xref: /freebsd/sys/netinet/tcp_lro.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007, Myricom Inc.
5  * Copyright (c) 2008, Intel Corporation.
6  * Copyright (c) 2012 The FreeBSD Foundation
7  * Copyright (c) 2016-2021 Mellanox Technologies.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Bjoern Zeeb
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sockbuf.h>
49 #include <sys/sysctl.h>
50 
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/ethernet.h>
54 #include <net/bpf.h>
55 #include <net/vnet.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/infiniband.h>
60 #include <net/if_lagg.h>
61 
62 #include <netinet/in_systm.h>
63 #include <netinet/in.h>
64 #include <netinet/ip6.h>
65 #include <netinet/ip.h>
66 #include <netinet/ip_var.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet6/in6_pcb.h>
69 #include <netinet/tcp.h>
70 #include <netinet/tcp_seq.h>
71 #include <netinet/tcp_lro.h>
72 #include <netinet/tcp_var.h>
73 #include <netinet/tcpip.h>
74 #include <netinet/tcp_hpts.h>
75 #include <netinet/tcp_log_buf.h>
76 #include <netinet/tcp_fsm.h>
77 #include <netinet/udp.h>
78 #include <netinet6/ip6_var.h>
79 
80 #include <machine/in_cksum.h>
81 
82 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures");
83 
84 #define	TCP_LRO_TS_OPTION \
85     ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
86 	  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)
87 
88 static void	tcp_lro_rx_done(struct lro_ctrl *lc);
89 static int	tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m,
90 		    uint32_t csum, bool use_hash);
91 
92 #ifdef TCPHPTS
93 static bool	do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *,
94 		struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **,
95  		bool *, bool, bool, struct ifnet *, bool);
96 
97 #endif
98 
99 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro,  CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
100     "TCP LRO");
101 
102 static long tcplro_stacks_wanting_mbufq;
103 counter_u64_t tcp_inp_lro_direct_queue;
104 counter_u64_t tcp_inp_lro_wokeup_queue;
105 counter_u64_t tcp_inp_lro_compressed;
106 counter_u64_t tcp_inp_lro_locks_taken;
107 counter_u64_t tcp_extra_mbuf;
108 counter_u64_t tcp_would_have_but;
109 counter_u64_t tcp_comp_total;
110 counter_u64_t tcp_uncomp_total;
111 counter_u64_t tcp_bad_csums;
112 
113 static unsigned	tcp_lro_entries = TCP_LRO_ENTRIES;
114 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries,
115     CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0,
116     "default number of LRO entries");
117 
118 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH;
119 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold,
120     CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0,
121     "Number of interrupts in a row on the same CPU that will make us declare an 'affinity' cpu?");
122 
123 static uint32_t tcp_less_accurate_lro_ts = 0;
124 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_less_accurate,
125     CTLFLAG_MPSAFE, &tcp_less_accurate_lro_ts, 0,
126     "Do we trade off efficency by doing less timestamp operations for time accuracy?");
127 
128 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD,
129     &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport");
130 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD,
131     &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts");
132 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD,
133     &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport");
134 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD,
135     &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken");
136 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD,
137     &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp");
138 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD,
139     &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed");
140 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD,
141     &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set");
142 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD,
143     &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP");
144 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD,
145     &tcp_bad_csums, "Number of packets that the common code saw with bad csums");
146 
147 void
148 tcp_lro_reg_mbufq(void)
149 {
150 	atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1);
151 }
152 
153 void
154 tcp_lro_dereg_mbufq(void)
155 {
156 	atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1);
157 }
158 
159 static __inline void
160 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket,
161     struct lro_entry *le)
162 {
163 
164 	LIST_INSERT_HEAD(&lc->lro_active, le, next);
165 	LIST_INSERT_HEAD(bucket, le, hash_next);
166 }
167 
168 static __inline void
169 tcp_lro_active_remove(struct lro_entry *le)
170 {
171 
172 	LIST_REMOVE(le, next);		/* active list */
173 	LIST_REMOVE(le, hash_next);	/* hash bucket */
174 }
175 
176 int
177 tcp_lro_init(struct lro_ctrl *lc)
178 {
179 	return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0));
180 }
181 
182 int
183 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp,
184     unsigned lro_entries, unsigned lro_mbufs)
185 {
186 	struct lro_entry *le;
187 	size_t size;
188 	unsigned i, elements;
189 
190 	lc->lro_bad_csum = 0;
191 	lc->lro_queued = 0;
192 	lc->lro_flushed = 0;
193 	lc->lro_mbuf_count = 0;
194 	lc->lro_mbuf_max = lro_mbufs;
195 	lc->lro_cnt = lro_entries;
196 	lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX;
197 	lc->lro_length_lim = TCP_LRO_LENGTH_MAX;
198 	lc->ifp = ifp;
199 	LIST_INIT(&lc->lro_free);
200 	LIST_INIT(&lc->lro_active);
201 
202 	/* create hash table to accelerate entry lookup */
203 	if (lro_entries > lro_mbufs)
204 		elements = lro_entries;
205 	else
206 		elements = lro_mbufs;
207 	lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz,
208 	    HASH_NOWAIT);
209 	if (lc->lro_hash == NULL) {
210 		memset(lc, 0, sizeof(*lc));
211 		return (ENOMEM);
212 	}
213 
214 	/* compute size to allocate */
215 	size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) +
216 	    (lro_entries * sizeof(*le));
217 	lc->lro_mbuf_data = (struct lro_mbuf_sort *)
218 	    malloc(size, M_LRO, M_NOWAIT | M_ZERO);
219 
220 	/* check for out of memory */
221 	if (lc->lro_mbuf_data == NULL) {
222 		free(lc->lro_hash, M_LRO);
223 		memset(lc, 0, sizeof(*lc));
224 		return (ENOMEM);
225 	}
226 	/* compute offset for LRO entries */
227 	le = (struct lro_entry *)
228 	    (lc->lro_mbuf_data + lro_mbufs);
229 
230 	/* setup linked list */
231 	for (i = 0; i != lro_entries; i++)
232 		LIST_INSERT_HEAD(&lc->lro_free, le + i, next);
233 
234 	return (0);
235 }
236 
237 struct vxlan_header {
238 	uint32_t	vxlh_flags;
239 	uint32_t	vxlh_vni;
240 };
241 
242 static inline void *
243 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen)
244 {
245 	const struct ether_vlan_header *eh;
246 	void *old;
247 	uint16_t eth_type;
248 
249 	if (update_data)
250 		memset(parser, 0, sizeof(*parser));
251 
252 	old = ptr;
253 
254 	if (is_vxlan) {
255 		const struct vxlan_header *vxh;
256 		vxh = ptr;
257 		ptr = (uint8_t *)ptr + sizeof(*vxh);
258 		if (update_data) {
259 			parser->data.vxlan_vni =
260 			    vxh->vxlh_vni & htonl(0xffffff00);
261 		}
262 	}
263 
264 	eh = ptr;
265 	if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) {
266 		eth_type = eh->evl_proto;
267 		if (update_data) {
268 			/* strip priority and keep VLAN ID only */
269 			parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK);
270 		}
271 		/* advance to next header */
272 		ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
273 		mlen -= (ETHER_HDR_LEN  + ETHER_VLAN_ENCAP_LEN);
274 	} else {
275 		eth_type = eh->evl_encap_proto;
276 		/* advance to next header */
277 		mlen -= ETHER_HDR_LEN;
278 		ptr = (uint8_t *)ptr + ETHER_HDR_LEN;
279 	}
280 	if (__predict_false(mlen <= 0))
281 		return (NULL);
282 	switch (eth_type) {
283 #ifdef INET
284 	case htons(ETHERTYPE_IP):
285 		parser->ip4 = ptr;
286 		if (__predict_false(mlen < sizeof(struct ip)))
287 			return (NULL);
288 		/* Ensure there are no IPv4 options. */
289 		if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4))
290 			break;
291 		/* .. and the packet is not fragmented. */
292 		if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK))
293 			break;
294 		ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2);
295 		mlen -= sizeof(struct ip);
296 		if (update_data) {
297 			parser->data.s_addr.v4 = parser->ip4->ip_src;
298 			parser->data.d_addr.v4 = parser->ip4->ip_dst;
299 		}
300 		switch (parser->ip4->ip_p) {
301 		case IPPROTO_UDP:
302 			if (__predict_false(mlen < sizeof(struct udphdr)))
303 				return (NULL);
304 			parser->udp = ptr;
305 			if (update_data) {
