1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016-2021 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sockbuf.h> 49 #include <sys/sysctl.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/ethernet.h> 54 #include <net/bpf.h> 55 #include <net/vnet.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_private.h> 59 #include <net/if_types.h> 60 #include <net/infiniband.h> 61 #include <net/if_lagg.h> 62 63 #include <netinet/in_systm.h> 64 #include <netinet/in.h> 65 #include <netinet/ip6.h> 66 #include <netinet/ip.h> 67 #include <netinet/ip_var.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet6/in6_pcb.h> 70 #include <netinet/tcp.h> 71 #include <netinet/tcp_seq.h> 72 #include <netinet/tcp_lro.h> 73 #include <netinet/tcp_var.h> 74 #include <netinet/tcpip.h> 75 #include <netinet/tcp_hpts.h> 76 #include <netinet/tcp_log_buf.h> 77 #include <netinet/tcp_fsm.h> 78 #include <netinet/udp.h> 79 #include <netinet6/ip6_var.h> 80 81 #include <machine/in_cksum.h> 82 83 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 84 85 #define TCP_LRO_TS_OPTION \ 86 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 87 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 88 89 static void tcp_lro_rx_done(struct lro_ctrl *lc); 90 static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, 91 uint32_t csum, bool use_hash); 92 93 #ifdef TCPHPTS 94 static bool do_bpf_strip_and_compress(struct tcpcb *, struct lro_ctrl *, 95 struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, 96 bool *, bool, bool, struct ifnet *, bool); 97 98 #endif 99 100 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 101 "TCP LRO"); 102 103 static long tcplro_stacks_wanting_mbufq; 104 counter_u64_t tcp_inp_lro_direct_queue; 105 counter_u64_t tcp_inp_lro_wokeup_queue; 106 counter_u64_t tcp_inp_lro_compressed; 107 counter_u64_t tcp_inp_lro_locks_taken; 108 counter_u64_t tcp_extra_mbuf; 109 counter_u64_t tcp_would_have_but; 110 counter_u64_t tcp_comp_total; 111 counter_u64_t tcp_uncomp_total; 112 counter_u64_t tcp_bad_csums; 113 114 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 115 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 116 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 117 "default number of LRO entries"); 118 119 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; 120 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, 121 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, 122 "Number of interrupts in a row on the same CPU that will make us declare an 'affinity' cpu?"); 123 124 static uint32_t tcp_less_accurate_lro_ts = 0; 125 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_less_accurate, 126 CTLFLAG_MPSAFE, &tcp_less_accurate_lro_ts, 0, 127 "Do we trade off efficency by doing less timestamp operations for time accuracy?"); 128 129 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 130 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 131 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 132 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 133 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 134 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 135 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 136 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 137 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, 138 &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); 139 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, 140 &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); 141 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, 142 &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); 143 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, 144 &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); 145 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, 146 &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); 147 148 void 149 tcp_lro_reg_mbufq(void) 150 { 151 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 152 } 153 154 void 155 tcp_lro_dereg_mbufq(void) 156 { 157 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 158 } 159 160 static __inline void 161 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 162 struct lro_entry *le) 163 { 164 165 LIST_INSERT_HEAD(&lc->lro_active, le, next); 166 LIST_INSERT_HEAD(bucket, le, hash_next); 167 } 168 169 static __inline void 170 tcp_lro_active_remove(struct lro_entry *le) 171 { 172 173 LIST_REMOVE(le, next); /* active list */ 174 LIST_REMOVE(le, hash_next); /* hash bucket */ 175 } 176 177 int 178 tcp_lro_init(struct lro_ctrl *lc) 179 { 180 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 181 } 182 183 int 184 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 185 unsigned lro_entries, unsigned lro_mbufs) 186 { 187 struct lro_entry *le; 188 size_t size; 189 unsigned i, elements; 190 191 lc->lro_bad_csum = 0; 192 lc->lro_queued = 0; 193 lc->lro_flushed = 0; 194 lc->lro_mbuf_count = 0; 195 lc->lro_mbuf_max = lro_mbufs; 196 lc->lro_cnt = lro_entries; 197 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 198 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 199 lc->ifp = ifp; 200 LIST_INIT(&lc->lro_free); 201 LIST_INIT(&lc->lro_active); 202 203 /* create hash table to accelerate entry lookup */ 204 if (lro_entries > lro_mbufs) 205 elements = lro_entries; 206 else 207 elements = lro_mbufs; 208 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 209 HASH_NOWAIT); 210 if (lc->lro_hash == NULL) { 211 memset(lc, 0, sizeof(*lc)); 212 return (ENOMEM); 213 } 214 215 /* compute size to allocate */ 216 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 217 (lro_entries * sizeof(*le)); 218 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 219 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 220 221 /* check for out of memory */ 222 if (lc->lro_mbuf_data == NULL) { 223 free(lc->lro_hash, M_LRO); 224 memset(lc, 0, sizeof(*lc)); 225 return (ENOMEM); 226 } 227 /* compute offset for LRO entries */ 228 le = (struct lro_entry *) 229 (lc->lro_mbuf_data + lro_mbufs); 230 231 /* setup linked list */ 232 for (i = 0; i != lro_entries; i++) 233 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 234 235 return (0); 236 } 237 238 struct vxlan_header { 239 uint32_t vxlh_flags; 240 uint32_t vxlh_vni; 241 }; 242 243 static inline void * 244 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) 245 { 246 const struct ether_vlan_header *eh; 247 void *old; 248 uint16_t eth_type; 249 250 if (update_data) 251 memset(parser, 0, sizeof(*parser)); 252 253 old = ptr; 254 255 if (is_vxlan) { 256 const struct vxlan_header *vxh; 257 vxh = ptr; 258 ptr = (uint8_t *)ptr + sizeof(*vxh); 259 if (update_data) { 260 parser->data.vxlan_vni = 261 vxh->vxlh_vni & htonl(0xffffff00); 262 } 263 } 264 265 eh = ptr; 266 if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { 267 eth_type = eh->evl_proto; 268 if (update_data) { 269 /* strip priority and keep VLAN ID only */ 270 parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); 271 } 272 /* advance to next header */ 273 ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 274 mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 275 } else { 276 eth_type = eh->evl_encap_proto; 277 /* advance to next header */ 278 mlen -= ETHER_HDR_LEN; 279 ptr = (uint8_t *)ptr + ETHER_HDR_LEN; 280 } 281 if (__predict_false(mlen <= 0)) 282 return (NULL); 283 switch (eth_type) { 284 #ifdef INET 285 