xref: /freebsd/sys/netinet/tcp_lro.c (revision ae7e8a02e6e93455e026036132c4d053b2c12ad9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007, Myricom Inc.
5  * Copyright (c) 2008, Intel Corporation.
6  * Copyright (c) 2012 The FreeBSD Foundation
7  * Copyright (c) 2016-2021 Mellanox Technologies.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Bjoern Zeeb
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sockbuf.h>
49 #include <sys/sysctl.h>
50 
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/ethernet.h>
54 #include <net/bpf.h>
55 #include <net/vnet.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip6.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/in_pcb.h>
63 #include <netinet6/in6_pcb.h>
64 #include <netinet/tcp.h>
65 #include <netinet/tcp_seq.h>
66 #include <netinet/tcp_lro.h>
67 #include <netinet/tcp_var.h>
68 #include <netinet/tcpip.h>
69 #include <netinet/tcp_hpts.h>
70 #include <netinet/tcp_log_buf.h>
71 #include <netinet/udp.h>
72 #include <netinet6/ip6_var.h>
73 
74 #include <machine/in_cksum.h>
75 
76 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures");
77 
78 #define	TCP_LRO_TS_OPTION \
79     ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
80 	  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)
81 
82 static void	tcp_lro_rx_done(struct lro_ctrl *lc);
83 static int	tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m,
84 		    uint32_t csum, bool use_hash);
85 
86 #ifdef TCPHPTS
87 static bool	do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *,
88 		struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, bool *, bool);
89 
90 #endif
91 
92 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro,  CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
93     "TCP LRO");
94 
95 static long tcplro_stacks_wanting_mbufq;
96 counter_u64_t tcp_inp_lro_direct_queue;
97 counter_u64_t tcp_inp_lro_wokeup_queue;
98 counter_u64_t tcp_inp_lro_compressed;
99 counter_u64_t tcp_inp_lro_locks_taken;
100 counter_u64_t tcp_extra_mbuf;
101 counter_u64_t tcp_would_have_but;
102 counter_u64_t tcp_comp_total;
103 counter_u64_t tcp_uncomp_total;
104 counter_u64_t tcp_bad_csums;
105 
106 static unsigned	tcp_lro_entries = TCP_LRO_ENTRIES;
107 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries,
108     CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0,
109     "default number of LRO entries");
110 
111 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH;
112 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold,
113     CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0,
114     "Number of interrups in a row on the same CPU that will make us declare an 'affinity' cpu?");
115 
116 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD,
117     &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport");
118 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD,
119     &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts");
120 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD,
121     &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport");
122 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD,
123     &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken");
124 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD,
125     &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp");
126 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD,
127     &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed");
128 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD,
129     &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set");
130 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD,
131     &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP");
132 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD,
133     &tcp_bad_csums, "Number of packets that the common code saw with bad csums");
134 
135 void
136 tcp_lro_reg_mbufq(void)
137 {
138 	atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1);
139 }
140 
141 void
142 tcp_lro_dereg_mbufq(void)
143 {
144 	atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1);
145 }
146 
147 static __inline void
148 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket,
149     struct lro_entry *le)
150 {
151 
152 	LIST_INSERT_HEAD(&lc->lro_active, le, next);
153 	LIST_INSERT_HEAD(bucket, le, hash_next);
154 }
155 
156 static __inline void
157 tcp_lro_active_remove(struct lro_entry *le)
158 {
159 
160 	LIST_REMOVE(le, next);		/* active list */
161 	LIST_REMOVE(le, hash_next);	/* hash bucket */
162 }
163 
164 int
165 tcp_lro_init(struct lro_ctrl *lc)
166 {
167 	return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0));
168 }
169 
170 int
171 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp,
172     unsigned lro_entries, unsigned lro_mbufs)
173 {
174 	struct lro_entry *le;
175 	size_t size;
176 	unsigned i, elements;
177 
178 	lc->lro_bad_csum = 0;
179 	lc->lro_queued = 0;
180 	lc->lro_flushed = 0;
181 	lc->lro_mbuf_count = 0;
182 	lc->lro_mbuf_max = lro_mbufs;
183 	lc->lro_cnt = lro_entries;
184 	lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX;
185 	lc->lro_length_lim = TCP_LRO_LENGTH_MAX;
186 	lc->ifp = ifp;
187 	LIST_INIT(&lc->lro_free);
188 	LIST_INIT(&lc->lro_active);
189 
190 	/* create hash table to accelerate entry lookup */
191 	if (lro_entries > lro_mbufs)
192 		elements = lro_entries;
193 	else
194 		elements = lro_mbufs;
195 	lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz,
196 	    HASH_NOWAIT);
197 	if (lc->lro_hash == NULL) {
198 		memset(lc, 0, sizeof(*lc));
199 		return (ENOMEM);
200 	}
201 
202 	/* compute size to allocate */
203 	size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) +
204 	    (lro_entries * sizeof(*le));
205 	lc->lro_mbuf_data = (struct lro_mbuf_sort *)
206 	    malloc(size, M_LRO, M_NOWAIT | M_ZERO);
207 
208 	/* check for out of memory */
209 	if (lc->lro_mbuf_data == NULL) {
210 		free(lc->lro_hash, M_LRO);
211 		memset(lc, 0, sizeof(*lc));
212 		return (ENOMEM);
213 	}
214 	/* compute offset for LRO entries */
215 	le = (struct lro_entry *)
216 	    (lc->lro_mbuf_data + lro_mbufs);
217 
218 	/* setup linked list */
219 	for (i = 0; i != lro_entries; i++)
220 		LIST_INSERT_HEAD(&lc->lro_free, le + i, next);
221 
222 	return (0);
223 }
224 
225 struct vxlan_header {
226 	uint32_t	vxlh_flags;
227 	uint32_t	vxlh_vni;
228 };
229 
230 static inline void *
231 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen)
232 {
233 	const struct ether_vlan_header *eh;
234 	void *old;
235 	uint16_t eth_type;
236 
237 	if (update_data)
238 		memset(parser, 0, sizeof(*parser));
239 
240 	old = ptr;
241 
242 	if (is_vxlan) {
243 		const struct vxlan_header *vxh;
244 		vxh = ptr;
245 		ptr = (uint8_t *)ptr + sizeof(*vxh);
246 		if (update_data) {
247 			parser->data.vxlan_vni =
248 			    vxh->vxlh_vni & htonl(0xffffff00);
249 		}
250 	}
251 
252 	eh = ptr;
253 	if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) {
254 		eth_type = eh->evl_proto;
255 		if (update_data) {
256 			/* strip priority and keep VLAN ID only */
257 			parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK);
258 		}
259 		/* advance to next header */
260 		ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
261 		mlen -= (ETHER_HDR_LEN  + ETHER_VLAN_ENCAP_LEN);
262 	} else {
263 		eth_type = eh->evl_encap_proto;
264 		/* advance to next header */
265 		mlen -= ETHER_HDR_LEN;
266 		ptr = (uint8_t *)ptr + ETHER_HDR_LEN;
267 	}
268 	if (__predict_false(mlen <= 0))
269 		return (NULL);
270 	switch (eth_type) {
271 #ifdef INET
272 	case htons(ETHERTYPE_IP):
273 		parser->ip4 = ptr;
274 		if (__predict_false(mlen < sizeof(struct ip)))
