1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sockbuf.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/ethernet.h> 54 #include <net/vnet.h> 55 56 #include <netinet/in_systm.h> 57 #include <netinet/in.h> 58 #include <netinet/ip6.h> 59 #include <netinet/ip.h> 60 #include <netinet/ip_var.h> 61 #include <netinet/in_pcb.h> 62 #include <netinet6/in6_pcb.h> 63 #include <netinet/tcp.h> 64 #include <netinet/tcp_seq.h> 65 #include <netinet/tcp_lro.h> 66 #include <netinet/tcp_var.h> 67 #include <netinet/tcp_hpts.h> 68 #include <netinet/tcp_log_buf.h> 69 #include <netinet6/ip6_var.h> 70 71 #include <machine/in_cksum.h> 72 73 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 74 75 #define TCP_LRO_UPDATE_CSUM 1 76 #ifndef TCP_LRO_UPDATE_CSUM 77 #define TCP_LRO_INVALID_CSUM 0x0000 78 #endif 79 80 static void tcp_lro_rx_done(struct lro_ctrl *lc); 81 static int tcp_lro_rx2(struct lro_ctrl *lc, struct mbuf *m, 82 uint32_t csum, int use_hash); 83 84 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 85 "TCP LRO"); 86 87 static long tcplro_stacks_wanting_mbufq = 0; 88 counter_u64_t tcp_inp_lro_direct_queue; 89 counter_u64_t tcp_inp_lro_wokeup_queue; 90 counter_u64_t tcp_inp_lro_compressed; 91 counter_u64_t tcp_inp_lro_single_push; 92 counter_u64_t tcp_inp_lro_locks_taken; 93 counter_u64_t tcp_inp_lro_sack_wake; 94 95 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 96 static int32_t hold_lock_over_compress = 0; 97 SYSCTL_INT(_net_inet_tcp_lro, OID_AUTO, hold_lock, CTLFLAG_RW, 98 &hold_lock_over_compress, 0, 99 "Do we hold the lock over the compress of mbufs?"); 100 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 101 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 102 "default number of LRO entries"); 103 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 104 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 105 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 106 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 107 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 108 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 109 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, single, CTLFLAG_RD, 110 &tcp_inp_lro_single_push, "Number of lro's sent with single segment"); 111 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 112 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 113 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, sackwakeups, CTLFLAG_RD, 114 &tcp_inp_lro_sack_wake, "Number of wakeups caused by sack/fin"); 115 116 void 117 tcp_lro_reg_mbufq(void) 118 { 119 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 120 } 121 122 void 123 tcp_lro_dereg_mbufq(void) 124 { 125 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 126 } 127 128 static __inline void 129 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 130 struct lro_entry *le) 131 { 132 133 LIST_INSERT_HEAD(&lc->lro_active, le, next); 134 LIST_INSERT_HEAD(bucket, le, hash_next); 135 } 136 137 static __inline void 138 tcp_lro_active_remove(struct lro_entry *le) 139 { 140 141 LIST_REMOVE(le, next); /* active list */ 142 LIST_REMOVE(le, hash_next); /* hash bucket */ 143 } 144 145 int 146 tcp_lro_init(struct lro_ctrl *lc) 147 { 148 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 149 } 150 151 int 152 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 153 unsigned lro_entries, unsigned lro_mbufs) 154 { 155 struct lro_entry *le; 156 size_t size; 157 unsigned i, elements; 158 159 lc->lro_bad_csum = 0; 160 lc->lro_queued = 0; 161 lc->lro_flushed = 0; 162 lc->lro_mbuf_count = 0; 163 lc->lro_mbuf_max = lro_mbufs; 164 lc->lro_cnt = lro_entries; 165 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 166 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 167 lc->ifp = ifp; 168 LIST_INIT(&lc->lro_free); 169 LIST_INIT(&lc->lro_active); 170 171 /* create hash table to accelerate entry lookup */ 172 if (lro_entries > lro_mbufs) 173 elements = lro_entries; 174 else 175 elements = lro_mbufs; 176 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 177 HASH_NOWAIT); 178 if (lc->lro_hash == NULL) { 179 memset(lc, 0, sizeof(*lc)); 180 return (ENOMEM); 181 } 182 183 /* compute size to allocate */ 184 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 185 (lro_entries * sizeof(*le)); 186 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 187 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 188 189 /* check for out of memory */ 190 if (lc->lro_mbuf_data == NULL) { 191 free(lc->lro_hash, M_LRO); 192 memset(lc, 0, sizeof(*lc)); 193 return (ENOMEM); 194 } 195 /* compute offset for LRO entries */ 196 le = (struct lro_entry *) 197 (lc->lro_mbuf_data + lro_mbufs); 198 199 /* setup linked list */ 200 for (i = 0; i != lro_entries; i++) 201 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 202 203 return (0); 204 } 205 206 static struct tcphdr * 207 