case htons(ETHERTYPE_IP): 286 parser->ip4 = ptr; 287 if (__predict_false(mlen < sizeof(struct ip))) 288 return (NULL); 289 /* Ensure there are no IPv4 options. */ 290 if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) 291 break; 292 /* .. and the packet is not fragmented. */ 293 if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 294 break; 295 /* .. and the packet has valid src/dst addrs */ 296 if (__predict_false(parser->ip4->ip_src.s_addr == INADDR_ANY || 297 parser->ip4->ip_dst.s_addr == INADDR_ANY)) 298 break; 299 ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); 300 mlen -= sizeof(struct ip); 301 if (update_data) { 302 parser->data.s_addr.v4 = parser->ip4->ip_src; 303 parser->data.d_addr.v4 = parser->ip4->ip_dst; 304 } 305 switch (parser->ip4->ip_p) { 306 case IPPROTO_UDP: 307 if (__predict_false(mlen < sizeof(struct udphdr))) 308 return (NULL); 309 parser->udp = ptr; 310 if (update_data) { 311 parser->data.lro_type = LRO_TYPE_IPV4_UDP; 312 parser->data.s_port = parser->udp->uh_sport; 313 parser->data.d_port = parser->udp->uh_dport; 314 } else { 315 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); 316 } 317 ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); 318 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 319 return (ptr); 320 case IPPROTO_TCP: 321 parser->tcp = ptr; 322 if (__predict_false(mlen < sizeof(struct tcphdr))) 323 return (NULL); 324 if (update_data) { 325 parser->data.lro_type = LRO_TYPE_IPV4_TCP; 326 parser->data.s_port = parser->tcp->th_sport; 327 parser->data.d_port = parser->tcp->th_dport; 328 } else { 329 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); 330 } 331 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 332 return (NULL); 333 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 334 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 335 return (ptr); 336 default: 337 break; 338 } 339 break; 340 #endif 341 #ifdef INET6 342 case htons(ETHERTYPE_IPV6): 343 parser->ip6 = ptr; 344 if (__predict_false(mlen < sizeof(struct ip6_hdr))) 345 return (NULL); 346 /* Ensure the packet has valid src/dst addrs */ 347 if (__predict_false(IN6_IS_ADDR_UNSPECIFIED(&parser->ip6->ip6_src) || 348 IN6_IS_ADDR_UNSPECIFIED(&parser->ip6->ip6_dst))) 349 return (NULL); 350 ptr = (uint8_t *)ptr + sizeof(*parser->ip6); 351 if (update_data) { 352 parser->data.s_addr.v6 = parser->ip6->ip6_src; 353 parser->data.d_addr.v6 = parser->ip6->ip6_dst; 354 } 355 mlen -= sizeof(struct ip6_hdr); 356 switch (parser->ip6->ip6_nxt) { 357 case IPPROTO_UDP: 358 if (__predict_false(mlen < sizeof(struct udphdr))) 359 return (NULL); 360 parser->udp = ptr; 361 if (update_data) { 362 parser->data.lro_type = LRO_TYPE_IPV6_UDP; 363 parser->data.s_port = parser->udp->uh_sport; 364 parser->data.d_port = parser->udp->uh_dport; 365 } else { 366 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); 367 } 368 ptr = (uint8_t *)ptr + sizeof(*parser->udp); 369 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 370 return (ptr); 371 case IPPROTO_TCP: 372 if (__predict_false(mlen < sizeof(struct tcphdr))) 373 return (NULL); 374 parser->tcp = ptr; 375 if (update_data) { 376 parser->data.lro_type = LRO_TYPE_IPV6_TCP; 377 parser->data.s_port = parser->tcp->th_sport; 378 parser->data.d_port = parser->tcp->th_dport; 379 } else { 380 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); 381 } 382 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 383 return (NULL); 384 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 385 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 386 return (ptr); 387 default: 388 break; 389 } 390 break; 391 #endif 392 default: 393 break; 394 } 395 /* Invalid packet - cannot parse */ 396 return (NULL); 397 } 398 399 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | 400 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; 401 402 static inline struct lro_parser * 403 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) 404 { 405 void *data_ptr; 406 407 /* Try to parse outer headers first. */ 408 data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); 409 if (data_ptr == NULL || po->total_hdr_len > m->m_len) 410 return (NULL); 411 412 if (update_data) { 413 /* Store VLAN ID, if any. */ 414 if (__predict_false(m->m_flags & M_VLANTAG)) { 415 po->data.vlan_id = 416 htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); 417 } 418 /* Store decrypted flag, if any. */ 419 if (__predict_false((m->m_pkthdr.csum_flags & 420 CSUM_TLS_MASK) == CSUM_TLS_DECRYPTED)) 421 po->data.lro_flags |= LRO_FLAG_DECRYPTED; 422 } 423 424 switch (po->data.lro_type) { 425 case LRO_TYPE_IPV4_UDP: 426 case LRO_TYPE_IPV6_UDP: 427 /* Check for VXLAN headers. */ 428 if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) 429 break; 430 431 /* Try to parse inner headers. */ 432 data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, 433 (m->m_len - ((caddr_t)data_ptr - m->m_data))); 434 if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) 435 break; 436 437 /* Verify supported header types. */ 438 switch (pi->data.lro_type) { 439 case LRO_TYPE_IPV4_TCP: 440 case LRO_TYPE_IPV6_TCP: 441 return (pi); 442 default: 443 break; 444 } 445 break; 446 case LRO_TYPE_IPV4_TCP: 447 case LRO_TYPE_IPV6_TCP: 448 if (update_data) 449 memset(pi, 0, sizeof(*pi)); 450 return (po); 451 default: 452 break; 453 } 454 return (NULL); 455 } 456 457 static inline int 458 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) 459 { 460 int len; 461 462 switch (po->data.lro_type) { 463 #ifdef INET 464 case LRO_TYPE_IPV4_TCP: 465 len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + 466 ntohs(po->ip4->ip_len); 467 break; 468 #endif 469 #ifdef INET6 470 case LRO_TYPE_IPV6_TCP: 471 len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + 472 ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); 473 break; 474 #endif 475 default: 476 return (TCP_LRO_CANNOT); 477 } 478 479 /* 480 * If the frame is padded beyond the end of the IP packet, 481 * then trim the extra bytes off: 482 */ 483 if (__predict_true(m->m_pkthdr.len == len)) { 484 return (0); 485 } else if (m->m_pkthdr.len > len) { 486 m_adj(m, len - m->m_pkthdr.len); 487 return (0); 488 } 489 return (TCP_LRO_CANNOT); 490 } 491 492 static struct tcphdr * 493 tcp_lro_get_th(struct mbuf *m) 494 { 495 return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); 496 } 497 498 static void 499 lro_free_mbuf_chain(struct mbuf *m) 500 { 501 struct mbuf *save; 502 503 while (m) { 504 save = m->m_nextpkt; 505 m->m_nextpkt = NULL; 506 m_freem(m); 507 m = save; 508 } 509 } 510 511 void 512 tcp_lro_free(struct lro_ctrl *lc) 513 { 514 struct lro_entry *le; 515 unsigned x; 516 517 /* reset LRO free list */ 518 LIST_INIT(&lc->lro_free); 519 520 /* free active mbufs, if any */ 521 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 522 tcp_lro_active_remove(le); 523 lro_free_mbuf_chain(le->m_head); 524 } 525 526 /* free hash table */ 527 free(lc->lro_hash, M_LRO); 528 lc->lro_hash = NULL; 529 lc->lro_hashsz = 0; 530 531 /* free mbuf array, if any */ 532 for (x = 0; x != lc->lro_mbuf_count; x++) 533 m_freem(lc->lro_mbuf_data[x].mb); 534 lc->lro_mbuf_count = 0; 535 536 /* free allocated memory, if any */ 537 free(lc->lro_mbuf_data, M_LRO); 538 lc->lro_mbuf_data = NULL; 539 } 540 541 static uint16_t 542 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) 543 { 544 const uint16_t *ptr; 545 uint32_t csum; 