1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016-2021 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sockbuf.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/ethernet.h> 54 #include <net/bpf.h> 55 #include <net/vnet.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_types.h> 59 #include <net/infiniband.h> 60 #include <net/if_lagg.h> 61 62 #include <netinet/in_systm.h> 63 #include <netinet/in.h> 64 #include <netinet/ip6.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip_var.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet6/in6_pcb.h> 69 #include <netinet/tcp.h> 70 #include <netinet/tcp_seq.h> 71 #include <netinet/tcp_lro.h> 72 #include <netinet/tcp_var.h> 73 #include <netinet/tcpip.h> 74 #include <netinet/tcp_hpts.h> 75 #include <netinet/tcp_log_buf.h> 76 #include <netinet/udp.h> 77 #include <netinet6/ip6_var.h> 78 79 #include <machine/in_cksum.h> 80 81 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 82 83 #define TCP_LRO_TS_OPTION \ 84 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 85 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 86 87 static void tcp_lro_rx_done(struct lro_ctrl *lc); 88 static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, 89 uint32_t csum, bool use_hash); 90 91 #ifdef TCPHPTS 92 static bool do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *, 93 struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, 94 bool *, bool, bool, struct ifnet *); 95 96 #endif 97 98 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 99 "TCP LRO"); 100 101 static long tcplro_stacks_wanting_mbufq; 102 counter_u64_t tcp_inp_lro_direct_queue; 103 counter_u64_t tcp_inp_lro_wokeup_queue; 104 counter_u64_t tcp_inp_lro_compressed; 105 counter_u64_t tcp_inp_lro_locks_taken; 106 counter_u64_t tcp_extra_mbuf; 107 counter_u64_t tcp_would_have_but; 108 counter_u64_t tcp_comp_total; 109 counter_u64_t tcp_uncomp_total; 110 counter_u64_t tcp_bad_csums; 111 112 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 113 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 114 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 115 "default number of LRO entries"); 116 117 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; 118 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, 119 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, 120 "Number of interrupts in a row on the same CPU that will make us declare an 'affinity' cpu?"); 121 122 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 123 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 124 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 125 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 126 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 127 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 128 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 129 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 130 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, 131 &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); 132 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, 133 &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); 134 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, 135 &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); 136 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, 137 &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); 138 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, 139 &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); 140 141 void 142 tcp_lro_reg_mbufq(void) 143 { 144 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 145 } 146 147 void 148 tcp_lro_dereg_mbufq(void) 149 { 150 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 151 } 152 153 static __inline void 154 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 155 struct lro_entry *le) 156 { 157 158 LIST_INSERT_HEAD(&lc->lro_active, le, next); 159 LIST_INSERT_HEAD(bucket, le, hash_next); 160 } 161 162 static __inline void 163 tcp_lro_active_remove(struct lro_entry *le) 164 { 165 166 LIST_REMOVE(le, next); /* active list */ 167 LIST_REMOVE(le, hash_next); /* hash bucket */ 168 } 169 170 int 171 tcp_lro_init(struct lro_ctrl *lc) 172 { 173 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 174 } 175 176 int 177 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 178 unsigned lro_entries, unsigned lro_mbufs) 179 { 180 struct lro_entry *le; 181 size_t size; 182 unsigned i, elements; 183 184 lc->lro_bad_csum = 0; 185 lc->lro_queued = 0; 186 lc->lro_flushed = 0; 187 lc->lro_mbuf_count = 0; 188 lc->lro_mbuf_max = lro_mbufs; 189 lc->lro_cnt = lro_entries; 190 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 191 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 192 lc->ifp = ifp; 193 LIST_INIT(&lc->lro_free); 194 LIST_INIT(&lc->lro_active); 195 196 /* create hash table to accelerate entry lookup */ 197 if (lro_entries > lro_mbufs) 198 elements = lro_entries; 199 else 200 elements = lro_mbufs; 201 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 202 HASH_NOWAIT); 203 if (lc->lro_hash == NULL) { 204 memset(lc, 0, sizeof(*lc)); 205 return (ENOMEM); 206 } 207 208 /* compute size to allocate */ 209 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 210 (lro_entries * sizeof(*le)); 211 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 212 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 213 214 /* check for out of memory */ 215 if (lc->lro_mbuf_data == NULL) { 216 free(lc->lro_hash, M_LRO); 217 memset(lc, 0, sizeof(*lc)); 218 return (ENOMEM); 219 } 220 /* compute offset for LRO entries */ 221 le = (struct lro_entry *) 222 (lc->lro_mbuf_data + lro_mbufs); 223 224 /* setup linked list */ 225 for (i = 0; i != lro_entries; i++) 226 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 227 228 return (0); 229 } 230 231 struct vxlan_header { 232 uint32_t vxlh_flags; 233 uint32_t vxlh_vni; 234 }; 235 236 static inline void * 237 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) 238 { 239 const struct ether_vlan_header *eh; 240 void *old; 241 uint16_t eth_type; 242 243 if (update_data) 244 memset(parser, 0, sizeof(*parser)); 245 246 old = ptr; 247 248 if (is_vxlan) { 249 const struct vxlan_header *vxh; 250 vxh = ptr; 251 ptr = (uint8_t *)ptr + sizeof(*vxh); 252 if (update_data) { 253 parser->data.vxlan_vni = 254 vxh->vxlh_vni & htonl(0xffffff00); 255 } 256 } 257 258 eh = ptr; 259 if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { 260 eth_type = eh->evl_proto; 261 if (update_data) { 262 /* strip priority and keep VLAN ID only */ 263 parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); 264 } 265 /* advance to next header */ 266 ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 267 mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 268 } else { 269 eth_type = eh->evl_encap_proto; 270 /* advance to next header */ 271 mlen -= ETHER_HDR_LEN; 272 ptr = (uint8_t *)ptr + ETHER_HDR_LEN; 273 } 274 if (__predict_false(mlen <= 0)) 275 return (NULL); 276 switch (eth_type) { 277 #ifdef INET 278 case