1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016-2021 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sockbuf.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/ethernet.h> 54 #include <net/bpf.h> 55 #include <net/vnet.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_types.h> 59 #include <net/infiniband.h> 60 #include <net/if_lagg.h> 61 62 #include <netinet/in_systm.h> 63 #include <netinet/in.h> 64 #include <netinet/ip6.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip_var.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet6/in6_pcb.h> 69 #include <netinet/tcp.h> 70 #include <netinet/tcp_seq.h> 71 #include <netinet/tcp_lro.h> 72 #include <netinet/tcp_var.h> 73 #include <netinet/tcpip.h> 74 #include <netinet/tcp_hpts.h> 75 #include <netinet/tcp_log_buf.h> 76 #include <netinet/tcp_fsm.h> 77 #include <netinet/udp.h> 78 #include <netinet6/ip6_var.h> 79 80 #include <machine/in_cksum.h> 81 82 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 83 84 #define TCP_LRO_TS_OPTION \ 85 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 86 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 87 88 static void tcp_lro_rx_done(struct lro_ctrl *lc); 89 static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, 90 uint32_t csum, bool use_hash); 91 92 #ifdef TCPHPTS 93 static bool do_bpf_strip_and_compress(struct inpcb *, struct lro_ctrl *, 94 struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, 95 bool *, bool, bool, struct ifnet *, bool); 96 97 #endif 98 99 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 100 "TCP LRO"); 101 102 static long tcplro_stacks_wanting_mbufq; 103 counter_u64_t tcp_inp_lro_direct_queue; 104 counter_u64_t tcp_inp_lro_wokeup_queue; 105 counter_u64_t tcp_inp_lro_compressed; 106 counter_u64_t tcp_inp_lro_locks_taken; 107 counter_u64_t tcp_extra_mbuf; 108 counter_u64_t tcp_would_have_but; 109 counter_u64_t tcp_comp_total; 110 counter_u64_t tcp_uncomp_total; 111 counter_u64_t tcp_bad_csums; 112 113 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 114 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 115 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 116 "default number of LRO entries"); 117 118 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; 119 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, 120 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, 121 "Number of interrupts in a row on the same CPU that will make us declare an 'affinity' cpu?"); 122 123 static uint32_t tcp_less_accurate_lro_ts = 0; 124 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_less_accurate, 125 CTLFLAG_MPSAFE, &tcp_less_accurate_lro_ts, 0, 126 "Do we trade off efficency by doing less timestamp operations for time accuracy?"); 127 128 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 129 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 130 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 131 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 132 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 133 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 134 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 135 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 136 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, 137 &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); 138 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, 139 &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); 140 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, 141 &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); 142 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, 143 &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); 144 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, 145 &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); 146 147 void 148 tcp_lro_reg_mbufq(void) 149 { 150 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 151 } 152 153 void 154 tcp_lro_dereg_mbufq(void) 155 { 156 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 157 } 158 159 static __inline void 160 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 161 struct lro_entry *le) 162 { 163 164 LIST_INSERT_HEAD(&lc->lro_active, le, next); 165 LIST_INSERT_HEAD(bucket, le, hash_next); 166 } 167 168 static __inline void 169 tcp_lro_active_remove(struct lro_entry *le) 170 { 171 172 LIST_REMOVE(le, next); /* active list */ 173 LIST_REMOVE(le, hash_next); /* hash bucket */ 174 } 175 176 int 177 tcp_lro_init(struct lro_ctrl *lc) 178 { 179 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 180 } 181 182 int 183 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 184 unsigned lro_entries, unsigned lro_mbufs) 185 { 186 struct lro_entry *le; 187 size_t size; 188 unsigned i, elements; 189 190 lc->lro_bad_csum = 0; 191 lc->lro_queued = 0; 192 lc->lro_flushed = 0; 193 lc->lro_mbuf_count = 0; 194 lc->lro_mbuf_max = lro_mbufs; 195 lc->lro_cnt = lro_entries; 196 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 197 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 198 lc->ifp = ifp; 199 LIST_INIT(&lc->lro_free); 200 LIST_INIT(&lc->lro_active); 201 202 /* create hash table to accelerate entry lookup */ 203 if (lro_entries > lro_mbufs) 204 elements = lro_entries; 205 else 206 elements = lro_mbufs; 207 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 208 HASH_NOWAIT); 209 if (lc->lro_hash == NULL) { 210 memset(lc, 0, sizeof(*lc)); 211 return (ENOMEM); 212 } 213 214 /* compute size to allocate */ 215 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 216 (lro_entries * sizeof(*le)); 217 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 218 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 219 220 /* check for out of memory */ 221 if (lc->lro_mbuf_data == NULL) { 222 free(lc->lro_hash, M_LRO); 223 memset(lc, 0, sizeof(*lc)); 224 return (ENOMEM); 225 } 226 /* compute offset for LRO entries */ 227 le = (struct lro_entry *) 228 (lc->lro_mbuf_data + lro_mbufs); 229 230 /* setup linked list */ 231 for (i = 0; i != lro_entries; i++) 232 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 233 234 return (0); 235 } 236 237 struct vxlan_header { 238 uint32_t vxlh_flags; 239 uint32_t vxlh_vni; 240 }; 241 242 static inline void * 243 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) 244 { 245 const struct ether_vlan_header *eh; 246 void *old; 247 uint16_t eth_type; 248 249 if (update_data) 250 memset(parser, 0, sizeof(*parser)); 251 252 old = ptr; 253 254 if (is_vxlan) { 255 const struct vxlan_header *vxh; 256 vxh = ptr; 257 ptr = (uint8_t *)ptr + sizeof(*vxh); 258 if (update_data) { 259 parser->data.vxlan_vni = 260 vxh->vxlh_vni & htonl(0xffffff00); 261 } 262 } 263 264 eh = ptr; 265 if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { 266 eth_type = eh->evl_proto; 267 if (update_data) { 268 /* strip priority and keep VLAN ID only */ 269 parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); 270 } 271 /* advance to next header */ 272 ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 273 mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 274 } else { 275 eth_type = eh->evl_encap_proto; 276 /* advance to next header */ 277 mlen -= ETHER_HDR_LEN; 278 ptr = (uint8_t *)ptr + ETHER_HDR_LEN; 279 } 280 if (__predict_false(mlen <= 0)) 281 return (NULL); 282 switch (eth_type) { 283 #ifdef INET 284 case