306 				parser->data.lro_type = LRO_TYPE_IPV4_UDP;
307 				parser->data.s_port = parser->udp->uh_sport;
308 				parser->data.d_port = parser->udp->uh_dport;
309 			} else {
310 				MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP);
311 			}
312 			ptr = ((uint8_t *)ptr + sizeof(*parser->udp));
313 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
314 			return (ptr);
315 		case IPPROTO_TCP:
316 			parser->tcp = ptr;
317 			if (__predict_false(mlen < sizeof(struct tcphdr)))
318 				return (NULL);
319 			if (update_data) {
320 				parser->data.lro_type = LRO_TYPE_IPV4_TCP;
321 				parser->data.s_port = parser->tcp->th_sport;
322 				parser->data.d_port = parser->tcp->th_dport;
323 			} else {
324 				MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP);
325 			}
326 			if (__predict_false(mlen < (parser->tcp->th_off << 2)))
327 				return (NULL);
328 			ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2);
329 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
330 			return (ptr);
331 		default:
332 			break;
333 		}
334 		break;
335 #endif
336 #ifdef INET6
337 	case htons(ETHERTYPE_IPV6):
338 		parser->ip6 = ptr;
339 		if (__predict_false(mlen < sizeof(struct ip6_hdr)))
340 			return (NULL);
341 		ptr = (uint8_t *)ptr + sizeof(*parser->ip6);
342 		if (update_data) {
343 			parser->data.s_addr.v6 = parser->ip6->ip6_src;
344 			parser->data.d_addr.v6 = parser->ip6->ip6_dst;
345 		}
346 		mlen -= sizeof(struct ip6_hdr);
347 		switch (parser->ip6->ip6_nxt) {
348 		case IPPROTO_UDP:
349 			if (__predict_false(mlen < sizeof(struct udphdr)))
350 				return (NULL);
351 			parser->udp = ptr;
352 			if (update_data) {
353 				parser->data.lro_type = LRO_TYPE_IPV6_UDP;
354 				parser->data.s_port = parser->udp->uh_sport;
355 				parser->data.d_port = parser->udp->uh_dport;
356 			} else {
357 				MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP);
358 			}
359 			ptr = (uint8_t *)ptr + sizeof(*parser->udp);
360 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
361 			return (ptr);
362 		case IPPROTO_TCP:
363 			if (__predict_false(mlen < sizeof(struct tcphdr)))
364 				return (NULL);
365 			parser->tcp = ptr;
366 			if (update_data) {
367 				parser->data.lro_type = LRO_TYPE_IPV6_TCP;
368 				parser->data.s_port = parser->tcp->th_sport;
369 				parser->data.d_port = parser->tcp->th_dport;
370 			} else {
371 				MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP);
372 			}
373 			if (__predict_false(mlen < (parser->tcp->th_off << 2)))
374 				return (NULL);
375 			ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2);
376 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
377 			return (ptr);
378 		default:
379 			break;
380 		}
381 		break;
382 #endif
383 	default:
384 		break;
385 	}
386 	/* Invalid packet - cannot parse */
387 	return (NULL);
388 }
389 
390 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
391     CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID;
392 
393 static inline struct lro_parser *
394 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data)
395 {
396 	void *data_ptr;
397 
398 	/* Try to parse outer headers first. */
399 	data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len);
400 	if (data_ptr == NULL || po->total_hdr_len > m->m_len)
401 		return (NULL);
402 
403 	if (update_data) {
404 		/* Store VLAN ID, if any. */
405 		if (__predict_false(m->m_flags & M_VLANTAG)) {
406 			po->data.vlan_id =
407 			    htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK);
408 		}
409 		/* Store decrypted flag, if any. */
410 		if (__predict_false((m->m_pkthdr.csum_flags &
411 		    CSUM_TLS_MASK) == CSUM_TLS_DECRYPTED))
412 			po->data.lro_flags |= LRO_FLAG_DECRYPTED;
413 	}
414 
415 	switch (po->data.lro_type) {
416 	case LRO_TYPE_IPV4_UDP:
417 	case LRO_TYPE_IPV6_UDP:
418 		/* Check for VXLAN headers. */
419 		if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum)
420 			break;
421 
422 		/* Try to parse inner headers. */
423 		data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true,
424 						    (m->m_len - ((caddr_t)data_ptr - m->m_data)));
425 		if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len)
426 			break;
427 
428 		/* Verify supported header types. */
429 		switch (pi->data.lro_type) {
430 		case LRO_TYPE_IPV4_TCP:
431 		case LRO_TYPE_IPV6_TCP:
432 			return (pi);
433 		default:
434 			break;
435 		}
436 		break;
437 	case LRO_TYPE_IPV4_TCP:
438 	case LRO_TYPE_IPV6_TCP:
439 		if (update_data)
440 			memset(pi, 0, sizeof(*pi));
441 		return (po);
442 	default:
443 		break;
444 	}
445 	return (NULL);
446 }
447 
448 static inline int
449 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po)
450 {
451 	int len;
452 
453 	switch (po->data.lro_type) {
454 #ifdef INET
455 	case LRO_TYPE_IPV4_TCP:
456 		len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) +
457 		    ntohs(po->ip4->ip_len);
458 		break;
459 #endif
460 #ifdef INET6
461 	case LRO_TYPE_IPV6_TCP:
462 		len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) +
463 		    ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6);
464 		break;
465 #endif
466 	default:
467 		return (TCP_LRO_CANNOT);
468 	}
469 
470 	/*
471 	 * If the frame is padded beyond the end of the IP packet,
472 	 * then trim the extra bytes off:
473 	 */
474 	if (__predict_true(m->m_pkthdr.len == len)) {
475 		return (0);
476 	} else if (m->m_pkthdr.len > len) {
477 		m_adj(m, len - m->m_pkthdr.len);
478 		return (0);
479 	}
480 	return (TCP_LRO_CANNOT);
481 }
482 
483 static struct tcphdr *
484 tcp_lro_get_th(struct mbuf *m)
485 {
486 	return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off));
487 }
488 
489 static void
490 lro_free_mbuf_chain(struct mbuf *m)
491 {
492 	struct mbuf *save;
493 
494 	while (m) {
495 		save = m->m_nextpkt;
496 		m->m_nextpkt = NULL;
497 		m_freem(m);
498 		m = save;
499 	}
500 }
501 
502 void
503 tcp_lro_free(struct lro_ctrl *lc)
504 {
505 	struct lro_entry *le;
506 	unsigned x;
507 
508 	/* reset LRO free list */
509 	LIST_INIT(&lc->lro_free);
510 
511 	/* free active mbufs, if any */
512 	while ((le = LIST_FIRST(&lc->lro_active)) != NULL) {
513 		tcp_lro_active_remove(le);
514 		lro_free_mbuf_chain(le->m_head);
515 	}
516 
517 	/* free hash table */
518 	free(lc->lro_hash, M_LRO);
519 	lc->lro_hash = NULL;
520 	lc->lro_hashsz = 0;
521 
522 	/* free mbuf array, if any */
523 	for (x = 0; x != lc->lro_mbuf_count; x++)
524 		m_freem(lc->lro_mbuf_data[x].mb);
525 	lc->lro_mbuf_count = 0;
526 
527 	/* free allocated memory, if any */
528 	free(lc->lro_mbuf_data, M_LRO);
529 	lc->lro_mbuf_data = NULL;
530 }
531 
532 static uint16_t
533 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th)
534 {
535 	const uint16_t *ptr;
536 	uint32_t csum;
537 	uint16_t len;
538 
539 	csum = -th->th_sum;	/* exclude checksum field */
540 	len = th->th_off;
541 	ptr = (const uint16_t *)th;
542 	while (len--) {
543 		csum += *ptr;
544 		ptr++;
545 		csum += *ptr;
546 		ptr++;
547 	}
548 	while (csum > 0xffff)
549 		csum = (csum >> 16) + (csum & 0xffff);
550 
551 	return (csum);
552 }
553 
554 static uint16_t
555 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum)
556 {
557 	uint32_t c;
558 	uint16_t cs;
559 
560 	c = tcp_csum;
561 
562 	switch (pa->data.lro_type) {
563 #ifdef INET6
564 	case LRO_TYPE_IPV6_TCP:
565 		/* Compute full pseudo IPv6 header checksum. */
566 		cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0);
567 		break;
568 #endif
569 #ifdef INET
570 	case LRO_TYPE_IPV4_TCP:
571 		/* Compute full pseudo IPv4 header checsum. */
572 		cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP);
573 		cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs));
574 		break;
575 #endif
576 	default:
577 		cs = 0;		/* Keep compiler happy. */
578 		break;
579 	}
580 
581 	/* Complement checksum. */
582 	cs = ~cs;
583 	c += cs;
584 
585 	/* Remove TCP header checksum. */
586 	cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp);
587 	c += cs;
588 
589 	/* Compute checksum remainder. */
590 	while (c > 0xffff)
591 		c = (c >> 16) + (c & 0xffff);
592 
593 	return (c);
594 }
595 
596 static void
597 tcp_lro_rx_done(struct lro_ctrl *lc)
598 {
599 	struct lro_entry *le;
600 
601 	while ((le = LIST_FIRST(&lc->lro_active)) != NULL) {
602 		tcp_lro_active_remove(le);
603 		tcp_lro_flush(lc, le);
604 	}
605 }
606 
607 static void
608 tcp_lro_flush_active(struct lro_ctrl *lc)
609 {
610 	struct lro_entry *le;
611 
612 	/*
613 	 * Walk through the list of le entries, and
614 	 * any one that does have packets flush. This
615 	 * is called because we have an inbound packet
616 	 * (e.g. SYN) that has to have all others flushed
617 	 * in front of it. Note we have to do the remove
618 	 * because tcp_lro_flush() assumes that the entry
619 	 * is being freed. This is ok it will just get
620 	 * reallocated again like it was new.
