1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016-2021 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sockbuf.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/ethernet.h> 54 #include <net/bpf.h> 55 #include <net/vnet.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/ip.h> 61 #include <netinet/ip_var.h> 62 #include <netinet/in_pcb.h> 63 #include <netinet6/in6_pcb.h> 64 #include <netinet/tcp.h> 65 #include <netinet/tcp_seq.h> 66 #include <netinet/tcp_lro.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet/tcpip.h> 69 #include <netinet/tcp_hpts.h> 70 #include <netinet/tcp_log_buf.h> 71 #include <netinet/udp.h> 72 #include <netinet6/ip6_var.h> 73 74 #include <machine/in_cksum.h> 75 76 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 77 78 #define TCP_LRO_TS_OPTION \ 79 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 80 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 81 82 static void tcp_lro_rx_done(struct lro_ctrl *lc); 83 static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, 84 uint32_t csum, bool use_hash); 85 86 #ifdef TCPHPTS 87 static bool do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *, 88 struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, bool *, bool); 89 90 #endif 91 92 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 93 "TCP LRO"); 94 95 static long tcplro_stacks_wanting_mbufq; 96 counter_u64_t tcp_inp_lro_direct_queue; 97 counter_u64_t tcp_inp_lro_wokeup_queue; 98 counter_u64_t tcp_inp_lro_compressed; 99 counter_u64_t tcp_inp_lro_locks_taken; 100 counter_u64_t tcp_extra_mbuf; 101 counter_u64_t tcp_would_have_but; 102 counter_u64_t tcp_comp_total; 103 counter_u64_t tcp_uncomp_total; 104 counter_u64_t tcp_bad_csums; 105 106 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 107 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 108 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 109 "default number of LRO entries"); 110 111 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; 112 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, 113 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, 114 "Number of interrupts in a row on the same CPU that will make us declare an 'affinity' cpu?"); 115 116 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 117 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 118 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 119 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 120 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 121 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 122 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 123 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 124 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, 125 &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); 126 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, 127 &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); 128 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, 129 &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); 130 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, 131 &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); 132 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, 133 &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); 134 135 void 136 tcp_lro_reg_mbufq(void) 137 { 138 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 139 } 140 141 void 142 tcp_lro_dereg_mbufq(void) 143 { 144 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 145 } 146 147 static __inline void 148 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 149 struct lro_entry *le) 150 { 151 152 LIST_INSERT_HEAD(&lc->lro_active, le, next); 153 LIST_INSERT_HEAD(bucket, le, hash_next); 154 } 155 156 static __inline void 157 tcp_lro_active_remove(struct lro_entry *le) 158 { 159 160 LIST_REMOVE(le, next); /* active list */ 161 LIST_REMOVE(le, hash_next); /* hash bucket */ 162 } 163 164 int 165 tcp_lro_init(struct lro_ctrl *lc) 166 { 167 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 168 } 169 170 int 171 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 172 unsigned lro_entries, unsigned lro_mbufs) 173 { 174 struct lro_entry *le; 175 size_t size; 176 unsigned i, elements; 177 178 lc->lro_bad_csum = 0; 179 lc->lro_queued = 0; 180 lc->lro_flushed = 0; 181 lc->lro_mbuf_count = 0; 182 lc->lro_mbuf_max = lro_mbufs; 183 lc->lro_cnt = lro_entries; 184 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 185 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 186 lc->ifp = ifp; 187 LIST_INIT(&lc->lro_free); 188 LIST_INIT(&lc->lro_active); 189 190 /* create hash table to accelerate entry lookup */ 191 if (lro_entries > lro_mbufs) 192 elements = lro_entries; 193 else 194 elements = lro_mbufs; 195 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 196 HASH_NOWAIT); 197 if (lc->lro_hash == NULL) { 198 memset(lc, 0, sizeof(*lc)); 199 return (ENOMEM); 200 } 201 202 /* compute size to allocate */ 203 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 204 (lro_entries * sizeof(*le)); 205 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 206 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 207 208 /* check for out of memory */ 209 if (lc->lro_mbuf_data == NULL) { 210 free(lc->lro_hash, M_LRO); 211 memset(lc, 0, sizeof(*lc)); 212 return (ENOMEM); 213 } 214 /* compute offset for LRO entries */ 215 le = (struct lro_entry *) 216 (lc->lro_mbuf_data + lro_mbufs); 217 218 /* setup linked list */ 219 for (i = 0; i != lro_entries; i++) 220 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 221 222 return (0); 223 } 224 225 struct vxlan_header { 226 uint32_t vxlh_flags; 227 uint32_t vxlh_vni; 228 }; 229 230 static inline void * 231 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) 232 { 233 const struct ether_vlan_header *eh; 234 void *old; 235 uint16_t eth_type; 236 237 if (update_data) 238 memset(parser, 0, sizeof(*parser)); 239 240 old = ptr; 241 242 if (is_vxlan) { 243 const struct vxlan_header *vxh; 244 vxh = ptr; 245 ptr = (uint8_t *)ptr + sizeof(*vxh); 246 if (update_data) { 247 parser->data.vxlan_vni = 248 vxh->vxlh_vni & htonl(0xffffff00); 249 } 250 } 251 252 eh = ptr; 253 if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { 254 eth_type = eh->evl_proto; 255 if (update_data) { 256 /* strip priority and keep VLAN ID only */ 257 parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); 258 } 259 /* advance to next header */ 260 ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 261 mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 262 } else { 263 eth_type = eh->evl_encap_proto; 264 /* advance to next header */ 265 mlen -= ETHER_HDR_LEN; 266 ptr = (uint8_t *)ptr + ETHER_HDR_LEN; 267 } 268 if (__predict_false(mlen <= 0)) 269 return (NULL); 270 switch (eth_type) { 271 #ifdef INET 272 case htons(ETHERTYPE_IP): 273 parser->ip4 = ptr; 274 if (__predict_false(mlen < sizeof(struct ip))) 275 return (NULL); 276 /* Ensure there are no IPv4 options. */ 277 if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) 278 break; 279 /* .. and the packet is not fragmented. */ 280 if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 281 break; 282 ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); 283 mlen -= sizeof(struct ip); 284 if (update_data) { 285 parser->data.s_addr.v4 = parser->ip4->ip_src; 286 parser->data.d_addr.v4 = parser->ip4->ip_dst; 287 } 288 switch (parser->ip4->ip_p) { 289 case IPPROTO_UDP: 290 if (__predict_false(mlen < sizeof(struct udphdr))) 291 return (NULL); 292 parser->udp = ptr; 293 if (update_data) { 294 parser->data.lro_type = LRO_TYPE_IPV4_UDP; 295 parser->data.s_port = parser->udp->uh_sport; 296 parser->data.d_port = parser->udp->uh_dport; 297 } else { 298 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); 299 } 300 ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); 301 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 302 return (ptr); 303 case IPPROTO_TCP: 304 parser->tcp = ptr; 305 if (__predict_false(mlen < sizeof(struct tcphdr))) 306 return (NULL); 307 if (update_data) { 308 parser->data.lro_type = LRO_TYPE_IPV4_TCP; 309 parser->data.s_port = parser->tcp->th_sport; 310 parser->data.d_port = parser->tcp->th_dport; 311 } else { 312 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); 313 } 314 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 315 return (NULL); 316 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 317 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 318 return (ptr); 319 default: 320 break; 321 } 322 break; 323 #endif 324 #ifdef INET6 325 case htons(ETHERTYPE_IPV6): 326 parser->ip6 = ptr; 327 if (__predict_false(mlen < sizeof(struct ip6_hdr))) 328 return (NULL); 329 ptr = (uint8_t *)ptr + sizeof(*parser->ip6); 330 if (update_data) { 331 parser->data.s_addr.v6 = parser->ip6->ip6_src; 332 parser->data.d_addr.v6 = parser->ip6->ip6_dst; 333 } 334 mlen -= sizeof(struct ip6_hdr); 335 switch (parser->ip6->ip6_nxt) { 336 case IPPROTO_UDP: 337 if (__predict_false(mlen < sizeof(struct udphdr))) 338 return (NULL); 339 parser->udp = ptr; 340 if (update_data) { 341 parser->data.lro_type = LRO_TYPE_IPV6_UDP; 342 parser->data.s_port = parser->udp->uh_sport; 343 parser->data.d_port = parser->udp->uh_dport; 344 } else { 345 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); 346 } 347 ptr = (uint8_t *)ptr + sizeof(*parser->udp); 348 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 349 return (ptr); 350 case IPPROTO_TCP: 351 if (__predict_false(mlen < sizeof(struct tcphdr))) 352 return (NULL); 353 parser->tcp = ptr; 354 if (update_data) { 355 parser->data.lro_type = LRO_TYPE_IPV6_TCP; 356 parser->data.s_port = parser->tcp->th_sport; 357 parser->data.d_port = parser->tcp->th_dport; 358 } else { 359 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); 360 } 361 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 362 return (NULL); 363 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 364 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 365 return (ptr); 366 default: 367 break; 368 } 369 break; 370 #endif 371 default: 372 break; 373 } 374 /* Invalid packet - cannot parse */ 375 return (NULL); 376 } 377 378 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | 379 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; 380 381 static inline struct lro_parser * 382 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) 383 { 384 void *data_ptr; 385 386 /* Try to parse outer headers first. */ 387 data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); 388 if (data_ptr == NULL || po->total_hdr_len > m->m_len) 389 return (NULL); 390 391 if (update_data) { 392 /* Store VLAN ID, if any. */ 393 if (__predict_false(m->m_flags & M_VLANTAG)) { 394 po->data.vlan_id = 395 htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); 396 } 397 /* Store decrypted flag, if any. */ 398 if (__predict_false((m->m_pkthdr.csum_flags & 399 CSUM_TLS_MASK) == CSUM_TLS_DECRYPTED)) 400 po->data.lro_flags |= LRO_FLAG_DECRYPTED; 401 } 402 403 switch (po->data.lro_type) { 404 case LRO_TYPE_IPV4_UDP: 405 case LRO_TYPE_IPV6_UDP: 406 /* Check for VXLAN headers. */ 407 if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) 408 break; 409 410 /* Try to parse inner headers. */ 411 data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, 412 (m->m_len - ((caddr_t)data_ptr - m->m_data))); 413 if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) 414 break; 415 416 /* Verify supported header types. */ 417 switch (pi->data.lro_type) { 418 case LRO_TYPE_IPV4_TCP: 419 case LRO_TYPE_IPV6_TCP: 420 return (pi); 421 default: 422 break; 423 } 424 break; 425 case LRO_TYPE_IPV4_TCP: 426 case LRO_TYPE_IPV6_TCP: 427 if (update_data) 428 memset(pi, 0, sizeof(*pi)); 429 return (po); 430 default: 431 break; 432 } 433 return (NULL); 434 } 435 436 static inline int 437 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) 438 { 439 int len; 440 441 switch (po->data.lro_type) { 442 #ifdef INET 443 case LRO_TYPE_IPV4_TCP: 444 len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + 445 ntohs(po->ip4->ip_len); 446 break; 447 #endif 448 #ifdef INET6 449 case LRO_TYPE_IPV6_TCP: 450 len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + 451 ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); 452 break; 453 #endif 454 default: 455 return (TCP_LRO_CANNOT); 456 } 457 458 /* 459 * If the frame is padded beyond the end of the IP packet, 460 * then trim the extra bytes off: 461 */ 462 if (__predict_true(m->m_pkthdr.len == len)) { 463 return (0); 464 } else if (m->m_pkthdr.len > len) { 465 m_adj(m, len - m->m_pkthdr.len); 466 return (0); 467 } 468 return (TCP_LRO_CANNOT); 469 } 470 471 static struct tcphdr * 472 tcp_lro_get_th(struct mbuf *m) 473 { 474 return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); 475 } 476 477 static void 478 lro_free_mbuf_chain(struct mbuf *m) 479 { 480 struct mbuf *save; 481 482 while (m) { 483 save = m->m_nextpkt; 484 m->m_nextpkt = NULL; 485 m_freem(m); 486 m = save; 487 } 488 } 489 490 void 491 tcp_lro_free(struct lro_ctrl *lc) 492 { 493 struct lro_entry *le; 494 unsigned x; 495 496 /* reset LRO free list */ 497 LIST_INIT(&lc->lro_free); 498 499 /* free active mbufs, if any */ 500 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 501 tcp_lro_active_remove(le); 502 lro_free_mbuf_chain(le->m_head); 503 } 504 505 /* free hash table */ 506 free(lc->lro_hash, M_LRO); 507 lc->lro_hash = NULL; 508 lc->lro_hashsz = 0; 509 510 /* free mbuf array, if any */ 511 for (x = 0; x != lc->lro_mbuf_count; x++) 512 m_freem(lc->lro_mbuf_data[x].mb); 513 lc->lro_mbuf_count = 0; 514 515 /* free allocated memory, if any */ 516 free(lc->lro_mbuf_data, M_LRO); 517 lc->lro_mbuf_data = NULL; 518 } 519 520 static uint16_t 521 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) 522 { 523 const uint16_t *ptr; 524 uint32_t csum; 525 uint16_t len; 526 527 csum = -th->th_sum; /* exclude