact that the option was observed here 2627 * for the syncache code to perform the correct response. 2628 */ 2629 case TCPOPT_SIGNATURE: 2630 if (optlen != TCPOLEN_SIGNATURE) 2631 continue; 2632 to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN); 2633 break; 2634 #endif 2635 case TCPOPT_SACK_PERMITTED: 2636 if (!tcp_do_sack || 2637 optlen != TCPOLEN_SACK_PERMITTED) 2638 continue; 2639 if (is_syn) { 2640 /* MUST only be set on SYN */ 2641 to->to_flags |= TOF_SACK; 2642 } 2643 break; 2644 case TCPOPT_SACK: 2645 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) 2646 continue; 2647 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; 2648 to->to_sacks = cp + 2; 2649 tcpstat.tcps_sack_rcv_blocks++; 2650 break; 2651 default: 2652 continue; 2653 } 2654 } 2655 } 2656 2657 /* 2658 * Pull out of band byte out of a segment so 2659 * it doesn't appear in the user's data queue. 2660 * It is still reflected in the segment length for 2661 * sequencing purposes. 2662 */ 2663 static void 2664 tcp_pulloutofband(so, th, m, off) 2665 struct socket *so; 2666 struct tcphdr *th; 2667 register struct mbuf *m; 2668 int off; /* delayed to be droped hdrlen */ 2669 { 2670 int cnt = off + th->th_urp - 1; 2671 2672 while (cnt >= 0) { 2673 if (m->m_len > cnt) { 2674 char *cp = mtod(m, caddr_t) + cnt; 2675 struct tcpcb *tp = sototcpcb(so); 2676 2677 tp->t_iobc = *cp; 2678 tp->t_oobflags |= TCPOOB_HAVEDATA; 2679 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 2680 m->m_len--; 2681 if (m->m_flags & M_PKTHDR) 2682 m->m_pkthdr.len--; 2683 return; 2684 } 2685 cnt -= m->m_len; 2686 m = m->m_next; 2687 if (m == 0) 2688 break; 2689 } 2690 panic("tcp_pulloutofband"); 2691 } 2692 2693 /* 2694 * Collect new round-trip time estimate 2695 * and update averages and current timeout. 2696 */ 2697 static void 2698 tcp_xmit_timer(tp, rtt) 2699 register struct tcpcb *tp; 2700 int rtt; 2701 { 2702 register int delta; 2703 2704 INP_LOCK_ASSERT(tp->t_inpcb); 2705 2706 tcpstat.tcps_rttupdated++; 2707 tp->t_rttupdated++; 2708 if (tp->t_srtt != 0) { 2709 /* 2710 * srtt is stored as fixed point with 5 bits after the 2711 * binary point (i.e., scaled by 8). The following magic 2712 * is equivalent to the smoothing algorithm in rfc793 with 2713 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 2714 * point). Adjust rtt to origin 0. 2715 */ 2716 delta = ((rtt - 1) << TCP_DELTA_SHIFT) 2717 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); 2718 2719 if ((tp->t_srtt += delta) <= 0) 2720 tp->t_srtt = 1; 2721 2722 /* 2723 * We accumulate a smoothed rtt variance (actually, a 2724 * smoothed mean difference), then set the retransmit 2725 * timer to smoothed rtt + 4 times the smoothed variance. 2726 * rttvar is stored as fixed point with 4 bits after the 2727 * binary point (scaled by 16). The following is 2728 * equivalent to rfc793 smoothing with an alpha of .75 2729 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 2730 * rfc793's wired-in beta. 2731 */ 2732 if (delta < 0) 2733 delta = -delta; 2734 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); 2735 if ((tp->t_rttvar += delta) <= 0) 2736 tp->t_rttvar = 1; 2737 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) 2738 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 2739 } else { 2740 /* 2741 * No rtt measurement yet - use the unsmoothed rtt. 2742 * Set the variance to half the rtt (so our first 2743 * retransmit happens at 3*rtt). 2744 */ 2745 tp->t_srtt = rtt << TCP_RTT_SHIFT; 2746 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); 2747 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 2748 } 2749 tp->t_rtttime = 0; 2750 tp->t_rxtshift = 0; 2751 2752 /* 2753 * the retransmit should happen at rtt + 4 * rttvar. 