xref: /freebsd/sys/netinet/tcp_input.c (revision cc16dea626cf2fc80cde667ac4798065108e596c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/signalvar.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/systm.h>
72 
73 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74 
75 #include <vm/uma.h>
76 
77 #include <net/if.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80 
81 #define TCPSTATES		/* for logging */
82 
83 #include <netinet/cc.h>
84 #include <netinet/in.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91 #include <netinet/ip_var.h>
92 #include <netinet/ip_options.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet/tcp_fsm.h>
99 #include <netinet/tcp_seq.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
102 #include <netinet6/tcp6_var.h>
103 #include <netinet/tcpip.h>
104 #include <netinet/tcp_syncache.h>
105 #ifdef TCPDEBUG
106 #include <netinet/tcp_debug.h>
107 #endif /* TCPDEBUG */
108 #ifdef TCP_OFFLOAD
109 #include <netinet/tcp_offload.h>
110 #endif
111 
112 #ifdef IPSEC
113 #include <netipsec/ipsec.h>
114 #include <netipsec/ipsec6.h>
115 #endif /*IPSEC*/
116 
117 #include <machine/in_cksum.h>
118 
119 #include <security/mac/mac_framework.h>
120 
121 const int tcprexmtthresh = 3;
122 
123 int tcp_log_in_vain = 0;
124 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
125     &tcp_log_in_vain, 0,
126     "Log all incoming TCP segments to closed ports");
127 
128 VNET_DEFINE(int, blackhole) = 0;
129 #define	V_blackhole		VNET(blackhole)
130 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
131     &VNET_NAME(blackhole), 0,
132     "Do not send RST on segments to closed ports");
133 
134 VNET_DEFINE(int, tcp_delack_enabled) = 1;
135 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
136     &VNET_NAME(tcp_delack_enabled), 0,
137     "Delay ACK to try and piggyback it onto a data packet");
138 
139 VNET_DEFINE(int, drop_synfin) = 0;
140 #define	V_drop_synfin		VNET(drop_synfin)
141 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
142     &VNET_NAME(drop_synfin), 0,
143     "Drop TCP packets with SYN+FIN set");
144 
145 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
146 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
147 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
148     &VNET_NAME(tcp_do_rfc3042), 0,
149     "Enable RFC 3042 (Limited Transmit)");
150 
151 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
152 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
153     &VNET_NAME(tcp_do_rfc3390), 0,
154     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
155 
156 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
157     "Experimental TCP extensions");
158 
159 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
160 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
161     &VNET_NAME(tcp_do_initcwnd10), 0,
162     "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)");
163 
164 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
165 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
166     &VNET_NAME(tcp_do_rfc3465), 0,
167     "Enable RFC 3465 (Appropriate Byte Counting)");
168 
169 VNET_DEFINE(int, tcp_abc_l_var) = 2;
170 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
171     &VNET_NAME(tcp_abc_l_var), 2,
172     "Cap the max cwnd increment during slow-start to this number of segments");
173 
174 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
175 
176 VNET_DEFINE(int, tcp_do_ecn) = 0;
177 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
178     &VNET_NAME(tcp_do_ecn), 0,
179     "TCP ECN support");
180 
181 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
182 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
183     &VNET_NAME(tcp_ecn_maxretries), 0,
184     "Max retries before giving up on ECN");
185 
186 VNET_DEFINE(int, tcp_insecure_rst) = 0;
187 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
188 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
189     &VNET_NAME(tcp_insecure_rst), 0,
190     "Follow the old (insecure) criteria for accepting RST packets");
191 
192 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
193 #define	V_tcp_recvspace	VNET(tcp_recvspace)
194 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
195     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
196 
197 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
198 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
199 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
200     &VNET_NAME(tcp_do_autorcvbuf), 0,
201     "Enable automatic receive buffer sizing");
202 
203 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
204 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
206     &VNET_NAME(tcp_autorcvbuf_inc), 0,
207     "Incrementor step size of automatic receive buffer");
208 
209 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
210 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
211 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
212     &VNET_NAME(tcp_autorcvbuf_max), 0,
213     "Max size of automatic receive buffer");
214 
215 VNET_DEFINE(struct inpcbhead, tcb);
216 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
217 VNET_DEFINE(struct inpcbinfo, tcbinfo);
218 
219 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
220 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
221 		     struct socket *, struct tcpcb *, int, int, uint8_t,
222 		     int);
223 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
224 		     struct tcpcb *, int, int);
225 static void	 tcp_pulloutofband(struct socket *,
226 		     struct tcphdr *, struct mbuf *, int);
227 static void	 tcp_xmit_timer(struct tcpcb *, int);
228 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
229 static void inline 	tcp_fields_to_host(struct tcphdr *);
230 #ifdef TCP_SIGNATURE
231 static void inline 	tcp_fields_to_net(struct tcphdr *);
232 static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
233 			    int, struct tcpopt *, struct tcphdr *, u_int);
234 #endif
235 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
236 			    uint16_t type);
237 static void inline	cc_conn_init(struct tcpcb *tp);
238 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
239 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
240 			    struct tcphdr *th, struct tcpopt *to);
241 
242 /*
243  * TCP statistics are stored in an "array" of counter(9)s.
244  */
245 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
246 VNET_PCPUSTAT_SYSINIT(tcpstat);
247 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
248     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
249 
250 #ifdef VIMAGE
251 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
252 #endif /* VIMAGE */
253 /*
254  * Kernel module interface for updating tcpstat.  The argument is an index
255  * into tcpstat treated as an array.
256  */
257 void
258 kmod_tcpstat_inc(int statnum)
259 {
260 
261 	counter_u64_add(VNET(tcpstat)[statnum], 1);
262 }
263 
264 /*
265  * Wrapper for the TCP established input helper hook.
266  */
267 static void inline
268 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
269 {
270 	struct tcp_hhook_data hhook_data;
271 
272 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
273 		hhook_data.tp = tp;
274 		hhook_data.th = th;
275 		hhook_data.to = to;
276 
277 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
278 		    tp->osd);
279 	}
280 }
281 
282 /*
283  * CC wrapper hook functions
284  */
285 static void inline
286 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
287 {
288 	INP_WLOCK_ASSERT(tp->t_inpcb);
289 
290 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
291 	if (tp->snd_cwnd <= tp->snd_wnd)
292 		tp->ccv->flags |= CCF_CWND_LIMITED;
293 	else
294 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
295 
296 	if (type == CC_ACK) {
297 		if (tp->snd_cwnd > tp->snd_ssthresh) {
298 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
299 			     V_tcp_abc_l_var * tp->t_maxseg);
300 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
301 				tp->t_bytes_acked -= tp->snd_cwnd;
302 				tp->ccv->flags |= CCF_ABC_SENTAWND;
303 			}
304 		} else {
305 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
306 				tp->t_bytes_acked = 0;
307 		}
308 	}
309 
310 	if (CC_ALGO(tp)->ack_received != NULL) {
311 		/* XXXLAS: Find a way to live without this */
312 		tp->ccv->curack = th->th_ack;
313 		CC_ALGO(tp)->ack_received(tp->ccv, type);
314 	}
315 }
316 
317 static void inline
318 cc_conn_init(struct tcpcb *tp)
319 {
320 	struct hc_metrics_lite metrics;
321 	struct inpcb *inp = tp->t_inpcb;
322 	int rtt;
323 
324 	INP_WLOCK_ASSERT(tp->t_inpcb);
325 
326 	tcp_hc_get(&inp->inp_inc, &metrics);
327 
328 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
329 		tp->t_srtt = rtt;
330 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
331 		TCPSTAT_INC(tcps_usedrtt);
332 		if (metrics.rmx_rttvar) {
333 			tp->t_rttvar = metrics.rmx_rttvar;
334 			TCPSTAT_INC(tcps_usedrttvar);
335 		} else {
336 			/* default variation is +- 1 rtt */
337 			tp->t_rttvar =
338 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
339 		}
340 		TCPT_RANGESET(tp->t_rxtcur,
341 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
342 		    tp->t_rttmin, TCPTV_REXMTMAX);
343 	}
344 	if (metrics.rmx_ssthresh) {
345 		/*
346 		 * There's some sort of gateway or interface
347 		 * buffer limit on the path.  Use this to set
348 		 * the slow start threshhold, but set the
349 		 * threshold to no less than 2*mss.
350 		 */
351 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
352 		TCPSTAT_INC(tcps_usedssthresh);
353 	}
354 
355 	/*
356 	 * Set the initial slow-start flight size.
357 	 *
358 	 * RFC5681 Section 3.1 specifies the default conservative values.
359 	 * RFC3390 specifies slightly more aggressive values.
360 	 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments.
361 	 *
362 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
363 	 * reduce the initial CWND to one segment as congestion is likely
364 	 * requiring us to be cautious.
365 	 */
366 	if (tp->snd_cwnd == 1)
367 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
368 	else if (V_tcp_do_initcwnd10)
369 		tp->snd_cwnd = min(10 * tp->t_maxseg,
370 		    max(2 * tp->t_maxseg, 14600));
371 	else if (V_tcp_do_rfc3390)
372 		tp->snd_cwnd = min(4 * tp->t_maxseg,
373 		    max(2 * tp->t_maxseg, 4380));
374 	else {
375 		/* Per RFC5681 Section 3.1 */
376 		if (tp->t_maxseg > 2190)
377 			tp->snd_cwnd = 2 * tp->t_maxseg;
378 		else if (tp->t_maxseg > 1095)
379 			tp->snd_cwnd = 3 * tp->t_maxseg;
380 		else
381 			tp->snd_cwnd = 4 * tp->t_maxseg;
382 	}
383 
384 	if (CC_ALGO(tp)->conn_init != NULL)
385 		CC_ALGO(tp)->conn_init(tp->ccv);
386 }
387 
388 void inline
389 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
390 {
391 	INP_WLOCK_ASSERT(tp->t_inpcb);
392 
393 	switch(type) {
394 	case CC_NDUPACK:
395 		if (!IN_FASTRECOVERY(tp->t_flags)) {
396 			tp->snd_recover = tp->snd_max;
397 			if (tp->t_flags & TF_ECN_PERMIT)
398 				tp->t_flags |= TF_ECN_SND_CWR;
399 		}
400 		break;
401 	case CC_ECN:
402 		if (!IN_CONGRECOVERY(tp->t_flags)) {
403 			TCPSTAT_INC(tcps_ecn_rcwnd);
404 			tp->snd_recover = tp->snd_max;
405 			if (tp->t_flags & TF_ECN_PERMIT)
406 				tp->t_flags |= TF_ECN_SND_CWR;
407 		}
408 		break;
409 	case CC_RTO:
410 		tp->t_dupacks = 0;
411 		tp->t_bytes_acked = 0;
412 		EXIT_RECOVERY(tp->t_flags);
413 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
414 		    tp->t_maxseg) * tp->t_maxseg;
415 		tp->snd_cwnd = tp->t_maxseg;
416 		break;
417 	case CC_RTO_ERR:
418 		TCPSTAT_INC(tcps_sndrexmitbad);
419 		/* RTO was unnecessary, so reset everything. */
420 		tp->snd_cwnd = tp->snd_cwnd_prev;
421 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
422 		tp->snd_recover = tp->snd_recover_prev;
423 		if (tp->t_flags & TF_WASFRECOVERY)
424 			ENTER_FASTRECOVERY(tp->t_flags);
425 		if (tp->t_flags & TF_WASCRECOVERY)
426 			ENTER_CONGRECOVERY(tp->t_flags);
427 		tp->snd_nxt = tp->snd_max;
428 		tp->t_flags &= ~TF_PREVVALID;
429 		tp->t_badrxtwin = 0;
430 		break;
431 	}
432 
433 	if (CC_ALGO(tp)->cong_signal != NULL) {
434 		if (th != NULL)
435 			tp->ccv->curack = th->th_ack;
436 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
437 	}
438 }
439 
440 static void inline
441 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
442 {
443 	INP_WLOCK_ASSERT(tp->t_inpcb);
444 
445 	/* XXXLAS: KASSERT that we're in recovery? */
446 
447 	if (CC_ALGO(tp)->post_recovery != NULL) {
448 		tp->ccv->curack = th->th_ack;
449 		CC_ALGO(tp)->post_recovery(tp->ccv);
450 	}
451 	/* XXXLAS: EXIT_RECOVERY ? */
452 	tp->t_bytes_acked = 0;
453 }
454 
455 static inline void
456 tcp_fields_to_host(struct tcphdr *th)
457 {
458 
459 	th->th_seq = ntohl(th->th_seq);
460 	th->th_ack = ntohl(th->th_ack);
461 	th->th_win = ntohs(th->th_win);
462 	th->th_urp = ntohs(th->th_urp);
463 }
464 
465 #ifdef TCP_SIGNATURE
466 static inline void
467 tcp_fields_to_net(struct tcphdr *th)
468 {
469 
470 	th->th_seq = htonl(th->th_seq);
471 	th->th_ack = htonl(th->th_ack);
472 	th->th_win = htons(th->th_win);
473 	th->th_urp = htons(th->th_urp);
474 }
475 
476 static inline int
477 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
478     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
479 {
480 	int ret;
481 
482 	tcp_fields_to_net(th);
483 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
484 	tcp_fields_to_host(th);
485 	return (ret);
486 }
487 #endif
488 
489 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
490 #ifdef INET6
491 #define ND6_HINT(tp) \
492 do { \
493 	if ((tp) && (tp)->t_inpcb && \
494 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
495 		nd6_nud_hint(NULL, NULL, 0); \
496 } while (0)
497 #else
498 #define ND6_HINT(tp)
499 #endif
500 
501 /*
502  * Indicate whether this ack should be delayed.  We can delay the ack if
503  *	- there is no delayed ack timer in progress and
504  *	- our last ack wasn't a 0-sized window.  We never want to delay
505  *	  the ack that opens up a 0-sized window and
506  *		- delayed acks are enabled or
507  *		- this is a half-synchronized T/TCP connection.
508  */
509 #define DELAY_ACK(tp)							\
510 	((!tcp_timer_active(tp, TT_DELACK) &&				\
511 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
512 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
513 
514 /*
515  * TCP input handling is split into multiple parts:
516  *   tcp6_input is a thin wrapper around tcp_input for the extended
517  *	ip6_protox[] call format in ip6_input
518  *   tcp_input handles primary segment validation, inpcb lookup and
519  *	SYN processing on listen sockets
520  *   tcp_do_segment processes the ACK and text of the segment for
521  *	establishing, established and closing connections
522  */
523 #ifdef INET6
524 int
525 tcp6_input(struct mbuf **mp, int *offp, int proto)
526 {
527 	struct mbuf *m = *mp;
528 	struct in6_ifaddr *ia6;
529 
530 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
531 
532 	/*
533 	 * draft-itojun-ipv6-tcp-to-anycast
534 	 * better place to put this in?
535 	 */
536 	ia6 = ip6_getdstifaddr(m);
537 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
538 		struct ip6_hdr *ip6;
539 
540 		ifa_free(&ia6->ia_ifa);
541 		ip6 = mtod(m, struct ip6_hdr *);
542 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
543 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
544 		return IPPROTO_DONE;
545 	}
546 	if (ia6)
547 		ifa_free(&ia6->ia_ifa);
548 
549 	tcp_input(m, *offp);
550 	return IPPROTO_DONE;
551 }
552 #endif /* INET6 */
553 
554 void
555 tcp_input(struct mbuf *m, int off0)
556 {
557 	struct tcphdr *th = NULL;
558 	struct ip *ip = NULL;
559 	struct inpcb *inp = NULL;
560 	struct tcpcb *tp = NULL;
561 	struct socket *so = NULL;
562 	u_char *optp = NULL;
563 	int optlen = 0;
564 #ifdef INET
565 	int len;
566 #endif
567 	int tlen = 0, off;
568 	int drop_hdrlen;
569 	int thflags;
570 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
571 #ifdef TCP_SIGNATURE
572 	uint8_t sig_checked = 0;
573 #endif
574 	uint8_t iptos = 0;
575 	struct m_tag *fwd_tag = NULL;
576 #ifdef INET6
577 	struct ip6_hdr *ip6 = NULL;
578 	int isipv6;
579 #else
580 	const void *ip6 = NULL;
581 #endif /* INET6 */
582 	struct tcpopt to;		/* options in this segment */
583 	char *s = NULL;			/* address and port logging */
584 	int ti_locked;
585 #define	TI_UNLOCKED	1
586 #define	TI_WLOCKED	2
587 
588 #ifdef TCPDEBUG
589 	/*
590 	 * The size of tcp_saveipgen must be the size of the max ip header,
591 	 * now IPv6.
