1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016-2021 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sockbuf.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/ethernet.h> 54 #include <net/bpf.h> 55 #include <net/vnet.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/ip.h> 61 #include <netinet/ip_var.h> 62 #include <netinet/in_pcb.h> 63 #include <netinet6/in6_pcb.h> 64 #include <netinet/tcp.h> 65 #include <netinet/tcp_seq.h> 66 #include <netinet/tcp_lro.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet/tcpip.h> 69 #include <netinet/tcp_hpts.h> 70 #include <netinet/tcp_log_buf.h> 71 #include <netinet/udp.h> 72 #include <netinet6/ip6_var.h> 73 74 #include <machine/in_cksum.h> 75 76 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 77 78 #define TCP_LRO_TS_OPTION \ 79 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 80 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 81 82 static void tcp_lro_rx_done(struct lro_ctrl *lc); 83 static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, 84 uint32_t csum, bool use_hash); 85 86 #ifdef TCPHPTS 87 static bool do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *, 88 struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, bool *, bool); 89 90 #endif 91 92 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 93 "TCP LRO"); 94 95 static long tcplro_stacks_wanting_mbufq; 96 counter_u64_t tcp_inp_lro_direct_queue; 97 counter_u64_t tcp_inp_lro_wokeup_queue; 98 counter_u64_t tcp_inp_lro_compressed; 99 counter_u64_t tcp_inp_lro_locks_taken; 100 counter_u64_t tcp_extra_mbuf; 101 counter_u64_t tcp_would_have_but; 102 counter_u64_t tcp_comp_total; 103 counter_u64_t tcp_uncomp_total; 104 counter_u64_t tcp_bad_csums; 105 106 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 107 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 108 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 109 "default number of LRO entries"); 110 111 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; 112 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, 113 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, 114 "Number of interrups in a row on the same CPU that will make us declare an 'affinity' cpu?"); 115 116 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 117 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 118 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 119 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 120 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 121 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 122 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 123 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 124 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, 125 &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); 126 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, 127 &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); 128 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, 129 &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); 130 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, 131 &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); 132 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, 133 &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); 134 135 void 136 tcp_lro_reg_mbufq(void) 137 { 138 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 139 } 140 141 void 142 tcp_lro_dereg_mbufq(void) 143 { 144 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 145 } 146 147 static __inline void 148 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 149 struct lro_entry *le) 150 { 151 152 LIST_INSERT_HEAD(&lc->lro_active, le, next); 153 LIST_INSERT_HEAD(bucket, le, hash_next); 154 } 155 156 static __inline void 157 tcp_lro_active_remove(struct lro_entry *le) 158 { 159 160 LIST_REMOVE(le, next); /* active list */ 161 LIST_REMOVE(le, hash_next); /* hash bucket */ 162 } 163 164 int 165 tcp_lro_init(struct lro_ctrl *lc) 166 { 167 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 168 } 169 170 int 171 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 172 unsigned lro_entries, unsigned lro_mbufs) 173 { 174 struct lro_entry *le; 175 size_t size; 176 unsigned i, elements; 177 178 lc->lro_bad_csum = 0; 179 lc->lro_queued = 0; 180 lc->lro_flushed = 0; 181 lc->lro_mbuf_count = 0; 182 lc->lro_mbuf_max = lro_mbufs; 183 lc->lro_cnt = lro_entries; 184 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 185 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 186 lc->ifp = ifp; 187 LIST_INIT(&lc->lro_free); 188 LIST_INIT(&lc->lro_active); 189 190 /* create hash table to accelerate entry lookup */ 191 if (lro_entries > lro_mbufs) 192 elements = lro_entries; 193 else 194 elements = lro_mbufs; 195 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 196 HASH_NOWAIT); 197 if (lc->lro_hash == NULL) { 198 memset(lc, 0, sizeof(*lc)); 199 return (ENOMEM); 200 } 201 202 /* compute size to allocate */ 203 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 204 (lro_entries * sizeof(*le)); 205 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 206 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 207 208 /* check for out of memory */ 209 if (lc->lro_mbuf_data == NULL) { 210 free(lc->lro_hash, M_LRO); 211 memset(lc, 0, sizeof(*lc)); 212 return (ENOMEM); 213 } 214 /* compute offset for LRO entries */ 215 le = (struct lro_entry *) 216 (lc->lro_mbuf_data + lro_mbufs); 217 218 /* setup linked list */ 219 for (i = 0; i != lro_entries; i++) 220 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 221 222 return (0); 223 } 224 225 struct vxlan_header { 226 uint32_t vxlh_flags; 227 uint32_t vxlh_vni; 228 }; 229 230 static inline void * 231 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) 232 { 233 const struct ether_vlan_header *eh; 234 void *old; 235 uint16_t eth_type; 236 237 if (update_data) 238 memset(parser, 0, sizeof(*parser)); 239 240 old = ptr; 241 242 if (is_vxlan) { 243 const struct vxlan_header *vxh; 244 vxh = ptr; 245 ptr = (uint8_t *)ptr + sizeof(*vxh); 246 if (update_data) { 247 parser->data.vxlan_vni = 248 vxh->vxlh_vni & htonl(0xffffff00); 249 } 250 } 251 252 eh = ptr; 253 if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { 254 eth_type = eh->evl_proto; 255 if (update_data) { 256 /* strip priority and keep VLAN ID only */ 257 parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); 258 } 259 /* advance to next header */ 260 ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 261 mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 262 } else { 263 eth_type = eh->evl_encap_proto; 264 /* advance to next header */ 265 mlen -= ETHER_HDR_LEN; 266 ptr = (uint8_t *)ptr + ETHER_HDR_LEN; 267 } 268 if (__predict_false(mlen <= 0)) 269 return (NULL); 270 switch (eth_type) { 271 #ifdef INET 272 case