1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 2007-2008,2010 5 * Swinburne University of Technology, Melbourne, Australia. 6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org> 7 * Copyright (c) 2010 The FreeBSD Foundation 8 * Copyright (c) 2010-2011 Juniper Networks, Inc. 9 * All rights reserved. 10 * 11 * Portions of this software were developed at the Centre for Advanced Internet 12 * Architectures, Swinburne University of Technology, by Lawrence Stewart, 13 * James Healy and David Hayes, made possible in part by a grant from the Cisco 14 * University Research Program Fund at Community Foundation Silicon Valley. 15 * 16 * Portions of this software were developed at the Centre for Advanced 17 * Internet Architectures, Swinburne University of Technology, Melbourne, 18 * Australia by David Hayes under sponsorship from the FreeBSD Foundation. 19 * 20 * Portions of this software were developed by Robert N. M. Watson under 21 * contract to Juniper Networks, Inc. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 4. Neither the name of the University nor the names of its contributors 32 * may be used to endorse or promote products derived from this software 33 * without specific prior written permission. 34 * 35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 45 * SUCH DAMAGE. 46 * 47 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 #include "opt_ipfw.h" /* for ipfw_fwd */ 54 #include "opt_inet.h" 55 #include "opt_inet6.h" 56 #include "opt_ipsec.h" 57 #include "opt_tcpdebug.h" 58 59 #include <sys/param.h> 60 #include <sys/kernel.h> 61 #include <sys/hhook.h> 62 #include <sys/malloc.h> 63 #include <sys/mbuf.h> 64 #include <sys/proc.h> /* for proc0 declaration */ 65 #include <sys/protosw.h> 66 #include <sys/signalvar.h> 67 #include <sys/socket.h> 68 #include <sys/socketvar.h> 69 #include <sys/sysctl.h> 70 #include <sys/syslog.h> 71 #include <sys/systm.h> 72 73 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */ 74 75 #include <vm/uma.h> 76 77 #include <net/if.h> 78 #include <net/route.h> 79 #include <net/vnet.h> 80 81 #define TCPSTATES /* for logging */ 82 83 #include <netinet/cc.h> 84 #include <netinet/in.h> 85 #include <netinet/in_pcb.h> 86 #include <netinet/in_systm.h> 87 #include <netinet/in_var.h> 88 #include <netinet/ip.h> 89 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 90 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 91 #include <netinet/ip_var.h> 92 #include <netinet/ip_options.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/in6_pcb.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/nd6.h> 98 #include <netinet/tcp_fsm.h> 99 #include <netinet/tcp_seq.h> 100 #include <netinet/tcp_timer.h> 101 #include <netinet/tcp_var.h> 102 #include <netinet6/tcp6_var.h> 103 #include <netinet/tcpip.h> 104 #include <netinet/tcp_syncache.h> 105 #ifdef TCPDEBUG 106 #include <netinet/tcp_debug.h> 107 #endif /* TCPDEBUG */ 108 #ifdef TCP_OFFLOAD 109 #include <netinet/tcp_offload.h> 110 #endif 111 112 #ifdef IPSEC 113 #include <netipsec/ipsec.h> 114 #include <netipsec/ipsec6.h> 115 #endif /*IPSEC*/ 116 117 #include <machine/in_cksum.h> 118 119 #include <security/mac/mac_framework.h> 120 121 const int tcprexmtthresh = 3; 122 123 int tcp_log_in_vain = 0; 124 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW, 125 &tcp_log_in_vain, 0, 126 "Log all incoming TCP segments to closed ports"); 127 128 VNET_DEFINE(int, blackhole) = 0; 129 #define V_blackhole VNET(blackhole) 130 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW, 131 &VNET_NAME(blackhole), 0, 132 "Do not send RST on segments to closed ports"); 133 134 VNET_DEFINE(int, tcp_delack_enabled) = 1; 135 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW, 136 &VNET_NAME(tcp_delack_enabled), 0, 137 "Delay ACK to try and piggyback it onto a data packet"); 138 139 VNET_DEFINE(int, drop_synfin) = 0; 140 #define V_drop_synfin VNET(drop_synfin) 141 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW, 142 &VNET_NAME(drop_synfin), 0, 143 "Drop TCP packets with SYN+FIN set"); 144 145 VNET_DEFINE(int, tcp_do_rfc3042) = 1; 146 #define V_tcp_do_rfc3042 VNET(tcp_do_rfc3042) 147 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW, 148 &VNET_NAME(tcp_do_rfc3042), 0, 149 "Enable RFC 3042 (Limited Transmit)"); 150 151 VNET_DEFINE(int, tcp_do_rfc3390) = 1; 152 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW, 153 &VNET_NAME(tcp_do_rfc3390), 0, 154 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)"); 155 156 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0, 157 "Experimental TCP extensions"); 158 159 VNET_DEFINE(int, tcp_do_initcwnd10) = 1; 160 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW, 161 &VNET_NAME(tcp_do_initcwnd10), 0, 162 "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)"); 163 164 VNET_DEFINE(int, tcp_do_rfc3465) = 1; 165 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW, 166 &VNET_NAME(tcp_do_rfc3465), 0, 167 "Enable RFC 3465 (Appropriate Byte Counting)"); 168 169 VNET_DEFINE(int, tcp_abc_l_var) = 2; 170 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW, 171 &VNET_NAME(tcp_abc_l_var), 2, 172 "Cap the max cwnd increment during slow-start to this number of segments"); 173 174 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN"); 175 176 VNET_DEFINE(int, tcp_do_ecn) = 0; 177 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW, 178 &VNET_NAME(tcp_do_ecn), 0, 179 "TCP ECN support"); 180 181 VNET_DEFINE(int, tcp_ecn_maxretries) = 1; 182 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW, 183 &VNET_NAME(tcp_ecn_maxretries), 0, 184 "Max retries before giving up on ECN"); 185 186 VNET_DEFINE(int, tcp_insecure_rst) = 0; 187 #define V_tcp_insecure_rst VNET(tcp_insecure_rst) 188 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW, 189 &VNET_NAME(tcp_insecure_rst), 0, 190 "Follow the old (insecure) criteria for accepting RST packets"); 191 192 VNET_DEFINE(int, tcp_recvspace) = 1024*64; 193 #define V_tcp_recvspace VNET(tcp_recvspace) 194 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 195 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size"); 196 197 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1; 198 #define V_tcp_do_autorcvbuf VNET(tcp_do_autorcvbuf) 199 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW, 200 &VNET_NAME(tcp_do_autorcvbuf), 0, 201 "Enable automatic receive buffer sizing"); 202 203 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024; 204 #define V_tcp_autorcvbuf_inc VNET(tcp_autorcvbuf_inc) 205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW, 206 &VNET_NAME(tcp_autorcvbuf_inc), 0, 207 "Incrementor step size of automatic receive buffer"); 208 209 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024; 210 #define V_tcp_autorcvbuf_max VNET(tcp_autorcvbuf_max) 211 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW, 212 &VNET_NAME(tcp_autorcvbuf_max), 0, 213 "Max size of automatic receive buffer"); 214 215 VNET_DEFINE(struct inpcbhead, tcb); 216 #define tcb6 tcb /* for KAME src sync over BSD*'s */ 217 VNET_DEFINE(struct inpcbinfo, tcbinfo); 218 219 static void tcp_dooptions(struct tcpopt *, u_char *, int, int); 220 static void tcp_do_segment(struct mbuf *, struct tcphdr *, 221 struct socket *, struct tcpcb *, int, int, uint8_t, 222 int); 223 static void tcp_dropwithreset(struct mbuf *, struct tcphdr *, 224 struct tcpcb *, int, int); 225 static void tcp_pulloutofband(struct socket *, 226 struct tcphdr *, struct mbuf *, int); 227 static void tcp_xmit_timer(struct tcpcb *, int); 228 static void tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *); 229 static void inline tcp_fields_to_host(struct tcphdr *); 230 #ifdef TCP_SIGNATURE 231 static void inline tcp_fields_to_net(struct tcphdr *); 232 static int inline tcp_signature_verify_input(struct mbuf *, int, int, 233 int, struct tcpopt *, struct tcphdr *, u_int); 234 #endif 235 static void inline cc_ack_received(struct tcpcb *tp, struct tcphdr *th, 236 uint16_t type); 237 static void inline cc_conn_init(struct tcpcb *tp); 238 static void inline cc_post_recovery(struct tcpcb *tp, struct tcphdr *th); 239 static void inline hhook_run_tcp_est_in(struct tcpcb *tp, 240 struct tcphdr *th, struct tcpopt *to); 241 242 /* 243 * TCP statistics are stored in struct tcpstat_p, which is 244 * an "array" of counter(9)s. Although it isn't a real 245 * array, we treat it as array to reduce code bloat. 246 */ 247 VNET_DEFINE(struct tcpstat_p, tcpstatp); 248 249 static void 250 vnet_tcpstatp_init(const void *unused) 251 { 252 counter_u64_t *c; 253 int i; 254 255 for (i = 0, c = (counter_u64_t *)&V_tcpstatp; 256 i < sizeof(V_tcpstatp) / sizeof(counter_u64_t); 257 i++, c++) { 258 *c = counter_u64_alloc(M_WAITOK); 259 counter_u64_zero(*c); 260 } 261 } 262 VNET_SYSINIT(vnet_tcpstatp_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 263 vnet_tcpstatp_init, NULL); 264 265 #ifdef VIMAGE 266 static void 267 vnet_tcpstatp_uninit(const void *unused) 268 { 269 counter_u64_t *c; 270 int i; 271 272 for (i = 0, c = (counter_u64_t *)&V_tcpstatp; 273 i < sizeof(V_tcpstatp) / sizeof(counter_u64_t); 274 i++, c++) 275 counter_u64_free(*c); 276 } 277 VNET_SYSUNINIT(vnet_tcpstatp_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 278 vnet_tcpstatp_uninit, NULL); 279 #endif /* VIMAGE */ 280 281 static int 282 tcpstat_sysctl(SYSCTL_HANDLER_ARGS) 283 { 284 struct tcpstat tcpstat; 285 counter_u64_t *c; 286 uint64_t *v; 287 int i; 288 289 for (i = 0, c = (counter_u64_t *)&V_tcpstatp, v = (uint64_t *)&tcpstat; 290 i < sizeof(V_tcpstatp) / sizeof(counter_u64_t); 291 i++, c++, v++) { 292 *v = counter_u64_fetch(*c); 293 if (req->newptr) 294 counter_u64_zero(*c); 295 } 296 297 return (SYSCTL_OUT(req, &tcpstat, sizeof(tcpstat))); 298 } 299 300 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_STATS, stats, CTLTYPE_OPAQUE | 301 CTLFLAG_RW, NULL, 0, tcpstat_sysctl, "I", 302 "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); 303 304 /* 305 * Kernel module interface for updating tcpstat. The argument is an index 306 * into tcpstat treated as an array. 307 */ 308 void 309 kmod_tcpstat_inc(int statnum) 310 { 311 312 counter_u64_add((counter_u64_t )&V_tcpstatp + statnum, 1); 313 } 314 315 /* 316 * Wrapper for the TCP established input helper hook. 317 */ 318 static void inline 319 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) 320 { 321 struct tcp_hhook_data hhook_data; 322 323 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) { 324 hhook_data.tp = tp; 325 hhook_data.th = th; 326 hhook_data.to = to; 327 328 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data, 329 tp->osd); 330 } 331 } 332 333 /* 334 * CC wrapper hook functions 335 */ 336 static void inline 337 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type) 338 { 339 INP_WLOCK_ASSERT(tp->t_inpcb); 340 341 tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th); 342 if (tp->snd_cwnd <= tp->snd_wnd) 343 tp->ccv->flags |= CCF_CWND_LIMITED; 344 else 345 tp->ccv->flags &= ~CCF_CWND_LIMITED; 346 347 if (type == CC_ACK) { 348 if (tp->snd_cwnd > tp->snd_ssthresh) { 349 tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, 350 V_tcp_abc_l_var * tp->t_maxseg); 351 if (tp->t_bytes_acked >= tp->snd_cwnd) { 352 tp->t_bytes_acked -= tp->snd_cwnd; 353 tp->ccv->flags |= CCF_ABC_SENTAWND; 354 } 355 } else { 356 tp->ccv->flags &= ~CCF_ABC_SENTAWND; 357 tp->t_bytes_acked = 0; 358 } 359 } 360 361 if (CC_ALGO(tp)->ack_received != NULL) { 362 /* XXXLAS: Find a way to live without this */ 363 tp->ccv->curack = th->th_ack; 364 CC_ALGO(tp)->ack_received(tp->ccv, type); 365 } 366 } 367 368 static void inline 369 cc_conn_init(struct tcpcb *tp) 370 { 371 struct hc_metrics_lite metrics; 372 struct inpcb *inp = tp->t_inpcb; 373 int rtt; 374 375 INP_WLOCK_ASSERT(tp->t_inpcb); 376 377 tcp_hc_get(&inp->inp_inc, &metrics); 378 379 if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) { 380 tp->t_srtt = rtt; 381 tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE; 382 TCPSTAT_INC(tcps_usedrtt); 383 if (metrics.rmx_rttvar) { 384 tp->t_rttvar = metrics.rmx_rttvar; 385 TCPSTAT_INC(tcps_usedrttvar); 386 } else { 387 /* default variation is +- 1 rtt */ 388 tp->t_rttvar = 389 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 390 } 391 TCPT_RANGESET(tp->t_rxtcur, 392 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 393 tp->t_rttmin, TCPTV_REXMTMAX); 394 } 395 if (metrics.rmx_ssthresh) { 396 /* 397 * There's some sort of gateway or interface 398 * buffer limit on the path. Use this to set 399 * the slow start threshhold, but set the 400 * threshold to no less than 2*mss. 401 */ 402 tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh); 403 TCPSTAT_INC(tcps_usedssthresh); 404 } 405 406 /* 407 * Set the initial slow-start flight size. 408 * 409 * RFC5681 Section 3.1 specifies the default conservative values. 410 * RFC3390 specifies slightly more aggressive values. 411 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments. 412 * 413 * If a SYN or SYN/ACK was lost and retransmitted, we have to 414 * reduce the initial CWND to one segment as congestion is likely 415 * requiring us to be cautious. 