1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016-2021 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sockbuf.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/ethernet.h> 54 #include <net/bpf.h> 55 #include <net/vnet.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/ip.h> 61 #include <netinet/ip_var.h> 62 #include <netinet/in_pcb.h> 63 #include <netinet6/in6_pcb.h> 64 #include <netinet/tcp.h> 65 #include <netinet/tcp_seq.h> 66 #include <netinet/tcp_lro.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet/tcpip.h> 69 #include <netinet/tcp_hpts.h> 70 #include <netinet/tcp_log_buf.h> 71 #include <netinet/udp.h> 72 #include <netinet6/ip6_var.h> 73 74 #include <machine/in_cksum.h> 75 76 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 77 78 #define TCP_LRO_TS_OPTION \ 79 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 80 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 81 82 static void tcp_lro_rx_done(struct lro_ctrl *lc); 83 static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, 84 uint32_t csum, bool use_hash); 85 86 #ifdef TCPHPTS 87 static bool do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *, 88 struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, bool *, bool); 89 90 #endif 91 92 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 93 "TCP LRO"); 94 95 static long tcplro_stacks_wanting_mbufq; 96 counter_u64_t tcp_inp_lro_direct_queue; 97 counter_u64_t tcp_inp_lro_wokeup_queue; 98 counter_u64_t tcp_inp_lro_compressed; 99 counter_u64_t tcp_inp_lro_locks_taken; 100 counter_u64_t tcp_extra_mbuf; 101 counter_u64_t tcp_would_have_but; 102 counter_u64_t tcp_comp_total; 103 counter_u64_t tcp_uncomp_total; 104 counter_u64_t tcp_bad_csums; 105 106 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 107 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 108 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 109 "default number of LRO entries"); 110 111 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; 112 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, 113 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, 114 "Number of interrups in a row on the same CPU that will make us declare an 'affinity' cpu?"); 115 116 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 117 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 118 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 119 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 120 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 121 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 122 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 123 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 124 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, 125 &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); 126 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, 127 &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); 128 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, 129 &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); 130 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, 131 &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); 132 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, 133 &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); 134 135 void 136 tcp_lro_reg_mbufq(void) 137 { 138 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 139 } 140 141 void 142 tcp_lro_dereg_mbufq(void) 143 { 144 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 145 } 146 147 static __inline void 148 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 149 struct lro_entry *le) 150 { 151 152 LIST_INSERT_HEAD(&lc->lro_active, le, next); 153 LIST_INSERT_HEAD(bucket, le, hash_next); 154 } 155 156 static __inline void 157 tcp_lro_active_remove(struct lro_entry *le) 158 { 159 160 LIST_REMOVE(le, next); /* active list */ 161 LIST_REMOVE(le, hash_next); /* hash bucket */ 162 } 163 164 int 165 tcp_lro_init(struct lro_ctrl *lc) 166 { 167 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 168 } 169 170 int 171 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 172 unsigned lro_entries, unsigned lro_mbufs) 173 { 174 struct lro_entry *le; 175 size_t size; 176 unsigned i, elements; 177 178 lc->lro_bad_csum = 0; 179 lc->lro_queued = 0; 180 lc->lro_flushed = 0; 181 lc->lro_mbuf_count = 0; 182 lc->lro_mbuf_max = lro_mbufs; 183 lc->lro_cnt = lro_entries; 184 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 185 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 186 lc->ifp = ifp; 187 LIST_INIT(&lc->lro_free); 188 LIST_INIT(&lc->lro_active); 189 190 /* create hash table to accelerate entry lookup */ 191 if (lro_entries > lro_mbufs) 192 elements = lro_entries; 193 else 194 elements = lro_mbufs; 195 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 196 HASH_NOWAIT); 197 if (lc->lro_hash == NULL) { 198 memset(lc, 0, sizeof(*lc)); 199 return (ENOMEM); 200 } 201 202 /* compute size to allocate */ 203 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 204 (lro_entries * sizeof(*le)); 205 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 206 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 207 208 /* check for out of memory */ 209 if (lc->lro_mbuf_data == NULL) { 210 free(lc->lro_hash, M_LRO); 211 memset(lc, 0, sizeof(*lc)); 212 return (ENOMEM); 213 } 214 /* compute offset for LRO entries */ 215 le = (struct lro_entry *) 216 (lc->lro_mbuf_data + lro_mbufs); 217 218 /* setup linked list */ 219 for (i = 0; i != lro_entries; i++) 220 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 221 222 return (0); 223 } 224 225 struct vxlan_header { 226 uint32_t vxlh_flags; 227 uint32_t vxlh_vni; 228 }; 229 230 static inline void * 231 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) 232 { 233 const struct ether_vlan_header *eh; 234 void *old; 235 uint16_t eth_type; 236 237 if (update_data) 238 memset(parser, 0, sizeof(*parser)); 239 240 old = ptr; 241 242 if (is_vxlan) { 243 const struct vxlan_header *vxh; 244 vxh = ptr; 245 ptr = (uint8_t *)ptr + sizeof(*vxh); 246 if (update_data) { 247 parser->data.vxlan_vni = 248 vxh->vxlh_vni & htonl(0xffffff00); 249 } 250 } 251 252 eh = ptr; 253 if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { 254 eth_type = eh->evl_proto; 255 if (update_data) { 256 /* strip priority and keep VLAN ID only */ 257 parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); 258 } 259 /* advance to next header */ 260 ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 261 mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 262 } else { 263 eth_type = eh->evl_encap_proto; 264 /* advance to next header */ 265 mlen -= ETHER_HDR_LEN; 266 ptr = (uint8_t *)ptr + ETHER_HDR_LEN; 267 } 268 if (__predict_false(mlen <= 0)) 269 return (NULL); 270 switch (eth_type) { 271 #ifdef INET 272 case htons(ETHERTYPE_IP): 273 parser->ip4 = ptr; 274 if (__predict_false(mlen < sizeof(struct ip))) 275 return (NULL); 276 /* Ensure there are no IPv4 options. */ 277 if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) 278 break; 279 /* .. and the packet is not fragmented. */ 280 if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 281 break; 282 ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); 283 mlen -= sizeof(struct ip); 284 if (update_data) { 285 parser->data.s_addr.v4 = parser->ip4->ip_src; 286 parser->data.d_addr.v4 = parser->ip4->ip_dst; 287 } 288 switch (parser->ip4->ip_p) { 289 case IPPROTO_UDP: 290 if (__predict_false(mlen < sizeof(struct udphdr))) 291 return (NULL); 292 parser->udp = ptr; 293 if (update_data) { 294 parser->data.lro_type = LRO_TYPE_IPV4_UDP; 295 parser->data.s_port = parser->udp->uh_sport; 296 parser->data.d_port = parser->udp->uh_dport; 297 } else { 298 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); 299 } 300 ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); 301 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 302 return (ptr); 303 case IPPROTO_TCP: 304 parser->tcp = ptr; 305 if (__predict_false(mlen < sizeof(struct tcphdr))) 306 return (NULL); 307 if (update_data) { 308 parser->data.lro_type = LRO_TYPE_IPV4_TCP; 309 parser->data.s_port = parser->tcp->th_sport; 310 parser->data.d_port = parser->tcp->th_dport; 311 } else { 312 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); 313 } 314 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 315 return (NULL); 316 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 317 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 318 return (ptr); 319 default: 320 break; 321 } 322 break; 323 #endif 324 #ifdef INET6 325 case htons(ETHERTYPE_IPV6): 326 parser->ip6 = ptr; 327 if (__predict_false(mlen < sizeof(struct ip6_hdr))) 328 return (NULL); 329 ptr = (uint8_t *)ptr + sizeof(*parser->ip6); 330 if (update_data) { 331 parser->data.s_addr.v6 = parser->ip6->ip6_src; 332 parser->data.d_addr.v6 = parser->ip6->ip6_dst; 333 } 334 mlen -= sizeof(struct ip6_hdr); 335 switch (parser->ip6->ip6_nxt) { 336 case IPPROTO_UDP: 337 if (__predict_false(mlen < sizeof(struct udphdr))) 338 return (NULL); 339 parser->udp = ptr; 340 if (update_data) { 341 parser->data.lro_type = LRO_TYPE_IPV6_UDP; 342 parser->data.s_port = parser->udp->uh_sport; 343 parser->data.d_port = parser->udp->uh_dport; 344 } else { 345 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); 346 } 347 ptr = (uint8_t *)ptr + sizeof(*parser->udp); 348 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 349 return (ptr); 350 case IPPROTO_TCP: 351 if (__predict_false(mlen < sizeof(struct tcphdr))) 352 return (NULL); 353 parser->tcp = ptr; 354 if (update_data) { 355 parser->data.lro_type = LRO_TYPE_IPV6_TCP; 356 parser->data.s_port = parser->tcp->th_sport; 357 parser->data.d_port = parser->tcp->th_dport; 358 } else { 359 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); 360 } 361 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 362 return (NULL); 363 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 364 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 365 return (ptr); 366 default: 367 break; 368 } 369 break; 370 #endif 371 default: 372 break; 373 } 374 /* Invalid packet - cannot parse */ 375 return (NULL); 376 } 377 378 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | 379 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; 380 381 static inline struct lro_parser * 382 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) 383 { 384 void *data_ptr; 385 386 /* Try to parse outer headers first. */ 387 data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); 388 if (data_ptr == NULL || po->total_hdr_len > m->m_len) 389 return (NULL); 390 391 if (update_data) { 392 /* Store VLAN ID, if any. */ 393 if (__predict_false(m->m_flags & M_VLANTAG)) { 394 po->data.vlan_id = 395 htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); 396 } 397 /* Store decrypted flag, if any. */ 398 if (__predict_false(m->m_flags & M_DECRYPTED)) 399 po->data.lro_flags |= LRO_FLAG_DECRYPTED; 400 } 401 402 switch (po->data.lro_type) { 403 case LRO_TYPE_IPV4_UDP: 404 case LRO_TYPE_IPV6_UDP: 405 /* Check for VXLAN headers. */ 406 if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) 407 break; 408 409 /* Try to parse inner headers. */ 410 data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, 411 (m->m_len - ((caddr_t)data_ptr - m->m_data))); 412 if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) 413 break; 414 415 /* Verify supported header types. */ 416 switch (pi->data.lro_type) { 417 case LRO_TYPE_IPV4_TCP: 418 case LRO_TYPE_IPV6_TCP: 419 return (pi); 420 default: 421 break; 422 } 423 break; 424 case LRO_TYPE_IPV4_TCP: 425 case LRO_TYPE_IPV6_TCP: 426 if (update_data) 427 memset(pi, 0, sizeof(*pi)); 428 return (po); 429 default: 430 break; 431 } 432 return (NULL); 433 } 434 435 static inline int 436 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) 437 { 438 int len; 439 440 switch (po->data.lro_type) { 441 #ifdef INET 442 case LRO_TYPE_IPV4_TCP: 443 len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + 444 ntohs(po->ip4->ip_len); 445 break; 446 #endif 447 #ifdef INET6 448 case LRO_TYPE_IPV6_TCP: 449 len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + 450 ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); 451 break; 452 #endif 453 default: 454 return (TCP_LRO_CANNOT); 455 } 456 457 /* 458 * If the frame is padded beyond the end of the IP packet, 459 * then trim the extra bytes off: 460 */ 461 if (__predict_true(m->m_pkthdr.len == len)) { 462 return (0); 463 } else if (m->m_pkthdr.len > len) { 464 m_adj(m, len - m->m_pkthdr.len); 465 return (0); 466 } 467 return (TCP_LRO_CANNOT); 468 } 469 470 static struct tcphdr * 471 tcp_lro_get_th(struct mbuf *m) 472 { 473 return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); 474 } 475 476 static void 477 lro_free_mbuf_chain(struct mbuf *m) 478 { 479 struct mbuf *save; 480 481 while (m) { 482 save = m->m_nextpkt; 483 m->m_nextpkt = NULL; 484 m_freem(m); 485 m = save; 486 } 487 } 488 489 void 490 tcp_lro_free(struct lro_ctrl *lc) 491 { 492 struct lro_entry *le; 493 unsigned x; 494 495 /* reset LRO free list */ 496 LIST_INIT(&lc->lro_free); 497 498 /* free active mbufs, if any */ 499 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 500 tcp_lro_active_remove(le); 501 lro_free_mbuf_chain(le->m_head); 502 } 503 504 /* free hash table */ 505 free(lc->lro_hash, M_LRO); 506 lc->lro_hash = NULL; 507 lc->lro_hashsz = 0; 508 509 /* free mbuf array, if any */ 510 for (x = 0; x != lc->lro_mbuf_count; x++) 511 m_freem(lc->lro_mbuf_data[x].mb); 512 lc->lro_mbuf_count = 0; 513 514 /* free allocated memory, if any */ 515 free(lc->lro_mbuf_data, M_LRO); 516 lc->lro_mbuf_data = NULL; 517 } 518 519 static uint16_t 520 