xref: /freebsd/sys/netinet/tcp_input.c (revision c9dbb1cc52b063bbd9ab078a7afc89a8696da659)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #include <netinet6/tcp6_var.h>
106 #include <netinet/tcpip.h>
107 #include <netinet/tcp_syncache.h>
108 #ifdef TCPDEBUG
109 #include <netinet/tcp_debug.h>
110 #endif /* TCPDEBUG */
111 #ifdef TCP_OFFLOAD
112 #include <netinet/tcp_offload.h>
113 #endif
114 
115 #ifdef IPSEC
116 #include <netipsec/ipsec.h>
117 #include <netipsec/ipsec6.h>
118 #endif /*IPSEC*/
119 
120 #include <machine/in_cksum.h>
121 
122 #include <security/mac/mac_framework.h>
123 
124 const int tcprexmtthresh = 3;
125 
126 int tcp_log_in_vain = 0;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128     &tcp_log_in_vain, 0,
129     "Log all incoming TCP segments to closed ports");
130 
131 VNET_DEFINE(int, blackhole) = 0;
132 #define	V_blackhole		VNET(blackhole)
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
134     &VNET_NAME(blackhole), 0,
135     "Do not send RST on segments to closed ports");
136 
137 VNET_DEFINE(int, tcp_delack_enabled) = 1;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
139     &VNET_NAME(tcp_delack_enabled), 0,
140     "Delay ACK to try and piggyback it onto a data packet");
141 
142 VNET_DEFINE(int, drop_synfin) = 0;
143 #define	V_drop_synfin		VNET(drop_synfin)
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(drop_synfin), 0,
146     "Drop TCP packets with SYN+FIN set");
147 
148 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
151     &VNET_NAME(tcp_do_rfc3042), 0,
152     "Enable RFC 3042 (Limited Transmit)");
153 
154 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc3390), 0,
157     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158 
159 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160     "Experimental TCP extensions");
161 
162 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163 SYSCTL_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_VNET | CTLFLAG_RW,
164     &VNET_NAME(tcp_do_initcwnd10), 0,
165     "Enable RFC 6928 (Increasing initial CWND to 10)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3465), 0,
170     "Enable RFC 3465 (Appropriate Byte Counting)");
171 
172 VNET_DEFINE(int, tcp_abc_l_var) = 2;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
174     &VNET_NAME(tcp_abc_l_var), 2,
175     "Cap the max cwnd increment during slow-start to this number of segments");
176 
177 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178 
179 VNET_DEFINE(int, tcp_do_ecn) = 0;
180 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
181     &VNET_NAME(tcp_do_ecn), 0,
182     "TCP ECN support");
183 
184 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
186     &VNET_NAME(tcp_ecn_maxretries), 0,
187     "Max retries before giving up on ECN");
188 
189 VNET_DEFINE(int, tcp_insecure_syn) = 0;
190 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
192     &VNET_NAME(tcp_insecure_syn), 0,
193     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
194 
195 VNET_DEFINE(int, tcp_insecure_rst) = 0;
196 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
198     &VNET_NAME(tcp_insecure_rst), 0,
199     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
200 
201 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
202 #define	V_tcp_recvspace	VNET(tcp_recvspace)
203 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
204     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
205 
206 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
207 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
209     &VNET_NAME(tcp_do_autorcvbuf), 0,
210     "Enable automatic receive buffer sizing");
211 
212 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
213 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
215     &VNET_NAME(tcp_autorcvbuf_inc), 0,
216     "Incrementor step size of automatic receive buffer");
217 
218 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
219 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
221     &VNET_NAME(tcp_autorcvbuf_max), 0,
222     "Max size of automatic receive buffer");
223 
224 VNET_DEFINE(struct inpcbhead, tcb);
225 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
226 VNET_DEFINE(struct inpcbinfo, tcbinfo);
227 
228 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
229 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
230 		     struct socket *, struct tcpcb *, int, int, uint8_t,
231 		     int);
232 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
233 		     struct tcpcb *, int, int);
234 static void	 tcp_pulloutofband(struct socket *,
235 		     struct tcphdr *, struct mbuf *, int);
236 static void	 tcp_xmit_timer(struct tcpcb *, int);
237 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
238 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
239 			    uint16_t type);
240 static void inline	cc_conn_init(struct tcpcb *tp);
241 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
242 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
243 			    struct tcphdr *th, struct tcpopt *to);
244 
245 /*
246  * TCP statistics are stored in an "array" of counter(9)s.
247  */
248 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
249 VNET_PCPUSTAT_SYSINIT(tcpstat);
250 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
251     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
252 
253 #ifdef VIMAGE
254 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
255 #endif /* VIMAGE */
256 /*
257  * Kernel module interface for updating tcpstat.  The argument is an index
258  * into tcpstat treated as an array.
259  */
260 void
261 kmod_tcpstat_inc(int statnum)
262 {
263 
264 	counter_u64_add(VNET(tcpstat)[statnum], 1);
265 }
266 
267 /*
268  * Wrapper for the TCP established input helper hook.
269  */
270 static void inline
271 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
272 {
273 	struct tcp_hhook_data hhook_data;
274 
275 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
276 		hhook_data.tp = tp;
277 		hhook_data.th = th;
278 		hhook_data.to = to;
279 
280 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
281 		    tp->osd);
282 	}
283 }
284 
285 /*
286  * CC wrapper hook functions
287  */
288 static void inline
289 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
290 {
291 	INP_WLOCK_ASSERT(tp->t_inpcb);
292 
293 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
294 	if (tp->snd_cwnd <= tp->snd_wnd)
295 		tp->ccv->flags |= CCF_CWND_LIMITED;
296 	else
297 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
298 
299 	if (type == CC_ACK) {
300 		if (tp->snd_cwnd > tp->snd_ssthresh) {
301 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
302 			     V_tcp_abc_l_var * tp->t_maxseg);
303 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
304 				tp->t_bytes_acked -= tp->snd_cwnd;
305 				tp->ccv->flags |= CCF_ABC_SENTAWND;
306 			}
307 		} else {
308 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
309 				tp->t_bytes_acked = 0;
310 		}
311 	}
312 
313 	if (CC_ALGO(tp)->ack_received != NULL) {
314 		/* XXXLAS: Find a way to live without this */
315 		tp->ccv->curack = th->th_ack;
316 		CC_ALGO(tp)->ack_received(tp->ccv, type);
317 	}
318 }
319 
320 static void inline
321 cc_conn_init(struct tcpcb *tp)
322 {
323 	struct hc_metrics_lite metrics;
324 	struct inpcb *inp = tp->t_inpcb;
325 	int rtt;
326 
327 	INP_WLOCK_ASSERT(tp->t_inpcb);
328 
329 	tcp_hc_get(&inp->inp_inc, &metrics);
330 
331 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
332 		tp->t_srtt = rtt;
333 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
334 		TCPSTAT_INC(tcps_usedrtt);
335 		if (metrics.rmx_rttvar) {
336 			tp->t_rttvar = metrics.rmx_rttvar;
337 			TCPSTAT_INC(tcps_usedrttvar);
338 		} else {
339 			/* default variation is +- 1 rtt */
340 			tp->t_rttvar =
341 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
342 		}
343 		TCPT_RANGESET(tp->t_rxtcur,
344 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
345 		    tp->t_rttmin, TCPTV_REXMTMAX);
346 	}
347 	if (metrics.rmx_ssthresh) {
348 		/*
349 		 * There's some sort of gateway or interface
350 		 * buffer limit on the path.  Use this to set
351 		 * the slow start threshhold, but set the
352 		 * threshold to no less than 2*mss.
353 		 */
354 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
355 		TCPSTAT_INC(tcps_usedssthresh);
356 	}
357 
358 	/*
359 	 * Set the initial slow-start flight size.
360 	 *
361 	 * RFC5681 Section 3.1 specifies the default conservative values.
362 	 * RFC3390 specifies slightly more aggressive values.
363 	 * RFC6928 increases it to ten segments.
364 	 *
365 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
366 	 * reduce the initial CWND to one segment as congestion is likely
367 	 * requiring us to be cautious.
368 	 */
369 	if (tp->snd_cwnd == 1)
370 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
371 	else if (V_tcp_do_initcwnd10)
372 		tp->snd_cwnd = min(10 * tp->t_maxseg,
373 		    max(2 * tp->t_maxseg, 14600));
374 	else if (V_tcp_do_rfc3390)
375 		tp->snd_cwnd = min(4 * tp->t_maxseg,
376 		    max(2 * tp->t_maxseg, 4380));
377 	else {
378 		/* Per RFC5681 Section 3.1 */
379 		if (tp->t_maxseg > 2190)
380 			tp->snd_cwnd = 2 * tp->t_maxseg;
381 		else if (tp->t_maxseg > 1095)
382 			tp->snd_cwnd = 3 * tp->t_maxseg;
383 		else
384 			tp->snd_cwnd = 4 * tp->t_maxseg;
385 	}
386 
387 	if (CC_ALGO(tp)->conn_init != NULL)
388 		CC_ALGO(tp)->conn_init(tp->ccv);
389 }
390 
391 void inline
392 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
393 {
394 	INP_WLOCK_ASSERT(tp->t_inpcb);
395 
396 	switch(type) {
397 	case CC_NDUPACK:
398 		if (!IN_FASTRECOVERY(tp->t_flags)) {
399 			tp->snd_recover = tp->snd_max;
400 			if (tp->t_flags & TF_ECN_PERMIT)
401 				tp->t_flags |= TF_ECN_SND_CWR;
402 		}
403 		break;
404 	case CC_ECN:
405 		if (!IN_CONGRECOVERY(tp->t_flags)) {
406 			TCPSTAT_INC(tcps_ecn_rcwnd);
407 			tp->snd_recover = tp->snd_max;
408 			if (tp->t_flags & TF_ECN_PERMIT)
409 				tp->t_flags |= TF_ECN_SND_CWR;
410 		}
411 		break;
412 	case CC_RTO:
413 		tp->t_dupacks = 0;
414 		tp->t_bytes_acked = 0;
415 		EXIT_RECOVERY(tp->t_flags);
416 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
417 		    tp->t_maxseg) * tp->t_maxseg;
418 		tp->snd_cwnd = tp->t_maxseg;
419 		break;
420 	case CC_RTO_ERR:
421 		TCPSTAT_INC(tcps_sndrexmitbad);
422 		/* RTO was unnecessary, so reset everything. */
423 		tp->snd_cwnd = tp->snd_cwnd_prev;
424 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
425 		tp->snd_recover = tp->snd_recover_prev;
426 		if (tp->t_flags & TF_WASFRECOVERY)
427 			ENTER_FASTRECOVERY(tp->t_flags);
428 		if (tp->t_flags & TF_WASCRECOVERY)
429 			ENTER_CONGRECOVERY(tp->t_flags);
430 		tp->snd_nxt = tp->snd_max;
431 		tp->t_flags &= ~TF_PREVVALID;
432 		tp->t_badrxtwin = 0;
433 		break;
434 	}
435 
436 	if (CC_ALGO(tp)->cong_signal != NULL) {
437 		if (th != NULL)
438 			tp->ccv->curack = th->th_ack;
439 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
440 	}
441 }
442 
443 static void inline
444 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
445 {
446 	INP_WLOCK_ASSERT(tp->t_inpcb);
447 
448 	/* XXXLAS: KASSERT that we're in recovery? */
449 
450 	if (CC_ALGO(tp)->post_recovery != NULL) {
451 		tp->ccv->curack = th->th_ack;
452 		CC_ALGO(tp)->post_recovery(tp->ccv);
453 	}
454 	/* XXXLAS: EXIT_RECOVERY ? */
455 	tp->t_bytes_acked = 0;
456 }
457 
458 #ifdef TCP_SIGNATURE
459 static inline int
460 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
461     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
462 {
463 	int ret;
464 
465 	tcp_fields_to_net(th);
466 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
467 	tcp_fields_to_host(th);
468 	return (ret);
469 }
470 #endif
471 
472 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
473 #ifdef INET6
474 #define ND6_HINT(tp) \
475 do { \
476 	if ((tp) && (tp)->t_inpcb && \
477 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
478 		nd6_nud_hint(NULL, NULL, 0); \
479 } while (0)
480 #else
481 #define ND6_HINT(tp)
482 #endif
483 
484 /*
485  * Indicate whether this ack should be delayed.  We can delay the ack if
486  * following conditions are met:
487  *	- There is no delayed ack timer in progress.
488  *	- Our last ack wasn't a 0-sized window. We never want to delay
489  *	  the ack that opens up a 0-sized window.
490  *	- LRO wasn't used for this segment. We make sure by checking that the
491  *	  segment size is not larger than the MSS.
492  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
493  *	  connection.
494  */
495 #define DELAY_ACK(tp, tlen)						\
496 	((!tcp_timer_active(tp, TT_DELACK) &&				\
497 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
498 	    (tlen <= tp->t_maxopd) &&					\
499 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
500 
501 static void inline
502 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
503 {
504 	INP_WLOCK_ASSERT(tp->t_inpcb);
505 
506 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
507 		switch (iptos & IPTOS_ECN_MASK) {
508 		case IPTOS_ECN_CE:
509 		    tp->ccv->flags |= CCF_IPHDR_CE;
510 		    break;
511 		case IPTOS_ECN_ECT0:
512 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
513 		    break;
514 		case IPTOS_ECN_ECT1:
515 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
516 		    break;
517 		}
518 
519 		if (th->th_flags & TH_CWR)
520 			tp->ccv->flags |= CCF_TCPHDR_CWR;
521 		else
522 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
523 
524 		if (tp->t_flags & TF_DELACK)
525 			tp->ccv->flags |= CCF_DELACK;
526 		else
527 			tp->ccv->flags &= ~CCF_DELACK;
528 
529 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
530 
531 		if (tp->ccv->flags & CCF_ACKNOW)
532 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
533 	}
534 }
535 
536 /*
537  * TCP input handling is split into multiple parts:
538  *   tcp6_input is a thin wrapper around tcp_input for the extended
539  *	ip6_protox[] call format in ip6_input
540  *   tcp_input handles primary segment validation, inpcb lookup and
541  *	SYN processing on listen sockets
542  *   tcp_do_segment processes the ACK and text of the segment for
543  *	establishing, established and closing connections
544  */
545 #ifdef INET6
546 int
547 tcp6_input(struct mbuf **mp, int *offp, int proto)
548 {
549 	struct mbuf *m = *mp;
550 	struct in6_ifaddr *ia6;
551 	struct ip6_hdr *ip6;
552 
553 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
554 
555 	/*
556 	 * draft-itojun-ipv6-tcp-to-anycast
557 	 * better place to put this in?