275 			return (NULL);
276 		/* Ensure there are no IPv4 options. */
277 		if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4))
278 			break;
279 		/* .. and the packet is not fragmented. */
280 		if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK))
281 			break;
282 		ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2);
283 		mlen -= sizeof(struct ip);
284 		if (update_data) {
285 			parser->data.s_addr.v4 = parser->ip4->ip_src;
286 			parser->data.d_addr.v4 = parser->ip4->ip_dst;
287 		}
288 		switch (parser->ip4->ip_p) {
289 		case IPPROTO_UDP:
290 			if (__predict_false(mlen < sizeof(struct udphdr)))
291 				return (NULL);
292 			parser->udp = ptr;
293 			if (update_data) {
294 				parser->data.lro_type = LRO_TYPE_IPV4_UDP;
295 				parser->data.s_port = parser->udp->uh_sport;
296 				parser->data.d_port = parser->udp->uh_dport;
297 			} else {
298 				MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP);
299 			}
300 			ptr = ((uint8_t *)ptr + sizeof(*parser->udp));
301 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
302 			return (ptr);
303 		case IPPROTO_TCP:
304 			parser->tcp = ptr;
305 			if (__predict_false(mlen < sizeof(struct tcphdr)))
306 				return (NULL);
307 			if (update_data) {
308 				parser->data.lro_type = LRO_TYPE_IPV4_TCP;
309 				parser->data.s_port = parser->tcp->th_sport;
310 				parser->data.d_port = parser->tcp->th_dport;
311 			} else {
312 				MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP);
313 			}
314 			if (__predict_false(mlen < (parser->tcp->th_off << 2)))
315 				return (NULL);
316 			ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2);
317 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
318 			return (ptr);
319 		default:
320 			break;
321 		}
322 		break;
323 #endif
324 #ifdef INET6
325 	case htons(ETHERTYPE_IPV6):
326 		parser->ip6 = ptr;
327 		if (__predict_false(mlen < sizeof(struct ip6_hdr)))
328 			return (NULL);
329 		ptr = (uint8_t *)ptr + sizeof(*parser->ip6);
330 		if (update_data) {
331 			parser->data.s_addr.v6 = parser->ip6->ip6_src;
332 			parser->data.d_addr.v6 = parser->ip6->ip6_dst;
333 		}
334 		mlen -= sizeof(struct ip6_hdr);
335 		switch (parser->ip6->ip6_nxt) {
336 		case IPPROTO_UDP:
337 			if (__predict_false(mlen < sizeof(struct udphdr)))
338 				return (NULL);
339 			parser->udp = ptr;
340 			if (update_data) {
341 				parser->data.lro_type = LRO_TYPE_IPV6_UDP;
342 				parser->data.s_port = parser->udp->uh_sport;
343 				parser->data.d_port = parser->udp->uh_dport;
344 			} else {
345 				MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP);
346 			}
347 			ptr = (uint8_t *)ptr + sizeof(*parser->udp);
348 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
349 			return (ptr);
350 		case IPPROTO_TCP:
351 			if (__predict_false(mlen < sizeof(struct tcphdr)))
352 				return (NULL);
353 			parser->tcp = ptr;
354 			if (update_data) {
355 				parser->data.lro_type = LRO_TYPE_IPV6_TCP;
356 				parser->data.s_port = parser->tcp->th_sport;
357 				parser->data.d_port = parser->tcp->th_dport;
358 			} else {
359 				MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP);
360 			}
361 			if (__predict_false(mlen < (parser->tcp->th_off << 2)))
362 				return (NULL);
363 			ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2);
364 			parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old;
365 			return (ptr);
366 		default:
367 			break;
368 		}
369 		break;
370 #endif
371 	default:
372 		break;
373 	}
374 	/* Invalid packet - cannot parse */
375 	return (NULL);
376 }
377 
378 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
379     CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID;
380 
381 static inline struct lro_parser *
382 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data)
383 {
384 	void *data_ptr;
385 
386 	/* Try to parse outer headers first. */
387 	data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len);
388 	if (data_ptr == NULL || po->total_hdr_len > m->m_len)
389 		return (NULL);
390 
391 	if (update_data) {
392 		/* Store VLAN ID, if any. */
393 		if (__predict_false(m->m_flags & M_VLANTAG)) {
394 			po->data.vlan_id =
395 			    htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK);
396 		}
397 		/* Store decrypted flag, if any. */
398 		if (__predict_false(m->m_flags & M_DECRYPTED))
399 			po->data.lro_flags |= LRO_FLAG_DECRYPTED;
400 	}
401 
402 	switch (po->data.lro_type) {
403 	case LRO_TYPE_IPV4_UDP:
404 	case LRO_TYPE_IPV6_UDP:
405 		/* Check for VXLAN headers. */
406 		if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum)
407 			break;
408 
409 		/* Try to parse inner headers. */
410 		data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true,
411 						    (m->m_len - ((caddr_t)data_ptr - m->m_data)));
412 		if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len)
413 			break;
414 
415 		/* Verify supported header types. */
416 		switch (pi->data.lro_type) {
417 		case LRO_TYPE_IPV4_TCP:
418 		case LRO_TYPE_IPV6_TCP:
419 			return (pi);
420 		default:
421 			break;
422 		}
423 		break;
424 	case LRO_TYPE_IPV4_TCP:
425 	case LRO_TYPE_IPV6_TCP:
426 		if (update_data)
427 			memset(pi, 0, sizeof(*pi));
428 		return (po);
429 	default:
430 		break;
431 	}
432 	return (NULL);
433 }
434 
435 static inline int
436 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po)
437 {
438 	int len;
439 
440 	switch (po->data.lro_type) {
441 #ifdef INET
442 	case LRO_TYPE_IPV4_TCP:
443 		len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) +
444 		    ntohs(po->ip4->ip_len);
445 		break;
446 #endif
447 #ifdef INET6
448 	case LRO_TYPE_IPV6_TCP:
449 		len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) +
450 		    ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6);
451 		break;
452 #endif
453 	default:
454 		return (TCP_LRO_CANNOT);
455 	}
456 
457 	/*
458 	 * If the frame is padded beyond the end of the IP packet,
459 	 * then trim the extra bytes off:
460 	 */
461 	if (__predict_true(m->m_pkthdr.len == len)) {
462 		return (0);
463 	} else if (m->m_pkthdr.len > len) {
464 		m_adj(m, len - m->m_pkthdr.len);
465 		return (0);
466 	}
467 	return (TCP_LRO_CANNOT);
468 }
469 
470 static struct tcphdr *
471 tcp_lro_get_th(struct mbuf *m)
472 {
473 	return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off));
474 }
475 
476 static void
477 lro_free_mbuf_chain(struct mbuf *m)
478 {
479 	struct mbuf *save;
480 
481 	while (m) {
482 		save = m->m_nextpkt;
483 		m->m_nextpkt = NULL;
484 		m_freem(m);
485 		m = save;
486 	}
487 }
488 
489 void
490 tcp_lro_free(struct lro_ctrl *lc)
491 {
492 	struct lro_entry *le;
493 	unsigned x;
494 
495 	/* reset LRO free list */
496 	LIST_INIT(&lc->lro_free);
497 
498 	/* free active mbufs, if any */
499 	while ((le = LIST_FIRST(&lc->lro_active)) != NULL) {
500 		tcp_lro_active_remove(le);
501 		lro_free_mbuf_chain(le->m_head);
502 	}
503 
504 	/* free hash table */
505 	free(lc->lro_hash, M_LRO);
506 	lc->lro_hash = NULL;
507 	lc->lro_hashsz = 0;
508 
509 	/* free mbuf array, if any */
510 	for (x = 0; x != lc->lro_mbuf_count; x++)
511 		m_freem(lc->lro_mbuf_data[x].mb);
512 	lc->lro_mbuf_count = 0;
513 
514 	/* free allocated memory, if any */
515 	free(lc->lro_mbuf_data, M_LRO);
516 	lc->lro_mbuf_data = NULL;
517 }
518 
519 static uint16_t
520 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th)
521 {
522 	const uint16_t *ptr;
523 	uint32_t csum;
524 	uint16_t len;
525 
526 	csum = -th->th_sum;	/* exclude checksum field */
527 	len = th->th_off;
528 	ptr = (const uint16_t *)th;
529 	while (len--) {
530 		csum += *ptr;
531 		ptr++;
532 		csum += *ptr;
533 		ptr++;
534 	}
535 	while (csum > 0xffff)