checksum field */ 528 len = th->th_off; 529 ptr = (const uint16_t *)th; 530 while (len--) { 531 csum += *ptr; 532 ptr++; 533 csum += *ptr; 534 ptr++; 535 } 536 while (csum > 0xffff) 537 csum = (csum >> 16) + (csum & 0xffff); 538 539 return (csum); 540 } 541 542 static uint16_t 543 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) 544 { 545 uint32_t c; 546 uint16_t cs; 547 548 c = tcp_csum; 549 550 switch (pa->data.lro_type) { 551 #ifdef INET6 552 case LRO_TYPE_IPV6_TCP: 553 /* Compute full pseudo IPv6 header checksum. */ 554 cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); 555 break; 556 #endif 557 #ifdef INET 558 case LRO_TYPE_IPV4_TCP: 559 /* Compute full pseudo IPv4 header checsum. */ 560 cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); 561 cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); 562 break; 563 #endif 564 default: 565 cs = 0; /* Keep compiler happy. */ 566 break; 567 } 568 569 /* Complement checksum. */ 570 cs = ~cs; 571 c += cs; 572 573 /* Remove TCP header checksum. */ 574 cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); 575 c += cs; 576 577 /* Compute checksum remainder. */ 578 while (c > 0xffff) 579 c = (c >> 16) + (c & 0xffff); 580 581 return (c); 582 } 583 584 static void 585 tcp_lro_rx_done(struct lro_ctrl *lc) 586 { 587 struct lro_entry *le; 588 589 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 590 tcp_lro_active_remove(le); 591 tcp_lro_flush(lc, le); 592 } 593 } 594 595 void 596 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 597 { 598 struct lro_entry *le, *le_tmp; 599 uint64_t now, tov; 600 struct bintime bt; 601 602 NET_EPOCH_ASSERT(); 603 if (LIST_EMPTY(&lc->lro_active)) 604 return; 605 606 /* get timeout time and current time in ns */ 607 binuptime(&bt); 608 now = bintime2ns(&bt); 609 tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); 610 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 611 if (now >= (bintime2ns(&le->alloc_time) + tov)) { 612 tcp_lro_active_remove(le); 613 tcp_lro_flush(lc, le); 614 } 615 } 616 } 617 618 #ifdef INET 619 static int 620 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) 621 { 622 uint16_t csum; 623 624 /* Legacy IP has a header checksum that needs to be correct. */ 625 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 626 if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { 627 lc->lro_bad_csum++; 628 return (TCP_LRO_CANNOT); 629 } 630 } else { 631 csum = in_cksum_hdr(ip4); 632 if (__predict_false(csum != 0)) { 633 lc->lro_bad_csum++; 634 return (TCP_LRO_CANNOT); 635 } 636 } 637 return (0); 638 } 639 #endif 640 641 #ifdef TCPHPTS 642 static void 643 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, 644 const struct lro_entry *le, const struct mbuf *m, 645 int frm, int32_t tcp_data_len, uint32_t th_seq, 646 uint32_t th_ack, uint16_t th_win) 647 { 648 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 649 union tcp_log_stackspecific log; 650 struct timeval tv, btv; 651 uint32_t cts; 652 653 cts = tcp_get_usecs(&tv); 654 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 655 log.u_bbr.flex8 = frm; 656 log.u_bbr.flex1 = tcp_data_len; 657 if (m) 658 log.u_bbr.flex2 = m->m_pkthdr.len; 659 else 660 log.u_bbr.flex2 = 0; 661 log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; 662 log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; 663 if (le->m_head) { 664 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 665 log.u_bbr.delRate = le->m_head->m_flags; 666 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 667 } 668 log.u_bbr.inflight = th_seq; 669 log.u_bbr.delivered = th_ack; 670 log.u_bbr.timeStamp = cts; 671 log.u_bbr.epoch = le->next_seq; 672 log.u_bbr.lt_epoch = le->ack_seq; 673 log.u_bbr.pacing_gain = th_win; 674 log.u_bbr.cwnd_gain = le->window; 675 log.u_bbr.lost = curcpu; 676 log.u_bbr.cur_del_rate = (uintptr_t)m; 677 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 678 bintime2timeval(&lc->lro_last_queue_time, &btv); 679 log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); 680 log.u_bbr.flex7 = le->compressed; 681 log.u_bbr.pacing_gain = le->uncompressed; 682 if (in_epoch(net_epoch_preempt)) 683 log.u_bbr.inhpts = 1; 684 else 685 log.u_bbr.inhpts = 0; 686 TCP_LOG_EVENTP(tp, NULL, 687 &tp->t_inpcb->inp_socket->so_rcv, 688 &tp->t_inpcb->inp_socket->so_snd, 689 TCP_LOG_LRO, 0, 690 0, &log, false, &tv); 691 } 692 } 693 #endif 694 695 static inline void 696 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) 697 { 698 uint32_t csum; 699 700 csum = 0xffff - *ptr + value; 701 while (csum > 0xffff) 702 csum = (csum >> 16) + (csum & 0xffff); 703 *ptr = value; 704 *psum = csum; 705 } 706 707 static uint16_t 708 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, 709 uint16_t payload_len, uint16_t delta_sum) 710 { 711 uint32_t csum; 712 uint16_t tlen; 713 uint16_t temp[5] = {}; 714 715 switch (pa->data.lro_type) { 716 case LRO_TYPE_IPV4_TCP: 717 /* Compute new IPv4 length. */ 718 tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; 719 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 720 721 /* Subtract delta from current IPv4 checksum. */ 722 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 723 while (csum > 0xffff) 724 csum = (csum >> 16) + (csum & 0xffff); 725 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 726 goto update_tcp_header; 727 728 case LRO_TYPE_IPV6_TCP: 729 /* Compute new IPv6 length. */ 730 tlen = (pa->tcp->th_off << 2) + payload_len; 731 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 732 goto update_tcp_header; 733 734 case LRO_TYPE_IPV4_UDP: 735 /* Compute new IPv4 length. */ 736 tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; 737 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 738 739 /* Subtract delta from current IPv4 checksum. */ 740 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 741 while (csum > 0xffff) 742 csum = (csum >> 16) + (csum & 0xffff); 743 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 744 goto update_udp_header; 745 746 case LRO_TYPE_IPV6_UDP: 747 /* Compute new IPv6 length. */ 748 tlen = sizeof(*pa->udp) + payload_len; 749 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 750 goto update_udp_header; 751 752 default: 753 return (0); 754 } 755 756 update_tcp_header: 757 /* Compute current TCP header checksum. */ 758 temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); 759 760 /* Incorporate the latest ACK into the TCP header. */ 761 pa->tcp->th_ack = le->ack_seq; 762 pa->tcp->th_win = le->window; 763 764 /* Incorporate latest timestamp into the TCP header. */ 765 if (le->timestamp != 0) { 766 uint32_t *ts_ptr; 767 768 ts_ptr = (uint32_t *)(pa->tcp + 1); 769 ts_ptr[1] = htonl(le->tsval); 770 ts_ptr[2] = le->tsecr; 771 } 772 773 /* Compute new TCP header checksum. */ 774 temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); 775 776 /* Compute new TCP checksum. */ 777 csum = pa->tcp->th_sum + 0xffff - delta_sum + 778 