xref: /freebsd/sys/netinet/tcp_input.c (revision d5fc25e5d6c52b306312784663ccad85923a9c76)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/proc.h>		/* for proc0 declaration */
46 #include <sys/protosw.h>
47 #include <sys/signalvar.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <sys/systm.h>
53 #include <sys/vimage.h>
54 
55 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
56 
57 #include <vm/uma.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 
62 #define TCPSTATES		/* for logging */
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
70 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #include <netinet/ip6.h>
74 #include <netinet/icmp6.h>
75 #include <netinet6/in6_pcb.h>
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #include <netinet/tcp.h>
79 #include <netinet/tcp_fsm.h>
80 #include <netinet/tcp_seq.h>
81 #include <netinet/tcp_timer.h>
82 #include <netinet/tcp_var.h>
83 #include <netinet6/tcp6_var.h>
84 #include <netinet/tcpip.h>
85 #include <netinet/tcp_syncache.h>
86 #ifdef TCPDEBUG
87 #include <netinet/tcp_debug.h>
88 #endif /* TCPDEBUG */
89 #include <netinet/vinet.h>
90 
91 #ifdef INET6
92 #include <netinet6/vinet6.h>
93 #endif
94 
95 #ifdef IPSEC
96 #include <netipsec/ipsec.h>
97 #include <netipsec/ipsec6.h>
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 
102 #include <security/mac/mac_framework.h>
103 
104 static const int tcprexmtthresh = 3;
105 
106 #ifdef VIMAGE_GLOBALS
107 struct	tcpstat tcpstat;
108 int	blackhole;
109 int	tcp_delack_enabled;
110 int	drop_synfin;
111 int	tcp_do_rfc3042;
112 int	tcp_do_rfc3390;
113 int	tcp_do_ecn;
114 int	tcp_ecn_maxretries;
115 int	tcp_insecure_rst;
116 int	tcp_do_autorcvbuf;
117 int	tcp_autorcvbuf_inc;
118 int	tcp_autorcvbuf_max;
119 int	tcp_do_rfc3465;
120 int	tcp_abc_l_var;
121 #endif
122 
123 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_STATS, stats,
124     CTLFLAG_RW, tcpstat , tcpstat,
125     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
126 
127 int tcp_log_in_vain = 0;
128 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
129     &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
130 
131 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
132     blackhole, 0, "Do not send RST on segments to closed ports");
133 
134 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, delayed_ack,
135     CTLFLAG_RW, tcp_delack_enabled, 0,
136     "Delay ACK to try and piggyback it onto a data packet");
137 
138 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, drop_synfin,
139     CTLFLAG_RW, drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
140 
141 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
142     tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
143 
144 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
145     tcp_do_rfc3390, 0,
146     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
147 
148 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
149     tcp_do_rfc3465, 0,
150     "Enable RFC 3465 (Appropriate Byte Counting)");
151 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
152     tcp_abc_l_var, 2,
153     "Cap the max cwnd increment during slow-start to this number of segments");
154 
155 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
156 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, enable,
157     CTLFLAG_RW, tcp_do_ecn, 0, "TCP ECN support");
158 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, maxretries,
159     CTLFLAG_RW, tcp_ecn_maxretries, 0, "Max retries before giving up on ECN");
160 
161 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, insecure_rst,
162     CTLFLAG_RW, tcp_insecure_rst, 0,
163     "Follow the old (insecure) criteria for accepting RST packets");
164 
165 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_auto,
166     CTLFLAG_RW, tcp_do_autorcvbuf, 0,
167     "Enable automatic receive buffer sizing");
168 
169 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_inc,
170     CTLFLAG_RW, tcp_autorcvbuf_inc, 0,
171     "Incrementor step size of automatic receive buffer");
172 
173 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_max,
174     CTLFLAG_RW, tcp_autorcvbuf_max, 0,
175     "Max size of automatic receive buffer");
176 
177 int	tcp_read_locking = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
179     &tcp_read_locking, 0, "Enable read locking strategy");
180 
181 int	tcp_rlock_atfirst;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rlock_atfirst, CTLFLAG_RD,
183     &tcp_rlock_atfirst, 0, "");
184 
185 int	tcp_wlock_atfirst;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_wlock_atfirst, CTLFLAG_RD,
187     &tcp_wlock_atfirst, 0, "");
188 
189 int	tcp_wlock_upgraded;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_upgraded, CTLFLAG_RD,
191     &tcp_wlock_upgraded, 0, "");
192 
193 int	tcp_wlock_relocked;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_relocked, CTLFLAG_RD,
195     &tcp_wlock_relocked, 0, "");
196 
197 int	tcp_wlock_looped;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_looped, CTLFLAG_RD,
199     &tcp_wlock_looped, 0, "");
200 
201 #ifdef VIMAGE_GLOBALS
202 struct inpcbhead tcb;
203 struct inpcbinfo tcbinfo;
204 #endif
205 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
206 
207 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
208 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
209 		     struct socket *, struct tcpcb *, int, int, uint8_t,
210 		     int);
211 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
212 		     struct tcpcb *, int, int);
213 static void	 tcp_pulloutofband(struct socket *,
214 		     struct tcphdr *, struct mbuf *, int);
215 static void	 tcp_xmit_timer(struct tcpcb *, int);
216 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
217 static void inline
218 		 tcp_congestion_exp(struct tcpcb *);
219 
220 static void inline
221 tcp_congestion_exp(struct tcpcb *tp)
222 {
223 	u_int win;
224 
225 	win = min(tp->snd_wnd, tp->snd_cwnd) /
226 	    2 / tp->t_maxseg;
227 	if (win < 2)
228 		win = 2;
229 	tp->snd_ssthresh = win * tp->t_maxseg;
230 	ENTER_FASTRECOVERY(tp);
231 	tp->snd_recover = tp->snd_max;
232 	if (tp->t_flags & TF_ECN_PERMIT)
233 		tp->t_flags |= TF_ECN_SND_CWR;
234 }
235 
236 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
237 #ifdef INET6
238 #define ND6_HINT(tp) \
239 do { \
240 	if ((tp) && (tp)->t_inpcb && \
241 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
242 		nd6_nud_hint(NULL, NULL, 0); \
243 } while (0)
244 #else
245 #define ND6_HINT(tp)
246 #endif
247 
248 /*
249  * Indicate whether this ack should be delayed.  We can delay the ack if
250  *	- there is no delayed ack timer in progress and
251  *	- our last ack wasn't a 0-sized window.  We never want to delay
252  *	  the ack that opens up a 0-sized window and
253  *		- delayed acks are enabled or
254  *		- this is a half-synchronized T/TCP connection.
255  */
256 #define DELAY_ACK(tp)							\
257 	((!tcp_timer_active(tp, TT_DELACK) &&				\
258 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
259 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
260 
261 /*
262  * TCP input handling is split into multiple parts:
263  *   tcp6_input is a thin wrapper around tcp_input for the extended
264  *	ip6_protox[] call format in ip6_input
265  *   tcp_input handles primary segment validation, inpcb lookup and
266  *	SYN processing on listen sockets
267  *   tcp_do_segment processes the ACK and text of the segment for
268  *	establishing, established and closing connections
269  */
270 #ifdef INET6
271 int
272 tcp6_input(struct mbuf **mp, int *offp, int proto)
273 {
274 	INIT_VNET_INET6(curvnet);
275 	struct mbuf *m = *mp;
276 	struct in6_ifaddr *ia6;
277 
278 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
279 
280 	/*
281 	 * draft-itojun-ipv6-tcp-to-anycast
282 	 * better place to put this in?
283 	 */
284 	ia6 = ip6_getdstifaddr(m);
285 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
286 		struct ip6_hdr *ip6;
287 
288 		ip6 = mtod(m, struct ip6_hdr *);
289 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
290 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
291 		return IPPROTO_DONE;
292 	}
293 
294 	tcp_input(m, *offp);
295 	return IPPROTO_DONE;
296 }
297 #endif
298 
299 void
300 tcp_input(struct mbuf *m, int off0)
301 {
302 	INIT_VNET_INET(curvnet);
303 #ifdef INET6
304 	INIT_VNET_INET6(curvnet);
305 #endif
306 #ifdef IPSEC
307 	INIT_VNET_IPSEC(curvnet);
308 #endif
309 	struct tcphdr *th;
310 	struct ip *ip = NULL;
311 	struct ipovly *ipov;
312 	struct inpcb *inp = NULL;
313 	struct tcpcb *tp = NULL;
314 	struct socket *so = NULL;
315 	u_char *optp = NULL;
316 	int optlen = 0;
317 	int len, tlen, off;
318 	int drop_hdrlen;
319 	int thflags;
320 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
321 	uint8_t iptos;
322 #ifdef IPFIREWALL_FORWARD
323 	struct m_tag *fwd_tag;
324 #endif
325 #ifdef INET6
326 	struct ip6_hdr *ip6 = NULL;
327 	int isipv6;
328 #else
329 	const void *ip6 = NULL;
330 	const int isipv6 = 0;
331 #endif
332 	struct tcpopt to;		/* options in this segment */
333 	char *s = NULL;			/* address and port logging */
334 	int ti_locked;
335 #define	TI_UNLOCKED	1
336 #define	TI_RLOCKED	2
337 #define	TI_WLOCKED	3
338 
339 #ifdef TCPDEBUG
340 	/*
341 	 * The size of tcp_saveipgen must be the size of the max ip header,
342 	 * now IPv6.
343 	 */
344 	u_char tcp_saveipgen[IP6_HDR_LEN];
345 	struct tcphdr tcp_savetcp;
346 	short ostate = 0;
347 #endif
348 
349 #ifdef INET6
350 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
351 #endif
352 
353 	to.to_flags = 0;
354 	TCPSTAT_INC(tcps_rcvtotal);
355 
356 	if (isipv6) {
357 #ifdef INET6
358 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
359 		ip6 = mtod(m, struct ip6_hdr *);
360 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
361 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
362 			TCPSTAT_INC(tcps_rcvbadsum);
363 			goto drop;
364 		}
365 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
366 
367 		/*
368 		 * Be proactive about unspecified IPv6 address in source.
369 		 * As we use all-zero to indicate unbounded/unconnected pcb,
370 		 * unspecified IPv6 address can be used to confuse us.
371 		 *
372 		 * Note that packets with unspecified IPv6 destination is
373 		 * already dropped in ip6_input.
374 		 */
375 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
376 			/* XXX stat */
377 			goto drop;
378 		}
379 #else
380 		th = NULL;		/* XXX: Avoid compiler warning. */
381 #endif
382 	} else {
383 		/*
384 		 * Get IP and TCP header together in first mbuf.
385 		 * Note: IP leaves IP header in first mbuf.
386 		 */
387 		if (off0 > sizeof (struct ip)) {
388 			ip_stripoptions(m, (struct mbuf *)0);
389 			off0 = sizeof(struct ip);
390 		}
391 		if (m->m_len < sizeof (struct tcpiphdr)) {
392 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
393 			    == NULL) {
394 				TCPSTAT_INC(tcps_rcvshort);
395 				return;
396 			}
397 		}
398 		ip = mtod(m, struct ip *);
399 		ipov = (struct ipovly *)ip;
400 		th = (struct tcphdr *)((caddr_t)ip + off0);
401 		tlen = ip->ip_len;
402 
403 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
404 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
405 				th->th_sum = m->m_pkthdr.csum_data;
406 			else
407 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
408 						ip->ip_dst.s_addr,
409 						htonl(m->m_pkthdr.csum_data +
410 							ip->ip_len +
411 							IPPROTO_TCP));
412 			th->th_sum ^= 0xffff;
413 #ifdef TCPDEBUG
414 			ipov->ih_len = (u_short)tlen;
415 			ipov->ih_len = htons(ipov->ih_len);
416 #endif
417 		} else {
418 			/*
419 			 * Checksum extended TCP header and data.
420 			 */
421 			len = sizeof (struct ip) + tlen;
422 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
423 			ipov->ih_len = (u_short)tlen;
424 			ipov->ih_len = htons(ipov->ih_len);
425 			th->th_sum = in_cksum(m, len);
426 		}
427 		if (th->th_sum) {
428 			TCPSTAT_INC(tcps_rcvbadsum);
429 			goto drop;
430 		}
431 		/* Re-initialization for later version check */
432 		ip->ip_v = IPVERSION;
433 	}
434 
435 #ifdef INET6
436 	if (isipv6)
437 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
438 	else
439 #endif
440 		iptos = ip->ip_tos;
441 
442 	/*
443 	 * Check that TCP offset makes sense,
444 	 * pull out TCP options and adjust length.		XXX
445 	 */
446 	off = th->th_off << 2;
447 	if (off < sizeof (struct tcphdr) || off > tlen) {
448 		TCPSTAT_INC(tcps_rcvbadoff);
449 		goto drop;
450 	}
451 	tlen -= off;	/* tlen is used instead of ti->ti_len */
452 	if (off > sizeof (struct tcphdr)) {
453 		if (isipv6) {
454 #ifdef INET6
455 			IP6_EXTHDR_CHECK(m, off0, off, );
456 			ip6 = mtod(m, struct ip6_hdr *);
457 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
458 #endif
459 		} else {
460 			if (m->m_len < sizeof(struct ip) + off) {
461 				if ((m = m_pullup(m, sizeof (struct ip) + off))
462 				    == NULL) {
463 					TCPSTAT_INC(tcps_rcvshort);
464 					return;
465 				}
466 				ip = mtod(m, struct ip *);
467 				ipov = (struct ipovly *)ip;
468 				th = (struct tcphdr *)((caddr_t)ip + off0);
469 			}
470 		}
471 		optlen = off - sizeof (struct tcphdr);
472 		optp = (u_char *)(th + 1);
473 	}
474 	thflags = th->th_flags;
475 
476 	/*
477 	 * Convert TCP protocol specific fields to host format.
478 	 */
479 	th->th_seq = ntohl(th->th_seq);
480 	th->th_ack = ntohl(th->th_ack);
481 	th->th_win = ntohs(th->th_win);
482 	th->th_urp = ntohs(th->th_urp);
483 
484 	/*
485 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
486 	 */
487 	drop_hdrlen = off0 + off;
488 
489 	/*
490 	 * Locate pcb for segment, which requires a lock on tcbinfo.
491 	 * Optimisticaly acquire a global read lock rather than a write lock
492 	 * unless header flags necessarily imply a state change.  There are
493 	 * two cases where we might discover later we need a write lock
494 	 * despite the flags: ACKs moving a connection out of the syncache,
495 	 * and ACKs for a connection in TIMEWAIT.
496 	 */
497 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
498 	    tcp_read_locking == 0) {
499 		INP_INFO_WLOCK(&V_tcbinfo);
500 		ti_locked = TI_WLOCKED;
501 		tcp_wlock_atfirst++;
502 	} else {
503 		INP_INFO_RLOCK(&V_tcbinfo);
504 		ti_locked = TI_RLOCKED;
505 		tcp_rlock_atfirst++;
506 	}
507 
508 findpcb:
509 #ifdef INVARIANTS
510 	if (ti_locked == TI_RLOCKED)
511 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
512 	else if (ti_locked == TI_WLOCKED)
513 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
514 	else
515 		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
516 #endif
517 
518 #ifdef IPFIREWALL_FORWARD
519 	/*
520 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
521 	 */
522 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
523 
524 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
525 		struct sockaddr_in *next_hop;
526 
527 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
528 		/*
529 		 * Transparently forwarded. Pretend to be the destination.