546 uint16_t len; 547 548 csum = -th->th_sum; /* exclude checksum field */ 549 len = th->th_off; 550 ptr = (const uint16_t *)th; 551 while (len--) { 552 csum += *ptr; 553 ptr++; 554 csum += *ptr; 555 ptr++; 556 } 557 while (csum > 0xffff) 558 csum = (csum >> 16) + (csum & 0xffff); 559 560 return (csum); 561 } 562 563 static uint16_t 564 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) 565 { 566 uint32_t c; 567 uint16_t cs; 568 569 c = tcp_csum; 570 571 switch (pa->data.lro_type) { 572 #ifdef INET6 573 case LRO_TYPE_IPV6_TCP: 574 /* Compute full pseudo IPv6 header checksum. */ 575 cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); 576 break; 577 #endif 578 #ifdef INET 579 case LRO_TYPE_IPV4_TCP: 580 /* Compute full pseudo IPv4 header checsum. */ 581 cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); 582 cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); 583 break; 584 #endif 585 default: 586 cs = 0; /* Keep compiler happy. */ 587 break; 588 } 589 590 /* Complement checksum. */ 591 cs = ~cs; 592 c += cs; 593 594 /* Remove TCP header checksum. */ 595 cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); 596 c += cs; 597 598 /* Compute checksum remainder. */ 599 while (c > 0xffff) 600 c = (c >> 16) + (c & 0xffff); 601 602 return (c); 603 } 604 605 static void 606 tcp_lro_rx_done(struct lro_ctrl *lc) 607 { 608 struct lro_entry *le; 609 610 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 611 tcp_lro_active_remove(le); 612 tcp_lro_flush(lc, le); 613 } 614 } 615 616 static void 617 tcp_lro_flush_active(struct lro_ctrl *lc) 618 { 619 struct lro_entry *le; 620 621 /* 622 * Walk through the list of le entries, and 623 * any one that does have packets flush. This 624 * is called because we have an inbound packet 625 * (e.g. SYN) that has to have all others flushed 626 * in front of it. Note we have to do the remove 627 * because tcp_lro_flush() assumes that the entry 628 * is being freed. This is ok it will just get 629 * reallocated again like it was new. 630 */ 631 LIST_FOREACH(le, &lc->lro_active, next) { 632 if (le->m_head != NULL) { 633 tcp_lro_active_remove(le); 634 tcp_lro_flush(lc, le); 635 } 636 } 637 } 638 639 void 640 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 641 { 642 struct lro_entry *le, *le_tmp; 643 uint64_t now, tov; 644 struct bintime bt; 645 646 NET_EPOCH_ASSERT(); 647 if (LIST_EMPTY(&lc->lro_active)) 648 return; 649 650 /* get timeout time and current time in ns */ 651 binuptime(&bt); 652 now = bintime2ns(&bt); 653 tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); 654 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 655 if (now >= (bintime2ns(&le->alloc_time) + tov)) { 656 tcp_lro_active_remove(le); 657 tcp_lro_flush(lc, le); 658 } 659 } 660 } 661 662 #ifdef INET 663 static int 664 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) 665 { 666 uint16_t csum; 667 668 /* Legacy IP has a header checksum that needs to be correct. */ 669 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 670 if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { 671 lc->lro_bad_csum++; 672 return (TCP_LRO_CANNOT); 673 } 674 } else { 675 csum = in_cksum_hdr(ip4); 676 if (__predict_false(csum != 0)) { 677 lc->lro_bad_csum++; 678 return (TCP_LRO_CANNOT); 679 } 680 } 681 return (0); 682 } 683 #endif 684 685 #ifdef TCPHPTS 686 static void 687 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, 688 const struct lro_entry *le, const struct mbuf *m, 689 int frm, int32_t tcp_data_len, uint32_t th_seq, 690 uint32_t th_ack, uint16_t th_win) 691 { 692 if (tcp_bblogging_on(tp)) { 693 union tcp_log_stackspecific log; 694 struct timeval tv, btv; 695 uint32_t cts; 696 697 cts = tcp_get_usecs(&tv); 698 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 699 log.u_bbr.flex8 = frm; 700 log.u_bbr.flex1 = tcp_data_len; 701 if (m) 702 log.u_bbr.flex2 = m->m_pkthdr.len; 703 else 704 log.u_bbr.flex2 = 0; 705 if (le->m_head) { 706 log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; 707 log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; 708 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 709 log.u_bbr.delRate = le->m_head->m_flags; 710 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 711 } 712 log.u_bbr.inflight = th_seq; 713 log.u_bbr.delivered = th_ack; 714 log.u_bbr.timeStamp = cts; 715 log.u_bbr.epoch = le->next_seq; 716 log.u_bbr.lt_epoch = le->ack_seq; 717 log.u_bbr.pacing_gain = th_win; 718 log.u_bbr.cwnd_gain = le->window; 719 log.u_bbr.lost = curcpu; 720 log.u_bbr.cur_del_rate = (uintptr_t)m; 721 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 722 bintime2timeval(&lc->lro_last_queue_time, &btv); 723 log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); 724 log.u_bbr.flex7 = le->compressed; 725 log.u_bbr.pacing_gain = le->uncompressed; 726 if (in_epoch(net_epoch_preempt)) 727 log.u_bbr.inhpts = 1; 728 else 729 log.u_bbr.inhpts = 0; 730 TCP_LOG_EVENTP(tp, NULL, &tptosocket(tp)->so_rcv, 731 &tptosocket(tp)->so_snd, 732 TCP_LOG_LRO, 0, 0, &log, false, &tv); 733 } 734 } 735 #endif 736 737 static inline void 738 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) 739 { 740 uint32_t csum; 741 742 csum = 0xffff - *ptr + value; 743 while (csum > 0xffff) 744 csum = (csum >> 16) + (csum & 0xffff); 745 *ptr = value; 746 *psum = csum; 747 } 748 749 static uint16_t 750 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, 751 uint16_t payload_len, uint16_t delta_sum) 752 { 753 uint32_t csum; 754 uint16_t tlen; 755 uint16_t temp[5] = {}; 756 757 switch (pa->data.lro_type) { 758 case LRO_TYPE_IPV4_TCP: 759 /* Compute new IPv4 length. */ 760 tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; 761 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 762 763 /* Subtract delta from current IPv4 checksum. */ 764 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 765 while (csum > 0xffff) 766 csum = (csum >> 16) + (csum & 0xffff); 767 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 768 goto update_tcp_header; 769 770 case LRO_TYPE_IPV6_TCP: 771 /* Compute new IPv6 length. */ 772 tlen = (pa->tcp->th_off << 2) + payload_len; 773 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 774 goto update_tcp_header; 775 776 case LRO_TYPE_IPV4_UDP: 777 /* Compute new IPv4 length. */ 778 tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; 779 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 780 781 /* Subtract delta from current IPv4 checksum. */ 782 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 783 while (csum > 0xffff) 784 csum = (csum >> 16) + (csum & 0xffff); 785 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 786 goto update_udp_header; 787 788 case LRO_TYPE_IPV6_UDP: 789 /* Compute new IPv6 length. */ 790 tlen = sizeof(*pa->udp) + payload_len; 791 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 792 goto update_udp_header; 793 794 default: 795 return (0); 796 } 797 798 update_tcp_header: 799 /* Compute current TCP header checksum. */ 800 temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); 801 802 /* Incorporate the latest ACK into the TCP header. */ 803 pa->tcp->th_ack = le->ack_seq; 804 pa->tcp->th_win = le->window; 805 806 /* Incorporate latest timestamp into the TCP header. */ 807 if (le->timestamp != 0) { 808 uint32_t *ts_ptr; 809 810 ts_ptr = (uint32_t *)(pa->tcp + 1); 811 ts_ptr[1] = htonl(le->tsval); 812 ts_ptr[2] = le->tsecr; 813 } 814 815 /* Compute