558 	 */
559 	ip6 = mtod(m, struct ip6_hdr *);
560 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
561 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
562 		struct ip6_hdr *ip6;
563 
564 		ifa_free(&ia6->ia_ifa);
565 		ip6 = mtod(m, struct ip6_hdr *);
566 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
567 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
568 		return (IPPROTO_DONE);
569 	}
570 	if (ia6)
571 		ifa_free(&ia6->ia_ifa);
572 
573 	return (tcp_input(mp, offp, proto));
574 }
575 #endif /* INET6 */
576 
577 int
578 tcp_input(struct mbuf **mp, int *offp, int proto)
579 {
580 	struct mbuf *m = *mp;
581 	struct tcphdr *th = NULL;
582 	struct ip *ip = NULL;
583 	struct inpcb *inp = NULL;
584 	struct tcpcb *tp = NULL;
585 	struct socket *so = NULL;
586 	u_char *optp = NULL;
587 	int off0;
588 	int optlen = 0;
589 #ifdef INET
590 	int len;
591 #endif
592 	int tlen = 0, off;
593 	int drop_hdrlen;
594 	int thflags;
595 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
596 #ifdef TCP_SIGNATURE
597 	uint8_t sig_checked = 0;
598 #endif
599 	uint8_t iptos = 0;
600 	struct m_tag *fwd_tag = NULL;
601 #ifdef INET6
602 	struct ip6_hdr *ip6 = NULL;
603 	int isipv6;
604 #else
605 	const void *ip6 = NULL;
606 #endif /* INET6 */
607 	struct tcpopt to;		/* options in this segment */
608 	char *s = NULL;			/* address and port logging */
609 	int ti_locked;
610 #define	TI_UNLOCKED	1
611 #define	TI_RLOCKED	2
612 
613 #ifdef TCPDEBUG
614 	/*
615 	 * The size of tcp_saveipgen must be the size of the max ip header,
616 	 * now IPv6.
617 	 */
618 	u_char tcp_saveipgen[IP6_HDR_LEN];
619 	struct tcphdr tcp_savetcp;
620 	short ostate = 0;
621 #endif
622 
623 #ifdef INET6
624 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
625 #endif
626 
627 	off0 = *offp;
628 	m = *mp;
629 	*mp = NULL;
630 	to.to_flags = 0;
631 	TCPSTAT_INC(tcps_rcvtotal);
632 
633 #ifdef INET6
634 	if (isipv6) {
635 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
636 
637 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
638 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
639 			if (m == NULL) {
640 				TCPSTAT_INC(tcps_rcvshort);
641 				return (IPPROTO_DONE);
642 			}
643 		}
644 
645 		ip6 = mtod(m, struct ip6_hdr *);
646 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
647 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
648 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
649 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
650 				th->th_sum = m->m_pkthdr.csum_data;
651 			else
652 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
653 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
654 			th->th_sum ^= 0xffff;
655 		} else
656 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
657 		if (th->th_sum) {
658 			TCPSTAT_INC(tcps_rcvbadsum);
659 			goto drop;
660 		}
661 
662 		/*
663 		 * Be proactive about unspecified IPv6 address in source.
664 		 * As we use all-zero to indicate unbounded/unconnected pcb,
665 		 * unspecified IPv6 address can be used to confuse us.
666 		 *
667 		 * Note that packets with unspecified IPv6 destination is
668 		 * already dropped in ip6_input.
669 		 */
670 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
671 			/* XXX stat */
672 			goto drop;
673 		}
674 	}
675 #endif
676 #if defined(INET) && defined(INET6)
677 	else
678 #endif
679 #ifdef INET
680 	{
681 		/*
682 		 * Get IP and TCP header together in first mbuf.
683 		 * Note: IP leaves IP header in first mbuf.
684 		 */
685 		if (off0 > sizeof (struct ip)) {
686 			ip_stripoptions(m);
687 			off0 = sizeof(struct ip);
688 		}
689 		if (m->m_len < sizeof (struct tcpiphdr)) {
690 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
691 			    == NULL) {
692 				TCPSTAT_INC(tcps_rcvshort);
693 				return (IPPROTO_DONE);
694 			}
695 		}
696 		ip = mtod(m, struct ip *);
697 		th = (struct tcphdr *)((caddr_t)ip + off0);
698 		tlen = ntohs(ip->ip_len) - off0;
699 
700 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
701 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
702 				th->th_sum = m->m_pkthdr.csum_data;
703 			else
704 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
705 				    ip->ip_dst.s_addr,
706 				    htonl(m->m_pkthdr.csum_data + tlen +
707 				    IPPROTO_TCP));
708 			th->th_sum ^= 0xffff;
709 		} else {
710 			struct ipovly *ipov = (struct ipovly *)ip;
711 
712 			/*
713 			 * Checksum extended TCP header and data.
714 			 */
715 			len = off0 + tlen;
716 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
717 			ipov->ih_len = htons(tlen);
718 			th->th_sum = in_cksum(m, len);
719 			/* Reset length for SDT probes. */
720 			ip->ip_len = htons(tlen + off0);
721 		}
722 
723 		if (th->th_sum) {
724 			TCPSTAT_INC(tcps_rcvbadsum);
725 			goto drop;
726 		}
727 		/* Re-initialization for later version check */
728 		ip->ip_v = IPVERSION;
729 	}
730 #endif /* INET */
731 
732 #ifdef INET6
733 	if (isipv6)
734 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
735 #endif
736 #if defined(INET) && defined(INET6)
737 	else
738 #endif
739 #ifdef INET
740 		iptos = ip->ip_tos;
741 #endif
742 
743 	/*
744 	 * Check that TCP offset makes sense,
745 	 * pull out TCP options and adjust length.		XXX
746 	 */
747 	off = th->th_off << 2;
748 	if (off < sizeof (struct tcphdr) || off > tlen) {
749 		TCPSTAT_INC(tcps_rcvbadoff);
750 		goto drop;
751 	}
752 	tlen -= off;	/* tlen is used instead of ti->ti_len */
753 	if (off > sizeof (struct tcphdr)) {
754 #ifdef INET6
755 		if (isipv6) {
756 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
757 			ip6 = mtod(m, struct ip6_hdr *);
758 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
759 		}
760 #endif
761 #if defined(INET) && defined(INET6)
762 		else
763 #endif
764 #ifdef INET
765 		{
766 			if (m->m_len < sizeof(struct ip) + off) {
767 				if ((m = m_pullup(m, sizeof (struct ip) + off))
768 				    == NULL) {
769 					TCPSTAT_INC(tcps_rcvshort);
770 					return (IPPROTO_DONE);
771 				}
772 				ip = mtod(m, struct ip *);
773 				th = (struct tcphdr *)((caddr_t)ip + off0);
774 			}
775 		}
776 #endif
777 		optlen = off - sizeof (struct tcphdr);
778 		optp = (u_char *)(th + 1);
779 	}
780 	thflags = th->th_flags;
781 
782 	/*
783 	 * Convert TCP protocol specific fields to host format.
784 	 */
785 	tcp_fields_to_host(th);
786 
787 	/*
788 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
789 	 */
790 	drop_hdrlen = off0 + off;
791 
792 	/*
793 	 * Locate pcb for segment; if we're likely to add or remove a
794 	 * connection then first acquire pcbinfo lock.  There are three cases
795 	 * where we might discover later we need a write lock despite the
796 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
797 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
798 	 */
799 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
800 		INP_INFO_RLOCK(&V_tcbinfo);
801 		ti_locked = TI_RLOCKED;
802 	} else
803 		ti_locked = TI_UNLOCKED;
804 
805 	/*
806 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
807 	 */
808         if (
809 #ifdef INET6
810 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
811 #ifdef INET
812 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
813 #endif
814 #endif
815 #if defined(INET) && !defined(INET6)
816 	    (m->m_flags & M_IP_NEXTHOP)
817 #endif
818 	    )
819 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
820 
821 findpcb:
822 #ifdef INVARIANTS
823 	if (ti_locked == TI_RLOCKED) {
824 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
825 	} else {
826 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
827 	}
828 #endif
829 #ifdef INET6
830 	if (isipv6 && fwd_tag != NULL) {
831 		struct sockaddr_in6 *next_hop6;
832 
833 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
834 		/*
835 		 * Transparently forwarded. Pretend to be the destination.
836 		 * Already got one like this?
837 		 */
838 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
839 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
840 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
841 		if (!inp) {
842 			/*
843 			 * It's new.  Try to find the ambushing socket.
844 			 * Because we've rewritten the destination address,
845 			 * any hardware-generated hash is ignored.
846 			 */
847 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
848 			    th->th_sport, &next_hop6->sin6_addr,
849 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
850 			    th->th_dport, INPLOOKUP_WILDCARD |
851 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
852 		}
853 	} else if (isipv6) {
854 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
855 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
856 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
857 		    m->m_pkthdr.rcvif, m);
858 	}
859 #endif /* INET6 */
860 #if defined(INET6) && defined(INET)
861 	else
862 #endif
863 #ifdef INET
864 	if (fwd_tag != NULL) {
865 		struct sockaddr_in *next_hop;
866 
867 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
868 		/*
869 		 * Transparently forwarded. Pretend to be the destination.
870 		 * already got one like this?
871 		 */
872 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
873 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
874 		    m->m_pkthdr.rcvif, m);
875 		if (!inp) {
876 			/*
877 			 * It's new.  Try to find the ambushing socket.
878 			 * Because we've rewritten the destination address,
879 			 * any hardware-generated hash is ignored.
880 			 */
881 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
882 			    th->th_sport, next_hop->sin_addr,
883 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
884 			    th->th_dport, INPLOOKUP_WILDCARD |
885 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
886 		}
887 	} else
888 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
889 		    th->th_sport, ip->ip_dst, th->th_dport,
890 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
891 		    m->m_pkthdr.rcvif, m);
892 #endif /* INET */
893 
894 	/*
895 	 * If the INPCB does not exist then all data in the incoming
896 	 * segment is discarded and an appropriate RST is sent back.
897 	 * XXX MRT Send RST using which routing table?
898 	 */
899 	if (inp == NULL) {
900 		/*
901 		 * Log communication attempts to ports that are not
902 		 * in use.
903 		 */
904 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
905 		    tcp_log_in_vain == 2) {
906 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
907 				log(LOG_INFO, "%s; %s: Connection attempt "
908 				    "to closed port\n", s, __func__);
909 		}
910 		/*
911 		 * When blackholing do not respond with a RST but
912 		 * completely ignore the segment and drop it.
913 		 */
914 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
915 		    V_blackhole == 2)
916 			goto dropunlock;
917 
918 		rstreason = BANDLIM_RST_CLOSEDPORT;
919 		goto dropwithreset;
920 	}
921 	INP_WLOCK_ASSERT(inp);
922 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
923 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
924 	    ((inp->inp_socket == NULL) ||
925 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
926 		inp->inp_flowid = m->m_pkthdr.flowid;
927 		inp->inp_flowtype = M_HASHTYPE_GET(m);
928 	}
929 #ifdef IPSEC
930 #ifdef INET6
931 	if (isipv6 && ipsec6_in_reject(m, inp)) {
932 		goto dropunlock;
933 	} else
934 #endif /* INET6 */
935 	if (ipsec4_in_reject(m, inp) != 0) {
936 		goto dropunlock;
937 	}
938 #endif /* IPSEC */
939 
940 	/*
941 	 * Check the minimum TTL for socket.
942 	 */
943 	if (inp->inp_ip_minttl != 0) {
944 #ifdef INET6
945 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
946 			goto dropunlock;
947 		else
948 #endif
949 		if (inp->inp_ip_minttl > ip->ip_ttl)
950 			goto dropunlock;
951 	}
952 
953 	/*
954 	 * A previous connection in TIMEWAIT state is supposed to catch stray
955 	 * or duplicate segments arriving late.  If this segment was a
956 	 * legitimate new connection attempt, the old INPCB gets removed and
957 	 * we can try again to find a listening socket.
958 	 *
959 	 * At this point, due to earlier optimism, we may hold only an inpcb
960 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
961 	 * acquire it, or if that fails, acquire a reference on the inpcb,
962 	 * drop all locks, acquire a global write lock, and then re-acquire
963 	 * the inpcb lock.  We may at that point discover that another thread
964 	 * has tried to free the inpcb, in which case we need to loop back
965 	 * and try to find a new inpcb to deliver to.
966 	 *
967 	 * XXXRW: It may be time to rethink timewait locking.
968 	 */
969 relocked:
970 	if (inp->inp_flags & INP_TIMEWAIT) {
971 		if (ti_locked == TI_UNLOCKED) {
972 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
973 				in_pcbref(inp);
974 				INP_WUNLOCK(inp);
975 				INP_INFO_RLOCK(&V_tcbinfo);
976 				ti_locked = TI_RLOCKED;
977 				INP_WLOCK(inp);
978 				if (in_pcbrele_wlocked(inp)) {
979 					inp = NULL;
980 					goto findpcb;
981 				}
982 			} else
983 				ti_locked = TI_RLOCKED;
984 		}
985 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
986 
987 		if (thflags & TH_SYN)
988 			tcp_dooptions(&to, optp, optlen, TO_SYN);
989 		/*
990 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
991 		 */
992 		if (tcp_twcheck(inp, &to, th, m, tlen))
993 			goto findpcb;
994 		INP_INFO_RUNLOCK(&V_tcbinfo);
995 		return (IPPROTO_DONE);
996 	}
997 	/*
998 	 * The TCPCB may no longer exist if the connection is winding
999 	 * down or it is in the CLOSED state.  Either way we drop the
1000 	 * segment and send an appropriate response.