530 		 * already got one like this?
531 		 */
532 		inp = in_pcblookup_hash(&V_tcbinfo,
533 					ip->ip_src, th->th_sport,
534 					ip->ip_dst, th->th_dport,
535 					0, m->m_pkthdr.rcvif);
536 		if (!inp) {
537 			/* It's new.  Try to find the ambushing socket. */
538 			inp = in_pcblookup_hash(&V_tcbinfo,
539 						ip->ip_src, th->th_sport,
540 						next_hop->sin_addr,
541 						next_hop->sin_port ?
542 						    ntohs(next_hop->sin_port) :
543 						    th->th_dport,
544 						INPLOOKUP_WILDCARD,
545 						m->m_pkthdr.rcvif);
546 		}
547 		/* Remove the tag from the packet.  We don't need it anymore. */
548 		m_tag_delete(m, fwd_tag);
549 	} else
550 #endif /* IPFIREWALL_FORWARD */
551 	{
552 		if (isipv6) {
553 #ifdef INET6
554 			inp = in6_pcblookup_hash(&V_tcbinfo,
555 						 &ip6->ip6_src, th->th_sport,
556 						 &ip6->ip6_dst, th->th_dport,
557 						 INPLOOKUP_WILDCARD,
558 						 m->m_pkthdr.rcvif);
559 #endif
560 		} else
561 			inp = in_pcblookup_hash(&V_tcbinfo,
562 						ip->ip_src, th->th_sport,
563 						ip->ip_dst, th->th_dport,
564 						INPLOOKUP_WILDCARD,
565 						m->m_pkthdr.rcvif);
566 	}
567 
568 	/*
569 	 * If the INPCB does not exist then all data in the incoming
570 	 * segment is discarded and an appropriate RST is sent back.
571 	 * XXX MRT Send RST using which routing table?
572 	 */
573 	if (inp == NULL) {
574 		/*
575 		 * Log communication attempts to ports that are not
576 		 * in use.
577 		 */
578 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
579 		    tcp_log_in_vain == 2) {
580 			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
581 				log(LOG_INFO, "%s; %s: Connection attempt "
582 				    "to closed port\n", s, __func__);
583 		}
584 		/*
585 		 * When blackholing do not respond with a RST but
586 		 * completely ignore the segment and drop it.
587 		 */
588 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
589 		    V_blackhole == 2)
590 			goto dropunlock;
591 
592 		rstreason = BANDLIM_RST_CLOSEDPORT;
593 		goto dropwithreset;
594 	}
595 	INP_WLOCK(inp);
596 	if (!(inp->inp_flags & INP_HW_FLOWID)
597 	    && (m->m_flags & M_FLOWID)
598 	    && ((inp->inp_socket == NULL)
599 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
600 		inp->inp_flags |= INP_HW_FLOWID;
601 		inp->inp_flags &= ~INP_SW_FLOWID;
602 		inp->inp_flowid = m->m_pkthdr.flowid;
603 	}
604 #ifdef IPSEC
605 #ifdef INET6
606 	if (isipv6 && ipsec6_in_reject(m, inp)) {
607 		V_ipsec6stat.in_polvio++;
608 		goto dropunlock;
609 	} else
610 #endif /* INET6 */
611 	if (ipsec4_in_reject(m, inp) != 0) {
612 		V_ipsec4stat.in_polvio++;
613 		goto dropunlock;
614 	}
615 #endif /* IPSEC */
616 
617 	/*
618 	 * Check the minimum TTL for socket.
619 	 */
620 	if (inp->inp_ip_minttl != 0) {
621 #ifdef INET6
622 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
623 			goto dropunlock;
624 		else
625 #endif
626 		if (inp->inp_ip_minttl > ip->ip_ttl)
627 			goto dropunlock;
628 	}
629 
630 	/*
631 	 * A previous connection in TIMEWAIT state is supposed to catch stray
632 	 * or duplicate segments arriving late.  If this segment was a
633 	 * legitimate new connection attempt the old INPCB gets removed and
634 	 * we can try again to find a listening socket.
635 	 *
636 	 * At this point, due to earlier optimism, we may hold a read lock on
637 	 * the inpcbinfo, rather than a write lock.  If so, we need to
638 	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
639 	 * all locks, acquire a global write lock, and then re-acquire the
640 	 * inpcb lock.  We may at that point discover that another thread has
641 	 * tried to free the inpcb, in which case we need to loop back and
642 	 * try to find a new inpcb to deliver to.
643 	 */
644 	if (inp->inp_flags & INP_TIMEWAIT) {
645 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
646 		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
647 
648 		if (ti_locked == TI_RLOCKED) {
649 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
650 				in_pcbref(inp);
651 				INP_WUNLOCK(inp);
652 				INP_INFO_RUNLOCK(&V_tcbinfo);
653 				INP_INFO_WLOCK(&V_tcbinfo);
654 				ti_locked = TI_WLOCKED;
655 				INP_WLOCK(inp);
656 				if (in_pcbrele(inp)) {
657 					tcp_wlock_looped++;
658 					inp = NULL;
659 					goto findpcb;
660 				}
661 				tcp_wlock_relocked++;
662 			} else {
663 				ti_locked = TI_WLOCKED;
664 				tcp_wlock_upgraded++;
665 			}
666 		}
667 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
668 
669 		if (thflags & TH_SYN)
670 			tcp_dooptions(&to, optp, optlen, TO_SYN);
671 		/*
672 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
673 		 */
674 		if (tcp_twcheck(inp, &to, th, m, tlen))
675 			goto findpcb;
676 		INP_INFO_WUNLOCK(&V_tcbinfo);
677 		return;
678 	}
679 	/*
680 	 * The TCPCB may no longer exist if the connection is winding
681 	 * down or it is in the CLOSED state.  Either way we drop the
682 	 * segment and send an appropriate response.
683 	 */
684 	tp = intotcpcb(inp);
685 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
686 		rstreason = BANDLIM_RST_CLOSEDPORT;
687 		goto dropwithreset;
688 	}
689 
690 	/*
691 	 * We've identified a valid inpcb, but it could be that we need an
692 	 * inpcbinfo write lock and have only a read lock.  In this case,
693 	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
694 	 * case above.
695 	 */
696 	if (tp->t_state != TCPS_ESTABLISHED ||
697 	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
698 	    tcp_read_locking == 0) {
699 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
700 		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
701 
702 		if (ti_locked == TI_RLOCKED) {
703 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
704 				in_pcbref(inp);
705 				INP_WUNLOCK(inp);
706 				INP_INFO_RUNLOCK(&V_tcbinfo);
707 				INP_INFO_WLOCK(&V_tcbinfo);
708 				ti_locked = TI_WLOCKED;
709 				INP_WLOCK(inp);
710 				if (in_pcbrele(inp)) {
711 					tcp_wlock_looped++;
712 					inp = NULL;
713 					goto findpcb;
714 				}
715 				tcp_wlock_relocked++;
716 			} else {
717 				ti_locked = TI_WLOCKED;
718 				tcp_wlock_upgraded++;
719 			}
720 		}
721 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
722 	}
723 
724 #ifdef MAC
725 	INP_WLOCK_ASSERT(inp);
726 	if (mac_inpcb_check_deliver(inp, m))
727 		goto dropunlock;
728 #endif
729 	so = inp->inp_socket;
730 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
731 #ifdef TCPDEBUG
732 	if (so->so_options & SO_DEBUG) {
733 		ostate = tp->t_state;
734 		if (isipv6) {
735 #ifdef INET6
736 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
737 #endif
738 		} else
739 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
740 		tcp_savetcp = *th;
741 	}
742 #endif
743 	/*
744 	 * When the socket is accepting connections (the INPCB is in LISTEN
745 	 * state) we look into the SYN cache if this is a new connection
746 	 * attempt or the completion of a previous one.
747 	 */
748 	if (so->so_options & SO_ACCEPTCONN) {
749 		struct in_conninfo inc;
750 
751 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
752 		    "tp not listening", __func__));
753 
754 		bzero(&inc, sizeof(inc));
755 #ifdef INET6
756 		if (isipv6) {
757 			inc.inc_flags |= INC_ISIPV6;
758 			inc.inc6_faddr = ip6->ip6_src;
759 			inc.inc6_laddr = ip6->ip6_dst;
760 		} else
761 #endif
762 		{
763 			inc.inc_faddr = ip->ip_src;
764 			inc.inc_laddr = ip->ip_dst;
765 		}
766 		inc.inc_fport = th->th_sport;
767 		inc.inc_lport = th->th_dport;
768 
769 		/*
770 		 * Check for an existing connection attempt in syncache if
771 		 * the flag is only ACK.  A successful lookup creates a new
772 		 * socket appended to the listen queue in SYN_RECEIVED state.
773 		 */
774 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
775 			/*
776 			 * Parse the TCP options here because
777 			 * syncookies need access to the reflected
778 			 * timestamp.
779 			 */
780 			tcp_dooptions(&to, optp, optlen, 0);
781 			/*
782 			 * NB: syncache_expand() doesn't unlock
783 			 * inp and tcpinfo locks.
784 			 */
785 			if (!syncache_expand(&inc, &to, th, &so, m)) {
786 				/*
787 				 * No syncache entry or ACK was not
788 				 * for our SYN/ACK.  Send a RST.
789 				 * NB: syncache did its own logging
790 				 * of the failure cause.
791 				 */
792 				rstreason = BANDLIM_RST_OPENPORT;
793 				goto dropwithreset;
794 			}
795 			if (so == NULL) {
796 				/*
797 				 * We completed the 3-way handshake
798 				 * but could not allocate a socket
799 				 * either due to memory shortage,
800 				 * listen queue length limits or
801 				 * global socket limits.  Send RST
802 				 * or wait and have the remote end
803 				 * retransmit the ACK for another
804 				 * try.
805 				 */
806 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
807 					log(LOG_DEBUG, "%s; %s: Listen socket: "
808 					    "Socket allocation failed due to "
809 					    "limits or memory shortage, %s\n",
810 					    s, __func__,
811 					    V_tcp_sc_rst_sock_fail ?
812 					    "sending RST" : "try again");
813 				if (V_tcp_sc_rst_sock_fail) {
814 					rstreason = BANDLIM_UNLIMITED;
815 					goto dropwithreset;
816 				} else
817 					goto dropunlock;
818 			}
819 			/*
820 			 * Socket is created in state SYN_RECEIVED.
821 			 * Unlock the listen socket, lock the newly
822 			 * created socket and update the tp variable.
823 			 */
824 			INP_WUNLOCK(inp);	/* listen socket */
825 			inp = sotoinpcb(so);
826 			INP_WLOCK(inp);		/* new connection */
827 			tp = intotcpcb(inp);
828 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
829 			    ("%s: ", __func__));
830 			/*
831 			 * Process the segment and the data it
832 			 * contains.  tcp_do_segment() consumes
833 			 * the mbuf chain and unlocks the inpcb.
834 			 */
835 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
836 			    iptos, ti_locked);
837 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
838 			return;
839 		}
840 		/*
841 		 * Segment flag validation for new connection attempts:
842 		 *
843 		 * Our (SYN|ACK) response was rejected.
844 		 * Check with syncache and remove entry to prevent
845 		 * retransmits.
846 		 *
847 		 * NB: syncache_chkrst does its own logging of failure
848 		 * causes.
849 		 */
850 		if (thflags & TH_RST) {
851 			syncache_chkrst(&inc, th);
852 			goto dropunlock;
853 		}
854 		/*
855 		 * We can't do anything without SYN.
856 		 */
857 		if ((thflags & TH_SYN) == 0) {
858 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
859 				log(LOG_DEBUG, "%s; %s: Listen socket: "
860 				    "SYN is missing, segment ignored\n",
861 				    s, __func__);
862 			TCPSTAT_INC(tcps_badsyn);
863 			goto dropunlock;
864 		}
865 		/*
866 		 * (SYN|ACK) is bogus on a listen socket.
867 		 */
868 		if (thflags & TH_ACK) {
869 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
870 				log(LOG_DEBUG, "%s; %s: Listen socket: "
871 				    "SYN|ACK invalid, segment rejected\n",
872 				    s, __func__);
873 			syncache_badack(&inc);	/* XXX: Not needed! */
874 			TCPSTAT_INC(tcps_badsyn);
875 			rstreason = BANDLIM_RST_OPENPORT;
876 			goto dropwithreset;
877 		}
878 		/*
879 		 * If the drop_synfin option is enabled, drop all
880 		 * segments with both the SYN and FIN bits set.
881 		 * This prevents e.g. nmap from identifying the
882 		 * TCP/IP stack.
883 		 * XXX: Poor reasoning.  nmap has other methods
884 		 * and is constantly refining its stack detection
885 		 * strategies.
886 		 * XXX: This is a violation of the TCP specification
887 		 * and was used by RFC1644.
888 		 */
889 		if ((thflags & TH_FIN) && V_drop_synfin) {
890 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
891 				log(LOG_DEBUG, "%s; %s: Listen socket: "
892 				    "SYN|FIN segment ignored (based on "
893 				    "sysctl setting)\n", s, __func__);
894 			TCPSTAT_INC(tcps_badsyn);
895                 	goto dropunlock;
896 		}
897 		/*
898 		 * Segment's flags are (SYN) or (SYN|FIN).
899 		 *
900 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
901 		 * as they do not affect the state of the TCP FSM.
902 		 * The data pointed to by TH_URG and th_urp is ignored.
903 		 */
904 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
905 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
906 		KASSERT(thflags & (TH_SYN),
907 		    ("%s: Listen socket: TH_SYN not set", __func__));
908 #ifdef INET6
909 		/*
910 		 * If deprecated address is forbidden,
911 		 * we do not accept SYN to deprecated interface
912 		 * address to prevent any new inbound connection from
913 		 * getting established.
914 		 * When we do not accept SYN, we send a TCP RST,
915 		 * with deprecated source address (instead of dropping
916 		 * it).  We compromise it as it is much better for peer
917 		 * to send a RST, and RST will be the final packet
918 		 * for the exchange.
919 		 *
920 		 * If we do not forbid deprecated addresses, we accept
921 		 * the SYN packet.  RFC2462 does not suggest dropping
922 		 * SYN in this case.
923 		 * If we decipher RFC2462 5.5.4, it says like this:
924 		 * 1. use of deprecated addr with existing
925 		 *    communication is okay - "SHOULD continue to be
926 		 *    used"
927 		 * 2. use of it with new communication:
928 		 *   (2a) "SHOULD NOT be used if alternate address
929 		 *        with sufficient scope is available"
930 		 *   (2b) nothing mentioned otherwise.
931 		 * Here we fall into (2b) case as we have no choice in
932 		 * our source address selection - we must obey the peer.
933 		 *
934 		 * The wording in RFC2462 is confusing, and there are
935 		 * multiple description text for deprecated address
936 		 * handling - worse, they are not exactly the same.