416 */ 417 if (tp->snd_cwnd == 1) 418 tp->snd_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */ 419 else if (V_tcp_do_initcwnd10) 420 tp->snd_cwnd = min(10 * tp->t_maxseg, 421 max(2 * tp->t_maxseg, 14600)); 422 else if (V_tcp_do_rfc3390) 423 tp->snd_cwnd = min(4 * tp->t_maxseg, 424 max(2 * tp->t_maxseg, 4380)); 425 else { 426 /* Per RFC5681 Section 3.1 */ 427 if (tp->t_maxseg > 2190) 428 tp->snd_cwnd = 2 * tp->t_maxseg; 429 else if (tp->t_maxseg > 1095) 430 tp->snd_cwnd = 3 * tp->t_maxseg; 431 else 432 tp->snd_cwnd = 4 * tp->t_maxseg; 433 } 434 435 if (CC_ALGO(tp)->conn_init != NULL) 436 CC_ALGO(tp)->conn_init(tp->ccv); 437 } 438 439 void inline 440 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type) 441 { 442 INP_WLOCK_ASSERT(tp->t_inpcb); 443 444 switch(type) { 445 case CC_NDUPACK: 446 if (!IN_FASTRECOVERY(tp->t_flags)) { 447 tp->snd_recover = tp->snd_max; 448 if (tp->t_flags & TF_ECN_PERMIT) 449 tp->t_flags |= TF_ECN_SND_CWR; 450 } 451 break; 452 case CC_ECN: 453 if (!IN_CONGRECOVERY(tp->t_flags)) { 454 TCPSTAT_INC(tcps_ecn_rcwnd); 455 tp->snd_recover = tp->snd_max; 456 if (tp->t_flags & TF_ECN_PERMIT) 457 tp->t_flags |= TF_ECN_SND_CWR; 458 } 459 break; 460 case CC_RTO: 461 tp->t_dupacks = 0; 462 tp->t_bytes_acked = 0; 463 EXIT_RECOVERY(tp->t_flags); 464 tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 / 465 tp->t_maxseg) * tp->t_maxseg; 466 tp->snd_cwnd = tp->t_maxseg; 467 break; 468 case CC_RTO_ERR: 469 TCPSTAT_INC(tcps_sndrexmitbad); 470 /* RTO was unnecessary, so reset everything. */ 471 tp->snd_cwnd = tp->snd_cwnd_prev; 472 tp->snd_ssthresh = tp->snd_ssthresh_prev; 473 tp->snd_recover = tp->snd_recover_prev; 474 if (tp->t_flags & TF_WASFRECOVERY) 475 ENTER_FASTRECOVERY(tp->t_flags); 476 if (tp->t_flags & TF_WASCRECOVERY) 477 ENTER_CONGRECOVERY(tp->t_flags); 478 tp->snd_nxt = tp->snd_max; 479 tp->t_flags &= ~TF_PREVVALID; 480 tp->t_badrxtwin = 0; 481 break; 482 } 483 484 if (CC_ALGO(tp)->cong_signal != NULL) { 485 if (th != NULL) 486 tp->ccv->curack = th->th_ack; 487 CC_ALGO(tp)->cong_signal(tp->ccv, type); 488 } 489 } 490 491 static void inline 492 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th) 493 { 494 INP_WLOCK_ASSERT(tp->t_inpcb); 495 496 /* XXXLAS: KASSERT that we're in recovery? */ 497 498 if (CC_ALGO(tp)->post_recovery != NULL) { 499 tp->ccv->curack = th->th_ack; 500 CC_ALGO(tp)->post_recovery(tp->ccv); 501 } 502 /* XXXLAS: EXIT_RECOVERY ? */ 503 tp->t_bytes_acked = 0; 504 } 505 506 static inline void 507 tcp_fields_to_host(struct tcphdr *th) 508 { 509 510 th->th_seq = ntohl(th->th_seq); 511 th->th_ack = ntohl(th->th_ack); 512 th->th_win = ntohs(th->th_win); 513 th->th_urp = ntohs(th->th_urp); 514 } 515 516 #ifdef TCP_SIGNATURE 517 static inline void 518 tcp_fields_to_net(struct tcphdr *th) 519 { 520 521 th->th_seq = htonl(th->th_seq); 522 th->th_ack = htonl(th->th_ack); 523 th->th_win = htons(th->th_win); 524 th->th_urp = htons(th->th_urp); 525 } 526 527 static inline int 528 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen, 529 struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) 530 { 531 int ret; 532 533 tcp_fields_to_net(th); 534 ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag); 535 tcp_fields_to_host(th); 536 return (ret); 537 } 538 #endif 539 540 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */ 541 #ifdef INET6 542 #define ND6_HINT(tp) \ 543 do { \ 544 if ((tp) && (tp)->t_inpcb && \ 545 ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \ 546 nd6_nud_hint(NULL, NULL, 0); \ 547 } while (0) 548 #else 549 #define ND6_HINT(tp) 550 #endif 551 552 /* 553 * Indicate whether this ack should be delayed. We can delay the ack if 554 * - there is no delayed ack timer in progress and 555 * - our last ack wasn't a 0-sized window. We never want to delay 556 * the ack that opens up a 0-sized window and 557 * - delayed acks are enabled or 558 * - this is a half-synchronized T/TCP connection. 559 */ 560 #define DELAY_ACK(tp) \ 561 ((!tcp_timer_active(tp, TT_DELACK) && \ 562 (tp->t_flags & TF_RXWIN0SENT) == 0) && \ 563 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN))) 564 565 /* 566 * TCP input handling is split into multiple parts: 567 * tcp6_input is a thin wrapper around tcp_input for the extended 568 * ip6_protox[] call format in ip6_input 569 * tcp_input handles primary segment validation, inpcb lookup and 570 * SYN processing on listen sockets 571 * tcp_do_segment processes the ACK and text of the segment for 572 * establishing, established and closing connections 573 */ 574 #ifdef INET6 575 int 576 tcp6_input(struct mbuf **mp, int *offp, int proto) 577 { 578 struct mbuf *m = *mp; 579 struct in6_ifaddr *ia6; 580 581 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE); 582 583 /* 584 * draft-itojun-ipv6-tcp-to-anycast 585 * better place to put this in? 586 */ 587 ia6 = ip6_getdstifaddr(m); 588 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { 589 struct ip6_hdr *ip6; 590 591 ifa_free(&ia6->ia_ifa); 592 ip6 = mtod(m, struct ip6_hdr *); 593 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 594 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); 595 return IPPROTO_DONE; 596 } 597 if (ia6) 598 ifa_free(&ia6->ia_ifa); 599 600 tcp_input(m, *offp); 601 return IPPROTO_DONE; 602 } 603 #endif /* INET6 */ 604 605 void 606 tcp_input(struct mbuf *m, int off0) 607 { 608 struct tcphdr *th = NULL; 609 struct ip *ip = NULL; 610 struct inpcb *inp = NULL; 611 struct tcpcb *tp = NULL; 612 struct socket *so = NULL; 613 u_char *optp = NULL; 614 int optlen = 0; 615 #ifdef INET 616 int len; 617 #endif 618 int tlen = 0, off; 619 int drop_hdrlen; 620 int thflags; 621 int rstreason = 0; /* For badport_bandlim accounting purposes */ 622 #ifdef TCP_SIGNATURE 623 uint8_t sig_checked = 0; 624 #endif 625 uint8_t iptos = 0; 626 struct m_tag *fwd_tag = NULL; 627 #ifdef INET6 628 struct ip6_hdr *ip6 = NULL; 629 int isipv6; 630 #else 631 const void *ip6 = NULL; 632 #endif /* INET6 */ 633 struct tcpopt to; /* options in this segment */ 634 char *s = NULL; /* address and port logging */ 635 int ti_locked; 636 #define TI_UNLOCKED 1 637 #define TI_WLOCKED 2 638 639 #ifdef TCPDEBUG 640 /* 641 * The size of tcp_saveipgen must be the size of the max ip header, 642 * now IPv6. 643 */ 644 u_char tcp_saveipgen[IP6_HDR_LEN]; 645 struct tcphdr tcp_savetcp; 646 short ostate = 0; 647 #endif 648 649 #ifdef INET6 650 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 651 #endif 652 653 to.to_flags = 0; 654 TCPSTAT_INC(tcps_rcvtotal); 655 656 #ifdef INET6 657 if (isipv6) { 658 /* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */ 659 660 if (m->m_len < (sizeof(*ip6) + sizeof(*th))) { 661 m = m_pullup(m, sizeof(*ip6) + sizeof(*th)); 662 if (m == NULL) { 663 TCPSTAT_INC(tcps_rcvshort); 664 return; 665 } 666 } 667 668 ip6 = mtod(m, struct ip6_hdr *); 669 th = (struct tcphdr *)((caddr_t)ip6 + off0); 670 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; 671 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) { 672 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 673 th->th_sum = m->m_pkthdr.csum_data; 674 else 675 th->th_sum = in6_cksum_pseudo(ip6, tlen, 676 IPPROTO_TCP, m->m_pkthdr.csum_data); 677 th->th_sum ^= 0xffff; 678 } else 679 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen); 680 if (th->th_sum) { 681 TCPSTAT_INC(tcps_rcvbadsum); 682 goto drop; 683 } 684 685 /* 686 * Be proactive about unspecified IPv6 address in source. 687 * As we use all-zero to indicate unbounded/unconnected pcb, 688 * unspecified IPv6 address can be used to confuse us. 689 * 690 * Note that packets with unspecified IPv6 destination is 691 * already dropped in ip6_input. 692 */ 693 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 694 /* XXX stat */ 695 goto drop; 696 } 697 } 698 #endif 699 #if defined(INET) && defined(INET6) 700 else 701 #endif 702 #ifdef INET 703 { 704 /* 705 * Get IP and TCP header together in first mbuf. 706 * Note: IP leaves IP header in first mbuf. 707 */ 708 if (off0 > sizeof (struct ip)) { 709 ip_stripoptions(m); 710 off0 = sizeof(struct ip); 711 } 712 if (m->m_len < sizeof (struct tcpiphdr)) { 713 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) 714 == NULL) { 715 TCPSTAT_INC(tcps_rcvshort); 716 return; 717 } 718 } 719 ip = mtod(m, struct ip *); 720 th = (struct tcphdr *)((caddr_t)ip + off0); 721 tlen = ntohs(ip->ip_len) - off0; 722 723 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 724 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 725 th->th_sum = m->m_pkthdr.csum_data; 726 else 727 th->th_sum = in_pseudo(ip->ip_src.s_addr, 728 ip->ip_dst.s_addr, 729 htonl(m->m_pkthdr.csum_data + tlen + 730 IPPROTO_TCP)); 731 th->th_sum ^= 0xffff; 732 } else { 733 struct ipovly *ipov = (struct ipovly *)ip; 734 735 /* 736 * Checksum extended TCP header and data. 737 */ 738 len = off0 + tlen; 739 bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); 740 ipov->ih_len = htons(tlen); 741 th->th_sum = in_cksum(m, len); 742 } 743 if (th->th_sum) { 744 TCPSTAT_INC(tcps_rcvbadsum); 745 goto drop; 746 } 747 /* Re-initialization for later version check */ 748 ip->ip_v = IPVERSION; 749 } 750 #endif /* INET */ 751 752 #ifdef INET6 753 if (isipv6) 754 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff; 755 #endif 756 #if defined(INET) && defined(INET6) 757 else 758 #endif 759 #ifdef INET 760 iptos = ip->ip_tos; 761 #endif 762 763 /* 764 * Check that TCP offset makes sense, 765 * pull out TCP options and adjust length. XXX 766 */ 767 off = th->th_off << 2; 768 if (off < sizeof (struct tcphdr) || off > tlen) { 769 TCPSTAT_INC(tcps_rcvbadoff); 770 goto drop; 771 } 772 tlen -= off; /* tlen is used instead of ti->ti_len */ 773 if (off > sizeof (struct tcphdr)) { 774 #ifdef INET6 775 if (isipv6) { 776 IP6_EXTHDR_CHECK(m, off0, off, ); 777 ip6 = mtod(m, struct ip6_hdr *); 778 th = (struct tcphdr *)((caddr_t)ip6 + off0); 779 } 780 #endif 781 #if defined(INET) && defined(INET6) 782 else 783 #endif 784 #ifdef INET 785 { 786 if (m->m_len < sizeof(struct ip) + off) { 787 if ((m = m_pullup(m, sizeof (struct ip) + off)) 788 == NULL) { 789 TCPSTAT_INC(tcps_rcvshort); 790 return; 791 } 792 ip = mtod(m, struct ip *); 793 th = (struct tcphdr *)((caddr_t)ip + off0); 794 } 795 } 796 #endif 797 optlen = off - sizeof (struct tcphdr); 798 optp = (u_char *)(th + 1); 799 } 800 thflags = th->th_flags; 801 802 /* 803 * Convert TCP protocol specific fields to host format. 804 */ 805 tcp_fields_to_host(th); 806 807 /* 808 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options. 809 */ 810 drop_hdrlen = off0 + off; 811 812 /* 813 * Locate pcb for segment; if we're likely to add or remove a 814 * connection then first acquire pcbinfo lock. There are two cases 815 * where we might discover later we need a write lock despite the 816 * flags: ACKs moving a connection out of the syncache, and ACKs for 817 * a connection in TIMEWAIT. 818 */ 819 if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) { 820 INP_INFO_WLOCK(&V_tcbinfo); 821 ti_locked = TI_WLOCKED; 822 } else 823 ti_locked = TI_UNLOCKED; 824 825 /* 826 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 827 */ 828 if ( 829 #ifdef INET6 830 (isipv6 && (m->m_flags & M_IP6_NEXTHOP)) 831 #ifdef INET 832 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP)) 833 #endif 834 #endif 835 #if defined(INET) && !defined(INET6) 836 (m->m_flags & M_IP_NEXTHOP) 837 #endif 838 ) 839 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 840 841 findpcb: 842 #ifdef INVARIANTS 843 if (ti_locked == TI_WLOCKED) { 844 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 845 } else { 846 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 847 } 848 #endif 849 #ifdef INET6 850 if (isipv6 && fwd_tag != NULL) { 851 struct sockaddr_in6 *next_hop6; 852 853 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1); 854 /* 855 * Transparently forwarded. Pretend to be the destination. 856 * Already got one like this? 857 */ 858 inp = in6_pcblookup_mbuf(&V_tcbinfo, 859 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport, 860 INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); 861 if (!inp) { 862 /* 863 * It's new. Try to find the ambushing socket. 864 * Because we've rewritten the destination address, 865 * any hardware-generated hash is ignored. 866 */ 867 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src, 868 th->th_sport, &next_hop6->sin6_addr, 869 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) : 870 th->th_dport, INPLOOKUP_WILDCARD | 871 INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif); 872 } 873 } else if (isipv6) { 874 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src, 875 th->th_sport, &ip6->ip6_dst, th->th_dport, 876 INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, 877 m->m_pkthdr.rcvif, m); 878 } 879 #endif /* INET6 */ 880 #if defined(INET6) && defined(INET) 881 else 882 #endif 883 #ifdef INET 884 if (fwd_tag != NULL) { 885 struct sockaddr_in *next_hop; 886 887 next_hop = (struct sockaddr_in *)(fwd_tag+1); 888 /* 889 * Transparently forwarded. Pretend to be the destination. 890 * already got one like this? 891 */ 892 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport, 893 ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB, 894 m->m_pkthdr.rcvif, m); 895 if (!inp) { 896 /* 897 * It's new. Try to find the ambushing socket. 898 * Because we've rewritten the destination address, 899 * any hardware-generated hash is ignored. 900 */ 901 inp = in_pcblookup(&V_tcbinfo, ip->ip_src, 902 th->th_sport, next_hop->sin_addr, 903 next_hop->sin_port ? ntohs(next_hop->sin_port) : 904 th->th_dport, INPLOOKUP_WILDCARD | 905 INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif); 906 } 907 } else 908 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, 909 th->th_sport, ip->ip_dst, th->th_dport, 910 INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, 911 m->m_pkthdr.rcvif, m); 912 #endif /* INET */ 913 914 /* 915 * If the INPCB does not exist then all data in the incoming 916 * segment is discarded and an appropriate RST is sent back. 917 * XXX MRT Send RST using which routing table? 918 */ 919 if (inp == NULL) { 920 /* 921 * Log communication attempts to ports that are not 922 * in use. 923 */ 924 if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) || 925 tcp_log_in_vain == 2) { 926 if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6))) 927 log(LOG_INFO, "%s; %s: Connection attempt " 928 "to closed port\n", s, __func__); 929 } 930 /* 931 * When blackholing do not respond with a RST but 932 * completely ignore the segment and drop it. 933 */ 934 if ((V_blackhole == 1 && (thflags & TH_SYN)) || 935 V_blackhole == 2) 936 goto dropunlock; 937 938 rstreason = BANDLIM_RST_CLOSEDPORT; 939 goto dropwithreset; 940 } 941 INP_WLOCK_ASSERT(inp); 942 if (!(inp->inp_flags & INP_HW_FLOWID) 943 && (m->m_flags & M_FLOWID) 944 && ((inp->inp_socket == NULL) 945 || !(inp->inp_socket->so_options & SO_ACCEPTCONN))) { 946 inp->inp_flags |= INP_HW_FLOWID; 947 inp->inp_flags &= ~INP_SW_FLOWID; 948 inp->inp_flowid = m->m_pkthdr.flowid; 949 } 950 #ifdef IPSEC 951 #ifdef INET6 952 if (isipv6 && ipsec6_in_reject(m, inp)) { 953 V_ipsec6stat.in_polvio++; 954 goto dropunlock; 955 } else 956 #endif /* INET6 */ 957 if (ipsec4_in_reject(m, inp) != 0) { 958 V_ipsec4stat.in_polvio++; 959 goto dropunlock; 960 } 961 #endif /* IPSEC */ 962 963 /* 964 * Check the minimum TTL for socket. 965 */ 966 if (inp->inp_ip_minttl != 0) { 967 #ifdef INET6 968 if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim) 969 goto dropunlock; 970 else 971 #endif 972 if (inp->inp_ip_minttl > ip->ip_ttl) 973 goto dropunlock; 974 } 975 976 /* 977 * A previous connection in TIMEWAIT state is supposed to catch stray 978 * or duplicate segments arriving late. If this segment was a 979 * legitimate new connection attempt, the old INPCB gets removed and 980 * we can try again to find a listening socket. 