xref: /freebsd/sys/netinet/tcp_input.c (revision f0483545503a78e16e256d46d458a2faae2f07ea)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #ifdef TCP_HHOOK
63 #include <sys/hhook.h>
64 #endif
65 #include <sys/malloc.h>
66 #include <sys/mbuf.h>
67 #include <sys/proc.h>		/* for proc0 declaration */
68 #include <sys/protosw.h>
69 #include <sys/sdt.h>
70 #include <sys/signalvar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/systm.h>
76 
77 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
78 
79 #include <vm/uma.h>
80 
81 #include <net/if.h>
82 #include <net/if_var.h>
83 #include <net/route.h>
84 #include <net/vnet.h>
85 
86 #define TCPSTATES		/* for logging */
87 
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
94 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
95 #include <netinet/ip_var.h>
96 #include <netinet/ip_options.h>
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/nd6.h>
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_log_buf.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet6/tcp6_var.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/cc/cc.h>
112 #include <netinet/tcp_fastopen.h>
113 #ifdef TCPPCAP
114 #include <netinet/tcp_pcap.h>
115 #endif
116 #include <netinet/tcp_syncache.h>
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 #endif /* TCPDEBUG */
120 #ifdef TCP_OFFLOAD
121 #include <netinet/tcp_offload.h>
122 #endif
123 
124 #include <netipsec/ipsec_support.h>
125 
126 #include <machine/in_cksum.h>
127 
128 #include <security/mac/mac_framework.h>
129 
130 const int tcprexmtthresh = 3;
131 
132 int tcp_log_in_vain = 0;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
134     &tcp_log_in_vain, 0,
135     "Log all incoming TCP segments to closed ports");
136 
137 VNET_DEFINE(int, blackhole) = 0;
138 #define	V_blackhole		VNET(blackhole)
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(blackhole), 0,
141     "Do not send RST on segments to closed ports");
142 
143 VNET_DEFINE(int, tcp_delack_enabled) = 1;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_delack_enabled), 0,
146     "Delay ACK to try and piggyback it onto a data packet");
147 
148 VNET_DEFINE(int, drop_synfin) = 0;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
150     &VNET_NAME(drop_synfin), 0,
151     "Drop TCP packets with SYN+FIN set");
152 
153 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
156     "Use calculated pipe/in-flight bytes per RFC 6675");
157 
158 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
160     &VNET_NAME(tcp_do_rfc3042), 0,
161     "Enable RFC 3042 (Limited Transmit)");
162 
163 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
165     &VNET_NAME(tcp_do_rfc3390), 0,
166     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
167 
168 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
170     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
171     "Slow-start flight size (initial congestion window) in number of segments");
172 
173 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
175     &VNET_NAME(tcp_do_rfc3465), 0,
176     "Enable RFC 3465 (Appropriate Byte Counting)");
177 
178 VNET_DEFINE(int, tcp_abc_l_var) = 2;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
180     &VNET_NAME(tcp_abc_l_var), 2,
181     "Cap the max cwnd increment during slow-start to this number of segments");
182 
183 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
184 
185 VNET_DEFINE(int, tcp_do_ecn) = 2;
186 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_do_ecn), 0,
188     "TCP ECN support");
189 
190 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
191 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
192     &VNET_NAME(tcp_ecn_maxretries), 0,
193     "Max retries before giving up on ECN");
194 
195 VNET_DEFINE(int, tcp_insecure_syn) = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_insecure_syn), 0,
198     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
199 
200 VNET_DEFINE(int, tcp_insecure_rst) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_insecure_rst), 0,
203     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
204 
205 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
206 #define	V_tcp_recvspace	VNET(tcp_recvspace)
207 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
209 
210 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_do_autorcvbuf), 0,
213     "Enable automatic receive buffer sizing");
214 
215 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
217     &VNET_NAME(tcp_autorcvbuf_inc), 0,
218     "Incrementor step size of automatic receive buffer");
219 
220 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
222     &VNET_NAME(tcp_autorcvbuf_max), 0,
223     "Max size of automatic receive buffer");
224 
225 VNET_DEFINE(struct inpcbhead, tcb);
226 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
227 VNET_DEFINE(struct inpcbinfo, tcbinfo);
228 
229 /*
230  * TCP statistics are stored in an array of counter(9)s, which size matches
231  * size of struct tcpstat.  TCP running connection count is a regular array.
232  */
233 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
234 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
235     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
236 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
237 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
238     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
239     "TCP connection counts by TCP state");
240 
241 static void
242 tcp_vnet_init(const void *unused)
243 {
244 
245 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
246 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
247 }
248 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
249     tcp_vnet_init, NULL);
250 
251 #ifdef VIMAGE
252 static void
253 tcp_vnet_uninit(const void *unused)
254 {
255 
256 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
257 	VNET_PCPUSTAT_FREE(tcpstat);
258 }
259 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
260     tcp_vnet_uninit, NULL);
261 #endif /* VIMAGE */
262 
263 /*
264  * Kernel module interface for updating tcpstat.  The argument is an index
265  * into tcpstat treated as an array.
266  */
267 void
268 kmod_tcpstat_inc(int statnum)
269 {
270 
271 	counter_u64_add(VNET(tcpstat)[statnum], 1);
272 }
273 
274 #ifdef TCP_HHOOK
275 /*
276  * Wrapper for the TCP established input helper hook.
277  */
278 void
279 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
280 {
281 	struct tcp_hhook_data hhook_data;
282 
283 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
284 		hhook_data.tp = tp;
285 		hhook_data.th = th;
286 		hhook_data.to = to;
287 
288 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
289 		    tp->osd);
290 	}
291 }
292 #endif
293 
294 /*
295  * CC wrapper hook functions
296  */
297 void
298 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
299     uint16_t type)
300 {
301 	INP_WLOCK_ASSERT(tp->t_inpcb);
302 
303 	tp->ccv->nsegs = nsegs;
304 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
305 	if (tp->snd_cwnd <= tp->snd_wnd)
306 		tp->ccv->flags |= CCF_CWND_LIMITED;
307 	else
308 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
309 
310 	if (type == CC_ACK) {
311 		if (tp->snd_cwnd > tp->snd_ssthresh) {
312 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
313 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
314 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
315 				tp->t_bytes_acked -= tp->snd_cwnd;
316 				tp->ccv->flags |= CCF_ABC_SENTAWND;
317 			}
318 		} else {
319 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
320 				tp->t_bytes_acked = 0;
321 		}
322 	}
323 
324 	if (CC_ALGO(tp)->ack_received != NULL) {
325 		/* XXXLAS: Find a way to live without this */
326 		tp->ccv->curack = th->th_ack;
327 		CC_ALGO(tp)->ack_received(tp->ccv, type);
328 	}
329 }
330 
331 void
332 cc_conn_init(struct tcpcb *tp)
333 {
334 	struct hc_metrics_lite metrics;
335 	struct inpcb *inp = tp->t_inpcb;
336 	u_int maxseg;
337 	int rtt;
338 
339 	INP_WLOCK_ASSERT(tp->t_inpcb);
340 
341 	tcp_hc_get(&inp->inp_inc, &metrics);
342 	maxseg = tcp_maxseg(tp);
343 
344 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
345 		tp->t_srtt = rtt;
346 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
347 		TCPSTAT_INC(tcps_usedrtt);
348 		if (metrics.rmx_rttvar) {
349 			tp->t_rttvar = metrics.rmx_rttvar;
350 			TCPSTAT_INC(tcps_usedrttvar);
351 		} else {
352 			/* default variation is +- 1 rtt */
353 			tp->t_rttvar =
354 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
355 		}
356 		TCPT_RANGESET(tp->t_rxtcur,
357 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
358 		    tp->t_rttmin, TCPTV_REXMTMAX);
359 	}
360 	if (metrics.rmx_ssthresh) {
361 		/*
362 		 * There's some sort of gateway or interface
363 		 * buffer limit on the path.  Use this to set
364 		 * the slow start threshold, but set the
365 		 * threshold to no less than 2*mss.
366 		 */
367 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
368 		TCPSTAT_INC(tcps_usedssthresh);
369 	}
370 
371 	/*
372 	 * Set the initial slow-start flight size.
373 	 *
374 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
375 	 * reduce the initial CWND to one segment as congestion is likely
376 	 * requiring us to be cautious.
377 	 */
378 	if (tp->snd_cwnd == 1)
379 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
380 	else
381 		tp->snd_cwnd = tcp_compute_initwnd(maxseg);
382 
383 	if (CC_ALGO(tp)->conn_init != NULL)
384 		CC_ALGO(tp)->conn_init(tp->ccv);
385 }
386 
387 void inline
388 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
389 {
390 	u_int maxseg;
391 
392 	INP_WLOCK_ASSERT(tp->t_inpcb);
393 
394 	switch(type) {
395 	case CC_NDUPACK:
396 		if (!IN_FASTRECOVERY(tp->t_flags)) {
397 			tp->snd_recover = tp->snd_max;
398 			if (tp->t_flags & TF_ECN_PERMIT)
399 				tp->t_flags |= TF_ECN_SND_CWR;
400 		}
401 		break;
402 	case CC_ECN:
403 		if (!IN_CONGRECOVERY(tp->t_flags)) {
404 			TCPSTAT_INC(tcps_ecn_rcwnd);
405 			tp->snd_recover = tp->snd_max;
406 			if (tp->t_flags & TF_ECN_PERMIT)
407 				tp->t_flags |= TF_ECN_SND_CWR;
408 		}
409 		break;
410 	case CC_RTO:
411 		maxseg = tcp_maxseg(tp);
412 		tp->t_dupacks = 0;
413 		tp->t_bytes_acked = 0;
414 		EXIT_RECOVERY(tp->t_flags);
415 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
416 		    maxseg) * maxseg;
417 		tp->snd_cwnd = maxseg;
418 		break;
419 	case CC_RTO_ERR:
420 		TCPSTAT_INC(tcps_sndrexmitbad);
421 		/* RTO was unnecessary, so reset everything. */
422 		tp->snd_cwnd = tp->snd_cwnd_prev;
423 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
424 		tp->snd_recover = tp->snd_recover_prev;
425 		if (tp->t_flags & TF_WASFRECOVERY)
426 			ENTER_FASTRECOVERY(tp->t_flags);
427 		if (tp->t_flags & TF_WASCRECOVERY)
428 			ENTER_CONGRECOVERY(tp->t_flags);
429 		tp->snd_nxt = tp->snd_max;
430 		tp->t_flags &= ~TF_PREVVALID;
431 		tp->t_badrxtwin = 0;
432 		break;
433 	}
434 
435 	if (CC_ALGO(tp)->cong_signal != NULL) {
436 		if (th != NULL)
437 			tp->ccv->curack = th->th_ack;
438 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
439 	}
440 }
441 
442 void inline
443 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
444 {
445 	INP_WLOCK_ASSERT(tp->t_inpcb);
446 
447 	/* XXXLAS: KASSERT that we're in recovery? */
448 
449 	if (CC_ALGO(tp)->post_recovery != NULL) {
450 		tp->ccv->curack = th->th_ack;
451 		CC_ALGO(tp)->post_recovery(tp->ccv);
452 	}
453 	/* XXXLAS: EXIT_RECOVERY ? */
454 	tp->t_bytes_acked = 0;
455 }
456 
457 /*
458  * Indicate whether this ack should be delayed.  We can delay the ack if
459  * following conditions are met:
460  *	- There is no delayed ack timer in progress.
461  *	- Our last ack wasn't a 0-sized window. We never want to delay
462  *	  the ack that opens up a 0-sized window.
463  *	- LRO wasn't used for this segment. We make sure by checking that the
464  *	  segment size is not larger than the MSS.
465  */
466 #define DELAY_ACK(tp, tlen)						\
467 	((!tcp_timer_active(tp, TT_DELACK) &&				\
468 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
469 	    (tlen <= tp->t_maxseg) &&					\
470 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
471 
472 static void inline
473 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
474 {
475 	INP_WLOCK_ASSERT(tp->t_inpcb);
476 
477 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
478 		switch (iptos & IPTOS_ECN_MASK) {
479 		case IPTOS_ECN_CE:
480 		    tp->ccv->flags |= CCF_IPHDR_CE;
481 		    break;
482 		case IPTOS_ECN_ECT0:
483 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
484 		    break;
485 		case IPTOS_ECN_ECT1:
486 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
487 		    break;
488 		}
489 
490 		if (th->th_flags & TH_CWR)
491 			tp->ccv->flags |= CCF_TCPHDR_CWR;
492 		else
493 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
494 
495 		if (tp->t_flags & TF_DELACK)
496 			tp->ccv->flags |= CCF_DELACK;
497 		else
498 			tp->ccv->flags &= ~CCF_DELACK;
499 
500 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
501 
502 		if (tp->ccv->flags & CCF_ACKNOW)
503 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
504 	}
505 }
506 
507 /*
508  * TCP input handling is split into multiple parts:
509  *   tcp6_input is a thin wrapper around tcp_input for the extended
510  *	ip6_protox[] call format in ip6_input
511  *   tcp_input handles primary segment validation, inpcb lookup and
512  *	SYN processing on listen sockets
513  *   tcp_do_segment processes the ACK and text of the segment for
514  *	establishing, established and closing connections
515  */
516 #ifdef INET6
517 int
518 tcp6_input(struct mbuf **mp, int *offp, int proto)
519 {
520 	struct mbuf *m = *mp;
521 	struct in6_ifaddr *ia6;
522 	struct ip6_hdr *ip6;
523 
524 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
525 
526 	/*
527 	 * draft-itojun-ipv6-tcp-to-anycast
528 	 * better place to put this in?
529 	 */
530 	ip6 = mtod(m, struct ip6_hdr *);
531 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
532 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
533 		struct ip6_hdr *ip6;
534 
535 		ifa_free(&ia6->ia_ifa);
536 		ip6 = mtod(m, struct ip6_hdr *);
537 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
538 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
539 		return (IPPROTO_DONE);
540 	}
541 	if (ia6)
542 		ifa_free(&ia6->ia_ifa);
543 
544 	return (tcp_input(mp, offp, proto));
545 }
546 #endif /* INET6 */
547 
548 int
549 tcp_input(struct mbuf **mp, int *offp, int proto)
550 {
551 	struct mbuf *m = *mp;
552 	struct tcphdr *th = NULL;
553 	struct ip *ip = NULL;
554 	struct inpcb *inp = NULL;
555 	struct tcpcb *tp = NULL;
556 	struct socket *so = NULL;
557 	u_char *optp = NULL;
558 	int off0;
559 	int optlen = 0;
560 #ifdef INET
561 	int len;
562 #endif
563 	int tlen = 0, off;
564 	int drop_hdrlen;
565 	int thflags;
566 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
567 	uint8_t iptos;
568 	struct m_tag *fwd_tag = NULL;
569 	struct epoch_tracker et;
570 #ifdef INET6
571 	struct ip6_hdr *ip6 = NULL;
572 	int isipv6;
573 #else
574 	const void *ip6 = NULL;
575 #endif /* INET6 */
576 	struct tcpopt to;		/* options in this segment */
577 	char *s = NULL;			/* address and port logging */
578 	int ti_locked;
579 #ifdef TCPDEBUG
580 	/*
581 	 * The size of tcp_saveipgen must be the size of the max ip header,
582 	 * now IPv6.
583 	 */
584 	u_char tcp_saveipgen[IP6_HDR_LEN];
585 	struct tcphdr tcp_savetcp;
586 	short ostate = 0;
587 #endif
588 
589 #ifdef INET6
590 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
591 #endif
592 
593 	off0 = *offp;
594 	m = *mp;
595 	*mp = NULL;
596 	to.to_flags = 0;
597 	TCPSTAT_INC(tcps_rcvtotal);
598 
599 #ifdef INET6
600 	if (isipv6) {
601 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
602 
603 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
604 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
605 			if (m == NULL) {
606 				TCPSTAT_INC(tcps_rcvshort);
607 				return (IPPROTO_DONE);
608 			}
609 		}
610 
611 		ip6 = mtod(m, struct ip6_hdr *);
612 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
613 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
614 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
615 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
616 				th->th_sum = m->m_pkthdr.csum_data;
617 			else
618 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
619 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
620 			th->th_sum ^= 0xffff;
621 		} else
622 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
623 		if (th->th_sum) {
624 			TCPSTAT_INC(tcps_rcvbadsum);
625 			goto drop;
626 		}
627 
628 		/*
629 		 * Be proactive about unspecified IPv6 address in source.
