xref: /freebsd/sys/netinet/tcp_ratelimit.c (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 /*-
2  *
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  * Copyright (c) 2018-2020
6  *	Netflix Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 /**
31  * Author: Randall Stewart <rrs@netflix.com>
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 #include "opt_ratelimit.h"
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/sysctl.h>
48 #include <sys/eventhandler.h>
49 #include <sys/mutex.h>
50 #include <sys/ck.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <netinet/in.h>
54 #include <netinet/in_pcb.h>
55 #define TCPSTATES		/* for logging */
56 #include <netinet/tcp_var.h>
57 #include <netinet/tcp_hpts.h>
58 #include <netinet/tcp_log_buf.h>
59 #include <netinet/tcp_ratelimit.h>
60 #ifndef USECS_IN_SECOND
61 #define USECS_IN_SECOND 1000000
62 #endif
63 /*
64  * For the purposes of each send, what is the size
65  * of an ethernet frame.
66  */
67 MALLOC_DEFINE(M_TCPPACE, "tcp_hwpace", "TCP Hardware pacing memory");
68 #ifdef RATELIMIT
69 
70 /*
71  * The following preferred table will seem weird to
72  * the casual viewer. Why do we not have any rates below
73  * 1Mbps? Why do we have a rate at 1.44Mbps called common?
74  * Why do the rates cluster in the 1-100Mbps range more
75  * than others? Why does the table jump around at the beginnign
76  * and then be more consistently raising?
77  *
78  * Let me try to answer those questions. A lot of
79  * this is dependant on the hardware. We have three basic
80  * supporters of rate limiting
81  *
82  * Chelsio - Supporting 16 configurable rates.
83  * Mlx  - c4 supporting 13 fixed rates.
84  * Mlx  - c5 & c6 supporting 127 configurable rates.
85  *
86  * The c4 is why we have a common rate that is available
87  * in all rate tables. This is a selected rate from the
88  * c4 table and we assure its available in all ratelimit
89  * tables. This way the tcp_ratelimit code has an assured
90  * rate it should always be able to get. This answers a
91  * couple of the questions above.
92  *
93  * So what about the rest, well the table is built to
94  * try to get the most out of a joint hardware/software
95  * pacing system.  The software pacer will always pick
96  * a rate higher than the b/w that it is estimating
97  *
98  * on the path. This is done for two reasons.
99  * a) So we can discover more b/w
100  * and
101  * b) So we can send a block of MSS's down and then
102  *    have the software timer go off after the previous
103  *    send is completely out of the hardware.
104  *
105  * But when we do <b> we don't want to have the delay
106  * between the last packet sent by the hardware be
107  * excessively long (to reach our desired rate).
108  *
109  * So let me give an example for clarity.
110  *
111  * Lets assume that the tcp stack sees that 29,110,000 bps is
112  * what the bw of the path is. The stack would select the
113  * rate 31Mbps. 31Mbps means that each send that is done
114  * by the hardware will cause a 390 micro-second gap between
115  * the packets sent at that rate. For 29,110,000 bps we
116  * would need 416 micro-seconds gap between each send.
117  *
118  * Note that are calculating a complete time for pacing
119  * which includes the ethernet, IP and TCP overhead. So
120  * a full 1514 bytes is used for the above calculations.
121  * My testing has shown that both cards are also using this
122  * as their basis i.e. full payload size of the ethernet frame.
123  * The TCP stack caller needs to be aware of this and make the
124  * appropriate overhead calculations be included in its choices.
125  *
126  * Now, continuing our example, we pick a MSS size based on the
127  * delta between the two rates (416 - 390) divided into the rate
128  * we really wish to send at rounded up.  That results in a MSS
129  * send of 17 mss's at once. The hardware then will
130  * run out of data in a single 17MSS send in 6,630 micro-seconds.
131  *
132  * On the other hand the software pacer will send more data
133  * in 7,072 micro-seconds. This means that we will refill
134  * the hardware 52 microseconds after it would have sent
135  * next if it had not ran out of data. This is a win since we are
136  * only sending every 7ms or so and yet all the packets are spaced on
137  * the wire with 94% of what they should be and only
138  * the last packet is delayed extra to make up for the
139  * difference.
140  *
141  * Note that the above formula has two important caveat.
142  * If we are above (b/w wise) over 100Mbps we double the result
143  * of the MSS calculation. The second caveat is if we are 500Mbps
144  * or more we just send the maximum MSS at once i.e. 45MSS. At
145  * the higher b/w's even the cards have limits to what times (timer granularity)
146  * they can insert between packets and start to send more than one
147  * packet at a time on the wire.
148  *
149  */
150 #define COMMON_RATE 180500
151 const uint64_t desired_rates[] = {
152 	122500,			/* 1Mbps  - rate 1 */
153 	180500,			/* 1.44Mpbs - rate 2  common rate */
154 	375000,			/* 3Mbps    - rate 3 */
155 	625000,			/* 5Mbps    - rate 4 */
156 	1250000,		/* 10Mbps   - rate 5 */
157 	1875000,		/* 15Mbps   - rate 6 */
158 	2500000,		/* 20Mbps   - rate 7 */
159 	3125000,	       	/* 25Mbps   - rate 8 */
160 	3750000,		/* 30Mbps   - rate 9 */
161 	4375000,		/* 35Mbps   - rate 10 */
162 	5000000,		/* 40Meg    - rate 11 */
163 	6250000,		/* 50Mbps   - rate 12 */
164 	12500000,		/* 100Mbps  - rate 13 */
165 	25000000,		/* 200Mbps  - rate 14 */
166 	50000000,		/* 400Mbps  - rate 15 */
167 	100000000,		/* 800Mbps  - rate 16 */
168 	5625000,		/* 45Mbps   - rate 17 */
169 	6875000,		/* 55Mbps   - rate 19 */
170 	7500000,		/* 60Mbps   - rate 20 */
171 	8125000,		/* 65Mbps   - rate 21 */
172 	8750000,		/* 70Mbps   - rate 22 */
173 	9375000,		/* 75Mbps   - rate 23 */
174 	10000000,		/* 80Mbps   - rate 24 */
175 	10625000,		/* 85Mbps   - rate 25 */
176 	11250000,		/* 90Mbps   - rate 26 */
177 	11875000,		/* 95Mbps   - rate 27 */
178 	12500000,		/* 100Mbps  - rate 28 */
179 	13750000,		/* 110Mbps  - rate 29 */
180 	15000000,		/* 120Mbps  - rate 30 */
181 	16250000,		/* 130Mbps  - rate 31 */
182 	17500000,		/* 140Mbps  - rate 32 */
183 	18750000,		/* 150Mbps  - rate 33 */
184 	20000000,		/* 160Mbps  - rate 34 */
185 	21250000,		/* 170Mbps  - rate 35 */
186 	22500000,		/* 180Mbps  - rate 36 */
187 	23750000,		/* 190Mbps  - rate 37 */
188 	26250000,		/* 210Mbps  - rate 38 */
189 	27500000,		/* 220Mbps  - rate 39 */
190 	28750000,		/* 230Mbps  - rate 40 */
191 	30000000,	       	/* 240Mbps  - rate 41 */
192 	31250000,		/* 250Mbps  - rate 42 */
193 	34375000,		/* 275Mbps  - rate 43 */
194 	37500000,		/* 300Mbps  - rate 44 */
195 	40625000,		/* 325Mbps  - rate 45 */
196 	43750000,		/* 350Mbps  - rate 46 */
197 	46875000,		/* 375Mbps  - rate 47 */
198 	53125000,		/* 425Mbps  - rate 48 */
199 	56250000,		/* 450Mbps  - rate 49 */
200 	59375000,		/* 475Mbps  - rate 50 */
201 	62500000,		/* 500Mbps  - rate 51 */
202 	68750000,		/* 550Mbps  - rate 52 */
203 	75000000,		/* 600Mbps  - rate 53 */
204 	81250000,		/* 650Mbps  - rate 54 */
205 	87500000,		/* 700Mbps  - rate 55 */
206 	93750000,		/* 750Mbps  - rate 56 */
207 	106250000,		/* 850Mbps  - rate 57 */
208 	112500000,		/* 900Mbps  - rate 58 */
209 	125000000,		/* 1Gbps    - rate 59 */
210 	156250000,		/* 1.25Gps  - rate 60 */
211 	187500000,		/* 1.5Gps   - rate 61 */
212 	218750000,		/* 1.75Gps  - rate 62 */
213 	250000000,		/* 2Gbps    - rate 63 */
214 	281250000,		/* 2.25Gps  - rate 64 */
215 	312500000,		/* 2.5Gbps  - rate 65 */
216 	343750000,		/* 2.75Gbps - rate 66 */
217 	375000000,		/* 3Gbps    - rate 67 */
218 	500000000,		/* 4Gbps    - rate 68 */
219 	625000000,		/* 5Gbps    - rate 69 */
220 	750000000,		/* 6Gbps    - rate 70 */
221 	875000000,		/* 7Gbps    - rate 71 */
222 	1000000000,		/* 8Gbps    - rate 72 */
223 	1125000000,		/* 9Gbps    - rate 73 */
224 	1250000000,		/* 10Gbps   - rate 74 */
225 	1875000000,		/* 15Gbps   - rate 75 */
226 	2500000000		/* 20Gbps   - rate 76 */
227 };
228 
229 #define MAX_HDWR_RATES (sizeof(desired_rates)/sizeof(uint64_t))
230 #define RS_ORDERED_COUNT 16	/*
231 				 * Number that are in order
232 				 * at the beginning of the table,
233 				 * over this a sort is required.