536 		csum = (csum >> 16) + (csum & 0xffff);
537 
538 	return (csum);
539 }
540 
541 static uint16_t
542 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum)
543 {
544 	uint32_t c;
545 	uint16_t cs;
546 
547 	c = tcp_csum;
548 
549 	switch (pa->data.lro_type) {
550 #ifdef INET6
551 	case LRO_TYPE_IPV6_TCP:
552 		/* Compute full pseudo IPv6 header checksum. */
553 		cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0);
554 		break;
555 #endif
556 #ifdef INET
557 	case LRO_TYPE_IPV4_TCP:
558 		/* Compute full pseudo IPv4 header checsum. */
559 		cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP);
560 		cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs));
561 		break;
562 #endif
563 	default:
564 		cs = 0;		/* Keep compiler happy. */
565 		break;
566 	}
567 
568 	/* Complement checksum. */
569 	cs = ~cs;
570 	c += cs;
571 
572 	/* Remove TCP header checksum. */
573 	cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp);
574 	c += cs;
575 
576 	/* Compute checksum remainder. */
577 	while (c > 0xffff)
578 		c = (c >> 16) + (c & 0xffff);
579 
580 	return (c);
581 }
582 
583 static void
584 tcp_lro_rx_done(struct lro_ctrl *lc)
585 {
586 	struct lro_entry *le;
587 
588 	while ((le = LIST_FIRST(&lc->lro_active)) != NULL) {
589 		tcp_lro_active_remove(le);
590 		tcp_lro_flush(lc, le);
591 	}
592 }
593 
594 void
595 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout)
596 {
597 	struct lro_entry *le, *le_tmp;
598 	uint64_t now, tov;
599 	struct bintime bt;
600 
601 	NET_EPOCH_ASSERT();
602 	if (LIST_EMPTY(&lc->lro_active))
603 		return;
604 
605 	/* get timeout time and current time in ns */
606 	binuptime(&bt);
607 	now = bintime2ns(&bt);
608 	tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000));
609 	LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) {
610 		if (now >= (bintime2ns(&le->alloc_time) + tov)) {
611 			tcp_lro_active_remove(le);
612 			tcp_lro_flush(lc, le);
613 		}
614 	}
615 }
616 
617 #ifdef INET
618 static int
619 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4)
620 {
621 	uint16_t csum;
622 
623 	/* Legacy IP has a header checksum that needs to be correct. */
624 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
625 		if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) {
626 			lc->lro_bad_csum++;
627 			return (TCP_LRO_CANNOT);
628 		}
629 	} else {
630 		csum = in_cksum_hdr(ip4);
631 		if (__predict_false(csum != 0)) {
632 			lc->lro_bad_csum++;
633 			return (TCP_LRO_CANNOT);
634 		}
635 	}
636 	return (0);
637 }
638 #endif
639 
640 #ifdef TCPHPTS
641 static void
642 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc,
643     const struct lro_entry *le, const struct mbuf *m,
644     int frm, int32_t tcp_data_len, uint32_t th_seq,
645     uint32_t th_ack, uint16_t th_win)
646 {
647 	if (tp->t_logstate != TCP_LOG_STATE_OFF) {
648 		union tcp_log_stackspecific log;
649 		struct timeval tv, btv;
650 		uint32_t cts;
651 
652 		cts = tcp_get_usecs(&tv);
653 		memset(&log, 0, sizeof(union tcp_log_stackspecific));
654 		log.u_bbr.flex8 = frm;
655 		log.u_bbr.flex1 = tcp_data_len;
656 		if (m)
657 			log.u_bbr.flex2 = m->m_pkthdr.len;
658 		else
659 			log.u_bbr.flex2 = 0;
660 		log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs;
661 		log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len;
662 		if (le->m_head) {
663 			log.u_bbr.flex5 = le->m_head->m_pkthdr.len;
664 			log.u_bbr.delRate = le->m_head->m_flags;
665 			log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp;
666 		}
667 		log.u_bbr.inflight = th_seq;
668 		log.u_bbr.delivered = th_ack;
669 		log.u_bbr.timeStamp = cts;
670 		log.u_bbr.epoch = le->next_seq;
671 		log.u_bbr.lt_epoch = le->ack_seq;
672 		log.u_bbr.pacing_gain = th_win;
673 		log.u_bbr.cwnd_gain = le->window;
674 		log.u_bbr.lost = curcpu;
675 		log.u_bbr.cur_del_rate = (uintptr_t)m;
676 		log.u_bbr.bw_inuse = (uintptr_t)le->m_head;
677 		bintime2timeval(&lc->lro_last_queue_time, &btv);
678 		log.u_bbr.flex6 = tcp_tv_to_usectick(&btv);
679 		log.u_bbr.flex7 = le->compressed;
680 		log.u_bbr.pacing_gain = le->uncompressed;
681 		if (in_epoch(net_epoch_preempt))
682 			log.u_bbr.inhpts = 1;
683 		else
684 			log.u_bbr.inhpts = 0;
685 		TCP_LOG_EVENTP(tp, NULL,
686 			       &tp->t_inpcb->inp_socket->so_rcv,
687 			       &tp->t_inpcb->inp_socket->so_snd,
688 			       TCP_LOG_LRO, 0,
689 			       0, &log, false, &tv);
690 	}
691 }
692 #endif
693 
694 static inline void
695 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum)
696 {
697 	uint32_t csum;
698 
699 	csum = 0xffff - *ptr + value;
700 	while (csum > 0xffff)
701 		csum = (csum >> 16) + (csum & 0xffff);
702 	*ptr = value;
703 	*psum = csum;
704 }
705 
706 static uint16_t
707 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le,
708     uint16_t payload_len, uint16_t delta_sum)
709 {
710 	uint32_t csum;
711 	uint16_t tlen;
712 	uint16_t temp[5] = {};
713 
714 	switch (pa->data.lro_type) {
715 	case LRO_TYPE_IPV4_TCP:
716 		/* Compute new IPv4 length. */
717 		tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len;
718 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]);
719 
720 		/* Subtract delta from current IPv4 checksum. */
721 		csum = pa->ip4->ip_sum + 0xffff - temp[0];
722 		while (csum > 0xffff)
723 			csum = (csum >> 16) + (csum & 0xffff);
724 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]);
725 		goto update_tcp_header;
726 
727 	case LRO_TYPE_IPV6_TCP:
728 		/* Compute new IPv6 length. */
729 		tlen = (pa->tcp->th_off << 2) + payload_len;
730 		tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]);
731 		goto update_tcp_header;
732 
733 	case LRO_TYPE_IPV4_UDP:
734 		/* Compute new IPv4 length. */
735 		tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len;
736 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]);
737 
738 		/* Subtract delta from current IPv4 checksum. */
739 		csum = pa->ip4->ip_sum + 0xffff - temp[0];
740 		while (csum > 0xffff)
741 			csum = (csum >> 16) + (csum & 0xffff);
742 		tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]);
743 		goto update_udp_header;
744 
745 	case LRO_TYPE_IPV6_UDP:
746 		/* Compute new IPv6 length. */
747 		tlen = sizeof(*pa->udp) + payload_len;
748 		tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]);
749 		goto update_udp_header;
750 
751 	default:
752 		return (0);
753 	}
754 
755 update_tcp_header:
756 	/* Compute current TCP header checksum. */
757 	temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp);
758 
759 	/* Incorporate the latest ACK into the TCP header. */
760 	pa->tcp->th_ack = le->ack_seq;
761 	pa->tcp->th_win = le->window;
762 
763 	/* Incorporate latest timestamp into the TCP header. */
764 	if (le->timestamp != 0) {
765 		uint32_t *ts_ptr;
766 
767 		ts_ptr = (uint32_t *)(pa->tcp + 1);
768 		ts_ptr[1] = htonl(le->tsval);
769 		ts_ptr[2] = le->tsecr;
770 	}
771 
772 	/* Compute new TCP header checksum. */
773 	temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp);
774 
775 	/* Compute new TCP checksum. */
776 	csum = pa->tcp->th_sum + 0xffff - delta_sum +
777 	    0xffff - temp[0] + 0xffff - temp[3] + temp[2];
778 	while (csum > 0xffff)
779 		csum = (csum >> 16) + (csum & 0xffff);
780 
781 	/* Assign new TCP checksum. */
782 	tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]);
783 
784 	/* Compute all modififications affecting next checksum. */
785 	csum = temp[0] + temp[1] + 0xffff - temp[2] +
786 	    temp[3] + temp[4] + delta_sum;
787 	while (csum > 0xffff)
788 		csum = (csum >> 16) + (csum & 0xffff);
789 
790 	/* Return delta checksum to next stage, if any. */
791 	return (csum);
792 
793 update_udp_header:
794 	tlen = sizeof(*pa->udp) + payload_len;
