1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 2007-2008,2010 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org> 9 * Copyright (c) 2010 The FreeBSD Foundation 10 * Copyright (c) 2010-2011 Juniper Networks, Inc. 11 * All rights reserved. 12 * 13 * Portions of this software were developed at the Centre for Advanced Internet 14 * Architectures, Swinburne University of Technology, by Lawrence Stewart, 15 * James Healy and David Hayes, made possible in part by a grant from the Cisco 16 * University Research Program Fund at Community Foundation Silicon Valley. 17 * 18 * Portions of this software were developed at the Centre for Advanced 19 * Internet Architectures, Swinburne University of Technology, Melbourne, 20 * Australia by David Hayes under sponsorship from the FreeBSD Foundation. 21 * 22 * Portions of this software were developed by Robert N. M. Watson under 23 * contract to Juniper Networks, Inc. 24 * 25 * Redistribution and use in source and binary forms, with or without 26 * modification, are permitted provided that the following conditions 27 * are met: 28 * 1. Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * 2. Redistributions in binary form must reproduce the above copyright 31 * notice, this list of conditions and the following disclaimer in the 32 * documentation and/or other materials provided with the distribution. 33 * 3. Neither the name of the University nor the names of its contributors 34 * may be used to endorse or promote products derived from this software 35 * without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 * 49 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_inet.h" 56 #include "opt_inet6.h" 57 #include "opt_ipsec.h" 58 #include "opt_tcpdebug.h" 59 60 #include <sys/param.h> 61 #include <sys/arb.h> 62 #include <sys/kernel.h> 63 #ifdef TCP_HHOOK 64 #include <sys/hhook.h> 65 #endif 66 #include <sys/malloc.h> 67 #include <sys/mbuf.h> 68 #include <sys/proc.h> /* for proc0 declaration */ 69 #include <sys/protosw.h> 70 #include <sys/qmath.h> 71 #include <sys/sdt.h> 72 #include <sys/signalvar.h> 73 #include <sys/socket.h> 74 #include <sys/socketvar.h> 75 #include <sys/sysctl.h> 76 #include <sys/syslog.h> 77 #include <sys/systm.h> 78 #include <sys/stats.h> 79 80 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */ 81 82 #include <vm/uma.h> 83 84 #include <net/if.h> 85 #include <net/if_var.h> 86 #include <net/route.h> 87 #include <net/vnet.h> 88 89 #define TCPSTATES /* for logging */ 90 91 #include <netinet/in.h> 92 #include <netinet/in_kdtrace.h> 93 #include <netinet/in_pcb.h> 94 #include <netinet/in_systm.h> 95 #include <netinet/ip.h> 96 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 97 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 98 #include <netinet/ip_var.h> 99 #include <netinet/ip_options.h> 100 #include <netinet/ip6.h> 101 #include <netinet/icmp6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet6/nd6.h> 106 #include <netinet/tcp.h> 107 #include <netinet/tcp_fsm.h> 108 #include <netinet/tcp_log_buf.h> 109 #include <netinet/tcp_seq.h> 110 #include <netinet/tcp_timer.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/tcp6_var.h> 113 #include <netinet/tcpip.h> 114 #include <netinet/cc/cc.h> 115 #include <netinet/tcp_fastopen.h> 116 #ifdef TCPPCAP 117 #include <netinet/tcp_pcap.h> 118 #endif 119 #include <netinet/tcp_syncache.h> 120 #ifdef TCPDEBUG 121 #include <netinet/tcp_debug.h> 122 #endif /* TCPDEBUG */ 123 #ifdef TCP_OFFLOAD 124 #include <netinet/tcp_offload.h> 125 #endif 126 #include <netinet/udp.h> 127 128 #include <netipsec/ipsec_support.h> 129 130 #include <machine/in_cksum.h> 131 132 #include <security/mac/mac_framework.h> 133 134 const int tcprexmtthresh = 3; 135 136 VNET_DEFINE(int, tcp_log_in_vain) = 0; 137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 138 &VNET_NAME(tcp_log_in_vain), 0, 139 "Log all incoming TCP segments to closed ports"); 140 141 VNET_DEFINE(int, blackhole) = 0; 142 #define V_blackhole VNET(blackhole) 143 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 144 &VNET_NAME(blackhole), 0, 145 "Do not send RST on segments to closed ports"); 146 147 VNET_DEFINE(int, tcp_delack_enabled) = 1; 148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW, 149 &VNET_NAME(tcp_delack_enabled), 0, 150 "Delay ACK to try and piggyback it onto a data packet"); 151 152 VNET_DEFINE(int, drop_synfin) = 0; 153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW, 154 &VNET_NAME(drop_synfin), 0, 155 "Drop TCP packets with SYN+FIN set"); 156 157 VNET_DEFINE(int, tcp_do_prr_conservative) = 0; 158 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr_conservative, CTLFLAG_VNET | CTLFLAG_RW, 159 &VNET_NAME(tcp_do_prr_conservative), 0, 160 "Do conservative Proportional Rate Reduction"); 161 162 VNET_DEFINE(int, tcp_do_prr) = 1; 163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW, 164 &VNET_NAME(tcp_do_prr), 1, 165 "Enable Proportional Rate Reduction per RFC 6937"); 166 167 VNET_DEFINE(int, tcp_do_lrd) = 0; 168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_lrd, CTLFLAG_VNET | CTLFLAG_RW, 169 &VNET_NAME(tcp_do_lrd), 1, 170 "Perform Lost Retransmission Detection"); 171 172 VNET_DEFINE(int, tcp_do_newcwv) = 0; 173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW, 174 &VNET_NAME(tcp_do_newcwv), 0, 175 "Enable New Congestion Window Validation per RFC7661"); 176 177 VNET_DEFINE(int, tcp_do_rfc3042) = 1; 178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW, 179 &VNET_NAME(tcp_do_rfc3042), 0, 180 "Enable RFC 3042 (Limited Transmit)"); 181 182 VNET_DEFINE(int, tcp_do_rfc3390) = 1; 183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW, 184 &VNET_NAME(tcp_do_rfc3390), 0, 185 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)"); 186 187 VNET_DEFINE(int, tcp_initcwnd_segments) = 10; 188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments, 189 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0, 190 "Slow-start flight size (initial congestion window) in number of segments"); 191 192 VNET_DEFINE(int, tcp_do_rfc3465) = 1; 193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW, 194 &VNET_NAME(tcp_do_rfc3465), 0, 195 "Enable RFC 3465 (Appropriate Byte Counting)"); 196 197 VNET_DEFINE(int, tcp_abc_l_var) = 2; 198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW, 199 &VNET_NAME(tcp_abc_l_var), 2, 200 "Cap the max cwnd increment during slow-start to this number of segments"); 201 202 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, 203 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 204 "TCP ECN"); 205 206 VNET_DEFINE(int, tcp_do_ecn) = 2; 207 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW, 208 &VNET_NAME(tcp_do_ecn), 0, 209 "TCP ECN support"); 210 211 VNET_DEFINE(int, tcp_ecn_maxretries) = 1; 212 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW, 213 &VNET_NAME(tcp_ecn_maxretries), 0, 214 "Max retries before giving up on ECN"); 215 216 VNET_DEFINE(int, tcp_insecure_syn) = 0; 217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW, 218 &VNET_NAME(tcp_insecure_syn), 0, 219 "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets"); 220 221 VNET_DEFINE(int, tcp_insecure_rst) = 0; 222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW, 223 &VNET_NAME(tcp_insecure_rst), 0, 224 "Follow RFC793 instead of RFC5961 criteria for accepting RST packets"); 225 226 VNET_DEFINE(int, tcp_recvspace) = 1024*64; 227 #define V_tcp_recvspace VNET(tcp_recvspace) 228 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW, 229 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size"); 230 231 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1; 232 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW, 233 &VNET_NAME(tcp_do_autorcvbuf), 0, 234 "Enable automatic receive buffer sizing"); 235 236 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024; 237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW, 238 &VNET_NAME(tcp_autorcvbuf_max), 0, 239 "Max size of automatic receive buffer"); 240 241 VNET_DEFINE(struct inpcbhead, tcb); 242 #define tcb6 tcb /* for KAME src sync over BSD*'s */ 243 VNET_DEFINE(struct inpcbinfo, tcbinfo); 244 245 /* 246 * TCP statistics are stored in an array of counter(9)s, which size matches 247 * size of struct tcpstat. TCP running connection count is a regular array. 248 */ 249 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat); 250 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat, 251 tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); 252 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]); 253 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD | 254 CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES, 255 "TCP connection counts by TCP state"); 256 257 static void 258 tcp_vnet_init(const void *unused) 259 { 260 261 COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK); 262 VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK); 263 } 264 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 265 tcp_vnet_init, NULL); 266 267 #ifdef VIMAGE 268 static void 269 tcp_vnet_uninit(const void *unused) 270 { 271 272 COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES); 273 VNET_PCPUSTAT_FREE(tcpstat); 274 } 275 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 276 tcp_vnet_uninit, NULL); 277 #endif /* VIMAGE */ 278 279 /* 280 * Kernel module interface for updating tcpstat. The first argument is an index 281 * into tcpstat treated as an array. 282 */ 283 void 284 kmod_tcpstat_add(int statnum, int val) 285 { 286 287 counter_u64_add(VNET(tcpstat)[statnum], val); 288 } 289 290 #ifdef TCP_HHOOK 291 /* 292 * Wrapper for the TCP established input helper hook. 293 */ 294 void 295 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) 296 { 297 struct tcp_hhook_data hhook_data; 298 299 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) { 300 hhook_data.tp = tp; 301 hhook_data.th = th; 302 hhook_data.to = to; 303 304 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data, 305 tp->osd); 306 } 307 } 308 #endif 309 310 /* 311 * CC wrapper hook functions 312 */ 313 void 314 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs, 315 uint16_t type) 316 { 317 #ifdef STATS 318 int32_t gput; 319 #endif 320 321 INP_WLOCK_ASSERT(tp->t_inpcb); 322 323 tp->ccv->nsegs = nsegs; 324 tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th); 325 if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) || 326 (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) && 327 (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2)))) 328 tp->ccv->flags |= CCF_CWND_LIMITED; 329 else 330 tp->ccv->flags &= ~CCF_CWND_LIMITED; 331 332 if (type == CC_ACK) { 333 #ifdef STATS 334 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, 335 ((int32_t)tp->snd_cwnd) - tp->snd_wnd); 336 if (!IN_RECOVERY(tp->t_flags)) 337 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN, 338 tp->ccv->bytes_this_ack / (tcp_maxseg(tp) * nsegs)); 339 if ((tp->t_flags & TF_GPUTINPROG) && 340 SEQ_GEQ(th->th_ack, tp->gput_ack)) { 341 /* 342 * Compute goodput in bits per millisecond. 343 */ 344 gput = (((int64_t)(th->th_ack - tp->gput_seq)) << 3) / 345 max(1, tcp_ts_getticks() - tp->gput_ts); 346 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, 347 gput); 348 /* 349 * XXXLAS: This is a temporary hack, and should be 350 * chained off VOI_TCP_GPUT when stats(9) grows an API 351 * to deal with chained VOIs. 352 */ 353 if (tp->t_stats_gput_prev > 0) 354 stats_voi_update_abs_s32(tp->t_stats, 355 VOI_TCP_GPUT_ND, 356 ((gput - tp->t_stats_gput_prev) * 100) / 357 tp->t_stats_gput_prev); 358 tp->t_flags &= ~TF_GPUTINPROG; 359 tp->t_stats_gput_prev = gput; 360 } 361 #endif /* STATS */ 362 if (tp->snd_cwnd > tp->snd_ssthresh) { 363 tp->t_bytes_acked += tp->ccv->bytes_this_ack; 364 if (tp->t_bytes_acked >= tp->snd_cwnd) { 365 tp->t_bytes_acked -= tp->snd_cwnd; 366 tp->ccv->flags |= CCF_ABC_SENTAWND; 367 } 368 } else { 369 tp->ccv->flags &= ~CCF_ABC_SENTAWND; 370 tp->t_bytes_acked = 0; 371 } 372 } 373 374 if (CC_ALGO(tp)->ack_received != NULL) { 375 /* XXXLAS: Find a way to live without this */ 376 tp->ccv->curack = th->th_ack; 377 CC_ALGO(tp)->ack_received(tp->ccv, type); 378 } 379 #ifdef STATS 380 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd); 381 #endif 382 } 383 384 void 385 cc_conn_init(struct tcpcb *tp) 386 { 387 struct hc_metrics_lite metrics; 388 struct inpcb *inp = tp->t_inpcb; 389 u_int maxseg; 390 int rtt; 391 392 INP_WLOCK_ASSERT(tp->t_inpcb); 393 394 tcp_hc_get(&inp->inp_inc, &metrics); 395 maxseg = tcp_maxseg(tp); 396 397 if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) { 398 tp->t_srtt = rtt; 399 tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE; 400 TCPSTAT_INC(tcps_usedrtt); 401 if (metrics.rmx_rttvar) { 402 tp->t_rttvar = metrics.rmx_rttvar; 403 TCPSTAT_INC(tcps_usedrttvar); 404 } else { 405 /* default variation is +- 1 rtt */ 406 tp->t_rttvar = 407 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 408 } 409 TCPT_RANGESET(tp->t_rxtcur, 410 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 411 tp->t_rttmin, TCPTV_REXMTMAX); 412 } 413 if (metrics.rmx_ssthresh) { 414 /* 415 * There's some sort of gateway or interface 416 * buffer limit on the path. Use this to set 417 * the slow start threshold, but set the 418 * threshold to no less than 2*mss. 419 */ 420 tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh); 421 TCPSTAT_INC(tcps_usedssthresh); 422 } 423 424 /* 425 * Set the initial slow-start flight size. 426 * 427 * If a SYN or SYN/ACK was lost and retransmitted, we have to 428 * reduce the initial CWND to one segment as congestion is likely 429 * requiring us to be cautious. 430 */ 431 if (tp->snd_cwnd == 1) 432 tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */ 433 else 434 tp->snd_cwnd = tcp_compute_initwnd(maxseg); 435 436 if (CC_ALGO(tp)->conn_init != NULL) 437 CC_ALGO(tp)->conn_init(tp->ccv); 438 } 439 440 void inline 441 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type) 442 { 443 INP_WLOCK_ASSERT(tp->t_inpcb); 444 445 #ifdef STATS 446 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); 447 #endif 448 449 switch(type) { 450 case CC_NDUPACK: 451 if (!IN_FASTRECOVERY(tp->t_flags)) { 452 tp->snd_recover = tp->snd_max; 453 if (tp->t_flags2 & TF2_ECN_PERMIT) 454 tp->t_flags2 |= TF2_ECN_SND_CWR; 455 } 456 break; 457 case CC_ECN: 458 if (!IN_CONGRECOVERY(tp->t_flags) || 459 /* 460 * Allow ECN reaction on ACK to CWR, if 461 * that data segment was also CE marked. 462 */ 463 SEQ_GEQ(th->th_ack, tp->snd_recover)) { 464 EXIT_CONGRECOVERY(tp->t_flags); 465 TCPSTAT_INC(tcps_ecn_rcwnd); 466 tp->snd_recover = tp->snd_max + 1; 467 if (tp->t_flags2 & TF2_ECN_PERMIT) 468 tp->t_flags2 |= TF2_ECN_SND_CWR; 469 } 470 break; 471 case CC_RTO: 472 tp->t_dupacks = 0; 473 tp->t_bytes_acked = 0; 474 EXIT_RECOVERY(tp->t_flags); 475 if (tp->t_flags2 & TF2_ECN_PERMIT) 476 tp->t_flags2 |= TF2_ECN_SND_CWR; 477 break; 478 case CC_RTO_ERR: 479 TCPSTAT_INC(tcps_sndrexmitbad); 480 /* RTO was unnecessary, so reset everything. */ 481 tp->snd_cwnd = tp->snd_cwnd_prev; 482 tp->snd_ssthresh = tp->snd_ssthresh_prev; 483 tp->snd_recover = tp->snd_recover_prev; 484 if (tp->t_flags & TF_WASFRECOVERY) 485 ENTER_FASTRECOVERY(tp->t_flags); 486 if (tp->t_flags & TF_WASCRECOVERY) 487 ENTER_CONGRECOVERY(tp->t_flags); 488 tp->snd_nxt = tp->snd_max; 489 tp->t_flags &= ~TF_PREVVALID; 490 tp->t_badrxtwin = 0; 491 break; 492 } 493 494 if (CC_ALGO(tp)->cong_signal != NULL) { 495 if (th != NULL) 496 tp->ccv->curack = th->th_ack; 497 CC_ALGO(tp)->cong_signal(tp->ccv, type); 498 } 499 } 500 501 void inline 502 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th) 503 { 504 INP_WLOCK_ASSERT(tp->t_inpcb); 505 506 /* XXXLAS: KASSERT that we're in recovery? */ 507 508 if (CC_ALGO(tp)->post_recovery != NULL) { 509 tp->ccv->curack = th->th_ack; 510 CC_ALGO(tp)->post_recovery(tp->ccv); 511 } 512 /* XXXLAS: EXIT_RECOVERY ? */ 513 tp->t_bytes_acked = 0; 514 tp->sackhint.delivered_data = 0; 515 tp->sackhint.prr_out = 0; 516 } 517 518 /* 519 * Indicate whether this ack should be delayed. We can delay the ack if 520 * following conditions are met: 521 * - There is no delayed ack timer in progress. 