234 				 */
235 #define RS_NEXT_ORDER_GROUP 16	/*
236 				 * The point in our table where
237 				 * we come fill in a second ordered
238 				 * group (index wise means -1).
239 				 */
240 #define ALL_HARDWARE_RATES 1004 /*
241 				 * 1Meg - 1Gig in 1 Meg steps
242 				 * plus 100, 200k  and 500k and
243 				 * 10Gig
244 				 */
245 
246 #define RS_ONE_MEGABIT_PERSEC 1000000
247 #define RS_ONE_GIGABIT_PERSEC 1000000000
248 #define RS_TEN_GIGABIT_PERSEC 10000000000
249 
250 static struct head_tcp_rate_set int_rs;
251 static struct mtx rs_mtx;
252 uint32_t rs_number_alive;
253 uint32_t rs_number_dead;
254 static uint32_t rs_floor_mss = 0;
255 static uint32_t wait_time_floor = 8000;	/* 8 ms */
256 static uint32_t rs_hw_floor_mss = 16;
257 static uint32_t num_of_waits_allowed = 1; /* How many time blocks are we willing to wait */
258 
259 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, rl, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
260     "TCP Ratelimit stats");
261 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, alive, CTLFLAG_RW,
262     &rs_number_alive, 0,
263     "Number of interfaces initialized for ratelimiting");
264 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, dead, CTLFLAG_RW,
265     &rs_number_dead, 0,
266     "Number of interfaces departing from ratelimiting");
267 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, floor_mss, CTLFLAG_RW,
268     &rs_floor_mss, 0,
269     "Number of MSS that will override the normal minimums (0 means don't enforce)");
270 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, wait_floor, CTLFLAG_RW,
271     &wait_time_floor, 2000,
272     "Has b/w increases what is the wait floor we are willing to wait at the end?");
273 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, time_blocks, CTLFLAG_RW,
274     &num_of_waits_allowed, 1,
275     "How many time blocks on the end should software pacing be willing to wait?");
276 
277 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, hw_floor_mss, CTLFLAG_RW,
278     &rs_hw_floor_mss, 16,
279     "Number of mss that are a minum for hardware pacing?");
280 
281 
282 static void
283 rl_add_syctl_entries(struct sysctl_oid *rl_sysctl_root, struct tcp_rate_set *rs)
284 {
285 	/*
286 	 * Add sysctl entries for thus interface.
287 	 */
288 	if (rs->rs_flags & RS_INTF_NO_SUP) {
289 		SYSCTL_ADD_S32(&rs->sysctl_ctx,
290 		   SYSCTL_CHILDREN(rl_sysctl_root),
291 		   OID_AUTO, "disable", CTLFLAG_RD,
292 		   &rs->rs_disable, 0,
293 		   "Disable this interface from new hdwr limiting?");
294 	} else {
295 		SYSCTL_ADD_S32(&rs->sysctl_ctx,
296 		   SYSCTL_CHILDREN(rl_sysctl_root),
297 		   OID_AUTO, "disable", CTLFLAG_RW,
298 		   &rs->rs_disable, 0,
299 		   "Disable this interface from new hdwr limiting?");
300 	}
301 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
302 	    SYSCTL_CHILDREN(rl_sysctl_root),
303 	    OID_AUTO, "minseg", CTLFLAG_RW,
304 	    &rs->rs_min_seg, 0,
305 	    "What is the minimum we need to send on this interface?");
306 	SYSCTL_ADD_U64(&rs->sysctl_ctx,
307 	    SYSCTL_CHILDREN(rl_sysctl_root),
308 	    OID_AUTO, "flow_limit", CTLFLAG_RW,
309 	    &rs->rs_flow_limit, 0,
310 	    "What is the limit for number of flows (0=unlimited)?");
311 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
312 	    SYSCTL_CHILDREN(rl_sysctl_root),
313 	    OID_AUTO, "highest", CTLFLAG_RD,
314 	    &rs->rs_highest_valid, 0,
315 	    "Highest valid rate");
316 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
317 	    SYSCTL_CHILDREN(rl_sysctl_root),
318 	    OID_AUTO, "lowest", CTLFLAG_RD,
319 	    &rs->rs_lowest_valid, 0,
320 	    "Lowest valid rate");
321 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
322 	    SYSCTL_CHILDREN(rl_sysctl_root),
323 	    OID_AUTO, "flags", CTLFLAG_RD,
324 	    &rs->rs_flags, 0,
325 	    "What lags are on the entry?");
326 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
327 	    SYSCTL_CHILDREN(rl_sysctl_root),
328 	    OID_AUTO, "numrates", CTLFLAG_RD,
329 	    &rs->rs_rate_cnt, 0,
330 	    "How many rates re there?");
331 	SYSCTL_ADD_U64(&rs->sysctl_ctx,
332 	    SYSCTL_CHILDREN(rl_sysctl_root),
333 	    OID_AUTO, "flows_using", CTLFLAG_RD,
334 	    &rs->rs_flows_using, 0,
335 	    "How many flows are using this interface now?");
336 #ifdef DETAILED_RATELIMIT_SYSCTL
337 	if (rs->rs_rlt && rs->rs_rate_cnt > 0) {
338 		/*  Lets display the rates */
339 		int i;
340 		struct sysctl_oid *rl_rates;
341 		struct sysctl_oid *rl_rate_num;
342 		char rate_num[16];
343 		rl_rates = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
344 					    SYSCTL_CHILDREN(rl_sysctl_root),
345 					    OID_AUTO,
346 					    "rate",
347 					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
348 					    "Ratelist");
349 		for( i = 0; i < rs->rs_rate_cnt; i++) {
350 			sprintf(rate_num, "%d", i);
351 			rl_rate_num = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
352 					    SYSCTL_CHILDREN(rl_rates),
353 					    OID_AUTO,
354 					    rate_num,
355 					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
356 					    "Individual Rate");
357 			SYSCTL_ADD_U32(&rs->sysctl_ctx,
358 				       SYSCTL_CHILDREN(rl_rate_num),
359 				       OID_AUTO, "flags", CTLFLAG_RD,
360 				       &rs->rs_rlt[i].flags, 0,
361 				       "Flags on this rate");
362 			SYSCTL_ADD_U32(&rs->sysctl_ctx,
363 				       SYSCTL_CHILDREN(rl_rate_num),
364 				       OID_AUTO, "pacetime", CTLFLAG_RD,
365 				       &rs->rs_rlt[i].time_between, 0,
366 				       "Time hardware inserts between 1500 byte sends");
367 			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
368 				       SYSCTL_CHILDREN(rl_rate_num),
369 				       OID_AUTO, "rate", CTLFLAG_RD,
370 				       &rs->rs_rlt[i].rate,
371 				       "Rate in bytes per second");
372 			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
373 				       SYSCTL_CHILDREN(rl_rate_num),
374 				       OID_AUTO, "using", CTLFLAG_RD,
375 				       &rs->rs_rlt[i].using,
376 				       "Number of flows using");
377 			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
378 				       SYSCTL_CHILDREN(rl_rate_num),
379 				       OID_AUTO, "enobufs", CTLFLAG_RD,
380 				       &rs->rs_rlt[i].rs_num_enobufs,
381 				       "Number of enobufs logged on this rate");
382 
383 		}
384 	}
385 #endif
386 }
387 
388 static void
389 rs_destroy(epoch_context_t ctx)
390 {
391 	struct tcp_rate_set *rs;
392 	bool do_free_rs;
393 
394 	rs = __containerof(ctx, struct tcp_rate_set, rs_epoch_ctx);
395 
396 	mtx_lock(&rs_mtx);
397 	rs->rs_flags &= ~RS_FUNERAL_SCHD;
398 	/*
399 	 * In theory its possible (but unlikely)
400 	 * that while the delete was occuring
401 	 * and we were applying the DEAD flag
402 	 * someone slipped in and found the
403 	 * interface in a lookup. While we
404 	 * decided rs_flows_using were 0 and
405 	 * scheduling the epoch_call, the other
406 	 * thread incremented rs_flow_using. This
407 	 * is because users have a pointer and
408 	 * we only use the rs_flows_using in an
409 	 * atomic fashion, i.e. the other entities
410 	 * are not protected. To assure this did
411 	 * not occur, we check rs_flows_using here
412 	 * before deleting.