htons(ETHERTYPE_IP): 285 parser->ip4 = ptr; 286 if (__predict_false(mlen < sizeof(struct ip))) 287 return (NULL); 288 /* Ensure there are no IPv4 options. */ 289 if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) 290 break; 291 /* .. and the packet is not fragmented. */ 292 if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 293 break; 294 ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); 295 mlen -= sizeof(struct ip); 296 if (update_data) { 297 parser->data.s_addr.v4 = parser->ip4->ip_src; 298 parser->data.d_addr.v4 = parser->ip4->ip_dst; 299 } 300 switch (parser->ip4->ip_p) { 301 case IPPROTO_UDP: 302 if (__predict_false(mlen < sizeof(struct udphdr))) 303 return (NULL); 304 parser->udp = ptr; 305 if (update_data) { 306 parser->data.lro_type = LRO_TYPE_IPV4_UDP; 307 parser->data.s_port = parser->udp->uh_sport; 308 parser->data.d_port = parser->udp->uh_dport; 309 } else { 310 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); 311 } 312 ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); 313 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 314 return (ptr); 315 case IPPROTO_TCP: 316 parser->tcp = ptr; 317 if (__predict_false(mlen < sizeof(struct tcphdr))) 318 return (NULL); 319 if (update_data) { 320 parser->data.lro_type = LRO_TYPE_IPV4_TCP; 321 parser->data.s_port = parser->tcp->th_sport; 322 parser->data.d_port = parser->tcp->th_dport; 323 } else { 324 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); 325 } 326 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 327 return (NULL); 328 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 329 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 330 return (ptr); 331 default: 332 break; 333 } 334 break; 335 #endif 336 #ifdef INET6 337 case htons(ETHERTYPE_IPV6): 338 parser->ip6 = ptr; 339 if (__predict_false(mlen < sizeof(struct ip6_hdr))) 340 return (NULL); 341 ptr = (uint8_t *)ptr + sizeof(*parser->ip6); 342 if (update_data) { 343 parser->data.s_addr.v6 = parser->ip6->ip6_src; 344 parser->data.d_addr.v6 = parser->ip6->ip6_dst; 345 } 346 mlen -= sizeof(struct ip6_hdr); 347 switch (parser->ip6->ip6_nxt) { 348 case IPPROTO_UDP: 349 if (__predict_false(mlen < sizeof(struct udphdr))) 350 return (NULL); 351 parser->udp = ptr; 352 if (update_data) { 353 parser->data.lro_type = LRO_TYPE_IPV6_UDP; 354 parser->data.s_port = parser->udp->uh_sport; 355 parser->data.d_port = parser->udp->uh_dport; 356 } else { 357 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); 358 } 359 ptr = (uint8_t *)ptr + sizeof(*parser->udp); 360 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 361 return (ptr); 362 case IPPROTO_TCP: 363 if (__predict_false(mlen < sizeof(struct tcphdr))) 364 return (NULL); 365 parser->tcp = ptr; 366 if (update_data) { 367 parser->data.lro_type = LRO_TYPE_IPV6_TCP; 368 parser->data.s_port = parser->tcp->th_sport; 369 parser->data.d_port = parser->tcp->th_dport; 370 } else { 371 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); 372 } 373 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 374 return (NULL); 375 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 376 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 377 return (ptr); 378 default: 379 break; 380 } 381 break; 382 #endif 383 default: 384 break; 385 } 386 /* Invalid packet - cannot parse */ 387 return (NULL); 388 } 389 390 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | 391 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; 392 393 static inline struct lro_parser * 394 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) 395 { 396 void *data_ptr; 397 398 /* Try to parse outer headers first. */ 399 data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); 400 if (data_ptr == NULL || po->total_hdr_len > m->m_len) 401 return (NULL); 402 403 if (update_data) { 404 /* Store VLAN ID, if any. */ 405 if (__predict_false(m->m_flags & M_VLANTAG)) { 406 po->data.vlan_id = 407 htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); 408 } 409 /* Store decrypted flag, if any. */ 410 if (__predict_false((m->m_pkthdr.csum_flags & 411 CSUM_TLS_MASK) == CSUM_TLS_DECRYPTED)) 412 po->data.lro_flags |= LRO_FLAG_DECRYPTED; 413 } 414 415 switch (po->data.lro_type) { 416 case LRO_TYPE_IPV4_UDP: 417 case LRO_TYPE_IPV6_UDP: 418 /* Check for VXLAN headers. */ 419 if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) 420 break; 421 422 /* Try to parse inner headers. */ 423 data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, 424 (m->m_len - ((caddr_t)data_ptr - m->m_data))); 425 if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) 426 break; 427 428 /* Verify supported header types. */ 429 switch (pi->data.lro_type) { 430 case LRO_TYPE_IPV4_TCP: 431 case LRO_TYPE_IPV6_TCP: 432 return (pi); 433 default: 434 break; 435 } 436 break; 437 case LRO_TYPE_IPV4_TCP: 438 case LRO_TYPE_IPV6_TCP: 439 if (update_data) 440 memset(pi, 0, sizeof(*pi)); 441 return (po); 442 default: 443 break; 444 } 445 return (NULL); 446 } 447 448 static inline int 449 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) 450 { 451 int len; 452 453 switch (po->data.lro_type) { 454 #ifdef INET 455 case LRO_TYPE_IPV4_TCP: 456 len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + 457 ntohs(po->ip4->ip_len); 458 break; 459 #endif 460 #ifdef INET6 461 case LRO_TYPE_IPV6_TCP: 462 len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + 463 ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); 464 break; 465 #endif 466 default: 467 return (TCP_LRO_CANNOT); 468 } 469 470 /* 471 * If the frame is padded beyond the end of the IP packet, 472 * then trim the extra bytes off: 473 */ 474 if (__predict_true(m->m_pkthdr.len == len)) { 475 return (0); 476 } else if (m->m_pkthdr.len > len) { 477 m_adj(m, len - m->m_pkthdr.len); 478 return (0); 479 } 480 return (TCP_LRO_CANNOT); 481 } 482 483 static struct tcphdr * 484 tcp_lro_get_th(struct mbuf *m) 485 { 486 return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); 487 } 488 489 static void 490 lro_free_mbuf_chain(struct mbuf *m) 491 { 492 struct mbuf *save; 493 494 while (m) { 495 save = m->m_nextpkt; 496 m->m_nextpkt = NULL; 497 m_freem(m); 498 m = save; 499 } 500 } 501 502 void 503 tcp_lro_free(struct lro_ctrl *lc) 504 { 505 struct lro_entry *le; 506 unsigned x; 507 508 /* reset LRO free list */ 509 LIST_INIT(&lc->lro_free); 510 511 /* free active mbufs, if any */ 512 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 513 tcp_lro_active_remove(le); 514 lro_free_mbuf_chain(le->m_head); 515 } 516 517 /* free hash table */ 518 free(lc->lro_hash, M_LRO); 519 lc->lro_hash = NULL; 520 lc->lro_hashsz = 0; 521 522 /* free mbuf array, if any */ 523 for (x = 0; x != lc->lro_mbuf_count; x++) 524 m_freem(lc->lro_mbuf_data[x].mb); 525 lc->lro_mbuf_count = 0; 526 527 /* free allocated memory, if any */ 528 free(lc->lro_mbuf_data, M_LRO); 529 lc->lro_mbuf_data = NULL; 530 } 531 532 static uint16_t 533 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) 534 { 535 const uint16_t *ptr; 536 uint32_t csum; 537 uint16_t len; 538 539 csum = -th->th_sum; /* exclude checksum field */ 540 len = th->th_off; 541 ptr = (const uint16_t *)th; 542 while (len--) { 543 csum += *ptr; 544 ptr++; 545 csum += *ptr; 546 ptr++; 547 } 548 while (csum > 0xffff) 549 csum = (csum >> 16) + (csum & 0xffff); 550 551 return (csum); 552 } 553 554 static uint16_t 555 