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) 521 { 522 const uint16_t *ptr; 523 uint32_t csum; 524 uint16_t len; 525 526 csum = -th->th_sum; /* exclude checksum field */ 527 len = th->th_off; 528 ptr = (const uint16_t *)th; 529 while (len--) { 530 csum += *ptr; 531 ptr++; 532 csum += *ptr; 533 ptr++; 534 } 535 while (csum > 0xffff) 536 csum = (csum >> 16) + (csum & 0xffff); 537 538 return (csum); 539 } 540 541 static uint16_t 542 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) 543 { 544 uint32_t c; 545 uint16_t cs; 546 547 c = tcp_csum; 548 549 switch (pa->data.lro_type) { 550 #ifdef INET6 551 case LRO_TYPE_IPV6_TCP: 552 /* Compute full pseudo IPv6 header checksum. */ 553 cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); 554 break; 555 #endif 556 #ifdef INET 557 case LRO_TYPE_IPV4_TCP: 558 /* Compute full pseudo IPv4 header checsum. */ 559 cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); 560 cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); 561 break; 562 #endif 563 default: 564 cs = 0; /* Keep compiler happy. */ 565 break; 566 } 567 568 /* Complement checksum. */ 569 cs = ~cs; 570 c += cs; 571 572 /* Remove TCP header checksum. */ 573 cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); 574 c += cs; 575 576 /* Compute checksum remainder. */ 577 while (c > 0xffff) 578 c = (c >> 16) + (c & 0xffff); 579 580 return (c); 581 } 582 583 static void 584 tcp_lro_rx_done(struct lro_ctrl *lc) 585 { 586 struct lro_entry *le; 587 588 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 589 tcp_lro_active_remove(le); 590 tcp_lro_flush(lc, le); 591 } 592 } 593 594 void 595 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 596 { 597 struct lro_entry *le, *le_tmp; 598 uint64_t now, tov; 599 struct bintime bt; 600 601 NET_EPOCH_ASSERT(); 602 if (LIST_EMPTY(&lc->lro_active)) 603 return; 604 605 /* get timeout time and current time in ns */ 606 binuptime(&bt); 607 now = bintime2ns(&bt); 608 tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); 609 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 610 if (now >= (bintime2ns(&le->alloc_time) + tov)) { 611 tcp_lro_active_remove(le); 612 tcp_lro_flush(lc, le); 613 } 614 } 615 } 616 617 #ifdef INET 618 static int 619 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) 620 { 621 uint16_t csum; 622 623 /* Legacy IP has a header checksum that needs to be correct. */ 624 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 625 if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { 626 lc->lro_bad_csum++; 627 return (TCP_LRO_CANNOT); 628 } 629 } else { 630 csum = in_cksum_hdr(ip4); 631 if (__predict_false(csum != 0)) { 632 lc->lro_bad_csum++; 633 return (TCP_LRO_CANNOT); 634 } 635 } 636 return (0); 637 } 638 #endif 639 640 #ifdef TCPHPTS 641 static void 642 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, 643 const struct lro_entry *le, const struct mbuf *m, 644 int frm, int32_t tcp_data_len, uint32_t th_seq, 645 uint32_t th_ack, uint16_t th_win) 646 { 647 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 648 union tcp_log_stackspecific log; 649 struct timeval tv, btv; 650 uint32_t cts; 651 652 cts = tcp_get_usecs(&tv); 653 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 654 log.u_bbr.flex8 = frm; 655 log.u_bbr.flex1 = tcp_data_len; 656 if (m) 657 log.u_bbr.flex2 = m->m_pkthdr.len; 658 else 659 log.u_bbr.flex2 = 0; 660 log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; 661 log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; 662 if (le->m_head) { 663 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 664 log.u_bbr.delRate = le->m_head->m_flags; 665 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 666 } 667 log.u_bbr.inflight = th_seq; 668 log.u_bbr.delivered = th_ack; 669 log.u_bbr.timeStamp = cts; 670 log.u_bbr.epoch = le->next_seq; 671 log.u_bbr.lt_epoch = le->ack_seq; 672 log.u_bbr.pacing_gain = th_win; 673 log.u_bbr.cwnd_gain = le->window; 674 log.u_bbr.lost = curcpu; 675 log.u_bbr.cur_del_rate = (uintptr_t)m; 676 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 677 bintime2timeval(&lc->lro_last_queue_time, &btv); 678 log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); 679 log.u_bbr.flex7 = le->compressed; 680 log.u_bbr.pacing_gain = le->uncompressed; 681 if (in_epoch(net_epoch_preempt)) 682 log.u_bbr.inhpts = 1; 683 else 684 log.u_bbr.inhpts = 0; 685 TCP_LOG_EVENTP(tp, NULL, 686 &tp->t_inpcb->inp_socket->so_rcv, 687 &tp->t_inpcb->inp_socket->so_snd, 688 TCP_LOG_LRO, 0, 689 0, &log, false, &tv); 690 } 691 } 692 #endif 693 694 static inline void 695 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) 696 { 697 uint32_t csum; 698 699 csum = 0xffff - *ptr + value; 700 while (csum > 0xffff) 701 csum = (csum >> 16) + (csum & 0xffff); 702 *ptr = value; 703 *psum = csum; 704 } 705 706 static uint16_t 707 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, 708 uint16_t payload_len, uint16_t delta_sum) 709 { 710 uint32_t csum; 711 uint16_t tlen; 712 uint16_t temp[5] = {}; 713 714 switch (pa->data.lro_type) { 715 case LRO_TYPE_IPV4_TCP: 716 /* Compute new IPv4 length. */ 717 tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; 718 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 719 720 /* Subtract delta from current IPv4 checksum. */ 721 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 722 while (csum > 0xffff) 723 csum = (csum >> 16) + (csum & 0xffff); 724 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 725 goto update_tcp_header; 726 727 case LRO_TYPE_IPV6_TCP: 728 /* Compute new IPv6 length. */ 729 tlen = (pa->tcp->th_off << 2) + payload_len; 730 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 731 goto update_tcp_header; 732 733 case LRO_TYPE_IPV4_UDP: 734 /* Compute new IPv4 length. */ 735 tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; 736 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 737 738 /* Subtract delta from current IPv4 checksum. */ 739 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 740 while (csum > 0xffff) 741 csum = (csum >> 16) + (csum & 0xffff); 742 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 743 goto update_udp_header; 744 745 case LRO_TYPE_IPV6_UDP: 746 /* Compute new IPv6 length. */ 747 tlen = sizeof(*pa->udp) + payload_len; 748 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 749 goto update_udp_header; 750 751 default: 752 return (0); 753 } 754 755 update_tcp_header: 756 /* Compute current TCP header checksum. */ 757 temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); 758 759 /* Incorporate the latest ACK into the TCP header. */ 760 pa->tcp->th_ack = le->ack_seq; 761 pa->tcp->th_win = le->window; 762 763 /* Incorporate latest timestamp into the TCP header. */ 764 if (le->timestamp != 0) { 765 uint32_t *ts_ptr; 766 767 ts_ptr = (uint32_t *)(pa->tcp + 1); 768 ts_ptr[1] = htonl(le->tsval); 769 ts_ptr[2] = le->tsecr; 