621 	 */
622 	LIST_FOREACH(le, &lc->lro_active, next) {
623 		if (le->m_head != NULL) {
624 			tcp_lro_active_remove(le);
625 			tcp_lro_flush(lc, le);
626 		}
627 	}
628 }
629 
630 void
631 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout)
632 {
633 	struct lro_entry *le, *le_tmp;
634 	uint64_t now, tov;
635 	struct bintime bt;
636 
637 	NET_EPOCH_ASSERT();
638 	if (LIST_EMPTY(&lc->lro_active))
639 		return;
640 
641 	/* get timeout time and current time in ns */
642 	binuptime(&bt);
643 	now = bintime2ns(&bt);
644 	tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000));
645 	LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) {
646 		if (now >= (bintime2ns(&le->alloc_time) + tov)) {
647 			tcp_lro_active_remove(le);
648 			tcp_lro_flush(lc, le);
649 		}
650 	}
651 }
652 
653 #ifdef INET
654 static int
655 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4)
656 {
657 	uint16_t csum;
658 
659 	/* Legacy IP has a header checksum that needs to be correct. */
660 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
661 		if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) {
662 			lc->lro_bad_csum++;
663 			return (TCP_LRO_CANNOT);
664 		}
665 	} else {
666 		csum = in_cksum_hdr(ip4);
667 		if (__predict_false(csum != 0)) {
668 			lc->lro_bad_csum++;
669 			return (TCP_LRO_CANNOT);
670 		}
671 	}
672 	return (0);
673 }
674 #endif
675 
676 #ifdef TCPHPTS
677 static void
678 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc,
679     const struct lro_entry *le, const struct mbuf *m,
680     int frm, int32_t tcp_data_len, uint32_t th_seq,
681     uint32_t th_ack, uint16_t th_win)
682 {
683 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
684 		union tcp_log_stackspecific log;
685 		struct timeval tv, btv;
686 		uint32_t cts;
687 
688 		cts = tcp_get_usecs(&tv);
689 		memset(&log, 0, sizeof(union tcp_log_stackspecific));
690 		log.u_bbr.flex8 = frm;
691 		log.u_bbr.flex1 = tcp_data_len;
692 		if (m)
693 			log.u_bbr.flex2 = m->m_pkthdr.len;
694 		else
695 			log.u_bbr.flex2 = 0;
696 		if (le->m_head) {
697 			log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs;
698 			log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len;
699 			log.u_bbr.flex5 = le->m_head->m_pkthdr.len;
700 			log.u_bbr.delRate = le->m_head->m_flags;
701 			log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp;
702 		}
703 		log.u_bbr.inflight = th_seq;
704 		log.u_bbr.delivered = th_ack;
705 		log.u_bbr.timeStamp = cts;
706 		log.u_bbr.epoch = le->next_seq;
707 		log.u_bbr.lt_epoch = le->ack_seq;
708 		log.u_bbr.pacing_gain = th_win;
709 		log.u_bbr.cwnd_gain = le->window;
710 		log.u_bbr.lost = curcpu;
711 		log.u_bbr.cur_del_rate = (uintptr_t)m;
712 		log.u_bbr.bw_inuse = (uintptr_t)le->m_head;
713 		bintime2timeval(&lc->lro_last_queue_time, &btv);
714 		log.u_bbr.flex6 = tcp_tv_to_usectick(&btv);
715 		log.u_bbr.flex7 = le->compressed;
716 		log.u_bbr.pacing_gain = le->uncompressed;
717 		if (in_epoch(net_epoch_preempt))
718 			log.u_bbr.inhpts = 1;
719 		else
720 			log.u_bbr.inhpts = 0;
721 		TCP_LOG_EVENTP(tp, NULL, &tptosocket(tp)->so_rcv,
722 		    &tptosocket(tp)->so_snd,
723 		    TCP_LOG_LRO, 0, 0, &log, false, &tv);
724 	}
725 }
726 #endif
727 
728 static inline void
729 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum)
730 {
731 	uint32_t csum;
732 
733 	csum = 0xffff - *ptr + value;
734 	while (csum > 0xffff)
735 		csum = (csum >> 16) + (csum & 0xffff);
736 	*ptr = value;
737 	*psum = csum;
738 }
739 
740 static uint16_t
741 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le,
742     uint16_t payload_len, uint16_t delta_sum)
743 {
744 	uint32_t csum;
745 	uint16_t tlen;
746 	uint16_t temp[5] = {};
747 
748 	switch (pa->data.lro_type) {
749 	case LRO_TYPE_IPV4_TCP:
750 		/* Compute new IPv4 length. */
751 		tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len;
752 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]);
753 
754 		/* Subtract delta from current IPv4 checksum. */
755 		csum = pa->ip4->ip_sum + 0xffff - temp[0];
756 		while (csum > 0xffff)
757 			csum = (csum >> 16) + (csum & 0xffff);
758 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]);
759 		goto update_tcp_header;
760 
761 	case LRO_TYPE_IPV6_TCP:
762 		/* Compute new IPv6 length. */
763 		tlen = (pa->tcp->th_off << 2) + payload_len;
764 		tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]);
765 		goto update_tcp_header;
766 
767 	case LRO_TYPE_IPV4_UDP:
768 		/* Compute new IPv4 length. */
769 		tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len;
770 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]);
771 
772 		/* Subtract delta from current IPv4 checksum. */
773 		csum = pa->ip4->ip_sum + 0xffff - temp[0];
774 		while (csum > 0xffff)
775 			csum = (csum >> 16) + (csum & 0xffff);
776 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]);
777 		goto update_udp_header;
778 
779 	case LRO_TYPE_IPV6_UDP:
780 		/* Compute new IPv6 length. */
781 		tlen = sizeof(*pa->udp) + payload_len;
782 		tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]);
783 		goto update_udp_header;
784 
785 	default:
786 		return (0);
787 	}
788 
789 update_tcp_header:
790 	/* Compute current TCP header checksum. */
791 	temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp);
792 
793 	/* Incorporate the latest ACK into the TCP header. */
794 	pa->tcp->th_ack = le->ack_seq;
795 	pa->tcp->th_win = le->window;
796 
797 	/* Incorporate latest timestamp into the TCP header. */
798 	if (le->timestamp != 0) {
799 		uint32_t *ts_ptr;
800 
801 		ts_ptr = (uint32_t *)(pa->tcp + 1);
802 		ts_ptr[1] = htonl(le->tsval);
803 		ts_ptr[2] = le->tsecr;
804 	}
805 
806 	/* Compute new TCP header checksum. */
807 	temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp);
808 
809 	/* Compute new TCP checksum. */
810 	csum = pa->tcp->th_sum + 0xffff - delta_sum +
811 	    0xffff - temp[0] + 0xffff - temp[3] + temp[2];
812 	while (csum > 0xffff)
813 		csum = (csum >> 16) + (csum & 0xffff);
814 
815 	/* Assign new TCP checksum. */
816 	tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]);
817 
818 	/* Compute all modififications affecting next checksum. */
819 	csum = temp[0] + temp[1] + 0xffff - temp[2] +
820 	    temp[3] + temp[4] + delta_sum;
821 	while (csum > 0xffff)
822 		csum = (csum >> 16) + (csum & 0xffff);
823 
824 	/* Return delta checksum to next stage, if any. */
825 	return (csum);
826 
827 update_udp_header:
828 	tlen = sizeof(*pa->udp) + payload_len;
829 	/* Assign new UDP length and compute checksum delta. */
830 	tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]);
831 
832 	/* Check if there is a UDP checksum. */
833 	if (__predict_false(pa->udp->uh_sum != 0)) {
834 		/* Compute new UDP checksum. */
835 		csum = pa->udp->uh_sum + 0xffff - delta_sum +
836 		    0xffff - temp[0] + 0xffff - temp[2];
837 		while (csum > 0xffff)
838 			csum = (csum >> 16) + (csum & 0xffff);
839 		/* Assign new UDP checksum. */
840 		tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]);
841 	}
842 
843 	/* Compute all modififications affecting next checksum. */
844 	csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum;
845 	while (csum > 0xffff)
846 		csum = (csum >> 16) + (csum & 0xffff);
847 
848 	/* Return delta checksum to next stage, if any. */
849 	return (csum);
850 }
851 
852 static void
853 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le)
854 {
855 	/* Check if we need to recompute any checksums. */
856 	if (le->needs_merge) {
857 		uint16_t csum;
858 
859 		switch (le->inner.data.lro_type) {
860 		case LRO_TYPE_IPV4_TCP:
861 			csum = tcp_lro_update_checksum(&le->inner, le,
862 			    le->m_head->m_pkthdr.lro_tcp_d_len,
863 			    le->m_head->m_pkthdr.lro_tcp_d_csum);
864 			csum = tcp_lro_update_checksum(&le->outer, NULL,
865 			    le->m_head->m_pkthdr.lro_tcp_d_len +
866 			    le->inner.total_hdr_len, csum);
867 			le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
868 			    CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID;
869 			le->m_head->m_pkthdr.csum_data = 0xffff;
870 			if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED))
871 				le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED;
872 			break;
873 		case LRO_TYPE_IPV6_TCP:
874 			csum = tcp_lro_update_checksum(&le->inner, le,
875 			    le->m_head->m_pkthdr.lro_tcp_d_len,
876 			    le->m_head->m_pkthdr.lro_tcp_d_csum);
877 			csum = tcp_lro_update_checksum(&le->outer, NULL,
878 			    le->m_head->m_pkthdr.lro_tcp_d_len +
879 			    le->inner.total_hdr_len, csum);
880 			le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
881 			    CSUM_PSEUDO_HDR;
882 			le->m_head->m_pkthdr.csum_data = 0xffff;
883 			if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED))
884 				le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED;
885 			break;
886 		case LRO_TYPE_NONE:
887 			switch (le->outer.data.lro_type) {
888 			case LRO_TYPE_IPV4_TCP:
889 				csum = tcp_lro_update_checksum(&le->outer, le,
890 				    le->m_head->m_pkthdr.lro_tcp_d_len,
891 				    le->m_head->m_pkthdr.lro_tcp_d_csum);
892 				le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
893 				    CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID;
894 				le->m_head->m_pkthdr.csum_data = 0xffff;
895 				if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED))
896 					le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED;
897 				break;
898 			case LRO_TYPE_IPV6_TCP:
899 				csum = tcp_lro_update_checksum(&le->outer, le,
900 				    le->m_head->m_pkthdr.lro_tcp_d_len,
901 				    le->m_head->m_pkthdr.lro_tcp_d_csum);
902 				le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
903 				    CSUM_PSEUDO_HDR;
904 				le->m_head->m_pkthdr.csum_data = 0xffff;
905 				if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED))
906 					le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED;
907 				break;
908 			default:
909 				break;
910 			}
911 			break;
912 		default:
913 			break;
914 		}
915 	}
916 
917 	/*
918 	 * Break any chain, this is not set to NULL on the singleton
919 	 * case m_nextpkt points to m_head. Other case set them
920 	 * m_nextpkt to NULL in push_and_replace.