937 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
938 		 */
939 		if (isipv6 && !V_ip6_use_deprecated) {
940 			struct in6_ifaddr *ia6;
941 
942 			if ((ia6 = ip6_getdstifaddr(m)) &&
943 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
944 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
945 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
946 					"Connection attempt to deprecated "
947 					"IPv6 address rejected\n",
948 					s, __func__);
949 				rstreason = BANDLIM_RST_OPENPORT;
950 				goto dropwithreset;
951 			}
952 		}
953 #endif
954 		/*
955 		 * Basic sanity checks on incoming SYN requests:
956 		 *   Don't respond if the destination is a link layer
957 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
958 		 *   If it is from this socket it must be forged.
959 		 *   Don't respond if the source or destination is a
960 		 *	global or subnet broad- or multicast address.
961 		 *   Note that it is quite possible to receive unicast
962 		 *	link-layer packets with a broadcast IP address. Use
963 		 *	in_broadcast() to find them.
964 		 */
965 		if (m->m_flags & (M_BCAST|M_MCAST)) {
966 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
967 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
968 				"Connection attempt from broad- or multicast "
969 				"link layer address ignored\n", s, __func__);
970 			goto dropunlock;
971 		}
972 		if (isipv6) {
973 #ifdef INET6
974 			if (th->th_dport == th->th_sport &&
975 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
976 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
977 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
978 					"Connection attempt to/from self "
979 					"ignored\n", s, __func__);
980 				goto dropunlock;
981 			}
982 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
983 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
984 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
985 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
986 					"Connection attempt from/to multicast "
987 					"address ignored\n", s, __func__);
988 				goto dropunlock;
989 			}
990 #endif
991 		} else {
992 			if (th->th_dport == th->th_sport &&
993 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
994 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
995 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
996 					"Connection attempt from/to self "
997 					"ignored\n", s, __func__);
998 				goto dropunlock;
999 			}
1000 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1001 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1002 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1003 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1004 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1005 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1006 					"Connection attempt from/to broad- "
1007 					"or multicast address ignored\n",
1008 					s, __func__);
1009 				goto dropunlock;
1010 			}
1011 		}
1012 		/*
1013 		 * SYN appears to be valid.  Create compressed TCP state
1014 		 * for syncache.
1015 		 */
1016 #ifdef TCPDEBUG
1017 		if (so->so_options & SO_DEBUG)
1018 			tcp_trace(TA_INPUT, ostate, tp,
1019 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1020 #endif
1021 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1022 		syncache_add(&inc, &to, th, inp, &so, m);
1023 		/*
1024 		 * Entry added to syncache and mbuf consumed.
1025 		 * Everything already unlocked by syncache_add().
1026 		 */
1027 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1028 		return;
1029 	}
1030 
1031 	/*
1032 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1033 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1034 	 * the inpcb, and unlocks pcbinfo.
1035 	 */
1036 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1037 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1038 	return;
1039 
1040 dropwithreset:
1041 	if (ti_locked == TI_RLOCKED)
1042 		INP_INFO_RUNLOCK(&V_tcbinfo);
1043 	else if (ti_locked == TI_WLOCKED)
1044 		INP_INFO_WUNLOCK(&V_tcbinfo);
1045 	else
1046 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1047 	ti_locked = TI_UNLOCKED;
1048 
1049 	if (inp != NULL) {
1050 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1051 		INP_WUNLOCK(inp);
1052 	} else
1053 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1054 	m = NULL;	/* mbuf chain got consumed. */
1055 	goto drop;
1056 
1057 dropunlock:
1058 	if (ti_locked == TI_RLOCKED)
1059 		INP_INFO_RUNLOCK(&V_tcbinfo);
1060 	else if (ti_locked == TI_WLOCKED)
1061 		INP_INFO_WUNLOCK(&V_tcbinfo);
1062 	else
1063 		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1064 	ti_locked = TI_UNLOCKED;
1065 
1066 	if (inp != NULL)
1067 		INP_WUNLOCK(inp);
1068 
1069 drop:
1070 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1071 	if (s != NULL)
1072 		free(s, M_TCPLOG);
1073 	if (m != NULL)
1074 		m_freem(m);
1075 }
1076 
1077 static void
1078 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1079     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1080     int ti_locked)
1081 {
1082 	INIT_VNET_INET(tp->t_vnet);
1083 	int thflags, acked, ourfinisacked, needoutput = 0;
1084 	int rstreason, todrop, win;
1085 	u_long tiwin;
1086 	struct tcpopt to;
1087 
1088 #ifdef TCPDEBUG
1089 	/*
1090 	 * The size of tcp_saveipgen must be the size of the max ip header,
1091 	 * now IPv6.
1092 	 */
1093 	u_char tcp_saveipgen[IP6_HDR_LEN];
1094 	struct tcphdr tcp_savetcp;
1095 	short ostate = 0;
1096 #endif
1097 	thflags = th->th_flags;
1098 
1099 	/*
1100 	 * If this is either a state-changing packet or current state isn't
1101 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1102 	 * allow either a read lock or a write lock, as we may have acquired
1103 	 * a write lock due to a race.
1104 	 *
1105 	 * Require a global write lock for SYN/FIN/RST segments or
1106 	 * non-established connections; otherwise accept either a read or
1107 	 * write lock, as we may have conservatively acquired a write lock in
1108 	 * certain cases in tcp_input() (is this still true?).  Currently we
1109 	 * will never enter with no lock, so we try to drop it quickly in the
1110 	 * common pure ack/pure data cases.
1111 	 */
1112 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1113 	    tp->t_state != TCPS_ESTABLISHED) {
1114 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1115 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1116 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1117 	} else {
1118 #ifdef INVARIANTS
1119 		if (ti_locked == TI_RLOCKED)
1120 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1121 		else if (ti_locked == TI_WLOCKED)
1122 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1123 		else
1124 			panic("%s: ti_locked %d for EST", __func__,
1125 			    ti_locked);
1126 #endif
1127 	}
1128 	INP_WLOCK_ASSERT(tp->t_inpcb);
1129 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1130 	    __func__));
1131 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1132 	    __func__));
1133 
1134 	/*
1135 	 * Segment received on connection.
1136 	 * Reset idle time and keep-alive timer.
1137 	 * XXX: This should be done after segment
1138 	 * validation to ignore broken/spoofed segs.
1139 	 */
1140 	tp->t_rcvtime = ticks;
1141 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1142 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1143 
1144 	/*
1145 	 * Unscale the window into a 32-bit value.
1146 	 * For the SYN_SENT state the scale is zero.
1147 	 */
1148 	tiwin = th->th_win << tp->snd_scale;
1149 
1150 	/*
1151 	 * TCP ECN processing.
1152 	 */
1153 	if (tp->t_flags & TF_ECN_PERMIT) {
1154 		switch (iptos & IPTOS_ECN_MASK) {
1155 		case IPTOS_ECN_CE:
1156 			tp->t_flags |= TF_ECN_SND_ECE;
1157 			TCPSTAT_INC(tcps_ecn_ce);
1158 			break;
1159 		case IPTOS_ECN_ECT0:
1160 			TCPSTAT_INC(tcps_ecn_ect0);
1161 			break;
1162 		case IPTOS_ECN_ECT1:
1163 			TCPSTAT_INC(tcps_ecn_ect1);
1164 			break;
1165 		}
1166 
1167 		if (thflags & TH_CWR)
1168 			tp->t_flags &= ~TF_ECN_SND_ECE;
1169 
1170 		/*
1171 		 * Congestion experienced.
1172 		 * Ignore if we are already trying to recover.
1173 		 */
1174 		if ((thflags & TH_ECE) &&
1175 		    SEQ_LEQ(th->th_ack, tp->snd_recover)) {
1176 			TCPSTAT_INC(tcps_ecn_rcwnd);
1177 			tcp_congestion_exp(tp);
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * Parse options on any incoming segment.
1183 	 */
1184 	tcp_dooptions(&to, (u_char *)(th + 1),
1185 	    (th->th_off << 2) - sizeof(struct tcphdr),
1186 	    (thflags & TH_SYN) ? TO_SYN : 0);
1187 
1188 	/*
1189 	 * If echoed timestamp is later than the current time,
1190 	 * fall back to non RFC1323 RTT calculation.  Normalize
1191 	 * timestamp if syncookies were used when this connection
1192 	 * was established.
1193 	 */
1194 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1195 		to.to_tsecr -= tp->ts_offset;
1196 		if (TSTMP_GT(to.to_tsecr, ticks))
1197 			to.to_tsecr = 0;
1198 	}
1199 
1200 	/*
1201 	 * Process options only when we get SYN/ACK back. The SYN case
1202 	 * for incoming connections is handled in tcp_syncache.
1203 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1204 	 * or <SYN,ACK>) segment itself is never scaled.
1205 	 * XXX this is traditional behavior, may need to be cleaned up.
1206 	 */
1207 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1208 		if ((to.to_flags & TOF_SCALE) &&
1209 		    (tp->t_flags & TF_REQ_SCALE)) {
1210 			tp->t_flags |= TF_RCVD_SCALE;
1211 			tp->snd_scale = to.to_wscale;
1212 		}
1213 		/*
1214 		 * Initial send window.  It will be updated with
1215 		 * the next incoming segment to the scaled value.
1216 		 */
1217 		tp->snd_wnd = th->th_win;
1218 		if (to.to_flags & TOF_TS) {
1219 			tp->t_flags |= TF_RCVD_TSTMP;
1220 			tp->ts_recent = to.to_tsval;
1221 			tp->ts_recent_age = ticks;
1222 		}
1223 		if (to.to_flags & TOF_MSS)
1224 			tcp_mss(tp, to.to_mss);
1225 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1226 		    (to.to_flags & TOF_SACKPERM) == 0)
1227 			tp->t_flags &= ~TF_SACK_PERMIT;
1228 	}
1229 
1230 	/*
1231 	 * Header prediction: check for the two common cases
1232 	 * of a uni-directional data xfer.  If the packet has
1233 	 * no control flags, is in-sequence, the window didn't
1234 	 * change and we're not retransmitting, it's a
1235 	 * candidate.  If the length is zero and the ack moved
1236 	 * forward, we're the sender side of the xfer.  Just
1237 	 * free the data acked & wake any higher level process
1238 	 * that was blocked waiting for space.  If the length
1239 	 * is non-zero and the ack didn't move, we're the
1240 	 * receiver side.  If we're getting packets in-order
1241 	 * (the reassembly queue is empty), add the data to
1242 	 * the socket buffer and note that we need a delayed ack.
1243 	 * Make sure that the hidden state-flags are also off.
1244 	 * Since we check for TCPS_ESTABLISHED first, it can only
1245 	 * be TH_NEEDSYN.
1246 	 */
1247 	if (tp->t_state == TCPS_ESTABLISHED &&
1248 	    th->th_seq == tp->rcv_nxt &&
1249 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1250 	    tp->snd_nxt == tp->snd_max &&
1251 	    tiwin && tiwin == tp->snd_wnd &&
1252 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1253 	    LIST_EMPTY(&tp->t_segq) &&
1254 	    ((to.to_flags & TOF_TS) == 0 ||
1255 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1256 
1257 		/*
1258 		 * If last ACK falls within this segment's sequence numbers,
1259 		 * record the timestamp.
1260 		 * NOTE that the test is modified according to the latest
1261 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1262 		 */
1263 		if ((to.to_flags & TOF_TS) != 0 &&
1264 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1265 			tp->ts_recent_age = ticks;
1266 			tp->ts_recent = to.to_tsval;
1267 		}
1268 
1269 		if (tlen == 0) {
1270 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1271 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1272 			    tp->snd_cwnd >= tp->snd_wnd &&
1273 			    ((!V_tcp_do_newreno &&
1274 			      !(tp->t_flags & TF_SACK_PERMIT) &&
1275 			      tp->t_dupacks < tcprexmtthresh) ||
1276 			     ((V_tcp_do_newreno ||
1277 			       (tp->t_flags & TF_SACK_PERMIT)) &&
1278 			      !IN_FASTRECOVERY(tp) &&
1279 			      (to.to_flags & TOF_SACK) == 0 &&
1280 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1281 				/*
1282 				 * This is a pure ack for outstanding data.
1283 				 */
1284 				if (ti_locked == TI_RLOCKED)
1285 					INP_INFO_RUNLOCK(&V_tcbinfo);
1286 				else if (ti_locked == TI_WLOCKED)
1287 					INP_INFO_WUNLOCK(&V_tcbinfo);
1288 				else
1289 					panic("%s: ti_locked %d on pure ACK",
1290 					    __func__, ti_locked);
1291 				ti_locked = TI_UNLOCKED;
1292 
1293 				TCPSTAT_INC(tcps_predack);
1294 
1295 				/*
1296 				 * "bad retransmit" recovery.
1297 				 */
1298 				if (tp->t_rxtshift == 1 &&
1299 				    ticks < tp->t_badrxtwin) {
1300 					TCPSTAT_INC(tcps_sndrexmitbad);
1301 					tp->snd_cwnd = tp->snd_cwnd_prev;
1302 					tp->snd_ssthresh =
1303 					    tp->snd_ssthresh_prev;
1304 					tp->snd_recover = tp->snd_recover_prev;
1305 					if (tp->t_flags & TF_WASFRECOVERY)
1306 					    ENTER_FASTRECOVERY(tp);
1307 					tp->snd_nxt = tp->snd_max;
1308 					tp->t_badrxtwin = 0;
1309 				}
1310 
1311 				/*
1312 				 * Recalculate the transmit timer / rtt.
1313 				 *
1314 				 * Some boxes send broken timestamp replies
1315 				 * during the SYN+ACK phase, ignore
1316 				 * timestamps of 0 or we could calculate a
1317 				 * huge RTT and blow up the retransmit timer.
1318 				 */
1319 				if ((to.to_flags & TOF_TS) != 0 &&
1320 				    to.to_tsecr) {
1321 					if (!tp->t_rttlow ||
1322 					    tp->t_rttlow > ticks - to.to_tsecr)
1323 						tp->t_rttlow = ticks - to.to_tsecr;
1324 					tcp_xmit_timer(tp,
1325 					    ticks - to.to_tsecr + 1);
1326 				} else if (tp->t_rtttime &&
1327 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1328 					if (!tp->t_rttlow ||
1329 					    tp->t_rttlow > ticks - tp->t_rtttime)
1330 						tp->t_rttlow = ticks - tp->t_rtttime;
1331 					tcp_xmit_timer(tp,
1332 							ticks - tp->t_rtttime);
1333 				}
1334 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1335 				acked = th->th_ack - tp->snd_una;
1336 				TCPSTAT_INC(tcps_rcvackpack);
1337 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1338 				sbdrop(&so->so_snd, acked);
1339 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1340 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1341 					tp->snd_recover = th->th_ack - 1;
1342 				tp->snd_una = th->th_ack;
1343 				/*
1344 				 * Pull snd_wl2 up to prevent seq wrap relative
1345 				 * to th_ack.
1346 				 */
1347 				tp->snd_wl2 = th->th_ack;
1348 				tp->t_dupacks = 0;
1349 				m_freem(m);
1350 				ND6_HINT(tp); /* Some progress has been made. */
1351 
1352 				/*
1353 				 * If all outstanding data are acked, stop
1354 				 * retransmit timer, otherwise restart timer
1355 				 * using current (possibly backed-off) value.
1356 				 * If process is waiting for space,
1357 				 * wakeup/selwakeup/signal.  If data
1358 				 * are ready to send, let tcp_output
1359 				 * decide between more output or persist.