981 * 982 * At this point, due to earlier optimism, we may hold only an inpcb 983 * lock, and not the inpcbinfo write lock. If so, we need to try to 984 * acquire it, or if that fails, acquire a reference on the inpcb, 985 * drop all locks, acquire a global write lock, and then re-acquire 986 * the inpcb lock. We may at that point discover that another thread 987 * has tried to free the inpcb, in which case we need to loop back 988 * and try to find a new inpcb to deliver to. 989 * 990 * XXXRW: It may be time to rethink timewait locking. 991 */ 992 relocked: 993 if (inp->inp_flags & INP_TIMEWAIT) { 994 if (ti_locked == TI_UNLOCKED) { 995 if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) { 996 in_pcbref(inp); 997 INP_WUNLOCK(inp); 998 INP_INFO_WLOCK(&V_tcbinfo); 999 ti_locked = TI_WLOCKED; 1000 INP_WLOCK(inp); 1001 if (in_pcbrele_wlocked(inp)) { 1002 inp = NULL; 1003 goto findpcb; 1004 } 1005 } else 1006 ti_locked = TI_WLOCKED; 1007 } 1008 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1009 1010 if (thflags & TH_SYN) 1011 tcp_dooptions(&to, optp, optlen, TO_SYN); 1012 /* 1013 * NB: tcp_twcheck unlocks the INP and frees the mbuf. 1014 */ 1015 if (tcp_twcheck(inp, &to, th, m, tlen)) 1016 goto findpcb; 1017 INP_INFO_WUNLOCK(&V_tcbinfo); 1018 return; 1019 } 1020 /* 1021 * The TCPCB may no longer exist if the connection is winding 1022 * down or it is in the CLOSED state. Either way we drop the 1023 * segment and send an appropriate response. 1024 */ 1025 tp = intotcpcb(inp); 1026 if (tp == NULL || tp->t_state == TCPS_CLOSED) { 1027 rstreason = BANDLIM_RST_CLOSEDPORT; 1028 goto dropwithreset; 1029 } 1030 1031 #ifdef TCP_OFFLOAD 1032 if (tp->t_flags & TF_TOE) { 1033 tcp_offload_input(tp, m); 1034 m = NULL; /* consumed by the TOE driver */ 1035 goto dropunlock; 1036 } 1037 #endif 1038 1039 /* 1040 * We've identified a valid inpcb, but it could be that we need an 1041 * inpcbinfo write lock but don't hold it. In this case, attempt to 1042 * acquire using the same strategy as the TIMEWAIT case above. If we 1043 * relock, we have to jump back to 'relocked' as the connection might 1044 * now be in TIMEWAIT. 1045 */ 1046 #ifdef INVARIANTS 1047 if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) 1048 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1049 #endif 1050 if (tp->t_state != TCPS_ESTABLISHED) { 1051 if (ti_locked == TI_UNLOCKED) { 1052 if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) { 1053 in_pcbref(inp); 1054 INP_WUNLOCK(inp); 1055 INP_INFO_WLOCK(&V_tcbinfo); 1056 ti_locked = TI_WLOCKED; 1057 INP_WLOCK(inp); 1058 if (in_pcbrele_wlocked(inp)) { 1059 inp = NULL; 1060 goto findpcb; 1061 } 1062 goto relocked; 1063 } else 1064 ti_locked = TI_WLOCKED; 1065 } 1066 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1067 } 1068 1069 #ifdef MAC 1070 INP_WLOCK_ASSERT(inp); 1071 if (mac_inpcb_check_deliver(inp, m)) 1072 goto dropunlock; 1073 #endif 1074 so = inp->inp_socket; 1075 KASSERT(so != NULL, ("%s: so == NULL", __func__)); 1076 #ifdef TCPDEBUG 1077 if (so->so_options & SO_DEBUG) { 1078 ostate = tp->t_state; 1079 #ifdef INET6 1080 if (isipv6) { 1081 bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6)); 1082 } else 1083 #endif 1084 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); 1085 tcp_savetcp = *th; 1086 } 1087 #endif /* TCPDEBUG */ 1088 /* 1089 * When the socket is accepting connections (the INPCB is in LISTEN 1090 * state) we look into the SYN cache if this is a new connection 1091 * attempt or the completion of a previous one. Because listen 1092 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be 1093 * held in this case. 1094 */ 1095 if (so->so_options & SO_ACCEPTCONN) { 1096 struct in_conninfo inc; 1097 1098 KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but " 1099 "tp not listening", __func__)); 1100 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1101 1102 bzero(&inc, sizeof(inc)); 1103 #ifdef INET6 1104 if (isipv6) { 1105 inc.inc_flags |= INC_ISIPV6; 1106 inc.inc6_faddr = ip6->ip6_src; 1107 inc.inc6_laddr = ip6->ip6_dst; 1108 } else 1109 #endif 1110 { 1111 inc.inc_faddr = ip->ip_src; 1112 inc.inc_laddr = ip->ip_dst; 1113 } 1114 inc.inc_fport = th->th_sport; 1115 inc.inc_lport = th->th_dport; 1116 inc.inc_fibnum = so->so_fibnum; 1117 1118 /* 1119 * Check for an existing connection attempt in syncache if 1120 * the flag is only ACK. A successful lookup creates a new 1121 * socket appended to the listen queue in SYN_RECEIVED state. 1122 */ 1123 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) { 1124 /* 1125 * Parse the TCP options here because 1126 * syncookies need access to the reflected 1127 * timestamp. 1128 */ 1129 tcp_dooptions(&to, optp, optlen, 0); 1130 /* 1131 * NB: syncache_expand() doesn't unlock 1132 * inp and tcpinfo locks. 1133 */ 1134 if (!syncache_expand(&inc, &to, th, &so, m)) { 1135 /* 1136 * No syncache entry or ACK was not 1137 * for our SYN/ACK. Send a RST. 1138 * NB: syncache did its own logging 1139 * of the failure cause. 1140 */ 1141 rstreason = BANDLIM_RST_OPENPORT; 1142 goto dropwithreset; 1143 } 1144 if (so == NULL) { 1145 /* 1146 * We completed the 3-way handshake 1147 * but could not allocate a socket 1148 * either due to memory shortage, 1149 * listen queue length limits or 1150 * global socket limits. Send RST 1151 * or wait and have the remote end 1152 * retransmit the ACK for another 1153 * try. 1154 */ 1155 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1156 log(LOG_DEBUG, "%s; %s: Listen socket: " 1157 "Socket allocation failed due to " 1158 "limits or memory shortage, %s\n", 1159 s, __func__, 1160 V_tcp_sc_rst_sock_fail ? 1161 "sending RST" : "try again"); 1162 if (V_tcp_sc_rst_sock_fail) { 1163 rstreason = BANDLIM_UNLIMITED; 1164 goto dropwithreset; 1165 } else 1166 goto dropunlock; 1167 } 1168 /* 1169 * Socket is created in state SYN_RECEIVED. 1170 * Unlock the listen socket, lock the newly 1171 * created socket and update the tp variable. 1172 */ 1173 INP_WUNLOCK(inp); /* listen socket */ 1174 inp = sotoinpcb(so); 1175 INP_WLOCK(inp); /* new connection */ 1176 tp = intotcpcb(inp); 1177 KASSERT(tp->t_state == TCPS_SYN_RECEIVED, 1178 ("%s: ", __func__)); 1179 #ifdef TCP_SIGNATURE 1180 if (sig_checked == 0) { 1181 tcp_dooptions(&to, optp, optlen, 1182 (thflags & TH_SYN) ? TO_SYN : 0); 1183 if (!tcp_signature_verify_input(m, off0, tlen, 1184 optlen, &to, th, tp->t_flags)) { 1185 1186 /* 1187 * In SYN_SENT state if it receives an 1188 * RST, it is allowed for further 1189 * processing. 1190 */ 1191 if ((thflags & TH_RST) == 0 || 1192 (tp->t_state == TCPS_SYN_SENT) == 0) 1193 goto dropunlock; 1194 } 1195 sig_checked = 1; 1196 } 1197 #endif 1198 1199 /* 1200 * Process the segment and the data it 1201 * contains. tcp_do_segment() consumes 1202 * the mbuf chain and unlocks the inpcb. 1203 */ 1204 tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, 1205 iptos, ti_locked); 1206 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1207 return; 1208 } 1209 /* 1210 * Segment flag validation for new connection attempts: 1211 * 1212 * Our (SYN|ACK) response was rejected. 1213 * Check with syncache and remove entry to prevent 1214 * retransmits. 1215 * 1216 * NB: syncache_chkrst does its own logging of failure 1217 * causes. 1218 */ 1219 if (thflags & TH_RST) { 1220 syncache_chkrst(&inc, th); 1221 goto dropunlock; 1222 } 1223 /* 1224 * We can't do anything without SYN. 1225 */ 1226 if ((thflags & TH_SYN) == 0) { 1227 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1228 log(LOG_DEBUG, "%s; %s: Listen socket: " 1229 "SYN is missing, segment ignored\n", 1230 s, __func__); 1231 TCPSTAT_INC(tcps_badsyn); 1232 goto dropunlock; 1233 } 1234 /* 1235 * (SYN|ACK) is bogus on a listen socket. 1236 */ 1237 if (thflags & TH_ACK) { 1238 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1239 log(LOG_DEBUG, "%s; %s: Listen socket: " 1240 "SYN|ACK invalid, segment rejected\n", 1241 s, __func__); 1242 syncache_badack(&inc); /* XXX: Not needed! */ 1243 TCPSTAT_INC(tcps_badsyn); 1244 rstreason = BANDLIM_RST_OPENPORT; 1245 goto dropwithreset; 1246 } 1247 /* 1248 * If the drop_synfin option is enabled, drop all 1249 * segments with both the SYN and FIN bits set. 1250 * This prevents e.g. nmap from identifying the 1251 * TCP/IP stack. 1252 * XXX: Poor reasoning. nmap has other methods 1253 * and is constantly refining its stack detection 1254 * strategies. 1255 * XXX: This is a violation of the TCP specification 1256 * and was used by RFC1644. 1257 */ 1258 if ((thflags & TH_FIN) && V_drop_synfin) { 1259 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1260 log(LOG_DEBUG, "%s; %s: Listen socket: " 1261 "SYN|FIN segment ignored (based on " 1262 "sysctl setting)\n", s, __func__); 1263 TCPSTAT_INC(tcps_badsyn); 1264 goto dropunlock; 1265 } 1266 /* 1267 * Segment's flags are (SYN) or (SYN|FIN). 1268 * 1269 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored 1270 * as they do not affect the state of the TCP FSM. 1271 * The data pointed to by TH_URG and th_urp is ignored. 1272 */ 1273 KASSERT((thflags & (TH_RST|TH_ACK)) == 0, 1274 ("%s: Listen socket: TH_RST or TH_ACK set", __func__)); 1275 KASSERT(thflags & (TH_SYN), 1276 ("%s: Listen socket: TH_SYN not set", __func__)); 1277 #ifdef INET6 1278 /* 1279 * If deprecated address is forbidden, 1280 * we do not accept SYN to deprecated interface 1281 * address to prevent any new inbound connection from 1282 * getting established. 1283 * When we do not accept SYN, we send a TCP RST, 1284 * with deprecated source address (instead of dropping 1285 * it). We compromise it as it is much better for peer 1286 * to send a RST, and RST will be the final packet 1287 * for the exchange. 1288 * 1289 * If we do not forbid deprecated addresses, we accept 1290 * the SYN packet. RFC2462 does not suggest dropping 1291 * SYN in this case. 1292 * If we decipher RFC2462 5.5.4, it says like this: 1293 * 1. use of deprecated addr with existing 1294 * communication is okay - "SHOULD continue to be 1295 * used" 1296 * 2. use of it with new communication: 1297 * (2a) "SHOULD NOT be used if alternate address 1298 * with sufficient scope is available" 1299 * (2b) nothing mentioned otherwise. 1300 * Here we fall into (2b) case as we have no choice in 1301 * our source address selection - we must obey the peer. 1302 * 1303 * The wording in RFC2462 is confusing, and there are 1304 * multiple description text for deprecated address 1305 * handling - worse, they are not exactly the same. 1306 * I believe 5.5.4 is the best one, so we follow 5.5.4. 1307 */ 1308 if (isipv6 && !V_ip6_use_deprecated) { 1309 struct in6_ifaddr *ia6; 1310 1311 ia6 = ip6_getdstifaddr(m); 1312 if (ia6 != NULL && 1313 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { 1314 ifa_free(&ia6->ia_ifa); 1315 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1316 log(LOG_DEBUG, "%s; %s: Listen socket: " 1317 "Connection attempt to deprecated " 1318 "IPv6 address rejected\n", 1319 s, __func__); 1320 rstreason = BANDLIM_RST_OPENPORT; 1321 goto dropwithreset; 1322 } 1323 if (ia6) 1324 ifa_free(&ia6->ia_ifa); 1325 } 1326 #endif /* INET6 */ 1327 /* 1328 * Basic sanity checks on incoming SYN requests: 1329 * Don't respond if the destination is a link layer 1330 * broadcast according to RFC1122 4.2.3.10, p. 104. 1331 * If it is from this socket it must be forged. 1332 * Don't respond if the source or destination is a 1333 * global or subnet broad- or multicast address. 1334 * Note that it is quite possible to receive unicast 1335 * link-layer packets with a broadcast IP address. Use 1336 * in_broadcast() to find them. 1337 */ 1338 if (m->m_flags & (M_BCAST|M_MCAST)) { 1339 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1340 log(LOG_DEBUG, "%s; %s: Listen socket: " 1341 "Connection attempt from broad- or multicast " 1342 "link layer address ignored\n", s, __func__); 1343 goto dropunlock; 1344 } 1345 #ifdef INET6 1346 if (isipv6) { 1347 if (th->th_dport == th->th_sport && 1348 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) { 1349 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1350 log(LOG_DEBUG, "%s; %s: Listen socket: " 1351 "Connection attempt to/from self " 1352 "ignored\n", s, __func__); 1353 goto dropunlock; 1354 } 1355 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 1356 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 1357 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1358 log(LOG_DEBUG, "%s; %s: Listen socket: " 1359 "Connection attempt from/to multicast " 1360 "address ignored\n", s, __func__); 1361 goto dropunlock; 1362 } 1363 } 1364 #endif 1365 #if defined(INET) && defined(INET6) 1366 else 1367 #endif 1368 #ifdef INET 1369 { 1370 if (th->th_dport == th->th_sport && 1371 ip->ip_dst.s_addr == ip->ip_src.s_addr) { 1372 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1373 log(LOG_DEBUG, "%s; %s: Listen socket: " 1374 "Connection attempt from/to self " 1375 "ignored\n", s, __func__); 1376 goto dropunlock; 1377 } 1378 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 1379 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 1380 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 1381 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { 1382 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1383 log(LOG_DEBUG, "%s; %s: Listen socket: " 1384 "Connection attempt from/to broad- " 1385 "or multicast address ignored\n", 1386 s, __func__); 1387 goto dropunlock; 1388 } 1389 } 1390 #endif 1391 /* 1392 * SYN appears to be valid. Create compressed TCP state 1393 * for syncache. 1394 */ 1395 #ifdef TCPDEBUG 1396 if (so->so_options & SO_DEBUG) 1397 tcp_trace(TA_INPUT, ostate, tp, 1398 (void *)tcp_saveipgen, &tcp_savetcp, 0); 1399 #endif 1400 tcp_dooptions(&to, optp, optlen, TO_SYN); 1401 syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL); 1402 /* 1403 * Entry added to syncache and mbuf consumed. 1404 * Everything already unlocked by syncache_add(). 1405 */ 1406 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1407 return; 1408 } else if (tp->t_state == TCPS_LISTEN) { 1409 /* 1410 * When a listen socket is torn down the SO_ACCEPTCONN 1411 * flag is removed first while connections are drained 1412 * from the accept queue in a unlock/lock cycle of the 1413 * ACCEPT_LOCK, opening a race condition allowing a SYN 1414 * attempt go through unhandled. 1415 */ 1416 goto dropunlock; 1417 } 1418 1419 #ifdef TCP_SIGNATURE 1420 if (sig_checked == 0) { 1421 tcp_dooptions(&to, optp, optlen, 1422 (thflags & TH_SYN) ? TO_SYN : 0); 1423 if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to, 1424 th, tp->t_flags)) { 1425 1426 /* 1427 * In SYN_SENT state if it receives an RST, it is 1428 * allowed for further processing. 