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; 779 while (csum > 0xffff) 780 csum = (csum >> 16) + (csum & 0xffff); 781 782 /* Assign new TCP checksum. */ 783 tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); 784 785 /* Compute all modififications affecting next checksum. */ 786 csum = temp[0] + temp[1] + 0xffff - temp[2] + 787 temp[3] + temp[4] + delta_sum; 788 while (csum > 0xffff) 789 csum = (csum >> 16) + (csum & 0xffff); 790 791 /* Return delta checksum to next stage, if any. */ 792 return (csum); 793 794 update_udp_header: 795 tlen = sizeof(*pa->udp) + payload_len; 796 /* Assign new UDP length and compute checksum delta. */ 797 tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); 798 799 /* Check if there is a UDP checksum. */ 800 if (__predict_false(pa->udp->uh_sum != 0)) { 801 /* Compute new UDP checksum. */ 802 csum = pa->udp->uh_sum + 0xffff - delta_sum + 803 0xffff - temp[0] + 0xffff - temp[2]; 804 while (csum > 0xffff) 805 csum = (csum >> 16) + (csum & 0xffff); 806 /* Assign new UDP checksum. */ 807 tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); 808 } 809 810 /* Compute all modififications affecting next checksum. */ 811 csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; 812 while (csum > 0xffff) 813 csum = (csum >> 16) + (csum & 0xffff); 814 815 /* Return delta checksum to next stage, if any. */ 816 return (csum); 817 } 818 819 static void 820 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) 821 { 822 /* Check if we need to recompute any checksums. */ 823 if (le->needs_merge) { 824 uint16_t csum; 825 826 switch (le->inner.data.lro_type) { 827 case LRO_TYPE_IPV4_TCP: 828 csum = tcp_lro_update_checksum(&le->inner, le, 829 le->m_head->m_pkthdr.lro_tcp_d_len, 830 le->m_head->m_pkthdr.lro_tcp_d_csum); 831 csum = tcp_lro_update_checksum(&le->outer, NULL, 832 le->m_head->m_pkthdr.lro_tcp_d_len + 833 le->inner.total_hdr_len, csum); 834 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 835 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 836 le->m_head->m_pkthdr.csum_data = 0xffff; 837 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 838 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 839 break; 840 case LRO_TYPE_IPV6_TCP: 841 csum = tcp_lro_update_checksum(&le->inner, le, 842 le->m_head->m_pkthdr.lro_tcp_d_len, 843 le->m_head->m_pkthdr.lro_tcp_d_csum); 844 csum = tcp_lro_update_checksum(&le->outer, NULL, 845 le->m_head->m_pkthdr.lro_tcp_d_len + 846 le->inner.total_hdr_len, csum); 847 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 848 CSUM_PSEUDO_HDR; 849 le->m_head->m_pkthdr.csum_data = 0xffff; 850 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 851 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 852 break; 853 case LRO_TYPE_NONE: 854 switch (le->outer.data.lro_type) { 855 case LRO_TYPE_IPV4_TCP: 856 csum = tcp_lro_update_checksum(&le->outer, le, 857 le->m_head->m_pkthdr.lro_tcp_d_len, 858 le->m_head->m_pkthdr.lro_tcp_d_csum); 859 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 860 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 861 le->m_head->m_pkthdr.csum_data = 0xffff; 862 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 863 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 864 break; 865 case LRO_TYPE_IPV6_TCP: 866 csum = tcp_lro_update_checksum(&le->outer, le, 867 le->m_head->m_pkthdr.lro_tcp_d_len, 868 le->m_head->m_pkthdr.lro_tcp_d_csum); 869 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 870 CSUM_PSEUDO_HDR; 871 le->m_head->m_pkthdr.csum_data = 0xffff; 872 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 873 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 874 break; 875 default: 876 break; 877 } 878 break; 879 default: 880 break; 881 } 882 } 883 884 /* 885 * Break any chain, this is not set to NULL on the singleton 886 * case m_nextpkt points to m_head. Other case set them 887 * m_nextpkt to NULL in push_and_replace. 888 */ 889 le->m_head->m_nextpkt = NULL; 890 lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; 891 (*lc->ifp->if_input)(lc->ifp, le->m_head); 892 } 893 894 static void 895 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, 896 struct mbuf *m, struct tcphdr *th) 897 { 898 uint32_t *ts_ptr; 899 uint16_t tcp_data_len; 900 uint16_t tcp_opt_len; 901 902 ts_ptr = (uint32_t *)(th + 1); 903 tcp_opt_len = (th->th_off << 2); 904 tcp_opt_len -= sizeof(*th); 905 906 /* Check if there is a timestamp option. */ 907 if (tcp_opt_len == 0 || 908 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 909 *ts_ptr != TCP_LRO_TS_OPTION)) { 910 /* We failed to find the timestamp option. */ 911 le->timestamp = 0; 912 } else { 913 le->timestamp = 1; 914 le->tsval = ntohl(*(ts_ptr + 1)); 915 le->tsecr = *(ts_ptr + 2); 916 } 917 918 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 919 920 /* Pull out TCP sequence numbers and window size. */ 921 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 922 le->ack_seq = th->th_ack; 923 le->window = th->th_win; 924 le->flags = tcp_get_flags(th); 925 le->needs_merge = 0; 926 927 /* Setup new data pointers. */ 928 le->m_head = m; 929 le->m_tail = m_last(m); 930 } 931 932 static void 933 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 934 { 935 struct lro_parser *pa; 936 937 /* 938 * Push up the stack of the current entry 939 * and replace it with "m". 940 */ 941 struct mbuf *msave; 942 943 /* Grab off the next and save it */ 944 msave = le->m_head->m_nextpkt; 945 le->m_head->m_nextpkt = NULL; 946 947 /* Now push out the old entry */ 948 tcp_flush_out_entry(lc, le); 949 950 /* Re-parse new header, should not fail. */ 951 pa = tcp_lro_parser(m, &le->outer, &le->inner, false); 952 KASSERT(pa != NULL, 953 ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); 954 955 /* 956 * Now to replace the data properly in the entry 957 * we have to reset the TCP header and 958 * other fields. 959 */ 960 tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); 961 962 /* Restore the next list */ 963 m->m_nextpkt = msave; 964 } 965 966 static void 967 tcp_lro_mbuf_append_pkthdr(struct lro_entry *le, const struct mbuf *p) 968 { 969 struct mbuf *m; 970 uint32_t csum; 971 972 m = le->m_head; 973 if (m->m_pkthdr.lro_nsegs == 1) { 974 /* Compute relative checksum. */ 975 csum = p->m_pkthdr.lro_tcp_d_csum; 976 } else { 977 /* Merge TCP data checksums. */ 978 csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + 979 (uint32_t)p->m_pkthdr.lro_tcp_d_csum; 980 while (csum > 0xffff) 981 csum = (csum >> 16) + (csum & 0xffff); 982 } 983 984 /* Update various counters. */ 985 m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; 986 m->m_pkthdr.lro_tcp_d_csum = csum; 987 m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; 988 m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; 989 le->needs_merge = 1; 990 } 991 992 static void 993 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) 994 { 995 /* 996 * Walk through the mbuf chain we 997 * have on tap and compress/condense 998 * as required. 