new TCP header checksum. */ 816 temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); 817 818 /* Compute new TCP checksum. */ 819 csum = pa->tcp->th_sum + 0xffff - delta_sum + 820 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; 821 while (csum > 0xffff) 822 csum = (csum >> 16) + (csum & 0xffff); 823 824 /* Assign new TCP checksum. */ 825 tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); 826 827 /* Compute all modififications affecting next checksum. */ 828 csum = temp[0] + temp[1] + 0xffff - temp[2] + 829 temp[3] + temp[4] + delta_sum; 830 while (csum > 0xffff) 831 csum = (csum >> 16) + (csum & 0xffff); 832 833 /* Return delta checksum to next stage, if any. */ 834 return (csum); 835 836 update_udp_header: 837 tlen = sizeof(*pa->udp) + payload_len; 838 /* Assign new UDP length and compute checksum delta. */ 839 tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); 840 841 /* Check if there is a UDP checksum. */ 842 if (__predict_false(pa->udp->uh_sum != 0)) { 843 /* Compute new UDP checksum. */ 844 csum = pa->udp->uh_sum + 0xffff - delta_sum + 845 0xffff - temp[0] + 0xffff - temp[2]; 846 while (csum > 0xffff) 847 csum = (csum >> 16) + (csum & 0xffff); 848 /* Assign new UDP checksum. */ 849 tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); 850 } 851 852 /* Compute all modififications affecting next checksum. */ 853 csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; 854 while (csum > 0xffff) 855 csum = (csum >> 16) + (csum & 0xffff); 856 857 /* Return delta checksum to next stage, if any. */ 858 return (csum); 859 } 860 861 static void 862 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) 863 { 864 /* Check if we need to recompute any checksums. */ 865 if (le->needs_merge) { 866 uint16_t csum; 867 868 switch (le->inner.data.lro_type) { 869 case LRO_TYPE_IPV4_TCP: 870 csum = tcp_lro_update_checksum(&le->inner, le, 871 le->m_head->m_pkthdr.lro_tcp_d_len, 872 le->m_head->m_pkthdr.lro_tcp_d_csum); 873 csum = tcp_lro_update_checksum(&le->outer, NULL, 874 le->m_head->m_pkthdr.lro_tcp_d_len + 875 le->inner.total_hdr_len, csum); 876 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 877 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 878 le->m_head->m_pkthdr.csum_data = 0xffff; 879 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 880 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 881 break; 882 case LRO_TYPE_IPV6_TCP: 883 csum = tcp_lro_update_checksum(&le->inner, le, 884 le->m_head->m_pkthdr.lro_tcp_d_len, 885 le->m_head->m_pkthdr.lro_tcp_d_csum); 886 csum = tcp_lro_update_checksum(&le->outer, NULL, 887 le->m_head->m_pkthdr.lro_tcp_d_len + 888 le->inner.total_hdr_len, csum); 889 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 890 CSUM_PSEUDO_HDR; 891 le->m_head->m_pkthdr.csum_data = 0xffff; 892 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 893 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 894 break; 895 case LRO_TYPE_NONE: 896 switch (le->outer.data.lro_type) { 897 case LRO_TYPE_IPV4_TCP: 898 csum = tcp_lro_update_checksum(&le->outer, le, 899 le->m_head->m_pkthdr.lro_tcp_d_len, 900 le->m_head->m_pkthdr.lro_tcp_d_csum); 901 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 902 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 903 le->m_head->m_pkthdr.csum_data = 0xffff; 904 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 905 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 906 break; 907 case LRO_TYPE_IPV6_TCP: 908 csum = tcp_lro_update_checksum(&le->outer, le, 909 le->m_head->m_pkthdr.lro_tcp_d_len, 910 le->m_head->m_pkthdr.lro_tcp_d_csum); 911 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 912 CSUM_PSEUDO_HDR; 913 le->m_head->m_pkthdr.csum_data = 0xffff; 914 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 915 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 916 break; 917 default: 918 break; 919 } 920 break; 921 default: 922 break; 923 } 924 } 925 926 /* 927 * Break any chain, this is not set to NULL on the singleton 928 * case m_nextpkt points to m_head. Other case set them 929 * m_nextpkt to NULL in push_and_replace. 930 */ 931 le->m_head->m_nextpkt = NULL; 932 lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; 933 (*lc->ifp->if_input)(lc->ifp, le->m_head); 934 } 935 936 static void 937 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, 938 struct mbuf *m, struct tcphdr *th) 939 { 940 uint32_t *ts_ptr; 941 uint16_t tcp_data_len; 942 uint16_t tcp_opt_len; 943 944 ts_ptr = (uint32_t *)(th + 1); 945 tcp_opt_len = (th->th_off << 2); 946 tcp_opt_len -= sizeof(*th); 947 948 /* Check if there is a timestamp option. */ 949 if (tcp_opt_len == 0 || 950 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 951 *ts_ptr != TCP_LRO_TS_OPTION)) { 952 /* We failed to find the timestamp option. */ 953 le->timestamp = 0; 954 } else { 955 le->timestamp = 1; 956 le->tsval = ntohl(*(ts_ptr + 1)); 957 le->tsecr = *(ts_ptr + 2); 958 } 959 960 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 961 962 /* Pull out TCP sequence numbers and window size. */ 963 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 964 le->ack_seq = th->th_ack; 965 le->window = th->th_win; 966 le->flags = tcp_get_flags(th); 967 le->needs_merge = 0; 968 969 /* Setup new data pointers. */ 970 le->m_head = m; 971 le->m_tail = m_last(m); 972 } 973 974 static void 975 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 976 { 977 struct lro_parser *pa; 978 979 /* 980 * Push up the stack of the current entry 981 * and replace it with "m". 982 */ 983 struct mbuf *msave; 984 985 /* Grab off the next and save it */ 986 msave = le->m_head->m_nextpkt; 987 le->m_head->m_nextpkt = NULL; 988 989 /* Now push out the old entry */ 990 tcp_flush_out_entry(lc, le); 991 992 /* Re-parse new header, should not fail. */ 993 pa = tcp_lro_parser(m, &le->outer, &le->inner, false); 994 KASSERT(pa != NULL, 995 ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); 996 997 /* 998 * Now to replace the data properly in the entry 999 * we have to reset the TCP header and 1000 * other fields. 1001 */ 1002 tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); 1003 1004 /* Restore the next list */ 1005 m->m_nextpkt = msave; 1006 } 1007 1008 static void 1009 tcp_lro_mbuf_append_pkthdr(struct lro_entry *le, const struct mbuf *p) 1010 { 1011 struct mbuf *m; 1012 uint32_t csum; 1013 1014 m = le->m_head; 1015 if (m->m_pkthdr.lro_nsegs == 1) { 1016 /* Compute relative checksum. */ 1017 csum = p->m_pkthdr.lro_tcp_d_csum; 1018 } else { 1019 /* Merge TCP data checksums. */ 1020 csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + 1021 (uint32_t)p->m_pkthdr.lro_tcp_d_csum; 1022 while (csum > 0xffff) 1023 csum = (csum >> 16) + (csum & 0xffff); 1024 } 1025 1026 /* Update various counters. */ 1027 m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; 1028 m->m_pkthdr.lro_tcp_d_csum = csum; 1029 m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; 1030 m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; 1031 le->needs_merge = 1; 1032 } 1033 1034 static void 1035 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) 1036 { 1037 /* 1038 * Walk through the mbuf chain we 1039 * have on tap and compress/condense 1040 * as required. 