630 		 * As we use all-zero to indicate unbounded/unconnected pcb,
631 		 * unspecified IPv6 address can be used to confuse us.
632 		 *
633 		 * Note that packets with unspecified IPv6 destination is
634 		 * already dropped in ip6_input.
635 		 */
636 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
637 			/* XXX stat */
638 			goto drop;
639 		}
640 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
641 	}
642 #endif
643 #if defined(INET) && defined(INET6)
644 	else
645 #endif
646 #ifdef INET
647 	{
648 		/*
649 		 * Get IP and TCP header together in first mbuf.
650 		 * Note: IP leaves IP header in first mbuf.
651 		 */
652 		if (off0 > sizeof (struct ip)) {
653 			ip_stripoptions(m);
654 			off0 = sizeof(struct ip);
655 		}
656 		if (m->m_len < sizeof (struct tcpiphdr)) {
657 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
658 			    == NULL) {
659 				TCPSTAT_INC(tcps_rcvshort);
660 				return (IPPROTO_DONE);
661 			}
662 		}
663 		ip = mtod(m, struct ip *);
664 		th = (struct tcphdr *)((caddr_t)ip + off0);
665 		tlen = ntohs(ip->ip_len) - off0;
666 
667 		iptos = ip->ip_tos;
668 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
669 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
670 				th->th_sum = m->m_pkthdr.csum_data;
671 			else
672 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
673 				    ip->ip_dst.s_addr,
674 				    htonl(m->m_pkthdr.csum_data + tlen +
675 				    IPPROTO_TCP));
676 			th->th_sum ^= 0xffff;
677 		} else {
678 			struct ipovly *ipov = (struct ipovly *)ip;
679 
680 			/*
681 			 * Checksum extended TCP header and data.
682 			 */
683 			len = off0 + tlen;
684 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
685 			ipov->ih_len = htons(tlen);
686 			th->th_sum = in_cksum(m, len);
687 			/* Reset length for SDT probes. */
688 			ip->ip_len = htons(len);
689 			/* Reset TOS bits */
690 			ip->ip_tos = iptos;
691 			/* Re-initialization for later version check */
692 			ip->ip_v = IPVERSION;
693 			ip->ip_hl = off0 >> 2;
694 		}
695 
696 		if (th->th_sum) {
697 			TCPSTAT_INC(tcps_rcvbadsum);
698 			goto drop;
699 		}
700 	}
701 #endif /* INET */
702 
703 	/*
704 	 * Check that TCP offset makes sense,
705 	 * pull out TCP options and adjust length.		XXX
706 	 */
707 	off = th->th_off << 2;
708 	if (off < sizeof (struct tcphdr) || off > tlen) {
709 		TCPSTAT_INC(tcps_rcvbadoff);
710 		goto drop;
711 	}
712 	tlen -= off;	/* tlen is used instead of ti->ti_len */
713 	if (off > sizeof (struct tcphdr)) {
714 #ifdef INET6
715 		if (isipv6) {
716 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
717 			ip6 = mtod(m, struct ip6_hdr *);
718 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
719 		}
720 #endif
721 #if defined(INET) && defined(INET6)
722 		else
723 #endif
724 #ifdef INET
725 		{
726 			if (m->m_len < sizeof(struct ip) + off) {
727 				if ((m = m_pullup(m, sizeof (struct ip) + off))
728 				    == NULL) {
729 					TCPSTAT_INC(tcps_rcvshort);
730 					return (IPPROTO_DONE);
731 				}
732 				ip = mtod(m, struct ip *);
733 				th = (struct tcphdr *)((caddr_t)ip + off0);
734 			}
735 		}
736 #endif
737 		optlen = off - sizeof (struct tcphdr);
738 		optp = (u_char *)(th + 1);
739 	}
740 	thflags = th->th_flags;
741 
742 	/*
743 	 * Convert TCP protocol specific fields to host format.
744 	 */
745 	tcp_fields_to_host(th);
746 
747 	/*
748 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
749 	 */
750 	drop_hdrlen = off0 + off;
751 
752 	/*
753 	 * Locate pcb for segment; if we're likely to add or remove a
754 	 * connection then first acquire pcbinfo lock.  There are three cases
755 	 * where we might discover later we need a write lock despite the
756 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
757 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
758 	 */
759 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
760 		INP_INFO_RLOCK_ET(&V_tcbinfo, et);
761 		ti_locked = TI_RLOCKED;
762 	} else
763 		ti_locked = TI_UNLOCKED;
764 
765 	/*
766 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
767 	 */
768         if (
769 #ifdef INET6
770 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
771 #ifdef INET
772 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
773 #endif
774 #endif
775 #if defined(INET) && !defined(INET6)
776 	    (m->m_flags & M_IP_NEXTHOP)
777 #endif
778 	    )
779 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
780 
781 findpcb:
782 #ifdef INVARIANTS
783 	if (ti_locked == TI_RLOCKED) {
784 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
785 	} else {
786 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
787 	}
788 #endif
789 #ifdef INET6
790 	if (isipv6 && fwd_tag != NULL) {
791 		struct sockaddr_in6 *next_hop6;
792 
793 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
794 		/*
795 		 * Transparently forwarded. Pretend to be the destination.
796 		 * Already got one like this?
797 		 */
798 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
799 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
800 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
801 		if (!inp) {
802 			/*
803 			 * It's new.  Try to find the ambushing socket.
804 			 * Because we've rewritten the destination address,
805 			 * any hardware-generated hash is ignored.
806 			 */
807 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
808 			    th->th_sport, &next_hop6->sin6_addr,
809 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
810 			    th->th_dport, INPLOOKUP_WILDCARD |
811 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
812 		}
813 	} else if (isipv6) {
814 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
815 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
816 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
817 		    m->m_pkthdr.rcvif, m);
818 	}
819 #endif /* INET6 */
820 #if defined(INET6) && defined(INET)
821 	else
822 #endif
823 #ifdef INET
824 	if (fwd_tag != NULL) {
825 		struct sockaddr_in *next_hop;
826 
827 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
828 		/*
829 		 * Transparently forwarded. Pretend to be the destination.
830 		 * already got one like this?
831 		 */
832 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
833 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
834 		    m->m_pkthdr.rcvif, m);
835 		if (!inp) {
836 			/*
837 			 * It's new.  Try to find the ambushing socket.
838 			 * Because we've rewritten the destination address,
839 			 * any hardware-generated hash is ignored.
840 			 */
841 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
842 			    th->th_sport, next_hop->sin_addr,
843 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
844 			    th->th_dport, INPLOOKUP_WILDCARD |
845 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
846 		}
847 	} else
848 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
849 		    th->th_sport, ip->ip_dst, th->th_dport,
850 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
851 		    m->m_pkthdr.rcvif, m);
852 #endif /* INET */
853 
854 	/*
855 	 * If the INPCB does not exist then all data in the incoming
856 	 * segment is discarded and an appropriate RST is sent back.
857 	 * XXX MRT Send RST using which routing table?
858 	 */
859 	if (inp == NULL) {
860 		/*
861 		 * Log communication attempts to ports that are not
862 		 * in use.
863 		 */
864 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
865 		    tcp_log_in_vain == 2) {
866 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
867 				log(LOG_INFO, "%s; %s: Connection attempt "
868 				    "to closed port\n", s, __func__);
869 		}
870 		/*
871 		 * When blackholing do not respond with a RST but
872 		 * completely ignore the segment and drop it.
873 		 */
874 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
875 		    V_blackhole == 2)
876 			goto dropunlock;
877 
878 		rstreason = BANDLIM_RST_CLOSEDPORT;
879 		goto dropwithreset;
880 	}
881 	INP_WLOCK_ASSERT(inp);
882 	/*
883 	 * While waiting for inp lock during the lookup, another thread
884 	 * can have dropped the inpcb, in which case we need to loop back
885 	 * and try to find a new inpcb to deliver to.
886 	 */
887 	if (inp->inp_flags & INP_DROPPED) {
888 		INP_WUNLOCK(inp);
889 		inp = NULL;
890 		goto findpcb;
891 	}
892 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
893 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
894 	    ((inp->inp_socket == NULL) ||
895 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
896 		inp->inp_flowid = m->m_pkthdr.flowid;
897 		inp->inp_flowtype = M_HASHTYPE_GET(m);
898 	}
899 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
900 #ifdef INET6
901 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
902 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
903 		goto dropunlock;
904 	}
905 #ifdef INET
906 	else
907 #endif
908 #endif /* INET6 */
909 #ifdef INET
910 	if (IPSEC_ENABLED(ipv4) &&
911 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
912 		goto dropunlock;
913 	}
914 #endif /* INET */
915 #endif /* IPSEC */
916 
917 	/*
918 	 * Check the minimum TTL for socket.
919 	 */
920 	if (inp->inp_ip_minttl != 0) {
921 #ifdef INET6
922 		if (isipv6) {
923 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
924 				goto dropunlock;
925 		} else
926 #endif
927 		if (inp->inp_ip_minttl > ip->ip_ttl)
928 			goto dropunlock;
929 	}
930 
931 	/*
932 	 * A previous connection in TIMEWAIT state is supposed to catch stray
933 	 * or duplicate segments arriving late.  If this segment was a
934 	 * legitimate new connection attempt, the old INPCB gets removed and
935 	 * we can try again to find a listening socket.
936 	 *
937 	 * At this point, due to earlier optimism, we may hold only an inpcb
938 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
939 	 * acquire it, or if that fails, acquire a reference on the inpcb,
940 	 * drop all locks, acquire a global write lock, and then re-acquire
941 	 * the inpcb lock.  We may at that point discover that another thread
942 	 * has tried to free the inpcb, in which case we need to loop back
943 	 * and try to find a new inpcb to deliver to.
944 	 *
945 	 * XXXRW: It may be time to rethink timewait locking.
946 	 */
947 	if (inp->inp_flags & INP_TIMEWAIT) {
948 		if (ti_locked == TI_UNLOCKED) {
949 			INP_INFO_RLOCK_ET(&V_tcbinfo, et);
950 			ti_locked = TI_RLOCKED;
951 		}
952 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
953 
954 		if (thflags & TH_SYN)
955 			tcp_dooptions(&to, optp, optlen, TO_SYN);
956 		/*
957 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
958 		 */
959 		if (tcp_twcheck(inp, &to, th, m, tlen))
960 			goto findpcb;
961 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
962 		return (IPPROTO_DONE);
963 	}
964 	/*
965 	 * The TCPCB may no longer exist if the connection is winding
966 	 * down or it is in the CLOSED state.  Either way we drop the
967 	 * segment and send an appropriate response.
968 	 */
969 	tp = intotcpcb(inp);
970 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
971 		rstreason = BANDLIM_RST_CLOSEDPORT;
972 		goto dropwithreset;
973 	}
974 
975 #ifdef TCP_OFFLOAD
976 	if (tp->t_flags & TF_TOE) {
977 		tcp_offload_input(tp, m);
978 		m = NULL;	/* consumed by the TOE driver */
979 		goto dropunlock;
980 	}
981 #endif
982 
983 	/*
984 	 * We've identified a valid inpcb, but it could be that we need an
985 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
986 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
987 	 * relock, we have to jump back to 'relocked' as the connection might
988 	 * now be in TIMEWAIT.
989 	 */
990 #ifdef INVARIANTS
991 	if ((thflags & (TH_FIN | TH_RST)) != 0)
992 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
993 #endif
994 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
995 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
996 	       !IS_FASTOPEN(tp->t_flags)))) {
997 		if (ti_locked == TI_UNLOCKED) {
998 			INP_INFO_RLOCK_ET(&V_tcbinfo, et);
999 			ti_locked = TI_RLOCKED;
1000 		}
1001 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1002 	}
1003 
1004 #ifdef MAC
1005 	INP_WLOCK_ASSERT(inp);
1006 	if (mac_inpcb_check_deliver(inp, m))
1007 		goto dropunlock;
1008 #endif
1009 	so = inp->inp_socket;
1010 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1011 #ifdef TCPDEBUG
1012 	if (so->so_options & SO_DEBUG) {
1013 		ostate = tp->t_state;
1014 #ifdef INET6
1015 		if (isipv6) {
1016 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1017 		} else
1018 #endif
1019 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1020 		tcp_savetcp = *th;
1021 	}
1022 #endif /* TCPDEBUG */
1023 	/*
1024 	 * When the socket is accepting connections (the INPCB is in LISTEN
1025 	 * state) we look into the SYN cache if this is a new connection
1026 	 * attempt or the completion of a previous one.
1027 	 */
1028 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1029 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1030 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1031 		struct in_conninfo inc;
1032 
1033 		bzero(&inc, sizeof(inc));
1034 #ifdef INET6
1035 		if (isipv6) {
1036 			inc.inc_flags |= INC_ISIPV6;
1037 			if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1038 				inc.inc_flags |= INC_IPV6MINMTU;
1039 			inc.inc6_faddr = ip6->ip6_src;
1040 			inc.inc6_laddr = ip6->ip6_dst;
1041 		} else
1042 #endif
1043 		{
1044 			inc.inc_faddr = ip->ip_src;
1045 			inc.inc_laddr = ip->ip_dst;
1046 		}
1047 		inc.inc_fport = th->th_sport;
1048 		inc.inc_lport = th->th_dport;
1049 		inc.inc_fibnum = so->so_fibnum;
1050 
1051 		/*
1052 		 * Check for an existing connection attempt in syncache if
1053 		 * the flag is only ACK.  A successful lookup creates a new
1054 		 * socket appended to the listen queue in SYN_RECEIVED state.
1055 		 */
1056 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1057 
1058 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1059 			/*
1060 			 * Parse the TCP options here because
1061 			 * syncookies need access to the reflected
1062 			 * timestamp.
1063 			 */
1064 			tcp_dooptions(&to, optp, optlen, 0);
1065 			/*
1066 			 * NB: syncache_expand() doesn't unlock
1067 			 * inp and tcpinfo locks.
1068 			 */
1069 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1070 			if (rstreason < 0) {
1071 				/*
1072 				 * A failing TCP MD5 signature comparison
1073 				 * must result in the segment being dropped
1074 				 * and must not produce any response back
1075 				 * to the sender.
1076 				 */
1077 				goto dropunlock;
1078 			} else if (rstreason == 0) {
1079 				/*
1080 				 * No syncache entry or ACK was not
1081 				 * for our SYN/ACK.  Send a RST.
1082 				 * NB: syncache did its own logging
1083 				 * of the failure cause.
1084 				 */
1085 				rstreason = BANDLIM_RST_OPENPORT;
1086 				goto dropwithreset;
1087 			}
1088 tfo_socket_result:
1089 			if (so == NULL) {
1090 				/*
1091 				 * We completed the 3-way handshake
1092 				 * but could not allocate a socket
1093 				 * either due to memory shortage,
1094 				 * listen queue length limits or
1095 				 * global socket limits.  Send RST
1096 				 * or wait and have the remote end
1097 				 * retransmit the ACK for another
1098 				 * try.
1099 				 */
1100 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1101 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1102 					    "Socket allocation failed due to "
1103 					    "limits or memory shortage, %s\n",
1104 					    s, __func__,
1105 					    V_tcp_sc_rst_sock_fail ?
1106 					    "sending RST" : "try again");
1107 				if (V_tcp_sc_rst_sock_fail) {
1108 					rstreason = BANDLIM_UNLIMITED;
1109 					goto dropwithreset;
1110 				} else
1111 					goto dropunlock;
1112 			}
1113 			/*
1114 			 * Socket is created in state SYN_RECEIVED.