770 } 771 772 /* Compute new TCP header checksum. */ 773 temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); 774 775 /* Compute new TCP checksum. */ 776 csum = pa->tcp->th_sum + 0xffff - delta_sum + 777 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; 778 while (csum > 0xffff) 779 csum = (csum >> 16) + (csum & 0xffff); 780 781 /* Assign new TCP checksum. */ 782 tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); 783 784 /* Compute all modififications affecting next checksum. */ 785 csum = temp[0] + temp[1] + 0xffff - temp[2] + 786 temp[3] + temp[4] + delta_sum; 787 while (csum > 0xffff) 788 csum = (csum >> 16) + (csum & 0xffff); 789 790 /* Return delta checksum to next stage, if any. */ 791 return (csum); 792 793 update_udp_header: 794 tlen = sizeof(*pa->udp) + payload_len; 795 /* Assign new UDP length and compute checksum delta. */ 796 tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); 797 798 /* Check if there is a UDP checksum. */ 799 if (__predict_false(pa->udp->uh_sum != 0)) { 800 /* Compute new UDP checksum. */ 801 csum = pa->udp->uh_sum + 0xffff - delta_sum + 802 0xffff - temp[0] + 0xffff - temp[2]; 803 while (csum > 0xffff) 804 csum = (csum >> 16) + (csum & 0xffff); 805 /* Assign new UDP checksum. */ 806 tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); 807 } 808 809 /* Compute all modififications affecting next checksum. */ 810 csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; 811 while (csum > 0xffff) 812 csum = (csum >> 16) + (csum & 0xffff); 813 814 /* Return delta checksum to next stage, if any. */ 815 return (csum); 816 } 817 818 static void 819 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) 820 { 821 /* Check if we need to recompute any checksums. */ 822 if (le->m_head->m_pkthdr.lro_nsegs > 1) { 823 uint16_t csum; 824 825 switch (le->inner.data.lro_type) { 826 case LRO_TYPE_IPV4_TCP: 827 csum = tcp_lro_update_checksum(&le->inner, le, 828 le->m_head->m_pkthdr.lro_tcp_d_len, 829 le->m_head->m_pkthdr.lro_tcp_d_csum); 830 csum = tcp_lro_update_checksum(&le->outer, NULL, 831 le->m_head->m_pkthdr.lro_tcp_d_len + 832 le->inner.total_hdr_len, csum); 833 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 834 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 835 le->m_head->m_pkthdr.csum_data = 0xffff; 836 break; 837 case LRO_TYPE_IPV6_TCP: 838 csum = tcp_lro_update_checksum(&le->inner, le, 839 le->m_head->m_pkthdr.lro_tcp_d_len, 840 le->m_head->m_pkthdr.lro_tcp_d_csum); 841 csum = tcp_lro_update_checksum(&le->outer, NULL, 842 le->m_head->m_pkthdr.lro_tcp_d_len + 843 le->inner.total_hdr_len, csum); 844 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 845 CSUM_PSEUDO_HDR; 846 le->m_head->m_pkthdr.csum_data = 0xffff; 847 break; 848 case LRO_TYPE_NONE: 849 switch (le->outer.data.lro_type) { 850 case LRO_TYPE_IPV4_TCP: 851 csum = tcp_lro_update_checksum(&le->outer, le, 852 le->m_head->m_pkthdr.lro_tcp_d_len, 853 le->m_head->m_pkthdr.lro_tcp_d_csum); 854 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 855 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 856 le->m_head->m_pkthdr.csum_data = 0xffff; 857 break; 858 case LRO_TYPE_IPV6_TCP: 859 csum = tcp_lro_update_checksum(&le->outer, le, 860 le->m_head->m_pkthdr.lro_tcp_d_len, 861 le->m_head->m_pkthdr.lro_tcp_d_csum); 862 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 863 CSUM_PSEUDO_HDR; 864 le->m_head->m_pkthdr.csum_data = 0xffff; 865 break; 866 default: 867 break; 868 } 869 break; 870 default: 871 break; 872 } 873 } 874 875 /* 876 * Break any chain, this is not set to NULL on the singleton 877 * case m_nextpkt points to m_head. Other case set them 878 * m_nextpkt to NULL in push_and_replace. 879 */ 880 le->m_head->m_nextpkt = NULL; 881 lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; 882 (*lc->ifp->if_input)(lc->ifp, le->m_head); 883 } 884 885 static void 886 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, 887 struct mbuf *m, struct tcphdr *th) 888 { 889 uint32_t *ts_ptr; 890 uint16_t tcp_data_len; 891 uint16_t tcp_opt_len; 892 893 ts_ptr = (uint32_t *)(th + 1); 894 tcp_opt_len = (th->th_off << 2); 895 tcp_opt_len -= sizeof(*th); 896 897 /* Check if there is a timestamp option. */ 898 if (tcp_opt_len == 0 || 899 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 900 *ts_ptr != TCP_LRO_TS_OPTION)) { 901 /* We failed to find the timestamp option. */ 902 le->timestamp = 0; 903 } else { 904 le->timestamp = 1; 905 le->tsval = ntohl(*(ts_ptr + 1)); 906 le->tsecr = *(ts_ptr + 2); 907 } 908 909 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 910 911 /* Pull out TCP sequence numbers and window size. */ 912 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 913 le->ack_seq = th->th_ack; 914 le->window = th->th_win; 915 916 /* Setup new data pointers. */ 917 le->m_head = m; 918 le->m_tail = m_last(m); 919 } 920 921 static void 922 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 923 { 924 struct lro_parser *pa; 925 926 /* 927 * Push up the stack of the current entry 928 * and replace it with "m". 929 */ 930 struct mbuf *msave; 931 932 /* Grab off the next and save it */ 933 msave = le->m_head->m_nextpkt; 934 le->m_head->m_nextpkt = NULL; 935 936 /* Now push out the old entry */ 937 tcp_flush_out_entry(lc, le); 938 939 /* Re-parse new header, should not fail. */ 940 pa = tcp_lro_parser(m, &le->outer, &le->inner, false); 941 KASSERT(pa != NULL, 942 ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); 943 944 /* 945 * Now to replace the data properly in the entry 946 * we have to reset the TCP header and 947 * other fields. 948 */ 949 tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); 950 951 /* Restore the next list */ 952 m->m_nextpkt = msave; 953 } 954 955 static void 956 tcp_lro_mbuf_append_pkthdr(struct mbuf *m, const struct mbuf *p) 957 { 958 uint32_t csum; 959 960 if (m->m_pkthdr.lro_nsegs == 1) { 961 /* Compute relative checksum. */ 962 csum = p->m_pkthdr.lro_tcp_d_csum; 963 } else { 964 /* Merge TCP data checksums. */ 965 csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + 966 (uint32_t)p->m_pkthdr.lro_tcp_d_csum; 967 while (csum > 0xffff) 968 csum = (csum >> 16) + (csum & 0xffff); 969 } 970 971 /* Update various counters. */ 972 m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; 973 m->m_pkthdr.lro_tcp_d_csum = csum; 974 m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; 975 m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; 976 } 977 978 static void 979 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) 980 { 981 /* 982 * Walk through the mbuf chain we 983 * have on tap and compress/condense 984 * as required. 985 */ 986 uint32_t *ts_ptr; 987 struct mbuf *m; 988 struct tcphdr *th; 989 uint32_t tcp_data_len_total; 990 uint32_t tcp_data_seg_total; 991 uint16_t tcp_data_len; 992 uint16_t tcp_opt_len; 993 994 /* 995 * First we must check the lead (m_head) 996 * we must make sure that it is *not* 997 * something that should be sent up 998 * right away (sack etc). 