522 * - Our last ack wasn't a 0-sized window. We never want to delay 523 * the ack that opens up a 0-sized window. 524 * - LRO wasn't used for this segment. We make sure by checking that the 525 * segment size is not larger than the MSS. 526 */ 527 #define DELAY_ACK(tp, tlen) \ 528 ((!tcp_timer_active(tp, TT_DELACK) && \ 529 (tp->t_flags & TF_RXWIN0SENT) == 0) && \ 530 (tlen <= tp->t_maxseg) && \ 531 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN))) 532 533 void inline 534 cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos) 535 { 536 INP_WLOCK_ASSERT(tp->t_inpcb); 537 538 if (CC_ALGO(tp)->ecnpkt_handler != NULL) { 539 switch (iptos & IPTOS_ECN_MASK) { 540 case IPTOS_ECN_CE: 541 tp->ccv->flags |= CCF_IPHDR_CE; 542 break; 543 case IPTOS_ECN_ECT0: 544 /* FALLTHROUGH */ 545 case IPTOS_ECN_ECT1: 546 /* FALLTHROUGH */ 547 case IPTOS_ECN_NOTECT: 548 tp->ccv->flags &= ~CCF_IPHDR_CE; 549 break; 550 } 551 552 if (flags & TH_CWR) 553 tp->ccv->flags |= CCF_TCPHDR_CWR; 554 else 555 tp->ccv->flags &= ~CCF_TCPHDR_CWR; 556 557 CC_ALGO(tp)->ecnpkt_handler(tp->ccv); 558 559 if (tp->ccv->flags & CCF_ACKNOW) { 560 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); 561 tp->t_flags |= TF_ACKNOW; 562 } 563 } 564 } 565 566 void inline 567 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos) 568 { 569 cc_ecnpkt_handler_flags(tp, th->th_flags, iptos); 570 } 571 572 /* 573 * TCP input handling is split into multiple parts: 574 * tcp6_input is a thin wrapper around tcp_input for the extended 575 * ip6_protox[] call format in ip6_input 576 * tcp_input handles primary segment validation, inpcb lookup and 577 * SYN processing on listen sockets 578 * tcp_do_segment processes the ACK and text of the segment for 579 * establishing, established and closing connections 580 */ 581 #ifdef INET6 582 int 583 tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port) 584 { 585 struct mbuf *m; 586 struct in6_ifaddr *ia6; 587 struct ip6_hdr *ip6; 588 589 m = *mp; 590 if (m->m_len < *offp + sizeof(struct tcphdr)) { 591 m = m_pullup(m, *offp + sizeof(struct tcphdr)); 592 if (m == NULL) { 593 *mp = m; 594 TCPSTAT_INC(tcps_rcvshort); 595 return (IPPROTO_DONE); 596 } 597 } 598 599 /* 600 * draft-itojun-ipv6-tcp-to-anycast 601 * better place to put this in? 602 */ 603 ip6 = mtod(m, struct ip6_hdr *); 604 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 605 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { 606 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 607 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); 608 *mp = NULL; 609 return (IPPROTO_DONE); 610 } 611 612 *mp = m; 613 return (tcp_input_with_port(mp, offp, proto, port)); 614 } 615 616 int 617 tcp6_input(struct mbuf **mp, int *offp, int proto) 618 { 619 620 return(tcp6_input_with_port(mp, offp, proto, 0)); 621 } 622 #endif /* INET6 */ 623 624 int 625 tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port) 626 { 627 struct mbuf *m = *mp; 628 struct tcphdr *th = NULL; 629 struct ip *ip = NULL; 630 struct inpcb *inp = NULL; 631 struct tcpcb *tp = NULL; 632 struct socket *so = NULL; 633 u_char *optp = NULL; 634 int off0; 635 int optlen = 0; 636 #ifdef INET 637 int len; 638 uint8_t ipttl; 639 #endif 640 int tlen = 0, off; 641 int drop_hdrlen; 642 int thflags; 643 int rstreason = 0; /* For badport_bandlim accounting purposes */ 644 int lookupflag; 645 uint8_t iptos; 646 struct m_tag *fwd_tag = NULL; 647 #ifdef INET6 648 struct ip6_hdr *ip6 = NULL; 649 int isipv6; 650 #else 651 const void *ip6 = NULL; 652 #endif /* INET6 */ 653 struct tcpopt to; /* options in this segment */ 654 char *s = NULL; /* address and port logging */ 655 #ifdef TCPDEBUG 656 /* 657 * The size of tcp_saveipgen must be the size of the max ip header, 658 * now IPv6. 659 */ 660 u_char tcp_saveipgen[IP6_HDR_LEN]; 661 struct tcphdr tcp_savetcp; 662 short ostate = 0; 663 #endif 664 665 NET_EPOCH_ASSERT(); 666 667 #ifdef INET6 668 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 669 #endif 670 671 off0 = *offp; 672 m = *mp; 673 *mp = NULL; 674 to.to_flags = 0; 675 TCPSTAT_INC(tcps_rcvtotal); 676 677 #ifdef INET6 678 if (isipv6) { 679 ip6 = mtod(m, struct ip6_hdr *); 680 th = (struct tcphdr *)((caddr_t)ip6 + off0); 681 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; 682 if (port) 683 goto skip6_csum; 684 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) { 685 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 686 th->th_sum = m->m_pkthdr.csum_data; 687 else 688 th->th_sum = in6_cksum_pseudo(ip6, tlen, 689 IPPROTO_TCP, m->m_pkthdr.csum_data); 690 th->th_sum ^= 0xffff; 691 } else 692 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen); 693 if (th->th_sum) { 694 TCPSTAT_INC(tcps_rcvbadsum); 695 goto drop; 696 } 697 skip6_csum: 698 /* 699 * Be proactive about unspecified IPv6 address in source. 700 * As we use all-zero to indicate unbounded/unconnected pcb, 701 * unspecified IPv6 address can be used to confuse us. 702 * 703 * Note that packets with unspecified IPv6 destination is 704 * already dropped in ip6_input. 705 */ 706 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 707 /* XXX stat */ 708 goto drop; 709 } 710 iptos = IPV6_TRAFFIC_CLASS(ip6); 711 } 712 #endif 713 #if defined(INET) && defined(INET6) 714 else 715 #endif 716 #ifdef INET 717 { 718 /* 719 * Get IP and TCP header together in first mbuf. 720 * Note: IP leaves IP header in first mbuf. 721 */ 722 if (off0 > sizeof (struct ip)) { 723 ip_stripoptions(m); 724 off0 = sizeof(struct ip); 725 } 726 if (m->m_len < sizeof (struct tcpiphdr)) { 727 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) 728 == NULL) { 729 TCPSTAT_INC(tcps_rcvshort); 730 return (IPPROTO_DONE); 731 } 732 } 733 ip = mtod(m, struct ip *); 734 th = (struct tcphdr *)((caddr_t)ip + off0); 735 tlen = ntohs(ip->ip_len) - off0; 736 737 iptos = ip->ip_tos; 738 if (port) 739 goto skip_csum; 740 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 741 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 742 th->th_sum = m->m_pkthdr.csum_data; 743 else 744 th->th_sum = in_pseudo(ip->ip_src.s_addr, 745 ip->ip_dst.s_addr, 746 htonl(m->m_pkthdr.csum_data + tlen + 747 IPPROTO_TCP)); 748 th->th_sum ^= 0xffff; 749 } else { 750 struct ipovly *ipov = (struct ipovly *)ip; 751 752 /* 753 * Checksum extended TCP header and data. 754 */ 755 len = off0 + tlen; 756 ipttl = ip->ip_ttl; 757 bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); 758 ipov->ih_len = htons(tlen); 759 th->th_sum = in_cksum(m, len); 760 /* Reset length for SDT probes. */ 761 ip->ip_len = htons(len); 762 /* Reset TOS bits */ 763 ip->ip_tos = iptos; 764 /* Re-initialization for later version check */ 765 ip->ip_ttl = ipttl; 766 ip->ip_v = IPVERSION; 767 ip->ip_hl = off0 >> 2; 768 } 769 skip_csum: 770 if (th->th_sum && (port == 0)) { 771 TCPSTAT_INC(tcps_rcvbadsum); 772 goto drop; 773 } 774 } 775 #endif /* INET */ 776 777 /* 778 * Check that TCP offset makes sense, 779 * pull out TCP options and adjust length. XXX 780 */ 781 off = th->th_off << 2; 782 if (off < sizeof (struct tcphdr) || off > tlen) { 783 TCPSTAT_INC(tcps_rcvbadoff); 784 goto drop; 785 } 786 tlen -= off; /* tlen is used instead of ti->ti_len */ 787 if (off > sizeof (struct tcphdr)) { 788 #ifdef INET6 789 if (isipv6) { 790 if (m->m_len < off0 + off) { 791 m = m_pullup(m, off0 + off); 792 if (m == NULL) { 793 TCPSTAT_INC(tcps_rcvshort); 794 return (IPPROTO_DONE); 795 } 796 } 797 ip6 = mtod(m, struct ip6_hdr *); 798 th = (struct tcphdr *)((caddr_t)ip6 + off0); 799 } 800 #endif 801 #if defined(INET) && defined(INET6) 802 else 803 #endif 804 #ifdef INET 805 { 806 if (m->m_len < sizeof(struct ip) + off) { 807 if ((m = m_pullup(m, sizeof (struct ip) + off)) 808 == NULL) { 809 TCPSTAT_INC(tcps_rcvshort); 810 return (IPPROTO_DONE); 811 } 812 ip = mtod(m, struct ip *); 813 th = (struct tcphdr *)((caddr_t)ip + off0); 814 } 815 } 816 #endif 817 optlen = off - sizeof (struct tcphdr); 818 optp = (u_char *)(th + 1); 819 } 820 thflags = th->th_flags; 821 822 /* 823 * Convert TCP protocol specific fields to host format. 824 */ 825 tcp_fields_to_host(th); 826 827 /* 828 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options. 829 */ 830 drop_hdrlen = off0 + off; 831 832 /* 833 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 834 */ 835 if ( 836 #ifdef INET6 837 (isipv6 && (m->m_flags & M_IP6_NEXTHOP)) 838 #ifdef INET 839 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP)) 840 #endif 841 #endif 842 #if defined(INET) && !defined(INET6) 843 (m->m_flags & M_IP_NEXTHOP) 844 #endif 845 ) 846 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 847 848 /* 849 * For initial SYN packets we don't need write lock on matching 850 * PCB, be it a listening one or a synchronized one. The packet 851 * shall not modify its state. 852 */ 853 lookupflag = (thflags & (TH_ACK|TH_SYN)) == TH_SYN ? 854 INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB; 855 findpcb: 856 #ifdef INET6 857 if (isipv6 && fwd_tag != NULL) { 858 struct sockaddr_in6 *next_hop6; 859 860 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1); 861 /* 862 * Transparently forwarded. Pretend to be the destination. 863 * Already got one like this? 864 */ 865 inp = in6_pcblookup_mbuf(&V_tcbinfo, 866 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport, 867 lookupflag, m->m_pkthdr.rcvif, m); 868 if (!inp) { 869 /* 870 * It's new. Try to find the ambushing socket. 871 * Because we've rewritten the destination address, 872 * any hardware-generated hash is ignored. 873 */ 874 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src, 875 th->th_sport, &next_hop6->sin6_addr, 876 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) : 877 th->th_dport, INPLOOKUP_WILDCARD | lookupflag, 878 m->m_pkthdr.rcvif); 879 } 880 } else if (isipv6) { 881 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src, 882 th->th_sport, &ip6->ip6_dst, th->th_dport, 883 INPLOOKUP_WILDCARD | lookupflag, m->m_pkthdr.rcvif, m); 884 } 885 #endif /* INET6 */ 886 #if defined(INET6) && defined(INET) 887 else 888 #endif 889 #ifdef INET 890 if (fwd_tag != NULL) { 891 struct sockaddr_in *next_hop; 892 893 next_hop = (struct sockaddr_in *)(fwd_tag+1); 894 /* 895 * Transparently forwarded. Pretend to be the destination. 896 * already got one like this? 897 */ 898 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport, 899 ip->ip_dst, th->th_dport, lookupflag, m->m_pkthdr.rcvif, m); 900 if (!inp) { 901 /* 902 * It's new. Try to find the ambushing socket. 903 * Because we've rewritten the destination address, 904 * any hardware-generated hash is ignored. 905 */ 906 inp = in_pcblookup(&V_tcbinfo, ip->ip_src, 907 th->th_sport, next_hop->sin_addr, 908 next_hop->sin_port ? ntohs(next_hop->sin_port) : 909 th->th_dport, INPLOOKUP_WILDCARD | lookupflag, 910 m->m_pkthdr.rcvif); 911 } 912 } else 913 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, 914 th->th_sport, ip->ip_dst, th->th_dport, 915 INPLOOKUP_WILDCARD | lookupflag, m->m_pkthdr.rcvif, m); 916 #endif /* INET */ 917 918 /* 919 * If the INPCB does not exist then all data in the incoming 920 * segment is discarded and an appropriate RST is sent back. 921 * XXX MRT Send RST using which routing table? 922 */ 923 if (inp == NULL) { 924 /* 925 * Log communication attempts to ports that are not 926 * in use. 927 */ 928 if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) || 929 V_tcp_log_in_vain == 2) { 930 if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6))) 931 log(LOG_INFO, "%s; %s: Connection attempt " 932 "to closed port\n", s, __func__); 933 } 934 /* 935 * When blackholing do not respond with a RST but 936 * completely ignore the segment and drop it. 937 */ 938 if ((V_blackhole == 1 && (thflags & TH_SYN)) || 939 V_blackhole == 2) 940 goto dropunlock; 941 942 rstreason = BANDLIM_RST_CLOSEDPORT; 943 goto dropwithreset; 944 } 945 INP_LOCK_ASSERT(inp); 946 /* 947 * While waiting for inp lock during the lookup, another thread 948 * can have dropped the inpcb, in which case we need to loop back 949 * and try to find a new inpcb to deliver to. 950 */ 951 if (inp->inp_flags & INP_DROPPED) { 952 INP_UNLOCK(inp); 953 inp = NULL; 954 goto findpcb; 955 } 956 if ((inp->inp_flowtype == M_HASHTYPE_NONE) && 957 (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) && 958 ((inp->inp_socket == NULL) || !SOLISTENING(inp->inp_socket))) { 959 inp->inp_flowid = m->m_pkthdr.flowid; 960 inp->inp_flowtype = M_HASHTYPE_GET(m); 961 } 962 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 963 #ifdef INET6 964 if (isipv6 && IPSEC_ENABLED(ipv6) && 965 IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) { 966 goto dropunlock; 967 } 968 #ifdef INET 969 else 970 #endif 971 #endif /* INET6 */ 972 #ifdef INET 973 if (IPSEC_ENABLED(ipv4) && 974 IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) { 975 goto dropunlock; 976 } 977 #endif /* INET */ 978 #endif /* IPSEC */ 979 980 /* 981 * Check the minimum TTL for socket. 982 */ 983 if (inp->inp_ip_minttl != 0) { 984 #ifdef INET6 985 if (isipv6) { 986 if (inp->inp_ip_minttl > ip6->ip6_hlim) 987 goto dropunlock; 988 } else 989 #endif 990 if (inp->inp_ip_minttl > ip->ip_ttl) 991 goto dropunlock; 992 } 993 994 /* 995 * A previous connection in TIMEWAIT state is supposed to catch stray 996 * or duplicate segments arriving late. If this segment was a 997 * legitimate new connection attempt, the old INPCB gets removed and 998 * we can try again to find a listening socket. 999 */ 1000 if (inp->inp_flags & INP_TIMEWAIT) { 1001 tcp_dooptions(&to, optp, optlen, 1002 (thflags & TH_SYN) ? TO_SYN : 0); 1003 /* 1004 * NB: tcp_twcheck unlocks the INP and frees the mbuf. 1005 */ 1006 if (tcp_twcheck(inp, &to, th, m, tlen)) 1007 goto findpcb; 1008 return (IPPROTO_DONE); 1009 } 1010 /* 1011 * The TCPCB may no longer exist if the connection is winding 1012 * down or it is in the CLOSED state. Either way we drop the 1013 * segment and send an appropriate response. 1014 */ 1015 tp = intotcpcb(inp); 1016 if (tp == NULL || tp->t_state == TCPS_CLOSED) { 1017 rstreason = BANDLIM_RST_CLOSEDPORT; 1018 goto dropwithreset; 1019 } 1020 1021 if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) { 1022 rstreason = BANDLIM_RST_CLOSEDPORT; 1023 goto dropwithreset; 1024 } 1025 1026 #ifdef TCP_OFFLOAD 1027 if (tp->t_flags & TF_TOE) { 1028 tcp_offload_input(tp, m); 1029 m = NULL; /* consumed by the TOE driver */ 1030 goto dropunlock; 1031 } 1032 #endif 1033 1034 #ifdef MAC 1035 if (mac_inpcb_check_deliver(inp, m)) 1036 goto dropunlock; 1037 #endif 1038 so = inp->inp_socket; 1039 KASSERT(so != NULL, ("%s: so == NULL", __func__)); 1040 #ifdef TCPDEBUG 1041 if (so->so_options & SO_DEBUG) { 1042 ostate = tp->t_state; 1043 #ifdef INET6 1044 if (isipv6) { 1045 bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6)); 1046 } else 1047 #endif 1048 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); 1049 tcp_savetcp = *th; 1050 } 1051 #endif /* TCPDEBUG */ 1052 /* 1053 * When the socket is accepting connections (the INPCB is in LISTEN 1054 * state) we look into the SYN cache if this is a new connection 1055 * attempt or the completion of a previous one. 1056 */ 1057 KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so), 1058 ("%s: so accepting but tp %p not listening", __func__, tp)); 1059 if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) { 1060 struct in_conninfo inc; 1061 1062 bzero(&inc, sizeof(inc)); 1063 #ifdef INET6 1064 if (isipv6) { 1065 inc.inc_flags |= INC_ISIPV6; 1066 if (inp->inp_inc.inc_flags & INC_IPV6MINMTU) 1067 inc.inc_flags |= INC_IPV6MINMTU; 1068 inc.inc6_faddr = ip6->ip6_src; 1069 inc.inc6_laddr = ip6->ip6_dst; 1070 } else 1071 #endif 1072 { 1073 inc.inc_faddr = ip->ip_src; 1074 inc.inc_laddr = ip->ip_dst; 1075 } 1076 inc.inc_fport = th->th_sport; 1077 inc.inc_lport = th->th_dport; 1078 inc.inc_fibnum = so->so_fibnum; 1079 1080 /* 1081 * Check for an existing connection attempt in syncache if 1082 * the flag is only ACK. A successful lookup creates a new 1083 * socket appended to the listen queue in SYN_RECEIVED state. 