413 	 */
414 	do_free_rs = (rs->rs_flows_using == 0);
415 	rs_number_dead--;
416 	mtx_unlock(&rs_mtx);
417 
418 	if (do_free_rs) {
419 		sysctl_ctx_free(&rs->sysctl_ctx);
420 		free(rs->rs_rlt, M_TCPPACE);
421 		free(rs, M_TCPPACE);
422 	}
423 }
424 
425 static void
426 rs_defer_destroy(struct tcp_rate_set *rs)
427 {
428 
429 	mtx_assert(&rs_mtx, MA_OWNED);
430 
431 	/* Check if already pending. */
432 	if (rs->rs_flags & RS_FUNERAL_SCHD)
433 		return;
434 
435 	rs_number_dead++;
436 
437 	/* Set flag to only defer once. */
438 	rs->rs_flags |= RS_FUNERAL_SCHD;
439 	NET_EPOCH_CALL(rs_destroy, &rs->rs_epoch_ctx);
440 }
441 
442 #ifdef INET
443 extern counter_u64_t rate_limit_new;
444 extern counter_u64_t rate_limit_chg;
445 extern counter_u64_t rate_limit_set_ok;
446 extern counter_u64_t rate_limit_active;
447 extern counter_u64_t rate_limit_alloc_fail;
448 #endif
449 
450 static int
451 rl_attach_txrtlmt(struct ifnet *ifp,
452     uint32_t flowtype,
453     int flowid,
454     uint64_t cfg_rate,
455     struct m_snd_tag **tag)
456 {
457 	int error;
458 	union if_snd_tag_alloc_params params = {
459 		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
460 		.rate_limit.hdr.flowid = flowid,
461 		.rate_limit.hdr.flowtype = flowtype,
462 		.rate_limit.max_rate = cfg_rate,
463 		.rate_limit.flags = M_NOWAIT,
464 	};
465 
466 	error = m_snd_tag_alloc(ifp, &params, tag);
467 #ifdef INET
468 	if (error == 0) {
469 		counter_u64_add(rate_limit_set_ok, 1);
470 		counter_u64_add(rate_limit_active, 1);
471 	} else if (error != EOPNOTSUPP)
472 		counter_u64_add(rate_limit_alloc_fail, 1);
473 #endif
474 	return (error);
475 }
476 
477 static void
478 populate_canned_table(struct tcp_rate_set *rs, const uint64_t *rate_table_act)
479 {
480 	/*
481 	 * The internal table is "special", it
482 	 * is two seperate ordered tables that
483 	 * must be merged. We get here when the
484 	 * adapter specifies a number of rates that
485 	 * covers both ranges in the table in some
486 	 * form.
487 	 */
488 	int i, at_low, at_high;
489 	uint8_t low_disabled = 0, high_disabled = 0;
490 
491 	for(i = 0, at_low = 0, at_high = RS_NEXT_ORDER_GROUP; i < rs->rs_rate_cnt; i++) {
492 		rs->rs_rlt[i].flags = 0;
493 		rs->rs_rlt[i].time_between = 0;
494 		if ((low_disabled == 0) &&
495 		    (high_disabled ||
496 		     (rate_table_act[at_low] < rate_table_act[at_high]))) {
497 			rs->rs_rlt[i].rate = rate_table_act[at_low];
498 			at_low++;
499 			if (at_low == RS_NEXT_ORDER_GROUP)
500 				low_disabled = 1;
501 		} else if (high_disabled == 0) {
502 			rs->rs_rlt[i].rate = rate_table_act[at_high];
503 			at_high++;
504 			if (at_high == MAX_HDWR_RATES)
505 				high_disabled = 1;
506 		}
507 	}
508 }
509 
510 static struct tcp_rate_set *
511 rt_setup_new_rs(struct ifnet *ifp, int *error)
512 {
513 	struct tcp_rate_set *rs;
514 	const uint64_t *rate_table_act;
515 	uint64_t lentim, res;
516 	size_t sz;
517 	uint32_t hash_type;
518 	int i;
519 	struct if_ratelimit_query_results rl;
520 	struct sysctl_oid *rl_sysctl_root;
521 	struct epoch_tracker et;
522 	/*
523 	 * We expect to enter with the
524 	 * mutex locked.
525 	 */
526 
527 	if (ifp->if_ratelimit_query == NULL) {
528 		/*
529 		 * We can do nothing if we cannot
530 		 * get a query back from the driver.
531 		 */
532 		printf("Warning:No query functions for %s:%d-- failed\n",
533 		       ifp->if_dname, ifp->if_dunit);
534 		return (NULL);
535 	}
536 	rs = malloc(sizeof(struct tcp_rate_set), M_TCPPACE, M_NOWAIT | M_ZERO);
537 	if (rs == NULL) {
538 		if (error)
539 			*error = ENOMEM;
540 		printf("Warning:No memory for malloc of tcp_rate_set\n");
541 		return (NULL);
542 	}
543 	memset(&rl, 0, sizeof(rl));
544 	rl.flags = RT_NOSUPPORT;
545 	ifp->if_ratelimit_query(ifp, &rl);
546 	if (rl.flags & RT_IS_UNUSABLE) {
547 		/*
548 		 * The interface does not really support
549 		 * the rate-limiting.
550 		 */
551 		memset(rs, 0, sizeof(struct tcp_rate_set));
552 		rs->rs_ifp = ifp;
553 		rs->rs_if_dunit = ifp->if_dunit;
554 		rs->rs_flags = RS_INTF_NO_SUP;
555 		rs->rs_disable = 1;
556 		rs_number_alive++;
557 		sysctl_ctx_init(&rs->sysctl_ctx);
558 		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
559 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
560 		    OID_AUTO,
561 		    rs->rs_ifp->if_xname,
562 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
563 		    "");
564 		rl_add_syctl_entries(rl_sysctl_root, rs);
565 		NET_EPOCH_ENTER(et);
566 		mtx_lock(&rs_mtx);
567 		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
568 		mtx_unlock(&rs_mtx);
569 		NET_EPOCH_EXIT(et);
570 		return (rs);
571 	} else if ((rl.flags & RT_IS_INDIRECT) == RT_IS_INDIRECT) {
572 		memset(rs, 0, sizeof(struct tcp_rate_set));
573 		rs->rs_ifp = ifp;
574 		rs->rs_if_dunit = ifp->if_dunit;
575 		rs->rs_flags = RS_IS_DEFF;
576 		rs_number_alive++;
577 		sysctl_ctx_init(&rs->sysctl_ctx);
578 		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
579 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
580 		    OID_AUTO,
581 		    rs->rs_ifp->if_xname,
582 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
583 		    "");
584 		rl_add_syctl_entries(rl_sysctl_root, rs);
585 		NET_EPOCH_ENTER(et);
586 		mtx_lock(&rs_mtx);
587 		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
588 		mtx_unlock(&rs_mtx);
589 		NET_EPOCH_EXIT(et);
590 		return (rs);
591 	} else if ((rl.flags & RT_IS_FIXED_TABLE) == RT_IS_FIXED_TABLE) {
592 		/* Mellanox C4 likely */
593 		rs->rs_ifp = ifp;
594 		rs->rs_if_dunit = ifp->if_dunit;
595 		rs->rs_rate_cnt = rl.number_of_rates;
596 		rs->rs_min_seg = rl.min_segment_burst;
597 		rs->rs_highest_valid = 0;
598 		rs->rs_flow_limit = rl.max_flows;
599 		rs->rs_flags = RS_IS_INTF | RS_NO_PRE;
600 		rs->rs_disable = 0;
601 		rate_table_act = rl.rate_table;
602 	} else if ((rl.flags & RT_IS_SELECTABLE) == RT_IS_SELECTABLE) {
603 		/* Chelsio, C5 and C6 of Mellanox? */
604 		rs->rs_ifp = ifp;
605 		rs->rs_if_dunit = ifp->if_dunit;
606 		rs->rs_rate_cnt = rl.number_of_rates;
607 		rs->rs_min_seg = rl.min_segment_burst;
608 		rs->rs_disable = 0;
609 		rs->rs_flow_limit = rl.max_flows;
610 		rate_table_act = desired_rates;
611 		if ((rs->rs_rate_cnt > MAX_HDWR_RATES) &&
612 		    (rs->rs_rate_cnt < ALL_HARDWARE_RATES)) {
613 			/*
614 			 * Our desired table is not big
615 			 * enough, do what we can.
616 			 */
617 			rs->rs_rate_cnt = MAX_HDWR_RATES;
618 		 }
619 		if (rs->rs_rate_cnt <= RS_ORDERED_COUNT)
620 			rs->rs_flags = RS_IS_INTF;
621 		else
622 			rs->rs_flags = RS_IS_INTF | RS_INT_TBL;
623 		if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)
624 			rs->rs_rate_cnt = ALL_HARDWARE_RATES;
625 	} else {
626 		free(rs, M_TCPPACE);
627 		return (NULL);
628 	}
629 	sz = sizeof(struct tcp_hwrate_limit_table) * rs->rs_rate_cnt;
630 	rs->rs_rlt = malloc(sz, M_TCPPACE, M_NOWAIT);
631 	if (rs->rs_rlt == NULL) {
632 		if (error)
633 			*error = ENOMEM;
634 bail:
635 		free(rs, M_TCPPACE);
636 		return (NULL);
637 	}
638 	if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES) {
639 		/*
640 		 * The interface supports all
641 		 * the rates we could possibly want.