999 */ 1000 again: 1001 m = le->m_head->m_nextpkt; 1002 if (m == NULL) { 1003 /* Just one left. */ 1004 return; 1005 } 1006 1007 th = tcp_lro_get_th(m); 1008 tcp_opt_len = (th->th_off << 2); 1009 tcp_opt_len -= sizeof(*th); 1010 ts_ptr = (uint32_t *)(th + 1); 1011 1012 if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1013 *ts_ptr != TCP_LRO_TS_OPTION)) { 1014 /* 1015 * Its not the timestamp. We can't 1016 * use this guy as the head. 1017 */ 1018 le->m_head->m_nextpkt = m->m_nextpkt; 1019 tcp_push_and_replace(lc, le, m); 1020 goto again; 1021 } 1022 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { 1023 /* 1024 * Make sure that previously seen segements/ACKs are delivered 1025 * before this segment, e.g. FIN. 1026 */ 1027 le->m_head->m_nextpkt = m->m_nextpkt; 1028 tcp_push_and_replace(lc, le, m); 1029 goto again; 1030 } 1031 while((m = le->m_head->m_nextpkt) != NULL) { 1032 /* 1033 * condense m into le, first 1034 * pull m out of the list. 1035 */ 1036 le->m_head->m_nextpkt = m->m_nextpkt; 1037 m->m_nextpkt = NULL; 1038 /* Setup my data */ 1039 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 1040 th = tcp_lro_get_th(m); 1041 ts_ptr = (uint32_t *)(th + 1); 1042 tcp_opt_len = (th->th_off << 2); 1043 tcp_opt_len -= sizeof(*th); 1044 tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; 1045 tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; 1046 1047 if (tcp_data_seg_total >= lc->lro_ackcnt_lim || 1048 tcp_data_len_total >= lc->lro_length_lim) { 1049 /* Flush now if appending will result in overflow. */ 1050 tcp_push_and_replace(lc, le, m); 1051 goto again; 1052 } 1053 if (tcp_opt_len != 0 && 1054 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1055 *ts_ptr != TCP_LRO_TS_OPTION)) { 1056 /* 1057 * Maybe a sack in the new one? We need to 1058 * start all over after flushing the 1059 * current le. We will go up to the beginning 1060 * and flush it (calling the replace again possibly 1061 * or just returning). 1062 */ 1063 tcp_push_and_replace(lc, le, m); 1064 goto again; 1065 } 1066 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { 1067 tcp_push_and_replace(lc, le, m); 1068 goto again; 1069 } 1070 if (tcp_opt_len != 0) { 1071 uint32_t tsval = ntohl(*(ts_ptr + 1)); 1072 /* Make sure timestamp values are increasing. */ 1073 if (TSTMP_GT(le->tsval, tsval)) { 1074 tcp_push_and_replace(lc, le, m); 1075 goto again; 1076 } 1077 le->tsval = tsval; 1078 le->tsecr = *(ts_ptr + 2); 1079 } 1080 /* Try to append the new segment. */ 1081 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 1082 (tcp_data_len == 0 && 1083 le->ack_seq == th->th_ack && 1084 le->window == th->th_win))) { 1085 /* Out of order packet or duplicate ACK. */ 1086 tcp_push_and_replace(lc, le, m); 1087 goto again; 1088 } 1089 if (tcp_data_len != 0 || 1090 SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1091 le->next_seq += tcp_data_len; 1092 le->ack_seq = th->th_ack; 1093 le->window = th->th_win; 1094 } else if (th->th_ack == le->ack_seq) { 1095 le->window = WIN_MAX(le->window, th->th_win); 1096 } 1097 1098 if (tcp_data_len == 0) { 1099 m_freem(m); 1100 continue; 1101 } 1102 1103 /* Merge TCP data checksum and length to head mbuf. */ 1104 tcp_lro_mbuf_append_pkthdr(le->m_head, m); 1105 1106 /* 1107 * Adjust the mbuf so that m_data points to the first byte of 1108 * the ULP payload. Adjust the mbuf to avoid complications and 1109 * append new segment to existing mbuf chain. 1110 */ 1111 m_adj(m, m->m_pkthdr.len - tcp_data_len); 1112 m_demote_pkthdr(m); 1113 le->m_tail->m_next = m; 1114 le->m_tail = m_last(m); 1115 } 1116 } 1117 1118 #ifdef TCPHPTS 1119 static void 1120 tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le) 1121 { 1122 INP_WLOCK_ASSERT(inp); 1123 if (tp->t_in_pkt == NULL) { 1124 /* Nothing yet there */ 1125 tp->t_in_pkt = le->m_head; 1126 tp->t_tail_pkt = le->m_last_mbuf; 1127 } else { 1128 /* Already some there */ 1129 tp->t_tail_pkt->m_nextpkt = le->m_head; 1130 tp->t_tail_pkt = le->m_last_mbuf; 1131 } 1132 le->m_head = NULL; 1133 le->m_last_mbuf = NULL; 1134 } 1135 1136 static struct mbuf * 1137 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, 1138 struct inpcb *inp, int32_t *new_m) 1139 { 1140 struct tcpcb *tp; 1141 struct mbuf *m; 1142 1143 tp = intotcpcb(inp); 1144 if (__predict_false(tp == NULL)) 1145 return (NULL); 1146 1147 /* Look at the last mbuf if any in queue */ 1148 m = tp->t_tail_pkt; 1149 if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { 1150 if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { 1151 tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); 1152 *new_m = 0; 1153 counter_u64_add(tcp_extra_mbuf, 1); 1154 return (m); 1155 } else { 1156 /* Mark we ran out of space */ 1157 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1158 } 1159 } 1160 /* Decide mbuf size. */ 1161 if (inp->inp_flags2 & INP_MBUF_L_ACKS) 1162 m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); 1163 else 1164 m = m_gethdr(M_NOWAIT, MT_DATA); 1165 1166 if (__predict_false(m == NULL)) { 1167 counter_u64_add(tcp_would_have_but, 1); 1168 return (NULL); 1169 } 1170 counter_u64_add(tcp_comp_total, 1); 1171 m->m_flags |= M_ACKCMP; 1172 *new_m = 1; 1173 return (m); 1174 } 1175 1176 static struct inpcb * 1177 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) 1178 { 1179 struct inpcb *inp; 1180 1181 switch (pa->data.lro_type) { 1182 #ifdef INET6 1183 case LRO_TYPE_IPV6_TCP: 1184 inp = in6_pcblookup(&V_tcbinfo, 1185 &pa->data.s_addr.v6, 1186 pa->data.s_port, 1187 &pa->data.d_addr.v6, 1188 pa->data.d_port, 1189 INPLOOKUP_WLOCKPCB, 1190 ifp); 1191 break; 1192 #endif 1193 #ifdef INET 1194 case LRO_TYPE_IPV4_TCP: 1195 inp = in_pcblookup(&V_tcbinfo, 1196 pa->data.s_addr.v4, 1197 pa->data.s_port, 1198 pa->data.d_addr.v4, 1199 pa->data.d_port, 1200 INPLOOKUP_WLOCKPCB, 1201 ifp); 1202 break; 1203 #endif 1204 default: 1205 inp = NULL; 1206 break; 1207 } 1208 return (inp); 1209 } 1210 1211 static inline bool 1212 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) 1213 { 1214 /* 1215 * This function returns two bits of valuable information. 1216 * a) Is what is present capable of being ack-compressed, 1217 * we can ack-compress if there is no options or just 1218 * a timestamp option, and of course the th_flags must 1219 * be correct as well. 1220 * b) Our other options present such as SACK. This is 1221 * used to determine if we want to wakeup or not. 1222 */ 1223 bool ret = true; 1224 1225 switch (th->th_off << 2) { 1226 case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): 1227 *ppts = (uint32_t *)(th + 1); 1228 /* Check if we have only one timestamp option. */ 1229 if (**ppts == TCP_LRO_TS_OPTION) 1230 *other_opts = false; 1231 else { 1232 *other_opts = true; 1233 ret = false; 1234 } 1235 break; 1236 case (sizeof(*th)): 1237 /* No options. */ 1238 *ppts = NULL; 1239 *other_opts = false; 1240 break; 1241 default: 1242 *ppts = NULL; 1243 *other_opts = true; 1244 ret = false; 1245 break; 1246 } 1247 /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ 1248 if ((th->th_flags & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) 1249 ret = false; 1250 /* If it has data on it we cannot compress it */ 1251 if (m->m_pkthdr.lro_tcp_d_len) 1252 ret = false; 1253 1254 /* ACK flag must be set. */ 1255 if (!