795 	/* Assign new UDP length and compute checksum delta. */
796 	tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]);
797 
798 	/* Check if there is a UDP checksum. */
799 	if (__predict_false(pa->udp->uh_sum != 0)) {
800 		/* Compute new UDP checksum. */
801 		csum = pa->udp->uh_sum + 0xffff - delta_sum +
802 		    0xffff - temp[0] + 0xffff - temp[2];
803 		while (csum > 0xffff)
804 			csum = (csum >> 16) + (csum & 0xffff);
805 		/* Assign new UDP checksum. */
806 		tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]);
807 	}
808 
809 	/* Compute all modififications affecting next checksum. */
810 	csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum;
811 	while (csum > 0xffff)
812 		csum = (csum >> 16) + (csum & 0xffff);
813 
814 	/* Return delta checksum to next stage, if any. */
815 	return (csum);
816 }
817 
818 static void
819 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le)
820 {
821 	/* Check if we need to recompute any checksums. */
822 	if (le->m_head->m_pkthdr.lro_nsegs > 1) {
823 		uint16_t csum;
824 
825 		switch (le->inner.data.lro_type) {
826 		case LRO_TYPE_IPV4_TCP:
827 			csum = tcp_lro_update_checksum(&le->inner, le,
828 			    le->m_head->m_pkthdr.lro_tcp_d_len,
829 			    le->m_head->m_pkthdr.lro_tcp_d_csum);
830 			csum = tcp_lro_update_checksum(&le->outer, NULL,
831 			    le->m_head->m_pkthdr.lro_tcp_d_len +
832 			    le->inner.total_hdr_len, csum);
833 			le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
834 			    CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID;
835 			le->m_head->m_pkthdr.csum_data = 0xffff;
836 			break;
837 		case LRO_TYPE_IPV6_TCP:
838 			csum = tcp_lro_update_checksum(&le->inner, le,
839 			    le->m_head->m_pkthdr.lro_tcp_d_len,
840 			    le->m_head->m_pkthdr.lro_tcp_d_csum);
841 			csum = tcp_lro_update_checksum(&le->outer, NULL,
842 			    le->m_head->m_pkthdr.lro_tcp_d_len +
843 			    le->inner.total_hdr_len, csum);
844 			le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
845 			    CSUM_PSEUDO_HDR;
846 			le->m_head->m_pkthdr.csum_data = 0xffff;
847 			break;
848 		case LRO_TYPE_NONE:
849 			switch (le->outer.data.lro_type) {
850 			case LRO_TYPE_IPV4_TCP:
851 				csum = tcp_lro_update_checksum(&le->outer, le,
852 				    le->m_head->m_pkthdr.lro_tcp_d_len,
853 				    le->m_head->m_pkthdr.lro_tcp_d_csum);
854 				le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
855 				    CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID;
856 				le->m_head->m_pkthdr.csum_data = 0xffff;
857 				break;
858 			case LRO_TYPE_IPV6_TCP:
859 				csum = tcp_lro_update_checksum(&le->outer, le,
860 				    le->m_head->m_pkthdr.lro_tcp_d_len,
861 				    le->m_head->m_pkthdr.lro_tcp_d_csum);
862 				le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
863 				    CSUM_PSEUDO_HDR;
864 				le->m_head->m_pkthdr.csum_data = 0xffff;
865 				break;
866 			default:
867 				break;
868 			}
869 			break;
870 		default:
871 			break;
872 		}
873 	}
874 
875 	/*
876 	 * Break any chain, this is not set to NULL on the singleton
877 	 * case m_nextpkt points to m_head. Other case set them
878 	 * m_nextpkt to NULL in push_and_replace.
879 	 */
880 	le->m_head->m_nextpkt = NULL;
881 	lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs;
882 	(*lc->ifp->if_input)(lc->ifp, le->m_head);
883 }
884 
885 static void
886 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le,
887     struct mbuf *m, struct tcphdr *th)
888 {
889 	uint32_t *ts_ptr;
890 	uint16_t tcp_data_len;
891 	uint16_t tcp_opt_len;
892 
893 	ts_ptr = (uint32_t *)(th + 1);
894 	tcp_opt_len = (th->th_off << 2);
895 	tcp_opt_len -= sizeof(*th);
896 
897 	/* Check if there is a timestamp option. */
898 	if (tcp_opt_len == 0 ||
899 	    __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA ||
900 	    *ts_ptr != TCP_LRO_TS_OPTION)) {
901 		/* We failed to find the timestamp option. */
902 		le->timestamp = 0;
903 	} else {
904 		le->timestamp = 1;
905 		le->tsval = ntohl(*(ts_ptr + 1));
906 		le->tsecr = *(ts_ptr + 2);
907 	}
908 
909 	tcp_data_len = m->m_pkthdr.lro_tcp_d_len;
910 
911 	/* Pull out TCP sequence numbers and window size. */
912 	le->next_seq = ntohl(th->th_seq) + tcp_data_len;
913 	le->ack_seq = th->th_ack;
914 	le->window = th->th_win;
915 
916 	/* Setup new data pointers. */
917 	le->m_head = m;
918 	le->m_tail = m_last(m);
919 }
920 
921 static void
922 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m)
923 {
924 	struct lro_parser *pa;
925 
926 	/*
927 	 * Push up the stack of the current entry
928 	 * and replace it with "m".
929 	 */
930 	struct mbuf *msave;
931 
932 	/* Grab off the next and save it */
933 	msave = le->m_head->m_nextpkt;
934 	le->m_head->m_nextpkt = NULL;
935 
936 	/* Now push out the old entry */
937 	tcp_flush_out_entry(lc, le);
938 
939 	/* Re-parse new header, should not fail. */
940 	pa = tcp_lro_parser(m, &le->outer, &le->inner, false);
941 	KASSERT(pa != NULL,
942 	    ("tcp_push_and_replace: LRO parser failed on m=%p\n", m));
943 
944 	/*
945 	 * Now to replace the data properly in the entry
946 	 * we have to reset the TCP header and
947 	 * other fields.
948 	 */
949 	tcp_set_entry_to_mbuf(lc, le, m, pa->tcp);
950 
951 	/* Restore the next list */
952 	m->m_nextpkt = msave;
953 }
954 
955 static void
956 tcp_lro_mbuf_append_pkthdr(struct mbuf *m, const struct mbuf *p)
957 {
958 	uint32_t csum;
959 
960 	if (m->m_pkthdr.lro_nsegs == 1) {
961 		/* Compute relative checksum. */
962 		csum = p->m_pkthdr.lro_tcp_d_csum;
963 	} else {
964 		/* Merge TCP data checksums. */
965 		csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum +
966 		    (uint32_t)p->m_pkthdr.lro_tcp_d_csum;
967 		while (csum > 0xffff)
968 			csum = (csum >> 16) + (csum & 0xffff);
969 	}
970 
971 	/* Update various counters. */
972 	m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len;
973 	m->m_pkthdr.lro_tcp_d_csum = csum;
974 	m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len;
975 	m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs;
976 }
977 
978 static void
979 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le)
980 {
981 	/*
982 	 * Walk through the mbuf chain we
983 	 * have on tap and compress/condense
984 	 * as required.
985 	 */
986 	uint32_t *ts_ptr;
987 	struct mbuf *m;
988 	struct tcphdr *th;
989 	uint32_t tcp_data_len_total;
990 	uint32_t tcp_data_seg_total;
991 	uint16_t tcp_data_len;
992 	uint16_t tcp_opt_len;
993 
994 	/*
995 	 * First we must check the lead (m_head)
996 	 * we must make sure that it is *not*
997 	 * something that should be sent up
998 	 * right away (sack etc).
999 	 */
1000 again:
1001 	m = le->m_head->m_nextpkt;
1002 	if (m == NULL) {
1003 		/* Just one left. */
1004 		return;
1005 	}
1006 
1007 	th = tcp_lro_get_th(m);
1008 	tcp_opt_len = (th->th_off << 2);
1009 	tcp_opt_len -= sizeof(*th);
1010 	ts_ptr = (uint32_t *)(th + 1);
1011 
1012 	if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA ||
1013 	    *ts_ptr != TCP_LRO_TS_OPTION)) {
1014 		/*
1015 		 * Its not the timestamp. We can't
1016 		 * use this guy as the head.
1017 		 */
1018 		le->m_head->m_nextpkt = m->m_nextpkt;
1019 		tcp_push_and_replace(lc, le, m);
1020 		goto again;
1021 	}
1022 	if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) {
1023 		/*
1024 		 * Make sure that previously seen segements/ACKs are delivered
1025 		 * before this segment, e.g. FIN.
1026 		 */
1027 		le->m_head->m_nextpkt = m->m_nextpkt;
1028 		tcp_push_and_replace(lc, le, m);
1029 		goto again;
1030 	}
1031 	while((m = le->m_head->m_nextpkt) != NULL) {
1032 		/*
1033 		 * condense m into le, first
1034 		 * pull m out of the list.
