xref: /freebsd/sys/netinet/tcp_ratelimit.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  *
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  * Copyright (c) 2018-2020
6  *	Netflix Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 /**
31  * Author: Randall Stewart <rrs@netflix.com>
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 #include "opt_ratelimit.h"
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 #include <sys/eventhandler.h>
49 #include <sys/mutex.h>
50 #include <sys/ck.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <netinet/in.h>
54 #include <netinet/in_pcb.h>
55 #define TCPSTATES		/* for logging */
56 #include <netinet/tcp_var.h>
57 #ifdef INET6
58 #include <netinet6/tcp6_var.h>
59 #endif
60 #include <netinet/tcp_ratelimit.h>
61 #ifndef USECS_IN_SECOND
62 #define USECS_IN_SECOND 1000000
63 #endif
64 /*
65  * For the purposes of each send, what is the size
66  * of an ethernet frame.
67  */
68 MALLOC_DEFINE(M_TCPPACE, "tcp_hwpace", "TCP Hardware pacing memory");
69 #ifdef RATELIMIT
70 
71 /*
72  * The following preferred table will seem weird to
73  * the casual viewer. Why do we not have any rates below
74  * 1Mbps? Why do we have a rate at 1.44Mbps called common?
75  * Why do the rates cluster in the 1-100Mbps range more
76  * than others? Why does the table jump around at the beginnign
77  * and then be more consistently raising?
78  *
79  * Let me try to answer those questions. A lot of
80  * this is dependant on the hardware. We have three basic
81  * supporters of rate limiting
82  *
83  * Chelsio - Supporting 16 configurable rates.
84  * Mlx  - c4 supporting 13 fixed rates.
85  * Mlx  - c5 & c6 supporting 127 configurable rates.
86  *
87  * The c4 is why we have a common rate that is available
88  * in all rate tables. This is a selected rate from the
89  * c4 table and we assure its available in all ratelimit
90  * tables. This way the tcp_ratelimit code has an assured
91  * rate it should always be able to get. This answers a
92  * couple of the questions above.
93  *
94  * So what about the rest, well the table is built to
95  * try to get the most out of a joint hardware/software
96  * pacing system.  The software pacer will always pick
97  * a rate higher than the b/w that it is estimating
98  *
99  * on the path. This is done for two reasons.
100  * a) So we can discover more b/w
101  * and
102  * b) So we can send a block of MSS's down and then
103  *    have the software timer go off after the previous
104  *    send is completely out of the hardware.
105  *
106  * But when we do <b> we don't want to have the delay
107  * between the last packet sent by the hardware be
108  * excessively long (to reach our desired rate).
109  *
110  * So let me give an example for clarity.
111  *
112  * Lets assume that the tcp stack sees that 29,110,000 bps is
113  * what the bw of the path is. The stack would select the
114  * rate 31Mbps. 31Mbps means that each send that is done
115  * by the hardware will cause a 390 micro-second gap between
116  * the packets sent at that rate. For 29,110,000 bps we
117  * would need 416 micro-seconds gap between each send.
118  *
119  * Note that are calculating a complete time for pacing
120  * which includes the ethernet, IP and TCP overhead. So
121  * a full 1514 bytes is used for the above calculations.
122  * My testing has shown that both cards are also using this
123  * as their basis i.e. full payload size of the ethernet frame.
124  * The TCP stack caller needs to be aware of this and make the
125  * appropriate overhead calculations be included in its choices.
126  *
127  * Now, continuing our example, we pick a MSS size based on the
128  * delta between the two rates (416 - 390) divided into the rate
129  * we really wish to send at rounded up.  That results in a MSS
130  * send of 17 mss's at once. The hardware then will
131  * run out of data in a single 17MSS send in 6,630 micro-seconds.
132  *
133  * On the other hand the software pacer will send more data
134  * in 7,072 micro-seconds. This means that we will refill
135  * the hardware 52 microseconds after it would have sent
136  * next if it had not ran out of data. This is a win since we are
137  * only sending every 7ms or so and yet all the packets are spaced on
138  * the wire with 94% of what they should be and only
139  * the last packet is delayed extra to make up for the
140  * difference.
141  *
142  * Note that the above formula has two important caveat.
143  * If we are above (b/w wise) over 100Mbps we double the result
144  * of the MSS calculation. The second caveat is if we are 500Mbps
145  * or more we just send the maximum MSS at once i.e. 45MSS. At
146  * the higher b/w's even the cards have limits to what times (timer granularity)
147  * they can insert between packets and start to send more than one
148  * packet at a time on the wire.
149  *
150  */
151 #define COMMON_RATE 180500
152 const uint64_t desired_rates[] = {
153 	122500,			/* 1Mbps  - rate 1 */
154 	180500,			/* 1.44Mpbs - rate 2  common rate */
155 	375000,			/* 3Mbps    - rate 3 */
156 	625000,			/* 5Mbps    - rate 4 */
157 	875000,			/* 7Mbps    - rate 5 */
158 	1125000,		/* 9Mbps    - rate 6 */
159 	1375000,		/* 11Mbps   - rate 7 */
160 	1625000,	       	/* 13Mbps   - rate 8 */
161 	2625000,		/* 21Mbps   - rate 9 */
162 	3875000,		/* 31Mbps   - rate 10 */
163 	5125000,		/* 41Meg    - rate 11 */
164 	12500000,		/* 100Mbps  - rate 12 */
165 	25000000,		/* 200Mbps  - rate 13 */
166 	50000000,		/* 400Mbps  - rate 14 */
167 	63750000,		/* 51Mbps   - rate 15 */
168 	100000000,		/* 800Mbps  - rate 16 */
169 	1875000,		/* 15Mbps   - rate 17 */
170 	2125000,		/* 17Mbps   - rate 18 */
171 	2375000,		/* 19Mbps   - rate 19 */
172 	2875000,		/* 23Mbps   - rate 20 */
173 	3125000,		/* 25Mbps   - rate 21 */
174 	3375000,		/* 27Mbps   - rate 22 */
175 	3625000,		/* 29Mbps   - rate 23 */
176 	4125000,		/* 33Mbps   - rate 24 */
177 	4375000,		/* 35Mbps   - rate 25 */
178 	4625000,		/* 37Mbps   - rate 26 */
179 	4875000,		/* 39Mbps   - rate 27 */
180 	5375000,		/* 43Mbps   - rate 28 */
181 	5625000,		/* 45Mbps   - rate 29 */