592 	 */
593 	u_char tcp_saveipgen[IP6_HDR_LEN];
594 	struct tcphdr tcp_savetcp;
595 	short ostate = 0;
596 #endif
597 
598 #ifdef INET6
599 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
600 #endif
601 
602 	to.to_flags = 0;
603 	TCPSTAT_INC(tcps_rcvtotal);
604 
605 #ifdef INET6
606 	if (isipv6) {
607 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
608 
609 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
610 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
611 			if (m == NULL) {
612 				TCPSTAT_INC(tcps_rcvshort);
613 				return;
614 			}
615 		}
616 
617 		ip6 = mtod(m, struct ip6_hdr *);
618 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
619 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
620 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
621 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
622 				th->th_sum = m->m_pkthdr.csum_data;
623 			else
624 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
625 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
626 			th->th_sum ^= 0xffff;
627 		} else
628 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
629 		if (th->th_sum) {
630 			TCPSTAT_INC(tcps_rcvbadsum);
631 			goto drop;
632 		}
633 
634 		/*
635 		 * Be proactive about unspecified IPv6 address in source.
636 		 * As we use all-zero to indicate unbounded/unconnected pcb,
637 		 * unspecified IPv6 address can be used to confuse us.
638 		 *
639 		 * Note that packets with unspecified IPv6 destination is
640 		 * already dropped in ip6_input.
641 		 */
642 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
643 			/* XXX stat */
644 			goto drop;
645 		}
646 	}
647 #endif
648 #if defined(INET) && defined(INET6)
649 	else
650 #endif
651 #ifdef INET
652 	{
653 		/*
654 		 * Get IP and TCP header together in first mbuf.
655 		 * Note: IP leaves IP header in first mbuf.
656 		 */
657 		if (off0 > sizeof (struct ip)) {
658 			ip_stripoptions(m);
659 			off0 = sizeof(struct ip);
660 		}
661 		if (m->m_len < sizeof (struct tcpiphdr)) {
662 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
663 			    == NULL) {
664 				TCPSTAT_INC(tcps_rcvshort);
665 				return;
666 			}
667 		}
668 		ip = mtod(m, struct ip *);
669 		th = (struct tcphdr *)((caddr_t)ip + off0);
670 		tlen = ntohs(ip->ip_len) - off0;
671 
672 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
673 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
674 				th->th_sum = m->m_pkthdr.csum_data;
675 			else
676 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
677 				    ip->ip_dst.s_addr,
678 				    htonl(m->m_pkthdr.csum_data + tlen +
679 				    IPPROTO_TCP));
680 			th->th_sum ^= 0xffff;
681 		} else {
682 			struct ipovly *ipov = (struct ipovly *)ip;
683 
684 			/*
685 			 * Checksum extended TCP header and data.
686 			 */
687 			len = off0 + tlen;
688 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
689 			ipov->ih_len = htons(tlen);
690 			th->th_sum = in_cksum(m, len);
691 		}
692 		if (th->th_sum) {
693 			TCPSTAT_INC(tcps_rcvbadsum);
694 			goto drop;
695 		}
696 		/* Re-initialization for later version check */
697 		ip->ip_v = IPVERSION;
698 	}
699 #endif /* INET */
700 
701 #ifdef INET6
702 	if (isipv6)
703 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
704 #endif
705 #if defined(INET) && defined(INET6)
706 	else
707 #endif
708 #ifdef INET
709 		iptos = ip->ip_tos;
710 #endif
711 
712 	/*
713 	 * Check that TCP offset makes sense,
714 	 * pull out TCP options and adjust length.		XXX
715 	 */
716 	off = th->th_off << 2;
717 	if (off < sizeof (struct tcphdr) || off > tlen) {
718 		TCPSTAT_INC(tcps_rcvbadoff);
719 		goto drop;
720 	}
721 	tlen -= off;	/* tlen is used instead of ti->ti_len */
722 	if (off > sizeof (struct tcphdr)) {
723 #ifdef INET6
724 		if (isipv6) {
725 			IP6_EXTHDR_CHECK(m, off0, off, );
726 			ip6 = mtod(m, struct ip6_hdr *);
727 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
728 		}
729 #endif
730 #if defined(INET) && defined(INET6)
731 		else
732 #endif
733 #ifdef INET
734 		{
735 			if (m->m_len < sizeof(struct ip) + off) {
736 				if ((m = m_pullup(m, sizeof (struct ip) + off))
737 				    == NULL) {
738 					TCPSTAT_INC(tcps_rcvshort);
739 					return;
740 				}
741 				ip = mtod(m, struct ip *);
742 				th = (struct tcphdr *)((caddr_t)ip + off0);
743 			}
744 		}
745 #endif
746 		optlen = off - sizeof (struct tcphdr);
747 		optp = (u_char *)(th + 1);
748 	}
749 	thflags = th->th_flags;
750 
751 	/*
752 	 * Convert TCP protocol specific fields to host format.
753 	 */
754 	tcp_fields_to_host(th);
755 
756 	/*
757 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
758 	 */
759 	drop_hdrlen = off0 + off;
760 
761 	/*
762 	 * Locate pcb for segment; if we're likely to add or remove a
763 	 * connection then first acquire pcbinfo lock.  There are two cases
764 	 * where we might discover later we need a write lock despite the
765 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
766 	 * a connection in TIMEWAIT.
767 	 */
768 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
769 		INP_INFO_WLOCK(&V_tcbinfo);
770 		ti_locked = TI_WLOCKED;
771 	} else
772 		ti_locked = TI_UNLOCKED;
773 
774 	/*
775 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
776 	 */
777         if (
778 #ifdef INET6
779 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
780 #ifdef INET
781 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
782 #endif
783 #endif
784 #if defined(INET) && !defined(INET6)
785 	    (m->m_flags & M_IP_NEXTHOP)
786 #endif
787 	    )
788 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
789 
790 findpcb:
791 #ifdef INVARIANTS
792 	if (ti_locked == TI_WLOCKED) {
793 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
794 	} else {
795 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
796 	}
797 #endif
798 #ifdef INET6
799 	if (isipv6 && fwd_tag != NULL) {
800 		struct sockaddr_in6 *next_hop6;
801 
802 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
803 		/*
804 		 * Transparently forwarded. Pretend to be the destination.
805 		 * Already got one like this?
806 		 */
807 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
808 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
809 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
810 		if (!inp) {
811 			/*
812 			 * It's new.  Try to find the ambushing socket.
813 			 * Because we've rewritten the destination address,
814 			 * any hardware-generated hash is ignored.
815 			 */
816 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
817 			    th->th_sport, &next_hop6->sin6_addr,
818 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
819 			    th->th_dport, INPLOOKUP_WILDCARD |
820 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
821 		}
822 	} else if (isipv6) {
823 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
824 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
825 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
826 		    m->m_pkthdr.rcvif, m);
827 	}
828 #endif /* INET6 */
829 #if defined(INET6) && defined(INET)
830 	else
831 #endif
832 #ifdef INET
833 	if (fwd_tag != NULL) {
834 		struct sockaddr_in *next_hop;
835 
836 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
837 		/*
838 		 * Transparently forwarded. Pretend to be the destination.
839 		 * already got one like this?
840 		 */
841 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
842 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
843 		    m->m_pkthdr.rcvif, m);
844 		if (!inp) {
845 			/*
846 			 * It's new.  Try to find the ambushing socket.
847 			 * Because we've rewritten the destination address,
848 			 * any hardware-generated hash is ignored.
849 			 */
850 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
851 			    th->th_sport, next_hop->sin_addr,
852 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
853 			    th->th_dport, INPLOOKUP_WILDCARD |
854 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
855 		}
856 	} else
857 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
858 		    th->th_sport, ip->ip_dst, th->th_dport,
859 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
860 		    m->m_pkthdr.rcvif, m);
861 #endif /* INET */
862 
863 	/*
864 	 * If the INPCB does not exist then all data in the incoming
865 	 * segment is discarded and an appropriate RST is sent back.
866 	 * XXX MRT Send RST using which routing table?
867 	 */
868 	if (inp == NULL) {
869 		/*
870 		 * Log communication attempts to ports that are not
871 		 * in use.
872 		 */
873 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
874 		    tcp_log_in_vain == 2) {
875 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
876 				log(LOG_INFO, "%s; %s: Connection attempt "
877 				    "to closed port\n", s, __func__);
878 		}
879 		/*
880 		 * When blackholing do not respond with a RST but
881 		 * completely ignore the segment and drop it.
882 		 */
883 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
884 		    V_blackhole == 2)
885 			goto dropunlock;
886 
887 		rstreason = BANDLIM_RST_CLOSEDPORT;
888 		goto dropwithreset;
889 	}
890 	INP_WLOCK_ASSERT(inp);
891 	if (!(inp->inp_flags & INP_HW_FLOWID)
892 	    && (m->m_flags & M_FLOWID)
893 	    && ((inp->inp_socket == NULL)
894 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
895 		inp->inp_flags |= INP_HW_FLOWID;
896 		inp->inp_flags &= ~INP_SW_FLOWID;
897 		inp->inp_flowid = m->m_pkthdr.flowid;
898 	}
899 #ifdef IPSEC
900 #ifdef INET6
901 	if (isipv6 && ipsec6_in_reject(m, inp)) {
902 		IPSEC6STAT_INC(ips_in_polvio);
903 		goto dropunlock;
904 	} else
905 #endif /* INET6 */
906 	if (ipsec4_in_reject(m, inp) != 0) {
907 		IPSECSTAT_INC(ips_in_polvio);
908 		goto dropunlock;
909 	}
910 #endif /* IPSEC */
911 
912 	/*
913 	 * Check the minimum TTL for socket.
914 	 */
915 	if (inp->inp_ip_minttl != 0) {
916 #ifdef INET6
917 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
918 			goto dropunlock;
919 		else
920 #endif
921 		if (inp->inp_ip_minttl > ip->ip_ttl)
922 			goto dropunlock;
923 	}
924 
925 	/*
926 	 * A previous connection in TIMEWAIT state is supposed to catch stray
927 	 * or duplicate segments arriving late.  If this segment was a
928 	 * legitimate new connection attempt, the old INPCB gets removed and
929 	 * we can try again to find a listening socket.
930 	 *
931 	 * At this point, due to earlier optimism, we may hold only an inpcb
932 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
933 	 * acquire it, or if that fails, acquire a reference on the inpcb,
934 	 * drop all locks, acquire a global write lock, and then re-acquire
935 	 * the inpcb lock.  We may at that point discover that another thread
936 	 * has tried to free the inpcb, in which case we need to loop back
937 	 * and try to find a new inpcb to deliver to.
938 	 *
939 	 * XXXRW: It may be time to rethink timewait locking.
940 	 */
941 relocked:
942 	if (inp->inp_flags & INP_TIMEWAIT) {
943 		if (ti_locked == TI_UNLOCKED) {
944 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
945 				in_pcbref(inp);
946 				INP_WUNLOCK(inp);
947 				INP_INFO_WLOCK(&V_tcbinfo);
948 				ti_locked = TI_WLOCKED;
949 				INP_WLOCK(inp);
950 				if (in_pcbrele_wlocked(inp)) {
951 					inp = NULL;
952 					goto findpcb;
953 				}
954 			} else
955 				ti_locked = TI_WLOCKED;
956 		}
957 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
958 
959 		if (thflags & TH_SYN)
960 			tcp_dooptions(&to, optp, optlen, TO_SYN);
961 		/*
962 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
963 		 */
964 		if (tcp_twcheck(inp, &to, th, m, tlen))
965 			goto findpcb;
966 		INP_INFO_WUNLOCK(&V_tcbinfo);
967 		return;
968 	}
969 	/*
970 	 * The TCPCB may no longer exist if the connection is winding
971 	 * down or it is in the CLOSED state.  Either way we drop the
972 	 * segment and send an appropriate response.
973 	 */
974 	tp = intotcpcb(inp);
975 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
976 		rstreason = BANDLIM_RST_CLOSEDPORT;
977 		goto dropwithreset;
978 	}
979 
980 #ifdef TCP_OFFLOAD
981 	if (tp->t_flags & TF_TOE) {
982 		tcp_offload_input(tp, m);
983 		m = NULL;	/* consumed by the TOE driver */
984 		goto dropunlock;
985 	}
986 #endif
987 
988 	/*
989 	 * We've identified a valid inpcb, but it could be that we need an
990 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
991 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
992 	 * relock, we have to jump back to 'relocked' as the connection might
993 	 * now be in TIMEWAIT.
994 	 */
995 #ifdef INVARIANTS
996 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
997 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
998 #endif
999 	if (tp->t_state != TCPS_ESTABLISHED) {
1000 		if (ti_locked == TI_UNLOCKED) {
1001 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1002 				in_pcbref(inp);
1003 				INP_WUNLOCK(inp);
1004 				INP_INFO_WLOCK(&V_tcbinfo);
1005 				ti_locked = TI_WLOCKED;
1006 				INP_WLOCK(inp);
1007 				if (in_pcbrele_wlocked(inp)) {
1008 					inp = NULL;
1009 					goto findpcb;
1010 				}
1011 				goto relocked;
1012 			} else
1013 				ti_locked = TI_WLOCKED;
1014 		}
1015 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1016 	}
1017 
1018 #ifdef MAC
1019 	INP_WLOCK_ASSERT(inp);
1020 	if (mac_inpcb_check_deliver(inp, m))
1021 		goto dropunlock;
1022 #endif
1023 	so = inp->inp_socket;
1024 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1025 #ifdef TCPDEBUG
1026 	if (so->so_options & SO_DEBUG) {
1027 		ostate = tp->t_state;
1028 #ifdef INET6
1029 		if (isipv6) {
1030 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1031 		} else
1032 #endif
1033 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1034 		tcp_savetcp = *th;
1035 	}
1036 #endif /* TCPDEBUG */
1037 	/*
1038 	 * When the socket is accepting connections (the INPCB is in LISTEN
1039 	 * state) we look into the SYN cache if this is a new connection
1040 	 * attempt or the completion of a previous one.  Because listen
1041 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1042 	 * held in this case.
1043 	 */
1044 	if (so->so_options & SO_ACCEPTCONN) {
1045 		struct in_conninfo inc;
1046 
1047 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1048 		    "tp not listening", __func__));
1049 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1050 
1051 		bzero(&inc, sizeof(inc));
1052 #ifdef INET6
1053 		if (isipv6) {
1054 			inc.inc_flags |= INC_ISIPV6;
1055 			inc.inc6_faddr = ip6->ip6_src;
1056 			inc.inc6_laddr = ip6->ip6_dst;
1057 		} else
1058 #endif
1059 		{
1060 			inc.inc_faddr = ip->ip_src;
1061 			inc.inc_laddr = ip->ip_dst;
1062 		}
1063 		inc.inc_fport = th->th_sport;
1064 		inc.inc_lport = th->th_dport;
1065 		inc.inc_fibnum = so->so_fibnum;
1066 
1067 		/*
1068 		 * Check for an existing connection attempt in syncache if
1069 		 * the flag is only ACK.  A successful lookup creates a new
1070 		 * socket appended to the listen queue in SYN_RECEIVED state.