642 		 */
643 		uint64_t rat;
644 
645 		rs->rs_rlt[0].rate = 12500;	/* 100k */
646 		rs->rs_rlt[1].rate = 25000;	/* 200k */
647 		rs->rs_rlt[2].rate = 62500;	/* 500k */
648 		/* Note 125000 == 1Megabit
649 		 * populate 1Meg - 1000meg.
650 		 */
651 		for(i = 3, rat = 125000; i< (ALL_HARDWARE_RATES-1); i++) {
652 			rs->rs_rlt[i].rate = rat;
653 			rat += 125000;
654 		}
655 		rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate = 1250000000;
656 	} else if (rs->rs_flags & RS_INT_TBL) {
657 		/* We populate this in a special way */
658 		populate_canned_table(rs, rate_table_act);
659 	} else {
660 		/*
661 		 * Just copy in the rates from
662 		 * the table, it is in order.
663 		 */
664 		for (i=0; i<rs->rs_rate_cnt; i++) {
665 			rs->rs_rlt[i].rate = rate_table_act[i];
666 			rs->rs_rlt[i].time_between = 0;
667 			rs->rs_rlt[i].flags = 0;
668 		}
669 	}
670 	for (i = (rs->rs_rate_cnt - 1); i >= 0; i--) {
671 		/*
672 		 * We go backwards through the list so that if we can't get
673 		 * a rate and fail to init one, we have at least a chance of
674 		 * getting the highest one.
675 		 */
676 		rs->rs_rlt[i].ptbl = rs;
677 		rs->rs_rlt[i].tag = NULL;
678 		rs->rs_rlt[i].using = 0;
679 		rs->rs_rlt[i].rs_num_enobufs = 0;
680 		/*
681 		 * Calculate the time between.
682 		 */
683 		lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
684 		res = lentim / rs->rs_rlt[i].rate;
685 		if (res > 0)
686 			rs->rs_rlt[i].time_between = res;
687 		else
688 			rs->rs_rlt[i].time_between = 1;
689 		if (rs->rs_flags & RS_NO_PRE) {
690 			rs->rs_rlt[i].flags = HDWRPACE_INITED;
691 			rs->rs_lowest_valid = i;
692 		} else {
693 			int err;
694 
695 			if ((rl.flags & RT_IS_SETUP_REQ)  &&
696 			    (ifp->if_ratelimit_query)) {
697 				err = ifp->if_ratelimit_setup(ifp,
698   				         rs->rs_rlt[i].rate, i);
699 				if (err)
700 					goto handle_err;
701 			}
702 #ifdef RSS
703 			hash_type = M_HASHTYPE_RSS_TCP_IPV4;
704 #else
705 			hash_type = M_HASHTYPE_OPAQUE_HASH;
706 #endif
707 			err = rl_attach_txrtlmt(ifp,
708 			    hash_type,
709 			    (i + 1),
710 			    rs->rs_rlt[i].rate,
711 			    &rs->rs_rlt[i].tag);
712 			if (err) {
713 handle_err:
714 				if (i == (rs->rs_rate_cnt - 1)) {
715 					/*
716 					 * Huh - first rate and we can't get
717 					 * it?
718 					 */
719 					free(rs->rs_rlt, M_TCPPACE);
720 					if (error)
721 						*error = err;
722 					goto bail;
723 				} else {
724 					if (error)
725 						*error = err;
726 				}
727 				break;
728 			} else {
729 				rs->rs_rlt[i].flags = HDWRPACE_INITED | HDWRPACE_TAGPRESENT;
730 				rs->rs_lowest_valid = i;
731 			}
732 		}
733 	}
734 	/* Did we get at least 1 rate? */
735 	if (rs->rs_rlt[(rs->rs_rate_cnt - 1)].flags & HDWRPACE_INITED)
736 		rs->rs_highest_valid = rs->rs_rate_cnt - 1;
737 	else {
738 		free(rs->rs_rlt, M_TCPPACE);
739 		goto bail;
740 	}
741 	rs_number_alive++;
742 	sysctl_ctx_init(&rs->sysctl_ctx);
743 	rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
744 	    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
745 	    OID_AUTO,
746 	    rs->rs_ifp->if_xname,
747 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
748 	    "");
749 	rl_add_syctl_entries(rl_sysctl_root, rs);
750 	NET_EPOCH_ENTER(et);
751 	mtx_lock(&rs_mtx);
752 	CK_LIST_INSERT_HEAD(&int_rs, rs, next);
753 	mtx_unlock(&rs_mtx);
754 	NET_EPOCH_EXIT(et);
755 	return (rs);
756 }
757 
758 /*
759  * For an explanation of why the argument is volatile please
760  * look at the comments around rt_setup_rate().
761  */
762 static const struct tcp_hwrate_limit_table *
763 tcp_int_find_suitable_rate(const volatile struct tcp_rate_set *rs,
764     uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
765 {
766 	struct tcp_hwrate_limit_table *arte = NULL, *rte = NULL;
767 	uint64_t mbits_per_sec, ind_calc, previous_rate = 0;
768 	int i;
769 
770 	mbits_per_sec = (bytes_per_sec * 8);
771 	if (flags & RS_PACING_LT) {
772 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
773 		    (rs->rs_lowest_valid <= 2)){
774 			/*
775 			 * Smaller than 1Meg, only
776 			 * 3 entries can match it.
777 			 */
778 			previous_rate = 0;
779 			for(i = rs->rs_lowest_valid; i < 3; i++) {
780 				if (bytes_per_sec <= rs->rs_rlt[i].rate) {
781 					rte = &rs->rs_rlt[i];
782 					break;
783 				} else if (rs->rs_rlt[i].flags & HDWRPACE_INITED) {
784 					arte = &rs->rs_rlt[i];
785 				}
786 				previous_rate = rs->rs_rlt[i].rate;
787 			}
788 			goto done;
789 		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
790 			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
791 			/*
792 			 * Larger than 1G (the majority of
793 			 * our table.
794 			 */
795 			if (mbits_per_sec < RS_TEN_GIGABIT_PERSEC)
796 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
797 			else
798 				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
799 			previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
800 			goto done;
801 		}
802 		/*
803 		 * If we reach here its in our table (between 1Meg - 1000Meg),
804 		 * just take the rounded down mbits per second, and add
805 		 * 1Megabit to it, from this we can calculate
806 		 * the index in the table.