999 */ 1000 uint32_t *ts_ptr; 1001 struct mbuf *m; 1002 struct tcphdr *th; 1003 uint32_t tcp_data_len_total; 1004 uint32_t tcp_data_seg_total; 1005 uint16_t tcp_data_len; 1006 uint16_t tcp_opt_len; 1007 1008 /* 1009 * First we must check the lead (m_head) 1010 * we must make sure that it is *not* 1011 * something that should be sent up 1012 * right away (sack etc). 1013 */ 1014 again: 1015 m = le->m_head->m_nextpkt; 1016 if (m == NULL) { 1017 /* Just one left. */ 1018 return; 1019 } 1020 1021 th = tcp_lro_get_th(m); 1022 tcp_opt_len = (th->th_off << 2); 1023 tcp_opt_len -= sizeof(*th); 1024 ts_ptr = (uint32_t *)(th + 1); 1025 1026 if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1027 *ts_ptr != TCP_LRO_TS_OPTION)) { 1028 /* 1029 * Its not the timestamp. We can't 1030 * use this guy as the head. 1031 */ 1032 le->m_head->m_nextpkt = m->m_nextpkt; 1033 tcp_push_and_replace(lc, le, m); 1034 goto again; 1035 } 1036 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1037 /* 1038 * Make sure that previously seen segments/ACKs are delivered 1039 * before this segment, e.g. FIN. 1040 */ 1041 le->m_head->m_nextpkt = m->m_nextpkt; 1042 tcp_push_and_replace(lc, le, m); 1043 goto again; 1044 } 1045 while((m = le->m_head->m_nextpkt) != NULL) { 1046 /* 1047 * condense m into le, first 1048 * pull m out of the list. 1049 */ 1050 le->m_head->m_nextpkt = m->m_nextpkt; 1051 m->m_nextpkt = NULL; 1052 /* Setup my data */ 1053 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 1054 th = tcp_lro_get_th(m); 1055 ts_ptr = (uint32_t *)(th + 1); 1056 tcp_opt_len = (th->th_off << 2); 1057 tcp_opt_len -= sizeof(*th); 1058 tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; 1059 tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; 1060 1061 if (tcp_data_seg_total >= lc->lro_ackcnt_lim || 1062 tcp_data_len_total >= lc->lro_length_lim) { 1063 /* Flush now if appending will result in overflow. */ 1064 tcp_push_and_replace(lc, le, m); 1065 goto again; 1066 } 1067 if (tcp_opt_len != 0 && 1068 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1069 *ts_ptr != TCP_LRO_TS_OPTION)) { 1070 /* 1071 * Maybe a sack in the new one? We need to 1072 * start all over after flushing the 1073 * current le. We will go up to the beginning 1074 * and flush it (calling the replace again possibly 1075 * or just returning). 1076 */ 1077 tcp_push_and_replace(lc, le, m); 1078 goto again; 1079 } 1080 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1081 tcp_push_and_replace(lc, le, m); 1082 goto again; 1083 } 1084 if (tcp_opt_len != 0) { 1085 uint32_t tsval = ntohl(*(ts_ptr + 1)); 1086 /* Make sure timestamp values are increasing. */ 1087 if (TSTMP_GT(le->tsval, tsval)) { 1088 tcp_push_and_replace(lc, le, m); 1089 goto again; 1090 } 1091 le->tsval = tsval; 1092 le->tsecr = *(ts_ptr + 2); 1093 } 1094 /* Try to append the new segment. */ 1095 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 1096 ((tcp_get_flags(th) & TH_ACK) != 1097 (le->flags & TH_ACK)) || 1098 (tcp_data_len == 0 && 1099 le->ack_seq == th->th_ack && 1100 le->window == th->th_win))) { 1101 /* Out of order packet, non-ACK + ACK or dup ACK. */ 1102 tcp_push_and_replace(lc, le, m); 1103 goto again; 1104 } 1105 if (tcp_data_len != 0 || 1106 SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1107 le->next_seq += tcp_data_len; 1108 le->ack_seq = th->th_ack; 1109 le->window = th->th_win; 1110 le->needs_merge = 1; 1111 } else if (th->th_ack == le->ack_seq) { 1112 if (WIN_GT(th->th_win, le->window)) { 1113 le->window = th->th_win; 1114 le->needs_merge = 1; 1115 } 1116 } 1117 1118 if (tcp_data_len == 0) { 1119 m_freem(m); 1120 continue; 1121 } 1122 1123 /* Merge TCP data checksum and length to head mbuf. */ 1124 tcp_lro_mbuf_append_pkthdr(le, m); 1125 1126 /* 1127 * Adjust the mbuf so that m_data points to the first byte of 1128 * the ULP payload. Adjust the mbuf to avoid complications and 1129 * append new segment to existing mbuf chain. 1130 */ 1131 m_adj(m, m->m_pkthdr.len - tcp_data_len); 1132 m_demote_pkthdr(m); 1133 le->m_tail->m_next = m; 1134 le->m_tail = m_last(m); 1135 } 1136 } 1137 1138 #ifdef TCPHPTS 1139 static void 1140 tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le) 1141 { 1142 INP_WLOCK_ASSERT(inp); 1143 if (tp->t_in_pkt == NULL) { 1144 /* Nothing yet there */ 1145 tp->t_in_pkt = le->m_head; 1146 tp->t_tail_pkt = le->m_last_mbuf; 1147 } else { 1148 /* Already some there */ 1149 tp->t_tail_pkt->m_nextpkt = le->m_head; 1150 tp->t_tail_pkt = le->m_last_mbuf; 1151 } 1152 le->m_head = NULL; 1153 le->m_last_mbuf = NULL; 1154 } 1155 1156 static struct mbuf * 1157 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, 1158 struct inpcb *inp, int32_t *new_m) 1159 { 1160 struct tcpcb *tp; 1161 struct mbuf *m; 1162 1163 tp = intotcpcb(inp); 1164 if (__predict_false(tp == NULL)) 1165 return (NULL); 1166 1167 /* Look at the last mbuf if any in queue */ 1168 m = tp->t_tail_pkt; 1169 if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { 1170 if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { 1171 tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); 1172 *new_m = 0; 1173 counter_u64_add(tcp_extra_mbuf, 1); 1174 return (m); 1175 } else { 1176 /* Mark we ran out of space */ 1177 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1178 } 1179 } 1180 /* Decide mbuf size. */ 1181 if (inp->inp_flags2 & INP_MBUF_L_ACKS) 1182 m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); 1183 else 1184 m = m_gethdr(M_NOWAIT, MT_DATA); 1185 1186 if (__predict_false(m == NULL)) { 1187 counter_u64_add(tcp_would_have_but, 1); 1188 return (NULL); 1189 } 1190 counter_u64_add(tcp_comp_total, 1); 1191 m->m_flags |= M_ACKCMP; 1192 *new_m = 1; 1193 return (m); 1194 } 1195 1196 static struct inpcb * 1197 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) 1198 { 1199 struct inpcb *inp; 1200 1201 switch (pa->data.lro_type) { 1202 #ifdef INET6 1203 case LRO_TYPE_IPV6_TCP: 1204 inp = in6_pcblookup(&V_tcbinfo, 1205 &pa->data.s_addr.v6, 1206 pa->data.s_port, 1207 &pa->data.d_addr.v6, 1208 pa->data.d_port, 1209 INPLOOKUP_WLOCKPCB, 1210 ifp); 1211 break; 1212 #endif 1213 #ifdef INET 1214 case LRO_TYPE_IPV4_TCP: 1215 inp = in_pcblookup(&V_tcbinfo, 1216 pa->data.s_addr.v4, 1217 pa->data.s_port, 1218 pa->data.d_addr.v4, 1219 pa->data.d_port, 1220 INPLOOKUP_WLOCKPCB, 1221 ifp); 1222 break; 1223 #endif 1224 default: 1225 inp = NULL; 1226 break; 1227 } 1228 return (inp); 1229 } 1230 1231 static inline bool 1232 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) 1233 { 1234 /* 1235 * This function returns two bits of valuable information. 