htons(ETHERTYPE_IP): 273 parser->ip4 = ptr; 274 if (__predict_false(mlen < sizeof(struct ip))) 275 return (NULL); 276 /* Ensure there are no IPv4 options. */ 277 if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) 278 break; 279 /* .. and the packet is not fragmented. */ 280 if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 281 break; 282 ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); 283 mlen -= sizeof(struct ip); 284 if (update_data) { 285 parser->data.s_addr.v4 = parser->ip4->ip_src; 286 parser->data.d_addr.v4 = parser->ip4->ip_dst; 287 } 288 switch (parser->ip4->ip_p) { 289 case IPPROTO_UDP: 290 if (__predict_false(mlen < sizeof(struct udphdr))) 291 return (NULL); 292 parser->udp = ptr; 293 if (update_data) { 294 parser->data.lro_type = LRO_TYPE_IPV4_UDP; 295 parser->data.s_port = parser->udp->uh_sport; 296 parser->data.d_port = parser->udp->uh_dport; 297 } else { 298 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); 299 } 300 ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); 301 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 302 return (ptr); 303 case IPPROTO_TCP: 304 parser->tcp = ptr; 305 if (__predict_false(mlen < sizeof(struct tcphdr))) 306 return (NULL); 307 if (update_data) { 308 parser->data.lro_type = LRO_TYPE_IPV4_TCP; 309 parser->data.s_port = parser->tcp->th_sport; 310 parser->data.d_port = parser->tcp->th_dport; 311 } else { 312 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); 313 } 314 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 315 return (NULL); 316 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 317 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 318 return (ptr); 319 default: 320 break; 321 } 322 break; 323 #endif 324 #ifdef INET6 325 case htons(ETHERTYPE_IPV6): 326 parser->ip6 = ptr; 327 if (__predict_false(mlen < sizeof(struct ip6_hdr))) 328 return (NULL); 329 ptr = (uint8_t *)ptr + sizeof(*parser->ip6); 330 if (update_data) { 331 parser->data.s_addr.v6 = parser->ip6->ip6_src; 332 parser->data.d_addr.v6 = parser->ip6->ip6_dst; 333 } 334 mlen -= sizeof(struct ip6_hdr); 335 switch (parser->ip6->ip6_nxt) { 336 case IPPROTO_UDP: 337 if (__predict_false(mlen < sizeof(struct udphdr))) 338 return (NULL); 339 parser->udp = ptr; 340 if (update_data) { 341 parser->data.lro_type = LRO_TYPE_IPV6_UDP; 342 parser->data.s_port = parser->udp->uh_sport; 343 parser->data.d_port = parser->udp->uh_dport; 344 } else { 345 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); 346 } 347 ptr = (uint8_t *)ptr + sizeof(*parser->udp); 348 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 349 return (ptr); 350 case IPPROTO_TCP: 351 if (__predict_false(mlen < sizeof(struct tcphdr))) 352 return (NULL); 353 parser->tcp = ptr; 354 if (update_data) { 355 parser->data.lro_type = LRO_TYPE_IPV6_TCP; 356 parser->data.s_port = parser->tcp->th_sport; 357 parser->data.d_port = parser->tcp->th_dport; 358 } else { 359 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); 360 } 361 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 362 return (NULL); 363 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 364 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 365 return (ptr); 366 default: 367 break; 368 } 369 break; 370 #endif 371 default: 372 break; 373 } 374 /* Invalid packet - cannot parse */ 375 return (NULL); 376 } 377 378 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | 379 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; 380 381 static inline struct lro_parser * 382 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) 383 { 384 void *data_ptr; 385 386 /* Try to parse outer headers first. */ 387 data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); 388 if (data_ptr == NULL || po->total_hdr_len > m->m_len) 389 return (NULL); 390 391 if (update_data) { 392 /* Store VLAN ID, if any. */ 393 if (__predict_false(m->m_flags & M_VLANTAG)) { 394 po->data.vlan_id = 395 htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); 396 } 397 } 398 399 switch (po->data.lro_type) { 400 case LRO_TYPE_IPV4_UDP: 401 case LRO_TYPE_IPV6_UDP: 402 /* Check for VXLAN headers. */ 403 if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) 404 break; 405 406 /* Try to parse inner headers. */ 407 data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, 408 (m->m_len - ((caddr_t)data_ptr - m->m_data))); 409 if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) 410 break; 411 412 /* Verify supported header types. */ 413 switch (pi->data.lro_type) { 414 case LRO_TYPE_IPV4_TCP: 415 case LRO_TYPE_IPV6_TCP: 416 return (pi); 417 default: 418 break; 419 } 420 break; 421 case LRO_TYPE_IPV4_TCP: 422 case LRO_TYPE_IPV6_TCP: 423 if (update_data) 424 memset(pi, 0, sizeof(*pi)); 425 return (po); 426 default: 427 break; 428 } 429 return (NULL); 430 } 431 432 static inline int 433 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) 434 { 435 int len; 436 437 switch (po->data.lro_type) { 438 #ifdef INET 439 case LRO_TYPE_IPV4_TCP: 440 len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + 441 ntohs(po->ip4->ip_len); 442 break; 443 #endif 444 #ifdef INET6 445 case LRO_TYPE_IPV6_TCP: 446 len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + 447 ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); 448 break; 449 #endif 450 default: 451 return (TCP_LRO_CANNOT); 452 } 453 454 /* 455 * If the frame is padded beyond the end of the IP packet, 456 * then trim the extra bytes off: 457 */ 458 if (__predict_true(m->m_pkthdr.len == len)) { 459 return (0); 460 } else if (m->m_pkthdr.len > len) { 461 m_adj(m, len - m->m_pkthdr.len); 462 return (0); 463 } 464 return (TCP_LRO_CANNOT); 465 } 466 467 static struct tcphdr * 468 tcp_lro_get_th(struct mbuf *m) 469 { 470 return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); 471 } 472 473 static void 474 lro_free_mbuf_chain(struct mbuf *m) 475 { 476 struct mbuf *save; 477 478 while (m) { 479 save = m->m_nextpkt; 480 m->m_nextpkt = NULL; 481 m_freem(m); 482 m = save; 483 } 484 } 485 486 void 487 tcp_lro_free(struct lro_ctrl *lc) 488 { 489 struct lro_entry *le; 490 unsigned x; 491 492 /* reset LRO free list */ 493 LIST_INIT(&lc->lro_free); 494 495 /* free active mbufs, if any */ 496 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 497 tcp_lro_active_remove(le); 498 lro_free_mbuf_chain(le->m_head); 499 } 500 501 /* free hash table */ 502 free(lc->lro_hash, M_LRO); 503 lc->lro_hash = NULL; 504 lc->lro_hashsz = 0; 505 506 /* free mbuf array, if any */ 507 for (x = 0; x != lc->lro_mbuf_count; x++) 508 m_freem(lc->lro_mbuf_data[x].mb); 509 lc->lro_mbuf_count = 0; 510 511 /* free allocated memory, if any */ 512 free(lc->lro_mbuf_data, M_LRO); 513 lc->lro_mbuf_data = NULL; 514 } 515 516 static uint16_t 517 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) 518 { 519 const uint16_t *ptr; 520 