1429 */ 1430 if ((thflags & TH_RST) == 0 || 1431 (tp->t_state == TCPS_SYN_SENT) == 0) 1432 goto dropunlock; 1433 } 1434 sig_checked = 1; 1435 } 1436 #endif 1437 1438 /* 1439 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later 1440 * state. tcp_do_segment() always consumes the mbuf chain, unlocks 1441 * the inpcb, and unlocks pcbinfo. 1442 */ 1443 tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked); 1444 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1445 return; 1446 1447 dropwithreset: 1448 if (ti_locked == TI_WLOCKED) { 1449 INP_INFO_WUNLOCK(&V_tcbinfo); 1450 ti_locked = TI_UNLOCKED; 1451 } 1452 #ifdef INVARIANTS 1453 else { 1454 KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset " 1455 "ti_locked: %d", __func__, ti_locked)); 1456 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1457 } 1458 #endif 1459 1460 if (inp != NULL) { 1461 tcp_dropwithreset(m, th, tp, tlen, rstreason); 1462 INP_WUNLOCK(inp); 1463 } else 1464 tcp_dropwithreset(m, th, NULL, tlen, rstreason); 1465 m = NULL; /* mbuf chain got consumed. */ 1466 goto drop; 1467 1468 dropunlock: 1469 if (ti_locked == TI_WLOCKED) { 1470 INP_INFO_WUNLOCK(&V_tcbinfo); 1471 ti_locked = TI_UNLOCKED; 1472 } 1473 #ifdef INVARIANTS 1474 else { 1475 KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock " 1476 "ti_locked: %d", __func__, ti_locked)); 1477 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1478 } 1479 #endif 1480 1481 if (inp != NULL) 1482 INP_WUNLOCK(inp); 1483 1484 drop: 1485 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1486 if (s != NULL) 1487 free(s, M_TCPLOG); 1488 if (m != NULL) 1489 m_freem(m); 1490 } 1491 1492 static void 1493 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, 1494 struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos, 1495 int ti_locked) 1496 { 1497 int thflags, acked, ourfinisacked, needoutput = 0; 1498 int rstreason, todrop, win; 1499 u_long tiwin; 1500 struct tcpopt to; 1501 1502 #ifdef TCPDEBUG 1503 /* 1504 * The size of tcp_saveipgen must be the size of the max ip header, 1505 * now IPv6. 1506 */ 1507 u_char tcp_saveipgen[IP6_HDR_LEN]; 1508 struct tcphdr tcp_savetcp; 1509 short ostate = 0; 1510 #endif 1511 thflags = th->th_flags; 1512 tp->sackhint.last_sack_ack = 0; 1513 1514 /* 1515 * If this is either a state-changing packet or current state isn't 1516 * established, we require a write lock on tcbinfo. Otherwise, we 1517 * allow the tcbinfo to be in either alocked or unlocked, as the 1518 * caller may have unnecessarily acquired a write lock due to a race. 1519 */ 1520 if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 || 1521 tp->t_state != TCPS_ESTABLISHED) { 1522 KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for " 1523 "SYN/FIN/RST/!EST", __func__, ti_locked)); 1524 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1525 } else { 1526 #ifdef INVARIANTS 1527 if (ti_locked == TI_WLOCKED) 1528 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 1529 else { 1530 KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST " 1531 "ti_locked: %d", __func__, ti_locked)); 1532 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1533 } 1534 #endif 1535 } 1536 INP_WLOCK_ASSERT(tp->t_inpcb); 1537 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 1538 __func__)); 1539 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 1540 __func__)); 1541 1542 /* 1543 * Segment received on connection. 1544 * Reset idle time and keep-alive timer. 1545 * XXX: This should be done after segment 1546 * validation to ignore broken/spoofed segs. 1547 */ 1548 tp->t_rcvtime = ticks; 1549 if (TCPS_HAVEESTABLISHED(tp->t_state)) 1550 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); 1551 1552 /* 1553 * Unscale the window into a 32-bit value. 1554 * For the SYN_SENT state the scale is zero. 1555 */ 1556 tiwin = th->th_win << tp->snd_scale; 1557 1558 /* 1559 * TCP ECN processing. 1560 */ 1561 if (tp->t_flags & TF_ECN_PERMIT) { 1562 if (thflags & TH_CWR) 1563 tp->t_flags &= ~TF_ECN_SND_ECE; 1564 switch (iptos & IPTOS_ECN_MASK) { 1565 case IPTOS_ECN_CE: 1566 tp->t_flags |= TF_ECN_SND_ECE; 1567 TCPSTAT_INC(tcps_ecn_ce); 1568 break; 1569 case IPTOS_ECN_ECT0: 1570 TCPSTAT_INC(tcps_ecn_ect0); 1571 break; 1572 case IPTOS_ECN_ECT1: 1573 TCPSTAT_INC(tcps_ecn_ect1); 1574 break; 1575 } 1576 /* Congestion experienced. */ 1577 if (thflags & TH_ECE) { 1578 cc_cong_signal(tp, th, CC_ECN); 1579 } 1580 } 1581 1582 /* 1583 * Parse options on any incoming segment. 1584 */ 1585 tcp_dooptions(&to, (u_char *)(th + 1), 1586 (th->th_off << 2) - sizeof(struct tcphdr), 1587 (thflags & TH_SYN) ? TO_SYN : 0); 1588 1589 /* 1590 * If echoed timestamp is later than the current time, 1591 * fall back to non RFC1323 RTT calculation. Normalize 1592 * timestamp if syncookies were used when this connection 1593 * was established. 1594 */ 1595 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 1596 to.to_tsecr -= tp->ts_offset; 1597 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) 1598 to.to_tsecr = 0; 1599 } 1600 1601 /* 1602 * Process options only when we get SYN/ACK back. The SYN case 1603 * for incoming connections is handled in tcp_syncache. 1604 * According to RFC1323 the window field in a SYN (i.e., a <SYN> 1605 * or <SYN,ACK>) segment itself is never scaled. 1606 * XXX this is traditional behavior, may need to be cleaned up. 1607 */ 1608 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 1609 if ((to.to_flags & TOF_SCALE) && 1610 (tp->t_flags & TF_REQ_SCALE)) { 1611 tp->t_flags |= TF_RCVD_SCALE; 1612 tp->snd_scale = to.to_wscale; 1613 } 1614 /* 1615 * Initial send window. It will be updated with 1616 * the next incoming segment to the scaled value. 1617 */ 1618 tp->snd_wnd = th->th_win; 1619 if (to.to_flags & TOF_TS) { 1620 tp->t_flags |= TF_RCVD_TSTMP; 1621 tp->ts_recent = to.to_tsval; 1622 tp->ts_recent_age = tcp_ts_getticks(); 1623 } 1624 if (to.to_flags & TOF_MSS) 1625 tcp_mss(tp, to.to_mss); 1626 if ((tp->t_flags & TF_SACK_PERMIT) && 1627 (to.to_flags & TOF_SACKPERM) == 0) 1628 tp->t_flags &= ~TF_SACK_PERMIT; 1629 } 1630 1631 /* 1632 * Header prediction: check for the two common cases 1633 * of a uni-directional data xfer. If the packet has 1634 * no control flags, is in-sequence, the window didn't 1635 * change and we're not retransmitting, it's a 1636 * candidate. If the length is zero and the ack moved 1637 * forward, we're the sender side of the xfer. Just 1638 * free the data acked & wake any higher level process 1639 * that was blocked waiting for space. If the length 1640 * is non-zero and the ack didn't move, we're the 1641 * receiver side. If we're getting packets in-order 1642 * (the reassembly queue is empty), add the data to 1643 * the socket buffer and note that we need a delayed ack. 1644 * Make sure that the hidden state-flags are also off. 1645 * Since we check for TCPS_ESTABLISHED first, it can only 1646 * be TH_NEEDSYN. 1647 */ 1648 if (tp->t_state == TCPS_ESTABLISHED && 1649 th->th_seq == tp->rcv_nxt && 1650 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 1651 tp->snd_nxt == tp->snd_max && 1652 tiwin && tiwin == tp->snd_wnd && 1653 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && 1654 LIST_EMPTY(&tp->t_segq) && 1655 ((to.to_flags & TOF_TS) == 0 || 1656 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) { 1657 1658 /* 1659 * If last ACK falls within this segment's sequence numbers, 1660 * record the timestamp. 1661 * NOTE that the test is modified according to the latest 1662 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 1663 */ 1664 if ((to.to_flags & TOF_TS) != 0 && 1665 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 1666 tp->ts_recent_age = tcp_ts_getticks(); 1667 tp->ts_recent = to.to_tsval; 1668 } 1669 1670 if (tlen == 0) { 1671 if (SEQ_GT(th->th_ack, tp->snd_una) && 1672 SEQ_LEQ(th->th_ack, tp->snd_max) && 1673 !IN_RECOVERY(tp->t_flags) && 1674 (to.to_flags & TOF_SACK) == 0 && 1675 TAILQ_EMPTY(&tp->snd_holes)) { 1676 /* 1677 * This is a pure ack for outstanding data. 1678 */ 1679 if (ti_locked == TI_WLOCKED) 1680 INP_INFO_WUNLOCK(&V_tcbinfo); 1681 ti_locked = TI_UNLOCKED; 1682 1683 TCPSTAT_INC(tcps_predack); 1684 1685 /* 1686 * "bad retransmit" recovery. 1687 */ 1688 if (tp->t_rxtshift == 1 && 1689 tp->t_flags & TF_PREVVALID && 1690 (int)(ticks - tp->t_badrxtwin) < 0) { 1691 cc_cong_signal(tp, th, CC_RTO_ERR); 1692 } 1693 1694 /* 1695 * Recalculate the transmit timer / rtt. 1696 * 1697 * Some boxes send broken timestamp replies 1698 * during the SYN+ACK phase, ignore 1699 * timestamps of 0 or we could calculate a 1700 * huge RTT and blow up the retransmit timer. 1701 */ 1702 if ((to.to_flags & TOF_TS) != 0 && 1703 to.to_tsecr) { 1704 u_int t; 1705 1706 t = tcp_ts_getticks() - to.to_tsecr; 1707 if (!tp->t_rttlow || tp->t_rttlow > t) 1708 tp->t_rttlow = t; 1709 tcp_xmit_timer(tp, 1710 TCP_TS_TO_TICKS(t) + 1); 1711 } else if (tp->t_rtttime && 1712 SEQ_GT(th->th_ack, tp->t_rtseq)) { 1713 if (!tp->t_rttlow || 1714 tp->t_rttlow > ticks - tp->t_rtttime) 1715 tp->t_rttlow = ticks - tp->t_rtttime; 1716 tcp_xmit_timer(tp, 1717 ticks - tp->t_rtttime); 1718 } 1719 acked = BYTES_THIS_ACK(tp, th); 1720 1721 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 1722 hhook_run_tcp_est_in(tp, th, &to); 1723 1724 TCPSTAT_INC(tcps_rcvackpack); 1725 TCPSTAT_ADD(tcps_rcvackbyte, acked); 1726 sbdrop(&so->so_snd, acked); 1727 if (SEQ_GT(tp->snd_una, tp->snd_recover) && 1728 SEQ_LEQ(th->th_ack, tp->snd_recover)) 1729 tp->snd_recover = th->th_ack - 1; 1730 1731 /* 1732 * Let the congestion control algorithm update 1733 * congestion control related information. This 1734 * typically means increasing the congestion 1735 * window. 1736 */ 1737 cc_ack_received(tp, th, CC_ACK); 1738 1739 tp->snd_una = th->th_ack; 1740 /* 1741 * Pull snd_wl2 up to prevent seq wrap relative 1742 * to th_ack. 1743 */ 1744 tp->snd_wl2 = th->th_ack; 1745 tp->t_dupacks = 0; 1746 m_freem(m); 1747 ND6_HINT(tp); /* Some progress has been made. */ 1748 1749 /* 1750 * If all outstanding data are acked, stop 1751 * retransmit timer, otherwise restart timer 1752 * using current (possibly backed-off) value. 1753 * If process is waiting for space, 1754 * wakeup/selwakeup/signal. If data 1755 * are ready to send, let tcp_output 1756 * decide between more output or persist. 1757 */ 1758 #ifdef TCPDEBUG 1759 if (so->so_options & SO_DEBUG) 1760 tcp_trace(TA_INPUT, ostate, tp, 1761 (void *)tcp_saveipgen, 1762 &tcp_savetcp, 0); 1763 #endif 1764 if (tp->snd_una == tp->snd_max) 1765 tcp_timer_activate(tp, TT_REXMT, 0); 1766 else if (!tcp_timer_active(tp, TT_PERSIST)) 1767 tcp_timer_activate(tp, TT_REXMT, 1768 tp->t_rxtcur); 1769 sowwakeup(so); 1770 if (so->so_snd.sb_cc) 1771 (void) tcp_output(tp); 1772 goto check_delack; 1773 } 1774 } else if (th->th_ack == tp->snd_una && 1775 tlen <= sbspace(&so->so_rcv)) { 1776 int newsize = 0; /* automatic sockbuf scaling */ 1777 1778 /* 1779 * This is a pure, in-sequence data packet with 1780 * nothing on the reassembly queue and we have enough 1781 * buffer space to take it. 1782 */ 1783 if (ti_locked == TI_WLOCKED) 1784 INP_INFO_WUNLOCK(&V_tcbinfo); 1785 ti_locked = TI_UNLOCKED; 1786 1787 /* Clean receiver SACK report if present */ 1788 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks) 1789 tcp_clean_sackreport(tp); 1790 TCPSTAT_INC(tcps_preddat); 1791 tp->rcv_nxt += tlen; 1792 /* 1793 * Pull snd_wl1 up to prevent seq wrap relative to 1794 * th_seq. 1795 */ 1796 tp->snd_wl1 = th->th_seq; 1797 /* 1798 * Pull rcv_up up to prevent seq wrap relative to 1799 * rcv_nxt. 1800 */ 1801 tp->rcv_up = tp->rcv_nxt; 1802 TCPSTAT_INC(tcps_rcvpack); 1803 TCPSTAT_ADD(tcps_rcvbyte, tlen); 1804 ND6_HINT(tp); /* Some progress has been made */ 1805 #ifdef TCPDEBUG 1806 if (so->so_options & SO_DEBUG) 1807 tcp_trace(TA_INPUT, ostate, tp, 1808 (void *)tcp_saveipgen, &tcp_savetcp, 0); 1809 #endif 1810 /* 1811 * Automatic sizing of receive socket buffer. Often the send 1812 * buffer size is not optimally adjusted to the actual network 1813 * conditions at hand (delay bandwidth product). Setting the 1814 * buffer size too small limits throughput on links with high 1815 * bandwidth and high delay (eg. trans-continental/oceanic links). 1816 * 1817 * On the receive side the socket buffer memory is only rarely 1818 * used to any significant extent. This allows us to be much 1819 * more aggressive in scaling the receive socket buffer. For 1820 * the case that the buffer space is actually used to a large 1821 * extent and we run out of kernel memory we can simply drop 1822 * the new segments; TCP on the sender will just retransmit it 1823 * later. Setting the buffer size too big may only consume too 1824 * much kernel memory if the application doesn't read() from 1825 * the socket or packet loss or reordering makes use of the 1826 * reassembly queue. 1827 * 1828 * The criteria to step up the receive buffer one notch are: 1829 * 1. the number of bytes received during the time it takes 1830 * one timestamp to be reflected back to us (the RTT); 1831 * 2. received bytes per RTT is within seven eighth of the 1832 * current socket buffer size; 1833 * 3. receive buffer size has not hit maximal automatic size; 1834 * 1835 * This algorithm does one step per RTT at most and only if 1836 * we receive a bulk stream w/o packet losses or reorderings. 1837 * Shrinking the buffer during idle times is not necessary as 1838 * it doesn't consume any memory when idle. 1839 * 1840 * TODO: Only step up if the application is actually serving 1841 * the buffer to better manage the socket buffer resources. 1842 */ 1843 if (V_tcp_do_autorcvbuf && 1844 to.to_tsecr && 1845 (so->so_rcv.sb_flags & SB_AUTOSIZE)) { 1846 if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) && 1847 to.to_tsecr - tp->rfbuf_ts < hz) { 1848 if (tp->rfbuf_cnt > 1849 (so->so_rcv.sb_hiwat / 8 * 7) && 1850 so->so_rcv.sb_hiwat < 1851 V_tcp_autorcvbuf_max) { 1852 newsize = 1853 min(so->so_rcv.sb_hiwat + 1854 V_tcp_autorcvbuf_inc, 1855 V_tcp_autorcvbuf_max); 1856 } 1857 /* Start over with next RTT. */ 1858 tp->rfbuf_ts = 0; 1859 tp->rfbuf_cnt = 0; 1860 } else 1861 tp->rfbuf_cnt += tlen; /* add up */ 1862 } 1863 1864 /* Add data to socket buffer. */ 1865 SOCKBUF_LOCK(&so->so_rcv); 1866 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1867 m_freem(m); 1868 } else { 1869 /* 1870 * Set new socket buffer size. 1871 * Give up when limit is reached. 