1 /*- 2 * Copyright (c) 2007, Myricom Inc. 3 * Copyright (c) 2008, Intel Corporation. 4 * Copyright (c) 2012 The FreeBSD Foundation 5 * Copyright (c) 2016 Mellanox Technologies. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Bjoern Zeeb 9 * under sponsorship from the FreeBSD Foundation. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/socket.h> 45 #include <sys/sysctl.h> 46 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/ethernet.h> 50 #include <net/vnet.h> 51 52 #include <netinet/in_systm.h> 53 #include <netinet/in.h> 54 #include <netinet/ip6.h> 55 #include <netinet/ip.h> 56 #include <netinet/ip_var.h> 57 #include <netinet/tcp.h> 58 #include <netinet/tcp_lro.h> 59 #include <netinet/tcp_var.h> 60 61 #include <netinet6/ip6_var.h> 62 63 #include <machine/in_cksum.h> 64 65 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 66 67 #define TCP_LRO_UPDATE_CSUM 1 68 #ifndef TCP_LRO_UPDATE_CSUM 69 #define TCP_LRO_INVALID_CSUM 0x0000 70 #endif 71 72 static void tcp_lro_rx_done(struct lro_ctrl *lc); 73 static int tcp_lro_rx2(struct lro_ctrl *lc, struct mbuf *m, 74 uint32_t csum, int use_hash); 75 76 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 77 "TCP LRO"); 78 79 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 80 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 81 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 82 "default number of LRO entries"); 83 84 static __inline void 85 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 86 struct lro_entry *le) 87 { 88 89 LIST_INSERT_HEAD(&lc->lro_active, le, next); 90 LIST_INSERT_HEAD(bucket, le, hash_next); 91 } 92 93 static __inline void 94 tcp_lro_active_remove(struct lro_entry *le) 95 { 96 97 LIST_REMOVE(le, next); /* active list */ 98 LIST_REMOVE(le, hash_next); /* hash bucket */ 99 } 100 101 int 102 tcp_lro_init(struct lro_ctrl *lc) 103 { 104 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 105 } 106 107 int 108 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 109 unsigned lro_entries, unsigned lro_mbufs) 110 { 111 struct lro_entry *le; 112 size_t size; 113 unsigned i, elements; 114 115 lc->lro_bad_csum = 0; 116 lc->lro_queued = 0; 117 lc->lro_flushed = 0; 118 lc->lro_cnt = 0; 119 lc->lro_mbuf_count = 0; 120 lc->lro_mbuf_max = lro_mbufs; 121 lc->lro_cnt = lro_entries; 122 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 123 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 124 lc->ifp = ifp; 125 LIST_INIT(&lc->lro_free); 126 LIST_INIT(&lc->lro_active); 127 128 /* create hash table to accelerate entry lookup */ 129 if (lro_entries > lro_mbufs) 130 elements = lro_entries; 131 else 132 elements = lro_mbufs; 133 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 134 HASH_NOWAIT); 135 if (lc->lro_hash == NULL) { 136 memset(lc, 0, sizeof(*lc)); 137 return (ENOMEM); 138 } 139 140 /* compute size to allocate */ 141 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 142 (lro_entries * sizeof(*le)); 143 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 144 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 145 146 /* check for out of memory */ 147 if (lc->lro_mbuf_data == NULL) { 148 memset(lc, 0, sizeof(*lc)); 149 return (ENOMEM); 150 } 151 /* compute offset for LRO entries */ 152 le = (struct lro_entry *) 153 (lc->lro_mbuf_data + lro_mbufs); 154 155 /* setup linked list */ 156 for (i = 0; i != lro_entries; i++) 157 