182 	5875000,		/* 47Mbps   - rate 30 */
183 	6125000,		/* 49Mbps   - rate 31 */
184 	6625000,		/* 53Mbps   - rate 32 */
185 	6875000,		/* 55Mbps   - rate 33 */
186 	7125000,		/* 57Mbps   - rate 34 */
187 	7375000,		/* 59Mbps   - rate 35 */
188 	7625000,		/* 61Mbps   - rate 36 */
189 	7875000,		/* 63Mbps   - rate 37 */
190 	8125000,		/* 65Mbps   - rate 38 */
191 	8375000,		/* 67Mbps   - rate 39 */
192 	8625000,		/* 69Mbps   - rate 40 */
193 	8875000,		/* 71Mbps   - rate 41 */
194 	9125000,		/* 73Mbps   - rate 42 */
195 	9375000,		/* 75Mbps   - rate 43 */
196 	9625000,		/* 77Mbps   - rate 44 */
197 	9875000,		/* 79Mbps   - rate 45 */
198 	10125000,		/* 81Mbps   - rate 46 */
199 	10375000,		/* 83Mbps   - rate 47 */
200 	10625000,		/* 85Mbps   - rate 48 */
201 	10875000,		/* 87Mbps   - rate 49 */
202 	11125000,		/* 89Mbps   - rate 50 */
203 	11375000,		/* 91Mbps   - rate 51 */
204 	11625000,		/* 93Mbps   - rate 52 */
205 	11875000,		/* 95Mbps   - rate 53 */
206 	13125000,		/* 105Mbps  - rate 54 */
207 	13750000,		/* 110Mbps  - rate 55 */
208 	14375000,		/* 115Mbps  - rate 56 */
209 	15000000,		/* 120Mbps  - rate 57 */
210 	15625000,		/* 125Mbps  - rate 58 */
211 	16250000,		/* 130Mbps  - rate 59 */
212 	16875000,		/* 135Mbps  - rate 60 */
213 	17500000,		/* 140Mbps  - rate 61 */
214 	18125000,		/* 145Mbps  - rate 62 */
215 	18750000,		/* 150Mbps  - rate 64 */
216 	20000000,		/* 160Mbps  - rate 65 */
217 	21250000,		/* 170Mbps  - rate 66 */
218 	22500000,		/* 180Mbps  - rate 67 */
219 	23750000,		/* 190Mbps  - rate 68 */
220 	26250000,		/* 210Mbps  - rate 69 */
221 	27500000,		/* 220Mbps  - rate 70 */
222 	28750000,		/* 230Mbps  - rate 71 */
223 	30000000,	       	/* 240Mbps  - rate 72 */
224 	31250000,		/* 250Mbps  - rate 73 */
225 	34375000,		/* 275Mbps  - rate 74 */
226 	37500000,		/* 300Mbps  - rate 75 */
227 	40625000,		/* 325Mbps  - rate 76 */
228 	43750000,		/* 350Mbps  - rate 77 */
229 	46875000,		/* 375Mbps  - rate 78 */
230 	53125000,		/* 425Mbps  - rate 79 */
231 	56250000,		/* 450Mbps  - rate 80 */
232 	59375000,		/* 475Mbps  - rate 81 */
233 	62500000,		/* 500Mbps  - rate 82 */
234 	68750000,		/* 550Mbps  - rate 83 */
235 	75000000,		/* 600Mbps  - rate 84 */
236 	81250000,		/* 650Mbps  - rate 85 */
237 	87500000,		/* 700Mbps  - rate 86 */
238 	93750000,		/* 750Mbps  - rate 87 */
239 	106250000,		/* 850Mbps  - rate 88 */
240 	112500000,		/* 900Mbps  - rate 89 */
241 	125000000,		/* 1Gbps    - rate 90 */
242 	156250000,		/* 1.25Gps  - rate 91 */
243 	187500000,		/* 1.5Gps   - rate 92 */
244 	218750000,		/* 1.75Gps  - rate 93 */
245 	250000000,		/* 2Gbps    - rate 94 */
246 	281250000,		/* 2.25Gps  - rate 95 */
247 	312500000,		/* 2.5Gbps  - rate 96 */
248 	343750000,		/* 2.75Gbps - rate 97 */
249 	375000000,		/* 3Gbps    - rate 98 */
250 	500000000,		/* 4Gbps    - rate 99 */
251 	625000000,		/* 5Gbps    - rate 100 */
252 	750000000,		/* 6Gbps    - rate 101 */
253 	875000000,		/* 7Gbps    - rate 102 */
254 	1000000000,		/* 8Gbps    - rate 103 */
255 	1125000000,		/* 9Gbps    - rate 104 */
256 	1250000000,		/* 10Gbps   - rate 105 */
257 	1875000000,		/* 15Gbps   - rate 106 */
258 	2500000000		/* 20Gbps   - rate 107 */
259 };
260 
261 #define MAX_HDWR_RATES (sizeof(desired_rates)/sizeof(uint64_t))
262 #define RS_ORDERED_COUNT 16	/*
263 				 * Number that are in order
264 				 * at the beginning of the table,
265 				 * over this a sort is required.
266 				 */
267 #define RS_NEXT_ORDER_GROUP 16	/*
268 				 * The point in our table where
269 				 * we come fill in a second ordered
270 				 * group (index wise means -1).
271 				 */
272 #define ALL_HARDWARE_RATES 1004 /*
273 				 * 1Meg - 1Gig in 1 Meg steps
274 				 * plus 100, 200k  and 500k and
275 				 * 10Gig
276 				 */
277 
278 #define RS_ONE_MEGABIT_PERSEC 1000000
279 #define RS_ONE_GIGABIT_PERSEC 1000000000
280 #define RS_TEN_GIGABIT_PERSEC 10000000000
281 
282 static struct head_tcp_rate_set int_rs;
283 static struct mtx rs_mtx;
284 uint32_t rs_number_alive;
285 uint32_t rs_number_dead;
286 
287 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, rl, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
288     "TCP Ratelimit stats");
289 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, alive, CTLFLAG_RW,
290     &rs_number_alive, 0,
291     "Number of interfaces initialized for ratelimiting");
292 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, dead, CTLFLAG_RW,
293     &rs_number_dead, 0,
294     "Number of interfaces departing from ratelimiting");
295 
296 static void
297 rl_add_syctl_entries(struct sysctl_oid *rl_sysctl_root, struct tcp_rate_set *rs)
298 {
299 	/*
300 	 * Add sysctl entries for thus interface.
301 	 */
302 	if (rs->rs_flags & RS_INTF_NO_SUP) {
303 		SYSCTL_ADD_S32(&rs->sysctl_ctx,
304 		   SYSCTL_CHILDREN(rl_sysctl_root),
305 		   OID_AUTO, "disable", CTLFLAG_RD,
306 		   &rs->rs_disable, 0,
307 		   "Disable this interface from new hdwr limiting?");
308 	} else {
309 		SYSCTL_ADD_S32(&rs->sysctl_ctx,
310 		   SYSCTL_CHILDREN(rl_sysctl_root),
311 		   OID_AUTO, "disable", CTLFLAG_RW,
312 		   &rs->rs_disable, 0,
313 		   "Disable this interface from new hdwr limiting?");
314 	}
315 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
316 	    SYSCTL_CHILDREN(rl_sysctl_root),
317 	    OID_AUTO, "minseg", CTLFLAG_RW,
318 	    &rs->rs_min_seg, 0,
319 	    "What is the minimum we need to send on this interface?");
320 	SYSCTL_ADD_U64(&rs->sysctl_ctx,
321 	    SYSCTL_CHILDREN(rl_sysctl_root),
322 	    OID_AUTO, "flow_limit", CTLFLAG_RW,
323 	    &rs->rs_flow_limit, 0,
324 	    "What is the limit for number of flows (0=unlimited)?");
325 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
326 	    SYSCTL_CHILDREN(rl_sysctl_root),
327 	    OID_AUTO, "highest", CTLFLAG_RD,
328 	    &rs->rs_highest_valid, 0,
329 	    "Highest valid rate");
330 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
331 	    SYSCTL_CHILDREN(rl_sysctl_root),
332 	    OID_AUTO, "lowest", CTLFLAG_RD,
333 	    &rs->rs_lowest_valid, 0,
334 	    "Lowest valid rate");
335 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
336 	    SYSCTL_CHILDREN(rl_sysctl_root),
337 	    OID_AUTO, "flags", CTLFLAG_RD,