1001 	 */
1002 	tp = intotcpcb(inp);
1003 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1004 		rstreason = BANDLIM_RST_CLOSEDPORT;
1005 		goto dropwithreset;
1006 	}
1007 
1008 #ifdef TCP_OFFLOAD
1009 	if (tp->t_flags & TF_TOE) {
1010 		tcp_offload_input(tp, m);
1011 		m = NULL;	/* consumed by the TOE driver */
1012 		goto dropunlock;
1013 	}
1014 #endif
1015 
1016 	/*
1017 	 * We've identified a valid inpcb, but it could be that we need an
1018 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1019 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1020 	 * relock, we have to jump back to 'relocked' as the connection might
1021 	 * now be in TIMEWAIT.
1022 	 */
1023 #ifdef INVARIANTS
1024 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1025 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1026 #endif
1027 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1028 	    (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN)))) {
1029 		if (ti_locked == TI_UNLOCKED) {
1030 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1031 				in_pcbref(inp);
1032 				INP_WUNLOCK(inp);
1033 				INP_INFO_RLOCK(&V_tcbinfo);
1034 				ti_locked = TI_RLOCKED;
1035 				INP_WLOCK(inp);
1036 				if (in_pcbrele_wlocked(inp)) {
1037 					inp = NULL;
1038 					goto findpcb;
1039 				}
1040 				goto relocked;
1041 			} else
1042 				ti_locked = TI_RLOCKED;
1043 		}
1044 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1045 	}
1046 
1047 #ifdef MAC
1048 	INP_WLOCK_ASSERT(inp);
1049 	if (mac_inpcb_check_deliver(inp, m))
1050 		goto dropunlock;
1051 #endif
1052 	so = inp->inp_socket;
1053 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1054 #ifdef TCPDEBUG
1055 	if (so->so_options & SO_DEBUG) {
1056 		ostate = tp->t_state;
1057 #ifdef INET6
1058 		if (isipv6) {
1059 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1060 		} else
1061 #endif
1062 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1063 		tcp_savetcp = *th;
1064 	}
1065 #endif /* TCPDEBUG */
1066 	/*
1067 	 * When the socket is accepting connections (the INPCB is in LISTEN
1068 	 * state) we look into the SYN cache if this is a new connection
1069 	 * attempt or the completion of a previous one.
1070 	 */
1071 	if (so->so_options & SO_ACCEPTCONN) {
1072 		struct in_conninfo inc;
1073 
1074 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1075 		    "tp not listening", __func__));
1076 		bzero(&inc, sizeof(inc));
1077 #ifdef INET6
1078 		if (isipv6) {
1079 			inc.inc_flags |= INC_ISIPV6;
1080 			inc.inc6_faddr = ip6->ip6_src;
1081 			inc.inc6_laddr = ip6->ip6_dst;
1082 		} else
1083 #endif
1084 		{
1085 			inc.inc_faddr = ip->ip_src;
1086 			inc.inc_laddr = ip->ip_dst;
1087 		}
1088 		inc.inc_fport = th->th_sport;
1089 		inc.inc_lport = th->th_dport;
1090 		inc.inc_fibnum = so->so_fibnum;
1091 
1092 		/*
1093 		 * Check for an existing connection attempt in syncache if
1094 		 * the flag is only ACK.  A successful lookup creates a new
1095 		 * socket appended to the listen queue in SYN_RECEIVED state.
1096 		 */
1097 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1098 
1099 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1100 			/*
1101 			 * Parse the TCP options here because
1102 			 * syncookies need access to the reflected
1103 			 * timestamp.
1104 			 */
1105 			tcp_dooptions(&to, optp, optlen, 0);
1106 			/*
1107 			 * NB: syncache_expand() doesn't unlock
1108 			 * inp and tcpinfo locks.
1109 			 */
1110 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1111 				/*
1112 				 * No syncache entry or ACK was not
1113 				 * for our SYN/ACK.  Send a RST.
1114 				 * NB: syncache did its own logging
1115 				 * of the failure cause.
1116 				 */
1117 				rstreason = BANDLIM_RST_OPENPORT;
1118 				goto dropwithreset;
1119 			}
1120 			if (so == NULL) {
1121 				/*
1122 				 * We completed the 3-way handshake
1123 				 * but could not allocate a socket
1124 				 * either due to memory shortage,
1125 				 * listen queue length limits or
1126 				 * global socket limits.  Send RST
1127 				 * or wait and have the remote end
1128 				 * retransmit the ACK for another
1129 				 * try.
1130 				 */
1131 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1132 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1133 					    "Socket allocation failed due to "
1134 					    "limits or memory shortage, %s\n",
1135 					    s, __func__,
1136 					    V_tcp_sc_rst_sock_fail ?
1137 					    "sending RST" : "try again");
1138 				if (V_tcp_sc_rst_sock_fail) {
1139 					rstreason = BANDLIM_UNLIMITED;
1140 					goto dropwithreset;
1141 				} else
1142 					goto dropunlock;
1143 			}
1144 			/*
1145 			 * Socket is created in state SYN_RECEIVED.
1146 			 * Unlock the listen socket, lock the newly
1147 			 * created socket and update the tp variable.
1148 			 */
1149 			INP_WUNLOCK(inp);	/* listen socket */
1150 			inp = sotoinpcb(so);
1151 			/*
1152 			 * New connection inpcb is already locked by
1153 			 * syncache_expand().
1154 			 */
1155 			INP_WLOCK_ASSERT(inp);
1156 			tp = intotcpcb(inp);
1157 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1158 			    ("%s: ", __func__));
1159 #ifdef TCP_SIGNATURE
1160 			if (sig_checked == 0)  {
1161 				tcp_dooptions(&to, optp, optlen,
1162 				    (thflags & TH_SYN) ? TO_SYN : 0);
1163 				if (!tcp_signature_verify_input(m, off0, tlen,
1164 				    optlen, &to, th, tp->t_flags)) {
1165 
1166 					/*
1167 					 * In SYN_SENT state if it receives an
1168 					 * RST, it is allowed for further
1169 					 * processing.
1170 					 */
1171 					if ((thflags & TH_RST) == 0 ||
1172 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1173 						goto dropunlock;
1174 				}
1175 				sig_checked = 1;
1176 			}
1177 #endif
1178 
1179 			/*
1180 			 * Process the segment and the data it
1181 			 * contains.  tcp_do_segment() consumes
1182 			 * the mbuf chain and unlocks the inpcb.
1183 			 */
1184 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1185 			    iptos, ti_locked);
1186 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1187 			return (IPPROTO_DONE);
1188 		}
1189 		/*
1190 		 * Segment flag validation for new connection attempts:
1191 		 *
1192 		 * Our (SYN|ACK) response was rejected.
1193 		 * Check with syncache and remove entry to prevent
1194 		 * retransmits.
1195 		 *
1196 		 * NB: syncache_chkrst does its own logging of failure
1197 		 * causes.
1198 		 */
1199 		if (thflags & TH_RST) {
1200 			syncache_chkrst(&inc, th);
1201 			goto dropunlock;
1202 		}
1203 		/*
1204 		 * We can't do anything without SYN.
1205 		 */
1206 		if ((thflags & TH_SYN) == 0) {
1207 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1208 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1209 				    "SYN is missing, segment ignored\n",
1210 				    s, __func__);
1211 			TCPSTAT_INC(tcps_badsyn);
1212 			goto dropunlock;
1213 		}
1214 		/*
1215 		 * (SYN|ACK) is bogus on a listen socket.
1216 		 */
1217 		if (thflags & TH_ACK) {
1218 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1219 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1220 				    "SYN|ACK invalid, segment rejected\n",
1221 				    s, __func__);
1222 			syncache_badack(&inc);	/* XXX: Not needed! */
1223 			TCPSTAT_INC(tcps_badsyn);
1224 			rstreason = BANDLIM_RST_OPENPORT;
1225 			goto dropwithreset;
1226 		}
1227 		/*
1228 		 * If the drop_synfin option is enabled, drop all
1229 		 * segments with both the SYN and FIN bits set.
1230 		 * This prevents e.g. nmap from identifying the
1231 		 * TCP/IP stack.
1232 		 * XXX: Poor reasoning.  nmap has other methods
1233 		 * and is constantly refining its stack detection
1234 		 * strategies.
1235 		 * XXX: This is a violation of the TCP specification
1236 		 * and was used by RFC1644.
1237 		 */
1238 		if ((thflags & TH_FIN) && V_drop_synfin) {
1239 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1240 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1241 				    "SYN|FIN segment ignored (based on "
1242 				    "sysctl setting)\n", s, __func__);
1243 			TCPSTAT_INC(tcps_badsyn);
1244 			goto dropunlock;
1245 		}
1246 		/*
1247 		 * Segment's flags are (SYN) or (SYN|FIN).
1248 		 *
1249 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1250 		 * as they do not affect the state of the TCP FSM.
1251 		 * The data pointed to by TH_URG and th_urp is ignored.
1252 		 */
1253 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1254 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1255 		KASSERT(thflags & (TH_SYN),
1256 		    ("%s: Listen socket: TH_SYN not set", __func__));
1257 #ifdef INET6
1258 		/*
1259 		 * If deprecated address is forbidden,
1260 		 * we do not accept SYN to deprecated interface
1261 		 * address to prevent any new inbound connection from
1262 		 * getting established.
1263 		 * When we do not accept SYN, we send a TCP RST,
1264 		 * with deprecated source address (instead of dropping
1265 		 * it).  We compromise it as it is much better for peer
1266 		 * to send a RST, and RST will be the final packet
1267 		 * for the exchange.
1268 		 *
1269 		 * If we do not forbid deprecated addresses, we accept
1270 		 * the SYN packet.  RFC2462 does not suggest dropping
1271 		 * SYN in this case.
1272 		 * If we decipher RFC2462 5.5.4, it says like this:
1273 		 * 1. use of deprecated addr with existing
1274 		 *    communication is okay - "SHOULD continue to be
1275 		 *    used"
1276 		 * 2. use of it with new communication:
1277 		 *   (2a) "SHOULD NOT be used if alternate address
1278 		 *        with sufficient scope is available"
1279 		 *   (2b) nothing mentioned otherwise.
1280 		 * Here we fall into (2b) case as we have no choice in
1281 		 * our source address selection - we must obey the peer.
1282 		 *
1283 		 * The wording in RFC2462 is confusing, and there are
1284 		 * multiple description text for deprecated address
1285 		 * handling - worse, they are not exactly the same.
1286 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1287 		 */
1288 		if (isipv6 && !V_ip6_use_deprecated) {
1289 			struct in6_ifaddr *ia6;
1290 
1291 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1292 			if (ia6 != NULL &&
1293 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1294 				ifa_free(&ia6->ia_ifa);
1295 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1296 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1297 					"Connection attempt to deprecated "
1298 					"IPv6 address rejected\n",
1299 					s, __func__);
1300 				rstreason = BANDLIM_RST_OPENPORT;
1301 				goto dropwithreset;
1302 			}
1303 			if (ia6)
1304 				ifa_free(&ia6->ia_ifa);
1305 		}
1306 #endif /* INET6 */
1307 		/*
1308 		 * Basic sanity checks on incoming SYN requests:
1309 		 *   Don't respond if the destination is a link layer
1310 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1311 		 *   If it is from this socket it must be forged.
1312 		 *   Don't respond if the source or destination is a
1313 		 *	global or subnet broad- or multicast address.
1314 		 *   Note that it is quite possible to receive unicast
1315 		 *	link-layer packets with a broadcast IP address. Use
1316 		 *	in_broadcast() to find them.
1317 		 */
1318 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1319 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1320 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1321 				"Connection attempt from broad- or multicast "
1322 				"link layer address ignored\n", s, __func__);
1323 			goto dropunlock;
1324 		}
1325 #ifdef INET6
1326 		if (isipv6) {
1327 			if (th->th_dport == th->th_sport &&
1328 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1329 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1330 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1331 					"Connection attempt to/from self "
1332 					"ignored\n", s, __func__);
1333 				goto dropunlock;
1334 			}
1335 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1336 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1337 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1338 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1339 					"Connection attempt from/to multicast "
1340 					"address ignored\n", s, __func__);
1341 				goto dropunlock;
1342 			}
1343 		}
1344 #endif
1345 #if defined(INET) && defined(INET6)
1346 		else
1347 #endif
1348 #ifdef INET
1349 		{
1350 			if (th->th_dport == th->th_sport &&
1351 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1352 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1353 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1354 					"Connection attempt from/to self "
1355 					"ignored\n", s, __func__);
1356 				goto dropunlock;
1357 			}
1358 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1359 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1360 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1361 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1362 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1363 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1364 					"Connection attempt from/to broad- "
1365 					"or multicast address ignored\n",
1366 					s, __func__);
1367 				goto dropunlock;
1368 			}
1369 		}
1370 #endif
1371 		/*
1372 		 * SYN appears to be valid.  Create compressed TCP state
1373 		 * for syncache.
1374 		 */
1375 #ifdef TCPDEBUG
1376 		if (so->so_options & SO_DEBUG)
1377 			tcp_trace(TA_INPUT, ostate, tp,
1378 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1379 #endif
1380 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1381 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1382 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1383 		/*
1384 		 * Entry added to syncache and mbuf consumed.
1385 		 * Only the listen socket is unlocked by syncache_add().
1386 		 */
1387 		if (ti_locked == TI_RLOCKED) {
1388 			INP_INFO_RUNLOCK(&V_tcbinfo);
1389 			ti_locked = TI_UNLOCKED;
1390 		}
1391 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1392 		return (IPPROTO_DONE);
1393 	} else if (tp->t_state == TCPS_LISTEN) {
1394 		/*
1395 		 * When a listen socket is torn down the SO_ACCEPTCONN
1396 		 * flag is removed first while connections are drained
1397 		 * from the accept queue in a unlock/lock cycle of the
1398 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1399 		 * attempt go through unhandled.
1400 		 */
1401 		goto dropunlock;
1402 	}
1403 
1404 #ifdef TCP_SIGNATURE
1405 	if (sig_checked == 0)  {
1406 		tcp_dooptions(&to, optp, optlen,
1407 		    (thflags & TH_SYN) ? TO_SYN : 0);
1408 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1409 		    th, tp->t_flags)) {
1410 
1411 			/*
1412 			 * In SYN_SENT state if it receives an RST, it is
1413 			 * allowed for further processing.
1414 			 */
1415 			if ((thflags & TH_RST) == 0 ||
1416 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1417 				goto dropunlock;
1418 		}
1419 		sig_checked = 1;
1420 	}
1421 #endif
1422 
1423 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1424 
1425 	/*
1426 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1427 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1428 	 * the inpcb, and unlocks pcbinfo.