1115 			 * Unlock the listen socket, lock the newly
1116 			 * created socket and update the tp variable.
1117 			 */
1118 			INP_WUNLOCK(inp);	/* listen socket */
1119 			inp = sotoinpcb(so);
1120 			/*
1121 			 * New connection inpcb is already locked by
1122 			 * syncache_expand().
1123 			 */
1124 			INP_WLOCK_ASSERT(inp);
1125 			tp = intotcpcb(inp);
1126 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1127 			    ("%s: ", __func__));
1128 			/*
1129 			 * Process the segment and the data it
1130 			 * contains.  tcp_do_segment() consumes
1131 			 * the mbuf chain and unlocks the inpcb.
1132 			 */
1133 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1134 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1135 			    iptos);
1136 			if (ti_locked == TI_RLOCKED)
1137 				INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1138 			return (IPPROTO_DONE);
1139 		}
1140 		/*
1141 		 * Segment flag validation for new connection attempts:
1142 		 *
1143 		 * Our (SYN|ACK) response was rejected.
1144 		 * Check with syncache and remove entry to prevent
1145 		 * retransmits.
1146 		 *
1147 		 * NB: syncache_chkrst does its own logging of failure
1148 		 * causes.
1149 		 */
1150 		if (thflags & TH_RST) {
1151 			syncache_chkrst(&inc, th, m);
1152 			goto dropunlock;
1153 		}
1154 		/*
1155 		 * We can't do anything without SYN.
1156 		 */
1157 		if ((thflags & TH_SYN) == 0) {
1158 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1159 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1160 				    "SYN is missing, segment ignored\n",
1161 				    s, __func__);
1162 			TCPSTAT_INC(tcps_badsyn);
1163 			goto dropunlock;
1164 		}
1165 		/*
1166 		 * (SYN|ACK) is bogus on a listen socket.
1167 		 */
1168 		if (thflags & TH_ACK) {
1169 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1170 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1171 				    "SYN|ACK invalid, segment rejected\n",
1172 				    s, __func__);
1173 			syncache_badack(&inc);	/* XXX: Not needed! */
1174 			TCPSTAT_INC(tcps_badsyn);
1175 			rstreason = BANDLIM_RST_OPENPORT;
1176 			goto dropwithreset;
1177 		}
1178 		/*
1179 		 * If the drop_synfin option is enabled, drop all
1180 		 * segments with both the SYN and FIN bits set.
1181 		 * This prevents e.g. nmap from identifying the
1182 		 * TCP/IP stack.
1183 		 * XXX: Poor reasoning.  nmap has other methods
1184 		 * and is constantly refining its stack detection
1185 		 * strategies.
1186 		 * XXX: This is a violation of the TCP specification
1187 		 * and was used by RFC1644.
1188 		 */
1189 		if ((thflags & TH_FIN) && V_drop_synfin) {
1190 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1191 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1192 				    "SYN|FIN segment ignored (based on "
1193 				    "sysctl setting)\n", s, __func__);
1194 			TCPSTAT_INC(tcps_badsyn);
1195 			goto dropunlock;
1196 		}
1197 		/*
1198 		 * Segment's flags are (SYN) or (SYN|FIN).
1199 		 *
1200 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1201 		 * as they do not affect the state of the TCP FSM.
1202 		 * The data pointed to by TH_URG and th_urp is ignored.
1203 		 */
1204 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1205 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1206 		KASSERT(thflags & (TH_SYN),
1207 		    ("%s: Listen socket: TH_SYN not set", __func__));
1208 #ifdef INET6
1209 		/*
1210 		 * If deprecated address is forbidden,
1211 		 * we do not accept SYN to deprecated interface
1212 		 * address to prevent any new inbound connection from
1213 		 * getting established.
1214 		 * When we do not accept SYN, we send a TCP RST,
1215 		 * with deprecated source address (instead of dropping
1216 		 * it).  We compromise it as it is much better for peer
1217 		 * to send a RST, and RST will be the final packet
1218 		 * for the exchange.
1219 		 *
1220 		 * If we do not forbid deprecated addresses, we accept
1221 		 * the SYN packet.  RFC2462 does not suggest dropping
1222 		 * SYN in this case.
1223 		 * If we decipher RFC2462 5.5.4, it says like this:
1224 		 * 1. use of deprecated addr with existing
1225 		 *    communication is okay - "SHOULD continue to be
1226 		 *    used"
1227 		 * 2. use of it with new communication:
1228 		 *   (2a) "SHOULD NOT be used if alternate address
1229 		 *        with sufficient scope is available"
1230 		 *   (2b) nothing mentioned otherwise.
1231 		 * Here we fall into (2b) case as we have no choice in
1232 		 * our source address selection - we must obey the peer.
1233 		 *
1234 		 * The wording in RFC2462 is confusing, and there are
1235 		 * multiple description text for deprecated address
1236 		 * handling - worse, they are not exactly the same.
1237 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1238 		 */
1239 		if (isipv6 && !V_ip6_use_deprecated) {
1240 			struct in6_ifaddr *ia6;
1241 
1242 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1243 			if (ia6 != NULL &&
1244 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1245 				ifa_free(&ia6->ia_ifa);
1246 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1247 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1248 					"Connection attempt to deprecated "
1249 					"IPv6 address rejected\n",
1250 					s, __func__);
1251 				rstreason = BANDLIM_RST_OPENPORT;
1252 				goto dropwithreset;
1253 			}
1254 			if (ia6)
1255 				ifa_free(&ia6->ia_ifa);
1256 		}
1257 #endif /* INET6 */
1258 		/*
1259 		 * Basic sanity checks on incoming SYN requests:
1260 		 *   Don't respond if the destination is a link layer
1261 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1262 		 *   If it is from this socket it must be forged.
1263 		 *   Don't respond if the source or destination is a
1264 		 *	global or subnet broad- or multicast address.
1265 		 *   Note that it is quite possible to receive unicast
1266 		 *	link-layer packets with a broadcast IP address. Use
1267 		 *	in_broadcast() to find them.
1268 		 */
1269 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1270 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1271 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1272 				"Connection attempt from broad- or multicast "
1273 				"link layer address ignored\n", s, __func__);
1274 			goto dropunlock;
1275 		}
1276 #ifdef INET6
1277 		if (isipv6) {
1278 			if (th->th_dport == th->th_sport &&
1279 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1280 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1281 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1282 					"Connection attempt to/from self "
1283 					"ignored\n", s, __func__);
1284 				goto dropunlock;
1285 			}
1286 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1287 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1288 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1289 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1290 					"Connection attempt from/to multicast "
1291 					"address ignored\n", s, __func__);
1292 				goto dropunlock;
1293 			}
1294 		}
1295 #endif
1296 #if defined(INET) && defined(INET6)
1297 		else
1298 #endif
1299 #ifdef INET
1300 		{
1301 			if (th->th_dport == th->th_sport &&
1302 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1303 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1304 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1305 					"Connection attempt from/to self "
1306 					"ignored\n", s, __func__);
1307 				goto dropunlock;
1308 			}
1309 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1310 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1311 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1312 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1313 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1314 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1315 					"Connection attempt from/to broad- "
1316 					"or multicast address ignored\n",
1317 					s, __func__);
1318 				goto dropunlock;
1319 			}
1320 		}
1321 #endif
1322 		/*
1323 		 * SYN appears to be valid.  Create compressed TCP state
1324 		 * for syncache.
1325 		 */
1326 #ifdef TCPDEBUG
1327 		if (so->so_options & SO_DEBUG)
1328 			tcp_trace(TA_INPUT, ostate, tp,
1329 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1330 #endif
1331 		TCP_PROBE3(debug__input, tp, th, m);
1332 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1333 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1334 			goto tfo_socket_result;
1335 
1336 		/*
1337 		 * Entry added to syncache and mbuf consumed.
1338 		 * Only the listen socket is unlocked by syncache_add().
1339 		 */
1340 		if (ti_locked == TI_RLOCKED) {
1341 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1342 			ti_locked = TI_UNLOCKED;
1343 		}
1344 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1345 		return (IPPROTO_DONE);
1346 	} else if (tp->t_state == TCPS_LISTEN) {
1347 		/*
1348 		 * When a listen socket is torn down the SO_ACCEPTCONN
1349 		 * flag is removed first while connections are drained
1350 		 * from the accept queue in a unlock/lock cycle of the
1351 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1352 		 * attempt go through unhandled.
1353 		 */
1354 		goto dropunlock;
1355 	}
1356 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1357 	if (tp->t_flags & TF_SIGNATURE) {
1358 		tcp_dooptions(&to, optp, optlen, thflags);
1359 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1360 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1361 			goto dropunlock;
1362 		}
1363 		if (!TCPMD5_ENABLED() ||
1364 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1365 			goto dropunlock;
1366 	}
1367 #endif
1368 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1369 
1370 	/*
1371 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1372 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1373 	 * the inpcb, and unlocks pcbinfo.
1374 	 */
1375 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1376 	if (ti_locked == TI_RLOCKED)
1377 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1378 	return (IPPROTO_DONE);
1379 
1380 dropwithreset:
1381 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1382 
1383 	if (ti_locked == TI_RLOCKED) {
1384 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1385 		ti_locked = TI_UNLOCKED;
1386 	}
1387 #ifdef INVARIANTS
1388 	else {
1389 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1390 		    "ti_locked: %d", __func__, ti_locked));
1391 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1392 	}
1393 #endif
1394 
1395 	if (inp != NULL) {
1396 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1397 		INP_WUNLOCK(inp);
1398 	} else
1399 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1400 	m = NULL;	/* mbuf chain got consumed. */
1401 	goto drop;
1402 
1403 dropunlock:
1404 	if (m != NULL)
1405 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1406 
1407 	if (ti_locked == TI_RLOCKED) {
1408 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1409 		ti_locked = TI_UNLOCKED;
1410 	}
1411 #ifdef INVARIANTS
1412 	else {
1413 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1414 		    "ti_locked: %d", __func__, ti_locked));
1415 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1416 	}
1417 #endif
1418 
1419 	if (inp != NULL)
1420 		INP_WUNLOCK(inp);
1421 
1422 drop:
1423 	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1424 	if (s != NULL)
1425 		free(s, M_TCPLOG);
1426 	if (m != NULL)
1427 		m_freem(m);
1428 	return (IPPROTO_DONE);
1429 }
1430 
1431 /*
1432  * Automatic sizing of receive socket buffer.  Often the send
1433  * buffer size is not optimally adjusted to the actual network
1434  * conditions at hand (delay bandwidth product).  Setting the
1435  * buffer size too small limits throughput on links with high
1436  * bandwidth and high delay (eg. trans-continental/oceanic links).
1437  *
1438  * On the receive side the socket buffer memory is only rarely
1439  * used to any significant extent.  This allows us to be much
1440  * more aggressive in scaling the receive socket buffer.  For
1441  * the case that the buffer space is actually used to a large
1442  * extent and we run out of kernel memory we can simply drop
1443  * the new segments; TCP on the sender will just retransmit it
1444  * later.  Setting the buffer size too big may only consume too
1445  * much kernel memory if the application doesn't read() from
1446  * the socket or packet loss or reordering makes use of the
1447  * reassembly queue.
1448  *
1449  * The criteria to step up the receive buffer one notch are:
1450  *  1. Application has not set receive buffer size with
1451  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1452  *  2. the number of bytes received during the time it takes
1453  *     one timestamp to be reflected back to us (the RTT);
1454  *  3. received bytes per RTT is within seven eighth of the
1455  *     current socket buffer size;
1456  *  4. receive buffer size has not hit maximal automatic size;
1457  *
1458  * This algorithm does one step per RTT at most and only if
1459  * we receive a bulk stream w/o packet losses or reorderings.
1460  * Shrinking the buffer during idle times is not necessary as
1461  * it doesn't consume any memory when idle.
1462  *
1463  * TODO: Only step up if the application is actually serving
1464  * the buffer to better manage the socket buffer resources.
1465  */
1466 int
1467 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1468     struct tcpcb *tp, int tlen)
1469 {
1470 	int newsize = 0;
1471 
1472 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1473 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1474 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1475 	    (tp->t_srtt >> TCP_RTT_SHIFT)) {
1476 		if (tp->rfbuf_cnt > (so->so_rcv.sb_hiwat / 8 * 7) &&
1477 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1478 			newsize = min(so->so_rcv.sb_hiwat +
1479 			    V_tcp_autorcvbuf_inc, V_tcp_autorcvbuf_max);
1480 		}
1481 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1482 
1483 		/* Start over with next RTT. */
1484 		tp->rfbuf_ts = 0;
1485 		tp->rfbuf_cnt = 0;
1486 	} else {
1487 		tp->rfbuf_cnt += tlen;	/* add up */
1488 	}
1489 
1490 	return (newsize);
1491 }
1492 
1493 void
1494 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1495     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1496 {
1497 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1498 	int rstreason, todrop, win;
1499 	uint32_t tiwin;
1500 	uint16_t nsegs;
1501 	char *s;
1502 	struct in_conninfo *inc;
1503 	struct mbuf *mfree;
1504 	struct tcpopt to;
1505 	int tfo_syn;
1506 
1507 #ifdef TCPDEBUG
1508 	/*
1509 	 * The size of tcp_saveipgen must be the size of the max ip header,
1510 	 * now IPv6.
1511 	 */
1512 	u_char tcp_saveipgen[IP6_HDR_LEN];
1513 	struct tcphdr tcp_savetcp;
1514 	short ostate = 0;
1515 #endif
1516 	thflags = th->th_flags;
1517 	inc = &tp->t_inpcb->inp_inc;
1518 	tp->sackhint.last_sack_ack = 0;
1519 	sack_changed = 0;
1520 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1521 	/*
1522 	 * If this is either a state-changing packet or current state isn't
1523 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1524 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1525 	 * caller may have unnecessarily acquired a write lock due to a race.
1526 	 */
1527 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1528 	    tp->t_state != TCPS_ESTABLISHED) {
1529 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1530 	}
1531 	INP_WLOCK_ASSERT(tp->t_inpcb);
1532 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1533 	    __func__));
1534 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1535 	    __func__));
1536 
1537 #ifdef TCPPCAP
1538 	/* Save segment, if requested. */
1539 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1540 #endif
1541 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1542 	    tlen, NULL, true);
1543 
1544 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1545 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1546 			log(LOG_DEBUG, "%s; %s: "
1547 			    "SYN|FIN segment ignored (based on "
1548 			    "sysctl setting)\n", s, __func__);
1549 			free(s, M_TCPLOG);
1550 		}
1551 		goto drop;
1552 	}
1553 
1554 	/*
1555 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1556 	 * check SEQ.ACK first.
1557 	 */
1558 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1559 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1560 		rstreason = BANDLIM_UNLIMITED;
1561 		goto dropwithreset;
1562 	}
1563 
1564 	/*
1565 	 * Segment received on connection.
1566 	 * Reset idle time and keep-alive timer.
1567 	 * XXX: This should be done after segment
1568 	 * validation to ignore broken/spoofed segs.
1569 	 */
1570 	tp->t_rcvtime = ticks;
1571 
1572 	/*
1573 	 * Scale up the window into a 32-bit value.
1574 	 * For the SYN_SENT state the scale is zero.
1575 	 */
1576 	tiwin = th->th_win << tp->snd_scale;
1577 
1578 	/*
1579 	 * TCP ECN processing.
1580 	 */
1581 	if (tp->t_flags & TF_ECN_PERMIT) {
1582 		if (thflags & TH_CWR)
1583 			tp->t_flags &= ~TF_ECN_SND_ECE;
1584 		switch (iptos & IPTOS_ECN_MASK) {
1585 		case IPTOS_ECN_CE:
1586 			tp->t_flags |= TF_ECN_SND_ECE;
1587 			TCPSTAT_INC(tcps_ecn_ce);
1588 			break;
1589 		case IPTOS_ECN_ECT0:
1590 			TCPSTAT_INC(tcps_ecn_ect0);
1591 			break;
1592 		case IPTOS_ECN_ECT1:
1593 			TCPSTAT_INC(tcps_ecn_ect1);
1594 			break;
1595 		}
1596 
1597 		/* Process a packet differently from RFC3168. */
1598 		cc_ecnpkt_handler(tp, th, iptos);
1599 
1600 		/* Congestion experienced. */
1601 		if (thflags & TH_ECE) {
1602 			cc_cong_signal(tp, th, CC_ECN);
1603 		}
1604 	}
1605 
1606 	/*
1607 	 * Parse options on any incoming segment.