2754 * Because of the way we do the smoothing, srtt and rttvar 2755 * will each average +1/2 tick of bias. When we compute 2756 * the retransmit timer, we want 1/2 tick of rounding and 2757 * 1 extra tick because of +-1/2 tick uncertainty in the 2758 * firing of the timer. The bias will give us exactly the 2759 * 1.5 tick we need. But, because the bias is 2760 * statistical, we have to test that we don't drop below 2761 * the minimum feasible timer (which is 2 ticks). 2762 */ 2763 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 2764 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); 2765 2766 /* 2767 * We received an ack for a packet that wasn't retransmitted; 2768 * it is probably safe to discard any error indications we've 2769 * received recently. This isn't quite right, but close enough 2770 * for now (a route might have failed after we sent a segment, 2771 * and the return path might not be symmetrical). 2772 */ 2773 tp->t_softerror = 0; 2774 } 2775 2776 /* 2777 * Determine a reasonable value for maxseg size. 2778 * If the route is known, check route for mtu. 2779 * If none, use an mss that can be handled on the outgoing 2780 * interface without forcing IP to fragment; if bigger than 2781 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES 2782 * to utilize large mbufs. If no route is found, route has no mtu, 2783 * or the destination isn't local, use a default, hopefully conservative 2784 * size (usually 512 or the default IP max size, but no more than the mtu 2785 * of the interface), as we can't discover anything about intervening 2786 * gateways or networks. We also initialize the congestion/slow start 2787 * window to be a single segment if the destination isn't local. 2788 * While looking at the routing entry, we also initialize other path-dependent 2789 * parameters from pre-set or cached values in the routing entry. 2790 * 2791 * Also take into account the space needed for options that we 2792 * send regularly. Make maxseg shorter by that amount to assure 2793 * that we can send maxseg amount of data even when the options 2794 * are present. Store the upper limit of the length of options plus 2795 * data in maxopd. 2796 * 2797 * 2798 * In case of T/TCP, we call this routine during implicit connection 2799 * setup as well (offer = -1), to initialize maxseg from the cached 2800 * MSS of our peer. 2801 * 2802 * NOTE that this routine is only called when we process an incoming 2803 * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt(). 2804 */ 2805 void 2806 tcp_mss(tp, offer) 2807 struct tcpcb *tp; 2808 int offer; 2809 { 2810 int rtt, mss; 2811 u_long bufsize; 2812 u_long maxmtu; 2813 struct inpcb *inp = tp->t_inpcb; 2814 struct socket *so; 2815 struct hc_metrics_lite metrics; 2816 int origoffer = offer; 2817 #ifdef INET6 2818 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; 2819 size_t min_protoh = isipv6 ? 2820 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : 2821 sizeof (struct tcpiphdr); 2822 #else 2823 const size_t min_protoh = sizeof(struct tcpiphdr); 2824 #endif 2825 2826 /* initialize */ 2827 #ifdef INET6 2828 if (isipv6) { 2829 maxmtu = tcp_maxmtu6(&inp->inp_inc); 2830 tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt; 2831 } else 2832 #endif 2833 { 2834 maxmtu = tcp_maxmtu(&inp->inp_inc); 2835 tp->t_maxopd = tp->t_maxseg = tcp_mssdflt; 2836 } 2837 so = inp->inp_socket; 2838 2839 /* 2840 * no route to sender, stay with default mss and return 2841 */ 2842 if (maxmtu == 0) 2843 return; 2844 2845 /* what have we got? */ 2846 switch (offer) { 2847 case 0: 2848 /* 2849 * Offer == 0 means that there was no MSS on the SYN 2850 * segment, in this case we use tcp_mssdflt. 2851 */ 2852 offer = 2853 #ifdef INET6 2854 isipv6 ? tcp_v6mssdflt : 2855 #endif 2856 tcp_mssdflt; 2857 break; 2858 2859 case -1: 2860 /* 2861 * Offer == -1 means that we didn't receive SYN yet. 2862 */ 2863 /* FALLTHROUGH */ 2864 2865 default: 2866 /* 2867 * Prevent DoS attack with too small MSS. Round up 2868 * to at least minmss. 