1872 */ 1873 if (newsize) 1874 if (!sbreserve_locked(&so->so_rcv, 1875 newsize, so, NULL)) 1876 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1877 m_adj(m, drop_hdrlen); /* delayed header drop */ 1878 sbappendstream_locked(&so->so_rcv, m); 1879 } 1880 /* NB: sorwakeup_locked() does an implicit unlock. */ 1881 sorwakeup_locked(so); 1882 if (DELAY_ACK(tp)) { 1883 tp->t_flags |= TF_DELACK; 1884 } else { 1885 tp->t_flags |= TF_ACKNOW; 1886 tcp_output(tp); 1887 } 1888 goto check_delack; 1889 } 1890 } 1891 1892 /* 1893 * Calculate amount of space in receive window, 1894 * and then do TCP input processing. 1895 * Receive window is amount of space in rcv queue, 1896 * but not less than advertised window. 1897 */ 1898 win = sbspace(&so->so_rcv); 1899 if (win < 0) 1900 win = 0; 1901 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 1902 1903 /* Reset receive buffer auto scaling when not in bulk receive mode. */ 1904 tp->rfbuf_ts = 0; 1905 tp->rfbuf_cnt = 0; 1906 1907 switch (tp->t_state) { 1908 1909 /* 1910 * If the state is SYN_RECEIVED: 1911 * if seg contains an ACK, but not for our SYN/ACK, send a RST. 1912 */ 1913 case TCPS_SYN_RECEIVED: 1914 if ((thflags & TH_ACK) && 1915 (SEQ_LEQ(th->th_ack, tp->snd_una) || 1916 SEQ_GT(th->th_ack, tp->snd_max))) { 1917 rstreason = BANDLIM_RST_OPENPORT; 1918 goto dropwithreset; 1919 } 1920 break; 1921 1922 /* 1923 * If the state is SYN_SENT: 1924 * if seg contains an ACK, but not for our SYN, drop the input. 1925 * if seg contains a RST, then drop the connection. 1926 * if seg does not contain SYN, then drop it. 1927 * Otherwise this is an acceptable SYN segment 1928 * initialize tp->rcv_nxt and tp->irs 1929 * if seg contains ack then advance tp->snd_una 1930 * if seg contains an ECE and ECN support is enabled, the stream 1931 * is ECN capable. 1932 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 1933 * arrange for segment to be acked (eventually) 1934 * continue processing rest of data/controls, beginning with URG 1935 */ 1936 case TCPS_SYN_SENT: 1937 if ((thflags & TH_ACK) && 1938 (SEQ_LEQ(th->th_ack, tp->iss) || 1939 SEQ_GT(th->th_ack, tp->snd_max))) { 1940 rstreason = BANDLIM_UNLIMITED; 1941 goto dropwithreset; 1942 } 1943 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) 1944 tp = tcp_drop(tp, ECONNREFUSED); 1945 if (thflags & TH_RST) 1946 goto drop; 1947 if (!(thflags & TH_SYN)) 1948 goto drop; 1949 1950 tp->irs = th->th_seq; 1951 tcp_rcvseqinit(tp); 1952 if (thflags & TH_ACK) { 1953 TCPSTAT_INC(tcps_connects); 1954 soisconnected(so); 1955 #ifdef MAC 1956 mac_socketpeer_set_from_mbuf(m, so); 1957 #endif 1958 /* Do window scaling on this connection? */ 1959 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 1960 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 1961 tp->rcv_scale = tp->request_r_scale; 1962 } 1963 tp->rcv_adv += imin(tp->rcv_wnd, 1964 TCP_MAXWIN << tp->rcv_scale); 1965 tp->snd_una++; /* SYN is acked */ 1966 /* 1967 * If there's data, delay ACK; if there's also a FIN 1968 * ACKNOW will be turned on later. 1969 */ 1970 if (DELAY_ACK(tp) && tlen != 0) 1971 tcp_timer_activate(tp, TT_DELACK, 1972 tcp_delacktime); 1973 else 1974 tp->t_flags |= TF_ACKNOW; 1975 1976 if ((thflags & TH_ECE) && V_tcp_do_ecn) { 1977 tp->t_flags |= TF_ECN_PERMIT; 1978 TCPSTAT_INC(tcps_ecn_shs); 1979 } 1980 1981 /* 1982 * Received <SYN,ACK> in SYN_SENT[*] state. 1983 * Transitions: 1984 * SYN_SENT --> ESTABLISHED 1985 * SYN_SENT* --> FIN_WAIT_1 1986 */ 1987 tp->t_starttime = ticks; 1988 if (tp->t_flags & TF_NEEDFIN) { 1989 tp->t_state = TCPS_FIN_WAIT_1; 1990 tp->t_flags &= ~TF_NEEDFIN; 1991 thflags &= ~TH_SYN; 1992 } else { 1993 tp->t_state = TCPS_ESTABLISHED; 1994 cc_conn_init(tp); 1995 tcp_timer_activate(tp, TT_KEEP, 1996 TP_KEEPIDLE(tp)); 1997 } 1998 } else { 1999 /* 2000 * Received initial SYN in SYN-SENT[*] state => 2001 * simultaneous open. If segment contains CC option 2002 * and there is a cached CC, apply TAO test. 2003 * If it succeeds, connection is * half-synchronized. 2004 * Otherwise, do 3-way handshake: 2005 * SYN-SENT -> SYN-RECEIVED 2006 * SYN-SENT* -> SYN-RECEIVED* 2007 * If there was no CC option, clear cached CC value. 2008 */ 2009 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 2010 tcp_timer_activate(tp, TT_REXMT, 0); 2011 tp->t_state = TCPS_SYN_RECEIVED; 2012 } 2013 2014 KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: " 2015 "ti_locked %d", __func__, ti_locked)); 2016 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 2017 INP_WLOCK_ASSERT(tp->t_inpcb); 2018 2019 /* 2020 * Advance th->th_seq to correspond to first data byte. 2021 * If data, trim to stay within window, 2022 * dropping FIN if necessary. 2023 */ 2024 th->th_seq++; 2025 if (tlen > tp->rcv_wnd) { 2026 todrop = tlen - tp->rcv_wnd; 2027 m_adj(m, -todrop); 2028 tlen = tp->rcv_wnd; 2029 thflags &= ~TH_FIN; 2030 TCPSTAT_INC(tcps_rcvpackafterwin); 2031 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 2032 } 2033 tp->snd_wl1 = th->th_seq - 1; 2034 tp->rcv_up = th->th_seq; 2035 /* 2036 * Client side of transaction: already sent SYN and data. 2037 * If the remote host used T/TCP to validate the SYN, 2038 * our data will be ACK'd; if so, enter normal data segment 2039 * processing in the middle of step 5, ack processing. 2040 * Otherwise, goto step 6. 2041 */ 2042 if (thflags & TH_ACK) 2043 goto process_ACK; 2044 2045 goto step6; 2046 2047 /* 2048 * If the state is LAST_ACK or CLOSING or TIME_WAIT: 2049 * do normal processing. 2050 * 2051 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. 2052 */ 2053 case TCPS_LAST_ACK: 2054 case TCPS_CLOSING: 2055 break; /* continue normal processing */ 2056 } 2057 2058 /* 2059 * States other than LISTEN or SYN_SENT. 2060 * First check the RST flag and sequence number since reset segments 2061 * are exempt from the timestamp and connection count tests. This 2062 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix 2063 * below which allowed reset segments in half the sequence space 2064 * to fall though and be processed (which gives forged reset 2065 * segments with a random sequence number a 50 percent chance of 2066 * killing a connection). 2067 * Then check timestamp, if present. 2068 * Then check the connection count, if present. 2069 * Then check that at least some bytes of segment are within 2070 * receive window. If segment begins before rcv_nxt, 2071 * drop leading data (and SYN); if nothing left, just ack. 2072 * 2073 * 2074 * If the RST bit is set, check the sequence number to see 2075 * if this is a valid reset segment. 2076 * RFC 793 page 37: 2077 * In all states except SYN-SENT, all reset (RST) segments 2078 * are validated by checking their SEQ-fields. A reset is 2079 * valid if its sequence number is in the window. 2080 * Note: this does not take into account delayed ACKs, so 2081 * we should test against last_ack_sent instead of rcv_nxt. 2082 * The sequence number in the reset segment is normally an 2083 * echo of our outgoing acknowlegement numbers, but some hosts 2084 * send a reset with the sequence number at the rightmost edge 2085 * of our receive window, and we have to handle this case. 2086 * Note 2: Paul Watson's paper "Slipping in the Window" has shown 2087 * that brute force RST attacks are possible. To combat this, 2088 * we use a much stricter check while in the ESTABLISHED state, 2089 * only accepting RSTs where the sequence number is equal to 2090 * last_ack_sent. In all other states (the states in which a 2091 * RST is more likely), the more permissive check is used. 2092 * If we have multiple segments in flight, the initial reset 2093 * segment sequence numbers will be to the left of last_ack_sent, 2094 * but they will eventually catch up. 2095 * In any case, it never made sense to trim reset segments to 2096 * fit the receive window since RFC 1122 says: 2097 * 4.2.2.12 RST Segment: RFC-793 Section 3.4 2098 * 2099 * A TCP SHOULD allow a received RST segment to include data. 2100 * 2101 * DISCUSSION 2102 * It has been suggested that a RST segment could contain 2103 * ASCII text that encoded and explained the cause of the 2104 * RST. No standard has yet been established for such 2105 * data. 2106 * 2107 * If the reset segment passes the sequence number test examine 2108 * the state: 2109 * SYN_RECEIVED STATE: 2110 * If passive open, return to LISTEN state. 2111 * If active open, inform user that connection was refused. 2112 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES: 2113 * Inform user that connection was reset, and close tcb. 2114 * CLOSING, LAST_ACK STATES: 2115 * Close the tcb. 2116 * TIME_WAIT STATE: 2117 * Drop the segment - see Stevens, vol. 2, p. 964 and 2118 * RFC 1337. 2119 */ 2120 if (thflags & TH_RST) { 2121 if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) && 2122 SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { 2123 switch (tp->t_state) { 2124 2125 case TCPS_SYN_RECEIVED: 2126 so->so_error = ECONNREFUSED; 2127 goto close; 2128 2129 case TCPS_ESTABLISHED: 2130 if (V_tcp_insecure_rst == 0 && 2131 !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) && 2132 SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) && 2133 !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) && 2134 SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) { 2135 TCPSTAT_INC(tcps_badrst); 2136 goto drop; 2137 } 2138 /* FALLTHROUGH */ 2139 case TCPS_FIN_WAIT_1: 2140 case TCPS_FIN_WAIT_2: 2141 case TCPS_CLOSE_WAIT: 2142 so->so_error = ECONNRESET; 2143 close: 2144 KASSERT(ti_locked == TI_WLOCKED, 2145 ("tcp_do_segment: TH_RST 1 ti_locked %d", 2146 ti_locked)); 2147 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 2148 2149 tp->t_state = TCPS_CLOSED; 2150 TCPSTAT_INC(tcps_drops); 2151 tp = tcp_close(tp); 2152 break; 2153 2154 case TCPS_CLOSING: 2155 case TCPS_LAST_ACK: 2156 KASSERT(ti_locked == TI_WLOCKED, 2157 ("tcp_do_segment: TH_RST 2 ti_locked %d", 2158 ti_locked)); 2159 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 2160 2161 tp = tcp_close(tp); 2162 break; 2163 } 2164 } 2165 goto drop; 2166 } 2167 2168 /* 2169 * RFC 1323 PAWS: If we have a timestamp reply on this segment 2170 * and it's less than ts_recent, drop it. 2171 */ 2172 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && 2173 TSTMP_LT(to.to_tsval, tp->ts_recent)) { 2174 2175 /* Check to see if ts_recent is over 24 days old. */ 2176 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) { 2177 /* 2178 * Invalidate ts_recent. If this segment updates 2179 * ts_recent, the age will be reset later and ts_recent 2180 * will get a valid value. If it does not, setting 2181 * ts_recent to zero will at least satisfy the 2182 * requirement that zero be placed in the timestamp 2183 * echo reply when ts_recent isn't valid. The 2184 * age isn't reset until we get a valid ts_recent 2185 * because we don't want out-of-order segments to be 2186 * dropped when ts_recent is old. 2187 */ 2188 tp->ts_recent = 0; 2189 } else { 2190 TCPSTAT_INC(tcps_rcvduppack); 2191 TCPSTAT_ADD(tcps_rcvdupbyte, tlen); 2192 TCPSTAT_INC(tcps_pawsdrop); 2193 if (tlen) 2194 goto dropafterack; 2195 goto drop; 2196 } 2197 } 2198 2199 /* 2200 * In the SYN-RECEIVED state, validate that the packet belongs to 2201 * this connection before trimming the data to fit the receive 2202 * window. Check the sequence number versus IRS since we know 2203 * the sequence numbers haven't wrapped. This is a partial fix 2204 * for the "LAND" DoS attack. 2205 */ 2206 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { 2207 rstreason = BANDLIM_RST_OPENPORT; 2208 goto dropwithreset; 2209 } 2210 2211 todrop = tp->rcv_nxt - th->th_seq; 2212 if (todrop > 0) { 2213 /* 2214 * If this is a duplicate SYN for our current connection, 2215 * advance over it and pretend and it's not a SYN. 2216 */ 2217 if (thflags & TH_SYN && th->th_seq == tp->irs) { 2218 thflags &= ~TH_SYN; 2219 th->th_seq++; 2220 if (th->th_urp > 1) 2221 th->th_urp--; 2222 else 2223 thflags &= ~TH_URG; 2224 todrop--; 2225 } 2226 /* 2227 * Following if statement from Stevens, vol. 2, p. 960. 2228 */ 2229 if (todrop > tlen 2230 || (todrop == tlen && (thflags & TH_FIN) == 0)) { 2231 /* 2232 * Any valid FIN must be to the left of the window. 2233 * At this point the FIN must be a duplicate or out 2234 * of sequence; drop it. 2235 */ 2236 thflags &= ~TH_FIN; 2237 2238 /* 2239 * Send an ACK to resynchronize and drop any data. 2240 * But keep on processing for RST or ACK. 2241 */ 2242 tp->t_flags |= TF_ACKNOW; 2243 todrop = tlen; 2244 TCPSTAT_INC(tcps_rcvduppack); 2245 TCPSTAT_ADD(tcps_rcvdupbyte, todrop); 2246 } else { 2247 TCPSTAT_INC(tcps_rcvpartduppack); 2248 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop); 2249 } 2250 drop_hdrlen += todrop; /* drop from the top afterwards */ 2251 th->th_seq += todrop; 2252 tlen -= todrop; 2253 if (th->th_urp > todrop) 2254 th->th_urp -= todrop; 2255 else { 2256 thflags &= ~TH_URG; 2257 th->th_urp = 0; 2258 } 2259 } 2260 2261 /* 2262 * If new data are received on a connection after the 2263 * user processes are gone, then RST the other end. 2264 */ 2265 if ((so->so_state & SS_NOFDREF) && 2266 tp->t_state > TCPS_CLOSE_WAIT && tlen) { 2267 char *s; 2268 2269 KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && " 2270 "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked)); 2271 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 2272 2273 if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) { 2274 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket " 2275 "was closed, sending RST and removing tcpcb\n", 2276 s, __func__, tcpstates[tp->t_state], tlen); 2277 free(s, M_TCPLOG); 2278 } 2279 tp = tcp_close(tp); 2280 TCPSTAT_INC(tcps_rcvafterclose); 2281 rstreason = BANDLIM_UNLIMITED; 2282 goto dropwithreset; 2283 } 2284 2285 /* 2286 * If segment ends after window, drop trailing data 2287 * (and PUSH and FIN); if nothing left, just ACK. 2288 */ 2289 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd); 2290 if (todrop > 0) { 2291 TCPSTAT_INC(tcps_rcvpackafterwin); 2292 if (todrop >= tlen) { 2293 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen); 2294 /* 2295 * If window is closed can only take segments at 2296 * window edge, and have to drop data and PUSH from 2297 * incoming segments. Continue processing, but 2298 * remember to ack. Otherwise, drop segment 2299 * and ack. 2300 */ 2301 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { 2302 tp->t_flags |= TF_ACKNOW; 2303 TCPSTAT_INC(tcps_rcvwinprobe); 2304 } else 2305 goto dropafterack; 2306 } else 2307 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 2308 m_adj(m, -todrop); 2309 tlen -= todrop; 2310 thflags &= ~(TH_PUSH|TH_FIN); 2311 } 2312 2313 /* 2314 * If last ACK falls within this segment's sequence numbers, 2315 * record its timestamp. 