1041 */ 1042 uint32_t *ts_ptr; 1043 struct mbuf *m; 1044 struct tcphdr *th; 1045 uint32_t tcp_data_len_total; 1046 uint32_t tcp_data_seg_total; 1047 uint16_t tcp_data_len; 1048 uint16_t tcp_opt_len; 1049 1050 /* 1051 * First we must check the lead (m_head) 1052 * we must make sure that it is *not* 1053 * something that should be sent up 1054 * right away (sack etc). 1055 */ 1056 again: 1057 m = le->m_head->m_nextpkt; 1058 if (m == NULL) { 1059 /* Just one left. */ 1060 return; 1061 } 1062 1063 th = tcp_lro_get_th(m); 1064 tcp_opt_len = (th->th_off << 2); 1065 tcp_opt_len -= sizeof(*th); 1066 ts_ptr = (uint32_t *)(th + 1); 1067 1068 if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1069 *ts_ptr != TCP_LRO_TS_OPTION)) { 1070 /* 1071 * Its not the timestamp. We can't 1072 * use this guy as the head. 1073 */ 1074 le->m_head->m_nextpkt = m->m_nextpkt; 1075 tcp_push_and_replace(lc, le, m); 1076 goto again; 1077 } 1078 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1079 /* 1080 * Make sure that previously seen segments/ACKs are delivered 1081 * before this segment, e.g. FIN. 1082 */ 1083 le->m_head->m_nextpkt = m->m_nextpkt; 1084 tcp_push_and_replace(lc, le, m); 1085 goto again; 1086 } 1087 while((m = le->m_head->m_nextpkt) != NULL) { 1088 /* 1089 * condense m into le, first 1090 * pull m out of the list. 1091 */ 1092 le->m_head->m_nextpkt = m->m_nextpkt; 1093 m->m_nextpkt = NULL; 1094 /* Setup my data */ 1095 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 1096 th = tcp_lro_get_th(m); 1097 ts_ptr = (uint32_t *)(th + 1); 1098 tcp_opt_len = (th->th_off << 2); 1099 tcp_opt_len -= sizeof(*th); 1100 tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; 1101 tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; 1102 1103 if (tcp_data_seg_total >= lc->lro_ackcnt_lim || 1104 tcp_data_len_total >= lc->lro_length_lim) { 1105 /* Flush now if appending will result in overflow. */ 1106 tcp_push_and_replace(lc, le, m); 1107 goto again; 1108 } 1109 if (tcp_opt_len != 0 && 1110 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1111 *ts_ptr != TCP_LRO_TS_OPTION)) { 1112 /* 1113 * Maybe a sack in the new one? We need to 1114 * start all over after flushing the 1115 * current le. We will go up to the beginning 1116 * and flush it (calling the replace again possibly 1117 * or just returning). 1118 */ 1119 tcp_push_and_replace(lc, le, m); 1120 goto again; 1121 } 1122 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1123 tcp_push_and_replace(lc, le, m); 1124 goto again; 1125 } 1126 if (tcp_opt_len != 0) { 1127 uint32_t tsval = ntohl(*(ts_ptr + 1)); 1128 /* Make sure timestamp values are increasing. */ 1129 if (TSTMP_GT(le->tsval, tsval)) { 1130 tcp_push_and_replace(lc, le, m); 1131 goto again; 1132 } 1133 le->tsval = tsval; 1134 le->tsecr = *(ts_ptr + 2); 1135 } 1136 /* Try to append the new segment. */ 1137 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 1138 ((tcp_get_flags(th) & TH_ACK) != 1139 (le->flags & TH_ACK)) || 1140 (tcp_data_len == 0 && 1141 le->ack_seq == th->th_ack && 1142 le->window == th->th_win))) { 1143 /* Out of order packet, non-ACK + ACK or dup ACK. */ 1144 tcp_push_and_replace(lc, le, m); 1145 goto again; 1146 } 1147 if (tcp_data_len != 0 || 1148 SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1149 le->next_seq += tcp_data_len; 1150 le->ack_seq = th->th_ack; 1151 le->window = th->th_win; 1152 le->needs_merge = 1; 1153 } else if (th->th_ack == le->ack_seq) { 1154 if (WIN_GT(th->th_win, le->window)) { 1155 le->window = th->th_win; 1156 le->needs_merge = 1; 1157 } 1158 } 1159 1160 if (tcp_data_len == 0) { 1161 m_freem(m); 1162 continue; 1163 } 1164 1165 /* Merge TCP data checksum and length to head mbuf. */ 1166 tcp_lro_mbuf_append_pkthdr(le, m); 1167 1168 /* 1169 * Adjust the mbuf so that m_data points to the first byte of 1170 * the ULP payload. Adjust the mbuf to avoid complications and 1171 * append new segment to existing mbuf chain. 1172 */ 1173 m_adj(m, m->m_pkthdr.len - tcp_data_len); 1174 m_demote_pkthdr(m); 1175 le->m_tail->m_next = m; 1176 le->m_tail = m_last(m); 1177 } 1178 } 1179 1180 #ifdef TCPHPTS 1181 static void 1182 tcp_queue_pkts(struct tcpcb *tp, struct lro_entry *le) 1183 { 1184 1185 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1186 1187 STAILQ_HEAD(, mbuf) q = { le->m_head, 1188 &STAILQ_NEXT(le->m_last_mbuf, m_stailqpkt) }; 1189 STAILQ_CONCAT(&tp->t_inqueue, &q); 1190 le->m_head = NULL; 1191 le->m_last_mbuf = NULL; 1192 } 1193 1194 static bool 1195 tcp_lro_check_wake_status(struct tcpcb *tp) 1196 { 1197 1198 if (tp->t_fb->tfb_early_wake_check != NULL) 1199 return ((tp->t_fb->tfb_early_wake_check)(tp)); 1200 return (false); 1201 } 1202 1203 static struct mbuf * 1204 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, 1205 struct tcpcb *tp, int32_t *new_m, bool can_append_old_cmp) 1206 { 1207 struct mbuf *m; 1208 1209 /* Look at the last mbuf if any in queue */ 1210 if (can_append_old_cmp) { 1211 m = STAILQ_LAST(&tp->t_inqueue, mbuf, m_stailqpkt); 1212 if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { 1213 if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { 1214 tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); 1215 *new_m = 0; 1216 counter_u64_add(tcp_extra_mbuf, 1); 1217 return (m); 1218 } else { 1219 /* Mark we ran out of space */ 1220 tp->t_flags2 |= TF2_MBUF_L_ACKS; 1221 } 1222 } 1223 } 1224 /* Decide mbuf size. */ 1225 tcp_lro_log(tp, lc, le, NULL, 21, 0, 0, 0, 0); 1226 if (tp->t_flags2 & TF2_MBUF_L_ACKS) 1227 m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); 1228 else 1229 m = m_gethdr(M_NOWAIT, MT_DATA); 1230 1231 if (__predict_false(m == NULL)) { 1232 counter_u64_add(tcp_would_have_but, 1); 1233 return (NULL); 1234 } 1235 counter_u64_add(tcp_comp_total, 1); 1236 m->m_pkthdr.rcvif = lc->ifp; 1237 m->m_flags |= M_ACKCMP; 1238 *new_m = 1; 1239 return (m); 1240 } 1241 1242 static struct tcpcb * 1243 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) 1244 { 1245 struct inpcb *inp; 1246 1247 switch (pa->data.lro_type) { 1248 #ifdef INET6 1249 case LRO_TYPE_IPV6_TCP: 1250 inp = in6_pcblookup(&V_tcbinfo, 1251 &pa->data.s_addr.v6, 1252 pa->data.s_port, 1253 &pa->data.d_addr.v6, 1254 pa->data.d_port, 1255 INPLOOKUP_WLOCKPCB, 1256 ifp); 1257 break; 1258 #endif 1259 #ifdef INET 1260 case LRO_TYPE_IPV4_TCP: 1261 inp = in_pcblookup(&V_tcbinfo, 1262 pa->data.s_addr.v4, 1263 pa->data.s_port, 1264 pa->data.d_addr.v4, 1265 pa->data.d_port, 1266 INPLOOKUP_WLOCKPCB, 1267 ifp); 1268 break; 1269 #endif 1270 default: 1271 return (NULL); 1272 } 1273 1274 return (intotcpcb(inp)); 1275 } 1276 1277 static inline bool 1278 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) 1279 { 1280 /* 1281 * This function returns two bits of valuable information. 1282 * a) Is what is present capable of being ack-compressed, 1283 * we can ack-compress if there is no options or just 1284 * a timestamp option, and of course the th_flags must 1285 * be correct as well. 1286 * b) Our other options present such as SACK. This is 1287 * used to determine if we want to wakeup or not. 1288 */ 1289 bool ret = true; 1290 1291 switch (th->th_off << 2) { 1292 case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): 1293 *ppts = (uint32_t *)(th + 1); 1294 /* Check if we have only one timestamp option. */ 1295 if (**ppts == TCP_LRO_TS_OPTION) 1296 *other_opts = false; 1297 else { 1298 *other_opts = true; 1299 ret = false; 1300 } 1301 break; 1302 case (sizeof(*th)): 1303 /* No options. */ 1304 *ppts = NULL; 1305 *other_opts = false; 1306 break; 1307 default: 1308 *ppts = NULL; 1309 *other_opts = true; 1310 ret = false; 1311 break; 1312 } 1313 /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ 1314 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) 1315 ret = false; 1316 /* If it has data on it we cannot compress it */ 1317 if (m->m_pkthdr.lro_tcp_d_len) 1318 ret = false; 1319 1320 /* ACK flag must be set. */ 1321 if (!