tcp_lro_get_th(struct lro_entry *le, struct mbuf *m) 208 { 209 struct ether_header *eh; 210 struct tcphdr *th = NULL; 211 #ifdef INET6 212 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */ 213 #endif 214 #ifdef INET 215 struct ip *ip4 = NULL; /* Keep compiler happy. */ 216 #endif 217 218 eh = mtod(m, struct ether_header *); 219 switch (le->eh_type) { 220 #ifdef INET6 221 case ETHERTYPE_IPV6: 222 ip6 = (struct ip6_hdr *)(eh + 1); 223 th = (struct tcphdr *)(ip6 + 1); 224 break; 225 #endif 226 #ifdef INET 227 case ETHERTYPE_IP: 228 ip4 = (struct ip *)(eh + 1); 229 th = (struct tcphdr *)(ip4 + 1); 230 break; 231 #endif 232 } 233 return (th); 234 } 235 236 void 237 tcp_lro_free(struct lro_ctrl *lc) 238 { 239 struct lro_entry *le; 240 unsigned x; 241 242 /* reset LRO free list */ 243 LIST_INIT(&lc->lro_free); 244 245 /* free active mbufs, if any */ 246 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 247 tcp_lro_active_remove(le); 248 m_freem(le->m_head); 249 } 250 251 /* free hash table */ 252 free(lc->lro_hash, M_LRO); 253 lc->lro_hash = NULL; 254 lc->lro_hashsz = 0; 255 256 /* free mbuf array, if any */ 257 for (x = 0; x != lc->lro_mbuf_count; x++) 258 m_freem(lc->lro_mbuf_data[x].mb); 259 lc->lro_mbuf_count = 0; 260 261 /* free allocated memory, if any */ 262 free(lc->lro_mbuf_data, M_LRO); 263 lc->lro_mbuf_data = NULL; 264 } 265 266 static uint16_t 267 tcp_lro_csum_th(struct tcphdr *th) 268 { 269 uint32_t ch; 270 uint16_t *p, l; 271 272 ch = th->th_sum = 0x0000; 273 l = th->th_off; 274 p = (uint16_t *)th; 275 while (l > 0) { 276 ch += *p; 277 p++; 278 ch += *p; 279 p++; 280 l--; 281 } 282 while (ch > 0xffff) 283 ch = (ch >> 16) + (ch & 0xffff); 284 285 return (ch & 0xffff); 286 } 287 288 static uint16_t 289 tcp_lro_rx_csum_fixup(struct lro_entry *le, void *l3hdr, struct tcphdr *th, 290 uint16_t tcp_data_len, uint16_t csum) 291 { 292 uint32_t c; 293 uint16_t cs; 294 295 c = csum; 296 297 /* Remove length from checksum. */ 298 switch (le->eh_type) { 299 #ifdef INET6 300 case ETHERTYPE_IPV6: 301 { 302 struct ip6_hdr *ip6; 303 304 ip6 = (struct ip6_hdr *)l3hdr; 305 if (le->append_cnt == 0) 306 cs = ip6->ip6_plen; 307 else { 308 uint32_t cx; 309 310 cx = ntohs(ip6->ip6_plen); 311 cs = in6_cksum_pseudo(ip6, cx, ip6->ip6_nxt, 0); 312 } 313 break; 314 } 315 #endif 316 #ifdef INET 317 case ETHERTYPE_IP: 318 { 319 struct ip *ip4; 320 321 ip4 = (struct ip *)l3hdr; 322 if (le->append_cnt == 0) 323 cs = ip4->ip_len; 324 else { 325 cs = in_addword(ntohs(ip4->ip_len) - sizeof(*ip4), 326 IPPROTO_TCP); 327 cs = in_pseudo(ip4->ip_src.s_addr, ip4->ip_dst.s_addr, 328 htons(cs)); 329 } 330 break; 331 } 332 #endif 333 default: 334 cs = 0; /* Keep compiler happy. */ 335 } 336 337 cs = ~cs; 338 c += cs; 339 340 /* Remove TCP header csum. */ 341 cs = ~tcp_lro_csum_th(th); 342 c += cs; 343 while (c > 0xffff) 344 c = (c >> 16) + (c & 0xffff); 345 346 return (c & 0xffff); 347 } 348 349 static void 350 tcp_lro_rx_done(struct lro_ctrl *lc) 351 { 352 struct lro_entry *le; 353 354 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 355 tcp_lro_active_remove(le); 356 tcp_lro_flush(lc, le); 357 } 358 } 359 360 void 361 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 362 { 363 struct lro_entry *le, *le_tmp; 364 struct timeval tv; 365 366 if (LIST_EMPTY(&lc->lro_active)) 367 return; 368 369 getmicrouptime(&tv); 370 timevalsub(&tv, timeout); 371 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 372 if (timevalcmp(&tv, &le->mtime, >=)) { 373 tcp_lro_active_remove(le); 374 tcp_lro_flush(lc, le); 375 } 376 } 377 } 378 379 #ifdef INET6 380 static int 381 tcp_lro_rx_ipv6(struct lro_ctrl *lc, struct mbuf *m, struct ip6_hdr *ip6, 382 struct tcphdr **th) 383 { 384 385 /* XXX-BZ we should check the flow-label. */ 386 387 /* XXX-BZ We do not yet support ext. hdrs. */ 388 if (ip6->ip6_nxt != IPPROTO_TCP) 389 return (TCP_LRO_NOT_SUPPORTED); 390 391 /* Find the TCP header. */ 392 *th = (struct tcphdr *)(ip6 + 1); 393 394 return (0); 395 } 396 #endif 397 398 #ifdef INET 399 static int 400 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4, 401 struct tcphdr **th) 402 { 403 int csum_flags; 404 uint16_t csum; 405 406 if (ip4->ip_p != IPPROTO_TCP) 407 return (TCP_LRO_NOT_SUPPORTED); 408 409 /* Ensure there are no options. */ 410 if ((ip4->ip_hl << 2) != sizeof (*ip4)) 411 return (TCP_LRO_CANNOT); 412 413 /* .. and the packet is not fragmented. */ 414 if (ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 415 return (TCP_LRO_CANNOT); 416 417 /* Legacy IP has a header checksum that needs to be correct. */ 418 csum_flags = m->m_pkthdr.csum_flags; 419 if (csum_flags & CSUM_IP_CHECKED) { 420 if (__predict_false((csum_flags & CSUM_IP_VALID) == 0)) { 421 lc->lro_bad_csum++; 422 return (TCP_LRO_CANNOT); 423 } 424 } else { 425 csum = in_cksum_hdr(ip4); 426 if (__predict_false((csum) != 0)) { 427 lc->lro_bad_csum++; 428 return (TCP_LRO_CANNOT); 429 } 430 } 431 /* Find the TCP header (we assured there are no IP options). */ 432 *th = (struct tcphdr *)(ip4 + 1); 433 return (0); 434 } 435 #endif 436 437 static void 438 tcp_lro_log(struct tcpcb *tp, struct lro_ctrl *lc, 439 struct lro_entry *le, struct mbuf *m, int frm, int32_t tcp_data_len, 440 uint32_t th_seq , uint32_t th_ack, uint16_t th_win) 441 { 442 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 443 union tcp_log_stackspecific log; 444 struct timeval tv; 445 uint32_t cts; 446 447 cts = tcp_get_usecs(&tv); 448 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 449 log.u_bbr.flex8 = frm; 450 log.u_bbr.flex1 = tcp_data_len; 451 if (m) 452 log.u_bbr.flex2 = m->m_pkthdr.len; 453 else 454 log.u_bbr.flex2 = 0; 455 log.u_bbr.flex3 = le->append_cnt; 456 log.u_bbr.flex4 = le->p_len; 457 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 458 log.u_bbr.delRate = le->m_head->m_flags; 459 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 460 log.u_bbr.flex6 = lc->lro_length_lim; 461 log.u_bbr.flex7 = lc->lro_ackcnt_lim; 462 log.u_bbr.inflight = th_seq; 463 log.u_bbr.timeStamp = cts; 464 log.u_bbr.epoch = le->next_seq; 465 log.u_bbr.delivered = th_ack; 466 log.u_bbr.lt_epoch = le->ack_seq; 467 log.u_bbr.pacing_gain = th_win; 468 log.u_bbr.cwnd_gain = le->window; 469 log.u_bbr.cur_del_rate = (uintptr_t)m; 470 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 471 log.u_bbr.pkts_out = le->mbuf_cnt; /* Total mbufs added */ 472 log.u_bbr.applimited = le->ulp_csum; 473 log.u_bbr.lost = le->mbuf_appended; 474 TCP_LOG_EVENTP(tp, NULL, 475 &tp->t_inpcb->inp_socket->so_rcv, 476 &tp->t_inpcb->inp_socket->so_snd, 477 TCP_LOG_LRO, 0, 478 0, &log, false, &tv); 479 } 480 } 481 482 static void 483 tcp_flush_out_le(struct tcpcb *tp, struct lro_ctrl *lc, struct lro_entry *le, int locked) 484 { 485 if (le->append_cnt > 1) { 486 struct tcphdr *th; 487 uint16_t p_len; 488 489 p_len = htons(le->p_len); 490 switch (le->eh_type) { 491 #ifdef INET6 492 case ETHERTYPE_IPV6: 493 { 494 struct ip6_hdr *ip6; 495 496 ip6 = le->le_ip6; 497 ip6->ip6_plen = p_len; 498 th = (struct tcphdr *)(ip6 + 1); 499 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 500 CSUM_PSEUDO_HDR; 501 le->p_len += ETHER_HDR_LEN + sizeof(*ip6); 502 break; 503 } 504 #endif 505 #ifdef INET 506 case ETHERTYPE_IP: 507 { 508 struct ip *ip4; 509 uint32_t cl; 510 uint16_t c; 511 512 ip4 = le->le_ip4; 513 /* Fix IP header checksum for new length. */ 514 c = ~ip4->ip_sum; 515 cl = c; 516 c = ~ip4->ip_len; 517 cl += c + p_len; 518 while (cl > 0xffff) 519 cl = (cl >> 16) + (cl & 0xffff); 520 c = cl; 521 ip4->ip_sum = ~c; 522 ip4->ip_len = p_len; 523 th = (struct tcphdr *)(ip4 + 1); 524 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 525 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 526 le->p_len += ETHER_HDR_LEN; 527 break; 528 } 529 #endif 530 default: 531 th = NULL; /* Keep compiler happy. */ 532 } 533 le->m_head->m_pkthdr.csum_data = 0xffff; 534 le->m_head->m_pkthdr.len = le->p_len; 535 536 /* Incorporate the latest ACK into the TCP header. */ 537 th->th_ack = le->ack_seq; 538 th->th_win = le->window; 539 /* Incorporate latest timestamp into the TCP header. */ 540 if (le->timestamp != 0) { 541 uint32_t *ts_ptr; 542 543 ts_ptr = (uint32_t *)(th + 1); 544 ts_ptr[1] = htonl(le->tsval); 545 ts_ptr[2] = le->tsecr; 546 } 547 /* Update the TCP header checksum. */ 548 le->ulp_csum += p_len; 549 le->ulp_csum += tcp_lro_csum_th(th); 550 while (le->ulp_csum > 0xffff) 551 le->ulp_csum = (le->ulp_csum >> 16) + 552 (le->ulp_csum & 0xffff); 553 th->th_sum = (le->ulp_csum & 0xffff); 554 th->th_sum = ~th->th_sum; 555 if (tp && locked) { 556 tcp_lro_log(tp, lc, le, NULL, 7, 0, 0, 0, 0); 557 } 558 } 559 /* 560 * Break any chain, this is not set to NULL on the singleton 561 * case m_nextpkt points to m_head. Other case set them 562 * m_nextpkt to NULL in push_and_replace. 563 */ 564 le->m_head->m_nextpkt = NULL; 565 le->m_head->m_pkthdr.lro_nsegs = le->append_cnt; 566 if (tp && locked) { 567 tcp_lro_log(tp, lc, le, le->m_head, 8, 0, 0, 0, 0); 568 } 569 (*lc->ifp->if_input)(lc->ifp, le->m_head); 570 lc->lro_queued += le->append_cnt; 571 } 572 573 static void 574 tcp_set_le_to_m(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 575 { 576 struct ether_header *eh; 577 void *l3hdr = NULL; /* Keep compiler happy. */ 578 struct tcphdr *th; 579 #ifdef INET6 580 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */ 581 #endif 582 #ifdef INET 583 struct ip *ip4 = NULL; /* Keep compiler happy. */ 584 #endif 585 uint32_t *ts_ptr; 586 int error, l, ts_failed = 0; 587 uint16_t tcp_data_len; 588 uint16_t csum; 589 590 error = -1; 591 eh = mtod(m, struct ether_header *); 592 /* 593 * We must reset the other pointers since the mbuf 594 * we were pointing too is about to go away. 595 */ 596 switch (le->eh_type) { 597 #ifdef