2316 * NOTE: 2317 * 1) That the test incorporates suggestions from the latest 2318 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 2319 * 2) That updating only on newer timestamps interferes with 2320 * our earlier PAWS tests, so this check should be solely 2321 * predicated on the sequence space of this segment. 2322 * 3) That we modify the segment boundary check to be 2323 * Last.ACK.Sent <= SEG.SEQ + SEG.Len 2324 * instead of RFC1323's 2325 * Last.ACK.Sent < SEG.SEQ + SEG.Len, 2326 * This modified check allows us to overcome RFC1323's 2327 * limitations as described in Stevens TCP/IP Illustrated 2328 * Vol. 2 p.869. In such cases, we can still calculate the 2329 * RTT correctly when RCV.NXT == Last.ACK.Sent. 2330 */ 2331 if ((to.to_flags & TOF_TS) != 0 && 2332 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 2333 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 2334 ((thflags & (TH_SYN|TH_FIN)) != 0))) { 2335 tp->ts_recent_age = tcp_ts_getticks(); 2336 tp->ts_recent = to.to_tsval; 2337 } 2338 2339 /* 2340 * If a SYN is in the window, then this is an 2341 * error and we send an RST and drop the connection. 2342 */ 2343 if (thflags & TH_SYN) { 2344 KASSERT(ti_locked == TI_WLOCKED, 2345 ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked)); 2346 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 2347 2348 tp = tcp_drop(tp, ECONNRESET); 2349 rstreason = BANDLIM_UNLIMITED; 2350 goto drop; 2351 } 2352 2353 /* 2354 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN 2355 * flag is on (half-synchronized state), then queue data for 2356 * later processing; else drop segment and return. 2357 */ 2358 if ((thflags & TH_ACK) == 0) { 2359 if (tp->t_state == TCPS_SYN_RECEIVED || 2360 (tp->t_flags & TF_NEEDSYN)) 2361 goto step6; 2362 else if (tp->t_flags & TF_ACKNOW) 2363 goto dropafterack; 2364 else 2365 goto drop; 2366 } 2367 2368 /* 2369 * Ack processing. 2370 */ 2371 switch (tp->t_state) { 2372 2373 /* 2374 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter 2375 * ESTABLISHED state and continue processing. 2376 * The ACK was checked above. 2377 */ 2378 case TCPS_SYN_RECEIVED: 2379 2380 TCPSTAT_INC(tcps_connects); 2381 soisconnected(so); 2382 /* Do window scaling? */ 2383 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2384 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2385 tp->rcv_scale = tp->request_r_scale; 2386 tp->snd_wnd = tiwin; 2387 } 2388 /* 2389 * Make transitions: 2390 * SYN-RECEIVED -> ESTABLISHED 2391 * SYN-RECEIVED* -> FIN-WAIT-1 2392 */ 2393 tp->t_starttime = ticks; 2394 if (tp->t_flags & TF_NEEDFIN) { 2395 tp->t_state = TCPS_FIN_WAIT_1; 2396 tp->t_flags &= ~TF_NEEDFIN; 2397 } else { 2398 tp->t_state = TCPS_ESTABLISHED; 2399 cc_conn_init(tp); 2400 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); 2401 } 2402 /* 2403 * If segment contains data or ACK, will call tcp_reass() 2404 * later; if not, do so now to pass queued data to user. 2405 */ 2406 if (tlen == 0 && (thflags & TH_FIN) == 0) 2407 (void) tcp_reass(tp, (struct tcphdr *)0, 0, 2408 (struct mbuf *)0); 2409 tp->snd_wl1 = th->th_seq - 1; 2410 /* FALLTHROUGH */ 2411 2412 /* 2413 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 2414 * ACKs. If the ack is in the range 2415 * tp->snd_una < th->th_ack <= tp->snd_max 2416 * then advance tp->snd_una to th->th_ack and drop 2417 * data from the retransmission queue. If this ACK reflects 2418 * more up to date window information we update our window information. 2419 */ 2420 case TCPS_ESTABLISHED: 2421 case TCPS_FIN_WAIT_1: 2422 case TCPS_FIN_WAIT_2: 2423 case TCPS_CLOSE_WAIT: 2424 case TCPS_CLOSING: 2425 case TCPS_LAST_ACK: 2426 if (SEQ_GT(th->th_ack, tp->snd_max)) { 2427 TCPSTAT_INC(tcps_rcvacktoomuch); 2428 goto dropafterack; 2429 } 2430 if ((tp->t_flags & TF_SACK_PERMIT) && 2431 ((to.to_flags & TOF_SACK) || 2432 !TAILQ_EMPTY(&tp->snd_holes))) 2433 tcp_sack_doack(tp, &to, th->th_ack); 2434 2435 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 2436 hhook_run_tcp_est_in(tp, th, &to); 2437 2438 if (SEQ_LEQ(th->th_ack, tp->snd_una)) { 2439 if (tlen == 0 && tiwin == tp->snd_wnd) { 2440 TCPSTAT_INC(tcps_rcvdupack); 2441 /* 2442 * If we have outstanding data (other than 2443 * a window probe), this is a completely 2444 * duplicate ack (ie, window info didn't 2445 * change), the ack is the biggest we've 2446 * seen and we've seen exactly our rexmt 2447 * threshhold of them, assume a packet 2448 * has been dropped and retransmit it. 2449 * Kludge snd_nxt & the congestion 2450 * window so we send only this one 2451 * packet. 2452 * 2453 * We know we're losing at the current 2454 * window size so do congestion avoidance 2455 * (set ssthresh to half the current window 2456 * and pull our congestion window back to 2457 * the new ssthresh). 2458 * 2459 * Dup acks mean that packets have left the 2460 * network (they're now cached at the receiver) 2461 * so bump cwnd by the amount in the receiver 2462 * to keep a constant cwnd packets in the 2463 * network. 2464 * 2465 * When using TCP ECN, notify the peer that 2466 * we reduced the cwnd. 2467 */ 2468 if (!tcp_timer_active(tp, TT_REXMT) || 2469 th->th_ack != tp->snd_una) 2470 tp->t_dupacks = 0; 2471 else if (++tp->t_dupacks > tcprexmtthresh || 2472 IN_FASTRECOVERY(tp->t_flags)) { 2473 cc_ack_received(tp, th, CC_DUPACK); 2474 if ((tp->t_flags & TF_SACK_PERMIT) && 2475 IN_FASTRECOVERY(tp->t_flags)) { 2476 int awnd; 2477 2478 /* 2479 * Compute the amount of data in flight first. 2480 * We can inject new data into the pipe iff 2481 * we have less than 1/2 the original window's 2482 * worth of data in flight. 2483 */ 2484 awnd = (tp->snd_nxt - tp->snd_fack) + 2485 tp->sackhint.sack_bytes_rexmit; 2486 if (awnd < tp->snd_ssthresh) { 2487 tp->snd_cwnd += tp->t_maxseg; 2488 if (tp->snd_cwnd > tp->snd_ssthresh) 2489 tp->snd_cwnd = tp->snd_ssthresh; 2490 } 2491 } else 2492 tp->snd_cwnd += tp->t_maxseg; 2493 if ((thflags & TH_FIN) && 2494 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) { 2495 /* 2496 * If its a fin we need to process 2497 * it to avoid a race where both 2498 * sides enter FIN-WAIT and send FIN|ACK 2499 * at the same time. 2500 */ 2501 break; 2502 } 2503 (void) tcp_output(tp); 2504 goto drop; 2505 } else if (tp->t_dupacks == tcprexmtthresh) { 2506 tcp_seq onxt = tp->snd_nxt; 2507 2508 /* 2509 * If we're doing sack, check to 2510 * see if we're already in sack 2511 * recovery. If we're not doing sack, 2512 * check to see if we're in newreno 2513 * recovery. 2514 */ 2515 if (tp->t_flags & TF_SACK_PERMIT) { 2516 if (IN_FASTRECOVERY(tp->t_flags)) { 2517 tp->t_dupacks = 0; 2518 break; 2519 } 2520 } else { 2521 if (SEQ_LEQ(th->th_ack, 2522 tp->snd_recover)) { 2523 tp->t_dupacks = 0; 2524 break; 2525 } 2526 } 2527 /* Congestion signal before ack. */ 2528 cc_cong_signal(tp, th, CC_NDUPACK); 2529 cc_ack_received(tp, th, CC_DUPACK); 2530 tcp_timer_activate(tp, TT_REXMT, 0); 2531 tp->t_rtttime = 0; 2532 if (tp->t_flags & TF_SACK_PERMIT) { 2533 TCPSTAT_INC( 2534 tcps_sack_recovery_episode); 2535 tp->sack_newdata = tp->snd_nxt; 2536 tp->snd_cwnd = tp->t_maxseg; 2537 (void) tcp_output(tp); 2538 goto drop; 2539 } 2540 tp->snd_nxt = th->th_ack; 2541 tp->snd_cwnd = tp->t_maxseg; 2542 if ((thflags & TH_FIN) && 2543 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) { 2544 /* 2545 * If its a fin we need to process 2546 * it to avoid a race where both 2547 * sides enter FIN-WAIT and send FIN|ACK 2548 * at the same time. 2549 */ 2550 break; 2551 } 2552 (void) tcp_output(tp); 2553 KASSERT(tp->snd_limited <= 2, 2554 ("%s: tp->snd_limited too big", 2555 __func__)); 2556 tp->snd_cwnd = tp->snd_ssthresh + 2557 tp->t_maxseg * 2558 (tp->t_dupacks - tp->snd_limited); 2559 if (SEQ_GT(onxt, tp->snd_nxt)) 2560 tp->snd_nxt = onxt; 2561 goto drop; 2562 } else if (V_tcp_do_rfc3042) { 2563 cc_ack_received(tp, th, CC_DUPACK); 2564 u_long oldcwnd = tp->snd_cwnd; 2565 tcp_seq oldsndmax = tp->snd_max; 2566 u_int sent; 2567 2568 KASSERT(tp->t_dupacks == 1 || 2569 tp->t_dupacks == 2, 2570 ("%s: dupacks not 1 or 2", 2571 __func__)); 2572 if (tp->t_dupacks == 1) 2573 tp->snd_limited = 0; 2574 tp->snd_cwnd = 2575 (tp->snd_nxt - tp->snd_una) + 2576 (tp->t_dupacks - tp->snd_limited) * 2577 tp->t_maxseg; 2578 if ((thflags & TH_FIN) && 2579 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) { 2580 /* 2581 * If its a fin we need to process 2582 * it to avoid a race where both 2583 * sides enter FIN-WAIT and send FIN|ACK 2584 * at the same time. 2585 */ 2586 break; 2587 } 2588 (void) tcp_output(tp); 2589 sent = tp->snd_max - oldsndmax; 2590 if (sent > tp->t_maxseg) { 2591 KASSERT((tp->t_dupacks == 2 && 2592 tp->snd_limited == 0) || 2593 (sent == tp->t_maxseg + 1 && 2594 tp->t_flags & TF_SENTFIN), 2595 ("%s: sent too much", 2596 __func__)); 2597 tp->snd_limited = 2; 2598 } else if (sent > 0) 2599 ++tp->snd_limited; 2600 tp->snd_cwnd = oldcwnd; 2601 goto drop; 2602 } 2603 } else 2604 tp->t_dupacks = 0; 2605 break; 2606 } 2607 2608 KASSERT(SEQ_GT(th->th_ack, tp->snd_una), 2609 ("%s: th_ack <= snd_una", __func__)); 2610 2611 /* 2612 * If the congestion window was inflated to account 2613 * for the other side's cached packets, retract it. 2614 */ 2615 if (IN_FASTRECOVERY(tp->t_flags)) { 2616 if (SEQ_LT(th->th_ack, tp->snd_recover)) { 2617 if (tp->t_flags & TF_SACK_PERMIT) 2618 tcp_sack_partialack(tp, th); 2619 else 2620 tcp_newreno_partial_ack(tp, th); 2621 } else 2622 cc_post_recovery(tp, th); 2623 } 2624 tp->t_dupacks = 0; 2625 /* 2626 * If we reach this point, ACK is not a duplicate, 2627 * i.e., it ACKs something we sent. 2628 */ 2629 if (tp->t_flags & TF_NEEDSYN) { 2630 /* 2631 * T/TCP: Connection was half-synchronized, and our 2632 * SYN has been ACK'd (so connection is now fully 2633 * synchronized). Go to non-starred state, 2634 * increment snd_una for ACK of SYN, and check if 2635 * we can do window scaling. 2636 */ 2637 tp->t_flags &= ~TF_NEEDSYN; 2638 tp->snd_una++; 2639 /* Do window scaling? */ 2640 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2641 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2642 tp->rcv_scale = tp->request_r_scale; 2643 /* Send window already scaled. */ 2644 } 2645 } 2646 2647 process_ACK: 2648 INP_WLOCK_ASSERT(tp->t_inpcb); 2649 2650 acked = BYTES_THIS_ACK(tp, th); 2651 TCPSTAT_INC(tcps_rcvackpack); 2652 TCPSTAT_ADD(tcps_rcvackbyte, acked); 2653 2654 /* 2655 * If we just performed our first retransmit, and the ACK 2656 * arrives within our recovery window, then it was a mistake 2657 * to do the retransmit in the first place. Recover our 2658 * original cwnd and ssthresh, and proceed to transmit where 2659 * we left off. 2660 */ 2661 if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID && 2662 (int)(ticks - tp->t_badrxtwin) < 0) 2663 cc_cong_signal(tp, th, CC_RTO_ERR); 2664 2665 /* 2666 * If we have a timestamp reply, update smoothed 2667 * round trip time. If no timestamp is present but 2668 * transmit timer is running and timed sequence 2669 * number was acked, update smoothed round trip time. 2670 * Since we now have an rtt measurement, cancel the 2671 * timer backoff (cf., Phil Karn's retransmit alg.). 2672 * Recompute the initial retransmit timer. 2673 * 2674 * Some boxes send broken timestamp replies 2675 * during the SYN+ACK phase, ignore 2676 * timestamps of 0 or we could calculate a 2677 * huge RTT and blow up the retransmit timer. 2678 */ 2679 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) { 2680 u_int t; 2681 2682 t = tcp_ts_getticks() - to.to_tsecr; 2683 if (!tp->t_rttlow || tp->t_rttlow > t) 2684 tp->t_rttlow = t; 2685 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1); 2686 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { 2687 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime) 2688 tp->t_rttlow = ticks - tp->t_rtttime; 2689 tcp_xmit_timer(tp, ticks - tp->t_rtttime); 2690 } 2691 2692 /* 2693 * If all outstanding data is acked, stop retransmit 2694 * timer and remember to restart (more output or persist). 2695 * If there is more data to be acked, restart retransmit 2696 * timer, using current (possibly backed-off) value. 2697 */ 2698 if (th->th_ack == tp->snd_max) { 2699 tcp_timer_activate(tp, TT_REXMT, 0); 2700 needoutput = 1; 2701 } else if (!tcp_timer_active(tp, TT_PERSIST)) 2702 tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); 2703 2704 /* 2705 * If no data (only SYN) was ACK'd, 2706 * skip rest of ACK processing. 2707 */ 2708 if (acked == 0) 2709 goto step6; 2710 2711 /* 2712 * Let the congestion control algorithm update congestion 2713 * control related information. This typically means increasing 2714 * the congestion window. 2715 */ 2716 cc_ack_received(tp, th, CC_ACK); 2717 2718 SOCKBUF_LOCK(&so->so_snd); 2719 if (acked > so->so_snd.sb_cc) { 2720 tp->snd_wnd -= so->so_snd.sb_cc; 2721 sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc); 2722 ourfinisacked = 1; 2723 } else { 2724 sbdrop_locked(&so->so_snd, acked); 2725 tp->snd_wnd -= acked; 2726 ourfinisacked = 0; 2727 } 2728 /* NB: sowwakeup_locked() does an implicit unlock. */ 2729 sowwakeup_locked(so); 2730 /* Detect una wraparound. */ 2731 if (!IN_RECOVERY(tp->t_flags) && 2732 SEQ_GT(tp->snd_una, tp->snd_recover) && 2733 SEQ_LEQ(th->th_ack, tp->snd_recover)) 2734 tp->snd_recover = th->th_ack - 1; 2735 /* XXXLAS: Can this be moved up into cc_post_recovery? */ 2736 if (IN_RECOVERY(tp->t_flags) && 2737 SEQ_GEQ(th->th_ack, tp->snd_recover)) { 2738 EXIT_RECOVERY(tp->t_flags); 2739 } 2740 tp->snd_una = th->th_ack; 2741 if (tp->t_flags & TF_SACK_PERMIT) { 2742 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 2743 tp->snd_recover = tp->snd_una; 2744 } 2745 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 2746 tp->snd_nxt = tp->snd_una; 2747 2748 switch (tp->t_state) { 2749 2750 /* 2751 * In FIN_WAIT_1 STATE in addition to the processing 2752 * for the ESTABLISHED state if our FIN is now acknowledged 2753 * then enter FIN_WAIT_2. 2754 */ 2755 case TCPS_FIN_WAIT_1: 2756 if (ourfinisacked) { 2757 /* 2758 * If we can't receive any more 2759 * data, then closing user can proceed. 2760 * Starting the timer is contrary to the 2761 * specification, but if we don't get a FIN 2762 * we'll hang forever. 2763 * 2764 * XXXjl: 2765 * we should release the tp also, and use a 2766 * compressed state. 2767 */ 2768 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2769 soisdisconnected(so); 2770 tcp_timer_activate(tp, TT_2MSL, 2771 (tcp_fast_finwait2_recycle ? 