921 	 */
922 	le->m_head->m_nextpkt = NULL;
923 	lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs;
924 	(*lc->ifp->if_input)(lc->ifp, le->m_head);
925 }
926 
927 static void
928 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le,
929     struct mbuf *m, struct tcphdr *th)
930 {
931 	uint32_t *ts_ptr;
932 	uint16_t tcp_data_len;
933 	uint16_t tcp_opt_len;
934 
935 	ts_ptr = (uint32_t *)(th + 1);
936 	tcp_opt_len = (th->th_off << 2);
937 	tcp_opt_len -= sizeof(*th);
938 
939 	/* Check if there is a timestamp option. */
940 	if (tcp_opt_len == 0 ||
941 	    __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA ||
942 	    *ts_ptr != TCP_LRO_TS_OPTION)) {
943 		/* We failed to find the timestamp option. */
944 		le->timestamp = 0;
945 	} else {
946 		le->timestamp = 1;
947 		le->tsval = ntohl(*(ts_ptr + 1));
948 		le->tsecr = *(ts_ptr + 2);
949 	}
950 
951 	tcp_data_len = m->m_pkthdr.lro_tcp_d_len;
952 
953 	/* Pull out TCP sequence numbers and window size. */
954 	le->next_seq = ntohl(th->th_seq) + tcp_data_len;
955 	le->ack_seq = th->th_ack;
956 	le->window = th->th_win;
957 	le->flags = tcp_get_flags(th);
958 	le->needs_merge = 0;
959 
960 	/* Setup new data pointers. */
961 	le->m_head = m;
962 	le->m_tail = m_last(m);
963 }
964 
965 static void
966 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m)
967 {
968 	struct lro_parser *pa;
969 
970 	/*
971 	 * Push up the stack of the current entry
972 	 * and replace it with "m".
973 	 */
974 	struct mbuf *msave;
975 
976 	/* Grab off the next and save it */
977 	msave = le->m_head->m_nextpkt;
978 	le->m_head->m_nextpkt = NULL;
979 
980 	/* Now push out the old entry */
981 	tcp_flush_out_entry(lc, le);
982 
983 	/* Re-parse new header, should not fail. */
984 	pa = tcp_lro_parser(m, &le->outer, &le->inner, false);
985 	KASSERT(pa != NULL,
986 	    ("tcp_push_and_replace: LRO parser failed on m=%p\n", m));
987 
988 	/*
989 	 * Now to replace the data properly in the entry
990 	 * we have to reset the TCP header and
991 	 * other fields.
992 	 */
993 	tcp_set_entry_to_mbuf(lc, le, m, pa->tcp);
994 
995 	/* Restore the next list */
996 	m->m_nextpkt = msave;
997 }
998 
999 static void
1000 tcp_lro_mbuf_append_pkthdr(struct lro_entry *le, const struct mbuf *p)
1001 {
1002 	struct mbuf *m;
1003 	uint32_t csum;
1004 
1005 	m = le->m_head;
1006 	if (m->m_pkthdr.lro_nsegs == 1) {
1007 		/* Compute relative checksum. */
1008 		csum = p->m_pkthdr.lro_tcp_d_csum;
1009 	} else {
1010 		/* Merge TCP data checksums. */
1011 		csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum +
1012 		    (uint32_t)p->m_pkthdr.lro_tcp_d_csum;
1013 		while (csum > 0xffff)
1014 			csum = (csum >> 16) + (csum & 0xffff);
1015 	}
1016 
1017 	/* Update various counters. */
1018 	m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len;
1019 	m->m_pkthdr.lro_tcp_d_csum = csum;
1020 	m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len;
1021 	m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs;
1022 	le->needs_merge = 1;
1023 }
1024 
1025 static void
1026 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le)
1027 {
1028 	/*
1029 	 * Walk through the mbuf chain we
1030 	 * have on tap and compress/condense
1031 	 * as required.
1032 	 */
1033 	uint32_t *ts_ptr;
1034 	struct mbuf *m;
1035 	struct tcphdr *th;
1036 	uint32_t tcp_data_len_total;
1037 	uint32_t tcp_data_seg_total;
1038 	uint16_t tcp_data_len;
1039 	uint16_t tcp_opt_len;
1040 
1041 	/*
1042 	 * First we must check the lead (m_head)
1043 	 * we must make sure that it is *not*
1044 	 * something that should be sent up
1045 	 * right away (sack etc).
1046 	 */
1047 again:
1048 	m = le->m_head->m_nextpkt;
1049 	if (m == NULL) {
1050 		/* Just one left. */
1051 		return;
1052 	}
1053 
1054 	th = tcp_lro_get_th(m);
1055 	tcp_opt_len = (th->th_off << 2);
1056 	tcp_opt_len -= sizeof(*th);
1057 	ts_ptr = (uint32_t *)(th + 1);
1058 
1059 	if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA ||
1060 	    *ts_ptr != TCP_LRO_TS_OPTION)) {
1061 		/*
1062 		 * Its not the timestamp. We can't
1063 		 * use this guy as the head.
1064 		 */
1065 		le->m_head->m_nextpkt = m->m_nextpkt;
1066 		tcp_push_and_replace(lc, le, m);
1067 		goto again;
1068 	}
1069 	if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) {
1070 		/*
1071 		 * Make sure that previously seen segments/ACKs are delivered
1072 		 * before this segment, e.g. FIN.
1073 		 */
1074 		le->m_head->m_nextpkt = m->m_nextpkt;
1075 		tcp_push_and_replace(lc, le, m);
1076 		goto again;
1077 	}
1078 	while((m = le->m_head->m_nextpkt) != NULL) {
1079 		/*
1080 		 * condense m into le, first
1081 		 * pull m out of the list.
1082 		 */
1083 		le->m_head->m_nextpkt = m->m_nextpkt;
1084 		m->m_nextpkt = NULL;
1085 		/* Setup my data */
1086 		tcp_data_len = m->m_pkthdr.lro_tcp_d_len;
1087 		th = tcp_lro_get_th(m);
1088 		ts_ptr = (uint32_t *)(th + 1);
1089 		tcp_opt_len = (th->th_off << 2);
1090 		tcp_opt_len -= sizeof(*th);
1091 		tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len;
1092 		tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs;
1093 
1094 		if (tcp_data_seg_total >= lc->lro_ackcnt_lim ||
1095 		    tcp_data_len_total >= lc->lro_length_lim) {
1096 			/* Flush now if appending will result in overflow. */
1097 			tcp_push_and_replace(lc, le, m);
1098 			goto again;
1099 		}
1100 		if (tcp_opt_len != 0 &&
1101 		    __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA ||
1102 		    *ts_ptr != TCP_LRO_TS_OPTION)) {
1103 			/*
1104 			 * Maybe a sack in the new one? We need to
1105 			 * start all over after flushing the
1106 			 * current le. We will go up to the beginning
1107 			 * and flush it (calling the replace again possibly
1108 			 * or just returning).