(th->th_flags & TH_ACK)) 1256 ret = false; 1257 return (ret); 1258 } 1259 1260 static int 1261 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) 1262 { 1263 struct inpcb *inp; 1264 struct tcpcb *tp; 1265 struct mbuf **pp, *cmp, *mv_to; 1266 bool bpf_req, should_wake; 1267 1268 /* Check if packet doesn't belongs to our network interface. */ 1269 if ((tcplro_stacks_wanting_mbufq == 0) || 1270 (le->outer.data.vlan_id != 0) || 1271 (le->inner.data.lro_type != LRO_TYPE_NONE)) 1272 return (TCP_LRO_CANNOT); 1273 1274 #ifdef INET6 1275 /* 1276 * Be proactive about unspecified IPv6 address in source. As 1277 * we use all-zero to indicate unbounded/unconnected pcb, 1278 * unspecified IPv6 address can be used to confuse us. 1279 * 1280 * Note that packets with unspecified IPv6 destination is 1281 * already dropped in ip6_input. 1282 */ 1283 if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && 1284 IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) 1285 return (TCP_LRO_CANNOT); 1286 1287 if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && 1288 IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) 1289 return (TCP_LRO_CANNOT); 1290 #endif 1291 /* Lookup inp, if any. */ 1292 inp = tcp_lro_lookup(lc->ifp, 1293 (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); 1294 if (inp == NULL) 1295 return (TCP_LRO_CANNOT); 1296 1297 counter_u64_add(tcp_inp_lro_locks_taken, 1); 1298 1299 /* Get TCP control structure. */ 1300 tp = intotcpcb(inp); 1301 1302 /* Check if the inp is dead, Jim. */ 1303 if (tp == NULL || 1304 (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) || 1305 (inp->inp_flags2 & INP_FREED)) { 1306 INP_WUNLOCK(inp); 1307 return (TCP_LRO_CANNOT); 1308 } 1309 if ((inp->inp_irq_cpu_set == 0) && (lc->lro_cpu_is_set == 1)) { 1310 inp->inp_irq_cpu = lc->lro_last_cpu; 1311 inp->inp_irq_cpu_set = 1; 1312 } 1313 /* Check if the transport doesn't support the needed optimizations. */ 1314 if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) { 1315 INP_WUNLOCK(inp); 1316 return (TCP_LRO_CANNOT); 1317 } 1318 1319 if (inp->inp_flags2 & INP_MBUF_QUEUE_READY) 1320 should_wake = false; 1321 else 1322 should_wake = true; 1323 /* Check if packets should be tapped to BPF. */ 1324 bpf_req = bpf_peers_present(lc->ifp->if_bpf); 1325 1326 /* Strip and compress all the incoming packets. */ 1327 cmp = NULL; 1328 for (pp = &le->m_head; *pp != NULL; ) { 1329 mv_to = NULL; 1330 if (do_bpf_strip_and_compress(inp, lc, le, pp, 1331 &cmp, &mv_to, &should_wake, bpf_req ) == false) { 1332 /* Advance to next mbuf. */ 1333 pp = &(*pp)->m_nextpkt; 1334 } else if (mv_to != NULL) { 1335 /* We are asked to move pp up */ 1336 pp = &mv_to->m_nextpkt; 1337 } 1338 } 1339 /* Update "m_last_mbuf", if any. */ 1340 if (pp == &le->m_head) 1341 le->m_last_mbuf = *pp; 1342 else 1343 le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); 1344 1345 /* Check if any data mbufs left. */ 1346 if (le->m_head != NULL) { 1347 counter_u64_add(tcp_inp_lro_direct_queue, 1); 1348 tcp_lro_log(tp, lc, le, NULL, 22, 1, 1349 inp->inp_flags2, inp->inp_in_input, 1); 1350 tcp_queue_pkts(inp, tp, le); 1351 } 1352 if (should_wake) { 1353 /* Wakeup */ 1354 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 1355 if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0)) 1356 inp = NULL; 1357 } 1358 if (inp != NULL) 1359 INP_WUNLOCK(inp); 1360 return (0); /* Success. */ 1361 } 1362 #endif 1363 1364 void 1365 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 1366 { 1367 /* Only optimise if there are multiple packets waiting. */ 1368 #ifdef TCPHPTS 1369 int error; 1370 #endif 1371 1372 NET_EPOCH_ASSERT(); 1373 #ifdef TCPHPTS 1374 CURVNET_SET(lc->ifp->if_vnet); 1375 error = tcp_lro_flush_tcphpts(lc, le); 1376 CURVNET_RESTORE(); 1377 if (error != 0) { 1378 #endif 1379 tcp_lro_condense(lc, le); 1380 tcp_flush_out_entry(lc, le); 1381 #ifdef TCPHPTS 1382 } 1383 #endif 1384 lc->lro_flushed++; 1385 bzero(le, sizeof(*le)); 1386 LIST_INSERT_HEAD(&lc->lro_free, le, next); 1387 } 1388 1389 #ifdef HAVE_INLINE_FLSLL 1390 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 1391 #else 1392 static inline uint64_t 1393 tcp_lro_msb_64(uint64_t x) 1394 { 1395 x |= (x >> 1); 1396 x |= (x >> 2); 1397 x |= (x >> 4); 1398 x |= (x >> 8); 1399 x |= (x >> 16); 1400 x |= (x >> 32); 1401 return (x & ~(x >> 1)); 1402 } 1403 #endif 1404 1405 /* 1406 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1407 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1408 * number of elements to sort and 64 is the number of sequence bits 1409 * available. The algorithm is bit-slicing the 64-bit sequence number, 1410 * sorting one bit at a time from the most significant bit until the 1411 * least significant one, skipping the constant bits. This is 1412 * typically called a radix sort. 1413 */ 1414 static void 1415 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1416 { 1417 struct lro_mbuf_sort temp; 1418 uint64_t ones; 1419 uint64_t zeros; 1420 uint32_t x; 1421 uint32_t y; 1422 1423 repeat: 1424 /* for small arrays insertion sort is faster */ 1425 if (size <= 12) { 1426 for (x = 1; x < size; x++) { 1427 temp = parray[x]; 1428 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1429 parray[y] = parray[y - 1]; 1430 parray[y] = temp; 1431 } 1432 return; 1433 } 1434 1435 /* compute sequence bits which are constant */ 1436 ones = 0; 1437 zeros = 0; 1438 for (x = 0; x != size; x++) { 1439 ones |= parray[x].seq; 1440 zeros |= ~parray[x].seq; 1441 } 1442 1443 /* compute bits which are not constant into "ones" */ 1444 ones &= zeros; 1445 if (ones == 0) 1446 return; 1447 1448 /* pick the most significant bit which is not constant */ 1449 ones = tcp_lro_msb_64(ones); 1450 1451 /* 1452 * Move entries having cleared sequence bits to the beginning 1453 * of the array: 1454 */ 1455 for (x = y = 0; y != size; y++) { 1456 /* skip set bits */ 1457 if (parray[y].seq & ones) 1458 continue; 1459 /* swap entries */ 1460 temp = parray[x]; 1461 parray[x] = parray[y]; 1462 parray[y] = temp; 1463 x++; 1464 } 1465 1466 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1467 1468 /* sort zeros */ 1469 tcp_lro_sort(parray, x); 1470 1471 /* sort ones */ 1472 parray += x; 1473 size -= x; 1474 goto repeat; 1475 } 1476 1477 void 1478 tcp_lro_flush_all(struct lro_ctrl *lc) 1479 { 1480 uint64_t