1084 */ 1085 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) { 1086 /* 1087 * Parse the TCP options here because 1088 * syncookies need access to the reflected 1089 * timestamp. 1090 */ 1091 tcp_dooptions(&to, optp, optlen, 0); 1092 /* 1093 * NB: syncache_expand() doesn't unlock 1094 * inp and tcpinfo locks. 1095 */ 1096 rstreason = syncache_expand(&inc, &to, th, &so, m, port); 1097 if (rstreason < 0) { 1098 /* 1099 * A failing TCP MD5 signature comparison 1100 * must result in the segment being dropped 1101 * and must not produce any response back 1102 * to the sender. 1103 */ 1104 goto dropunlock; 1105 } else if (rstreason == 0) { 1106 /* 1107 * No syncache entry or ACK was not 1108 * for our SYN/ACK. Send a RST. 1109 * NB: syncache did its own logging 1110 * of the failure cause. 1111 */ 1112 rstreason = BANDLIM_RST_OPENPORT; 1113 goto dropwithreset; 1114 } 1115 tfo_socket_result: 1116 if (so == NULL) { 1117 /* 1118 * We completed the 3-way handshake 1119 * but could not allocate a socket 1120 * either due to memory shortage, 1121 * listen queue length limits or 1122 * global socket limits. Send RST 1123 * or wait and have the remote end 1124 * retransmit the ACK for another 1125 * try. 1126 */ 1127 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1128 log(LOG_DEBUG, "%s; %s: Listen socket: " 1129 "Socket allocation failed due to " 1130 "limits or memory shortage, %s\n", 1131 s, __func__, 1132 V_tcp_sc_rst_sock_fail ? 1133 "sending RST" : "try again"); 1134 if (V_tcp_sc_rst_sock_fail) { 1135 rstreason = BANDLIM_UNLIMITED; 1136 goto dropwithreset; 1137 } else 1138 goto dropunlock; 1139 } 1140 /* 1141 * Socket is created in state SYN_RECEIVED. 1142 * Unlock the listen socket, lock the newly 1143 * created socket and update the tp variable. 1144 * If we came here via jump to tfo_socket_result, 1145 * then listening socket is read-locked. 1146 */ 1147 INP_UNLOCK(inp); /* listen socket */ 1148 inp = sotoinpcb(so); 1149 /* 1150 * New connection inpcb is already locked by 1151 * syncache_expand(). 1152 */ 1153 INP_WLOCK_ASSERT(inp); 1154 tp = intotcpcb(inp); 1155 KASSERT(tp->t_state == TCPS_SYN_RECEIVED, 1156 ("%s: ", __func__)); 1157 /* 1158 * Process the segment and the data it 1159 * contains. tcp_do_segment() consumes 1160 * the mbuf chain and unlocks the inpcb. 1161 */ 1162 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1163 tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, 1164 iptos); 1165 return (IPPROTO_DONE); 1166 } 1167 /* 1168 * Segment flag validation for new connection attempts: 1169 * 1170 * Our (SYN|ACK) response was rejected. 1171 * Check with syncache and remove entry to prevent 1172 * retransmits. 1173 * 1174 * NB: syncache_chkrst does its own logging of failure 1175 * causes. 1176 */ 1177 if (thflags & TH_RST) { 1178 syncache_chkrst(&inc, th, m, port); 1179 goto dropunlock; 1180 } 1181 /* 1182 * We can't do anything without SYN. 1183 */ 1184 if ((thflags & TH_SYN) == 0) { 1185 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1186 log(LOG_DEBUG, "%s; %s: Listen socket: " 1187 "SYN is missing, segment ignored\n", 1188 s, __func__); 1189 TCPSTAT_INC(tcps_badsyn); 1190 goto dropunlock; 1191 } 1192 /* 1193 * (SYN|ACK) is bogus on a listen socket. 1194 */ 1195 if (thflags & TH_ACK) { 1196 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1197 log(LOG_DEBUG, "%s; %s: Listen socket: " 1198 "SYN|ACK invalid, segment rejected\n", 1199 s, __func__); 1200 syncache_badack(&inc, port); /* XXX: Not needed! */ 1201 TCPSTAT_INC(tcps_badsyn); 1202 rstreason = BANDLIM_RST_OPENPORT; 1203 goto dropwithreset; 1204 } 1205 /* 1206 * If the drop_synfin option is enabled, drop all 1207 * segments with both the SYN and FIN bits set. 1208 * This prevents e.g. nmap from identifying the 1209 * TCP/IP stack. 1210 * XXX: Poor reasoning. nmap has other methods 1211 * and is constantly refining its stack detection 1212 * strategies. 1213 * XXX: This is a violation of the TCP specification 1214 * and was used by RFC1644. 1215 */ 1216 if ((thflags & TH_FIN) && V_drop_synfin) { 1217 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1218 log(LOG_DEBUG, "%s; %s: Listen socket: " 1219 "SYN|FIN segment ignored (based on " 1220 "sysctl setting)\n", s, __func__); 1221 TCPSTAT_INC(tcps_badsyn); 1222 goto dropunlock; 1223 } 1224 /* 1225 * Segment's flags are (SYN) or (SYN|FIN). 1226 * 1227 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored 1228 * as they do not affect the state of the TCP FSM. 1229 * The data pointed to by TH_URG and th_urp is ignored. 1230 */ 1231 KASSERT((thflags & (TH_RST|TH_ACK)) == 0, 1232 ("%s: Listen socket: TH_RST or TH_ACK set", __func__)); 1233 KASSERT(thflags & (TH_SYN), 1234 ("%s: Listen socket: TH_SYN not set", __func__)); 1235 INP_RLOCK_ASSERT(inp); 1236 #ifdef INET6 1237 /* 1238 * If deprecated address is forbidden, 1239 * we do not accept SYN to deprecated interface 1240 * address to prevent any new inbound connection from 1241 * getting established. 1242 * When we do not accept SYN, we send a TCP RST, 1243 * with deprecated source address (instead of dropping 1244 * it). We compromise it as it is much better for peer 1245 * to send a RST, and RST will be the final packet 1246 * for the exchange. 1247 * 1248 * If we do not forbid deprecated addresses, we accept 1249 * the SYN packet. RFC2462 does not suggest dropping 1250 * SYN in this case. 1251 * If we decipher RFC2462 5.5.4, it says like this: 1252 * 1. use of deprecated addr with existing 1253 * communication is okay - "SHOULD continue to be 1254 * used" 1255 * 2. use of it with new communication: 1256 * (2a) "SHOULD NOT be used if alternate address 1257 * with sufficient scope is available" 1258 * (2b) nothing mentioned otherwise. 1259 * Here we fall into (2b) case as we have no choice in 1260 * our source address selection - we must obey the peer. 1261 * 1262 * The wording in RFC2462 is confusing, and there are 1263 * multiple description text for deprecated address 1264 * handling - worse, they are not exactly the same. 1265 * I believe 5.5.4 is the best one, so we follow 5.5.4. 1266 */ 1267 if (isipv6 && !V_ip6_use_deprecated) { 1268 struct in6_ifaddr *ia6; 1269 1270 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1271 if (ia6 != NULL && 1272 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { 1273 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1274 log(LOG_DEBUG, "%s; %s: Listen socket: " 1275 "Connection attempt to deprecated " 1276 "IPv6 address rejected\n", 1277 s, __func__); 1278 rstreason = BANDLIM_RST_OPENPORT; 1279 goto dropwithreset; 1280 } 1281 } 1282 #endif /* INET6 */ 1283 /* 1284 * Basic sanity checks on incoming SYN requests: 1285 * Don't respond if the destination is a link layer 1286 * broadcast according to RFC1122 4.2.3.10, p. 104. 1287 * If it is from this socket it must be forged. 1288 * Don't respond if the source or destination is a 1289 * global or subnet broad- or multicast address. 1290 * Note that it is quite possible to receive unicast 1291 * link-layer packets with a broadcast IP address. Use 1292 * in_broadcast() to find them. 1293 */ 1294 if (m->m_flags & (M_BCAST|M_MCAST)) { 1295 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1296 log(LOG_DEBUG, "%s; %s: Listen socket: " 1297 "Connection attempt from broad- or multicast " 1298 "link layer address ignored\n", s, __func__); 1299 goto dropunlock; 1300 } 1301 #ifdef INET6 1302 if (isipv6) { 1303 if (th->th_dport == th->th_sport && 1304 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) { 1305 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1306 log(LOG_DEBUG, "%s; %s: Listen socket: " 1307 "Connection attempt to/from self " 1308 "ignored\n", s, __func__); 1309 goto dropunlock; 1310 } 1311 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 1312 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 1313 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1314 log(LOG_DEBUG, "%s; %s: Listen socket: " 1315 "Connection attempt from/to multicast " 1316 "address ignored\n", s, __func__); 1317 goto dropunlock; 1318 } 1319 } 1320 #endif 1321 #if defined(INET) && defined(INET6) 1322 else 1323 #endif 1324 #ifdef INET 1325 { 1326 if (th->th_dport == th->th_sport && 1327 ip->ip_dst.s_addr == ip->ip_src.s_addr) { 1328 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1329 log(LOG_DEBUG, "%s; %s: Listen socket: " 1330 "Connection attempt from/to self " 1331 "ignored\n", s, __func__); 1332 goto dropunlock; 1333 } 1334 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 1335 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 1336 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 1337 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { 1338 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1339 log(LOG_DEBUG, "%s; %s: Listen socket: " 1340 "Connection attempt from/to broad- " 1341 "or multicast address ignored\n", 1342 s, __func__); 1343 goto dropunlock; 1344 } 1345 } 1346 #endif 1347 /* 1348 * SYN appears to be valid. Create compressed TCP state 1349 * for syncache. 1350 */ 1351 #ifdef TCPDEBUG 1352 if (so->so_options & SO_DEBUG) 1353 tcp_trace(TA_INPUT, ostate, tp, 1354 (void *)tcp_saveipgen, &tcp_savetcp, 0); 1355 #endif 1356 TCP_PROBE3(debug__input, tp, th, m); 1357 tcp_dooptions(&to, optp, optlen, TO_SYN); 1358 if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL, 1359 iptos, port)) != NULL) 1360 goto tfo_socket_result; 1361 1362 /* 1363 * Entry added to syncache and mbuf consumed. 1364 * Only the listen socket is unlocked by syncache_add(). 1365 */ 1366 return (IPPROTO_DONE); 1367 } else if (tp->t_state == TCPS_LISTEN) { 1368 /* 1369 * When a listen socket is torn down the SO_ACCEPTCONN 1370 * flag is removed first while connections are drained 1371 * from the accept queue in a unlock/lock cycle of the 1372 * ACCEPT_LOCK, opening a race condition allowing a SYN 1373 * attempt go through unhandled. 1374 */ 1375 goto dropunlock; 1376 } 1377 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1378 if (tp->t_flags & TF_SIGNATURE) { 1379 tcp_dooptions(&to, optp, optlen, thflags); 1380 if ((to.to_flags & TOF_SIGNATURE) == 0) { 1381 TCPSTAT_INC(tcps_sig_err_nosigopt); 1382 goto dropunlock; 1383 } 1384 if (!TCPMD5_ENABLED() || 1385 TCPMD5_INPUT(m, th, to.to_signature) != 0) 1386 goto dropunlock; 1387 } 1388 #endif 1389 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1390 1391 /* 1392 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later 1393 * state. tcp_do_segment() always consumes the mbuf chain, unlocks 1394 * the inpcb, and unlocks pcbinfo. 1395 * 1396 * XXXGL: in case of a pure SYN arriving on existing connection 1397 * TCP stacks won't need to modify the PCB, they would either drop 1398 * the segment silently, or send a challenge ACK. However, we try 1399 * to upgrade the lock, because calling convention for stacks is 1400 * write-lock on PCB. If upgrade fails, drop the SYN. 1401 */ 1402 if (lookupflag == INPLOOKUP_RLOCKPCB && INP_TRY_UPGRADE(inp) == 0) 1403 goto dropunlock; 1404 1405 tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos); 1406 return (IPPROTO_DONE); 1407 1408 dropwithreset: 1409 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1410 1411 if (inp != NULL) { 1412 tcp_dropwithreset(m, th, tp, tlen, rstreason); 1413 INP_UNLOCK(inp); 1414 } else 1415 tcp_dropwithreset(m, th, NULL, tlen, rstreason); 1416 m = NULL; /* mbuf chain got consumed. */ 1417 goto drop; 1418 1419 dropunlock: 1420 if (m != NULL) 1421 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1422 1423 if (inp != NULL) 1424 INP_UNLOCK(inp); 1425 1426 drop: 1427 if (s != NULL) 1428 free(s, M_TCPLOG); 1429 if (m != NULL) 1430 m_freem(m); 1431 return (IPPROTO_DONE); 1432 } 1433 1434 /* 1435 * Automatic sizing of receive socket buffer. Often the send 1436 * buffer size is not optimally adjusted to the actual network 1437 * conditions at hand (delay bandwidth product). Setting the 1438 * buffer size too small limits throughput on links with high 1439 * bandwidth and high delay (eg. trans-continental/oceanic links). 1440 * 1441 * On the receive side the socket buffer memory is only rarely 1442 * used to any significant extent. This allows us to be much 1443 * more aggressive in scaling the receive socket buffer. For 1444 * the case that the buffer space is actually used to a large 1445 * extent and we run out of kernel memory we can simply drop 1446 * the new segments; TCP on the sender will just retransmit it 1447 * later. Setting the buffer size too big may only consume too 1448 * much kernel memory if the application doesn't read() from 1449 * the socket or packet loss or reordering makes use of the 1450 * reassembly queue. 1451 * 1452 * The criteria to step up the receive buffer one notch are: 1453 * 1. Application has not set receive buffer size with 1454 * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE. 1455 * 2. the number of bytes received during 1/2 of an sRTT 1456 * is at least 3/8 of the current socket buffer size. 1457 * 3. receive buffer size has not hit maximal automatic size; 1458 * 1459 * If all of the criteria are met we increaset the socket buffer 1460 * by a 1/2 (bounded by the max). This allows us to keep ahead 1461 * of slow-start but also makes it so our peer never gets limited 1462 * by our rwnd which we then open up causing a burst. 1463 * 1464 * This algorithm does two steps per RTT at most and only if 1465 * we receive a bulk stream w/o packet losses or reorderings. 1466 * Shrinking the buffer during idle times is not necessary as 1467 * it doesn't consume any memory when idle. 1468 * 1469 * TODO: Only step up if the application is actually serving 1470 * the buffer to better manage the socket buffer resources. 1471 */ 1472 int 1473 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so, 1474 struct tcpcb *tp, int tlen) 1475 { 1476 int newsize = 0; 1477 1478 if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) && 1479 tp->t_srtt != 0 && tp->rfbuf_ts != 0 && 1480 TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) > 1481 ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) { 1482 if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) && 1483 so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) { 1484 newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max); 1485 } 1486 TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize); 1487 1488 /* Start over with next RTT. */ 1489 tp->rfbuf_ts = 0; 1490 tp->rfbuf_cnt = 0; 1491 } else { 1492 tp->rfbuf_cnt += tlen; /* add up */ 1493 } 1494 return (newsize); 1495 } 1496 1497 int 1498 tcp_input(struct mbuf **mp, int *offp, int proto) 1499 { 1500 return(tcp_input_with_port(mp, offp, proto, 0)); 1501 } 1502 1503 void 1504 tcp_handle_wakeup(struct tcpcb *tp, struct socket *so) 1505 { 1506 /* 1507 * Since tp might be gone if the session entered 1508 * the TIME_WAIT state before coming here, we need 1509 * to check if the socket is still connected. 1510 */ 1511 if (tp == NULL) { 1512 return; 1513 } 1514 if (so == NULL) { 1515 return; 1516 } 1517 INP_LOCK_ASSERT(tp->t_inpcb); 1518 if (tp->t_flags & TF_WAKESOR) { 1519 tp->t_flags &= ~TF_WAKESOR; 1520 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1521 sorwakeup_locked(so); 1522 } 1523 } 1524 1525 void 1526 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, 1527 struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos) 1528 { 1529 int thflags, acked, ourfinisacked, needoutput = 0, sack_changed; 1530 int rstreason, todrop, win, incforsyn = 0; 1531 uint32_t tiwin; 1532 uint16_t nsegs; 1533 char *s; 1534 struct in_conninfo *inc; 1535 struct mbuf *mfree; 1536 struct tcpopt to; 1537 int tfo_syn; 1538 u_int maxseg; 1539 1540 #ifdef TCPDEBUG 1541 /* 1542 * The size of tcp_saveipgen must be the size of the max ip header, 1543 * now IPv6. 