uint32_t csum; 521 uint16_t len; 522 523 csum = -th->th_sum; /* exclude checksum field */ 524 len = th->th_off; 525 ptr = (const uint16_t *)th; 526 while (len--) { 527 csum += *ptr; 528 ptr++; 529 csum += *ptr; 530 ptr++; 531 } 532 while (csum > 0xffff) 533 csum = (csum >> 16) + (csum & 0xffff); 534 535 return (csum); 536 } 537 538 static uint16_t 539 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) 540 { 541 uint32_t c; 542 uint16_t cs; 543 544 c = tcp_csum; 545 546 switch (pa->data.lro_type) { 547 #ifdef INET6 548 case LRO_TYPE_IPV6_TCP: 549 /* Compute full pseudo IPv6 header checksum. */ 550 cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); 551 break; 552 #endif 553 #ifdef INET 554 case LRO_TYPE_IPV4_TCP: 555 /* Compute full pseudo IPv4 header checsum. */ 556 cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); 557 cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); 558 break; 559 #endif 560 default: 561 cs = 0; /* Keep compiler happy. */ 562 break; 563 } 564 565 /* Complement checksum. */ 566 cs = ~cs; 567 c += cs; 568 569 /* Remove TCP header checksum. */ 570 cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); 571 c += cs; 572 573 /* Compute checksum remainder. */ 574 while (c > 0xffff) 575 c = (c >> 16) + (c & 0xffff); 576 577 return (c); 578 } 579 580 static void 581 tcp_lro_rx_done(struct lro_ctrl *lc) 582 { 583 struct lro_entry *le; 584 585 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 586 tcp_lro_active_remove(le); 587 tcp_lro_flush(lc, le); 588 } 589 } 590 591 void 592 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 593 { 594 struct lro_entry *le, *le_tmp; 595 uint64_t now, tov; 596 struct bintime bt; 597 598 if (LIST_EMPTY(&lc->lro_active)) 599 return; 600 601 /* get timeout time and current time in ns */ 602 binuptime(&bt); 603 now = bintime2ns(&bt); 604 tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); 605 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 606 if (now >= (bintime2ns(&le->alloc_time) + tov)) { 607 tcp_lro_active_remove(le); 608 tcp_lro_flush(lc, le); 609 } 610 } 611 } 612 613 #ifdef INET 614 static int 615 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) 616 { 617 uint16_t csum; 618 619 /* Legacy IP has a header checksum that needs to be correct. */ 620 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 621 if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { 622 lc->lro_bad_csum++; 623 return (TCP_LRO_CANNOT); 624 } 625 } else { 626 csum = in_cksum_hdr(ip4); 627 if (__predict_false(csum != 0)) { 628 lc->lro_bad_csum++; 629 return (TCP_LRO_CANNOT); 630 } 631 } 632 return (0); 633 } 634 #endif 635 636 #ifdef TCPHPTS 637 static void 638 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, 639 const struct lro_entry *le, const struct mbuf *m, 640 int frm, int32_t tcp_data_len, uint32_t th_seq, 641 uint32_t th_ack, uint16_t th_win) 642 { 643 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 644 union tcp_log_stackspecific log; 645 struct timeval tv, btv; 646 uint32_t cts; 647 648 cts = tcp_get_usecs(&tv); 649 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 650 log.u_bbr.flex8 = frm; 651 log.u_bbr.flex1 = tcp_data_len; 652 if (m) 653 log.u_bbr.flex2 = m->m_pkthdr.len; 654 else 655 log.u_bbr.flex2 = 0; 656 log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; 657 log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; 658 if (le->m_head) { 659 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 660 log.u_bbr.delRate = le->m_head->m_flags; 661 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 662 } 663 log.u_bbr.inflight = th_seq; 664 log.u_bbr.delivered = th_ack; 665 log.u_bbr.timeStamp = cts; 666 log.u_bbr.epoch = le->next_seq; 667 log.u_bbr.lt_epoch = le->ack_seq; 668 log.u_bbr.pacing_gain = th_win; 669 log.u_bbr.cwnd_gain = le->window; 670 log.u_bbr.lost = curcpu; 671 log.u_bbr.cur_del_rate = (uintptr_t)m; 672 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 673 bintime2timeval(&lc->lro_last_queue_time, &btv); 674 log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); 675 log.u_bbr.flex7 = le->compressed; 676 log.u_bbr.pacing_gain = le->uncompressed; 677 if (in_epoch(net_epoch_preempt)) 678 log.u_bbr.inhpts = 1; 679 else 680 log.u_bbr.inhpts = 0; 681 TCP_LOG_EVENTP(tp, NULL, 682 &tp->t_inpcb->inp_socket->so_rcv, 683 &tp->t_inpcb->inp_socket->so_snd, 684 TCP_LOG_LRO, 0, 685 0, &log, false, &tv); 686 } 687 } 688 #endif 689 690 static inline void 691 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) 692 { 693 uint32_t csum; 694 695 csum = 0xffff - *ptr + value; 696 while (csum > 0xffff) 697 csum = (csum >> 16) + (csum & 0xffff); 698 *ptr = value; 699 *psum = csum; 700 } 701 702 static uint16_t 703 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, 704 uint16_t payload_len, uint16_t delta_sum) 705 { 706 uint32_t csum; 707 uint16_t tlen; 708 uint16_t temp[5] = {}; 709 710 switch (pa->data.lro_type) { 711 case LRO_TYPE_IPV4_TCP: 712 /* Compute new IPv4 length. */ 713 tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; 714 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 715 716 /* Subtract delta from current IPv4 checksum. */ 717 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 718 while (csum > 0xffff) 719 csum = (csum >> 16) + (csum & 0xffff); 720 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 721 goto update_tcp_header; 722 723 case LRO_TYPE_IPV6_TCP: 724 /* Compute new IPv6 length. */ 725 tlen = (pa->tcp->th_off << 2) + payload_len; 726 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 727 goto update_tcp_header; 728 729 case LRO_TYPE_IPV4_UDP: 730 /* Compute new IPv4 length. */ 731 tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; 732 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 733 734 /* Subtract delta from current IPv4 checksum. */ 735 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 736 while (csum > 0xffff) 737 csum = (csum >> 16) + (csum & 0xffff); 738 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 739 goto update_udp_header; 740 741 case LRO_TYPE_IPV6_UDP: 742 /* Compute new IPv6 length. */ 743 tlen = sizeof(*pa->udp) + payload_len; 744 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 745 goto update_udp_header; 746 747 default: 748 return (0); 749 } 750 751 update_tcp_header: 752 /* Compute current TCP header checksum. */ 753 temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); 754 755 /* Incorporate the latest ACK into the TCP header. */ 756 pa->tcp->th_ack = le->ack_seq; 757 pa->tcp->th_win = le->window; 758 759 /* Incorporate latest timestamp into the TCP header. */ 760 if (le->timestamp != 0) { 761 uint32_t *ts_ptr; 762 763 ts_ptr = (uint32_t *)(pa->tcp + 1); 764 ts_ptr[1] = htonl(le->tsval); 765 ts_ptr[2] = le->tsecr; 766 } 767 768 /* Compute new TCP header checksum. */ 769 temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); 770 771 /* Compute new TCP checksum. */ 772 csum = pa->tcp->th_sum + 0xffff - delta_sum + 773 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; 774 while (csum > 0xffff) 775 csum = (csum >> 16) + (csum & 0xffff); 776 777 /* Assign new TCP checksum. */ 778 tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); 779 780 /* Compute all modififications affecting next checksum. */ 781 csum = temp[0] + temp[1] + 0xffff - temp[2] + 782 temp[3] + temp[4] + delta_sum; 783 while (csum > 0xffff) 784 csum = (csum >> 16) + (csum & 0xffff); 785 786 /* Return delta checksum to next stage, if any. */ 787 return (csum); 788 789 update_udp_header: 790 tlen = sizeof(*pa->udp) + payload_len; 791 /* Assign new UDP length and compute checksum delta. */ 792 tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); 793 794 /* Check if there is a UDP checksum. */ 795 if (__predict_false(pa->udp->uh_sum != 0)) { 796 /* Compute new UDP checksum. */ 797 csum = pa->udp->uh_sum + 0xffff - delta_sum + 798 0xffff - temp[0] + 0xffff - temp[2]; 799 while (csum > 0xffff) 800 csum = (csum >> 16) + (csum & 0xffff); 801 /* Assign new UDP checksum. */ 802 tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); 803 } 804 805 /* Compute all modififications affecting next checksum. */ 806 csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; 807 while (csum > 0xffff) 808 csum = (csum >> 16) + (csum & 0xffff); 809 810 /* Return delta checksum to next stage, if any. */ 811 return (csum); 812 } 813 814 static void 815 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) 816 { 817 /* Check if we need to recompute any checksums. */ 818 if (le->m_head->m_pkthdr.lro_nsegs > 1) { 819 uint16_t csum; 820 821 switch (le->inner.data.lro_type) { 822 case LRO_TYPE_IPV4_TCP: 823 csum = tcp_lro_update_checksum(&le->inner, le, 824 le->m_head->m_pkthdr.lro_tcp_d_len, 825 le->m_head->m_pkthdr.lro_tcp_d_csum); 826 csum = tcp_lro_update_checksum(&le->outer, NULL, 827 le->m_head->m_pkthdr.lro_tcp_d_len + 828 le->inner.total_hdr_len, csum); 829 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 830 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 831 le->m_head->m_pkthdr.csum_data = 0xffff; 832 break; 833 case LRO_TYPE_IPV6_TCP: 834 csum = tcp_lro_update_checksum(&le->inner, le, 835 le->m_head->m_pkthdr.lro_tcp_d_len, 836 le->m_head->m_pkthdr.lro_tcp_d_csum); 837 csum = tcp_lro_update_checksum(&le->outer, NULL, 838 le->m_head->m_pkthdr.lro_tcp_d_len + 839 le->inner.total_hdr_len, csum); 840 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 841 CSUM_PSEUDO_HDR; 842 le->m_head->m_pkthdr.csum_data = 0xffff; 843 break; 844 case LRO_TYPE_NONE: 845 switch (le->outer.data.lro_type) { 846 case LRO_TYPE_IPV4_TCP: 847 csum = tcp_lro_update_checksum(&le->outer, le, 848 le->m_head->m_pkthdr.lro_tcp_d_len, 849 le->m_head->m_pkthdr.lro_tcp_d_csum); 850 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 851 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 852 le->m_head->m_pkthdr.csum_data = 0xffff; 853 break; 854 case LRO_TYPE_IPV6_TCP: 855 csum = tcp_lro_update_checksum(&le->outer, le, 856 le->m_head->m_pkthdr.lro_tcp_d_len, 857 le->m_head->m_pkthdr.lro_tcp_d_csum); 858 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 859 CSUM_PSEUDO_HDR; 860 le->m_head->m_pkthdr.csum_data = 0xffff; 861 break; 862 default: 863 break; 864 } 865 break; 866 default: 867 break; 868 } 869 } 870 871 /* 872 * Break any chain, this is not set to NULL on the singleton 873 * case m_nextpkt points to m_head. Other case set them 874 * m_nextpkt to NULL in push_and_replace. 875 */ 876 le->m_head->m_nextpkt = NULL; 877 lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; 878 (*lc->ifp->if_input)(lc->ifp, le->m_head); 879 } 880 881 static void 882 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, 883 struct mbuf *m, struct tcphdr *th) 884 { 885 uint32_t *ts_ptr; 886 uint16_t tcp_data_len; 887 uint16_t tcp_opt_len; 888 889 ts_ptr = (uint32_t *)(th + 1); 890 tcp_opt_len = (th->th_off << 2); 891 tcp_opt_len -= sizeof(*th); 892 893 /* Check if there is a timestamp option. */ 894 if (tcp_opt_len == 0 || 895 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 896 *ts_ptr != TCP_LRO_TS_OPTION)) { 897 /* We failed to find the timestamp option. */ 898 le->timestamp = 0; 899 } else { 900 le->timestamp = 1; 901 le->tsval = ntohl(*(ts_ptr + 1)); 902 le->tsecr = *(ts_ptr + 2); 903 } 904 905 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 906 907 /* Pull out TCP sequence numbers and window size. */ 908 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 909 le->ack_seq = th->th_ack; 910 le->window = th->th_win; 911 912 /* Setup new data pointers. */ 913 le->m_head = m; 914 le->m_tail = m_last(m); 915 } 916 917 static void 918 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 919 { 920 struct lro_parser *pa; 921 922 /* 923 * Push up the stack of the current entry 924 * and replace it with "m". 925 */ 926 struct mbuf *msave; 927 928 /* Grab off the next and save it */ 929 msave = le->m_head->m_nextpkt; 930 le->m_head->m_nextpkt = NULL; 931 932 /* Now push out the old entry */ 933 tcp_flush_out_entry(lc, le); 934 935 /* Re-parse new header, should not fail. */ 936 pa = tcp_lro_parser(m, &le->outer, &le->inner, false); 937 KASSERT(pa != NULL, 938 ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); 939 940 /* 941 * Now to replace the data properly in the entry 942 * we have to reset the TCP header and 943 * other fields. 944 */ 945 tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); 946 947 /* Restore the next list */ 948 m->m_nextpkt = msave; 949 } 950 951 static void 952 tcp_lro_mbuf_append_pkthdr(struct mbuf *m, const struct mbuf *p) 953 { 954 uint32_t csum; 955 956 if (m->m_pkthdr.lro_nsegs == 1) { 957 /* Compute relative checksum. */ 958 csum = p->m_pkthdr.lro_tcp_d_csum; 959 } else { 960 /* Merge TCP data checksums. */ 961 csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + 962 (uint32_t)p->m_pkthdr.lro_tcp_d_csum; 963 while (csum > 0xffff) 964 csum = (csum >> 16) + (csum & 0xffff); 965 } 966 967 /* Update various counters. */ 968 m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; 969 m->m_pkthdr.lro_tcp_d_csum = csum; 970 m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; 971 m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; 972 } 973 974 static void 975 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) 976 { 977 /* 978 * Walk through the mbuf chain we 979 * have on tap and compress/condense 980 * as required. 981 */ 982 uint32_t *ts_ptr; 983 struct mbuf *m; 984 struct tcphdr *th; 985 uint32_t tcp_data_len_total; 986 uint32_t tcp_data_seg_total; 987 uint16_t tcp_data_len; 988 uint16_t tcp_opt_len; 989 990 /* 991 * First we must check the lead (m_head) 992 * we must make sure that it is *not* 993 * something that should be sent up 994 * right away (sack etc). 