INET6 598 case ETHERTYPE_IPV6: 599 l3hdr = ip6 = (struct ip6_hdr *)(eh + 1); 600 error = tcp_lro_rx_ipv6(lc, m, ip6, &th); 601 le->le_ip6 = ip6; 602 le->source_ip6 = ip6->ip6_src; 603 le->dest_ip6 = ip6->ip6_dst; 604 le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN - sizeof(*ip6); 605 break; 606 #endif 607 #ifdef INET 608 case ETHERTYPE_IP: 609 l3hdr = ip4 = (struct ip *)(eh + 1); 610 error = tcp_lro_rx_ipv4(lc, m, ip4, &th); 611 le->le_ip4 = ip4; 612 le->source_ip4 = ip4->ip_src.s_addr; 613 le->dest_ip4 = ip4->ip_dst.s_addr; 614 le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN; 615 break; 616 #endif 617 } 618 KASSERT(error == 0, ("%s: le=%p tcp_lro_rx_xxx failed\n", 619 __func__, le)); 620 ts_ptr = (uint32_t *)(th + 1); 621 l = (th->th_off << 2); 622 l -= sizeof(*th); 623 if (l != 0 && 624 (__predict_false(l != TCPOLEN_TSTAMP_APPA) || 625 (*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16| 626 TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) { 627 /* We have failed to find a timestamp some other option? */ 628 ts_failed = 1; 629 } 630 if ((l != 0) && (ts_failed == 0)) { 631 le->timestamp = 1; 632 le->tsval = ntohl(*(ts_ptr + 1)); 633 le->tsecr = *(ts_ptr + 2); 634 } else 635 le->timestamp = 0; 636 le->source_port = th->th_sport; 637 le->dest_port = th->th_dport; 638 /* Pull out the csum */ 639 tcp_data_len = m->m_pkthdr.lro_len; 640 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 641 le->ack_seq = th->th_ack; 642 le->window = th->th_win; 643 csum = th->th_sum; 644 /* Setup the data pointers */ 645 le->m_head = m; 646 le->m_tail = m_last(m); 647 le->append_cnt = 0; 648 le->ulp_csum = tcp_lro_rx_csum_fixup(le, l3hdr, th, tcp_data_len, 649 ~csum); 650 le->append_cnt++; 651 th->th_sum = csum; /* Restore checksum on first packet. */ 652 } 653 654 static void 655 tcp_push_and_replace(struct tcpcb *tp, struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m, int locked) 656 { 657 /* 658 * Push up the stack the current le and replace 659 * it with m. 660 */ 661 struct mbuf *msave; 662 663 /* Grab off the next and save it */ 664 msave = le->m_head->m_nextpkt; 665 le->m_head->m_nextpkt = NULL; 666 /* Now push out the old le entry */ 667 tcp_flush_out_le(tp, lc, le, locked); 668 /* 669 * Now to replace the data properly in the le 670 * we have to reset the tcp header and 671 * other fields. 672 */ 673 tcp_set_le_to_m(lc, le, m); 674 /* Restore the next list */ 675 m->m_nextpkt = msave; 676 } 677 678 static void 679 tcp_lro_condense(struct tcpcb *tp, struct lro_ctrl *lc, struct lro_entry *le, int locked) 680 { 681 /* 682 * Walk through the mbuf chain we 683 * have on tap and compress/condense 684 * as required. 685 */ 686 uint32_t *ts_ptr; 687 struct mbuf *m; 688 struct tcphdr *th; 689 uint16_t tcp_data_len, csum_upd; 690 int l; 691 692 /* 693 * First we must check the lead (m_head) 694 * we must make sure that it is *not* 695 * something that should be sent up 696 * right away (sack etc). 697 */ 698 again: 699 700 m = le->m_head->m_nextpkt; 701 if (m == NULL) { 702 /* Just the one left */ 703 return; 704 } 705 th = tcp_lro_get_th(le, le->m_head); 706 KASSERT(th != NULL, 707 ("le:%p m:%p th comes back NULL?", le, le->m_head)); 708 l = (th->th_off << 2); 709 l -= sizeof(*th); 710 ts_ptr = (uint32_t *)(th + 1); 711 if (l != 0 && (__predict_false(l != TCPOLEN_TSTAMP_APPA) || 712 (*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16| 713 TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) { 714 /* 715 * Its not the timestamp. We can't 716 * use this guy as the head. 717 */ 718 le->m_head->m_nextpkt = m->m_nextpkt; 719 tcp_push_and_replace(tp, lc, le, m, locked); 720 goto again; 721 } 722 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { 723 /* 724 * Make sure that previously seen segements/ACKs are delivered 725 * before this segment, e.g. FIN. 726 */ 727 le->m_head->m_nextpkt = m->m_nextpkt; 728 tcp_push_and_replace(tp, lc, le, m, locked); 729 goto again; 730 } 731 while((m = le->m_head->m_nextpkt) != NULL) { 732 /* 733 * condense m into le, first 734 * pull m out of the list. 735 */ 736 le->m_head->m_nextpkt = m->m_nextpkt; 737 m->m_nextpkt = NULL; 738 /* Setup my data */ 739 tcp_data_len = m->m_pkthdr.lro_len; 740 th = tcp_lro_get_th(le, m); 741 KASSERT(th != NULL, 742 ("le:%p m:%p th comes back NULL?", le, m)); 743 ts_ptr = (uint32_t *)(th + 1); 744 l = (th->th_off << 2); 745 l -= sizeof(*th); 746 if (tp && locked) { 747 tcp_lro_log(tp, lc, le, m, 1, 0, 0, 0, 0); 748 } 749 if (le->append_cnt >= lc->lro_ackcnt_lim) { 750 if (tp && locked) { 751 tcp_lro_log(tp, lc, le, m, 2, 0, 0, 0, 0); 752 } 753 tcp_push_and_replace(tp, lc, le, m, locked); 754 goto again; 755 } 756 if (le->p_len > (lc->lro_length_lim - tcp_data_len)) { 757 /* Flush now if appending will result in overflow. */ 758 if (tp && locked) { 759 tcp_lro_log(tp, lc, le, m, 3, tcp_data_len, 0, 0, 0); 760 } 761 tcp_push_and_replace(tp, lc, le, m, locked); 762 goto again; 763 } 764 if (l != 0 && (__predict_false(l != TCPOLEN_TSTAMP_APPA) || 765 (*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16| 766 TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) { 767 /* 768 * Maybe a sack in the new one? We need to 769 * start all over after flushing the 770 * current le. We will go up to the beginning 771 * and flush it (calling the replace again possibly 772 * or just returning). 