htons(ETHERTYPE_IP): 279 parser->ip4 = ptr; 280 if (__predict_false(mlen < sizeof(struct ip))) 281 return (NULL); 282 /* Ensure there are no IPv4 options. */ 283 if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) 284 break; 285 /* .. and the packet is not fragmented. */ 286 if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 287 break; 288 ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); 289 mlen -= sizeof(struct ip); 290 if (update_data) { 291 parser->data.s_addr.v4 = parser->ip4->ip_src; 292 parser->data.d_addr.v4 = parser->ip4->ip_dst; 293 } 294 switch (parser->ip4->ip_p) { 295 case IPPROTO_UDP: 296 if (__predict_false(mlen < sizeof(struct udphdr))) 297 return (NULL); 298 parser->udp = ptr; 299 if (update_data) { 300 parser->data.lro_type = LRO_TYPE_IPV4_UDP; 301 parser->data.s_port = parser->udp->uh_sport; 302 parser->data.d_port = parser->udp->uh_dport; 303 } else { 304 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); 305 } 306 ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); 307 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 308 return (ptr); 309 case IPPROTO_TCP: 310 parser->tcp = ptr; 311 if (__predict_false(mlen < sizeof(struct tcphdr))) 312 return (NULL); 313 if (update_data) { 314 parser->data.lro_type = LRO_TYPE_IPV4_TCP; 315 parser->data.s_port = parser->tcp->th_sport; 316 parser->data.d_port = parser->tcp->th_dport; 317 } else { 318 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); 319 } 320 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 321 return (NULL); 322 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 323 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 324 return (ptr); 325 default: 326 break; 327 } 328 break; 329 #endif 330 #ifdef INET6 331 case htons(ETHERTYPE_IPV6): 332 parser->ip6 = ptr; 333 if (__predict_false(mlen < sizeof(struct ip6_hdr))) 334 return (NULL); 335 ptr = (uint8_t *)ptr + sizeof(*parser->ip6); 336 if (update_data) { 337 parser->data.s_addr.v6 = parser->ip6->ip6_src; 338 parser->data.d_addr.v6 = parser->ip6->ip6_dst; 339 } 340 mlen -= sizeof(struct ip6_hdr); 341 switch (parser->ip6->ip6_nxt) { 342 case IPPROTO_UDP: 343 if (__predict_false(mlen < sizeof(struct udphdr))) 344 return (NULL); 345 parser->udp = ptr; 346 if (update_data) { 347 parser->data.lro_type = LRO_TYPE_IPV6_UDP; 348 parser->data.s_port = parser->udp->uh_sport; 349 parser->data.d_port = parser->udp->uh_dport; 350 } else { 351 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); 352 } 353 ptr = (uint8_t *)ptr + sizeof(*parser->udp); 354 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 355 return (ptr); 356 case IPPROTO_TCP: 357 if (__predict_false(mlen < sizeof(struct tcphdr))) 358 return (NULL); 359 parser->tcp = ptr; 360 if (update_data) { 361 parser->data.lro_type = LRO_TYPE_IPV6_TCP; 362 parser->data.s_port = parser->tcp->th_sport; 363 parser->data.d_port = parser->tcp->th_dport; 364 } else { 365 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); 366 } 367 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 368 return (NULL); 369 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 370 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 371 return (ptr); 372 default: 373 break; 374 } 375 break; 376 #endif 377 default: 378 break; 379 } 380 /* Invalid packet - cannot parse */ 381 return (NULL); 382 } 383 384 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | 385 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; 386 387 static inline struct lro_parser * 388 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) 389 { 390 void *data_ptr; 391 392 /* Try to parse outer headers first. */ 393 data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); 394 if (data_ptr == NULL || po->total_hdr_len > m->m_len) 395 return (NULL); 396 397 if (update_data) { 398 /* Store VLAN ID, if any. */ 399 if (__predict_false(m->m_flags & M_VLANTAG)) { 400 po->data.vlan_id = 401 htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); 402 } 403 /* Store decrypted flag, if any. */ 404 if (__predict_false((m->m_pkthdr.csum_flags & 405 CSUM_TLS_MASK) == CSUM_TLS_DECRYPTED)) 406 po->data.lro_flags |= LRO_FLAG_DECRYPTED; 407 } 408 409 switch (po->data.lro_type) { 410 case LRO_TYPE_IPV4_UDP: 411 case LRO_TYPE_IPV6_UDP: 412 /* Check for VXLAN headers. */ 413 if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) 414 break; 415 416 /* Try to parse inner headers. */ 417 data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, 418 (m->m_len - ((caddr_t)data_ptr - m->m_data))); 419 if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) 420 break; 421 422 /* Verify supported header types. */ 423 switch (pi->data.lro_type) { 424 case LRO_TYPE_IPV4_TCP: 425 case LRO_TYPE_IPV6_TCP: 426 return (pi); 427 default: 428 break; 429 } 430 break; 431 case LRO_TYPE_IPV4_TCP: 432 case LRO_TYPE_IPV6_TCP: 433 if (update_data) 434 memset(pi, 0, sizeof(*pi)); 435 return (po); 436 default: 437 break; 438 } 439 return (NULL); 440 } 441 442 static inline int 443 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) 444 { 445 int len; 446 447 switch (po->data.lro_type) { 448 #ifdef INET 449 case LRO_TYPE_IPV4_TCP: 450 len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + 451 ntohs(po->ip4->ip_len); 452 break; 453 #endif 454 #ifdef INET6 455 case LRO_TYPE_IPV6_TCP: 456 len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + 457 ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); 458 break; 459 #endif 460 default: 461 return (TCP_LRO_CANNOT); 462 } 463 464 /* 465 * If the frame is padded beyond the end of the IP packet, 466 * then trim the extra bytes off: 467 */ 468 if (__predict_true(m->m_pkthdr.len == len)) { 469 return (0); 470 } else if (m->m_pkthdr.len > len) { 471 m_adj(m, len - m->m_pkthdr.len); 472 return (0); 473 } 474 return (TCP_LRO_CANNOT); 475 } 476 477 static struct tcphdr * 478 tcp_lro_get_th(struct mbuf *m) 479 { 480 return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); 481 } 482 483 static void 484 lro_free_mbuf_chain(struct mbuf *m) 485 { 486 struct mbuf *save; 487 488 while (m) { 489 save = m->m_nextpkt; 490 m->m_nextpkt = NULL; 491 m_freem(m); 492 m = save; 493 } 494 } 495 496 void 497 tcp_lro_free(struct lro_ctrl *lc) 498 { 499 struct lro_entry *le; 500 unsigned x; 501 502 /* reset LRO free list */ 503 LIST_INIT(&lc->lro_free); 504 505 /* free active mbufs, if any */ 506 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 507 tcp_lro_active_remove(le); 508 lro_free_mbuf_chain(le->m_head); 509 } 510 511 /* free hash table */ 512 free(lc->lro_hash, M_LRO); 513 lc->lro_hash = NULL; 514 lc->lro_hashsz = 0; 515 516 /* free mbuf array, if any */ 517 for (x = 0; x != lc->lro_mbuf_count; x++) 518 m_freem(lc->lro_mbuf_data[x].mb); 519 lc->lro_mbuf_count = 0; 520 521 /* free allocated memory, if any */ 522 free(lc->lro_mbuf_data, M_LRO); 523 lc->lro_mbuf_data = NULL; 524 } 525 526 static uint16_t 527 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) 528 { 529 const uint16_t *ptr; 530 uint32_t csum; 531 uint16_t len; 532 