1544 */ 1545 u_char tcp_saveipgen[IP6_HDR_LEN]; 1546 struct tcphdr tcp_savetcp; 1547 short ostate = 0; 1548 #endif 1549 thflags = th->th_flags; 1550 inc = &tp->t_inpcb->inp_inc; 1551 tp->sackhint.last_sack_ack = 0; 1552 sack_changed = 0; 1553 nsegs = max(1, m->m_pkthdr.lro_nsegs); 1554 1555 NET_EPOCH_ASSERT(); 1556 INP_WLOCK_ASSERT(tp->t_inpcb); 1557 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 1558 __func__)); 1559 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 1560 __func__)); 1561 1562 #ifdef TCPPCAP 1563 /* Save segment, if requested. */ 1564 tcp_pcap_add(th, m, &(tp->t_inpkts)); 1565 #endif 1566 TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, 1567 tlen, NULL, true); 1568 1569 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { 1570 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1571 log(LOG_DEBUG, "%s; %s: " 1572 "SYN|FIN segment ignored (based on " 1573 "sysctl setting)\n", s, __func__); 1574 free(s, M_TCPLOG); 1575 } 1576 goto drop; 1577 } 1578 1579 /* 1580 * If a segment with the ACK-bit set arrives in the SYN-SENT state 1581 * check SEQ.ACK first. 1582 */ 1583 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && 1584 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { 1585 rstreason = BANDLIM_UNLIMITED; 1586 goto dropwithreset; 1587 } 1588 1589 /* 1590 * Segment received on connection. 1591 * Reset idle time and keep-alive timer. 1592 * XXX: This should be done after segment 1593 * validation to ignore broken/spoofed segs. 1594 */ 1595 tp->t_rcvtime = ticks; 1596 1597 /* 1598 * Scale up the window into a 32-bit value. 1599 * For the SYN_SENT state the scale is zero. 1600 */ 1601 tiwin = th->th_win << tp->snd_scale; 1602 #ifdef STATS 1603 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); 1604 #endif 1605 1606 /* 1607 * TCP ECN processing. 1608 */ 1609 if (tp->t_flags2 & TF2_ECN_PERMIT) { 1610 if (thflags & TH_CWR) { 1611 tp->t_flags2 &= ~TF2_ECN_SND_ECE; 1612 tp->t_flags |= TF_ACKNOW; 1613 } 1614 switch (iptos & IPTOS_ECN_MASK) { 1615 case IPTOS_ECN_CE: 1616 tp->t_flags2 |= TF2_ECN_SND_ECE; 1617 TCPSTAT_INC(tcps_ecn_ce); 1618 break; 1619 case IPTOS_ECN_ECT0: 1620 TCPSTAT_INC(tcps_ecn_ect0); 1621 break; 1622 case IPTOS_ECN_ECT1: 1623 TCPSTAT_INC(tcps_ecn_ect1); 1624 break; 1625 } 1626 1627 /* Process a packet differently from RFC3168. */ 1628 cc_ecnpkt_handler(tp, th, iptos); 1629 1630 /* Congestion experienced. */ 1631 if (thflags & TH_ECE) { 1632 cc_cong_signal(tp, th, CC_ECN); 1633 } 1634 } 1635 1636 /* 1637 * Parse options on any incoming segment. 1638 */ 1639 tcp_dooptions(&to, (u_char *)(th + 1), 1640 (th->th_off << 2) - sizeof(struct tcphdr), 1641 (thflags & TH_SYN) ? TO_SYN : 0); 1642 1643 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1644 if ((tp->t_flags & TF_SIGNATURE) != 0 && 1645 (to.to_flags & TOF_SIGNATURE) == 0) { 1646 TCPSTAT_INC(tcps_sig_err_sigopt); 1647 /* XXX: should drop? */ 1648 } 1649 #endif 1650 /* 1651 * If echoed timestamp is later than the current time, 1652 * fall back to non RFC1323 RTT calculation. Normalize 1653 * timestamp if syncookies were used when this connection 1654 * was established. 1655 */ 1656 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 1657 to.to_tsecr -= tp->ts_offset; 1658 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) 1659 to.to_tsecr = 0; 1660 else if (tp->t_flags & TF_PREVVALID && 1661 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin)) 1662 cc_cong_signal(tp, th, CC_RTO_ERR); 1663 } 1664 /* 1665 * Process options only when we get SYN/ACK back. The SYN case 1666 * for incoming connections is handled in tcp_syncache. 1667 * According to RFC1323 the window field in a SYN (i.e., a <SYN> 1668 * or <SYN,ACK>) segment itself is never scaled. 1669 * XXX this is traditional behavior, may need to be cleaned up. 1670 */ 1671 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 1672 /* Handle parallel SYN for ECN */ 1673 if (!(thflags & TH_ACK) && 1674 ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) && 1675 ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) { 1676 tp->t_flags2 |= TF2_ECN_PERMIT; 1677 tp->t_flags2 |= TF2_ECN_SND_ECE; 1678 TCPSTAT_INC(tcps_ecn_shs); 1679 } 1680 if ((to.to_flags & TOF_SCALE) && 1681 (tp->t_flags & TF_REQ_SCALE) && 1682 !(tp->t_flags & TF_NOOPT)) { 1683 tp->t_flags |= TF_RCVD_SCALE; 1684 tp->snd_scale = to.to_wscale; 1685 } else 1686 tp->t_flags &= ~TF_REQ_SCALE; 1687 /* 1688 * Initial send window. It will be updated with 1689 * the next incoming segment to the scaled value. 1690 */ 1691 tp->snd_wnd = th->th_win; 1692 if ((to.to_flags & TOF_TS) && 1693 (tp->t_flags & TF_REQ_TSTMP) && 1694 !(tp->t_flags & TF_NOOPT)) { 1695 tp->t_flags |= TF_RCVD_TSTMP; 1696 tp->ts_recent = to.to_tsval; 1697 tp->ts_recent_age = tcp_ts_getticks(); 1698 } else 1699 tp->t_flags &= ~TF_REQ_TSTMP; 1700 if (to.to_flags & TOF_MSS) 1701 tcp_mss(tp, to.to_mss); 1702 if ((tp->t_flags & TF_SACK_PERMIT) && 1703 (!(to.to_flags & TOF_SACKPERM) || 1704 (tp->t_flags & TF_NOOPT))) 1705 tp->t_flags &= ~TF_SACK_PERMIT; 1706 if (IS_FASTOPEN(tp->t_flags)) { 1707 if ((to.to_flags & TOF_FASTOPEN) && 1708 !(tp->t_flags & TF_NOOPT)) { 1709 uint16_t mss; 1710 1711 if (to.to_flags & TOF_MSS) 1712 mss = to.to_mss; 1713 else 1714 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) 1715 mss = TCP6_MSS; 1716 else 1717 mss = TCP_MSS; 1718 tcp_fastopen_update_cache(tp, mss, 1719 to.to_tfo_len, to.to_tfo_cookie); 1720 } else 1721 tcp_fastopen_disable_path(tp); 1722 } 1723 } 1724 1725 /* 1726 * If timestamps were negotiated during SYN/ACK and a 1727 * segment without a timestamp is received, silently drop 1728 * the segment, unless it is a RST segment or missing timestamps are 1729 * tolerated. 1730 * See section 3.2 of RFC 7323. 1731 */ 1732 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) { 1733 if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) { 1734 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1735 log(LOG_DEBUG, "%s; %s: Timestamp missing, " 1736 "segment processed normally\n", 1737 s, __func__); 1738 free(s, M_TCPLOG); 1739 } 1740 } else { 1741 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1742 log(LOG_DEBUG, "%s; %s: Timestamp missing, " 1743 "segment silently dropped\n", s, __func__); 1744 free(s, M_TCPLOG); 1745 } 1746 goto drop; 1747 } 1748 } 1749 /* 1750 * If timestamps were not negotiated during SYN/ACK and a 1751 * segment with a timestamp is received, ignore the 1752 * timestamp and process the packet normally. 1753 * See section 3.2 of RFC 7323. 1754 */ 1755 if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) { 1756 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1757 log(LOG_DEBUG, "%s; %s: Timestamp not expected, " 1758 "segment processed normally\n", s, __func__); 1759 free(s, M_TCPLOG); 1760 } 1761 } 1762 1763 /* 1764 * Header prediction: check for the two common cases 1765 * of a uni-directional data xfer. If the packet has 1766 * no control flags, is in-sequence, the window didn't 1767 * change and we're not retransmitting, it's a 1768 * candidate. If the length is zero and the ack moved 1769 * forward, we're the sender side of the xfer. Just 1770 * free the data acked & wake any higher level process 1771 * that was blocked waiting for space. If the length 1772 * is non-zero and the ack didn't move, we're the 1773 * receiver side. If we're getting packets in-order 1774 * (the reassembly queue is empty), add the data to 1775 * the socket buffer and note that we need a delayed ack. 1776 * Make sure that the hidden state-flags are also off. 1777 * Since we check for TCPS_ESTABLISHED first, it can only 1778 * be TH_NEEDSYN. 1779 */ 1780 if (tp->t_state == TCPS_ESTABLISHED && 1781 th->th_seq == tp->rcv_nxt && 1782 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 1783 tp->snd_nxt == tp->snd_max && 1784 tiwin && tiwin == tp->snd_wnd && 1785 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && 1786 SEGQ_EMPTY(tp) && 1787 ((to.to_flags & TOF_TS) == 0 || 1788 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) { 1789 /* 1790 * If last ACK falls within this segment's sequence numbers, 1791 * record the timestamp. 1792 * NOTE that the test is modified according to the latest 1793 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 1794 */ 1795 if ((to.to_flags & TOF_TS) != 0 && 1796 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 1797 tp->ts_recent_age = tcp_ts_getticks(); 1798 tp->ts_recent = to.to_tsval; 1799 } 1800 1801 if (tlen == 0) { 1802 if (SEQ_GT(th->th_ack, tp->snd_una) && 1803 SEQ_LEQ(th->th_ack, tp->snd_max) && 1804 !IN_RECOVERY(tp->t_flags) && 1805 (to.to_flags & TOF_SACK) == 0 && 1806 TAILQ_EMPTY(&tp->snd_holes)) { 1807 /* 1808 * This is a pure ack for outstanding data. 1809 */ 1810 TCPSTAT_INC(tcps_predack); 1811 1812 /* 1813 * "bad retransmit" recovery without timestamps. 1814 */ 1815 if ((to.to_flags & TOF_TS) == 0 && 1816 tp->t_rxtshift == 1 && 1817 tp->t_flags & TF_PREVVALID && 1818 (int)(ticks - tp->t_badrxtwin) < 0) { 1819 cc_cong_signal(tp, th, CC_RTO_ERR); 1820 } 1821 1822 /* 1823 * Recalculate the transmit timer / rtt. 1824 * 1825 * Some boxes send broken timestamp replies 1826 * during the SYN+ACK phase, ignore 1827 * timestamps of 0 or we could calculate a 1828 * huge RTT and blow up the retransmit timer. 1829 */ 1830 if ((to.to_flags & TOF_TS) != 0 && 1831 to.to_tsecr) { 1832 uint32_t t; 1833 1834 t = tcp_ts_getticks() - to.to_tsecr; 1835 if (!tp->t_rttlow || tp->t_rttlow > t) 1836 tp->t_rttlow = t; 1837 tcp_xmit_timer(tp, 1838 TCP_TS_TO_TICKS(t) + 1); 1839 } else if (tp->t_rtttime && 1840 SEQ_GT(th->th_ack, tp->t_rtseq)) { 1841 if (!tp->t_rttlow || 1842 tp->t_rttlow > ticks - tp->t_rtttime) 1843 tp->t_rttlow = ticks - tp->t_rtttime; 1844 tcp_xmit_timer(tp, 1845 ticks - tp->t_rtttime); 1846 } 1847 acked = BYTES_THIS_ACK(tp, th); 1848 1849 #ifdef TCP_HHOOK 1850 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 1851 hhook_run_tcp_est_in(tp, th, &to); 1852 #endif 1853 1854 TCPSTAT_ADD(tcps_rcvackpack, nsegs); 1855 TCPSTAT_ADD(tcps_rcvackbyte, acked); 1856 sbdrop(&so->so_snd, acked); 1857 if (SEQ_GT(tp->snd_una, tp->snd_recover) && 1858 SEQ_LEQ(th->th_ack, tp->snd_recover)) 1859 tp->snd_recover = th->th_ack - 1; 1860 1861 /* 1862 * Let the congestion control algorithm update 1863 * congestion control related information. This 1864 * typically means increasing the congestion 1865 * window. 1866 */ 1867 cc_ack_received(tp, th, nsegs, CC_ACK); 1868 1869 tp->snd_una = th->th_ack; 1870 /* 1871 * Pull snd_wl2 up to prevent seq wrap relative 1872 * to th_ack. 1873 */ 1874 tp->snd_wl2 = th->th_ack; 1875 tp->t_dupacks = 0; 1876 m_freem(m); 1877 1878 /* 1879 * If all outstanding data are acked, stop 1880 * retransmit timer, otherwise restart timer 1881 * using current (possibly backed-off) value. 1882 * If process is waiting for space, 1883 * wakeup/selwakeup/signal. If data 1884 * are ready to send, let tcp_output 1885 * decide between more output or persist. 1886 */ 1887 #ifdef TCPDEBUG 1888 if (so->so_options & SO_DEBUG) 1889 tcp_trace(TA_INPUT, ostate, tp, 1890 (void *)tcp_saveipgen, 1891 &tcp_savetcp, 0); 1892 #endif 1893 TCP_PROBE3(debug__input, tp, th, m); 1894 if (tp->snd_una == tp->snd_max) 1895 tcp_timer_activate(tp, TT_REXMT, 0); 1896 else if (!tcp_timer_active(tp, TT_PERSIST)) 1897 tcp_timer_activate(tp, TT_REXMT, 1898 tp->t_rxtcur); 1899 sowwakeup(so); 1900 if (sbavail(&so->so_snd)) 1901 (void) tp->t_fb->tfb_tcp_output(tp); 1902 goto check_delack; 1903 } 1904 } else if (th->th_ack == tp->snd_una && 1905 tlen <= sbspace(&so->so_rcv)) { 1906 int newsize = 0; /* automatic sockbuf scaling */ 1907 1908 /* 1909 * This is a pure, in-sequence data packet with 1910 * nothing on the reassembly queue and we have enough 1911 * buffer space to take it. 1912 */ 1913 /* Clean receiver SACK report if present */ 1914 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks) 1915 tcp_clean_sackreport(tp); 1916 TCPSTAT_INC(tcps_preddat); 1917 tp->rcv_nxt += tlen; 1918 if (tlen && 1919 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 1920 (tp->t_fbyte_in == 0)) { 1921 tp->t_fbyte_in = ticks; 1922 if (tp->t_fbyte_in == 0) 1923 tp->t_fbyte_in = 1; 1924 if (tp->t_fbyte_out && tp->t_fbyte_in) 1925 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 1926 } 1927 /* 1928 * Pull snd_wl1 up to prevent seq wrap relative to 1929 * th_seq. 1930 */ 1931 tp->snd_wl1 = th->th_seq; 1932 /* 1933 * Pull rcv_up up to prevent seq wrap relative to 1934 * rcv_nxt. 1935 */ 1936 tp->rcv_up = tp->rcv_nxt; 1937 TCPSTAT_ADD(tcps_rcvpack, nsegs); 1938 TCPSTAT_ADD(tcps_rcvbyte, tlen); 1939 #ifdef TCPDEBUG 1940 if (so->so_options & SO_DEBUG) 1941 tcp_trace(TA_INPUT, ostate, tp, 1942 (void *)tcp_saveipgen, &tcp_savetcp, 0); 1943 #endif 1944 TCP_PROBE3(debug__input, tp, th, m); 1945 1946 newsize = tcp_autorcvbuf(m, th, so, tp, tlen); 1947 1948 /* Add data to socket buffer. */ 1949 SOCKBUF_LOCK(&so->so_rcv); 1950 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1951 m_freem(m); 1952 } else { 1953 /* 1954 * Set new socket buffer size. 1955 * Give up when limit is reached. 1956 */ 1957 if (newsize) 1958 if (!sbreserve_locked(&so->so_rcv, 1959 newsize, so, NULL)) 1960 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1961 m_adj(m, drop_hdrlen); /* delayed header drop */ 1962 sbappendstream_locked(&so->so_rcv, m, 0); 1963 } 1964 /* NB: sorwakeup_locked() does an implicit unlock. */ 1965 sorwakeup_locked(so); 1966 if (DELAY_ACK(tp, tlen)) { 1967 tp->t_flags |= TF_DELACK; 1968 } else { 1969 tp->t_flags |= TF_ACKNOW; 1970 tp->t_fb->tfb_tcp_output(tp); 1971 } 1972 goto check_delack; 1973 } 1974 } 1975 1976 /* 1977 * Calculate amount of space in receive window, 1978 * and then do TCP input processing. 1979 * Receive window is amount of space in rcv queue, 1980 * but not less than advertised window. 1981 */ 1982 win = sbspace(&so->so_rcv); 1983 if (win < 0) 1984 win = 0; 1985 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 1986 1987 switch (tp->t_state) { 1988 /* 1989 * If the state is SYN_RECEIVED: 1990 * if seg contains an ACK, but not for our SYN/ACK, send a RST. 1991 */ 1992 case TCPS_SYN_RECEIVED: 1993 if ((thflags & TH_ACK) && 1994 (SEQ_LEQ(th->th_ack, tp->snd_una) || 1995 SEQ_GT(th->th_ack, tp->snd_max))) { 1996 rstreason = BANDLIM_RST_OPENPORT; 1997 goto dropwithreset; 1998 } 1999 if (IS_FASTOPEN(tp->t_flags)) { 2000 /* 2001 * When a TFO connection is in SYN_RECEIVED, the 2002 * only valid packets are the initial SYN, a 2003 * retransmit/copy of the initial SYN (possibly with 2004 * a subset of the original data), a valid ACK, a 2005 * FIN, or a RST. 2006 */ 2007 if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) { 2008 rstreason = BANDLIM_RST_OPENPORT; 2009 goto dropwithreset; 2010 } else if (thflags & TH_SYN) { 2011 /* non-initial SYN is ignored */ 2012 if ((tcp_timer_active(tp, TT_DELACK) || 2013 tcp_timer_active(tp, TT_REXMT))) 2014 goto drop; 2015 } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) { 2016 goto drop; 2017 } 2018 } 2019 break; 2020 2021 /* 2022 * If the state is SYN_SENT: 2023 * if seg contains a RST with valid ACK (SEQ.ACK has already 2024 * been verified), then drop the connection. 2025 * if seg contains a RST without an ACK, drop the seg. 2026 * if seg does not contain SYN, then drop the seg. 2027 * Otherwise this is an acceptable SYN segment 2028 * initialize tp->rcv_nxt and tp->irs 2029 * if seg contains ack then advance tp->snd_una 2030 * if seg contains an ECE and ECN support is enabled, the stream 2031 * is ECN capable. 2032 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 2033 * arrange for segment to be acked (eventually) 2034 * continue processing rest of data/controls, beginning with URG 2035 */ 2036 case TCPS_SYN_SENT: 2037 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) { 2038 TCP_PROBE5(connect__refused, NULL, tp, 2039 m, tp, th); 2040 tp = tcp_drop(tp, ECONNREFUSED); 2041 } 2042 if (thflags & TH_RST) 2043 goto drop; 2044 if (!