xref: /freebsd/sys/netinet/tcp_ratelimit.c (revision 7b71f57f4e514a2ab7308ce4147e14d90e099ad0)
1 /*-
2  *
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  * Copyright (c) 2018-2020
6  *	Netflix Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 /**
31  * Author: Randall Stewart <rrs@netflix.com>
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_ratelimit.h"
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/sysctl.h>
45 #include <sys/eventhandler.h>
46 #include <sys/mutex.h>
47 #include <sys/ck.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_private.h>
51 #include <netinet/in.h>
52 #include <netinet/in_pcb.h>
53 #define TCPSTATES		/* for logging */
54 #include <netinet/tcp_var.h>
55 #include <netinet/tcp_hpts.h>
56 #include <netinet/tcp_log_buf.h>
57 #include <netinet/tcp_ratelimit.h>
58 #ifndef USECS_IN_SECOND
59 #define USECS_IN_SECOND 1000000
60 #endif
61 /*
62  * For the purposes of each send, what is the size
63  * of an ethernet frame.
64  */
65 MALLOC_DEFINE(M_TCPPACE, "tcp_hwpace", "TCP Hardware pacing memory");
66 #ifdef RATELIMIT
67 
68 /*
69  * The following preferred table will seem weird to
70  * the casual viewer. Why do we not have any rates below
71  * 1Mbps? Why do we have a rate at 1.44Mbps called common?
72  * Why do the rates cluster in the 1-100Mbps range more
73  * than others? Why does the table jump around at the beginnign
74  * and then be more consistently raising?
75  *
76  * Let me try to answer those questions. A lot of
77  * this is dependant on the hardware. We have three basic
78  * supporters of rate limiting
79  *
80  * Chelsio - Supporting 16 configurable rates.
81  * Mlx  - c4 supporting 13 fixed rates.
82  * Mlx  - c5 & c6 supporting 127 configurable rates.
83  *
84  * The c4 is why we have a common rate that is available
85  * in all rate tables. This is a selected rate from the
86  * c4 table and we assure its available in all ratelimit
87  * tables. This way the tcp_ratelimit code has an assured
88  * rate it should always be able to get. This answers a
89  * couple of the questions above.
90  *
91  * So what about the rest, well the table is built to
92  * try to get the most out of a joint hardware/software
93  * pacing system.  The software pacer will always pick
94  * a rate higher than the b/w that it is estimating
95  *
96  * on the path. This is done for two reasons.
97  * a) So we can discover more b/w
98  * and
99  * b) So we can send a block of MSS's down and then
100  *    have the software timer go off after the previous
101  *    send is completely out of the hardware.
102  *
103  * But when we do <b> we don't want to have the delay
104  * between the last packet sent by the hardware be
105  * excessively long (to reach our desired rate).
106  *
107  * So let me give an example for clarity.
108  *
109  * Lets assume that the tcp stack sees that 29,110,000 bps is
110  * what the bw of the path is. The stack would select the
111  * rate 31Mbps. 31Mbps means that each send that is done
112  * by the hardware will cause a 390 micro-second gap between
113  * the packets sent at that rate. For 29,110,000 bps we
114  * would need 416 micro-seconds gap between each send.
115  *
116  * Note that are calculating a complete time for pacing
117  * which includes the ethernet, IP and TCP overhead. So
118  * a full 1514 bytes is used for the above calculations.
119  * My testing has shown that both cards are also using this
120  * as their basis i.e. full payload size of the ethernet frame.
121  * The TCP stack caller needs to be aware of this and make the
122  * appropriate overhead calculations be included in its choices.
123  *
124  * Now, continuing our example, we pick a MSS size based on the
125  * delta between the two rates (416 - 390) divided into the rate
126  * we really wish to send at rounded up.  That results in a MSS
127  * send of 17 mss's at once. The hardware then will
128  * run out of data in a single 17MSS send in 6,630 micro-seconds.
129  *
130  * On the other hand the software pacer will send more data
131  * in 7,072 micro-seconds. This means that we will refill
132  * the hardware 52 microseconds after it would have sent
133  * next if it had not ran out of data. This is a win since we are
134  * only sending every 7ms or so and yet all the packets are spaced on
135  * the wire with 94% of what they should be and only
136  * the last packet is delayed extra to make up for the
137  * difference.
138  *
139  * Note that the above formula has two important caveat.
140  * If we are above (b/w wise) over 100Mbps we double the result
141  * of the MSS calculation. The second caveat is if we are 500Mbps
142  * or more we just send the maximum MSS at once i.e. 45MSS. At
143  * the higher b/w's even the cards have limits to what times (timer granularity)
144  * they can insert between packets and start to send more than one
145  * packet at a time on the wire.
146  *
147  */
148 #define COMMON_RATE 180500
149 const uint64_t desired_rates[] = {
150 	122500,			/* 1Mbps  - rate 1 */
151 	180500,			/* 1.44Mpbs - rate 2  common rate */
152 	375000,			/* 3Mbps    - rate 3 */
153 	625000,			/* 5Mbps    - rate 4 */
154 	1250000,		/* 10Mbps   - rate 5 */
155 	1875000,		/* 15Mbps   - rate 6 */
156 	2500000,		/* 20Mbps   - rate 7 */
157 	3125000,	       	/* 25Mbps   - rate 8 */
158 	3750000,		/* 30Mbps   - rate 9 */
159 	4375000,		/* 35Mbps   - rate 10 */
160 	5000000,		/* 40Meg    - rate 11 */
161 	6250000,		/* 50Mbps   - rate 12 */
162 	12500000,		/* 100Mbps  - rate 13 */
163 	25000000,		/* 200Mbps  - rate 14 */
164 	50000000,		/* 400Mbps  - rate 15 */
165 	100000000,		/* 800Mbps  - rate 16 */
166 	5625000,		/* 45Mbps   - rate 17 */
167 	6875000,		/* 55Mbps   - rate 19 */
168 	7500000,		/* 60Mbps   - rate 20 */
169 	8125000,		/* 65Mbps   - rate 21 */
170 	8750000,		/* 70Mbps   - rate 22 */
171 	9375000,		/* 75Mbps   - rate 23 */
172 	10000000,		/* 80Mbps   - rate 24 */
173 	10625000,		/* 85Mbps   - rate 25 */
174 	11250000,		/* 90Mbps   - rate 26 */
175 	11875000,		/* 95Mbps   - rate 27 */
176 	12500000,		/* 100Mbps  - rate 28 */
177 	13750000,		/* 110Mbps  - rate 29 */
178 	15000000,		/* 120Mbps  - rate 30 */
179 	16250000,		/* 130Mbps  - rate 31 */
180 	17500000,		/* 140Mbps  - rate 32 */
181 	18750000,		/* 150Mbps  - rate 33 */
182 	20000000,		/* 160Mbps  - rate 34 */
183 	21250000,		/* 170Mbps  - rate 35 */
184 	22500000,		/* 180Mbps  - rate 36 */
185 	23750000,		/* 190Mbps  - rate 37 */
186 	26250000,		/* 210Mbps  - rate 38 */
187 	27500000,		/* 220Mbps  - rate 39 */
188 	28750000,		/* 230Mbps  - rate 40 */
189 	30000000,	       	/* 240Mbps  - rate 41 */
190 	31250000,		/* 250Mbps  - rate 42 */
191 	34375000,		/* 275Mbps  - rate 43 */
192 	37500000,		/* 300Mbps  - rate 44 */
193 	40625000,		/* 325Mbps  - rate 45 */
194 	43750000,		/* 350Mbps  - rate 46 */
195 	46875000,		/* 375Mbps  - rate 47 */
196 	53125000,		/* 425Mbps  - rate 48 */
197 	56250000,		/* 450Mbps  - rate 49 */
198 	59375000,		/* 475Mbps  - rate 50 */
199 	62500000,		/* 500Mbps  - rate 51 */
200 	68750000,		/* 550Mbps  - rate 52 */
201 	75000000,		/* 600Mbps  - rate 53 */
202 	81250000,		/* 650Mbps  - rate 54 */
203 	87500000,		/* 700Mbps  - rate 55 */
204 	93750000,		/* 750Mbps  - rate 56 */
205 	106250000,		/* 850Mbps  - rate 57 */
206 	112500000,		/* 900Mbps  - rate 58 */
207 	125000000,		/* 1Gbps    - rate 59 */
208 	156250000,		/* 1.25Gps  - rate 60 */
209 	187500000,		/* 1.5Gps   - rate 61 */
210 	218750000,		/* 1.75Gps  - rate 62 */
211 	250000000,		/* 2Gbps    - rate 63 */
212 	281250000,		/* 2.25Gps  - rate 64 */
213 	312500000,		/* 2.5Gbps  - rate 65 */
214 	343750000,		/* 2.75Gbps - rate 66 */
215 	375000000,		/* 3Gbps    - rate 67 */
216 	500000000,		/* 4Gbps    - rate 68 */
217 	625000000,		/* 5Gbps    - rate 69 */
218 	750000000,		/* 6Gbps    - rate 70 */
219 	875000000,		/* 7Gbps    - rate 71 */
220 	1000000000,		/* 8Gbps    - rate 72 */
221 	1125000000,		/* 9Gbps    - rate 73 */
222 	1250000000,		/* 10Gbps   - rate 74 */
223 	1875000000,		/* 15Gbps   - rate 75 */
224 	2500000000		/* 20Gbps   - rate 76 */
225 };
226 
227 #define MAX_HDWR_RATES (sizeof(desired_rates)/sizeof(uint64_t))
228 #define RS_ORDERED_COUNT 16	/*
229 				 * Number that are in order
230 				 * at the beginning of the table,
231 				 * over this a sort is required.