533 csum = -th->th_sum; /* exclude checksum field */ 534 len = th->th_off; 535 ptr = (const uint16_t *)th; 536 while (len--) { 537 csum += *ptr; 538 ptr++; 539 csum += *ptr; 540 ptr++; 541 } 542 while (csum > 0xffff) 543 csum = (csum >> 16) + (csum & 0xffff); 544 545 return (csum); 546 } 547 548 static uint16_t 549 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) 550 { 551 uint32_t c; 552 uint16_t cs; 553 554 c = tcp_csum; 555 556 switch (pa->data.lro_type) { 557 #ifdef INET6 558 case LRO_TYPE_IPV6_TCP: 559 /* Compute full pseudo IPv6 header checksum. */ 560 cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); 561 break; 562 #endif 563 #ifdef INET 564 case LRO_TYPE_IPV4_TCP: 565 /* Compute full pseudo IPv4 header checsum. */ 566 cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); 567 cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); 568 break; 569 #endif 570 default: 571 cs = 0; /* Keep compiler happy. */ 572 break; 573 } 574 575 /* Complement checksum. */ 576 cs = ~cs; 577 c += cs; 578 579 /* Remove TCP header checksum. */ 580 cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); 581 c += cs; 582 583 /* Compute checksum remainder. */ 584 while (c > 0xffff) 585 c = (c >> 16) + (c & 0xffff); 586 587 return (c); 588 } 589 590 static void 591 tcp_lro_rx_done(struct lro_ctrl *lc) 592 { 593 struct lro_entry *le; 594 595 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 596 tcp_lro_active_remove(le); 597 tcp_lro_flush(lc, le); 598 } 599 } 600 601 void 602 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 603 { 604 struct lro_entry *le, *le_tmp; 605 uint64_t now, tov; 606 struct bintime bt; 607 608 NET_EPOCH_ASSERT(); 609 if (LIST_EMPTY(&lc->lro_active)) 610 return; 611 612 /* get timeout time and current time in ns */ 613 binuptime(&bt); 614 now = bintime2ns(&bt); 615 tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); 616 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 617 if (now >= (bintime2ns(&le->alloc_time) + tov)) { 618 tcp_lro_active_remove(le); 619 tcp_lro_flush(lc, le); 620 } 621 } 622 } 623 624 #ifdef INET 625 static int 626 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) 627 { 628 uint16_t csum; 629 630 /* Legacy IP has a header checksum that needs to be correct. */ 631 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 632 if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { 633 lc->lro_bad_csum++; 634 return (TCP_LRO_CANNOT); 635 } 636 } else { 637 csum = in_cksum_hdr(ip4); 638 if (__predict_false(csum != 0)) { 639 lc->lro_bad_csum++; 640 return (TCP_LRO_CANNOT); 641 } 642 } 643 return (0); 644 } 645 #endif 646 647 #ifdef TCPHPTS 648 static void 649 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, 650 const struct lro_entry *le, const struct mbuf *m, 651 int frm, int32_t tcp_data_len, uint32_t th_seq, 652 uint32_t th_ack, uint16_t th_win) 653 { 654 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 655 union tcp_log_stackspecific log; 656 struct timeval tv, btv; 657 uint32_t cts; 658 659 cts = tcp_get_usecs(&tv); 660 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 661 log.u_bbr.flex8 = frm; 662 log.u_bbr.flex1 = tcp_data_len; 663 if (m) 664 log.u_bbr.flex2 = m->m_pkthdr.len; 665 else 666 log.u_bbr.flex2 = 0; 667 log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; 668 log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; 669 if (le->m_head) { 670 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 671 log.u_bbr.delRate = le->m_head->m_flags; 672 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 673 } 674 log.u_bbr.inflight = th_seq; 675 log.u_bbr.delivered = th_ack; 676 log.u_bbr.timeStamp = cts; 677 log.u_bbr.epoch = le->next_seq; 678 log.u_bbr.lt_epoch = le->ack_seq; 679 log.u_bbr.pacing_gain = th_win; 680 log.u_bbr.cwnd_gain = le->window; 681 log.u_bbr.lost = curcpu; 682 log.u_bbr.cur_del_rate = (uintptr_t)m; 683 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 684 bintime2timeval(&lc->lro_last_queue_time, &btv); 685 log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); 686 log.u_bbr.flex7 = le->compressed; 687 log.u_bbr.pacing_gain = le->uncompressed; 688 if (in_epoch(net_epoch_preempt)) 689 log.u_bbr.inhpts = 1; 690 else 691 log.u_bbr.inhpts = 0; 692 TCP_LOG_EVENTP(tp, NULL, 693 &tp->t_inpcb->inp_socket->so_rcv, 694 &tp->t_inpcb->inp_socket->so_snd, 695 TCP_LOG_LRO, 0, 696 0, &log, false, &tv); 697 } 698 } 699 #endif 700 701 static inline void 702 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) 703 { 704 uint32_t csum; 705 706 csum = 0xffff - *ptr + value; 707 while (csum > 0xffff) 708 csum = (csum >> 16) + (csum & 0xffff); 709 *ptr = value; 710 *psum = csum; 711 } 712 713 static uint16_t 714 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, 715 uint16_t payload_len, uint16_t delta_sum) 716 { 717 uint32_t csum; 718 uint16_t tlen; 719 uint16_t temp[5] = {}; 720 721 switch (pa->data.lro_type) { 722 case LRO_TYPE_IPV4_TCP: 723 /* Compute new IPv4 length. */ 724 tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; 725 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 726 727 /* Subtract delta from current IPv4 checksum. */ 728 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 729 while (csum > 0xffff) 730 csum = (csum >> 16) + (csum & 0xffff); 731 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 732 goto update_tcp_header; 733 734 case LRO_TYPE_IPV6_TCP: 735 /* Compute new IPv6 length. */ 736 tlen = (pa->tcp->th_off << 2) + payload_len; 737 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 738 goto update_tcp_header; 739 740 case LRO_TYPE_IPV4_UDP: 741 /* Compute new IPv4 length. */ 742 tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; 743 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 744 745 /* Subtract delta from current IPv4 checksum. */ 746 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 747 while (csum > 0xffff) 748 csum = (csum >> 16) + (csum & 0xffff); 749 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 750 goto update_udp_header; 751 752 case LRO_TYPE_IPV6_UDP: 753 /* Compute new IPv6 length. */ 754 tlen = sizeof(*pa->udp) + payload_len; 755 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 756 goto update_udp_header; 757 758 default: 759 return (0); 760 } 761 762 update_tcp_header: 763 /* Compute current TCP header checksum. */ 764 temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); 765 766 /* Incorporate the latest ACK into the TCP header. */ 767 pa->tcp->th_ack = le->ack_seq; 768 pa->tcp->th_win = le->window; 769 770 /* Incorporate latest timestamp into the TCP header. */ 771 if (le->timestamp != 0) { 772 uint32_t *ts_ptr; 773 774 ts_ptr = (uint32_t *)(pa->tcp + 1); 775 ts_ptr[1] = htonl(le->tsval); 776 ts_ptr[2] = le->tsecr; 777 } 778 779 /* Compute new TCP header checksum. */ 780 temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); 781 782 /* Compute new TCP checksum. */ 783 csum = pa->tcp->th_sum + 0xffff - delta_sum + 784 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; 785 while (csum > 0xffff) 786 csum = (csum >> 16) + (csum & 0xffff); 787 788 /* Assign new TCP checksum. */ 789 tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); 790 791 /* Compute all modififications affecting next checksum. */ 792 csum = temp[0] + temp[1] + 0xffff - temp[2] + 793 temp[3] + temp[4] + delta_sum; 794 while (csum > 0xffff) 795 csum = (csum >> 16) + (csum & 0xffff); 796 797 /* Return delta checksum to next stage, if any. */ 798 return (csum); 799 800 update_udp_header: 801 tlen = sizeof(*pa->udp) + payload_len; 802 /* Assign new UDP length and compute checksum delta. */ 803 tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); 804 805 /* Check if there is a UDP checksum. */ 806 if (__predict_false(pa->udp->uh_sum != 0)) { 807 /* Compute new UDP checksum. */ 808 csum = pa->udp->uh_sum + 0xffff - delta_sum + 809 0xffff - temp[0] + 0xffff - temp[2]; 810 while (csum > 0xffff) 811 csum = (csum >> 16) + (csum & 0xffff); 812 /* Assign new UDP checksum. */ 813 tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); 814 } 815 816 /* Compute all modififications affecting next checksum. */ 817 csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; 818 while (csum > 0xffff) 819 csum = (csum >> 16) + (csum & 0xffff); 820 821 /* Return delta checksum to next stage, if any. */ 822 return (csum); 823 } 824 825 static void 826 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) 827 { 828 /* Check if we need to recompute any checksums. */ 829 if (le->needs_merge) { 830 uint16_t csum; 831 832 switch (le->inner.data.lro_type) { 833 case LRO_TYPE_IPV4_TCP: 834 csum = tcp_lro_update_checksum(&le->inner, le, 835 le->m_head->m_pkthdr.lro_tcp_d_len, 836 le->m_head->m_pkthdr.lro_tcp_d_csum); 837 csum = tcp_lro_update_checksum(&le->outer, NULL, 838 le->m_head->m_pkthdr.lro_tcp_d_len + 839 le->inner.total_hdr_len, csum); 840 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 841 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 842 le->m_head->m_pkthdr.csum_data = 0xffff; 843 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 844 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 845 break; 846 case LRO_TYPE_IPV6_TCP: 847 csum = tcp_lro_update_checksum(&le->inner, le, 848 le->m_head->m_pkthdr.lro_tcp_d_len, 849 le->m_head->m_pkthdr.lro_tcp_d_csum); 850 csum = tcp_lro_update_checksum(&le->outer, NULL, 851 le->m_head->m_pkthdr.lro_tcp_d_len + 852 le->inner.total_hdr_len, csum); 853 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 854 CSUM_PSEUDO_HDR; 855 le->m_head->m_pkthdr.csum_data = 0xffff; 856 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 857 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 858 break; 859 case LRO_TYPE_NONE: 860 switch (le->outer.data.lro_type) { 861 case LRO_TYPE_IPV4_TCP: 862 csum = tcp_lro_update_checksum(&le->outer, le, 863 le->m_head->m_pkthdr.lro_tcp_d_len, 864 le->m_head->m_pkthdr.lro_tcp_d_csum); 865 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 866 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 867 le->m_head->m_pkthdr.csum_data = 0xffff; 868 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 869 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 870 break; 871 case LRO_TYPE_IPV6_TCP: 872 csum = tcp_lro_update_checksum(&le->outer, le, 873 le->m_head->m_pkthdr.lro_tcp_d_len, 874 le->m_head->m_pkthdr.lro_tcp_d_csum); 875 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 876 CSUM_PSEUDO_HDR; 877 le->m_head->m_pkthdr.csum_data = 0xffff; 878 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 879 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 880 break; 881 default: 882 break; 883 } 884 break; 885 default: 886 break; 887 } 888 } 889 890 /* 891 * Break any chain, this is not set to NULL on the singleton 892 * case m_nextpkt points to m_head. Other case set them 893 * m_nextpkt to NULL in push_and_replace. 894 */ 895 le->m_head->m_nextpkt = NULL; 896 lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; 897 (*lc->ifp->if_input)(lc->ifp, le->m_head); 898 } 899 900 static void 901 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, 902 struct mbuf *m, struct tcphdr *th) 903 { 904 uint32_t *ts_ptr; 905 uint16_t tcp_data_len; 906 uint16_t tcp_opt_len; 907 908 ts_ptr = (uint32_t *)(th + 1); 909 tcp_opt_len = (th->th_off << 2); 910 tcp_opt_len -= sizeof(*th); 911 912 /* Check if there is a timestamp option. */ 913 if (tcp_opt_len == 0 || 914 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 915 *ts_ptr != TCP_LRO_TS_OPTION)) { 916 /* We failed to find the timestamp option. */ 917 le->timestamp = 0; 918 } else { 919 le->timestamp = 1; 920 le->tsval = ntohl(*(ts_ptr + 1)); 921 le->tsecr = *(ts_ptr + 2); 922 } 923 924 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 925 926 /* Pull out TCP sequence numbers and window size. */ 927 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 928 le->ack_seq = th->th_ack; 929 le->window = th->th_win; 930 le->flags = tcp_get_flags(th); 931 le->needs_merge = 0; 932 933 /* Setup new data pointers. */ 934 le->m_head = m; 935 le->m_tail = m_last(m); 936 } 937 938 static void 939 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 940 { 941 struct lro_parser *pa; 942 943 /* 944 * Push up the stack of the current entry 945 * and replace it with "m". 946 */ 947 struct mbuf *msave; 948 949 /* Grab off the next and save it */ 950 msave = le->m_head->m_nextpkt; 951 le->m_head->m_nextpkt = NULL; 952 953 /* Now push out the old entry */ 954 tcp_flush_out_entry(lc, le); 955 956 /* Re-parse new header, should not fail. */ 957 pa = tcp_lro_parser(m, &le->outer, &le->inner, false); 958 KASSERT(pa != NULL, 959 ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); 960 961 /* 962 * Now to replace the data properly in the entry 963 * we have to reset the TCP header and 964 * other fields. 965 */ 966 tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); 967 968 /* Restore the next list */ 969 m->m_nextpkt = msave; 970 } 971 972 static void 973 tcp_lro_mbuf_append_pkthdr(struct lro_entry *le, const struct mbuf *p) 974 { 975 struct mbuf *m; 976 uint32_t csum; 977 978 m = le->m_head; 979 if (m->m_pkthdr.lro_nsegs == 1) { 980 /* Compute relative checksum. */ 981 csum = p->m_pkthdr.lro_tcp_d_csum; 982 } else { 983 /* Merge TCP data checksums. */ 984 csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + 985 (uint32_t)p->m_pkthdr.lro_tcp_d_csum; 986 while (csum > 0xffff) 987 csum = (csum >> 16) + (csum & 0xffff); 988 } 989 990 /* Update various counters. */ 991 m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; 992 m->m_pkthdr.lro_tcp_d_csum = csum; 993 m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; 994 m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; 995 le->needs_merge = 1; 996 } 997 998 static void 999 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) 1000 { 1001 /* 1002 * Walk through the mbuf chain we 1003 * have on tap and compress/condense 1004 * as required. 