995 */ 996 again: 997 m = le->m_head->m_nextpkt; 998 if (m == NULL) { 999 /* Just one left. */ 1000 return; 1001 } 1002 1003 th = tcp_lro_get_th(m); 1004 tcp_opt_len = (th->th_off << 2); 1005 tcp_opt_len -= sizeof(*th); 1006 ts_ptr = (uint32_t *)(th + 1); 1007 1008 if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1009 *ts_ptr != TCP_LRO_TS_OPTION)) { 1010 /* 1011 * Its not the timestamp. We can't 1012 * use this guy as the head. 1013 */ 1014 le->m_head->m_nextpkt = m->m_nextpkt; 1015 tcp_push_and_replace(lc, le, m); 1016 goto again; 1017 } 1018 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { 1019 /* 1020 * Make sure that previously seen segements/ACKs are delivered 1021 * before this segment, e.g. FIN. 1022 */ 1023 le->m_head->m_nextpkt = m->m_nextpkt; 1024 tcp_push_and_replace(lc, le, m); 1025 goto again; 1026 } 1027 while((m = le->m_head->m_nextpkt) != NULL) { 1028 /* 1029 * condense m into le, first 1030 * pull m out of the list. 1031 */ 1032 le->m_head->m_nextpkt = m->m_nextpkt; 1033 m->m_nextpkt = NULL; 1034 /* Setup my data */ 1035 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 1036 th = tcp_lro_get_th(m); 1037 ts_ptr = (uint32_t *)(th + 1); 1038 tcp_opt_len = (th->th_off << 2); 1039 tcp_opt_len -= sizeof(*th); 1040 tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; 1041 tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; 1042 1043 if (tcp_data_seg_total >= lc->lro_ackcnt_lim || 1044 tcp_data_len_total >= lc->lro_length_lim) { 1045 /* Flush now if appending will result in overflow. */ 1046 tcp_push_and_replace(lc, le, m); 1047 goto again; 1048 } 1049 if (tcp_opt_len != 0 && 1050 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1051 *ts_ptr != TCP_LRO_TS_OPTION)) { 1052 /* 1053 * Maybe a sack in the new one? We need to 1054 * start all over after flushing the 1055 * current le. We will go up to the beginning 1056 * and flush it (calling the replace again possibly 1057 * or just returning). 1058 */ 1059 tcp_push_and_replace(lc, le, m); 1060 goto again; 1061 } 1062 if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) { 1063 tcp_push_and_replace(lc, le, m); 1064 goto again; 1065 } 1066 if (tcp_opt_len != 0) { 1067 uint32_t tsval = ntohl(*(ts_ptr + 1)); 1068 /* Make sure timestamp values are increasing. */ 1069 if (TSTMP_GT(le->tsval, tsval)) { 1070 tcp_push_and_replace(lc, le, m); 1071 goto again; 1072 } 1073 le->tsval = tsval; 1074 le->tsecr = *(ts_ptr + 2); 1075 } 1076 /* Try to append the new segment. */ 1077 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 1078 (tcp_data_len == 0 && 1079 le->ack_seq == th->th_ack && 1080 le->window == th->th_win))) { 1081 /* Out of order packet or duplicate ACK. */ 1082 tcp_push_and_replace(lc, le, m); 1083 goto again; 1084 } 1085 if (tcp_data_len != 0 || 1086 SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1087 le->next_seq += tcp_data_len; 1088 le->ack_seq = th->th_ack; 1089 le->window = th->th_win; 1090 } else if (th->th_ack == le->ack_seq) { 1091 le->window = WIN_MAX(le->window, th->th_win); 1092 } 1093 1094 if (tcp_data_len == 0) { 1095 m_freem(m); 1096 continue; 1097 } 1098 1099 /* Merge TCP data checksum and length to head mbuf. */ 1100 tcp_lro_mbuf_append_pkthdr(le->m_head, m); 1101 1102 /* 1103 * Adjust the mbuf so that m_data points to the first byte of 1104 * the ULP payload. Adjust the mbuf to avoid complications and 1105 * append new segment to existing mbuf chain. 1106 */ 1107 m_adj(m, m->m_pkthdr.len - tcp_data_len); 1108 m_demote_pkthdr(m); 1109 le->m_tail->m_next = m; 1110 le->m_tail = m_last(m); 1111 } 1112 } 1113 1114 #ifdef TCPHPTS 1115 static void 1116 tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le) 1117 { 1118 INP_WLOCK_ASSERT(inp); 1119 if (tp->t_in_pkt == NULL) { 1120 /* Nothing yet there */ 1121 tp->t_in_pkt = le->m_head; 1122 tp->t_tail_pkt = le->m_last_mbuf; 1123 } else { 1124 /* Already some there */ 1125 tp->t_tail_pkt->m_nextpkt = le->m_head; 1126 tp->t_tail_pkt = le->m_last_mbuf; 1127 } 1128 le->m_head = NULL; 1129 le->m_last_mbuf = NULL; 1130 } 1131 1132 static struct mbuf * 1133 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, 1134 struct inpcb *inp, int32_t *new_m) 1135 { 1136 struct tcpcb *tp; 1137 struct mbuf *m; 1138 1139 tp = intotcpcb(inp); 1140 if (__predict_false(tp == NULL)) 1141 return (NULL); 1142 1143 /* Look at the last mbuf if any in queue */ 1144 m = tp->t_tail_pkt; 1145 if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { 1146 if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { 1147 tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); 1148 *new_m = 0; 1149 counter_u64_add(tcp_extra_mbuf, 1); 1150 return (m); 1151 } else { 1152 /* Mark we ran out of space */ 1153 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1154 } 1155 } 1156 /* Decide mbuf size. */ 1157 if (inp->inp_flags2 & INP_MBUF_L_ACKS) 1158 m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); 1159 else 1160 m = m_gethdr(M_NOWAIT, MT_DATA); 1161 1162 if (__predict_false(m == NULL)) { 1163 counter_u64_add(tcp_would_have_but, 1); 1164 return (NULL); 1165 } 1166 counter_u64_add(tcp_comp_total, 1); 1167 m->m_flags |= M_ACKCMP; 1168 *new_m = 1; 1169 return (m); 1170 } 1171 1172 static struct inpcb * 1173 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) 1174 { 1175 struct inpcb *inp; 1176 1177 NET_EPOCH_ASSERT(); 1178 1179 switch (pa->data.lro_type) { 1180 #ifdef INET6 1181 case LRO_TYPE_IPV6_TCP: 1182 inp = in6_pcblookup(&V_tcbinfo, 1183 &pa->data.s_addr.v6, 1184 pa->data.s_port, 1185 &pa->data.d_addr.v6, 1186 pa->data.d_port, 1187 INPLOOKUP_WLOCKPCB, 1188 ifp); 1189 break; 1190 #endif 1191 #ifdef INET 1192 case LRO_TYPE_IPV4_TCP: 1193 inp = in_pcblookup(&V_tcbinfo, 1194 pa->data.s_addr.v4, 1195 pa->data.s_port, 1196 pa->data.d_addr.v4, 1197 pa->data.d_port, 1198 INPLOOKUP_WLOCKPCB, 1199 ifp); 1200 break; 1201 #endif 1202 default: 1203 inp = NULL; 1204 break; 1205 } 1206 return (inp); 1207 } 1208 1209 static inline bool 1210 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) 1211 { 1212 /* 1213 * This function returns two bits of valuable information. 1214 * a) Is what is present capable of being ack-compressed, 1215 * we can ack-compress if there is no options or just 1216 * a timestamp option, and of course the th_flags must 1217 * be correct as well. 1218 * b) Our other options present such as SACK. This is 1219 * used to determine if we want to wakeup or not. 1220 */ 1221 bool ret = true; 1222 1223 switch (th->th_off << 2) { 1224 case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): 1225 *ppts = (uint32_t *)(th + 1); 1226 /* Check if we have only one timestamp option. */ 1227 if (**ppts == TCP_LRO_TS_OPTION) 1228 *other_opts = false; 1229 else { 1230 *other_opts = true; 1231 ret = false; 1232 } 1233 break; 1234 case (sizeof(*th)): 1235 /* No options. */ 1236 *ppts = NULL; 1237 *other_opts = false; 1238 break; 1239 default: 1240 *ppts = NULL; 1241 *other_opts = true; 1242 ret = false; 1243 break; 1244 } 1245 /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ 1246 if ((th->th_flags & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) 1247 ret = false; 1248 /* If it has data on it we cannot compress it */ 1249 if (m->m_pkthdr.lro_tcp_d_len) 1250 ret = false; 1251 1252 /* ACK flag must be set. */ 1253 if (!