1071 		 */
1072 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1073 			/*
1074 			 * Parse the TCP options here because
1075 			 * syncookies need access to the reflected
1076 			 * timestamp.
1077 			 */
1078 			tcp_dooptions(&to, optp, optlen, 0);
1079 			/*
1080 			 * NB: syncache_expand() doesn't unlock
1081 			 * inp and tcpinfo locks.
1082 			 */
1083 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1084 				/*
1085 				 * No syncache entry or ACK was not
1086 				 * for our SYN/ACK.  Send a RST.
1087 				 * NB: syncache did its own logging
1088 				 * of the failure cause.
1089 				 */
1090 				rstreason = BANDLIM_RST_OPENPORT;
1091 				goto dropwithreset;
1092 			}
1093 			if (so == NULL) {
1094 				/*
1095 				 * We completed the 3-way handshake
1096 				 * but could not allocate a socket
1097 				 * either due to memory shortage,
1098 				 * listen queue length limits or
1099 				 * global socket limits.  Send RST
1100 				 * or wait and have the remote end
1101 				 * retransmit the ACK for another
1102 				 * try.
1103 				 */
1104 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1105 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1106 					    "Socket allocation failed due to "
1107 					    "limits or memory shortage, %s\n",
1108 					    s, __func__,
1109 					    V_tcp_sc_rst_sock_fail ?
1110 					    "sending RST" : "try again");
1111 				if (V_tcp_sc_rst_sock_fail) {
1112 					rstreason = BANDLIM_UNLIMITED;
1113 					goto dropwithreset;
1114 				} else
1115 					goto dropunlock;
1116 			}
1117 			/*
1118 			 * Socket is created in state SYN_RECEIVED.
1119 			 * Unlock the listen socket, lock the newly
1120 			 * created socket and update the tp variable.
1121 			 */
1122 			INP_WUNLOCK(inp);	/* listen socket */
1123 			inp = sotoinpcb(so);
1124 			INP_WLOCK(inp);		/* new connection */
1125 			tp = intotcpcb(inp);
1126 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1127 			    ("%s: ", __func__));
1128 #ifdef TCP_SIGNATURE
1129 			if (sig_checked == 0)  {
1130 				tcp_dooptions(&to, optp, optlen,
1131 				    (thflags & TH_SYN) ? TO_SYN : 0);
1132 				if (!tcp_signature_verify_input(m, off0, tlen,
1133 				    optlen, &to, th, tp->t_flags)) {
1134 
1135 					/*
1136 					 * In SYN_SENT state if it receives an
1137 					 * RST, it is allowed for further
1138 					 * processing.
1139 					 */
1140 					if ((thflags & TH_RST) == 0 ||
1141 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1142 						goto dropunlock;
1143 				}
1144 				sig_checked = 1;
1145 			}
1146 #endif
1147 
1148 			/*
1149 			 * Process the segment and the data it
1150 			 * contains.  tcp_do_segment() consumes
1151 			 * the mbuf chain and unlocks the inpcb.
1152 			 */
1153 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1154 			    iptos, ti_locked);
1155 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1156 			return;
1157 		}
1158 		/*
1159 		 * Segment flag validation for new connection attempts:
1160 		 *
1161 		 * Our (SYN|ACK) response was rejected.
1162 		 * Check with syncache and remove entry to prevent
1163 		 * retransmits.
1164 		 *
1165 		 * NB: syncache_chkrst does its own logging of failure
1166 		 * causes.
1167 		 */
1168 		if (thflags & TH_RST) {
1169 			syncache_chkrst(&inc, th);
1170 			goto dropunlock;
1171 		}
1172 		/*
1173 		 * We can't do anything without SYN.
1174 		 */
1175 		if ((thflags & TH_SYN) == 0) {
1176 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1177 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1178 				    "SYN is missing, segment ignored\n",
1179 				    s, __func__);
1180 			TCPSTAT_INC(tcps_badsyn);
1181 			goto dropunlock;
1182 		}
1183 		/*
1184 		 * (SYN|ACK) is bogus on a listen socket.
1185 		 */
1186 		if (thflags & TH_ACK) {
1187 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1188 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1189 				    "SYN|ACK invalid, segment rejected\n",
1190 				    s, __func__);
1191 			syncache_badack(&inc);	/* XXX: Not needed! */
1192 			TCPSTAT_INC(tcps_badsyn);
1193 			rstreason = BANDLIM_RST_OPENPORT;
1194 			goto dropwithreset;
1195 		}
1196 		/*
1197 		 * If the drop_synfin option is enabled, drop all
1198 		 * segments with both the SYN and FIN bits set.
1199 		 * This prevents e.g. nmap from identifying the
1200 		 * TCP/IP stack.
1201 		 * XXX: Poor reasoning.  nmap has other methods
1202 		 * and is constantly refining its stack detection
1203 		 * strategies.
1204 		 * XXX: This is a violation of the TCP specification
1205 		 * and was used by RFC1644.
1206 		 */
1207 		if ((thflags & TH_FIN) && V_drop_synfin) {
1208 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1209 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1210 				    "SYN|FIN segment ignored (based on "
1211 				    "sysctl setting)\n", s, __func__);
1212 			TCPSTAT_INC(tcps_badsyn);
1213 			goto dropunlock;
1214 		}
1215 		/*
1216 		 * Segment's flags are (SYN) or (SYN|FIN).
1217 		 *
1218 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1219 		 * as they do not affect the state of the TCP FSM.
1220 		 * The data pointed to by TH_URG and th_urp is ignored.
1221 		 */
1222 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1223 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1224 		KASSERT(thflags & (TH_SYN),
1225 		    ("%s: Listen socket: TH_SYN not set", __func__));
1226 #ifdef INET6
1227 		/*
1228 		 * If deprecated address is forbidden,
1229 		 * we do not accept SYN to deprecated interface
1230 		 * address to prevent any new inbound connection from
1231 		 * getting established.
1232 		 * When we do not accept SYN, we send a TCP RST,
1233 		 * with deprecated source address (instead of dropping
1234 		 * it).  We compromise it as it is much better for peer
1235 		 * to send a RST, and RST will be the final packet
1236 		 * for the exchange.
1237 		 *
1238 		 * If we do not forbid deprecated addresses, we accept
1239 		 * the SYN packet.  RFC2462 does not suggest dropping
1240 		 * SYN in this case.
1241 		 * If we decipher RFC2462 5.5.4, it says like this:
1242 		 * 1. use of deprecated addr with existing
1243 		 *    communication is okay - "SHOULD continue to be
1244 		 *    used"
1245 		 * 2. use of it with new communication:
1246 		 *   (2a) "SHOULD NOT be used if alternate address
1247 		 *        with sufficient scope is available"
1248 		 *   (2b) nothing mentioned otherwise.
1249 		 * Here we fall into (2b) case as we have no choice in
1250 		 * our source address selection - we must obey the peer.
1251 		 *
1252 		 * The wording in RFC2462 is confusing, and there are
1253 		 * multiple description text for deprecated address
1254 		 * handling - worse, they are not exactly the same.
1255 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1256 		 */
1257 		if (isipv6 && !V_ip6_use_deprecated) {
1258 			struct in6_ifaddr *ia6;
1259 
1260 			ia6 = ip6_getdstifaddr(m);
1261 			if (ia6 != NULL &&
1262 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1263 				ifa_free(&ia6->ia_ifa);
1264 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1265 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1266 					"Connection attempt to deprecated "
1267 					"IPv6 address rejected\n",
1268 					s, __func__);
1269 				rstreason = BANDLIM_RST_OPENPORT;
1270 				goto dropwithreset;
1271 			}
1272 			if (ia6)
1273 				ifa_free(&ia6->ia_ifa);
1274 		}
1275 #endif /* INET6 */
1276 		/*
1277 		 * Basic sanity checks on incoming SYN requests:
1278 		 *   Don't respond if the destination is a link layer
1279 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1280 		 *   If it is from this socket it must be forged.
1281 		 *   Don't respond if the source or destination is a
1282 		 *	global or subnet broad- or multicast address.
1283 		 *   Note that it is quite possible to receive unicast
1284 		 *	link-layer packets with a broadcast IP address. Use
1285 		 *	in_broadcast() to find them.
1286 		 */
1287 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1288 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1289 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1290 				"Connection attempt from broad- or multicast "
1291 				"link layer address ignored\n", s, __func__);
1292 			goto dropunlock;
1293 		}
1294 #ifdef INET6
1295 		if (isipv6) {
1296 			if (th->th_dport == th->th_sport &&
1297 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1298 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1299 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1300 					"Connection attempt to/from self "
1301 					"ignored\n", s, __func__);
1302 				goto dropunlock;
1303 			}
1304 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1305 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1306 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1307 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1308 					"Connection attempt from/to multicast "
1309 					"address ignored\n", s, __func__);
1310 				goto dropunlock;
1311 			}
1312 		}
1313 #endif
1314 #if defined(INET) && defined(INET6)
1315 		else
1316 #endif
1317 #ifdef INET
1318 		{
1319 			if (th->th_dport == th->th_sport &&
1320 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1321 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1322 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1323 					"Connection attempt from/to self "
1324 					"ignored\n", s, __func__);
1325 				goto dropunlock;
1326 			}
1327 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1328 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1329 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1330 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1331 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1332 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1333 					"Connection attempt from/to broad- "
1334 					"or multicast address ignored\n",
1335 					s, __func__);
1336 				goto dropunlock;
1337 			}
1338 		}
1339 #endif
1340 		/*
1341 		 * SYN appears to be valid.  Create compressed TCP state
1342 		 * for syncache.
1343 		 */
1344 #ifdef TCPDEBUG
1345 		if (so->so_options & SO_DEBUG)
1346 			tcp_trace(TA_INPUT, ostate, tp,
1347 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1348 #endif
1349 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1350 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1351 		/*
1352 		 * Entry added to syncache and mbuf consumed.
1353 		 * Everything already unlocked by syncache_add().
1354 		 */
1355 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1356 		return;
1357 	} else if (tp->t_state == TCPS_LISTEN) {
1358 		/*
1359 		 * When a listen socket is torn down the SO_ACCEPTCONN
1360 		 * flag is removed first while connections are drained
1361 		 * from the accept queue in a unlock/lock cycle of the
1362 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1363 		 * attempt go through unhandled.
1364 		 */
1365 		goto dropunlock;
1366 	}
1367 
1368 #ifdef TCP_SIGNATURE
1369 	if (sig_checked == 0)  {
1370 		tcp_dooptions(&to, optp, optlen,
1371 		    (thflags & TH_SYN) ? TO_SYN : 0);
1372 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1373 		    th, tp->t_flags)) {
1374 
1375 			/*
1376 			 * In SYN_SENT state if it receives an RST, it is
1377 			 * allowed for further processing.
1378 			 */
1379 			if ((thflags & TH_RST) == 0 ||
1380 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1381 				goto dropunlock;
1382 		}
1383 		sig_checked = 1;
1384 	}
1385 #endif
1386 
1387 	/*
1388 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1389 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1390 	 * the inpcb, and unlocks pcbinfo.
1391 	 */
1392 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1393 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1394 	return;
1395 
1396 dropwithreset:
1397 	if (ti_locked == TI_WLOCKED) {
1398 		INP_INFO_WUNLOCK(&V_tcbinfo);
1399 		ti_locked = TI_UNLOCKED;
1400 	}
1401 #ifdef INVARIANTS
1402 	else {
1403 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1404 		    "ti_locked: %d", __func__, ti_locked));
1405 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1406 	}
1407 #endif
1408 
1409 	if (inp != NULL) {
1410 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1411 		INP_WUNLOCK(inp);
1412 	} else
1413 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1414 	m = NULL;	/* mbuf chain got consumed. */
1415 	goto drop;
1416 
1417 dropunlock:
1418 	if (ti_locked == TI_WLOCKED) {
1419 		INP_INFO_WUNLOCK(&V_tcbinfo);
1420 		ti_locked = TI_UNLOCKED;
1421 	}
1422 #ifdef INVARIANTS
1423 	else {
1424 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1425 		    "ti_locked: %d", __func__, ti_locked));
1426 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1427 	}
1428 #endif
1429 
1430 	if (inp != NULL)
1431 		INP_WUNLOCK(inp);
1432 
1433 drop:
1434 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1435 	if (s != NULL)
1436 		free(s, M_TCPLOG);
1437 	if (m != NULL)
1438 		m_freem(m);
1439 }
1440 
1441 static void
1442 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1443     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1444     int ti_locked)
1445 {
1446 	int thflags, acked, ourfinisacked, needoutput = 0;
1447 	int rstreason, todrop, win;
1448 	u_long tiwin;
1449 	char *s;
1450 	struct in_conninfo *inc;
1451 	struct tcpopt to;
1452 
1453 #ifdef TCPDEBUG
1454 	/*
1455 	 * The size of tcp_saveipgen must be the size of the max ip header,
1456 	 * now IPv6.
1457 	 */
1458 	u_char tcp_saveipgen[IP6_HDR_LEN];
1459 	struct tcphdr tcp_savetcp;
1460 	short ostate = 0;
1461 #endif
1462 	thflags = th->th_flags;
1463 	inc = &tp->t_inpcb->inp_inc;
1464 	tp->sackhint.last_sack_ack = 0;
1465 
1466 	/*
1467 	 * If this is either a state-changing packet or current state isn't
1468 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1469 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1470 	 * caller may have unnecessarily acquired a write lock due to a race.
1471 	 */
1472 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1473 	    tp->t_state != TCPS_ESTABLISHED) {
1474 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1475 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1476 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1477 	} else {
1478 #ifdef INVARIANTS
1479 		if (ti_locked == TI_WLOCKED)
1480 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1481 		else {
1482 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1483 			    "ti_locked: %d", __func__, ti_locked));
1484 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1485 		}
1486 #endif
1487 	}
1488 	INP_WLOCK_ASSERT(tp->t_inpcb);
1489 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1490 	    __func__));
1491 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1492 	    __func__));
1493 
1494 	/*
1495 	 * Segment received on connection.
1496 	 * Reset idle time and keep-alive timer.
1497 	 * XXX: This should be done after segment
1498 	 * validation to ignore broken/spoofed segs.
1499 	 */
1500 	tp->t_rcvtime = ticks;
1501 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1502 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1503 
1504 	/*
1505 	 * Unscale the window into a 32-bit value.
1506 	 * For the SYN_SENT state the scale is zero.
1507 	 */
1508 	tiwin = th->th_win << tp->snd_scale;
1509 
1510 	/*
1511 	 * TCP ECN processing.
1512 	 */
1513 	if (tp->t_flags & TF_ECN_PERMIT) {
1514 		if (thflags & TH_CWR)
1515 			tp->t_flags &= ~TF_ECN_SND_ECE;
1516 		switch (iptos & IPTOS_ECN_MASK) {
1517 		case IPTOS_ECN_CE:
1518 			tp->t_flags |= TF_ECN_SND_ECE;
1519 			TCPSTAT_INC(tcps_ecn_ce);
1520 			break;
1521 		case IPTOS_ECN_ECT0:
1522 			TCPSTAT_INC(tcps_ecn_ect0);
1523 			break;
1524 		case IPTOS_ECN_ECT1:
1525 			TCPSTAT_INC(tcps_ecn_ect1);
1526 			break;
1527 		}
1528 		/* Congestion experienced. */
1529 		if (thflags & TH_ECE) {
1530 			cc_cong_signal(tp, th, CC_ECN);
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * Parse options on any incoming segment.