807 		 */
808 		ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
809 		if ((ind_calc * RS_ONE_MEGABIT_PERSEC) != mbits_per_sec)
810 			ind_calc++;
811 		/* our table is offset by 3, we add 2 */
812 		ind_calc += 2;
813 		if (ind_calc > (ALL_HARDWARE_RATES-1)) {
814 			/* This should not happen */
815 			ind_calc = ALL_HARDWARE_RATES-1;
816 		}
817 		if ((ind_calc >= rs->rs_lowest_valid) &&
818 		    (ind_calc <= rs->rs_highest_valid)) {
819 			rte = &rs->rs_rlt[ind_calc];
820 			if (ind_calc >= 1)
821 				previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
822 		}
823 	} else if (flags & RS_PACING_EXACT_MATCH) {
824 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
825 		    (rs->rs_lowest_valid <= 2)){
826 			for(i = rs->rs_lowest_valid; i < 3; i++) {
827 				if (bytes_per_sec == rs->rs_rlt[i].rate) {
828 					rte = &rs->rs_rlt[i];
829 					break;
830 				}
831 			}
832 		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
833 			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
834 			/* > 1Gbps only one rate */
835 			if (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) {
836 				/* Its 10G wow */
837 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
838 			}
839 		} else {
840 			/* Ok it must be a exact meg (its between 1G and 1Meg) */
841 			ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
842 			if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
843 				/* its an exact Mbps */
844 				ind_calc += 2;
845 				if (ind_calc > (ALL_HARDWARE_RATES-1)) {
846 					/* This should not happen */
847 					ind_calc = ALL_HARDWARE_RATES-1;
848 				}
849 				if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED)
850 					rte = &rs->rs_rlt[ind_calc];
851 			}
852 		}
853 	} else {
854 		/* we want greater than the requested rate */
855 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
856 		    (rs->rs_lowest_valid <= 2)){
857 			arte = &rs->rs_rlt[3]; /* set alternate to 1Meg */
858 			for (i=2; i>=rs->rs_lowest_valid; i--) {
859 				if (bytes_per_sec < rs->rs_rlt[i].rate) {
860 					rte = &rs->rs_rlt[i];
861 					if (i >= 1) {
862 						previous_rate = rs->rs_rlt[(i-1)].rate;
863 					}
864 					break;
865 				} else if ((flags & RS_PACING_GEQ) &&
866 					   (bytes_per_sec == rs->rs_rlt[i].rate)) {
867 					rte = &rs->rs_rlt[i];
868 					if (i >= 1) {
869 						previous_rate = rs->rs_rlt[(i-1)].rate;
870 					}
871 					break;
872 				} else {
873 					arte = &rs->rs_rlt[i]; /* new alternate */
874 				}
875 			}
876 		} else if (mbits_per_sec > RS_ONE_GIGABIT_PERSEC) {
877 			if ((bytes_per_sec < rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
878 			    (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
879 				/* Our top rate is larger than the request */
880 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
881 			} else if ((flags & RS_PACING_GEQ) &&
882 				   (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
883 				   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
884 				/* It matches our top rate */
885 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
886 			} else if (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED) {
887 				/* The top rate is an alternative */
888 				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
889 			}
890 			previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
891 		} else {
892 			/* Its in our range 1Meg - 1Gig */
893 			if (flags & RS_PACING_GEQ) {
894 				ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
895 				if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
896 					if (ind_calc > (ALL_HARDWARE_RATES-1)) {
897 						/* This should not happen */
898 						ind_calc = (ALL_HARDWARE_RATES-1);
899 					}
900 					rte = &rs->rs_rlt[ind_calc];
901 					if (ind_calc >= 1)
902 						previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
903 				}
904 				goto done;
905 			}
906 			ind_calc = (mbits_per_sec + (RS_ONE_MEGABIT_PERSEC-1))/RS_ONE_MEGABIT_PERSEC;
907 			ind_calc += 2;
908 			if (ind_calc > (ALL_HARDWARE_RATES-1)) {
909 				/* This should not happen */
910 				ind_calc = ALL_HARDWARE_RATES-1;
911 			}
912 			if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED) {
913 				rte = &rs->rs_rlt[ind_calc];
914 				if (ind_calc >= 1)
915 					previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
916 			}
917 		}
918 	}
919 done:
920 	if ((rte == NULL) &&
921 	    (arte != NULL) &&
922 	    (flags & RS_PACING_SUB_OK)) {
923 		/* We can use the substitute */
924 		rte = arte;
925 	}
926 	if (lower_rate)
927 		*lower_rate = previous_rate;
928 	return (rte);
929 }
930 
931 /*
932  * For an explanation of why the argument is volatile please
933  * look at the comments around rt_setup_rate().
934  */
935 static const struct tcp_hwrate_limit_table *
936 tcp_find_suitable_rate(const volatile struct tcp_rate_set *rs, uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
937 {
938 	/**
939 	 * Hunt the rate table with the restrictions in flags and find a
940 	 * suitable rate if possible.
941 	 * RS_PACING_EXACT_MATCH - look for an exact match to rate.
942 	 * RS_PACING_GT     - must be greater than.
943 	 * RS_PACING_GEQ    - must be greater than or equal.
944 	 * RS_PACING_LT     - must be less than.
945 	 * RS_PACING_SUB_OK - If we don't meet criteria a
946 	 *                    substitute is ok.
947 	 */
948 	int i, matched;
949 	struct tcp_hwrate_limit_table *rte = NULL;
950 	uint64_t previous_rate = 0;
951 
952 	if ((rs->rs_flags & RS_INT_TBL) &&
953 	    (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)) {
954 		/*
955 		 * Here we don't want to paw thru
956 		 * a big table, we have everything
957 		 * from 1Meg - 1000Meg in 1Meg increments.
958 		 * Use an alternate method to "lookup".
959 		 */
960 		return (tcp_int_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate));
961 	}
962 	if ((flags & RS_PACING_LT) ||
963 	    (flags & RS_PACING_EXACT_MATCH)) {
964 		/*
965 		 * For exact and less than we go forward through the table.
966 		 * This way when we find one larger we stop (exact was a
967 		 * toss up).
968 		 */
969 		for (i = rs->rs_lowest_valid, matched = 0; i <= rs->rs_highest_valid; i++) {
970 			if ((flags & RS_PACING_EXACT_MATCH) &&
971 			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
972 				rte = &rs->rs_rlt[i];
973 				matched = 1;
974 				if (lower_rate != NULL)
975 					*lower_rate = previous_rate;
976 				break;
977 			} else if ((flags & RS_PACING_LT) &&
978 			    (bytes_per_sec <= rs->rs_rlt[i].rate)) {
979 				rte = &rs->rs_rlt[i];
980 				matched = 1;
981 				if (lower_rate != NULL)
982 					*lower_rate = previous_rate;
983 				break;
984 			}
985 			previous_rate = rs->rs_rlt[i].rate;
986 			if (bytes_per_sec > rs->rs_rlt[i].rate)
987 				break;
988 		}
989 		if ((matched == 0) &&
990 		    (flags & RS_PACING_LT) &&
991 		    (flags & RS_PACING_SUB_OK)) {
992 			/* Kick in a substitute (the lowest) */
993 			rte = &rs->rs_rlt[rs->rs_lowest_valid];
994 		}
995 	} else {
996 		/*
997 		 * Here we go backward through the table so that we can find
998 		 * the one greater in theory faster (but its probably a
999 		 * wash).
1000 		 */
1001 		for (i = rs->rs_highest_valid, matched = 0; i >= rs->rs_lowest_valid; i--) {
1002 			if (rs->rs_rlt[i].rate > bytes_per_sec) {
1003 				/* A possible candidate */
1004 				rte = &rs->rs_rlt[i];
1005 			}
1006 			if ((flags & RS_PACING_GEQ) &&
1007 			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
1008 				/* An exact match and we want equal */
1009 				matched = 1;
1010 				rte = &rs->rs_rlt[i];
1011 				break;
1012 			} else if (rte) {
1013 				/*
1014 				 * Found one that is larger than but don't
1015 				 * stop, there may be a more closer match.
1016 				 */
1017 				matched = 1;
1018 			}
1019 			if (rs->rs_rlt[i].rate < bytes_per_sec) {
1020 				/*
1021 				 * We found a table entry that is smaller,
1022 				 * stop there will be none greater or equal.
1023 				 */
1024 				if (lower_rate != NULL)
1025 					*lower_rate = rs->rs_rlt[i].rate;
1026 				break;
1027 			}
1028 		}
1029 		if ((matched == 0) &&
1030 		    (flags & RS_PACING_SUB_OK)) {
1031 			/* Kick in a substitute (the highest) */
1032 			rte = &rs->rs_rlt[rs->rs_highest_valid];
1033 		}
1034 	}
1035 	return (rte);
1036 }
1037 
1038 static struct ifnet *
1039 rt_find_real_interface(struct ifnet *ifp, struct inpcb *inp, int *error)
1040 {
1041 	struct ifnet *tifp;
1042 	struct m_snd_tag *tag, *ntag;
1043 	union if_snd_tag_alloc_params params = {
1044 		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
1045 		.rate_limit.hdr.flowid = inp->inp_flowid,
1046 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
1047 		.rate_limit.max_rate = COMMON_RATE,
1048 		.rate_limit.flags = M_NOWAIT,
1049 	};
1050 	int err;
1051 #ifdef RSS
1052 	params.rate_limit.hdr.flowtype = ((inp->inp_vflag & INP_IPV6) ?