338 	    &rs->rs_flags, 0,
339 	    "What lags are on the entry?");
340 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
341 	    SYSCTL_CHILDREN(rl_sysctl_root),
342 	    OID_AUTO, "numrates", CTLFLAG_RD,
343 	    &rs->rs_rate_cnt, 0,
344 	    "How many rates re there?");
345 	SYSCTL_ADD_U64(&rs->sysctl_ctx,
346 	    SYSCTL_CHILDREN(rl_sysctl_root),
347 	    OID_AUTO, "flows_using", CTLFLAG_RD,
348 	    &rs->rs_flows_using, 0,
349 	    "How many flows are using this interface now?");
350 #ifdef DETAILED_RATELIMIT_SYSCTL
351 	if (rs->rs_rlt && rs->rs_rate_cnt > 0) {
352 		/*  Lets display the rates */
353 		int i;
354 		struct sysctl_oid *rl_rates;
355 		struct sysctl_oid *rl_rate_num;
356 		char rate_num[16];
357 		rl_rates = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
358 					    SYSCTL_CHILDREN(rl_sysctl_root),
359 					    OID_AUTO,
360 					    "rate",
361 					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
362 					    "Ratelist");
363 		for( i = 0; i < rs->rs_rate_cnt; i++) {
364 			sprintf(rate_num, "%d", i);
365 			rl_rate_num = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
366 					    SYSCTL_CHILDREN(rl_rates),
367 					    OID_AUTO,
368 					    rate_num,
369 					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
370 					    "Individual Rate");
371 			SYSCTL_ADD_U32(&rs->sysctl_ctx,
372 				       SYSCTL_CHILDREN(rl_rate_num),
373 				       OID_AUTO, "flags", CTLFLAG_RD,
374 				       &rs->rs_rlt[i].flags, 0,
375 				       "Flags on this rate");
376 			SYSCTL_ADD_U32(&rs->sysctl_ctx,
377 				       SYSCTL_CHILDREN(rl_rate_num),
378 				       OID_AUTO, "pacetime", CTLFLAG_RD,
379 				       &rs->rs_rlt[i].time_between, 0,
380 				       "Time hardware inserts between 1500 byte sends");
381 			SYSCTL_ADD_U64(&rs->sysctl_ctx,
382 				       SYSCTL_CHILDREN(rl_rate_num),
383 				       OID_AUTO, "rate", CTLFLAG_RD,
384 				       &rs->rs_rlt[i].rate, 0,
385 				       "Rate in bytes per second");
386 		}
387 	}
388 #endif
389 }
390 
391 static void
392 rs_destroy(epoch_context_t ctx)
393 {
394 	struct tcp_rate_set *rs;
395 	bool do_free_rs;
396 
397 	rs = __containerof(ctx, struct tcp_rate_set, rs_epoch_ctx);
398 
399 	mtx_lock(&rs_mtx);
400 	rs->rs_flags &= ~RS_FUNERAL_SCHD;
401 	/*
402 	 * In theory its possible (but unlikely)
403 	 * that while the delete was occuring
404 	 * and we were applying the DEAD flag
405 	 * someone slipped in and found the
406 	 * interface in a lookup. While we
407 	 * decided rs_flows_using were 0 and
408 	 * scheduling the epoch_call, the other
409 	 * thread incremented rs_flow_using. This
410 	 * is because users have a pointer and
411 	 * we only use the rs_flows_using in an
412 	 * atomic fashion, i.e. the other entities
413 	 * are not protected. To assure this did
414 	 * not occur, we check rs_flows_using here
415 	 * before deleting.
416 	 */
417 	do_free_rs = (rs->rs_flows_using == 0);
418 	rs_number_dead--;
419 	mtx_unlock(&rs_mtx);
420 
421 	if (do_free_rs) {
422 		sysctl_ctx_free(&rs->sysctl_ctx);
423 		free(rs->rs_rlt, M_TCPPACE);
424 		free(rs, M_TCPPACE);
425 	}
426 }
427 
428 static void
429 rs_defer_destroy(struct tcp_rate_set *rs)
430 {
431 
432 	mtx_assert(&rs_mtx, MA_OWNED);
433 
434 	/* Check if already pending. */
435 	if (rs->rs_flags & RS_FUNERAL_SCHD)
436 		return;
437 
438 	rs_number_dead++;
439 
440 	/* Set flag to only defer once. */
441 	rs->rs_flags |= RS_FUNERAL_SCHD;
442 	NET_EPOCH_CALL(rs_destroy, &rs->rs_epoch_ctx);
443 }
444 
445 #ifdef INET
446 extern counter_u64_t rate_limit_set_ok;
447 extern counter_u64_t rate_limit_active;
448 extern counter_u64_t rate_limit_alloc_fail;
449 #endif
450 
451 static int
452 rl_attach_txrtlmt(struct ifnet *ifp,
453     uint32_t flowtype,
454     int flowid,
455     uint64_t cfg_rate,
456     struct m_snd_tag **tag)
457 {
458 	int error;
459 	union if_snd_tag_alloc_params params = {
460 		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
461 		.rate_limit.hdr.flowid = flowid,
462 		.rate_limit.hdr.flowtype = flowtype,
463 		.rate_limit.max_rate = cfg_rate,
464 		.rate_limit.flags = M_NOWAIT,
465 	};
466 
467 	if (ifp->if_snd_tag_alloc == NULL) {
468 		error = EOPNOTSUPP;
469 	} else {
470 		error = ifp->if_snd_tag_alloc(ifp, &params, tag);
471 #ifdef INET
472 		if (error == 0) {
473 			if_ref((*tag)->ifp);
474 			counter_u64_add(rate_limit_set_ok, 1);
475 			counter_u64_add(rate_limit_active, 1);
476 		} else
477 			counter_u64_add(rate_limit_alloc_fail, 1);
478 #endif
479 	}
480 	return (error);
481 }
482 
483 static void
484 populate_canned_table(struct tcp_rate_set *rs, const uint64_t *rate_table_act)
485 {
486 	/*
487 	 * The internal table is "special", it
488 	 * is two seperate ordered tables that
489 	 * must be merged. We get here when the
490 	 * adapter specifies a number of rates that
491 	 * covers both ranges in the table in some
492 	 * form.
493 	 */
494 	int i, at_low, at_high;
495 	uint8_t low_disabled = 0, high_disabled = 0;
496 
497 	for(i = 0, at_low = 0, at_high = RS_NEXT_ORDER_GROUP; i < rs->rs_rate_cnt; i++) {
498 		rs->rs_rlt[i].flags = 0;
499 		rs->rs_rlt[i].time_between = 0;
500 		if ((low_disabled == 0) &&
501 		    (high_disabled ||
502 		     (rate_table_act[at_low] < rate_table_act[at_high]))) {
503 			rs->rs_rlt[i].rate = rate_table_act[at_low];
504 			at_low++;
505 			if (at_low == RS_NEXT_ORDER_GROUP)
506 				low_disabled = 1;
507 		} else if (high_disabled == 0) {
508 			rs->rs_rlt[i].rate = rate_table_act[at_high];
509 			at_high++;
510 			if (at_high == MAX_HDWR_RATES)
511 				high_disabled = 1;
512 		}
513 	}
514 }
515 
516 static struct tcp_rate_set *
517 rt_setup_new_rs(struct ifnet *ifp, int *error)
518 {
519 	struct tcp_rate_set *rs;
520 	const uint64_t *rate_table_act;
521 	uint64_t lentim, res;
522 	size_t sz;
523 	uint32_t hash_type;
524 	int i;
525 	struct if_ratelimit_query_results rl;
526 	struct sysctl_oid *rl_sysctl_root;
527 	/*
528 	 * We expect to enter with the
529 	 * mutex locked.
530 	 */
531 
532 	if (ifp->if_ratelimit_query == NULL) {
533 		/*
534 		 * We can do nothing if we cannot
535 		 * get a query back from the driver.