(thflags & TH_SYN)) 2045 goto drop; 2046 2047 tp->irs = th->th_seq; 2048 tcp_rcvseqinit(tp); 2049 if (thflags & TH_ACK) { 2050 int tfo_partial_ack = 0; 2051 2052 TCPSTAT_INC(tcps_connects); 2053 soisconnected(so); 2054 #ifdef MAC 2055 mac_socketpeer_set_from_mbuf(m, so); 2056 #endif 2057 /* Do window scaling on this connection? */ 2058 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2059 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2060 tp->rcv_scale = tp->request_r_scale; 2061 } 2062 tp->rcv_adv += min(tp->rcv_wnd, 2063 TCP_MAXWIN << tp->rcv_scale); 2064 tp->snd_una++; /* SYN is acked */ 2065 /* 2066 * If not all the data that was sent in the TFO SYN 2067 * has been acked, resend the remainder right away. 2068 */ 2069 if (IS_FASTOPEN(tp->t_flags) && 2070 (tp->snd_una != tp->snd_max)) { 2071 tp->snd_nxt = th->th_ack; 2072 tfo_partial_ack = 1; 2073 } 2074 /* 2075 * If there's data, delay ACK; if there's also a FIN 2076 * ACKNOW will be turned on later. 2077 */ 2078 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack) 2079 tcp_timer_activate(tp, TT_DELACK, 2080 tcp_delacktime); 2081 else 2082 tp->t_flags |= TF_ACKNOW; 2083 2084 if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) && 2085 (V_tcp_do_ecn == 1)) { 2086 tp->t_flags2 |= TF2_ECN_PERMIT; 2087 TCPSTAT_INC(tcps_ecn_shs); 2088 } 2089 2090 /* 2091 * Received <SYN,ACK> in SYN_SENT[*] state. 2092 * Transitions: 2093 * SYN_SENT --> ESTABLISHED 2094 * SYN_SENT* --> FIN_WAIT_1 2095 */ 2096 tp->t_starttime = ticks; 2097 if (tp->t_flags & TF_NEEDFIN) { 2098 tcp_state_change(tp, TCPS_FIN_WAIT_1); 2099 tp->t_flags &= ~TF_NEEDFIN; 2100 thflags &= ~TH_SYN; 2101 } else { 2102 tcp_state_change(tp, TCPS_ESTABLISHED); 2103 TCP_PROBE5(connect__established, NULL, tp, 2104 m, tp, th); 2105 cc_conn_init(tp); 2106 tcp_timer_activate(tp, TT_KEEP, 2107 TP_KEEPIDLE(tp)); 2108 } 2109 } else { 2110 /* 2111 * Received initial SYN in SYN-SENT[*] state => 2112 * simultaneous open. 2113 * If it succeeds, connection is * half-synchronized. 2114 * Otherwise, do 3-way handshake: 2115 * SYN-SENT -> SYN-RECEIVED 2116 * SYN-SENT* -> SYN-RECEIVED* 2117 */ 2118 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); 2119 tcp_timer_activate(tp, TT_REXMT, 0); 2120 tcp_state_change(tp, TCPS_SYN_RECEIVED); 2121 } 2122 2123 INP_WLOCK_ASSERT(tp->t_inpcb); 2124 2125 /* 2126 * Advance th->th_seq to correspond to first data byte. 2127 * If data, trim to stay within window, 2128 * dropping FIN if necessary. 2129 */ 2130 th->th_seq++; 2131 if (tlen > tp->rcv_wnd) { 2132 todrop = tlen - tp->rcv_wnd; 2133 m_adj(m, -todrop); 2134 tlen = tp->rcv_wnd; 2135 thflags &= ~TH_FIN; 2136 TCPSTAT_INC(tcps_rcvpackafterwin); 2137 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 2138 } 2139 tp->snd_wl1 = th->th_seq - 1; 2140 tp->rcv_up = th->th_seq; 2141 /* 2142 * Client side of transaction: already sent SYN and data. 2143 * If the remote host used T/TCP to validate the SYN, 2144 * our data will be ACK'd; if so, enter normal data segment 2145 * processing in the middle of step 5, ack processing. 2146 * Otherwise, goto step 6. 2147 */ 2148 if (thflags & TH_ACK) 2149 goto process_ACK; 2150 2151 goto step6; 2152 2153 /* 2154 * If the state is LAST_ACK or CLOSING or TIME_WAIT: 2155 * do normal processing. 2156 * 2157 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. 2158 */ 2159 case TCPS_LAST_ACK: 2160 case TCPS_CLOSING: 2161 break; /* continue normal processing */ 2162 } 2163 2164 /* 2165 * States other than LISTEN or SYN_SENT. 2166 * First check the RST flag and sequence number since reset segments 2167 * are exempt from the timestamp and connection count tests. This 2168 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix 2169 * below which allowed reset segments in half the sequence space 2170 * to fall though and be processed (which gives forged reset 2171 * segments with a random sequence number a 50 percent chance of 2172 * killing a connection). 2173 * Then check timestamp, if present. 2174 * Then check the connection count, if present. 2175 * Then check that at least some bytes of segment are within 2176 * receive window. If segment begins before rcv_nxt, 2177 * drop leading data (and SYN); if nothing left, just ack. 2178 */ 2179 if (thflags & TH_RST) { 2180 /* 2181 * RFC5961 Section 3.2 2182 * 2183 * - RST drops connection only if SEG.SEQ == RCV.NXT. 2184 * - If RST is in window, we send challenge ACK. 2185 * 2186 * Note: to take into account delayed ACKs, we should 2187 * test against last_ack_sent instead of rcv_nxt. 2188 * Note 2: we handle special case of closed window, not 2189 * covered by the RFC. 2190 */ 2191 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && 2192 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || 2193 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) { 2194 KASSERT(tp->t_state != TCPS_SYN_SENT, 2195 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p", 2196 __func__, th, tp)); 2197 2198 if (V_tcp_insecure_rst || 2199 tp->last_ack_sent == th->th_seq) { 2200 TCPSTAT_INC(tcps_drops); 2201 /* Drop the connection. */ 2202 switch (tp->t_state) { 2203 case TCPS_SYN_RECEIVED: 2204 so->so_error = ECONNREFUSED; 2205 goto close; 2206 case TCPS_ESTABLISHED: 2207 case TCPS_FIN_WAIT_1: 2208 case TCPS_FIN_WAIT_2: 2209 case TCPS_CLOSE_WAIT: 2210 case TCPS_CLOSING: 2211 case TCPS_LAST_ACK: 2212 so->so_error = ECONNRESET; 2213 close: 2214 /* FALLTHROUGH */ 2215 default: 2216 tp = tcp_close(tp); 2217 } 2218 } else { 2219 TCPSTAT_INC(tcps_badrst); 2220 /* Send challenge ACK. */ 2221 tcp_respond(tp, mtod(m, void *), th, m, 2222 tp->rcv_nxt, tp->snd_nxt, TH_ACK); 2223 tp->last_ack_sent = tp->rcv_nxt; 2224 m = NULL; 2225 } 2226 } 2227 goto drop; 2228 } 2229 2230 /* 2231 * RFC5961 Section 4.2 2232 * Send challenge ACK for any SYN in synchronized state. 2233 */ 2234 if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT && 2235 tp->t_state != TCPS_SYN_RECEIVED) { 2236 TCPSTAT_INC(tcps_badsyn); 2237 if (V_tcp_insecure_syn && 2238 SEQ_GEQ(th->th_seq, tp->last_ack_sent) && 2239 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { 2240 tp = tcp_drop(tp, ECONNRESET); 2241 rstreason = BANDLIM_UNLIMITED; 2242 } else { 2243 /* Send challenge ACK. */ 2244 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt, 2245 tp->snd_nxt, TH_ACK); 2246 tp->last_ack_sent = tp->rcv_nxt; 2247 m = NULL; 2248 } 2249 goto drop; 2250 } 2251 2252 /* 2253 * RFC 1323 PAWS: If we have a timestamp reply on this segment 2254 * and it's less than ts_recent, drop it. 2255 */ 2256 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && 2257 TSTMP_LT(to.to_tsval, tp->ts_recent)) { 2258 /* Check to see if ts_recent is over 24 days old. */ 2259 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) { 2260 /* 2261 * Invalidate ts_recent. If this segment updates 2262 * ts_recent, the age will be reset later and ts_recent 2263 * will get a valid value. If it does not, setting 2264 * ts_recent to zero will at least satisfy the 2265 * requirement that zero be placed in the timestamp 2266 * echo reply when ts_recent isn't valid. The 2267 * age isn't reset until we get a valid ts_recent 2268 * because we don't want out-of-order segments to be 2269 * dropped when ts_recent is old. 2270 */ 2271 tp->ts_recent = 0; 2272 } else { 2273 TCPSTAT_INC(tcps_rcvduppack); 2274 TCPSTAT_ADD(tcps_rcvdupbyte, tlen); 2275 TCPSTAT_INC(tcps_pawsdrop); 2276 if (tlen) 2277 goto dropafterack; 2278 goto drop; 2279 } 2280 } 2281 2282 /* 2283 * In the SYN-RECEIVED state, validate that the packet belongs to 2284 * this connection before trimming the data to fit the receive 2285 * window. Check the sequence number versus IRS since we know 2286 * the sequence numbers haven't wrapped. This is a partial fix 2287 * for the "LAND" DoS attack. 2288 */ 2289 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { 2290 rstreason = BANDLIM_RST_OPENPORT; 2291 goto dropwithreset; 2292 } 2293 2294 todrop = tp->rcv_nxt - th->th_seq; 2295 if (todrop > 0) { 2296 if (thflags & TH_SYN) { 2297 thflags &= ~TH_SYN; 2298 th->th_seq++; 2299 if (th->th_urp > 1) 2300 th->th_urp--; 2301 else 2302 thflags &= ~TH_URG; 2303 todrop--; 2304 } 2305 /* 2306 * Following if statement from Stevens, vol. 2, p. 960. 2307 */ 2308 if (todrop > tlen 2309 || (todrop == tlen && (thflags & TH_FIN) == 0)) { 2310 /* 2311 * Any valid FIN must be to the left of the window. 2312 * At this point the FIN must be a duplicate or out 2313 * of sequence; drop it. 2314 */ 2315 thflags &= ~TH_FIN; 2316 2317 /* 2318 * Send an ACK to resynchronize and drop any data. 2319 * But keep on processing for RST or ACK. 2320 */ 2321 tp->t_flags |= TF_ACKNOW; 2322 todrop = tlen; 2323 TCPSTAT_INC(tcps_rcvduppack); 2324 TCPSTAT_ADD(tcps_rcvdupbyte, todrop); 2325 } else { 2326 TCPSTAT_INC(tcps_rcvpartduppack); 2327 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop); 2328 } 2329 /* 2330 * DSACK - add SACK block for dropped range 2331 */ 2332 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) { 2333 tcp_update_sack_list(tp, th->th_seq, 2334 th->th_seq + todrop); 2335 /* 2336 * ACK now, as the next in-sequence segment 2337 * will clear the DSACK block again 2338 */ 2339 tp->t_flags |= TF_ACKNOW; 2340 } 2341 drop_hdrlen += todrop; /* drop from the top afterwards */ 2342 th->th_seq += todrop; 2343 tlen -= todrop; 2344 if (th->th_urp > todrop) 2345 th->th_urp -= todrop; 2346 else { 2347 thflags &= ~TH_URG; 2348 th->th_urp = 0; 2349 } 2350 } 2351 2352 /* 2353 * If new data are received on a connection after the 2354 * user processes are gone, then RST the other end. 2355 */ 2356 if ((so->so_state & SS_NOFDREF) && 2357 tp->t_state > TCPS_CLOSE_WAIT && tlen) { 2358 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 2359 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data " 2360 "after socket was closed, " 2361 "sending RST and removing tcpcb\n", 2362 s, __func__, tcpstates[tp->t_state], tlen); 2363 free(s, M_TCPLOG); 2364 } 2365 tp = tcp_close(tp); 2366 TCPSTAT_INC(tcps_rcvafterclose); 2367 rstreason = BANDLIM_UNLIMITED; 2368 goto dropwithreset; 2369 } 2370 2371 /* 2372 * If segment ends after window, drop trailing data 2373 * (and PUSH and FIN); if nothing left, just ACK. 2374 */ 2375 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd); 2376 if (todrop > 0) { 2377 TCPSTAT_INC(tcps_rcvpackafterwin); 2378 if (todrop >= tlen) { 2379 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen); 2380 /* 2381 * If window is closed can only take segments at 2382 * window edge, and have to drop data and PUSH from 2383 * incoming segments. Continue processing, but 2384 * remember to ack. Otherwise, drop segment 2385 * and ack. 2386 */ 2387 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { 2388 tp->t_flags |= TF_ACKNOW; 2389 TCPSTAT_INC(tcps_rcvwinprobe); 2390 } else 2391 goto dropafterack; 2392 } else 2393 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 2394 m_adj(m, -todrop); 2395 tlen -= todrop; 2396 thflags &= ~(TH_PUSH|TH_FIN); 2397 } 2398 2399 /* 2400 * If last ACK falls within this segment's sequence numbers, 2401 * record its timestamp. 2402 * NOTE: 2403 * 1) That the test incorporates suggestions from the latest 2404 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 2405 * 2) That updating only on newer timestamps interferes with 2406 * our earlier PAWS tests, so this check should be solely 2407 * predicated on the sequence space of this segment. 2408 * 3) That we modify the segment boundary check to be 2409 * Last.ACK.Sent <= SEG.SEQ + SEG.Len 2410 * instead of RFC1323's 2411 * Last.ACK.Sent < SEG.SEQ + SEG.Len, 2412 * This modified check allows us to overcome RFC1323's 2413 * limitations as described in Stevens TCP/IP Illustrated 2414 * Vol. 2 p.869. In such cases, we can still calculate the 2415 * RTT correctly when RCV.NXT == Last.ACK.Sent. 2416 */ 2417 if ((to.to_flags & TOF_TS) != 0 && 2418 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 2419 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 2420 ((thflags & (TH_SYN|TH_FIN)) != 0))) { 2421 tp->ts_recent_age = tcp_ts_getticks(); 2422 tp->ts_recent = to.to_tsval; 2423 } 2424 2425 /* 2426 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN 2427 * flag is on (half-synchronized state), then queue data for 2428 * later processing; else drop segment and return. 2429 */ 2430 if ((thflags & TH_ACK) == 0) { 2431 if (tp->t_state == TCPS_SYN_RECEIVED || 2432 (tp->t_flags & TF_NEEDSYN)) { 2433 if (tp->t_state == TCPS_SYN_RECEIVED && 2434 IS_FASTOPEN(tp->t_flags)) { 2435 tp->snd_wnd = tiwin; 2436 cc_conn_init(tp); 2437 } 2438 goto step6; 2439 } else if (tp->t_flags & TF_ACKNOW) 2440 goto dropafterack; 2441 else 2442 goto drop; 2443 } 2444 2445 /* 2446 * Ack processing. 2447 */ 2448 switch (tp->t_state) { 2449 /* 2450 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter 2451 * ESTABLISHED state and continue processing. 2452 * The ACK was checked above. 2453 */ 2454 case TCPS_SYN_RECEIVED: 2455 2456 TCPSTAT_INC(tcps_connects); 2457 soisconnected(so); 2458 /* Do window scaling? */ 2459 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2460 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2461 tp->rcv_scale = tp->request_r_scale; 2462 } 2463 tp->snd_wnd = tiwin; 2464 /* 2465 * Make transitions: 2466 * SYN-RECEIVED -> ESTABLISHED 2467 * SYN-RECEIVED* -> FIN-WAIT-1 2468 */ 2469 tp->t_starttime = ticks; 2470 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { 2471 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 2472 tp->t_tfo_pending = NULL; 2473 } 2474 if (tp->t_flags & TF_NEEDFIN) { 2475 tcp_state_change(tp, TCPS_FIN_WAIT_1); 2476 tp->t_flags &= ~TF_NEEDFIN; 2477 } else { 2478 tcp_state_change(tp, TCPS_ESTABLISHED); 2479 TCP_PROBE5(accept__established, NULL, tp, 2480 m, tp, th); 2481 /* 2482 * TFO connections call cc_conn_init() during SYN 2483 * processing. Calling it again here for such 2484 * connections is not harmless as it would undo the 2485 * snd_cwnd reduction that occurs when a TFO SYN|ACK 2486 * is retransmitted. 2487 */ 2488 if (!IS_FASTOPEN(tp->t_flags)) 2489 cc_conn_init(tp); 2490 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); 2491 } 2492 /* 2493 * Account for the ACK of our SYN prior to 2494 * regular ACK processing below, except for 2495 * simultaneous SYN, which is handled later. 2496 */ 2497 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) 2498 incforsyn = 1; 2499 /* 2500 * If segment contains data or ACK, will call tcp_reass() 2501 * later; if not, do so now to pass queued data to user. 2502 */ 2503 if (tlen == 0 && (thflags & TH_FIN) == 0) { 2504 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, 2505 (struct mbuf *)0); 2506 tcp_handle_wakeup(tp, so); 2507 } 2508 tp->snd_wl1 = th->th_seq - 1; 2509 /* FALLTHROUGH */ 2510 2511 /* 2512 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 2513 * ACKs. If the ack is in the range 2514 * tp->snd_una < th->th_ack <= tp->snd_max 2515 * then advance tp->snd_una to th->th_ack and drop 2516 * data from the retransmission queue. If this ACK reflects 2517 * more up to date window information we update our window information. 2518 */ 2519 case TCPS_ESTABLISHED: 2520 case TCPS_FIN_WAIT_1: 2521 case TCPS_FIN_WAIT_2: 2522 case TCPS_CLOSE_WAIT: 2523 case TCPS_CLOSING: 2524 case TCPS_LAST_ACK: 2525 if (SEQ_GT(th->th_ack, tp->snd_max)) { 2526 TCPSTAT_INC(tcps_rcvacktoomuch); 2527 goto dropafterack; 2528 } 2529 if ((tp->t_flags & TF_SACK_PERMIT) && 2530 ((to.to_flags & TOF_SACK) || 2531 !TAILQ_EMPTY(&tp->snd_holes))) { 2532 if (((sack_changed = tcp_sack_doack(tp, &to, th->th_ack)) != 0) && 2533 (tp->t_flags & TF_LRD)) { 2534 tcp_sack_lost_retransmission(tp, th); 2535 } 2536 } else 2537 /* 2538 * Reset the value so that previous (valid) value 2539 * from the last ack with SACK doesn't get used. 2540 */ 2541 tp->sackhint.sacked_bytes = 0; 2542 2543 #ifdef TCP_HHOOK 2544 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 2545 hhook_run_tcp_est_in(tp, th, &to); 2546 #endif 2547 2548 if (SEQ_LEQ(th->th_ack, tp->snd_una)) { 2549 maxseg = tcp_maxseg(tp); 2550 if (tlen == 0 && 2551 (tiwin == tp->snd_wnd || 2552 (tp->t_flags & TF_SACK_PERMIT))) { 2553 /* 2554 * If this is the first time we've seen a 2555 * FIN from the remote, this is not a 2556 * duplicate and it needs to be processed 2557 * normally. This happens during a 2558 * simultaneous close. 