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 158 159 return (0); 160 } 161 162 void 163 tcp_lro_free(struct lro_ctrl *lc) 164 { 165 struct lro_entry *le; 166 unsigned x; 167 168 /* reset LRO free list */ 169 LIST_INIT(&lc->lro_free); 170 171 /* free active mbufs, if any */ 172 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 173 tcp_lro_active_remove(le); 174 m_freem(le->m_head); 175 } 176 177 /* free hash table */ 178 if (lc->lro_hash != NULL) { 179 free(lc->lro_hash, M_LRO); 180 lc->lro_hash = NULL; 181 } 182 lc->lro_hashsz = 0; 183 184 /* free mbuf array, if any */ 185 for (x = 0; x != lc->lro_mbuf_count; x++) 186 m_freem(lc->lro_mbuf_data[x].mb); 187 lc->lro_mbuf_count = 0; 188 189 /* free allocated memory, if any */ 190 free(lc->lro_mbuf_data, M_LRO); 191 lc->lro_mbuf_data = NULL; 192 } 193 194 #ifdef TCP_LRO_UPDATE_CSUM 195 static uint16_t 196 tcp_lro_csum_th(struct tcphdr *th) 197 { 198 uint32_t ch; 199 uint16_t *p, l; 200 201 ch = th->th_sum = 0x0000; 202 l = th->th_off; 203 p = (uint16_t *)th; 204 while (l > 0) { 205 ch += *p; 206 p++; 207 ch += *p; 208 p++; 209 l--; 210 } 211 while (ch > 0xffff) 212 ch = (ch >> 16) + (ch & 0xffff); 213 214 return (ch & 0xffff); 215 } 216 217 static uint16_t 218 tcp_lro_rx_csum_fixup(struct lro_entry *le, void *l3hdr, struct tcphdr *th, 219 uint16_t tcp_data_len, uint16_t csum) 220 { 221 uint32_t c; 222 uint16_t cs; 223 224 c = csum; 225 226 /* Remove length from checksum. */ 227 switch (le->eh_type) { 228 #ifdef INET6 229 case ETHERTYPE_IPV6: 230 { 231 struct ip6_hdr *ip6; 232 233 ip6 = (struct ip6_hdr *)l3hdr; 234 if (le->append_cnt == 0) 235 cs = ip6->ip6_plen; 236 else { 237 uint32_t cx; 238 239 cx = ntohs(ip6->ip6_plen); 240 cs = in6_cksum_pseudo(ip6, cx, ip6->ip6_nxt, 0); 241 } 242 break; 243 } 244 #endif 245 #ifdef INET 246 case ETHERTYPE_IP: 247 { 248 struct ip *ip4; 249 250 ip4 = (struct ip *)l3hdr; 251 if (le->append_cnt == 0) 252 cs = ip4->ip_len; 253 else { 254 cs = in_addword(ntohs(ip4->ip_len) - sizeof(*ip4), 255 IPPROTO_TCP); 256 cs = in_pseudo(ip4->ip_src.s_addr, ip4->ip_dst.s_addr, 257 htons(cs)); 258 } 259 break; 260 } 261 #endif 262 default: 263 cs = 0; /* Keep compiler happy. */ 264 } 265 266 cs = ~cs; 267 c += cs; 268 269 /* Remove TCP header csum. */ 270 cs = ~tcp_lro_csum_th(th); 271 c += cs; 272 while (c > 0xffff) 273 c = (c >> 16) + (c & 0xffff); 274 275 return (c & 0xffff); 276 } 277 #endif 278 279 static void 280 tcp_lro_rx_done(struct lro_ctrl *lc) 281 { 282 struct lro_entry *le; 283 284 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 285 tcp_lro_active_remove(le); 286 tcp_lro_flush(lc, le); 287 } 288 } 289 290 void 291 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 292 { 293 struct lro_entry *le, *le_tmp; 294 struct timeval tv; 295 296 if (LIST_EMPTY(&lc->lro_active)) 297 return; 298 299 getmicrotime(&tv); 300 timevalsub(&tv, timeout); 301 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 302 if (timevalcmp(&tv, &le->mtime, >=)) { 303 tcp_lro_active_remove(le); 304 tcp_lro_flush(lc, le); 305 } 306 } 307 } 308 309 void 310 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 311 { 312 313 if (le->append_cnt > 0) { 314 struct tcphdr *th; 315 uint16_t p_len; 316 317 p_len = htons(le->p_len); 318 switch (le->eh_type) { 319 #ifdef INET6 320 case ETHERTYPE_IPV6: 321 { 322 struct ip6_hdr *ip6; 323 324 ip6 = le->le_ip6; 325 ip6->ip6_plen = p_len; 326 th = (struct tcphdr *)(ip6 + 1); 327 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 328 CSUM_PSEUDO_HDR; 329 le->p_len += ETHER_HDR_LEN + sizeof(*ip6); 330 break; 331 } 332 #endif 333 #ifdef INET 334 case ETHERTYPE_IP: 335 { 336 struct ip *ip4; 337 #ifdef TCP_LRO_UPDATE_CSUM 338 uint32_t cl; 339 uint16_t c; 340 #endif 341 342 ip4 = le->le_ip4; 343 #ifdef TCP_LRO_UPDATE_CSUM 344 /* Fix IP header checksum for new length. */ 345 c = ~ip4->ip_sum; 346 cl = c; 347 c = ~ip4->ip_len; 348 cl += c + p_len; 349 while (cl > 0xffff) 350 cl = (cl >> 16) + (cl & 0xffff); 351 c = cl; 352 ip4->ip_sum = ~c; 353 #else 354 ip4->ip_sum = TCP_LRO_INVALID_CSUM; 355 #endif 356 ip4->ip_len = p_len; 357 th = (struct tcphdr *)(ip4 + 1); 358 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 359 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 360 le->p_len += ETHER_HDR_LEN; 361 break; 362 } 363 #endif 364 default: 365 th = NULL; /* Keep compiler happy. */ 366 } 367 le->m_head->m_pkthdr.csum_data = 0xffff; 368 le->m_head->m_pkthdr.len = le->p_len; 369 370 /* Incorporate the latest ACK into the TCP header. */ 371 th->th_ack = le->ack_seq; 372 th->th_win = le->window; 373 /* Incorporate latest timestamp into the TCP header. */ 374 if (le->timestamp != 0) { 375 uint32_t *ts_ptr; 376 377 ts_ptr = (uint32_t *)(th + 1); 378 ts_ptr[1] = htonl(le->tsval); 379 ts_ptr[2] = le->tsecr; 380 } 381 #ifdef TCP_LRO_UPDATE_CSUM 382 /* Update the TCP header checksum. */ 383 le->ulp_csum += p_len; 384 le->ulp_csum += tcp_lro_csum_th(th); 385 while (le->ulp_csum > 0xffff) 386 le->ulp_csum = (le->ulp_csum >> 16) + 387 (le->ulp_csum & 0xffff); 388 th->th_sum = (le->ulp_csum & 0xffff); 389 th->th_sum = ~th->th_sum; 390 #else 391 th->th_sum = TCP_LRO_INVALID_CSUM; 392 #endif 393 } 394 395 (*lc->ifp->if_input)(lc->ifp, le->m_head); 396 lc->lro_queued += le->append_cnt + 1; 397 lc->lro_flushed++; 398 bzero(le, sizeof(*le)); 399 LIST_INSERT_HEAD(&lc->lro_free, le, next); 400 } 401 402 #ifdef HAVE_INLINE_FLSLL 403 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 404 #else 405 static inline uint64_t 406 tcp_lro_msb_64(uint64_t x) 407 { 408 x |= (x >> 1); 409 x |= (x >> 2); 410 x |= (x >> 4); 411 x |= (x >> 8); 412 x |= (x >> 16); 413 x |= (x >> 32); 414 return (x & ~(x >> 1)); 415 } 416 #endif 417 418 /* 419 * The tcp_lro_sort() routine is comparable to qsort(), except it has 420 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 421 * number of elements to sort and 64 is the number of sequence bits 422 * available. The algorithm is bit-slicing the 64-bit sequence number, 423 * sorting one bit at a time from the most significant bit until the 424 * least significant one, skipping the constant bits. This is 425 * typically called a radix sort. 426 */ 427 static void 428 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 429 { 430 struct lro_mbuf_sort temp; 431 uint64_t ones; 432 uint64_t zeros; 433 uint32_t x; 434 uint32_t y; 435 436 repeat: 437 /* for small arrays insertion sort is faster */ 438 if (size <= 12) { 439 for (x = 1; x < size; x++) { 440 temp = parray[x]; 441 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 442 parray[y] = parray[y - 1]; 443 parray[y] = temp; 444 } 445 return; 446 } 447 448 /* compute sequence bits which are constant */ 449 ones = 0; 450 zeros = 0; 451 for (x = 0; x != size; x++) { 452 ones |= parray[x].seq; 453 