2869 */ 2870 offer = max(offer, tcp_minmss); 2871 /* 2872 * Sanity check: make sure that maxopd will be large 2873 * enough to allow some data on segments even if the 2874 * all the option space is used (40bytes). Otherwise 2875 * funny things may happen in tcp_output. 2876 */ 2877 offer = max(offer, 64); 2878 } 2879 2880 /* 2881 * rmx information is now retrieved from tcp_hostcache 2882 */ 2883 tcp_hc_get(&inp->inp_inc, &metrics); 2884 2885 /* 2886 * if there's a discovered mtu int tcp hostcache, use it 2887 * else, use the link mtu. 2888 */ 2889 if (metrics.rmx_mtu) 2890 mss = min(metrics.rmx_mtu, maxmtu) - min_protoh; 2891 else { 2892 #ifdef INET6 2893 if (isipv6) { 2894 mss = maxmtu - min_protoh; 2895 if (!path_mtu_discovery && 2896 !in6_localaddr(&inp->in6p_faddr)) 2897 mss = min(mss, tcp_v6mssdflt); 2898 } else 2899 #endif 2900 { 2901 mss = maxmtu - min_protoh; 2902 if (!path_mtu_discovery && 2903 !in_localaddr(inp->inp_faddr)) 2904 mss = min(mss, tcp_mssdflt); 2905 } 2906 } 2907 mss = min(mss, offer); 2908 2909 /* 2910 * maxopd stores the maximum length of data AND options 2911 * in a segment; maxseg is the amount of data in a normal 2912 * segment. We need to store this value (maxopd) apart 2913 * from maxseg, because now every segment carries options 2914 * and thus we normally have somewhat less data in segments. 2915 */ 2916 tp->t_maxopd = mss; 2917 2918 /* 2919 * origoffer==-1 indicates, that no segments were received yet. 2920 * In this case we just guess. 2921 */ 2922 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 2923 (origoffer == -1 || 2924 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) 2925 mss -= TCPOLEN_TSTAMP_APPA; 2926 tp->t_maxseg = mss; 2927 2928 #if (MCLBYTES & (MCLBYTES - 1)) == 0 2929 if (mss > MCLBYTES) 2930 mss &= ~(MCLBYTES-1); 2931 #else 2932 if (mss > MCLBYTES) 2933 mss = mss / MCLBYTES * MCLBYTES; 2934 #endif 2935 tp->t_maxseg = mss; 2936 2937 /* 2938 * If there's a pipesize, change the socket buffer to that size, 2939 * don't change if sb_hiwat is different than default (then it 2940 * has been changed on purpose with setsockopt). 2941 * Make the socket buffers an integral number of mss units; 2942 * if the mss is larger than the socket buffer, decrease the mss. 2943 */ 2944 SOCKBUF_LOCK(&so->so_snd); 2945 if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe) 2946 bufsize = metrics.rmx_sendpipe; 2947 else 2948 bufsize = so->so_snd.sb_hiwat; 2949 if (bufsize < mss) 2950 mss = bufsize; 2951 else { 2952 bufsize = roundup(bufsize, mss); 2953 if (bufsize > sb_max) 2954 bufsize = sb_max; 2955 if (bufsize > so->so_snd.sb_hiwat) 2956 (void)sbreserve_locked(&so->so_snd, bufsize, so, NULL); 2957 } 2958 SOCKBUF_UNLOCK(&so->so_snd); 2959 tp->t_maxseg = mss; 2960 2961 SOCKBUF_LOCK(&so->so_rcv); 2962 if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe) 2963 bufsize = metrics.rmx_recvpipe; 2964 else 2965 bufsize = so->so_rcv.sb_hiwat; 2966 if (bufsize > mss) { 2967 bufsize = roundup(bufsize, mss); 2968 if (bufsize > sb_max) 2969 bufsize = sb_max; 2970 if (bufsize > so->so_rcv.sb_hiwat) 2971 (void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL); 2972 } 2973 SOCKBUF_UNLOCK(&so->so_rcv); 2974 /* 2975 * While we're here, check the others too 2976 */ 2977 if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) { 2978 tp->t_srtt = rtt; 2979 tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE; 2980 tcpstat.tcps_usedrtt++; 2981 if (metrics.rmx_rttvar) { 2982 tp->t_rttvar = metrics.rmx_rttvar; 2983 tcpstat.tcps_usedrttvar++; 2984 } else { 2985 /* default variation is +- 1 rtt */ 2986 tp->t_rttvar = 2987 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 2988 } 2989 TCPT_RANGESET(tp->t_rxtcur, 2990 