1429 	 */
1430 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1431 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1432 	return (IPPROTO_DONE);
1433 
1434 dropwithreset:
1435 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1436 
1437 	if (ti_locked == TI_RLOCKED) {
1438 		INP_INFO_RUNLOCK(&V_tcbinfo);
1439 		ti_locked = TI_UNLOCKED;
1440 	}
1441 #ifdef INVARIANTS
1442 	else {
1443 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1444 		    "ti_locked: %d", __func__, ti_locked));
1445 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1446 	}
1447 #endif
1448 
1449 	if (inp != NULL) {
1450 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1451 		INP_WUNLOCK(inp);
1452 	} else
1453 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1454 	m = NULL;	/* mbuf chain got consumed. */
1455 	goto drop;
1456 
1457 dropunlock:
1458 	if (m != NULL)
1459 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1460 
1461 	if (ti_locked == TI_RLOCKED) {
1462 		INP_INFO_RUNLOCK(&V_tcbinfo);
1463 		ti_locked = TI_UNLOCKED;
1464 	}
1465 #ifdef INVARIANTS
1466 	else {
1467 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1468 		    "ti_locked: %d", __func__, ti_locked));
1469 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1470 	}
1471 #endif
1472 
1473 	if (inp != NULL)
1474 		INP_WUNLOCK(inp);
1475 
1476 drop:
1477 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1478 	if (s != NULL)
1479 		free(s, M_TCPLOG);
1480 	if (m != NULL)
1481 		m_freem(m);
1482 	return (IPPROTO_DONE);
1483 }
1484 
1485 static void
1486 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1487     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1488     int ti_locked)
1489 {
1490 	int thflags, acked, ourfinisacked, needoutput = 0;
1491 	int rstreason, todrop, win;
1492 	u_long tiwin;
1493 	char *s;
1494 	struct in_conninfo *inc;
1495 	struct mbuf *mfree;
1496 	struct tcpopt to;
1497 
1498 #ifdef TCPDEBUG
1499 	/*
1500 	 * The size of tcp_saveipgen must be the size of the max ip header,
1501 	 * now IPv6.
1502 	 */
1503 	u_char tcp_saveipgen[IP6_HDR_LEN];
1504 	struct tcphdr tcp_savetcp;
1505 	short ostate = 0;
1506 #endif
1507 	thflags = th->th_flags;
1508 	inc = &tp->t_inpcb->inp_inc;
1509 	tp->sackhint.last_sack_ack = 0;
1510 
1511 	/*
1512 	 * If this is either a state-changing packet or current state isn't
1513 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1514 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1515 	 * caller may have unnecessarily acquired a write lock due to a race.
1516 	 */
1517 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1518 	    tp->t_state != TCPS_ESTABLISHED) {
1519 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1520 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1521 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1522 	} else {
1523 #ifdef INVARIANTS
1524 		if (ti_locked == TI_RLOCKED)
1525 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1526 		else {
1527 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1528 			    "ti_locked: %d", __func__, ti_locked));
1529 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1530 		}
1531 #endif
1532 	}
1533 	INP_WLOCK_ASSERT(tp->t_inpcb);
1534 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1535 	    __func__));
1536 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1537 	    __func__));
1538 
1539 	/*
1540 	 * Segment received on connection.
1541 	 * Reset idle time and keep-alive timer.
1542 	 * XXX: This should be done after segment
1543 	 * validation to ignore broken/spoofed segs.
1544 	 */
1545 	tp->t_rcvtime = ticks;
1546 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1547 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1548 
1549 	/*
1550 	 * Scale up the window into a 32-bit value.
1551 	 * For the SYN_SENT state the scale is zero.
1552 	 */
1553 	tiwin = th->th_win << tp->snd_scale;
1554 
1555 	/*
1556 	 * TCP ECN processing.
1557 	 */
1558 	if (tp->t_flags & TF_ECN_PERMIT) {
1559 		if (thflags & TH_CWR)
1560 			tp->t_flags &= ~TF_ECN_SND_ECE;
1561 		switch (iptos & IPTOS_ECN_MASK) {
1562 		case IPTOS_ECN_CE:
1563 			tp->t_flags |= TF_ECN_SND_ECE;
1564 			TCPSTAT_INC(tcps_ecn_ce);
1565 			break;
1566 		case IPTOS_ECN_ECT0:
1567 			TCPSTAT_INC(tcps_ecn_ect0);
1568 			break;
1569 		case IPTOS_ECN_ECT1:
1570 			TCPSTAT_INC(tcps_ecn_ect1);
1571 			break;
1572 		}
1573 
1574 		/* Process a packet differently from RFC3168. */
1575 		cc_ecnpkt_handler(tp, th, iptos);
1576 
1577 		/* Congestion experienced. */
1578 		if (thflags & TH_ECE) {
1579 			cc_cong_signal(tp, th, CC_ECN);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * Parse options on any incoming segment.
1585 	 */
1586 	tcp_dooptions(&to, (u_char *)(th + 1),
1587 	    (th->th_off << 2) - sizeof(struct tcphdr),
1588 	    (thflags & TH_SYN) ? TO_SYN : 0);
1589 
1590 	/*
1591 	 * If echoed timestamp is later than the current time,
1592 	 * fall back to non RFC1323 RTT calculation.  Normalize
1593 	 * timestamp if syncookies were used when this connection
1594 	 * was established.
1595 	 */
1596 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1597 		to.to_tsecr -= tp->ts_offset;
1598 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1599 			to.to_tsecr = 0;
1600 	}
1601 	/*
1602 	 * If timestamps were negotiated during SYN/ACK they should
1603 	 * appear on every segment during this session and vice versa.
1604 	 */
1605 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1606 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1607 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1608 			    "no action\n", s, __func__);
1609 			free(s, M_TCPLOG);
1610 		}
1611 	}
1612 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1613 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1614 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1615 			    "no action\n", s, __func__);
1616 			free(s, M_TCPLOG);
1617 		}
1618 	}
1619 
1620 	/*
1621 	 * Process options only when we get SYN/ACK back. The SYN case
1622 	 * for incoming connections is handled in tcp_syncache.
1623 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1624 	 * or <SYN,ACK>) segment itself is never scaled.
1625 	 * XXX this is traditional behavior, may need to be cleaned up.
1626 	 */
1627 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1628 		if ((to.to_flags & TOF_SCALE) &&
1629 		    (tp->t_flags & TF_REQ_SCALE)) {
1630 			tp->t_flags |= TF_RCVD_SCALE;
1631 			tp->snd_scale = to.to_wscale;
1632 		}
1633 		/*
1634 		 * Initial send window.  It will be updated with
1635 		 * the next incoming segment to the scaled value.
1636 		 */
1637 		tp->snd_wnd = th->th_win;
1638 		if (to.to_flags & TOF_TS) {
1639 			tp->t_flags |= TF_RCVD_TSTMP;
1640 			tp->ts_recent = to.to_tsval;
1641 			tp->ts_recent_age = tcp_ts_getticks();
1642 		}
1643 		if (to.to_flags & TOF_MSS)
1644 			tcp_mss(tp, to.to_mss);
1645 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1646 		    (to.to_flags & TOF_SACKPERM) == 0)
1647 			tp->t_flags &= ~TF_SACK_PERMIT;
1648 	}
1649 
1650 	/*
1651 	 * Header prediction: check for the two common cases
1652 	 * of a uni-directional data xfer.  If the packet has
1653 	 * no control flags, is in-sequence, the window didn't
1654 	 * change and we're not retransmitting, it's a
1655 	 * candidate.  If the length is zero and the ack moved
1656 	 * forward, we're the sender side of the xfer.  Just
1657 	 * free the data acked & wake any higher level process
1658 	 * that was blocked waiting for space.  If the length
1659 	 * is non-zero and the ack didn't move, we're the
1660 	 * receiver side.  If we're getting packets in-order
1661 	 * (the reassembly queue is empty), add the data to
1662 	 * the socket buffer and note that we need a delayed ack.
1663 	 * Make sure that the hidden state-flags are also off.
1664 	 * Since we check for TCPS_ESTABLISHED first, it can only
1665 	 * be TH_NEEDSYN.
1666 	 */
1667 	if (tp->t_state == TCPS_ESTABLISHED &&
1668 	    th->th_seq == tp->rcv_nxt &&
1669 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1670 	    tp->snd_nxt == tp->snd_max &&
1671 	    tiwin && tiwin == tp->snd_wnd &&
1672 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1673 	    LIST_EMPTY(&tp->t_segq) &&
1674 	    ((to.to_flags & TOF_TS) == 0 ||
1675 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1676 
1677 		/*
1678 		 * If last ACK falls within this segment's sequence numbers,
1679 		 * record the timestamp.
1680 		 * NOTE that the test is modified according to the latest
1681 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1682 		 */
1683 		if ((to.to_flags & TOF_TS) != 0 &&
1684 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1685 			tp->ts_recent_age = tcp_ts_getticks();
1686 			tp->ts_recent = to.to_tsval;
1687 		}
1688 
1689 		if (tlen == 0) {
1690 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1691 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1692 			    !IN_RECOVERY(tp->t_flags) &&
1693 			    (to.to_flags & TOF_SACK) == 0 &&
1694 			    TAILQ_EMPTY(&tp->snd_holes)) {
1695 				/*
1696 				 * This is a pure ack for outstanding data.
1697 				 */
1698 				if (ti_locked == TI_RLOCKED)
1699 					INP_INFO_RUNLOCK(&V_tcbinfo);
1700 				ti_locked = TI_UNLOCKED;
1701 
1702 				TCPSTAT_INC(tcps_predack);
1703 
1704 				/*
1705 				 * "bad retransmit" recovery.
1706 				 */
1707 				if (tp->t_rxtshift == 1 &&
1708 				    tp->t_flags & TF_PREVVALID &&
1709 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1710 					cc_cong_signal(tp, th, CC_RTO_ERR);
1711 				}
1712 
1713 				/*
1714 				 * Recalculate the transmit timer / rtt.
1715 				 *
1716 				 * Some boxes send broken timestamp replies
1717 				 * during the SYN+ACK phase, ignore
1718 				 * timestamps of 0 or we could calculate a
1719 				 * huge RTT and blow up the retransmit timer.
1720 				 */
1721 				if ((to.to_flags & TOF_TS) != 0 &&
1722 				    to.to_tsecr) {
1723 					u_int t;
1724 
1725 					t = tcp_ts_getticks() - to.to_tsecr;
1726 					if (!tp->t_rttlow || tp->t_rttlow > t)
1727 						tp->t_rttlow = t;
1728 					tcp_xmit_timer(tp,
1729 					    TCP_TS_TO_TICKS(t) + 1);
1730 				} else if (tp->t_rtttime &&
1731 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1732 					if (!tp->t_rttlow ||
1733 					    tp->t_rttlow > ticks - tp->t_rtttime)
1734 						tp->t_rttlow = ticks - tp->t_rtttime;
1735 					tcp_xmit_timer(tp,
1736 							ticks - tp->t_rtttime);
1737 				}
1738 				acked = BYTES_THIS_ACK(tp, th);
1739 
1740 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1741 				hhook_run_tcp_est_in(tp, th, &to);
1742 
1743 				TCPSTAT_INC(tcps_rcvackpack);
1744 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1745 				sbdrop(&so->so_snd, acked);
1746 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1747 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1748 					tp->snd_recover = th->th_ack - 1;
1749 
1750 				/*
1751 				 * Let the congestion control algorithm update
1752 				 * congestion control related information. This
1753 				 * typically means increasing the congestion
1754 				 * window.
1755 				 */
1756 				cc_ack_received(tp, th, CC_ACK);
1757 
1758 				tp->snd_una = th->th_ack;
1759 				/*
1760 				 * Pull snd_wl2 up to prevent seq wrap relative
1761 				 * to th_ack.
1762 				 */
1763 				tp->snd_wl2 = th->th_ack;
1764 				tp->t_dupacks = 0;
1765 				m_freem(m);
1766 				ND6_HINT(tp); /* Some progress has been made. */
1767 
1768 				/*
1769 				 * If all outstanding data are acked, stop
1770 				 * retransmit timer, otherwise restart timer
1771 				 * using current (possibly backed-off) value.
1772 				 * If process is waiting for space,
1773 				 * wakeup/selwakeup/signal.  If data
1774 				 * are ready to send, let tcp_output
1775 				 * decide between more output or persist.
1776 				 */
1777 #ifdef TCPDEBUG
1778 				if (so->so_options & SO_DEBUG)
1779 					tcp_trace(TA_INPUT, ostate, tp,
1780 					    (void *)tcp_saveipgen,
1781 					    &tcp_savetcp, 0);
1782 #endif
1783 				TCP_PROBE3(debug__input, tp, th,
1784 					mtod(m, const char *));
1785 				if (tp->snd_una == tp->snd_max)
1786 					tcp_timer_activate(tp, TT_REXMT, 0);
1787 				else if (!tcp_timer_active(tp, TT_PERSIST))
1788 					tcp_timer_activate(tp, TT_REXMT,
1789 						      tp->t_rxtcur);
1790 				sowwakeup(so);
1791 				if (sbavail(&so->so_snd))
1792 					(void) tcp_output(tp);
1793 				goto check_delack;
1794 			}
1795 		} else if (th->th_ack == tp->snd_una &&
1796 		    tlen <= sbspace(&so->so_rcv)) {
1797 			int newsize = 0;	/* automatic sockbuf scaling */
1798 
1799 			/*
1800 			 * This is a pure, in-sequence data packet with
1801 			 * nothing on the reassembly queue and we have enough
1802 			 * buffer space to take it.
1803 			 */
1804 			if (ti_locked == TI_RLOCKED)
1805 				INP_INFO_RUNLOCK(&V_tcbinfo);
1806 			ti_locked = TI_UNLOCKED;
1807 
1808 			/* Clean receiver SACK report if present */
1809 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1810 				tcp_clean_sackreport(tp);
1811 			TCPSTAT_INC(tcps_preddat);
1812 			tp->rcv_nxt += tlen;
1813 			/*
1814 			 * Pull snd_wl1 up to prevent seq wrap relative to
1815 			 * th_seq.
1816 			 */
1817 			tp->snd_wl1 = th->th_seq;
1818 			/*
1819 			 * Pull rcv_up up to prevent seq wrap relative to
1820 			 * rcv_nxt.