536 		 */
537 		printf("Warning:No query functions for %s:%d-- failed\n",
538 		       ifp->if_dname, ifp->if_dunit);
539 		return (NULL);
540 	}
541 	rs = malloc(sizeof(struct tcp_rate_set), M_TCPPACE, M_NOWAIT | M_ZERO);
542 	if (rs == NULL) {
543 		if (error)
544 			*error = ENOMEM;
545 		printf("Warning:No memory for malloc of tcp_rate_set\n");
546 		return (NULL);
547 	}
548 	memset(&rl, 0, sizeof(rl));
549 	rl.flags = RT_NOSUPPORT;
550 	ifp->if_ratelimit_query(ifp, &rl);
551 	if (rl.flags & RT_IS_UNUSABLE) {
552 		/*
553 		 * The interface does not really support
554 		 * the rate-limiting.
555 		 */
556 		memset(rs, 0, sizeof(struct tcp_rate_set));
557 		rs->rs_ifp = ifp;
558 		rs->rs_if_dunit = ifp->if_dunit;
559 		rs->rs_flags = RS_INTF_NO_SUP;
560 		rs->rs_disable = 1;
561 		rs_number_alive++;
562 		sysctl_ctx_init(&rs->sysctl_ctx);
563 		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
564 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
565 		    OID_AUTO,
566 		    rs->rs_ifp->if_xname,
567 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
568 		    "");
569 		rl_add_syctl_entries(rl_sysctl_root, rs);
570 		mtx_lock(&rs_mtx);
571 		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
572 		mtx_unlock(&rs_mtx);
573 		return (rs);
574 	} else if ((rl.flags & RT_IS_INDIRECT) == RT_IS_INDIRECT) {
575 		memset(rs, 0, sizeof(struct tcp_rate_set));
576 		rs->rs_ifp = ifp;
577 		rs->rs_if_dunit = ifp->if_dunit;
578 		rs->rs_flags = RS_IS_DEFF;
579 		rs_number_alive++;
580 		sysctl_ctx_init(&rs->sysctl_ctx);
581 		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
582 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
583 		    OID_AUTO,
584 		    rs->rs_ifp->if_xname,
585 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
586 		    "");
587 		rl_add_syctl_entries(rl_sysctl_root, rs);
588 		mtx_lock(&rs_mtx);
589 		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
590 		mtx_unlock(&rs_mtx);
591 		return (rs);
592 	} else if ((rl.flags & RT_IS_FIXED_TABLE) == RT_IS_FIXED_TABLE) {
593 		/* Mellanox C4 likely */
594 		rs->rs_ifp = ifp;
595 		rs->rs_if_dunit = ifp->if_dunit;
596 		rs->rs_rate_cnt = rl.number_of_rates;
597 		rs->rs_min_seg = rl.min_segment_burst;
598 		rs->rs_highest_valid = 0;
599 		rs->rs_flow_limit = rl.max_flows;
600 		rs->rs_flags = RS_IS_INTF | RS_NO_PRE;
601 		rs->rs_disable = 0;
602 		rate_table_act = rl.rate_table;
603 	} else if ((rl.flags & RT_IS_SELECTABLE) == RT_IS_SELECTABLE) {
604 		/* Chelsio, C5 and C6 of Mellanox? */
605 		rs->rs_ifp = ifp;
606 		rs->rs_if_dunit = ifp->if_dunit;
607 		rs->rs_rate_cnt = rl.number_of_rates;
608 		rs->rs_min_seg = rl.min_segment_burst;
609 		rs->rs_disable = 0;
610 		rs->rs_flow_limit = rl.max_flows;
611 		rate_table_act = desired_rates;
612 		if ((rs->rs_rate_cnt > MAX_HDWR_RATES) &&
613 		    (rs->rs_rate_cnt < ALL_HARDWARE_RATES)) {
614 			/*
615 			 * Our desired table is not big
616 			 * enough, do what we can.
617 			 */
618 			rs->rs_rate_cnt = MAX_HDWR_RATES;
619 		 }
620 		if (rs->rs_rate_cnt <= RS_ORDERED_COUNT)
621 			rs->rs_flags = RS_IS_INTF;
622 		else
623 			rs->rs_flags = RS_IS_INTF | RS_INT_TBL;
624 		if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)
625 			rs->rs_rate_cnt = ALL_HARDWARE_RATES;
626 	} else {
627 		free(rs, M_TCPPACE);
628 		return (NULL);
629 	}
630 	sz = sizeof(struct tcp_hwrate_limit_table) * rs->rs_rate_cnt;
631 	rs->rs_rlt = malloc(sz, M_TCPPACE, M_NOWAIT);
632 	if (rs->rs_rlt == NULL) {
633 		if (error)
634 			*error = ENOMEM;
635 bail:
636 		free(rs, M_TCPPACE);
637 		return (NULL);
638 	}
639 	if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES) {
640 		/*
641 		 * The interface supports all
642 		 * the rates we could possibly want.
643 		 */
644 		uint64_t rat;
645 
646 		rs->rs_rlt[0].rate = 12500;	/* 100k */
647 		rs->rs_rlt[1].rate = 25000;	/* 200k */
648 		rs->rs_rlt[2].rate = 62500;	/* 500k */
649 		/* Note 125000 == 1Megabit
650 		 * populate 1Meg - 1000meg.
651 		 */
652 		for(i = 3, rat = 125000; i< (ALL_HARDWARE_RATES-1); i++) {
653 			rs->rs_rlt[i].rate = rat;
654 			rat += 125000;
655 		}
656 		rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate = 1250000000;
657 	} else if (rs->rs_flags & RS_INT_TBL) {
658 		/* We populate this in a special way */
659 		populate_canned_table(rs, rate_table_act);
660 	} else {
661 		/*
662 		 * Just copy in the rates from
663 		 * the table, it is in order.
664 		 */
665 		for (i=0; i<rs->rs_rate_cnt; i++) {
666 			rs->rs_rlt[i].rate = rate_table_act[i];
667 			rs->rs_rlt[i].time_between = 0;
668 			rs->rs_rlt[i].flags = 0;
669 		}
670 	}
671 	for (i = (rs->rs_rate_cnt - 1); i >= 0; i--) {
672 		/*
673 		 * We go backwards through the list so that if we can't get
674 		 * a rate and fail to init one, we have at least a chance of
675 		 * getting the highest one.
676 		 */
677 		rs->rs_rlt[i].ptbl = rs;
678 		rs->rs_rlt[i].tag = NULL;
679 		/*
680 		 * Calculate the time between.
681 		 */
682 		lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
683 		res = lentim / rs->rs_rlt[i].rate;
684 		if (res > 0)
685 			rs->rs_rlt[i].time_between = res;
686 		else
687 			rs->rs_rlt[i].time_between = 1;
688 		if (rs->rs_flags & RS_NO_PRE) {
689 			rs->rs_rlt[i].flags = HDWRPACE_INITED;
690 			rs->rs_lowest_valid = i;
691 		} else {
692 			int err;
693 
694 			if ((rl.flags & RT_IS_SETUP_REQ)  &&
695 			    (ifp->if_ratelimit_query)) {
696 				err = ifp->if_ratelimit_setup(ifp,
697   				         rs->rs_rlt[i].rate, i);
698 				if (err)
699 					goto handle_err;
700 			}
701 #ifdef RSS
702 			hash_type = M_HASHTYPE_RSS_TCP_IPV4;
703 #else
704 			hash_type = M_HASHTYPE_OPAQUE_HASH;
705 #endif
706 			err = rl_attach_txrtlmt(ifp,
707 			    hash_type,
708 			    (i + 1),
709 			    rs->rs_rlt[i].rate,
710 			    &rs->rs_rlt[i].tag);
711 			if (err) {
712 handle_err:
713 				if (i == (rs->rs_rate_cnt - 1)) {
714 					/*
715 					 * Huh - first rate and we can't get
716 					 * it?