1109 			 */
1110 			tcp_push_and_replace(lc, le, m);
1111 			goto again;
1112 		}
1113 		if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) {
1114 			tcp_push_and_replace(lc, le, m);
1115 			goto again;
1116 		}
1117 		if (tcp_opt_len != 0) {
1118 			uint32_t tsval = ntohl(*(ts_ptr + 1));
1119 			/* Make sure timestamp values are increasing. */
1120 			if (TSTMP_GT(le->tsval, tsval))  {
1121 				tcp_push_and_replace(lc, le, m);
1122 				goto again;
1123 			}
1124 			le->tsval = tsval;
1125 			le->tsecr = *(ts_ptr + 2);
1126 		}
1127 		/* Try to append the new segment. */
1128 		if (__predict_false(ntohl(th->th_seq) != le->next_seq ||
1129 				    ((tcp_get_flags(th) & TH_ACK) !=
1130 				      (le->flags & TH_ACK)) ||
1131 				    (tcp_data_len == 0 &&
1132 				     le->ack_seq == th->th_ack &&
1133 				     le->window == th->th_win))) {
1134 			/* Out of order packet, non-ACK + ACK or dup ACK. */
1135 			tcp_push_and_replace(lc, le, m);
1136 			goto again;
1137 		}
1138 		if (tcp_data_len != 0 ||
1139 		    SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) {
1140 			le->next_seq += tcp_data_len;
1141 			le->ack_seq = th->th_ack;
1142 			le->window = th->th_win;
1143 			le->needs_merge = 1;
1144 		} else if (th->th_ack == le->ack_seq) {
1145 			if (WIN_GT(th->th_win, le->window)) {
1146 				le->window = th->th_win;
1147 				le->needs_merge = 1;
1148 			}
1149 		}
1150 
1151 		if (tcp_data_len == 0) {
1152 			m_freem(m);
1153 			continue;
1154 		}
1155 
1156 		/* Merge TCP data checksum and length to head mbuf. */
1157 		tcp_lro_mbuf_append_pkthdr(le, m);
1158 
1159 		/*
1160 		 * Adjust the mbuf so that m_data points to the first byte of
1161 		 * the ULP payload.  Adjust the mbuf to avoid complications and
1162 		 * append new segment to existing mbuf chain.
1163 		 */
1164 		m_adj(m, m->m_pkthdr.len - tcp_data_len);
1165 		m_demote_pkthdr(m);
1166 		le->m_tail->m_next = m;
1167 		le->m_tail = m_last(m);
1168 	}
1169 }
1170 
1171 #ifdef TCPHPTS
1172 static void
1173 tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le)
1174 {
1175 	INP_WLOCK_ASSERT(inp);
1176 	if (tp->t_in_pkt == NULL) {
1177 		/* Nothing yet there */
1178 		tp->t_in_pkt = le->m_head;
1179 		tp->t_tail_pkt = le->m_last_mbuf;
1180 	} else {
1181 		/* Already some there */
1182 		tp->t_tail_pkt->m_nextpkt = le->m_head;
1183 		tp->t_tail_pkt = le->m_last_mbuf;
1184 	}
1185 	le->m_head = NULL;
1186 	le->m_last_mbuf = NULL;
1187 }
1188 
1189 static struct mbuf *
1190 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le,
1191     struct inpcb *inp, int32_t *new_m, bool can_append_old_cmp)
1192 {
1193 	struct tcpcb *tp;
1194 	struct mbuf *m;
1195 
1196 	tp = intotcpcb(inp);
1197 	if (__predict_false(tp == NULL))
1198 		return (NULL);
1199 
1200 	/* Look at the last mbuf if any in queue */
1201  	if (can_append_old_cmp) {
1202 		m = tp->t_tail_pkt;
1203 		if (m != NULL && (m->m_flags & M_ACKCMP) != 0) {
1204 			if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) {
1205 				tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0);
1206 				*new_m = 0;
1207 				counter_u64_add(tcp_extra_mbuf, 1);
1208 				return (m);
1209 			} else {
1210 				/* Mark we ran out of space */
1211 				inp->inp_flags2 |= INP_MBUF_L_ACKS;
1212 			}
1213 		}
1214 	}
1215 	/* Decide mbuf size. */
1216 	tcp_lro_log(tp, lc, le, NULL, 21, 0, 0, 0, 0);
1217 	if (inp->inp_flags2 & INP_MBUF_L_ACKS)
1218 		m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR);
1219 	else
1220 		m = m_gethdr(M_NOWAIT, MT_DATA);
1221 
1222 	if (__predict_false(m == NULL)) {
1223 		counter_u64_add(tcp_would_have_but, 1);
1224 		return (NULL);
1225 	}
1226 	counter_u64_add(tcp_comp_total, 1);
1227  	m->m_pkthdr.rcvif = lc->ifp;
1228 	m->m_flags |= M_ACKCMP;
1229 	*new_m = 1;
1230 	return (m);
1231 }
1232 
1233 static struct inpcb *
1234 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa)
1235 {
1236 	struct inpcb *inp;
1237 
1238 	switch (pa->data.lro_type) {
1239 #ifdef INET6
1240 	case LRO_TYPE_IPV6_TCP:
1241 		inp = in6_pcblookup(&V_tcbinfo,
1242 		    &pa->data.s_addr.v6,
1243 		    pa->data.s_port,
1244 		    &pa->data.d_addr.v6,
1245 		    pa->data.d_port,
1246 		    INPLOOKUP_WLOCKPCB,
1247 		    ifp);
1248 		break;
1249 #endif
1250 #ifdef INET
1251 	case LRO_TYPE_IPV4_TCP:
1252 		inp = in_pcblookup(&V_tcbinfo,
1253 		    pa->data.s_addr.v4,
1254 		    pa->data.s_port,
1255 		    pa->data.d_addr.v4,
1256 		    pa->data.d_port,
1257 		    INPLOOKUP_WLOCKPCB,
1258 		    ifp);
1259 		break;
1260 #endif
1261 	default:
1262 		inp = NULL;
1263 		break;
1264 	}
1265 	return (inp);
1266 }
1267 
1268 static inline bool
1269 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts)
1270 {
1271 	/*
1272 	 * This function returns two bits of valuable information.
1273 	 * a) Is what is present capable of being ack-compressed,
1274 	 *    we can ack-compress if there is no options or just
1275 	 *    a timestamp option, and of course the th_flags must
1276 	 *    be correct as well.
1277 	 * b) Our other options present such as SACK. This is
1278 	 *    used to determine if we want to wakeup or not.
1279 	 */
1280 	bool ret = true;
1281 
1282 	switch (th->th_off << 2) {
1283 	case (sizeof(*th) + TCPOLEN_TSTAMP_APPA):
1284 		*ppts = (uint32_t *)(th + 1);
1285 		/* Check if we have only one timestamp option. */
1286 		if (**ppts == TCP_LRO_TS_OPTION)
1287 			*other_opts = false;
1288 		else {
1289 			*other_opts = true;
1290 			ret = false;
1291 		}
1292 		break;
1293 	case (sizeof(*th)):
1294 		/* No options. */
1295 		*ppts = NULL;
1296 		*other_opts = false;
1297 		break;
1298 	default:
1299 		*ppts = NULL;
1300 		*other_opts = true;
1301 		ret = false;
1302 		break;
1303 	}
1304 	/* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */
1305 	if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0)
1306 		ret = false;
1307 	/* If it has data on it we cannot compress it */
1308 	if (m->m_pkthdr.lro_tcp_d_len)
1309 		ret = false;
1310 
1311 	/* ACK flag must be set. */
1312 	if (!(tcp_get_flags(th) & TH_ACK))
1313 		ret = false;
1314 	return (ret);
1315 }
1316 
1317 static int
1318 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le)
1319 {
1320 	struct inpcb *inp;
1321 	struct tcpcb *tp;
1322 	struct mbuf **pp, *cmp, *mv_to;
1323 	struct ifnet *lagg_ifp;
1324  	bool bpf_req, lagg_bpf_req, should_wake, can_append_old_cmp;
1325 
1326 	/* Check if packet doesn't belongs to our network interface. */
1327 	if ((tcplro_stacks_wanting_mbufq == 0) ||
1328 	    (le->outer.data.vlan_id != 0) ||
1329 	    (le->inner.data.lro_type != LRO_TYPE_NONE))
1330 		return (TCP_LRO_CANNOT);
1331 
1332 #ifdef INET6
1333 	/*
1334 	 * Be proactive about unspecified IPv6 address in source. As
1335 	 * we use all-zero to indicate unbounded/unconnected pcb,
1336 	 * unspecified IPv6 address can be used to confuse us.
1337 	 *
1338 	 * Note that packets with unspecified IPv6 destination is
1339 	 * already dropped in ip6_input.