1821 			 */
1822 			tp->rcv_up = tp->rcv_nxt;
1823 			TCPSTAT_INC(tcps_rcvpack);
1824 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1825 			ND6_HINT(tp);	/* Some progress has been made */
1826 #ifdef TCPDEBUG
1827 			if (so->so_options & SO_DEBUG)
1828 				tcp_trace(TA_INPUT, ostate, tp,
1829 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1830 #endif
1831 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1832 
1833 		/*
1834 		 * Automatic sizing of receive socket buffer.  Often the send
1835 		 * buffer size is not optimally adjusted to the actual network
1836 		 * conditions at hand (delay bandwidth product).  Setting the
1837 		 * buffer size too small limits throughput on links with high
1838 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1839 		 *
1840 		 * On the receive side the socket buffer memory is only rarely
1841 		 * used to any significant extent.  This allows us to be much
1842 		 * more aggressive in scaling the receive socket buffer.  For
1843 		 * the case that the buffer space is actually used to a large
1844 		 * extent and we run out of kernel memory we can simply drop
1845 		 * the new segments; TCP on the sender will just retransmit it
1846 		 * later.  Setting the buffer size too big may only consume too
1847 		 * much kernel memory if the application doesn't read() from
1848 		 * the socket or packet loss or reordering makes use of the
1849 		 * reassembly queue.
1850 		 *
1851 		 * The criteria to step up the receive buffer one notch are:
1852 		 *  1. Application has not set receive buffer size with
1853 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1854 		 *  2. the number of bytes received during the time it takes
1855 		 *     one timestamp to be reflected back to us (the RTT);
1856 		 *  3. received bytes per RTT is within seven eighth of the
1857 		 *     current socket buffer size;
1858 		 *  4. receive buffer size has not hit maximal automatic size;
1859 		 *
1860 		 * This algorithm does one step per RTT at most and only if
1861 		 * we receive a bulk stream w/o packet losses or reorderings.
1862 		 * Shrinking the buffer during idle times is not necessary as
1863 		 * it doesn't consume any memory when idle.
1864 		 *
1865 		 * TODO: Only step up if the application is actually serving
1866 		 * the buffer to better manage the socket buffer resources.
1867 		 */
1868 			if (V_tcp_do_autorcvbuf &&
1869 			    (to.to_flags & TOF_TS) &&
1870 			    to.to_tsecr &&
1871 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1872 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1873 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1874 					if (tp->rfbuf_cnt >
1875 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1876 					    so->so_rcv.sb_hiwat <
1877 					    V_tcp_autorcvbuf_max) {
1878 						newsize =
1879 						    min(so->so_rcv.sb_hiwat +
1880 						    V_tcp_autorcvbuf_inc,
1881 						    V_tcp_autorcvbuf_max);
1882 					}
1883 					/* Start over with next RTT. */
1884 					tp->rfbuf_ts = 0;
1885 					tp->rfbuf_cnt = 0;
1886 				} else
1887 					tp->rfbuf_cnt += tlen;	/* add up */
1888 			}
1889 
1890 			/* Add data to socket buffer. */
1891 			SOCKBUF_LOCK(&so->so_rcv);
1892 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1893 				m_freem(m);
1894 			} else {
1895 				/*
1896 				 * Set new socket buffer size.
1897 				 * Give up when limit is reached.
1898 				 */
1899 				if (newsize)
1900 					if (!sbreserve_locked(&so->so_rcv,
1901 					    newsize, so, NULL))
1902 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1903 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1904 				sbappendstream_locked(&so->so_rcv, m, 0);
1905 			}
1906 			/* NB: sorwakeup_locked() does an implicit unlock. */
1907 			sorwakeup_locked(so);
1908 			if (DELAY_ACK(tp, tlen)) {
1909 				tp->t_flags |= TF_DELACK;
1910 			} else {
1911 				tp->t_flags |= TF_ACKNOW;
1912 				tcp_output(tp);
1913 			}
1914 			goto check_delack;
1915 		}
1916 	}
1917 
1918 	/*
1919 	 * Calculate amount of space in receive window,
1920 	 * and then do TCP input processing.
1921 	 * Receive window is amount of space in rcv queue,
1922 	 * but not less than advertised window.
1923 	 */
1924 	win = sbspace(&so->so_rcv);
1925 	if (win < 0)
1926 		win = 0;
1927 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1928 
1929 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1930 	tp->rfbuf_ts = 0;
1931 	tp->rfbuf_cnt = 0;
1932 
1933 	switch (tp->t_state) {
1934 
1935 	/*
1936 	 * If the state is SYN_RECEIVED:
1937 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1938 	 */
1939 	case TCPS_SYN_RECEIVED:
1940 		if ((thflags & TH_ACK) &&
1941 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1942 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1943 				rstreason = BANDLIM_RST_OPENPORT;
1944 				goto dropwithreset;
1945 		}
1946 		break;
1947 
1948 	/*
1949 	 * If the state is SYN_SENT:
1950 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1951 	 *	if seg contains a RST, then drop the connection.
1952 	 *	if seg does not contain SYN, then drop it.
1953 	 * Otherwise this is an acceptable SYN segment
1954 	 *	initialize tp->rcv_nxt and tp->irs
1955 	 *	if seg contains ack then advance tp->snd_una
1956 	 *	if seg contains an ECE and ECN support is enabled, the stream
1957 	 *	    is ECN capable.
1958 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1959 	 *	arrange for segment to be acked (eventually)
1960 	 *	continue processing rest of data/controls, beginning with URG
1961 	 */
1962 	case TCPS_SYN_SENT:
1963 		if ((thflags & TH_ACK) &&
1964 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1965 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1966 			rstreason = BANDLIM_UNLIMITED;
1967 			goto dropwithreset;
1968 		}
1969 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1970 			TCP_PROBE5(connect__refused, NULL, tp,
1971 			    mtod(m, const char *), tp, th);
1972 			tp = tcp_drop(tp, ECONNREFUSED);
1973 		}
1974 		if (thflags & TH_RST)
1975 			goto drop;
1976 		if (!(thflags & TH_SYN))
1977 			goto drop;
1978 
1979 		tp->irs = th->th_seq;
1980 		tcp_rcvseqinit(tp);
1981 		if (thflags & TH_ACK) {
1982 			TCPSTAT_INC(tcps_connects);
1983 			soisconnected(so);
1984 #ifdef MAC
1985 			mac_socketpeer_set_from_mbuf(m, so);
1986 #endif
1987 			/* Do window scaling on this connection? */
1988 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1989 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1990 				tp->rcv_scale = tp->request_r_scale;
1991 			}
1992 			tp->rcv_adv += imin(tp->rcv_wnd,
1993 			    TCP_MAXWIN << tp->rcv_scale);
1994 			tp->snd_una++;		/* SYN is acked */
1995 			/*
1996 			 * If there's data, delay ACK; if there's also a FIN
1997 			 * ACKNOW will be turned on later.
1998 			 */
1999 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2000 				tcp_timer_activate(tp, TT_DELACK,
2001 				    tcp_delacktime);
2002 			else
2003 				tp->t_flags |= TF_ACKNOW;
2004 
2005 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2006 				tp->t_flags |= TF_ECN_PERMIT;
2007 				TCPSTAT_INC(tcps_ecn_shs);
2008 			}
2009 
2010 			/*
2011 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2012 			 * Transitions:
2013 			 *	SYN_SENT  --> ESTABLISHED
2014 			 *	SYN_SENT* --> FIN_WAIT_1
2015 			 */
2016 			tp->t_starttime = ticks;
2017 			if (tp->t_flags & TF_NEEDFIN) {
2018 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2019 				tp->t_flags &= ~TF_NEEDFIN;
2020 				thflags &= ~TH_SYN;
2021 			} else {
2022 				tcp_state_change(tp, TCPS_ESTABLISHED);
2023 				TCP_PROBE5(connect__established, NULL, tp,
2024 				    mtod(m, const char *), tp, th);
2025 				cc_conn_init(tp);
2026 				tcp_timer_activate(tp, TT_KEEP,
2027 				    TP_KEEPIDLE(tp));
2028 			}
2029 		} else {
2030 			/*
2031 			 * Received initial SYN in SYN-SENT[*] state =>
2032 			 * simultaneous open.
2033 			 * If it succeeds, connection is * half-synchronized.
2034 			 * Otherwise, do 3-way handshake:
2035 			 *        SYN-SENT -> SYN-RECEIVED
2036 			 *        SYN-SENT* -> SYN-RECEIVED*
2037 			 */
2038 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2039 			tcp_timer_activate(tp, TT_REXMT, 0);
2040 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2041 		}
2042 
2043 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2044 		    "ti_locked %d", __func__, ti_locked));
2045 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2046 		INP_WLOCK_ASSERT(tp->t_inpcb);
2047 
2048 		/*
2049 		 * Advance th->th_seq to correspond to first data byte.
2050 		 * If data, trim to stay within window,
2051 		 * dropping FIN if necessary.
2052 		 */
2053 		th->th_seq++;
2054 		if (tlen > tp->rcv_wnd) {
2055 			todrop = tlen - tp->rcv_wnd;
2056 			m_adj(m, -todrop);
2057 			tlen = tp->rcv_wnd;
2058 			thflags &= ~TH_FIN;
2059 			TCPSTAT_INC(tcps_rcvpackafterwin);
2060 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2061 		}
2062 		tp->snd_wl1 = th->th_seq - 1;
2063 		tp->rcv_up = th->th_seq;
2064 		/*
2065 		 * Client side of transaction: already sent SYN and data.
2066 		 * If the remote host used T/TCP to validate the SYN,
2067 		 * our data will be ACK'd; if so, enter normal data segment
2068 		 * processing in the middle of step 5, ack processing.
2069 		 * Otherwise, goto step 6.
2070 		 */
2071 		if (thflags & TH_ACK)
2072 			goto process_ACK;
2073 
2074 		goto step6;
2075 
2076 	/*
2077 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2078 	 *      do normal processing.
2079 	 *
2080 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2081 	 */
2082 	case TCPS_LAST_ACK:
2083 	case TCPS_CLOSING:
2084 		break;  /* continue normal processing */
2085 	}
2086 
2087 	/*
2088 	 * States other than LISTEN or SYN_SENT.
2089 	 * First check the RST flag and sequence number since reset segments
2090 	 * are exempt from the timestamp and connection count tests.  This
2091 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2092 	 * below which allowed reset segments in half the sequence space
2093 	 * to fall though and be processed (which gives forged reset
2094 	 * segments with a random sequence number a 50 percent chance of
2095 	 * killing a connection).
2096 	 * Then check timestamp, if present.
2097 	 * Then check the connection count, if present.
2098 	 * Then check that at least some bytes of segment are within
2099 	 * receive window.  If segment begins before rcv_nxt,
2100 	 * drop leading data (and SYN); if nothing left, just ack.
2101 	 */
2102 	if (thflags & TH_RST) {
2103 		/*
2104 		 * RFC5961 Section 3.2
2105 		 *
2106 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2107 		 * - If RST is in window, we send challenge ACK.
2108 		 *
2109 		 * Note: to take into account delayed ACKs, we should
2110 		 *   test against last_ack_sent instead of rcv_nxt.
2111 		 * Note 2: we handle special case of closed window, not
2112 		 *   covered by the RFC.
2113 		 */
2114 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2115 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2116 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2117 
2118 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2119 			KASSERT(ti_locked == TI_RLOCKED,
2120 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2121 			    __func__, ti_locked, th, tp));
2122 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2123 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2124 			    __func__, th, tp));
2125 
2126 			if (V_tcp_insecure_rst ||
2127 			    tp->last_ack_sent == th->th_seq) {
2128 				TCPSTAT_INC(tcps_drops);
2129 				/* Drop the connection. */
2130 				switch (tp->t_state) {
2131 				case TCPS_SYN_RECEIVED:
2132 					so->so_error = ECONNREFUSED;
2133 					goto close;
2134 				case TCPS_ESTABLISHED:
2135 				case TCPS_FIN_WAIT_1:
2136 				case TCPS_FIN_WAIT_2:
2137 				case TCPS_CLOSE_WAIT:
2138 					so->so_error = ECONNRESET;
2139 				close:
2140 					tcp_state_change(tp, TCPS_CLOSED);
2141 					/* FALLTHROUGH */
2142 				default:
2143 					tp = tcp_close(tp);
2144 				}
2145 			} else {
2146 				TCPSTAT_INC(tcps_badrst);
2147 				/* Send challenge ACK. */
2148 				tcp_respond(tp, mtod(m, void *), th, m,
2149 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2150 				tp->last_ack_sent = tp->rcv_nxt;
2151 				m = NULL;
2152 			}
2153 		}
2154 		goto drop;
2155 	}
2156 
2157 	/*
2158 	 * RFC5961 Section 4.2
2159 	 * Send challenge ACK for any SYN in synchronized state.
2160 	 */
2161 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT) {
2162 		KASSERT(ti_locked == TI_RLOCKED,
2163 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2164 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2165 
2166 		TCPSTAT_INC(tcps_badsyn);
2167 		if (V_tcp_insecure_syn &&
2168 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2169 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2170 			tp = tcp_drop(tp, ECONNRESET);
2171 			rstreason = BANDLIM_UNLIMITED;
2172 		} else {
2173 			/* Send challenge ACK. */
2174 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2175 			    tp->snd_nxt, TH_ACK);
2176 			tp->last_ack_sent = tp->rcv_nxt;
2177 			m = NULL;
2178 		}
2179 		goto drop;
2180 	}
2181 
2182 	/*
2183 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2184 	 * and it's less than ts_recent, drop it.
2185 	 */
2186 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2187 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2188 
2189 		/* Check to see if ts_recent is over 24 days old.  */
2190 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2191 			/*
2192 			 * Invalidate ts_recent.  If this segment updates
2193 			 * ts_recent, the age will be reset later and ts_recent
2194 			 * will get a valid value.  If it does not, setting
2195 			 * ts_recent to zero will at least satisfy the
2196 			 * requirement that zero be placed in the timestamp
2197 			 * echo reply when ts_recent isn't valid.  The
2198 			 * age isn't reset until we get a valid ts_recent
2199 			 * because we don't want out-of-order segments to be
2200 			 * dropped when ts_recent is old.