773 */ 774 tcp_push_and_replace(tp, lc, le, m, locked); 775 goto again; 776 } 777 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { 778 tcp_push_and_replace(tp, lc, le, m, locked); 779 goto again; 780 } 781 if (l != 0) { 782 uint32_t tsval = ntohl(*(ts_ptr + 1)); 783 /* Make sure timestamp values are increasing. */ 784 if (TSTMP_GT(le->tsval, tsval)) { 785 tcp_push_and_replace(tp, lc, le, m, locked); 786 goto again; 787 } 788 le->tsval = tsval; 789 le->tsecr = *(ts_ptr + 2); 790 } 791 /* Try to append the new segment. */ 792 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 793 (tcp_data_len == 0 && 794 le->ack_seq == th->th_ack && 795 le->window == th->th_win))) { 796 /* Out of order packet or duplicate ACK. */ 797 if (tp && locked) { 798 tcp_lro_log(tp, lc, le, m, 4, tcp_data_len, 799 ntohl(th->th_seq), 800 th->th_ack, 801 th->th_win); 802 } 803 tcp_push_and_replace(tp, lc, le, m, locked); 804 goto again; 805 } 806 if (tcp_data_len || SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 807 le->next_seq += tcp_data_len; 808 le->ack_seq = th->th_ack; 809 le->window = th->th_win; 810 } else if (th->th_ack == le->ack_seq) { 811 le->window = WIN_MAX(le->window, th->th_win); 812 } 813 csum_upd = m->m_pkthdr.lro_csum; 814 le->ulp_csum += csum_upd; 815 if (tcp_data_len == 0) { 816 le->append_cnt++; 817 le->mbuf_cnt--; 818 if (tp && locked) { 819 tcp_lro_log(tp, lc, le, m, 5, tcp_data_len, 820 ntohl(th->th_seq), 821 th->th_ack, 822 th->th_win); 823 } 824 m_freem(m); 825 continue; 826 } 827 le->append_cnt++; 828 le->mbuf_appended++; 829 le->p_len += tcp_data_len; 830 /* 831 * Adjust the mbuf so that m_data points to the first byte of 832 * the ULP payload. Adjust the mbuf to avoid complications and 833 * append new segment to existing mbuf chain. 834 */ 835 m_adj(m, m->m_pkthdr.len - tcp_data_len); 836 if (tp && locked) { 837 tcp_lro_log(tp, lc, le, m, 6, tcp_data_len, 838 ntohl(th->th_seq), 839 th->th_ack, 840 th->th_win); 841 } 842 m_demote_pkthdr(m); 843 le->m_tail->m_next = m; 844 le->m_tail = m_last(m); 845 } 846 } 847 848 #ifdef TCPHPTS 849 static void 850 tcp_queue_pkts(struct tcpcb *tp, struct lro_entry *le) 851 { 852 if (tp->t_in_pkt == NULL) { 853 /* Nothing yet there */ 854 tp->t_in_pkt = le->m_head; 855 tp->t_tail_pkt = le->m_last_mbuf; 856 } else { 857 /* Already some there */ 858 tp->t_tail_pkt->m_nextpkt = le->m_head; 859 tp->t_tail_pkt = le->m_last_mbuf; 860 } 861 le->m_head = NULL; 862 le->m_last_mbuf = NULL; 863 } 864 #endif 865 866 void 867 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 868 { 869 struct tcpcb *tp = NULL; 870 int locked = 0; 871 #ifdef TCPHPTS 872 struct inpcb *inp = NULL; 873 int need_wakeup = 0, can_queue = 0; 874 struct epoch_tracker et; 875 876 /* Now lets lookup the inp first */ 877 CURVNET_SET(lc->ifp->if_vnet); 878 /* 879 * XXXRRS Currently the common input handler for 880 * mbuf queuing cannot handle VLAN Tagged. This needs 881 * to be fixed and the or condition removed (i.e. the 882 * common code should do the right lookup for the vlan 883 * tag and anything else that the vlan_input() does). 884 */ 885 if ((tcplro_stacks_wanting_mbufq == 0) || (le->m_head->m_flags & M_VLANTAG)) 886 goto skip_lookup; 887 NET_EPOCH_ENTER(et); 888 switch (le->eh_type) { 889 #ifdef INET6 890 case ETHERTYPE_IPV6: 891 inp = in6_pcblookup(&V_tcbinfo, &le->source_ip6, 892 le->source_port, &le->dest_ip6,le->dest_port, 893 INPLOOKUP_WLOCKPCB, 894 lc->ifp); 895 break; 896 #endif 897 #ifdef INET 898 case ETHERTYPE_IP: 899 inp = in_pcblookup(&V_tcbinfo, le->le_ip4->ip_src, 900 le->source_port, le->le_ip4->ip_dst, le->dest_port, 901 INPLOOKUP_WLOCKPCB, 902 lc->ifp); 903 break; 904 #endif 905 } 906 NET_EPOCH_EXIT(et); 907 if (inp && ((inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)) || 908 (inp->inp_flags2 & INP_FREED))) { 909 /* We don't want this guy */ 910 INP_WUNLOCK(inp); 911 inp = NULL; 912 } 913 if (inp && (inp->inp_flags2 & INP_SUPPORTS_MBUFQ)) { 914 /* The transport supports mbuf queuing */ 915 can_queue = 1; 916 if (le->need_wakeup || 917 ((inp->inp_in_input == 0) && 918 ((inp->inp_flags2 & INP_MBUF_QUEUE_READY) == 0))) { 919 /* 920 * Either the transport is off on a keep-alive 921 * (it has the queue_ready flag clear and its 922 * not already been woken) or the entry has 923 * some urgent thing (FIN or possibly SACK blocks). 