1236 * a) Is what is present capable of being ack-compressed, 1237 * we can ack-compress if there is no options or just 1238 * a timestamp option, and of course the th_flags must 1239 * be correct as well. 1240 * b) Our other options present such as SACK. This is 1241 * used to determine if we want to wakeup or not. 1242 */ 1243 bool ret = true; 1244 1245 switch (th->th_off << 2) { 1246 case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): 1247 *ppts = (uint32_t *)(th + 1); 1248 /* Check if we have only one timestamp option. */ 1249 if (**ppts == TCP_LRO_TS_OPTION) 1250 *other_opts = false; 1251 else { 1252 *other_opts = true; 1253 ret = false; 1254 } 1255 break; 1256 case (sizeof(*th)): 1257 /* No options. */ 1258 *ppts = NULL; 1259 *other_opts = false; 1260 break; 1261 default: 1262 *ppts = NULL; 1263 *other_opts = true; 1264 ret = false; 1265 break; 1266 } 1267 /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ 1268 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) 1269 ret = false; 1270 /* If it has data on it we cannot compress it */ 1271 if (m->m_pkthdr.lro_tcp_d_len) 1272 ret = false; 1273 1274 /* ACK flag must be set. */ 1275 if (!(tcp_get_flags(th) & TH_ACK)) 1276 ret = false; 1277 return (ret); 1278 } 1279 1280 static int 1281 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) 1282 { 1283 struct inpcb *inp; 1284 struct tcpcb *tp; 1285 struct mbuf **pp, *cmp, *mv_to; 1286 bool bpf_req, should_wake; 1287 1288 /* Check if packet doesn't belongs to our network interface. */ 1289 if ((tcplro_stacks_wanting_mbufq == 0) || 1290 (le->outer.data.vlan_id != 0) || 1291 (le->inner.data.lro_type != LRO_TYPE_NONE)) 1292 return (TCP_LRO_CANNOT); 1293 1294 #ifdef INET6 1295 /* 1296 * Be proactive about unspecified IPv6 address in source. As 1297 * we use all-zero to indicate unbounded/unconnected pcb, 1298 * unspecified IPv6 address can be used to confuse us. 1299 * 1300 * Note that packets with unspecified IPv6 destination is 1301 * already dropped in ip6_input. 1302 */ 1303 if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && 1304 IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) 1305 return (TCP_LRO_CANNOT); 1306 1307 if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && 1308 IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) 1309 return (TCP_LRO_CANNOT); 1310 #endif 1311 /* Lookup inp, if any. */ 1312 inp = tcp_lro_lookup(lc->ifp, 1313 (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); 1314 if (inp == NULL) 1315 return (TCP_LRO_CANNOT); 1316 1317 counter_u64_add(tcp_inp_lro_locks_taken, 1); 1318 1319 /* Get TCP control structure. */ 1320 tp = intotcpcb(inp); 1321 1322 /* Check if the inp is dead, Jim. */ 1323 if (tp == NULL || 1324 (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 1325 INP_WUNLOCK(inp); 1326 return (TCP_LRO_CANNOT); 1327 } 1328 if ((inp->inp_irq_cpu_set == 0) && (lc->lro_cpu_is_set == 1)) { 1329 inp->inp_irq_cpu = lc->lro_last_cpu; 1330 inp->inp_irq_cpu_set = 1; 1331 } 1332 /* Check if the transport doesn't support the needed optimizations. */ 1333 if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) { 1334 INP_WUNLOCK(inp); 1335 return (TCP_LRO_CANNOT); 1336 } 1337 1338 if (inp->inp_flags2 & INP_MBUF_QUEUE_READY) 1339 should_wake = false; 1340 else 1341 should_wake = true; 1342 /* Check if packets should be tapped to BPF. */ 1343 bpf_req = bpf_peers_present(lc->ifp->if_bpf); 1344 1345 /* Strip and compress all the incoming packets. */ 1346 cmp = NULL; 1347 for (pp = &le->m_head; *pp != NULL; ) { 1348 mv_to = NULL; 1349 if (do_bpf_strip_and_compress(inp, lc, le, pp, 1350 &cmp, &mv_to, &should_wake, bpf_req ) == false) { 1351 /* Advance to next mbuf. */ 1352 pp = &(*pp)->m_nextpkt; 1353 } else if (mv_to != NULL) { 1354 /* We are asked to move pp up */ 1355 pp = &mv_to->m_nextpkt; 1356 } 1357 } 1358 /* Update "m_last_mbuf", if any. */ 1359 if (pp == &le->m_head) 1360 le->m_last_mbuf = *pp; 1361 else 1362 le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); 1363 1364 /* Check if any data mbufs left. */ 1365 if (le->m_head != NULL) { 1366 counter_u64_add(tcp_inp_lro_direct_queue, 1); 1367 tcp_lro_log(tp, lc, le, NULL, 22, 1, inp->inp_flags2, 0, 1); 1368 tcp_queue_pkts(inp, tp, le); 1369 } 1370 if (should_wake) { 1371 /* Wakeup */ 1372 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 1373 if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0)) 1374 inp = NULL; 1375 } 1376 if (inp != NULL) 1377 INP_WUNLOCK(inp); 1378 return (0); /* Success. */ 1379 } 1380 #endif 1381 1382 void 1383 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 1384 { 1385 /* Only optimise if there are multiple packets waiting. */ 1386 #ifdef TCPHPTS 1387 int error; 1388 #endif 1389 1390 NET_EPOCH_ASSERT(); 1391 #ifdef TCPHPTS 1392 CURVNET_SET(lc->ifp->if_vnet); 1393 error = tcp_lro_flush_tcphpts(lc, le); 1394 CURVNET_RESTORE(); 1395 if (error != 0) { 1396 #endif 1397 tcp_lro_condense(lc, le); 1398 tcp_flush_out_entry(lc, le); 1399 #ifdef TCPHPTS 1400 } 1401 #endif 1402 lc->lro_flushed++; 1403 bzero(le, sizeof(*le)); 1404 LIST_INSERT_HEAD(&lc->lro_free, le, next); 1405 } 1406 1407 #ifdef HAVE_INLINE_FLSLL 1408 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 1409 #else 1410 static inline uint64_t 1411 tcp_lro_msb_64(uint64_t x) 1412 { 1413 x |= (x >> 1); 1414 x |= (x >> 2); 1415 x |= (x >> 4); 1416 x |= (x >> 8); 1417 x |= (x >> 16); 1418 x |= (x >> 32); 1419 return (x & ~(x >> 1)); 1420 } 1421 #endif 1422 1423 /* 1424 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1425 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1426 * number of elements to sort and 64 is the number of sequence bits 1427 * available. The algorithm is bit-slicing the 64-bit sequence number, 1428 * sorting one bit at a time from the most significant bit until the 1429 * least significant one, skipping the constant bits. This is 1430 * typically called a radix sort. 1431 */ 1432 static void 1433 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1434 { 1435 struct lro_mbuf_sort temp; 1436 uint64_t ones; 1437 uint64_t zeros; 1438 uint32_t x; 1439 uint32_t y; 1440 1441 repeat: 1442 /* for small arrays insertion sort is faster */ 1443 if (size <= 12) { 1444 for (x = 1; x < size; x++) { 1445 temp = parray[x]; 1446 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1447 parray[y] = parray[y - 1]; 1448 parray[y] = temp; 1449 } 1450 return; 1451 } 1452 1453 /* compute sequence bits which are constant */ 1454 ones = 0; 1455 zeros = 0; 1456 for (x = 0; x != size; x++) { 1457 ones |= parray[x].seq; 1458 zeros |= ~parray[x].seq; 1459 } 1460 1461 /* compute bits which are not constant into "ones" */ 1462 ones &= zeros; 1463 if (ones == 0) 1464 return; 1465 1466 /* pick the most significant bit which is not constant */ 1467 ones = tcp_lro_msb_64(ones); 1468 1469 /* 1470 * Move entries having cleared sequence bits to the beginning 1471 * of the array: 1472 */ 1473 for (x = y = 0; y != size; y++) { 1474 /* skip set bits */ 1475 if (parray[y].seq & ones) 1476 continue; 1477 /* swap entries */ 1478 temp = parray[x]; 1479 parray[x] = parray[y]; 1480 parray[y] = temp; 1481 x++; 1482 } 1483 1484 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1485 1486 /* sort zeros */ 1487 tcp_lro_sort(parray, x); 