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) 556 { 557 uint32_t c; 558 uint16_t cs; 559 560 c = tcp_csum; 561 562 switch (pa->data.lro_type) { 563 #ifdef INET6 564 case LRO_TYPE_IPV6_TCP: 565 /* Compute full pseudo IPv6 header checksum. */ 566 cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); 567 break; 568 #endif 569 #ifdef INET 570 case LRO_TYPE_IPV4_TCP: 571 /* Compute full pseudo IPv4 header checsum. */ 572 cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); 573 cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); 574 break; 575 #endif 576 default: 577 cs = 0; /* Keep compiler happy. */ 578 break; 579 } 580 581 /* Complement checksum. */ 582 cs = ~cs; 583 c += cs; 584 585 /* Remove TCP header checksum. */ 586 cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); 587 c += cs; 588 589 /* Compute checksum remainder. */ 590 while (c > 0xffff) 591 c = (c >> 16) + (c & 0xffff); 592 593 return (c); 594 } 595 596 static void 597 tcp_lro_rx_done(struct lro_ctrl *lc) 598 { 599 struct lro_entry *le; 600 601 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 602 tcp_lro_active_remove(le); 603 tcp_lro_flush(lc, le); 604 } 605 } 606 607 static void 608 tcp_lro_flush_active(struct lro_ctrl *lc) 609 { 610 struct lro_entry *le; 611 612 /* 613 * Walk through the list of le entries, and 614 * any one that does have packets flush. This 615 * is called because we have an inbound packet 616 * (e.g. SYN) that has to have all others flushed 617 * in front of it. Note we have to do the remove 618 * because tcp_lro_flush() assumes that the entry 619 * is being freed. This is ok it will just get 620 * reallocated again like it was new. 621 */ 622 LIST_FOREACH(le, &lc->lro_active, next) { 623 if (le->m_head != NULL) { 624 tcp_lro_active_remove(le); 625 tcp_lro_flush(lc, le); 626 } 627 } 628 } 629 630 void 631 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 632 { 633 struct lro_entry *le, *le_tmp; 634 uint64_t now, tov; 635 struct bintime bt; 636 637 NET_EPOCH_ASSERT(); 638 if (LIST_EMPTY(&lc->lro_active)) 639 return; 640 641 /* get timeout time and current time in ns */ 642 binuptime(&bt); 643 now = bintime2ns(&bt); 644 tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); 645 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 646 if (now >= (bintime2ns(&le->alloc_time) + tov)) { 647 tcp_lro_active_remove(le); 648 tcp_lro_flush(lc, le); 649 } 650 } 651 } 652 653 #ifdef INET 654 static int 655 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) 656 { 657 uint16_t csum; 658 659 /* Legacy IP has a header checksum that needs to be correct. */ 660 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 661 if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { 662 lc->lro_bad_csum++; 663 return (TCP_LRO_CANNOT); 664 } 665 } else { 666 csum = in_cksum_hdr(ip4); 667 if (__predict_false(csum != 0)) { 668 lc->lro_bad_csum++; 669 return (TCP_LRO_CANNOT); 670 } 671 } 672 return (0); 673 } 674 #endif 675 676 #ifdef TCPHPTS 677 static void 678 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, 679 const struct lro_entry *le, const struct mbuf *m, 680 int frm, int32_t tcp_data_len, uint32_t th_seq, 681 uint32_t th_ack, uint16_t th_win) 682 { 683 if (tp->t_logstate != TCP_LOG_STATE_OFF) { 684 union tcp_log_stackspecific log; 685 struct timeval tv, btv; 686 uint32_t cts; 687 688 cts = tcp_get_usecs(&tv); 689 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 690 log.u_bbr.flex8 = frm; 691 log.u_bbr.flex1 = tcp_data_len; 692 if (m) 693 log.u_bbr.flex2 = m->m_pkthdr.len; 694 else 695 log.u_bbr.flex2 = 0; 696 if (le->m_head) { 697 log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; 698 log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; 699 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 700 log.u_bbr.delRate = le->m_head->m_flags; 701 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 702 } 703 log.u_bbr.inflight = th_seq; 704 log.u_bbr.delivered = th_ack; 705 log.u_bbr.timeStamp = cts; 706 log.u_bbr.epoch = le->next_seq; 707 log.u_bbr.lt_epoch = le->ack_seq; 708 log.u_bbr.pacing_gain = th_win; 709 log.u_bbr.cwnd_gain = le->window; 710 log.u_bbr.lost = curcpu; 711 log.u_bbr.cur_del_rate = (uintptr_t)m; 712 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 713 bintime2timeval(&lc->lro_last_queue_time, &btv); 714 log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); 715 log.u_bbr.flex7 = le->compressed; 716 log.u_bbr.pacing_gain = le->uncompressed; 717 if (in_epoch(net_epoch_preempt)) 718 log.u_bbr.inhpts = 1; 719 else 720 log.u_bbr.inhpts = 0; 721 TCP_LOG_EVENTP(tp, NULL, 722 &tp->t_inpcb->inp_socket->so_rcv, 723 &tp->t_inpcb->inp_socket->so_snd, 724 TCP_LOG_LRO, 0, 725 0, &log, false, &tv); 726 } 727 } 728 #endif 729 730 static inline void 731 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) 732 { 733 uint32_t csum; 734 735 csum = 0xffff - *ptr + value; 736 while (csum > 0xffff) 737 csum = (csum >> 16) + (csum & 0xffff); 738 *ptr = value; 739 *psum = csum; 740 } 741 742 static uint16_t 743 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, 744 uint16_t payload_len, uint16_t delta_sum) 745 { 746 uint32_t csum; 747 uint16_t tlen; 748 uint16_t temp[5] = {}; 749 750 switch (pa->data.lro_type) { 751 case LRO_TYPE_IPV4_TCP: 752 /* Compute new IPv4 length. */ 753 tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; 754 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 755 756 /* Subtract delta from current IPv4 checksum. */ 757 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 758 while (csum > 0xffff) 759 csum = (csum >> 16) + (csum & 0xffff); 760 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 761 goto update_tcp_header; 762 763 case LRO_TYPE_IPV6_TCP: 764 /* Compute new IPv6 length. */ 765 tlen = (pa->tcp->th_off << 2) + payload_len; 766 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 767 goto update_tcp_header; 768 769 case LRO_TYPE_IPV4_UDP: 770 /* Compute new IPv4 length. */ 771 tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; 772 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 773 774 /* Subtract delta from current IPv4 checksum. */ 775 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 776 while (csum > 0xffff) 777 csum = (csum >> 16) + (csum & 0xffff); 778 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 779 goto update_udp_header; 780 781 case LRO_TYPE_IPV6_UDP: 782 /* Compute new IPv6 length. */ 783 tlen = sizeof(*pa->udp) + payload_len; 784 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 785 goto update_udp_header; 786 787 default: 788 return (0); 789 } 790 791 update_tcp_header: 792 /* Compute current TCP header checksum. */ 793 temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); 794 795 /* Incorporate the latest ACK into the TCP header. */ 796 pa->tcp->th_ack = le->ack_seq; 797 pa->tcp->th_win = le->window; 798 799 /* Incorporate latest timestamp into the TCP header. */ 800 if (le->timestamp != 0) { 801 uint32_t *ts_ptr; 802 803 ts_ptr = (uint32_t *)(pa->tcp + 1); 804 ts_ptr[1] = htonl(le->tsval); 805 ts_ptr[2] = le->tsecr; 806 } 807 808 /* Compute new TCP header checksum. */ 809 temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); 810 811 /* Compute new TCP checksum. */ 812 csum = pa->tcp->th_sum + 0xffff - delta_sum + 813 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; 814 while (csum > 0xffff) 815 csum = (csum >> 16) + (csum & 0xffff); 816 817 /* Assign new TCP checksum. */ 818 tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); 819 820 /* Compute all modififications affecting next checksum. */ 821 csum = temp[0] + temp[1] + 0xffff - temp[2] + 822 temp[3] + temp[4] + delta_sum; 823 while (csum > 0xffff) 824 csum = (csum >> 16) + (csum & 0xffff); 825 826 /* Return delta checksum to next stage, if any. */ 827 return (csum); 828 829 update_udp_header: 830 tlen = sizeof(*pa->udp) + payload_len; 831 /* Assign new UDP length and compute checksum delta. */ 832 tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); 833 834 /* Check if there is a UDP checksum. */ 835 if (__predict_false(pa->udp->uh_sum != 0)) { 836 /* Compute new UDP checksum. */ 837 csum = pa->udp->uh_sum + 0xffff - delta_sum + 838 0xffff - temp[0] + 0xffff - temp[2]; 839 while (csum > 0xffff) 840 csum = (csum >> 16) + (csum & 0xffff); 841 /* Assign new UDP checksum. */ 842 tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); 843 } 844 845 /* Compute all modififications affecting next checksum. */ 846 csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; 847 while (csum > 0xffff) 848 csum = (csum >> 16) + (csum & 0xffff); 849 850 /* Return delta checksum to next stage, if any. */ 851 return (csum); 852 } 853 854 static void 855 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) 856 { 857 /* Check if we need to recompute any checksums. */ 858 if (le->needs_merge) { 859 uint16_t csum; 860 861 switch (le->inner.data.lro_type) { 862 case LRO_TYPE_IPV4_TCP: 863 csum = tcp_lro_update_checksum(&le->inner, le, 864 le->m_head->m_pkthdr.lro_tcp_d_len, 865 le->m_head->m_pkthdr.lro_tcp_d_csum); 866 csum = tcp_lro_update_checksum(&le->outer, NULL, 867 le->m_head->m_pkthdr.lro_tcp_d_len + 868 le->inner.total_hdr_len, csum); 869 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 870 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 871 le->m_head->m_pkthdr.csum_data = 0xffff; 872 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 873 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 874 break; 875 case LRO_TYPE_IPV6_TCP: 876 csum = tcp_lro_update_checksum(&le->inner, le, 877 le->m_head->m_pkthdr.lro_tcp_d_len, 878 le->m_head->m_pkthdr.lro_tcp_d_csum); 879 csum = tcp_lro_update_checksum(&le->outer, NULL, 880 le->m_head->m_pkthdr.lro_tcp_d_len + 881 le->inner.total_hdr_len, csum); 882 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 883 CSUM_PSEUDO_HDR; 884 le->m_head->m_pkthdr.csum_data = 0xffff; 885 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 886 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 887 break; 888 case LRO_TYPE_NONE: 889 switch (le->outer.data.lro_type) { 890 case LRO_TYPE_IPV4_TCP: 891 csum = tcp_lro_update_checksum(&le->outer, le, 892 le->m_head->m_pkthdr.lro_tcp_d_len, 893 le->m_head->m_pkthdr.lro_tcp_d_csum); 894 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 895 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 896 le->m_head->m_pkthdr.csum_data = 0xffff; 897 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 898 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 899 break; 900 case LRO_TYPE_IPV6_TCP: 901 csum = tcp_lro_update_checksum(&le->outer, le, 902 le->m_head->m_pkthdr.lro_tcp_d_len, 903 le->m_head->m_pkthdr.lro_tcp_d_csum); 904 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 905 CSUM_PSEUDO_HDR; 906 le->m_head->m_pkthdr.csum_data = 0xffff; 907 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 908 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 909 break; 910 default: 911 break; 912 } 913 break; 914 default: 915 break; 916 } 917 } 918 919 /* 920 * Break any chain, this is not set to NULL on the singleton 921 * case m_nextpkt points to m_head. Other case set them 922 * m_nextpkt to NULL in push_and_replace. 923 */ 924 le->m_head->m_nextpkt = NULL; 925 lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; 926 (*lc->ifp->if_input)(lc->ifp, le->m_head); 927 } 928 929 static void 930 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, 931 struct mbuf *m, struct tcphdr *th) 932 { 933 uint32_t *ts_ptr; 934 uint16_t tcp_data_len; 935 uint16_t tcp_opt_len; 936 937 ts_ptr = (uint32_t *)(th + 1); 938 tcp_opt_len = (th->th_off << 2); 939 tcp_opt_len -= sizeof(*th); 940 941 /* Check if there is a timestamp option. */ 942 if (tcp_opt_len == 0 || 943 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 944 *ts_ptr != TCP_LRO_TS_OPTION)) { 945 /* We failed to find the timestamp option. */ 946 le->timestamp = 0; 947 } else { 948 le->timestamp = 1; 949 le->tsval = ntohl(*(ts_ptr + 1)); 950 le->tsecr = *(ts_ptr + 2); 951 } 952 953 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 954 955 /* Pull out TCP sequence numbers and window size. */ 956 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 957 le->ack_seq = th->th_ack; 958 le->window = th->th_win; 959 le->flags = tcp_get_flags(th); 960 le->needs_merge = 0; 961 962 /* Setup new data pointers. */ 963 le->m_head = m; 964 le->m_tail = m_last(m); 965 } 966 967 static void 968 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 969 { 970 struct lro_parser *pa; 971 972 /* 973 * Push up the stack of the current entry 974 * and replace it with "m". 975 */ 976 struct mbuf *msave; 977 978 /* Grab off the next and save it */ 979 msave = le->m_head->m_nextpkt; 980 le->m_head->m_nextpkt = NULL; 981 982 /* Now push out the old entry */ 983 tcp_flush_out_entry(lc, le); 984 985 /* Re-parse new header, should not fail. */ 986 pa = tcp_lro_parser(m, &le->outer, &le->inner, false); 987 KASSERT(pa != NULL, 988 ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); 989 990 /* 991 * Now to replace the data properly in the entry 992 * we have to reset the TCP header and 993 * other fields. 994 */ 995 tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); 996 997 /* Restore the next list */ 998 m->m_nextpkt = msave; 999 } 1000 1001 static void 1002 tcp_lro_mbuf_append_pkthdr(struct lro_entry *le, const struct mbuf *p) 1003 { 1004 struct mbuf *m; 1005 uint32_t csum; 1006 1007 m = le->m_head; 1008 if (m->m_pkthdr.lro_nsegs == 1) { 1009 /* Compute relative checksum. */ 1010 csum = p->m_pkthdr.lro_tcp_d_csum; 1011 } else { 1012 /* Merge TCP data checksums. */ 1013 csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + 1014 (uint32_t)p->m_pkthdr.lro_tcp_d_csum; 1015 while (csum > 0xffff) 1016 csum = (csum >> 16) + (csum & 0xffff); 1017 } 1018 1019 /* Update various counters. */ 1020 m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; 1021 m->m_pkthdr.lro_tcp_d_csum = csum; 1022 m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; 1023 m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; 1024 le->needs_merge = 1; 1025 } 1026 1027 static void 1028 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) 1029 { 1030 /* 1031 * Walk through the mbuf chain we 1032 * have on tap and compress/condense 1033 * as required. 1034 */ 1035 uint32_t *ts_ptr; 1036 struct mbuf *m; 1037 struct tcphdr *th; 1038 uint32_t tcp_data_len_total; 1039 uint32_t tcp_data_seg_total; 1040 uint16_t tcp_data_len; 1041 uint16_t tcp_opt_len; 1042 1043 /* 1044 * First we must check the lead (m_head) 1045 * we must make sure that it is *not* 1046 * something that should be sent up 1047 * right away (sack etc). 