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 2991 tp->t_rttmin, TCPTV_REXMTMAX); 2992 } 2993 if (metrics.rmx_ssthresh) { 2994 /* 2995 * There's some sort of gateway or interface 2996 * buffer limit on the path. Use this to set 2997 * the slow start threshhold, but set the 2998 * threshold to no less than 2*mss. 2999 */ 3000 tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh); 3001 tcpstat.tcps_usedssthresh++; 3002 } 3003 if (metrics.rmx_bandwidth) 3004 tp->snd_bandwidth = metrics.rmx_bandwidth; 3005 3006 /* 3007 * Set the slow-start flight size depending on whether this 3008 * is a local network or not. 3009 * 3010 * Extend this so we cache the cwnd too and retrieve it here. 3011 * Make cwnd even bigger than RFC3390 suggests but only if we 3012 * have previous experience with the remote host. Be careful 3013 * not make cwnd bigger than remote receive window or our own 3014 * send socket buffer. Maybe put some additional upper bound 3015 * on the retrieved cwnd. Should do incremental updates to 3016 * hostcache when cwnd collapses so next connection doesn't 3017 * overloads the path again. 3018 * 3019 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost. 3020 * We currently check only in syncache_socket for that. 3021 */ 3022 #define TCP_METRICS_CWND 3023 #ifdef TCP_METRICS_CWND 3024 if (metrics.rmx_cwnd) 3025 tp->snd_cwnd = max(mss, 3026 min(metrics.rmx_cwnd / 2, 3027 min(tp->snd_wnd, so->so_snd.sb_hiwat))); 3028 else 3029 #endif 3030 if (tcp_do_rfc3390) 3031 tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380)); 3032 #ifdef INET6 3033 else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) || 3034 (!isipv6 && in_localaddr(inp->inp_faddr))) 3035 #else 3036 else if (in_localaddr(inp->inp_faddr)) 3037 #endif 3038 tp->snd_cwnd = mss * ss_fltsz_local; 3039 else 3040 tp->snd_cwnd = mss * ss_fltsz; 3041 } 3042 3043 /* 3044 * Determine the MSS option to send on an outgoing SYN. 3045 */ 3046 int 3047 tcp_mssopt(inc) 3048 struct in_conninfo *inc; 3049 { 3050 int mss = 0; 3051 u_long maxmtu = 0; 3052 u_long thcmtu = 0; 3053 size_t min_protoh; 3054 #ifdef INET6 3055 int isipv6 = inc->inc_isipv6 ? 1 : 0; 3056 #endif 3057 3058 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer")); 3059 3060 #ifdef INET6 3061 if (isipv6) { 3062 mss = tcp_v6mssdflt; 3063 maxmtu = tcp_maxmtu6(inc); 3064 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */ 3065 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 3066 } else 3067 #endif 3068 { 3069 mss = tcp_mssdflt; 3070 maxmtu = tcp_maxmtu(inc); 3071 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */ 3072 min_protoh = sizeof(struct tcpiphdr); 3073 } 3074 if (maxmtu && thcmtu) 3075 mss = min(maxmtu, thcmtu) - min_protoh; 3076 else if (maxmtu || thcmtu) 3077 mss = max(maxmtu, thcmtu) - min_protoh; 3078 3079 return (mss); 3080 } 3081 3082 3083 /* 3084 * On a partial ack arrives, force the retransmission of the 3085 * next unacknowledged segment. Do not clear tp->t_dupacks. 3086 * By setting snd_nxt to ti_ack, this forces retransmission timer to 3087 * be started again. 3088 */ 3089 static void 3090 tcp_newreno_partial_ack(tp, th) 3091 struct tcpcb *tp; 3092 struct tcphdr *th; 3093 { 3094 tcp_seq onxt = tp->snd_nxt; 3095 u_long ocwnd = tp->snd_cwnd; 3096 3097 callout_stop(tp->tt_rexmt); 3098 tp->t_rtttime = 0; 3099 tp->snd_nxt = th->th_ack; 3100 /* 3101 * Set snd_cwnd to one segment beyond acknowledged offset. 3102 * (tp->snd_una has not yet been updated when this function is called.) 3103 */ 3104 tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una); 3105 tp->t_flags |= TF_ACKNOW; 3106 (void) tcp_output(tp); 3107 tp->snd_cwnd = ocwnd; 3108 if (SEQ_GT(onxt, tp->snd_nxt)) 3109 tp->snd_nxt = onxt; 3110 /* 3111 * Partial window deflation. Relies on fact that tp->snd_una 3112 * not updated yet. 3113 */ 3114 if (tp->snd_cwnd > th->th_ack - tp->snd_una) 3115 tp->snd_cwnd -= th->th_ack - tp->snd_una; 3116 else 3117 tp->snd_cwnd = 0; 3118 tp->snd_cwnd += tp->t_maxseg; 3119 } 3120 3121 /* 3122 * Returns 1 if the TIME_WAIT state was killed and we should start over, 3123 * looking for a pcb in the listen state. Returns 0 otherwise. 