1005 */ 1006 uint32_t *ts_ptr; 1007 struct mbuf *m; 1008 struct tcphdr *th; 1009 uint32_t tcp_data_len_total; 1010 uint32_t tcp_data_seg_total; 1011 uint16_t tcp_data_len; 1012 uint16_t tcp_opt_len; 1013 1014 /* 1015 * First we must check the lead (m_head) 1016 * we must make sure that it is *not* 1017 * something that should be sent up 1018 * right away (sack etc). 1019 */ 1020 again: 1021 m = le->m_head->m_nextpkt; 1022 if (m == NULL) { 1023 /* Just one left. */ 1024 return; 1025 } 1026 1027 th = tcp_lro_get_th(m); 1028 tcp_opt_len = (th->th_off << 2); 1029 tcp_opt_len -= sizeof(*th); 1030 ts_ptr = (uint32_t *)(th + 1); 1031 1032 if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1033 *ts_ptr != TCP_LRO_TS_OPTION)) { 1034 /* 1035 * Its not the timestamp. We can't 1036 * use this guy as the head. 1037 */ 1038 le->m_head->m_nextpkt = m->m_nextpkt; 1039 tcp_push_and_replace(lc, le, m); 1040 goto again; 1041 } 1042 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1043 /* 1044 * Make sure that previously seen segments/ACKs are delivered 1045 * before this segment, e.g. FIN. 1046 */ 1047 le->m_head->m_nextpkt = m->m_nextpkt; 1048 tcp_push_and_replace(lc, le, m); 1049 goto again; 1050 } 1051 while((m = le->m_head->m_nextpkt) != NULL) { 1052 /* 1053 * condense m into le, first 1054 * pull m out of the list. 1055 */ 1056 le->m_head->m_nextpkt = m->m_nextpkt; 1057 m->m_nextpkt = NULL; 1058 /* Setup my data */ 1059 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 1060 th = tcp_lro_get_th(m); 1061 ts_ptr = (uint32_t *)(th + 1); 1062 tcp_opt_len = (th->th_off << 2); 1063 tcp_opt_len -= sizeof(*th); 1064 tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; 1065 tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; 1066 1067 if (tcp_data_seg_total >= lc->lro_ackcnt_lim || 1068 tcp_data_len_total >= lc->lro_length_lim) { 1069 /* Flush now if appending will result in overflow. */ 1070 tcp_push_and_replace(lc, le, m); 1071 goto again; 1072 } 1073 if (tcp_opt_len != 0 && 1074 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1075 *ts_ptr != TCP_LRO_TS_OPTION)) { 1076 /* 1077 * Maybe a sack in the new one? We need to 1078 * start all over after flushing the 1079 * current le. We will go up to the beginning 1080 * and flush it (calling the replace again possibly 1081 * or just returning). 1082 */ 1083 tcp_push_and_replace(lc, le, m); 1084 goto again; 1085 } 1086 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1087 tcp_push_and_replace(lc, le, m); 1088 goto again; 1089 } 1090 if (tcp_opt_len != 0) { 1091 uint32_t tsval = ntohl(*(ts_ptr + 1)); 1092 /* Make sure timestamp values are increasing. */ 1093 if (TSTMP_GT(le->tsval, tsval)) { 1094 tcp_push_and_replace(lc, le, m); 1095 goto again; 1096 } 1097 le->tsval = tsval; 1098 le->tsecr = *(ts_ptr + 2); 1099 } 1100 /* Try to append the new segment. */ 1101 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 1102 ((tcp_get_flags(th) & TH_ACK) != 1103 (le->flags & TH_ACK)) || 1104 (tcp_data_len == 0 && 1105 le->ack_seq == th->th_ack && 1106 le->window == th->th_win))) { 1107 /* Out of order packet, non-ACK + ACK or dup ACK. */ 1108 tcp_push_and_replace(lc, le, m); 1109 goto again; 1110 } 1111 if (tcp_data_len != 0 || 1112 SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1113 le->next_seq += tcp_data_len; 1114 le->ack_seq = th->th_ack; 1115 le->window = th->th_win; 1116 le->needs_merge = 1; 1117 } else if (th->th_ack == le->ack_seq) { 1118 if (WIN_GT(th->th_win, le->window)) { 1119 le->window = th->th_win; 1120 le->needs_merge = 1; 1121 } 1122 } 1123 1124 if (tcp_data_len == 0) { 1125 m_freem(m); 1126 continue; 1127 } 1128 1129 /* Merge TCP data checksum and length to head mbuf. */ 1130 tcp_lro_mbuf_append_pkthdr(le, m); 1131 1132 /* 1133 * Adjust the mbuf so that m_data points to the first byte of 1134 * the ULP payload. Adjust the mbuf to avoid complications and 1135 * append new segment to existing mbuf chain. 1136 */ 1137 m_adj(m, m->m_pkthdr.len - tcp_data_len); 1138 m_demote_pkthdr(m); 1139 le->m_tail->m_next = m; 1140 le->m_tail = m_last(m); 1141 } 1142 } 1143 1144 #ifdef TCPHPTS 1145 static void 1146 tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le) 1147 { 1148 INP_WLOCK_ASSERT(inp); 1149 if (tp->t_in_pkt == NULL) { 1150 /* Nothing yet there */ 1151 tp->t_in_pkt = le->m_head; 1152 tp->t_tail_pkt = le->m_last_mbuf; 1153 } else { 1154 /* Already some there */ 1155 tp->t_tail_pkt->m_nextpkt = le->m_head; 1156 tp->t_tail_pkt = le->m_last_mbuf; 1157 } 1158 le->m_head = NULL; 1159 le->m_last_mbuf = NULL; 1160 } 1161 1162 static struct mbuf * 1163 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, 1164 struct inpcb *inp, int32_t *new_m) 1165 { 1166 struct tcpcb *tp; 1167 struct mbuf *m; 1168 1169 tp = intotcpcb(inp); 1170 if (__predict_false(tp == NULL)) 1171 return (NULL); 1172 1173 /* Look at the last mbuf if any in queue */ 1174 m = tp->t_tail_pkt; 1175 if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { 1176 if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { 1177 tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); 1178 *new_m = 0; 1179 counter_u64_add(tcp_extra_mbuf, 1); 1180 return (m); 1181 } else { 1182 /* Mark we ran out of space */ 1183 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1184 } 1185 } 1186 /* Decide mbuf size. */ 1187 if (inp->inp_flags2 & INP_MBUF_L_ACKS) 1188 m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); 1189 else 1190 m = m_gethdr(M_NOWAIT, MT_DATA); 1191 1192 if (__predict_false(m == NULL)) { 1193 counter_u64_add(tcp_would_have_but, 1); 1194 return (NULL); 1195 } 1196 counter_u64_add(tcp_comp_total, 1); 1197 m->m_flags |= M_ACKCMP; 1198 *new_m = 1; 1199 return (m); 1200 } 1201 1202 static struct inpcb * 1203 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) 1204 { 1205 struct inpcb *inp; 1206 1207 switch (pa->data.lro_type) { 1208 #ifdef INET6 1209 case LRO_TYPE_IPV6_TCP: 1210 inp = in6_pcblookup(&V_tcbinfo, 1211 &pa->data.s_addr.v6, 1212 pa->data.s_port, 1213 &pa->data.d_addr.v6, 1214 pa->data.d_port, 1215 INPLOOKUP_WLOCKPCB, 1216 ifp); 1217 break; 1218 #endif 1219 #ifdef INET 1220 case LRO_TYPE_IPV4_TCP: 1221 inp = in_pcblookup(&V_tcbinfo, 1222 pa->data.s_addr.v4, 1223 pa->data.s_port, 1224 pa->data.d_addr.v4, 1225 pa->data.d_port, 1226 INPLOOKUP_WLOCKPCB, 1227 ifp); 1228 break; 1229 #endif 1230 default: 1231 inp = NULL; 1232 break; 1233 } 1234 return (inp); 1235 } 1236 1237 static inline bool 1238 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) 1239 { 1240 /* 1241 * This function returns two bits of valuable information. 