1360 				 */
1361 #ifdef TCPDEBUG
1362 				if (so->so_options & SO_DEBUG)
1363 					tcp_trace(TA_INPUT, ostate, tp,
1364 					    (void *)tcp_saveipgen,
1365 					    &tcp_savetcp, 0);
1366 #endif
1367 				if (tp->snd_una == tp->snd_max)
1368 					tcp_timer_activate(tp, TT_REXMT, 0);
1369 				else if (!tcp_timer_active(tp, TT_PERSIST))
1370 					tcp_timer_activate(tp, TT_REXMT,
1371 						      tp->t_rxtcur);
1372 				sowwakeup(so);
1373 				if (so->so_snd.sb_cc)
1374 					(void) tcp_output(tp);
1375 				goto check_delack;
1376 			}
1377 		} else if (th->th_ack == tp->snd_una &&
1378 		    tlen <= sbspace(&so->so_rcv)) {
1379 			int newsize = 0;	/* automatic sockbuf scaling */
1380 
1381 			/*
1382 			 * This is a pure, in-sequence data packet with
1383 			 * nothing on the reassembly queue and we have enough
1384 			 * buffer space to take it.
1385 			 */
1386 			if (ti_locked == TI_RLOCKED)
1387 				INP_INFO_RUNLOCK(&V_tcbinfo);
1388 			else if (ti_locked == TI_WLOCKED)
1389 				INP_INFO_WUNLOCK(&V_tcbinfo);
1390 			else
1391 				panic("%s: ti_locked %d on pure data "
1392 				    "segment", __func__, ti_locked);
1393 			ti_locked = TI_UNLOCKED;
1394 
1395 			/* Clean receiver SACK report if present */
1396 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1397 				tcp_clean_sackreport(tp);
1398 			TCPSTAT_INC(tcps_preddat);
1399 			tp->rcv_nxt += tlen;
1400 			/*
1401 			 * Pull snd_wl1 up to prevent seq wrap relative to
1402 			 * th_seq.
1403 			 */
1404 			tp->snd_wl1 = th->th_seq;
1405 			/*
1406 			 * Pull rcv_up up to prevent seq wrap relative to
1407 			 * rcv_nxt.
1408 			 */
1409 			tp->rcv_up = tp->rcv_nxt;
1410 			TCPSTAT_INC(tcps_rcvpack);
1411 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1412 			ND6_HINT(tp);	/* Some progress has been made */
1413 #ifdef TCPDEBUG
1414 			if (so->so_options & SO_DEBUG)
1415 				tcp_trace(TA_INPUT, ostate, tp,
1416 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1417 #endif
1418 		/*
1419 		 * Automatic sizing of receive socket buffer.  Often the send
1420 		 * buffer size is not optimally adjusted to the actual network
1421 		 * conditions at hand (delay bandwidth product).  Setting the
1422 		 * buffer size too small limits throughput on links with high
1423 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1424 		 *
1425 		 * On the receive side the socket buffer memory is only rarely
1426 		 * used to any significant extent.  This allows us to be much
1427 		 * more aggressive in scaling the receive socket buffer.  For
1428 		 * the case that the buffer space is actually used to a large
1429 		 * extent and we run out of kernel memory we can simply drop
1430 		 * the new segments; TCP on the sender will just retransmit it
1431 		 * later.  Setting the buffer size too big may only consume too
1432 		 * much kernel memory if the application doesn't read() from
1433 		 * the socket or packet loss or reordering makes use of the
1434 		 * reassembly queue.
1435 		 *
1436 		 * The criteria to step up the receive buffer one notch are:
1437 		 *  1. the number of bytes received during the time it takes
1438 		 *     one timestamp to be reflected back to us (the RTT);
1439 		 *  2. received bytes per RTT is within seven eighth of the
1440 		 *     current socket buffer size;
1441 		 *  3. receive buffer size has not hit maximal automatic size;
1442 		 *
1443 		 * This algorithm does one step per RTT at most and only if
1444 		 * we receive a bulk stream w/o packet losses or reorderings.
1445 		 * Shrinking the buffer during idle times is not necessary as
1446 		 * it doesn't consume any memory when idle.
1447 		 *
1448 		 * TODO: Only step up if the application is actually serving
1449 		 * the buffer to better manage the socket buffer resources.
1450 		 */
1451 			if (V_tcp_do_autorcvbuf &&
1452 			    to.to_tsecr &&
1453 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1454 				if (to.to_tsecr > tp->rfbuf_ts &&
1455 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1456 					if (tp->rfbuf_cnt >
1457 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1458 					    so->so_rcv.sb_hiwat <
1459 					    V_tcp_autorcvbuf_max) {
1460 						newsize =
1461 						    min(so->so_rcv.sb_hiwat +
1462 						    V_tcp_autorcvbuf_inc,
1463 						    V_tcp_autorcvbuf_max);
1464 					}
1465 					/* Start over with next RTT. */
1466 					tp->rfbuf_ts = 0;
1467 					tp->rfbuf_cnt = 0;
1468 				} else
1469 					tp->rfbuf_cnt += tlen;	/* add up */
1470 			}
1471 
1472 			/* Add data to socket buffer. */
1473 			SOCKBUF_LOCK(&so->so_rcv);
1474 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1475 				m_freem(m);
1476 			} else {
1477 				/*
1478 				 * Set new socket buffer size.
1479 				 * Give up when limit is reached.
1480 				 */
1481 				if (newsize)
1482 					if (!sbreserve_locked(&so->so_rcv,
1483 					    newsize, so, NULL))
1484 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1485 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1486 				sbappendstream_locked(&so->so_rcv, m);
1487 			}
1488 			/* NB: sorwakeup_locked() does an implicit unlock. */
1489 			sorwakeup_locked(so);
1490 			if (DELAY_ACK(tp)) {
1491 				tp->t_flags |= TF_DELACK;
1492 			} else {
1493 				tp->t_flags |= TF_ACKNOW;
1494 				tcp_output(tp);
1495 			}
1496 			goto check_delack;
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Calculate amount of space in receive window,
1502 	 * and then do TCP input processing.
1503 	 * Receive window is amount of space in rcv queue,
1504 	 * but not less than advertised window.
1505 	 */
1506 	win = sbspace(&so->so_rcv);
1507 	if (win < 0)
1508 		win = 0;
1509 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1510 
1511 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1512 	tp->rfbuf_ts = 0;
1513 	tp->rfbuf_cnt = 0;
1514 
1515 	switch (tp->t_state) {
1516 
1517 	/*
1518 	 * If the state is SYN_RECEIVED:
1519 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1520 	 */
1521 	case TCPS_SYN_RECEIVED:
1522 		if ((thflags & TH_ACK) &&
1523 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1524 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1525 				rstreason = BANDLIM_RST_OPENPORT;
1526 				goto dropwithreset;
1527 		}
1528 		break;
1529 
1530 	/*
1531 	 * If the state is SYN_SENT:
1532 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1533 	 *	if seg contains a RST, then drop the connection.
1534 	 *	if seg does not contain SYN, then drop it.
1535 	 * Otherwise this is an acceptable SYN segment
1536 	 *	initialize tp->rcv_nxt and tp->irs
1537 	 *	if seg contains ack then advance tp->snd_una
1538 	 *	if seg contains an ECE and ECN support is enabled, the stream
1539 	 *	    is ECN capable.
1540 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1541 	 *	arrange for segment to be acked (eventually)
1542 	 *	continue processing rest of data/controls, beginning with URG
1543 	 */
1544 	case TCPS_SYN_SENT:
1545 		if ((thflags & TH_ACK) &&
1546 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1547 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1548 			rstreason = BANDLIM_UNLIMITED;
1549 			goto dropwithreset;
1550 		}
1551 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1552 			tp = tcp_drop(tp, ECONNREFUSED);
1553 		if (thflags & TH_RST)
1554 			goto drop;
1555 		if (!(thflags & TH_SYN))
1556 			goto drop;
1557 
1558 		tp->irs = th->th_seq;
1559 		tcp_rcvseqinit(tp);
1560 		if (thflags & TH_ACK) {
1561 			TCPSTAT_INC(tcps_connects);
1562 			soisconnected(so);
1563 #ifdef MAC
1564 			mac_socketpeer_set_from_mbuf(m, so);
1565 #endif
1566 			/* Do window scaling on this connection? */
1567 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1568 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1569 				tp->rcv_scale = tp->request_r_scale;
1570 			}
1571 			tp->rcv_adv += tp->rcv_wnd;
1572 			tp->snd_una++;		/* SYN is acked */
1573 			/*
1574 			 * If there's data, delay ACK; if there's also a FIN
1575 			 * ACKNOW will be turned on later.
1576 			 */
1577 			if (DELAY_ACK(tp) && tlen != 0)
1578 				tcp_timer_activate(tp, TT_DELACK,
1579 				    tcp_delacktime);
1580 			else
1581 				tp->t_flags |= TF_ACKNOW;
1582 
1583 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1584 				tp->t_flags |= TF_ECN_PERMIT;
1585 				TCPSTAT_INC(tcps_ecn_shs);
1586 			}
1587 
1588 			/*
1589 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1590 			 * Transitions:
1591 			 *	SYN_SENT  --> ESTABLISHED
1592 			 *	SYN_SENT* --> FIN_WAIT_1
1593 			 */
1594 			tp->t_starttime = ticks;
1595 			if (tp->t_flags & TF_NEEDFIN) {
1596 				tp->t_state = TCPS_FIN_WAIT_1;
1597 				tp->t_flags &= ~TF_NEEDFIN;
1598 				thflags &= ~TH_SYN;
1599 			} else {
1600 				tp->t_state = TCPS_ESTABLISHED;
1601 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1602 			}
1603 		} else {
1604 			/*
1605 			 * Received initial SYN in SYN-SENT[*] state =>
1606 			 * simultaneous open.  If segment contains CC option
1607 			 * and there is a cached CC, apply TAO test.
1608 			 * If it succeeds, connection is * half-synchronized.
1609 			 * Otherwise, do 3-way handshake:
1610 			 *        SYN-SENT -> SYN-RECEIVED
1611 			 *        SYN-SENT* -> SYN-RECEIVED*
1612 			 * If there was no CC option, clear cached CC value.
1613 			 */
1614 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1615 			tcp_timer_activate(tp, TT_REXMT, 0);
1616 			tp->t_state = TCPS_SYN_RECEIVED;
1617 		}
1618 
1619 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1620 		    "ti_locked %d", __func__, ti_locked));
1621 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1622 		INP_WLOCK_ASSERT(tp->t_inpcb);
1623 
1624 		/*
1625 		 * Advance th->th_seq to correspond to first data byte.
1626 		 * If data, trim to stay within window,
1627 		 * dropping FIN if necessary.
1628 		 */
1629 		th->th_seq++;
1630 		if (tlen > tp->rcv_wnd) {
1631 			todrop = tlen - tp->rcv_wnd;
1632 			m_adj(m, -todrop);
1633 			tlen = tp->rcv_wnd;
1634 			thflags &= ~TH_FIN;
1635 			TCPSTAT_INC(tcps_rcvpackafterwin);
1636 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1637 		}
1638 		tp->snd_wl1 = th->th_seq - 1;
1639 		tp->rcv_up = th->th_seq;
1640 		/*
1641 		 * Client side of transaction: already sent SYN and data.
1642 		 * If the remote host used T/TCP to validate the SYN,
1643 		 * our data will be ACK'd; if so, enter normal data segment
1644 		 * processing in the middle of step 5, ack processing.
1645 		 * Otherwise, goto step 6.
1646 		 */
1647 		if (thflags & TH_ACK)
1648 			goto process_ACK;
1649 
1650 		goto step6;
1651 
1652 	/*
1653 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1654 	 *      do normal processing.
1655 	 *
1656 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1657 	 */
1658 	case TCPS_LAST_ACK:
1659 	case TCPS_CLOSING:
1660 		break;  /* continue normal processing */
1661 	}
1662 
1663 	/*
1664 	 * States other than LISTEN or SYN_SENT.
1665 	 * First check the RST flag and sequence number since reset segments
1666 	 * are exempt from the timestamp and connection count tests.  This
1667 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1668 	 * below which allowed reset segments in half the sequence space
1669 	 * to fall though and be processed (which gives forged reset
1670 	 * segments with a random sequence number a 50 percent chance of
1671 	 * killing a connection).
1672 	 * Then check timestamp, if present.
1673 	 * Then check the connection count, if present.
1674 	 * Then check that at least some bytes of segment are within
1675 	 * receive window.  If segment begins before rcv_nxt,
1676 	 * drop leading data (and SYN); if nothing left, just ack.
1677 	 *
1678 	 *
1679 	 * If the RST bit is set, check the sequence number to see
1680 	 * if this is a valid reset segment.
1681 	 * RFC 793 page 37:
1682 	 *   In all states except SYN-SENT, all reset (RST) segments
1683 	 *   are validated by checking their SEQ-fields.  A reset is
1684 	 *   valid if its sequence number is in the window.
1685 	 * Note: this does not take into account delayed ACKs, so
1686 	 *   we should test against last_ack_sent instead of rcv_nxt.
1687 	 *   The sequence number in the reset segment is normally an
1688 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1689 	 *   send a reset with the sequence number at the rightmost edge
1690 	 *   of our receive window, and we have to handle this case.
1691 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1692 	 *   that brute force RST attacks are possible.  To combat this,
1693 	 *   we use a much stricter check while in the ESTABLISHED state,
1694 	 *   only accepting RSTs where the sequence number is equal to
1695 	 *   last_ack_sent.  In all other states (the states in which a
1696 	 *   RST is more likely), the more permissive check is used.
1697 	 * If we have multiple segments in flight, the initial reset
1698 	 * segment sequence numbers will be to the left of last_ack_sent,
1699 	 * but they will eventually catch up.
1700 	 * In any case, it never made sense to trim reset segments to
1701 	 * fit the receive window since RFC 1122 says:
1702 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1703 	 *
1704 	 *    A TCP SHOULD allow a received RST segment to include data.
1705 	 *
1706 	 *    DISCUSSION
1707 	 *         It has been suggested that a RST segment could contain
1708 	 *         ASCII text that encoded and explained the cause of the
1709 	 *         RST.  No standard has yet been established for such
1710 	 *         data.
1711 	 *
1712 	 * If the reset segment passes the sequence number test examine
1713 	 * the state:
1714 	 *    SYN_RECEIVED STATE:
1715 	 *	If passive open, return to LISTEN state.
1716 	 *	If active open, inform user that connection was refused.
1717 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1718 	 *	Inform user that connection was reset, and close tcb.
1719 	 *    CLOSING, LAST_ACK STATES:
1720 	 *	Close the tcb.
1721 	 *    TIME_WAIT STATE:
1722 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1723 	 *      RFC 1337.