232 				 */
233 #define RS_NEXT_ORDER_GROUP 16	/*
234 				 * The point in our table where
235 				 * we come fill in a second ordered
236 				 * group (index wise means -1).
237 				 */
238 #define ALL_HARDWARE_RATES 1004 /*
239 				 * 1Meg - 1Gig in 1 Meg steps
240 				 * plus 100, 200k  and 500k and
241 				 * 10Gig
242 				 */
243 
244 #define RS_ONE_MEGABIT_PERSEC 1000000
245 #define RS_ONE_GIGABIT_PERSEC 1000000000
246 #define RS_TEN_GIGABIT_PERSEC 10000000000
247 
248 static struct head_tcp_rate_set int_rs = CK_LIST_HEAD_INITIALIZER();
249 static struct mtx rs_mtx;
250 uint32_t rs_number_alive = 0;
251 uint32_t rs_number_dead = 0;
252 static uint32_t rs_floor_mss = 0;
253 static uint32_t wait_time_floor = 8000;	/* 8 ms */
254 static uint32_t rs_hw_floor_mss = 16;
255 static uint32_t num_of_waits_allowed = 1; /* How many time blocks are we willing to wait */
256 
257 static uint32_t mss_divisor = RL_DEFAULT_DIVISOR;
258 static uint32_t even_num_segs = 1;
259 static uint32_t even_threshold = 4;
260 
261 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, rl, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
262     "TCP Ratelimit stats");
263 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, alive, CTLFLAG_RW,
264     &rs_number_alive, 0,
265     "Number of interfaces initialized for ratelimiting");
266 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, dead, CTLFLAG_RW,
267     &rs_number_dead, 0,
268     "Number of interfaces departing from ratelimiting");
269 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, floor_mss, CTLFLAG_RW,
270     &rs_floor_mss, 0,
271     "Number of MSS that will override the normal minimums (0 means don't enforce)");
272 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, wait_floor, CTLFLAG_RW,
273     &wait_time_floor, 2000,
274     "Has b/w increases what is the wait floor we are willing to wait at the end?");
275 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, time_blocks, CTLFLAG_RW,
276     &num_of_waits_allowed, 1,
277     "How many time blocks on the end should software pacing be willing to wait?");
278 
279 SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, hw_floor_mss, CTLFLAG_RW,
280     &rs_hw_floor_mss, 16,
281     "Number of mss that are a minum for hardware pacing?");
282 
283 SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, divisor, CTLFLAG_RW,
284     &mss_divisor, RL_DEFAULT_DIVISOR,
285     "The value divided into bytes per second to help establish mss size");
286 SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, even, CTLFLAG_RW,
287     &even_num_segs, 1,
288     "Do we round mss size up to an even number of segments for delayed ack");
289 SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, eventhresh, CTLFLAG_RW,
290     &even_threshold, 4,
291     "At what number of mss do we start rounding up to an even number of mss?");
292 
293 static void
rl_add_syctl_entries(struct sysctl_oid * rl_sysctl_root,struct tcp_rate_set * rs)294 rl_add_syctl_entries(struct sysctl_oid *rl_sysctl_root, struct tcp_rate_set *rs)
295 {
296 	/*
297 	 * Add sysctl entries for thus interface.
298 	 */
299 	if (rs->rs_flags & RS_INTF_NO_SUP) {
300 		SYSCTL_ADD_S32(&rs->sysctl_ctx,
301 		   SYSCTL_CHILDREN(rl_sysctl_root),
302 		   OID_AUTO, "disable", CTLFLAG_RD,
303 		   &rs->rs_disable, 0,
304 		   "Disable this interface from new hdwr limiting?");
305 	} else {
306 		SYSCTL_ADD_S32(&rs->sysctl_ctx,
307 		   SYSCTL_CHILDREN(rl_sysctl_root),
308 		   OID_AUTO, "disable", CTLFLAG_RW,
309 		   &rs->rs_disable, 0,
310 		   "Disable this interface from new hdwr limiting?");
311 	}
312 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
313 	    SYSCTL_CHILDREN(rl_sysctl_root),
314 	    OID_AUTO, "minseg", CTLFLAG_RW,
315 	    &rs->rs_min_seg, 0,
316 	    "What is the minimum we need to send on this interface?");
317 	SYSCTL_ADD_U64(&rs->sysctl_ctx,
318 	    SYSCTL_CHILDREN(rl_sysctl_root),
319 	    OID_AUTO, "flow_limit", CTLFLAG_RW,
320 	    &rs->rs_flow_limit, 0,
321 	    "What is the limit for number of flows (0=unlimited)?");
322 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
323 	    SYSCTL_CHILDREN(rl_sysctl_root),
324 	    OID_AUTO, "highest", CTLFLAG_RD,
325 	    &rs->rs_highest_valid, 0,
326 	    "Highest valid rate");
327 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
328 	    SYSCTL_CHILDREN(rl_sysctl_root),
329 	    OID_AUTO, "lowest", CTLFLAG_RD,
330 	    &rs->rs_lowest_valid, 0,
331 	    "Lowest valid rate");
332 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
333 	    SYSCTL_CHILDREN(rl_sysctl_root),
334 	    OID_AUTO, "flags", CTLFLAG_RD,
335 	    &rs->rs_flags, 0,
336 	    "What lags are on the entry?");
337 	SYSCTL_ADD_S32(&rs->sysctl_ctx,
338 	    SYSCTL_CHILDREN(rl_sysctl_root),
339 	    OID_AUTO, "numrates", CTLFLAG_RD,
340 	    &rs->rs_rate_cnt, 0,
341 	    "How many rates re there?");
342 	SYSCTL_ADD_U64(&rs->sysctl_ctx,
343 	    SYSCTL_CHILDREN(rl_sysctl_root),
344 	    OID_AUTO, "flows_using", CTLFLAG_RD,
345 	    &rs->rs_flows_using, 0,
346 	    "How many flows are using this interface now?");
347 #ifdef DETAILED_RATELIMIT_SYSCTL
348 	if (rs->rs_rlt && rs->rs_rate_cnt > 0) {
349 		/*  Lets display the rates */
350 		int i;
351 		struct sysctl_oid *rl_rates;
352 		struct sysctl_oid *rl_rate_num;
353 		char rate_num[16];
354 		rl_rates = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
355 					    SYSCTL_CHILDREN(rl_sysctl_root),
356 					    OID_AUTO,
357 					    "rate",
358 					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
359 					    "Ratelist");
360 		for( i = 0; i < rs->rs_rate_cnt; i++) {
361 			sprintf(rate_num, "%d", i);
362 			rl_rate_num = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
363 					    SYSCTL_CHILDREN(rl_rates),
364 					    OID_AUTO,
365 					    rate_num,
366 					    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
367 					    "Individual Rate");
368 			SYSCTL_ADD_U32(&rs->sysctl_ctx,
369 				       SYSCTL_CHILDREN(rl_rate_num),
370 				       OID_AUTO, "flags", CTLFLAG_RD,
371 				       &rs->rs_rlt[i].flags, 0,
372 				       "Flags on this rate");
373 			SYSCTL_ADD_U32(&rs->sysctl_ctx,
374 				       SYSCTL_CHILDREN(rl_rate_num),
375 				       OID_AUTO, "pacetime", CTLFLAG_RD,
376 				       &rs->rs_rlt[i].time_between, 0,
377 				       "Time hardware inserts between 1500 byte sends");
378 			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
379 				       SYSCTL_CHILDREN(rl_rate_num),
380 				       OID_AUTO, "rate", CTLFLAG_RD,
381 				       &rs->rs_rlt[i].rate,
382 				       "Rate in bytes per second");
383 			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
384 				       SYSCTL_CHILDREN(rl_rate_num),
385 				       OID_AUTO, "using", CTLFLAG_RD,
386 				       &rs->rs_rlt[i].using,
387 				       "Number of flows using");
388 			SYSCTL_ADD_LONG(&rs->sysctl_ctx,
389 				       SYSCTL_CHILDREN(rl_rate_num),
390 				       OID_AUTO, "enobufs", CTLFLAG_RD,
391 				       &rs->rs_rlt[i].rs_num_enobufs,
392 				       "Number of enobufs logged on this rate");
393 
394 		}
395 	}
396 #endif
397 }
398 
399 static void
rs_destroy(epoch_context_t ctx)400 rs_destroy(epoch_context_t ctx)
401 {
402 	struct tcp_rate_set *rs;
403 	bool do_free_rs;
404 
405 	rs = __containerof(ctx, struct tcp_rate_set, rs_epoch_ctx);
406 
407 	mtx_lock(&rs_mtx);
408 	rs->rs_flags &= ~RS_FUNERAL_SCHD;
409 	/*
410 	 * In theory its possible (but unlikely)
411 	 * that while the delete was occuring
412 	 * and we were applying the DEAD flag
413 	 * someone slipped in and found the
414 	 * interface in a lookup. While we
415 	 * decided rs_flows_using were 0 and
416 	 * scheduling the epoch_call, the other
417 	 * thread incremented rs_flow_using. This
418 	 * is because users have a pointer and
419 	 * we only use the rs_flows_using in an
420 	 * atomic fashion, i.e. the other entities
421 	 * are not protected. To assure this did
422 	 * not occur, we check rs_flows_using here
423 	 * before deleting.