(tcp_get_flags(th) & TH_ACK)) 1322 ret = false; 1323 return (ret); 1324 } 1325 1326 static int 1327 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) 1328 { 1329 struct tcpcb *tp; 1330 struct mbuf **pp, *cmp, *mv_to; 1331 struct ifnet *lagg_ifp; 1332 bool bpf_req, lagg_bpf_req, should_wake, can_append_old_cmp; 1333 1334 /* Check if packet doesn't belongs to our network interface. */ 1335 if ((tcplro_stacks_wanting_mbufq == 0) || 1336 (le->outer.data.vlan_id != 0) || 1337 (le->inner.data.lro_type != LRO_TYPE_NONE)) 1338 return (TCP_LRO_CANNOT); 1339 1340 #ifdef INET6 1341 /* 1342 * Be proactive about unspecified IPv6 address in source. As 1343 * we use all-zero to indicate unbounded/unconnected pcb, 1344 * unspecified IPv6 address can be used to confuse us. 1345 * 1346 * Note that packets with unspecified IPv6 destination is 1347 * already dropped in ip6_input. 1348 */ 1349 if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && 1350 IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) 1351 return (TCP_LRO_CANNOT); 1352 1353 if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && 1354 IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) 1355 return (TCP_LRO_CANNOT); 1356 #endif 1357 /* Lookup inp, if any. Returns locked TCP inpcb. */ 1358 tp = tcp_lro_lookup(lc->ifp, 1359 (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); 1360 if (tp == NULL) 1361 return (TCP_LRO_CANNOT); 1362 1363 counter_u64_add(tcp_inp_lro_locks_taken, 1); 1364 1365 /* Check if the inp is dead, Jim. */ 1366 if (tp->t_state == TCPS_TIME_WAIT) { 1367 INP_WUNLOCK(tptoinpcb(tp)); 1368 return (TCP_LRO_CANNOT); 1369 } 1370 if (tp->t_lro_cpu == HPTS_CPU_NONE && lc->lro_cpu_is_set == 1) 1371 tp->t_lro_cpu = lc->lro_last_cpu; 1372 /* Check if the transport doesn't support the needed optimizations. */ 1373 if ((tp->t_flags2 & (TF2_SUPPORTS_MBUFQ | TF2_MBUF_ACKCMP)) == 0) { 1374 INP_WUNLOCK(tptoinpcb(tp)); 1375 return (TCP_LRO_CANNOT); 1376 } 1377 1378 if (tp->t_flags2 & TF2_MBUF_QUEUE_READY) 1379 should_wake = false; 1380 else 1381 should_wake = true; 1382 /* Check if packets should be tapped to BPF. */ 1383 bpf_req = bpf_peers_present(lc->ifp->if_bpf); 1384 lagg_bpf_req = false; 1385 lagg_ifp = NULL; 1386 if (lc->ifp->if_type == IFT_IEEE8023ADLAG || 1387 lc->ifp->if_type == IFT_INFINIBANDLAG) { 1388 struct lagg_port *lp = lc->ifp->if_lagg; 1389 struct lagg_softc *sc = lp->lp_softc; 1390 1391 lagg_ifp = sc->sc_ifp; 1392 if (lagg_ifp != NULL) 1393 lagg_bpf_req = bpf_peers_present(lagg_ifp->if_bpf); 1394 } 1395 1396 /* Strip and compress all the incoming packets. */ 1397 can_append_old_cmp = true; 1398 cmp = NULL; 1399 for (pp = &le->m_head; *pp != NULL; ) { 1400 mv_to = NULL; 1401 if (do_bpf_strip_and_compress(tp, lc, le, pp, 1402 &cmp, &mv_to, &should_wake, bpf_req, 1403 lagg_bpf_req, lagg_ifp, can_append_old_cmp) == false) { 1404 /* Advance to next mbuf. */ 1405 pp = &(*pp)->m_nextpkt; 1406 /* 1407 * Once we have appended we can't look in the pending 1408 * inbound packets for a compressed ack to append to. 1409 */ 1410 can_append_old_cmp = false; 1411 /* 1412 * Once we append we also need to stop adding to any 1413 * compressed ack we were remembering. A new cmp 1414 * ack will be required. 1415 */ 1416 cmp = NULL; 1417 tcp_lro_log(tp, lc, le, NULL, 25, 0, 0, 0, 0); 1418 } else if (mv_to != NULL) { 1419 /* We are asked to move pp up */ 1420 pp = &mv_to->m_nextpkt; 1421 tcp_lro_log(tp, lc, le, NULL, 24, 0, 0, 0, 0); 1422 } else 1423 tcp_lro_log(tp, lc, le, NULL, 26, 0, 0, 0, 0); 1424 } 1425 /* Update "m_last_mbuf", if any. */ 1426 if (pp == &le->m_head) 1427 le->m_last_mbuf = *pp; 1428 else 1429 le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); 1430 1431 /* Check if any data mbufs left. */ 1432 if (le->m_head != NULL) { 1433 counter_u64_add(tcp_inp_lro_direct_queue, 1); 1434 tcp_lro_log(tp, lc, le, NULL, 22, 1, tp->t_flags2, 0, 1); 1435 tcp_queue_pkts(tp, le); 1436 } 1437 if (should_wake) { 1438 /* Wakeup */ 1439 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 1440 if ((*tp->t_fb->tfb_do_queued_segments)(tp, 0)) 1441 /* TCP cb gone and unlocked. */ 1442 return (0); 1443 } 1444 INP_WUNLOCK(tptoinpcb(tp)); 1445 1446 return (0); /* Success. */ 1447 } 1448 #endif 1449 1450 void 1451 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 1452 { 1453 /* Only optimise if there are multiple packets waiting. */ 1454 #ifdef TCPHPTS 1455 int error; 1456 #endif 1457 1458 NET_EPOCH_ASSERT(); 1459 #ifdef TCPHPTS 1460 CURVNET_SET(lc->ifp->if_vnet); 1461 error = tcp_lro_flush_tcphpts(lc, le); 1462 CURVNET_RESTORE(); 1463 if (error != 0) { 1464 #endif 1465 tcp_lro_condense(lc, le); 1466 tcp_flush_out_entry(lc, le); 1467 #ifdef TCPHPTS 1468 } 1469 #endif 1470 lc->lro_flushed++; 1471 bzero(le, sizeof(*le)); 1472 LIST_INSERT_HEAD(&lc->lro_free, le, next); 1473 } 1474 1475 #ifdef HAVE_INLINE_FLSLL 1476 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 1477 #else 1478 static inline uint64_t 1479 tcp_lro_msb_64(uint64_t x) 1480 { 1481 x |= (x >> 1); 1482 x |= (x >> 2); 1483 x |= (x >> 4); 1484 x |= (x >> 8); 1485 x |= (x >> 16); 1486 x |= (x >> 32); 1487 return (x & ~(x >> 1)); 1488 } 1489 #endif 1490 1491 /* 1492 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1493 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1494 * number of elements to sort and 64 is the number of sequence bits 1495 * available. The algorithm is bit-slicing the 64-bit sequence number, 1496 * sorting one bit at a time from the most significant bit until the 1497 * least significant one, skipping the constant bits. This is 1498 * typically called a radix sort. 1499 */ 1500 static void 1501 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1502 { 1503 struct lro_mbuf_sort temp; 1504 uint64_t ones; 1505 uint64_t zeros; 1506 uint32_t x; 1507 uint32_t y; 1508 1509 repeat: 1510 /* for small arrays insertion sort is faster */ 1511 if (size <= 12) { 1512 for (x = 1; x < size; x++) { 1513 temp = parray[x]; 1514 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1515 parray[y] = parray[y - 1]; 1516 parray[y] = temp; 1517 } 1518 return; 1519 } 1520 1521 /* compute sequence bits which are constant */ 1522 ones = 0; 1523 zeros = 0; 1524 for (x = 0; x != size; x++) { 1525 ones |= parray[x].seq; 1526 zeros |= ~parray[x].seq; 1527 } 1528 1529 /* compute bits which are not constant into "ones" */ 1530 ones &= zeros; 1531 if (ones == 0) 1532 return; 1533 1534 /* pick the most significant bit which is not constant */ 1535 ones = tcp_lro_msb_64(ones); 1536 1537 /* 1538 * Move entries having cleared sequence bits to the beginning 1539 * of the array: 1540 */ 1541 for (x = y = 0; y != size; y++) { 1542 /* skip set bits */ 1543 if (parray[y].seq & ones) 1544 continue; 1545 /* swap entries */ 1546 temp = parray[x]; 1547 parray[x] = parray[y]; 1548 parray[y] = temp; 1549 x++; 1550 } 1551 1552 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1553 1554 /* sort zeros */ 1555 tcp_lro_sort(parray, x); 1556 1557 /* sort ones */ 1558 parray += x; 1559 size -= x; 1560 goto