2559 */ 2560 if ((thflags & TH_FIN) && 2561 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) { 2562 tp->t_dupacks = 0; 2563 break; 2564 } 2565 TCPSTAT_INC(tcps_rcvdupack); 2566 /* 2567 * If we have outstanding data (other than 2568 * a window probe), this is a completely 2569 * duplicate ack (ie, window info didn't 2570 * change and FIN isn't set), 2571 * the ack is the biggest we've 2572 * seen and we've seen exactly our rexmt 2573 * threshold of them, assume a packet 2574 * has been dropped and retransmit it. 2575 * Kludge snd_nxt & the congestion 2576 * window so we send only this one 2577 * packet. 2578 * 2579 * We know we're losing at the current 2580 * window size so do congestion avoidance 2581 * (set ssthresh to half the current window 2582 * and pull our congestion window back to 2583 * the new ssthresh). 2584 * 2585 * Dup acks mean that packets have left the 2586 * network (they're now cached at the receiver) 2587 * so bump cwnd by the amount in the receiver 2588 * to keep a constant cwnd packets in the 2589 * network. 2590 * 2591 * When using TCP ECN, notify the peer that 2592 * we reduced the cwnd. 2593 */ 2594 /* 2595 * Following 2 kinds of acks should not affect 2596 * dupack counting: 2597 * 1) Old acks 2598 * 2) Acks with SACK but without any new SACK 2599 * information in them. These could result from 2600 * any anomaly in the network like a switch 2601 * duplicating packets or a possible DoS attack. 2602 */ 2603 if (th->th_ack != tp->snd_una || 2604 ((tp->t_flags & TF_SACK_PERMIT) && 2605 (to.to_flags & TOF_SACK) && 2606 !sack_changed)) 2607 break; 2608 else if (!tcp_timer_active(tp, TT_REXMT)) 2609 tp->t_dupacks = 0; 2610 else if (++tp->t_dupacks > tcprexmtthresh || 2611 IN_FASTRECOVERY(tp->t_flags)) { 2612 cc_ack_received(tp, th, nsegs, 2613 CC_DUPACK); 2614 if (V_tcp_do_prr && 2615 IN_FASTRECOVERY(tp->t_flags)) { 2616 tcp_do_prr_ack(tp, th, &to); 2617 } else if ((tp->t_flags & TF_SACK_PERMIT) && 2618 (to.to_flags & TOF_SACK) && 2619 IN_FASTRECOVERY(tp->t_flags)) { 2620 int awnd; 2621 2622 /* 2623 * Compute the amount of data in flight first. 2624 * We can inject new data into the pipe iff 2625 * we have less than 1/2 the original window's 2626 * worth of data in flight. 2627 */ 2628 if (V_tcp_do_newsack) 2629 awnd = tcp_compute_pipe(tp); 2630 else 2631 awnd = (tp->snd_nxt - tp->snd_fack) + 2632 tp->sackhint.sack_bytes_rexmit; 2633 2634 if (awnd < tp->snd_ssthresh) { 2635 tp->snd_cwnd += maxseg; 2636 if (tp->snd_cwnd > tp->snd_ssthresh) 2637 tp->snd_cwnd = tp->snd_ssthresh; 2638 } 2639 } else 2640 tp->snd_cwnd += maxseg; 2641 (void) tp->t_fb->tfb_tcp_output(tp); 2642 goto drop; 2643 } else if (tp->t_dupacks == tcprexmtthresh || 2644 (tp->t_flags & TF_SACK_PERMIT && 2645 V_tcp_do_newsack && 2646 tp->sackhint.sacked_bytes > 2647 (tcprexmtthresh - 1) * maxseg)) { 2648 enter_recovery: 2649 /* 2650 * Above is the RFC6675 trigger condition of 2651 * more than (dupthresh-1)*maxseg sacked data. 2652 * If the count of holes in the 2653 * scoreboard is >= dupthresh, we could 2654 * also enter loss recovery, but don't 2655 * have that value readily available. 2656 */ 2657 tp->t_dupacks = tcprexmtthresh; 2658 tcp_seq onxt = tp->snd_nxt; 2659 2660 /* 2661 * If we're doing sack, or prr, check 2662 * to see if we're already in sack 2663 * recovery. If we're not doing sack, 2664 * check to see if we're in newreno 2665 * recovery. 2666 */ 2667 if (V_tcp_do_prr || 2668 (tp->t_flags & TF_SACK_PERMIT)) { 2669 if (IN_FASTRECOVERY(tp->t_flags)) { 2670 tp->t_dupacks = 0; 2671 break; 2672 } 2673 } else { 2674 if (SEQ_LEQ(th->th_ack, 2675 tp->snd_recover)) { 2676 tp->t_dupacks = 0; 2677 break; 2678 } 2679 } 2680 /* Congestion signal before ack. */ 2681 cc_cong_signal(tp, th, CC_NDUPACK); 2682 cc_ack_received(tp, th, nsegs, 2683 CC_DUPACK); 2684 tcp_timer_activate(tp, TT_REXMT, 0); 2685 tp->t_rtttime = 0; 2686 if (V_tcp_do_prr) { 2687 /* 2688 * snd_ssthresh is already updated by 2689 * cc_cong_signal. 2690 */ 2691 if ((tp->t_flags & TF_SACK_PERMIT) && 2692 (to.to_flags & TOF_SACK)) { 2693 tp->sackhint.prr_delivered = 2694 tp->sackhint.sacked_bytes; 2695 } else { 2696 tp->sackhint.prr_delivered = 2697 imin(tp->snd_max - tp->snd_una, 2698 imin(INT_MAX / 65536, 2699 tp->t_dupacks) * maxseg); 2700 } 2701 tp->sackhint.recover_fs = max(1, 2702 tp->snd_nxt - tp->snd_una); 2703 } 2704 if ((tp->t_flags & TF_SACK_PERMIT) && 2705 (to.to_flags & TOF_SACK)) { 2706 TCPSTAT_INC( 2707 tcps_sack_recovery_episode); 2708 tp->snd_recover = tp->snd_nxt; 2709 tp->snd_cwnd = maxseg; 2710 (void) tp->t_fb->tfb_tcp_output(tp); 2711 if (SEQ_GT(th->th_ack, tp->snd_una)) 2712 goto resume_partialack; 2713 goto drop; 2714 } 2715 tp->snd_nxt = th->th_ack; 2716 tp->snd_cwnd = maxseg; 2717 (void) tp->t_fb->tfb_tcp_output(tp); 2718 KASSERT(tp->snd_limited <= 2, 2719 ("%s: tp->snd_limited too big", 2720 __func__)); 2721 tp->snd_cwnd = tp->snd_ssthresh + 2722 maxseg * 2723 (tp->t_dupacks - tp->snd_limited); 2724 if (SEQ_GT(onxt, tp->snd_nxt)) 2725 tp->snd_nxt = onxt; 2726 goto drop; 2727 } else if (V_tcp_do_rfc3042) { 2728 /* 2729 * Process first and second duplicate 2730 * ACKs. Each indicates a segment 2731 * leaving the network, creating room 2732 * for more. Make sure we can send a 2733 * packet on reception of each duplicate 2734 * ACK by increasing snd_cwnd by one 2735 * segment. Restore the original 2736 * snd_cwnd after packet transmission. 2737 */ 2738 cc_ack_received(tp, th, nsegs, 2739 CC_DUPACK); 2740 uint32_t oldcwnd = tp->snd_cwnd; 2741 tcp_seq oldsndmax = tp->snd_max; 2742 u_int sent; 2743 int avail; 2744 2745 KASSERT(tp->t_dupacks == 1 || 2746 tp->t_dupacks == 2, 2747 ("%s: dupacks not 1 or 2", 2748 __func__)); 2749 if (tp->t_dupacks == 1) 2750 tp->snd_limited = 0; 2751 tp->snd_cwnd = 2752 (tp->snd_nxt - tp->snd_una) + 2753 (tp->t_dupacks - tp->snd_limited) * 2754 maxseg; 2755 /* 2756 * Only call tcp_output when there 2757 * is new data available to be sent. 2758 * Otherwise we would send pure ACKs. 2759 */ 2760 SOCKBUF_LOCK(&so->so_snd); 2761 avail = sbavail(&so->so_snd) - 2762 (tp->snd_nxt - tp->snd_una); 2763 SOCKBUF_UNLOCK(&so->so_snd); 2764 if (avail > 0) 2765 (void) tp->t_fb->tfb_tcp_output(tp); 2766 sent = tp->snd_max - oldsndmax; 2767 if (sent > maxseg) { 2768 KASSERT((tp->t_dupacks == 2 && 2769 tp->snd_limited == 0) || 2770 (sent == maxseg + 1 && 2771 tp->t_flags & TF_SENTFIN), 2772 ("%s: sent too much", 2773 __func__)); 2774 tp->snd_limited = 2; 2775 } else if (sent > 0) 2776 ++tp->snd_limited; 2777 tp->snd_cwnd = oldcwnd; 2778 goto drop; 2779 } 2780 } 2781 break; 2782 } else { 2783 /* 2784 * This ack is advancing the left edge, reset the 2785 * counter. 2786 */ 2787 tp->t_dupacks = 0; 2788 /* 2789 * If this ack also has new SACK info, increment the 2790 * counter as per rfc6675. The variable 2791 * sack_changed tracks all changes to the SACK 2792 * scoreboard, including when partial ACKs without 2793 * SACK options are received, and clear the scoreboard 2794 * from the left side. Such partial ACKs should not be 2795 * counted as dupacks here. 2796 */ 2797 if ((tp->t_flags & TF_SACK_PERMIT) && 2798 (to.to_flags & TOF_SACK) && 2799 sack_changed) { 2800 tp->t_dupacks++; 2801 /* limit overhead by setting maxseg last */ 2802 if (!IN_FASTRECOVERY(tp->t_flags) && 2803 (tp->sackhint.sacked_bytes > 2804 ((tcprexmtthresh - 1) * 2805 (maxseg = tcp_maxseg(tp))))) { 2806 goto enter_recovery; 2807 } 2808 } 2809 } 2810 2811 resume_partialack: 2812 KASSERT(SEQ_GT(th->th_ack, tp->snd_una), 2813 ("%s: th_ack <= snd_una", __func__)); 2814 2815 /* 2816 * If the congestion window was inflated to account 2817 * for the other side's cached packets, retract it. 2818 */ 2819 if (IN_FASTRECOVERY(tp->t_flags)) { 2820 if (SEQ_LT(th->th_ack, tp->snd_recover)) { 2821 if (tp->t_flags & TF_SACK_PERMIT) 2822 if (V_tcp_do_prr && to.to_flags & TOF_SACK) { 2823 tcp_timer_activate(tp, TT_REXMT, 0); 2824 tp->t_rtttime = 0; 2825 tcp_do_prr_ack(tp, th, &to); 2826 tp->t_flags |= TF_ACKNOW; 2827 (void) tcp_output(tp); 2828 } else 2829 tcp_sack_partialack(tp, th); 2830 else 2831 tcp_newreno_partial_ack(tp, th); 2832 } else 2833 cc_post_recovery(tp, th); 2834 } else if (IN_CONGRECOVERY(tp->t_flags)) { 2835 if (SEQ_LT(th->th_ack, tp->snd_recover)) { 2836 if (V_tcp_do_prr) { 2837 tp->sackhint.delivered_data = BYTES_THIS_ACK(tp, th); 2838 tp->snd_fack = th->th_ack; 2839 tcp_do_prr_ack(tp, th, &to); 2840 (void) tcp_output(tp); 2841 } 2842 } else 2843 cc_post_recovery(tp, th); 2844 } 2845 /* 2846 * If we reach this point, ACK is not a duplicate, 2847 * i.e., it ACKs something we sent. 2848 */ 2849 if (tp->t_flags & TF_NEEDSYN) { 2850 /* 2851 * T/TCP: Connection was half-synchronized, and our 2852 * SYN has been ACK'd (so connection is now fully 2853 * synchronized). Go to non-starred state, 2854 * increment snd_una for ACK of SYN, and check if 2855 * we can do window scaling. 2856 */ 2857 tp->t_flags &= ~TF_NEEDSYN; 2858 tp->snd_una++; 2859 /* Do window scaling? */ 2860 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2861 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2862 tp->rcv_scale = tp->request_r_scale; 2863 /* Send window already scaled. */ 2864 } 2865 } 2866 2867 process_ACK: 2868 INP_WLOCK_ASSERT(tp->t_inpcb); 2869 2870 /* 2871 * Adjust for the SYN bit in sequence space, 2872 * but don't account for it in cwnd calculations. 2873 * This is for the SYN_RECEIVED, non-simultaneous 2874 * SYN case. SYN_SENT and simultaneous SYN are 2875 * treated elsewhere. 2876 */ 2877 if (incforsyn) 2878 tp->snd_una++; 2879 acked = BYTES_THIS_ACK(tp, th); 2880 KASSERT(acked >= 0, ("%s: acked unexepectedly negative " 2881 "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__, 2882 tp->snd_una, th->th_ack, tp, m)); 2883 TCPSTAT_ADD(tcps_rcvackpack, nsegs); 2884 TCPSTAT_ADD(tcps_rcvackbyte, acked); 2885 2886 /* 2887 * If we just performed our first retransmit, and the ACK 2888 * arrives within our recovery window, then it was a mistake 2889 * to do the retransmit in the first place. Recover our 2890 * original cwnd and ssthresh, and proceed to transmit where 2891 * we left off. 2892 */ 2893 if (tp->t_rxtshift == 1 && 2894 tp->t_flags & TF_PREVVALID && 2895 tp->t_badrxtwin && 2896 SEQ_LT(to.to_tsecr, tp->t_badrxtwin)) 2897 cc_cong_signal(tp, th, CC_RTO_ERR); 2898 2899 /* 2900 * If we have a timestamp reply, update smoothed 2901 * round trip time. If no timestamp is present but 2902 * transmit timer is running and timed sequence 2903 * number was acked, update smoothed round trip time. 2904 * Since we now have an rtt measurement, cancel the 2905 * timer backoff (cf., Phil Karn's retransmit alg.). 2906 * Recompute the initial retransmit timer. 2907 * 2908 * Some boxes send broken timestamp replies 2909 * during the SYN+ACK phase, ignore 2910 * timestamps of 0 or we could calculate a 2911 * huge RTT and blow up the retransmit timer. 2912 */ 2913 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) { 2914 uint32_t t; 2915 2916 t = tcp_ts_getticks() - to.to_tsecr; 2917 if (!tp->t_rttlow || tp->t_rttlow > t) 2918 tp->t_rttlow = t; 2919 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1); 2920 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { 2921 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime) 2922 tp->t_rttlow = ticks - tp->t_rtttime; 2923 tcp_xmit_timer(tp, ticks - tp->t_rtttime); 2924 } 2925 2926 /* 2927 * If all outstanding data is acked, stop retransmit 2928 * timer and remember to restart (more output or persist). 2929 * If there is more data to be acked, restart retransmit 2930 * timer, using current (possibly backed-off) value. 2931 */ 2932 if (th->th_ack == tp->snd_max) { 2933 tcp_timer_activate(tp, TT_REXMT, 0); 2934 needoutput = 1; 2935 } else if (!tcp_timer_active(tp, TT_PERSIST)) 2936 tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); 2937 2938 /* 2939 * If no data (only SYN) was ACK'd, 2940 * skip rest of ACK processing. 2941 */ 2942 if (acked == 0) 2943 goto step6; 2944 2945 /* 2946 * Let the congestion control algorithm update congestion 2947 * control related information. This typically means increasing 2948 * the congestion window. 2949 */ 2950 cc_ack_received(tp, th, nsegs, CC_ACK); 2951 2952 SOCKBUF_LOCK(&so->so_snd); 2953 if (acked > sbavail(&so->so_snd)) { 2954 if (tp->snd_wnd >= sbavail(&so->so_snd)) 2955 tp->snd_wnd -= sbavail(&so->so_snd); 2956 else 2957 tp->snd_wnd = 0; 2958 mfree = sbcut_locked(&so->so_snd, 2959 (int)sbavail(&so->so_snd)); 2960 ourfinisacked = 1; 2961 } else { 2962 mfree = sbcut_locked(&so->so_snd, acked); 2963 if (tp->snd_wnd >= (uint32_t) acked) 2964 tp->snd_wnd -= acked; 2965 else 2966 tp->snd_wnd = 0; 2967 ourfinisacked = 0; 2968 } 2969 /* NB: sowwakeup_locked() does an implicit unlock. */ 2970 sowwakeup_locked(so); 2971 m_freem(mfree); 2972 /* Detect una wraparound. */ 2973 if (!IN_RECOVERY(tp->t_flags) && 2974 SEQ_GT(tp->snd_una, tp->snd_recover) && 2975 SEQ_LEQ(th->th_ack, tp->snd_recover)) 2976 tp->snd_recover = th->th_ack - 1; 2977 /* XXXLAS: Can this be moved up into cc_post_recovery? */ 2978 if (IN_RECOVERY(tp->t_flags) && 2979 SEQ_GEQ(th->th_ack, tp->snd_recover)) { 2980 EXIT_RECOVERY(tp->t_flags); 2981 } 2982 tp->snd_una = th->th_ack; 2983 if (tp->t_flags & TF_SACK_PERMIT) { 2984 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 2985 tp->snd_recover = tp->snd_una; 2986 } 2987 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 2988 tp->snd_nxt = tp->snd_una; 2989 2990 switch (tp->t_state) { 2991 /* 2992 * In FIN_WAIT_1 STATE in addition to the processing 2993 * for the ESTABLISHED state if our FIN is now acknowledged 2994 * then enter FIN_WAIT_2. 2995 */ 2996 case TCPS_FIN_WAIT_1: 2997 if (ourfinisacked) { 2998 /* 2999 * If we can't receive any more 3000 * data, then closing user can proceed. 3001 * Starting the timer is contrary to the 3002 * specification, but if we don't get a FIN 3003 * we'll hang forever. 3004 * 3005 * XXXjl: 3006 * we should release the tp also, and use a 3007 * compressed state. 3008 */ 3009 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3010 soisdisconnected(so); 3011 tcp_timer_activate(tp, TT_2MSL, 3012 (tcp_fast_finwait2_recycle ? 3013 tcp_finwait2_timeout : 3014 TP_MAXIDLE(tp))); 3015 } 3016 tcp_state_change(tp, TCPS_FIN_WAIT_2); 3017 } 3018 break; 3019 3020 /* 3021 * In CLOSING STATE in addition to the processing for 3022 * the ESTABLISHED state if the ACK acknowledges our FIN 3023 * then enter the TIME-WAIT state, otherwise ignore 3024 * the segment. 3025 */ 3026 case TCPS_CLOSING: 3027 if (ourfinisacked) { 3028 tcp_twstart(tp); 3029 m_freem(m); 3030 return; 3031 } 3032 break; 3033 3034 /* 3035 * In LAST_ACK, we may still be waiting for data to drain 3036 * and/or to be acked, as well as for the ack of our FIN. 3037 * If our FIN is now acknowledged, delete the TCB, 3038 * enter the closed state and return. 3039 */ 3040 case TCPS_LAST_ACK: 3041 if (ourfinisacked) { 3042 tp = tcp_close(tp); 3043 goto drop; 3044 } 3045 break; 3046 } 3047 } 3048 3049 step6: 3050 INP_WLOCK_ASSERT(tp->t_inpcb); 3051 3052 /* 3053 * Update window information. 