seq; 1481 uint64_t nseq; 1482 unsigned x; 1483 1484 NET_EPOCH_ASSERT(); 1485 /* check if no mbufs to flush */ 1486 if (lc->lro_mbuf_count == 0) 1487 goto done; 1488 if (lc->lro_cpu_is_set == 0) { 1489 if (lc->lro_last_cpu == curcpu) { 1490 lc->lro_cnt_of_same_cpu++; 1491 /* Have we reached the threshold to declare a cpu? */ 1492 if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) 1493 lc->lro_cpu_is_set = 1; 1494 } else { 1495 lc->lro_last_cpu = curcpu; 1496 lc->lro_cnt_of_same_cpu = 0; 1497 } 1498 } 1499 CURVNET_SET(lc->ifp->if_vnet); 1500 1501 /* get current time */ 1502 binuptime(&lc->lro_last_queue_time); 1503 1504 /* sort all mbufs according to stream */ 1505 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1506 1507 /* input data into LRO engine, stream by stream */ 1508 seq = 0; 1509 for (x = 0; x != lc->lro_mbuf_count; x++) { 1510 struct mbuf *mb; 1511 1512 /* get mbuf */ 1513 mb = lc->lro_mbuf_data[x].mb; 1514 1515 /* get sequence number, masking away the packet index */ 1516 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1517 1518 /* check for new stream */ 1519 if (seq != nseq) { 1520 seq = nseq; 1521 1522 /* flush active streams */ 1523 tcp_lro_rx_done(lc); 1524 } 1525 1526 /* add packet to LRO engine */ 1527 if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { 1528 /* input packet to network layer */ 1529 (*lc->ifp->if_input)(lc->ifp, mb); 1530 lc->lro_queued++; 1531 lc->lro_flushed++; 1532 } 1533 } 1534 CURVNET_RESTORE(); 1535 done: 1536 /* flush active streams */ 1537 tcp_lro_rx_done(lc); 1538 1539 #ifdef TCPHPTS 1540 tcp_run_hpts(); 1541 #endif 1542 lc->lro_mbuf_count = 0; 1543 } 1544 1545 #ifdef TCPHPTS 1546 static void 1547 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, 1548 uint32_t *ts_ptr, uint16_t iptos) 1549 { 1550 /* 1551 * Given a TCP ACK, summarize it down into the small TCP ACK 1552 * entry. 1553 */ 1554 ae->timestamp = m->m_pkthdr.rcv_tstmp; 1555 if (m->m_flags & M_TSTMP_LRO) 1556 ae->flags = TSTMP_LRO; 1557 else if (m->m_flags & M_TSTMP) 1558 ae->flags = TSTMP_HDWR; 1559 ae->seq = ntohl(th->th_seq); 1560 ae->ack = ntohl(th->th_ack); 1561 ae->flags |= th->th_flags; 1562 if (ts_ptr != NULL) { 1563 ae->ts_value = ntohl(ts_ptr[1]); 1564 ae->ts_echo = ntohl(ts_ptr[2]); 1565 ae->flags |= HAS_TSTMP; 1566 } 1567 ae->win = ntohs(th->th_win); 1568 ae->codepoint = iptos; 1569 } 1570 1571 /* 1572 * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets 1573 * and strip all, but the IPv4/IPv6 header. 1574 */ 1575 static bool 1576 do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc, 1577 struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, 1578 bool *should_wake, bool bpf_req) 1579 { 1580 union { 1581 void *ptr; 1582 struct ip *ip4; 1583 struct ip6_hdr *ip6; 1584 } l3; 1585 struct mbuf *m; 1586 struct mbuf *nm; 1587 struct tcphdr *th; 1588 struct tcp_ackent *ack_ent; 1589 uint32_t *ts_ptr; 1590 int32_t n_mbuf; 1591 bool other_opts, can_compress; 1592 uint8_t lro_type; 1593 uint16_t iptos; 1594 int tcp_hdr_offset; 1595 int idx; 1596 1597 /* Get current mbuf. */ 1598 m = *pp; 1599 1600 /* Let the BPF see the packet */ 1601 if (__predict_false(bpf_req)) 1602 ETHER_BPF_MTAP(lc->ifp, m); 1603 1604 tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; 1605 lro_type = le->inner.data.lro_type; 1606 switch (lro_type) { 1607 case LRO_TYPE_NONE: 1608 lro_type = le->outer.data.lro_type; 1609 switch (lro_type) { 1610 case LRO_TYPE_IPV4_TCP: 1611 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1612 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1613 break; 1614 case LRO_TYPE_IPV6_TCP: 1615 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1616 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1617 break; 1618 default: 1619 goto compressed; 1620 } 1621 break; 1622 case LRO_TYPE_IPV4_TCP: 1623 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1624 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1625 break; 1626 case LRO_TYPE_IPV6_TCP: 1627 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1628 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1629 break; 1630 default: 1631 goto compressed; 1632 } 1633 1634 MPASS(tcp_hdr_offset >= 0); 1635 1636 m_adj(m, tcp_hdr_offset); 1637 m->m_flags |= M_LRO_EHDRSTRP; 1638 m->m_flags &= ~M_ACKCMP; 1639 m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; 1640 1641 th = tcp_lro_get_th(m); 1642 1643 th->th_sum = 0; /* TCP checksum is valid. */ 1644 1645 /* Check if ACK can be compressed */ 1646 can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); 1647 1648 /* Now lets look at the should wake states */ 1649 if ((other_opts == true) && 1650 ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) { 1651 /* 1652 * If there are other options (SACK?) and the 1653 * tcp endpoint has not expressly told us it does 1654 * not care about SACKS, then we should wake up. 1655 */ 1656 *should_wake = true; 1657 } 1658 /* Is the ack compressable? */ 1659 if (can_compress == false) 1660 goto done; 1661 /* Does the TCP endpoint support ACK compression? */ 1662 if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0) 1663 goto done; 1664 1665 /* Lets get the TOS/traffic class field */ 1666 l3.ptr = mtod(m, void *); 1667 switch (lro_type) { 1668 case LRO_TYPE_IPV4_TCP: 1669 iptos = l3.ip4->ip_tos; 1670 break; 1671 case LRO_TYPE_IPV6_TCP: 1672 iptos = IPV6_TRAFFIC_CLASS(l3.ip6); 1673 break; 1674 default: 1675 iptos = 0; /* Keep compiler happy. */ 1676 break; 1677 } 1678 /* Now lets get space if we don't have some already */ 1679 if (*cmp == NULL) { 1680 new_one: 1681 nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf); 1682 if (__predict_false(nm == NULL)) 1683 goto done; 1684 *cmp = nm; 1685 if (n_mbuf) { 1686 /* 1687 * Link in the new cmp ack to our in-order place, 1688 * first set our cmp ack's next to where we are. 1689 */ 1690 nm->m_nextpkt = m; 1691 (*pp) = nm; 1692 /* 1693 * Set it up so mv_to is advanced to our 1694 * compressed ack. This way the caller can 1695 * advance pp to the right place. 