717 					 */
718 					free(rs->rs_rlt, M_TCPPACE);
719 					if (error)
720 						*error = err;
721 					goto bail;
722 				} else {
723 					if (error)
724 						*error = err;
725 				}
726 				break;
727 			} else {
728 				rs->rs_rlt[i].flags = HDWRPACE_INITED | HDWRPACE_TAGPRESENT;
729 				rs->rs_lowest_valid = i;
730 			}
731 		}
732 	}
733 	/* Did we get at least 1 rate? */
734 	if (rs->rs_rlt[(rs->rs_rate_cnt - 1)].flags & HDWRPACE_INITED)
735 		rs->rs_highest_valid = rs->rs_rate_cnt - 1;
736 	else {
737 		free(rs->rs_rlt, M_TCPPACE);
738 		goto bail;
739 	}
740 	rs_number_alive++;
741 	sysctl_ctx_init(&rs->sysctl_ctx);
742 	rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
743 	    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
744 	    OID_AUTO,
745 	    rs->rs_ifp->if_xname,
746 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
747 	    "");
748 	rl_add_syctl_entries(rl_sysctl_root, rs);
749 	mtx_lock(&rs_mtx);
750 	CK_LIST_INSERT_HEAD(&int_rs, rs, next);
751 	mtx_unlock(&rs_mtx);
752 	return (rs);
753 }
754 
755 static const struct tcp_hwrate_limit_table *
756 tcp_int_find_suitable_rate(const struct tcp_rate_set *rs,
757     uint64_t bytes_per_sec, uint32_t flags)
758 {
759 	struct tcp_hwrate_limit_table *arte = NULL, *rte = NULL;
760 	uint64_t mbits_per_sec, ind_calc;
761 	int i;
762 
763 	mbits_per_sec = (bytes_per_sec * 8);
764 	if (flags & RS_PACING_LT) {
765 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
766 		    (rs->rs_lowest_valid <= 2)){
767 			/*
768 			 * Smaller than 1Meg, only
769 			 * 3 entries can match it.
770 			 */
771 			for(i = rs->rs_lowest_valid; i < 3; i++) {
772 				if (bytes_per_sec <= rs->rs_rlt[i].rate) {
773 					rte = &rs->rs_rlt[i];
774 					break;
775 				} else if (rs->rs_rlt[i].flags & HDWRPACE_INITED) {
776 					arte = &rs->rs_rlt[i];
777 				}
778 			}
779 			goto done;
780 		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
781 			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
782 			/*
783 			 * Larger than 1G (the majority of
784 			 * our table.
785 			 */
786 			if (mbits_per_sec < RS_TEN_GIGABIT_PERSEC)
787 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
788 			else
789 				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
790 			goto done;
791 		}
792 		/*
793 		 * If we reach here its in our table (between 1Meg - 1000Meg),
794 		 * just take the rounded down mbits per second, and add
795 		 * 1Megabit to it, from this we can calculate
796 		 * the index in the table.
797 		 */
798 		ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
799 		if ((ind_calc * RS_ONE_MEGABIT_PERSEC) != mbits_per_sec)
800 			ind_calc++;
801 		/* our table is offset by 3, we add 2 */
802 		ind_calc += 2;
803 		if (ind_calc > (ALL_HARDWARE_RATES-1)) {
804 			/* This should not happen */
805 			ind_calc = ALL_HARDWARE_RATES-1;
806 		}
807 		if ((ind_calc >= rs->rs_lowest_valid) &&
808 		    (ind_calc <= rs->rs_highest_valid))
809 		rte = &rs->rs_rlt[ind_calc];
810 	} else if (flags & RS_PACING_EXACT_MATCH) {
811 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
812 		    (rs->rs_lowest_valid <= 2)){
813 			for(i = rs->rs_lowest_valid; i < 3; i++) {
814 				if (bytes_per_sec == rs->rs_rlt[i].rate) {
815 					rte = &rs->rs_rlt[i];
816 					break;
817 				}
818 			}
819 		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
820 			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
821 			/* > 1Gbps only one rate */
822 			if (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) {
823 				/* Its 10G wow */
824 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
825 			}
826 		} else {
827 			/* Ok it must be a exact meg (its between 1G and 1Meg) */
828 			ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
829 			if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
830 				/* its an exact Mbps */
831 				ind_calc += 2;
832 				if (ind_calc > (ALL_HARDWARE_RATES-1)) {
833 					/* This should not happen */
834 					ind_calc = ALL_HARDWARE_RATES-1;
835 				}
836 				if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED)
837 					rte = &rs->rs_rlt[ind_calc];
838 			}
839 		}
840 	} else {
841 		/* we want greater than the requested rate */
842 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
843 		    (rs->rs_lowest_valid <= 2)){
844 			arte = &rs->rs_rlt[3]; /* set alternate to 1Meg */
845 			for (i=2; i>=rs->rs_lowest_valid; i--) {
846 				if (bytes_per_sec < rs->rs_rlt[i].rate) {
847 					rte = &rs->rs_rlt[i];
848 					break;
849 				} else if ((flags & RS_PACING_GEQ) &&
850 					   (bytes_per_sec == rs->rs_rlt[i].rate)) {
851 					rte = &rs->rs_rlt[i];
852 					break;
853 				} else {
854 					arte = &rs->rs_rlt[i]; /* new alternate */
855 				}
856 			}
857 		} else if (mbits_per_sec > RS_ONE_GIGABIT_PERSEC) {
858 			if ((bytes_per_sec < rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
859 			    (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
860 				/* Our top rate is larger than the request */
861 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
862 			} else if ((flags & RS_PACING_GEQ) &&
863 				   (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
864 				   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
865 				/* It matches our top rate */
866 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
867 			} else if (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED) {
868 				/* The top rate is an alternative */
869 				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
870 			}
871 		} else {
872 			/* Its in our range 1Meg - 1Gig */
873 			if (flags & RS_PACING_GEQ) {
874 				ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
875 				if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
876 					if (ind_calc > (ALL_HARDWARE_RATES-1)) {
877 						/* This should not happen */
878 						ind_calc = (ALL_HARDWARE_RATES-1);
879 					}
880 					rte = &rs->rs_rlt[ind_calc];
881 				}
882 				goto done;
883 			}
884 			ind_calc = (mbits_per_sec + (RS_ONE_MEGABIT_PERSEC-1))/RS_ONE_MEGABIT_PERSEC;
885 			ind_calc += 2;
886 			if (ind_calc > (ALL_HARDWARE_RATES-1)) {
887 				/* This should not happen */
888 				ind_calc = ALL_HARDWARE_RATES-1;
889 			}
890 			if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED)
891 				rte = &rs->rs_rlt[ind_calc];
892 		}
893 	}
894 done:
895 	if ((rte == NULL) &&
896 	    (arte != NULL) &&
897 	    (flags & RS_PACING_SUB_OK)) {
898 		/* We can use the substitute */
899 		rte = arte;
900 	}
901 	return (rte);
902 }
903 
904 static const struct tcp_hwrate_limit_table *
905 tcp_find_suitable_rate(const struct tcp_rate_set *rs, uint64_t bytes_per_sec, uint32_t flags)
906 {
907 	/**
908 	 * Hunt the rate table with the restrictions in flags and find a
909 	 * suitable rate if possible.
910 	 * RS_PACING_EXACT_MATCH - look for an exact match to rate.
911 	 * RS_PACING_GT     - must be greater than.
912 	 * RS_PACING_GEQ    - must be greater than or equal.
913 	 * RS_PACING_LT     - must be less than.
914 	 * RS_PACING_SUB_OK - If we don't meet criteria a
915 	 *                    substitute is ok.