1488 1489 /* sort ones */ 1490 parray += x; 1491 size -= x; 1492 goto repeat; 1493 } 1494 1495 void 1496 tcp_lro_flush_all(struct lro_ctrl *lc) 1497 { 1498 uint64_t seq; 1499 uint64_t nseq; 1500 unsigned x; 1501 1502 NET_EPOCH_ASSERT(); 1503 /* check if no mbufs to flush */ 1504 if (lc->lro_mbuf_count == 0) 1505 goto done; 1506 if (lc->lro_cpu_is_set == 0) { 1507 if (lc->lro_last_cpu == curcpu) { 1508 lc->lro_cnt_of_same_cpu++; 1509 /* Have we reached the threshold to declare a cpu? */ 1510 if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) 1511 lc->lro_cpu_is_set = 1; 1512 } else { 1513 lc->lro_last_cpu = curcpu; 1514 lc->lro_cnt_of_same_cpu = 0; 1515 } 1516 } 1517 CURVNET_SET(lc->ifp->if_vnet); 1518 1519 /* get current time */ 1520 binuptime(&lc->lro_last_queue_time); 1521 1522 /* sort all mbufs according to stream */ 1523 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1524 1525 /* input data into LRO engine, stream by stream */ 1526 seq = 0; 1527 for (x = 0; x != lc->lro_mbuf_count; x++) { 1528 struct mbuf *mb; 1529 1530 /* get mbuf */ 1531 mb = lc->lro_mbuf_data[x].mb; 1532 1533 /* get sequence number, masking away the packet index */ 1534 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1535 1536 /* check for new stream */ 1537 if (seq != nseq) { 1538 seq = nseq; 1539 1540 /* flush active streams */ 1541 tcp_lro_rx_done(lc); 1542 } 1543 1544 /* add packet to LRO engine */ 1545 if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { 1546 /* input packet to network layer */ 1547 (*lc->ifp->if_input)(lc->ifp, mb); 1548 lc->lro_queued++; 1549 lc->lro_flushed++; 1550 } 1551 } 1552 CURVNET_RESTORE(); 1553 done: 1554 /* flush active streams */ 1555 tcp_lro_rx_done(lc); 1556 1557 #ifdef TCPHPTS 1558 tcp_run_hpts(); 1559 #endif 1560 lc->lro_mbuf_count = 0; 1561 } 1562 1563 #ifdef TCPHPTS 1564 static void 1565 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, 1566 uint32_t *ts_ptr, uint16_t iptos) 1567 { 1568 /* 1569 * Given a TCP ACK, summarize it down into the small TCP ACK 1570 * entry. 1571 */ 1572 ae->timestamp = m->m_pkthdr.rcv_tstmp; 1573 if (m->m_flags & M_TSTMP_LRO) 1574 ae->flags = TSTMP_LRO; 1575 else if (m->m_flags & M_TSTMP) 1576 ae->flags = TSTMP_HDWR; 1577 ae->seq = ntohl(th->th_seq); 1578 ae->ack = ntohl(th->th_ack); 1579 ae->flags |= tcp_get_flags(th); 1580 if (ts_ptr != NULL) { 1581 ae->ts_value = ntohl(ts_ptr[1]); 1582 ae->ts_echo = ntohl(ts_ptr[2]); 1583 ae->flags |= HAS_TSTMP; 1584 } 1585 ae->win = ntohs(th->th_win); 1586 ae->codepoint = iptos; 1587 } 1588 1589 /* 1590 * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets 1591 * and strip all, but the IPv4/IPv6 header. 1592 */ 1593 static bool 1594 do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc, 1595 struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, 1596 bool *should_wake, bool bpf_req) 1597 { 1598 union { 1599 void *ptr; 1600 struct ip *ip4; 1601 struct ip6_hdr *ip6; 1602 } l3; 1603 struct mbuf *m; 1604 struct mbuf *nm; 1605 struct tcphdr *th; 1606 struct tcp_ackent *ack_ent; 1607 uint32_t *ts_ptr; 1608 int32_t n_mbuf; 1609 bool other_opts, can_compress; 1610 uint8_t lro_type; 1611 uint16_t iptos; 1612 int tcp_hdr_offset; 1613 int idx; 1614 1615 /* Get current mbuf. */ 1616 m = *pp; 1617 1618 /* Let the BPF see the packet */ 1619 if (__predict_false(bpf_req)) 1620 ETHER_BPF_MTAP(lc->ifp, m); 1621 1622 tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; 1623 lro_type = le->inner.data.lro_type; 1624 switch (lro_type) { 1625 case LRO_TYPE_NONE: 1626 lro_type = le->outer.data.lro_type; 1627 switch (lro_type) { 1628 case LRO_TYPE_IPV4_TCP: 1629 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1630 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1631 break; 1632 case LRO_TYPE_IPV6_TCP: 1633 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1634 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1635 break; 1636 default: 1637 goto compressed; 1638 } 1639 break; 1640 case LRO_TYPE_IPV4_TCP: 1641 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1642 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1643 break; 1644 case LRO_TYPE_IPV6_TCP: 1645 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1646 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1647 break; 1648 default: 1649 goto compressed; 1650 } 1651 1652 MPASS(tcp_hdr_offset >= 0); 1653 1654 m_adj(m, tcp_hdr_offset); 1655 m->m_flags |= M_LRO_EHDRSTRP; 1656 m->m_flags &= ~M_ACKCMP; 1657 m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; 1658 1659 th = tcp_lro_get_th(m); 1660 1661 th->th_sum = 0; /* TCP checksum is valid. */ 1662 1663 /* Check if ACK can be compressed */ 1664 can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); 1665 1666 /* Now lets look at the should wake states */ 1667 if ((other_opts == true) && 1668 ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) { 1669 /* 1670 * If there are other options (SACK?) and the 1671 * tcp endpoint has not expressly told us it does 1672 * not care about SACKS, then we should wake up. 1673 */ 1674 *should_wake = true; 1675 } 1676 /* Is the ack compressable? */ 1677 if (can_compress == false) 1678 goto done; 1679 /* Does the TCP endpoint support ACK compression? */ 1680 if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0) 1681 goto done; 1682 1683 /* Lets get the TOS/traffic class field */ 1684 l3.ptr = mtod(m, void *); 1685 switch (lro_type) { 1686 case LRO_TYPE_IPV4_TCP: 1687 iptos = l3.ip4->ip_tos; 1688 break; 1689 case LRO_TYPE_IPV6_TCP: 1690 iptos = IPV6_TRAFFIC_CLASS(l3.ip6); 1691 break; 1692 default: 1693 iptos = 0; /* Keep compiler happy. */ 1694 break; 1695 } 1696 /* Now lets get space if we don't have some already */ 1697 if (*cmp == NULL) { 1698 new_one: 1699 nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf); 1700 if (__predict_false(nm == NULL)) 1701 goto done; 1702 *cmp = nm; 1703 if (n_mbuf) { 1704 /* 1705 * Link in the new cmp ack to our in-order place, 1706 * first set our cmp ack's next to where we are. 1707 */ 1708 nm->m_nextpkt = m; 1709 (*pp) = nm; 1710 /* 1711 * Set it up so mv_to is advanced to our 1712 * compressed ack. This way the caller can 1713 * advance pp to the right place. 