1536 	 */
1537 	tcp_dooptions(&to, (u_char *)(th + 1),
1538 	    (th->th_off << 2) - sizeof(struct tcphdr),
1539 	    (thflags & TH_SYN) ? TO_SYN : 0);
1540 
1541 	/*
1542 	 * If echoed timestamp is later than the current time,
1543 	 * fall back to non RFC1323 RTT calculation.  Normalize
1544 	 * timestamp if syncookies were used when this connection
1545 	 * was established.
1546 	 */
1547 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1548 		to.to_tsecr -= tp->ts_offset;
1549 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1550 			to.to_tsecr = 0;
1551 	}
1552 	/*
1553 	 * If timestamps were negotiated during SYN/ACK they should
1554 	 * appear on every segment during this session and vice versa.
1555 	 */
1556 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1557 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1558 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1559 			    "no action\n", s, __func__);
1560 			free(s, M_TCPLOG);
1561 		}
1562 	}
1563 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1564 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1565 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1566 			    "no action\n", s, __func__);
1567 			free(s, M_TCPLOG);
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * Process options only when we get SYN/ACK back. The SYN case
1573 	 * for incoming connections is handled in tcp_syncache.
1574 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1575 	 * or <SYN,ACK>) segment itself is never scaled.
1576 	 * XXX this is traditional behavior, may need to be cleaned up.
1577 	 */
1578 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1579 		if ((to.to_flags & TOF_SCALE) &&
1580 		    (tp->t_flags & TF_REQ_SCALE)) {
1581 			tp->t_flags |= TF_RCVD_SCALE;
1582 			tp->snd_scale = to.to_wscale;
1583 		}
1584 		/*
1585 		 * Initial send window.  It will be updated with
1586 		 * the next incoming segment to the scaled value.
1587 		 */
1588 		tp->snd_wnd = th->th_win;
1589 		if (to.to_flags & TOF_TS) {
1590 			tp->t_flags |= TF_RCVD_TSTMP;
1591 			tp->ts_recent = to.to_tsval;
1592 			tp->ts_recent_age = tcp_ts_getticks();
1593 		}
1594 		if (to.to_flags & TOF_MSS)
1595 			tcp_mss(tp, to.to_mss);
1596 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1597 		    (to.to_flags & TOF_SACKPERM) == 0)
1598 			tp->t_flags &= ~TF_SACK_PERMIT;
1599 	}
1600 
1601 	/*
1602 	 * Header prediction: check for the two common cases
1603 	 * of a uni-directional data xfer.  If the packet has
1604 	 * no control flags, is in-sequence, the window didn't
1605 	 * change and we're not retransmitting, it's a
1606 	 * candidate.  If the length is zero and the ack moved
1607 	 * forward, we're the sender side of the xfer.  Just
1608 	 * free the data acked & wake any higher level process
1609 	 * that was blocked waiting for space.  If the length
1610 	 * is non-zero and the ack didn't move, we're the
1611 	 * receiver side.  If we're getting packets in-order
1612 	 * (the reassembly queue is empty), add the data to
1613 	 * the socket buffer and note that we need a delayed ack.
1614 	 * Make sure that the hidden state-flags are also off.
1615 	 * Since we check for TCPS_ESTABLISHED first, it can only
1616 	 * be TH_NEEDSYN.
1617 	 */
1618 	if (tp->t_state == TCPS_ESTABLISHED &&
1619 	    th->th_seq == tp->rcv_nxt &&
1620 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1621 	    tp->snd_nxt == tp->snd_max &&
1622 	    tiwin && tiwin == tp->snd_wnd &&
1623 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1624 	    LIST_EMPTY(&tp->t_segq) &&
1625 	    ((to.to_flags & TOF_TS) == 0 ||
1626 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1627 
1628 		/*
1629 		 * If last ACK falls within this segment's sequence numbers,
1630 		 * record the timestamp.
1631 		 * NOTE that the test is modified according to the latest
1632 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1633 		 */
1634 		if ((to.to_flags & TOF_TS) != 0 &&
1635 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1636 			tp->ts_recent_age = tcp_ts_getticks();
1637 			tp->ts_recent = to.to_tsval;
1638 		}
1639 
1640 		if (tlen == 0) {
1641 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1642 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1643 			    !IN_RECOVERY(tp->t_flags) &&
1644 			    (to.to_flags & TOF_SACK) == 0 &&
1645 			    TAILQ_EMPTY(&tp->snd_holes)) {
1646 				/*
1647 				 * This is a pure ack for outstanding data.
1648 				 */
1649 				if (ti_locked == TI_WLOCKED)
1650 					INP_INFO_WUNLOCK(&V_tcbinfo);
1651 				ti_locked = TI_UNLOCKED;
1652 
1653 				TCPSTAT_INC(tcps_predack);
1654 
1655 				/*
1656 				 * "bad retransmit" recovery.
1657 				 */
1658 				if (tp->t_rxtshift == 1 &&
1659 				    tp->t_flags & TF_PREVVALID &&
1660 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1661 					cc_cong_signal(tp, th, CC_RTO_ERR);
1662 				}
1663 
1664 				/*
1665 				 * Recalculate the transmit timer / rtt.
1666 				 *
1667 				 * Some boxes send broken timestamp replies
1668 				 * during the SYN+ACK phase, ignore
1669 				 * timestamps of 0 or we could calculate a
1670 				 * huge RTT and blow up the retransmit timer.
1671 				 */
1672 				if ((to.to_flags & TOF_TS) != 0 &&
1673 				    to.to_tsecr) {
1674 					u_int t;
1675 
1676 					t = tcp_ts_getticks() - to.to_tsecr;
1677 					if (!tp->t_rttlow || tp->t_rttlow > t)
1678 						tp->t_rttlow = t;
1679 					tcp_xmit_timer(tp,
1680 					    TCP_TS_TO_TICKS(t) + 1);
1681 				} else if (tp->t_rtttime &&
1682 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1683 					if (!tp->t_rttlow ||
1684 					    tp->t_rttlow > ticks - tp->t_rtttime)
1685 						tp->t_rttlow = ticks - tp->t_rtttime;
1686 					tcp_xmit_timer(tp,
1687 							ticks - tp->t_rtttime);
1688 				}
1689 				acked = BYTES_THIS_ACK(tp, th);
1690 
1691 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1692 				hhook_run_tcp_est_in(tp, th, &to);
1693 
1694 				TCPSTAT_INC(tcps_rcvackpack);
1695 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1696 				sbdrop(&so->so_snd, acked);
1697 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1698 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1699 					tp->snd_recover = th->th_ack - 1;
1700 
1701 				/*
1702 				 * Let the congestion control algorithm update
1703 				 * congestion control related information. This
1704 				 * typically means increasing the congestion
1705 				 * window.
1706 				 */
1707 				cc_ack_received(tp, th, CC_ACK);
1708 
1709 				tp->snd_una = th->th_ack;
1710 				/*
1711 				 * Pull snd_wl2 up to prevent seq wrap relative
1712 				 * to th_ack.
1713 				 */
1714 				tp->snd_wl2 = th->th_ack;
1715 				tp->t_dupacks = 0;
1716 				m_freem(m);
1717 				ND6_HINT(tp); /* Some progress has been made. */
1718 
1719 				/*
1720 				 * If all outstanding data are acked, stop
1721 				 * retransmit timer, otherwise restart timer
1722 				 * using current (possibly backed-off) value.
1723 				 * If process is waiting for space,
1724 				 * wakeup/selwakeup/signal.  If data
1725 				 * are ready to send, let tcp_output
1726 				 * decide between more output or persist.
1727 				 */
1728 #ifdef TCPDEBUG
1729 				if (so->so_options & SO_DEBUG)
1730 					tcp_trace(TA_INPUT, ostate, tp,
1731 					    (void *)tcp_saveipgen,
1732 					    &tcp_savetcp, 0);
1733 #endif
1734 				if (tp->snd_una == tp->snd_max)
1735 					tcp_timer_activate(tp, TT_REXMT, 0);
1736 				else if (!tcp_timer_active(tp, TT_PERSIST))
1737 					tcp_timer_activate(tp, TT_REXMT,
1738 						      tp->t_rxtcur);
1739 				sowwakeup(so);
1740 				if (so->so_snd.sb_cc)
1741 					(void) tcp_output(tp);
1742 				goto check_delack;
1743 			}
1744 		} else if (th->th_ack == tp->snd_una &&
1745 		    tlen <= sbspace(&so->so_rcv)) {
1746 			int newsize = 0;	/* automatic sockbuf scaling */
1747 
1748 			/*
1749 			 * This is a pure, in-sequence data packet with
1750 			 * nothing on the reassembly queue and we have enough
1751 			 * buffer space to take it.
1752 			 */
1753 			if (ti_locked == TI_WLOCKED)
1754 				INP_INFO_WUNLOCK(&V_tcbinfo);
1755 			ti_locked = TI_UNLOCKED;
1756 
1757 			/* Clean receiver SACK report if present */
1758 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1759 				tcp_clean_sackreport(tp);
1760 			TCPSTAT_INC(tcps_preddat);
1761 			tp->rcv_nxt += tlen;
1762 			/*
1763 			 * Pull snd_wl1 up to prevent seq wrap relative to
1764 			 * th_seq.
1765 			 */
1766 			tp->snd_wl1 = th->th_seq;
1767 			/*
1768 			 * Pull rcv_up up to prevent seq wrap relative to
1769 			 * rcv_nxt.
1770 			 */
1771 			tp->rcv_up = tp->rcv_nxt;
1772 			TCPSTAT_INC(tcps_rcvpack);
1773 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1774 			ND6_HINT(tp);	/* Some progress has been made */
1775 #ifdef TCPDEBUG
1776 			if (so->so_options & SO_DEBUG)
1777 				tcp_trace(TA_INPUT, ostate, tp,
1778 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1779 #endif
1780 		/*
1781 		 * Automatic sizing of receive socket buffer.  Often the send
1782 		 * buffer size is not optimally adjusted to the actual network
1783 		 * conditions at hand (delay bandwidth product).  Setting the
1784 		 * buffer size too small limits throughput on links with high
1785 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1786 		 *
1787 		 * On the receive side the socket buffer memory is only rarely
1788 		 * used to any significant extent.  This allows us to be much
1789 		 * more aggressive in scaling the receive socket buffer.  For
1790 		 * the case that the buffer space is actually used to a large
1791 		 * extent and we run out of kernel memory we can simply drop
1792 		 * the new segments; TCP on the sender will just retransmit it
1793 		 * later.  Setting the buffer size too big may only consume too
1794 		 * much kernel memory if the application doesn't read() from
1795 		 * the socket or packet loss or reordering makes use of the
1796 		 * reassembly queue.
1797 		 *
1798 		 * The criteria to step up the receive buffer one notch are:
1799 		 *  1. the number of bytes received during the time it takes
1800 		 *     one timestamp to be reflected back to us (the RTT);
1801 		 *  2. received bytes per RTT is within seven eighth of the
1802 		 *     current socket buffer size;
1803 		 *  3. receive buffer size has not hit maximal automatic size;
1804 		 *
1805 		 * This algorithm does one step per RTT at most and only if
1806 		 * we receive a bulk stream w/o packet losses or reorderings.
1807 		 * Shrinking the buffer during idle times is not necessary as
1808 		 * it doesn't consume any memory when idle.
1809 		 *
1810 		 * TODO: Only step up if the application is actually serving
1811 		 * the buffer to better manage the socket buffer resources.
1812 		 */
1813 			if (V_tcp_do_autorcvbuf &&
1814 			    to.to_tsecr &&
1815 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1816 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1817 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1818 					if (tp->rfbuf_cnt >
1819 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1820 					    so->so_rcv.sb_hiwat <
1821 					    V_tcp_autorcvbuf_max) {
1822 						newsize =
1823 						    min(so->so_rcv.sb_hiwat +
1824 						    V_tcp_autorcvbuf_inc,
1825 						    V_tcp_autorcvbuf_max);
1826 					}
1827 					/* Start over with next RTT. */
1828 					tp->rfbuf_ts = 0;
1829 					tp->rfbuf_cnt = 0;
1830 				} else
1831 					tp->rfbuf_cnt += tlen;	/* add up */
1832 			}
1833 
1834 			/* Add data to socket buffer. */
1835 			SOCKBUF_LOCK(&so->so_rcv);
1836 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1837 				m_freem(m);
1838 			} else {
1839 				/*
1840 				 * Set new socket buffer size.
1841 				 * Give up when limit is reached.
1842 				 */
1843 				if (newsize)
1844 					if (!sbreserve_locked(&so->so_rcv,
1845 					    newsize, so, NULL))
1846 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1847 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1848 				sbappendstream_locked(&so->so_rcv, m);
1849 			}
1850 			/* NB: sorwakeup_locked() does an implicit unlock. */
1851 			sorwakeup_locked(so);
1852 			if (DELAY_ACK(tp)) {
1853 				tp->t_flags |= TF_DELACK;
1854 			} else {
1855 				tp->t_flags |= TF_ACKNOW;
1856 				tcp_output(tp);
1857 			}
1858 			goto check_delack;
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * Calculate amount of space in receive window,
1864 	 * and then do TCP input processing.
1865 	 * Receive window is amount of space in rcv queue,
1866 	 * but not less than advertised window.
1867 	 */
1868 	win = sbspace(&so->so_rcv);
1869 	if (win < 0)
1870 		win = 0;
1871 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1872 
1873 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1874 	tp->rfbuf_ts = 0;
1875 	tp->rfbuf_cnt = 0;
1876 
1877 	switch (tp->t_state) {
1878 
1879 	/*
1880 	 * If the state is SYN_RECEIVED:
1881 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1882 	 */
1883 	case TCPS_SYN_RECEIVED:
1884 		if ((thflags & TH_ACK) &&
1885 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1886 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1887 				rstreason = BANDLIM_RST_OPENPORT;
1888 				goto dropwithreset;
1889 		}
1890 		break;
1891 
1892 	/*
1893 	 * If the state is SYN_SENT:
1894 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1895 	 *	if seg contains a RST, then drop the connection.
1896 	 *	if seg does not contain SYN, then drop it.
1897 	 * Otherwise this is an acceptable SYN segment
1898 	 *	initialize tp->rcv_nxt and tp->irs
1899 	 *	if seg contains ack then advance tp->snd_una
1900 	 *	if seg contains an ECE and ECN support is enabled, the stream
1901 	 *	    is ECN capable.
1902 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1903 	 *	arrange for segment to be acked (eventually)
1904 	 *	continue processing rest of data/controls, beginning with URG
1905 	 */
1906 	case TCPS_SYN_SENT:
1907 		if ((thflags & TH_ACK) &&
1908 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1909 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1910 			rstreason = BANDLIM_UNLIMITED;
1911 			goto dropwithreset;
1912 		}
1913 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1914 			tp = tcp_drop(tp, ECONNREFUSED);
1915 		if (thflags & TH_RST)
1916 			goto drop;
1917 		if (!(thflags & TH_SYN))
1918 			goto drop;
1919 
1920 		tp->irs = th->th_seq;
1921 		tcp_rcvseqinit(tp);
1922 		if (thflags & TH_ACK) {
1923 			TCPSTAT_INC(tcps_connects);
1924 			soisconnected(so);
1925 #ifdef MAC
1926 			mac_socketpeer_set_from_mbuf(m, so);
1927 #endif
1928 			/* Do window scaling on this connection? */
1929 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1930 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1931 				tp->rcv_scale = tp->request_r_scale;
1932 			}
1933 			tp->rcv_adv += imin(tp->rcv_wnd,
1934 			    TCP_MAXWIN << tp->rcv_scale);
1935 			tp->snd_una++;		/* SYN is acked */
1936 			/*
1937 			 * If there's data, delay ACK; if there's also a FIN
1938 			 * ACKNOW will be turned on later.