916 	 */
917 	int i, matched;
918 	struct tcp_hwrate_limit_table *rte = NULL;
919 
920 	if ((rs->rs_flags & RS_INT_TBL) &&
921 	    (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)) {
922 		/*
923 		 * Here we don't want to paw thru
924 		 * a big table, we have everything
925 		 * from 1Meg - 1000Meg in 1Meg increments.
926 		 * Use an alternate method to "lookup".
927 		 */
928 		return (tcp_int_find_suitable_rate(rs, bytes_per_sec, flags));
929 	}
930 	if ((flags & RS_PACING_LT) ||
931 	    (flags & RS_PACING_EXACT_MATCH)) {
932 		/*
933 		 * For exact and less than we go forward through the table.
934 		 * This way when we find one larger we stop (exact was a
935 		 * toss up).
936 		 */
937 		for (i = rs->rs_lowest_valid, matched = 0; i <= rs->rs_highest_valid; i++) {
938 			if ((flags & RS_PACING_EXACT_MATCH) &&
939 			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
940 				rte = &rs->rs_rlt[i];
941 				matched = 1;
942 				break;
943 			} else if ((flags & RS_PACING_LT) &&
944 			    (bytes_per_sec <= rs->rs_rlt[i].rate)) {
945 				rte = &rs->rs_rlt[i];
946 				matched = 1;
947 				break;
948 			}
949 			if (bytes_per_sec > rs->rs_rlt[i].rate)
950 				break;
951 		}
952 		if ((matched == 0) &&
953 		    (flags & RS_PACING_LT) &&
954 		    (flags & RS_PACING_SUB_OK)) {
955 			/* Kick in a substitute (the lowest) */
956 			rte = &rs->rs_rlt[rs->rs_lowest_valid];
957 		}
958 	} else {
959 		/*
960 		 * Here we go backward through the table so that we can find
961 		 * the one greater in theory faster (but its probably a
962 		 * wash).
963 		 */
964 		for (i = rs->rs_highest_valid, matched = 0; i >= rs->rs_lowest_valid; i--) {
965 			if (rs->rs_rlt[i].rate > bytes_per_sec) {
966 				/* A possible candidate */
967 				rte = &rs->rs_rlt[i];
968 			}
969 			if ((flags & RS_PACING_GEQ) &&
970 			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
971 				/* An exact match and we want equal */
972 				matched = 1;
973 				rte = &rs->rs_rlt[i];
974 				break;
975 			} else if (rte) {
976 				/*
977 				 * Found one that is larger than but don't
978 				 * stop, there may be a more closer match.
979 				 */
980 				matched = 1;
981 			}
982 			if (rs->rs_rlt[i].rate < bytes_per_sec) {
983 				/*
984 				 * We found a table entry that is smaller,
985 				 * stop there will be none greater or equal.
986 				 */
987 				break;
988 			}
989 		}
990 		if ((matched == 0) &&
991 		    (flags & RS_PACING_SUB_OK)) {
992 			/* Kick in a substitute (the highest) */
993 			rte = &rs->rs_rlt[rs->rs_highest_valid];
994 		}
995 	}
996 	return (rte);
997 }
998 
999 static struct ifnet *
1000 rt_find_real_interface(struct ifnet *ifp, struct inpcb *inp, int *error)
1001 {
1002 	struct ifnet *tifp;
1003 	struct m_snd_tag *tag;
1004 	union if_snd_tag_alloc_params params = {
1005 		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
1006 		.rate_limit.hdr.flowid = 1,
1007 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
1008 		.rate_limit.max_rate = COMMON_RATE,
1009 		.rate_limit.flags = M_NOWAIT,
1010 	};
1011 	int err;
1012 #ifdef RSS
1013 	params.rate_limit.hdr.flowtype = ((inp->inp_vflag & INP_IPV6) ?
1014 	    M_HASHTYPE_RSS_TCP_IPV6 : M_HASHTYPE_RSS_TCP_IPV4);
1015 #else
1016 	params.rate_limit.hdr.flowtype = M_HASHTYPE_OPAQUE_HASH;
1017 #endif
1018 	tag = NULL;
1019 	if (ifp->if_snd_tag_alloc) {
1020 		if (error)
1021 			*error = ENODEV;
1022 		return (NULL);
1023 	}
1024 	err = ifp->if_snd_tag_alloc(ifp, &params, &tag);
1025 	if (err) {
1026 		/* Failed to setup a tag? */
1027 		if (error)
1028 			*error = err;
1029 		return (NULL);
1030 	}
1031 	tifp = tag->ifp;
1032 	tifp->if_snd_tag_free(tag);
1033 	return (tifp);
1034 }
1035 
1036 static const struct tcp_hwrate_limit_table *
1037 rt_setup_rate(struct inpcb *inp, struct ifnet *ifp, uint64_t bytes_per_sec,
1038     uint32_t flags, int *error)
1039 {
1040 	/* First lets find the interface if it exists */
1041 	const struct tcp_hwrate_limit_table *rte;
1042 	struct tcp_rate_set *rs;
1043 	struct epoch_tracker et;
1044 	int err;
1045 
1046 	NET_EPOCH_ENTER(et);
1047 use_real_interface:
1048 	CK_LIST_FOREACH(rs, &int_rs, next) {
1049 		/*
1050 		 * Note we don't look with the lock since we either see a
1051 		 * new entry or will get one when we try to add it.
1052 		 */
1053 		if (rs->rs_flags & RS_IS_DEAD) {
1054 			/* The dead are not looked at */
1055 			continue;
1056 		}
1057 		if ((rs->rs_ifp == ifp) &&
1058 		    (rs->rs_if_dunit == ifp->if_dunit)) {
1059 			/* Ok we found it */
1060 			break;
1061 		}
1062 	}
1063 	if ((rs == NULL) ||
1064 	    (rs->rs_flags & RS_INTF_NO_SUP) ||
1065 	    (rs->rs_flags & RS_IS_DEAD)) {
1066 		/*
1067 		 * This means we got a packet *before*
1068 		 * the IF-UP was processed below, <or>
1069 		 * while or after we already received an interface
1070 		 * departed event. In either case we really don't
1071 		 * want to do anything with pacing, in
1072 		 * the departing case the packet is not
1073 		 * going to go very far. The new case
1074 		 * might be arguable, but its impossible
1075 		 * to tell from the departing case.
1076 		 */
1077 		if (rs->rs_disable && error)
1078 			*error = ENODEV;
1079 		NET_EPOCH_EXIT(et);
1080 		return (NULL);
1081 	}
1082 
1083 	if ((rs == NULL) || (rs->rs_disable != 0)) {
1084 		if (rs->rs_disable && error)
1085 			*error = ENOSPC;
1086 		NET_EPOCH_EXIT(et);
1087 		return (NULL);
1088 	}
1089 	if (rs->rs_flags & RS_IS_DEFF) {
1090 		/* We need to find the real interface */
1091 		struct ifnet *tifp;
1092 
1093 		tifp = rt_find_real_interface(ifp, inp, error);
1094 		if (tifp == NULL) {
1095 			if (rs->rs_disable && error)
1096 				*error = ENOTSUP;
1097 			NET_EPOCH_EXIT(et);
1098 			return (NULL);
1099 		}
1100 		goto use_real_interface;
1101 	}
1102 	if (rs->rs_flow_limit &&
1103 	    ((rs->rs_flows_using + 1) > rs->rs_flow_limit)) {
1104 		if (error)
1105 			*error = ENOSPC;
1106 		NET_EPOCH_EXIT(et);
1107 		return (NULL);
1108 	}
1109 	rte = tcp_find_suitable_rate(rs, bytes_per_sec, flags);
1110 	if (rte) {
1111 		err = in_pcbattach_txrtlmt(inp, rs->rs_ifp,
1112 		    inp->inp_flowtype,
1113 		    inp->inp_flowid,
1114 		    rte->rate,
1115 		    &inp->inp_snd_tag);
1116 		if (err) {
1117 			/* Failed to attach */
1118 			if (error)
1119 				*error = err;
1120 			rte = NULL;
1121 		}
1122 	}
1123 	if (rte) {
1124 		/*
1125 		 * We use an atomic here for accounting so we don't have to
1126 		 * use locks when freeing.