1053 	    M_HASHTYPE_RSS_TCP_IPV6 : M_HASHTYPE_RSS_TCP_IPV4);
1054 #else
1055 	params.rate_limit.hdr.flowtype = M_HASHTYPE_OPAQUE_HASH;
1056 #endif
1057 	err = m_snd_tag_alloc(ifp, &params, &tag);
1058 	if (err) {
1059 		/* Failed to setup a tag? */
1060 		if (error)
1061 			*error = err;
1062 		return (NULL);
1063 	}
1064 	ntag = tag;
1065 	while (ntag->sw->next_snd_tag != NULL) {
1066 		ntag = ntag->sw->next_snd_tag(ntag);
1067 	}
1068 	tifp = ntag->ifp;
1069 	m_snd_tag_rele(tag);
1070 	return (tifp);
1071 }
1072 
1073 static void
1074 rl_increment_using(const struct tcp_hwrate_limit_table *rte)
1075 {
1076 	struct tcp_hwrate_limit_table *decon_rte;
1077 
1078 	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1079 	atomic_add_long(&decon_rte->using, 1);
1080 }
1081 
1082 static void
1083 rl_decrement_using(const struct tcp_hwrate_limit_table *rte)
1084 {
1085 	struct tcp_hwrate_limit_table *decon_rte;
1086 
1087 	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1088 	atomic_subtract_long(&decon_rte->using, 1);
1089 }
1090 
1091 void
1092 tcp_rl_log_enobuf(const struct tcp_hwrate_limit_table *rte)
1093 {
1094 	struct tcp_hwrate_limit_table *decon_rte;
1095 
1096 	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1097 	atomic_add_long(&decon_rte->rs_num_enobufs, 1);
1098 }
1099 
1100 /*
1101  * Do NOT take the __noinline out of the
1102  * find_rs_for_ifp() function. If you do the inline
1103  * of it for the rt_setup_rate() will show you a
1104  * compiler bug. For some reason the compiler thinks
1105  * the list can never be empty. The consequence of
1106  * this will be a crash when we dereference NULL
1107  * if an ifp is removed just has a hw rate limit
1108  * is attempted. If you are working on the compiler
1109  * and want to "test" this go ahead and take the noinline
1110  * out otherwise let sleeping dogs ly until such time
1111  * as we get a compiler fix 10/2/20 -- RRS
1112  */
1113 static __noinline struct tcp_rate_set *
1114 find_rs_for_ifp(struct ifnet *ifp)
1115 {
1116 	struct tcp_rate_set *rs;
1117 
1118 	CK_LIST_FOREACH(rs, &int_rs, next) {
1119 		if ((rs->rs_ifp == ifp) &&
1120 		    (rs->rs_if_dunit == ifp->if_dunit)) {
1121 			/* Ok we found it */
1122 			return (rs);
1123 		}
1124 	}
1125 	return (NULL);
1126 }
1127 
1128 
1129 static const struct tcp_hwrate_limit_table *
1130 rt_setup_rate(struct inpcb *inp, struct ifnet *ifp, uint64_t bytes_per_sec,
1131     uint32_t flags, int *error, uint64_t *lower_rate)
1132 {
1133 	/* First lets find the interface if it exists */
1134 	const struct tcp_hwrate_limit_table *rte;
1135 	/*
1136 	 * So why is rs volatile? This is to defeat a
1137 	 * compiler bug where in the compiler is convinced
1138 	 * that rs can never be NULL (which is not true). Because
1139 	 * of its conviction it nicely optimizes out the if ((rs == NULL
1140 	 * below which means if you get a NULL back you dereference it.
1141 	 */
1142 	volatile struct tcp_rate_set *rs;
1143 	struct epoch_tracker et;
1144 	struct ifnet *oifp = ifp;
1145 	int err;
1146 
1147 	NET_EPOCH_ENTER(et);
1148 use_real_interface:
1149 	rs = find_rs_for_ifp(ifp);
1150 	if ((rs == NULL) ||
1151 	    (rs->rs_flags & RS_INTF_NO_SUP) ||
1152 	    (rs->rs_flags & RS_IS_DEAD)) {
1153 		/*
1154 		 * This means we got a packet *before*
1155 		 * the IF-UP was processed below, <or>
1156 		 * while or after we already received an interface
1157 		 * departed event. In either case we really don't
1158 		 * want to do anything with pacing, in
1159 		 * the departing case the packet is not
1160 		 * going to go very far. The new case
1161 		 * might be arguable, but its impossible
1162 		 * to tell from the departing case.
1163 		 */
1164 		if (error)
1165 			*error = ENODEV;
1166 		NET_EPOCH_EXIT(et);
1167 		return (NULL);
1168 	}
1169 
1170 	if ((rs == NULL) || (rs->rs_disable != 0)) {
1171 		if (error)
1172 			*error = ENOSPC;
1173 		NET_EPOCH_EXIT(et);
1174 		return (NULL);
1175 	}
1176 	if (rs->rs_flags & RS_IS_DEFF) {
1177 		/* We need to find the real interface */
1178 		struct ifnet *tifp;
1179 
1180 		tifp = rt_find_real_interface(ifp, inp, error);
1181 		if (tifp == NULL) {
1182 			if (rs->rs_disable && error)
1183 				*error = ENOTSUP;
1184 			NET_EPOCH_EXIT(et);
1185 			return (NULL);
1186 		}
1187 		KASSERT((tifp != ifp),
1188 			("Lookup failure ifp:%p inp:%p rt_find_real_interface() returns the same interface tifp:%p?\n",
1189 			 ifp, inp, tifp));
1190 		ifp = tifp;
1191 		goto use_real_interface;
1192 	}
1193 	if (rs->rs_flow_limit &&
1194 	    ((rs->rs_flows_using + 1) > rs->rs_flow_limit)) {
1195 		if (error)
1196 			*error = ENOSPC;
1197 		NET_EPOCH_EXIT(et);
1198 		return (NULL);
1199 	}
1200 	rte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
1201 	if (rte) {
1202 		err = in_pcbattach_txrtlmt(inp, oifp,
1203 		    inp->inp_flowtype,
1204 		    inp->inp_flowid,
1205 		    rte->rate,
1206 		    &inp->inp_snd_tag);
1207 		if (err) {
1208 			/* Failed to attach */
1209 			if (error)
1210 				*error = err;
1211 			rte = NULL;
1212 		} else {
1213 			KASSERT((inp->inp_snd_tag != NULL) ,
1214 				("Setup rate has no snd_tag inp:%p rte:%p rate:%llu rs:%p",
1215 				 inp, rte, (unsigned long long)rte->rate, rs));
1216 #ifdef INET
1217 			counter_u64_add(rate_limit_new, 1);
1218 #endif
1219 		}
1220 	}
1221 	if (rte) {
1222 		/*
1223 		 * We use an atomic here for accounting so we don't have to
1224 		 * use locks when freeing.
1225 		 */
1226 		atomic_add_64(&rs->rs_flows_using, 1);
1227 	}
1228 	NET_EPOCH_EXIT(et);
1229 	return (rte);
1230 }
1231 
1232 static void
1233 tcp_rl_ifnet_link(void *arg __unused, struct ifnet *ifp, int link_state)
1234 {
1235 	int error;
1236 	struct tcp_rate_set *rs;
1237 	struct epoch_tracker et;
1238 
1239 	if (((ifp->if_capenable & IFCAP_TXRTLMT) == 0) ||
1240 	    (link_state != LINK_STATE_UP)) {
1241 		/*
1242 		 * We only care on an interface going up that is rate-limit
1243 		 * capable.
1244 		 */
1245 		return;
1246 	}
1247 	NET_EPOCH_ENTER(et);
1248 	mtx_lock(&rs_mtx);
1249 	rs = find_rs_for_ifp(ifp);
1250 	if (rs) {
1251 		/* We already have initialized this guy */
1252 		mtx_unlock(&rs_mtx);
1253 		NET_EPOCH_EXIT(et);
1254 		return;
1255 	}
1256 	mtx_unlock(&rs_mtx);
1257 	NET_EPOCH_EXIT(et);
1258 	rt_setup_new_rs(ifp, &error);
1259 }
1260 
1261 static void
1262 tcp_rl_ifnet_departure(void *arg __unused, struct ifnet *ifp)
1263 {
1264 	struct tcp_rate_set *rs;
1265 	struct epoch_tracker et;
1266 	int i;
1267 
1268 	NET_EPOCH_ENTER(et);
1269 	mtx_lock(&rs_mtx);
1270 	rs = find_rs_for_ifp(ifp);
1271 	if (rs) {
1272 		CK_LIST_REMOVE(rs, next);
1273 		rs_number_alive--;
1274 		rs->rs_flags |= RS_IS_DEAD;
1275 		for (i = 0; i < rs->rs_rate_cnt; i++) {
1276 			if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1277 				in_pcbdetach_tag(rs->rs_rlt[i].tag);
1278 				rs->rs_rlt[i].tag = NULL;
1279 			}
1280 			rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1281 		}
1282 		if (rs->rs_flows_using == 0)
1283 			rs_defer_destroy(rs);
1284 	}
1285 	mtx_unlock(&rs_mtx);
1286 	NET_EPOCH_EXIT(et);
1287 }
1288 
1289 static void
1290 tcp_rl_shutdown(void *arg __unused, int howto __unused)
1291 {
1292 	struct tcp_rate_set *rs, *nrs;
1293 	struct epoch_tracker et;
1294 	int i;
1295 
1296 	NET_EPOCH_ENTER(et);
1297 	mtx_lock(&rs_mtx);
1298 	CK_LIST_FOREACH_SAFE(rs, &int_rs, next, nrs) {
1299 		CK_LIST_REMOVE(rs, next);
1300 		rs_number_alive--;
1301 		rs->rs_flags |= RS_IS_DEAD;
1302 		for (i = 0; i < rs->rs_rate_cnt; i++) {
1303 			if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1304 				in_pcbdetach_tag(rs->rs_rlt[i].tag);
1305 				rs->rs_rlt[i].tag = NULL;
1306 			}
1307 			rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1308 		}
1309 		if (rs->rs_flows_using == 0)
1310 			rs_defer_destroy(rs);
1311 	}
1312 	mtx_unlock(&rs_mtx);
1313 	NET_EPOCH_EXIT(et);
1314 }
1315 
1316 const struct tcp_hwrate_limit_table *
1317 tcp_set_pacing_rate(struct tcpcb *tp, struct ifnet *ifp,
1318     uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
1319 {
1320 	const struct tcp_hwrate_limit_table *rte;
1321 #ifdef KERN_TLS
1322 	struct ktls_session *tls;
1323 #endif
1324 
1325 	INP_WLOCK_ASSERT(tp->t_inpcb);
1326 
1327 	if (tp->t_inpcb->inp_snd_tag == NULL) {
1328 		/*
1329 		 * We are setting up a rate for the first time.