zeros |= ~parray[x].seq; 454 } 455 456 /* compute bits which are not constant into "ones" */ 457 ones &= zeros; 458 if (ones == 0) 459 return; 460 461 /* pick the most significant bit which is not constant */ 462 ones = tcp_lro_msb_64(ones); 463 464 /* 465 * Move entries having cleared sequence bits to the beginning 466 * of the array: 467 */ 468 for (x = y = 0; y != size; y++) { 469 /* skip set bits */ 470 if (parray[y].seq & ones) 471 continue; 472 /* swap entries */ 473 temp = parray[x]; 474 parray[x] = parray[y]; 475 parray[y] = temp; 476 x++; 477 } 478 479 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 480 481 /* sort zeros */ 482 tcp_lro_sort(parray, x); 483 484 /* sort ones */ 485 parray += x; 486 size -= x; 487 goto repeat; 488 } 489 490 void 491 tcp_lro_flush_all(struct lro_ctrl *lc) 492 { 493 uint64_t seq; 494 uint64_t nseq; 495 unsigned x; 496 497 /* check if no mbufs to flush */ 498 if (lc->lro_mbuf_count == 0) 499 goto done; 500 501 /* sort all mbufs according to stream */ 502 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 503 504 /* input data into LRO engine, stream by stream */ 505 seq = 0; 506 for (x = 0; x != lc->lro_mbuf_count; x++) { 507 struct mbuf *mb; 508 509 /* get mbuf */ 510 mb = lc->lro_mbuf_data[x].mb; 511 512 /* get sequence number, masking away the packet index */ 513 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 514 515 /* check for new stream */ 516 if (seq != nseq) { 517 seq = nseq; 518 519 /* flush active streams */ 520 tcp_lro_rx_done(lc); 521 } 522 523 /* add packet to LRO engine */ 524 if (tcp_lro_rx2(lc, mb, 0, 0) != 0) { 525 /* input packet to network layer */ 526 (*lc->ifp->if_input)(lc->ifp, mb); 527 lc->lro_queued++; 528 lc->lro_flushed++; 529 } 530 } 531 done: 532 /* flush active streams */ 533 tcp_lro_rx_done(lc); 534 535 lc->lro_mbuf_count = 0; 536 } 537 538 #ifdef INET6 539 static int 540 tcp_lro_rx_ipv6(struct lro_ctrl *lc, struct mbuf *m, struct ip6_hdr *ip6, 541 struct tcphdr **th) 542 { 543 544 /* XXX-BZ we should check the flow-label. */ 545 546 /* XXX-BZ We do not yet support ext. hdrs. */ 547 if (ip6->ip6_nxt != IPPROTO_TCP) 548 return (TCP_LRO_NOT_SUPPORTED); 549 550 /* Find the TCP header. */ 551 *th = (struct tcphdr *)(ip6 + 1); 552 553 return (0); 554 } 555 #endif 556 557 #ifdef INET 558 static int 559 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4, 560 struct tcphdr **th) 561 { 562 int csum_flags; 563 uint16_t csum; 564 565 if (ip4->ip_p != IPPROTO_TCP) 566 return (TCP_LRO_NOT_SUPPORTED); 567 568 /* Ensure there are no options. */ 569 if ((ip4->ip_hl << 2) != sizeof (*ip4)) 570 return (TCP_LRO_CANNOT); 571 572 /* .. and the packet is not fragmented. */ 573 if (ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 574 return (TCP_LRO_CANNOT); 575 576 /* Legacy IP has a header checksum that needs to be correct. */ 577 csum_flags = m->m_pkthdr.csum_flags; 578 if (csum_flags & CSUM_IP_CHECKED) { 579 if (__predict_false((csum_flags & CSUM_IP_VALID) == 0)) { 580 lc->lro_bad_csum++; 581 return (TCP_LRO_CANNOT); 582 } 583 } else { 584 csum = in_cksum_hdr(ip4); 585 if (__predict_false((csum) != 0)) { 586 lc->lro_bad_csum++; 587 return (TCP_LRO_CANNOT); 588 } 589 } 590 591 /* Find the TCP header (we assured there are no IP options). */ 592 *th = (struct tcphdr *)(ip4 + 1); 593 594 return (0); 595 } 596 #endif 597 598 static int 599 