424 	 */
425 	do_free_rs = (rs->rs_flows_using == 0);
426 	rs_number_dead--;
427 	mtx_unlock(&rs_mtx);
428 
429 	if (do_free_rs) {
430 		sysctl_ctx_free(&rs->sysctl_ctx);
431 		free(rs->rs_rlt, M_TCPPACE);
432 		free(rs, M_TCPPACE);
433 	}
434 }
435 
436 static void
rs_defer_destroy(struct tcp_rate_set * rs)437 rs_defer_destroy(struct tcp_rate_set *rs)
438 {
439 
440 	mtx_assert(&rs_mtx, MA_OWNED);
441 
442 	/* Check if already pending. */
443 	if (rs->rs_flags & RS_FUNERAL_SCHD)
444 		return;
445 
446 	rs_number_dead++;
447 
448 	/* Set flag to only defer once. */
449 	rs->rs_flags |= RS_FUNERAL_SCHD;
450 	NET_EPOCH_CALL(rs_destroy, &rs->rs_epoch_ctx);
451 }
452 
453 #ifdef INET
454 extern counter_u64_t rate_limit_new;
455 extern counter_u64_t rate_limit_chg;
456 extern counter_u64_t rate_limit_set_ok;
457 extern counter_u64_t rate_limit_active;
458 extern counter_u64_t rate_limit_alloc_fail;
459 #endif
460 
461 static int
rl_attach_txrtlmt(struct ifnet * ifp,uint32_t flowtype,int flowid,uint64_t cfg_rate,struct m_snd_tag ** tag)462 rl_attach_txrtlmt(struct ifnet *ifp,
463     uint32_t flowtype,
464     int flowid,
465     uint64_t cfg_rate,
466     struct m_snd_tag **tag)
467 {
468 	int error;
469 	union if_snd_tag_alloc_params params = {
470 		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
471 		.rate_limit.hdr.flowid = flowid,
472 		.rate_limit.hdr.flowtype = flowtype,
473 		.rate_limit.max_rate = cfg_rate,
474 		.rate_limit.flags = M_NOWAIT,
475 	};
476 
477 	error = m_snd_tag_alloc(ifp, &params, tag);
478 #ifdef INET
479 	if (error == 0) {
480 		counter_u64_add(rate_limit_set_ok, 1);
481 		counter_u64_add(rate_limit_active, 1);
482 	} else if (error != EOPNOTSUPP)
483 		counter_u64_add(rate_limit_alloc_fail, 1);
484 #endif
485 	return (error);
486 }
487 
488 static void
populate_canned_table(struct tcp_rate_set * rs,const uint64_t * rate_table_act)489 populate_canned_table(struct tcp_rate_set *rs, const uint64_t *rate_table_act)
490 {
491 	/*
492 	 * The internal table is "special", it
493 	 * is two seperate ordered tables that
494 	 * must be merged. We get here when the
495 	 * adapter specifies a number of rates that
496 	 * covers both ranges in the table in some
497 	 * form.
498 	 */
499 	int i, at_low, at_high;
500 	uint8_t low_disabled = 0, high_disabled = 0;
501 
502 	for(i = 0, at_low = 0, at_high = RS_NEXT_ORDER_GROUP; i < rs->rs_rate_cnt; i++) {
503 		rs->rs_rlt[i].flags = 0;
504 		rs->rs_rlt[i].time_between = 0;
505 		if ((low_disabled == 0) &&
506 		    (high_disabled ||
507 		     (rate_table_act[at_low] < rate_table_act[at_high]))) {
508 			rs->rs_rlt[i].rate = rate_table_act[at_low];
509 			at_low++;
510 			if (at_low == RS_NEXT_ORDER_GROUP)
511 				low_disabled = 1;
512 		} else if (high_disabled == 0) {
513 			rs->rs_rlt[i].rate = rate_table_act[at_high];
514 			at_high++;
515 			if (at_high == MAX_HDWR_RATES)
516 				high_disabled = 1;
517 		}
518 	}
519 }
520 
521 static struct tcp_rate_set *
rt_setup_new_rs(struct ifnet * ifp,int * error)522 rt_setup_new_rs(struct ifnet *ifp, int *error)
523 {
524 	struct tcp_rate_set *rs;
525 	const uint64_t *rate_table_act;
526 	uint64_t lentim, res;
527 	size_t sz;
528 	uint32_t hash_type;
529 	int i;
530 	struct if_ratelimit_query_results rl;
531 	struct sysctl_oid *rl_sysctl_root;
532 	struct epoch_tracker et;
533 	/*
534 	 * We expect to enter with the
535 	 * mutex locked.
536 	 */
537 
538 	if (ifp->if_ratelimit_query == NULL) {
539 		/*
540 		 * We can do nothing if we cannot
541 		 * get a query back from the driver.
542 		 */
543 		printf("Warning:No query functions for %s:%d-- failed\n",
544 		       ifp->if_dname, ifp->if_dunit);
545 		return (NULL);
546 	}
547 	rs = malloc(sizeof(struct tcp_rate_set), M_TCPPACE, M_NOWAIT | M_ZERO);
548 	if (rs == NULL) {
549 		if (error)
550 			*error = ENOMEM;
551 		printf("Warning:No memory for malloc of tcp_rate_set\n");
552 		return (NULL);
553 	}
554 	memset(&rl, 0, sizeof(rl));
555 	rl.flags = RT_NOSUPPORT;
556 	ifp->if_ratelimit_query(ifp, &rl);
557 	if (rl.flags & RT_IS_UNUSABLE) {
558 		/*
559 		 * The interface does not really support
560 		 * the rate-limiting.
561 		 */
562 		memset(rs, 0, sizeof(struct tcp_rate_set));
563 		rs->rs_ifp = ifp;
564 		rs->rs_if_dunit = ifp->if_dunit;
565 		rs->rs_flags = RS_INTF_NO_SUP;
566 		rs->rs_disable = 1;
567 		rs_number_alive++;
568 		sysctl_ctx_init(&rs->sysctl_ctx);
569 		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
570 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
571 		    OID_AUTO,
572 		    rs->rs_ifp->if_xname,
573 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
574 		    "");
575 		rl_add_syctl_entries(rl_sysctl_root, rs);
576 		NET_EPOCH_ENTER(et);
577 		mtx_lock(&rs_mtx);
578 		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
579 		mtx_unlock(&rs_mtx);
580 		NET_EPOCH_EXIT(et);
581 		return (rs);
582 	} else if ((rl.flags & RT_IS_INDIRECT) == RT_IS_INDIRECT) {
583 		memset(rs, 0, sizeof(struct tcp_rate_set));
584 		rs->rs_ifp = ifp;
585 		rs->rs_if_dunit = ifp->if_dunit;
586 		rs->rs_flags = RS_IS_DEFF;
587 		rs_number_alive++;
588 		sysctl_ctx_init(&rs->sysctl_ctx);
589 		rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
590 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
591 		    OID_AUTO,
592 		    rs->rs_ifp->if_xname,
593 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
594 		    "");
595 		rl_add_syctl_entries(rl_sysctl_root, rs);
596 		NET_EPOCH_ENTER(et);
597 		mtx_lock(&rs_mtx);
598 		CK_LIST_INSERT_HEAD(&int_rs, rs, next);
599 		mtx_unlock(&rs_mtx);
600 		NET_EPOCH_EXIT(et);
601 		return (rs);
602 	} else if ((rl.flags & RT_IS_FIXED_TABLE) == RT_IS_FIXED_TABLE) {
603 		/* Mellanox C4 likely */
604 		rs->rs_ifp = ifp;
605 		rs->rs_if_dunit = ifp->if_dunit;
606 		rs->rs_rate_cnt = rl.number_of_rates;
607 		rs->rs_min_seg = rl.min_segment_burst;
608 		rs->rs_highest_valid = 0;
609 		rs->rs_flow_limit = rl.max_flows;
610 		rs->rs_flags = RS_IS_INTF | RS_NO_PRE;
611 		rs->rs_disable = 0;
612 		rate_table_act = rl.rate_table;
613 	} else if ((rl.flags & RT_IS_SELECTABLE) == RT_IS_SELECTABLE) {
614 		/* Chelsio, C5 and C6 of Mellanox? */
615 		rs->rs_ifp = ifp;
616 		rs->rs_if_dunit = ifp->if_dunit;
617 		rs->rs_rate_cnt = rl.number_of_rates;
618 		rs->rs_min_seg = rl.min_segment_burst;
619 		rs->rs_disable = 0;
620 		rs->rs_flow_limit = rl.max_flows;
621 		rate_table_act = desired_rates;
622 		if ((rs->rs_rate_cnt > MAX_HDWR_RATES) &&
623 		    (rs->rs_rate_cnt < ALL_HARDWARE_RATES)) {
624 			/*
625 			 * Our desired table is not big
626 			 * enough, do what we can.
627 			 */
628 			rs->rs_rate_cnt = MAX_HDWR_RATES;
629 		 }
630 		if (rs->rs_rate_cnt <= RS_ORDERED_COUNT)
631 			rs->rs_flags = RS_IS_INTF;
632 		else
633 			rs->rs_flags = RS_IS_INTF | RS_INT_TBL;
634 		if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)
635 			rs->rs_rate_cnt = ALL_HARDWARE_RATES;
636 	} else {
637 		free(rs, M_TCPPACE);
638 		return (NULL);
639 	}
640 	sz = sizeof(struct tcp_hwrate_limit_table) * rs->rs_rate_cnt;
641 	rs->rs_rlt = malloc(sz, M_TCPPACE, M_NOWAIT);
642 	if (rs->rs_rlt == NULL) {
643 		if (error)
644 			*error = ENOMEM;
645 bail:
646 		free(rs, M_TCPPACE);
647 		return (NULL);
648 	}
649 	if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES) {
650 		/*
651 		 * The interface supports all
652 		 * the rates we could possibly want.