1048 */ 1049 again: 1050 m = le->m_head->m_nextpkt; 1051 if (m == NULL) { 1052 /* Just one left. */ 1053 return; 1054 } 1055 1056 th = tcp_lro_get_th(m); 1057 tcp_opt_len = (th->th_off << 2); 1058 tcp_opt_len -= sizeof(*th); 1059 ts_ptr = (uint32_t *)(th + 1); 1060 1061 if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1062 *ts_ptr != TCP_LRO_TS_OPTION)) { 1063 /* 1064 * Its not the timestamp. We can't 1065 * use this guy as the head. 1066 */ 1067 le->m_head->m_nextpkt = m->m_nextpkt; 1068 tcp_push_and_replace(lc, le, m); 1069 goto again; 1070 } 1071 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1072 /* 1073 * Make sure that previously seen segments/ACKs are delivered 1074 * before this segment, e.g. FIN. 1075 */ 1076 le->m_head->m_nextpkt = m->m_nextpkt; 1077 tcp_push_and_replace(lc, le, m); 1078 goto again; 1079 } 1080 while((m = le->m_head->m_nextpkt) != NULL) { 1081 /* 1082 * condense m into le, first 1083 * pull m out of the list. 1084 */ 1085 le->m_head->m_nextpkt = m->m_nextpkt; 1086 m->m_nextpkt = NULL; 1087 /* Setup my data */ 1088 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 1089 th = tcp_lro_get_th(m); 1090 ts_ptr = (uint32_t *)(th + 1); 1091 tcp_opt_len = (th->th_off << 2); 1092 tcp_opt_len -= sizeof(*th); 1093 tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; 1094 tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; 1095 1096 if (tcp_data_seg_total >= lc->lro_ackcnt_lim || 1097 tcp_data_len_total >= lc->lro_length_lim) { 1098 /* Flush now if appending will result in overflow. */ 1099 tcp_push_and_replace(lc, le, m); 1100 goto again; 1101 } 1102 if (tcp_opt_len != 0 && 1103 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1104 *ts_ptr != TCP_LRO_TS_OPTION)) { 1105 /* 1106 * Maybe a sack in the new one? We need to 1107 * start all over after flushing the 1108 * current le. We will go up to the beginning 1109 * and flush it (calling the replace again possibly 1110 * or just returning). 1111 */ 1112 tcp_push_and_replace(lc, le, m); 1113 goto again; 1114 } 1115 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1116 tcp_push_and_replace(lc, le, m); 1117 goto again; 1118 } 1119 if (tcp_opt_len != 0) { 1120 uint32_t tsval = ntohl(*(ts_ptr + 1)); 1121 /* Make sure timestamp values are increasing. */ 1122 if (TSTMP_GT(le->tsval, tsval)) { 1123 tcp_push_and_replace(lc, le, m); 1124 goto again; 1125 } 1126 le->tsval = tsval; 1127 le->tsecr = *(ts_ptr + 2); 1128 } 1129 /* Try to append the new segment. */ 1130 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 1131 ((tcp_get_flags(th) & TH_ACK) != 1132 (le->flags & TH_ACK)) || 1133 (tcp_data_len == 0 && 1134 le->ack_seq == th->th_ack && 1135 le->window == th->th_win))) { 1136 /* Out of order packet, non-ACK + ACK or dup ACK. */ 1137 tcp_push_and_replace(lc, le, m); 1138 goto again; 1139 } 1140 if (tcp_data_len != 0 || 1141 SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1142 le->next_seq += tcp_data_len; 1143 le->ack_seq = th->th_ack; 1144 le->window = th->th_win; 1145 le->needs_merge = 1; 1146 } else if (th->th_ack == le->ack_seq) { 1147 if (WIN_GT(th->th_win, le->window)) { 1148 le->window = th->th_win; 1149 le->needs_merge = 1; 1150 } 1151 } 1152 1153 if (tcp_data_len == 0) { 1154 m_freem(m); 1155 continue; 1156 } 1157 1158 /* Merge TCP data checksum and length to head mbuf. */ 1159 tcp_lro_mbuf_append_pkthdr(le, m); 1160 1161 /* 1162 * Adjust the mbuf so that m_data points to the first byte of 1163 * the ULP payload. Adjust the mbuf to avoid complications and 1164 * append new segment to existing mbuf chain. 1165 */ 1166 m_adj(m, m->m_pkthdr.len - tcp_data_len); 1167 m_demote_pkthdr(m); 1168 le->m_tail->m_next = m; 1169 le->m_tail = m_last(m); 1170 } 1171 } 1172 1173 #ifdef TCPHPTS 1174 static void 1175 tcp_queue_pkts(struct inpcb *inp, struct tcpcb *tp, struct lro_entry *le) 1176 { 1177 INP_WLOCK_ASSERT(inp); 1178 if (tp->t_in_pkt == NULL) { 1179 /* Nothing yet there */ 1180 tp->t_in_pkt = le->m_head; 1181 tp->t_tail_pkt = le->m_last_mbuf; 1182 } else { 1183 /* Already some there */ 1184 tp->t_tail_pkt->m_nextpkt = le->m_head; 1185 tp->t_tail_pkt = le->m_last_mbuf; 1186 } 1187 le->m_head = NULL; 1188 le->m_last_mbuf = NULL; 1189 } 1190 1191 static struct mbuf * 1192 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, 1193 struct inpcb *inp, int32_t *new_m, bool can_append_old_cmp) 1194 { 1195 struct tcpcb *tp; 1196 struct mbuf *m; 1197 1198 tp = intotcpcb(inp); 1199 if (__predict_false(tp == NULL)) 1200 return (NULL); 1201 1202 /* Look at the last mbuf if any in queue */ 1203 if (can_append_old_cmp) { 1204 m = tp->t_tail_pkt; 1205 if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { 1206 if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { 1207 tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); 1208 *new_m = 0; 1209 counter_u64_add(tcp_extra_mbuf, 1); 1210 return (m); 1211 } else { 1212 /* Mark we ran out of space */ 1213 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1214 } 1215 } 1216 } 1217 /* Decide mbuf size. */ 1218 tcp_lro_log(tp, lc, le, NULL, 21, 0, 0, 0, 0); 1219 if (inp->inp_flags2 & INP_MBUF_L_ACKS) 1220 m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); 1221 else 1222 m = m_gethdr(M_NOWAIT, MT_DATA); 1223 1224 if (__predict_false(m == NULL)) { 1225 counter_u64_add(tcp_would_have_but, 1); 1226 return (NULL); 1227 } 1228 counter_u64_add(tcp_comp_total, 1); 1229 m->m_pkthdr.rcvif = lc->ifp; 1230 m->m_flags |= M_ACKCMP; 1231 *new_m = 1; 1232 return (m); 1233 } 1234 1235 static struct inpcb * 1236 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) 1237 { 1238 struct inpcb *inp; 1239 1240 switch (pa->data.lro_type) { 1241 #ifdef INET6 1242 case LRO_TYPE_IPV6_TCP: 1243 inp = in6_pcblookup(&V_tcbinfo, 1244 &pa->data.s_addr.v6, 1245 pa->data.s_port, 1246 &pa->data.d_addr.v6, 1247 pa->data.d_port, 1248 INPLOOKUP_WLOCKPCB, 1249 ifp); 1250 break; 1251 #endif 1252 #ifdef INET 1253 case LRO_TYPE_IPV4_TCP: 1254 inp = in_pcblookup(&V_tcbinfo, 1255 pa->data.s_addr.v4, 1256 pa->data.s_port, 1257 pa->data.d_addr.v4, 1258 pa->data.d_port, 1259 INPLOOKUP_WLOCKPCB, 1260 ifp); 1261 break; 1262 #endif 1263 default: 1264 inp = NULL; 1265 break; 1266 } 1267 return (inp); 1268 } 1269 1270 static inline bool 1271 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) 1272 { 1273 /* 1274 * This function returns two bits of valuable information. 1275 * a) Is what is present capable of being ack-compressed, 1276 * we can ack-compress if there is no options or just 1277 * a timestamp option, and of course the th_flags must 1278 * be correct as well. 1279 * b) Our other options present such as SACK. This is 1280 * used to determine if we want to wakeup or not. 1281 */ 1282 bool ret = true; 1283 1284 switch (th->th_off << 2) { 1285 case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): 1286 *ppts = (uint32_t *)(th + 1); 1287 /* Check if we have only one timestamp option. */ 1288 if (**ppts == TCP_LRO_TS_OPTION) 1289 *other_opts = false; 1290 else { 1291 *other_opts = true; 1292 ret = false; 1293 } 1294 break; 1295 case (sizeof(*th)): 1296 /* No options. */ 1297 *ppts = NULL; 1298 *other_opts = false; 1299 break; 1300 default: 1301 *ppts = NULL; 1302 *other_opts = true; 1303 ret = false; 1304 break; 1305 } 1306 /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ 1307 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) 1308 ret = false; 1309 /* If it has data on it we cannot compress it */ 1310 if (m->m_pkthdr.lro_tcp_d_len) 1311 ret = false; 1312 1313 /* ACK flag must be set. */ 1314 if (!