3054 * Don't look at window if no ACK: TAC's send garbage on first SYN. 3055 */ 3056 if ((thflags & TH_ACK) && 3057 (SEQ_LT(tp->snd_wl1, th->th_seq) || 3058 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 3059 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 3060 /* keep track of pure window updates */ 3061 if (tlen == 0 && 3062 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 3063 TCPSTAT_INC(tcps_rcvwinupd); 3064 tp->snd_wnd = tiwin; 3065 tp->snd_wl1 = th->th_seq; 3066 tp->snd_wl2 = th->th_ack; 3067 if (tp->snd_wnd > tp->max_sndwnd) 3068 tp->max_sndwnd = tp->snd_wnd; 3069 needoutput = 1; 3070 } 3071 3072 /* 3073 * Process segments with URG. 3074 */ 3075 if ((thflags & TH_URG) && th->th_urp && 3076 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 3077 /* 3078 * This is a kludge, but if we receive and accept 3079 * random urgent pointers, we'll crash in 3080 * soreceive. It's hard to imagine someone 3081 * actually wanting to send this much urgent data. 3082 */ 3083 SOCKBUF_LOCK(&so->so_rcv); 3084 if (th->th_urp + sbavail(&so->so_rcv) > sb_max) { 3085 th->th_urp = 0; /* XXX */ 3086 thflags &= ~TH_URG; /* XXX */ 3087 SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */ 3088 goto dodata; /* XXX */ 3089 } 3090 /* 3091 * If this segment advances the known urgent pointer, 3092 * then mark the data stream. This should not happen 3093 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 3094 * a FIN has been received from the remote side. 3095 * In these states we ignore the URG. 3096 * 3097 * According to RFC961 (Assigned Protocols), 3098 * the urgent pointer points to the last octet 3099 * of urgent data. We continue, however, 3100 * to consider it to indicate the first octet 3101 * of data past the urgent section as the original 3102 * spec states (in one of two places). 3103 */ 3104 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { 3105 tp->rcv_up = th->th_seq + th->th_urp; 3106 so->so_oobmark = sbavail(&so->so_rcv) + 3107 (tp->rcv_up - tp->rcv_nxt) - 1; 3108 if (so->so_oobmark == 0) 3109 so->so_rcv.sb_state |= SBS_RCVATMARK; 3110 sohasoutofband(so); 3111 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 3112 } 3113 SOCKBUF_UNLOCK(&so->so_rcv); 3114 /* 3115 * Remove out of band data so doesn't get presented to user. 3116 * This can happen independent of advancing the URG pointer, 3117 * but if two URG's are pending at once, some out-of-band 3118 * data may creep in... ick. 3119 */ 3120 if (th->th_urp <= (uint32_t)tlen && 3121 !(so->so_options & SO_OOBINLINE)) { 3122 /* hdr drop is delayed */ 3123 tcp_pulloutofband(so, th, m, drop_hdrlen); 3124 } 3125 } else { 3126 /* 3127 * If no out of band data is expected, 3128 * pull receive urgent pointer along 3129 * with the receive window. 3130 */ 3131 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 3132 tp->rcv_up = tp->rcv_nxt; 3133 } 3134 dodata: /* XXX */ 3135 INP_WLOCK_ASSERT(tp->t_inpcb); 3136 3137 /* 3138 * Process the segment text, merging it into the TCP sequencing queue, 3139 * and arranging for acknowledgment of receipt if necessary. 3140 * This process logically involves adjusting tp->rcv_wnd as data 3141 * is presented to the user (this happens in tcp_usrreq.c, 3142 * case PRU_RCVD). If a FIN has already been received on this 3143 * connection then we just ignore the text. 3144 */ 3145 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && 3146 IS_FASTOPEN(tp->t_flags)); 3147 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && 3148 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 3149 tcp_seq save_start = th->th_seq; 3150 tcp_seq save_rnxt = tp->rcv_nxt; 3151 int save_tlen = tlen; 3152 m_adj(m, drop_hdrlen); /* delayed header drop */ 3153 /* 3154 * Insert segment which includes th into TCP reassembly queue 3155 * with control block tp. Set thflags to whether reassembly now 3156 * includes a segment with FIN. This handles the common case 3157 * inline (segment is the next to be received on an established 3158 * connection, and the queue is empty), avoiding linkage into 3159 * and removal from the queue and repetition of various 3160 * conversions. 3161 * Set DELACK for segments received in order, but ack 3162 * immediately when segments are out of order (so 3163 * fast retransmit can work). 3164 */ 3165 if (th->th_seq == tp->rcv_nxt && 3166 SEGQ_EMPTY(tp) && 3167 (TCPS_HAVEESTABLISHED(tp->t_state) || 3168 tfo_syn)) { 3169 if (DELAY_ACK(tp, tlen) || tfo_syn) 3170 tp->t_flags |= TF_DELACK; 3171 else 3172 tp->t_flags |= TF_ACKNOW; 3173 tp->rcv_nxt += tlen; 3174 if (tlen && 3175 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 3176 (tp->t_fbyte_in == 0)) { 3177 tp->t_fbyte_in = ticks; 3178 if (tp->t_fbyte_in == 0) 3179 tp->t_fbyte_in = 1; 3180 if (tp->t_fbyte_out && tp->t_fbyte_in) 3181 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 3182 } 3183 thflags = th->th_flags & TH_FIN; 3184 TCPSTAT_INC(tcps_rcvpack); 3185 TCPSTAT_ADD(tcps_rcvbyte, tlen); 3186 SOCKBUF_LOCK(&so->so_rcv); 3187 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3188 m_freem(m); 3189 else 3190 sbappendstream_locked(&so->so_rcv, m, 0); 3191 tp->t_flags |= TF_WAKESOR; 3192 } else { 3193 /* 3194 * XXX: Due to the header drop above "th" is 3195 * theoretically invalid by now. Fortunately 3196 * m_adj() doesn't actually frees any mbufs 3197 * when trimming from the head. 3198 */ 3199 tcp_seq temp = save_start; 3200 3201 thflags = tcp_reass(tp, th, &temp, &tlen, m); 3202 tp->t_flags |= TF_ACKNOW; 3203 } 3204 if ((tp->t_flags & TF_SACK_PERMIT) && 3205 (save_tlen > 0) && 3206 TCPS_HAVEESTABLISHED(tp->t_state)) { 3207 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { 3208 /* 3209 * DSACK actually handled in the fastpath 3210 * above. 3211 */ 3212 tcp_update_sack_list(tp, save_start, 3213 save_start + save_tlen); 3214 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { 3215 if ((tp->rcv_numsacks >= 1) && 3216 (tp->sackblks[0].end == save_start)) { 3217 /* 3218 * Partial overlap, recorded at todrop 3219 * above. 3220 */ 3221 tcp_update_sack_list(tp, 3222 tp->sackblks[0].start, 3223 tp->sackblks[0].end); 3224 } else { 3225 tcp_update_dsack_list(tp, save_start, 3226 save_start + save_tlen); 3227 } 3228 } else if (tlen >= save_tlen) { 3229 /* Update of sackblks. */ 3230 tcp_update_dsack_list(tp, save_start, 3231 save_start + save_tlen); 3232 } else if (tlen > 0) { 3233 tcp_update_dsack_list(tp, save_start, 3234 save_start + tlen); 3235 } 3236 } 3237 tcp_handle_wakeup(tp, so); 3238 #if 0 3239 /* 3240 * Note the amount of data that peer has sent into 3241 * our window, in order to estimate the sender's 3242 * buffer size. 3243 * XXX: Unused. 3244 */ 3245 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) 3246 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 3247 else 3248 len = so->so_rcv.sb_hiwat; 3249 #endif 3250 } else { 3251 m_freem(m); 3252 thflags &= ~TH_FIN; 3253 } 3254 3255 /* 3256 * If FIN is received ACK the FIN and let the user know 3257 * that the connection is closing. 3258 */ 3259 if (thflags & TH_FIN) { 3260 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 3261 /* The socket upcall is handled by socantrcvmore. */ 3262 socantrcvmore(so); 3263 /* 3264 * If connection is half-synchronized 3265 * (ie NEEDSYN flag on) then delay ACK, 3266 * so it may be piggybacked when SYN is sent. 3267 * Otherwise, since we received a FIN then no 3268 * more input can be expected, send ACK now. 3269 */ 3270 if (tp->t_flags & TF_NEEDSYN) 3271 tp->t_flags |= TF_DELACK; 3272 else 3273 tp->t_flags |= TF_ACKNOW; 3274 tp->rcv_nxt++; 3275 } 3276 switch (tp->t_state) { 3277 /* 3278 * In SYN_RECEIVED and ESTABLISHED STATES 3279 * enter the CLOSE_WAIT state. 3280 */ 3281 case TCPS_SYN_RECEIVED: 3282 tp->t_starttime = ticks; 3283 /* FALLTHROUGH */ 3284 case TCPS_ESTABLISHED: 3285 tcp_state_change(tp, TCPS_CLOSE_WAIT); 3286 break; 3287 3288 /* 3289 * If still in FIN_WAIT_1 STATE FIN has not been acked so 3290 * enter the CLOSING state. 3291 */ 3292 case TCPS_FIN_WAIT_1: 3293 tcp_state_change(tp, TCPS_CLOSING); 3294 break; 3295 3296 /* 3297 * In FIN_WAIT_2 state enter the TIME_WAIT state, 3298 * starting the time-wait timer, turning off the other 3299 * standard timers. 3300 */ 3301 case TCPS_FIN_WAIT_2: 3302 tcp_twstart(tp); 3303 return; 3304 } 3305 } 3306 #ifdef TCPDEBUG 3307 if (so->so_options & SO_DEBUG) 3308 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, 3309 &tcp_savetcp, 0); 3310 #endif 3311 TCP_PROBE3(debug__input, tp, th, m); 3312 3313 /* 3314 * Return any desired output. 3315 */ 3316 if (needoutput || (tp->t_flags & TF_ACKNOW)) 3317 (void) tp->t_fb->tfb_tcp_output(tp); 3318 3319 check_delack: 3320 INP_WLOCK_ASSERT(tp->t_inpcb); 3321 3322 if (tp->t_flags & TF_DELACK) { 3323 tp->t_flags &= ~TF_DELACK; 3324 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); 3325 } 3326 INP_WUNLOCK(tp->t_inpcb); 3327 return; 3328 3329 dropafterack: 3330 /* 3331 * Generate an ACK dropping incoming segment if it occupies 3332 * sequence space, where the ACK reflects our state. 3333 * 3334 * We can now skip the test for the RST flag since all 3335 * paths to this code happen after packets containing 3336 * RST have been dropped. 3337 * 3338 * In the SYN-RECEIVED state, don't send an ACK unless the 3339 * segment we received passes the SYN-RECEIVED ACK test. 3340 * If it fails send a RST. This breaks the loop in the 3341 * "LAND" DoS attack, and also prevents an ACK storm 3342 * between two listening ports that have been sent forged 3343 * SYN segments, each with the source address of the other. 3344 */ 3345 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && 3346 (SEQ_GT(tp->snd_una, th->th_ack) || 3347 SEQ_GT(th->th_ack, tp->snd_max)) ) { 3348 rstreason = BANDLIM_RST_OPENPORT; 3349 goto dropwithreset; 3350 } 3351 #ifdef TCPDEBUG 3352 if (so->so_options & SO_DEBUG) 3353 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 3354 &tcp_savetcp, 0); 3355 #endif 3356 TCP_PROBE3(debug__input, tp, th, m); 3357 tp->t_flags |= TF_ACKNOW; 3358 (void) tp->t_fb->tfb_tcp_output(tp); 3359 INP_WUNLOCK(tp->t_inpcb); 3360 m_freem(m); 3361 return; 3362 3363 dropwithreset: 3364 if (tp != NULL) { 3365 tcp_dropwithreset(m, th, tp, tlen, rstreason); 3366 INP_WUNLOCK(tp->t_inpcb); 3367 } else 3368 tcp_dropwithreset(m, th, NULL, tlen, rstreason); 3369 return; 3370 3371 drop: 3372 /* 3373 * Drop space held by incoming segment and return. 3374 */ 3375 #ifdef TCPDEBUG 3376 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 3377 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, 3378 &tcp_savetcp, 0); 3379 #endif 3380 TCP_PROBE3(debug__input, tp, th, m); 3381 if (tp != NULL) { 3382 INP_WUNLOCK(tp->t_inpcb); 3383 } 3384 m_freem(m); 3385 } 3386 3387 /* 3388 * Issue RST and make ACK acceptable to originator of segment. 3389 * The mbuf must still include the original packet header. 3390 * tp may be NULL. 3391 */ 3392 void 3393 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, 3394 int tlen, int rstreason) 3395 { 3396 #ifdef INET 3397 struct ip *ip; 3398 #endif 3399 #ifdef INET6 3400 struct ip6_hdr *ip6; 3401 #endif 3402 3403 if (tp != NULL) { 3404 INP_LOCK_ASSERT(tp->t_inpcb); 3405 } 3406 3407 /* Don't bother if destination was broadcast/multicast. */ 3408 if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) 3409 goto drop; 3410 #ifdef INET6 3411 if (mtod(m, struct ip *)->ip_v == 6) { 3412 ip6 = mtod(m, struct ip6_hdr *); 3413 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 3414 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 3415 goto drop; 3416 /* IPv6 anycast check is done at tcp6_input() */ 3417 } 3418 #endif 3419 #if defined(INET) && defined(INET6) 3420 else 3421 #endif 3422 #ifdef INET 3423 { 3424 ip = mtod(m, struct ip *); 3425 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 3426 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 3427 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 3428 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 3429 goto drop; 3430 } 3431 #endif 3432 3433 /* Perform bandwidth limiting. */ 3434 if (badport_bandlim(rstreason) < 0) 3435 goto drop; 3436 3437 /* tcp_respond consumes the mbuf chain. */ 3438 if (th->th_flags & TH_ACK) { 3439 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, 3440 th->th_ack, TH_RST); 3441 } else { 3442 if (th->th_flags & TH_SYN) 3443 tlen++; 3444 if (th->th_flags & TH_FIN) 3445 tlen++; 3446 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, 3447 (tcp_seq)0, TH_RST|TH_ACK); 3448 } 3449 return; 3450 drop: 3451 m_freem(m); 3452 } 3453 3454 /* 3455 * Parse TCP options and place in tcpopt. 3456 */ 3457 void 3458 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags) 3459 { 3460 int opt, optlen; 3461 3462 to->to_flags = 0; 3463 for (; cnt > 0; cnt -= optlen, cp += optlen) { 3464 opt = cp[0]; 3465 if (opt == TCPOPT_EOL) 3466 break; 3467 if (opt == TCPOPT_NOP) 3468 optlen = 1; 3469 else { 3470 if (cnt < 2) 3471 break; 3472 optlen = cp[1]; 3473 if (optlen < 2 || optlen > cnt) 3474 break; 3475 } 3476 switch (opt) { 3477 case TCPOPT_MAXSEG: 3478 if (optlen != TCPOLEN_MAXSEG) 3479 continue; 3480 if (!(flags & TO_SYN)) 3481 continue; 3482 to->to_flags |= TOF_MSS; 3483 bcopy((char *)cp + 2, 3484 (char *)&to->to_mss, sizeof(to->to_mss)); 3485 to->to_mss = ntohs(to->to_mss); 3486 break; 3487 case TCPOPT_WINDOW: 3488 if (optlen != TCPOLEN_WINDOW) 3489 continue; 3490 if (!(flags & TO_SYN)) 3491 continue; 3492 to->to_flags |= TOF_SCALE; 3493 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT); 3494 break; 3495 case TCPOPT_TIMESTAMP: 3496 if (optlen != TCPOLEN_TIMESTAMP) 3497 continue; 3498 to->to_flags |= TOF_TS; 3499 bcopy((char *)cp + 2, 3500 (char *)&to->to_tsval, sizeof(to->to_tsval)); 3501 to->to_tsval = ntohl(to->to_tsval); 3502 bcopy((char *)cp + 6, 3503 (char *)&to->to_tsecr, sizeof(to->to_tsecr)); 3504 to->to_tsecr = ntohl(to->to_tsecr); 3505 break; 3506 case TCPOPT_SIGNATURE: 3507 /* 3508 * In order to reply to a host which has set the 3509 * TCP_SIGNATURE option in its initial SYN, we have 3510 * to record the fact that the option was observed 3511 * here for the syncache code to perform the correct 3512 * response. 3513 */ 3514 if (optlen != TCPOLEN_SIGNATURE) 3515 continue; 3516 to->to_flags |= TOF_SIGNATURE; 3517 to->to_signature = cp + 2; 3518 break; 3519 case TCPOPT_SACK_PERMITTED: 3520 if (optlen != TCPOLEN_SACK_PERMITTED) 3521 continue; 3522 if (!(flags & TO_SYN)) 3523 continue; 3524 if (!V_tcp_do_sack) 3525 continue; 3526 to->to_flags |= TOF_SACKPERM; 3527 break; 3528 case TCPOPT_SACK: 3529 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) 3530 continue; 3531 if (flags & TO_SYN) 3532 continue; 3533 to->to_flags |= TOF_SACK; 3534 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; 3535 to->to_sacks = cp + 2; 3536 TCPSTAT_INC(tcps_sack_rcv_blocks); 3537 break; 3538 case TCPOPT_FAST_OPEN: 3539 /* 3540 * Cookie length validation is performed by the 3541 * server side cookie checking code or the client 3542 * side cookie cache update code. 3543 */ 3544 if (!(flags & TO_SYN)) 3545 continue; 3546 if (!V_tcp_fastopen_client_enable && 3547 !V_tcp_fastopen_server_enable) 3548 continue; 3549 to->to_flags |= TOF_FASTOPEN; 3550 to->to_tfo_len = optlen - 2; 3551 to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL; 3552 break; 3553 default: 3554 continue; 3555 } 3556 } 3557 } 3558 3559 /* 3560 * Pull out of band byte out of a segment so 3561 * it doesn't appear in the user's data queue. 3562 * It is still reflected in the segment length for 3563 * sequencing purposes. 3564 */ 3565 void 3566 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, 3567 int off) 3568 { 3569 int cnt = off + th->th_urp - 1; 3570 3571 while (cnt >= 0) { 3572 if (m->m_len > cnt) { 3573 char *cp = mtod(m, caddr_t) + cnt; 3574 struct tcpcb *tp = sototcpcb(so); 3575 3576 INP_WLOCK_ASSERT(tp->t_inpcb); 3577 3578 tp->t_iobc = *cp; 3579 tp->t_oobflags |= TCPOOB_HAVEDATA; 3580 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 3581 m->m_len--; 3582 if (m->m_flags & M_PKTHDR) 3583 m->m_pkthdr.len--; 3584 return; 3585 } 3586 cnt -= m->m_len; 3587 m = m->m_next; 3588 if (m == NULL) 3589 break; 3590 } 3591 panic("tcp_pulloutofband"); 3592 } 3593 3594 /* 3595 * Collect new round-trip time estimate 3596 * and update averages and current timeout. 3597 */ 3598 void 3599 tcp_xmit_timer(struct tcpcb *tp, int rtt) 3600 { 3601 int delta; 3602 3603 INP_WLOCK_ASSERT(tp->t_inpcb); 3604 3605 TCPSTAT_INC(tcps_rttupdated); 3606 tp->t_rttupdated++; 3607 #ifdef STATS 3608 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, 3609 imax(0, rtt * 1000 / hz)); 3610 #endif 3611 if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) { 3612 /* 3613 * srtt is stored as fixed point with 5 bits after the 3614 * binary point (i.e., scaled by 8). The following magic 3615 * is equivalent to the smoothing algorithm in rfc793 with 3616 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 3617 * point). Adjust rtt to origin 0. 