653 		 */
654 		uint64_t rat;
655 
656 		rs->rs_rlt[0].rate = 12500;	/* 100k */
657 		rs->rs_rlt[1].rate = 25000;	/* 200k */
658 		rs->rs_rlt[2].rate = 62500;	/* 500k */
659 		/* Note 125000 == 1Megabit
660 		 * populate 1Meg - 1000meg.
661 		 */
662 		for(i = 3, rat = 125000; i< (ALL_HARDWARE_RATES-1); i++) {
663 			rs->rs_rlt[i].rate = rat;
664 			rat += 125000;
665 		}
666 		rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate = 1250000000;
667 	} else if (rs->rs_flags & RS_INT_TBL) {
668 		/* We populate this in a special way */
669 		populate_canned_table(rs, rate_table_act);
670 	} else {
671 		/*
672 		 * Just copy in the rates from
673 		 * the table, it is in order.
674 		 */
675 		for (i=0; i<rs->rs_rate_cnt; i++) {
676 			rs->rs_rlt[i].rate = rate_table_act[i];
677 			rs->rs_rlt[i].time_between = 0;
678 			rs->rs_rlt[i].flags = 0;
679 		}
680 	}
681 	for (i = (rs->rs_rate_cnt - 1); i >= 0; i--) {
682 		/*
683 		 * We go backwards through the list so that if we can't get
684 		 * a rate and fail to init one, we have at least a chance of
685 		 * getting the highest one.
686 		 */
687 		rs->rs_rlt[i].ptbl = rs;
688 		rs->rs_rlt[i].tag = NULL;
689 		rs->rs_rlt[i].using = 0;
690 		rs->rs_rlt[i].rs_num_enobufs = 0;
691 		/*
692 		 * Calculate the time between.
693 		 */
694 		lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
695 		res = lentim / rs->rs_rlt[i].rate;
696 		if (res > 0)
697 			rs->rs_rlt[i].time_between = res;
698 		else
699 			rs->rs_rlt[i].time_between = 1;
700 		if (rs->rs_flags & RS_NO_PRE) {
701 			rs->rs_rlt[i].flags = HDWRPACE_INITED;
702 			rs->rs_lowest_valid = i;
703 		} else {
704 			int err;
705 
706 			if ((rl.flags & RT_IS_SETUP_REQ)  &&
707 			    (ifp->if_ratelimit_query)) {
708 				err = ifp->if_ratelimit_setup(ifp,
709   				         rs->rs_rlt[i].rate, i);
710 				if (err)
711 					goto handle_err;
712 			}
713 #ifdef RSS
714 			hash_type = M_HASHTYPE_RSS_TCP_IPV4;
715 #else
716 			hash_type = M_HASHTYPE_OPAQUE_HASH;
717 #endif
718 			err = rl_attach_txrtlmt(ifp,
719 			    hash_type,
720 			    (i + 1),
721 			    rs->rs_rlt[i].rate,
722 			    &rs->rs_rlt[i].tag);
723 			if (err) {
724 handle_err:
725 				if (i == (rs->rs_rate_cnt - 1)) {
726 					/*
727 					 * Huh - first rate and we can't get
728 					 * it?
729 					 */
730 					free(rs->rs_rlt, M_TCPPACE);
731 					if (error)
732 						*error = err;
733 					goto bail;
734 				} else {
735 					if (error)
736 						*error = err;
737 				}
738 				break;
739 			} else {
740 				rs->rs_rlt[i].flags = HDWRPACE_INITED | HDWRPACE_TAGPRESENT;
741 				rs->rs_lowest_valid = i;
742 			}
743 		}
744 	}
745 	/* Did we get at least 1 rate? */
746 	if (rs->rs_rlt[(rs->rs_rate_cnt - 1)].flags & HDWRPACE_INITED)
747 		rs->rs_highest_valid = rs->rs_rate_cnt - 1;
748 	else {
749 		free(rs->rs_rlt, M_TCPPACE);
750 		goto bail;
751 	}
752 	rs_number_alive++;
753 	sysctl_ctx_init(&rs->sysctl_ctx);
754 	rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
755 	    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
756 	    OID_AUTO,
757 	    rs->rs_ifp->if_xname,
758 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
759 	    "");
760 	rl_add_syctl_entries(rl_sysctl_root, rs);
761 	NET_EPOCH_ENTER(et);
762 	mtx_lock(&rs_mtx);
763 	CK_LIST_INSERT_HEAD(&int_rs, rs, next);
764 	mtx_unlock(&rs_mtx);
765 	NET_EPOCH_EXIT(et);
766 	return (rs);
767 }
768 
769 /*
770  * For an explanation of why the argument is volatile please
771  * look at the comments around rt_setup_rate().
772  */
773 static const struct tcp_hwrate_limit_table *
tcp_int_find_suitable_rate(const volatile struct tcp_rate_set * rs,uint64_t bytes_per_sec,uint32_t flags,uint64_t * lower_rate)774 tcp_int_find_suitable_rate(const volatile struct tcp_rate_set *rs,
775     uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
776 {
777 	struct tcp_hwrate_limit_table *arte = NULL, *rte = NULL;
778 	uint64_t mbits_per_sec, ind_calc, previous_rate = 0;
779 	int i;
780 
781 	mbits_per_sec = (bytes_per_sec * 8);
782 	if (flags & RS_PACING_LT) {
783 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
784 		    (rs->rs_lowest_valid <= 2)){
785 			/*
786 			 * Smaller than 1Meg, only
787 			 * 3 entries can match it.
788 			 */
789 			previous_rate = 0;
790 			for(i = rs->rs_lowest_valid; i < 3; i++) {
791 				if (bytes_per_sec <= rs->rs_rlt[i].rate) {
792 					rte = &rs->rs_rlt[i];
793 					break;
794 				} else if (rs->rs_rlt[i].flags & HDWRPACE_INITED) {
795 					arte = &rs->rs_rlt[i];
796 				}
797 				previous_rate = rs->rs_rlt[i].rate;
798 			}
799 			goto done;
800 		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
801 			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
802 			/*
803 			 * Larger than 1G (the majority of
804 			 * our table.
805 			 */
806 			if (mbits_per_sec < RS_TEN_GIGABIT_PERSEC)
807 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
808 			else
809 				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
810 			previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
811 			goto done;
812 		}
813 		/*
814 		 * If we reach here its in our table (between 1Meg - 1000Meg),
815 		 * just take the rounded down mbits per second, and add
816 		 * 1Megabit to it, from this we can calculate
817 		 * the index in the table.
818 		 */
819 		ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
820 		if ((ind_calc * RS_ONE_MEGABIT_PERSEC) != mbits_per_sec)
821 			ind_calc++;
822 		/* our table is offset by 3, we add 2 */
823 		ind_calc += 2;
824 		if (ind_calc > (ALL_HARDWARE_RATES-1)) {
825 			/* This should not happen */
826 			ind_calc = ALL_HARDWARE_RATES-1;
827 		}
828 		if ((ind_calc >= rs->rs_lowest_valid) &&
829 		    (ind_calc <= rs->rs_highest_valid)) {
830 			rte = &rs->rs_rlt[ind_calc];
831 			if (ind_calc >= 1)
832 				previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
833 		}
834 	} else if (flags & RS_PACING_EXACT_MATCH) {
835 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
836 		    (rs->rs_lowest_valid <= 2)){
837 			for(i = rs->rs_lowest_valid; i < 3; i++) {
838 				if (bytes_per_sec == rs->rs_rlt[i].rate) {
839 					rte = &rs->rs_rlt[i];
840 					break;
841 				}
842 			}
843 		} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
844 			   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
845 			/* > 1Gbps only one rate */
846 			if (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) {
847 				/* Its 10G wow */
848 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
849 			}
850 		} else {
851 			/* Ok it must be a exact meg (its between 1G and 1Meg) */
852 			ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
853 			if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
854 				/* its an exact Mbps */
855 				ind_calc += 2;
856 				if (ind_calc > (ALL_HARDWARE_RATES-1)) {
857 					/* This should not happen */
858 					ind_calc = ALL_HARDWARE_RATES-1;
859 				}
860 				if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED)
861 					rte = &rs->rs_rlt[ind_calc];
862 			}
863 		}
864 	} else {
865 		/* we want greater than the requested rate */
866 		if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
867 		    (rs->rs_lowest_valid <= 2)){
868 			arte = &rs->rs_rlt[3]; /* set alternate to 1Meg */
869 			for (i=2; i>=rs->rs_lowest_valid; i--) {
870 				if (bytes_per_sec < rs->rs_rlt[i].rate) {
871 					rte = &rs->rs_rlt[i];
872 					if (i >= 1) {
873 						previous_rate = rs->rs_rlt[(i-1)].rate;
874 					}
875 					break;
876 				} else if ((flags & RS_PACING_GEQ) &&
877 					   (bytes_per_sec == rs->rs_rlt[i].rate)) {
878 					rte = &rs->rs_rlt[i];
879 					if (i >= 1) {
880 						previous_rate = rs->rs_rlt[(i-1)].rate;
881 					}
882 					break;
883 				} else {
884 					arte = &rs->rs_rlt[i]; /* new alternate */
885 				}
886 			}
887 		} else if (mbits_per_sec > RS_ONE_GIGABIT_PERSEC) {
888 			if ((bytes_per_sec < rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
889 			    (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
890 				/* Our top rate is larger than the request */
891 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
892 			} else if ((flags & RS_PACING_GEQ) &&
893 				   (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
894 				   (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
895 				/* It matches our top rate */
896 				rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
897 			} else if (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED) {
898 				/* The top rate is an alternative */
899 				arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
900 			}
901 			previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
902 		} else {
903 			/* Its in our range 1Meg - 1Gig */
904 			if (flags & RS_PACING_GEQ) {
905 				ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
906 				if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
907 					if (ind_calc > (ALL_HARDWARE_RATES-1)) {
908 						/* This should not happen */
909 						ind_calc = (ALL_HARDWARE_RATES-1);
910 					}
911 					rte = &rs->rs_rlt[ind_calc];
912 					if (ind_calc >= 1)
913 						previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
914 				}
915 				goto done;
916 			}
917 			ind_calc = (mbits_per_sec + (RS_ONE_MEGABIT_PERSEC-1))/RS_ONE_MEGABIT_PERSEC;
918 			ind_calc += 2;
919 			if (ind_calc > (ALL_HARDWARE_RATES-1)) {
920 				/* This should not happen */
921 				ind_calc = ALL_HARDWARE_RATES-1;
922 			}
923 			if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED) {
924 				rte = &rs->rs_rlt[ind_calc];
925 				if (ind_calc >= 1)
926 					previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
927 			}
928 		}
929 	}
930 done:
931 	if ((rte == NULL) &&
932 	    (arte != NULL) &&
933 	    (flags & RS_PACING_SUB_OK)) {
934 		/* We can use the substitute */
935 		rte = arte;
936 	}
937 	if (lower_rate)
938 		*lower_rate = previous_rate;
939 	return (rte);
940 }
941 
942 /*
943  * For an explanation of why the argument is volatile please
944  * look at the comments around rt_setup_rate().