924 * This means we need to wake the transport up by 925 * putting it on the input pacer. 926 */ 927 need_wakeup = 1; 928 if ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) && 929 (le->need_wakeup != 1)) { 930 /* 931 * Prohibited from a sack wakeup. 932 */ 933 need_wakeup = 0; 934 } 935 } 936 /* Do we need to be awoken due to lots of data or acks? */ 937 if ((le->tcp_tot_p_len >= lc->lro_length_lim) || 938 (le->mbuf_cnt >= lc->lro_ackcnt_lim)) 939 need_wakeup = 1; 940 } 941 if (inp) { 942 tp = intotcpcb(inp); 943 locked = 1; 944 } else 945 tp = NULL; 946 if (can_queue) { 947 counter_u64_add(tcp_inp_lro_direct_queue, 1); 948 tcp_lro_log(tp, lc, le, NULL, 22, need_wakeup, 949 inp->inp_flags2, inp->inp_in_input, le->need_wakeup); 950 tcp_queue_pkts(tp, le); 951 if (need_wakeup) { 952 /* 953 * We must get the guy to wakeup via 954 * hpts. 955 */ 956 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 957 if (le->need_wakeup) 958 counter_u64_add(tcp_inp_lro_sack_wake, 1); 959 tcp_queue_to_input(inp); 960 } 961 } 962 if (inp && (hold_lock_over_compress == 0)) { 963 /* Unlock it */ 964 locked = 0; 965 tp = NULL; 966 counter_u64_add(tcp_inp_lro_locks_taken, 1); 967 INP_WUNLOCK(inp); 968 } 969 if (can_queue == 0) { 970 skip_lookup: 971 #endif /* TCPHPTS */ 972 /* Old fashioned lro method */ 973 if (le->m_head != le->m_last_mbuf) { 974 counter_u64_add(tcp_inp_lro_compressed, 1); 975 tcp_lro_condense(tp, lc, le, locked); 976 } else 977 counter_u64_add(tcp_inp_lro_single_push, 1); 978 tcp_flush_out_le(tp, lc, le, locked); 979 #ifdef TCPHPTS 980 } 981 if (inp && locked) { 982 counter_u64_add(tcp_inp_lro_locks_taken, 1); 983 INP_WUNLOCK(inp); 984 } 985 CURVNET_RESTORE(); 986 #endif 987 lc->lro_flushed++; 988 bzero(le, sizeof(*le)); 989 LIST_INSERT_HEAD(&lc->lro_free, le, next); 990 } 991 992 #ifdef HAVE_INLINE_FLSLL 993 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 994 #else 995 static inline uint64_t 996 tcp_lro_msb_64(uint64_t x) 997 { 998 x |= (x >> 1); 999 x |= (x >> 2); 1000 x |= (x >> 4); 1001 x |= (x >> 8); 1002 x |= (x >> 16); 1003 x |= (x >> 32); 1004 return (x & ~(x >> 1)); 1005 } 1006 #endif 1007 1008 /* 1009 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1010 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1011 * number of elements to sort and 64 is the number of sequence bits 1012 * available. The algorithm is bit-slicing the 64-bit sequence number, 1013 * sorting one bit at a time from the most significant bit until the 1014 * least significant one, skipping the constant bits. This is 1015 * typically called a radix sort. 1016 */ 1017 static void 1018 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1019 { 1020 struct lro_mbuf_sort temp; 1021 uint64_t ones; 1022 uint64_t zeros; 1023 uint32_t x; 1024 uint32_t y; 1025 1026 repeat: 1027 /* for small arrays insertion sort is faster */ 1028 if (size <= 12) { 1029 for (x = 1; x < size; x++) { 1030 temp = parray[x]; 1031 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1032 parray[y] = parray[y - 1]; 1033 parray[y] = temp; 1034 } 1035 return; 1036 } 1037 1038 /* compute sequence bits which are constant */ 1039 ones = 0; 1040 zeros = 0; 1041 for (x = 0; x != size; x++) { 1042 ones |= parray[x].seq; 1043 zeros |= ~parray[x].seq; 1044 } 1045 1046 /* compute bits which are not constant into "ones" */ 1047 ones &= zeros; 1048 if (ones == 0) 1049 return; 1050 1051 /* pick the most significant bit which is not constant */ 1052 ones = tcp_lro_msb_64(ones); 1053 1054 /* 1055 * Move entries having cleared sequence bits to the beginning 1056 * of the array: 1057 */ 1058 for (x = y = 0; y != size; y++) { 1059 /* skip set bits */ 1060 if (parray[y].seq & ones) 1061 continue; 1062 /* swap entries */ 1063 temp = parray[x]; 1064 parray[x] = parray[y]; 1065 parray[y] = temp; 1066 x++; 1067 } 1068 1069 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1070 1071 /* sort zeros */ 1072 tcp_lro_sort(parray, x); 1073 1074 /* sort ones */ 1075 parray += x; 1076 size -= x; 1077 goto repeat; 1078 } 1079 1080 void 1081 tcp_lro_flush_all(struct lro_ctrl *lc) 1082 { 1083 uint64_t seq; 1084 uint64_t nseq; 1085 unsigned x; 1086 1087 /* check if no mbufs to flush */ 1088 if (lc->lro_mbuf_count == 0) 1089 goto done; 1090 1091 /* sort all mbufs according to stream */ 1092 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1093 1094 /* input data into LRO engine, stream by stream */ 1095 seq = 0; 1096 for (x = 0; x != lc->lro_mbuf_count; x++) { 1097 struct mbuf *mb; 1098 1099 /* get mbuf */ 1100 mb = lc->lro_mbuf_data[x].mb; 1101 1102 /* get sequence number, masking away the packet index */ 1103 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1104 1105 /* check for new stream */ 1106 if (seq != nseq) { 1107 seq = nseq; 1108 1109 /* flush active streams */ 1110 tcp_lro_rx_done(lc); 1111 } 1112 1113 /* add packet to LRO engine */ 1114 if (tcp_lro_rx2(lc, mb, 