1035 		 */
1036 		le->m_head->m_nextpkt = m->m_nextpkt;
1037 		m->m_nextpkt = NULL;
1038 		/* Setup my data */
1039 		tcp_data_len = m->m_pkthdr.lro_tcp_d_len;
1040 		th = tcp_lro_get_th(m);
1041 		ts_ptr = (uint32_t *)(th + 1);
1042 		tcp_opt_len = (th->th_off << 2);
1043 		tcp_opt_len -= sizeof(*th);
1044 		tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len;
1045 		tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs;
1046 
1047 		if (tcp_data_seg_total >= lc->lro_ackcnt_lim ||
1048 		    tcp_data_len_total >= lc->lro_length_lim) {
1049 			/* Flush now if appending will result in overflow. */
1050 			tcp_push_and_replace(lc, le, m);
1051 			goto again;
1052 		}
1053 		if (tcp_opt_len != 0 &&
1054 		    __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA ||
1055 		    *ts_ptr != TCP_LRO_TS_OPTION)) {
1056 			/*
1057 			 * Maybe a sack in the new one? We need to
1058 			 * start all over after flushing the
1059 			 * current le. We will go up to the beginning
1060 			 * and flush it (calling the replace again possibly
1061 			 * or just returning).
1062 			 */
1063 			tcp_push_and_replace(lc, le, m);
1064 			goto again;
1065 		}
1066 		if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) {
1067 			tcp_push_and_replace(lc, le, m);
1068 			goto again;
1069 		}
1070 		if (tcp_opt_len != 0) {
1071 			uint32_t tsval = ntohl(*(ts_ptr + 1));
1072 			/* Make sure timestamp values are increasing. */
1073 			if (TSTMP_GT(le->tsval, tsval))  {
1074 				tcp_push_and_replace(lc, le, m);
1075 				goto again;
1076 			}
1077 			le->tsval = tsval;
1078 			le->tsecr = *(ts_ptr + 2);
1079 		}
1080 		/* Try to append the new segment. */
1081 		if (__predict_false(ntohl(th->th_seq) != le->next_seq ||
1082 				    (tcp_data_len == 0 &&
1083 				     le->ack_seq == th->th_ack &&
1084 				     le->window == th->th_win))) {
1085 			/* Out of order packet or duplicate ACK. */
1086 			tcp_push_and_replace(lc, le, m);
1087 			goto again;
1088 		}
1089 		if (tcp_data_len != 0 ||
1090 		    SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) {
1091 			le->next_seq += tcp_data_len;
1092 			le->ack_seq = th->th_ack;
1093 			le->window = th->th_win;
1094 		} else if (th->th_ack == le->ack_seq) {
1095 			le->window = WIN_MAX(le->window, th->th_win);
1096 		}
1097 
1098 		if (tcp_data_len == 0) {
1099 			m_freem(m);
1100 			continue;
1101 		}
1102 
1103 		/* Merge TCP data checksum and length to head mbuf. */
1104 		tcp_lro_mbuf_append_pkthdr(le->m_head, m);
1105 
1106 		/*
1107 		 * Adjust the mbuf so that m_data points to the first byte of
1108 		 * the ULP payload.  Adjust the mbuf to avoid complications and
1109 		 * append new segment to existing mbuf chain.
1110 		 */
1111 		m_adj(m, m->m_pkthdr.len - tcp_data_len);
1112 		m_demote_pkthdr(m);
1113 		le->m_tail->m_next = m;
1114 		le->m_tail = m_last(m);
1115 	}
1116 }
1117 
1118 #ifdef TCPHPTS
1119 static void
1120 tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le)
1121 {
1122 	INP_WLOCK_ASSERT(inp);
1123 	if (tp->t_in_pkt == NULL) {
1124 		/* Nothing yet there */
1125 		tp->t_in_pkt = le->m_head;
1126 		tp->t_tail_pkt = le->m_last_mbuf;
1127 	} else {
1128 		/* Already some there */
1129 		tp->t_tail_pkt->m_nextpkt = le->m_head;
1130 		tp->t_tail_pkt = le->m_last_mbuf;
1131 	}
1132 	le->m_head = NULL;
1133 	le->m_last_mbuf = NULL;
1134 }
1135 
1136 static struct mbuf *
1137 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le,
1138     struct inpcb *inp, int32_t *new_m)
1139 {
1140 	struct tcpcb *tp;
1141 	struct mbuf *m;
1142 
1143 	tp = intotcpcb(inp);
1144 	if (__predict_false(tp == NULL))
1145 		return (NULL);
1146 
1147 	/* Look at the last mbuf if any in queue */
1148 	m = tp->t_tail_pkt;
1149 	if (m != NULL && (m->m_flags & M_ACKCMP) != 0) {
1150 		if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) {
1151 			tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0);
1152 			*new_m = 0;
1153 			counter_u64_add(tcp_extra_mbuf, 1);
1154 			return (m);
1155 		} else {
1156 			/* Mark we ran out of space */
1157 			inp->inp_flags2 |= INP_MBUF_L_ACKS;
1158 		}
1159 	}
1160 	/* Decide mbuf size. */
1161 	if (inp->inp_flags2 & INP_MBUF_L_ACKS)
1162 		m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR);
1163 	else
1164 		m = m_gethdr(M_NOWAIT, MT_DATA);
1165 
1166 	if (__predict_false(m == NULL)) {
1167 		counter_u64_add(tcp_would_have_but, 1);
1168 		return (NULL);
1169 	}
1170 	counter_u64_add(tcp_comp_total, 1);
1171 	m->m_flags |= M_ACKCMP;
1172 	*new_m = 1;
1173 	return (m);
1174 }
1175 
1176 static struct inpcb *
1177 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa)
1178 {
1179 	struct inpcb *inp;
1180 
1181 	switch (pa->data.lro_type) {
1182 #ifdef INET6
1183 	case LRO_TYPE_IPV6_TCP:
1184 		inp = in6_pcblookup(&V_tcbinfo,
1185 		    &pa->data.s_addr.v6,
1186 		    pa->data.s_port,
1187 		    &pa->data.d_addr.v6,
1188 		    pa->data.d_port,
1189 		    INPLOOKUP_WLOCKPCB,
1190 		    ifp);
1191 		break;
1192 #endif
1193 #ifdef INET
1194 	case LRO_TYPE_IPV4_TCP:
1195 		inp = in_pcblookup(&V_tcbinfo,
1196 		    pa->data.s_addr.v4,
1197 		    pa->data.s_port,
1198 		    pa->data.d_addr.v4,
1199 		    pa->data.d_port,
1200 		    INPLOOKUP_WLOCKPCB,
1201 		    ifp);
1202 		break;
1203 #endif
1204 	default:
1205 		inp = NULL;
1206 		break;
1207 	}
1208 	return (inp);
1209 }
1210 
1211 static inline bool
1212 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts)
1213 {
1214 	/*
1215 	 * This function returns two bits of valuable information.
1216 	 * a) Is what is present capable of being ack-compressed,
1217 	 *    we can ack-compress if there is no options or just
1218 	 *    a timestamp option, and of course the th_flags must
1219 	 *    be correct as well.
1220 	 * b) Our other options present such as SACK. This is
1221 	 *    used to determine if we want to wakeup or not.
1222 	 */
1223 	bool ret = true;
1224 
1225 	switch (th->th_off << 2) {
1226 	case (sizeof(*th) + TCPOLEN_TSTAMP_APPA):
1227 		*ppts = (uint32_t *)(th + 1);
1228 		/* Check if we have only one timestamp option. */
1229 		if (**ppts == TCP_LRO_TS_OPTION)
1230 			*other_opts = false;
1231 		else {
1232 			*other_opts = true;
1233 			ret = false;
1234 		}
1235 		break;
1236 	case (sizeof(*th)):
1237 		/* No options. */
1238 		*ppts = NULL;
1239 		*other_opts = false;
1240 		break;
1241 	default:
1242 		*ppts = NULL;
1243 		*other_opts = true;
1244 		ret = false;
1245 		break;
1246 	}
1247 	/* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */
1248 	if ((th->th_flags & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0)
1249 		ret = false;
1250 	/* If it has data on it we cannot compress it */
1251 	if (m->m_pkthdr.lro_tcp_d_len)
1252 		ret = false;
1253 
1254 	/* ACK flag must be set. */
1255 	if (!(th->th_flags & TH_ACK))
1256 		ret = false;
1257 	return (ret);
1258 }
1259 
1260 static int
1261 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le)
1262 {
1263 	struct inpcb *inp;
1264 	struct tcpcb *tp;
1265 	struct mbuf **pp, *cmp, *mv_to;
1266 	bool bpf_req, should_wake;
1267 
1268 	/* Check if packet doesn't belongs to our network interface. */
1269 	if ((tcplro_stacks_wanting_mbufq == 0) ||
1270 	    (le->outer.data.vlan_id != 0) ||
1271 	    (le->inner.data.lro_type != LRO_TYPE_NONE))
1272 		return (TCP_LRO_CANNOT);
1273 
1274 #ifdef INET6
1275 	/*
1276 	 * Be proactive about unspecified IPv6 address in source. As
1277 	 * we use all-zero to indicate unbounded/unconnected pcb,
1278 	 * unspecified IPv6 address can be used to confuse us.