1127 		 */
1128 		atomic_add_64(&rs->rs_flows_using, 1);
1129 	}
1130 	NET_EPOCH_EXIT(et);
1131 	return (rte);
1132 }
1133 
1134 static void
1135 tcp_rl_ifnet_link(void *arg __unused, struct ifnet *ifp, int link_state)
1136 {
1137 	int error;
1138 	struct tcp_rate_set *rs;
1139 
1140 	if (((ifp->if_capabilities & IFCAP_TXRTLMT) == 0) ||
1141 	    (link_state != LINK_STATE_UP)) {
1142 		/*
1143 		 * We only care on an interface going up that is rate-limit
1144 		 * capable.
1145 		 */
1146 		return;
1147 	}
1148 	mtx_lock(&rs_mtx);
1149 	CK_LIST_FOREACH(rs, &int_rs, next) {
1150 		if ((rs->rs_ifp == ifp) &&
1151 		    (rs->rs_if_dunit == ifp->if_dunit)) {
1152 			/* We already have initialized this guy */
1153 			mtx_unlock(&rs_mtx);
1154 			return;
1155 		}
1156 	}
1157 	mtx_unlock(&rs_mtx);
1158 	rt_setup_new_rs(ifp, &error);
1159 }
1160 
1161 static void
1162 tcp_rl_ifnet_departure(void *arg __unused, struct ifnet *ifp)
1163 {
1164 	struct tcp_rate_set *rs, *nrs;
1165 	struct ifnet *tifp;
1166 	int i;
1167 
1168 	mtx_lock(&rs_mtx);
1169 	CK_LIST_FOREACH_SAFE(rs, &int_rs, next, nrs) {
1170 		if ((rs->rs_ifp == ifp) &&
1171 		    (rs->rs_if_dunit == ifp->if_dunit)) {
1172 			CK_LIST_REMOVE(rs, next);
1173 			rs_number_alive--;
1174 			rs->rs_flags |= RS_IS_DEAD;
1175 			for (i = 0; i < rs->rs_rate_cnt; i++) {
1176 				if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1177 					tifp = rs->rs_rlt[i].tag->ifp;
1178 					in_pcbdetach_tag(tifp, rs->rs_rlt[i].tag);
1179 					rs->rs_rlt[i].tag = NULL;
1180 				}
1181 				rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1182 			}
1183 			if (rs->rs_flows_using == 0)
1184 				rs_defer_destroy(rs);
1185 			break;
1186 		}
1187 	}
1188 	mtx_unlock(&rs_mtx);
1189 }
1190 
1191 static void
1192 tcp_rl_shutdown(void *arg __unused, int howto __unused)
1193 {
1194 	struct tcp_rate_set *rs, *nrs;
1195 	struct ifnet *tifp;
1196 	int i;
1197 
1198 	mtx_lock(&rs_mtx);
1199 	CK_LIST_FOREACH_SAFE(rs, &int_rs, next, nrs) {
1200 		CK_LIST_REMOVE(rs, next);
1201 		rs_number_alive--;
1202 		rs->rs_flags |= RS_IS_DEAD;
1203 		for (i = 0; i < rs->rs_rate_cnt; i++) {
1204 			if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1205 				tifp = rs->rs_rlt[i].tag->ifp;
1206 				in_pcbdetach_tag(tifp, rs->rs_rlt[i].tag);
1207 				rs->rs_rlt[i].tag = NULL;
1208 			}
1209 			rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1210 		}
1211 		if (rs->rs_flows_using == 0)
1212 			rs_defer_destroy(rs);
1213 	}
1214 	mtx_unlock(&rs_mtx);
1215 }
1216 
1217 const struct tcp_hwrate_limit_table *
1218 tcp_set_pacing_rate(struct tcpcb *tp, struct ifnet *ifp,
1219     uint64_t bytes_per_sec, int flags, int *error)
1220 {
1221 	const struct tcp_hwrate_limit_table *rte;
1222 
1223 	if (tp->t_inpcb->inp_snd_tag == NULL) {
1224 		/*
1225 		 * We are setting up a rate for the first time.
1226 		 */
1227 		if ((ifp->if_capabilities & IFCAP_TXRTLMT) == 0) {
1228 			/* Not supported by the egress */
1229 			if (error)
1230 				*error = ENODEV;
1231 			return (NULL);
1232 		}
1233 #ifdef KERN_TLS
1234 		if (tp->t_inpcb->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
1235 			/*
1236 			 * We currently can't do both TLS and hardware
1237 			 * pacing
1238 			 */
1239 			if (error)
1240 				*error = EINVAL;
1241 			return (NULL);
1242 		}
1243 #endif
1244 		rte = rt_setup_rate(tp->t_inpcb, ifp, bytes_per_sec, flags, error);
1245 	} else {
1246 		/*
1247 		 * We are modifying a rate, wrong interface?
1248 		 */
1249 		if (error)
1250 			*error = EINVAL;
1251 		rte = NULL;
1252 	}
1253 	*error = 0;
1254 	return (rte);
1255 }
1256 
1257 const struct tcp_hwrate_limit_table *
1258 tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table *crte,
1259     struct tcpcb *tp, struct ifnet *ifp,
1260     uint64_t bytes_per_sec, int flags, int *error)
1261 {
1262 	const struct tcp_hwrate_limit_table *nrte;
1263 	const struct tcp_rate_set *rs;
1264 	int is_indirect = 0;
1265 	int err;
1266 
1267 	if ((tp->t_inpcb->inp_snd_tag == NULL) ||
1268 	    (crte == NULL)) {
1269 		/* Wrong interface */
1270 		if (error)
1271 			*error = EINVAL;
1272 		return (NULL);
1273 	}
1274 	rs = crte->ptbl;
1275 	if ((rs->rs_flags & RS_IS_DEAD) ||
1276 	    (crte->flags & HDWRPACE_IFPDEPARTED)) {
1277 		/* Release the rate, and try anew */
1278 re_rate:
1279 		tcp_rel_pacing_rate(crte, tp);
1280 		nrte = tcp_set_pacing_rate(tp, ifp,
1281 		    bytes_per_sec, flags, error);
1282 		return (nrte);
1283 	}
1284 	if ((rs->rs_flags & RT_IS_INDIRECT ) == RT_IS_INDIRECT)
1285 		is_indirect = 1;
1286 	else
1287 		is_indirect = 0;
1288 	if ((is_indirect == 0) &&
1289 	    ((ifp != rs->rs_ifp) ||
1290 	    (ifp->if_dunit != rs->rs_if_dunit))) {
1291 		/*
1292 		 * Something changed, the user is not pointing to the same
1293 		 * ifp? Maybe a route updated on this guy?
1294 		 */
1295 		goto re_rate;
1296 	} else if (is_indirect) {
1297 		/*
1298 		 * For indirect we have to dig in and find the real interface.