(th->th_flags & TH_ACK)) 1254 ret = false; 1255 return (ret); 1256 } 1257 1258 static int 1259 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) 1260 { 1261 struct inpcb *inp; 1262 struct tcpcb *tp; 1263 struct mbuf **pp, *cmp, *mv_to; 1264 bool bpf_req, should_wake; 1265 1266 /* Check if packet doesn't belongs to our network interface. */ 1267 if ((tcplro_stacks_wanting_mbufq == 0) || 1268 (le->outer.data.vlan_id != 0) || 1269 (le->inner.data.lro_type != LRO_TYPE_NONE)) 1270 return (TCP_LRO_CANNOT); 1271 1272 #ifdef INET6 1273 /* 1274 * Be proactive about unspecified IPv6 address in source. As 1275 * we use all-zero to indicate unbounded/unconnected pcb, 1276 * unspecified IPv6 address can be used to confuse us. 1277 * 1278 * Note that packets with unspecified IPv6 destination is 1279 * already dropped in ip6_input. 1280 */ 1281 if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && 1282 IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) 1283 return (TCP_LRO_CANNOT); 1284 1285 if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && 1286 IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) 1287 return (TCP_LRO_CANNOT); 1288 #endif 1289 /* Lookup inp, if any. */ 1290 inp = tcp_lro_lookup(lc->ifp, 1291 (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); 1292 if (inp == NULL) 1293 return (TCP_LRO_CANNOT); 1294 1295 counter_u64_add(tcp_inp_lro_locks_taken, 1); 1296 1297 /* Get TCP control structure. */ 1298 tp = intotcpcb(inp); 1299 1300 /* Check if the inp is dead, Jim. */ 1301 if (tp == NULL || 1302 (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) || 1303 (inp->inp_flags2 & INP_FREED)) { 1304 INP_WUNLOCK(inp); 1305 return (TCP_LRO_CANNOT); 1306 } 1307 if ((inp->inp_irq_cpu_set == 0) && (lc->lro_cpu_is_set == 1)) { 1308 inp->inp_irq_cpu = lc->lro_last_cpu; 1309 inp->inp_irq_cpu_set = 1; 1310 } 1311 /* Check if the transport doesn't support the needed optimizations. */ 1312 if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) { 1313 INP_WUNLOCK(inp); 1314 return (TCP_LRO_CANNOT); 1315 } 1316 1317 if (inp->inp_flags2 & INP_MBUF_QUEUE_READY) 1318 should_wake = false; 1319 else 1320 should_wake = true; 1321 /* Check if packets should be tapped to BPF. */ 1322 bpf_req = bpf_peers_present(lc->ifp->if_bpf); 1323 1324 /* Strip and compress all the incoming packets. */ 1325 cmp = NULL; 1326 for (pp = &le->m_head; *pp != NULL; ) { 1327 mv_to = NULL; 1328 if (do_bpf_strip_and_compress(inp, lc, le, pp, 1329 &cmp, &mv_to, &should_wake, bpf_req ) == false) { 1330 /* Advance to next mbuf. */ 1331 pp = &(*pp)->m_nextpkt; 1332 } else if (mv_to != NULL) { 1333 /* We are asked to move pp up */ 1334 pp = &mv_to->m_nextpkt; 1335 } 1336 } 1337 /* Update "m_last_mbuf", if any. */ 1338 if (pp == &le->m_head) 1339 le->m_last_mbuf = *pp; 1340 else 1341 le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); 1342 1343 /* Check if any data mbufs left. */ 1344 if (le->m_head != NULL) { 1345 counter_u64_add(tcp_inp_lro_direct_queue, 1); 1346 tcp_lro_log(tp, lc, le, NULL, 22, 1, 1347 inp->inp_flags2, inp->inp_in_input, 1); 1348 tcp_queue_pkts(inp, tp, le); 1349 } 1350 if (should_wake) { 1351 /* Wakeup */ 1352 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 1353 if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0)) 1354 inp = NULL; 1355 } 1356 if (inp != NULL) 1357 INP_WUNLOCK(inp); 1358 return (0); /* Success. */ 1359 } 1360 #endif 1361 1362 void 1363 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 1364 { 1365 /* Only optimise if there are multiple packets waiting. */ 1366 #ifdef TCPHPTS 1367 int error; 1368 1369 CURVNET_SET(lc->ifp->if_vnet); 1370 error = tcp_lro_flush_tcphpts(lc, le); 1371 CURVNET_RESTORE(); 1372 if (error != 0) { 1373 #endif 1374 tcp_lro_condense(lc, le); 1375 tcp_flush_out_entry(lc, le); 1376 #ifdef TCPHPTS 1377 } 1378 #endif 1379 lc->lro_flushed++; 1380 bzero(le, sizeof(*le)); 1381 LIST_INSERT_HEAD(&lc->lro_free, le, next); 1382 } 1383 1384 #ifdef HAVE_INLINE_FLSLL 1385 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 1386 #else 1387 static inline uint64_t 1388 tcp_lro_msb_64(uint64_t x) 1389 { 1390 x |= (x >> 1); 1391 x |= (x >> 2); 1392 x |= (x >> 4); 1393 x |= (x >> 8); 1394 x |= (x >> 16); 1395 x |= (x >> 32); 1396 return (x & ~(x >> 1)); 1397 } 1398 #endif 1399 1400 /* 1401 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1402 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1403 * number of elements to sort and 64 is the number of sequence bits 1404 * available. The algorithm is bit-slicing the 64-bit sequence number, 1405 * sorting one bit at a time from the most significant bit until the 1406 * least significant one, skipping the constant bits. This is 1407 * typically called a radix sort. 1408 */ 1409 static void 1410 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1411 { 1412 struct lro_mbuf_sort temp; 1413 uint64_t ones; 1414 uint64_t zeros; 1415 uint32_t x; 1416 uint32_t y; 1417 1418 repeat: 1419 /* for small arrays insertion sort is faster */ 1420 if (size <= 12) { 1421 for (x = 1; x < size; x++) { 1422 temp = parray[x]; 1423 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1424 parray[y] = parray[y - 1]; 1425 parray[y] = temp; 1426 } 1427 return; 1428 } 1429 1430 /* compute sequence bits which are constant */ 1431 ones = 0; 1432 zeros = 0; 1433 for (x = 0; x != size; x++) { 1434 ones |= parray[x].seq; 1435 zeros |= ~parray[x].seq; 1436 } 1437 1438 /* compute bits which are not constant into "ones" */ 1439 ones &= zeros; 1440 if (ones == 0) 1441 return; 1442 1443 /* pick the most significant bit which is not constant */ 1444 ones = tcp_lro_msb_64(ones); 1445 1446 /* 1447 * Move entries having cleared sequence bits to the beginning 1448 * of the array: 1449 */ 1450 for (x = y = 0; y != size; y++) { 1451 /* skip set bits */ 1452 if (parray[y].seq & ones) 1453 continue; 1454 /* swap entries */ 1455 temp = parray[x]; 1456 parray[x] = parray[y]; 1457 parray[y] = temp; 1458 x++; 1459 } 1460 1461 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1462 1463 /* sort zeros */ 1464 tcp_lro_sort(parray, x); 1465 1466 /* sort ones */ 1467 parray += x; 1468 size -= x; 1469 goto repeat; 1470 } 1471 1472 void 1473 tcp_lro_flush_all(struct lro_ctrl *lc) 1474 { 1475 uint64_t seq; 1476 