1279 	 *
1280 	 * Note that packets with unspecified IPv6 destination is
1281 	 * already dropped in ip6_input.
1282 	 */
1283 	if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP &&
1284 	    IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6)))
1285 		return (TCP_LRO_CANNOT);
1286 
1287 	if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP &&
1288 	    IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6)))
1289 		return (TCP_LRO_CANNOT);
1290 #endif
1291 	/* Lookup inp, if any. */
1292 	inp = tcp_lro_lookup(lc->ifp,
1293 	    (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner);
1294 	if (inp == NULL)
1295 		return (TCP_LRO_CANNOT);
1296 
1297 	counter_u64_add(tcp_inp_lro_locks_taken, 1);
1298 
1299 	/* Get TCP control structure. */
1300 	tp = intotcpcb(inp);
1301 
1302 	/* Check if the inp is dead, Jim. */
1303 	if (tp == NULL ||
1304 	    (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) ||
1305 	    (inp->inp_flags2 & INP_FREED)) {
1306 		INP_WUNLOCK(inp);
1307 		return (TCP_LRO_CANNOT);
1308 	}
1309 	if ((inp->inp_irq_cpu_set == 0)  && (lc->lro_cpu_is_set == 1)) {
1310 		inp->inp_irq_cpu = lc->lro_last_cpu;
1311 		inp->inp_irq_cpu_set = 1;
1312 	}
1313 	/* Check if the transport doesn't support the needed optimizations. */
1314 	if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) {
1315 		INP_WUNLOCK(inp);
1316 		return (TCP_LRO_CANNOT);
1317 	}
1318 
1319 	if (inp->inp_flags2 & INP_MBUF_QUEUE_READY)
1320 		should_wake = false;
1321 	else
1322 		should_wake = true;
1323 	/* Check if packets should be tapped to BPF. */
1324 	bpf_req = bpf_peers_present(lc->ifp->if_bpf);
1325 
1326 	/* Strip and compress all the incoming packets. */
1327 	cmp = NULL;
1328 	for (pp = &le->m_head; *pp != NULL; ) {
1329 		mv_to = NULL;
1330 		if (do_bpf_strip_and_compress(inp, lc, le, pp,
1331 			 &cmp, &mv_to, &should_wake, bpf_req ) == false) {
1332 			/* Advance to next mbuf. */
1333 			pp = &(*pp)->m_nextpkt;
1334 		} else if (mv_to != NULL) {
1335 			/* We are asked to move pp up */
1336 			pp = &mv_to->m_nextpkt;
1337 		}
1338 	}
1339 	/* Update "m_last_mbuf", if any. */
1340 	if (pp == &le->m_head)
1341 		le->m_last_mbuf = *pp;
1342 	else
1343 		le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt);
1344 
1345 	/* Check if any data mbufs left. */
1346 	if (le->m_head != NULL) {
1347 		counter_u64_add(tcp_inp_lro_direct_queue, 1);
1348 		tcp_lro_log(tp, lc, le, NULL, 22, 1,
1349 			    inp->inp_flags2, inp->inp_in_input, 1);
1350 		tcp_queue_pkts(inp, tp, le);
1351 	}
1352 	if (should_wake) {
1353 		/* Wakeup */
1354 		counter_u64_add(tcp_inp_lro_wokeup_queue, 1);
1355 		if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0))
1356 			inp = NULL;
1357 	}
1358 	if (inp != NULL)
1359 		INP_WUNLOCK(inp);
1360 	return (0);	/* Success. */
1361 }
1362 #endif
1363 
1364 void
1365 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le)
1366 {
1367 	/* Only optimise if there are multiple packets waiting. */
1368 #ifdef TCPHPTS
1369 	int error;
1370 #endif
1371 
1372 	NET_EPOCH_ASSERT();
1373 #ifdef TCPHPTS
1374 	CURVNET_SET(lc->ifp->if_vnet);
1375 	error = tcp_lro_flush_tcphpts(lc, le);
1376 	CURVNET_RESTORE();
1377 	if (error != 0) {
1378 #endif
1379 		tcp_lro_condense(lc, le);
1380 		tcp_flush_out_entry(lc, le);
1381 #ifdef TCPHPTS
1382 	}
1383 #endif
1384 	lc->lro_flushed++;
1385 	bzero(le, sizeof(*le));
1386 	LIST_INSERT_HEAD(&lc->lro_free, le, next);
1387 }
1388 
1389 #ifdef HAVE_INLINE_FLSLL
1390 #define	tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1))
1391 #else
1392 static inline uint64_t
1393 tcp_lro_msb_64(uint64_t x)
1394 {
1395 	x |= (x >> 1);
1396 	x |= (x >> 2);
1397 	x |= (x >> 4);
1398 	x |= (x >> 8);
1399 	x |= (x >> 16);
1400 	x |= (x >> 32);
1401 	return (x & ~(x >> 1));
1402 }
1403 #endif
1404 
1405 /*
1406  * The tcp_lro_sort() routine is comparable to qsort(), except it has
1407  * a worst case complexity limit of O(MIN(N,64)*N), where N is the
1408  * number of elements to sort and 64 is the number of sequence bits
1409  * available. The algorithm is bit-slicing the 64-bit sequence number,
1410  * sorting one bit at a time from the most significant bit until the
1411  * least significant one, skipping the constant bits. This is
1412  * typically called a radix sort.
1413  */
1414 static void
1415 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size)
1416 {
1417 	struct lro_mbuf_sort temp;
1418 	uint64_t ones;
1419 	uint64_t zeros;
1420 	uint32_t x;
1421 	uint32_t y;
1422 
1423 repeat:
1424 	/* for small arrays insertion sort is faster */
1425 	if (size <= 12) {
1426 		for (x = 1; x < size; x++) {
1427 			temp = parray[x];
1428 			for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--)
1429 				parray[y] = parray[y - 1];
1430 			parray[y] = temp;
1431 		}
1432 		return;
1433 	}
1434 
1435 	/* compute sequence bits which are constant */
1436 	ones = 0;
1437 	zeros = 0;
1438 	for (x = 0; x != size; x++) {
1439 		ones |= parray[x].seq;
1440 		zeros |= ~parray[x].seq;
1441 	}
1442 
1443 	/* compute bits which are not constant into "ones" */
1444 	ones &= zeros;
1445 	if (ones == 0)
1446 		return;
1447 
1448 	/* pick the most significant bit which is not constant */
1449 	ones = tcp_lro_msb_64(ones);
1450 
1451 	/*
1452 	 * Move entries having cleared sequence bits to the beginning
1453 	 * of the array:
1454 	 */
1455 	for (x = y = 0; y != size; y++) {
1456 		/* skip set bits */
1457 		if (parray[y].seq & ones)
1458 			continue;
1459 		/* swap entries */
1460 		temp = parray[x];
1461 		parray[x] = parray[y];
1462 		parray[y] = temp;
1463 		x++;
1464 	}
1465 
1466 	KASSERT(x != 0 && x != size, ("Memory is corrupted\n"));
1467 
1468 	/* sort zeros */
1469 	tcp_lro_sort(parray, x);
1470 
1471 	/* sort ones */
1472 	parray += x;
1473 	size -= x;
1474 	goto repeat;
1475 }
1476 
1477 void
1478 tcp_lro_flush_all(struct lro_ctrl *lc)
1479 {
1480 	uint64_t seq;
1481 	uint64_t nseq;
1482 	unsigned x;
1483 
1484 	NET_EPOCH_ASSERT();
1485 	/* check if no mbufs to flush */
1486 	if (lc->lro_mbuf_count == 0)
1487 		goto done;
1488 	if (lc->lro_cpu_is_set == 0) {
1489 		if (lc->lro_last_cpu == curcpu) {
1490 			lc->lro_cnt_of_same_cpu++;
1491 			/* Have we reached the threshold to declare a cpu? */
1492 			if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh)
1493 				lc->lro_cpu_is_set = 1;
1494 		} else {
1495 			lc->lro_last_cpu = curcpu;
1496 			lc->lro_cnt_of_same_cpu = 0;
1497 		}
1498 	}
1499 	CURVNET_SET(lc->ifp->if_vnet);
1500 
1501 	/* get current time */
1502 	binuptime(&lc->lro_last_queue_time);
1503 
1504 	/* sort all mbufs according to stream */
1505 	tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count);
1506 
1507 	/* input data into LRO engine, stream by stream */
1508 	seq = 0;
1509 	for (x = 0; x != lc->lro_mbuf_count; x++) {
1510 		struct mbuf *mb;
1511 
1512 		/* get mbuf */
1513 		mb = lc->lro_mbuf_data[x].mb;
1514 
1515 		/* get sequence number, masking away the packet index */
1516 		nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24);
1517 
1518 		/* check for new stream */
1519 		if (seq != nseq) {
1520 			seq = nseq;
1521 
1522 			/* flush active streams */
1523 			tcp_lro_rx_done(lc);
1524 		}
1525 
1526 		/* add packet to LRO engine */
1527 		if (tcp_lro_rx_common(lc, mb, 0, false) != 0) {
1528 			/* input packet to network layer */
1529 			(*lc->ifp->if_input)(lc->ifp, mb);
1530 			lc->lro_queued++;
1531 			lc->lro_flushed++;
1532 		}
1533 	}
1534 	CURVNET_RESTORE();
1535 done:
1536 	/* flush active streams */
1537 	tcp_lro_rx_done(lc);
1538 
1539 #ifdef TCPHPTS
1540 	tcp_run_hpts();
1541 #endif
1542 	lc->lro_mbuf_count = 0;
1543 }
1544 
1545 #ifdef TCPHPTS
1546 static void
1547 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m,
1548     uint32_t *ts_ptr, uint16_t iptos)
1549 {
1550 	/*
1551 	 * Given a TCP ACK, summarize it down into the small TCP ACK
1552 	 * entry.