tcp_lro_rx2(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, int use_hash) 600 { 601 struct lro_entry *le; 602 struct ether_header *eh; 603 #ifdef INET6 604 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */ 605 #endif 606 #ifdef INET 607 struct ip *ip4 = NULL; /* Keep compiler happy. */ 608 #endif 609 struct tcphdr *th; 610 void *l3hdr = NULL; /* Keep compiler happy. */ 611 uint32_t *ts_ptr; 612 tcp_seq seq; 613 int error, ip_len, l; 614 uint16_t eh_type, tcp_data_len; 615 struct lro_head *bucket; 616 int force_flush = 0; 617 618 /* We expect a contiguous header [eh, ip, tcp]. */ 619 620 eh = mtod(m, struct ether_header *); 621 eh_type = ntohs(eh->ether_type); 622 switch (eh_type) { 623 #ifdef INET6 624 case ETHERTYPE_IPV6: 625 { 626 CURVNET_SET(lc->ifp->if_vnet); 627 if (V_ip6_forwarding != 0) { 628 /* XXX-BZ stats but changing lro_ctrl is a problem. */ 629 CURVNET_RESTORE(); 630 return (TCP_LRO_CANNOT); 631 } 632 CURVNET_RESTORE(); 633 l3hdr = ip6 = (struct ip6_hdr *)(eh + 1); 634 error = tcp_lro_rx_ipv6(lc, m, ip6, &th); 635 if (error != 0) 636 return (error); 637 tcp_data_len = ntohs(ip6->ip6_plen); 638 ip_len = sizeof(*ip6) + tcp_data_len; 639 break; 640 } 641 #endif 642 #ifdef INET 643 case ETHERTYPE_IP: 644 { 645 CURVNET_SET(lc->ifp->if_vnet); 646 if (V_ipforwarding != 0) { 647 /* XXX-BZ stats but changing lro_ctrl is a problem. */ 648 CURVNET_RESTORE(); 649 return (TCP_LRO_CANNOT); 650 } 651 CURVNET_RESTORE(); 652 l3hdr = ip4 = (struct ip *)(eh + 1); 653 error = tcp_lro_rx_ipv4(lc, m, ip4, &th); 654 if (error != 0) 655 return (error); 656 ip_len = ntohs(ip4->ip_len); 657 tcp_data_len = ip_len - sizeof(*ip4); 658 break; 659 } 660 #endif 661 /* XXX-BZ what happens in case of VLAN(s)? */ 662 default: 663 return (TCP_LRO_NOT_SUPPORTED); 664 } 665 666 /* 667 * If the frame is padded beyond the end of the IP packet, then we must 668 * trim the extra bytes off. 669 */ 670 l = m->m_pkthdr.len - (ETHER_HDR_LEN + ip_len); 671 if (l != 0) { 672 if (l < 0) 673 /* Truncated packet. */ 674 return (TCP_LRO_CANNOT); 675 676 m_adj(m, -l); 677 } 678 679 /* 680 * Check TCP header constraints. 681 */ 682 /* Ensure no bits set besides ACK or PSH. */ 683 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { 684 if (th->th_flags & TH_SYN) 685 return (TCP_LRO_CANNOT); 686 /* 687 * Make sure that previously seen segements/ACKs are delivered 688 * before this segement, e.g. FIN. 689 */ 690 force_flush = 1; 691 } 692 693 /* XXX-BZ We lose a ACK|PUSH flag concatenating multiple segments. */ 694 /* XXX-BZ Ideally we'd flush on PUSH? */ 695 696 /* 697 * Check for timestamps. 698 * Since the only option we handle are timestamps, we only have to 699 * handle the simple case of aligned timestamps. 700 */ 701 l = (th->th_off << 2); 702 tcp_data_len -= l; 703 l -= sizeof(*th); 704 ts_ptr = (uint32_t *)(th + 1); 705 if (l != 0 && (__predict_false(l != TCPOLEN_TSTAMP_APPA) || 706 (*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16| 707 TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) { 708 /* 709 * Make sure that previously seen segements/ACKs are delivered 710 * before this segement. 