1340 	 */
1341 	if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP &&
1342 	    IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6)))
1343 		return (TCP_LRO_CANNOT);
1344 
1345 	if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP &&
1346 	    IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6)))
1347 		return (TCP_LRO_CANNOT);
1348 #endif
1349 	/* Lookup inp, if any. */
1350 	inp = tcp_lro_lookup(lc->ifp,
1351 	    (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner);
1352 	if (inp == NULL)
1353 		return (TCP_LRO_CANNOT);
1354 
1355 	counter_u64_add(tcp_inp_lro_locks_taken, 1);
1356 
1357 	/* Get TCP control structure. */
1358 	tp = intotcpcb(inp);
1359 
1360 	/* Check if the inp is dead, Jim. */
1361 	if (tp->t_state == TCPS_TIME_WAIT) {
1362 		INP_WUNLOCK(inp);
1363 		return (TCP_LRO_CANNOT);
1364 	}
1365 	if ((inp->inp_irq_cpu_set == 0)  && (lc->lro_cpu_is_set == 1)) {
1366 		inp->inp_irq_cpu = lc->lro_last_cpu;
1367 		inp->inp_irq_cpu_set = 1;
1368 	}
1369 	/* Check if the transport doesn't support the needed optimizations. */
1370 	if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) {
1371 		INP_WUNLOCK(inp);
1372 		return (TCP_LRO_CANNOT);
1373 	}
1374 
1375 	if (inp->inp_flags2 & INP_MBUF_QUEUE_READY)
1376 		should_wake = false;
1377 	else
1378 		should_wake = true;
1379 	/* Check if packets should be tapped to BPF. */
1380 	bpf_req = bpf_peers_present(lc->ifp->if_bpf);
1381 	lagg_bpf_req = false;
1382 	lagg_ifp = NULL;
1383 	if (lc->ifp->if_type == IFT_IEEE8023ADLAG ||
1384 	    lc->ifp->if_type == IFT_INFINIBANDLAG) {
1385 		struct lagg_port *lp = lc->ifp->if_lagg;
1386 		struct lagg_softc *sc = lp->lp_softc;
1387 
1388 		lagg_ifp = sc->sc_ifp;
1389 		if (lagg_ifp != NULL)
1390 			lagg_bpf_req = bpf_peers_present(lagg_ifp->if_bpf);
1391 	}
1392 
1393 	/* Strip and compress all the incoming packets. */
1394  	can_append_old_cmp = true;
1395 	cmp = NULL;
1396 	for (pp = &le->m_head; *pp != NULL; ) {
1397 		mv_to = NULL;
1398 		if (do_bpf_strip_and_compress(inp, lc, le, pp,
1399 			&cmp, &mv_to, &should_wake, bpf_req,
1400  			lagg_bpf_req, lagg_ifp, can_append_old_cmp) == false) {
1401 			/* Advance to next mbuf. */
1402 			pp = &(*pp)->m_nextpkt;
1403  			/*
1404  			 * Once we have appended we can't look in the pending
1405  			 * inbound packets for a compressed ack to append to.
1406  			 */
1407  			can_append_old_cmp = false;
1408  			/*
1409  			 * Once we append we also need to stop adding to any
1410  			 * compressed ack we were remembering. A new cmp
1411  			 * ack will be required.
1412  			 */
1413  			cmp = NULL;
1414  			tcp_lro_log(tp, lc, le, NULL, 25, 0, 0, 0, 0);
1415 		} else if (mv_to != NULL) {
1416 			/* We are asked to move pp up */
1417 			pp = &mv_to->m_nextpkt;
1418  			tcp_lro_log(tp, lc, le, NULL, 24, 0, 0, 0, 0);
1419 		} else
1420  			tcp_lro_log(tp, lc, le, NULL, 26, 0, 0, 0, 0);
1421 	}
1422 	/* Update "m_last_mbuf", if any. */
1423 	if (pp == &le->m_head)
1424 		le->m_last_mbuf = *pp;
1425 	else
1426 		le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt);
1427 
1428 	/* Check if any data mbufs left. */
1429 	if (le->m_head != NULL) {
1430 		counter_u64_add(tcp_inp_lro_direct_queue, 1);
1431 		tcp_lro_log(tp, lc, le, NULL, 22, 1, inp->inp_flags2, 0, 1);
1432 		tcp_queue_pkts(inp, tp, le);
1433 	}
1434 	if (should_wake) {
1435 		/* Wakeup */
1436 		counter_u64_add(tcp_inp_lro_wokeup_queue, 1);
1437 		if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0))
1438 			inp = NULL;
1439 	}
1440 	if (inp != NULL)
1441 		INP_WUNLOCK(inp);
1442 	return (0);	/* Success. */
1443 }
1444 #endif
1445 
1446 void
1447 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le)
1448 {
1449 	/* Only optimise if there are multiple packets waiting. */
1450 #ifdef TCPHPTS
1451 	int error;
1452 #endif
1453 
1454 	NET_EPOCH_ASSERT();
1455 #ifdef TCPHPTS
1456 	CURVNET_SET(lc->ifp->if_vnet);
1457 	error = tcp_lro_flush_tcphpts(lc, le);
1458 	CURVNET_RESTORE();
1459 	if (error != 0) {
1460 #endif
1461 		tcp_lro_condense(lc, le);
1462 		tcp_flush_out_entry(lc, le);
1463 #ifdef TCPHPTS
1464 	}
1465 #endif
1466 	lc->lro_flushed++;
1467 	bzero(le, sizeof(*le));
1468 	LIST_INSERT_HEAD(&lc->lro_free, le, next);
1469 }
1470 
1471 #ifdef HAVE_INLINE_FLSLL
1472 #define	tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1))
1473 #else
1474 static inline uint64_t
1475 tcp_lro_msb_64(uint64_t x)
1476 {
1477 	x |= (x >> 1);
1478 	x |= (x >> 2);
1479 	x |= (x >> 4);
1480 	x |= (x >> 8);
1481 	x |= (x >> 16);
1482 	x |= (x >> 32);
1483 	return (x & ~(x >> 1));
1484 }
1485 #endif
1486 
1487 /*
1488  * The tcp_lro_sort() routine is comparable to qsort(), except it has
1489  * a worst case complexity limit of O(MIN(N,64)*N), where N is the
1490  * number of elements to sort and 64 is the number of sequence bits
1491  * available. The algorithm is bit-slicing the 64-bit sequence number,
1492  * sorting one bit at a time from the most significant bit until the
1493  * least significant one, skipping the constant bits. This is
1494  * typically called a radix sort.
1495  */
1496 static void
1497 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size)
1498 {
1499 	struct lro_mbuf_sort temp;
1500 	uint64_t ones;
1501 	uint64_t zeros;
1502 	uint32_t x;
1503 	uint32_t y;
1504 
1505 repeat:
1506 	/* for small arrays insertion sort is faster */
1507 	if (size <= 12) {
1508 		for (x = 1; x < size; x++) {
1509 			temp = parray[x];
1510 			for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--)
1511 				parray[y] = parray[y - 1];
1512 			parray[y] = temp;
1513 		}
1514 		return;
1515 	}
1516 
1517 	/* compute sequence bits which are constant */
1518 	ones = 0;
1519 	zeros = 0;
1520 	for (x = 0; x != size; x++) {
1521 		ones |= parray[x].seq;
1522 		zeros |= ~parray[x].seq;
1523 	}
1524 
1525 	/* compute bits which are not constant into "ones" */
1526 	ones &= zeros;
1527 	if (ones == 0)
1528 		return;
1529 
1530 	/* pick the most significant bit which is not constant */
1531 	ones = tcp_lro_msb_64(ones);
1532 
1533 	/*
1534 	 * Move entries having cleared sequence bits to the beginning
1535 	 * of the array:
1536 	 */
1537 	for (x = y = 0; y != size; y++) {
1538 		/* skip set bits */
1539 		if (parray[y].seq & ones)
1540 			continue;
1541 		/* swap entries */
1542 		temp = parray[x];
1543 		parray[x] = parray[y];
1544 		parray[y] = temp;
1545 		x++;
1546 	}
1547 
1548 	KASSERT(x != 0 && x != size, ("Memory is corrupted\n"));
1549 
1550 	/* sort zeros */
1551 	tcp_lro_sort(parray, x);
1552 
1553 	/* sort ones */
1554 	parray += x;
1555 	size -= x;
1556 	goto repeat;
1557 }
1558 
1559 void
1560 tcp_lro_flush_all(struct lro_ctrl *lc)
1561 {
1562 	uint64_t seq;
1563 	uint64_t nseq;
1564 	unsigned x;
1565 
1566 	NET_EPOCH_ASSERT();
1567 	/* check if no mbufs to flush */
1568 	if (lc->lro_mbuf_count == 0)
1569 		goto done;
1570 	if (lc->lro_cpu_is_set == 0) {
1571 		if (lc->lro_last_cpu == curcpu) {
1572 			lc->lro_cnt_of_same_cpu++;
1573 			/* Have we reached the threshold to declare a cpu? */
1574 			if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh)
1575 				lc->lro_cpu_is_set = 1;
1576 		} else {
1577 			lc->lro_last_cpu = curcpu;
1578 			lc->lro_cnt_of_same_cpu = 0;
1579 		}
1580 	}
1581 	CURVNET_SET(lc->ifp->if_vnet);
1582 
1583 	/* get current time */
1584 	binuptime(&lc->lro_last_queue_time);
1585 
1586 	/* sort all mbufs according to stream */
1587 	tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count);
1588 
1589 	/* input data into LRO engine, stream by stream */
1590 	seq = 0;
1591 	for (x = 0; x != lc->lro_mbuf_count; x++) {
1592 		struct mbuf *mb;
1593 
1594 		/* get mbuf */
1595 		mb = lc->lro_mbuf_data[x].mb;
1596 
1597 		/* get sequence number, masking away the packet index */
1598 		nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24);
1599 
1600 		/* check for new stream */
1601 		if (seq != nseq) {
1602 			seq = nseq;
1603 
1604 			/* flush active streams */
1605 			tcp_lro_rx_done(lc);
1606 		}
1607 
1608 		/* add packet to LRO engine */
1609 		if (tcp_lro_rx_common(lc, mb, 0, false) != 0) {
1610  			/* Flush anything we have acummulated */
1611  			tcp_lro_flush_active(lc);
1612 			/* input packet to network layer */
1613 			(*lc->ifp->if_input)(lc->ifp, mb);
1614 			lc->lro_queued++;
1615 			lc->lro_flushed++;
1616 		}
1617 	}
1618 	CURVNET_RESTORE();
1619 done:
1620 	/* flush active streams */
1621 	tcp_lro_rx_done(lc);
1622 
1623 #ifdef TCPHPTS
1624 	tcp_run_hpts();
1625 #endif
1626 	lc->lro_mbuf_count = 0;
1627 }
1628 
1629 #ifdef TCPHPTS
1630 static void
1631 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m,
1632     uint32_t *ts_ptr, uint16_t iptos)
1633 {
1634 	/*
1635 	 * Given a TCP ACK, summarize it down into the small TCP ACK
1636 	 * entry.