1724 	 */
1725 	if (thflags & TH_RST) {
1726 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1727 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1728 			switch (tp->t_state) {
1729 
1730 			case TCPS_SYN_RECEIVED:
1731 				so->so_error = ECONNREFUSED;
1732 				goto close;
1733 
1734 			case TCPS_ESTABLISHED:
1735 				if (V_tcp_insecure_rst == 0 &&
1736 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1737 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1738 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1739 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1740 					TCPSTAT_INC(tcps_badrst);
1741 					goto drop;
1742 				}
1743 				/* FALLTHROUGH */
1744 			case TCPS_FIN_WAIT_1:
1745 			case TCPS_FIN_WAIT_2:
1746 			case TCPS_CLOSE_WAIT:
1747 				so->so_error = ECONNRESET;
1748 			close:
1749 				KASSERT(ti_locked == TI_WLOCKED,
1750 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1751 				    ti_locked));
1752 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1753 
1754 				tp->t_state = TCPS_CLOSED;
1755 				TCPSTAT_INC(tcps_drops);
1756 				tp = tcp_close(tp);
1757 				break;
1758 
1759 			case TCPS_CLOSING:
1760 			case TCPS_LAST_ACK:
1761 				KASSERT(ti_locked == TI_WLOCKED,
1762 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1763 				    ti_locked));
1764 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1765 
1766 				tp = tcp_close(tp);
1767 				break;
1768 			}
1769 		}
1770 		goto drop;
1771 	}
1772 
1773 	/*
1774 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1775 	 * and it's less than ts_recent, drop it.
1776 	 */
1777 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1778 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1779 
1780 		/* Check to see if ts_recent is over 24 days old.  */
1781 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1782 			/*
1783 			 * Invalidate ts_recent.  If this segment updates
1784 			 * ts_recent, the age will be reset later and ts_recent
1785 			 * will get a valid value.  If it does not, setting
1786 			 * ts_recent to zero will at least satisfy the
1787 			 * requirement that zero be placed in the timestamp
1788 			 * echo reply when ts_recent isn't valid.  The
1789 			 * age isn't reset until we get a valid ts_recent
1790 			 * because we don't want out-of-order segments to be
1791 			 * dropped when ts_recent is old.
1792 			 */
1793 			tp->ts_recent = 0;
1794 		} else {
1795 			TCPSTAT_INC(tcps_rcvduppack);
1796 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1797 			TCPSTAT_INC(tcps_pawsdrop);
1798 			if (tlen)
1799 				goto dropafterack;
1800 			goto drop;
1801 		}
1802 	}
1803 
1804 	/*
1805 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1806 	 * this connection before trimming the data to fit the receive
1807 	 * window.  Check the sequence number versus IRS since we know
1808 	 * the sequence numbers haven't wrapped.  This is a partial fix
1809 	 * for the "LAND" DoS attack.
1810 	 */
1811 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1812 		rstreason = BANDLIM_RST_OPENPORT;
1813 		goto dropwithreset;
1814 	}
1815 
1816 	todrop = tp->rcv_nxt - th->th_seq;
1817 	if (todrop > 0) {
1818 		/*
1819 		 * If this is a duplicate SYN for our current connection,
1820 		 * advance over it and pretend and it's not a SYN.
1821 		 */
1822 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
1823 			thflags &= ~TH_SYN;
1824 			th->th_seq++;
1825 			if (th->th_urp > 1)
1826 				th->th_urp--;
1827 			else
1828 				thflags &= ~TH_URG;
1829 			todrop--;
1830 		}
1831 		/*
1832 		 * Following if statement from Stevens, vol. 2, p. 960.
1833 		 */
1834 		if (todrop > tlen
1835 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1836 			/*
1837 			 * Any valid FIN must be to the left of the window.
1838 			 * At this point the FIN must be a duplicate or out
1839 			 * of sequence; drop it.
1840 			 */
1841 			thflags &= ~TH_FIN;
1842 
1843 			/*
1844 			 * Send an ACK to resynchronize and drop any data.
1845 			 * But keep on processing for RST or ACK.
1846 			 */
1847 			tp->t_flags |= TF_ACKNOW;
1848 			todrop = tlen;
1849 			TCPSTAT_INC(tcps_rcvduppack);
1850 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1851 		} else {
1852 			TCPSTAT_INC(tcps_rcvpartduppack);
1853 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1854 		}
1855 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1856 		th->th_seq += todrop;
1857 		tlen -= todrop;
1858 		if (th->th_urp > todrop)
1859 			th->th_urp -= todrop;
1860 		else {
1861 			thflags &= ~TH_URG;
1862 			th->th_urp = 0;
1863 		}
1864 	}
1865 
1866 	/*
1867 	 * If new data are received on a connection after the
1868 	 * user processes are gone, then RST the other end.
1869 	 */
1870 	if ((so->so_state & SS_NOFDREF) &&
1871 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1872 		char *s;
1873 
1874 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
1875 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
1876 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1877 
1878 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1879 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
1880 			    "was closed, sending RST and removing tcpcb\n",
1881 			    s, __func__, tcpstates[tp->t_state], tlen);
1882 			free(s, M_TCPLOG);
1883 		}
1884 		tp = tcp_close(tp);
1885 		TCPSTAT_INC(tcps_rcvafterclose);
1886 		rstreason = BANDLIM_UNLIMITED;
1887 		goto dropwithreset;
1888 	}
1889 
1890 	/*
1891 	 * If segment ends after window, drop trailing data
1892 	 * (and PUSH and FIN); if nothing left, just ACK.
1893 	 */
1894 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1895 	if (todrop > 0) {
1896 		TCPSTAT_INC(tcps_rcvpackafterwin);
1897 		if (todrop >= tlen) {
1898 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1899 			/*
1900 			 * If window is closed can only take segments at
1901 			 * window edge, and have to drop data and PUSH from
1902 			 * incoming segments.  Continue processing, but
1903 			 * remember to ack.  Otherwise, drop segment
1904 			 * and ack.
1905 			 */
1906 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1907 				tp->t_flags |= TF_ACKNOW;
1908 				TCPSTAT_INC(tcps_rcvwinprobe);
1909 			} else
1910 				goto dropafterack;
1911 		} else
1912 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1913 		m_adj(m, -todrop);
1914 		tlen -= todrop;
1915 		thflags &= ~(TH_PUSH|TH_FIN);
1916 	}
1917 
1918 	/*
1919 	 * If last ACK falls within this segment's sequence numbers,
1920 	 * record its timestamp.
1921 	 * NOTE:
1922 	 * 1) That the test incorporates suggestions from the latest
1923 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1924 	 * 2) That updating only on newer timestamps interferes with
1925 	 *    our earlier PAWS tests, so this check should be solely
1926 	 *    predicated on the sequence space of this segment.
1927 	 * 3) That we modify the segment boundary check to be
1928 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1929 	 *    instead of RFC1323's
1930 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1931 	 *    This modified check allows us to overcome RFC1323's
1932 	 *    limitations as described in Stevens TCP/IP Illustrated
1933 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1934 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1935 	 */
1936 	if ((to.to_flags & TOF_TS) != 0 &&
1937 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1938 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1939 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1940 		tp->ts_recent_age = ticks;
1941 		tp->ts_recent = to.to_tsval;
1942 	}
1943 
1944 	/*
1945 	 * If a SYN is in the window, then this is an
1946 	 * error and we send an RST and drop the connection.
1947 	 */
1948 	if (thflags & TH_SYN) {
1949 		KASSERT(ti_locked == TI_WLOCKED,
1950 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
1951 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1952 
1953 		tp = tcp_drop(tp, ECONNRESET);
1954 		rstreason = BANDLIM_UNLIMITED;
1955 		goto drop;
1956 	}
1957 
1958 	/*
1959 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1960 	 * flag is on (half-synchronized state), then queue data for
1961 	 * later processing; else drop segment and return.
1962 	 */
1963 	if ((thflags & TH_ACK) == 0) {
1964 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1965 		    (tp->t_flags & TF_NEEDSYN))
1966 			goto step6;
1967 		else if (tp->t_flags & TF_ACKNOW)
1968 			goto dropafterack;
1969 		else
1970 			goto drop;
1971 	}
1972 
1973 	/*
1974 	 * Ack processing.
1975 	 */
1976 	switch (tp->t_state) {
1977 
1978 	/*
1979 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1980 	 * ESTABLISHED state and continue processing.
1981 	 * The ACK was checked above.
1982 	 */
1983 	case TCPS_SYN_RECEIVED:
1984 
1985 		TCPSTAT_INC(tcps_connects);
1986 		soisconnected(so);
1987 		/* Do window scaling? */
1988 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1989 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1990 			tp->rcv_scale = tp->request_r_scale;
1991 			tp->snd_wnd = tiwin;
1992 		}
1993 		/*
1994 		 * Make transitions:
1995 		 *      SYN-RECEIVED  -> ESTABLISHED
1996 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1997 		 */
1998 		tp->t_starttime = ticks;
1999 		if (tp->t_flags & TF_NEEDFIN) {
2000 			tp->t_state = TCPS_FIN_WAIT_1;
2001 			tp->t_flags &= ~TF_NEEDFIN;
2002 		} else {
2003 			tp->t_state = TCPS_ESTABLISHED;
2004 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2005 		}
2006 		/*
2007 		 * If segment contains data or ACK, will call tcp_reass()
2008 		 * later; if not, do so now to pass queued data to user.
2009 		 */
2010 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2011 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2012 			    (struct mbuf *)0);
2013 		tp->snd_wl1 = th->th_seq - 1;
2014 		/* FALLTHROUGH */
2015 
2016 	/*
2017 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2018 	 * ACKs.  If the ack is in the range
2019 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2020 	 * then advance tp->snd_una to th->th_ack and drop
2021 	 * data from the retransmission queue.  If this ACK reflects
2022 	 * more up to date window information we update our window information.
2023 	 */
2024 	case TCPS_ESTABLISHED:
2025 	case TCPS_FIN_WAIT_1:
2026 	case TCPS_FIN_WAIT_2:
2027 	case TCPS_CLOSE_WAIT:
2028 	case TCPS_CLOSING:
2029 	case TCPS_LAST_ACK:
2030 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2031 			TCPSTAT_INC(tcps_rcvacktoomuch);
2032 			goto dropafterack;
2033 		}
2034 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2035 		    ((to.to_flags & TOF_SACK) ||
2036 		     !TAILQ_EMPTY(&tp->snd_holes)))
2037 			tcp_sack_doack(tp, &to, th->th_ack);
2038 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2039 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2040 				TCPSTAT_INC(tcps_rcvdupack);
2041 				/*
2042 				 * If we have outstanding data (other than
2043 				 * a window probe), this is a completely
2044 				 * duplicate ack (ie, window info didn't
2045 				 * change), the ack is the biggest we've
2046 				 * seen and we've seen exactly our rexmt
2047 				 * threshhold of them, assume a packet
2048 				 * has been dropped and retransmit it.
2049 				 * Kludge snd_nxt & the congestion
2050 				 * window so we send only this one
2051 				 * packet.
2052 				 *
2053 				 * We know we're losing at the current
2054 				 * window size so do congestion avoidance
2055 				 * (set ssthresh to half the current window
2056 				 * and pull our congestion window back to
2057 				 * the new ssthresh).
2058 				 *
2059 				 * Dup acks mean that packets have left the
2060 				 * network (they're now cached at the receiver)
2061 				 * so bump cwnd by the amount in the receiver
2062 				 * to keep a constant cwnd packets in the
2063 				 * network.
2064 				 *
2065 				 * When using TCP ECN, notify the peer that
2066 				 * we reduced the cwnd.
2067 				 */
2068 				if (!tcp_timer_active(tp, TT_REXMT) ||
2069 				    th->th_ack != tp->snd_una)
2070 					tp->t_dupacks = 0;
2071 				else if (++tp->t_dupacks > tcprexmtthresh ||
2072 				    ((V_tcp_do_newreno ||
2073 				      (tp->t_flags & TF_SACK_PERMIT)) &&
2074 				     IN_FASTRECOVERY(tp))) {
2075 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2076 					    IN_FASTRECOVERY(tp)) {
2077 						int awnd;
2078 
2079 						/*
2080 						 * Compute the amount of data in flight first.
2081 						 * We can inject new data into the pipe iff
2082 						 * we have less than 1/2 the original window's
2083 						 * worth of data in flight.
2084 						 */
2085 						awnd = (tp->snd_nxt - tp->snd_fack) +
2086 							tp->sackhint.sack_bytes_rexmit;
2087 						if (awnd < tp->snd_ssthresh) {
2088 							tp->snd_cwnd += tp->t_maxseg;
2089 							if (tp->snd_cwnd > tp->snd_ssthresh)
2090 								tp->snd_cwnd = tp->snd_ssthresh;
2091 						}
2092 					} else
2093 						tp->snd_cwnd += tp->t_maxseg;
2094 					(void) tcp_output(tp);
2095 					goto drop;
2096 				} else if (tp->t_dupacks == tcprexmtthresh) {
2097 					tcp_seq onxt = tp->snd_nxt;
2098 
2099 					/*
2100 					 * If we're doing sack, check to
2101 					 * see if we're already in sack
2102 					 * recovery. If we're not doing sack,
2103 					 * check to see if we're in newreno
2104 					 * recovery.
2105 					 */
2106 					if (tp->t_flags & TF_SACK_PERMIT) {
2107 						if (IN_FASTRECOVERY(tp)) {
2108 							tp->t_dupacks = 0;
2109 							break;
2110 						}
2111 					} else if (V_tcp_do_newreno ||
2112 					    V_tcp_do_ecn) {
2113 						if (SEQ_LEQ(th->th_ack,
2114 						    tp->snd_recover)) {
2115 							tp->t_dupacks = 0;
2116 							break;
2117 						}
2118 					}
2119 					tcp_congestion_exp(tp);
2120 					tcp_timer_activate(tp, TT_REXMT, 0);
2121 					tp->t_rtttime = 0;
2122 					if (tp->t_flags & TF_SACK_PERMIT) {
2123 						TCPSTAT_INC(
2124 						    tcps_sack_recovery_episode);
2125 						tp->sack_newdata = tp->snd_nxt;
2126 						tp->snd_cwnd = tp->t_maxseg;
2127 						(void) tcp_output(tp);
2128 						goto drop;
2129 					}
2130 					tp->snd_nxt = th->th_ack;
2131 					tp->snd_cwnd = tp->t_maxseg;
2132 					(void) tcp_output(tp);
2133 					KASSERT(tp->snd_limited <= 2,
2134 					    ("%s: tp->snd_limited too big",
2135 					    __func__));
2136 					tp->snd_cwnd = tp->snd_ssthresh +
2137 					     tp->t_maxseg *
2138 					     (tp->t_dupacks - tp->snd_limited);
2139 					if (SEQ_GT(onxt, tp->snd_nxt))
2140 						tp->snd_nxt = onxt;
2141 					goto drop;
2142 				} else if (V_tcp_do_rfc3042) {
2143 					u_long oldcwnd = tp->snd_cwnd;
2144 					tcp_seq oldsndmax = tp->snd_max;
2145 					u_int sent;
2146 
2147 					KASSERT(tp->t_dupacks == 1 ||
2148 					    tp->t_dupacks == 2,
2149 					    ("%s: dupacks not 1 or 2",
2150 					    __func__));
2151 					if (tp->t_dupacks == 1)
2152 						tp->snd_limited = 0;
2153 					tp->snd_cwnd =
2154 					    (tp->snd_nxt - tp->snd_una) +
2155 					    (tp->t_dupacks - tp->snd_limited) *
2156 					    tp->t_maxseg;
2157 					(void) tcp_output(tp);
2158 					sent = tp->snd_max - oldsndmax;
2159 					if (sent > tp->t_maxseg) {
2160 						KASSERT((tp->t_dupacks == 2 &&
2161 						    tp->snd_limited == 0) ||
2162 						   (sent == tp->t_maxseg + 1 &&
2163 						    tp->t_flags & TF_SENTFIN),
2164 						    ("%s: sent too much",
2165 						    __func__));
2166 						tp->snd_limited = 2;
2167 					} else if (sent > 0)
2168 						++tp->snd_limited;
2169 					tp->snd_cwnd = oldcwnd;
2170 					goto drop;
2171 				}
2172 			} else
2173 				tp->t_dupacks = 0;
2174 			break;
2175 		}
2176 
2177 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2178 		    ("%s: th_ack <= snd_una", __func__));
2179 
2180 		/*
2181 		 * If the congestion window was inflated to account
2182 		 * for the other side's cached packets, retract it.