3124 */ 3125 static int 3126 tcp_timewait(tw, to, th, m, tlen) 3127 struct tcptw *tw; 3128 struct tcpopt *to; 3129 struct tcphdr *th; 3130 struct mbuf *m; 3131 int tlen; 3132 { 3133 int thflags; 3134 tcp_seq seq; 3135 #ifdef INET6 3136 int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 3137 #else 3138 const int isipv6 = 0; 3139 #endif 3140 3141 /* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */ 3142 INP_INFO_WLOCK_ASSERT(&tcbinfo); 3143 INP_LOCK_ASSERT(tw->tw_inpcb); 3144 3145 thflags = th->th_flags; 3146 3147 /* 3148 * NOTE: for FIN_WAIT_2 (to be added later), 3149 * must validate sequence number before accepting RST 3150 */ 3151 3152 /* 3153 * If the segment contains RST: 3154 * Drop the segment - see Stevens, vol. 2, p. 964 and 3155 * RFC 1337. 3156 */ 3157 if (thflags & TH_RST) 3158 goto drop; 3159 3160 #if 0 3161 /* PAWS not needed at the moment */ 3162 /* 3163 * RFC 1323 PAWS: If we have a timestamp reply on this segment 3164 * and it's less than ts_recent, drop it. 3165 */ 3166 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && 3167 TSTMP_LT(to.to_tsval, tp->ts_recent)) { 3168 if ((thflags & TH_ACK) == 0) 3169 goto drop; 3170 goto ack; 3171 } 3172 /* 3173 * ts_recent is never updated because we never accept new segments. 3174 */ 3175 #endif 3176 3177 /* 3178 * If a new connection request is received 3179 * while in TIME_WAIT, drop the old connection 3180 * and start over if the sequence numbers 3181 * are above the previous ones. 3182 */ 3183 if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) { 3184 (void) tcp_twclose(tw, 0); 3185 return (1); 3186 } 3187 3188 /* 3189 * Drop the the segment if it does not contain an ACK. 3190 */ 3191 if ((thflags & TH_ACK) == 0) 3192 goto drop; 3193 3194 /* 3195 * Reset the 2MSL timer if this is a duplicate FIN. 3196 */ 3197 if (thflags & TH_FIN) { 3198 seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0); 3199 if (seq + 1 == tw->rcv_nxt) 3200 tcp_timer_2msl_reset(tw, 2 * tcp_msl); 3201 } 3202 3203 /* 3204 * Acknowledge the segment if it has data or is not a duplicate ACK. 3205 */ 3206 if (thflags != TH_ACK || tlen != 0 || 3207 th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt) 3208 tcp_twrespond(tw, TH_ACK); 3209 goto drop; 3210 3211 /* 3212 * Generate a RST, dropping incoming segment. 3213 * Make ACK acceptable to originator of segment. 3214 * Don't bother to respond if destination was broadcast/multicast. 3215 */ 3216 if (m->m_flags & (M_BCAST|M_MCAST)) 3217 goto drop; 3218 if (isipv6) { 3219 struct ip6_hdr *ip6; 3220 3221 /* IPv6 anycast check is done at tcp6_input() */ 3222 ip6 = mtod(m, struct ip6_hdr *); 3223 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 3224 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 3225 goto drop; 3226 } else { 3227 struct ip *ip; 3228 3229 ip = mtod(m, struct ip *); 3230 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 3231 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 3232 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 3233 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 3234 goto drop; 3235 } 3236 if (thflags & TH_ACK) { 3237 tcp_respond(NULL, 3238 mtod(m, void *), th, m, 0, th->th_ack, TH_RST); 3239 } else { 3240 seq = th->th_seq + (thflags & TH_SYN ? 1 : 0); 3241 tcp_respond(NULL, 3242 mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK); 3243 } 3244 INP_UNLOCK(tw->tw_inpcb); 3245 return (0); 3246 3247 drop: 3248 INP_UNLOCK(tw->tw_inpcb); 3249 m_freem(m); 3250 return (0); 3251 } 3252