711 */ 712 force_flush = 1; 713 } 714 715 /* If the driver did not pass in the checksum, set it now. */ 716 if (csum == 0x0000) 717 csum = th->th_sum; 718 719 seq = ntohl(th->th_seq); 720 721 if (!use_hash) { 722 bucket = &lc->lro_hash[0]; 723 } else if (M_HASHTYPE_ISHASH(m)) { 724 bucket = &lc->lro_hash[m->m_pkthdr.flowid % lc->lro_hashsz]; 725 } else { 726 uint32_t hash; 727 728 switch (eh_type) { 729 #ifdef INET 730 case ETHERTYPE_IP: 731 hash = ip4->ip_src.s_addr + ip4->ip_dst.s_addr; 732 break; 733 #endif 734 #ifdef INET6 735 case ETHERTYPE_IPV6: 736 hash = ip6->ip6_src.s6_addr32[0] + 737 ip6->ip6_dst.s6_addr32[0]; 738 hash += ip6->ip6_src.s6_addr32[1] + 739 ip6->ip6_dst.s6_addr32[1]; 740 hash += ip6->ip6_src.s6_addr32[2] + 741 ip6->ip6_dst.s6_addr32[2]; 742 hash += ip6->ip6_src.s6_addr32[3] + 743 ip6->ip6_dst.s6_addr32[3]; 744 break; 745 #endif 746 default: 747 hash = 0; 748 break; 749 } 750 hash += th->th_sport + th->th_dport; 751 bucket = &lc->lro_hash[hash % lc->lro_hashsz]; 752 } 753 754 /* Try to find a matching previous segment. */ 755 LIST_FOREACH(le, bucket, hash_next) { 756 if (le->eh_type != eh_type) 757 continue; 758 if (le->source_port != th->th_sport || 759 le->dest_port != th->th_dport) 760 continue; 761 switch (eh_type) { 762 #ifdef INET6 763 case ETHERTYPE_IPV6: 764 if (bcmp(&le->source_ip6, &ip6->ip6_src, 765 sizeof(struct in6_addr)) != 0 || 766 bcmp(&le->dest_ip6, &ip6->ip6_dst, 767 sizeof(struct in6_addr)) != 0) 768 continue; 769 break; 770 #endif 771 #ifdef INET 772 case ETHERTYPE_IP: 773 if (le->source_ip4 != ip4->ip_src.s_addr || 774 le->dest_ip4 != ip4->ip_dst.s_addr) 775 continue; 776 break; 777 #endif 778 } 779 780 if (force_flush) { 781 /* Timestamps mismatch; this is a FIN, etc */ 782 tcp_lro_active_remove(le); 783 tcp_lro_flush(lc, le); 784 return (TCP_LRO_CANNOT); 785 } 786 787 /* Flush now if appending will result in overflow. */ 788 if (le->p_len > (lc->lro_length_lim - tcp_data_len)) { 789 tcp_lro_active_remove(le); 790 tcp_lro_flush(lc, le); 791 break; 792 } 793 794 /* Try to append the new segment. */ 795 if (__predict_false(seq != le->next_seq || 796 (tcp_data_len == 0 && le->ack_seq == th->th_ack))) { 797 /* Out of order packet or duplicate ACK. */ 798 tcp_lro_active_remove(le); 799 tcp_lro_flush(lc, le); 800 return (TCP_LRO_CANNOT); 801 } 802 803 if (l != 0) { 804 uint32_t tsval = ntohl(*(ts_ptr + 1)); 805 /* Make sure timestamp values are increasing. */ 806 /* XXX-BZ flip and use TSTMP_GEQ macro for this? */ 807 if (__predict_false(le->tsval > tsval || 808 *(ts_ptr + 2) == 0)) 809 return (TCP_LRO_CANNOT); 810 le->tsval = tsval; 811 le->tsecr = *(ts_ptr + 2); 812 } 813 814 le->next_seq += tcp_data_len; 815 le->ack_seq = th->th_ack; 816 le->window = th->th_win; 817 le->append_cnt++; 818 819 #ifdef TCP_LRO_UPDATE_CSUM 820 le->ulp_csum += tcp_lro_rx_csum_fixup(le, l3hdr, th, 821 tcp_data_len, ~csum); 822 #endif 823 824 if (tcp_data_len == 0) { 825 m_freem(m); 826 /* 827 * Flush this LRO entry, if this ACK should not 828 * be further delayed. 829 */ 830 if (le->append_cnt >= lc->lro_ackcnt_lim) { 831 tcp_lro_active_remove(le); 832 tcp_lro_flush(lc, le); 833 } 834 return (0); 835 } 836 837 le->p_len += tcp_data_len; 838 839 /* 840 * Adjust the mbuf so that m_data points to the first byte of 841 * the ULP payload. Adjust the mbuf to avoid complications and 842 * append new segment to existing mbuf chain. 