1608 	 */
1609 	tcp_dooptions(&to, (u_char *)(th + 1),
1610 	    (th->th_off << 2) - sizeof(struct tcphdr),
1611 	    (thflags & TH_SYN) ? TO_SYN : 0);
1612 
1613 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1614 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1615 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1616 		TCPSTAT_INC(tcps_sig_err_sigopt);
1617 		/* XXX: should drop? */
1618 	}
1619 #endif
1620 	/*
1621 	 * If echoed timestamp is later than the current time,
1622 	 * fall back to non RFC1323 RTT calculation.  Normalize
1623 	 * timestamp if syncookies were used when this connection
1624 	 * was established.
1625 	 */
1626 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1627 		to.to_tsecr -= tp->ts_offset;
1628 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1629 			to.to_tsecr = 0;
1630 		else if (tp->t_flags & TF_PREVVALID &&
1631 			 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1632 			cc_cong_signal(tp, th, CC_RTO_ERR);
1633 	}
1634 	/*
1635 	 * Process options only when we get SYN/ACK back. The SYN case
1636 	 * for incoming connections is handled in tcp_syncache.
1637 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1638 	 * or <SYN,ACK>) segment itself is never scaled.
1639 	 * XXX this is traditional behavior, may need to be cleaned up.
1640 	 */
1641 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1642 		if ((to.to_flags & TOF_SCALE) &&
1643 		    (tp->t_flags & TF_REQ_SCALE)) {
1644 			tp->t_flags |= TF_RCVD_SCALE;
1645 			tp->snd_scale = to.to_wscale;
1646 		}
1647 		/*
1648 		 * Initial send window.  It will be updated with
1649 		 * the next incoming segment to the scaled value.
1650 		 */
1651 		tp->snd_wnd = th->th_win;
1652 		if (to.to_flags & TOF_TS) {
1653 			tp->t_flags |= TF_RCVD_TSTMP;
1654 			tp->ts_recent = to.to_tsval;
1655 			tp->ts_recent_age = tcp_ts_getticks();
1656 		}
1657 		if (to.to_flags & TOF_MSS)
1658 			tcp_mss(tp, to.to_mss);
1659 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1660 		    (to.to_flags & TOF_SACKPERM) == 0)
1661 			tp->t_flags &= ~TF_SACK_PERMIT;
1662 		if (IS_FASTOPEN(tp->t_flags)) {
1663 			if (to.to_flags & TOF_FASTOPEN) {
1664 				uint16_t mss;
1665 
1666 				if (to.to_flags & TOF_MSS)
1667 					mss = to.to_mss;
1668 				else
1669 					if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1670 						mss = TCP6_MSS;
1671 					else
1672 						mss = TCP_MSS;
1673 				tcp_fastopen_update_cache(tp, mss,
1674 				    to.to_tfo_len, to.to_tfo_cookie);
1675 			} else
1676 				tcp_fastopen_disable_path(tp);
1677 		}
1678 	}
1679 
1680 	/*
1681 	 * If timestamps were negotiated during SYN/ACK they should
1682 	 * appear on every segment during this session and vice versa.
1683 	 */
1684 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1685 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1686 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1687 			    "no action\n", s, __func__);
1688 			free(s, M_TCPLOG);
1689 		}
1690 	}
1691 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1692 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1693 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1694 			    "no action\n", s, __func__);
1695 			free(s, M_TCPLOG);
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * Header prediction: check for the two common cases
1701 	 * of a uni-directional data xfer.  If the packet has
1702 	 * no control flags, is in-sequence, the window didn't
1703 	 * change and we're not retransmitting, it's a
1704 	 * candidate.  If the length is zero and the ack moved
1705 	 * forward, we're the sender side of the xfer.  Just
1706 	 * free the data acked & wake any higher level process
1707 	 * that was blocked waiting for space.  If the length
1708 	 * is non-zero and the ack didn't move, we're the
1709 	 * receiver side.  If we're getting packets in-order
1710 	 * (the reassembly queue is empty), add the data to
1711 	 * the socket buffer and note that we need a delayed ack.
1712 	 * Make sure that the hidden state-flags are also off.
1713 	 * Since we check for TCPS_ESTABLISHED first, it can only
1714 	 * be TH_NEEDSYN.
1715 	 */
1716 	if (tp->t_state == TCPS_ESTABLISHED &&
1717 	    th->th_seq == tp->rcv_nxt &&
1718 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1719 	    tp->snd_nxt == tp->snd_max &&
1720 	    tiwin && tiwin == tp->snd_wnd &&
1721 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1722 	    SEGQ_EMPTY(tp) &&
1723 	    ((to.to_flags & TOF_TS) == 0 ||
1724 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1725 
1726 		/*
1727 		 * If last ACK falls within this segment's sequence numbers,
1728 		 * record the timestamp.
1729 		 * NOTE that the test is modified according to the latest
1730 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1731 		 */
1732 		if ((to.to_flags & TOF_TS) != 0 &&
1733 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1734 			tp->ts_recent_age = tcp_ts_getticks();
1735 			tp->ts_recent = to.to_tsval;
1736 		}
1737 
1738 		if (tlen == 0) {
1739 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1740 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1741 			    !IN_RECOVERY(tp->t_flags) &&
1742 			    (to.to_flags & TOF_SACK) == 0 &&
1743 			    TAILQ_EMPTY(&tp->snd_holes)) {
1744 				/*
1745 				 * This is a pure ack for outstanding data.
1746 				 */
1747 				TCPSTAT_INC(tcps_predack);
1748 
1749 				/*
1750 				 * "bad retransmit" recovery without timestamps.
1751 				 */
1752 				if ((to.to_flags & TOF_TS) == 0 &&
1753 				    tp->t_rxtshift == 1 &&
1754 				    tp->t_flags & TF_PREVVALID &&
1755 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1756 					cc_cong_signal(tp, th, CC_RTO_ERR);
1757 				}
1758 
1759 				/*
1760 				 * Recalculate the transmit timer / rtt.
1761 				 *
1762 				 * Some boxes send broken timestamp replies
1763 				 * during the SYN+ACK phase, ignore
1764 				 * timestamps of 0 or we could calculate a
1765 				 * huge RTT and blow up the retransmit timer.
1766 				 */
1767 				if ((to.to_flags & TOF_TS) != 0 &&
1768 				    to.to_tsecr) {
1769 					uint32_t t;
1770 
1771 					t = tcp_ts_getticks() - to.to_tsecr;
1772 					if (!tp->t_rttlow || tp->t_rttlow > t)
1773 						tp->t_rttlow = t;
1774 					tcp_xmit_timer(tp,
1775 					    TCP_TS_TO_TICKS(t) + 1);
1776 				} else if (tp->t_rtttime &&
1777 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1778 					if (!tp->t_rttlow ||
1779 					    tp->t_rttlow > ticks - tp->t_rtttime)
1780 						tp->t_rttlow = ticks - tp->t_rtttime;
1781 					tcp_xmit_timer(tp,
1782 							ticks - tp->t_rtttime);
1783 				}
1784 				acked = BYTES_THIS_ACK(tp, th);
1785 
1786 #ifdef TCP_HHOOK
1787 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1788 				hhook_run_tcp_est_in(tp, th, &to);
1789 #endif
1790 
1791 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1792 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1793 				sbdrop(&so->so_snd, acked);
1794 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1795 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1796 					tp->snd_recover = th->th_ack - 1;
1797 
1798 				/*
1799 				 * Let the congestion control algorithm update
1800 				 * congestion control related information. This
1801 				 * typically means increasing the congestion
1802 				 * window.
1803 				 */
1804 				cc_ack_received(tp, th, nsegs, CC_ACK);
1805 
1806 				tp->snd_una = th->th_ack;
1807 				/*
1808 				 * Pull snd_wl2 up to prevent seq wrap relative
1809 				 * to th_ack.
1810 				 */
1811 				tp->snd_wl2 = th->th_ack;
1812 				tp->t_dupacks = 0;
1813 				m_freem(m);
1814 
1815 				/*
1816 				 * If all outstanding data are acked, stop
1817 				 * retransmit timer, otherwise restart timer
1818 				 * using current (possibly backed-off) value.
1819 				 * If process is waiting for space,
1820 				 * wakeup/selwakeup/signal.  If data
1821 				 * are ready to send, let tcp_output
1822 				 * decide between more output or persist.
1823 				 */
1824 #ifdef TCPDEBUG
1825 				if (so->so_options & SO_DEBUG)
1826 					tcp_trace(TA_INPUT, ostate, tp,
1827 					    (void *)tcp_saveipgen,
1828 					    &tcp_savetcp, 0);
1829 #endif
1830 				TCP_PROBE3(debug__input, tp, th, m);
1831 				if (tp->snd_una == tp->snd_max)
1832 					tcp_timer_activate(tp, TT_REXMT, 0);
1833 				else if (!tcp_timer_active(tp, TT_PERSIST))
1834 					tcp_timer_activate(tp, TT_REXMT,
1835 						      tp->t_rxtcur);
1836 				sowwakeup(so);
1837 				if (sbavail(&so->so_snd))
1838 					(void) tp->t_fb->tfb_tcp_output(tp);
1839 				goto check_delack;
1840 			}
1841 		} else if (th->th_ack == tp->snd_una &&
1842 		    tlen <= sbspace(&so->so_rcv)) {
1843 			int newsize = 0;	/* automatic sockbuf scaling */
1844 
1845 			/*
1846 			 * This is a pure, in-sequence data packet with
1847 			 * nothing on the reassembly queue and we have enough
1848 			 * buffer space to take it.
1849 			 */
1850 			/* Clean receiver SACK report if present */
1851 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1852 				tcp_clean_sackreport(tp);
1853 			TCPSTAT_INC(tcps_preddat);
1854 			tp->rcv_nxt += tlen;
1855 			/*
1856 			 * Pull snd_wl1 up to prevent seq wrap relative to
1857 			 * th_seq.
1858 			 */
1859 			tp->snd_wl1 = th->th_seq;
1860 			/*
1861 			 * Pull rcv_up up to prevent seq wrap relative to
1862 			 * rcv_nxt.
1863 			 */
1864 			tp->rcv_up = tp->rcv_nxt;
1865 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1866 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1867 #ifdef TCPDEBUG
1868 			if (so->so_options & SO_DEBUG)
1869 				tcp_trace(TA_INPUT, ostate, tp,
1870 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1871 #endif
1872 			TCP_PROBE3(debug__input, tp, th, m);
1873 
1874 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1875 
1876 			/* Add data to socket buffer. */
1877 			SOCKBUF_LOCK(&so->so_rcv);
1878 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1879 				m_freem(m);
1880 			} else {
1881 				/*
1882 				 * Set new socket buffer size.
1883 				 * Give up when limit is reached.
1884 				 */
1885 				if (newsize)
1886 					if (!sbreserve_locked(&so->so_rcv,
1887 					    newsize, so, NULL))
1888 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1889 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1890 				sbappendstream_locked(&so->so_rcv, m, 0);
1891 			}
1892 			/* NB: sorwakeup_locked() does an implicit unlock. */
1893 			sorwakeup_locked(so);
1894 			if (DELAY_ACK(tp, tlen)) {
1895 				tp->t_flags |= TF_DELACK;
1896 			} else {
1897 				tp->t_flags |= TF_ACKNOW;
1898 				tp->t_fb->tfb_tcp_output(tp);
1899 			}
1900 			goto check_delack;
1901 		}
1902 	}
1903 
1904 	/*
1905 	 * Calculate amount of space in receive window,
1906 	 * and then do TCP input processing.
1907 	 * Receive window is amount of space in rcv queue,
1908 	 * but not less than advertised window.
1909 	 */
1910 	win = sbspace(&so->so_rcv);
1911 	if (win < 0)
1912 		win = 0;
1913 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1914 
1915 	switch (tp->t_state) {
1916 
1917 	/*
1918 	 * If the state is SYN_RECEIVED:
1919 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1920 	 */
1921 	case TCPS_SYN_RECEIVED:
1922 		if ((thflags & TH_ACK) &&
1923 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1924 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1925 				rstreason = BANDLIM_RST_OPENPORT;
1926 				goto dropwithreset;
1927 		}
1928 		if (IS_FASTOPEN(tp->t_flags)) {
1929 			/*
1930 			 * When a TFO connection is in SYN_RECEIVED, the
1931 			 * only valid packets are the initial SYN, a
1932 			 * retransmit/copy of the initial SYN (possibly with
1933 			 * a subset of the original data), a valid ACK, a
1934 			 * FIN, or a RST.
1935 			 */
1936 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1937 				rstreason = BANDLIM_RST_OPENPORT;
1938 				goto dropwithreset;
1939 			} else if (thflags & TH_SYN) {
1940 				/* non-initial SYN is ignored */
1941 				if ((tcp_timer_active(tp, TT_DELACK) ||
1942 				     tcp_timer_active(tp, TT_REXMT)))
1943 					goto drop;
1944 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1945 				goto drop;
1946 			}
1947 		}
1948 		break;
1949 
1950 	/*
1951 	 * If the state is SYN_SENT:
1952 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
1953 	 *	    been verified), then drop the connection.
1954 	 *	if seg contains a RST without an ACK, drop the seg.
1955 	 *	if seg does not contain SYN, then drop the seg.
1956 	 * Otherwise this is an acceptable SYN segment
1957 	 *	initialize tp->rcv_nxt and tp->irs
1958 	 *	if seg contains ack then advance tp->snd_una
1959 	 *	if seg contains an ECE and ECN support is enabled, the stream
1960 	 *	    is ECN capable.
1961 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1962 	 *	arrange for segment to be acked (eventually)
1963 	 *	continue processing rest of data/controls, beginning with URG
1964 	 */
1965 	case TCPS_SYN_SENT:
1966 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1967 			TCP_PROBE5(connect__refused, NULL, tp,
1968 			    m, tp, th);
1969 			tp = tcp_drop(tp, ECONNREFUSED);
1970 		}
1971 		if (thflags & TH_RST)
1972 			goto drop;
1973 		if (!(thflags & TH_SYN))
1974 			goto drop;
1975 
1976 		tp->irs = th->th_seq;
1977 		tcp_rcvseqinit(tp);
1978 		if (thflags & TH_ACK) {
1979 			int tfo_partial_ack = 0;
1980 
1981 			TCPSTAT_INC(tcps_connects);
1982 			soisconnected(so);
1983 #ifdef MAC
1984 			mac_socketpeer_set_from_mbuf(m, so);
1985 #endif
1986 			/* Do window scaling on this connection? */
1987 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1988 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1989 				tp->rcv_scale = tp->request_r_scale;
1990 			}
1991 			tp->rcv_adv += min(tp->rcv_wnd,
1992 			    TCP_MAXWIN << tp->rcv_scale);
1993 			tp->snd_una++;		/* SYN is acked */
1994 			/*
1995 			 * If not all the data that was sent in the TFO SYN
1996 			 * has been acked, resend the remainder right away.
1997 			 */
1998 			if (IS_FASTOPEN(tp->t_flags) &&
1999 			    (tp->snd_una != tp->snd_max)) {
2000 				tp->snd_nxt = th->th_ack;
2001 				tfo_partial_ack = 1;
2002 			}
2003 			/*
2004 			 * If there's data, delay ACK; if there's also a FIN
2005 			 * ACKNOW will be turned on later.