1939 			 */
1940 			if (DELAY_ACK(tp) && tlen != 0)
1941 				tcp_timer_activate(tp, TT_DELACK,
1942 				    tcp_delacktime);
1943 			else
1944 				tp->t_flags |= TF_ACKNOW;
1945 
1946 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1947 				tp->t_flags |= TF_ECN_PERMIT;
1948 				TCPSTAT_INC(tcps_ecn_shs);
1949 			}
1950 
1951 			/*
1952 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1953 			 * Transitions:
1954 			 *	SYN_SENT  --> ESTABLISHED
1955 			 *	SYN_SENT* --> FIN_WAIT_1
1956 			 */
1957 			tp->t_starttime = ticks;
1958 			if (tp->t_flags & TF_NEEDFIN) {
1959 				tp->t_state = TCPS_FIN_WAIT_1;
1960 				tp->t_flags &= ~TF_NEEDFIN;
1961 				thflags &= ~TH_SYN;
1962 			} else {
1963 				tp->t_state = TCPS_ESTABLISHED;
1964 				cc_conn_init(tp);
1965 				tcp_timer_activate(tp, TT_KEEP,
1966 				    TP_KEEPIDLE(tp));
1967 			}
1968 		} else {
1969 			/*
1970 			 * Received initial SYN in SYN-SENT[*] state =>
1971 			 * simultaneous open.  If segment contains CC option
1972 			 * and there is a cached CC, apply TAO test.
1973 			 * If it succeeds, connection is * half-synchronized.
1974 			 * Otherwise, do 3-way handshake:
1975 			 *        SYN-SENT -> SYN-RECEIVED
1976 			 *        SYN-SENT* -> SYN-RECEIVED*
1977 			 * If there was no CC option, clear cached CC value.
1978 			 */
1979 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1980 			tcp_timer_activate(tp, TT_REXMT, 0);
1981 			tp->t_state = TCPS_SYN_RECEIVED;
1982 		}
1983 
1984 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1985 		    "ti_locked %d", __func__, ti_locked));
1986 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1987 		INP_WLOCK_ASSERT(tp->t_inpcb);
1988 
1989 		/*
1990 		 * Advance th->th_seq to correspond to first data byte.
1991 		 * If data, trim to stay within window,
1992 		 * dropping FIN if necessary.
1993 		 */
1994 		th->th_seq++;
1995 		if (tlen > tp->rcv_wnd) {
1996 			todrop = tlen - tp->rcv_wnd;
1997 			m_adj(m, -todrop);
1998 			tlen = tp->rcv_wnd;
1999 			thflags &= ~TH_FIN;
2000 			TCPSTAT_INC(tcps_rcvpackafterwin);
2001 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2002 		}
2003 		tp->snd_wl1 = th->th_seq - 1;
2004 		tp->rcv_up = th->th_seq;
2005 		/*
2006 		 * Client side of transaction: already sent SYN and data.
2007 		 * If the remote host used T/TCP to validate the SYN,
2008 		 * our data will be ACK'd; if so, enter normal data segment
2009 		 * processing in the middle of step 5, ack processing.
2010 		 * Otherwise, goto step 6.
2011 		 */
2012 		if (thflags & TH_ACK)
2013 			goto process_ACK;
2014 
2015 		goto step6;
2016 
2017 	/*
2018 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2019 	 *      do normal processing.
2020 	 *
2021 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2022 	 */
2023 	case TCPS_LAST_ACK:
2024 	case TCPS_CLOSING:
2025 		break;  /* continue normal processing */
2026 	}
2027 
2028 	/*
2029 	 * States other than LISTEN or SYN_SENT.
2030 	 * First check the RST flag and sequence number since reset segments
2031 	 * are exempt from the timestamp and connection count tests.  This
2032 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2033 	 * below which allowed reset segments in half the sequence space
2034 	 * to fall though and be processed (which gives forged reset
2035 	 * segments with a random sequence number a 50 percent chance of
2036 	 * killing a connection).
2037 	 * Then check timestamp, if present.
2038 	 * Then check the connection count, if present.
2039 	 * Then check that at least some bytes of segment are within
2040 	 * receive window.  If segment begins before rcv_nxt,
2041 	 * drop leading data (and SYN); if nothing left, just ack.
2042 	 *
2043 	 *
2044 	 * If the RST bit is set, check the sequence number to see
2045 	 * if this is a valid reset segment.
2046 	 * RFC 793 page 37:
2047 	 *   In all states except SYN-SENT, all reset (RST) segments
2048 	 *   are validated by checking their SEQ-fields.  A reset is
2049 	 *   valid if its sequence number is in the window.
2050 	 * Note: this does not take into account delayed ACKs, so
2051 	 *   we should test against last_ack_sent instead of rcv_nxt.
2052 	 *   The sequence number in the reset segment is normally an
2053 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2054 	 *   send a reset with the sequence number at the rightmost edge
2055 	 *   of our receive window, and we have to handle this case.
2056 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2057 	 *   that brute force RST attacks are possible.  To combat this,
2058 	 *   we use a much stricter check while in the ESTABLISHED state,
2059 	 *   only accepting RSTs where the sequence number is equal to
2060 	 *   last_ack_sent.  In all other states (the states in which a
2061 	 *   RST is more likely), the more permissive check is used.
2062 	 * If we have multiple segments in flight, the initial reset
2063 	 * segment sequence numbers will be to the left of last_ack_sent,
2064 	 * but they will eventually catch up.
2065 	 * In any case, it never made sense to trim reset segments to
2066 	 * fit the receive window since RFC 1122 says:
2067 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2068 	 *
2069 	 *    A TCP SHOULD allow a received RST segment to include data.
2070 	 *
2071 	 *    DISCUSSION
2072 	 *         It has been suggested that a RST segment could contain
2073 	 *         ASCII text that encoded and explained the cause of the
2074 	 *         RST.  No standard has yet been established for such
2075 	 *         data.
2076 	 *
2077 	 * If the reset segment passes the sequence number test examine
2078 	 * the state:
2079 	 *    SYN_RECEIVED STATE:
2080 	 *	If passive open, return to LISTEN state.
2081 	 *	If active open, inform user that connection was refused.
2082 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2083 	 *	Inform user that connection was reset, and close tcb.
2084 	 *    CLOSING, LAST_ACK STATES:
2085 	 *	Close the tcb.
2086 	 *    TIME_WAIT STATE:
2087 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2088 	 *      RFC 1337.
2089 	 */
2090 	if (thflags & TH_RST) {
2091 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2092 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2093 			switch (tp->t_state) {
2094 
2095 			case TCPS_SYN_RECEIVED:
2096 				so->so_error = ECONNREFUSED;
2097 				goto close;
2098 
2099 			case TCPS_ESTABLISHED:
2100 				if (V_tcp_insecure_rst == 0 &&
2101 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2102 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2103 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2104 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2105 					TCPSTAT_INC(tcps_badrst);
2106 					goto drop;
2107 				}
2108 				/* FALLTHROUGH */
2109 			case TCPS_FIN_WAIT_1:
2110 			case TCPS_FIN_WAIT_2:
2111 			case TCPS_CLOSE_WAIT:
2112 				so->so_error = ECONNRESET;
2113 			close:
2114 				KASSERT(ti_locked == TI_WLOCKED,
2115 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2116 				    ti_locked));
2117 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2118 
2119 				tp->t_state = TCPS_CLOSED;
2120 				TCPSTAT_INC(tcps_drops);
2121 				tp = tcp_close(tp);
2122 				break;
2123 
2124 			case TCPS_CLOSING:
2125 			case TCPS_LAST_ACK:
2126 				KASSERT(ti_locked == TI_WLOCKED,
2127 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2128 				    ti_locked));
2129 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2130 
2131 				tp = tcp_close(tp);
2132 				break;
2133 			}
2134 		}
2135 		goto drop;
2136 	}
2137 
2138 	/*
2139 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2140 	 * and it's less than ts_recent, drop it.
2141 	 */
2142 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2143 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2144 
2145 		/* Check to see if ts_recent is over 24 days old.  */
2146 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2147 			/*
2148 			 * Invalidate ts_recent.  If this segment updates
2149 			 * ts_recent, the age will be reset later and ts_recent
2150 			 * will get a valid value.  If it does not, setting
2151 			 * ts_recent to zero will at least satisfy the
2152 			 * requirement that zero be placed in the timestamp
2153 			 * echo reply when ts_recent isn't valid.  The
2154 			 * age isn't reset until we get a valid ts_recent
2155 			 * because we don't want out-of-order segments to be
2156 			 * dropped when ts_recent is old.
2157 			 */
2158 			tp->ts_recent = 0;
2159 		} else {
2160 			TCPSTAT_INC(tcps_rcvduppack);
2161 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2162 			TCPSTAT_INC(tcps_pawsdrop);
2163 			if (tlen)
2164 				goto dropafterack;
2165 			goto drop;
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2171 	 * this connection before trimming the data to fit the receive
2172 	 * window.  Check the sequence number versus IRS since we know
2173 	 * the sequence numbers haven't wrapped.  This is a partial fix
2174 	 * for the "LAND" DoS attack.
2175 	 */
2176 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2177 		rstreason = BANDLIM_RST_OPENPORT;
2178 		goto dropwithreset;
2179 	}
2180 
2181 	todrop = tp->rcv_nxt - th->th_seq;
2182 	if (todrop > 0) {
2183 		/*
2184 		 * If this is a duplicate SYN for our current connection,
2185 		 * advance over it and pretend and it's not a SYN.
2186 		 */
2187 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2188 			thflags &= ~TH_SYN;
2189 			th->th_seq++;
2190 			if (th->th_urp > 1)
2191 				th->th_urp--;
2192 			else
2193 				thflags &= ~TH_URG;
2194 			todrop--;
2195 		}
2196 		/*
2197 		 * Following if statement from Stevens, vol. 2, p. 960.
2198 		 */
2199 		if (todrop > tlen
2200 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2201 			/*
2202 			 * Any valid FIN must be to the left of the window.
2203 			 * At this point the FIN must be a duplicate or out
2204 			 * of sequence; drop it.
2205 			 */
2206 			thflags &= ~TH_FIN;
2207 
2208 			/*
2209 			 * Send an ACK to resynchronize and drop any data.
2210 			 * But keep on processing for RST or ACK.
2211 			 */
2212 			tp->t_flags |= TF_ACKNOW;
2213 			todrop = tlen;
2214 			TCPSTAT_INC(tcps_rcvduppack);
2215 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2216 		} else {
2217 			TCPSTAT_INC(tcps_rcvpartduppack);
2218 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2219 		}
2220 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2221 		th->th_seq += todrop;
2222 		tlen -= todrop;
2223 		if (th->th_urp > todrop)
2224 			th->th_urp -= todrop;
2225 		else {
2226 			thflags &= ~TH_URG;
2227 			th->th_urp = 0;
2228 		}
2229 	}
2230 
2231 	/*
2232 	 * If new data are received on a connection after the
2233 	 * user processes are gone, then RST the other end.
2234 	 */
2235 	if ((so->so_state & SS_NOFDREF) &&
2236 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2237 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2238 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2239 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2240 
2241 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2242 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2243 			    "after socket was closed, "
2244 			    "sending RST and removing tcpcb\n",
2245 			    s, __func__, tcpstates[tp->t_state], tlen);
2246 			free(s, M_TCPLOG);
2247 		}
2248 		tp = tcp_close(tp);
2249 		TCPSTAT_INC(tcps_rcvafterclose);
2250 		rstreason = BANDLIM_UNLIMITED;
2251 		goto dropwithreset;
2252 	}
2253 
2254 	/*
2255 	 * If segment ends after window, drop trailing data
2256 	 * (and PUSH and FIN); if nothing left, just ACK.
2257 	 */
2258 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2259 	if (todrop > 0) {
2260 		TCPSTAT_INC(tcps_rcvpackafterwin);
2261 		if (todrop >= tlen) {
2262 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2263 			/*
2264 			 * If window is closed can only take segments at
2265 			 * window edge, and have to drop data and PUSH from
2266 			 * incoming segments.  Continue processing, but
2267 			 * remember to ack.  Otherwise, drop segment
2268 			 * and ack.
2269 			 */
2270 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2271 				tp->t_flags |= TF_ACKNOW;
2272 				TCPSTAT_INC(tcps_rcvwinprobe);
2273 			} else
2274 				goto dropafterack;
2275 		} else
2276 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2277 		m_adj(m, -todrop);
2278 		tlen -= todrop;
2279 		thflags &= ~(TH_PUSH|TH_FIN);
2280 	}
2281 
2282 	/*
2283 	 * If last ACK falls within this segment's sequence numbers,
2284 	 * record its timestamp.
2285 	 * NOTE:
2286 	 * 1) That the test incorporates suggestions from the latest
2287 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2288 	 * 2) That updating only on newer timestamps interferes with
2289 	 *    our earlier PAWS tests, so this check should be solely
2290 	 *    predicated on the sequence space of this segment.
2291 	 * 3) That we modify the segment boundary check to be
2292 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2293 	 *    instead of RFC1323's
2294 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2295 	 *    This modified check allows us to overcome RFC1323's
2296 	 *    limitations as described in Stevens TCP/IP Illustrated
2297 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2298 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2299 	 */
2300 	if ((to.to_flags & TOF_TS) != 0 &&
2301 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2302 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2303 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2304 		tp->ts_recent_age = tcp_ts_getticks();
2305 		tp->ts_recent = to.to_tsval;
2306 	}
2307 
2308 	/*
2309 	 * If a SYN is in the window, then this is an
2310 	 * error and we send an RST and drop the connection.
2311 	 */
2312 	if (thflags & TH_SYN) {
2313 		KASSERT(ti_locked == TI_WLOCKED,
2314 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2315 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2316 
2317 		tp = tcp_drop(tp, ECONNRESET);
2318 		rstreason = BANDLIM_UNLIMITED;
2319 		goto drop;
2320 	}
2321 
2322 	/*
2323 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2324 	 * flag is on (half-synchronized state), then queue data for
2325 	 * later processing; else drop segment and return.
2326 	 */
2327 	if ((thflags & TH_ACK) == 0) {
2328 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2329 		    (tp->t_flags & TF_NEEDSYN))
2330 			goto step6;
2331 		else if (tp->t_flags & TF_ACKNOW)
2332 			goto dropafterack;
2333 		else
2334 			goto drop;
2335 	}
2336 
2337 	/*
2338 	 * Ack processing.
2339 	 */
2340 	switch (tp->t_state) {
2341 
2342 	/*
2343 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2344 	 * ESTABLISHED state and continue processing.
2345 	 * The ACK was checked above.
2346 	 */
2347 	case TCPS_SYN_RECEIVED:
2348 
2349 		TCPSTAT_INC(tcps_connects);
2350 		soisconnected(so);
2351 		/* Do window scaling? */
2352 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2353 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2354 			tp->rcv_scale = tp->request_r_scale;
2355 			tp->snd_wnd = tiwin;
2356 		}
2357 		/*
2358 		 * Make transitions:
2359 		 *      SYN-RECEIVED  -> ESTABLISHED
2360 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2361 		 */
2362 		tp->t_starttime = ticks;
2363 		if (tp->t_flags & TF_NEEDFIN) {
2364 			tp->t_state = TCPS_FIN_WAIT_1;
2365 			tp->t_flags &= ~TF_NEEDFIN;
2366 		} else {
2367 			tp->t_state = TCPS_ESTABLISHED;
2368 			cc_conn_init(tp);
2369 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2370 		}
2371 		/*
2372 		 * If segment contains data or ACK, will call tcp_reass()
2373 		 * later; if not, do so now to pass queued data to user.