(tcp_get_flags(th) & TH_ACK)) 1315 ret = false; 1316 return (ret); 1317 } 1318 1319 static int 1320 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) 1321 { 1322 struct inpcb *inp; 1323 struct tcpcb *tp; 1324 struct mbuf **pp, *cmp, *mv_to; 1325 struct ifnet *lagg_ifp; 1326 bool bpf_req, lagg_bpf_req, should_wake, can_append_old_cmp; 1327 1328 /* Check if packet doesn't belongs to our network interface. */ 1329 if ((tcplro_stacks_wanting_mbufq == 0) || 1330 (le->outer.data.vlan_id != 0) || 1331 (le->inner.data.lro_type != LRO_TYPE_NONE)) 1332 return (TCP_LRO_CANNOT); 1333 1334 #ifdef INET6 1335 /* 1336 * Be proactive about unspecified IPv6 address in source. As 1337 * we use all-zero to indicate unbounded/unconnected pcb, 1338 * unspecified IPv6 address can be used to confuse us. 1339 * 1340 * Note that packets with unspecified IPv6 destination is 1341 * already dropped in ip6_input. 1342 */ 1343 if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && 1344 IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) 1345 return (TCP_LRO_CANNOT); 1346 1347 if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && 1348 IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) 1349 return (TCP_LRO_CANNOT); 1350 #endif 1351 /* Lookup inp, if any. */ 1352 inp = tcp_lro_lookup(lc->ifp, 1353 (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); 1354 if (inp == NULL) 1355 return (TCP_LRO_CANNOT); 1356 1357 counter_u64_add(tcp_inp_lro_locks_taken, 1); 1358 1359 /* Get TCP control structure. */ 1360 tp = intotcpcb(inp); 1361 1362 /* Check if the inp is dead, Jim. */ 1363 if (tp == NULL || 1364 (inp->inp_flags & INP_DROPPED) || 1365 (tp->t_state == TCPS_TIME_WAIT)) { 1366 INP_WUNLOCK(inp); 1367 return (TCP_LRO_CANNOT); 1368 } 1369 if ((inp->inp_irq_cpu_set == 0) && (lc->lro_cpu_is_set == 1)) { 1370 inp->inp_irq_cpu = lc->lro_last_cpu; 1371 inp->inp_irq_cpu_set = 1; 1372 } 1373 /* Check if the transport doesn't support the needed optimizations. */ 1374 if ((inp->inp_flags2 & (INP_SUPPORTS_MBUFQ | INP_MBUF_ACKCMP)) == 0) { 1375 INP_WUNLOCK(inp); 1376 return (TCP_LRO_CANNOT); 1377 } 1378 1379 if (inp->inp_flags2 & INP_MBUF_QUEUE_READY) 1380 should_wake = false; 1381 else 1382 should_wake = true; 1383 /* Check if packets should be tapped to BPF. */ 1384 bpf_req = bpf_peers_present(lc->ifp->if_bpf); 1385 lagg_bpf_req = false; 1386 lagg_ifp = NULL; 1387 if (lc->ifp->if_type == IFT_IEEE8023ADLAG || 1388 lc->ifp->if_type == IFT_INFINIBANDLAG) { 1389 struct lagg_port *lp = lc->ifp->if_lagg; 1390 struct lagg_softc *sc = lp->lp_softc; 1391 1392 lagg_ifp = sc->sc_ifp; 1393 if (lagg_ifp != NULL) 1394 lagg_bpf_req = bpf_peers_present(lagg_ifp->if_bpf); 1395 } 1396 1397 /* Strip and compress all the incoming packets. */ 1398 can_append_old_cmp = true; 1399 cmp = NULL; 1400 for (pp = &le->m_head; *pp != NULL; ) { 1401 mv_to = NULL; 1402 if (do_bpf_strip_and_compress(inp, lc, le, pp, 1403 &cmp, &mv_to, &should_wake, bpf_req, 1404 lagg_bpf_req, lagg_ifp, can_append_old_cmp) == false) { 1405 /* Advance to next mbuf. */ 1406 pp = &(*pp)->m_nextpkt; 1407 /* 1408 * Once we have appended we can't look in the pending 1409 * inbound packets for a compressed ack to append to. 1410 */ 1411 can_append_old_cmp = false; 1412 /* 1413 * Once we append we also need to stop adding to any 1414 * compressed ack we were remembering. A new cmp 1415 * ack will be required. 1416 */ 1417 cmp = NULL; 1418 tcp_lro_log(tp, lc, le, NULL, 25, 0, 0, 0, 0); 1419 } else if (mv_to != NULL) { 1420 /* We are asked to move pp up */ 1421 pp = &mv_to->m_nextpkt; 1422 tcp_lro_log(tp, lc, le, NULL, 24, 0, 0, 0, 0); 1423 } else 1424 tcp_lro_log(tp, lc, le, NULL, 26, 0, 0, 0, 0); 1425 } 1426 /* Update "m_last_mbuf", if any. */ 1427 if (pp == &le->m_head) 1428 le->m_last_mbuf = *pp; 1429 else 1430 le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); 1431 1432 /* Check if any data mbufs left. */ 1433 if (le->m_head != NULL) { 1434 counter_u64_add(tcp_inp_lro_direct_queue, 1); 1435 tcp_lro_log(tp, lc, le, NULL, 22, 1, inp->inp_flags2, 0, 1); 1436 tcp_queue_pkts(inp, tp, le); 1437 } 1438 if (should_wake) { 1439 /* Wakeup */ 1440 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 1441 if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0)) 1442 inp = NULL; 1443 } 1444 if (inp != NULL) 1445 INP_WUNLOCK(inp); 1446 return (0); /* Success. */ 1447 } 1448 #endif 1449 1450 void 1451 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 1452 { 1453 /* Only optimise if there are multiple packets waiting. */ 1454 #ifdef TCPHPTS 1455 int error; 1456 #endif 1457 1458 NET_EPOCH_ASSERT(); 1459 #ifdef TCPHPTS 1460 CURVNET_SET(lc->ifp->if_vnet); 1461 error = tcp_lro_flush_tcphpts(lc, le); 1462 CURVNET_RESTORE(); 1463 if (error != 0) { 1464 #endif 1465 tcp_lro_condense(lc, le); 1466 tcp_flush_out_entry(lc, le); 1467 #ifdef TCPHPTS 1468 } 1469 #endif 1470 lc->lro_flushed++; 1471 bzero(le, sizeof(*le)); 1472 LIST_INSERT_HEAD(&lc->lro_free, le, next); 1473 } 1474 1475 #ifdef HAVE_INLINE_FLSLL 1476 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 1477 #else 1478 static inline uint64_t 1479 tcp_lro_msb_64(uint64_t x) 1480 { 1481 x |= (x >> 1); 1482 x |= (x >> 2); 1483 x |= (x >> 4); 1484 x |= (x >> 8); 1485 x |= (x >> 16); 1486 x |= (x >> 32); 1487 return (x & ~(x >> 1)); 1488 } 1489 #endif 1490 1491 /* 1492 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1493 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1494 * number of elements to sort and 64 is the number of sequence bits 1495 * available. The algorithm is bit-slicing the 64-bit sequence number, 1496 * sorting one bit at a time from the most significant bit until the 1497 * least significant one, skipping the constant bits. This is 1498 * typically called a radix sort. 1499 */ 1500 static void 1501 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1502 { 1503 struct lro_mbuf_sort temp; 1504 uint64_t ones; 1505 uint64_t zeros; 1506 uint32_t x; 1507 uint32_t y; 1508 1509 repeat: 1510 /* for small arrays insertion sort is faster */ 1511 if (size <= 12) { 1512 for (x = 1; x < size; x++) { 1513 temp = parray[x]; 1514 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1515 parray[y] = parray[y - 1]; 1516 parray[y] = temp; 1517 } 1518 return; 1519 } 1520 1521 /* compute sequence bits which are constant */ 1522 ones = 0; 1523 zeros = 0; 1524 for (x = 0; x != size; x++) { 1525 ones |= parray[x].seq; 1526 zeros |= ~parray[x].seq; 1527 } 1528 1529 /* compute bits which are not constant into "ones" */ 1530 ones &= zeros; 1531 if (ones == 0) 1532 return; 1533 1534 /* pick the most significant bit which is not constant */ 1535 ones = tcp_lro_msb_64(ones); 1536 1537 /* 1538 * Move entries having cleared sequence bits to the beginning 1539 * of the array: 1540 */ 1541 for (x = y = 0; y != size; y++) { 1542 /* skip set bits */ 1543 if (parray[y].seq & ones) 1544 continue; 1545 /* swap entries */ 1546 temp = parray[x]; 1547 parray[x] = parray[y]; 1548 parray[y] = temp; 1549 x++; 1550 } 1551 1552 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1553 1554 /* sort zeros */ 1555 tcp_lro_sort(parray, x); 1556 1557 /* sort ones */ 1558 parray += x; 1559 