uint64_t nseq; 1477 unsigned x; 1478 1479 /* check if no mbufs to flush */ 1480 if (lc->lro_mbuf_count == 0) 1481 goto done; 1482 if (lc->lro_cpu_is_set == 0) { 1483 if (lc->lro_last_cpu == curcpu) { 1484 lc->lro_cnt_of_same_cpu++; 1485 /* Have we reached the threshold to declare a cpu? */ 1486 if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) 1487 lc->lro_cpu_is_set = 1; 1488 } else { 1489 lc->lro_last_cpu = curcpu; 1490 lc->lro_cnt_of_same_cpu = 0; 1491 } 1492 } 1493 CURVNET_SET(lc->ifp->if_vnet); 1494 1495 /* get current time */ 1496 binuptime(&lc->lro_last_queue_time); 1497 1498 /* sort all mbufs according to stream */ 1499 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1500 1501 /* input data into LRO engine, stream by stream */ 1502 seq = 0; 1503 for (x = 0; x != lc->lro_mbuf_count; x++) { 1504 struct mbuf *mb; 1505 1506 /* get mbuf */ 1507 mb = lc->lro_mbuf_data[x].mb; 1508 1509 /* get sequence number, masking away the packet index */ 1510 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1511 1512 /* check for new stream */ 1513 if (seq != nseq) { 1514 seq = nseq; 1515 1516 /* flush active streams */ 1517 tcp_lro_rx_done(lc); 1518 } 1519 1520 /* add packet to LRO engine */ 1521 if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { 1522 /* input packet to network layer */ 1523 (*lc->ifp->if_input)(lc->ifp, mb); 1524 lc->lro_queued++; 1525 lc->lro_flushed++; 1526 } 1527 } 1528 CURVNET_RESTORE(); 1529 done: 1530 /* flush active streams */ 1531 tcp_lro_rx_done(lc); 1532 1533 #ifdef TCPHPTS 1534 tcp_run_hpts(); 1535 #endif 1536 lc->lro_mbuf_count = 0; 1537 } 1538 1539 #ifdef TCPHPTS 1540 static void 1541 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, 1542 uint32_t *ts_ptr, uint16_t iptos) 1543 { 1544 /* 1545 * Given a TCP ACK, summarize it down into the small TCP ACK 1546 * entry. 1547 */ 1548 ae->timestamp = m->m_pkthdr.rcv_tstmp; 1549 if (m->m_flags & M_TSTMP_LRO) 1550 ae->flags = TSTMP_LRO; 1551 else if (m->m_flags & M_TSTMP) 1552 ae->flags = TSTMP_HDWR; 1553 ae->seq = ntohl(th->th_seq); 1554 ae->ack = ntohl(th->th_ack); 1555 ae->flags |= th->th_flags; 1556 if (ts_ptr != NULL) { 1557 ae->ts_value = ntohl(ts_ptr[1]); 1558 ae->ts_echo = ntohl(ts_ptr[2]); 1559 ae->flags |= HAS_TSTMP; 1560 } 1561 ae->win = ntohs(th->th_win); 1562 ae->codepoint = iptos; 1563 } 1564 1565 /* 1566 * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets 1567 * and strip all, but the IPv4/IPv6 header. 1568 */ 1569 static bool 1570 do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc, 1571 struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, 1572 bool *should_wake, bool bpf_req) 1573 { 1574 union { 1575 void *ptr; 1576 struct ip *ip4; 1577 struct ip6_hdr *ip6; 1578 } l3; 1579 struct mbuf *m; 1580 struct mbuf *nm; 1581 struct tcphdr *th; 1582 struct tcp_ackent *ack_ent; 1583 uint32_t *ts_ptr; 1584 int32_t n_mbuf; 1585 bool other_opts, can_compress; 1586 uint16_t lro_type; 1587 uint16_t iptos; 1588 int tcp_hdr_offset; 1589 int idx; 1590 1591 /* Get current mbuf. */ 1592 m = *pp; 1593 1594 /* Let the BPF see the packet */ 1595 if (__predict_false(bpf_req)) 1596 ETHER_BPF_MTAP(lc->ifp, m); 1597 1598 tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; 1599 lro_type = le->inner.data.lro_type; 1600 switch (lro_type) { 1601 case LRO_TYPE_NONE: 1602 lro_type = le->outer.data.lro_type; 1603 switch (lro_type) { 1604 case LRO_TYPE_IPV4_TCP: 1605 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1606 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1607 break; 1608 case LRO_TYPE_IPV6_TCP: 1609 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1610 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1611 break; 1612 default: 1613 goto compressed; 1614 } 1615 break; 1616 case LRO_TYPE_IPV4_TCP: 1617 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1618 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1619 break; 1620 case LRO_TYPE_IPV6_TCP: 1621 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1622 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1623 break; 1624 default: 1625 goto compressed; 1626 } 1627 1628 MPASS(tcp_hdr_offset >= 0); 1629 1630 m_adj(m, tcp_hdr_offset); 1631 m->m_flags |= M_LRO_EHDRSTRP; 1632 m->m_flags &= ~M_ACKCMP; 1633 m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; 1634 1635 th = tcp_lro_get_th(m); 1636 1637 th->th_sum = 0; /* TCP checksum is valid. */ 1638 1639 /* Check if ACK can be compressed */ 1640 can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); 1641 1642 /* Now lets look at the should wake states */ 1643 if ((other_opts == true) && 1644 ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) { 1645 /* 1646 * If there are other options (SACK?) and the 1647 * tcp endpoint has not expressly told us it does 1648 * not care about SACKS, then we should wake up. 1649 */ 1650 *should_wake = true; 1651 } 1652 /* Is the ack compressable? */ 1653 if (can_compress == false) 1654 goto done; 1655 /* Does the TCP endpoint support ACK compression? */ 1656 if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0) 1657 goto done; 1658 1659 /* Lets get the TOS/traffic class field */ 1660 l3.ptr = mtod(m, void *); 1661 switch (lro_type) { 1662 case LRO_TYPE_IPV4_TCP: 1663 iptos = l3.ip4->ip_tos; 1664 break; 1665 case LRO_TYPE_IPV6_TCP: 1666 iptos = IPV6_TRAFFIC_CLASS(l3.ip6); 1667 break; 1668 default: 1669 iptos = 0; /* Keep compiler happy. */ 1670 break; 1671 } 1672 /* Now lets get space if we don't have some already */ 1673 if (*cmp == NULL) { 1674 new_one: 1675 nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf); 1676 if (__predict_false(nm == NULL)) 1677 goto done; 1678 *cmp = nm; 1679 if (n_mbuf) { 1680 /* 1681 * Link in the new cmp ack to our in-order place, 1682 * first set our cmp ack's next to where we are. 1683 */ 1684 nm->m_nextpkt = m; 1685 (*pp) = nm; 1686 /* 1687 * Set it up so mv_to is advanced to our 1688 * compressed ack. This way the caller can 1689 * advance pp to the right place. 