2374 		 */
2375 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2376 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2377 			    (struct mbuf *)0);
2378 		tp->snd_wl1 = th->th_seq - 1;
2379 		/* FALLTHROUGH */
2380 
2381 	/*
2382 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2383 	 * ACKs.  If the ack is in the range
2384 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2385 	 * then advance tp->snd_una to th->th_ack and drop
2386 	 * data from the retransmission queue.  If this ACK reflects
2387 	 * more up to date window information we update our window information.
2388 	 */
2389 	case TCPS_ESTABLISHED:
2390 	case TCPS_FIN_WAIT_1:
2391 	case TCPS_FIN_WAIT_2:
2392 	case TCPS_CLOSE_WAIT:
2393 	case TCPS_CLOSING:
2394 	case TCPS_LAST_ACK:
2395 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2396 			TCPSTAT_INC(tcps_rcvacktoomuch);
2397 			goto dropafterack;
2398 		}
2399 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2400 		    ((to.to_flags & TOF_SACK) ||
2401 		     !TAILQ_EMPTY(&tp->snd_holes)))
2402 			tcp_sack_doack(tp, &to, th->th_ack);
2403 
2404 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2405 		hhook_run_tcp_est_in(tp, th, &to);
2406 
2407 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2408 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2409 				TCPSTAT_INC(tcps_rcvdupack);
2410 				/*
2411 				 * If we have outstanding data (other than
2412 				 * a window probe), this is a completely
2413 				 * duplicate ack (ie, window info didn't
2414 				 * change), the ack is the biggest we've
2415 				 * seen and we've seen exactly our rexmt
2416 				 * threshhold of them, assume a packet
2417 				 * has been dropped and retransmit it.
2418 				 * Kludge snd_nxt & the congestion
2419 				 * window so we send only this one
2420 				 * packet.
2421 				 *
2422 				 * We know we're losing at the current
2423 				 * window size so do congestion avoidance
2424 				 * (set ssthresh to half the current window
2425 				 * and pull our congestion window back to
2426 				 * the new ssthresh).
2427 				 *
2428 				 * Dup acks mean that packets have left the
2429 				 * network (they're now cached at the receiver)
2430 				 * so bump cwnd by the amount in the receiver
2431 				 * to keep a constant cwnd packets in the
2432 				 * network.
2433 				 *
2434 				 * When using TCP ECN, notify the peer that
2435 				 * we reduced the cwnd.
2436 				 */
2437 				if (!tcp_timer_active(tp, TT_REXMT) ||
2438 				    th->th_ack != tp->snd_una)
2439 					tp->t_dupacks = 0;
2440 				else if (++tp->t_dupacks > tcprexmtthresh ||
2441 				     IN_FASTRECOVERY(tp->t_flags)) {
2442 					cc_ack_received(tp, th, CC_DUPACK);
2443 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2444 					    IN_FASTRECOVERY(tp->t_flags)) {
2445 						int awnd;
2446 
2447 						/*
2448 						 * Compute the amount of data in flight first.
2449 						 * We can inject new data into the pipe iff
2450 						 * we have less than 1/2 the original window's
2451 						 * worth of data in flight.
2452 						 */
2453 						awnd = (tp->snd_nxt - tp->snd_fack) +
2454 							tp->sackhint.sack_bytes_rexmit;
2455 						if (awnd < tp->snd_ssthresh) {
2456 							tp->snd_cwnd += tp->t_maxseg;
2457 							if (tp->snd_cwnd > tp->snd_ssthresh)
2458 								tp->snd_cwnd = tp->snd_ssthresh;
2459 						}
2460 					} else
2461 						tp->snd_cwnd += tp->t_maxseg;
2462 					if ((thflags & TH_FIN) &&
2463 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2464 						/*
2465 						 * If its a fin we need to process
2466 						 * it to avoid a race where both
2467 						 * sides enter FIN-WAIT and send FIN|ACK
2468 						 * at the same time.
2469 						 */
2470 						break;
2471 					}
2472 					(void) tcp_output(tp);
2473 					goto drop;
2474 				} else if (tp->t_dupacks == tcprexmtthresh) {
2475 					tcp_seq onxt = tp->snd_nxt;
2476 
2477 					/*
2478 					 * If we're doing sack, check to
2479 					 * see if we're already in sack
2480 					 * recovery. If we're not doing sack,
2481 					 * check to see if we're in newreno
2482 					 * recovery.
2483 					 */
2484 					if (tp->t_flags & TF_SACK_PERMIT) {
2485 						if (IN_FASTRECOVERY(tp->t_flags)) {
2486 							tp->t_dupacks = 0;
2487 							break;
2488 						}
2489 					} else {
2490 						if (SEQ_LEQ(th->th_ack,
2491 						    tp->snd_recover)) {
2492 							tp->t_dupacks = 0;
2493 							break;
2494 						}
2495 					}
2496 					/* Congestion signal before ack. */
2497 					cc_cong_signal(tp, th, CC_NDUPACK);
2498 					cc_ack_received(tp, th, CC_DUPACK);
2499 					tcp_timer_activate(tp, TT_REXMT, 0);
2500 					tp->t_rtttime = 0;
2501 					if (tp->t_flags & TF_SACK_PERMIT) {
2502 						TCPSTAT_INC(
2503 						    tcps_sack_recovery_episode);
2504 						tp->sack_newdata = tp->snd_nxt;
2505 						tp->snd_cwnd = tp->t_maxseg;
2506 						(void) tcp_output(tp);
2507 						goto drop;
2508 					}
2509 					tp->snd_nxt = th->th_ack;
2510 					tp->snd_cwnd = tp->t_maxseg;
2511 					if ((thflags & TH_FIN) &&
2512 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2513 						/*
2514 						 * If its a fin we need to process
2515 						 * it to avoid a race where both
2516 						 * sides enter FIN-WAIT and send FIN|ACK
2517 						 * at the same time.
2518 						 */
2519 						break;
2520 					}
2521 					(void) tcp_output(tp);
2522 					KASSERT(tp->snd_limited <= 2,
2523 					    ("%s: tp->snd_limited too big",
2524 					    __func__));
2525 					tp->snd_cwnd = tp->snd_ssthresh +
2526 					     tp->t_maxseg *
2527 					     (tp->t_dupacks - tp->snd_limited);
2528 					if (SEQ_GT(onxt, tp->snd_nxt))
2529 						tp->snd_nxt = onxt;
2530 					goto drop;
2531 				} else if (V_tcp_do_rfc3042) {
2532 					cc_ack_received(tp, th, CC_DUPACK);
2533 					u_long oldcwnd = tp->snd_cwnd;
2534 					tcp_seq oldsndmax = tp->snd_max;
2535 					u_int sent;
2536 					int avail;
2537 
2538 					KASSERT(tp->t_dupacks == 1 ||
2539 					    tp->t_dupacks == 2,
2540 					    ("%s: dupacks not 1 or 2",
2541 					    __func__));
2542 					if (tp->t_dupacks == 1)
2543 						tp->snd_limited = 0;
2544 					tp->snd_cwnd =
2545 					    (tp->snd_nxt - tp->snd_una) +
2546 					    (tp->t_dupacks - tp->snd_limited) *
2547 					    tp->t_maxseg;
2548 					if ((thflags & TH_FIN) &&
2549 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2550 						/*
2551 						 * If its a fin we need to process
2552 						 * it to avoid a race where both
2553 						 * sides enter FIN-WAIT and send FIN|ACK
2554 						 * at the same time.
2555 						 */
2556 						break;
2557 					}
2558 					/*
2559 					 * Only call tcp_output when there
2560 					 * is new data available to be sent.
2561 					 * Otherwise we would send pure ACKs.
2562 					 */
2563 					SOCKBUF_LOCK(&so->so_snd);
2564 					avail = so->so_snd.sb_cc -
2565 					    (tp->snd_nxt - tp->snd_una);
2566 					SOCKBUF_UNLOCK(&so->so_snd);
2567 					if (avail > 0)
2568 						(void) tcp_output(tp);
2569 					sent = tp->snd_max - oldsndmax;
2570 					if (sent > tp->t_maxseg) {
2571 						KASSERT((tp->t_dupacks == 2 &&
2572 						    tp->snd_limited == 0) ||
2573 						   (sent == tp->t_maxseg + 1 &&
2574 						    tp->t_flags & TF_SENTFIN),
2575 						    ("%s: sent too much",
2576 						    __func__));
2577 						tp->snd_limited = 2;
2578 					} else if (sent > 0)
2579 						++tp->snd_limited;
2580 					tp->snd_cwnd = oldcwnd;
2581 					goto drop;
2582 				}
2583 			} else
2584 				tp->t_dupacks = 0;
2585 			break;
2586 		}
2587 
2588 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2589 		    ("%s: th_ack <= snd_una", __func__));
2590 
2591 		/*
2592 		 * If the congestion window was inflated to account
2593 		 * for the other side's cached packets, retract it.
2594 		 */
2595 		if (IN_FASTRECOVERY(tp->t_flags)) {
2596 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2597 				if (tp->t_flags & TF_SACK_PERMIT)
2598 					tcp_sack_partialack(tp, th);
2599 				else
2600 					tcp_newreno_partial_ack(tp, th);
2601 			} else
2602 				cc_post_recovery(tp, th);
2603 		}
2604 		tp->t_dupacks = 0;
2605 		/*
2606 		 * If we reach this point, ACK is not a duplicate,
2607 		 *     i.e., it ACKs something we sent.
2608 		 */
2609 		if (tp->t_flags & TF_NEEDSYN) {
2610 			/*
2611 			 * T/TCP: Connection was half-synchronized, and our
2612 			 * SYN has been ACK'd (so connection is now fully
2613 			 * synchronized).  Go to non-starred state,
2614 			 * increment snd_una for ACK of SYN, and check if
2615 			 * we can do window scaling.
2616 			 */
2617 			tp->t_flags &= ~TF_NEEDSYN;
2618 			tp->snd_una++;
2619 			/* Do window scaling? */
2620 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2621 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2622 				tp->rcv_scale = tp->request_r_scale;
2623 				/* Send window already scaled. */
2624 			}
2625 		}
2626 
2627 process_ACK:
2628 		INP_WLOCK_ASSERT(tp->t_inpcb);
2629 
2630 		acked = BYTES_THIS_ACK(tp, th);
2631 		TCPSTAT_INC(tcps_rcvackpack);
2632 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2633 
2634 		/*
2635 		 * If we just performed our first retransmit, and the ACK
2636 		 * arrives within our recovery window, then it was a mistake
2637 		 * to do the retransmit in the first place.  Recover our
2638 		 * original cwnd and ssthresh, and proceed to transmit where
2639 		 * we left off.
2640 		 */
2641 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2642 		    (int)(ticks - tp->t_badrxtwin) < 0)
2643 			cc_cong_signal(tp, th, CC_RTO_ERR);
2644 
2645 		/*
2646 		 * If we have a timestamp reply, update smoothed
2647 		 * round trip time.  If no timestamp is present but
2648 		 * transmit timer is running and timed sequence
2649 		 * number was acked, update smoothed round trip time.
2650 		 * Since we now have an rtt measurement, cancel the
2651 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2652 		 * Recompute the initial retransmit timer.
2653 		 *
2654 		 * Some boxes send broken timestamp replies
2655 		 * during the SYN+ACK phase, ignore
2656 		 * timestamps of 0 or we could calculate a
2657 		 * huge RTT and blow up the retransmit timer.
2658 		 */
2659 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2660 			u_int t;
2661 
2662 			t = tcp_ts_getticks() - to.to_tsecr;
2663 			if (!tp->t_rttlow || tp->t_rttlow > t)
2664 				tp->t_rttlow = t;
2665 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2666 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2667 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2668 				tp->t_rttlow = ticks - tp->t_rtttime;
2669 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2670 		}
2671 
2672 		/*
2673 		 * If all outstanding data is acked, stop retransmit
2674 		 * timer and remember to restart (more output or persist).
2675 		 * If there is more data to be acked, restart retransmit
2676 		 * timer, using current (possibly backed-off) value.
2677 		 */
2678 		if (th->th_ack == tp->snd_max) {
2679 			tcp_timer_activate(tp, TT_REXMT, 0);
2680 			needoutput = 1;
2681 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2682 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2683 
2684 		/*
2685 		 * If no data (only SYN) was ACK'd,
2686 		 *    skip rest of ACK processing.
2687 		 */
2688 		if (acked == 0)
2689 			goto step6;
2690 
2691 		/*
2692 		 * Let the congestion control algorithm update congestion
2693 		 * control related information. This typically means increasing
2694 		 * the congestion window.
2695 		 */
2696 		cc_ack_received(tp, th, CC_ACK);
2697 
2698 		SOCKBUF_LOCK(&so->so_snd);
2699 		if (acked > so->so_snd.sb_cc) {
2700 			tp->snd_wnd -= so->so_snd.sb_cc;
2701 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2702 			ourfinisacked = 1;
2703 		} else {
2704 			sbdrop_locked(&so->so_snd, acked);
2705 			tp->snd_wnd -= acked;
2706 			ourfinisacked = 0;
2707 		}
2708 		/* NB: sowwakeup_locked() does an implicit unlock. */
2709 		sowwakeup_locked(so);
2710 		/* Detect una wraparound. */
2711 		if (!IN_RECOVERY(tp->t_flags) &&
2712 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2713 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2714 			tp->snd_recover = th->th_ack - 1;
2715 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2716 		if (IN_RECOVERY(tp->t_flags) &&
2717 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2718 			EXIT_RECOVERY(tp->t_flags);
2719 		}
2720 		tp->snd_una = th->th_ack;
2721 		if (tp->t_flags & TF_SACK_PERMIT) {
2722 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2723 				tp->snd_recover = tp->snd_una;
2724 		}
2725 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2726 			tp->snd_nxt = tp->snd_una;
2727 
2728 		switch (tp->t_state) {
2729 
2730 		/*
2731 		 * In FIN_WAIT_1 STATE in addition to the processing
2732 		 * for the ESTABLISHED state if our FIN is now acknowledged
2733 		 * then enter FIN_WAIT_2.
2734 		 */
2735 		case TCPS_FIN_WAIT_1:
2736 			if (ourfinisacked) {
2737 				/*
2738 				 * If we can't receive any more
2739 				 * data, then closing user can proceed.
2740 				 * Starting the timer is contrary to the
2741 				 * specification, but if we don't get a FIN
2742 				 * we'll hang forever.
2743 				 *
2744 				 * XXXjl:
2745 				 * we should release the tp also, and use a
2746 				 * compressed state.
2747 				 */
2748 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2749 					soisdisconnected(so);
2750 					tcp_timer_activate(tp, TT_2MSL,
2751 					    (tcp_fast_finwait2_recycle ?
2752 					    tcp_finwait2_timeout :
2753 					    TP_MAXIDLE(tp)));
2754 				}
2755 				tp->t_state = TCPS_FIN_WAIT_2;
2756 			}
2757 			break;
2758 
2759 		/*
2760 		 * In CLOSING STATE in addition to the processing for
2761 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2762 		 * then enter the TIME-WAIT state, otherwise ignore
2763 		 * the segment.
2764 		 */
2765 		case TCPS_CLOSING:
2766 			if (ourfinisacked) {
2767 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2768 				tcp_twstart(tp);
2769 				INP_INFO_WUNLOCK(&V_tcbinfo);
2770 				m_freem(m);
2771 				return;
2772 			}
2773 			break;
2774 
2775 		/*
2776 		 * In LAST_ACK, we may still be waiting for data to drain
2777 		 * and/or to be acked, as well as for the ack of our FIN.
2778 		 * If our FIN is now acknowledged, delete the TCB,
2779 		 * enter the closed state and return.