945  */
946 static const struct tcp_hwrate_limit_table *
tcp_find_suitable_rate(const volatile struct tcp_rate_set * rs,uint64_t bytes_per_sec,uint32_t flags,uint64_t * lower_rate)947 tcp_find_suitable_rate(const volatile struct tcp_rate_set *rs, uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
948 {
949 	/**
950 	 * Hunt the rate table with the restrictions in flags and find a
951 	 * suitable rate if possible.
952 	 * RS_PACING_EXACT_MATCH - look for an exact match to rate.
953 	 * RS_PACING_GT     - must be greater than.
954 	 * RS_PACING_GEQ    - must be greater than or equal.
955 	 * RS_PACING_LT     - must be less than.
956 	 * RS_PACING_SUB_OK - If we don't meet criteria a
957 	 *                    substitute is ok.
958 	 */
959 	int i, matched;
960 	struct tcp_hwrate_limit_table *rte = NULL;
961 	uint64_t previous_rate = 0;
962 
963 	if ((rs->rs_flags & RS_INT_TBL) &&
964 	    (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)) {
965 		/*
966 		 * Here we don't want to paw thru
967 		 * a big table, we have everything
968 		 * from 1Meg - 1000Meg in 1Meg increments.
969 		 * Use an alternate method to "lookup".
970 		 */
971 		return (tcp_int_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate));
972 	}
973 	if ((flags & RS_PACING_LT) ||
974 	    (flags & RS_PACING_EXACT_MATCH)) {
975 		/*
976 		 * For exact and less than we go forward through the table.
977 		 * This way when we find one larger we stop (exact was a
978 		 * toss up).
979 		 */
980 		for (i = rs->rs_lowest_valid, matched = 0; i <= rs->rs_highest_valid; i++) {
981 			if ((flags & RS_PACING_EXACT_MATCH) &&
982 			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
983 				rte = &rs->rs_rlt[i];
984 				matched = 1;
985 				if (lower_rate != NULL)
986 					*lower_rate = previous_rate;
987 				break;
988 			} else if ((flags & RS_PACING_LT) &&
989 			    (bytes_per_sec <= rs->rs_rlt[i].rate)) {
990 				rte = &rs->rs_rlt[i];
991 				matched = 1;
992 				if (lower_rate != NULL)
993 					*lower_rate = previous_rate;
994 				break;
995 			}
996 			previous_rate = rs->rs_rlt[i].rate;
997 			if (bytes_per_sec > rs->rs_rlt[i].rate)
998 				break;
999 		}
1000 		if ((matched == 0) &&
1001 		    (flags & RS_PACING_LT) &&
1002 		    (flags & RS_PACING_SUB_OK)) {
1003 			/* Kick in a substitute (the lowest) */
1004 			rte = &rs->rs_rlt[rs->rs_lowest_valid];
1005 		}
1006 	} else {
1007 		/*
1008 		 * Here we go backward through the table so that we can find
1009 		 * the one greater in theory faster (but its probably a
1010 		 * wash).
1011 		 */
1012 		for (i = rs->rs_highest_valid, matched = 0; i >= rs->rs_lowest_valid; i--) {
1013 			if (rs->rs_rlt[i].rate > bytes_per_sec) {
1014 				/* A possible candidate */
1015 				rte = &rs->rs_rlt[i];
1016 			}
1017 			if ((flags & RS_PACING_GEQ) &&
1018 			    (bytes_per_sec == rs->rs_rlt[i].rate)) {
1019 				/* An exact match and we want equal */
1020 				matched = 1;
1021 				rte = &rs->rs_rlt[i];
1022 				break;
1023 			} else if (rte) {
1024 				/*
1025 				 * Found one that is larger than but don't
1026 				 * stop, there may be a more closer match.
1027 				 */
1028 				matched = 1;
1029 			}
1030 			if (rs->rs_rlt[i].rate < bytes_per_sec) {
1031 				/*
1032 				 * We found a table entry that is smaller,
1033 				 * stop there will be none greater or equal.
1034 				 */
1035 				if (lower_rate != NULL)
1036 					*lower_rate = rs->rs_rlt[i].rate;
1037 				break;
1038 			}
1039 		}
1040 		if ((matched == 0) &&
1041 		    (flags & RS_PACING_SUB_OK)) {
1042 			/* Kick in a substitute (the highest) */
1043 			rte = &rs->rs_rlt[rs->rs_highest_valid];
1044 		}
1045 	}
1046 	return (rte);
1047 }
1048 
1049 static struct ifnet *
rt_find_real_interface(struct ifnet * ifp,struct inpcb * inp,int * error)1050 rt_find_real_interface(struct ifnet *ifp, struct inpcb *inp, int *error)
1051 {
1052 	struct ifnet *tifp;
1053 	struct m_snd_tag *tag, *ntag;
1054 	union if_snd_tag_alloc_params params = {
1055 		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
1056 		.rate_limit.hdr.flowid = inp->inp_flowid,
1057 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
1058 		.rate_limit.max_rate = COMMON_RATE,
1059 		.rate_limit.flags = M_NOWAIT,
1060 	};
1061 	int err;
1062 #ifdef RSS
1063 	params.rate_limit.hdr.flowtype = ((inp->inp_vflag & INP_IPV6) ?
1064 	    M_HASHTYPE_RSS_TCP_IPV6 : M_HASHTYPE_RSS_TCP_IPV4);
1065 #else
1066 	params.rate_limit.hdr.flowtype = M_HASHTYPE_OPAQUE_HASH;
1067 #endif
1068 	err = m_snd_tag_alloc(ifp, &params, &tag);
1069 	if (err) {
1070 		/* Failed to setup a tag? */
1071 		if (error)
1072 			*error = err;
1073 		return (NULL);
1074 	}
1075 	ntag = tag;
1076 	while (ntag->sw->next_snd_tag != NULL) {
1077 		ntag = ntag->sw->next_snd_tag(ntag);
1078 	}
1079 	tifp = ntag->ifp;
1080 	m_snd_tag_rele(tag);
1081 	return (tifp);
1082 }
1083 
1084 static void
rl_increment_using(const struct tcp_hwrate_limit_table * rte)1085 rl_increment_using(const struct tcp_hwrate_limit_table *rte)
1086 {
1087 	struct tcp_hwrate_limit_table *decon_rte;
1088 
1089 	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1090 	atomic_add_long(&decon_rte->using, 1);
1091 }
1092 
1093 static void
rl_decrement_using(const struct tcp_hwrate_limit_table * rte)1094 rl_decrement_using(const struct tcp_hwrate_limit_table *rte)
1095 {
1096 	struct tcp_hwrate_limit_table *decon_rte;
1097 
1098 	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1099 	atomic_subtract_long(&decon_rte->using, 1);
1100 }
1101 
1102 void
tcp_rl_log_enobuf(const struct tcp_hwrate_limit_table * rte)1103 tcp_rl_log_enobuf(const struct tcp_hwrate_limit_table *rte)
1104 {
1105 	struct tcp_hwrate_limit_table *decon_rte;
1106 
1107 	decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
1108 	atomic_add_long(&decon_rte->rs_num_enobufs, 1);
1109 }
1110 
1111 /*
1112  * Do NOT take the __noinline out of the
1113  * find_rs_for_ifp() function. If you do the inline
1114  * of it for the rt_setup_rate() will show you a
1115  * compiler bug. For some reason the compiler thinks
1116  * the list can never be empty. The consequence of
1117  * this will be a crash when we dereference NULL
1118  * if an ifp is removed just has a hw rate limit
1119  * is attempted. If you are working on the compiler
1120  * and want to "test" this go ahead and take the noinline
1121  * out otherwise let sleeping dogs ly until such time
1122  * as we get a compiler fix 10/2/20 -- RRS
1123  */
1124 static __noinline struct tcp_rate_set *
find_rs_for_ifp(struct ifnet * ifp)1125 find_rs_for_ifp(struct ifnet *ifp)
1126 {
1127 	struct tcp_rate_set *rs;
1128 
1129 	CK_LIST_FOREACH(rs, &int_rs, next) {
1130 		if ((rs->rs_ifp == ifp) &&
1131 		    (rs->rs_if_dunit == ifp->if_dunit)) {
1132 			/* Ok we found it */
1133 			return (rs);
1134 		}
1135 	}
1136 	return (NULL);
1137 }
1138 
1139 
1140 static const struct tcp_hwrate_limit_table *
rt_setup_rate(struct inpcb * inp,struct ifnet * ifp,uint64_t bytes_per_sec,uint32_t flags,int * error,uint64_t * lower_rate)1141 rt_setup_rate(struct inpcb *inp, struct ifnet *ifp, uint64_t bytes_per_sec,
1142     uint32_t flags, int *error, uint64_t *lower_rate)
1143 {
1144 	/* First lets find the interface if it exists */
1145 	const struct tcp_hwrate_limit_table *rte;
1146 	/*
1147 	 * So why is rs volatile? This is to defeat a
1148 	 * compiler bug where in the compiler is convinced
1149 	 * that rs can never be NULL (which is not true). Because
1150 	 * of its conviction it nicely optimizes out the if ((rs == NULL
1151 	 * below which means if you get a NULL back you dereference it.