1637 	 */
1638 	ae->timestamp = m->m_pkthdr.rcv_tstmp;
1639 	ae->flags = 0;
1640 	if (m->m_flags & M_TSTMP_LRO)
1641 		ae->flags |= TSTMP_LRO;
1642 	else if (m->m_flags & M_TSTMP)
1643 		ae->flags |= TSTMP_HDWR;
1644 	ae->seq = ntohl(th->th_seq);
1645 	ae->ack = ntohl(th->th_ack);
1646 	ae->flags |= tcp_get_flags(th);
1647 	if (ts_ptr != NULL) {
1648 		ae->ts_value = ntohl(ts_ptr[1]);
1649 		ae->ts_echo = ntohl(ts_ptr[2]);
1650 		ae->flags |= HAS_TSTMP;
1651 	}
1652 	ae->win = ntohs(th->th_win);
1653 	ae->codepoint = iptos;
1654 }
1655 
1656 /*
1657  * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets
1658  * and strip all, but the IPv4/IPv6 header.
1659  */
1660 static bool
1661 do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc,
1662     struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to,
1663     bool *should_wake, bool bpf_req, bool lagg_bpf_req, struct ifnet *lagg_ifp, bool can_append_old_cmp)
1664 {
1665 	union {
1666 		void *ptr;
1667 		struct ip *ip4;
1668 		struct ip6_hdr *ip6;
1669 	} l3;
1670 	struct mbuf *m;
1671 	struct mbuf *nm;
1672 	struct tcphdr *th;
1673 	struct tcp_ackent *ack_ent;
1674 	uint32_t *ts_ptr;
1675 	int32_t n_mbuf;
1676 	bool other_opts, can_compress;
1677 	uint8_t lro_type;
1678 	uint16_t iptos;
1679 	int tcp_hdr_offset;
1680 	int idx;
1681 
1682 	/* Get current mbuf. */
1683 	m = *pp;
1684 
1685 	/* Let the BPF see the packet */
1686 	if (__predict_false(bpf_req))
1687 		ETHER_BPF_MTAP(lc->ifp, m);
1688 
1689 	if (__predict_false(lagg_bpf_req))
1690 		ETHER_BPF_MTAP(lagg_ifp, m);
1691 
1692 	tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off;
1693 	lro_type = le->inner.data.lro_type;
1694 	switch (lro_type) {
1695 	case LRO_TYPE_NONE:
1696 		lro_type = le->outer.data.lro_type;
1697 		switch (lro_type) {
1698 		case LRO_TYPE_IPV4_TCP:
1699 			tcp_hdr_offset -= sizeof(*le->outer.ip4);
1700 			m->m_pkthdr.lro_etype = ETHERTYPE_IP;
1701 			break;
1702 		case LRO_TYPE_IPV6_TCP:
1703 			tcp_hdr_offset -= sizeof(*le->outer.ip6);
1704 			m->m_pkthdr.lro_etype = ETHERTYPE_IPV6;
1705 			break;
1706 		default:
1707 			goto compressed;
1708 		}
1709 		break;
1710 	case LRO_TYPE_IPV4_TCP:
1711 		tcp_hdr_offset -= sizeof(*le->outer.ip4);
1712 		m->m_pkthdr.lro_etype = ETHERTYPE_IP;
1713 		break;
1714 	case LRO_TYPE_IPV6_TCP:
1715 		tcp_hdr_offset -= sizeof(*le->outer.ip6);
1716 		m->m_pkthdr.lro_etype = ETHERTYPE_IPV6;
1717 		break;
1718 	default:
1719 		goto compressed;
1720 	}
1721 
1722 	MPASS(tcp_hdr_offset >= 0);
1723 
1724 	m_adj(m, tcp_hdr_offset);
1725 	m->m_flags |= M_LRO_EHDRSTRP;
1726 	m->m_flags &= ~M_ACKCMP;
1727 	m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset;
1728 
1729 	th = tcp_lro_get_th(m);
1730 
1731 	th->th_sum = 0;		/* TCP checksum is valid. */
1732 
1733 	/* Check if ACK can be compressed */
1734 	can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts);
1735 
1736 	/* Now lets look at the should wake states */
1737 	if ((other_opts == true) &&
1738 	    ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) {
1739 		/*
1740 		 * If there are other options (SACK?) and the
1741 		 * tcp endpoint has not expressly told us it does
1742 		 * not care about SACKS, then we should wake up.
1743 		 */
1744 		*should_wake = true;
1745 	}
1746 	/* Is the ack compressable? */
1747 	if (can_compress == false)
1748 		goto done;
1749 	/* Does the TCP endpoint support ACK compression? */
1750 	if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0)
1751 		goto done;
1752 
1753 	/* Lets get the TOS/traffic class field */
1754 	l3.ptr = mtod(m, void *);
1755 	switch (lro_type) {
1756 	case LRO_TYPE_IPV4_TCP:
1757 		iptos = l3.ip4->ip_tos;
1758 		break;
1759 	case LRO_TYPE_IPV6_TCP:
1760 		iptos = IPV6_TRAFFIC_CLASS(l3.ip6);
1761 		break;
1762 	default:
1763 		iptos = 0;	/* Keep compiler happy. */
1764 		break;
1765 	}
1766 	/* Now lets get space if we don't have some already */
1767 	if (*cmp == NULL) {
1768 new_one:
1769 		nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf, can_append_old_cmp);
1770 		if (__predict_false(nm == NULL))
1771 			goto done;
1772 		*cmp = nm;
1773 		if (n_mbuf) {
1774 			/*
1775 			 *  Link in the new cmp ack to our in-order place,
1776 			 * first set our cmp ack's next to where we are.
1777 			 */
1778 			nm->m_nextpkt = m;
1779 			(*pp) = nm;
1780 			/*
1781 			 * Set it up so mv_to is advanced to our
1782 			 * compressed ack. This way the caller can
1783 			 * advance pp to the right place.
1784 			 */
1785 			*mv_to = nm;
1786 			/*
1787 			 * Advance it here locally as well.