3618 */ 3619 delta = ((rtt - 1) << TCP_DELTA_SHIFT) 3620 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); 3621 3622 if ((tp->t_srtt += delta) <= 0) 3623 tp->t_srtt = 1; 3624 3625 /* 3626 * We accumulate a smoothed rtt variance (actually, a 3627 * smoothed mean difference), then set the retransmit 3628 * timer to smoothed rtt + 4 times the smoothed variance. 3629 * rttvar is stored as fixed point with 4 bits after the 3630 * binary point (scaled by 16). The following is 3631 * equivalent to rfc793 smoothing with an alpha of .75 3632 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 3633 * rfc793's wired-in beta. 3634 */ 3635 if (delta < 0) 3636 delta = -delta; 3637 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); 3638 if ((tp->t_rttvar += delta) <= 0) 3639 tp->t_rttvar = 1; 3640 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) 3641 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 3642 } else { 3643 /* 3644 * No rtt measurement yet - use the unsmoothed rtt. 3645 * Set the variance to half the rtt (so our first 3646 * retransmit happens at 3*rtt). 3647 */ 3648 tp->t_srtt = rtt << TCP_RTT_SHIFT; 3649 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); 3650 tp->t_rttbest = tp->t_srtt + tp->t_rttvar; 3651 } 3652 tp->t_rtttime = 0; 3653 tp->t_rxtshift = 0; 3654 3655 /* 3656 * the retransmit should happen at rtt + 4 * rttvar. 3657 * Because of the way we do the smoothing, srtt and rttvar 3658 * will each average +1/2 tick of bias. When we compute 3659 * the retransmit timer, we want 1/2 tick of rounding and 3660 * 1 extra tick because of +-1/2 tick uncertainty in the 3661 * firing of the timer. The bias will give us exactly the 3662 * 1.5 tick we need. But, because the bias is 3663 * statistical, we have to test that we don't drop below 3664 * the minimum feasible timer (which is 2 ticks). 3665 */ 3666 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 3667 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); 3668 3669 /* 3670 * We received an ack for a packet that wasn't retransmitted; 3671 * it is probably safe to discard any error indications we've 3672 * received recently. This isn't quite right, but close enough 3673 * for now (a route might have failed after we sent a segment, 3674 * and the return path might not be symmetrical). 3675 */ 3676 tp->t_softerror = 0; 3677 } 3678 3679 /* 3680 * Determine a reasonable value for maxseg size. 3681 * If the route is known, check route for mtu. 3682 * If none, use an mss that can be handled on the outgoing interface 3683 * without forcing IP to fragment. If no route is found, route has no mtu, 3684 * or the destination isn't local, use a default, hopefully conservative 3685 * size (usually 512 or the default IP max size, but no more than the mtu 3686 * of the interface), as we can't discover anything about intervening 3687 * gateways or networks. We also initialize the congestion/slow start 3688 * window to be a single segment if the destination isn't local. 3689 * While looking at the routing entry, we also initialize other path-dependent 3690 * parameters from pre-set or cached values in the routing entry. 3691 * 3692 * NOTE that resulting t_maxseg doesn't include space for TCP options or 3693 * IP options, e.g. IPSEC data, since length of this data may vary, and 3694 * thus it is calculated for every segment separately in tcp_output(). 3695 * 3696 * NOTE that this routine is only called when we process an incoming 3697 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS 3698 * settings are handled in tcp_mssopt(). 3699 */ 3700 void 3701 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer, 3702 struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap) 3703 { 3704 int mss = 0; 3705 uint32_t maxmtu = 0; 3706 struct inpcb *inp = tp->t_inpcb; 3707 struct hc_metrics_lite metrics; 3708 #ifdef INET6 3709 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; 3710 size_t min_protoh = isipv6 ? 3711 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : 3712 sizeof (struct tcpiphdr); 3713 #else 3714 size_t min_protoh = sizeof(struct tcpiphdr); 3715 #endif 3716 3717 INP_WLOCK_ASSERT(tp->t_inpcb); 3718 3719 if (tp->t_port) 3720 min_protoh += V_tcp_udp_tunneling_overhead; 3721 if (mtuoffer != -1) { 3722 KASSERT(offer == -1, ("%s: conflict", __func__)); 3723 offer = mtuoffer - min_protoh; 3724 } 3725 3726 /* Initialize. */ 3727 #ifdef INET6 3728 if (isipv6) { 3729 maxmtu = tcp_maxmtu6(&inp->inp_inc, cap); 3730 tp->t_maxseg = V_tcp_v6mssdflt; 3731 } 3732 #endif 3733 #if defined(INET) && defined(INET6) 3734 else 3735 #endif 3736 #ifdef INET 3737 { 3738 maxmtu = tcp_maxmtu(&inp->inp_inc, cap); 3739 tp->t_maxseg = V_tcp_mssdflt; 3740 } 3741 #endif 3742 3743 /* 3744 * No route to sender, stay with default mss and return. 3745 */ 3746 if (maxmtu == 0) { 3747 /* 3748 * In case we return early we need to initialize metrics 3749 * to a defined state as tcp_hc_get() would do for us 3750 * if there was no cache hit. 3751 */ 3752 if (metricptr != NULL) 3753 bzero(metricptr, sizeof(struct hc_metrics_lite)); 3754 return; 3755 } 3756 3757 /* What have we got? */ 3758 switch (offer) { 3759 case 0: 3760 /* 3761 * Offer == 0 means that there was no MSS on the SYN 3762 * segment, in this case we use tcp_mssdflt as 3763 * already assigned to t_maxseg above. 3764 */ 3765 offer = tp->t_maxseg; 3766 break; 3767 3768 case -1: 3769 /* 3770 * Offer == -1 means that we didn't receive SYN yet. 3771 */ 3772 /* FALLTHROUGH */ 3773 3774 default: 3775 /* 3776 * Prevent DoS attack with too small MSS. Round up 3777 * to at least minmss. 3778 */ 3779 offer = max(offer, V_tcp_minmss); 3780 } 3781 3782 /* 3783 * rmx information is now retrieved from tcp_hostcache. 3784 */ 3785 tcp_hc_get(&inp->inp_inc, &metrics); 3786 if (metricptr != NULL) 3787 bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite)); 3788 3789 /* 3790 * If there's a discovered mtu in tcp hostcache, use it. 3791 * Else, use the link mtu. 3792 */ 3793 if (metrics.rmx_mtu) 3794 mss = min(metrics.rmx_mtu, maxmtu) - min_protoh; 3795 else { 3796 #ifdef INET6 3797 if (isipv6) { 3798 mss = maxmtu - min_protoh; 3799 if (!V_path_mtu_discovery && 3800 !in6_localaddr(&inp->in6p_faddr)) 3801 mss = min(mss, V_tcp_v6mssdflt); 3802 } 3803 #endif 3804 #if defined(INET) && defined(INET6) 3805 else 3806 #endif 3807 #ifdef INET 3808 { 3809 mss = maxmtu - min_protoh; 3810 if (!V_path_mtu_discovery && 3811 !in_localaddr(inp->inp_faddr)) 3812 mss = min(mss, V_tcp_mssdflt); 3813 } 3814 #endif 3815 /* 3816 * XXX - The above conditional (mss = maxmtu - min_protoh) 3817 * probably violates the TCP spec. 3818 * The problem is that, since we don't know the 3819 * other end's MSS, we are supposed to use a conservative 3820 * default. But, if we do that, then MTU discovery will 3821 * never actually take place, because the conservative 3822 * default is much less than the MTUs typically seen 3823 * on the Internet today. For the moment, we'll sweep 3824 * this under the carpet. 3825 * 3826 * The conservative default might not actually be a problem 3827 * if the only case this occurs is when sending an initial 3828 * SYN with options and data to a host we've never talked 3829 * to before. Then, they will reply with an MSS value which 3830 * will get recorded and the new parameters should get 3831 * recomputed. For Further Study. 3832 */ 3833 } 3834 mss = min(mss, offer); 3835 3836 /* 3837 * Sanity check: make sure that maxseg will be large 3838 * enough to allow some data on segments even if the 3839 * all the option space is used (40bytes). Otherwise 3840 * funny things may happen in tcp_output. 3841 * 3842 * XXXGL: shouldn't we reserve space for IP/IPv6 options? 3843 */ 3844 mss = max(mss, 64); 3845 3846 tp->t_maxseg = mss; 3847 } 3848 3849 void 3850 tcp_mss(struct tcpcb *tp, int offer) 3851 { 3852 int mss; 3853 uint32_t bufsize; 3854 struct inpcb *inp; 3855 struct socket *so; 3856 struct hc_metrics_lite metrics; 3857 struct tcp_ifcap cap; 3858 3859 KASSERT(tp != NULL, ("%s: tp == NULL", __func__)); 3860 3861 bzero(&cap, sizeof(cap)); 3862 tcp_mss_update(tp, offer, -1, &metrics, &cap); 3863 3864 mss = tp->t_maxseg; 3865 inp = tp->t_inpcb; 3866 3867 /* 3868 * If there's a pipesize, change the socket buffer to that size, 3869 * don't change if sb_hiwat is different than default (then it 3870 * has been changed on purpose with setsockopt). 3871 * Make the socket buffers an integral number of mss units; 3872 * if the mss is larger than the socket buffer, decrease the mss. 3873 */ 3874 so = inp->inp_socket; 3875 SOCKBUF_LOCK(&so->so_snd); 3876 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe) 3877 bufsize = metrics.rmx_sendpipe; 3878 else 3879 bufsize = so->so_snd.sb_hiwat; 3880 if (bufsize < mss) 3881 mss = bufsize; 3882 else { 3883 bufsize = roundup(bufsize, mss); 3884 if (bufsize > sb_max) 3885 bufsize = sb_max; 3886 if (bufsize > so->so_snd.sb_hiwat) 3887 (void)sbreserve_locked(&so->so_snd, bufsize, so, NULL); 3888 } 3889 SOCKBUF_UNLOCK(&so->so_snd); 3890 /* 3891 * Sanity check: make sure that maxseg will be large 3892 * enough to allow some data on segments even if the 3893 * all the option space is used (40bytes). Otherwise 3894 * funny things may happen in tcp_output. 3895 * 3896 * XXXGL: shouldn't we reserve space for IP/IPv6 options? 3897 */ 3898 tp->t_maxseg = max(mss, 64); 3899 3900 SOCKBUF_LOCK(&so->so_rcv); 3901 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe) 3902 bufsize = metrics.rmx_recvpipe; 3903 else 3904 bufsize = so->so_rcv.sb_hiwat; 3905 if (bufsize > mss) { 3906 bufsize = roundup(bufsize, mss); 3907 if (bufsize > sb_max) 3908 bufsize = sb_max; 3909 if (bufsize > so->so_rcv.sb_hiwat) 3910 (void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL); 3911 } 3912 SOCKBUF_UNLOCK(&so->so_rcv); 3913 3914 /* Check the interface for TSO capabilities. */ 3915 if (cap.ifcap & CSUM_TSO) { 3916 tp->t_flags |= TF_TSO; 3917 tp->t_tsomax = cap.tsomax; 3918 tp->t_tsomaxsegcount = cap.tsomaxsegcount; 3919 tp->t_tsomaxsegsize = cap.tsomaxsegsize; 3920 } 3921 } 3922 3923 /* 3924 * Determine the MSS option to send on an outgoing SYN. 3925 */ 3926 int 3927 tcp_mssopt(struct in_conninfo *inc) 3928 { 3929 int mss = 0; 3930 uint32_t thcmtu = 0; 3931 uint32_t maxmtu = 0; 3932 size_t min_protoh; 3933 3934 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer")); 3935 3936 #ifdef INET6 3937 if (inc->inc_flags & INC_ISIPV6) { 3938 mss = V_tcp_v6mssdflt; 3939 maxmtu = tcp_maxmtu6(inc, NULL); 3940 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 3941 } 3942 #endif 3943 #if defined(INET) && defined(INET6) 3944 else 3945 #endif 3946 #ifdef INET 3947 { 3948 mss = V_tcp_mssdflt; 3949 maxmtu = tcp_maxmtu(inc, NULL); 3950 min_protoh = sizeof(struct tcpiphdr); 3951 } 3952 #endif 3953 #if defined(INET6) || defined(INET) 3954 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */ 3955 #endif 3956 3957 if (maxmtu && thcmtu) 3958 mss = min(maxmtu, thcmtu) - min_protoh; 3959 else if (maxmtu || thcmtu) 3960 mss = max(maxmtu, thcmtu) - min_protoh; 3961 3962 return (mss); 3963 } 3964 3965 void 3966 tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) 3967 { 3968 int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0; 3969 int maxseg = tcp_maxseg(tp); 3970 3971 INP_WLOCK_ASSERT(tp->t_inpcb); 3972 3973 /* 3974 * Compute the amount of data that this ACK is indicating 3975 * (del_data) and an estimate of how many bytes are in the 3976 * network. 3977 */ 3978 if (((tp->t_flags & TF_SACK_PERMIT) && 3979 (to->to_flags & TOF_SACK)) || 3980 (IN_CONGRECOVERY(tp->t_flags) && 3981 !IN_FASTRECOVERY(tp->t_flags))) { 3982 del_data = tp->sackhint.delivered_data; 3983 if (V_tcp_do_newsack) 3984 pipe = tcp_compute_pipe(tp); 3985 else 3986 pipe = (tp->snd_nxt - tp->snd_fack) + 3987 tp->sackhint.sack_bytes_rexmit; 3988 } else { 3989 if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg + 3990 tp->snd_recover - tp->snd_una)) 3991 del_data = maxseg; 3992 pipe = imax(0, tp->snd_max - tp->snd_una - 3993 imin(INT_MAX / 65536, tp->t_dupacks) * maxseg); 3994 } 3995 tp->sackhint.prr_delivered += del_data; 3996 /* 3997 * Proportional Rate Reduction 3998 */ 3999 if (pipe >= tp->snd_ssthresh) { 4000 if (tp->sackhint.recover_fs == 0) 4001 tp->sackhint.recover_fs = 4002 imax(1, tp->snd_nxt - tp->snd_una); 4003 snd_cnt = howmany((long)tp->sackhint.prr_delivered * 4004 tp->snd_ssthresh, tp->sackhint.recover_fs) - 4005 tp->sackhint.prr_out; 4006 } else { 4007 if (V_tcp_do_prr_conservative || (del_data == 0)) 4008 limit = tp->sackhint.prr_delivered - 4009 tp->sackhint.prr_out; 4010 else 4011 limit = imax(tp->sackhint.prr_delivered - 4012 tp->sackhint.prr_out, del_data) + 4013 maxseg; 4014 snd_cnt = imin((tp->snd_ssthresh - pipe), limit); 4015 } 4016 snd_cnt = imax(snd_cnt, 0) / maxseg; 4017 /* 4018 * Send snd_cnt new data into the network in response to this ack. 4019 * If there is going to be a SACK retransmission, adjust snd_cwnd 4020 * accordingly. 4021 */ 4022 if (IN_FASTRECOVERY(tp->t_flags)) { 4023 if ((tp->t_flags & TF_SACK_PERMIT) && 4024 (to->to_flags & TOF_SACK)) { 4025 tp->snd_cwnd = tp->snd_nxt - tp->snd_recover + 4026 tp->sackhint.sack_bytes_rexmit + 4027 (snd_cnt * maxseg); 4028 } else { 4029 tp->snd_cwnd = (tp->snd_max - tp->snd_una) + 4030 (snd_cnt * maxseg); 4031 } 4032 } else if (IN_CONGRECOVERY(tp->t_flags)) 4033 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg); 4034 tp->snd_cwnd = imax(maxseg, tp->snd_cwnd); 4035 } 4036 4037 /* 4038 * On a partial ack arrives, force the retransmission of the 4039 * next unacknowledged segment. Do not clear tp->t_dupacks. 4040 * By setting snd_nxt to ti_ack, this forces retransmission timer to 4041 * be started again. 4042 */ 4043 void 4044 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th) 4045 { 4046 tcp_seq onxt = tp->snd_nxt; 4047 uint32_t ocwnd = tp->snd_cwnd; 4048 u_int maxseg = tcp_maxseg(tp); 4049 4050 INP_WLOCK_ASSERT(tp->t_inpcb); 4051 4052 tcp_timer_activate(tp, TT_REXMT, 0); 4053 tp->t_rtttime = 0; 4054 tp->snd_nxt = th->th_ack; 4055 /* 4056 * Set snd_cwnd to one segment beyond acknowledged offset. 4057 * (tp->snd_una has not yet been updated when this function is called.) 4058 */ 4059 tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th); 4060 tp->t_flags |= TF_ACKNOW; 4061 (void) tp->t_fb->tfb_tcp_output(tp); 4062 tp->snd_cwnd = ocwnd; 4063 if (SEQ_GT(onxt, tp->snd_nxt)) 4064 tp->snd_nxt = onxt; 4065 /* 4066 * Partial window deflation. Relies on fact that tp->snd_una 4067 * not updated yet. 4068 */ 4069 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th)) 4070 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th); 4071 else 4072 tp->snd_cwnd = 0; 4073 tp->snd_cwnd += maxseg; 4074 } 4075 4076 int 4077 tcp_compute_pipe(struct tcpcb *tp) 4078 { 4079 return (tp->snd_max - tp->snd_una + 4080 tp->sackhint.sack_bytes_rexmit - 4081 tp->sackhint.sacked_bytes); 4082 } 4083 4084 uint32_t 4085 tcp_compute_initwnd(uint32_t maxseg) 4086 { 4087 /* 4088 * Calculate the Initial Window, also used as Restart Window 4089 * 4090 * RFC5681 Section 3.1 specifies the default conservative values. 4091 * RFC3390 specifies slightly more aggressive values. 4092 * RFC6928 increases it to ten segments. 4093 * Support for user specified value for initial flight size. 4094 */ 4095 if (V_tcp_initcwnd_segments) 4096 return min(V_tcp_initcwnd_segments * maxseg, 4097 max(2 * maxseg, V_tcp_initcwnd_segments * 1460)); 4098 else if (V_tcp_do_rfc3390) 4099 return min(4 * maxseg, max(2 * maxseg, 4380)); 4100 else { 4101 /* Per RFC5681 Section 3.1 */ 4102 if (maxseg > 2190) 4103 return (2 * maxseg); 4104 else if (maxseg > 1095) 4105 return (3 * maxseg); 4106 else 4107 return (4 * maxseg); 4108 } 4109 } 4110