1242 * a) Is what is present capable of being ack-compressed, 1243 * we can ack-compress if there is no options or just 1244 * a timestamp option, and of course the th_flags must 1245 * be correct as well. 1246 * b) Our other options present such as SACK. This is 1247 * used to determine if we want to wakeup or not. 1248 */ 1249 bool ret = true; 1250 1251 switch (th->th_off << 2) { 1252 case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): 1253 *ppts = (uint32_t *)(th + 1); 1254 /* Check if we have only one timestamp option. */ 1255 if (**ppts == TCP_LRO_TS_OPTION) 1256 *other_opts = false; 1257 else { 1258 *other_opts = true; 1259 ret = false; 1260 } 1261 break; 1262 case (sizeof(*th)): 1263 /* No options. */ 1264 *ppts = NULL; 1265 *other_opts = false; 1266 break; 1267 default: 1268 *ppts = NULL; 1269 *other_opts = true; 1270 ret = false; 1271 break; 1272 } 1273 /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ 1274 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) 1275 ret = false; 1276 /* If it has data on it we cannot compress it */ 1277 if (m->m_pkthdr.lro_tcp_d_len) 1278 ret = false; 1279 1280 /* ACK flag must be set. */ 1281 if (!(tcp_get_flags(th) & TH_ACK)) 1282 ret = false; 1283 return (ret); 1284 } 1285 1286 static int 1287 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) 1288 { 1289 struct inpcb *inp; 1290 struct tcpcb *tp; 1291 struct mbuf **pp, *cmp, *mv_to; 1292 struct ifnet *lagg_ifp; 1293 bool bpf_req, lagg_bpf_req, should_wake; 1294 1295 /* Check if packet doesn't belongs to our network interface. */ 1296 if ((tcplro_stacks_wanting_mbufq == 0) || 1297 (le->outer.data.vlan_id != 0) || 1298 (le->inner.data.lro_type != LRO_TYPE_NONE)) 1299 return (TCP_LRO_CANNOT); 1300 1301 #ifdef INET6 1302 /* 1303 * Be proactive about unspecified IPv6 address in source. As 1304 * we use all-zero to indicate unbounded/unconnected pcb, 1305 * unspecified IPv6 address can be used to confuse us. 1306 * 1307 * Note that packets with unspecified IPv6 destination is 1308 * already dropped in ip6_input. 1309 */ 1310 if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && 1311 IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) 1312 return (TCP_LRO_CANNOT); 1313 1314 if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && 1315 IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) 1316 return (TCP_LRO_CANNOT); 1317 #endif 1318 /* Lookup inp, if any. */ 1319 inp = tcp_lro_lookup(lc->ifp, 1320 (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); 1321 if (inp == NULL) 1322 return (TCP_LRO_CANNOT); 1323 1324 counter_u64_add(tcp_inp_lro_locks_taken, 1); 1325 1326 /* Get TCP control structure. */ 1327 tp = intotcpcb(inp); 1328 1329 /* Check if the inp is dead, Jim. */ 1330 if (tp == NULL || 1331 (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 1332 INP_WUNLOCK(inp); 1333 return (TCP_LRO_CANNOT); 1334 } 1335 if ((inp->inp_irq_cpu_set == 0) && (lc->lro_cpu_is_set == 1)) { 1336 inp->inp_irq_cpu = lc->lro_last_cpu; 1337 inp->inp_irq_cpu_set = 1; 1338 } 1339 /* Check if the transport doesn't support the needed optimizations. */ 1340 if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) { 1341 INP_WUNLOCK(inp); 1342 return (TCP_LRO_CANNOT); 1343 } 1344 1345 if (inp->inp_flags2 & INP_MBUF_QUEUE_READY) 1346 should_wake = false; 1347 else 1348 should_wake = true; 1349 /* Check if packets should be tapped to BPF. */ 1350 bpf_req = bpf_peers_present(lc->ifp->if_bpf); 1351 lagg_bpf_req = false; 1352 lagg_ifp = NULL; 1353 if (lc->ifp->if_type == IFT_IEEE8023ADLAG || 1354 lc->ifp->if_type == IFT_INFINIBANDLAG) { 1355 struct lagg_port *lp = lc->ifp->if_lagg; 1356 struct lagg_softc *sc = lp->lp_softc; 1357 1358 lagg_ifp = sc->sc_ifp; 1359 if (lagg_ifp != NULL) 1360 lagg_bpf_req = bpf_peers_present(lagg_ifp->if_bpf); 1361 } 1362 1363 /* Strip and compress all the incoming packets. */ 1364 cmp = NULL; 1365 for (pp = &le->m_head; *pp != NULL; ) { 1366 mv_to = NULL; 1367 if (do_bpf_strip_and_compress(inp, lc, le, pp, 1368 &cmp, &mv_to, &should_wake, bpf_req, 1369 lagg_bpf_req, lagg_ifp) == false) { 1370 /* Advance to next mbuf. */ 1371 pp = &(*pp)->m_nextpkt; 1372 } else if (mv_to != NULL) { 1373 /* We are asked to move pp up */ 1374 pp = &mv_to->m_nextpkt; 1375 } 1376 } 1377 /* Update "m_last_mbuf", if any. */ 1378 if (pp == &le->m_head) 1379 le->m_last_mbuf = *pp; 1380 else 1381 le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); 1382 1383 /* Check if any data mbufs left. */ 1384 if (le->m_head != NULL) { 1385 counter_u64_add(tcp_inp_lro_direct_queue, 1); 1386 tcp_lro_log(tp, lc, le, NULL, 22, 1, inp->inp_flags2, 0, 1); 1387 tcp_queue_pkts(inp, tp, le); 1388 } 1389 if (should_wake) { 1390 /* Wakeup */ 1391 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 1392 if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0)) 1393 inp = NULL; 1394 } 1395 if (inp != NULL) 1396 INP_WUNLOCK(inp); 1397 return (0); /* Success. */ 1398 } 1399 #endif 1400 1401 void 1402 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 1403 { 1404 /* Only optimise if there are multiple packets waiting. */ 1405 #ifdef TCPHPTS 1406 int error; 1407 #endif 1408 1409 NET_EPOCH_ASSERT(); 1410 #ifdef TCPHPTS 1411 CURVNET_SET(lc->ifp->if_vnet); 1412 error = tcp_lro_flush_tcphpts(lc, le); 1413 CURVNET_RESTORE(); 1414 if (error != 0) { 1415 #endif 1416 tcp_lro_condense(lc, le); 1417 tcp_flush_out_entry(lc, le); 1418 #ifdef TCPHPTS 1419 } 1420 #endif 1421 lc->lro_flushed++; 1422 bzero(le, sizeof(*le)); 1423 LIST_INSERT_HEAD(&lc->lro_free, le, next); 1424 } 1425 1426 #ifdef HAVE_INLINE_FLSLL 1427 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 1428 #else 1429 static inline uint64_t 1430 tcp_lro_msb_64(uint64_t x) 1431 { 1432 x |= (x >> 1); 1433 x |= (x >> 2); 1434 x |= (x >> 4); 1435 x |= (x >> 8); 1436 x |= (x >> 16); 1437 x |= (x >> 32); 1438 return (x & ~(x >> 1)); 1439 } 1440 #endif 1441 1442 /* 1443 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1444 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1445 * number of elements to sort and 64 is the number of sequence bits 1446 * available. The algorithm is bit-slicing the 64-bit sequence number, 1447 * sorting one bit at a time from the most significant bit until the 1448 * least significant one, skipping the constant bits. This is 1449 * typically called a radix sort. 1450 */ 1451 static void 1452 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1453 { 1454 struct lro_mbuf_sort temp; 1455 uint64_t ones; 1456 uint64_t zeros; 1457 uint32_t x; 1458 uint32_t y; 1459 1460 repeat: 1461 /* for small arrays insertion sort is faster */ 1462 if (size <= 12) { 1463 for (x = 1; x < size; x++) { 1464 temp = parray[x]; 1465 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1466 parray[y] = parray[y - 1]; 1467 parray[y] = temp; 1468 } 1469 return; 1470 } 1471 1472 /* compute sequence bits which are constant */ 1473 ones = 0; 1474 zeros = 0; 1475 for (x = 0; x != size; x++) { 1476 ones |= parray[x].seq; 1477 zeros |= ~parray[x].seq; 1478 } 1479 1480 /* compute bits which are not constant into "ones" */ 1481 ones &= zeros; 1482 if (ones == 0) 1483 return; 1484 1485 /* pick the most significant bit which is not constant */ 1486 ones = tcp_lro_msb_64(ones); 1487 1488 /* 1489 * Move entries having cleared sequence bits to the beginning 1490 * of the array: 1491 */ 1492 for (x = y = 0; y != size; y++) { 1493 /* skip set bits */ 1494 if (parray[y].seq & ones) 1495 continue; 1496 /* swap entries */ 1497 temp = parray[x]; 1498 parray[x] = parray[y]; 1499 parray[y] = temp; 1500 x++; 1501 } 1502 1503 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1504 