1714 */ 1715 *mv_to = nm; 1716 /* 1717 * Advance it here locally as well. 1718 */ 1719 pp = &nm->m_nextpkt; 1720 } 1721 } else { 1722 /* We have one already we are working on */ 1723 nm = *cmp; 1724 if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { 1725 /* We ran out of space */ 1726 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1727 goto new_one; 1728 } 1729 } 1730 MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); 1731 counter_u64_add(tcp_inp_lro_compressed, 1); 1732 le->compressed++; 1733 /* We can add in to the one on the tail */ 1734 ack_ent = mtod(nm, struct tcp_ackent *); 1735 idx = (nm->m_len / sizeof(struct tcp_ackent)); 1736 build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); 1737 1738 /* Bump the size of both pkt-hdr and len */ 1739 nm->m_len += sizeof(struct tcp_ackent); 1740 nm->m_pkthdr.len += sizeof(struct tcp_ackent); 1741 compressed: 1742 /* Advance to next mbuf before freeing. */ 1743 *pp = m->m_nextpkt; 1744 m->m_nextpkt = NULL; 1745 m_freem(m); 1746 return (true); 1747 done: 1748 counter_u64_add(tcp_uncomp_total, 1); 1749 le->uncompressed++; 1750 return (false); 1751 } 1752 #endif 1753 1754 static struct lro_head * 1755 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) 1756 { 1757 u_long hash; 1758 1759 if (M_HASHTYPE_ISHASH(m)) { 1760 hash = m->m_pkthdr.flowid; 1761 } else { 1762 for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) 1763 hash += parser->data.raw[i]; 1764 } 1765 return (&lc->lro_hash[hash % lc->lro_hashsz]); 1766 } 1767 1768 static int 1769 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) 1770 { 1771 struct lro_parser pi; /* inner address data */ 1772 struct lro_parser po; /* outer address data */ 1773 struct lro_parser *pa; /* current parser for TCP stream */ 1774 struct lro_entry *le; 1775 struct lro_head *bucket; 1776 struct tcphdr *th; 1777 int tcp_data_len; 1778 int tcp_opt_len; 1779 int error; 1780 uint16_t tcp_data_sum; 1781 1782 #ifdef INET 1783 /* Quickly decide if packet cannot be LRO'ed */ 1784 if (__predict_false(V_ipforwarding != 0)) 1785 return (TCP_LRO_CANNOT); 1786 #endif 1787 #ifdef INET6 1788 /* Quickly decide if packet cannot be LRO'ed */ 1789 if (__predict_false(V_ip6_forwarding != 0)) 1790 return (TCP_LRO_CANNOT); 1791 #endif 1792 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1793 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1794 (m->m_pkthdr.csum_data != 0xffff)) { 1795 /* 1796 * The checksum either did not have hardware offload 1797 * or it was a bad checksum. We can't LRO such 1798 * a packet. 1799 */ 1800 counter_u64_add(tcp_bad_csums, 1); 1801 return (TCP_LRO_CANNOT); 1802 } 1803 /* We expect a contiguous header [eh, ip, tcp]. */ 1804 pa = tcp_lro_parser(m, &po, &pi, true); 1805 if (__predict_false(pa == NULL)) 1806 return (TCP_LRO_NOT_SUPPORTED); 1807 1808 /* We don't expect any padding. */ 1809 error = tcp_lro_trim_mbuf_chain(m, pa); 1810 if (__predict_false(error != 0)) 1811 return (error); 1812 1813 #ifdef INET 1814 switch (pa->data.lro_type) { 1815 case LRO_TYPE_IPV4_TCP: 1816 error = tcp_lro_rx_ipv4(lc, m, pa->ip4); 1817 if (__predict_false(error != 0)) 1818 return (error); 1819 break; 1820 default: 1821 break; 1822 } 1823 #endif 1824 /* If no hardware or arrival stamp on the packet add timestamp */ 1825 if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { 1826 m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 1827 m->m_flags |= M_TSTMP_LRO; 1828 } 1829 1830 /* Get pointer to TCP header. */ 1831 th = pa->tcp; 1832 1833 /* Don't process SYN packets. */ 1834 if (__predict_false(tcp_get_flags(th) & TH_SYN)) 1835 return (TCP_LRO_CANNOT); 1836 1837 /* Get total TCP header length and compute payload length. */ 1838 tcp_opt_len = (th->th_off << 2); 1839 tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - 1840 (uint8_t *)m->m_data) - tcp_opt_len; 1841 tcp_opt_len -= sizeof(*th); 1842 1843 /* Don't process invalid TCP headers. */ 1844 if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) 1845 return (TCP_LRO_CANNOT); 1846 1847 /* Compute TCP data only checksum. */ 1848 if (tcp_data_len == 0) 1849 tcp_data_sum = 0; /* no data, no checksum */ 1850 else if (__predict_false(csum != 0)) 1851 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); 1852 else 1853 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); 1854 1855 /* Save TCP info in mbuf. */ 1856 m->m_nextpkt = NULL; 1857 m->m_pkthdr.rcvif = lc->ifp; 1858 m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; 1859 m->m_pkthdr.lro_tcp_d_len = tcp_data_len; 1860 m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); 1861 m->m_pkthdr.lro_nsegs = 1; 1862 1863 /* Get hash bucket. */ 1864 if (!use_hash) { 1865 bucket = &lc->lro_hash[0]; 1866 } else { 1867 bucket = tcp_lro_rx_get_bucket(lc, m, pa); 1868 } 1869 1870 /* Try to find a matching previous segment. */ 1871 LIST_FOREACH(le, bucket, hash_next) { 1872 /* Compare addresses and ports. */ 1873 if (lro_address_compare(&po.data, &le->outer.data) == false || 1874 lro_address_compare(&pi.data, &le->inner.data) == false) 1875 continue; 1876 1877 /* Check if no data and old ACK. */ 1878 if (tcp_data_len == 0 && 1879 SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1880 m_freem(m); 1881 return (0); 1882 } 1883 1884 /* Mark "m" in the last spot. */ 1885 le->m_last_mbuf->m_nextpkt = m; 1886 /* Now set the tail to "m". */ 1887 le->m_last_mbuf = m; 1888 return (0); 1889 } 1890 1891 /* Try to find an empty slot. */ 1892 if (LIST_EMPTY(&lc->lro_free)) 1893 return (TCP_LRO_NO_ENTRIES); 1894 1895 /* Start a new segment chain. */ 1896 le = LIST_FIRST(&lc->lro_free); 1897 LIST_REMOVE(le, next); 1898 tcp_lro_active_insert(lc, bucket, le); 1899 1900 /* Make sure the headers are set. */ 1901 le->inner = pi; 1902 le->outer = po; 1903 1904 /* Store time this entry was allocated. */ 1905 le->alloc_time = lc->lro_last_queue_time; 1906 1907 tcp_set_entry_to_mbuf(lc, le, m, th); 1908 1909 /* Now set the tail to "m". */ 1910 le->m_last_mbuf = m; 1911 1912 return (0); 1913 } 1914 1915 int 1916 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1917 { 1918 int error; 1919 1920 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1921 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1922 (m->m_pkthdr.csum_data != 0xffff)) { 1923 /* 1924 * The checksum either did not have hardware offload 1925 * or it was a bad checksum. We can't LRO such 1926 * a packet. 1927 */ 1928 counter_u64_add(tcp_bad_csums, 1); 1929 return (TCP_LRO_CANNOT); 1930 } 1931 /* get current time */ 1932 binuptime(&lc->lro_last_queue_time); 1933 CURVNET_SET(lc->ifp->if_vnet); 1934 error = tcp_lro_rx_common(lc, m, csum, true); 1935 CURVNET_RESTORE(); 1936 1937 return (error); 1938 } 1939 1940 void 1941 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 1942 { 1943 NET_EPOCH_ASSERT(); 1944 /* sanity checks */ 1945 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 1946 lc->lro_mbuf_max == 0)) { 1947 /* packet drop */ 1948 m_freem(mb); 1949 return; 1950 } 1951 1952 /* check if packet is not LRO capable */ 1953 if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 1954 /* input packet to network layer */ 1955 (*lc->ifp->if_input) (lc->ifp, mb); 1956 return; 1957 } 1958 1959 /* create sequence number */ 1960 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 1961 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 1962 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 1963 ((uint64_t)lc->lro_mbuf_count); 1964 1965 /* enter mbuf */ 1966 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 1967 1968 /* flush if array is full */ 1969 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 1970 tcp_lro_flush_all(lc); 1971 } 1972 1973 /* end */ 1974