repeat; 1561 } 1562 1563 void 1564 tcp_lro_flush_all(struct lro_ctrl *lc) 1565 { 1566 uint64_t seq; 1567 uint64_t nseq; 1568 unsigned x; 1569 1570 NET_EPOCH_ASSERT(); 1571 /* check if no mbufs to flush */ 1572 if (lc->lro_mbuf_count == 0) 1573 goto done; 1574 if (lc->lro_cpu_is_set == 0) { 1575 if (lc->lro_last_cpu == curcpu) { 1576 lc->lro_cnt_of_same_cpu++; 1577 /* Have we reached the threshold to declare a cpu? */ 1578 if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) 1579 lc->lro_cpu_is_set = 1; 1580 } else { 1581 lc->lro_last_cpu = curcpu; 1582 lc->lro_cnt_of_same_cpu = 0; 1583 } 1584 } 1585 CURVNET_SET(lc->ifp->if_vnet); 1586 1587 /* get current time */ 1588 binuptime(&lc->lro_last_queue_time); 1589 1590 /* sort all mbufs according to stream */ 1591 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1592 1593 /* input data into LRO engine, stream by stream */ 1594 seq = 0; 1595 for (x = 0; x != lc->lro_mbuf_count; x++) { 1596 struct mbuf *mb; 1597 1598 /* get mbuf */ 1599 mb = lc->lro_mbuf_data[x].mb; 1600 1601 /* get sequence number, masking away the packet index */ 1602 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1603 1604 /* check for new stream */ 1605 if (seq != nseq) { 1606 seq = nseq; 1607 1608 /* flush active streams */ 1609 tcp_lro_rx_done(lc); 1610 } 1611 1612 /* add packet to LRO engine */ 1613 if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { 1614 /* Flush anything we have acummulated */ 1615 tcp_lro_flush_active(lc); 1616 /* input packet to network layer */ 1617 (*lc->ifp->if_input)(lc->ifp, mb); 1618 lc->lro_queued++; 1619 lc->lro_flushed++; 1620 } 1621 } 1622 CURVNET_RESTORE(); 1623 done: 1624 /* flush active streams */ 1625 tcp_lro_rx_done(lc); 1626 1627 #ifdef TCPHPTS 1628 tcp_run_hpts(); 1629 #endif 1630 lc->lro_mbuf_count = 0; 1631 } 1632 1633 #ifdef TCPHPTS 1634 static void 1635 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, 1636 uint32_t *ts_ptr, uint16_t iptos) 1637 { 1638 /* 1639 * Given a TCP ACK, summarize it down into the small TCP ACK 1640 * entry. 1641 */ 1642 ae->timestamp = m->m_pkthdr.rcv_tstmp; 1643 ae->flags = 0; 1644 if (m->m_flags & M_TSTMP_LRO) 1645 ae->flags |= TSTMP_LRO; 1646 else if (m->m_flags & M_TSTMP) 1647 ae->flags |= TSTMP_HDWR; 1648 ae->seq = ntohl(th->th_seq); 1649 ae->ack = ntohl(th->th_ack); 1650 ae->flags |= tcp_get_flags(th); 1651 if (ts_ptr != NULL) { 1652 ae->ts_value = ntohl(ts_ptr[1]); 1653 ae->ts_echo = ntohl(ts_ptr[2]); 1654 ae->flags |= HAS_TSTMP; 1655 } 1656 ae->win = ntohs(th->th_win); 1657 ae->codepoint = iptos; 1658 } 1659 1660 /* 1661 * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets 1662 * and strip all, but the IPv4/IPv6 header. 1663 */ 1664 static bool 1665 do_bpf_strip_and_compress(struct tcpcb *tp, struct lro_ctrl *lc, 1666 struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, 1667 bool *should_wake, bool bpf_req, bool lagg_bpf_req, struct ifnet *lagg_ifp, bool can_append_old_cmp) 1668 { 1669 union { 1670 void *ptr; 1671 struct ip *ip4; 1672 struct ip6_hdr *ip6; 1673 } l3; 1674 struct mbuf *m; 1675 struct mbuf *nm; 1676 struct tcphdr *th; 1677 struct tcp_ackent *ack_ent; 1678 uint32_t *ts_ptr; 1679 int32_t n_mbuf; 1680 bool other_opts, can_compress; 1681 uint8_t lro_type; 1682 uint16_t iptos; 1683 int tcp_hdr_offset; 1684 int idx; 1685 1686 /* Get current mbuf. */ 1687 m = *pp; 1688 1689 /* Let the BPF see the packet */ 1690 if (__predict_false(bpf_req)) 1691 ETHER_BPF_MTAP(lc->ifp, m); 1692 1693 if (__predict_false(lagg_bpf_req)) 1694 ETHER_BPF_MTAP(lagg_ifp, m); 1695 1696 tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; 1697 lro_type = le->inner.data.lro_type; 1698 switch (lro_type) { 1699 case LRO_TYPE_NONE: 1700 lro_type = le->outer.data.lro_type; 1701 switch (lro_type) { 1702 case LRO_TYPE_IPV4_TCP: 1703 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1704 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1705 break; 1706 case LRO_TYPE_IPV6_TCP: 1707 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1708 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1709 break; 1710 default: 1711 goto compressed; 1712 } 1713 break; 1714 case LRO_TYPE_IPV4_TCP: 1715 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1716 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1717 break; 1718 case LRO_TYPE_IPV6_TCP: 1719 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1720 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1721 break; 1722 default: 1723 goto compressed; 1724 } 1725 1726 MPASS(tcp_hdr_offset >= 0); 1727 1728 m_adj(m, tcp_hdr_offset); 1729 m->m_flags |= M_LRO_EHDRSTRP; 1730 m->m_flags &= ~M_ACKCMP; 1731 m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; 1732 1733 th = tcp_lro_get_th(m); 1734 1735 th->th_sum = 0; /* TCP checksum is valid. */ 1736 1737 /* Check if ACK can be compressed */ 1738 can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); 1739 1740 /* Now lets look at the should wake states */ 1741 if ((other_opts == true) && 1742 ((tp->t_flags2 & TF2_DONT_SACK_QUEUE) == 0)) { 1743 /* 1744 * If there are other options (SACK?) and the 1745 * tcp endpoint has not expressly told us it does 1746 * not care about SACKS, then we should wake up. 1747 */ 1748 *should_wake = true; 1749 } else if (*should_wake == false) { 1750 /* Wakeup override check if we are false here */ 1751 *should_wake = tcp_lro_check_wake_status(tp); 1752 } 1753 /* Is the ack compressable? */ 1754 if (can_compress == false) 1755 goto done; 1756 /* Does the TCP endpoint support ACK compression? */ 1757 if ((tp->t_flags2 & TF2_MBUF_ACKCMP) == 0) 1758 goto done; 1759 1760 /* Lets get the TOS/traffic class field */ 1761 l3.ptr = mtod(m, void *); 1762 switch (lro_type) { 1763 case LRO_TYPE_IPV4_TCP: 1764 iptos = l3.ip4->ip_tos; 1765 break; 1766 case LRO_TYPE_IPV6_TCP: 1767 iptos = IPV6_TRAFFIC_CLASS(l3.ip6); 1768 break; 1769 default: 1770 iptos = 0; /* Keep compiler happy. */ 1771 break; 1772 } 1773 /* Now lets get space if we don't have some already */ 1774 if (*cmp == NULL) { 1775 new_one: 1776 nm = tcp_lro_get_last_if_ackcmp(lc, le, tp, &n_mbuf, 1777 can_append_old_cmp); 1778 if (__predict_false(nm == NULL)) 1779 goto done; 1780 *cmp = nm; 1781 if (n_mbuf) { 1782 /* 1783 * Link in the new cmp ack to our in-order place, 1784 * first set our cmp ack's next to where we are. 1785 */ 1786 nm->m_nextpkt = m; 1787 (*pp) = nm; 1788 /* 1789 * Set it up so mv_to is advanced to our 1790 * compressed ack. This way the caller can 1791 * advance pp to the right place. 