2183 		 */
2184 		if (V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
2185 			if (IN_FASTRECOVERY(tp)) {
2186 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2187 					if (tp->t_flags & TF_SACK_PERMIT)
2188 						tcp_sack_partialack(tp, th);
2189 					else
2190 						tcp_newreno_partial_ack(tp, th);
2191 				} else {
2192 					/*
2193 					 * Out of fast recovery.
2194 					 * Window inflation should have left us
2195 					 * with approximately snd_ssthresh
2196 					 * outstanding data.
2197 					 * But in case we would be inclined to
2198 					 * send a burst, better to do it via
2199 					 * the slow start mechanism.
2200 					 */
2201 					if (SEQ_GT(th->th_ack +
2202 							tp->snd_ssthresh,
2203 						   tp->snd_max))
2204 						tp->snd_cwnd = tp->snd_max -
2205 								th->th_ack +
2206 								tp->t_maxseg;
2207 					else
2208 						tp->snd_cwnd = tp->snd_ssthresh;
2209 				}
2210 			}
2211 		} else {
2212 			if (tp->t_dupacks >= tcprexmtthresh &&
2213 			    tp->snd_cwnd > tp->snd_ssthresh)
2214 				tp->snd_cwnd = tp->snd_ssthresh;
2215 		}
2216 		tp->t_dupacks = 0;
2217 		/*
2218 		 * If we reach this point, ACK is not a duplicate,
2219 		 *     i.e., it ACKs something we sent.
2220 		 */
2221 		if (tp->t_flags & TF_NEEDSYN) {
2222 			/*
2223 			 * T/TCP: Connection was half-synchronized, and our
2224 			 * SYN has been ACK'd (so connection is now fully
2225 			 * synchronized).  Go to non-starred state,
2226 			 * increment snd_una for ACK of SYN, and check if
2227 			 * we can do window scaling.
2228 			 */
2229 			tp->t_flags &= ~TF_NEEDSYN;
2230 			tp->snd_una++;
2231 			/* Do window scaling? */
2232 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2233 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2234 				tp->rcv_scale = tp->request_r_scale;
2235 				/* Send window already scaled. */
2236 			}
2237 		}
2238 
2239 process_ACK:
2240 		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2241 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2242 		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2243 		INP_WLOCK_ASSERT(tp->t_inpcb);
2244 
2245 		acked = th->th_ack - tp->snd_una;
2246 		TCPSTAT_INC(tcps_rcvackpack);
2247 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2248 
2249 		/*
2250 		 * If we just performed our first retransmit, and the ACK
2251 		 * arrives within our recovery window, then it was a mistake
2252 		 * to do the retransmit in the first place.  Recover our
2253 		 * original cwnd and ssthresh, and proceed to transmit where
2254 		 * we left off.
2255 		 */
2256 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2257 			TCPSTAT_INC(tcps_sndrexmitbad);
2258 			tp->snd_cwnd = tp->snd_cwnd_prev;
2259 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2260 			tp->snd_recover = tp->snd_recover_prev;
2261 			if (tp->t_flags & TF_WASFRECOVERY)
2262 				ENTER_FASTRECOVERY(tp);
2263 			tp->snd_nxt = tp->snd_max;
2264 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2265 		}
2266 
2267 		/*
2268 		 * If we have a timestamp reply, update smoothed
2269 		 * round trip time.  If no timestamp is present but
2270 		 * transmit timer is running and timed sequence
2271 		 * number was acked, update smoothed round trip time.
2272 		 * Since we now have an rtt measurement, cancel the
2273 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2274 		 * Recompute the initial retransmit timer.
2275 		 *
2276 		 * Some boxes send broken timestamp replies
2277 		 * during the SYN+ACK phase, ignore
2278 		 * timestamps of 0 or we could calculate a
2279 		 * huge RTT and blow up the retransmit timer.
2280 		 */
2281 		if ((to.to_flags & TOF_TS) != 0 &&
2282 		    to.to_tsecr) {
2283 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2284 				tp->t_rttlow = ticks - to.to_tsecr;
2285 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2286 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2287 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2288 				tp->t_rttlow = ticks - tp->t_rtttime;
2289 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2290 		}
2291 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2292 
2293 		/*
2294 		 * If all outstanding data is acked, stop retransmit
2295 		 * timer and remember to restart (more output or persist).
2296 		 * If there is more data to be acked, restart retransmit
2297 		 * timer, using current (possibly backed-off) value.
2298 		 */
2299 		if (th->th_ack == tp->snd_max) {
2300 			tcp_timer_activate(tp, TT_REXMT, 0);
2301 			needoutput = 1;
2302 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2303 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2304 
2305 		/*
2306 		 * If no data (only SYN) was ACK'd,
2307 		 *    skip rest of ACK processing.
2308 		 */
2309 		if (acked == 0)
2310 			goto step6;
2311 
2312 		/*
2313 		 * When new data is acked, open the congestion window.
2314 		 * Method depends on which congestion control state we're
2315 		 * in (slow start or cong avoid) and if ABC (RFC 3465) is
2316 		 * enabled.
2317 		 *
2318 		 * slow start: cwnd <= ssthresh
2319 		 * cong avoid: cwnd > ssthresh
2320 		 *
2321 		 * slow start and ABC (RFC 3465):
2322 		 *   Grow cwnd exponentially by the amount of data
2323 		 *   ACKed capping the max increment per ACK to
2324 		 *   (abc_l_var * maxseg) bytes.
2325 		 *
2326 		 * slow start without ABC (RFC 2581):
2327 		 *   Grow cwnd exponentially by maxseg per ACK.
2328 		 *
2329 		 * cong avoid and ABC (RFC 3465):
2330 		 *   Grow cwnd linearly by maxseg per RTT for each
2331 		 *   cwnd worth of ACKed data.
2332 		 *
2333 		 * cong avoid without ABC (RFC 2581):
2334 		 *   Grow cwnd linearly by approximately maxseg per RTT using
2335 		 *   maxseg^2 / cwnd per ACK as the increment.
2336 		 *   If cwnd > maxseg^2, fix the cwnd increment at 1 byte to
2337 		 *   avoid capping cwnd.
2338 		 */
2339 		if ((!V_tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2340 		    !IN_FASTRECOVERY(tp)) {
2341 			u_int cw = tp->snd_cwnd;
2342 			u_int incr = tp->t_maxseg;
2343 			/* In congestion avoidance? */
2344 			if (cw > tp->snd_ssthresh) {
2345 				if (V_tcp_do_rfc3465) {
2346 					tp->t_bytes_acked += acked;
2347 					if (tp->t_bytes_acked >= tp->snd_cwnd)
2348 						tp->t_bytes_acked -= cw;
2349 					else
2350 						incr = 0;
2351 				}
2352 				else
2353 					incr = max((incr * incr / cw), 1);
2354 			/*
2355 			 * In slow-start with ABC enabled and no RTO in sight?
2356 			 * (Must not use abc_l_var > 1 if slow starting after an
2357 			 * RTO. On RTO, snd_nxt = snd_una, so the snd_nxt ==
2358 			 * snd_max check is sufficient to handle this).
2359 			 */
2360 			} else if (V_tcp_do_rfc3465 &&
2361 			    tp->snd_nxt == tp->snd_max)
2362 				incr = min(acked,
2363 				    V_tcp_abc_l_var * tp->t_maxseg);
2364 			/* ABC is on by default, so (incr == 0) frequently. */
2365 			if (incr > 0)
2366 				tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2367 		}
2368 		SOCKBUF_LOCK(&so->so_snd);
2369 		if (acked > so->so_snd.sb_cc) {
2370 			tp->snd_wnd -= so->so_snd.sb_cc;
2371 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2372 			ourfinisacked = 1;
2373 		} else {
2374 			sbdrop_locked(&so->so_snd, acked);
2375 			tp->snd_wnd -= acked;
2376 			ourfinisacked = 0;
2377 		}
2378 		/* NB: sowwakeup_locked() does an implicit unlock. */
2379 		sowwakeup_locked(so);
2380 		/* Detect una wraparound. */
2381 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2382 		    !IN_FASTRECOVERY(tp) &&
2383 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2384 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2385 			tp->snd_recover = th->th_ack - 1;
2386 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2387 		    IN_FASTRECOVERY(tp) &&
2388 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2389 			EXIT_FASTRECOVERY(tp);
2390 			tp->t_bytes_acked = 0;
2391 		}
2392 		tp->snd_una = th->th_ack;
2393 		if (tp->t_flags & TF_SACK_PERMIT) {
2394 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2395 				tp->snd_recover = tp->snd_una;
2396 		}
2397 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2398 			tp->snd_nxt = tp->snd_una;
2399 
2400 		switch (tp->t_state) {
2401 
2402 		/*
2403 		 * In FIN_WAIT_1 STATE in addition to the processing
2404 		 * for the ESTABLISHED state if our FIN is now acknowledged
2405 		 * then enter FIN_WAIT_2.
2406 		 */
2407 		case TCPS_FIN_WAIT_1:
2408 			if (ourfinisacked) {
2409 				/*
2410 				 * If we can't receive any more
2411 				 * data, then closing user can proceed.
2412 				 * Starting the timer is contrary to the
2413 				 * specification, but if we don't get a FIN
2414 				 * we'll hang forever.
2415 				 *
2416 				 * XXXjl:
2417 				 * we should release the tp also, and use a
2418 				 * compressed state.
2419 				 */
2420 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2421 					int timeout;
2422 
2423 					soisdisconnected(so);
2424 					timeout = (tcp_fast_finwait2_recycle) ?
2425 						tcp_finwait2_timeout : tcp_maxidle;
2426 					tcp_timer_activate(tp, TT_2MSL, timeout);
2427 				}
2428 				tp->t_state = TCPS_FIN_WAIT_2;
2429 			}
2430 			break;
2431 
2432 		/*
2433 		 * In CLOSING STATE in addition to the processing for
2434 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2435 		 * then enter the TIME-WAIT state, otherwise ignore
2436 		 * the segment.
2437 		 */
2438 		case TCPS_CLOSING:
2439 			if (ourfinisacked) {
2440 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2441 				tcp_twstart(tp);
2442 				INP_INFO_WUNLOCK(&V_tcbinfo);
2443 				m_freem(m);
2444 				return;
2445 			}
2446 			break;
2447 
2448 		/*
2449 		 * In LAST_ACK, we may still be waiting for data to drain
2450 		 * and/or to be acked, as well as for the ack of our FIN.
2451 		 * If our FIN is now acknowledged, delete the TCB,
2452 		 * enter the closed state and return.
2453 		 */
2454 		case TCPS_LAST_ACK:
2455 			if (ourfinisacked) {
2456 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2457 				tp = tcp_close(tp);
2458 				goto drop;
2459 			}
2460 			break;
2461 		}
2462 	}
2463 
2464 step6:
2465 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2466 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2467 	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2468 	INP_WLOCK_ASSERT(tp->t_inpcb);
2469 
2470 	/*
2471 	 * Update window information.
2472 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2473 	 */
2474 	if ((thflags & TH_ACK) &&
2475 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2476 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2477 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2478 		/* keep track of pure window updates */
2479 		if (tlen == 0 &&
2480 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2481 			TCPSTAT_INC(tcps_rcvwinupd);
2482 		tp->snd_wnd = tiwin;
2483 		tp->snd_wl1 = th->th_seq;
2484 		tp->snd_wl2 = th->th_ack;
2485 		if (tp->snd_wnd > tp->max_sndwnd)
2486 			tp->max_sndwnd = tp->snd_wnd;
2487 		needoutput = 1;
2488 	}
2489 
2490 	/*
2491 	 * Process segments with URG.
2492 	 */
2493 	if ((thflags & TH_URG) && th->th_urp &&
2494 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2495 		/*
2496 		 * This is a kludge, but if we receive and accept
2497 		 * random urgent pointers, we'll crash in
2498 		 * soreceive.  It's hard to imagine someone
2499 		 * actually wanting to send this much urgent data.
2500 		 */
2501 		SOCKBUF_LOCK(&so->so_rcv);
2502 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2503 			th->th_urp = 0;			/* XXX */
2504 			thflags &= ~TH_URG;		/* XXX */
2505 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2506 			goto dodata;			/* XXX */
2507 		}
2508 		/*
2509 		 * If this segment advances the known urgent pointer,
2510 		 * then mark the data stream.  This should not happen
2511 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2512 		 * a FIN has been received from the remote side.
2513 		 * In these states we ignore the URG.
2514 		 *
2515 		 * According to RFC961 (Assigned Protocols),
2516 		 * the urgent pointer points to the last octet
2517 		 * of urgent data.  We continue, however,
2518 		 * to consider it to indicate the first octet
2519 		 * of data past the urgent section as the original
2520 		 * spec states (in one of two places).
2521 		 */
2522 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2523 			tp->rcv_up = th->th_seq + th->th_urp;
2524 			so->so_oobmark = so->so_rcv.sb_cc +
2525 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2526 			if (so->so_oobmark == 0)
2527 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2528 			sohasoutofband(so);
2529 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2530 		}
2531 		SOCKBUF_UNLOCK(&so->so_rcv);
2532 		/*
2533 		 * Remove out of band data so doesn't get presented to user.
2534 		 * This can happen independent of advancing the URG pointer,
2535 		 * but if two URG's are pending at once, some out-of-band
2536 		 * data may creep in... ick.
2537 		 */
2538 		if (th->th_urp <= (u_long)tlen &&
2539 		    !(so->so_options & SO_OOBINLINE)) {
2540 			/* hdr drop is delayed */
2541 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2542 		}
2543 	} else {
2544 		/*
2545 		 * If no out of band data is expected,
2546 		 * pull receive urgent pointer along
2547 		 * with the receive window.
2548 		 */
2549 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2550 			tp->rcv_up = tp->rcv_nxt;
2551 	}
2552 dodata:							/* XXX */
2553 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2554 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2555 	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2556 	INP_WLOCK_ASSERT(tp->t_inpcb);
2557 
2558 	/*
2559 	 * Process the segment text, merging it into the TCP sequencing queue,
2560 	 * and arranging for acknowledgment of receipt if necessary.
2561 	 * This process logically involves adjusting tp->rcv_wnd as data
2562 	 * is presented to the user (this happens in tcp_usrreq.c,
2563 	 * case PRU_RCVD).  If a FIN has already been received on this
2564 	 * connection then we just ignore the text.
2565 	 */
2566 	if ((tlen || (thflags & TH_FIN)) &&
2567 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2568 		tcp_seq save_start = th->th_seq;
2569 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2570 		/*
2571 		 * Insert segment which includes th into TCP reassembly queue
2572 		 * with control block tp.  Set thflags to whether reassembly now
2573 		 * includes a segment with FIN.  This handles the common case
2574 		 * inline (segment is the next to be received on an established
2575 		 * connection, and the queue is empty), avoiding linkage into
2576 		 * and removal from the queue and repetition of various
2577 		 * conversions.