0, 0) != 0) { 1115 /* input packet to network layer */ 1116 (*lc->ifp->if_input)(lc->ifp, mb); 1117 lc->lro_queued++; 1118 lc->lro_flushed++; 1119 } 1120 } 1121 done: 1122 /* flush active streams */ 1123 tcp_lro_rx_done(lc); 1124 1125 lc->lro_mbuf_count = 0; 1126 } 1127 1128 static void 1129 lro_set_mtime(struct timeval *tv, struct timespec *ts) 1130 { 1131 tv->tv_sec = ts->tv_sec; 1132 tv->tv_usec = ts->tv_nsec / 1000; 1133 } 1134 1135 static int 1136 tcp_lro_rx2(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, int use_hash) 1137 { 1138 struct lro_entry *le; 1139 struct ether_header *eh; 1140 #ifdef INET6 1141 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */ 1142 #endif 1143 #ifdef INET 1144 struct ip *ip4 = NULL; /* Keep compiler happy. */ 1145 #endif 1146 struct tcphdr *th; 1147 void *l3hdr = NULL; /* Keep compiler happy. */ 1148 uint32_t *ts_ptr; 1149 tcp_seq seq; 1150 int error, ip_len, l; 1151 uint16_t eh_type, tcp_data_len, need_flush; 1152 struct lro_head *bucket; 1153 struct timespec arrv; 1154 1155 /* We expect a contiguous header [eh, ip, tcp]. */ 1156 if ((m->m_flags & (M_TSTMP_LRO|M_TSTMP)) == 0) { 1157 /* If no hardware or arrival stamp on the packet add arrival */ 1158 nanouptime(&arrv); 1159 m->m_pkthdr.rcv_tstmp = (arrv.tv_sec * 1000000000) + arrv.tv_nsec; 1160 m->m_flags |= M_TSTMP_LRO; 1161 } 1162 eh = mtod(m, struct ether_header *); 1163 eh_type = ntohs(eh->ether_type); 1164 switch (eh_type) { 1165 #ifdef INET6 1166 case ETHERTYPE_IPV6: 1167 { 1168 CURVNET_SET(lc->ifp->if_vnet); 1169 if (V_ip6_forwarding != 0) { 1170 /* XXX-BZ stats but changing lro_ctrl is a problem. */ 1171 CURVNET_RESTORE(); 1172 return (TCP_LRO_CANNOT); 1173 } 1174 CURVNET_RESTORE(); 1175 l3hdr = ip6 = (struct ip6_hdr *)(eh + 1); 1176 error = tcp_lro_rx_ipv6(lc, m, ip6, &th); 1177 if (error != 0) 1178 return (error); 1179 tcp_data_len = ntohs(ip6->ip6_plen); 1180 ip_len = sizeof(*ip6) + tcp_data_len; 1181 break; 1182 } 1183 #endif 1184 #ifdef INET 1185 case ETHERTYPE_IP: 1186 { 1187 CURVNET_SET(lc->ifp->if_vnet); 1188 if (V_ipforwarding != 0) { 1189 /* XXX-BZ stats but changing lro_ctrl is a problem. */ 1190 CURVNET_RESTORE(); 1191 return (TCP_LRO_CANNOT); 1192 } 1193 CURVNET_RESTORE(); 1194 l3hdr = ip4 = (struct ip *)(eh + 1); 1195 error = tcp_lro_rx_ipv4(lc, m, ip4, &th); 1196 if (error != 0) 1197 return (error); 1198 ip_len = ntohs(ip4->ip_len); 1199 tcp_data_len = ip_len - sizeof(*ip4); 1200 break; 1201 } 1202 #endif 1203 /* XXX-BZ what happens in case of VLAN(s)? */ 1204 default: 1205 return (TCP_LRO_NOT_SUPPORTED); 1206 } 1207 1208 /* 1209 * If the frame is padded beyond the end of the IP packet, then we must 1210 * trim the extra bytes off. 1211 */ 1212 l = m->m_pkthdr.len - (ETHER_HDR_LEN + ip_len); 1213 if (l != 0) { 1214 if (l < 0) 1215 /* Truncated packet. */ 1216 return (TCP_LRO_CANNOT); 1217 1218 m_adj(m, -l); 1219 } 1220 /* 1221 * Check TCP header constraints. 1222 */ 1223 if (th->th_flags & TH_SYN) 1224 return (TCP_LRO_CANNOT); 1225 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) 1226 need_flush = 1; 1227 else 1228 need_flush = 0; 1229 l = (th->th_off << 2); 1230 ts_ptr = (uint32_t *)(th + 1); 1231 tcp_data_len -= l; 1232 l -= sizeof(*th); 1233 if (l != 0 && (__predict_false(l != TCPOLEN_TSTAMP_APPA) || 1234 (*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16| 1235 TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) { 1236 /* 1237 * We have an option besides Timestamps, maybe 1238 * it is a sack (most likely) which means we 1239 * will probably need to wake up a sleeper (if 1240 * the guy does queueing). 1241 */ 1242 need_flush = 2; 1243 } 1244 1245 /* If the driver did not pass in the checksum, set it now. */ 1246 if (csum == 0x0000) 1247 csum = th->th_sum; 1248 seq = ntohl(th->th_seq); 1249 if (!use_hash) { 1250 bucket = &lc->lro_hash[0]; 1251 } else if (M_HASHTYPE_ISHASH(m)) { 1252 bucket = &lc->lro_hash[m->m_pkthdr.flowid % lc->lro_hashsz]; 1253 } else { 1254 uint32_t hash; 1255 1256 switch (eh_type) { 1257 #ifdef INET 1258 case ETHERTYPE_IP: 1259 hash = ip4->ip_src.s_addr + ip4->ip_dst.s_addr; 1260 break; 1261 #endif 1262 #ifdef INET6 1263 case ETHERTYPE_IPV6: 1264 hash = ip6->ip6_src.s6_addr32[0] + 1265 ip6->ip6_dst.s6_addr32[0]; 1266 hash += ip6->ip6_src.s6_addr32[1] + 1267 ip6->ip6_dst.s6_addr32[1]; 1268 hash += ip6->ip6_src.s6_addr32[2] + 1269 ip6->ip6_dst.s6_addr32[2]; 1270 hash += ip6->ip6_src.s6_addr32[3] + 1271 ip6->ip6_dst.s6_addr32[3]; 1272 break; 1273 #endif 1274 default: 1275 hash = 0; 1276 break; 1277 } 1278 hash += th->th_sport + th->th_dport; 1279 bucket = &lc->lro_hash[hash % lc->lro_hashsz]; 1280 } 1281 1282 /* Try to find a matching previous segment. */ 1283 LIST_FOREACH(le, bucket, hash_next) { 1284 if (le->eh_type != eh_type) 1285 continue; 1286 if (le->source_port != th->th_sport || 1287 le->dest_port != th->th_dport) 