2772 tcp_finwait2_timeout : 2773 TP_MAXIDLE(tp))); 2774 } 2775 tp->t_state = TCPS_FIN_WAIT_2; 2776 } 2777 break; 2778 2779 /* 2780 * In CLOSING STATE in addition to the processing for 2781 * the ESTABLISHED state if the ACK acknowledges our FIN 2782 * then enter the TIME-WAIT state, otherwise ignore 2783 * the segment. 2784 */ 2785 case TCPS_CLOSING: 2786 if (ourfinisacked) { 2787 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 2788 tcp_twstart(tp); 2789 INP_INFO_WUNLOCK(&V_tcbinfo); 2790 m_freem(m); 2791 return; 2792 } 2793 break; 2794 2795 /* 2796 * In LAST_ACK, we may still be waiting for data to drain 2797 * and/or to be acked, as well as for the ack of our FIN. 2798 * If our FIN is now acknowledged, delete the TCB, 2799 * enter the closed state and return. 2800 */ 2801 case TCPS_LAST_ACK: 2802 if (ourfinisacked) { 2803 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 2804 tp = tcp_close(tp); 2805 goto drop; 2806 } 2807 break; 2808 } 2809 } 2810 2811 step6: 2812 INP_WLOCK_ASSERT(tp->t_inpcb); 2813 2814 /* 2815 * Update window information. 2816 * Don't look at window if no ACK: TAC's send garbage on first SYN. 2817 */ 2818 if ((thflags & TH_ACK) && 2819 (SEQ_LT(tp->snd_wl1, th->th_seq) || 2820 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 2821 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 2822 /* keep track of pure window updates */ 2823 if (tlen == 0 && 2824 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 2825 TCPSTAT_INC(tcps_rcvwinupd); 2826 tp->snd_wnd = tiwin; 2827 tp->snd_wl1 = th->th_seq; 2828 tp->snd_wl2 = th->th_ack; 2829 if (tp->snd_wnd > tp->max_sndwnd) 2830 tp->max_sndwnd = tp->snd_wnd; 2831 needoutput = 1; 2832 } 2833 2834 /* 2835 * Process segments with URG. 2836 */ 2837 if ((thflags & TH_URG) && th->th_urp && 2838 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2839 /* 2840 * This is a kludge, but if we receive and accept 2841 * random urgent pointers, we'll crash in 2842 * soreceive. It's hard to imagine someone 2843 * actually wanting to send this much urgent data. 2844 */ 2845 SOCKBUF_LOCK(&so->so_rcv); 2846 if (th->th_urp + so->so_rcv.sb_cc > sb_max) { 2847 th->th_urp = 0; /* XXX */ 2848 thflags &= ~TH_URG; /* XXX */ 2849 SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */ 2850 goto dodata; /* XXX */ 2851 } 2852 /* 2853 * If this segment advances the known urgent pointer, 2854 * then mark the data stream. This should not happen 2855 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 2856 * a FIN has been received from the remote side. 2857 * In these states we ignore the URG. 2858 * 2859 * According to RFC961 (Assigned Protocols), 2860 * the urgent pointer points to the last octet 2861 * of urgent data. We continue, however, 2862 * to consider it to indicate the first octet 2863 * of data past the urgent section as the original 2864 * spec states (in one of two places). 2865 */ 2866 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { 2867 tp->rcv_up = th->th_seq + th->th_urp; 2868 so->so_oobmark = so->so_rcv.sb_cc + 2869 (tp->rcv_up - tp->rcv_nxt) - 1; 2870 if (so->so_oobmark == 0) 2871 so->so_rcv.sb_state |= SBS_RCVATMARK; 2872 sohasoutofband(so); 2873 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 2874 } 2875 SOCKBUF_UNLOCK(&so->so_rcv); 2876 /* 2877 * Remove out of band data so doesn't get presented to user. 2878 * This can happen independent of advancing the URG pointer, 2879 * but if two URG's are pending at once, some out-of-band 2880 * data may creep in... ick. 2881 */ 2882 if (th->th_urp <= (u_long)tlen && 2883 !(so->so_options & SO_OOBINLINE)) { 2884 /* hdr drop is delayed */ 2885 tcp_pulloutofband(so, th, m, drop_hdrlen); 2886 } 2887 } else { 2888 /* 2889 * If no out of band data is expected, 2890 * pull receive urgent pointer along 2891 * with the receive window. 2892 */ 2893 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 2894 tp->rcv_up = tp->rcv_nxt; 2895 } 2896 dodata: /* XXX */ 2897 INP_WLOCK_ASSERT(tp->t_inpcb); 2898 2899 /* 2900 * Process the segment text, merging it into the TCP sequencing queue, 2901 * and arranging for acknowledgment of receipt if necessary. 2902 * This process logically involves adjusting tp->rcv_wnd as data 2903 * is presented to the user (this happens in tcp_usrreq.c, 2904 * case PRU_RCVD). If a FIN has already been received on this 2905 * connection then we just ignore the text. 2906 */ 2907 if ((tlen || (thflags & TH_FIN)) && 2908 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2909 tcp_seq save_start = th->th_seq; 2910 m_adj(m, drop_hdrlen); /* delayed header drop */ 2911 /* 2912 * Insert segment which includes th into TCP reassembly queue 2913 * with control block tp. Set thflags to whether reassembly now 2914 * includes a segment with FIN. This handles the common case 2915 * inline (segment is the next to be received on an established 2916 * connection, and the queue is empty), avoiding linkage into 2917 * and removal from the queue and repetition of various 2918 * conversions. 2919 * Set DELACK for segments received in order, but ack 2920 * immediately when segments are out of order (so 2921 * fast retransmit can work). 2922 */ 2923 if (th->th_seq == tp->rcv_nxt && 2924 LIST_EMPTY(&tp->t_segq) && 2925 TCPS_HAVEESTABLISHED(tp->t_state)) { 2926 if (DELAY_ACK(tp)) 2927 tp->t_flags |= TF_DELACK; 2928 else 2929 tp->t_flags |= TF_ACKNOW; 2930 tp->rcv_nxt += tlen; 2931 thflags = th->th_flags & TH_FIN; 2932 TCPSTAT_INC(tcps_rcvpack); 2933 TCPSTAT_ADD(tcps_rcvbyte, tlen); 2934 ND6_HINT(tp); 2935 SOCKBUF_LOCK(&so->so_rcv); 2936 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 2937 m_freem(m); 2938 else 2939 sbappendstream_locked(&so->so_rcv, m); 2940 /* NB: sorwakeup_locked() does an implicit unlock. */ 2941 sorwakeup_locked(so); 2942 } else { 2943 /* 2944 * XXX: Due to the header drop above "th" is 2945 * theoretically invalid by now. Fortunately 2946 * m_adj() doesn't actually frees any mbufs 2947 * when trimming from the head. 2948 */ 2949 thflags = tcp_reass(tp, th, &tlen, m); 2950 tp->t_flags |= TF_ACKNOW; 2951 } 2952 if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT)) 2953 tcp_update_sack_list(tp, save_start, save_start + tlen); 2954 #if 0 2955 /* 2956 * Note the amount of data that peer has sent into 2957 * our window, in order to estimate the sender's 2958 * buffer size. 2959 * XXX: Unused. 2960 */ 2961 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) 2962 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 2963 else 2964 len = so->so_rcv.sb_hiwat; 2965 #endif 2966 } else { 2967 m_freem(m); 2968 thflags &= ~TH_FIN; 2969 } 2970 2971 /* 2972 * If FIN is received ACK the FIN and let the user know 2973 * that the connection is closing. 2974 */ 2975 if (thflags & TH_FIN) { 2976 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2977 socantrcvmore(so); 2978 /* 2979 * If connection is half-synchronized 2980 * (ie NEEDSYN flag on) then delay ACK, 2981 * so it may be piggybacked when SYN is sent. 2982 * Otherwise, since we received a FIN then no 2983 * more input can be expected, send ACK now. 2984 */ 2985 if (tp->t_flags & TF_NEEDSYN) 2986 tp->t_flags |= TF_DELACK; 2987 else 2988 tp->t_flags |= TF_ACKNOW; 2989 tp->rcv_nxt++; 2990 } 2991 switch (tp->t_state) { 2992 2993 /* 2994 * In SYN_RECEIVED and ESTABLISHED STATES 2995 * enter the CLOSE_WAIT state. 2996 */ 2997 case TCPS_SYN_RECEIVED: 2998 tp->t_starttime = ticks; 2999 /* FALLTHROUGH */ 3000 case TCPS_ESTABLISHED: 3001 tp->t_state = TCPS_CLOSE_WAIT; 3002 break; 3003 3004 /* 3005 * If still in FIN_WAIT_1 STATE FIN has not been acked so 3006 * enter the CLOSING state. 3007 */ 3008 case TCPS_FIN_WAIT_1: 3009 tp->t_state = TCPS_CLOSING; 3010 break; 3011 3012 /* 3013 * In FIN_WAIT_2 state enter the TIME_WAIT state, 3014 * starting the time-wait timer, turning off the other 3015 * standard timers. 3016 */ 3017 case TCPS_FIN_WAIT_2: 3018 INP_INFO_WLOCK_ASSERT(&V_tcbinfo); 3019 KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata " 3020 "TCP_FIN_WAIT_2 ti_locked: %d", __func__, 3021 ti_locked)); 3022 3023 tcp_twstart(tp); 3024 INP_INFO_WUNLOCK(&V_tcbinfo); 3025 return; 3026 } 3027 } 3028 if (ti_locked == TI_WLOCKED) 3029 INP_INFO_WUNLOCK(&V_tcbinfo); 3030 ti_locked = TI_UNLOCKED; 3031 3032 #ifdef TCPDEBUG 3033 if (so->so_options & SO_DEBUG) 3034 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, 3035 &tcp_savetcp, 0); 3036 #endif 3037 3038 /* 3039 * Return any desired output. 3040 */ 3041 if (needoutput || (tp->t_flags & TF_ACKNOW)) 3042 (void) tcp_output(tp); 3043 3044 check_delack: 3045 KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d", 3046 __func__, ti_locked)); 3047 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 3048 INP_WLOCK_ASSERT(tp->t_inpcb); 3049 3050 if (tp->t_flags & TF_DELACK) { 3051 tp->t_flags &= ~TF_DELACK; 3052 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); 3053 } 3054 INP_WUNLOCK(tp->t_inpcb); 3055 return; 3056 3057 dropafterack: 3058 /* 3059 * Generate an ACK dropping incoming segment if it occupies 3060 * sequence space, where the ACK reflects our state. 3061 * 3062 * We can now skip the test for the RST flag since all 3063 * paths to this code happen after packets containing 3064 * RST have been dropped. 3065 * 3066 * In the SYN-RECEIVED state, don't send an ACK unless the 3067 * segment we received passes the SYN-RECEIVED ACK test. 3068 * If it fails send a RST. This breaks the loop in the 3069 * "LAND" DoS attack, and also prevents an ACK storm 3070 * between two listening ports that have been sent forged 3071 * SYN segments, each with the source address of the other. 3072 */ 3073 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && 3074 (SEQ_GT(tp->snd_una, th->th_ack) || 3075 SEQ_GT(th->th_ack, tp->snd_max)) ) { 3076 rstreason = BANDLIM_RST_OPENPORT; 3077 goto dropwithreset; 3078 } 3079 #ifdef TCPDEBUG 3080 if (so->so_options & SO_DEBUG) 3081 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 3082 &tcp_savetcp, 0); 3083 #endif 3084 if (ti_locked == TI_WLOCKED) 3085 INP_INFO_WUNLOCK(&V_tcbinfo); 3086 ti_locked = TI_UNLOCKED; 3087 3088 tp->t_flags |= TF_ACKNOW; 3089 (void) tcp_output(tp); 3090 INP_WUNLOCK(tp->t_inpcb); 3091 m_freem(m); 3092 return; 3093 3094 dropwithreset: 3095 if (ti_locked == TI_WLOCKED) 3096 INP_INFO_WUNLOCK(&V_tcbinfo); 3097 ti_locked = TI_UNLOCKED; 3098 3099 if (tp != NULL) { 3100 tcp_dropwithreset(m, th, tp, tlen, rstreason); 3101 INP_WUNLOCK(tp->t_inpcb); 3102 } else 3103 tcp_dropwithreset(m, th, NULL, tlen, rstreason); 3104 return; 3105 3106 drop: 3107 if (ti_locked == TI_WLOCKED) { 3108 INP_INFO_WUNLOCK(&V_tcbinfo); 3109 ti_locked = TI_UNLOCKED; 3110 } 3111 #ifdef INVARIANTS 3112 else 3113 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 3114 #endif 3115 3116 /* 3117 * Drop space held by incoming segment and return. 3118 */ 3119 #ifdef TCPDEBUG 3120 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 3121 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 3122 &tcp_savetcp, 0); 3123 #endif 3124 if (tp != NULL) 3125 INP_WUNLOCK(tp->t_inpcb); 3126 m_freem(m); 3127 } 3128 3129 /* 3130 * Issue RST and make ACK acceptable to originator of segment. 3131 * The mbuf must still include the original packet header. 3132 * tp may be NULL. 3133 */ 3134 static void 3135 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, 3136 int tlen, int rstreason) 3137 { 3138 #ifdef INET 3139 struct ip *ip; 3140 #endif 3141 #ifdef INET6 3142 struct ip6_hdr *ip6; 3143 #endif 3144 3145 if (tp != NULL) { 3146 INP_WLOCK_ASSERT(tp->t_inpcb); 3147 } 3148 3149 /* Don't bother if destination was broadcast/multicast. */ 3150 if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) 3151 goto drop; 3152 #ifdef INET6 3153 if (mtod(m, struct ip *)->ip_v == 6) { 3154 ip6 = mtod(m, struct ip6_hdr *); 3155 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 3156 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 3157 goto drop; 3158 /* IPv6 anycast check is done at tcp6_input() */ 3159 } 3160 #endif 3161 #if defined(INET) && defined(INET6) 3162 else 3163 #endif 3164 #ifdef INET 3165 { 3166 ip = mtod(m, struct ip *); 3167 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 3168 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 3169 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 3170 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 3171 goto drop; 3172 } 3173 #endif 3174 3175 /* Perform bandwidth limiting. */ 3176 if (badport_bandlim(rstreason) < 0) 3177 goto drop; 3178 3179 /* tcp_respond consumes the mbuf chain. */ 3180 if (th->th_flags & TH_ACK) { 3181 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, 3182 th->th_ack, TH_RST); 3183 } else { 3184 if (th->th_flags & TH_SYN) 3185 tlen++; 3186 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, 3187 (tcp_seq)0, TH_RST|TH_ACK); 3188 } 3189 return; 3190 drop: 3191 m_freem(m); 3192 } 3193 3194 /* 3195 * Parse TCP options and place in tcpopt. 3196 */ 3197 static void 3198 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags) 3199 { 3200 int opt, optlen; 3201 3202 to->to_flags = 0; 3203 for (; cnt > 0; cnt -= optlen, cp += optlen) { 3204 opt = cp[0]; 3205 if (opt == TCPOPT_EOL) 3206 break; 3207 if (opt == TCPOPT_NOP) 3208 optlen = 1; 3209 else { 3210 if (cnt < 2) 3211 break; 3212 optlen = cp[1]; 3213 if (optlen < 2 || optlen > cnt) 3214 break; 3215 } 3216 switch (opt) { 3217 case TCPOPT_MAXSEG: 3218 if (optlen != TCPOLEN_MAXSEG) 3219 continue; 3220 if (!(flags & TO_SYN)) 3221 continue; 3222 to->to_flags |= TOF_MSS; 3223 bcopy((char *)cp + 2, 3224 (char *)&to->to_mss, sizeof(to->to_mss)); 3225 to->to_mss = ntohs(to->to_mss); 3226 break; 3227 case TCPOPT_WINDOW: 3228 if (optlen != TCPOLEN_WINDOW) 3229 continue; 3230 if (!(flags & TO_SYN)) 3231 continue; 3232 to->to_flags |= TOF_SCALE; 3233 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT); 3234 break; 3235 case TCPOPT_TIMESTAMP: 3236 if (optlen != TCPOLEN_TIMESTAMP) 3237 continue; 3238 to->to_flags |= TOF_TS; 3239 bcopy((char *)cp + 2, 3240 (char *)&to->to_tsval, sizeof(to->to_tsval)); 3241 to->to_tsval = ntohl(to->to_tsval); 3242 bcopy((char *)cp + 6, 3243 (char *)&to->to_tsecr, sizeof(to->to_tsecr)); 3244 to->to_tsecr = ntohl(to->to_tsecr); 3245 break; 3246 #ifdef TCP_SIGNATURE 3247 /* 3248 * XXX In order to reply to a host which has set the 3249 * TCP_SIGNATURE option in its initial SYN, we have to 3250 * record the fact that the option was observed here 3251 * for the syncache code to perform the correct response. 3252 */ 3253 case TCPOPT_SIGNATURE: 3254 if (optlen != TCPOLEN_SIGNATURE) 3255 continue; 3256 to->to_flags |= TOF_SIGNATURE; 3257 to->to_signature = cp + 2; 3258 break; 3259 #endif 3260 case TCPOPT_SACK_PERMITTED: 3261 if (optlen != TCPOLEN_SACK_PERMITTED) 3262 continue; 3263 if (!