size -= x; 1560 goto repeat; 1561 } 1562 1563 void 1564 tcp_lro_flush_all(struct lro_ctrl *lc) 1565 { 1566 uint64_t seq; 1567 uint64_t nseq; 1568 unsigned x; 1569 1570 NET_EPOCH_ASSERT(); 1571 /* check if no mbufs to flush */ 1572 if (lc->lro_mbuf_count == 0) 1573 goto done; 1574 if (lc->lro_cpu_is_set == 0) { 1575 if (lc->lro_last_cpu == curcpu) { 1576 lc->lro_cnt_of_same_cpu++; 1577 /* Have we reached the threshold to declare a cpu? */ 1578 if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) 1579 lc->lro_cpu_is_set = 1; 1580 } else { 1581 lc->lro_last_cpu = curcpu; 1582 lc->lro_cnt_of_same_cpu = 0; 1583 } 1584 } 1585 CURVNET_SET(lc->ifp->if_vnet); 1586 1587 /* get current time */ 1588 binuptime(&lc->lro_last_queue_time); 1589 1590 /* sort all mbufs according to stream */ 1591 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1592 1593 /* input data into LRO engine, stream by stream */ 1594 seq = 0; 1595 for (x = 0; x != lc->lro_mbuf_count; x++) { 1596 struct mbuf *mb; 1597 1598 /* get mbuf */ 1599 mb = lc->lro_mbuf_data[x].mb; 1600 1601 /* get sequence number, masking away the packet index */ 1602 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1603 1604 /* check for new stream */ 1605 if (seq != nseq) { 1606 seq = nseq; 1607 1608 /* flush active streams */ 1609 tcp_lro_rx_done(lc); 1610 } 1611 1612 /* add packet to LRO engine */ 1613 if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { 1614 /* Flush anything we have acummulated */ 1615 tcp_lro_flush_active(lc); 1616 /* input packet to network layer */ 1617 (*lc->ifp->if_input)(lc->ifp, mb); 1618 lc->lro_queued++; 1619 lc->lro_flushed++; 1620 } 1621 } 1622 CURVNET_RESTORE(); 1623 done: 1624 /* flush active streams */ 1625 tcp_lro_rx_done(lc); 1626 1627 #ifdef TCPHPTS 1628 tcp_run_hpts(); 1629 #endif 1630 lc->lro_mbuf_count = 0; 1631 } 1632 1633 #ifdef TCPHPTS 1634 static void 1635 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, 1636 uint32_t *ts_ptr, uint16_t iptos) 1637 { 1638 /* 1639 * Given a TCP ACK, summarize it down into the small TCP ACK 1640 * entry. 1641 */ 1642 ae->timestamp = m->m_pkthdr.rcv_tstmp; 1643 ae->flags = 0; 1644 if (m->m_flags & M_TSTMP_LRO) 1645 ae->flags |= TSTMP_LRO; 1646 else if (m->m_flags & M_TSTMP) 1647 ae->flags |= TSTMP_HDWR; 1648 ae->seq = ntohl(th->th_seq); 1649 ae->ack = ntohl(th->th_ack); 1650 ae->flags |= tcp_get_flags(th); 1651 if (ts_ptr != NULL) { 1652 ae->ts_value = ntohl(ts_ptr[1]); 1653 ae->ts_echo = ntohl(ts_ptr[2]); 1654 ae->flags |= HAS_TSTMP; 1655 } 1656 ae->win = ntohs(th->th_win); 1657 ae->codepoint = iptos; 1658 } 1659 1660 /* 1661 * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets 1662 * and strip all, but the IPv4/IPv6 header. 1663 */ 1664 static bool 1665 do_bpf_strip_and_compress(struct inpcb *inp, struct lro_ctrl *lc, 1666 struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, 1667 bool *should_wake, bool bpf_req, bool lagg_bpf_req, struct ifnet *lagg_ifp, bool can_append_old_cmp) 1668 { 1669 union { 1670 void *ptr; 1671 struct ip *ip4; 1672 struct ip6_hdr *ip6; 1673 } l3; 1674 struct mbuf *m; 1675 struct mbuf *nm; 1676 struct tcphdr *th; 1677 struct tcp_ackent *ack_ent; 1678 uint32_t *ts_ptr; 1679 int32_t n_mbuf; 1680 bool other_opts, can_compress; 1681 uint8_t lro_type; 1682 uint16_t iptos; 1683 int tcp_hdr_offset; 1684 int idx; 1685 1686 /* Get current mbuf. */ 1687 m = *pp; 1688 1689 /* Let the BPF see the packet */ 1690 if (__predict_false(bpf_req)) 1691 ETHER_BPF_MTAP(lc->ifp, m); 1692 1693 if (__predict_false(lagg_bpf_req)) 1694 ETHER_BPF_MTAP(lagg_ifp, m); 1695 1696 tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; 1697 lro_type = le->inner.data.lro_type; 1698 switch (lro_type) { 1699 case LRO_TYPE_NONE: 1700 lro_type = le->outer.data.lro_type; 1701 switch (lro_type) { 1702 case LRO_TYPE_IPV4_TCP: 1703 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1704 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1705 break; 1706 case LRO_TYPE_IPV6_TCP: 1707 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1708 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1709 break; 1710 default: 1711 goto compressed; 1712 } 1713 break; 1714 case LRO_TYPE_IPV4_TCP: 1715 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1716 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1717 break; 1718 case LRO_TYPE_IPV6_TCP: 1719 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1720 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1721 break; 1722 default: 1723 goto compressed; 1724 } 1725 1726 MPASS(tcp_hdr_offset >= 0); 1727 1728 m_adj(m, tcp_hdr_offset); 1729 m->m_flags |= M_LRO_EHDRSTRP; 1730 m->m_flags &= ~M_ACKCMP; 1731 m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; 1732 1733 th = tcp_lro_get_th(m); 1734 1735 th->th_sum = 0; /* TCP checksum is valid. */ 1736 1737 /* Check if ACK can be compressed */ 1738 can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); 1739 1740 /* Now lets look at the should wake states */ 1741 if ((other_opts == true) && 1742 ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) == 0)) { 1743 /* 1744 * If there are other options (SACK?) and the 1745 * tcp endpoint has not expressly told us it does 1746 * not care about SACKS, then we should wake up. 1747 */ 1748 *should_wake = true; 1749 } 1750 /* Is the ack compressable? */ 1751 if (can_compress == false) 1752 goto done; 1753 /* Does the TCP endpoint support ACK compression? */ 1754 if ((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0) 1755 goto done; 1756 1757 /* Lets get the TOS/traffic class field */ 1758 l3.ptr = mtod(m, void *); 1759 switch (lro_type) { 1760 case LRO_TYPE_IPV4_TCP: 1761 iptos = l3.ip4->ip_tos; 1762 break; 1763 case LRO_TYPE_IPV6_TCP: 1764 iptos = IPV6_TRAFFIC_CLASS(l3.ip6); 1765 break; 1766 default: 1767 iptos = 0; /* Keep compiler happy. */ 1768 break; 1769 } 1770 /* Now lets get space if we don't have some already */ 1771 if (*cmp == NULL) { 1772 new_one: 1773 nm = tcp_lro_get_last_if_ackcmp(lc, le, inp, &n_mbuf, can_append_old_cmp); 1774 if (__predict_false(nm == NULL)) 1775 goto done; 1776 *cmp = nm; 1777 if (n_mbuf) { 1778 /* 1779 * Link in the new cmp ack to our in-order place, 1780 * first set our cmp ack's next to where we are. 1781 */ 1782 nm->m_nextpkt = m; 1783 (*pp) = nm; 1784 /* 1785 * Set it up so mv_to is advanced to our 1786 * compressed ack. This way the caller can 1787 * advance pp to the right place. 