1152 	 */
1153 	volatile struct tcp_rate_set *rs;
1154 	struct epoch_tracker et;
1155 	struct ifnet *oifp = ifp;
1156 	int err;
1157 
1158 	NET_EPOCH_ENTER(et);
1159 use_real_interface:
1160 	rs = find_rs_for_ifp(ifp);
1161 	if ((rs == NULL) ||
1162 	    (rs->rs_flags & RS_INTF_NO_SUP) ||
1163 	    (rs->rs_flags & RS_IS_DEAD)) {
1164 		/*
1165 		 * This means we got a packet *before*
1166 		 * the IF-UP was processed below, <or>
1167 		 * while or after we already received an interface
1168 		 * departed event. In either case we really don't
1169 		 * want to do anything with pacing, in
1170 		 * the departing case the packet is not
1171 		 * going to go very far. The new case
1172 		 * might be arguable, but its impossible
1173 		 * to tell from the departing case.
1174 		 */
1175 		if (error)
1176 			*error = ENODEV;
1177 		NET_EPOCH_EXIT(et);
1178 		return (NULL);
1179 	}
1180 
1181 	if ((rs == NULL) || (rs->rs_disable != 0)) {
1182 		if (error)
1183 			*error = ENOSPC;
1184 		NET_EPOCH_EXIT(et);
1185 		return (NULL);
1186 	}
1187 	if (rs->rs_flags & RS_IS_DEFF) {
1188 		/* We need to find the real interface */
1189 		struct ifnet *tifp;
1190 
1191 		tifp = rt_find_real_interface(ifp, inp, error);
1192 		if (tifp == NULL) {
1193 			if (rs->rs_disable && error)
1194 				*error = ENOTSUP;
1195 			NET_EPOCH_EXIT(et);
1196 			return (NULL);
1197 		}
1198 		KASSERT((tifp != ifp),
1199 			("Lookup failure ifp:%p inp:%p rt_find_real_interface() returns the same interface tifp:%p?\n",
1200 			 ifp, inp, tifp));
1201 		ifp = tifp;
1202 		goto use_real_interface;
1203 	}
1204 	if (rs->rs_flow_limit &&
1205 	    ((rs->rs_flows_using + 1) > rs->rs_flow_limit)) {
1206 		if (error)
1207 			*error = ENOSPC;
1208 		NET_EPOCH_EXIT(et);
1209 		return (NULL);
1210 	}
1211 	rte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
1212 	if (rte) {
1213 		err = in_pcbattach_txrtlmt(inp, oifp,
1214 		    inp->inp_flowtype,
1215 		    inp->inp_flowid,
1216 		    rte->rate,
1217 		    &inp->inp_snd_tag);
1218 		if (err) {
1219 			/* Failed to attach */
1220 			if (error)
1221 				*error = err;
1222 			rte = NULL;
1223 		} else {
1224 			KASSERT((inp->inp_snd_tag != NULL) ,
1225 				("Setup rate has no snd_tag inp:%p rte:%p rate:%llu rs:%p",
1226 				 inp, rte, (unsigned long long)rte->rate, rs));
1227 #ifdef INET
1228 			counter_u64_add(rate_limit_new, 1);
1229 #endif
1230 		}
1231 	}
1232 	if (rte) {
1233 		/*
1234 		 * We use an atomic here for accounting so we don't have to
1235 		 * use locks when freeing.
1236 		 */
1237 		atomic_add_64(&rs->rs_flows_using, 1);
1238 	}
1239 	NET_EPOCH_EXIT(et);
1240 	return (rte);
1241 }
1242 
1243 static void
tcp_rl_ifnet_link(void * arg __unused,struct ifnet * ifp,int link_state)1244 tcp_rl_ifnet_link(void *arg __unused, struct ifnet *ifp, int link_state)
1245 {
1246 	int error;
1247 	struct tcp_rate_set *rs;
1248 	struct epoch_tracker et;
1249 
1250 	if (((ifp->if_capenable & IFCAP_TXRTLMT) == 0) ||
1251 	    (link_state != LINK_STATE_UP)) {
1252 		/*
1253 		 * We only care on an interface going up that is rate-limit
1254 		 * capable.
1255 		 */
1256 		return;
1257 	}
1258 	NET_EPOCH_ENTER(et);
1259 	mtx_lock(&rs_mtx);
1260 	rs = find_rs_for_ifp(ifp);
1261 	if (rs) {
1262 		/* We already have initialized this guy */
1263 		mtx_unlock(&rs_mtx);
1264 		NET_EPOCH_EXIT(et);
1265 		return;
1266 	}
1267 	mtx_unlock(&rs_mtx);
1268 	NET_EPOCH_EXIT(et);
1269 	rt_setup_new_rs(ifp, &error);
1270 }
1271 
1272 static void
tcp_rl_ifnet_departure(void * arg __unused,struct ifnet * ifp)1273 tcp_rl_ifnet_departure(void *arg __unused, struct ifnet *ifp)
1274 {
1275 	struct tcp_rate_set *rs;
1276 	struct epoch_tracker et;
1277 	int i;
1278 
1279 	NET_EPOCH_ENTER(et);
1280 	mtx_lock(&rs_mtx);
1281 	rs = find_rs_for_ifp(ifp);
1282 	if (rs) {
1283 		CK_LIST_REMOVE(rs, next);
1284 		rs_number_alive--;
1285 		rs->rs_flags |= RS_IS_DEAD;
1286 		for (i = 0; i < rs->rs_rate_cnt; i++) {
1287 			if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1288 				in_pcbdetach_tag(rs->rs_rlt[i].tag);
1289 				rs->rs_rlt[i].tag = NULL;
1290 			}
1291 			rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1292 		}
1293 		if (rs->rs_flows_using == 0)
1294 			rs_defer_destroy(rs);
1295 	}
1296 	mtx_unlock(&rs_mtx);
1297 	NET_EPOCH_EXIT(et);
1298 }
1299 
1300 void
tcp_rl_release_ifnet(struct ifnet * ifp)1301 tcp_rl_release_ifnet(struct ifnet *ifp)
1302 {
1303 	tcp_rl_ifnet_departure(NULL, ifp);
1304 }
1305 
1306 static void
tcp_rl_shutdown(void * arg __unused,int howto __unused)1307 tcp_rl_shutdown(void *arg __unused, int howto __unused)
1308 {
1309 	struct tcp_rate_set *rs, *nrs;
1310 	struct epoch_tracker et;
1311 	int i;
1312 
1313 	NET_EPOCH_ENTER(et);
1314 	mtx_lock(&rs_mtx);
1315 	CK_LIST_FOREACH_SAFE(rs, &int_rs, next, nrs) {
1316 		CK_LIST_REMOVE(rs, next);
1317 		rs_number_alive--;
1318 		rs->rs_flags |= RS_IS_DEAD;
1319 		for (i = 0; i < rs->rs_rate_cnt; i++) {
1320 			if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
1321 				in_pcbdetach_tag(rs->rs_rlt[i].tag);
1322 				rs->rs_rlt[i].tag = NULL;
1323 			}
1324 			rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
1325 		}
1326 		if (rs->rs_flows_using == 0)
1327 			rs_defer_destroy(rs);
1328 	}
1329 	mtx_unlock(&rs_mtx);
1330 	NET_EPOCH_EXIT(et);
1331 }
1332 
1333 const struct tcp_hwrate_limit_table *
tcp_set_pacing_rate(struct tcpcb * tp,struct ifnet * ifp,uint64_t bytes_per_sec,int flags,int * error,uint64_t * lower_rate)1334 tcp_set_pacing_rate(struct tcpcb *tp, struct ifnet *ifp,
1335     uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
1336 {
1337 	struct inpcb *inp = tptoinpcb(tp);
1338 	const struct tcp_hwrate_limit_table *rte;
1339 #ifdef KERN_TLS
1340 	struct ktls_session *tls;
1341 #endif
1342 
1343 	INP_WLOCK_ASSERT(inp);
1344 
1345 	if (inp->inp_snd_tag == NULL) {
1346 		/*
1347 		 * We are setting up a rate for the first time.