843 */ 844 m_adj(m, m->m_pkthdr.len - tcp_data_len); 845 m_demote_pkthdr(m); 846 847 le->m_tail->m_next = m; 848 le->m_tail = m_last(m); 849 850 /* 851 * If a possible next full length packet would cause an 852 * overflow, pro-actively flush now. 853 */ 854 if (le->p_len > (lc->lro_length_lim - lc->ifp->if_mtu)) { 855 tcp_lro_active_remove(le); 856 tcp_lro_flush(lc, le); 857 } else 858 getmicrotime(&le->mtime); 859 860 return (0); 861 } 862 863 if (force_flush) { 864 /* 865 * Nothing to flush, but this segment can not be further 866 * aggregated/delayed. 867 */ 868 return (TCP_LRO_CANNOT); 869 } 870 871 /* Try to find an empty slot. */ 872 if (LIST_EMPTY(&lc->lro_free)) 873 return (TCP_LRO_NO_ENTRIES); 874 875 /* Start a new segment chain. */ 876 le = LIST_FIRST(&lc->lro_free); 877 LIST_REMOVE(le, next); 878 tcp_lro_active_insert(lc, bucket, le); 879 getmicrotime(&le->mtime); 880 881 /* Start filling in details. */ 882 switch (eh_type) { 883 #ifdef INET6 884 case ETHERTYPE_IPV6: 885 le->le_ip6 = ip6; 886 le->source_ip6 = ip6->ip6_src; 887 le->dest_ip6 = ip6->ip6_dst; 888 le->eh_type = eh_type; 889 le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN - sizeof(*ip6); 890 break; 891 #endif 892 #ifdef INET 893 case ETHERTYPE_IP: 894 le->le_ip4 = ip4; 895 le->source_ip4 = ip4->ip_src.s_addr; 896 le->dest_ip4 = ip4->ip_dst.s_addr; 897 le->eh_type = eh_type; 898 le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN; 899 break; 900 #endif 901 } 902 le->source_port = th->th_sport; 903 le->dest_port = th->th_dport; 904 905 le->next_seq = seq + tcp_data_len; 906 le->ack_seq = th->th_ack; 907 le->window = th->th_win; 908 if (l != 0) { 909 le->timestamp = 1; 910 le->tsval = ntohl(*(ts_ptr + 1)); 911 le->tsecr = *(ts_ptr + 2); 912 } 913 914 #ifdef TCP_LRO_UPDATE_CSUM 915 /* 916 * Do not touch the csum of the first packet. However save the 917 * "adjusted" checksum of just the source and destination addresses, 918 * the next header and the TCP payload. The length and TCP header 919 * parts may change, so we remove those from the saved checksum and 920 * re-add with final values on tcp_lro_flush() if needed. 921 */ 922 KASSERT(le->ulp_csum == 0, ("%s: le=%p le->ulp_csum=0x%04x\n", 923 __func__, le, le->ulp_csum)); 924 925 le->ulp_csum = tcp_lro_rx_csum_fixup(le, l3hdr, th, tcp_data_len, 926 ~csum); 927 th->th_sum = csum; /* Restore checksum on first packet. */ 928 #endif 929 930 le->m_head = m; 931 le->m_tail = m_last(m); 932 933 return (0); 934 } 935 936 int 937 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 938 { 939 940 return tcp_lro_rx2(lc, m, csum, 1); 941 } 942 943 void 944 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 945 { 946 /* sanity checks */ 947 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 948 lc->lro_mbuf_max == 0)) { 949 /* packet drop */ 950 m_freem(mb); 951 return; 952 } 953 954 /* check if packet is not LRO capable */ 955 if (__predict_false(mb->m_pkthdr.csum_flags == 0 || 956 (lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 957 lc->lro_flushed++; 958 lc->lro_queued++; 959 960 /* input packet to network layer */ 961 (*lc->ifp->if_input) (lc->ifp, mb); 962 return; 963 } 964 965 /* check if array is full */ 966 if (__predict_false(lc->lro_mbuf_count == lc->lro_mbuf_max)) 967 tcp_lro_flush_all(lc); 968 969 /* create sequence number */ 970 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 971 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 972 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 973 ((uint64_t)lc->lro_mbuf_count); 974 975 /* enter mbuf */ 976 lc->lro_mbuf_data[lc->lro_mbuf_count++].mb = mb; 977 } 978 979 /* end */ 980