2780 		 */
2781 		case TCPS_LAST_ACK:
2782 			if (ourfinisacked) {
2783 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2784 				tp = tcp_close(tp);
2785 				goto drop;
2786 			}
2787 			break;
2788 		}
2789 	}
2790 
2791 step6:
2792 	INP_WLOCK_ASSERT(tp->t_inpcb);
2793 
2794 	/*
2795 	 * Update window information.
2796 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2797 	 */
2798 	if ((thflags & TH_ACK) &&
2799 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2800 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2801 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2802 		/* keep track of pure window updates */
2803 		if (tlen == 0 &&
2804 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2805 			TCPSTAT_INC(tcps_rcvwinupd);
2806 		tp->snd_wnd = tiwin;
2807 		tp->snd_wl1 = th->th_seq;
2808 		tp->snd_wl2 = th->th_ack;
2809 		if (tp->snd_wnd > tp->max_sndwnd)
2810 			tp->max_sndwnd = tp->snd_wnd;
2811 		needoutput = 1;
2812 	}
2813 
2814 	/*
2815 	 * Process segments with URG.
2816 	 */
2817 	if ((thflags & TH_URG) && th->th_urp &&
2818 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2819 		/*
2820 		 * This is a kludge, but if we receive and accept
2821 		 * random urgent pointers, we'll crash in
2822 		 * soreceive.  It's hard to imagine someone
2823 		 * actually wanting to send this much urgent data.
2824 		 */
2825 		SOCKBUF_LOCK(&so->so_rcv);
2826 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2827 			th->th_urp = 0;			/* XXX */
2828 			thflags &= ~TH_URG;		/* XXX */
2829 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2830 			goto dodata;			/* XXX */
2831 		}
2832 		/*
2833 		 * If this segment advances the known urgent pointer,
2834 		 * then mark the data stream.  This should not happen
2835 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2836 		 * a FIN has been received from the remote side.
2837 		 * In these states we ignore the URG.
2838 		 *
2839 		 * According to RFC961 (Assigned Protocols),
2840 		 * the urgent pointer points to the last octet
2841 		 * of urgent data.  We continue, however,
2842 		 * to consider it to indicate the first octet
2843 		 * of data past the urgent section as the original
2844 		 * spec states (in one of two places).
2845 		 */
2846 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2847 			tp->rcv_up = th->th_seq + th->th_urp;
2848 			so->so_oobmark = so->so_rcv.sb_cc +
2849 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2850 			if (so->so_oobmark == 0)
2851 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2852 			sohasoutofband(so);
2853 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2854 		}
2855 		SOCKBUF_UNLOCK(&so->so_rcv);
2856 		/*
2857 		 * Remove out of band data so doesn't get presented to user.
2858 		 * This can happen independent of advancing the URG pointer,
2859 		 * but if two URG's are pending at once, some out-of-band
2860 		 * data may creep in... ick.
2861 		 */
2862 		if (th->th_urp <= (u_long)tlen &&
2863 		    !(so->so_options & SO_OOBINLINE)) {
2864 			/* hdr drop is delayed */
2865 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2866 		}
2867 	} else {
2868 		/*
2869 		 * If no out of band data is expected,
2870 		 * pull receive urgent pointer along
2871 		 * with the receive window.
2872 		 */
2873 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2874 			tp->rcv_up = tp->rcv_nxt;
2875 	}
2876 dodata:							/* XXX */
2877 	INP_WLOCK_ASSERT(tp->t_inpcb);
2878 
2879 	/*
2880 	 * Process the segment text, merging it into the TCP sequencing queue,
2881 	 * and arranging for acknowledgment of receipt if necessary.
2882 	 * This process logically involves adjusting tp->rcv_wnd as data
2883 	 * is presented to the user (this happens in tcp_usrreq.c,
2884 	 * case PRU_RCVD).  If a FIN has already been received on this
2885 	 * connection then we just ignore the text.
2886 	 */
2887 	if ((tlen || (thflags & TH_FIN)) &&
2888 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2889 		tcp_seq save_start = th->th_seq;
2890 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2891 		/*
2892 		 * Insert segment which includes th into TCP reassembly queue
2893 		 * with control block tp.  Set thflags to whether reassembly now
2894 		 * includes a segment with FIN.  This handles the common case
2895 		 * inline (segment is the next to be received on an established
2896 		 * connection, and the queue is empty), avoiding linkage into
2897 		 * and removal from the queue and repetition of various
2898 		 * conversions.
2899 		 * Set DELACK for segments received in order, but ack
2900 		 * immediately when segments are out of order (so
2901 		 * fast retransmit can work).
2902 		 */
2903 		if (th->th_seq == tp->rcv_nxt &&
2904 		    LIST_EMPTY(&tp->t_segq) &&
2905 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2906 			if (DELAY_ACK(tp))
2907 				tp->t_flags |= TF_DELACK;
2908 			else
2909 				tp->t_flags |= TF_ACKNOW;
2910 			tp->rcv_nxt += tlen;
2911 			thflags = th->th_flags & TH_FIN;
2912 			TCPSTAT_INC(tcps_rcvpack);
2913 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2914 			ND6_HINT(tp);
2915 			SOCKBUF_LOCK(&so->so_rcv);
2916 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2917 				m_freem(m);
2918 			else
2919 				sbappendstream_locked(&so->so_rcv, m);
2920 			/* NB: sorwakeup_locked() does an implicit unlock. */
2921 			sorwakeup_locked(so);
2922 		} else {
2923 			/*
2924 			 * XXX: Due to the header drop above "th" is
2925 			 * theoretically invalid by now.  Fortunately
2926 			 * m_adj() doesn't actually frees any mbufs
2927 			 * when trimming from the head.
2928 			 */
2929 			thflags = tcp_reass(tp, th, &tlen, m);
2930 			tp->t_flags |= TF_ACKNOW;
2931 		}
2932 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2933 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2934 #if 0
2935 		/*
2936 		 * Note the amount of data that peer has sent into
2937 		 * our window, in order to estimate the sender's
2938 		 * buffer size.
2939 		 * XXX: Unused.
2940 		 */
2941 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2942 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2943 		else
2944 			len = so->so_rcv.sb_hiwat;
2945 #endif
2946 	} else {
2947 		m_freem(m);
2948 		thflags &= ~TH_FIN;
2949 	}
2950 
2951 	/*
2952 	 * If FIN is received ACK the FIN and let the user know
2953 	 * that the connection is closing.
2954 	 */
2955 	if (thflags & TH_FIN) {
2956 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2957 			socantrcvmore(so);
2958 			/*
2959 			 * If connection is half-synchronized
2960 			 * (ie NEEDSYN flag on) then delay ACK,
2961 			 * so it may be piggybacked when SYN is sent.
2962 			 * Otherwise, since we received a FIN then no
2963 			 * more input can be expected, send ACK now.
2964 			 */
2965 			if (tp->t_flags & TF_NEEDSYN)
2966 				tp->t_flags |= TF_DELACK;
2967 			else
2968 				tp->t_flags |= TF_ACKNOW;
2969 			tp->rcv_nxt++;
2970 		}
2971 		switch (tp->t_state) {
2972 
2973 		/*
2974 		 * In SYN_RECEIVED and ESTABLISHED STATES
2975 		 * enter the CLOSE_WAIT state.
2976 		 */
2977 		case TCPS_SYN_RECEIVED:
2978 			tp->t_starttime = ticks;
2979 			/* FALLTHROUGH */
2980 		case TCPS_ESTABLISHED:
2981 			tp->t_state = TCPS_CLOSE_WAIT;
2982 			break;
2983 
2984 		/*
2985 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2986 		 * enter the CLOSING state.
2987 		 */
2988 		case TCPS_FIN_WAIT_1:
2989 			tp->t_state = TCPS_CLOSING;
2990 			break;
2991 
2992 		/*
2993 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2994 		 * starting the time-wait timer, turning off the other
2995 		 * standard timers.
2996 		 */
2997 		case TCPS_FIN_WAIT_2:
2998 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2999 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
3000 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3001 			    ti_locked));
3002 
3003 			tcp_twstart(tp);
3004 			INP_INFO_WUNLOCK(&V_tcbinfo);
3005 			return;
3006 		}
3007 	}
3008 	if (ti_locked == TI_WLOCKED)
3009 		INP_INFO_WUNLOCK(&V_tcbinfo);
3010 	ti_locked = TI_UNLOCKED;
3011 
3012 #ifdef TCPDEBUG
3013 	if (so->so_options & SO_DEBUG)
3014 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3015 			  &tcp_savetcp, 0);
3016 #endif
3017 
3018 	/*
3019 	 * Return any desired output.
3020 	 */
3021 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3022 		(void) tcp_output(tp);
3023 
3024 check_delack:
3025 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3026 	    __func__, ti_locked));
3027 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3028 	INP_WLOCK_ASSERT(tp->t_inpcb);
3029 
3030 	if (tp->t_flags & TF_DELACK) {
3031 		tp->t_flags &= ~TF_DELACK;
3032 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3033 	}
3034 	INP_WUNLOCK(tp->t_inpcb);
3035 	return;
3036 
3037 dropafterack:
3038 	/*
3039 	 * Generate an ACK dropping incoming segment if it occupies
3040 	 * sequence space, where the ACK reflects our state.
3041 	 *
3042 	 * We can now skip the test for the RST flag since all
3043 	 * paths to this code happen after packets containing
3044 	 * RST have been dropped.
3045 	 *
3046 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3047 	 * segment we received passes the SYN-RECEIVED ACK test.
3048 	 * If it fails send a RST.  This breaks the loop in the
3049 	 * "LAND" DoS attack, and also prevents an ACK storm
3050 	 * between two listening ports that have been sent forged
3051 	 * SYN segments, each with the source address of the other.
3052 	 */
3053 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3054 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3055 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3056 		rstreason = BANDLIM_RST_OPENPORT;
3057 		goto dropwithreset;
3058 	}
3059 #ifdef TCPDEBUG
3060 	if (so->so_options & SO_DEBUG)
3061 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3062 			  &tcp_savetcp, 0);
3063 #endif
3064 	if (ti_locked == TI_WLOCKED)
3065 		INP_INFO_WUNLOCK(&V_tcbinfo);
3066 	ti_locked = TI_UNLOCKED;
3067 
3068 	tp->t_flags |= TF_ACKNOW;
3069 	(void) tcp_output(tp);
3070 	INP_WUNLOCK(tp->t_inpcb);
3071 	m_freem(m);
3072 	return;
3073 
3074 dropwithreset:
3075 	if (ti_locked == TI_WLOCKED)
3076 		INP_INFO_WUNLOCK(&V_tcbinfo);
3077 	ti_locked = TI_UNLOCKED;
3078 
3079 	if (tp != NULL) {
3080 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3081 		INP_WUNLOCK(tp->t_inpcb);
3082 	} else
3083 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3084 	return;
3085 
3086 drop:
3087 	if (ti_locked == TI_WLOCKED) {
3088 		INP_INFO_WUNLOCK(&V_tcbinfo);
3089 		ti_locked = TI_UNLOCKED;
3090 	}
3091 #ifdef INVARIANTS
3092 	else
3093 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3094 #endif
3095 
3096 	/*
3097 	 * Drop space held by incoming segment and return.
3098 	 */
3099 #ifdef TCPDEBUG
3100 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3101 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3102 			  &tcp_savetcp, 0);
3103 #endif
3104 	if (tp != NULL)
3105 		INP_WUNLOCK(tp->t_inpcb);
3106 	m_freem(m);
3107 }
3108 
3109 /*
3110  * Issue RST and make ACK acceptable to originator of segment.
3111  * The mbuf must still include the original packet header.
3112  * tp may be NULL.
3113  */
3114 static void
3115 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3116     int tlen, int rstreason)
3117 {
3118 #ifdef INET
3119 	struct ip *ip;
3120 #endif
3121 #ifdef INET6
3122 	struct ip6_hdr *ip6;
3123 #endif
3124 
3125 	if (tp != NULL) {
3126 		INP_WLOCK_ASSERT(tp->t_inpcb);
3127 	}
3128 
3129 	/* Don't bother if destination was broadcast/multicast. */
3130 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3131 		goto drop;
3132 #ifdef INET6
3133 	if (mtod(m, struct ip *)->ip_v == 6) {
3134 		ip6 = mtod(m, struct ip6_hdr *);
3135 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3136 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3137 			goto drop;
3138 		/* IPv6 anycast check is done at tcp6_input() */
3139 	}
3140 #endif
3141 #if defined(INET) && defined(INET6)
3142 	else
3143 #endif
3144 #ifdef INET
3145 	{
3146 		ip = mtod(m, struct ip *);
3147 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3148 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3149 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3150 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3151 			goto drop;
3152 	}
3153 #endif
3154 
3155 	/* Perform bandwidth limiting. */
3156 	if (badport_bandlim(rstreason) < 0)
3157 		goto drop;
3158 
3159 	/* tcp_respond consumes the mbuf chain. */
3160 	if (th->th_flags & TH_ACK) {
3161 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3162 		    th->th_ack, TH_RST);
3163 	} else {
3164 		if (th->th_flags & TH_SYN)
3165 			tlen++;
3166 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3167 		    (tcp_seq)0, TH_RST|TH_ACK);
3168 	}
3169 	return;
3170 drop:
3171 	m_freem(m);
3172 }
3173 
3174 /*
3175  * Parse TCP options and place in tcpopt.
3176  */
3177 static void
3178 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3179 {
3180 	int opt, optlen;
3181 
3182 	to->to_flags = 0;
3183 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3184 		opt = cp[0];
3185 		if (opt == TCPOPT_EOL)
3186 			break;
3187 		if (opt == TCPOPT_NOP)
3188 			optlen = 1;
3189 		else {
3190 			if (cnt < 2)
3191 				break;
3192 			optlen = cp[1];
3193 			if (optlen < 2 || optlen > cnt)
3194 				break;
3195 		}
3196 		switch (opt) {
3197 		case TCPOPT_MAXSEG:
3198 			if (optlen != TCPOLEN_MAXSEG)
3199 				continue;
3200 			if (!(flags & TO_SYN))
3201 				continue;
3202 			to->to_flags |= TOF_MSS;
3203 			bcopy((char *)cp + 2,
3204 			    (char *)&to->to_mss, sizeof(to->to_mss));
3205 			to->to_mss = ntohs(to->to_mss);
3206 			break;
3207 		case TCPOPT_WINDOW:
3208 			if (optlen != TCPOLEN_WINDOW)
3209 				continue;
3210 			if (!(flags & TO_SYN))
3211 				continue;
3212 			to->to_flags |= TOF_SCALE;
3213 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3214 			break;
3215 		case TCPOPT_TIMESTAMP:
3216 			if (optlen != TCPOLEN_TIMESTAMP)
3217 				continue;
3218 			to->to_flags |= TOF_TS;
3219 			bcopy((char *)cp + 2,
3220 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3221 			to->to_tsval = ntohl(to->to_tsval);
3222 			bcopy((char *)cp + 6,
3223 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3224 			to->to_tsecr = ntohl(to->to_tsecr);
3225 			break;
3226 #ifdef TCP_SIGNATURE
3227 		/*
3228 		 * XXX In order to reply to a host which has set the
3229 		 * TCP_SIGNATURE option in its initial SYN, we have to
3230 		 * record the fact that the option was observed here
3231 		 * for the syncache code to perform the correct response.