2006 			 */
2007 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2008 				tcp_timer_activate(tp, TT_DELACK,
2009 				    tcp_delacktime);
2010 			else
2011 				tp->t_flags |= TF_ACKNOW;
2012 
2013 			if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
2014 			    V_tcp_do_ecn) {
2015 				tp->t_flags |= TF_ECN_PERMIT;
2016 				TCPSTAT_INC(tcps_ecn_shs);
2017 			}
2018 
2019 			/*
2020 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2021 			 * Transitions:
2022 			 *	SYN_SENT  --> ESTABLISHED
2023 			 *	SYN_SENT* --> FIN_WAIT_1
2024 			 */
2025 			tp->t_starttime = ticks;
2026 			if (tp->t_flags & TF_NEEDFIN) {
2027 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2028 				tp->t_flags &= ~TF_NEEDFIN;
2029 				thflags &= ~TH_SYN;
2030 			} else {
2031 				tcp_state_change(tp, TCPS_ESTABLISHED);
2032 				TCP_PROBE5(connect__established, NULL, tp,
2033 				    m, tp, th);
2034 				cc_conn_init(tp);
2035 				tcp_timer_activate(tp, TT_KEEP,
2036 				    TP_KEEPIDLE(tp));
2037 			}
2038 		} else {
2039 			/*
2040 			 * Received initial SYN in SYN-SENT[*] state =>
2041 			 * simultaneous open.
2042 			 * If it succeeds, connection is * half-synchronized.
2043 			 * Otherwise, do 3-way handshake:
2044 			 *        SYN-SENT -> SYN-RECEIVED
2045 			 *        SYN-SENT* -> SYN-RECEIVED*
2046 			 */
2047 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2048 			tcp_timer_activate(tp, TT_REXMT, 0);
2049 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2050 		}
2051 
2052 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2053 		INP_WLOCK_ASSERT(tp->t_inpcb);
2054 
2055 		/*
2056 		 * Advance th->th_seq to correspond to first data byte.
2057 		 * If data, trim to stay within window,
2058 		 * dropping FIN if necessary.
2059 		 */
2060 		th->th_seq++;
2061 		if (tlen > tp->rcv_wnd) {
2062 			todrop = tlen - tp->rcv_wnd;
2063 			m_adj(m, -todrop);
2064 			tlen = tp->rcv_wnd;
2065 			thflags &= ~TH_FIN;
2066 			TCPSTAT_INC(tcps_rcvpackafterwin);
2067 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2068 		}
2069 		tp->snd_wl1 = th->th_seq - 1;
2070 		tp->rcv_up = th->th_seq;
2071 		/*
2072 		 * Client side of transaction: already sent SYN and data.
2073 		 * If the remote host used T/TCP to validate the SYN,
2074 		 * our data will be ACK'd; if so, enter normal data segment
2075 		 * processing in the middle of step 5, ack processing.
2076 		 * Otherwise, goto step 6.
2077 		 */
2078 		if (thflags & TH_ACK)
2079 			goto process_ACK;
2080 
2081 		goto step6;
2082 
2083 	/*
2084 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2085 	 *      do normal processing.
2086 	 *
2087 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2088 	 */
2089 	case TCPS_LAST_ACK:
2090 	case TCPS_CLOSING:
2091 		break;  /* continue normal processing */
2092 	}
2093 
2094 	/*
2095 	 * States other than LISTEN or SYN_SENT.
2096 	 * First check the RST flag and sequence number since reset segments
2097 	 * are exempt from the timestamp and connection count tests.  This
2098 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2099 	 * below which allowed reset segments in half the sequence space
2100 	 * to fall though and be processed (which gives forged reset
2101 	 * segments with a random sequence number a 50 percent chance of
2102 	 * killing a connection).
2103 	 * Then check timestamp, if present.
2104 	 * Then check the connection count, if present.
2105 	 * Then check that at least some bytes of segment are within
2106 	 * receive window.  If segment begins before rcv_nxt,
2107 	 * drop leading data (and SYN); if nothing left, just ack.
2108 	 */
2109 	if (thflags & TH_RST) {
2110 		/*
2111 		 * RFC5961 Section 3.2
2112 		 *
2113 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2114 		 * - If RST is in window, we send challenge ACK.
2115 		 *
2116 		 * Note: to take into account delayed ACKs, we should
2117 		 *   test against last_ack_sent instead of rcv_nxt.
2118 		 * Note 2: we handle special case of closed window, not
2119 		 *   covered by the RFC.
2120 		 */
2121 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2122 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2123 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2124 
2125 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2126 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2127 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2128 			    __func__, th, tp));
2129 
2130 			if (V_tcp_insecure_rst ||
2131 			    tp->last_ack_sent == th->th_seq) {
2132 				TCPSTAT_INC(tcps_drops);
2133 				/* Drop the connection. */
2134 				switch (tp->t_state) {
2135 				case TCPS_SYN_RECEIVED:
2136 					so->so_error = ECONNREFUSED;
2137 					goto close;
2138 				case TCPS_ESTABLISHED:
2139 				case TCPS_FIN_WAIT_1:
2140 				case TCPS_FIN_WAIT_2:
2141 				case TCPS_CLOSE_WAIT:
2142 				case TCPS_CLOSING:
2143 				case TCPS_LAST_ACK:
2144 					so->so_error = ECONNRESET;
2145 				close:
2146 					/* FALLTHROUGH */
2147 				default:
2148 					tp = tcp_close(tp);
2149 				}
2150 			} else {
2151 				TCPSTAT_INC(tcps_badrst);
2152 				/* Send challenge ACK. */
2153 				tcp_respond(tp, mtod(m, void *), th, m,
2154 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2155 				tp->last_ack_sent = tp->rcv_nxt;
2156 				m = NULL;
2157 			}
2158 		}
2159 		goto drop;
2160 	}
2161 
2162 	/*
2163 	 * RFC5961 Section 4.2
2164 	 * Send challenge ACK for any SYN in synchronized state.
2165 	 */
2166 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2167 	    tp->t_state != TCPS_SYN_RECEIVED) {
2168 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2169 
2170 		TCPSTAT_INC(tcps_badsyn);
2171 		if (V_tcp_insecure_syn &&
2172 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2173 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2174 			tp = tcp_drop(tp, ECONNRESET);
2175 			rstreason = BANDLIM_UNLIMITED;
2176 		} else {
2177 			/* Send challenge ACK. */
2178 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2179 			    tp->snd_nxt, TH_ACK);
2180 			tp->last_ack_sent = tp->rcv_nxt;
2181 			m = NULL;
2182 		}
2183 		goto drop;
2184 	}
2185 
2186 	/*
2187 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2188 	 * and it's less than ts_recent, drop it.
2189 	 */
2190 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2191 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2192 
2193 		/* Check to see if ts_recent is over 24 days old.  */
2194 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2195 			/*
2196 			 * Invalidate ts_recent.  If this segment updates
2197 			 * ts_recent, the age will be reset later and ts_recent
2198 			 * will get a valid value.  If it does not, setting
2199 			 * ts_recent to zero will at least satisfy the
2200 			 * requirement that zero be placed in the timestamp
2201 			 * echo reply when ts_recent isn't valid.  The
2202 			 * age isn't reset until we get a valid ts_recent
2203 			 * because we don't want out-of-order segments to be
2204 			 * dropped when ts_recent is old.
2205 			 */
2206 			tp->ts_recent = 0;
2207 		} else {
2208 			TCPSTAT_INC(tcps_rcvduppack);
2209 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2210 			TCPSTAT_INC(tcps_pawsdrop);
2211 			if (tlen)
2212 				goto dropafterack;
2213 			goto drop;
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2219 	 * this connection before trimming the data to fit the receive
2220 	 * window.  Check the sequence number versus IRS since we know
2221 	 * the sequence numbers haven't wrapped.  This is a partial fix
2222 	 * for the "LAND" DoS attack.
2223 	 */
2224 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2225 		rstreason = BANDLIM_RST_OPENPORT;
2226 		goto dropwithreset;
2227 	}
2228 
2229 	todrop = tp->rcv_nxt - th->th_seq;
2230 	if (todrop > 0) {
2231 		if (thflags & TH_SYN) {
2232 			thflags &= ~TH_SYN;
2233 			th->th_seq++;
2234 			if (th->th_urp > 1)
2235 				th->th_urp--;
2236 			else
2237 				thflags &= ~TH_URG;
2238 			todrop--;
2239 		}
2240 		/*
2241 		 * Following if statement from Stevens, vol. 2, p. 960.
2242 		 */
2243 		if (todrop > tlen
2244 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2245 			/*
2246 			 * Any valid FIN must be to the left of the window.
2247 			 * At this point the FIN must be a duplicate or out
2248 			 * of sequence; drop it.
2249 			 */
2250 			thflags &= ~TH_FIN;
2251 
2252 			/*
2253 			 * Send an ACK to resynchronize and drop any data.
2254 			 * But keep on processing for RST or ACK.
2255 			 */
2256 			tp->t_flags |= TF_ACKNOW;
2257 			todrop = tlen;
2258 			TCPSTAT_INC(tcps_rcvduppack);
2259 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2260 		} else {
2261 			TCPSTAT_INC(tcps_rcvpartduppack);
2262 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2263 		}
2264 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2265 		th->th_seq += todrop;
2266 		tlen -= todrop;
2267 		if (th->th_urp > todrop)
2268 			th->th_urp -= todrop;
2269 		else {
2270 			thflags &= ~TH_URG;
2271 			th->th_urp = 0;
2272 		}
2273 	}
2274 
2275 	/*
2276 	 * If new data are received on a connection after the
2277 	 * user processes are gone, then RST the other end.
2278 	 */
2279 	if ((so->so_state & SS_NOFDREF) &&
2280 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2281 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2282 
2283 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2284 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2285 			    "after socket was closed, "
2286 			    "sending RST and removing tcpcb\n",
2287 			    s, __func__, tcpstates[tp->t_state], tlen);
2288 			free(s, M_TCPLOG);
2289 		}
2290 		tp = tcp_close(tp);
2291 		TCPSTAT_INC(tcps_rcvafterclose);
2292 		rstreason = BANDLIM_UNLIMITED;
2293 		goto dropwithreset;
2294 	}
2295 
2296 	/*
2297 	 * If segment ends after window, drop trailing data
2298 	 * (and PUSH and FIN); if nothing left, just ACK.
2299 	 */
2300 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2301 	if (todrop > 0) {
2302 		TCPSTAT_INC(tcps_rcvpackafterwin);
2303 		if (todrop >= tlen) {
2304 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2305 			/*
2306 			 * If window is closed can only take segments at
2307 			 * window edge, and have to drop data and PUSH from
2308 			 * incoming segments.  Continue processing, but
2309 			 * remember to ack.  Otherwise, drop segment
2310 			 * and ack.
2311 			 */
2312 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2313 				tp->t_flags |= TF_ACKNOW;
2314 				TCPSTAT_INC(tcps_rcvwinprobe);
2315 			} else
2316 				goto dropafterack;
2317 		} else
2318 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2319 		m_adj(m, -todrop);
2320 		tlen -= todrop;
2321 		thflags &= ~(TH_PUSH|TH_FIN);
2322 	}
2323 
2324 	/*
2325 	 * If last ACK falls within this segment's sequence numbers,
2326 	 * record its timestamp.
2327 	 * NOTE:
2328 	 * 1) That the test incorporates suggestions from the latest
2329 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2330 	 * 2) That updating only on newer timestamps interferes with
2331 	 *    our earlier PAWS tests, so this check should be solely
2332 	 *    predicated on the sequence space of this segment.
2333 	 * 3) That we modify the segment boundary check to be
2334 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2335 	 *    instead of RFC1323's
2336 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2337 	 *    This modified check allows us to overcome RFC1323's
2338 	 *    limitations as described in Stevens TCP/IP Illustrated
2339 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2340 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2341 	 */
2342 	if ((to.to_flags & TOF_TS) != 0 &&
2343 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2344 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2345 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2346 		tp->ts_recent_age = tcp_ts_getticks();
2347 		tp->ts_recent = to.to_tsval;
2348 	}
2349 
2350 	/*
2351 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2352 	 * flag is on (half-synchronized state), then queue data for
2353 	 * later processing; else drop segment and return.
2354 	 */
2355 	if ((thflags & TH_ACK) == 0) {
2356 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2357 		    (tp->t_flags & TF_NEEDSYN)) {
2358 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2359 			    IS_FASTOPEN(tp->t_flags)) {
2360 				tp->snd_wnd = tiwin;
2361 				cc_conn_init(tp);
2362 			}
2363 			goto step6;
2364 		} else if (tp->t_flags & TF_ACKNOW)
2365 			goto dropafterack;
2366 		else
2367 			goto drop;
2368 	}
2369 
2370 	/*
2371 	 * Ack processing.
2372 	 */
2373 	switch (tp->t_state) {
2374 
2375 	/*
2376 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2377 	 * ESTABLISHED state and continue processing.
2378 	 * The ACK was checked above.
2379 	 */
2380 	case TCPS_SYN_RECEIVED:
2381 
2382 		TCPSTAT_INC(tcps_connects);
2383 		soisconnected(so);
2384 		/* Do window scaling? */
2385 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2386 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2387 			tp->rcv_scale = tp->request_r_scale;
2388 		}
2389 		tp->snd_wnd = tiwin;
2390 		/*
2391 		 * Make transitions:
2392 		 *      SYN-RECEIVED  -> ESTABLISHED
2393 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2394 		 */
2395 		tp->t_starttime = ticks;
2396 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2397 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2398 			tp->t_tfo_pending = NULL;
2399 
2400 			/*
2401 			 * Account for the ACK of our SYN prior to
2402 			 * regular ACK processing below.
2403 			 */
2404 			tp->snd_una++;
2405 		}
2406 		if (tp->t_flags & TF_NEEDFIN) {
2407 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2408 			tp->t_flags &= ~TF_NEEDFIN;
2409 		} else {
2410 			tcp_state_change(tp, TCPS_ESTABLISHED);
2411 			TCP_PROBE5(accept__established, NULL, tp,
2412 			    m, tp, th);
2413 			/*
2414 			 * TFO connections call cc_conn_init() during SYN
2415 			 * processing.  Calling it again here for such
2416 			 * connections is not harmless as it would undo the
2417 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2418 			 * is retransmitted.
2419 			 */
2420 			if (!IS_FASTOPEN(tp->t_flags))
2421 				cc_conn_init(tp);
2422 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2423 		}
2424 		/*
2425 		 * If segment contains data or ACK, will call tcp_reass()
2426 		 * later; if not, do so now to pass queued data to user.
2427 		 */
2428 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2429 			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2430 			    (struct mbuf *)0);
2431 		tp->snd_wl1 = th->th_seq - 1;
2432 		/* FALLTHROUGH */
2433 
2434 	/*
2435 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2436 	 * ACKs.  If the ack is in the range
2437 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2438 	 * then advance tp->snd_una to th->th_ack and drop
2439 	 * data from the retransmission queue.  If this ACK reflects
2440 	 * more up to date window information we update our window information.
2441 	 */
2442 	case TCPS_ESTABLISHED:
2443 	case TCPS_FIN_WAIT_1:
2444 	case TCPS_FIN_WAIT_2:
2445 	case TCPS_CLOSE_WAIT:
2446 	case TCPS_CLOSING:
2447 	case TCPS_LAST_ACK:
2448 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2449 			TCPSTAT_INC(tcps_rcvacktoomuch);
2450 			goto dropafterack;
2451 		}
2452 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2453 		    ((to.to_flags & TOF_SACK) ||
2454 		     !TAILQ_EMPTY(&tp->snd_holes)))
2455 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2456 		else
2457 			/*
2458 			 * Reset the value so that previous (valid) value
2459 			 * from the last ack with SACK doesn't get used.
2460 			 */
2461 			tp->sackhint.sacked_bytes = 0;
2462 
2463 #ifdef TCP_HHOOK
2464 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2465 		hhook_run_tcp_est_in(tp, th, &to);
2466 #endif
2467 
2468 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2469 			u_int maxseg;
2470 
2471 			maxseg = tcp_maxseg(tp);
2472 			if (tlen == 0 &&
2473 			    (tiwin == tp->snd_wnd ||
2474 			    (tp->t_flags & TF_SACK_PERMIT))) {
2475 				/*
2476 				 * If this is the first time we've seen a
2477 				 * FIN from the remote, this is not a
2478 				 * duplicate and it needs to be processed
2479 				 * normally.  This happens during a
2480 				 * simultaneous close.