2578 		 * Set DELACK for segments received in order, but ack
2579 		 * immediately when segments are out of order (so
2580 		 * fast retransmit can work).
2581 		 */
2582 		if (th->th_seq == tp->rcv_nxt &&
2583 		    LIST_EMPTY(&tp->t_segq) &&
2584 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2585 			if (DELAY_ACK(tp))
2586 				tp->t_flags |= TF_DELACK;
2587 			else
2588 				tp->t_flags |= TF_ACKNOW;
2589 			tp->rcv_nxt += tlen;
2590 			thflags = th->th_flags & TH_FIN;
2591 			TCPSTAT_INC(tcps_rcvpack);
2592 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2593 			ND6_HINT(tp);
2594 			SOCKBUF_LOCK(&so->so_rcv);
2595 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2596 				m_freem(m);
2597 			else
2598 				sbappendstream_locked(&so->so_rcv, m);
2599 			/* NB: sorwakeup_locked() does an implicit unlock. */
2600 			sorwakeup_locked(so);
2601 		} else {
2602 			/*
2603 			 * XXX: Due to the header drop above "th" is
2604 			 * theoretically invalid by now.  Fortunately
2605 			 * m_adj() doesn't actually frees any mbufs
2606 			 * when trimming from the head.
2607 			 */
2608 			thflags = tcp_reass(tp, th, &tlen, m);
2609 			tp->t_flags |= TF_ACKNOW;
2610 		}
2611 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2612 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2613 #if 0
2614 		/*
2615 		 * Note the amount of data that peer has sent into
2616 		 * our window, in order to estimate the sender's
2617 		 * buffer size.
2618 		 * XXX: Unused.
2619 		 */
2620 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2621 #endif
2622 	} else {
2623 		m_freem(m);
2624 		thflags &= ~TH_FIN;
2625 	}
2626 
2627 	/*
2628 	 * If FIN is received ACK the FIN and let the user know
2629 	 * that the connection is closing.
2630 	 */
2631 	if (thflags & TH_FIN) {
2632 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2633 			socantrcvmore(so);
2634 			/*
2635 			 * If connection is half-synchronized
2636 			 * (ie NEEDSYN flag on) then delay ACK,
2637 			 * so it may be piggybacked when SYN is sent.
2638 			 * Otherwise, since we received a FIN then no
2639 			 * more input can be expected, send ACK now.
2640 			 */
2641 			if (tp->t_flags & TF_NEEDSYN)
2642 				tp->t_flags |= TF_DELACK;
2643 			else
2644 				tp->t_flags |= TF_ACKNOW;
2645 			tp->rcv_nxt++;
2646 		}
2647 		switch (tp->t_state) {
2648 
2649 		/*
2650 		 * In SYN_RECEIVED and ESTABLISHED STATES
2651 		 * enter the CLOSE_WAIT state.
2652 		 */
2653 		case TCPS_SYN_RECEIVED:
2654 			tp->t_starttime = ticks;
2655 			/* FALLTHROUGH */
2656 		case TCPS_ESTABLISHED:
2657 			tp->t_state = TCPS_CLOSE_WAIT;
2658 			break;
2659 
2660 		/*
2661 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2662 		 * enter the CLOSING state.
2663 		 */
2664 		case TCPS_FIN_WAIT_1:
2665 			tp->t_state = TCPS_CLOSING;
2666 			break;
2667 
2668 		/*
2669 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2670 		 * starting the time-wait timer, turning off the other
2671 		 * standard timers.
2672 		 */
2673 		case TCPS_FIN_WAIT_2:
2674 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2675 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2676 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2677 			    ti_locked));
2678 
2679 			tcp_twstart(tp);
2680 			INP_INFO_WUNLOCK(&V_tcbinfo);
2681 			return;
2682 		}
2683 	}
2684 	if (ti_locked == TI_RLOCKED)
2685 		INP_INFO_RUNLOCK(&V_tcbinfo);
2686 	else if (ti_locked == TI_WLOCKED)
2687 		INP_INFO_WUNLOCK(&V_tcbinfo);
2688 	else
2689 		panic("%s: dodata epilogue ti_locked %d", __func__,
2690 		    ti_locked);
2691 	ti_locked = TI_UNLOCKED;
2692 
2693 #ifdef TCPDEBUG
2694 	if (so->so_options & SO_DEBUG)
2695 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2696 			  &tcp_savetcp, 0);
2697 #endif
2698 
2699 	/*
2700 	 * Return any desired output.
2701 	 */
2702 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2703 		(void) tcp_output(tp);
2704 
2705 check_delack:
2706 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2707 	    __func__, ti_locked));
2708 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2709 	INP_WLOCK_ASSERT(tp->t_inpcb);
2710 
2711 	if (tp->t_flags & TF_DELACK) {
2712 		tp->t_flags &= ~TF_DELACK;
2713 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2714 	}
2715 	INP_WUNLOCK(tp->t_inpcb);
2716 	return;
2717 
2718 dropafterack:
2719 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2720 	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2721 
2722 	/*
2723 	 * Generate an ACK dropping incoming segment if it occupies
2724 	 * sequence space, where the ACK reflects our state.
2725 	 *
2726 	 * We can now skip the test for the RST flag since all
2727 	 * paths to this code happen after packets containing
2728 	 * RST have been dropped.
2729 	 *
2730 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2731 	 * segment we received passes the SYN-RECEIVED ACK test.
2732 	 * If it fails send a RST.  This breaks the loop in the
2733 	 * "LAND" DoS attack, and also prevents an ACK storm
2734 	 * between two listening ports that have been sent forged
2735 	 * SYN segments, each with the source address of the other.
2736 	 */
2737 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2738 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2739 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2740 		rstreason = BANDLIM_RST_OPENPORT;
2741 		goto dropwithreset;
2742 	}
2743 #ifdef TCPDEBUG
2744 	if (so->so_options & SO_DEBUG)
2745 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2746 			  &tcp_savetcp, 0);
2747 #endif
2748 	if (ti_locked == TI_RLOCKED)
2749 		INP_INFO_RUNLOCK(&V_tcbinfo);
2750 	else if (ti_locked == TI_WLOCKED)
2751 		INP_INFO_WUNLOCK(&V_tcbinfo);
2752 	else
2753 		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2754 		    ti_locked);
2755 	ti_locked = TI_UNLOCKED;
2756 
2757 	tp->t_flags |= TF_ACKNOW;
2758 	(void) tcp_output(tp);
2759 	INP_WUNLOCK(tp->t_inpcb);
2760 	m_freem(m);
2761 	return;
2762 
2763 dropwithreset:
2764 	if (ti_locked == TI_RLOCKED)
2765 		INP_INFO_RUNLOCK(&V_tcbinfo);
2766 	else if (ti_locked == TI_WLOCKED)
2767 		INP_INFO_WUNLOCK(&V_tcbinfo);
2768 	else
2769 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2770 	ti_locked = TI_UNLOCKED;
2771 
2772 	if (tp != NULL) {
2773 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2774 		INP_WUNLOCK(tp->t_inpcb);
2775 	} else
2776 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2777 	return;
2778 
2779 drop:
2780 	if (ti_locked == TI_RLOCKED)
2781 		INP_INFO_RUNLOCK(&V_tcbinfo);
2782 	else if (ti_locked == TI_WLOCKED)
2783 		INP_INFO_WUNLOCK(&V_tcbinfo);
2784 #ifdef INVARIANTS
2785 	else
2786 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2787 #endif
2788 	ti_locked = TI_UNLOCKED;
2789 
2790 	/*
2791 	 * Drop space held by incoming segment and return.
2792 	 */
2793 #ifdef TCPDEBUG
2794 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2795 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2796 			  &tcp_savetcp, 0);
2797 #endif
2798 	if (tp != NULL)
2799 		INP_WUNLOCK(tp->t_inpcb);
2800 	m_freem(m);
2801 }
2802 
2803 /*
2804  * Issue RST and make ACK acceptable to originator of segment.
2805  * The mbuf must still include the original packet header.
2806  * tp may be NULL.
2807  */
2808 static void
2809 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2810     int tlen, int rstreason)
2811 {
2812 	struct ip *ip;
2813 #ifdef INET6
2814 	struct ip6_hdr *ip6;
2815 #endif
2816 
2817 	if (tp != NULL) {
2818 		INP_WLOCK_ASSERT(tp->t_inpcb);
2819 	}
2820 
2821 	/* Don't bother if destination was broadcast/multicast. */
2822 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2823 		goto drop;
2824 #ifdef INET6
2825 	if (mtod(m, struct ip *)->ip_v == 6) {
2826 		ip6 = mtod(m, struct ip6_hdr *);
2827 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2828 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2829 			goto drop;
2830 		/* IPv6 anycast check is done at tcp6_input() */
2831 	} else
2832 #endif
2833 	{
2834 		ip = mtod(m, struct ip *);
2835 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2836 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2837 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2838 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2839 			goto drop;
2840 	}
2841 
2842 	/* Perform bandwidth limiting. */
2843 	if (badport_bandlim(rstreason) < 0)
2844 		goto drop;
2845 
2846 	/* tcp_respond consumes the mbuf chain. */
2847 	if (th->th_flags & TH_ACK) {
2848 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2849 		    th->th_ack, TH_RST);
2850 	} else {
2851 		if (th->th_flags & TH_SYN)
2852 			tlen++;
2853 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2854 		    (tcp_seq)0, TH_RST|TH_ACK);
2855 	}
2856 	return;
2857 drop:
2858 	m_freem(m);
2859 }
2860 
2861 /*
2862  * Parse TCP options and place in tcpopt.
2863  */
2864 static void
2865 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2866 {
2867 	INIT_VNET_INET(curvnet);
2868 	int opt, optlen;
2869 
2870 	to->to_flags = 0;
2871 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2872 		opt = cp[0];
2873 		if (opt == TCPOPT_EOL)
2874 			break;
2875 		if (opt == TCPOPT_NOP)
2876 			optlen = 1;
2877 		else {
2878 			if (cnt < 2)
2879 				break;
2880 			optlen = cp[1];
2881 			if (optlen < 2 || optlen > cnt)
2882 				break;
2883 		}
2884 		switch (opt) {
2885 		case TCPOPT_MAXSEG:
2886 			if (optlen != TCPOLEN_MAXSEG)
2887 				continue;
2888 			if (!(flags & TO_SYN))
2889 				continue;
2890 			to->to_flags |= TOF_MSS;
2891 			bcopy((char *)cp + 2,
2892 			    (char *)&to->to_mss, sizeof(to->to_mss));
2893 			to->to_mss = ntohs(to->to_mss);
2894 			break;
2895 		case TCPOPT_WINDOW:
2896 			if (optlen != TCPOLEN_WINDOW)
2897 				continue;
2898 			if (!(flags & TO_SYN))
2899 				continue;
2900 			to->to_flags |= TOF_SCALE;
2901 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2902 			break;
2903 		case TCPOPT_TIMESTAMP:
2904 			if (optlen != TCPOLEN_TIMESTAMP)
2905 				continue;
2906 			to->to_flags |= TOF_TS;
2907 			bcopy((char *)cp + 2,
2908 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2909 			to->to_tsval = ntohl(to->to_tsval);
2910 			bcopy((char *)cp + 6,
2911 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2912 			to->to_tsecr = ntohl(to->to_tsecr);
2913 			break;
2914 #ifdef TCP_SIGNATURE
2915 		/*
2916 		 * XXX In order to reply to a host which has set the
2917 		 * TCP_SIGNATURE option in its initial SYN, we have to
2918 		 * record the fact that the option was observed here
2919 		 * for the syncache code to perform the correct response.
2920 		 */
2921 		case TCPOPT_SIGNATURE:
2922 			if (optlen != TCPOLEN_SIGNATURE)
2923 				continue;
2924 			to->to_flags |= TOF_SIGNATURE;
2925 			to->to_signature = cp + 2;
2926 			break;
2927 #endif
2928 		case TCPOPT_SACK_PERMITTED:
2929 			if (optlen != TCPOLEN_SACK_PERMITTED)
2930 				continue;
2931 			if (!(flags & TO_SYN))
2932 				continue;
2933 			if (!V_tcp_do_sack)
2934 				continue;
2935 			to->to_flags |= TOF_SACKPERM;
2936 			break;
2937 		case TCPOPT_SACK:
2938 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2939 				continue;
2940 			if (flags & TO_SYN)
2941 				continue;
2942 			to->to_flags |= TOF_SACK;
2943 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2944 			to->to_sacks = cp + 2;
2945 			TCPSTAT_INC(tcps_sack_rcv_blocks);
2946 			break;
2947 		default:
2948 			continue;
2949 		}
2950 	}
2951 }
2952 
2953 /*
2954  * Pull out of band byte out of a segment so
2955  * it doesn't appear in the user's data queue.
2956  * It is still reflected in the segment length for
2957  * sequencing purposes.
2958  */
2959 static void
2960 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2961     int off)
2962 {
2963 	int cnt = off + th->th_urp - 1;
2964 
2965 	while (cnt >= 0) {
2966 		if (m->m_len > cnt) {
2967 			char *cp = mtod(m, caddr_t) + cnt;
2968 			struct tcpcb *tp = sototcpcb(so);
2969 
2970 			INP_WLOCK_ASSERT(tp->t_inpcb);
2971 
2972 			tp->t_iobc = *cp;
2973 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2974 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2975 			m->m_len--;
2976 			if (m->m_flags & M_PKTHDR)
2977 				m->m_pkthdr.len--;
2978 			return;
2979 		}
2980 		cnt -= m->m_len;
2981 		m = m->m_next;
2982 		if (m == NULL)
2983 			break;
2984 	}
2985 	panic("tcp_pulloutofband");
2986 }
2987 
2988 /*
2989  * Collect new round-trip time estimate
2990  * and update averages and current timeout.
2991  */
2992 static void
2993 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2994 {
2995 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
2996 	int delta;
2997 
2998 	INP_WLOCK_ASSERT(tp->t_inpcb);
2999 
3000 	TCPSTAT_INC(tcps_rttupdated);
3001 	tp->t_rttupdated++;
3002 	if (tp->t_srtt != 0) {
3003 		/*
3004 		 * srtt is stored as fixed point with 5 bits after the
3005 		 * binary point (i.e., scaled by 8).  The following magic
3006 		 * is equivalent to the smoothing algorithm in rfc793 with
3007 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3008 		 * point).  Adjust rtt to origin 0.
3009 		 */
3010 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3011 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3012 
3013 		if ((tp->t_srtt += delta) <= 0)
3014 			tp->t_srtt = 1;
3015 
3016 		/*
3017 		 * We accumulate a smoothed rtt variance (actually, a
3018 		 * smoothed mean difference), then set the retransmit
3019 		 * timer to smoothed rtt + 4 times the smoothed variance.
3020 		 * rttvar is stored as fixed point with 4 bits after the
3021 		 * binary point (scaled by 16).  The following is
3022 		 * equivalent to rfc793 smoothing with an alpha of .75
3023 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3024 		 * rfc793's wired-in beta.