1330 		 */
1331 		if ((ifp->if_capenable & IFCAP_TXRTLMT) == 0) {
1332 			/* Not supported by the egress */
1333 			if (error)
1334 				*error = ENODEV;
1335 			return (NULL);
1336 		}
1337 #ifdef KERN_TLS
1338 		tls = NULL;
1339 		if (tp->t_inpcb->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
1340 			tls = tp->t_inpcb->inp_socket->so_snd.sb_tls_info;
1341 
1342 			if ((ifp->if_capenable & IFCAP_TXTLS_RTLMT) == 0 ||
1343 			    tls->mode != TCP_TLS_MODE_IFNET) {
1344 				if (error)
1345 					*error = ENODEV;
1346 				return (NULL);
1347 			}
1348 		}
1349 #endif
1350 		rte = rt_setup_rate(tp->t_inpcb, ifp, bytes_per_sec, flags, error, lower_rate);
1351 		if (rte)
1352 			rl_increment_using(rte);
1353 #ifdef KERN_TLS
1354 		if (rte != NULL && tls != NULL && tls->snd_tag != NULL) {
1355 			/*
1356 			 * Fake a route change error to reset the TLS
1357 			 * send tag.  This will convert the existing
1358 			 * tag to a TLS ratelimit tag.
1359 			 */
1360 			MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS);
1361 			ktls_output_eagain(tp->t_inpcb, tls);
1362 		}
1363 #endif
1364 	} else {
1365 		/*
1366 		 * We are modifying a rate, wrong interface?
1367 		 */
1368 		if (error)
1369 			*error = EINVAL;
1370 		rte = NULL;
1371 	}
1372 	if (rte != NULL) {
1373 		tp->t_pacing_rate = rte->rate;
1374 		*error = 0;
1375 	}
1376 	return (rte);
1377 }
1378 
1379 const struct tcp_hwrate_limit_table *
1380 tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table *crte,
1381     struct tcpcb *tp, struct ifnet *ifp,
1382     uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
1383 {
1384 	const struct tcp_hwrate_limit_table *nrte;
1385 	const struct tcp_rate_set *rs;
1386 #ifdef KERN_TLS
1387 	struct ktls_session *tls = NULL;
1388 #endif
1389 	int err;
1390 
1391 	INP_WLOCK_ASSERT(tp->t_inpcb);
1392 
1393 	if (crte == NULL) {
1394 		/* Wrong interface */
1395 		if (error)
1396 			*error = EINVAL;
1397 		return (NULL);
1398 	}
1399 
1400 #ifdef KERN_TLS
1401 	if (tp->t_inpcb->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
1402 		tls = tp->t_inpcb->inp_socket->so_snd.sb_tls_info;
1403 		if (tls->mode != TCP_TLS_MODE_IFNET)
1404 			tls = NULL;
1405 		else if (tls->snd_tag != NULL &&
1406 		    tls->snd_tag->sw->type != IF_SND_TAG_TYPE_TLS_RATE_LIMIT) {
1407 			if (!tls->reset_pending) {
1408 				/*
1409 				 * NIC probably doesn't support
1410 				 * ratelimit TLS tags if it didn't
1411 				 * allocate one when an existing rate
1412 				 * was present, so ignore.
1413 				 */
1414 				tcp_rel_pacing_rate(crte, tp);
1415 				if (error)
1416 					*error = EOPNOTSUPP;
1417 				return (NULL);
1418 			}
1419 
1420 			/*
1421 			 * The send tag is being converted, so set the
1422 			 * rate limit on the inpcb tag.  There is a
1423 			 * race that the new NIC send tag might use
1424 			 * the current rate instead of this one.
1425 			 */
1426 			tls = NULL;
1427 		}
1428 	}
1429 #endif
1430 	if (tp->t_inpcb->inp_snd_tag == NULL) {
1431 		/* Wrong interface */
1432 		tcp_rel_pacing_rate(crte, tp);
1433 		if (error)
1434 			*error = EINVAL;
1435 		return (NULL);
1436 	}
1437 	rs = crte->ptbl;
1438 	if ((rs->rs_flags & RS_IS_DEAD) ||
1439 	    (crte->flags & HDWRPACE_IFPDEPARTED)) {
1440 		/* Release the rate, and try anew */
1441 
1442 		tcp_rel_pacing_rate(crte, tp);
1443 		nrte = tcp_set_pacing_rate(tp, ifp,
1444 		    bytes_per_sec, flags, error, lower_rate);
1445 		return (nrte);
1446 	}
1447 	nrte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
1448 	if (nrte == crte) {
1449 		/* No change */
1450 		if (error)
1451 			*error = 0;
1452 		return (crte);
1453 	}
1454 	if (nrte == NULL) {
1455 		/* Release the old rate */
1456 		if (error)
1457 			*error = ENOENT;
1458 		tcp_rel_pacing_rate(crte, tp);
1459 		return (NULL);
1460 	}
1461 	rl_decrement_using(crte);
1462 	rl_increment_using(nrte);
1463 	/* Change rates to our new entry */
1464 #ifdef KERN_TLS
1465 	if (tls != NULL)
1466 		err = ktls_modify_txrtlmt(tls, nrte->rate);
1467 	else
1468 #endif
1469 		err = in_pcbmodify_txrtlmt(tp->t_inpcb, nrte->rate);
1470 	if (err) {
1471 		struct tcp_rate_set *lrs;
1472 		uint64_t pre;
1473 
1474 		rl_decrement_using(nrte);
1475 		lrs = __DECONST(struct tcp_rate_set *, rs);
1476 		pre = atomic_fetchadd_64(&lrs->rs_flows_using, -1);
1477 		/* Do we still have a snd-tag attached? */
1478 		if (tp->t_inpcb->inp_snd_tag)
1479 			in_pcbdetach_txrtlmt(tp->t_inpcb);
1480 
1481 		if (pre == 1) {
1482 			struct epoch_tracker et;
1483 
1484 			NET_EPOCH_ENTER(et);
1485 			mtx_lock(&rs_mtx);
1486 			/*
1487 			 * Is it dead?
1488 			 */
1489 			if (lrs->rs_flags & RS_IS_DEAD)
1490 				rs_defer_destroy(lrs);
1491 			mtx_unlock(&rs_mtx);
1492 			NET_EPOCH_EXIT(et);
1493 		}
1494 		if (error)
1495 			*error = err;
1496 		return (NULL);
1497 	} else {
1498 #ifdef INET
1499 		counter_u64_add(rate_limit_chg, 1);
1500 #endif
1501 	}
1502 	if (error)
1503 		*error = 0;
1504 	tp->t_pacing_rate = nrte->rate;
1505 	return (nrte);
1506 }
1507 
1508 void
1509 tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp)
1510 {
1511 	const struct tcp_rate_set *crs;
1512 	struct tcp_rate_set *rs;
1513 	uint64_t pre;
1514 
1515 	INP_WLOCK_ASSERT(tp->t_inpcb);
1516 
1517 	tp->t_pacing_rate = -1;
1518 	crs = crte->ptbl;
1519 	/*
1520 	 * Now we must break the const
1521 	 * in order to release our refcount.
1522 	 */
1523 	rs = __DECONST(struct tcp_rate_set *, crs);
1524 	rl_decrement_using(crte);
1525 	pre = atomic_fetchadd_64(&rs->rs_flows_using, -1);
1526 	if (pre == 1) {
1527 		struct epoch_tracker et;
1528 
1529 		NET_EPOCH_ENTER(et);
1530 		mtx_lock(&rs_mtx);
1531 		/*
1532 		 * Is it dead?
1533 		 */
1534 		if (rs->rs_flags & RS_IS_DEAD)
1535 			rs_defer_destroy(rs);
1536 		mtx_unlock(&rs_mtx);
1537 		NET_EPOCH_EXIT(et);
1538 	}
1539 
1540 	/*
1541 	 * XXX: If this connection is using ifnet TLS, should we
1542 	 * switch it to using an unlimited rate, or perhaps use
1543 	 * ktls_output_eagain() to reset the send tag to a plain
1544 	 * TLS tag?