1696 */ 1697 *mv_to = nm; 1698 /* 1699 * Advance it here locally as well. 1700 */ 1701 pp = &nm->m_nextpkt; 1702 } 1703 } else { 1704 /* We have one already we are working on */ 1705 nm = *cmp; 1706 if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { 1707 /* We ran out of space */ 1708 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1709 goto new_one; 1710 } 1711 } 1712 MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); 1713 counter_u64_add(tcp_inp_lro_compressed, 1); 1714 le->compressed++; 1715 /* We can add in to the one on the tail */ 1716 ack_ent = mtod(nm, struct tcp_ackent *); 1717 idx = (nm->m_len / sizeof(struct tcp_ackent)); 1718 build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); 1719 1720 /* Bump the size of both pkt-hdr and len */ 1721 nm->m_len += sizeof(struct tcp_ackent); 1722 nm->m_pkthdr.len += sizeof(struct tcp_ackent); 1723 compressed: 1724 /* Advance to next mbuf before freeing. */ 1725 *pp = m->m_nextpkt; 1726 m->m_nextpkt = NULL; 1727 m_freem(m); 1728 return (true); 1729 done: 1730 counter_u64_add(tcp_uncomp_total, 1); 1731 le->uncompressed++; 1732 return (false); 1733 } 1734 #endif 1735 1736 static struct lro_head * 1737 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) 1738 { 1739 u_long hash; 1740 1741 if (M_HASHTYPE_ISHASH(m)) { 1742 hash = m->m_pkthdr.flowid; 1743 } else { 1744 for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) 1745 hash += parser->data.raw[i]; 1746 } 1747 return (&lc->lro_hash[hash % lc->lro_hashsz]); 1748 } 1749 1750 static int 1751 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) 1752 { 1753 struct lro_parser pi; /* inner address data */ 1754 struct lro_parser po; /* outer address data */ 1755 struct lro_parser *pa; /* current parser for TCP stream */ 1756 struct lro_entry *le; 1757 struct lro_head *bucket; 1758 struct tcphdr *th; 1759 int tcp_data_len; 1760 int tcp_opt_len; 1761 int error; 1762 uint16_t tcp_data_sum; 1763 1764 #ifdef INET 1765 /* Quickly decide if packet cannot be LRO'ed */ 1766 if (__predict_false(V_ipforwarding != 0)) 1767 return (TCP_LRO_CANNOT); 1768 #endif 1769 #ifdef INET6 1770 /* Quickly decide if packet cannot be LRO'ed */ 1771 if (__predict_false(V_ip6_forwarding != 0)) 1772 return (TCP_LRO_CANNOT); 1773 #endif 1774 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1775 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1776 (m->m_pkthdr.csum_data != 0xffff)) { 1777 /* 1778 * The checksum either did not have hardware offload 1779 * or it was a bad checksum. We can't LRO such 1780 * a packet. 1781 */ 1782 counter_u64_add(tcp_bad_csums, 1); 1783 return (TCP_LRO_CANNOT); 1784 } 1785 /* We expect a contiguous header [eh, ip, tcp]. */ 1786 pa = tcp_lro_parser(m, &po, &pi, true); 1787 if (__predict_false(pa == NULL)) 1788 return (TCP_LRO_NOT_SUPPORTED); 1789 1790 /* We don't expect any padding. */ 1791 error = tcp_lro_trim_mbuf_chain(m, pa); 1792 if (__predict_false(error != 0)) 1793 return (error); 1794 1795 #ifdef INET 1796 switch (pa->data.lro_type) { 1797 case LRO_TYPE_IPV4_TCP: 1798 error = tcp_lro_rx_ipv4(lc, m, pa->ip4); 1799 if (__predict_false(error != 0)) 1800 return (error); 1801 break; 1802 default: 1803 break; 1804 } 1805 #endif 1806 /* If no hardware or arrival stamp on the packet add timestamp */ 1807 if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { 1808 m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 1809 m->m_flags |= M_TSTMP_LRO; 1810 } 1811 1812 /* Get pointer to TCP header. */ 1813 th = pa->tcp; 1814 1815 /* Don't process SYN packets. */ 1816 if (__predict_false(th->th_flags & TH_SYN)) 1817 return (TCP_LRO_CANNOT); 1818 1819 /* Get total TCP header length and compute payload length. */ 1820 tcp_opt_len = (th->th_off << 2); 1821 tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - 1822 (uint8_t *)m->m_data) - tcp_opt_len; 1823 tcp_opt_len -= sizeof(*th); 1824 1825 /* Don't process invalid TCP headers. */ 1826 if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) 1827 return (TCP_LRO_CANNOT); 1828 1829 /* Compute TCP data only checksum. */ 1830 if (tcp_data_len == 0) 1831 tcp_data_sum = 0; /* no data, no checksum */ 1832 else if (__predict_false(csum != 0)) 1833 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); 1834 else 1835 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); 1836 1837 /* Save TCP info in mbuf. */ 1838 m->m_nextpkt = NULL; 1839 m->m_pkthdr.rcvif = lc->ifp; 1840 m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; 1841 m->m_pkthdr.lro_tcp_d_len = tcp_data_len; 1842 m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); 1843 m->m_pkthdr.lro_nsegs = 1; 1844 1845 /* Get hash bucket. */ 1846 if (!use_hash) { 1847 bucket = &lc->lro_hash[0]; 1848 } else { 1849 bucket = tcp_lro_rx_get_bucket(lc, m, pa); 1850 } 1851 1852 /* Try to find a matching previous segment. */ 1853 LIST_FOREACH(le, bucket, hash_next) { 1854 /* Compare addresses and ports. */ 1855 if (lro_address_compare(&po.data, &le->outer.data) == false || 1856 lro_address_compare(&pi.data, &le->inner.data) == false) 1857 continue; 1858 1859 /* Check if no data and old ACK. */ 1860 if (tcp_data_len == 0 && 1861 SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1862 m_freem(m); 1863 return (0); 1864 } 1865 1866 /* Mark "m" in the last spot. */ 1867 le->m_last_mbuf->m_nextpkt = m; 1868 /* Now set the tail to "m". */ 1869 le->m_last_mbuf = m; 1870 return (0); 1871 } 1872 1873 /* Try to find an empty slot. */ 1874 if (LIST_EMPTY(&lc->lro_free)) 1875 return (TCP_LRO_NO_ENTRIES); 1876 1877 /* Start a new segment chain. */ 1878 le = LIST_FIRST(&lc->lro_free); 1879 LIST_REMOVE(le, next); 1880 tcp_lro_active_insert(lc, bucket, le); 1881 1882 /* Make sure the headers are set. */ 1883 le->inner = pi; 1884 le->outer = po; 1885 1886 /* Store time this entry was allocated. */ 1887 le->alloc_time = lc->lro_last_queue_time; 1888 1889 tcp_set_entry_to_mbuf(lc, le, m, th); 1890 1891 /* Now set the tail to "m". */ 1892 le->m_last_mbuf = m; 1893 1894 return (0); 1895 } 1896 1897 int 1898 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1899 { 1900 int error; 1901 1902 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1903 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1904 (m->m_pkthdr.csum_data != 0xffff)) { 1905 /* 1906 * The checksum either did not have hardware offload 1907 * or it was a bad checksum. We can't LRO such 1908 * a packet. 1909 */ 1910 counter_u64_add(tcp_bad_csums, 1); 1911 return (TCP_LRO_CANNOT); 1912 } 1913 /* get current time */ 1914 binuptime(&lc->lro_last_queue_time); 1915 CURVNET_SET(lc->ifp->if_vnet); 1916 error = tcp_lro_rx_common(lc, m, csum, true); 1917 CURVNET_RESTORE(); 1918 1919 return (error); 1920 } 1921 1922 void 1923 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 1924 { 1925 NET_EPOCH_ASSERT(); 1926 /* sanity checks */ 1927 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 1928 lc->lro_mbuf_max == 0)) { 1929 /* packet drop */ 1930 m_freem(mb); 1931 return; 1932 } 1933 1934 /* check if packet is not LRO capable */ 1935 if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 1936 /* input packet to network layer */ 1937 (*lc->ifp->if_input) (lc->ifp, mb); 1938 return; 1939 } 1940 1941 /* create sequence number */ 1942 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 1943 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 1944 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 1945 ((uint64_t)lc->lro_mbuf_count); 1946 1947 /* enter mbuf */ 1948 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 1949 1950 /* flush if array is full */ 1951 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 1952 tcp_lro_flush_all(lc); 1953 } 1954 1955 /* end */ 1956