3025 		 */
3026 		if (delta < 0)
3027 			delta = -delta;
3028 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3029 		if ((tp->t_rttvar += delta) <= 0)
3030 			tp->t_rttvar = 1;
3031 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3032 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3033 	} else {
3034 		/*
3035 		 * No rtt measurement yet - use the unsmoothed rtt.
3036 		 * Set the variance to half the rtt (so our first
3037 		 * retransmit happens at 3*rtt).
3038 		 */
3039 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3040 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3041 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3042 	}
3043 	tp->t_rtttime = 0;
3044 	tp->t_rxtshift = 0;
3045 
3046 	/*
3047 	 * the retransmit should happen at rtt + 4 * rttvar.
3048 	 * Because of the way we do the smoothing, srtt and rttvar
3049 	 * will each average +1/2 tick of bias.  When we compute
3050 	 * the retransmit timer, we want 1/2 tick of rounding and
3051 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3052 	 * firing of the timer.  The bias will give us exactly the
3053 	 * 1.5 tick we need.  But, because the bias is
3054 	 * statistical, we have to test that we don't drop below
3055 	 * the minimum feasible timer (which is 2 ticks).
3056 	 */
3057 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3058 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3059 
3060 	/*
3061 	 * We received an ack for a packet that wasn't retransmitted;
3062 	 * it is probably safe to discard any error indications we've
3063 	 * received recently.  This isn't quite right, but close enough
3064 	 * for now (a route might have failed after we sent a segment,
3065 	 * and the return path might not be symmetrical).
3066 	 */
3067 	tp->t_softerror = 0;
3068 }
3069 
3070 /*
3071  * Determine a reasonable value for maxseg size.
3072  * If the route is known, check route for mtu.
3073  * If none, use an mss that can be handled on the outgoing
3074  * interface without forcing IP to fragment; if bigger than
3075  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3076  * to utilize large mbufs.  If no route is found, route has no mtu,
3077  * or the destination isn't local, use a default, hopefully conservative
3078  * size (usually 512 or the default IP max size, but no more than the mtu
3079  * of the interface), as we can't discover anything about intervening
3080  * gateways or networks.  We also initialize the congestion/slow start
3081  * window to be a single segment if the destination isn't local.
3082  * While looking at the routing entry, we also initialize other path-dependent
3083  * parameters from pre-set or cached values in the routing entry.
3084  *
3085  * Also take into account the space needed for options that we
3086  * send regularly.  Make maxseg shorter by that amount to assure
3087  * that we can send maxseg amount of data even when the options
3088  * are present.  Store the upper limit of the length of options plus
3089  * data in maxopd.
3090  *
3091  * In case of T/TCP, we call this routine during implicit connection
3092  * setup as well (offer = -1), to initialize maxseg from the cached
3093  * MSS of our peer.
3094  *
3095  * NOTE that this routine is only called when we process an incoming
3096  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3097  */
3098 void
3099 tcp_mss_update(struct tcpcb *tp, int offer,
3100     struct hc_metrics_lite *metricptr, int *mtuflags)
3101 {
3102 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
3103 	int mss;
3104 	u_long maxmtu;
3105 	struct inpcb *inp = tp->t_inpcb;
3106 	struct hc_metrics_lite metrics;
3107 	int origoffer = offer;
3108 #ifdef INET6
3109 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3110 	size_t min_protoh = isipv6 ?
3111 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3112 			    sizeof (struct tcpiphdr);
3113 #else
3114 	const size_t min_protoh = sizeof(struct tcpiphdr);
3115 #endif
3116 
3117 	INP_WLOCK_ASSERT(tp->t_inpcb);
3118 
3119 	/* Initialize. */
3120 #ifdef INET6
3121 	if (isipv6) {
3122 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3123 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3124 	} else
3125 #endif
3126 	{
3127 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3128 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3129 	}
3130 
3131 	/*
3132 	 * No route to sender, stay with default mss and return.
3133 	 */
3134 	if (maxmtu == 0) {
3135 		/*
3136 		 * In case we return early we need to initialize metrics
3137 		 * to a defined state as tcp_hc_get() would do for us
3138 		 * if there was no cache hit.
3139 		 */
3140 		if (metricptr != NULL)
3141 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3142 		return;
3143 	}
3144 
3145 	/* What have we got? */
3146 	switch (offer) {
3147 		case 0:
3148 			/*
3149 			 * Offer == 0 means that there was no MSS on the SYN
3150 			 * segment, in this case we use tcp_mssdflt as
3151 			 * already assigned to t_maxopd above.
3152 			 */
3153 			offer = tp->t_maxopd;
3154 			break;
3155 
3156 		case -1:
3157 			/*
3158 			 * Offer == -1 means that we didn't receive SYN yet.
3159 			 */
3160 			/* FALLTHROUGH */
3161 
3162 		default:
3163 			/*
3164 			 * Prevent DoS attack with too small MSS. Round up
3165 			 * to at least minmss.
3166 			 */
3167 			offer = max(offer, V_tcp_minmss);
3168 	}
3169 
3170 	/*
3171 	 * rmx information is now retrieved from tcp_hostcache.
3172 	 */
3173 	tcp_hc_get(&inp->inp_inc, &metrics);
3174 	if (metricptr != NULL)
3175 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3176 
3177 	/*
3178 	 * If there's a discovered mtu int tcp hostcache, use it
3179 	 * else, use the link mtu.
3180 	 */
3181 	if (metrics.rmx_mtu)
3182 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3183 	else {
3184 #ifdef INET6
3185 		if (isipv6) {
3186 			mss = maxmtu - min_protoh;
3187 			if (!V_path_mtu_discovery &&
3188 			    !in6_localaddr(&inp->in6p_faddr))
3189 				mss = min(mss, V_tcp_v6mssdflt);
3190 		} else
3191 #endif
3192 		{
3193 			mss = maxmtu - min_protoh;
3194 			if (!V_path_mtu_discovery &&
3195 			    !in_localaddr(inp->inp_faddr))
3196 				mss = min(mss, V_tcp_mssdflt);
3197 		}
3198 		/*
3199 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3200 		 * probably violates the TCP spec.
3201 		 * The problem is that, since we don't know the
3202 		 * other end's MSS, we are supposed to use a conservative
3203 		 * default.  But, if we do that, then MTU discovery will
3204 		 * never actually take place, because the conservative
3205 		 * default is much less than the MTUs typically seen
3206 		 * on the Internet today.  For the moment, we'll sweep
3207 		 * this under the carpet.
3208 		 *
3209 		 * The conservative default might not actually be a problem
3210 		 * if the only case this occurs is when sending an initial
3211 		 * SYN with options and data to a host we've never talked
3212 		 * to before.  Then, they will reply with an MSS value which
3213 		 * will get recorded and the new parameters should get
3214 		 * recomputed.  For Further Study.
3215 		 */
3216 	}
3217 	mss = min(mss, offer);
3218 
3219 	/*
3220 	 * Sanity check: make sure that maxopd will be large
3221 	 * enough to allow some data on segments even if the
3222 	 * all the option space is used (40bytes).  Otherwise
3223 	 * funny things may happen in tcp_output.
3224 	 */
3225 	mss = max(mss, 64);
3226 
3227 	/*
3228 	 * maxopd stores the maximum length of data AND options
3229 	 * in a segment; maxseg is the amount of data in a normal
3230 	 * segment.  We need to store this value (maxopd) apart
3231 	 * from maxseg, because now every segment carries options
3232 	 * and thus we normally have somewhat less data in segments.
3233 	 */
3234 	tp->t_maxopd = mss;
3235 
3236 	/*
3237 	 * origoffer==-1 indicates that no segments were received yet.
3238 	 * In this case we just guess.
3239 	 */
3240 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3241 	    (origoffer == -1 ||
3242 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3243 		mss -= TCPOLEN_TSTAMP_APPA;
3244 
3245 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3246 	if (mss > MCLBYTES)
3247 		mss &= ~(MCLBYTES-1);
3248 #else
3249 	if (mss > MCLBYTES)
3250 		mss = mss / MCLBYTES * MCLBYTES;
3251 #endif
3252 	tp->t_maxseg = mss;
3253 }
3254 
3255 void
3256 tcp_mss(struct tcpcb *tp, int offer)
3257 {
3258 	int rtt, mss;
3259 	u_long bufsize;
3260 	struct inpcb *inp;
3261 	struct socket *so;
3262 	struct hc_metrics_lite metrics;
3263 	int mtuflags = 0;
3264 #ifdef INET6
3265 	int isipv6;
3266 #endif
3267 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3268 	INIT_VNET_INET(tp->t_vnet);
3269 
3270 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3271 
3272 	mss = tp->t_maxseg;
3273 	inp = tp->t_inpcb;
3274 #ifdef INET6
3275 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3276 #endif
3277 
3278 	/*
3279 	 * If there's a pipesize, change the socket buffer to that size,
3280 	 * don't change if sb_hiwat is different than default (then it
3281 	 * has been changed on purpose with setsockopt).
3282 	 * Make the socket buffers an integral number of mss units;
3283 	 * if the mss is larger than the socket buffer, decrease the mss.
3284 	 */
3285 	so = inp->inp_socket;
3286 	SOCKBUF_LOCK(&so->so_snd);
3287 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3288 		bufsize = metrics.rmx_sendpipe;
3289 	else
3290 		bufsize = so->so_snd.sb_hiwat;
3291 	if (bufsize < mss)
3292 		mss = bufsize;
3293 	else {
3294 		bufsize = roundup(bufsize, mss);
3295 		if (bufsize > sb_max)
3296 			bufsize = sb_max;
3297 		if (bufsize > so->so_snd.sb_hiwat)
3298 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3299 	}
3300 	SOCKBUF_UNLOCK(&so->so_snd);
3301 	tp->t_maxseg = mss;
3302 
3303 	SOCKBUF_LOCK(&so->so_rcv);
3304 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3305 		bufsize = metrics.rmx_recvpipe;
3306 	else
3307 		bufsize = so->so_rcv.sb_hiwat;
3308 	if (bufsize > mss) {
3309 		bufsize = roundup(bufsize, mss);
3310 		if (bufsize > sb_max)
3311 			bufsize = sb_max;
3312 		if (bufsize > so->so_rcv.sb_hiwat)
3313 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3314 	}
3315 	SOCKBUF_UNLOCK(&so->so_rcv);
3316 	/*
3317 	 * While we're here, check the others too.
3318 	 */
3319 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3320 		tp->t_srtt = rtt;
3321 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3322 		TCPSTAT_INC(tcps_usedrtt);
3323 		if (metrics.rmx_rttvar) {
3324 			tp->t_rttvar = metrics.rmx_rttvar;
3325 			TCPSTAT_INC(tcps_usedrttvar);
3326 		} else {
3327 			/* default variation is +- 1 rtt */
3328 			tp->t_rttvar =
3329 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3330 		}
3331 		TCPT_RANGESET(tp->t_rxtcur,
3332 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3333 			      tp->t_rttmin, TCPTV_REXMTMAX);
3334 	}
3335 	if (metrics.rmx_ssthresh) {
3336 		/*
3337 		 * There's some sort of gateway or interface
3338 		 * buffer limit on the path.  Use this to set
3339 		 * the slow start threshhold, but set the
3340 		 * threshold to no less than 2*mss.
3341 		 */
3342 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3343 		TCPSTAT_INC(tcps_usedssthresh);
3344 	}
3345 	if (metrics.rmx_bandwidth)
3346 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3347 
3348 	/*
3349 	 * Set the slow-start flight size depending on whether this
3350 	 * is a local network or not.
3351 	 *
3352 	 * Extend this so we cache the cwnd too and retrieve it here.
3353 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3354 	 * have previous experience with the remote host. Be careful
3355 	 * not make cwnd bigger than remote receive window or our own
3356 	 * send socket buffer. Maybe put some additional upper bound
3357 	 * on the retrieved cwnd. Should do incremental updates to
3358 	 * hostcache when cwnd collapses so next connection doesn't
3359 	 * overloads the path again.
3360 	 *
3361 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3362 	 * We currently check only in syncache_socket for that.
3363 	 */
3364 #define TCP_METRICS_CWND
3365 #ifdef TCP_METRICS_CWND
3366 	if (metrics.rmx_cwnd)
3367 		tp->snd_cwnd = max(mss,
3368 				min(metrics.rmx_cwnd / 2,
3369 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3370 	else
3371 #endif
3372 	if (V_tcp_do_rfc3390)
3373 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3374 #ifdef INET6
3375 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3376 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3377 #else
3378 	else if (in_localaddr(inp->inp_faddr))
3379 #endif
3380 		tp->snd_cwnd = mss * V_ss_fltsz_local;
3381 	else
3382 		tp->snd_cwnd = mss * V_ss_fltsz;
3383 
3384 	/* Check the interface for TSO capabilities. */
3385 	if (mtuflags & CSUM_TSO)
3386 		tp->t_flags |= TF_TSO;
3387 }
3388 
3389 /*
3390  * Determine the MSS option to send on an outgoing SYN.
3391  */
3392 int
3393 tcp_mssopt(struct in_conninfo *inc)
3394 {
3395 	INIT_VNET_INET(curvnet);
3396 	int mss = 0;
3397 	u_long maxmtu = 0;
3398 	u_long thcmtu = 0;
3399 	size_t min_protoh;
3400 
3401 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3402 
3403 #ifdef INET6
3404 	if (inc->inc_flags & INC_ISIPV6) {
3405 		mss = V_tcp_v6mssdflt;
3406 		maxmtu = tcp_maxmtu6(inc, NULL);
3407 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3408 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3409 	} else
3410 #endif
3411 	{
3412 		mss = V_tcp_mssdflt;
3413 		maxmtu = tcp_maxmtu(inc, NULL);
3414 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3415 		min_protoh = sizeof(struct tcpiphdr);
3416 	}
3417 	if (maxmtu && thcmtu)
3418 		mss = min(maxmtu, thcmtu) - min_protoh;
3419 	else if (maxmtu || thcmtu)
3420 		mss = max(maxmtu, thcmtu) - min_protoh;
3421 
3422 	return (mss);
3423 }
3424 
3425 
3426 /*
3427  * On a partial ack arrives, force the retransmission of the
3428  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3429  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3430  * be started again.
3431  */
3432 static void
3433 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3434 {
3435 	tcp_seq onxt = tp->snd_nxt;
3436 	u_long  ocwnd = tp->snd_cwnd;
3437 
3438 	INP_WLOCK_ASSERT(tp->t_inpcb);
3439 
3440 	tcp_timer_activate(tp, TT_REXMT, 0);
3441 	tp->t_rtttime = 0;
3442 	tp->snd_nxt = th->th_ack;
3443 	/*
3444 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3445 	 * (tp->snd_una has not yet been updated when this function is called.)
3446 	 */
3447 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3448 	tp->t_flags |= TF_ACKNOW;
3449 	(void) tcp_output(tp);
3450 	tp->snd_cwnd = ocwnd;
3451 	if (SEQ_GT(onxt, tp->snd_nxt))
3452 		tp->snd_nxt = onxt;
3453 	/*
3454 	 * Partial window deflation.  Relies on fact that tp->snd_una
3455 	 * not updated yet.
3456 	 */
3457 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3458 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3459 	else
3460 		tp->snd_cwnd = 0;
3461 	tp->snd_cwnd += tp->t_maxseg;
3462 }
3463