1505 /* sort zeros */ 1506 tcp_lro_sort(parray, x); 1507 1508 /* sort ones */ 1509 parray += x; 1510 size -= x; 1511 goto repeat; 1512 } 1513 1514 void 1515 tcp_lro_flush_all(struct lro_ctrl *lc) 1516 { 1517 uint64_t seq; 1518 uint64_t nseq; 1519 unsigned x; 1520 1521 NET_EPOCH_ASSERT(); 1522 /* check if no mbufs to flush */ 1523 if (lc->lro_mbuf_count == 0) 1524 goto done; 1525 if (lc->lro_cpu_is_set == 0) { 1526 if (lc->lro_last_cpu == curcpu) { 1527 lc->lro_cnt_of_same_cpu++; 1528 /* Have we reached the threshold to declare a cpu? */ 1529 if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) 1530 lc->lro_cpu_is_set = 1; 1531 } else { 1532 lc->lro_last_cpu = curcpu; 1533 lc->lro_cnt_of_same_cpu = 0; 1534 } 1535 } 1536 CURVNET_SET(lc->ifp->if_vnet); 1537 1538 /* get current time */ 1539 binuptime(&lc->lro_last_queue_time); 1540 1541 /* sort all mbufs according to stream */ 1542 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1543 1544 /* input data into LRO engine, stream by stream */ 1545 seq = 0; 1546 for (x = 0; x != lc->lro_mbuf_count; x++) { 1547 struct mbuf *mb; 1548 1549 /* get mbuf */ 1550 mb = lc->lro_mbuf_data[x].mb; 1551 1552 /* get sequence number, masking away the packet index */ 1553 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1554 1555 /* check for new stream */ 1556 if (seq != nseq) { 1557 seq = nseq; 1558 1559 /* flush active streams */ 1560 tcp_lro_rx_done(lc); 1561 } 1562 1563 /* add packet to LRO engine */ 1564 if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { 1565 /* input packet to network layer */ 1566 (*lc->ifp->if_input)(lc->ifp, mb); 1567 lc->lro_queued++; 1568 lc->lro_flushed++; 1569 } 1570 } 1571 CURVNET_RESTORE(); 1572 done: 1573 /* flush active streams */ 1574 tcp_lro_rx_done(lc); 1575 1576 #ifdef TCPHPTS 1577 tcp_run_hpts(); 1578 #endif 1579 lc->lro_mbuf_count = 0; 1580 } 1581 1582 #ifdef TCPHPTS 1583 static void 1584 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, 1585 uint32_t *ts_ptr, uint16_t iptos) 1586 { 1587 /* 1588 * Given a TCP ACK, summarize it down into the small TCP ACK 1589 * entry. 1590 */ 1591 ae->timestamp = m->m_pkthdr.rcv_tstmp; 1592 if (m->m_flags & M_TSTMP_LRO) 1593 ae->flags = TSTMP_LRO; 1594 else if (m->m_flags & M_TSTMP) 1595 ae->flags = TSTMP_HDWR; 1596 ae->seq = ntohl(th->th_seq); 1597 ae->ack = ntohl(th->th_ack); 1598 ae->flags |= tcp_get_flags(th); 1599 if (ts_ptr != NULL) { 1600 ae->ts_value = ntohl(ts_ptr[1]); 1601 ae->ts_echo = ntohl(ts_ptr[2]); 1602 ae->flags |= HAS_TSTMP; 1603 } 1604 ae->win = ntohs(th->th_win); 1605 ae->codepoint = iptos; 1606 } 1607 1608 /* 1609 * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets 1610 * and strip all, but the IPv4/IPv6 header. 1611 */ 1612 static bool 1613 do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc, 1614 struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, 1615 bool *should_wake, bool bpf_req, bool lagg_bpf_req, struct ifnet *lagg_ifp) 1616 { 1617 union { 1618 void *ptr; 1619 struct ip *ip4; 1620 struct ip6_hdr *ip6; 1621 } l3; 1622 struct mbuf *m; 1623 struct mbuf *nm; 1624 struct tcphdr *th; 1625 struct tcp_ackent *ack_ent; 1626 uint32_t *ts_ptr; 1627 int32_t n_mbuf; 1628 bool other_opts, can_compress; 1629 uint8_t lro_type; 1630 uint16_t iptos; 1631 int tcp_hdr_offset; 1632 int idx; 1633 1634 /* Get current mbuf. */ 1635 m = *pp; 1636 1637 /* Let the BPF see the packet */ 1638 if (__predict_false(bpf_req)) 1639 ETHER_BPF_MTAP(lc->ifp, m); 1640 1641 if (__predict_false(lagg_bpf_req)) 1642 ETHER_BPF_MTAP(lagg_ifp, m); 1643 1644 tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; 1645 lro_type = le->inner.data.lro_type; 1646 switch (lro_type) { 1647 case LRO_TYPE_NONE: 1648 lro_type = le->outer.data.lro_type; 1649 switch (lro_type) { 1650 case LRO_TYPE_IPV4_TCP: 1651 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1652 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1653 break; 1654 case LRO_TYPE_IPV6_TCP: 1655 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1656 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1657 break; 1658 default: 1659 goto compressed; 1660 } 1661 break; 1662 case LRO_TYPE_IPV4_TCP: 1663 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1664 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1665 break; 1666 case LRO_TYPE_IPV6_TCP: 1667 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1668 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1669 break; 1670 default: 1671 goto compressed; 1672 } 1673 1674 MPASS(tcp_hdr_offset >= 0); 1675 1676 m_adj(m, tcp_hdr_offset); 1677 m->m_flags |= M_LRO_EHDRSTRP; 1678 m->m_flags &= ~M_ACKCMP; 1679 m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; 1680 1681 th = tcp_lro_get_th(m); 1682 1683 th->th_sum = 0; /* TCP checksum is valid. */ 1684 1685 /* Check if ACK can be compressed */ 1686 can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); 1687 1688 /* Now lets look at the should wake states */ 1689 if ((other_opts == true) && 1690 ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) { 1691 /* 1692 * If there are other options (SACK?) and the 1693 * tcp endpoint has not expressly told us it does 1694 * not care about SACKS, then we should wake up. 1695 */ 1696 *should_wake = true; 1697 } 1698 /* Is the ack compressable? */ 1699 if (can_compress == false) 1700 goto done; 1701 /* Does the TCP endpoint support ACK compression? */ 1702 if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0) 1703 goto done; 1704 1705 /* Lets get the TOS/traffic class field */ 1706 l3.ptr = mtod(m, void *); 1707 switch (lro_type) { 1708 case LRO_TYPE_IPV4_TCP: 1709 iptos = l3.ip4->ip_tos; 1710 break; 1711 case LRO_TYPE_IPV6_TCP: 1712 iptos = IPV6_TRAFFIC_CLASS(l3.ip6); 1713 break; 1714 default: 1715 iptos = 0; /* Keep compiler happy. */ 1716 break; 1717 } 1718 /* Now lets get space if we don't have some already */ 1719 if (*cmp == NULL) { 1720 new_one: 1721 nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf); 1722 if (__predict_false(nm == NULL)) 1723 goto done; 1724 *cmp = nm; 1725 if (n_mbuf) { 1726 /* 1727 * Link in the new cmp ack to our in-order place, 1728 * first set our cmp ack's next to where we are. 1729 */ 1730 nm->m_nextpkt = m; 1731 (*pp) = nm; 1732 /* 1733 * Set it up so mv_to is advanced to our 1734 * compressed ack. This way the caller can 1735 * advance pp to the right place. 