3232 		 */
3233 		case TCPOPT_SIGNATURE:
3234 			if (optlen != TCPOLEN_SIGNATURE)
3235 				continue;
3236 			to->to_flags |= TOF_SIGNATURE;
3237 			to->to_signature = cp + 2;
3238 			break;
3239 #endif
3240 		case TCPOPT_SACK_PERMITTED:
3241 			if (optlen != TCPOLEN_SACK_PERMITTED)
3242 				continue;
3243 			if (!(flags & TO_SYN))
3244 				continue;
3245 			if (!V_tcp_do_sack)
3246 				continue;
3247 			to->to_flags |= TOF_SACKPERM;
3248 			break;
3249 		case TCPOPT_SACK:
3250 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3251 				continue;
3252 			if (flags & TO_SYN)
3253 				continue;
3254 			to->to_flags |= TOF_SACK;
3255 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3256 			to->to_sacks = cp + 2;
3257 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3258 			break;
3259 		default:
3260 			continue;
3261 		}
3262 	}
3263 }
3264 
3265 /*
3266  * Pull out of band byte out of a segment so
3267  * it doesn't appear in the user's data queue.
3268  * It is still reflected in the segment length for
3269  * sequencing purposes.
3270  */
3271 static void
3272 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3273     int off)
3274 {
3275 	int cnt = off + th->th_urp - 1;
3276 
3277 	while (cnt >= 0) {
3278 		if (m->m_len > cnt) {
3279 			char *cp = mtod(m, caddr_t) + cnt;
3280 			struct tcpcb *tp = sototcpcb(so);
3281 
3282 			INP_WLOCK_ASSERT(tp->t_inpcb);
3283 
3284 			tp->t_iobc = *cp;
3285 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3286 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3287 			m->m_len--;
3288 			if (m->m_flags & M_PKTHDR)
3289 				m->m_pkthdr.len--;
3290 			return;
3291 		}
3292 		cnt -= m->m_len;
3293 		m = m->m_next;
3294 		if (m == NULL)
3295 			break;
3296 	}
3297 	panic("tcp_pulloutofband");
3298 }
3299 
3300 /*
3301  * Collect new round-trip time estimate
3302  * and update averages and current timeout.
3303  */
3304 static void
3305 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3306 {
3307 	int delta;
3308 
3309 	INP_WLOCK_ASSERT(tp->t_inpcb);
3310 
3311 	TCPSTAT_INC(tcps_rttupdated);
3312 	tp->t_rttupdated++;
3313 	if (tp->t_srtt != 0) {
3314 		/*
3315 		 * srtt is stored as fixed point with 5 bits after the
3316 		 * binary point (i.e., scaled by 8).  The following magic
3317 		 * is equivalent to the smoothing algorithm in rfc793 with
3318 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3319 		 * point).  Adjust rtt to origin 0.
3320 		 */
3321 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3322 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3323 
3324 		if ((tp->t_srtt += delta) <= 0)
3325 			tp->t_srtt = 1;
3326 
3327 		/*
3328 		 * We accumulate a smoothed rtt variance (actually, a
3329 		 * smoothed mean difference), then set the retransmit
3330 		 * timer to smoothed rtt + 4 times the smoothed variance.
3331 		 * rttvar is stored as fixed point with 4 bits after the
3332 		 * binary point (scaled by 16).  The following is
3333 		 * equivalent to rfc793 smoothing with an alpha of .75
3334 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3335 		 * rfc793's wired-in beta.
3336 		 */
3337 		if (delta < 0)
3338 			delta = -delta;
3339 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3340 		if ((tp->t_rttvar += delta) <= 0)
3341 			tp->t_rttvar = 1;
3342 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3343 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3344 	} else {
3345 		/*
3346 		 * No rtt measurement yet - use the unsmoothed rtt.
3347 		 * Set the variance to half the rtt (so our first
3348 		 * retransmit happens at 3*rtt).
3349 		 */
3350 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3351 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3352 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3353 	}
3354 	tp->t_rtttime = 0;
3355 	tp->t_rxtshift = 0;
3356 
3357 	/*
3358 	 * the retransmit should happen at rtt + 4 * rttvar.
3359 	 * Because of the way we do the smoothing, srtt and rttvar
3360 	 * will each average +1/2 tick of bias.  When we compute
3361 	 * the retransmit timer, we want 1/2 tick of rounding and
3362 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3363 	 * firing of the timer.  The bias will give us exactly the
3364 	 * 1.5 tick we need.  But, because the bias is
3365 	 * statistical, we have to test that we don't drop below
3366 	 * the minimum feasible timer (which is 2 ticks).
3367 	 */
3368 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3369 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3370 
3371 	/*
3372 	 * We received an ack for a packet that wasn't retransmitted;
3373 	 * it is probably safe to discard any error indications we've
3374 	 * received recently.  This isn't quite right, but close enough
3375 	 * for now (a route might have failed after we sent a segment,
3376 	 * and the return path might not be symmetrical).
3377 	 */
3378 	tp->t_softerror = 0;
3379 }
3380 
3381 /*
3382  * Determine a reasonable value for maxseg size.
3383  * If the route is known, check route for mtu.
3384  * If none, use an mss that can be handled on the outgoing interface
3385  * without forcing IP to fragment.  If no route is found, route has no mtu,
3386  * or the destination isn't local, use a default, hopefully conservative
3387  * size (usually 512 or the default IP max size, but no more than the mtu
3388  * of the interface), as we can't discover anything about intervening
3389  * gateways or networks.  We also initialize the congestion/slow start
3390  * window to be a single segment if the destination isn't local.
3391  * While looking at the routing entry, we also initialize other path-dependent
3392  * parameters from pre-set or cached values in the routing entry.
3393  *
3394  * Also take into account the space needed for options that we
3395  * send regularly.  Make maxseg shorter by that amount to assure
3396  * that we can send maxseg amount of data even when the options
3397  * are present.  Store the upper limit of the length of options plus
3398  * data in maxopd.
3399  *
3400  * NOTE that this routine is only called when we process an incoming
3401  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3402  * settings are handled in tcp_mssopt().
3403  */
3404 void
3405 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3406     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3407 {
3408 	int mss = 0;
3409 	u_long maxmtu = 0;
3410 	struct inpcb *inp = tp->t_inpcb;
3411 	struct hc_metrics_lite metrics;
3412 	int origoffer;
3413 #ifdef INET6
3414 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3415 	size_t min_protoh = isipv6 ?
3416 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3417 			    sizeof (struct tcpiphdr);
3418 #else
3419 	const size_t min_protoh = sizeof(struct tcpiphdr);
3420 #endif
3421 
3422 	INP_WLOCK_ASSERT(tp->t_inpcb);
3423 
3424 	if (mtuoffer != -1) {
3425 		KASSERT(offer == -1, ("%s: conflict", __func__));
3426 		offer = mtuoffer - min_protoh;
3427 	}
3428 	origoffer = offer;
3429 
3430 	/* Initialize. */
3431 #ifdef INET6
3432 	if (isipv6) {
3433 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3434 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3435 	}
3436 #endif
3437 #if defined(INET) && defined(INET6)
3438 	else
3439 #endif
3440 #ifdef INET
3441 	{
3442 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3443 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3444 	}
3445 #endif
3446 
3447 	/*
3448 	 * No route to sender, stay with default mss and return.
3449 	 */
3450 	if (maxmtu == 0) {
3451 		/*
3452 		 * In case we return early we need to initialize metrics
3453 		 * to a defined state as tcp_hc_get() would do for us
3454 		 * if there was no cache hit.
3455 		 */
3456 		if (metricptr != NULL)
3457 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3458 		return;
3459 	}
3460 
3461 	/* What have we got? */
3462 	switch (offer) {
3463 		case 0:
3464 			/*
3465 			 * Offer == 0 means that there was no MSS on the SYN
3466 			 * segment, in this case we use tcp_mssdflt as
3467 			 * already assigned to t_maxopd above.
3468 			 */
3469 			offer = tp->t_maxopd;
3470 			break;
3471 
3472 		case -1:
3473 			/*
3474 			 * Offer == -1 means that we didn't receive SYN yet.
3475 			 */
3476 			/* FALLTHROUGH */
3477 
3478 		default:
3479 			/*
3480 			 * Prevent DoS attack with too small MSS. Round up
3481 			 * to at least minmss.
3482 			 */
3483 			offer = max(offer, V_tcp_minmss);
3484 	}
3485 
3486 	/*
3487 	 * rmx information is now retrieved from tcp_hostcache.
3488 	 */
3489 	tcp_hc_get(&inp->inp_inc, &metrics);
3490 	if (metricptr != NULL)
3491 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3492 
3493 	/*
3494 	 * If there's a discovered mtu int tcp hostcache, use it
3495 	 * else, use the link mtu.
3496 	 */
3497 	if (metrics.rmx_mtu)
3498 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3499 	else {
3500 #ifdef INET6
3501 		if (isipv6) {
3502 			mss = maxmtu - min_protoh;
3503 			if (!V_path_mtu_discovery &&
3504 			    !in6_localaddr(&inp->in6p_faddr))
3505 				mss = min(mss, V_tcp_v6mssdflt);
3506 		}
3507 #endif
3508 #if defined(INET) && defined(INET6)
3509 		else
3510 #endif
3511 #ifdef INET
3512 		{
3513 			mss = maxmtu - min_protoh;
3514 			if (!V_path_mtu_discovery &&
3515 			    !in_localaddr(inp->inp_faddr))
3516 				mss = min(mss, V_tcp_mssdflt);
3517 		}
3518 #endif
3519 		/*
3520 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3521 		 * probably violates the TCP spec.
3522 		 * The problem is that, since we don't know the
3523 		 * other end's MSS, we are supposed to use a conservative
3524 		 * default.  But, if we do that, then MTU discovery will
3525 		 * never actually take place, because the conservative
3526 		 * default is much less than the MTUs typically seen
3527 		 * on the Internet today.  For the moment, we'll sweep
3528 		 * this under the carpet.
3529 		 *
3530 		 * The conservative default might not actually be a problem
3531 		 * if the only case this occurs is when sending an initial
3532 		 * SYN with options and data to a host we've never talked
3533 		 * to before.  Then, they will reply with an MSS value which
3534 		 * will get recorded and the new parameters should get
3535 		 * recomputed.  For Further Study.
3536 		 */
3537 	}
3538 	mss = min(mss, offer);
3539 
3540 	/*
3541 	 * Sanity check: make sure that maxopd will be large
3542 	 * enough to allow some data on segments even if the
3543 	 * all the option space is used (40bytes).  Otherwise
3544 	 * funny things may happen in tcp_output.
3545 	 */
3546 	mss = max(mss, 64);
3547 
3548 	/*
3549 	 * maxopd stores the maximum length of data AND options
3550 	 * in a segment; maxseg is the amount of data in a normal
3551 	 * segment.  We need to store this value (maxopd) apart
3552 	 * from maxseg, because now every segment carries options
3553 	 * and thus we normally have somewhat less data in segments.
3554 	 */
3555 	tp->t_maxopd = mss;
3556 
3557 	/*
3558 	 * origoffer==-1 indicates that no segments were received yet.
3559 	 * In this case we just guess.
3560 	 */
3561 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3562 	    (origoffer == -1 ||
3563 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3564 		mss -= TCPOLEN_TSTAMP_APPA;
3565 
3566 	tp->t_maxseg = mss;
3567 }
3568 
3569 void
3570 tcp_mss(struct tcpcb *tp, int offer)
3571 {
3572 	int mss;
3573 	u_long bufsize;
3574 	struct inpcb *inp;
3575 	struct socket *so;
3576 	struct hc_metrics_lite metrics;
3577 	struct tcp_ifcap cap;
3578 
3579 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3580 
3581 	bzero(&cap, sizeof(cap));
3582 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3583 
3584 	mss = tp->t_maxseg;
3585 	inp = tp->t_inpcb;
3586 
3587 	/*
3588 	 * If there's a pipesize, change the socket buffer to that size,
3589 	 * don't change if sb_hiwat is different than default (then it
3590 	 * has been changed on purpose with setsockopt).
3591 	 * Make the socket buffers an integral number of mss units;
3592 	 * if the mss is larger than the socket buffer, decrease the mss.
3593 	 */
3594 	so = inp->inp_socket;
3595 	SOCKBUF_LOCK(&so->so_snd);
3596 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3597 		bufsize = metrics.rmx_sendpipe;
3598 	else
3599 		bufsize = so->so_snd.sb_hiwat;
3600 	if (bufsize < mss)
3601 		mss = bufsize;
3602 	else {
3603 		bufsize = roundup(bufsize, mss);
3604 		if (bufsize > sb_max)
3605 			bufsize = sb_max;
3606 		if (bufsize > so->so_snd.sb_hiwat)
3607 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3608 	}
3609 	SOCKBUF_UNLOCK(&so->so_snd);
3610 	tp->t_maxseg = mss;
3611 
3612 	SOCKBUF_LOCK(&so->so_rcv);
3613 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3614 		bufsize = metrics.rmx_recvpipe;
3615 	else
3616 		bufsize = so->so_rcv.sb_hiwat;
3617 	if (bufsize > mss) {
3618 		bufsize = roundup(bufsize, mss);
3619 		if (bufsize > sb_max)
3620 			bufsize = sb_max;
3621 		if (bufsize > so->so_rcv.sb_hiwat)
3622 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3623 	}
3624 	SOCKBUF_UNLOCK(&so->so_rcv);
3625 
3626 	/* Check the interface for TSO capabilities. */
3627 	if (cap.ifcap & CSUM_TSO) {
3628 		tp->t_flags |= TF_TSO;
3629 		tp->t_tsomax = cap.tsomax;
3630 	}
3631 }
3632 
3633 /*
3634  * Determine the MSS option to send on an outgoing SYN.
3635  */
3636 int
3637 tcp_mssopt(struct in_conninfo *inc)
3638 {
3639 	int mss = 0;
3640 	u_long maxmtu = 0;
3641 	u_long thcmtu = 0;
3642 	size_t min_protoh;
3643 
3644 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3645 
3646 #ifdef INET6
3647 	if (inc->inc_flags & INC_ISIPV6) {
3648 		mss = V_tcp_v6mssdflt;
3649 		maxmtu = tcp_maxmtu6(inc, NULL);
3650 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3651 	}
3652 #endif
3653 #if defined(INET) && defined(INET6)
3654 	else
3655 #endif
3656 #ifdef INET
3657 	{
3658 		mss = V_tcp_mssdflt;
3659 		maxmtu = tcp_maxmtu(inc, NULL);
3660 		min_protoh = sizeof(struct tcpiphdr);
3661 	}
3662 #endif
3663 #if defined(INET6) || defined(INET)
3664 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3665 #endif
3666 
3667 	if (maxmtu && thcmtu)
3668 		mss = min(maxmtu, thcmtu) - min_protoh;
3669 	else if (maxmtu || thcmtu)
3670 		mss = max(maxmtu, thcmtu) - min_protoh;
3671 
3672 	return (mss);
3673 }
3674 
3675 
3676 /*
3677  * On a partial ack arrives, force the retransmission of the
3678  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3679  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3680  * be started again.
3681  */
3682 static void
3683 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3684 {
3685 	tcp_seq onxt = tp->snd_nxt;
3686 	u_long  ocwnd = tp->snd_cwnd;
3687 
3688 	INP_WLOCK_ASSERT(tp->t_inpcb);
3689 
3690 	tcp_timer_activate(tp, TT_REXMT, 0);
3691 	tp->t_rtttime = 0;
3692 	tp->snd_nxt = th->th_ack;
3693 	/*
3694 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3695 	 * (tp->snd_una has not yet been updated when this function is called.)
3696 	 */
3697 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3698 	tp->t_flags |= TF_ACKNOW;
3699 	(void) tcp_output(tp);
3700 	tp->snd_cwnd = ocwnd;
3701 	if (SEQ_GT(onxt, tp->snd_nxt))
3702 		tp->snd_nxt = onxt;
3703 	/*
3704 	 * Partial window deflation.  Relies on fact that tp->snd_una
3705 	 * not updated yet.
3706 	 */
3707 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3708 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3709 	else
3710 		tp->snd_cwnd = 0;
3711 	tp->snd_cwnd += tp->t_maxseg;
3712 }
3713