2201 			 */
2202 			tp->ts_recent = 0;
2203 		} else {
2204 			TCPSTAT_INC(tcps_rcvduppack);
2205 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2206 			TCPSTAT_INC(tcps_pawsdrop);
2207 			if (tlen)
2208 				goto dropafterack;
2209 			goto drop;
2210 		}
2211 	}
2212 
2213 	/*
2214 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2215 	 * this connection before trimming the data to fit the receive
2216 	 * window.  Check the sequence number versus IRS since we know
2217 	 * the sequence numbers haven't wrapped.  This is a partial fix
2218 	 * for the "LAND" DoS attack.
2219 	 */
2220 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2221 		rstreason = BANDLIM_RST_OPENPORT;
2222 		goto dropwithreset;
2223 	}
2224 
2225 	todrop = tp->rcv_nxt - th->th_seq;
2226 	if (todrop > 0) {
2227 		if (thflags & TH_SYN) {
2228 			thflags &= ~TH_SYN;
2229 			th->th_seq++;
2230 			if (th->th_urp > 1)
2231 				th->th_urp--;
2232 			else
2233 				thflags &= ~TH_URG;
2234 			todrop--;
2235 		}
2236 		/*
2237 		 * Following if statement from Stevens, vol. 2, p. 960.
2238 		 */
2239 		if (todrop > tlen
2240 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2241 			/*
2242 			 * Any valid FIN must be to the left of the window.
2243 			 * At this point the FIN must be a duplicate or out
2244 			 * of sequence; drop it.
2245 			 */
2246 			thflags &= ~TH_FIN;
2247 
2248 			/*
2249 			 * Send an ACK to resynchronize and drop any data.
2250 			 * But keep on processing for RST or ACK.
2251 			 */
2252 			tp->t_flags |= TF_ACKNOW;
2253 			todrop = tlen;
2254 			TCPSTAT_INC(tcps_rcvduppack);
2255 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2256 		} else {
2257 			TCPSTAT_INC(tcps_rcvpartduppack);
2258 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2259 		}
2260 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2261 		th->th_seq += todrop;
2262 		tlen -= todrop;
2263 		if (th->th_urp > todrop)
2264 			th->th_urp -= todrop;
2265 		else {
2266 			thflags &= ~TH_URG;
2267 			th->th_urp = 0;
2268 		}
2269 	}
2270 
2271 	/*
2272 	 * If new data are received on a connection after the
2273 	 * user processes are gone, then RST the other end.
2274 	 */
2275 	if ((so->so_state & SS_NOFDREF) &&
2276 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2277 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2278 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2279 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2280 
2281 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2282 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2283 			    "after socket was closed, "
2284 			    "sending RST and removing tcpcb\n",
2285 			    s, __func__, tcpstates[tp->t_state], tlen);
2286 			free(s, M_TCPLOG);
2287 		}
2288 		tp = tcp_close(tp);
2289 		TCPSTAT_INC(tcps_rcvafterclose);
2290 		rstreason = BANDLIM_UNLIMITED;
2291 		goto dropwithreset;
2292 	}
2293 
2294 	/*
2295 	 * If segment ends after window, drop trailing data
2296 	 * (and PUSH and FIN); if nothing left, just ACK.
2297 	 */
2298 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2299 	if (todrop > 0) {
2300 		TCPSTAT_INC(tcps_rcvpackafterwin);
2301 		if (todrop >= tlen) {
2302 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2303 			/*
2304 			 * If window is closed can only take segments at
2305 			 * window edge, and have to drop data and PUSH from
2306 			 * incoming segments.  Continue processing, but
2307 			 * remember to ack.  Otherwise, drop segment
2308 			 * and ack.
2309 			 */
2310 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2311 				tp->t_flags |= TF_ACKNOW;
2312 				TCPSTAT_INC(tcps_rcvwinprobe);
2313 			} else
2314 				goto dropafterack;
2315 		} else
2316 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2317 		m_adj(m, -todrop);
2318 		tlen -= todrop;
2319 		thflags &= ~(TH_PUSH|TH_FIN);
2320 	}
2321 
2322 	/*
2323 	 * If last ACK falls within this segment's sequence numbers,
2324 	 * record its timestamp.
2325 	 * NOTE:
2326 	 * 1) That the test incorporates suggestions from the latest
2327 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2328 	 * 2) That updating only on newer timestamps interferes with
2329 	 *    our earlier PAWS tests, so this check should be solely
2330 	 *    predicated on the sequence space of this segment.
2331 	 * 3) That we modify the segment boundary check to be
2332 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2333 	 *    instead of RFC1323's
2334 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2335 	 *    This modified check allows us to overcome RFC1323's
2336 	 *    limitations as described in Stevens TCP/IP Illustrated
2337 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2338 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2339 	 */
2340 	if ((to.to_flags & TOF_TS) != 0 &&
2341 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2342 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2343 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2344 		tp->ts_recent_age = tcp_ts_getticks();
2345 		tp->ts_recent = to.to_tsval;
2346 	}
2347 
2348 	/*
2349 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2350 	 * flag is on (half-synchronized state), then queue data for
2351 	 * later processing; else drop segment and return.
2352 	 */
2353 	if ((thflags & TH_ACK) == 0) {
2354 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2355 		    (tp->t_flags & TF_NEEDSYN))
2356 			goto step6;
2357 		else if (tp->t_flags & TF_ACKNOW)
2358 			goto dropafterack;
2359 		else
2360 			goto drop;
2361 	}
2362 
2363 	/*
2364 	 * Ack processing.
2365 	 */
2366 	switch (tp->t_state) {
2367 
2368 	/*
2369 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2370 	 * ESTABLISHED state and continue processing.
2371 	 * The ACK was checked above.
2372 	 */
2373 	case TCPS_SYN_RECEIVED:
2374 
2375 		TCPSTAT_INC(tcps_connects);
2376 		soisconnected(so);
2377 		/* Do window scaling? */
2378 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2379 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2380 			tp->rcv_scale = tp->request_r_scale;
2381 			tp->snd_wnd = tiwin;
2382 		}
2383 		/*
2384 		 * Make transitions:
2385 		 *      SYN-RECEIVED  -> ESTABLISHED
2386 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2387 		 */
2388 		tp->t_starttime = ticks;
2389 		if (tp->t_flags & TF_NEEDFIN) {
2390 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2391 			tp->t_flags &= ~TF_NEEDFIN;
2392 		} else {
2393 			tcp_state_change(tp, TCPS_ESTABLISHED);
2394 			TCP_PROBE5(accept__established, NULL, tp,
2395 			    mtod(m, const char *), tp, th);
2396 			cc_conn_init(tp);
2397 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2398 		}
2399 		/*
2400 		 * If segment contains data or ACK, will call tcp_reass()
2401 		 * later; if not, do so now to pass queued data to user.
2402 		 */
2403 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2404 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2405 			    (struct mbuf *)0);
2406 		tp->snd_wl1 = th->th_seq - 1;
2407 		/* FALLTHROUGH */
2408 
2409 	/*
2410 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2411 	 * ACKs.  If the ack is in the range
2412 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2413 	 * then advance tp->snd_una to th->th_ack and drop
2414 	 * data from the retransmission queue.  If this ACK reflects
2415 	 * more up to date window information we update our window information.
2416 	 */
2417 	case TCPS_ESTABLISHED:
2418 	case TCPS_FIN_WAIT_1:
2419 	case TCPS_FIN_WAIT_2:
2420 	case TCPS_CLOSE_WAIT:
2421 	case TCPS_CLOSING:
2422 	case TCPS_LAST_ACK:
2423 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2424 			TCPSTAT_INC(tcps_rcvacktoomuch);
2425 			goto dropafterack;
2426 		}
2427 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2428 		    ((to.to_flags & TOF_SACK) ||
2429 		     !TAILQ_EMPTY(&tp->snd_holes)))
2430 			tcp_sack_doack(tp, &to, th->th_ack);
2431 
2432 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2433 		hhook_run_tcp_est_in(tp, th, &to);
2434 
2435 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2436 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2437 				/*
2438 				 * If this is the first time we've seen a
2439 				 * FIN from the remote, this is not a
2440 				 * duplicate and it needs to be processed
2441 				 * normally.  This happens during a
2442 				 * simultaneous close.
2443 				 */
2444 				if ((thflags & TH_FIN) &&
2445 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2446 					tp->t_dupacks = 0;
2447 					break;
2448 				}
2449 				TCPSTAT_INC(tcps_rcvdupack);
2450 				/*
2451 				 * If we have outstanding data (other than
2452 				 * a window probe), this is a completely
2453 				 * duplicate ack (ie, window info didn't
2454 				 * change and FIN isn't set),
2455 				 * the ack is the biggest we've
2456 				 * seen and we've seen exactly our rexmt
2457 				 * threshhold of them, assume a packet
2458 				 * has been dropped and retransmit it.
2459 				 * Kludge snd_nxt & the congestion
2460 				 * window so we send only this one
2461 				 * packet.
2462 				 *
2463 				 * We know we're losing at the current
2464 				 * window size so do congestion avoidance
2465 				 * (set ssthresh to half the current window
2466 				 * and pull our congestion window back to
2467 				 * the new ssthresh).
2468 				 *
2469 				 * Dup acks mean that packets have left the
2470 				 * network (they're now cached at the receiver)
2471 				 * so bump cwnd by the amount in the receiver
2472 				 * to keep a constant cwnd packets in the
2473 				 * network.
2474 				 *
2475 				 * When using TCP ECN, notify the peer that
2476 				 * we reduced the cwnd.
2477 				 */
2478 				if (!tcp_timer_active(tp, TT_REXMT) ||
2479 				    th->th_ack != tp->snd_una)
2480 					tp->t_dupacks = 0;
2481 				else if (++tp->t_dupacks > tcprexmtthresh ||
2482 				     IN_FASTRECOVERY(tp->t_flags)) {
2483 					cc_ack_received(tp, th, CC_DUPACK);
2484 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2485 					    IN_FASTRECOVERY(tp->t_flags)) {
2486 						int awnd;
2487 
2488 						/*
2489 						 * Compute the amount of data in flight first.
2490 						 * We can inject new data into the pipe iff
2491 						 * we have less than 1/2 the original window's
2492 						 * worth of data in flight.
2493 						 */
2494 						awnd = (tp->snd_nxt - tp->snd_fack) +
2495 							tp->sackhint.sack_bytes_rexmit;
2496 						if (awnd < tp->snd_ssthresh) {
2497 							tp->snd_cwnd += tp->t_maxseg;
2498 							if (tp->snd_cwnd > tp->snd_ssthresh)
2499 								tp->snd_cwnd = tp->snd_ssthresh;
2500 						}
2501 					} else
2502 						tp->snd_cwnd += tp->t_maxseg;
2503 					(void) tcp_output(tp);
2504 					goto drop;
2505 				} else if (tp->t_dupacks == tcprexmtthresh) {
2506 					tcp_seq onxt = tp->snd_nxt;
2507 
2508 					/*
2509 					 * If we're doing sack, check to
2510 					 * see if we're already in sack
2511 					 * recovery. If we're not doing sack,
2512 					 * check to see if we're in newreno
2513 					 * recovery.
2514 					 */
2515 					if (tp->t_flags & TF_SACK_PERMIT) {
2516 						if (IN_FASTRECOVERY(tp->t_flags)) {
2517 							tp->t_dupacks = 0;
2518 							break;
2519 						}
2520 					} else {
2521 						if (SEQ_LEQ(th->th_ack,
2522 						    tp->snd_recover)) {
2523 							tp->t_dupacks = 0;
2524 							break;
2525 						}
2526 					}
2527 					/* Congestion signal before ack. */
2528 					cc_cong_signal(tp, th, CC_NDUPACK);
2529 					cc_ack_received(tp, th, CC_DUPACK);
2530 					tcp_timer_activate(tp, TT_REXMT, 0);
2531 					tp->t_rtttime = 0;
2532 					if (tp->t_flags & TF_SACK_PERMIT) {
2533 						TCPSTAT_INC(
2534 						    tcps_sack_recovery_episode);
2535 						tp->sack_newdata = tp->snd_nxt;
2536 						tp->snd_cwnd = tp->t_maxseg;
2537 						(void) tcp_output(tp);
2538 						goto drop;
2539 					}
2540 					tp->snd_nxt = th->th_ack;
2541 					tp->snd_cwnd = tp->t_maxseg;
2542 					(void) tcp_output(tp);
2543 					KASSERT(tp->snd_limited <= 2,
2544 					    ("%s: tp->snd_limited too big",
2545 					    __func__));
2546 					tp->snd_cwnd = tp->snd_ssthresh +
2547 					     tp->t_maxseg *
2548 					     (tp->t_dupacks - tp->snd_limited);
2549 					if (SEQ_GT(onxt, tp->snd_nxt))
2550 						tp->snd_nxt = onxt;
2551 					goto drop;
2552 				} else if (V_tcp_do_rfc3042) {
2553 					cc_ack_received(tp, th, CC_DUPACK);
2554 					u_long oldcwnd = tp->snd_cwnd;
2555 					tcp_seq oldsndmax = tp->snd_max;
2556 					u_int sent;
2557 					int avail;
2558 
2559 					KASSERT(tp->t_dupacks == 1 ||
2560 					    tp->t_dupacks == 2,
2561 					    ("%s: dupacks not 1 or 2",
2562 					    __func__));
2563 					if (tp->t_dupacks == 1)
2564 						tp->snd_limited = 0;
2565 					tp->snd_cwnd =
2566 					    (tp->snd_nxt - tp->snd_una) +
2567 					    (tp->t_dupacks - tp->snd_limited) *
2568 					    tp->t_maxseg;
2569 					/*
2570 					 * Only call tcp_output when there
2571 					 * is new data available to be sent.
2572 					 * Otherwise we would send pure ACKs.