1348 		 */
1349 		if ((ifp->if_capenable & IFCAP_TXRTLMT) == 0) {
1350 			/* Not supported by the egress */
1351 			if (error)
1352 				*error = ENODEV;
1353 			return (NULL);
1354 		}
1355 #ifdef KERN_TLS
1356 		tls = NULL;
1357 		if (tp->t_nic_ktls_xmit != 0) {
1358 			tls = tptosocket(tp)->so_snd.sb_tls_info;
1359 
1360 			if ((ifp->if_capenable & IFCAP_TXTLS_RTLMT) == 0 ||
1361 			    tls->mode != TCP_TLS_MODE_IFNET) {
1362 				if (error)
1363 					*error = ENODEV;
1364 				return (NULL);
1365 			}
1366 		}
1367 #endif
1368 		rte = rt_setup_rate(inp, ifp, bytes_per_sec, flags, error, lower_rate);
1369 		if (rte)
1370 			rl_increment_using(rte);
1371 #ifdef KERN_TLS
1372 		if (rte != NULL && tls != NULL && tls->snd_tag != NULL) {
1373 			/*
1374 			 * Fake a route change error to reset the TLS
1375 			 * send tag.  This will convert the existing
1376 			 * tag to a TLS ratelimit tag.
1377 			 */
1378 			MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS);
1379 			ktls_output_eagain(inp, tls);
1380 		}
1381 #endif
1382 	} else {
1383 		/*
1384 		 * We are modifying a rate, wrong interface?
1385 		 */
1386 		if (error)
1387 			*error = EINVAL;
1388 		rte = NULL;
1389 	}
1390 	if (rte != NULL) {
1391 		tp->t_pacing_rate = rte->rate;
1392 		*error = 0;
1393 	}
1394 	return (rte);
1395 }
1396 
1397 const struct tcp_hwrate_limit_table *
tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table * crte,struct tcpcb * tp,struct ifnet * ifp,uint64_t bytes_per_sec,int flags,int * error,uint64_t * lower_rate)1398 tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table *crte,
1399     struct tcpcb *tp, struct ifnet *ifp,
1400     uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
1401 {
1402 	struct inpcb *inp = tptoinpcb(tp);
1403 	const struct tcp_hwrate_limit_table *nrte;
1404 	const struct tcp_rate_set *rs;
1405 #ifdef KERN_TLS
1406 	struct ktls_session *tls = NULL;
1407 #endif
1408 	int err;
1409 
1410 	INP_WLOCK_ASSERT(inp);
1411 
1412 	if (crte == NULL) {
1413 		/* Wrong interface */
1414 		if (error)
1415 			*error = EINVAL;
1416 		return (NULL);
1417 	}
1418 
1419 #ifdef KERN_TLS
1420 	if (tp->t_nic_ktls_xmit) {
1421 		tls = tptosocket(tp)->so_snd.sb_tls_info;
1422 		if (tls->mode != TCP_TLS_MODE_IFNET)
1423 			tls = NULL;
1424 		else if (tls->snd_tag != NULL &&
1425 		    tls->snd_tag->sw->type != IF_SND_TAG_TYPE_TLS_RATE_LIMIT) {
1426 			if (!tls->reset_pending) {
1427 				/*
1428 				 * NIC probably doesn't support
1429 				 * ratelimit TLS tags if it didn't
1430 				 * allocate one when an existing rate
1431 				 * was present, so ignore.
1432 				 */
1433 				tcp_rel_pacing_rate(crte, tp);
1434 				if (error)
1435 					*error = EOPNOTSUPP;
1436 				return (NULL);
1437 			}
1438 
1439 			/*
1440 			 * The send tag is being converted, so set the
1441 			 * rate limit on the inpcb tag.  There is a
1442 			 * race that the new NIC send tag might use
1443 			 * the current rate instead of this one.
1444 			 */
1445 			tls = NULL;
1446 		}
1447 	}
1448 #endif
1449 	if (inp->inp_snd_tag == NULL) {
1450 		/* Wrong interface */
1451 		tcp_rel_pacing_rate(crte, tp);
1452 		if (error)
1453 			*error = EINVAL;
1454 		return (NULL);
1455 	}
1456 	rs = crte->ptbl;
1457 	if ((rs->rs_flags & RS_IS_DEAD) ||
1458 	    (crte->flags & HDWRPACE_IFPDEPARTED)) {
1459 		/* Release the rate, and try anew */
1460 
1461 		tcp_rel_pacing_rate(crte, tp);
1462 		nrte = tcp_set_pacing_rate(tp, ifp,
1463 		    bytes_per_sec, flags, error, lower_rate);
1464 		return (nrte);
1465 	}
1466 	nrte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
1467 	if (nrte == crte) {
1468 		/* No change */
1469 		if (error)
1470 			*error = 0;
1471 		return (crte);
1472 	}
1473 	if (nrte == NULL) {
1474 		/* Release the old rate */
1475 		if (error)
1476 			*error = ENOENT;
1477 		tcp_rel_pacing_rate(crte, tp);
1478 		return (NULL);
1479 	}
1480 	rl_decrement_using(crte);
1481 	rl_increment_using(nrte);
1482 	/* Change rates to our new entry */
1483 #ifdef KERN_TLS
1484 	if (tls != NULL)
1485 		err = ktls_modify_txrtlmt(tls, nrte->rate);
1486 	else
1487 #endif
1488 		err = in_pcbmodify_txrtlmt(inp, nrte->rate);
1489 	if (err) {
1490 		struct tcp_rate_set *lrs;
1491 		uint64_t pre;
1492 
1493 		rl_decrement_using(nrte);
1494 		lrs = __DECONST(struct tcp_rate_set *, rs);
1495 		pre = atomic_fetchadd_64(&lrs->rs_flows_using, -1);
1496 		/* Do we still have a snd-tag attached? */
1497 		if (inp->inp_snd_tag)
1498 			in_pcbdetach_txrtlmt(inp);
1499 
1500 		if (pre == 1) {
1501 			struct epoch_tracker et;
1502 
1503 			NET_EPOCH_ENTER(et);
1504 			mtx_lock(&rs_mtx);
1505 			/*
1506 			 * Is it dead?
1507 			 */
1508 			if (lrs->rs_flags & RS_IS_DEAD)
1509 				rs_defer_destroy(lrs);
1510 			mtx_unlock(&rs_mtx);
1511 			NET_EPOCH_EXIT(et);
1512 		}
1513 		if (error)
1514 			*error = err;
1515 		return (NULL);
1516 	} else {
1517 #ifdef INET
1518 		counter_u64_add(rate_limit_chg, 1);
1519 #endif
1520 	}
1521 	if (error)
1522 		*error = 0;
1523 	tp->t_pacing_rate = nrte->rate;
1524 	return (nrte);
1525 }
1526 
1527 void
tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table * crte,struct tcpcb * tp)1528 tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp)
1529 {
1530 	struct inpcb *inp = tptoinpcb(tp);
1531 	const struct tcp_rate_set *crs;
1532 	struct tcp_rate_set *rs;
1533 	uint64_t pre;
1534 
1535 	INP_WLOCK_ASSERT(inp);
1536 
1537 	tp->t_pacing_rate = -1;
1538 	crs = crte->ptbl;
1539 	/*
1540 	 * Now we must break the const
1541 	 * in order to release our refcount.
1542 	 */
1543 	rs = __DECONST(struct tcp_rate_set *, crs);
1544 	rl_decrement_using(crte);
1545 	pre = atomic_fetchadd_64(&rs->rs_flows_using, -1);
1546 	if (pre == 1) {
1547 		struct epoch_tracker et;
1548 
1549 		NET_EPOCH_ENTER(et);
1550 		mtx_lock(&rs_mtx);
1551 		/*
1552 		 * Is it dead?
1553 		 */
1554 		if (rs->rs_flags & RS_IS_DEAD)
1555 			rs_defer_destroy(rs);
1556 		mtx_unlock(&rs_mtx);
1557 		NET_EPOCH_EXIT(et);
1558 	}
1559 
1560 	/*
1561 	 * XXX: If this connection is using ifnet TLS, should we
1562 	 * switch it to using an unlimited rate, or perhaps use
1563 	 * ktls_output_eagain() to reset the send tag to a plain
1564 	 * TLS tag?