2481 				 */
2482 				if ((thflags & TH_FIN) &&
2483 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2484 					tp->t_dupacks = 0;
2485 					break;
2486 				}
2487 				TCPSTAT_INC(tcps_rcvdupack);
2488 				/*
2489 				 * If we have outstanding data (other than
2490 				 * a window probe), this is a completely
2491 				 * duplicate ack (ie, window info didn't
2492 				 * change and FIN isn't set),
2493 				 * the ack is the biggest we've
2494 				 * seen and we've seen exactly our rexmt
2495 				 * threshold of them, assume a packet
2496 				 * has been dropped and retransmit it.
2497 				 * Kludge snd_nxt & the congestion
2498 				 * window so we send only this one
2499 				 * packet.
2500 				 *
2501 				 * We know we're losing at the current
2502 				 * window size so do congestion avoidance
2503 				 * (set ssthresh to half the current window
2504 				 * and pull our congestion window back to
2505 				 * the new ssthresh).
2506 				 *
2507 				 * Dup acks mean that packets have left the
2508 				 * network (they're now cached at the receiver)
2509 				 * so bump cwnd by the amount in the receiver
2510 				 * to keep a constant cwnd packets in the
2511 				 * network.
2512 				 *
2513 				 * When using TCP ECN, notify the peer that
2514 				 * we reduced the cwnd.
2515 				 */
2516 				/*
2517 				 * Following 2 kinds of acks should not affect
2518 				 * dupack counting:
2519 				 * 1) Old acks
2520 				 * 2) Acks with SACK but without any new SACK
2521 				 * information in them. These could result from
2522 				 * any anomaly in the network like a switch
2523 				 * duplicating packets or a possible DoS attack.
2524 				 */
2525 				if (th->th_ack != tp->snd_una ||
2526 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2527 				    !sack_changed))
2528 					break;
2529 				else if (!tcp_timer_active(tp, TT_REXMT))
2530 					tp->t_dupacks = 0;
2531 				else if (++tp->t_dupacks > tcprexmtthresh ||
2532 				     IN_FASTRECOVERY(tp->t_flags)) {
2533 					cc_ack_received(tp, th, nsegs,
2534 					    CC_DUPACK);
2535 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2536 					    IN_FASTRECOVERY(tp->t_flags)) {
2537 						int awnd;
2538 
2539 						/*
2540 						 * Compute the amount of data in flight first.
2541 						 * We can inject new data into the pipe iff
2542 						 * we have less than 1/2 the original window's
2543 						 * worth of data in flight.
2544 						 */
2545 						if (V_tcp_do_rfc6675_pipe)
2546 							awnd = tcp_compute_pipe(tp);
2547 						else
2548 							awnd = (tp->snd_nxt - tp->snd_fack) +
2549 								tp->sackhint.sack_bytes_rexmit;
2550 
2551 						if (awnd < tp->snd_ssthresh) {
2552 							tp->snd_cwnd += maxseg;
2553 							if (tp->snd_cwnd > tp->snd_ssthresh)
2554 								tp->snd_cwnd = tp->snd_ssthresh;
2555 						}
2556 					} else
2557 						tp->snd_cwnd += maxseg;
2558 					(void) tp->t_fb->tfb_tcp_output(tp);
2559 					goto drop;
2560 				} else if (tp->t_dupacks == tcprexmtthresh) {
2561 					tcp_seq onxt = tp->snd_nxt;
2562 
2563 					/*
2564 					 * If we're doing sack, check to
2565 					 * see if we're already in sack
2566 					 * recovery. If we're not doing sack,
2567 					 * check to see if we're in newreno
2568 					 * recovery.
2569 					 */
2570 					if (tp->t_flags & TF_SACK_PERMIT) {
2571 						if (IN_FASTRECOVERY(tp->t_flags)) {
2572 							tp->t_dupacks = 0;
2573 							break;
2574 						}
2575 					} else {
2576 						if (SEQ_LEQ(th->th_ack,
2577 						    tp->snd_recover)) {
2578 							tp->t_dupacks = 0;
2579 							break;
2580 						}
2581 					}
2582 					/* Congestion signal before ack. */
2583 					cc_cong_signal(tp, th, CC_NDUPACK);
2584 					cc_ack_received(tp, th, nsegs,
2585 					    CC_DUPACK);
2586 					tcp_timer_activate(tp, TT_REXMT, 0);
2587 					tp->t_rtttime = 0;
2588 					if (tp->t_flags & TF_SACK_PERMIT) {
2589 						TCPSTAT_INC(
2590 						    tcps_sack_recovery_episode);
2591 						tp->sack_newdata = tp->snd_nxt;
2592 						tp->snd_cwnd = maxseg;
2593 						(void) tp->t_fb->tfb_tcp_output(tp);
2594 						goto drop;
2595 					}
2596 					tp->snd_nxt = th->th_ack;
2597 					tp->snd_cwnd = maxseg;
2598 					(void) tp->t_fb->tfb_tcp_output(tp);
2599 					KASSERT(tp->snd_limited <= 2,
2600 					    ("%s: tp->snd_limited too big",
2601 					    __func__));
2602 					tp->snd_cwnd = tp->snd_ssthresh +
2603 					     maxseg *
2604 					     (tp->t_dupacks - tp->snd_limited);
2605 					if (SEQ_GT(onxt, tp->snd_nxt))
2606 						tp->snd_nxt = onxt;
2607 					goto drop;
2608 				} else if (V_tcp_do_rfc3042) {
2609 					/*
2610 					 * Process first and second duplicate
2611 					 * ACKs. Each indicates a segment
2612 					 * leaving the network, creating room
2613 					 * for more. Make sure we can send a
2614 					 * packet on reception of each duplicate
2615 					 * ACK by increasing snd_cwnd by one
2616 					 * segment. Restore the original
2617 					 * snd_cwnd after packet transmission.
2618 					 */
2619 					cc_ack_received(tp, th, nsegs,
2620 					    CC_DUPACK);
2621 					uint32_t oldcwnd = tp->snd_cwnd;
2622 					tcp_seq oldsndmax = tp->snd_max;
2623 					u_int sent;
2624 					int avail;
2625 
2626 					KASSERT(tp->t_dupacks == 1 ||
2627 					    tp->t_dupacks == 2,
2628 					    ("%s: dupacks not 1 or 2",
2629 					    __func__));
2630 					if (tp->t_dupacks == 1)
2631 						tp->snd_limited = 0;
2632 					tp->snd_cwnd =
2633 					    (tp->snd_nxt - tp->snd_una) +
2634 					    (tp->t_dupacks - tp->snd_limited) *
2635 					    maxseg;
2636 					/*
2637 					 * Only call tcp_output when there
2638 					 * is new data available to be sent.
2639 					 * Otherwise we would send pure ACKs.
2640 					 */
2641 					SOCKBUF_LOCK(&so->so_snd);
2642 					avail = sbavail(&so->so_snd) -
2643 					    (tp->snd_nxt - tp->snd_una);
2644 					SOCKBUF_UNLOCK(&so->so_snd);
2645 					if (avail > 0)
2646 						(void) tp->t_fb->tfb_tcp_output(tp);
2647 					sent = tp->snd_max - oldsndmax;
2648 					if (sent > maxseg) {
2649 						KASSERT((tp->t_dupacks == 2 &&
2650 						    tp->snd_limited == 0) ||
2651 						   (sent == maxseg + 1 &&
2652 						    tp->t_flags & TF_SENTFIN),
2653 						    ("%s: sent too much",
2654 						    __func__));
2655 						tp->snd_limited = 2;
2656 					} else if (sent > 0)
2657 						++tp->snd_limited;
2658 					tp->snd_cwnd = oldcwnd;
2659 					goto drop;
2660 				}
2661 			}
2662 			break;
2663 		} else {
2664 			/*
2665 			 * This ack is advancing the left edge, reset the
2666 			 * counter.
2667 			 */
2668 			tp->t_dupacks = 0;
2669 			/*
2670 			 * If this ack also has new SACK info, increment the
2671 			 * counter as per rfc6675.
2672 			 */
2673 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2674 				tp->t_dupacks++;
2675 		}
2676 
2677 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2678 		    ("%s: th_ack <= snd_una", __func__));
2679 
2680 		/*
2681 		 * If the congestion window was inflated to account
2682 		 * for the other side's cached packets, retract it.
2683 		 */
2684 		if (IN_FASTRECOVERY(tp->t_flags)) {
2685 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2686 				if (tp->t_flags & TF_SACK_PERMIT)
2687 					tcp_sack_partialack(tp, th);
2688 				else
2689 					tcp_newreno_partial_ack(tp, th);
2690 			} else
2691 				cc_post_recovery(tp, th);
2692 		}
2693 		/*
2694 		 * If we reach this point, ACK is not a duplicate,
2695 		 *     i.e., it ACKs something we sent.
2696 		 */
2697 		if (tp->t_flags & TF_NEEDSYN) {
2698 			/*
2699 			 * T/TCP: Connection was half-synchronized, and our
2700 			 * SYN has been ACK'd (so connection is now fully
2701 			 * synchronized).  Go to non-starred state,
2702 			 * increment snd_una for ACK of SYN, and check if
2703 			 * we can do window scaling.
2704 			 */
2705 			tp->t_flags &= ~TF_NEEDSYN;
2706 			tp->snd_una++;
2707 			/* Do window scaling? */
2708 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2709 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2710 				tp->rcv_scale = tp->request_r_scale;
2711 				/* Send window already scaled. */
2712 			}
2713 		}
2714 
2715 process_ACK:
2716 		INP_WLOCK_ASSERT(tp->t_inpcb);
2717 
2718 		acked = BYTES_THIS_ACK(tp, th);
2719 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2720 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2721 		    tp->snd_una, th->th_ack, tp, m));
2722 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2723 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2724 
2725 		/*
2726 		 * If we just performed our first retransmit, and the ACK
2727 		 * arrives within our recovery window, then it was a mistake
2728 		 * to do the retransmit in the first place.  Recover our
2729 		 * original cwnd and ssthresh, and proceed to transmit where
2730 		 * we left off.
2731 		 */
2732 		if (tp->t_rxtshift == 1 &&
2733 		    tp->t_flags & TF_PREVVALID &&
2734 		    tp->t_badrxtwin &&
2735 		    SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2736 			cc_cong_signal(tp, th, CC_RTO_ERR);
2737 
2738 		/*
2739 		 * If we have a timestamp reply, update smoothed
2740 		 * round trip time.  If no timestamp is present but
2741 		 * transmit timer is running and timed sequence
2742 		 * number was acked, update smoothed round trip time.
2743 		 * Since we now have an rtt measurement, cancel the
2744 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2745 		 * Recompute the initial retransmit timer.
2746 		 *
2747 		 * Some boxes send broken timestamp replies
2748 		 * during the SYN+ACK phase, ignore
2749 		 * timestamps of 0 or we could calculate a
2750 		 * huge RTT and blow up the retransmit timer.
2751 		 */
2752 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2753 			uint32_t t;
2754 
2755 			t = tcp_ts_getticks() - to.to_tsecr;
2756 			if (!tp->t_rttlow || tp->t_rttlow > t)
2757 				tp->t_rttlow = t;
2758 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2759 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2760 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2761 				tp->t_rttlow = ticks - tp->t_rtttime;
2762 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2763 		}
2764 
2765 		/*
2766 		 * If all outstanding data is acked, stop retransmit
2767 		 * timer and remember to restart (more output or persist).
2768 		 * If there is more data to be acked, restart retransmit
2769 		 * timer, using current (possibly backed-off) value.
2770 		 */
2771 		if (th->th_ack == tp->snd_max) {
2772 			tcp_timer_activate(tp, TT_REXMT, 0);
2773 			needoutput = 1;
2774 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2775 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2776 
2777 		/*
2778 		 * If no data (only SYN) was ACK'd,
2779 		 *    skip rest of ACK processing.
2780 		 */
2781 		if (acked == 0)
2782 			goto step6;
2783 
2784 		/*
2785 		 * Let the congestion control algorithm update congestion
2786 		 * control related information. This typically means increasing
2787 		 * the congestion window.
2788 		 */
2789 		cc_ack_received(tp, th, nsegs, CC_ACK);
2790 
2791 		SOCKBUF_LOCK(&so->so_snd);
2792 		if (acked > sbavail(&so->so_snd)) {
2793 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2794 				tp->snd_wnd -= sbavail(&so->so_snd);
2795 			else
2796 				tp->snd_wnd = 0;
2797 			mfree = sbcut_locked(&so->so_snd,
2798 			    (int)sbavail(&so->so_snd));
2799 			ourfinisacked = 1;
2800 		} else {
2801 			mfree = sbcut_locked(&so->so_snd, acked);
2802 			if (tp->snd_wnd >= (uint32_t) acked)
2803 				tp->snd_wnd -= acked;
2804 			else
2805 				tp->snd_wnd = 0;
2806 			ourfinisacked = 0;
2807 		}
2808 		/* NB: sowwakeup_locked() does an implicit unlock. */
2809 		sowwakeup_locked(so);
2810 		m_freem(mfree);
2811 		/* Detect una wraparound. */
2812 		if (!IN_RECOVERY(tp->t_flags) &&
2813 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2814 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2815 			tp->snd_recover = th->th_ack - 1;
2816 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2817 		if (IN_RECOVERY(tp->t_flags) &&
2818 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2819 			EXIT_RECOVERY(tp->t_flags);
2820 		}
2821 		tp->snd_una = th->th_ack;
2822 		if (tp->t_flags & TF_SACK_PERMIT) {
2823 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2824 				tp->snd_recover = tp->snd_una;
2825 		}
2826 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2827 			tp->snd_nxt = tp->snd_una;
2828 
2829 		switch (tp->t_state) {
2830 
2831 		/*
2832 		 * In FIN_WAIT_1 STATE in addition to the processing
2833 		 * for the ESTABLISHED state if our FIN is now acknowledged
2834 		 * then enter FIN_WAIT_2.
2835 		 */
2836 		case TCPS_FIN_WAIT_1:
2837 			if (ourfinisacked) {
2838 				/*
2839 				 * If we can't receive any more
2840 				 * data, then closing user can proceed.
2841 				 * Starting the timer is contrary to the
2842 				 * specification, but if we don't get a FIN
2843 				 * we'll hang forever.
2844 				 *
2845 				 * XXXjl:
2846 				 * we should release the tp also, and use a
2847 				 * compressed state.
2848 				 */
2849 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2850 					soisdisconnected(so);
2851 					tcp_timer_activate(tp, TT_2MSL,
2852 					    (tcp_fast_finwait2_recycle ?
2853 					    tcp_finwait2_timeout :
2854 					    TP_MAXIDLE(tp)));
2855 				}
2856 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2857 			}
2858 			break;
2859 
2860 		/*
2861 		 * In CLOSING STATE in addition to the processing for
2862 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2863 		 * then enter the TIME-WAIT state, otherwise ignore
2864 		 * the segment.
2865 		 */
2866 		case TCPS_CLOSING:
2867 			if (ourfinisacked) {
2868 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2869 				tcp_twstart(tp);
2870 				m_freem(m);
2871 				return;
2872 			}
2873 			break;
2874 
2875 		/*
2876 		 * In LAST_ACK, we may still be waiting for data to drain
2877 		 * and/or to be acked, as well as for the ack of our FIN.
2878 		 * If our FIN is now acknowledged, delete the TCB,
2879 		 * enter the closed state and return.
2880 		 */
2881 		case TCPS_LAST_ACK:
2882 			if (ourfinisacked) {
2883 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2884 				tp = tcp_close(tp);
2885 				goto drop;
2886 			}
2887 			break;
2888 		}
2889 	}
2890 
2891 step6:
2892 	INP_WLOCK_ASSERT(tp->t_inpcb);
2893 
2894 	/*
2895 	 * Update window information.