2573 					 */
2574 					SOCKBUF_LOCK(&so->so_snd);
2575 					avail = sbavail(&so->so_snd) -
2576 					    (tp->snd_nxt - tp->snd_una);
2577 					SOCKBUF_UNLOCK(&so->so_snd);
2578 					if (avail > 0)
2579 						(void) tcp_output(tp);
2580 					sent = tp->snd_max - oldsndmax;
2581 					if (sent > tp->t_maxseg) {
2582 						KASSERT((tp->t_dupacks == 2 &&
2583 						    tp->snd_limited == 0) ||
2584 						   (sent == tp->t_maxseg + 1 &&
2585 						    tp->t_flags & TF_SENTFIN),
2586 						    ("%s: sent too much",
2587 						    __func__));
2588 						tp->snd_limited = 2;
2589 					} else if (sent > 0)
2590 						++tp->snd_limited;
2591 					tp->snd_cwnd = oldcwnd;
2592 					goto drop;
2593 				}
2594 			} else
2595 				tp->t_dupacks = 0;
2596 			break;
2597 		}
2598 
2599 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2600 		    ("%s: th_ack <= snd_una", __func__));
2601 
2602 		/*
2603 		 * If the congestion window was inflated to account
2604 		 * for the other side's cached packets, retract it.
2605 		 */
2606 		if (IN_FASTRECOVERY(tp->t_flags)) {
2607 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2608 				if (tp->t_flags & TF_SACK_PERMIT)
2609 					tcp_sack_partialack(tp, th);
2610 				else
2611 					tcp_newreno_partial_ack(tp, th);
2612 			} else
2613 				cc_post_recovery(tp, th);
2614 		}
2615 		tp->t_dupacks = 0;
2616 		/*
2617 		 * If we reach this point, ACK is not a duplicate,
2618 		 *     i.e., it ACKs something we sent.
2619 		 */
2620 		if (tp->t_flags & TF_NEEDSYN) {
2621 			/*
2622 			 * T/TCP: Connection was half-synchronized, and our
2623 			 * SYN has been ACK'd (so connection is now fully
2624 			 * synchronized).  Go to non-starred state,
2625 			 * increment snd_una for ACK of SYN, and check if
2626 			 * we can do window scaling.
2627 			 */
2628 			tp->t_flags &= ~TF_NEEDSYN;
2629 			tp->snd_una++;
2630 			/* Do window scaling? */
2631 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2632 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2633 				tp->rcv_scale = tp->request_r_scale;
2634 				/* Send window already scaled. */
2635 			}
2636 		}
2637 
2638 process_ACK:
2639 		INP_WLOCK_ASSERT(tp->t_inpcb);
2640 
2641 		acked = BYTES_THIS_ACK(tp, th);
2642 		TCPSTAT_INC(tcps_rcvackpack);
2643 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2644 
2645 		/*
2646 		 * If we just performed our first retransmit, and the ACK
2647 		 * arrives within our recovery window, then it was a mistake
2648 		 * to do the retransmit in the first place.  Recover our
2649 		 * original cwnd and ssthresh, and proceed to transmit where
2650 		 * we left off.
2651 		 */
2652 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2653 		    (int)(ticks - tp->t_badrxtwin) < 0)
2654 			cc_cong_signal(tp, th, CC_RTO_ERR);
2655 
2656 		/*
2657 		 * If we have a timestamp reply, update smoothed
2658 		 * round trip time.  If no timestamp is present but
2659 		 * transmit timer is running and timed sequence
2660 		 * number was acked, update smoothed round trip time.
2661 		 * Since we now have an rtt measurement, cancel the
2662 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2663 		 * Recompute the initial retransmit timer.
2664 		 *
2665 		 * Some boxes send broken timestamp replies
2666 		 * during the SYN+ACK phase, ignore
2667 		 * timestamps of 0 or we could calculate a
2668 		 * huge RTT and blow up the retransmit timer.
2669 		 */
2670 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2671 			u_int t;
2672 
2673 			t = tcp_ts_getticks() - to.to_tsecr;
2674 			if (!tp->t_rttlow || tp->t_rttlow > t)
2675 				tp->t_rttlow = t;
2676 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2677 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2678 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2679 				tp->t_rttlow = ticks - tp->t_rtttime;
2680 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2681 		}
2682 
2683 		/*
2684 		 * If all outstanding data is acked, stop retransmit
2685 		 * timer and remember to restart (more output or persist).
2686 		 * If there is more data to be acked, restart retransmit
2687 		 * timer, using current (possibly backed-off) value.
2688 		 */
2689 		if (th->th_ack == tp->snd_max) {
2690 			tcp_timer_activate(tp, TT_REXMT, 0);
2691 			needoutput = 1;
2692 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2693 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2694 
2695 		/*
2696 		 * If no data (only SYN) was ACK'd,
2697 		 *    skip rest of ACK processing.
2698 		 */
2699 		if (acked == 0)
2700 			goto step6;
2701 
2702 		/*
2703 		 * Let the congestion control algorithm update congestion
2704 		 * control related information. This typically means increasing
2705 		 * the congestion window.
2706 		 */
2707 		cc_ack_received(tp, th, CC_ACK);
2708 
2709 		SOCKBUF_LOCK(&so->so_snd);
2710 		if (acked > sbavail(&so->so_snd)) {
2711 			tp->snd_wnd -= sbavail(&so->so_snd);
2712 			mfree = sbcut_locked(&so->so_snd,
2713 			    (int)sbavail(&so->so_snd));
2714 			ourfinisacked = 1;
2715 		} else {
2716 			mfree = sbcut_locked(&so->so_snd, acked);
2717 			tp->snd_wnd -= acked;
2718 			ourfinisacked = 0;
2719 		}
2720 		/* NB: sowwakeup_locked() does an implicit unlock. */
2721 		sowwakeup_locked(so);
2722 		m_freem(mfree);
2723 		/* Detect una wraparound. */
2724 		if (!IN_RECOVERY(tp->t_flags) &&
2725 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2726 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2727 			tp->snd_recover = th->th_ack - 1;
2728 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2729 		if (IN_RECOVERY(tp->t_flags) &&
2730 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2731 			EXIT_RECOVERY(tp->t_flags);
2732 		}
2733 		tp->snd_una = th->th_ack;
2734 		if (tp->t_flags & TF_SACK_PERMIT) {
2735 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2736 				tp->snd_recover = tp->snd_una;
2737 		}
2738 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2739 			tp->snd_nxt = tp->snd_una;
2740 
2741 		switch (tp->t_state) {
2742 
2743 		/*
2744 		 * In FIN_WAIT_1 STATE in addition to the processing
2745 		 * for the ESTABLISHED state if our FIN is now acknowledged
2746 		 * then enter FIN_WAIT_2.
2747 		 */
2748 		case TCPS_FIN_WAIT_1:
2749 			if (ourfinisacked) {
2750 				/*
2751 				 * If we can't receive any more
2752 				 * data, then closing user can proceed.
2753 				 * Starting the timer is contrary to the
2754 				 * specification, but if we don't get a FIN
2755 				 * we'll hang forever.
2756 				 *
2757 				 * XXXjl:
2758 				 * we should release the tp also, and use a
2759 				 * compressed state.
2760 				 */
2761 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2762 					soisdisconnected(so);
2763 					tcp_timer_activate(tp, TT_2MSL,
2764 					    (tcp_fast_finwait2_recycle ?
2765 					    tcp_finwait2_timeout :
2766 					    TP_MAXIDLE(tp)));
2767 				}
2768 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2769 			}
2770 			break;
2771 
2772 		/*
2773 		 * In CLOSING STATE in addition to the processing for
2774 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2775 		 * then enter the TIME-WAIT state, otherwise ignore
2776 		 * the segment.
2777 		 */
2778 		case TCPS_CLOSING:
2779 			if (ourfinisacked) {
2780 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2781 				tcp_twstart(tp);
2782 				INP_INFO_RUNLOCK(&V_tcbinfo);
2783 				m_freem(m);
2784 				return;
2785 			}
2786 			break;
2787 
2788 		/*
2789 		 * In LAST_ACK, we may still be waiting for data to drain
2790 		 * and/or to be acked, as well as for the ack of our FIN.
2791 		 * If our FIN is now acknowledged, delete the TCB,
2792 		 * enter the closed state and return.
2793 		 */
2794 		case TCPS_LAST_ACK:
2795 			if (ourfinisacked) {
2796 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2797 				tp = tcp_close(tp);
2798 				goto drop;
2799 			}
2800 			break;
2801 		}
2802 	}
2803 
2804 step6:
2805 	INP_WLOCK_ASSERT(tp->t_inpcb);
2806 
2807 	/*
2808 	 * Update window information.
2809 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2810 	 */
2811 	if ((thflags & TH_ACK) &&
2812 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2813 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2814 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2815 		/* keep track of pure window updates */
2816 		if (tlen == 0 &&
2817 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2818 			TCPSTAT_INC(tcps_rcvwinupd);
2819 		tp->snd_wnd = tiwin;
2820 		tp->snd_wl1 = th->th_seq;
2821 		tp->snd_wl2 = th->th_ack;
2822 		if (tp->snd_wnd > tp->max_sndwnd)
2823 			tp->max_sndwnd = tp->snd_wnd;
2824 		needoutput = 1;
2825 	}
2826 
2827 	/*
2828 	 * Process segments with URG.
2829 	 */
2830 	if ((thflags & TH_URG) && th->th_urp &&
2831 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2832 		/*
2833 		 * This is a kludge, but if we receive and accept
2834 		 * random urgent pointers, we'll crash in
2835 		 * soreceive.  It's hard to imagine someone
2836 		 * actually wanting to send this much urgent data.
2837 		 */
2838 		SOCKBUF_LOCK(&so->so_rcv);
2839 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2840 			th->th_urp = 0;			/* XXX */
2841 			thflags &= ~TH_URG;		/* XXX */
2842 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2843 			goto dodata;			/* XXX */
2844 		}
2845 		/*
2846 		 * If this segment advances the known urgent pointer,
2847 		 * then mark the data stream.  This should not happen
2848 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2849 		 * a FIN has been received from the remote side.
2850 		 * In these states we ignore the URG.
2851 		 *
2852 		 * According to RFC961 (Assigned Protocols),
2853 		 * the urgent pointer points to the last octet
2854 		 * of urgent data.  We continue, however,
2855 		 * to consider it to indicate the first octet
2856 		 * of data past the urgent section as the original
2857 		 * spec states (in one of two places).
2858 		 */
2859 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2860 			tp->rcv_up = th->th_seq + th->th_urp;
2861 			so->so_oobmark = sbavail(&so->so_rcv) +
2862 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2863 			if (so->so_oobmark == 0)
2864 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2865 			sohasoutofband(so);
2866 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2867 		}
2868 		SOCKBUF_UNLOCK(&so->so_rcv);
2869 		/*
2870 		 * Remove out of band data so doesn't get presented to user.
2871 		 * This can happen independent of advancing the URG pointer,
2872 		 * but if two URG's are pending at once, some out-of-band
2873 		 * data may creep in... ick.
2874 		 */
2875 		if (th->th_urp <= (u_long)tlen &&
2876 		    !(so->so_options & SO_OOBINLINE)) {
2877 			/* hdr drop is delayed */
2878 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2879 		}
2880 	} else {
2881 		/*
2882 		 * If no out of band data is expected,
2883 		 * pull receive urgent pointer along
2884 		 * with the receive window.
2885 		 */
2886 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2887 			tp->rcv_up = tp->rcv_nxt;
2888 	}
2889 dodata:							/* XXX */
2890 	INP_WLOCK_ASSERT(tp->t_inpcb);
2891 
2892 	/*
2893 	 * Process the segment text, merging it into the TCP sequencing queue,
2894 	 * and arranging for acknowledgment of receipt if necessary.
2895 	 * This process logically involves adjusting tp->rcv_wnd as data
2896 	 * is presented to the user (this happens in tcp_usrreq.c,
2897 	 * case PRU_RCVD).  If a FIN has already been received on this
2898 	 * connection then we just ignore the text.
2899 	 */
2900 	if ((tlen || (thflags & TH_FIN)) &&
2901 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2902 		tcp_seq save_start = th->th_seq;
2903 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2904 		/*
2905 		 * Insert segment which includes th into TCP reassembly queue
2906 		 * with control block tp.  Set thflags to whether reassembly now
2907 		 * includes a segment with FIN.  This handles the common case
2908 		 * inline (segment is the next to be received on an established
2909 		 * connection, and the queue is empty), avoiding linkage into
2910 		 * and removal from the queue and repetition of various
2911 		 * conversions.
2912 		 * Set DELACK for segments received in order, but ack
2913 		 * immediately when segments are out of order (so
2914 		 * fast retransmit can work).
2915 		 */
2916 		if (th->th_seq == tp->rcv_nxt &&
2917 		    LIST_EMPTY(&tp->t_segq) &&
2918 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2919 			if (DELAY_ACK(tp, tlen))
2920 				tp->t_flags |= TF_DELACK;
2921 			else
2922 				tp->t_flags |= TF_ACKNOW;
2923 			tp->rcv_nxt += tlen;
2924 			thflags = th->th_flags & TH_FIN;
2925 			TCPSTAT_INC(tcps_rcvpack);
2926 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2927 			ND6_HINT(tp);
2928 			SOCKBUF_LOCK(&so->so_rcv);
2929 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2930 				m_freem(m);
2931 			else
2932 				sbappendstream_locked(&so->so_rcv, m, 0);
2933 			/* NB: sorwakeup_locked() does an implicit unlock. */
2934 			sorwakeup_locked(so);
2935 		} else {
2936 			/*
2937 			 * XXX: Due to the header drop above "th" is
2938 			 * theoretically invalid by now.  Fortunately
2939 			 * m_adj() doesn't actually frees any mbufs
2940 			 * when trimming from the head.
2941 			 */
2942 			thflags = tcp_reass(tp, th, &tlen, m);
2943 			tp->t_flags |= TF_ACKNOW;
2944 		}
2945 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2946 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2947 #if 0
2948 		/*
2949 		 * Note the amount of data that peer has sent into
2950 		 * our window, in order to estimate the sender's
2951 		 * buffer size.
2952 		 * XXX: Unused.
2953 		 */
2954 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2955 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2956 		else
2957 			len = so->so_rcv.sb_hiwat;
2958 #endif
2959 	} else {
2960 		m_freem(m);
2961 		thflags &= ~TH_FIN;
2962 	}
2963 
2964 	/*
2965 	 * If FIN is received ACK the FIN and let the user know
2966 	 * that the connection is closing.
2967 	 */
2968 	if (thflags & TH_FIN) {
2969 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2970 			socantrcvmore(so);
2971 			/*
2972 			 * If connection is half-synchronized
2973 			 * (ie NEEDSYN flag on) then delay ACK,
2974 			 * so it may be piggybacked when SYN is sent.