1553 	 */
1554 	ae->timestamp = m->m_pkthdr.rcv_tstmp;
1555 	if (m->m_flags & M_TSTMP_LRO)
1556 		ae->flags = TSTMP_LRO;
1557 	else if (m->m_flags & M_TSTMP)
1558 		ae->flags = TSTMP_HDWR;
1559 	ae->seq = ntohl(th->th_seq);
1560 	ae->ack = ntohl(th->th_ack);
1561 	ae->flags |= th->th_flags;
1562 	if (ts_ptr != NULL) {
1563 		ae->ts_value = ntohl(ts_ptr[1]);
1564 		ae->ts_echo = ntohl(ts_ptr[2]);
1565 		ae->flags |= HAS_TSTMP;
1566 	}
1567 	ae->win = ntohs(th->th_win);
1568 	ae->codepoint = iptos;
1569 }
1570 
1571 /*
1572  * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets
1573  * and strip all, but the IPv4/IPv6 header.
1574  */
1575 static bool
1576 do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc,
1577     struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to,
1578     bool *should_wake, bool bpf_req)
1579 {
1580 	union {
1581 		void *ptr;
1582 		struct ip *ip4;
1583 		struct ip6_hdr *ip6;
1584 	} l3;
1585 	struct mbuf *m;
1586 	struct mbuf *nm;
1587 	struct tcphdr *th;
1588 	struct tcp_ackent *ack_ent;
1589 	uint32_t *ts_ptr;
1590 	int32_t n_mbuf;
1591 	bool other_opts, can_compress;
1592 	uint8_t lro_type;
1593 	uint16_t iptos;
1594 	int tcp_hdr_offset;
1595 	int idx;
1596 
1597 	/* Get current mbuf. */
1598 	m = *pp;
1599 
1600 	/* Let the BPF see the packet */
1601 	if (__predict_false(bpf_req))
1602 		ETHER_BPF_MTAP(lc->ifp, m);
1603 
1604 	tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off;
1605 	lro_type = le->inner.data.lro_type;
1606 	switch (lro_type) {
1607 	case LRO_TYPE_NONE:
1608 		lro_type = le->outer.data.lro_type;
1609 		switch (lro_type) {
1610 		case LRO_TYPE_IPV4_TCP:
1611 			tcp_hdr_offset -= sizeof(*le->outer.ip4);
1612 			m->m_pkthdr.lro_etype = ETHERTYPE_IP;
1613 			break;
1614 		case LRO_TYPE_IPV6_TCP:
1615 			tcp_hdr_offset -= sizeof(*le->outer.ip6);
1616 			m->m_pkthdr.lro_etype = ETHERTYPE_IPV6;
1617 			break;
1618 		default:
1619 			goto compressed;
1620 		}
1621 		break;
1622 	case LRO_TYPE_IPV4_TCP:
1623 		tcp_hdr_offset -= sizeof(*le->outer.ip4);
1624 		m->m_pkthdr.lro_etype = ETHERTYPE_IP;
1625 		break;
1626 	case LRO_TYPE_IPV6_TCP:
1627 		tcp_hdr_offset -= sizeof(*le->outer.ip6);
1628 		m->m_pkthdr.lro_etype = ETHERTYPE_IPV6;
1629 		break;
1630 	default:
1631 		goto compressed;
1632 	}
1633 
1634 	MPASS(tcp_hdr_offset >= 0);
1635 
1636 	m_adj(m, tcp_hdr_offset);
1637 	m->m_flags |= M_LRO_EHDRSTRP;
1638 	m->m_flags &= ~M_ACKCMP;
1639 	m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset;
1640 
1641 	th = tcp_lro_get_th(m);
1642 
1643 	th->th_sum = 0;		/* TCP checksum is valid. */
1644 
1645 	/* Check if ACK can be compressed */
1646 	can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts);
1647 
1648 	/* Now lets look at the should wake states */
1649 	if ((other_opts == true) &&
1650 	    ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) {
1651 		/*
1652 		 * If there are other options (SACK?) and the
1653 		 * tcp endpoint has not expressly told us it does
1654 		 * not care about SACKS, then we should wake up.
1655 		 */
1656 		*should_wake = true;
1657 	}
1658 	/* Is the ack compressable? */
1659 	if (can_compress == false)
1660 		goto done;
1661 	/* Does the TCP endpoint support ACK compression? */
1662 	if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0)
1663 		goto done;
1664 
1665 	/* Lets get the TOS/traffic class field */
1666 	l3.ptr = mtod(m, void *);
1667 	switch (lro_type) {
1668 	case LRO_TYPE_IPV4_TCP:
1669 		iptos = l3.ip4->ip_tos;
1670 		break;
1671 	case LRO_TYPE_IPV6_TCP:
1672 		iptos = IPV6_TRAFFIC_CLASS(l3.ip6);
1673 		break;
1674 	default:
1675 		iptos = 0;	/* Keep compiler happy. */
1676 		break;
1677 	}
1678 	/* Now lets get space if we don't have some already */
1679 	if (*cmp == NULL) {
1680 new_one:
1681 		nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf);
1682 		if (__predict_false(nm == NULL))
1683 			goto done;
1684 		*cmp = nm;
1685 		if (n_mbuf) {
1686 			/*
1687 			 *  Link in the new cmp ack to our in-order place,
1688 			 * first set our cmp ack's next to where we are.
1689 			 */
1690 			nm->m_nextpkt = m;
1691 			(*pp) = nm;
1692 			/*
1693 			 * Set it up so mv_to is advanced to our
1694 			 * compressed ack. This way the caller can
1695 			 * advance pp to the right place.
1696 			 */
1697 			*mv_to = nm;
1698 			/*
1699 			 * Advance it here locally as well.