1788 			 */
1789 			pp = &nm->m_nextpkt;
1790 		}
1791 	} else {
1792 		/* We have one already we are working on */
1793 		nm = *cmp;
1794 		if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) {
1795 			/* We ran out of space */
1796 			inp->inp_flags2 |= INP_MBUF_L_ACKS;
1797 			goto new_one;
1798 		}
1799 	}
1800 	MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent));
1801 	counter_u64_add(tcp_inp_lro_compressed, 1);
1802 	le->compressed++;
1803 	/* We can add in to the one on the tail */
1804 	ack_ent = mtod(nm, struct tcp_ackent *);
1805 	idx = (nm->m_len / sizeof(struct tcp_ackent));
1806 	build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos);
1807 
1808 	/* Bump the size of both pkt-hdr and len */
1809 	nm->m_len += sizeof(struct tcp_ackent);
1810 	nm->m_pkthdr.len += sizeof(struct tcp_ackent);
1811 compressed:
1812 	/* Advance to next mbuf before freeing. */
1813 	*pp = m->m_nextpkt;
1814 	m->m_nextpkt = NULL;
1815 	m_freem(m);
1816 	return (true);
1817 done:
1818 	counter_u64_add(tcp_uncomp_total, 1);
1819 	le->uncompressed++;
1820 	return (false);
1821 }
1822 #endif
1823 
1824 static struct lro_head *
1825 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser)
1826 {
1827 	u_long hash;
1828 
1829 	if (M_HASHTYPE_ISHASH(m)) {
1830 		hash = m->m_pkthdr.flowid;
1831 	} else {
1832 		for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++)
1833 			hash += parser->data.raw[i];
1834 	}
1835 	return (&lc->lro_hash[hash % lc->lro_hashsz]);
1836 }
1837 
1838 static int
1839 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash)
1840 {
1841 	struct lro_parser pi;	/* inner address data */
1842 	struct lro_parser po;	/* outer address data */
1843 	struct lro_parser *pa;	/* current parser for TCP stream */
1844 	struct lro_entry *le;
1845 	struct lro_head *bucket;
1846 	struct tcphdr *th;
1847 	int tcp_data_len;
1848 	int tcp_opt_len;
1849 	int error;
1850 	uint16_t tcp_data_sum;
1851 
1852 #ifdef INET
1853 	/* Quickly decide if packet cannot be LRO'ed */
1854 	if (__predict_false(V_ipforwarding != 0))
1855 		return (TCP_LRO_CANNOT);
1856 #endif
1857 #ifdef INET6
1858 	/* Quickly decide if packet cannot be LRO'ed */
1859 	if (__predict_false(V_ip6_forwarding != 0))
1860 		return (TCP_LRO_CANNOT);
1861 #endif
1862 	if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) !=
1863 	     ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) ||
1864 	    (m->m_pkthdr.csum_data != 0xffff)) {
1865 		/*
1866 		 * The checksum either did not have hardware offload
1867 		 * or it was a bad checksum. We can't LRO such
1868 		 * a packet.
1869 		 */
1870 		counter_u64_add(tcp_bad_csums, 1);
1871 		return (TCP_LRO_CANNOT);
1872 	}
1873 	/* We expect a contiguous header [eh, ip, tcp]. */
1874 	pa = tcp_lro_parser(m, &po, &pi, true);
1875 	if (__predict_false(pa == NULL))
1876 		return (TCP_LRO_NOT_SUPPORTED);
1877 
1878 	/* We don't expect any padding. */
1879 	error = tcp_lro_trim_mbuf_chain(m, pa);
1880 	if (__predict_false(error != 0))
1881 		return (error);
1882 
1883 #ifdef INET
1884 	switch (pa->data.lro_type) {
1885 	case LRO_TYPE_IPV4_TCP:
1886 		error = tcp_lro_rx_ipv4(lc, m, pa->ip4);
1887 		if (__predict_false(error != 0))
1888 			return (error);
1889 		break;
1890 	default:
1891 		break;
1892 	}
1893 #endif
1894 	/* If no hardware or arrival stamp on the packet add timestamp */
1895 	if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) {
1896 		m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time);
1897 		m->m_flags |= M_TSTMP_LRO;
1898 	}
1899 
1900 	/* Get pointer to TCP header. */
1901 	th = pa->tcp;
1902 
1903 	/* Don't process SYN packets. */
1904 	if (__predict_false(tcp_get_flags(th) & TH_SYN))
1905 		return (TCP_LRO_CANNOT);
1906 
1907 	/* Get total TCP header length and compute payload length. */
1908 	tcp_opt_len = (th->th_off << 2);
1909 	tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th -
1910 	    (uint8_t *)m->m_data) - tcp_opt_len;
1911 	tcp_opt_len -= sizeof(*th);
1912 
1913 	/* Don't process invalid TCP headers. */
1914 	if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0))
1915 		return (TCP_LRO_CANNOT);
1916 
1917 	/* Compute TCP data only checksum. */
1918 	if (tcp_data_len == 0)
1919 		tcp_data_sum = 0;	/* no data, no checksum */
1920 	else if (__predict_false(csum != 0))
1921 		tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum);
1922 	else
1923 		tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum);
1924 
1925 	/* Save TCP info in mbuf. */
1926 	m->m_nextpkt = NULL;
1927 	m->m_pkthdr.rcvif = lc->ifp;
1928 	m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum;
1929 	m->m_pkthdr.lro_tcp_d_len = tcp_data_len;
1930 	m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data);
1931 	m->m_pkthdr.lro_nsegs = 1;
1932 
1933 	/* Get hash bucket. */
1934 	if (!use_hash) {
1935 		bucket = &lc->lro_hash[0];
1936 	} else {
1937 		bucket = tcp_lro_rx_get_bucket(lc, m, pa);
1938 	}
1939 
1940 	/* Try to find a matching previous segment. */
1941 	LIST_FOREACH(le, bucket, hash_next) {
1942 		/* Compare addresses and ports. */
1943 		if (lro_address_compare(&po.data, &le->outer.data) == false ||
1944 		    lro_address_compare(&pi.data, &le->inner.data) == false)
1945 			continue;
1946 
1947 		/* Check if no data and old ACK. */
1948 		if (tcp_data_len == 0 &&
1949 		    SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) {
1950 			m_freem(m);
1951 			return (0);
1952 		}
1953 
1954 		/* Mark "m" in the last spot. */
1955 		le->m_last_mbuf->m_nextpkt = m;
1956 		/* Now set the tail to "m". */
1957 		le->m_last_mbuf = m;
1958 		return (0);
1959 	}
1960 
1961 	/* Try to find an empty slot. */
1962 	if (LIST_EMPTY(&lc->lro_free))
1963 		return (TCP_LRO_NO_ENTRIES);
1964 
1965 	/* Start a new segment chain. */
1966 	le = LIST_FIRST(&lc->lro_free);
1967 	LIST_REMOVE(le, next);
1968 	tcp_lro_active_insert(lc, bucket, le);
1969 
1970 	/* Make sure the headers are set. */
1971 	le->inner = pi;
1972 	le->outer = po;
1973 
1974 	/* Store time this entry was allocated. */
1975 	le->alloc_time = lc->lro_last_queue_time;
1976 
1977 	tcp_set_entry_to_mbuf(lc, le, m, th);
1978 
1979 	/* Now set the tail to "m". */
1980 	le->m_last_mbuf = m;
1981 
1982 	return (0);
1983 }
1984 
1985 int
1986 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum)
1987 {
1988 	int error;
1989 
1990 	if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) !=
1991 	     ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) ||
1992 	    (m->m_pkthdr.csum_data != 0xffff)) {
1993 		/*
1994 		 * The checksum either did not have hardware offload
1995 		 * or it was a bad checksum. We can't LRO such
1996 		 * a packet.
1997 		 */
1998 		counter_u64_add(tcp_bad_csums, 1);
1999 		return (TCP_LRO_CANNOT);
2000 	}
2001 	/* get current time */
2002 	binuptime(&lc->lro_last_queue_time);
2003 	CURVNET_SET(lc->ifp->if_vnet);
2004 	error = tcp_lro_rx_common(lc, m, csum, true);
2005 	if (__predict_false(error != 0)) {
2006 		/*
2007 		 * Flush anything we have acummulated
2008 		 * ahead of this packet that can't
2009 		 * be LRO'd. This preserves order.
2010 		 */
2011 		tcp_lro_flush_active(lc);
2012 	}
2013 	CURVNET_RESTORE();
2014 
2015 	return (error);
2016 }
2017 
2018 void
2019 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb)
2020 {
2021 	NET_EPOCH_ASSERT();
2022 	/* sanity checks */
2023 	if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL ||
2024 	    lc->lro_mbuf_max == 0)) {
2025 		/* packet drop */
2026 		m_freem(mb);
2027 		return;
2028 	}
2029 
2030 	/* check if packet is not LRO capable */
2031 	if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) {
2032 		/* input packet to network layer */
2033 		(*lc->ifp->if_input) (lc->ifp, mb);
2034 		return;
2035 	}
2036 
2037  	/* If no hardware or arrival stamp on the packet add timestamp */
2038  	if ((tcplro_stacks_wanting_mbufq > 0) &&
2039  	    (tcp_less_accurate_lro_ts == 0) &&
2040  	    ((mb->m_flags & M_TSTMP) == 0)) {
2041  		/* Add in an LRO time since no hardware */
2042  		binuptime(&lc->lro_last_queue_time);
2043  		mb->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time);
2044  		mb->m_flags |= M_TSTMP_LRO;
2045  	}
2046 
2047 	/* create sequence number */
2048 	lc->lro_mbuf_data[lc->lro_mbuf_count].seq =
2049 	    (((uint64_t)M_HASHTYPE_GET(mb)) << 56) |
2050 	    (((uint64_t)mb->m_pkthdr.flowid) << 24) |
2051 	    ((uint64_t)lc->lro_mbuf_count);
2052 
2053 	/* enter mbuf */
2054 	lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb;
2055 
2056 	/* flush if array is full */
2057 	if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max))
2058 		tcp_lro_flush_all(lc);
2059 }
2060 
2061 /* end */
2062