2896 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2897 	 */
2898 	if ((thflags & TH_ACK) &&
2899 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2900 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2901 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2902 		/* keep track of pure window updates */
2903 		if (tlen == 0 &&
2904 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2905 			TCPSTAT_INC(tcps_rcvwinupd);
2906 		tp->snd_wnd = tiwin;
2907 		tp->snd_wl1 = th->th_seq;
2908 		tp->snd_wl2 = th->th_ack;
2909 		if (tp->snd_wnd > tp->max_sndwnd)
2910 			tp->max_sndwnd = tp->snd_wnd;
2911 		needoutput = 1;
2912 	}
2913 
2914 	/*
2915 	 * Process segments with URG.
2916 	 */
2917 	if ((thflags & TH_URG) && th->th_urp &&
2918 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2919 		/*
2920 		 * This is a kludge, but if we receive and accept
2921 		 * random urgent pointers, we'll crash in
2922 		 * soreceive.  It's hard to imagine someone
2923 		 * actually wanting to send this much urgent data.
2924 		 */
2925 		SOCKBUF_LOCK(&so->so_rcv);
2926 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2927 			th->th_urp = 0;			/* XXX */
2928 			thflags &= ~TH_URG;		/* XXX */
2929 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2930 			goto dodata;			/* XXX */
2931 		}
2932 		/*
2933 		 * If this segment advances the known urgent pointer,
2934 		 * then mark the data stream.  This should not happen
2935 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2936 		 * a FIN has been received from the remote side.
2937 		 * In these states we ignore the URG.
2938 		 *
2939 		 * According to RFC961 (Assigned Protocols),
2940 		 * the urgent pointer points to the last octet
2941 		 * of urgent data.  We continue, however,
2942 		 * to consider it to indicate the first octet
2943 		 * of data past the urgent section as the original
2944 		 * spec states (in one of two places).
2945 		 */
2946 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2947 			tp->rcv_up = th->th_seq + th->th_urp;
2948 			so->so_oobmark = sbavail(&so->so_rcv) +
2949 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2950 			if (so->so_oobmark == 0)
2951 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2952 			sohasoutofband(so);
2953 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2954 		}
2955 		SOCKBUF_UNLOCK(&so->so_rcv);
2956 		/*
2957 		 * Remove out of band data so doesn't get presented to user.
2958 		 * This can happen independent of advancing the URG pointer,
2959 		 * but if two URG's are pending at once, some out-of-band
2960 		 * data may creep in... ick.
2961 		 */
2962 		if (th->th_urp <= (uint32_t)tlen &&
2963 		    !(so->so_options & SO_OOBINLINE)) {
2964 			/* hdr drop is delayed */
2965 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2966 		}
2967 	} else {
2968 		/*
2969 		 * If no out of band data is expected,
2970 		 * pull receive urgent pointer along
2971 		 * with the receive window.
2972 		 */
2973 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2974 			tp->rcv_up = tp->rcv_nxt;
2975 	}
2976 dodata:							/* XXX */
2977 	INP_WLOCK_ASSERT(tp->t_inpcb);
2978 
2979 	/*
2980 	 * Process the segment text, merging it into the TCP sequencing queue,
2981 	 * and arranging for acknowledgment of receipt if necessary.
2982 	 * This process logically involves adjusting tp->rcv_wnd as data
2983 	 * is presented to the user (this happens in tcp_usrreq.c,
2984 	 * case PRU_RCVD).  If a FIN has already been received on this
2985 	 * connection then we just ignore the text.
2986 	 */
2987 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
2988 		   IS_FASTOPEN(tp->t_flags));
2989 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
2990 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2991 		tcp_seq save_start = th->th_seq;
2992 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2993 		/*
2994 		 * Insert segment which includes th into TCP reassembly queue
2995 		 * with control block tp.  Set thflags to whether reassembly now
2996 		 * includes a segment with FIN.  This handles the common case
2997 		 * inline (segment is the next to be received on an established
2998 		 * connection, and the queue is empty), avoiding linkage into
2999 		 * and removal from the queue and repetition of various
3000 		 * conversions.
3001 		 * Set DELACK for segments received in order, but ack
3002 		 * immediately when segments are out of order (so
3003 		 * fast retransmit can work).
3004 		 */
3005 		if (th->th_seq == tp->rcv_nxt &&
3006 		    SEGQ_EMPTY(tp) &&
3007 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3008 		     tfo_syn)) {
3009 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3010 				tp->t_flags |= TF_DELACK;
3011 			else
3012 				tp->t_flags |= TF_ACKNOW;
3013 			tp->rcv_nxt += tlen;
3014 			thflags = th->th_flags & TH_FIN;
3015 			TCPSTAT_INC(tcps_rcvpack);
3016 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3017 			SOCKBUF_LOCK(&so->so_rcv);
3018 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3019 				m_freem(m);
3020 			else
3021 				sbappendstream_locked(&so->so_rcv, m, 0);
3022 			/* NB: sorwakeup_locked() does an implicit unlock. */
3023 			sorwakeup_locked(so);
3024 		} else {
3025 			/*
3026 			 * XXX: Due to the header drop above "th" is
3027 			 * theoretically invalid by now.  Fortunately
3028 			 * m_adj() doesn't actually frees any mbufs
3029 			 * when trimming from the head.
3030 			 */
3031 			thflags = tcp_reass(tp, th, &save_start, &tlen, m);
3032 			tp->t_flags |= TF_ACKNOW;
3033 		}
3034 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3035 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3036 #if 0
3037 		/*
3038 		 * Note the amount of data that peer has sent into
3039 		 * our window, in order to estimate the sender's
3040 		 * buffer size.
3041 		 * XXX: Unused.
3042 		 */
3043 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3044 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3045 		else
3046 			len = so->so_rcv.sb_hiwat;
3047 #endif
3048 	} else {
3049 		m_freem(m);
3050 		thflags &= ~TH_FIN;
3051 	}
3052 
3053 	/*
3054 	 * If FIN is received ACK the FIN and let the user know
3055 	 * that the connection is closing.
3056 	 */
3057 	if (thflags & TH_FIN) {
3058 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3059 			socantrcvmore(so);
3060 			/*
3061 			 * If connection is half-synchronized
3062 			 * (ie NEEDSYN flag on) then delay ACK,
3063 			 * so it may be piggybacked when SYN is sent.
3064 			 * Otherwise, since we received a FIN then no
3065 			 * more input can be expected, send ACK now.
3066 			 */
3067 			if (tp->t_flags & TF_NEEDSYN)
3068 				tp->t_flags |= TF_DELACK;
3069 			else
3070 				tp->t_flags |= TF_ACKNOW;
3071 			tp->rcv_nxt++;
3072 		}
3073 		switch (tp->t_state) {
3074 
3075 		/*
3076 		 * In SYN_RECEIVED and ESTABLISHED STATES
3077 		 * enter the CLOSE_WAIT state.
3078 		 */
3079 		case TCPS_SYN_RECEIVED:
3080 			tp->t_starttime = ticks;
3081 			/* FALLTHROUGH */
3082 		case TCPS_ESTABLISHED:
3083 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3084 			break;
3085 
3086 		/*
3087 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3088 		 * enter the CLOSING state.
3089 		 */
3090 		case TCPS_FIN_WAIT_1:
3091 			tcp_state_change(tp, TCPS_CLOSING);
3092 			break;
3093 
3094 		/*
3095 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3096 		 * starting the time-wait timer, turning off the other
3097 		 * standard timers.
3098 		 */
3099 		case TCPS_FIN_WAIT_2:
3100 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3101 
3102 			tcp_twstart(tp);
3103 			return;
3104 		}
3105 	}
3106 #ifdef TCPDEBUG
3107 	if (so->so_options & SO_DEBUG)
3108 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3109 			  &tcp_savetcp, 0);
3110 #endif
3111 	TCP_PROBE3(debug__input, tp, th, m);
3112 
3113 	/*
3114 	 * Return any desired output.
3115 	 */
3116 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3117 		(void) tp->t_fb->tfb_tcp_output(tp);
3118 
3119 check_delack:
3120 	INP_WLOCK_ASSERT(tp->t_inpcb);
3121 
3122 	if (tp->t_flags & TF_DELACK) {
3123 		tp->t_flags &= ~TF_DELACK;
3124 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3125 	}
3126 	INP_WUNLOCK(tp->t_inpcb);
3127 	return;
3128 
3129 dropafterack:
3130 	/*
3131 	 * Generate an ACK dropping incoming segment if it occupies
3132 	 * sequence space, where the ACK reflects our state.
3133 	 *
3134 	 * We can now skip the test for the RST flag since all
3135 	 * paths to this code happen after packets containing
3136 	 * RST have been dropped.
3137 	 *
3138 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3139 	 * segment we received passes the SYN-RECEIVED ACK test.
3140 	 * If it fails send a RST.  This breaks the loop in the
3141 	 * "LAND" DoS attack, and also prevents an ACK storm
3142 	 * between two listening ports that have been sent forged
3143 	 * SYN segments, each with the source address of the other.
3144 	 */
3145 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3146 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3147 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3148 		rstreason = BANDLIM_RST_OPENPORT;
3149 		goto dropwithreset;
3150 	}
3151 #ifdef TCPDEBUG
3152 	if (so->so_options & SO_DEBUG)
3153 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3154 			  &tcp_savetcp, 0);
3155 #endif
3156 	TCP_PROBE3(debug__input, tp, th, m);
3157 	tp->t_flags |= TF_ACKNOW;
3158 	(void) tp->t_fb->tfb_tcp_output(tp);
3159 	INP_WUNLOCK(tp->t_inpcb);
3160 	m_freem(m);
3161 	return;
3162 
3163 dropwithreset:
3164 	if (tp != NULL) {
3165 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3166 		INP_WUNLOCK(tp->t_inpcb);
3167 	} else
3168 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3169 	return;
3170 
3171 drop:
3172 	/*
3173 	 * Drop space held by incoming segment and return.
3174 	 */
3175 #ifdef TCPDEBUG
3176 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3177 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3178 			  &tcp_savetcp, 0);
3179 #endif
3180 	TCP_PROBE3(debug__input, tp, th, m);
3181 	if (tp != NULL)
3182 		INP_WUNLOCK(tp->t_inpcb);
3183 	m_freem(m);
3184 }
3185 
3186 /*
3187  * Issue RST and make ACK acceptable to originator of segment.
3188  * The mbuf must still include the original packet header.
3189  * tp may be NULL.
3190  */
3191 void
3192 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3193     int tlen, int rstreason)
3194 {
3195 #ifdef INET
3196 	struct ip *ip;
3197 #endif
3198 #ifdef INET6
3199 	struct ip6_hdr *ip6;
3200 #endif
3201 
3202 	if (tp != NULL) {
3203 		INP_WLOCK_ASSERT(tp->t_inpcb);
3204 	}
3205 
3206 	/* Don't bother if destination was broadcast/multicast. */
3207 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3208 		goto drop;
3209 #ifdef INET6
3210 	if (mtod(m, struct ip *)->ip_v == 6) {
3211 		ip6 = mtod(m, struct ip6_hdr *);
3212 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3213 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3214 			goto drop;
3215 		/* IPv6 anycast check is done at tcp6_input() */
3216 	}
3217 #endif
3218 #if defined(INET) && defined(INET6)
3219 	else
3220 #endif
3221 #ifdef INET
3222 	{
3223 		ip = mtod(m, struct ip *);
3224 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3225 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3226 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3227 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3228 			goto drop;
3229 	}
3230 #endif
3231 
3232 	/* Perform bandwidth limiting. */
3233 	if (badport_bandlim(rstreason) < 0)
3234 		goto drop;
3235 
3236 	/* tcp_respond consumes the mbuf chain. */
3237 	if (th->th_flags & TH_ACK) {
3238 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3239 		    th->th_ack, TH_RST);
3240 	} else {
3241 		if (th->th_flags & TH_SYN)
3242 			tlen++;
3243 		if (th->th_flags & TH_FIN)
3244 			tlen++;
3245 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3246 		    (tcp_seq)0, TH_RST|TH_ACK);
3247 	}
3248 	return;
3249 drop:
3250 	m_freem(m);
3251 }
3252 
3253 /*
3254  * Parse TCP options and place in tcpopt.
3255  */
3256 void
3257 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3258 {
3259 	int opt, optlen;
3260 
3261 	to->to_flags = 0;
3262 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3263 		opt = cp[0];
3264 		if (opt == TCPOPT_EOL)
3265 			break;
3266 		if (opt == TCPOPT_NOP)
3267 			optlen = 1;
3268 		else {
3269 			if (cnt < 2)
3270 				break;
3271 			optlen = cp[1];
3272 			if (optlen < 2 || optlen > cnt)
3273 				break;
3274 		}
3275 		switch (opt) {
3276 		case TCPOPT_MAXSEG:
3277 			if (optlen != TCPOLEN_MAXSEG)
3278 				continue;
3279 			if (!(flags & TO_SYN))
3280 				continue;
3281 			to->to_flags |= TOF_MSS;
3282 			bcopy((char *)cp + 2,
3283 			    (char *)&to->to_mss, sizeof(to->to_mss));
3284 			to->to_mss = ntohs(to->to_mss);
3285 			break;
3286 		case TCPOPT_WINDOW:
3287 			if (optlen != TCPOLEN_WINDOW)
3288 				continue;
3289 			if (!(flags & TO_SYN))
3290 				continue;
3291 			to->to_flags |= TOF_SCALE;
3292 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3293 			break;
3294 		case TCPOPT_TIMESTAMP:
3295 			if (optlen != TCPOLEN_TIMESTAMP)
3296 				continue;
3297 			to->to_flags |= TOF_TS;
3298 			bcopy((char *)cp + 2,
3299 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3300 			to->to_tsval = ntohl(to->to_tsval);
3301 			bcopy((char *)cp + 6,
3302 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3303 			to->to_tsecr = ntohl(to->to_tsecr);
3304 			break;
3305 		case TCPOPT_SIGNATURE:
3306 			/*
3307 			 * In order to reply to a host which has set the
3308 			 * TCP_SIGNATURE option in its initial SYN, we have
3309 			 * to record the fact that the option was observed
3310 			 * here for the syncache code to perform the correct
3311 			 * response.
3312 			 */
3313 			if (optlen != TCPOLEN_SIGNATURE)
3314 				continue;
3315 			to->to_flags |= TOF_SIGNATURE;
3316 			to->to_signature = cp + 2;
3317 			break;
3318 		case TCPOPT_SACK_PERMITTED:
3319 			if (optlen != TCPOLEN_SACK_PERMITTED)
3320 				continue;
3321 			if (!(flags & TO_SYN))
3322 				continue;
3323 			if (!V_tcp_do_sack)
3324 				continue;
3325 			to->to_flags |= TOF_SACKPERM;
3326 			break;
3327 		case TCPOPT_SACK:
3328 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3329 				continue;
3330 			if (flags & TO_SYN)
3331 				continue;
3332 			to->to_flags |= TOF_SACK;
3333 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3334 			to->to_sacks = cp + 2;
3335 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3336 			break;
3337 		case TCPOPT_FAST_OPEN:
3338 			/*
3339 			 * Cookie length validation is performed by the
3340 			 * server side cookie checking code or the client
3341 			 * side cookie cache update code.
3342 			 */
3343 			if (!(flags & TO_SYN))
3344 				continue;
3345 			if (!V_tcp_fastopen_client_enable &&
3346 			    !V_tcp_fastopen_server_enable)
3347 				continue;
3348 			to->to_flags |= TOF_FASTOPEN;
3349 			to->to_tfo_len = optlen - 2;
3350 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3351 			break;
3352 		default:
3353 			continue;
3354 		}
3355 	}
3356 }
3357 
3358 /*
3359  * Pull out of band byte out of a segment so
3360  * it doesn't appear in the user's data queue.
3361  * It is still reflected in the segment length for
3362  * sequencing purposes.