1288 continue; 1289 switch (eh_type) { 1290 #ifdef INET6 1291 case ETHERTYPE_IPV6: 1292 if (bcmp(&le->source_ip6, &ip6->ip6_src, 1293 sizeof(struct in6_addr)) != 0 || 1294 bcmp(&le->dest_ip6, &ip6->ip6_dst, 1295 sizeof(struct in6_addr)) != 0) 1296 continue; 1297 break; 1298 #endif 1299 #ifdef INET 1300 case ETHERTYPE_IP: 1301 if (le->source_ip4 != ip4->ip_src.s_addr || 1302 le->dest_ip4 != ip4->ip_dst.s_addr) 1303 continue; 1304 break; 1305 #endif 1306 } 1307 if (tcp_data_len || SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq)) || 1308 (th->th_ack == le->ack_seq)) { 1309 m->m_pkthdr.lro_len = tcp_data_len; 1310 } else { 1311 /* no data and old ack */ 1312 m_freem(m); 1313 return (0); 1314 } 1315 if (need_flush) 1316 le->need_wakeup = need_flush; 1317 /* Save of the data only csum */ 1318 m->m_pkthdr.rcvif = lc->ifp; 1319 m->m_pkthdr.lro_csum = tcp_lro_rx_csum_fixup(le, l3hdr, th, 1320 tcp_data_len, ~csum); 1321 th->th_sum = csum; /* Restore checksum */ 1322 /* Save off the tail I am appending too (prev) */ 1323 le->m_prev_last = le->m_last_mbuf; 1324 /* Mark me in the last spot */ 1325 le->m_last_mbuf->m_nextpkt = m; 1326 /* Now set the tail to me */ 1327 le->m_last_mbuf = m; 1328 le->mbuf_cnt++; 1329 m->m_nextpkt = NULL; 1330 /* Add to the total size of data */ 1331 le->tcp_tot_p_len += tcp_data_len; 1332 lro_set_mtime(&le->mtime, &arrv); 1333 return (0); 1334 } 1335 /* Try to find an empty slot. */ 1336 if (LIST_EMPTY(&lc->lro_free)) 1337 return (TCP_LRO_NO_ENTRIES); 1338 1339 /* Start a new segment chain. */ 1340 le = LIST_FIRST(&lc->lro_free); 1341 LIST_REMOVE(le, next); 1342 tcp_lro_active_insert(lc, bucket, le); 1343 lro_set_mtime(&le->mtime, &arrv); 1344 1345 /* Start filling in details. */ 1346 switch (eh_type) { 1347 #ifdef INET6 1348 case ETHERTYPE_IPV6: 1349 le->le_ip6 = ip6; 1350 le->source_ip6 = ip6->ip6_src; 1351 le->dest_ip6 = ip6->ip6_dst; 1352 le->eh_type = eh_type; 1353 le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN - sizeof(*ip6); 1354 break; 1355 #endif 1356 #ifdef INET 1357 case ETHERTYPE_IP: 1358 le->le_ip4 = ip4; 1359 le->source_ip4 = ip4->ip_src.s_addr; 1360 le->dest_ip4 = ip4->ip_dst.s_addr; 1361 le->eh_type = eh_type; 1362 le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN; 1363 break; 1364 #endif 1365 } 1366 le->source_port = th->th_sport; 1367 le->dest_port = th->th_dport; 1368 le->next_seq = seq + tcp_data_len; 1369 le->ack_seq = th->th_ack; 1370 le->window = th->th_win; 1371 if (l != 0) { 1372 le->timestamp = 1; 1373 le->tsval = ntohl(*(ts_ptr + 1)); 1374 le->tsecr = *(ts_ptr + 2); 1375 } 1376 KASSERT(le->ulp_csum == 0, ("%s: le=%p le->ulp_csum=0x%04x\n", 1377 __func__, le, le->ulp_csum)); 1378 1379 le->append_cnt = 0; 1380 le->ulp_csum = tcp_lro_rx_csum_fixup(le, l3hdr, th, tcp_data_len, 1381 ~csum); 1382 le->append_cnt++; 1383 th->th_sum = csum; /* Restore checksum */ 1384 le->m_head = m; 1385 m->m_pkthdr.rcvif = lc->ifp; 1386 le->mbuf_cnt = 1; 1387 if (need_flush) 1388 le->need_wakeup = need_flush; 1389 else 1390 le->need_wakeup = 0; 1391 le->m_tail = m_last(m); 1392 le->m_last_mbuf = m; 1393 m->m_nextpkt = NULL; 1394 le->m_prev_last = NULL; 1395 /* 1396 * We keep the total size here for cross checking when we may need 1397 * to flush/wakeup in the MBUF_QUEUE case. 1398 */ 1399 le->tcp_tot_p_len = tcp_data_len; 1400 m->m_pkthdr.lro_len = tcp_data_len; 1401 return (0); 1402 } 1403 1404 int 1405 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1406 { 1407 1408 return tcp_lro_rx2(lc, m, csum, 1); 1409 } 1410 1411 void 1412 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 1413 { 1414 struct timespec arrv; 1415 1416 /* sanity checks */ 1417 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 1418 lc->lro_mbuf_max == 0)) { 1419 /* packet drop */ 1420 m_freem(mb); 1421 return; 1422 } 1423 1424 /* check if packet is not LRO capable */ 1425 if (__predict_false(mb->m_pkthdr.csum_flags == 0 || 1426 (lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 1427 /* input packet to network layer */ 1428 (*lc->ifp->if_input) (lc->ifp, mb); 1429 return; 1430 } 1431 /* Arrival Stamp the packet */ 1432 1433 if ((mb->m_flags & M_TSTMP) == 0) { 1434 /* If no hardware or arrival stamp on the packet add arrival */ 1435 nanouptime(&arrv); 1436 mb->m_pkthdr.rcv_tstmp = ((arrv.tv_sec * 1000000000) + 1437 arrv.tv_nsec); 1438 mb->m_flags |= M_TSTMP_LRO; 1439 } 1440 /* create sequence number */ 1441 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 1442 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 1443 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 1444 ((uint64_t)lc->lro_mbuf_count); 1445 1446 /* enter mbuf */ 1447 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 1448 1449 /* flush if array is full */ 1450 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 1451 tcp_lro_flush_all(lc); 1452 } 1453 1454 /* end */ 1455