1700 			 */
1701 			pp = &nm->m_nextpkt;
1702 		}
1703 	} else {
1704 		/* We have one already we are working on */
1705 		nm = *cmp;
1706 		if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) {
1707 			/* We ran out of space */
1708 			inp->inp_flags2 |= INP_MBUF_L_ACKS;
1709 			goto new_one;
1710 		}
1711 	}
1712 	MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent));
1713 	counter_u64_add(tcp_inp_lro_compressed, 1);
1714 	le->compressed++;
1715 	/* We can add in to the one on the tail */
1716 	ack_ent = mtod(nm, struct tcp_ackent *);
1717 	idx = (nm->m_len / sizeof(struct tcp_ackent));
1718 	build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos);
1719 
1720 	/* Bump the size of both pkt-hdr and len */
1721 	nm->m_len += sizeof(struct tcp_ackent);
1722 	nm->m_pkthdr.len += sizeof(struct tcp_ackent);
1723 compressed:
1724 	/* Advance to next mbuf before freeing. */
1725 	*pp = m->m_nextpkt;
1726 	m->m_nextpkt = NULL;
1727 	m_freem(m);
1728 	return (true);
1729 done:
1730 	counter_u64_add(tcp_uncomp_total, 1);
1731 	le->uncompressed++;
1732 	return (false);
1733 }
1734 #endif
1735 
1736 static struct lro_head *
1737 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser)
1738 {
1739 	u_long hash;
1740 
1741 	if (M_HASHTYPE_ISHASH(m)) {
1742 		hash = m->m_pkthdr.flowid;
1743 	} else {
1744 		for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++)
1745 			hash += parser->data.raw[i];
1746 	}
1747 	return (&lc->lro_hash[hash % lc->lro_hashsz]);
1748 }
1749 
1750 static int
1751 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash)
1752 {
1753 	struct lro_parser pi;	/* inner address data */
1754 	struct lro_parser po;	/* outer address data */
1755 	struct lro_parser *pa;	/* current parser for TCP stream */
1756 	struct lro_entry *le;
1757 	struct lro_head *bucket;
1758 	struct tcphdr *th;
1759 	int tcp_data_len;
1760 	int tcp_opt_len;
1761 	int error;
1762 	uint16_t tcp_data_sum;
1763 
1764 #ifdef INET
1765 	/* Quickly decide if packet cannot be LRO'ed */
1766 	if (__predict_false(V_ipforwarding != 0))
1767 		return (TCP_LRO_CANNOT);
1768 #endif
1769 #ifdef INET6
1770 	/* Quickly decide if packet cannot be LRO'ed */
1771 	if (__predict_false(V_ip6_forwarding != 0))
1772 		return (TCP_LRO_CANNOT);
1773 #endif
1774 	if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) !=
1775 	     ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) ||
1776 	    (m->m_pkthdr.csum_data != 0xffff)) {
1777 		/*
1778 		 * The checksum either did not have hardware offload
1779 		 * or it was a bad checksum. We can't LRO such
1780 		 * a packet.
1781 		 */
1782 		counter_u64_add(tcp_bad_csums, 1);
1783 		return (TCP_LRO_CANNOT);
1784 	}
1785 	/* We expect a contiguous header [eh, ip, tcp]. */
1786 	pa = tcp_lro_parser(m, &po, &pi, true);
1787 	if (__predict_false(pa == NULL))
1788 		return (TCP_LRO_NOT_SUPPORTED);
1789 
1790 	/* We don't expect any padding. */
1791 	error = tcp_lro_trim_mbuf_chain(m, pa);
1792 	if (__predict_false(error != 0))
1793 		return (error);
1794 
1795 #ifdef INET
1796 	switch (pa->data.lro_type) {
1797 	case LRO_TYPE_IPV4_TCP:
1798 		error = tcp_lro_rx_ipv4(lc, m, pa->ip4);
1799 		if (__predict_false(error != 0))
1800 			return (error);
1801 		break;
1802 	default:
1803 		break;
1804 	}
1805 #endif
1806 	/* If no hardware or arrival stamp on the packet add timestamp */
1807 	if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) {
1808 		m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time);
1809 		m->m_flags |= M_TSTMP_LRO;
1810 	}
1811 
1812 	/* Get pointer to TCP header. */
1813 	th = pa->tcp;
1814 
1815 	/* Don't process SYN packets. */
1816 	if (__predict_false(th->th_flags & TH_SYN))
1817 		return (TCP_LRO_CANNOT);
1818 
1819 	/* Get total TCP header length and compute payload length. */
1820 	tcp_opt_len = (th->th_off << 2);
1821 	tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th -
1822 	    (uint8_t *)m->m_data) - tcp_opt_len;
1823 	tcp_opt_len -= sizeof(*th);
1824 
1825 	/* Don't process invalid TCP headers. */
1826 	if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0))
1827 		return (TCP_LRO_CANNOT);
1828 
1829 	/* Compute TCP data only checksum. */
1830 	if (tcp_data_len == 0)
1831 		tcp_data_sum = 0;	/* no data, no checksum */
1832 	else if (__predict_false(csum != 0))
1833 		tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum);
1834 	else
1835 		tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum);
1836 
1837 	/* Save TCP info in mbuf. */
1838 	m->m_nextpkt = NULL;
1839 	m->m_pkthdr.rcvif = lc->ifp;
1840 	m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum;
1841 	m->m_pkthdr.lro_tcp_d_len = tcp_data_len;
1842 	m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data);
1843 	m->m_pkthdr.lro_nsegs = 1;
1844 
1845 	/* Get hash bucket. */
1846 	if (!use_hash) {
1847 		bucket = &lc->lro_hash[0];
1848 	} else {
1849 		bucket = tcp_lro_rx_get_bucket(lc, m, pa);
1850 	}
1851 
1852 	/* Try to find a matching previous segment. */
1853 	LIST_FOREACH(le, bucket, hash_next) {
1854 		/* Compare addresses and ports. */
1855 		if (lro_address_compare(&po.data, &le->outer.data) == false ||
1856 		    lro_address_compare(&pi.data, &le->inner.data) == false)
1857 			continue;
1858 
1859 		/* Check if no data and old ACK. */
1860 		if (tcp_data_len == 0 &&
1861 		    SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) {
1862 			m_freem(m);
1863 			return (0);
1864 		}
1865 
1866 		/* Mark "m" in the last spot. */
1867 		le->m_last_mbuf->m_nextpkt = m;
1868 		/* Now set the tail to "m". */
1869 		le->m_last_mbuf = m;
1870 		return (0);
1871 	}
1872 
1873 	/* Try to find an empty slot. */
1874 	if (LIST_EMPTY(&lc->lro_free))
1875 		return (TCP_LRO_NO_ENTRIES);
1876 
1877 	/* Start a new segment chain. */
1878 	le = LIST_FIRST(&lc->lro_free);
1879 	LIST_REMOVE(le, next);
1880 	tcp_lro_active_insert(lc, bucket, le);
1881 
1882 	/* Make sure the headers are set. */
1883 	le->inner = pi;
1884 	le->outer = po;
1885 
1886 	/* Store time this entry was allocated. */
1887 	le->alloc_time = lc->lro_last_queue_time;
1888 
1889 	tcp_set_entry_to_mbuf(lc, le, m, th);
1890 
1891 	/* Now set the tail to "m". */
1892 	le->m_last_mbuf = m;
1893 
1894 	return (0);
1895 }
1896 
1897 int
1898 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum)
1899 {
1900 	int error;
1901 
1902 	if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) !=
1903 	     ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) ||
1904 	    (m->m_pkthdr.csum_data != 0xffff)) {
1905 		/*
1906 		 * The checksum either did not have hardware offload
1907 		 * or it was a bad checksum. We can't LRO such
1908 		 * a packet.
1909 		 */
1910 		counter_u64_add(tcp_bad_csums, 1);
1911 		return (TCP_LRO_CANNOT);
1912 	}
1913 	/* get current time */
1914 	binuptime(&lc->lro_last_queue_time);
1915 	CURVNET_SET(lc->ifp->if_vnet);
1916 	error = tcp_lro_rx_common(lc, m, csum, true);
1917 	CURVNET_RESTORE();
1918 
1919 	return (error);
1920 }
1921 
1922 void
1923 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb)
1924 {
1925 	NET_EPOCH_ASSERT();
1926 	/* sanity checks */
1927 	if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL ||
1928 	    lc->lro_mbuf_max == 0)) {
1929 		/* packet drop */
1930 		m_freem(mb);
1931 		return;
1932 	}
1933 
1934 	/* check if packet is not LRO capable */
1935 	if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) {
1936 		/* input packet to network layer */
1937 		(*lc->ifp->if_input) (lc->ifp, mb);
1938 		return;
1939 	}
1940 
1941 	/* create sequence number */
1942 	lc->lro_mbuf_data[lc->lro_mbuf_count].seq =
1943 	    (((uint64_t)M_HASHTYPE_GET(mb)) << 56) |
1944 	    (((uint64_t)mb->m_pkthdr.flowid) << 24) |
1945 	    ((uint64_t)lc->lro_mbuf_count);
1946 
1947 	/* enter mbuf */
1948 	lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb;
1949 
1950 	/* flush if array is full */
1951 	if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max))
1952 		tcp_lro_flush_all(lc);
1953 }
1954 
1955 /* end */
1956