3363  */
3364 void
3365 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3366     int off)
3367 {
3368 	int cnt = off + th->th_urp - 1;
3369 
3370 	while (cnt >= 0) {
3371 		if (m->m_len > cnt) {
3372 			char *cp = mtod(m, caddr_t) + cnt;
3373 			struct tcpcb *tp = sototcpcb(so);
3374 
3375 			INP_WLOCK_ASSERT(tp->t_inpcb);
3376 
3377 			tp->t_iobc = *cp;
3378 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3379 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3380 			m->m_len--;
3381 			if (m->m_flags & M_PKTHDR)
3382 				m->m_pkthdr.len--;
3383 			return;
3384 		}
3385 		cnt -= m->m_len;
3386 		m = m->m_next;
3387 		if (m == NULL)
3388 			break;
3389 	}
3390 	panic("tcp_pulloutofband");
3391 }
3392 
3393 /*
3394  * Collect new round-trip time estimate
3395  * and update averages and current timeout.
3396  */
3397 void
3398 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3399 {
3400 	int delta;
3401 
3402 	INP_WLOCK_ASSERT(tp->t_inpcb);
3403 
3404 	TCPSTAT_INC(tcps_rttupdated);
3405 	tp->t_rttupdated++;
3406 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3407 		/*
3408 		 * srtt is stored as fixed point with 5 bits after the
3409 		 * binary point (i.e., scaled by 8).  The following magic
3410 		 * is equivalent to the smoothing algorithm in rfc793 with
3411 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3412 		 * point).  Adjust rtt to origin 0.
3413 		 */
3414 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3415 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3416 
3417 		if ((tp->t_srtt += delta) <= 0)
3418 			tp->t_srtt = 1;
3419 
3420 		/*
3421 		 * We accumulate a smoothed rtt variance (actually, a
3422 		 * smoothed mean difference), then set the retransmit
3423 		 * timer to smoothed rtt + 4 times the smoothed variance.
3424 		 * rttvar is stored as fixed point with 4 bits after the
3425 		 * binary point (scaled by 16).  The following is
3426 		 * equivalent to rfc793 smoothing with an alpha of .75
3427 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3428 		 * rfc793's wired-in beta.
3429 		 */
3430 		if (delta < 0)
3431 			delta = -delta;
3432 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3433 		if ((tp->t_rttvar += delta) <= 0)
3434 			tp->t_rttvar = 1;
3435 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3436 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3437 	} else {
3438 		/*
3439 		 * No rtt measurement yet - use the unsmoothed rtt.
3440 		 * Set the variance to half the rtt (so our first
3441 		 * retransmit happens at 3*rtt).
3442 		 */
3443 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3444 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3445 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3446 	}
3447 	tp->t_rtttime = 0;
3448 	tp->t_rxtshift = 0;
3449 
3450 	/*
3451 	 * the retransmit should happen at rtt + 4 * rttvar.
3452 	 * Because of the way we do the smoothing, srtt and rttvar
3453 	 * will each average +1/2 tick of bias.  When we compute
3454 	 * the retransmit timer, we want 1/2 tick of rounding and
3455 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3456 	 * firing of the timer.  The bias will give us exactly the
3457 	 * 1.5 tick we need.  But, because the bias is
3458 	 * statistical, we have to test that we don't drop below
3459 	 * the minimum feasible timer (which is 2 ticks).
3460 	 */
3461 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3462 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3463 
3464 	/*
3465 	 * We received an ack for a packet that wasn't retransmitted;
3466 	 * it is probably safe to discard any error indications we've
3467 	 * received recently.  This isn't quite right, but close enough
3468 	 * for now (a route might have failed after we sent a segment,
3469 	 * and the return path might not be symmetrical).
3470 	 */
3471 	tp->t_softerror = 0;
3472 }
3473 
3474 /*
3475  * Determine a reasonable value for maxseg size.
3476  * If the route is known, check route for mtu.
3477  * If none, use an mss that can be handled on the outgoing interface
3478  * without forcing IP to fragment.  If no route is found, route has no mtu,
3479  * or the destination isn't local, use a default, hopefully conservative
3480  * size (usually 512 or the default IP max size, but no more than the mtu
3481  * of the interface), as we can't discover anything about intervening
3482  * gateways or networks.  We also initialize the congestion/slow start
3483  * window to be a single segment if the destination isn't local.
3484  * While looking at the routing entry, we also initialize other path-dependent
3485  * parameters from pre-set or cached values in the routing entry.
3486  *
3487  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3488  * IP options, e.g. IPSEC data, since length of this data may vary, and
3489  * thus it is calculated for every segment separately in tcp_output().
3490  *
3491  * NOTE that this routine is only called when we process an incoming
3492  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3493  * settings are handled in tcp_mssopt().
3494  */
3495 void
3496 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3497     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3498 {
3499 	int mss = 0;
3500 	uint32_t maxmtu = 0;
3501 	struct inpcb *inp = tp->t_inpcb;
3502 	struct hc_metrics_lite metrics;
3503 #ifdef INET6
3504 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3505 	size_t min_protoh = isipv6 ?
3506 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3507 			    sizeof (struct tcpiphdr);
3508 #else
3509 	const size_t min_protoh = sizeof(struct tcpiphdr);
3510 #endif
3511 
3512 	INP_WLOCK_ASSERT(tp->t_inpcb);
3513 
3514 	if (mtuoffer != -1) {
3515 		KASSERT(offer == -1, ("%s: conflict", __func__));
3516 		offer = mtuoffer - min_protoh;
3517 	}
3518 
3519 	/* Initialize. */
3520 #ifdef INET6
3521 	if (isipv6) {
3522 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3523 		tp->t_maxseg = V_tcp_v6mssdflt;
3524 	}
3525 #endif
3526 #if defined(INET) && defined(INET6)
3527 	else
3528 #endif
3529 #ifdef INET
3530 	{
3531 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3532 		tp->t_maxseg = V_tcp_mssdflt;
3533 	}
3534 #endif
3535 
3536 	/*
3537 	 * No route to sender, stay with default mss and return.
3538 	 */
3539 	if (maxmtu == 0) {
3540 		/*
3541 		 * In case we return early we need to initialize metrics
3542 		 * to a defined state as tcp_hc_get() would do for us
3543 		 * if there was no cache hit.
3544 		 */
3545 		if (metricptr != NULL)
3546 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3547 		return;
3548 	}
3549 
3550 	/* What have we got? */
3551 	switch (offer) {
3552 		case 0:
3553 			/*
3554 			 * Offer == 0 means that there was no MSS on the SYN
3555 			 * segment, in this case we use tcp_mssdflt as
3556 			 * already assigned to t_maxseg above.
3557 			 */
3558 			offer = tp->t_maxseg;
3559 			break;
3560 
3561 		case -1:
3562 			/*
3563 			 * Offer == -1 means that we didn't receive SYN yet.
3564 			 */
3565 			/* FALLTHROUGH */
3566 
3567 		default:
3568 			/*
3569 			 * Prevent DoS attack with too small MSS. Round up
3570 			 * to at least minmss.
3571 			 */
3572 			offer = max(offer, V_tcp_minmss);
3573 	}
3574 
3575 	/*
3576 	 * rmx information is now retrieved from tcp_hostcache.
3577 	 */
3578 	tcp_hc_get(&inp->inp_inc, &metrics);
3579 	if (metricptr != NULL)
3580 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3581 
3582 	/*
3583 	 * If there's a discovered mtu in tcp hostcache, use it.
3584 	 * Else, use the link mtu.
3585 	 */
3586 	if (metrics.rmx_mtu)
3587 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3588 	else {
3589 #ifdef INET6
3590 		if (isipv6) {
3591 			mss = maxmtu - min_protoh;
3592 			if (!V_path_mtu_discovery &&
3593 			    !in6_localaddr(&inp->in6p_faddr))
3594 				mss = min(mss, V_tcp_v6mssdflt);
3595 		}
3596 #endif
3597 #if defined(INET) && defined(INET6)
3598 		else
3599 #endif
3600 #ifdef INET
3601 		{
3602 			mss = maxmtu - min_protoh;
3603 			if (!V_path_mtu_discovery &&
3604 			    !in_localaddr(inp->inp_faddr))
3605 				mss = min(mss, V_tcp_mssdflt);
3606 		}
3607 #endif
3608 		/*
3609 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3610 		 * probably violates the TCP spec.
3611 		 * The problem is that, since we don't know the
3612 		 * other end's MSS, we are supposed to use a conservative
3613 		 * default.  But, if we do that, then MTU discovery will
3614 		 * never actually take place, because the conservative
3615 		 * default is much less than the MTUs typically seen
3616 		 * on the Internet today.  For the moment, we'll sweep
3617 		 * this under the carpet.
3618 		 *
3619 		 * The conservative default might not actually be a problem
3620 		 * if the only case this occurs is when sending an initial
3621 		 * SYN with options and data to a host we've never talked
3622 		 * to before.  Then, they will reply with an MSS value which
3623 		 * will get recorded and the new parameters should get
3624 		 * recomputed.  For Further Study.
3625 		 */
3626 	}
3627 	mss = min(mss, offer);
3628 
3629 	/*
3630 	 * Sanity check: make sure that maxseg will be large
3631 	 * enough to allow some data on segments even if the
3632 	 * all the option space is used (40bytes).  Otherwise
3633 	 * funny things may happen in tcp_output.
3634 	 *
3635 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3636 	 */
3637 	mss = max(mss, 64);
3638 
3639 	tp->t_maxseg = mss;
3640 }
3641 
3642 void
3643 tcp_mss(struct tcpcb *tp, int offer)
3644 {
3645 	int mss;
3646 	uint32_t bufsize;
3647 	struct inpcb *inp;
3648 	struct socket *so;
3649 	struct hc_metrics_lite metrics;
3650 	struct tcp_ifcap cap;
3651 
3652 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3653 
3654 	bzero(&cap, sizeof(cap));
3655 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3656 
3657 	mss = tp->t_maxseg;
3658 	inp = tp->t_inpcb;
3659 
3660 	/*
3661 	 * If there's a pipesize, change the socket buffer to that size,
3662 	 * don't change if sb_hiwat is different than default (then it
3663 	 * has been changed on purpose with setsockopt).
3664 	 * Make the socket buffers an integral number of mss units;
3665 	 * if the mss is larger than the socket buffer, decrease the mss.
3666 	 */
3667 	so = inp->inp_socket;
3668 	SOCKBUF_LOCK(&so->so_snd);
3669 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3670 		bufsize = metrics.rmx_sendpipe;
3671 	else
3672 		bufsize = so->so_snd.sb_hiwat;
3673 	if (bufsize < mss)
3674 		mss = bufsize;
3675 	else {
3676 		bufsize = roundup(bufsize, mss);
3677 		if (bufsize > sb_max)
3678 			bufsize = sb_max;
3679 		if (bufsize > so->so_snd.sb_hiwat)
3680 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3681 	}
3682 	SOCKBUF_UNLOCK(&so->so_snd);
3683 	/*
3684 	 * Sanity check: make sure that maxseg will be large
3685 	 * enough to allow some data on segments even if the
3686 	 * all the option space is used (40bytes).  Otherwise
3687 	 * funny things may happen in tcp_output.
3688 	 *
3689 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3690 	 */
3691 	tp->t_maxseg = max(mss, 64);
3692 
3693 	SOCKBUF_LOCK(&so->so_rcv);
3694 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3695 		bufsize = metrics.rmx_recvpipe;
3696 	else
3697 		bufsize = so->so_rcv.sb_hiwat;
3698 	if (bufsize > mss) {
3699 		bufsize = roundup(bufsize, mss);
3700 		if (bufsize > sb_max)
3701 			bufsize = sb_max;
3702 		if (bufsize > so->so_rcv.sb_hiwat)
3703 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3704 	}
3705 	SOCKBUF_UNLOCK(&so->so_rcv);
3706 
3707 	/* Check the interface for TSO capabilities. */
3708 	if (cap.ifcap & CSUM_TSO) {
3709 		tp->t_flags |= TF_TSO;
3710 		tp->t_tsomax = cap.tsomax;
3711 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3712 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3713 	}
3714 }
3715 
3716 /*
3717  * Determine the MSS option to send on an outgoing SYN.
3718  */
3719 int
3720 tcp_mssopt(struct in_conninfo *inc)
3721 {
3722 	int mss = 0;
3723 	uint32_t thcmtu = 0;
3724 	uint32_t maxmtu = 0;
3725 	size_t min_protoh;
3726 
3727 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3728 
3729 #ifdef INET6
3730 	if (inc->inc_flags & INC_ISIPV6) {
3731 		mss = V_tcp_v6mssdflt;
3732 		maxmtu = tcp_maxmtu6(inc, NULL);
3733 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3734 	}
3735 #endif
3736 #if defined(INET) && defined(INET6)
3737 	else
3738 #endif
3739 #ifdef INET
3740 	{
3741 		mss = V_tcp_mssdflt;
3742 		maxmtu = tcp_maxmtu(inc, NULL);
3743 		min_protoh = sizeof(struct tcpiphdr);
3744 	}
3745 #endif
3746 #if defined(INET6) || defined(INET)
3747 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3748 #endif
3749 
3750 	if (maxmtu && thcmtu)
3751 		mss = min(maxmtu, thcmtu) - min_protoh;
3752 	else if (maxmtu || thcmtu)
3753 		mss = max(maxmtu, thcmtu) - min_protoh;
3754 
3755 	return (mss);
3756 }
3757 
3758 
3759 /*
3760  * On a partial ack arrives, force the retransmission of the
3761  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3762  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3763  * be started again.
3764  */
3765 void
3766 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3767 {
3768 	tcp_seq onxt = tp->snd_nxt;
3769 	uint32_t ocwnd = tp->snd_cwnd;
3770 	u_int maxseg = tcp_maxseg(tp);
3771 
3772 	INP_WLOCK_ASSERT(tp->t_inpcb);
3773 
3774 	tcp_timer_activate(tp, TT_REXMT, 0);
3775 	tp->t_rtttime = 0;
3776 	tp->snd_nxt = th->th_ack;
3777 	/*
3778 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3779 	 * (tp->snd_una has not yet been updated when this function is called.)
3780 	 */
3781 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3782 	tp->t_flags |= TF_ACKNOW;
3783 	(void) tp->t_fb->tfb_tcp_output(tp);
3784 	tp->snd_cwnd = ocwnd;
3785 	if (SEQ_GT(onxt, tp->snd_nxt))
3786 		tp->snd_nxt = onxt;
3787 	/*
3788 	 * Partial window deflation.  Relies on fact that tp->snd_una
3789 	 * not updated yet.
3790 	 */
3791 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3792 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3793 	else
3794 		tp->snd_cwnd = 0;
3795 	tp->snd_cwnd += maxseg;
3796 }
3797 
3798 int
3799 tcp_compute_pipe(struct tcpcb *tp)
3800 {
3801 	return (tp->snd_max - tp->snd_una +
3802 		tp->sackhint.sack_bytes_rexmit -
3803 		tp->sackhint.sacked_bytes);
3804 }
3805 
3806 uint32_t
3807 tcp_compute_initwnd(uint32_t maxseg)
3808 {
3809 	/*
3810 	 * Calculate the Initial Window, also used as Restart Window
3811 	 *
3812 	 * RFC5681 Section 3.1 specifies the default conservative values.
3813 	 * RFC3390 specifies slightly more aggressive values.
3814 	 * RFC6928 increases it to ten segments.
3815 	 * Support for user specified value for initial flight size.
3816 	 */
3817 	if (V_tcp_initcwnd_segments)
3818 		return min(V_tcp_initcwnd_segments * maxseg,
3819 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
3820 	else if (V_tcp_do_rfc3390)
3821 		return min(4 * maxseg, max(2 * maxseg, 4380));
3822 	else {
3823 		/* Per RFC5681 Section 3.1 */
3824 		if (maxseg > 2190)
3825 			return (2 * maxseg);
3826 		else if (maxseg > 1095)
3827 			return (3 * maxseg);
3828 		else
3829 			return (4 * maxseg);
3830 	}
3831 }
3832