1690 */ 1691 *mv_to = nm; 1692 /* 1693 * Advance it here locally as well. 1694 */ 1695 pp = &nm->m_nextpkt; 1696 } 1697 } else { 1698 /* We have one already we are working on */ 1699 nm = *cmp; 1700 if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { 1701 /* We ran out of space */ 1702 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1703 goto new_one; 1704 } 1705 } 1706 MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); 1707 counter_u64_add(tcp_inp_lro_compressed, 1); 1708 le->compressed++; 1709 /* We can add in to the one on the tail */ 1710 ack_ent = mtod(nm, struct tcp_ackent *); 1711 idx = (nm->m_len / sizeof(struct tcp_ackent)); 1712 build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); 1713 1714 /* Bump the size of both pkt-hdr and len */ 1715 nm->m_len += sizeof(struct tcp_ackent); 1716 nm->m_pkthdr.len += sizeof(struct tcp_ackent); 1717 compressed: 1718 /* Advance to next mbuf before freeing. */ 1719 *pp = m->m_nextpkt; 1720 m->m_nextpkt = NULL; 1721 m_freem(m); 1722 return (true); 1723 done: 1724 counter_u64_add(tcp_uncomp_total, 1); 1725 le->uncompressed++; 1726 return (false); 1727 } 1728 #endif 1729 1730 static struct lro_head * 1731 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) 1732 { 1733 u_long hash; 1734 1735 if (M_HASHTYPE_ISHASH(m)) { 1736 hash = m->m_pkthdr.flowid; 1737 } else { 1738 for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) 1739 hash += parser->data.raw[i]; 1740 } 1741 return (&lc->lro_hash[hash % lc->lro_hashsz]); 1742 } 1743 1744 static int 1745 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) 1746 { 1747 struct lro_parser pi; /* inner address data */ 1748 struct lro_parser po; /* outer address data */ 1749 struct lro_parser *pa; /* current parser for TCP stream */ 1750 struct lro_entry *le; 1751 struct lro_head *bucket; 1752 struct tcphdr *th; 1753 int tcp_data_len; 1754 int tcp_opt_len; 1755 int error; 1756 uint16_t tcp_data_sum; 1757 1758 #ifdef INET 1759 /* Quickly decide if packet cannot be LRO'ed */ 1760 if (__predict_false(V_ipforwarding != 0)) 1761 return (TCP_LRO_CANNOT); 1762 #endif 1763 #ifdef INET6 1764 /* Quickly decide if packet cannot be LRO'ed */ 1765 if (__predict_false(V_ip6_forwarding != 0)) 1766 return (TCP_LRO_CANNOT); 1767 #endif 1768 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1769 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1770 (m->m_pkthdr.csum_data != 0xffff)) { 1771 /* 1772 * The checksum either did not have hardware offload 1773 * or it was a bad checksum. We can't LRO such 1774 * a packet. 1775 */ 1776 counter_u64_add(tcp_bad_csums, 1); 1777 return (TCP_LRO_CANNOT); 1778 } 1779 /* We expect a contiguous header [eh, ip, tcp]. */ 1780 pa = tcp_lro_parser(m, &po, &pi, true); 1781 if (__predict_false(pa == NULL)) 1782 return (TCP_LRO_NOT_SUPPORTED); 1783 1784 /* We don't expect any padding. */ 1785 error = tcp_lro_trim_mbuf_chain(m, pa); 1786 if (__predict_false(error != 0)) 1787 return (error); 1788 1789 #ifdef INET 1790 switch (pa->data.lro_type) { 1791 case LRO_TYPE_IPV4_TCP: 1792 error = tcp_lro_rx_ipv4(lc, m, pa->ip4); 1793 if (__predict_false(error != 0)) 1794 return (error); 1795 break; 1796 default: 1797 break; 1798 } 1799 #endif 1800 /* If no hardware or arrival stamp on the packet add timestamp */ 1801 if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { 1802 m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 1803 m->m_flags |= M_TSTMP_LRO; 1804 } 1805 1806 /* Get pointer to TCP header. */ 1807 th = pa->tcp; 1808 1809 /* Don't process SYN packets. */ 1810 if (__predict_false(th->th_flags & TH_SYN)) 1811 return (TCP_LRO_CANNOT); 1812 1813 /* Get total TCP header length and compute payload length. */ 1814 tcp_opt_len = (th->th_off << 2); 1815 tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - 1816 (uint8_t *)m->m_data) - tcp_opt_len; 1817 tcp_opt_len -= sizeof(*th); 1818 1819 /* Don't process invalid TCP headers. */ 1820 if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) 1821 return (TCP_LRO_CANNOT); 1822 1823 /* Compute TCP data only checksum. */ 1824 if (tcp_data_len == 0) 1825 tcp_data_sum = 0; /* no data, no checksum */ 1826 else if (__predict_false(csum != 0)) 1827 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); 1828 else 1829 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); 1830 1831 /* Save TCP info in mbuf. */ 1832 m->m_nextpkt = NULL; 1833 m->m_pkthdr.rcvif = lc->ifp; 1834 m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; 1835 m->m_pkthdr.lro_tcp_d_len = tcp_data_len; 1836 m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); 1837 m->m_pkthdr.lro_nsegs = 1; 1838 1839 /* Get hash bucket. */ 1840 if (!use_hash) { 1841 bucket = &lc->lro_hash[0]; 1842 } else { 1843 bucket = tcp_lro_rx_get_bucket(lc, m, pa); 1844 } 1845 1846 /* Try to find a matching previous segment. */ 1847 LIST_FOREACH(le, bucket, hash_next) { 1848 /* Compare addresses and ports. */ 1849 if (lro_address_compare(&po.data, &le->outer.data) == false || 1850 lro_address_compare(&pi.data, &le->inner.data) == false) 1851 continue; 1852 1853 /* Check if no data and old ACK. */ 1854 if (tcp_data_len == 0 && 1855 SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1856 m_freem(m); 1857 return (0); 1858 } 1859 1860 /* Mark "m" in the last spot. */ 1861 le->m_last_mbuf->m_nextpkt = m; 1862 /* Now set the tail to "m". */ 1863 le->m_last_mbuf = m; 1864 return (0); 1865 } 1866 1867 /* Try to find an empty slot. */ 1868 if (LIST_EMPTY(&lc->lro_free)) 1869 return (TCP_LRO_NO_ENTRIES); 1870 1871 /* Start a new segment chain. */ 1872 le = LIST_FIRST(&lc->lro_free); 1873 LIST_REMOVE(le, next); 1874 tcp_lro_active_insert(lc, bucket, le); 1875 1876 /* Make sure the headers are set. */ 1877 le->inner = pi; 1878 le->outer = po; 1879 1880 /* Store time this entry was allocated. */ 1881 le->alloc_time = lc->lro_last_queue_time; 1882 1883 tcp_set_entry_to_mbuf(lc, le, m, th); 1884 1885 /* Now set the tail to "m". */ 1886 le->m_last_mbuf = m; 1887 1888 return (0); 1889 } 1890 1891 int 1892 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1893 { 1894 int error; 1895 1896 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1897 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1898 (m->m_pkthdr.csum_data != 0xffff)) { 1899 /* 1900 * The checksum either did not have hardware offload 1901 * or it was a bad checksum. We can't LRO such 1902 * a packet. 1903 */ 1904 counter_u64_add(tcp_bad_csums, 1); 1905 return (TCP_LRO_CANNOT); 1906 } 1907 /* get current time */ 1908 binuptime(&lc->lro_last_queue_time); 1909 CURVNET_SET(lc->ifp->if_vnet); 1910 error = tcp_lro_rx_common(lc, m, csum, true); 1911 CURVNET_RESTORE(); 1912 1913 return (error); 1914 } 1915 1916 void 1917 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 1918 { 1919 /* sanity checks */ 1920 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 1921 lc->lro_mbuf_max == 0)) { 1922 /* packet drop */ 1923 m_freem(mb); 1924 return; 1925 } 1926 1927 /* check if packet is not LRO capable */ 1928 if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 1929 /* input packet to network layer */ 1930 (*lc->ifp->if_input) (lc->ifp, mb); 1931 return; 1932 } 1933 1934 /* create sequence number */ 1935 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 1936 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 1937 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 1938 ((uint64_t)lc->lro_mbuf_count); 1939 1940 /* enter mbuf */ 1941 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 1942 1943 /* flush if array is full */ 1944 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 1945 tcp_lro_flush_all(lc); 1946 } 1947 1948 /* end */ 1949