1545 	 */
1546 	in_pcbdetach_txrtlmt(tp->t_inpcb);
1547 }
1548 
1549 #define ONE_POINT_TWO_MEG 150000 /* 1.2 megabits in bytes */
1550 #define ONE_HUNDRED_MBPS 12500000	/* 100Mbps in bytes per second */
1551 #define FIVE_HUNDRED_MBPS 62500000	/* 500Mbps in bytes per second */
1552 #define MAX_MSS_SENT 43	/* 43 mss = 43 x 1500 = 64,500 bytes */
1553 
1554 static void
1555 tcp_log_pacing_size(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, uint32_t new_tso,
1556 		    uint64_t hw_rate, uint32_t time_between, uint32_t calc_time_between,
1557 		    uint32_t segs, uint32_t res_div, uint16_t mult, uint8_t mod)
1558 {
1559 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1560 		union tcp_log_stackspecific log;
1561 		struct timeval tv;
1562 
1563 		memset(&log, 0, sizeof(log));
1564 		log.u_bbr.flex1 = segsiz;
1565 		log.u_bbr.flex2 = new_tso;
1566 		log.u_bbr.flex3 = time_between;
1567 		log.u_bbr.flex4 = calc_time_between;
1568 		log.u_bbr.flex5 = segs;
1569 		log.u_bbr.flex6 = res_div;
1570 		log.u_bbr.flex7 = mult;
1571 		log.u_bbr.flex8 = mod;
1572 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1573 		log.u_bbr.cur_del_rate = bw;
1574 		log.u_bbr.delRate = hw_rate;
1575 		TCP_LOG_EVENTP(tp, NULL,
1576 		    &tp->t_inpcb->inp_socket->so_rcv,
1577 		    &tp->t_inpcb->inp_socket->so_snd,
1578 		    TCP_HDWR_PACE_SIZE, 0,
1579 		    0, &log, false, &tv);
1580 	}
1581 }
1582 
1583 uint32_t
1584 tcp_get_pacing_burst_size (struct tcpcb *tp, uint64_t bw, uint32_t segsiz, int can_use_1mss,
1585    const struct tcp_hwrate_limit_table *te, int *err)
1586 {
1587 	/*
1588 	 * We use the google formula to calculate the
1589 	 * TSO size. I.E.
1590 	 * bw < 24Meg
1591 	 *   tso = 2mss
1592 	 * else
1593 	 *   tso = min(bw/1000, 64k)
1594 	 *
1595 	 * Note for these calculations we ignore the
1596 	 * packet overhead (enet hdr, ip hdr and tcp hdr).
1597 	 */
1598 	uint64_t lentim, res, bytes;
1599 	uint32_t new_tso, min_tso_segs;
1600 
1601 	bytes = bw / 1000;
1602 	if (bytes > (64 * 1000))
1603 		bytes = 64 * 1000;
1604 	/* Round up */
1605 	new_tso = (bytes + segsiz - 1) / segsiz;
1606 	if (can_use_1mss && (bw < ONE_POINT_TWO_MEG))
1607 		min_tso_segs = 1;
1608 	else
1609 		min_tso_segs = 2;
1610 	if (rs_floor_mss && (new_tso < rs_floor_mss))
1611 		new_tso = rs_floor_mss;
1612 	else if (new_tso < min_tso_segs)
1613 		new_tso = min_tso_segs;
1614 	if (new_tso > MAX_MSS_SENT)
1615 		new_tso = MAX_MSS_SENT;
1616 	new_tso *= segsiz;
1617  	tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1618 			    0, 0, 0, 0, 0, 0, 1);
1619 	/*
1620 	 * If we are not doing hardware pacing
1621 	 * then we are done.
1622 	 */
1623 	if (te == NULL) {
1624 		if (err)
1625 			*err = 0;
1626 		return(new_tso);
1627 	}
1628 	/*
1629 	 * For hardware pacing we look at the
1630 	 * rate you are sending at and compare
1631 	 * that to the rate you have in hardware.
1632 	 *
1633 	 * If the hardware rate is slower than your
1634 	 * software rate then you are in error and
1635 	 * we will build a queue in our hardware whic
1636 	 * is probably not desired, in such a case
1637 	 * just return the non-hardware TSO size.
1638 	 *
1639 	 * If the rate in hardware is faster (which
1640 	 * it should be) then look at how long it
1641 	 * takes to send one ethernet segment size at
1642 	 * your b/w and compare that to the time it
1643 	 * takes to send at the rate you had selected.
1644 	 *
1645 	 * If your time is greater (which we hope it is)
1646 	 * we get the delta between the two, and then
1647 	 * divide that into your pacing time. This tells
1648 	 * us how many MSS you can send down at once (rounded up).
1649 	 *
1650 	 * Note we also double this value if the b/w is over
1651 	 * 100Mbps. If its over 500meg we just set you to the
1652 	 * max (43 segments).
1653 	 */
1654 	if (te->rate > FIVE_HUNDRED_MBPS)
1655 		goto max;
1656 	if (te->rate == bw) {
1657 		/* We are pacing at exactly the hdwr rate */
1658 max:
1659 		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1660 				    te->rate, te->time_between, (uint32_t)0,
1661 				    (segsiz * MAX_MSS_SENT), 0, 0, 3);
1662 		return (segsiz * MAX_MSS_SENT);
1663 	}
1664 	lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
1665 	res = lentim / bw;
1666 	if (res > te->time_between) {
1667 		uint32_t delta, segs, res_div;
1668 
1669 		res_div = ((res * num_of_waits_allowed) + wait_time_floor);
1670 		delta = res - te->time_between;
1671 		segs = (res_div + delta - 1)/delta;
1672 		if (segs < min_tso_segs)
1673 			segs = min_tso_segs;
1674 		if (segs < rs_hw_floor_mss)
1675 			segs = rs_hw_floor_mss;
1676 		if (segs > MAX_MSS_SENT)
1677 			segs = MAX_MSS_SENT;
1678 		segs *= segsiz;
1679 		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1680 				    te->rate, te->time_between, (uint32_t)res,
1681 				    segs, res_div, 1, 3);
1682 		if (err)
1683 			*err = 0;
1684 		if (segs < new_tso) {
1685 			/* unexpected ? */
1686 			return(new_tso);
1687 		} else {
1688 			return (segs);
1689 		}
1690 	} else {
1691 		/*
1692 		 * Your time is smaller which means
1693 		 * we will grow a queue on our
1694 		 * hardware. Send back the non-hardware
1695 		 * rate.
1696 		 */
1697 		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1698 				    te->rate, te->time_between, (uint32_t)res,
1699 				    0, 0, 0, 4);
1700 		if (err)
1701 			*err = -1;
1702 		return (new_tso);
1703 	}
1704 }
1705 
1706 uint64_t
1707 tcp_hw_highest_rate_ifp(struct ifnet *ifp, struct inpcb *inp)
1708 {
1709 	struct epoch_tracker et;
1710 	struct tcp_rate_set *rs;
1711 	uint64_t rate_ret;
1712 
1713 	NET_EPOCH_ENTER(et);
1714 use_next_interface:
1715 	rs = find_rs_for_ifp(ifp);
1716 	if (rs == NULL) {
1717 		/* This interface does not do ratelimiting */
1718 		rate_ret = 0;
1719 	} else if (rs->rs_flags & RS_IS_DEFF) {
1720 		/* We need to find the real interface */
1721 		struct ifnet *tifp;
1722 
1723 		tifp = rt_find_real_interface(ifp, inp, NULL);
1724 		if (tifp == NULL) {
1725 			NET_EPOCH_EXIT(et);
1726 			return (0);
1727 		}
1728 		ifp = tifp;
1729 		goto use_next_interface;
1730 	} else {
1731 		/* Lets return the highest rate this guy has */
1732 		rate_ret = rs->rs_rlt[rs->rs_highest_valid].rate;
1733 	}
1734 	NET_EPOCH_EXIT(et);
1735 	return(rate_ret);
1736 }
1737 
1738 static eventhandler_tag rl_ifnet_departs;
1739 static eventhandler_tag rl_ifnet_arrives;
1740 static eventhandler_tag rl_shutdown_start;
1741 
1742 static void
1743 tcp_rs_init(void *st __unused)
1744 {
1745 	CK_LIST_INIT(&int_rs);
1746 	rs_number_alive = 0;
1747 	rs_number_dead = 0;
1748 	mtx_init(&rs_mtx, "tcp_rs_mtx", "rsmtx", MTX_DEF);
1749 	rl_ifnet_departs = EVENTHANDLER_REGISTER(ifnet_departure_event,
1750 	    tcp_rl_ifnet_departure,
1751 	    NULL, EVENTHANDLER_PRI_ANY);
1752 	rl_ifnet_arrives = EVENTHANDLER_REGISTER(ifnet_link_event,
1753 	    tcp_rl_ifnet_link,
1754 	    NULL, EVENTHANDLER_PRI_ANY);
1755 	rl_shutdown_start = EVENTHANDLER_REGISTER(shutdown_pre_sync,
1756 	    tcp_rl_shutdown, NULL,
1757 	    SHUTDOWN_PRI_FIRST);
1758 	printf("TCP_ratelimit: Is now initialized\n");
1759 }
1760 
1761 SYSINIT(tcp_rl_init, SI_SUB_SMP + 1, SI_ORDER_ANY, tcp_rs_init, NULL);
1762 #endif
1763