(flags & TO_SYN)) 3264 continue; 3265 if (!V_tcp_do_sack) 3266 continue; 3267 to->to_flags |= TOF_SACKPERM; 3268 break; 3269 case TCPOPT_SACK: 3270 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) 3271 continue; 3272 if (flags & TO_SYN) 3273 continue; 3274 to->to_flags |= TOF_SACK; 3275 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; 3276 to->to_sacks = cp + 2; 3277 TCPSTAT_INC(tcps_sack_rcv_blocks); 3278 break; 3279 default: 3280 continue; 3281 } 3282 } 3283 } 3284 3285 /* 3286 * Pull out of band byte out of a segment so 3287 * it doesn't appear in the user's data queue. 3288 * It is still reflected in the segment length for 3289 * sequencing purposes. 3290 */ 3291 static void 3292 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, 3293 int off) 3294 { 3295 int cnt = off + th->th_urp - 1; 3296 3297 while (cnt >= 0) { 3298 if (m->m_len > cnt) { 3299 char *cp = mtod(m, caddr_t) + cnt; 3300 struct tcpcb *tp = sototcpcb(so); 3301 3302 INP_WLOCK_ASSERT(tp->t_inpcb); 3303 3304 tp->t_iobc = *cp; 3305 tp->t_oobflags |= TCPOOB_HAVEDATA; 3306 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 3307 m->m_len--; 3308 if (m->m_flags & M_PKTHDR) 3309 m->m_pkthdr.len--; 3310 return; 3311 } 3312 cnt -= m->m_len; 3313 m = m->m_next; 3314 if (m == NULL) 3315 break; 3316 } 3317 panic("tcp_pulloutofband"); 3318 } 3319 3320 /* 3321 * Collect new round-trip time estimate 3322 * and update averages and current timeout. 3323 */ 3324 static void 3325 tcp_xmit_timer(struct tcpcb *tp, int rtt) 3326 { 3327 int delta; 3328 3329 INP_WLOCK_ASSERT(tp->t_inpcb); 3330 3331 TCPSTAT_INC(tcps_rttupdated); 3332 tp->t_rttupdated++; 3333 if (tp->t_srtt != 0) { 3334 /* 3335 * srtt is stored as fixed point with 5 bits after the 3336 * binary point (i.e., scaled by 8). The following magic 3337 * is equivalent to the smoothing algorithm in rfc793 with 3338 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 3339 * point). Adjust rtt to origin 0. 3340 */ 3341 delta = ((rtt - 1) << TCP_DELTA_SHIFT) 3342 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); 3343 3344 if ((tp->t_srtt += delta) <= 0) 3345 tp->t_srtt = 1; 3346 3347 /* 3348 * We accumulate a smoothed rtt variance (actually, a 3349 * smoothed mean difference), then set the retransmit 3350 * timer to smoothed rtt + 4 times the smoothed variance. 3351 * rttvar is stored as fixed point with 4 bits after the 3352 * binary point (scaled by 16). The following is 3353 * equivalent to rfc793 smoothing with an alpha of .75 3354 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 3355 * rfc793's wired-in beta. 3356 */ 3357 if (delta < 0) 3358 delta = -delta; 3359 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); 3360 if ((tp->t_rttvar += delta) <= 0) 3361 tp->t_rttvar = 1; 3362 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) 3363 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 3364 } else { 3365 /* 3366 * No rtt measurement yet - use the unsmoothed rtt. 3367 * Set the variance to half the rtt (so our first 3368 * retransmit happens at 3*rtt). 3369 */ 3370 tp->t_srtt = rtt << TCP_RTT_SHIFT; 3371 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); 3372 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 3373 } 3374 tp->t_rtttime = 0; 3375 tp->t_rxtshift = 0; 3376 3377 /* 3378 * the retransmit should happen at rtt + 4 * rttvar. 3379 * Because of the way we do the smoothing, srtt and rttvar 3380 * will each average +1/2 tick of bias. When we compute 3381 * the retransmit timer, we want 1/2 tick of rounding and 3382 * 1 extra tick because of +-1/2 tick uncertainty in the 3383 * firing of the timer. The bias will give us exactly the 3384 * 1.5 tick we need. But, because the bias is 3385 * statistical, we have to test that we don't drop below 3386 * the minimum feasible timer (which is 2 ticks). 3387 */ 3388 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 3389 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); 3390 3391 /* 3392 * We received an ack for a packet that wasn't retransmitted; 3393 * it is probably safe to discard any error indications we've 3394 * received recently. This isn't quite right, but close enough 3395 * for now (a route might have failed after we sent a segment, 3396 * and the return path might not be symmetrical). 3397 */ 3398 tp->t_softerror = 0; 3399 } 3400 3401 /* 3402 * Determine a reasonable value for maxseg size. 3403 * If the route is known, check route for mtu. 3404 * If none, use an mss that can be handled on the outgoing interface 3405 * without forcing IP to fragment. If no route is found, route has no mtu, 3406 * or the destination isn't local, use a default, hopefully conservative 3407 * size (usually 512 or the default IP max size, but no more than the mtu 3408 * of the interface), as we can't discover anything about intervening 3409 * gateways or networks. We also initialize the congestion/slow start 3410 * window to be a single segment if the destination isn't local. 3411 * While looking at the routing entry, we also initialize other path-dependent 3412 * parameters from pre-set or cached values in the routing entry. 3413 * 3414 * Also take into account the space needed for options that we 3415 * send regularly. Make maxseg shorter by that amount to assure 3416 * that we can send maxseg amount of data even when the options 3417 * are present. Store the upper limit of the length of options plus 3418 * data in maxopd. 3419 * 3420 * NOTE that this routine is only called when we process an incoming 3421 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS 3422 * settings are handled in tcp_mssopt(). 3423 */ 3424 void 3425 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer, 3426 struct hc_metrics_lite *metricptr, int *mtuflags) 3427 { 3428 int mss = 0; 3429 u_long maxmtu = 0; 3430 struct inpcb *inp = tp->t_inpcb; 3431 struct hc_metrics_lite metrics; 3432 int origoffer; 3433 #ifdef INET6 3434 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; 3435 size_t min_protoh = isipv6 ? 3436 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : 3437 sizeof (struct tcpiphdr); 3438 #else 3439 const size_t min_protoh = sizeof(struct tcpiphdr); 3440 #endif 3441 3442 INP_WLOCK_ASSERT(tp->t_inpcb); 3443 3444 if (mtuoffer != -1) { 3445 KASSERT(offer == -1, ("%s: conflict", __func__)); 3446 offer = mtuoffer - min_protoh; 3447 } 3448 origoffer = offer; 3449 3450 /* Initialize. */ 3451 #ifdef INET6 3452 if (isipv6) { 3453 maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags); 3454 tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt; 3455 } 3456 #endif 3457 #if defined(INET) && defined(INET6) 3458 else 3459 #endif 3460 #ifdef INET 3461 { 3462 maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags); 3463 tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt; 3464 } 3465 #endif 3466 3467 /* 3468 * No route to sender, stay with default mss and return. 3469 */ 3470 if (maxmtu == 0) { 3471 /* 3472 * In case we return early we need to initialize metrics 3473 * to a defined state as tcp_hc_get() would do for us 3474 * if there was no cache hit. 3475 */ 3476 if (metricptr != NULL) 3477 bzero(metricptr, sizeof(struct hc_metrics_lite)); 3478 return; 3479 } 3480 3481 /* What have we got? */ 3482 switch (offer) { 3483 case 0: 3484 /* 3485 * Offer == 0 means that there was no MSS on the SYN 3486 * segment, in this case we use tcp_mssdflt as 3487 * already assigned to t_maxopd above. 3488 */ 3489 offer = tp->t_maxopd; 3490 break; 3491 3492 case -1: 3493 /* 3494 * Offer == -1 means that we didn't receive SYN yet. 3495 */ 3496 /* FALLTHROUGH */ 3497 3498 default: 3499 /* 3500 * Prevent DoS attack with too small MSS. Round up 3501 * to at least minmss. 3502 */ 3503 offer = max(offer, V_tcp_minmss); 3504 } 3505 3506 /* 3507 * rmx information is now retrieved from tcp_hostcache. 3508 */ 3509 tcp_hc_get(&inp->inp_inc, &metrics); 3510 if (metricptr != NULL) 3511 bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite)); 3512 3513 /* 3514 * If there's a discovered mtu int tcp hostcache, use it 3515 * else, use the link mtu. 3516 */ 3517 if (metrics.rmx_mtu) 3518 mss = min(metrics.rmx_mtu, maxmtu) - min_protoh; 3519 else { 3520 #ifdef INET6 3521 if (isipv6) { 3522 mss = maxmtu - min_protoh; 3523 if (!V_path_mtu_discovery && 3524 !in6_localaddr(&inp->in6p_faddr)) 3525 mss = min(mss, V_tcp_v6mssdflt); 3526 } 3527 #endif 3528 #if defined(INET) && defined(INET6) 3529 else 3530 #endif 3531 #ifdef INET 3532 { 3533 mss = maxmtu - min_protoh; 3534 if (!V_path_mtu_discovery && 3535 !in_localaddr(inp->inp_faddr)) 3536 mss = min(mss, V_tcp_mssdflt); 3537 } 3538 #endif 3539 /* 3540 * XXX - The above conditional (mss = maxmtu - min_protoh) 3541 * probably violates the TCP spec. 3542 * The problem is that, since we don't know the 3543 * other end's MSS, we are supposed to use a conservative 3544 * default. But, if we do that, then MTU discovery will 3545 * never actually take place, because the conservative 3546 * default is much less than the MTUs typically seen 3547 * on the Internet today. For the moment, we'll sweep 3548 * this under the carpet. 3549 * 3550 * The conservative default might not actually be a problem 3551 * if the only case this occurs is when sending an initial 3552 * SYN with options and data to a host we've never talked 3553 * to before. Then, they will reply with an MSS value which 3554 * will get recorded and the new parameters should get 3555 * recomputed. For Further Study. 3556 */ 3557 } 3558 mss = min(mss, offer); 3559 3560 /* 3561 * Sanity check: make sure that maxopd will be large 3562 * enough to allow some data on segments even if the 3563 * all the option space is used (40bytes). Otherwise 3564 * funny things may happen in tcp_output. 3565 */ 3566 mss = max(mss, 64); 3567 3568 /* 3569 * maxopd stores the maximum length of data AND options 3570 * in a segment; maxseg is the amount of data in a normal 3571 * segment. We need to store this value (maxopd) apart 3572 * from maxseg, because now every segment carries options 3573 * and thus we normally have somewhat less data in segments. 3574 */ 3575 tp->t_maxopd = mss; 3576 3577 /* 3578 * origoffer==-1 indicates that no segments were received yet. 3579 * In this case we just guess. 3580 */ 3581 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 3582 (origoffer == -1 || 3583 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) 3584 mss -= TCPOLEN_TSTAMP_APPA; 3585 3586 tp->t_maxseg = mss; 3587 } 3588 3589 void 3590 tcp_mss(struct tcpcb *tp, int offer) 3591 { 3592 int mss; 3593 u_long bufsize; 3594 struct inpcb *inp; 3595 struct socket *so; 3596 struct hc_metrics_lite metrics; 3597 int mtuflags = 0; 3598 3599 KASSERT(tp != NULL, ("%s: tp == NULL", __func__)); 3600 3601 tcp_mss_update(tp, offer, -1, &metrics, &mtuflags); 3602 3603 mss = tp->t_maxseg; 3604 inp = tp->t_inpcb; 3605 3606 /* 3607 * If there's a pipesize, change the socket buffer to that size, 3608 * don't change if sb_hiwat is different than default (then it 3609 * has been changed on purpose with setsockopt). 3610 * Make the socket buffers an integral number of mss units; 3611 * if the mss is larger than the socket buffer, decrease the mss. 3612 */ 3613 so = inp->inp_socket; 3614 SOCKBUF_LOCK(&so->so_snd); 3615 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe) 3616 bufsize = metrics.rmx_sendpipe; 3617 else 3618 bufsize = so->so_snd.sb_hiwat; 3619 if (bufsize < mss) 3620 mss = bufsize; 3621 else { 3622 bufsize = roundup(bufsize, mss); 3623 if (bufsize > sb_max) 3624 bufsize = sb_max; 3625 if (bufsize > so->so_snd.sb_hiwat) 3626 (void)sbreserve_locked(&so->so_snd, bufsize, so, NULL); 3627 } 3628 SOCKBUF_UNLOCK(&so->so_snd); 3629 tp->t_maxseg = mss; 3630 3631 SOCKBUF_LOCK(&so->so_rcv); 3632 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe) 3633 bufsize = metrics.rmx_recvpipe; 3634 else 3635 bufsize = so->so_rcv.sb_hiwat; 3636 if (bufsize > mss) { 3637 bufsize = roundup(bufsize, mss); 3638 if (bufsize > sb_max) 3639 bufsize = sb_max; 3640 if (bufsize > so->so_rcv.sb_hiwat) 3641 (void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL); 3642 } 3643 SOCKBUF_UNLOCK(&so->so_rcv); 3644 3645 /* Check the interface for TSO capabilities. */ 3646 if (mtuflags & CSUM_TSO) 3647 tp->t_flags |= TF_TSO; 3648 } 3649 3650 /* 3651 * Determine the MSS option to send on an outgoing SYN. 3652 */ 3653 int 3654 tcp_mssopt(struct in_conninfo *inc) 3655 { 3656 int mss = 0; 3657 u_long maxmtu = 0; 3658 u_long thcmtu = 0; 3659 size_t min_protoh; 3660 3661 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer")); 3662 3663 #ifdef INET6 3664 if (inc->inc_flags & INC_ISIPV6) { 3665 mss = V_tcp_v6mssdflt; 3666 maxmtu = tcp_maxmtu6(inc, NULL); 3667 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 3668 } 3669 #endif 3670 #if defined(INET) && defined(INET6) 3671 else 3672 #endif 3673 #ifdef INET 3674 { 3675 mss = V_tcp_mssdflt; 3676 maxmtu = tcp_maxmtu(inc, NULL); 3677 min_protoh = sizeof(struct tcpiphdr); 3678 } 3679 #endif 3680 #if defined(INET6) || defined(INET) 3681 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */ 3682 #endif 3683 3684 if (maxmtu && thcmtu) 3685 mss = min(maxmtu, thcmtu) - min_protoh; 3686 else if (maxmtu || thcmtu) 3687 mss = max(maxmtu, thcmtu) - min_protoh; 3688 3689 return (mss); 3690 } 3691 3692 3693 /* 3694 * On a partial ack arrives, force the retransmission of the 3695 * next unacknowledged segment. Do not clear tp->t_dupacks. 3696 * By setting snd_nxt to ti_ack, this forces retransmission timer to 3697 * be started again. 3698 */ 3699 static void 3700 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th) 3701 { 3702 tcp_seq onxt = tp->snd_nxt; 3703 u_long ocwnd = tp->snd_cwnd; 3704 3705 INP_WLOCK_ASSERT(tp->t_inpcb); 3706 3707 tcp_timer_activate(tp, TT_REXMT, 0); 3708 tp->t_rtttime = 0; 3709 tp->snd_nxt = th->th_ack; 3710 /* 3711 * Set snd_cwnd to one segment beyond acknowledged offset. 3712 * (tp->snd_una has not yet been updated when this function is called.) 3713 */ 3714 tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th); 3715 tp->t_flags |= TF_ACKNOW; 3716 (void) tcp_output(tp); 3717 tp->snd_cwnd = ocwnd; 3718 if (SEQ_GT(onxt, tp->snd_nxt)) 3719 tp->snd_nxt = onxt; 3720 /* 3721 * Partial window deflation. Relies on fact that tp->snd_una 3722 * not updated yet. 3723 */ 3724 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th)) 3725 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th); 3726 else 3727 tp->snd_cwnd = 0; 3728 tp->snd_cwnd += tp->t_maxseg; 3729 } 3730