1792 */ 1793 *mv_to = nm; 1794 /* 1795 * Advance it here locally as well. 1796 */ 1797 pp = &nm->m_nextpkt; 1798 } 1799 } else { 1800 /* We have one already we are working on */ 1801 nm = *cmp; 1802 if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { 1803 /* We ran out of space */ 1804 tp->t_flags2 |= TF2_MBUF_L_ACKS; 1805 goto new_one; 1806 } 1807 } 1808 MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); 1809 counter_u64_add(tcp_inp_lro_compressed, 1); 1810 le->compressed++; 1811 /* We can add in to the one on the tail */ 1812 ack_ent = mtod(nm, struct tcp_ackent *); 1813 idx = (nm->m_len / sizeof(struct tcp_ackent)); 1814 build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); 1815 1816 /* Bump the size of both pkt-hdr and len */ 1817 nm->m_len += sizeof(struct tcp_ackent); 1818 nm->m_pkthdr.len += sizeof(struct tcp_ackent); 1819 compressed: 1820 /* Advance to next mbuf before freeing. */ 1821 *pp = m->m_nextpkt; 1822 m->m_nextpkt = NULL; 1823 m_freem(m); 1824 return (true); 1825 done: 1826 counter_u64_add(tcp_uncomp_total, 1); 1827 le->uncompressed++; 1828 return (false); 1829 } 1830 #endif 1831 1832 static struct lro_head * 1833 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) 1834 { 1835 u_long hash; 1836 1837 if (M_HASHTYPE_ISHASH(m)) { 1838 hash = m->m_pkthdr.flowid; 1839 } else { 1840 for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) 1841 hash += parser->data.raw[i]; 1842 } 1843 return (&lc->lro_hash[hash % lc->lro_hashsz]); 1844 } 1845 1846 static int 1847 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) 1848 { 1849 struct lro_parser pi; /* inner address data */ 1850 struct lro_parser po; /* outer address data */ 1851 struct lro_parser *pa; /* current parser for TCP stream */ 1852 struct lro_entry *le; 1853 struct lro_head *bucket; 1854 struct tcphdr *th; 1855 int tcp_data_len; 1856 int tcp_opt_len; 1857 int error; 1858 uint16_t tcp_data_sum; 1859 1860 #ifdef INET 1861 /* Quickly decide if packet cannot be LRO'ed */ 1862 if (__predict_false(V_ipforwarding != 0)) 1863 return (TCP_LRO_CANNOT); 1864 #endif 1865 #ifdef INET6 1866 /* Quickly decide if packet cannot be LRO'ed */ 1867 if (__predict_false(V_ip6_forwarding != 0)) 1868 return (TCP_LRO_CANNOT); 1869 #endif 1870 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1871 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1872 (m->m_pkthdr.csum_data != 0xffff)) { 1873 /* 1874 * The checksum either did not have hardware offload 1875 * or it was a bad checksum. We can't LRO such 1876 * a packet. 1877 */ 1878 counter_u64_add(tcp_bad_csums, 1); 1879 return (TCP_LRO_CANNOT); 1880 } 1881 /* We expect a contiguous header [eh, ip, tcp]. */ 1882 pa = tcp_lro_parser(m, &po, &pi, true); 1883 if (__predict_false(pa == NULL)) 1884 return (TCP_LRO_NOT_SUPPORTED); 1885 1886 /* We don't expect any padding. */ 1887 error = tcp_lro_trim_mbuf_chain(m, pa); 1888 if (__predict_false(error != 0)) 1889 return (error); 1890 1891 #ifdef INET 1892 switch (pa->data.lro_type) { 1893 case LRO_TYPE_IPV4_TCP: 1894 error = tcp_lro_rx_ipv4(lc, m, pa->ip4); 1895 if (__predict_false(error != 0)) 1896 return (error); 1897 break; 1898 default: 1899 break; 1900 } 1901 #endif 1902 /* If no hardware or arrival stamp on the packet add timestamp */ 1903 if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { 1904 m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 1905 m->m_flags |= M_TSTMP_LRO; 1906 } 1907 1908 /* Get pointer to TCP header. */ 1909 th = pa->tcp; 1910 1911 /* Don't process SYN packets. */ 1912 if (__predict_false(tcp_get_flags(th) & TH_SYN)) 1913 return (TCP_LRO_CANNOT); 1914 1915 /* Get total TCP header length and compute payload length. */ 1916 tcp_opt_len = (th->th_off << 2); 1917 tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - 1918 (uint8_t *)m->m_data) - tcp_opt_len; 1919 tcp_opt_len -= sizeof(*th); 1920 1921 /* Don't process invalid TCP headers. */ 1922 if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) 1923 return (TCP_LRO_CANNOT); 1924 1925 /* Compute TCP data only checksum. */ 1926 if (tcp_data_len == 0) 1927 tcp_data_sum = 0; /* no data, no checksum */ 1928 else if (__predict_false(csum != 0)) 1929 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); 1930 else 1931 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); 1932 1933 /* Save TCP info in mbuf. */ 1934 m->m_nextpkt = NULL; 1935 m->m_pkthdr.rcvif = lc->ifp; 1936 m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; 1937 m->m_pkthdr.lro_tcp_d_len = tcp_data_len; 1938 m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); 1939 m->m_pkthdr.lro_nsegs = 1; 1940 1941 /* Get hash bucket. */ 1942 if (!use_hash) { 1943 bucket = &lc->lro_hash[0]; 1944 } else { 1945 bucket = tcp_lro_rx_get_bucket(lc, m, pa); 1946 } 1947 1948 /* Try to find a matching previous segment. */ 1949 LIST_FOREACH(le, bucket, hash_next) { 1950 /* Compare addresses and ports. */ 1951 if (lro_address_compare(&po.data, &le->outer.data) == false || 1952 lro_address_compare(&pi.data, &le->inner.data) == false) 1953 continue; 1954 1955 /* Check if no data and old ACK. */ 1956 if (tcp_data_len == 0 && 1957 SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1958 m_freem(m); 1959 return (0); 1960 } 1961 1962 /* Mark "m" in the last spot. */ 1963 le->m_last_mbuf->m_nextpkt = m; 1964 /* Now set the tail to "m". */ 1965 le->m_last_mbuf = m; 1966 return (0); 1967 } 1968 1969 /* Try to find an empty slot. */ 1970 if (LIST_EMPTY(&lc->lro_free)) 1971 return (TCP_LRO_NO_ENTRIES); 1972 1973 /* Start a new segment chain. */ 1974 le = LIST_FIRST(&lc->lro_free); 1975 LIST_REMOVE(le, next); 1976 tcp_lro_active_insert(lc, bucket, le); 1977 1978 /* Make sure the headers are set. */ 1979 le->inner = pi; 1980 le->outer = po; 1981 1982 /* Store time this entry was allocated. */ 1983 le->alloc_time = lc->lro_last_queue_time; 1984 1985 tcp_set_entry_to_mbuf(lc, le, m, th); 1986 1987 /* Now set the tail to "m". */ 1988 le->m_last_mbuf = m; 1989 1990 return (0); 1991 } 1992 1993 int 1994 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1995 { 1996 int error; 1997 1998 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1999 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 2000 (m->m_pkthdr.csum_data != 0xffff)) { 2001 /* 2002 * The checksum either did not have hardware offload 2003 * or it was a bad checksum. We can't LRO such 2004 * a packet. 2005 */ 2006 counter_u64_add(tcp_bad_csums, 1); 2007 return (TCP_LRO_CANNOT); 2008 } 2009 /* get current time */ 2010 binuptime(&lc->lro_last_queue_time); 2011 CURVNET_SET(lc->ifp->if_vnet); 2012 error = tcp_lro_rx_common(lc, m, csum, true); 2013 if (__predict_false(error != 0)) { 2014 /* 2015 * Flush anything we have acummulated 2016 * ahead of this packet that can't 2017 * be LRO'd. This preserves order. 2018 */ 2019 tcp_lro_flush_active(lc); 2020 } 2021 CURVNET_RESTORE(); 2022 2023 return (error); 2024 } 2025 2026 void 2027 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 2028 { 2029 NET_EPOCH_ASSERT(); 2030 /* sanity checks */ 2031 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 2032 lc->lro_mbuf_max == 0)) { 2033 /* packet drop */ 2034 m_freem(mb); 2035 return; 2036 } 2037 2038 /* check if packet is not LRO capable */ 2039 if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 2040 /* input packet to network layer */ 2041 (*lc->ifp->if_input) (lc->ifp, mb); 2042 return; 2043 } 2044 2045 /* If no hardware or arrival stamp on the packet add timestamp */ 2046 if ((tcplro_stacks_wanting_mbufq > 0) && 2047 (tcp_less_accurate_lro_ts == 0) && 2048 ((mb->m_flags & M_TSTMP) == 0)) { 2049 /* Add in an LRO time since no hardware */ 2050 binuptime(&lc->lro_last_queue_time); 2051 mb->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 2052 mb->m_flags |= M_TSTMP_LRO; 2053 } 2054 2055 /* create sequence number */ 2056 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 2057 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 2058 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 2059 ((uint64_t)lc->lro_mbuf_count); 2060 2061 /* enter mbuf */ 2062 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 2063 2064 /* flush if array is full */ 2065 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 2066 tcp_lro_flush_all(lc); 2067 } 2068 2069 /* end */ 2070