1565 	 */
1566 	in_pcbdetach_txrtlmt(inp);
1567 }
1568 
1569 #define ONE_POINT_TWO_MEG 150000 /* 1.2 megabits in bytes */
1570 #define ONE_HUNDRED_MBPS 12500000	/* 100Mbps in bytes per second */
1571 #define FIVE_HUNDRED_MBPS 62500000	/* 500Mbps in bytes per second */
1572 #define MAX_MSS_SENT 43	/* 43 mss = 43 x 1500 = 64,500 bytes */
1573 
1574 static void
tcp_log_pacing_size(struct tcpcb * tp,uint64_t bw,uint32_t segsiz,uint32_t new_tso,uint64_t hw_rate,uint32_t time_between,uint32_t calc_time_between,uint32_t segs,uint32_t res_div,uint16_t mult,uint8_t mod)1575 tcp_log_pacing_size(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, uint32_t new_tso,
1576 		    uint64_t hw_rate, uint32_t time_between, uint32_t calc_time_between,
1577 		    uint32_t segs, uint32_t res_div, uint16_t mult, uint8_t mod)
1578 {
1579 	if (tcp_bblogging_on(tp)) {
1580 		union tcp_log_stackspecific log;
1581 		struct timeval tv;
1582 
1583 		memset(&log, 0, sizeof(log));
1584 		log.u_bbr.flex1 = segsiz;
1585 		log.u_bbr.flex2 = new_tso;
1586 		log.u_bbr.flex3 = time_between;
1587 		log.u_bbr.flex4 = calc_time_between;
1588 		log.u_bbr.flex5 = segs;
1589 		log.u_bbr.flex6 = res_div;
1590 		log.u_bbr.flex7 = mult;
1591 		log.u_bbr.flex8 = mod;
1592 		log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1593 		log.u_bbr.cur_del_rate = bw;
1594 		log.u_bbr.delRate = hw_rate;
1595 		TCP_LOG_EVENTP(tp, NULL,
1596 		    &tptosocket(tp)->so_rcv,
1597 		    &tptosocket(tp)->so_snd,
1598 		    TCP_HDWR_PACE_SIZE, 0,
1599 		    0, &log, false, &tv);
1600 	}
1601 }
1602 
1603 uint32_t
tcp_get_pacing_burst_size_w_divisor(struct tcpcb * tp,uint64_t bw,uint32_t segsiz,int can_use_1mss,const struct tcp_hwrate_limit_table * te,int * err,int divisor)1604 tcp_get_pacing_burst_size_w_divisor(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, int can_use_1mss,
1605    const struct tcp_hwrate_limit_table *te, int *err, int divisor)
1606 {
1607 	/*
1608 	 * We use the google formula to calculate the
1609 	 * TSO size. I.E.
1610 	 * bw < 24Meg
1611 	 *   tso = 2mss
1612 	 * else
1613 	 *   tso = min(bw/(div=1000), 64k)
1614 	 *
1615 	 * Note for these calculations we ignore the
1616 	 * packet overhead (enet hdr, ip hdr and tcp hdr).
1617 	 * We only get the google formula when we have
1618 	 * divisor = 1000, which is the default for now.
1619 	 */
1620 	uint64_t lentim, res, bytes;
1621 	uint32_t new_tso, min_tso_segs;
1622 
1623 	/* It can't be zero */
1624 	if ((divisor == 0) ||
1625 	    (divisor < RL_MIN_DIVISOR)) {
1626 		if (mss_divisor)
1627 			bytes = bw / mss_divisor;
1628 		else
1629 			bytes = bw / 1000;
1630 	} else
1631 		bytes = bw / divisor;
1632 	/* We can't ever send more than 65k in a TSO */
1633 	if (bytes > 0xffff) {
1634 		bytes = 0xffff;
1635 	}
1636 	/* Round up */
1637 	new_tso = (bytes + segsiz - 1) / segsiz;
1638 	/* Are we enforcing even boundaries? */
1639 	if (even_num_segs && (new_tso & 1) && (new_tso > even_threshold))
1640 		new_tso++;
1641 	if (can_use_1mss)
1642 		min_tso_segs = 1;
1643 	else
1644 		min_tso_segs = 2;
1645 	if (rs_floor_mss && (new_tso < rs_floor_mss))
1646 		new_tso = rs_floor_mss;
1647 	else if (new_tso < min_tso_segs)
1648 		new_tso = min_tso_segs;
1649 	if (new_tso > MAX_MSS_SENT)
1650 		new_tso = MAX_MSS_SENT;
1651 	new_tso *= segsiz;
1652  	tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1653 			    0, 0, 0, 0, 0, 0, 1);
1654 	/*
1655 	 * If we are not doing hardware pacing
1656 	 * then we are done.
1657 	 */
1658 	if (te == NULL) {
1659 		if (err)
1660 			*err = 0;
1661 		return(new_tso);
1662 	}
1663 	/*
1664 	 * For hardware pacing we look at the
1665 	 * rate you are sending at and compare
1666 	 * that to the rate you have in hardware.
1667 	 *
1668 	 * If the hardware rate is slower than your
1669 	 * software rate then you are in error and
1670 	 * we will build a queue in our hardware whic
1671 	 * is probably not desired, in such a case
1672 	 * just return the non-hardware TSO size.
1673 	 *
1674 	 * If the rate in hardware is faster (which
1675 	 * it should be) then look at how long it
1676 	 * takes to send one ethernet segment size at
1677 	 * your b/w and compare that to the time it
1678 	 * takes to send at the rate you had selected.
1679 	 *
1680 	 * If your time is greater (which we hope it is)
1681 	 * we get the delta between the two, and then
1682 	 * divide that into your pacing time. This tells
1683 	 * us how many MSS you can send down at once (rounded up).
1684 	 *
1685 	 * Note we also double this value if the b/w is over
1686 	 * 100Mbps. If its over 500meg we just set you to the
1687 	 * max (43 segments).
1688 	 */
1689 	if (te->rate > FIVE_HUNDRED_MBPS)
1690 		goto max;
1691 	if (te->rate == bw) {
1692 		/* We are pacing at exactly the hdwr rate */
1693 max:
1694 		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1695 				    te->rate, te->time_between, (uint32_t)0,
1696 				    (segsiz * MAX_MSS_SENT), 0, 0, 3);
1697 		return (segsiz * MAX_MSS_SENT);
1698 	}
1699 	lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
1700 	res = lentim / bw;
1701 	if (res > te->time_between) {
1702 		uint32_t delta, segs, res_div;
1703 
1704 		res_div = ((res * num_of_waits_allowed) + wait_time_floor);
1705 		delta = res - te->time_between;
1706 		segs = (res_div + delta - 1)/delta;
1707 		if (segs < min_tso_segs)
1708 			segs = min_tso_segs;
1709 		if (segs < rs_hw_floor_mss)
1710 			segs = rs_hw_floor_mss;
1711 		if (segs > MAX_MSS_SENT)
1712 			segs = MAX_MSS_SENT;
1713 		segs *= segsiz;
1714 		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1715 				    te->rate, te->time_between, (uint32_t)res,
1716 				    segs, res_div, 1, 3);
1717 		if (err)
1718 			*err = 0;
1719 		if (segs < new_tso) {
1720 			/* unexpected ? */
1721 			return(new_tso);
1722 		} else {
1723 			return (segs);
1724 		}
1725 	} else {
1726 		/*
1727 		 * Your time is smaller which means
1728 		 * we will grow a queue on our
1729 		 * hardware. Send back the non-hardware
1730 		 * rate.
1731 		 */
1732 		tcp_log_pacing_size(tp, bw, segsiz, new_tso,
1733 				    te->rate, te->time_between, (uint32_t)res,
1734 				    0, 0, 0, 4);
1735 		if (err)
1736 			*err = -1;
1737 		return (new_tso);
1738 	}
1739 }
1740 
1741 uint64_t
tcp_hw_highest_rate_ifp(struct ifnet * ifp,struct inpcb * inp)1742 tcp_hw_highest_rate_ifp(struct ifnet *ifp, struct inpcb *inp)
1743 {
1744 	struct epoch_tracker et;
1745 	struct tcp_rate_set *rs;
1746 	uint64_t rate_ret;
1747 
1748 	NET_EPOCH_ENTER(et);
1749 use_next_interface:
1750 	rs = find_rs_for_ifp(ifp);
1751 	if (rs == NULL) {
1752 		/* This interface does not do ratelimiting */
1753 		rate_ret = 0;
1754 	} else if (rs->rs_flags & RS_IS_DEFF) {
1755 		/* We need to find the real interface */
1756 		struct ifnet *tifp;
1757 
1758 		tifp = rt_find_real_interface(ifp, inp, NULL);
1759 		if (tifp == NULL) {
1760 			NET_EPOCH_EXIT(et);
1761 			return (0);
1762 		}
1763 		ifp = tifp;
1764 		goto use_next_interface;
1765 	} else {
1766 		/* Lets return the highest rate this guy has */
1767 		rate_ret = rs->rs_rlt[rs->rs_highest_valid].rate;
1768 	}
1769 	NET_EPOCH_EXIT(et);
1770 	return(rate_ret);
1771 }
1772 
1773 static eventhandler_tag rl_ifnet_departs;
1774 static eventhandler_tag rl_ifnet_arrives;
1775 static eventhandler_tag rl_shutdown_start;
1776 
1777 static void
tcp_rs_init(void * st __unused)1778 tcp_rs_init(void *st __unused)
1779 {
1780 	mtx_init(&rs_mtx, "tcp_rs_mtx", "rsmtx", MTX_DEF);
1781 	rl_ifnet_departs = EVENTHANDLER_REGISTER(ifnet_departure_event,
1782 	    tcp_rl_ifnet_departure,
1783 	    NULL, EVENTHANDLER_PRI_ANY);
1784 	rl_ifnet_arrives = EVENTHANDLER_REGISTER(ifnet_link_event,
1785 	    tcp_rl_ifnet_link,
1786 	    NULL, EVENTHANDLER_PRI_ANY);
1787 	rl_shutdown_start = EVENTHANDLER_REGISTER(shutdown_pre_sync,
1788 	    tcp_rl_shutdown, NULL,
1789 	    SHUTDOWN_PRI_FIRST);
1790 	printf("TCP_ratelimit: Is now initialized\n");
1791 }
1792 
1793 SYSINIT(tcp_rl_init, SI_SUB_SMP + 1, SI_ORDER_ANY, tcp_rs_init, NULL);
1794 #endif
1795