1299 		 */
1300 		struct ifnet *rifp;
1301 
1302 		rifp = rt_find_real_interface(ifp, tp->t_inpcb, error);
1303 		if (rifp == NULL) {
1304 			/* Can't find it? */
1305 			goto re_rate;
1306 		}
1307 		if ((rifp != rs->rs_ifp) ||
1308 		    (ifp->if_dunit != rs->rs_if_dunit)) {
1309 			goto re_rate;
1310 		}
1311 	}
1312 	nrte = tcp_find_suitable_rate(rs, bytes_per_sec, flags);
1313 	if (nrte == crte) {
1314 		/* No change */
1315 		if (error)
1316 			*error = 0;
1317 		return (crte);
1318 	}
1319 	if (nrte == NULL) {
1320 		/* Release the old rate */
1321 		tcp_rel_pacing_rate(crte, tp);
1322 		return (NULL);
1323 	}
1324 	/* Change rates to our new entry */
1325 	err = in_pcbmodify_txrtlmt(tp->t_inpcb, nrte->rate);
1326 	if (err) {
1327 		if (error)
1328 			*error = err;
1329 		return (NULL);
1330 	}
1331 	if (error)
1332 		*error = 0;
1333 	return (nrte);
1334 }
1335 
1336 void
1337 tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp)
1338 {
1339 	const struct tcp_rate_set *crs;
1340 	struct tcp_rate_set *rs;
1341 	uint64_t pre;
1342 
1343 	crs = crte->ptbl;
1344 	/*
1345 	 * Now we must break the const
1346 	 * in order to release our refcount.
1347 	 */
1348 	rs = __DECONST(struct tcp_rate_set *, crs);
1349 	pre = atomic_fetchadd_64(&rs->rs_flows_using, -1);
1350 	if (pre == 1) {
1351 		mtx_lock(&rs_mtx);
1352 		/*
1353 		 * Is it dead?
1354 		 */
1355 		if (rs->rs_flags & RS_IS_DEAD)
1356 			rs_defer_destroy(rs);
1357 		mtx_unlock(&rs_mtx);
1358 	}
1359 	in_pcbdetach_txrtlmt(tp->t_inpcb);
1360 }
1361 
1362 #define ONE_POINT_TWO_MEG 150000 /* 1.2 megabits in bytes */
1363 #define ONE_HUNDRED_MBPS 12500000	/* 100Mbps in bytes per second */
1364 #define FIVE_HUNDRED_MBPS 62500000	/* 500Mbps in bytes per second */
1365 #define MAX_MSS_SENT 43	/* 43 mss = 43 x 1500 = 64,500 bytes */
1366 
1367 uint32_t
1368 tcp_get_pacing_burst_size (uint64_t bw, uint32_t segsiz, int can_use_1mss,
1369    const struct tcp_hwrate_limit_table *te, int *err)
1370 {
1371 	/*
1372 	 * We use the google formula to calculate the
1373 	 * TSO size. I.E.
1374 	 * bw < 24Meg
1375 	 *   tso = 2mss
1376 	 * else
1377 	 *   tso = min(bw/1000, 64k)
1378 	 *
1379 	 * Note for these calculations we ignore the
1380 	 * packet overhead (enet hdr, ip hdr and tcp hdr).
1381 	 */
1382 	uint64_t lentim, res, bytes;
1383 	uint32_t new_tso, min_tso_segs;
1384 
1385 	bytes = bw / 1000;
1386 	if (bytes > (64 * 1000))
1387 		bytes = 64 * 1000;
1388 	/* Round up */
1389 	new_tso = (bytes + segsiz - 1) / segsiz;
1390 	if (can_use_1mss && (bw < ONE_POINT_TWO_MEG))
1391 		min_tso_segs = 1;
1392 	else
1393 		min_tso_segs = 2;
1394 	if (new_tso < min_tso_segs)
1395 		new_tso = min_tso_segs;
1396 	if (new_tso > MAX_MSS_SENT)
1397 		new_tso = MAX_MSS_SENT;
1398 	new_tso *= segsiz;
1399 	/*
1400 	 * If we are not doing hardware pacing
1401 	 * then we are done.
1402 	 */
1403 	if (te == NULL) {
1404 		if (err)
1405 			*err = 0;
1406 		return(new_tso);
1407 	}
1408 	/*
1409 	 * For hardware pacing we look at the
1410 	 * rate you are sending at and compare
1411 	 * that to the rate you have in hardware.
1412 	 *
1413 	 * If the hardware rate is slower than your
1414 	 * software rate then you are in error and
1415 	 * we will build a queue in our hardware whic
1416 	 * is probably not desired, in such a case
1417 	 * just return the non-hardware TSO size.
1418 	 *
1419 	 * If the rate in hardware is faster (which
1420 	 * it should be) then look at how long it
1421 	 * takes to send one ethernet segment size at
1422 	 * your b/w and compare that to the time it
1423 	 * takes to send at the rate you had selected.
1424 	 *
1425 	 * If your time is greater (which we hope it is)
1426 	 * we get the delta between the two, and then
1427 	 * divide that into your pacing time. This tells
1428 	 * us how many MSS you can send down at once (rounded up).
1429 	 *
1430 	 * Note we also double this value if the b/w is over
1431 	 * 100Mbps. If its over 500meg we just set you to the
1432 	 * max (43 segments).
1433 	 */
1434 	if (te->rate > FIVE_HUNDRED_MBPS)
1435 		return (segsiz * MAX_MSS_SENT);
1436 	if (te->rate == bw) {
1437 		/* We are pacing at exactly the hdwr rate */
1438 		return (segsiz * MAX_MSS_SENT);
1439 	}
1440 	lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
1441 	res = lentim / bw;
1442 	if (res > te->time_between) {
1443 		uint32_t delta, segs;
1444 
1445 		delta = res - te->time_between;
1446 		segs = (res + delta - 1)/delta;
1447 		if (te->rate > ONE_HUNDRED_MBPS)
1448 			segs *= 2;
1449 		if (segs < min_tso_segs)
1450 			segs = min_tso_segs;
1451 		if (segs > MAX_MSS_SENT)
1452 			segs = MAX_MSS_SENT;
1453 		segs *= segsiz;
1454 		if (err)
1455 			*err = 0;
1456 		if (segs < new_tso) {
1457 			/* unexpected ? */
1458 			return(new_tso);
1459 		} else {
1460 			return (segs);
1461 		}
1462 	} else {
1463 		/*
1464 		 * Your time is smaller which means
1465 		 * we will grow a queue on our
1466 		 * hardware. Send back the non-hardware
1467 		 * rate.
1468 		 */
1469 		if (err)
1470 			*err = -1;
1471 		return (new_tso);
1472 	}
1473 }
1474 
1475 static eventhandler_tag rl_ifnet_departs;
1476 static eventhandler_tag rl_ifnet_arrives;
1477 static eventhandler_tag rl_shutdown_start;
1478 
1479 static void
1480 tcp_rs_init(void *st __unused)
1481 {
1482 	CK_LIST_INIT(&int_rs);
1483 	rs_number_alive = 0;
1484 	rs_number_dead = 0;
1485 	mtx_init(&rs_mtx, "tcp_rs_mtx", "rsmtx", MTX_DEF);
1486 	rl_ifnet_departs = EVENTHANDLER_REGISTER(ifnet_departure_event,
1487 	    tcp_rl_ifnet_departure,
1488 	    NULL, EVENTHANDLER_PRI_ANY);
1489 	rl_ifnet_arrives = EVENTHANDLER_REGISTER(ifnet_link_event,
1490 	    tcp_rl_ifnet_link,
1491 	    NULL, EVENTHANDLER_PRI_ANY);
1492 	rl_shutdown_start = EVENTHANDLER_REGISTER(shutdown_pre_sync,
1493 	    tcp_rl_shutdown, NULL,
1494 	    SHUTDOWN_PRI_FIRST);
1495 	printf("TCP_ratelimit: Is now initialized\n");
1496 }
1497 
1498 SYSINIT(tcp_rl_init, SI_SUB_SMP + 1, SI_ORDER_ANY, tcp_rs_init, NULL);
1499 #endif
1500