1788 */ 1789 *mv_to = nm; 1790 /* 1791 * Advance it here locally as well. 1792 */ 1793 pp = &nm->m_nextpkt; 1794 } 1795 } else { 1796 /* We have one already we are working on */ 1797 nm = *cmp; 1798 if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { 1799 /* We ran out of space */ 1800 inp->inp_flags2 |= INP_MBUF_L_ACKS; 1801 goto new_one; 1802 } 1803 } 1804 MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); 1805 counter_u64_add(tcp_inp_lro_compressed, 1); 1806 le->compressed++; 1807 /* We can add in to the one on the tail */ 1808 ack_ent = mtod(nm, struct tcp_ackent *); 1809 idx = (nm->m_len / sizeof(struct tcp_ackent)); 1810 build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); 1811 1812 /* Bump the size of both pkt-hdr and len */ 1813 nm->m_len += sizeof(struct tcp_ackent); 1814 nm->m_pkthdr.len += sizeof(struct tcp_ackent); 1815 compressed: 1816 /* Advance to next mbuf before freeing. */ 1817 *pp = m->m_nextpkt; 1818 m->m_nextpkt = NULL; 1819 m_freem(m); 1820 return (true); 1821 done: 1822 counter_u64_add(tcp_uncomp_total, 1); 1823 le->uncompressed++; 1824 return (false); 1825 } 1826 #endif 1827 1828 static struct lro_head * 1829 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) 1830 { 1831 u_long hash; 1832 1833 if (M_HASHTYPE_ISHASH(m)) { 1834 hash = m->m_pkthdr.flowid; 1835 } else { 1836 for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) 1837 hash += parser->data.raw[i]; 1838 } 1839 return (&lc->lro_hash[hash % lc->lro_hashsz]); 1840 } 1841 1842 static int 1843 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) 1844 { 1845 struct lro_parser pi; /* inner address data */ 1846 struct lro_parser po; /* outer address data */ 1847 struct lro_parser *pa; /* current parser for TCP stream */ 1848 struct lro_entry *le; 1849 struct lro_head *bucket; 1850 struct tcphdr *th; 1851 int tcp_data_len; 1852 int tcp_opt_len; 1853 int error; 1854 uint16_t tcp_data_sum; 1855 1856 #ifdef INET 1857 /* Quickly decide if packet cannot be LRO'ed */ 1858 if (__predict_false(V_ipforwarding != 0)) 1859 return (TCP_LRO_CANNOT); 1860 #endif 1861 #ifdef INET6 1862 /* Quickly decide if packet cannot be LRO'ed */ 1863 if (__predict_false(V_ip6_forwarding != 0)) 1864 return (TCP_LRO_CANNOT); 1865 #endif 1866 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1867 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1868 (m->m_pkthdr.csum_data != 0xffff)) { 1869 /* 1870 * The checksum either did not have hardware offload 1871 * or it was a bad checksum. We can't LRO such 1872 * a packet. 1873 */ 1874 counter_u64_add(tcp_bad_csums, 1); 1875 return (TCP_LRO_CANNOT); 1876 } 1877 /* We expect a contiguous header [eh, ip, tcp]. */ 1878 pa = tcp_lro_parser(m, &po, &pi, true); 1879 if (__predict_false(pa == NULL)) 1880 return (TCP_LRO_NOT_SUPPORTED); 1881 1882 /* We don't expect any padding. */ 1883 error = tcp_lro_trim_mbuf_chain(m, pa); 1884 if (__predict_false(error != 0)) 1885 return (error); 1886 1887 #ifdef INET 1888 switch (pa->data.lro_type) { 1889 case LRO_TYPE_IPV4_TCP: 1890 error = tcp_lro_rx_ipv4(lc, m, pa->ip4); 1891 if (__predict_false(error != 0)) 1892 return (error); 1893 break; 1894 default: 1895 break; 1896 } 1897 #endif 1898 /* If no hardware or arrival stamp on the packet add timestamp */ 1899 if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { 1900 m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 1901 m->m_flags |= M_TSTMP_LRO; 1902 } 1903 1904 /* Get pointer to TCP header. */ 1905 th = pa->tcp; 1906 1907 /* Don't process SYN packets. */ 1908 if (__predict_false(tcp_get_flags(th) & TH_SYN)) 1909 return (TCP_LRO_CANNOT); 1910 1911 /* Get total TCP header length and compute payload length. */ 1912 tcp_opt_len = (th->th_off << 2); 1913 tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - 1914 (uint8_t *)m->m_data) - tcp_opt_len; 1915 tcp_opt_len -= sizeof(*th); 1916 1917 /* Don't process invalid TCP headers. */ 1918 if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) 1919 return (TCP_LRO_CANNOT); 1920 1921 /* Compute TCP data only checksum. */ 1922 if (tcp_data_len == 0) 1923 tcp_data_sum = 0; /* no data, no checksum */ 1924 else if (__predict_false(csum != 0)) 1925 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); 1926 else 1927 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); 1928 1929 /* Save TCP info in mbuf. */ 1930 m->m_nextpkt = NULL; 1931 m->m_pkthdr.rcvif = lc->ifp; 1932 m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; 1933 m->m_pkthdr.lro_tcp_d_len = tcp_data_len; 1934 m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); 1935 m->m_pkthdr.lro_nsegs = 1; 1936 1937 /* Get hash bucket. */ 1938 if (!use_hash) { 1939 bucket = &lc->lro_hash[0]; 1940 } else { 1941 bucket = tcp_lro_rx_get_bucket(lc, m, pa); 1942 } 1943 1944 /* Try to find a matching previous segment. */ 1945 LIST_FOREACH(le, bucket, hash_next) { 1946 /* Compare addresses and ports. */ 1947 if (lro_address_compare(&po.data, &le->outer.data) == false || 1948 lro_address_compare(&pi.data, &le->inner.data) == false) 1949 continue; 1950 1951 /* Check if no data and old ACK. */ 1952 if (tcp_data_len == 0 && 1953 SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1954 m_freem(m); 1955 return (0); 1956 } 1957 1958 /* Mark "m" in the last spot. */ 1959 le->m_last_mbuf->m_nextpkt = m; 1960 /* Now set the tail to "m". */ 1961 le->m_last_mbuf = m; 1962 return (0); 1963 } 1964 1965 /* Try to find an empty slot. */ 1966 if (LIST_EMPTY(&lc->lro_free)) 1967 return (TCP_LRO_NO_ENTRIES); 1968 1969 /* Start a new segment chain. */ 1970 le = LIST_FIRST(&lc->lro_free); 1971 LIST_REMOVE(le, next); 1972 tcp_lro_active_insert(lc, bucket, le); 1973 1974 /* Make sure the headers are set. */ 1975 le->inner = pi; 1976 le->outer = po; 1977 1978 /* Store time this entry was allocated. */ 1979 le->alloc_time = lc->lro_last_queue_time; 1980 1981 tcp_set_entry_to_mbuf(lc, le, m, th); 1982 1983 /* Now set the tail to "m". */ 1984 le->m_last_mbuf = m; 1985 1986 return (0); 1987 } 1988 1989 int 1990 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1991 { 1992 int error; 1993 1994 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1995 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1996 (m->m_pkthdr.csum_data != 0xffff)) { 1997 /* 1998 * The checksum either did not have hardware offload 1999 * or it was a bad checksum. We can't LRO such 2000 * a packet. 2001 */ 2002 counter_u64_add(tcp_bad_csums, 1); 2003 return (TCP_LRO_CANNOT); 2004 } 2005 /* get current time */ 2006 binuptime(&lc->lro_last_queue_time); 2007 CURVNET_SET(lc->ifp->if_vnet); 2008 error = tcp_lro_rx_common(lc, m, csum, true); 2009 if (__predict_false(error != 0)) { 2010 /* 2011 * Flush anything we have acummulated 2012 * ahead of this packet that can't 2013 * be LRO'd. This preserves order. 2014 */ 2015 tcp_lro_flush_active(lc); 2016 } 2017 CURVNET_RESTORE(); 2018 2019 return (error); 2020 } 2021 2022 void 2023 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 2024 { 2025 NET_EPOCH_ASSERT(); 2026 /* sanity checks */ 2027 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 2028 lc->lro_mbuf_max == 0)) { 2029 /* packet drop */ 2030 m_freem(mb); 2031 return; 2032 } 2033 2034 /* check if packet is not LRO capable */ 2035 if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 2036 /* input packet to network layer */ 2037 (*lc->ifp->if_input) (lc->ifp, mb); 2038 return; 2039 } 2040 2041 /* If no hardware or arrival stamp on the packet add timestamp */ 2042 if ((tcplro_stacks_wanting_mbufq > 0) && 2043 (tcp_less_accurate_lro_ts == 0) && 2044 ((mb->m_flags & M_TSTMP) == 0)) { 2045 /* Add in an LRO time since no hardware */ 2046 binuptime(&lc->lro_last_queue_time); 2047 mb->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 2048 mb->m_flags |= M_TSTMP_LRO; 2049 } 2050 2051 /* create sequence number */ 2052 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 2053 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 2054 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 2055 ((uint64_t)lc->lro_mbuf_count); 2056 2057 /* enter mbuf */ 2058 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 2059 2060 /* flush if array is full */ 2061 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 2062 tcp_lro_flush_all(lc); 2063 } 2064 2065 /* end */ 2066