1736 */ 1737 *mv_to = nm; 1738 /* 1739 * Advance it here locally as well. 1740 */ 1741 pp = &nm->m_nextpkt; 1742 } 1743 } else { 1744 /* We have one already we are working on */ 1745 nm = *cmp; 1746 if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { 1747 /* We ran out of space */ 1748 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1749 goto new_one; 1750 } 1751 } 1752 MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); 1753 counter_u64_add(tcp_inp_lro_compressed, 1); 1754 le->compressed++; 1755 /* We can add in to the one on the tail */ 1756 ack_ent = mtod(nm, struct tcp_ackent *); 1757 idx = (nm->m_len / sizeof(struct tcp_ackent)); 1758 build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); 1759 1760 /* Bump the size of both pkt-hdr and len */ 1761 nm->m_len += sizeof(struct tcp_ackent); 1762 nm->m_pkthdr.len += sizeof(struct tcp_ackent); 1763 compressed: 1764 /* Advance to next mbuf before freeing. */ 1765 *pp = m->m_nextpkt; 1766 m->m_nextpkt = NULL; 1767 m_freem(m); 1768 return (true); 1769 done: 1770 counter_u64_add(tcp_uncomp_total, 1); 1771 le->uncompressed++; 1772 return (false); 1773 } 1774 #endif 1775 1776 static struct lro_head * 1777 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) 1778 { 1779 u_long hash; 1780 1781 if (M_HASHTYPE_ISHASH(m)) { 1782 hash = m->m_pkthdr.flowid; 1783 } else { 1784 for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) 1785 hash += parser->data.raw[i]; 1786 } 1787 return (&lc->lro_hash[hash % lc->lro_hashsz]); 1788 } 1789 1790 static int 1791 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) 1792 { 1793 struct lro_parser pi; /* inner address data */ 1794 struct lro_parser po; /* outer address data */ 1795 struct lro_parser *pa; /* current parser for TCP stream */ 1796 struct lro_entry *le; 1797 struct lro_head *bucket; 1798 struct tcphdr *th; 1799 int tcp_data_len; 1800 int tcp_opt_len; 1801 int error; 1802 uint16_t tcp_data_sum; 1803 1804 #ifdef INET 1805 /* Quickly decide if packet cannot be LRO'ed */ 1806 if (__predict_false(V_ipforwarding != 0)) 1807 return (TCP_LRO_CANNOT); 1808 #endif 1809 #ifdef INET6 1810 /* Quickly decide if packet cannot be LRO'ed */ 1811 if (__predict_false(V_ip6_forwarding != 0)) 1812 return (TCP_LRO_CANNOT); 1813 #endif 1814 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1815 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1816 (m->m_pkthdr.csum_data != 0xffff)) { 1817 /* 1818 * The checksum either did not have hardware offload 1819 * or it was a bad checksum. We can't LRO such 1820 * a packet. 1821 */ 1822 counter_u64_add(tcp_bad_csums, 1); 1823 return (TCP_LRO_CANNOT); 1824 } 1825 /* We expect a contiguous header [eh, ip, tcp]. */ 1826 pa = tcp_lro_parser(m, &po, &pi, true); 1827 if (__predict_false(pa == NULL)) 1828 return (TCP_LRO_NOT_SUPPORTED); 1829 1830 /* We don't expect any padding. */ 1831 error = tcp_lro_trim_mbuf_chain(m, pa); 1832 if (__predict_false(error != 0)) 1833 return (error); 1834 1835 #ifdef INET 1836 switch (pa->data.lro_type) { 1837 case LRO_TYPE_IPV4_TCP: 1838 error = tcp_lro_rx_ipv4(lc, m, pa->ip4); 1839 if (__predict_false(error != 0)) 1840 return (error); 1841 break; 1842 default: 1843 break; 1844 } 1845 #endif 1846 /* If no hardware or arrival stamp on the packet add timestamp */ 1847 if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { 1848 m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 1849 m->m_flags |= M_TSTMP_LRO; 1850 } 1851 1852 /* Get pointer to TCP header. */ 1853 th = pa->tcp; 1854 1855 /* Don't process SYN packets. */ 1856 if (__predict_false(tcp_get_flags(th) & TH_SYN)) 1857 return (TCP_LRO_CANNOT); 1858 1859 /* Get total TCP header length and compute payload length. */ 1860 tcp_opt_len = (th->th_off << 2); 1861 tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - 1862 (uint8_t *)m->m_data) - tcp_opt_len; 1863 tcp_opt_len -= sizeof(*th); 1864 1865 /* Don't process invalid TCP headers. */ 1866 if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) 1867 return (TCP_LRO_CANNOT); 1868 1869 /* Compute TCP data only checksum. */ 1870 if (tcp_data_len == 0) 1871 tcp_data_sum = 0; /* no data, no checksum */ 1872 else if (__predict_false(csum != 0)) 1873 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); 1874 else 1875 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); 1876 1877 /* Save TCP info in mbuf. */ 1878 m->m_nextpkt = NULL; 1879 m->m_pkthdr.rcvif = lc->ifp; 1880 m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; 1881 m->m_pkthdr.lro_tcp_d_len = tcp_data_len; 1882 m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); 1883 m->m_pkthdr.lro_nsegs = 1; 1884 1885 /* Get hash bucket. */ 1886 if (!use_hash) { 1887 bucket = &lc->lro_hash[0]; 1888 } else { 1889 bucket = tcp_lro_rx_get_bucket(lc, m, pa); 1890 } 1891 1892 /* Try to find a matching previous segment. */ 1893 LIST_FOREACH(le, bucket, hash_next) { 1894 /* Compare addresses and ports. */ 1895 if (lro_address_compare(&po.data, &le->outer.data) == false || 1896 lro_address_compare(&pi.data, &le->inner.data) == false) 1897 continue; 1898 1899 /* Check if no data and old ACK. */ 1900 if (tcp_data_len == 0 && 1901 SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1902 m_freem(m); 1903 return (0); 1904 } 1905 1906 /* Mark "m" in the last spot. */ 1907 le->m_last_mbuf->m_nextpkt = m; 1908 /* Now set the tail to "m". */ 1909 le->m_last_mbuf = m; 1910 return (0); 1911 } 1912 1913 /* Try to find an empty slot. */ 1914 if (LIST_EMPTY(&lc->lro_free)) 1915 return (TCP_LRO_NO_ENTRIES); 1916 1917 /* Start a new segment chain. */ 1918 le = LIST_FIRST(&lc->lro_free); 1919 LIST_REMOVE(le, next); 1920 tcp_lro_active_insert(lc, bucket, le); 1921 1922 /* Make sure the headers are set. */ 1923 le->inner = pi; 1924 le->outer = po; 1925 1926 /* Store time this entry was allocated. */ 1927 le->alloc_time = lc->lro_last_queue_time; 1928 1929 tcp_set_entry_to_mbuf(lc, le, m, th); 1930 1931 /* Now set the tail to "m". */ 1932 le->m_last_mbuf = m; 1933 1934 return (0); 1935 } 1936 1937 int 1938 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1939 { 1940 int error; 1941 1942 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1943 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1944 (m->m_pkthdr.csum_data != 0xffff)) { 1945 /* 1946 * The checksum either did not have hardware offload 1947 * or it was a bad checksum. We can't LRO such 1948 * a packet. 1949 */ 1950 counter_u64_add(tcp_bad_csums, 1); 1951 return (TCP_LRO_CANNOT); 1952 } 1953 /* get current time */ 1954 binuptime(&lc->lro_last_queue_time); 1955 CURVNET_SET(lc->ifp->if_vnet); 1956 error = tcp_lro_rx_common(lc, m, csum, true); 1957 CURVNET_RESTORE(); 1958 1959 return (error); 1960 } 1961 1962 void 1963 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 1964 { 1965 NET_EPOCH_ASSERT(); 1966 /* sanity checks */ 1967 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 1968 lc->lro_mbuf_max == 0)) { 1969 /* packet drop */ 1970 m_freem(mb); 1971 return; 1972 } 1973 1974 /* check if packet is not LRO capable */ 1975 if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 1976 /* input packet to network layer */ 1977 (*lc->ifp->if_input) (lc->ifp, mb); 1978 return; 1979 } 1980 1981 /* create sequence number */ 1982 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 1983 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 1984 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 1985 ((uint64_t)lc->lro_mbuf_count); 1986 1987 /* enter mbuf */ 1988 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 1989 1990 /* flush if array is full */ 1991 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 1992 tcp_lro_flush_all(lc); 1993 } 1994 1995 /* end */ 1996