2975 			 * Otherwise, since we received a FIN then no
2976 			 * more input can be expected, send ACK now.
2977 			 */
2978 			if (tp->t_flags & TF_NEEDSYN)
2979 				tp->t_flags |= TF_DELACK;
2980 			else
2981 				tp->t_flags |= TF_ACKNOW;
2982 			tp->rcv_nxt++;
2983 		}
2984 		switch (tp->t_state) {
2985 
2986 		/*
2987 		 * In SYN_RECEIVED and ESTABLISHED STATES
2988 		 * enter the CLOSE_WAIT state.
2989 		 */
2990 		case TCPS_SYN_RECEIVED:
2991 			tp->t_starttime = ticks;
2992 			/* FALLTHROUGH */
2993 		case TCPS_ESTABLISHED:
2994 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
2995 			break;
2996 
2997 		/*
2998 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2999 		 * enter the CLOSING state.
3000 		 */
3001 		case TCPS_FIN_WAIT_1:
3002 			tcp_state_change(tp, TCPS_CLOSING);
3003 			break;
3004 
3005 		/*
3006 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3007 		 * starting the time-wait timer, turning off the other
3008 		 * standard timers.
3009 		 */
3010 		case TCPS_FIN_WAIT_2:
3011 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3012 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3013 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3014 			    ti_locked));
3015 
3016 			tcp_twstart(tp);
3017 			INP_INFO_RUNLOCK(&V_tcbinfo);
3018 			return;
3019 		}
3020 	}
3021 	if (ti_locked == TI_RLOCKED)
3022 		INP_INFO_RUNLOCK(&V_tcbinfo);
3023 	ti_locked = TI_UNLOCKED;
3024 
3025 #ifdef TCPDEBUG
3026 	if (so->so_options & SO_DEBUG)
3027 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3028 			  &tcp_savetcp, 0);
3029 #endif
3030 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3031 
3032 	/*
3033 	 * Return any desired output.
3034 	 */
3035 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3036 		(void) tcp_output(tp);
3037 
3038 check_delack:
3039 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3040 	    __func__, ti_locked));
3041 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3042 	INP_WLOCK_ASSERT(tp->t_inpcb);
3043 
3044 	if (tp->t_flags & TF_DELACK) {
3045 		tp->t_flags &= ~TF_DELACK;
3046 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3047 	}
3048 	INP_WUNLOCK(tp->t_inpcb);
3049 	return;
3050 
3051 dropafterack:
3052 	/*
3053 	 * Generate an ACK dropping incoming segment if it occupies
3054 	 * sequence space, where the ACK reflects our state.
3055 	 *
3056 	 * We can now skip the test for the RST flag since all
3057 	 * paths to this code happen after packets containing
3058 	 * RST have been dropped.
3059 	 *
3060 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3061 	 * segment we received passes the SYN-RECEIVED ACK test.
3062 	 * If it fails send a RST.  This breaks the loop in the
3063 	 * "LAND" DoS attack, and also prevents an ACK storm
3064 	 * between two listening ports that have been sent forged
3065 	 * SYN segments, each with the source address of the other.
3066 	 */
3067 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3068 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3069 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3070 		rstreason = BANDLIM_RST_OPENPORT;
3071 		goto dropwithreset;
3072 	}
3073 #ifdef TCPDEBUG
3074 	if (so->so_options & SO_DEBUG)
3075 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3076 			  &tcp_savetcp, 0);
3077 #endif
3078 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3079 	if (ti_locked == TI_RLOCKED)
3080 		INP_INFO_RUNLOCK(&V_tcbinfo);
3081 	ti_locked = TI_UNLOCKED;
3082 
3083 	tp->t_flags |= TF_ACKNOW;
3084 	(void) tcp_output(tp);
3085 	INP_WUNLOCK(tp->t_inpcb);
3086 	m_freem(m);
3087 	return;
3088 
3089 dropwithreset:
3090 	if (ti_locked == TI_RLOCKED)
3091 		INP_INFO_RUNLOCK(&V_tcbinfo);
3092 	ti_locked = TI_UNLOCKED;
3093 
3094 	if (tp != NULL) {
3095 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3096 		INP_WUNLOCK(tp->t_inpcb);
3097 	} else
3098 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3099 	return;
3100 
3101 drop:
3102 	if (ti_locked == TI_RLOCKED) {
3103 		INP_INFO_RUNLOCK(&V_tcbinfo);
3104 		ti_locked = TI_UNLOCKED;
3105 	}
3106 #ifdef INVARIANTS
3107 	else
3108 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3109 #endif
3110 
3111 	/*
3112 	 * Drop space held by incoming segment and return.
3113 	 */
3114 #ifdef TCPDEBUG
3115 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3116 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3117 			  &tcp_savetcp, 0);
3118 #endif
3119 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3120 	if (tp != NULL)
3121 		INP_WUNLOCK(tp->t_inpcb);
3122 	m_freem(m);
3123 }
3124 
3125 /*
3126  * Issue RST and make ACK acceptable to originator of segment.
3127  * The mbuf must still include the original packet header.
3128  * tp may be NULL.
3129  */
3130 static void
3131 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3132     int tlen, int rstreason)
3133 {
3134 #ifdef INET
3135 	struct ip *ip;
3136 #endif
3137 #ifdef INET6
3138 	struct ip6_hdr *ip6;
3139 #endif
3140 
3141 	if (tp != NULL) {
3142 		INP_WLOCK_ASSERT(tp->t_inpcb);
3143 	}
3144 
3145 	/* Don't bother if destination was broadcast/multicast. */
3146 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3147 		goto drop;
3148 #ifdef INET6
3149 	if (mtod(m, struct ip *)->ip_v == 6) {
3150 		ip6 = mtod(m, struct ip6_hdr *);
3151 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3152 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3153 			goto drop;
3154 		/* IPv6 anycast check is done at tcp6_input() */
3155 	}
3156 #endif
3157 #if defined(INET) && defined(INET6)
3158 	else
3159 #endif
3160 #ifdef INET
3161 	{
3162 		ip = mtod(m, struct ip *);
3163 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3164 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3165 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3166 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3167 			goto drop;
3168 	}
3169 #endif
3170 
3171 	/* Perform bandwidth limiting. */
3172 	if (badport_bandlim(rstreason) < 0)
3173 		goto drop;
3174 
3175 	/* tcp_respond consumes the mbuf chain. */
3176 	if (th->th_flags & TH_ACK) {
3177 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3178 		    th->th_ack, TH_RST);
3179 	} else {
3180 		if (th->th_flags & TH_SYN)
3181 			tlen++;
3182 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3183 		    (tcp_seq)0, TH_RST|TH_ACK);
3184 	}
3185 	return;
3186 drop:
3187 	m_freem(m);
3188 }
3189 
3190 /*
3191  * Parse TCP options and place in tcpopt.
3192  */
3193 static void
3194 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3195 {
3196 	int opt, optlen;
3197 
3198 	to->to_flags = 0;
3199 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3200 		opt = cp[0];
3201 		if (opt == TCPOPT_EOL)
3202 			break;
3203 		if (opt == TCPOPT_NOP)
3204 			optlen = 1;
3205 		else {
3206 			if (cnt < 2)
3207 				break;
3208 			optlen = cp[1];
3209 			if (optlen < 2 || optlen > cnt)
3210 				break;
3211 		}
3212 		switch (opt) {
3213 		case TCPOPT_MAXSEG:
3214 			if (optlen != TCPOLEN_MAXSEG)
3215 				continue;
3216 			if (!(flags & TO_SYN))
3217 				continue;
3218 			to->to_flags |= TOF_MSS;
3219 			bcopy((char *)cp + 2,
3220 			    (char *)&to->to_mss, sizeof(to->to_mss));
3221 			to->to_mss = ntohs(to->to_mss);
3222 			break;
3223 		case TCPOPT_WINDOW:
3224 			if (optlen != TCPOLEN_WINDOW)
3225 				continue;
3226 			if (!(flags & TO_SYN))
3227 				continue;
3228 			to->to_flags |= TOF_SCALE;
3229 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3230 			break;
3231 		case TCPOPT_TIMESTAMP:
3232 			if (optlen != TCPOLEN_TIMESTAMP)
3233 				continue;
3234 			to->to_flags |= TOF_TS;
3235 			bcopy((char *)cp + 2,
3236 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3237 			to->to_tsval = ntohl(to->to_tsval);
3238 			bcopy((char *)cp + 6,
3239 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3240 			to->to_tsecr = ntohl(to->to_tsecr);
3241 			break;
3242 #ifdef TCP_SIGNATURE
3243 		/*
3244 		 * XXX In order to reply to a host which has set the
3245 		 * TCP_SIGNATURE option in its initial SYN, we have to
3246 		 * record the fact that the option was observed here
3247 		 * for the syncache code to perform the correct response.
3248 		 */
3249 		case TCPOPT_SIGNATURE:
3250 			if (optlen != TCPOLEN_SIGNATURE)
3251 				continue;
3252 			to->to_flags |= TOF_SIGNATURE;
3253 			to->to_signature = cp + 2;
3254 			break;
3255 #endif
3256 		case TCPOPT_SACK_PERMITTED:
3257 			if (optlen != TCPOLEN_SACK_PERMITTED)
3258 				continue;
3259 			if (!(flags & TO_SYN))
3260 				continue;
3261 			if (!V_tcp_do_sack)
3262 				continue;
3263 			to->to_flags |= TOF_SACKPERM;
3264 			break;
3265 		case TCPOPT_SACK:
3266 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3267 				continue;
3268 			if (flags & TO_SYN)
3269 				continue;
3270 			to->to_flags |= TOF_SACK;
3271 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3272 			to->to_sacks = cp + 2;
3273 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3274 			break;
3275 		default:
3276 			continue;
3277 		}
3278 	}
3279 }
3280 
3281 /*
3282  * Pull out of band byte out of a segment so
3283  * it doesn't appear in the user's data queue.
3284  * It is still reflected in the segment length for
3285  * sequencing purposes.
3286  */
3287 static void
3288 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3289     int off)
3290 {
3291 	int cnt = off + th->th_urp - 1;
3292 
3293 	while (cnt >= 0) {
3294 		if (m->m_len > cnt) {
3295 			char *cp = mtod(m, caddr_t) + cnt;
3296 			struct tcpcb *tp = sototcpcb(so);
3297 
3298 			INP_WLOCK_ASSERT(tp->t_inpcb);
3299 
3300 			tp->t_iobc = *cp;
3301 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3302 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3303 			m->m_len--;
3304 			if (m->m_flags & M_PKTHDR)
3305 				m->m_pkthdr.len--;
3306 			return;
3307 		}
3308 		cnt -= m->m_len;
3309 		m = m->m_next;
3310 		if (m == NULL)
3311 			break;
3312 	}
3313 	panic("tcp_pulloutofband");
3314 }
3315 
3316 /*
3317  * Collect new round-trip time estimate
3318  * and update averages and current timeout.
3319  */
3320 static void
3321 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3322 {
3323 	int delta;
3324 
3325 	INP_WLOCK_ASSERT(tp->t_inpcb);
3326 
3327 	TCPSTAT_INC(tcps_rttupdated);
3328 	tp->t_rttupdated++;
3329 	if (tp->t_srtt != 0) {
3330 		/*
3331 		 * srtt is stored as fixed point with 5 bits after the
3332 		 * binary point (i.e., scaled by 8).  The following magic
3333 		 * is equivalent to the smoothing algorithm in rfc793 with
3334 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3335 		 * point).  Adjust rtt to origin 0.
3336 		 */
3337 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3338 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3339 
3340 		if ((tp->t_srtt += delta) <= 0)
3341 			tp->t_srtt = 1;
3342 
3343 		/*
3344 		 * We accumulate a smoothed rtt variance (actually, a
3345 		 * smoothed mean difference), then set the retransmit
3346 		 * timer to smoothed rtt + 4 times the smoothed variance.
3347 		 * rttvar is stored as fixed point with 4 bits after the
3348 		 * binary point (scaled by 16).  The following is
3349 		 * equivalent to rfc793 smoothing with an alpha of .75
3350 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3351 		 * rfc793's wired-in beta.
3352 		 */
3353 		if (delta < 0)
3354 			delta = -delta;
3355 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3356 		if ((tp->t_rttvar += delta) <= 0)
3357 			tp->t_rttvar = 1;
3358 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3359 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3360 	} else {
3361 		/*
3362 		 * No rtt measurement yet - use the unsmoothed rtt.
3363 		 * Set the variance to half the rtt (so our first
3364 		 * retransmit happens at 3*rtt).
3365 		 */
3366 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3367 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3368 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3369 	}
3370 	tp->t_rtttime = 0;
3371 	tp->t_rxtshift = 0;
3372 
3373 	/*
3374 	 * the retransmit should happen at rtt + 4 * rttvar.
3375 	 * Because of the way we do the smoothing, srtt and rttvar
3376 	 * will each average +1/2 tick of bias.  When we compute
3377 	 * the retransmit timer, we want 1/2 tick of rounding and
3378 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3379 	 * firing of the timer.  The bias will give us exactly the
3380 	 * 1.5 tick we need.  But, because the bias is
3381 	 * statistical, we have to test that we don't drop below
3382 	 * the minimum feasible timer (which is 2 ticks).
3383 	 */
3384 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3385 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3386 
3387 	/*
3388 	 * We received an ack for a packet that wasn't retransmitted;
3389 	 * it is probably safe to discard any error indications we've
3390 	 * received recently.  This isn't quite right, but close enough
3391 	 * for now (a route might have failed after we sent a segment,
3392 	 * and the return path might not be symmetrical).
3393 	 */
3394 	tp->t_softerror = 0;
3395 }
3396 
3397 /*
3398  * Determine a reasonable value for maxseg size.
3399  * If the route is known, check route for mtu.
3400  * If none, use an mss that can be handled on the outgoing interface
3401  * without forcing IP to fragment.  If no route is found, route has no mtu,
3402  * or the destination isn't local, use a default, hopefully conservative
3403  * size (usually 512 or the default IP max size, but no more than the mtu
3404  * of the interface), as we can't discover anything about intervening
3405  * gateways or networks.  We also initialize the congestion/slow start
3406  * window to be a single segment if the destination isn't local.
3407  * While looking at the routing entry, we also initialize other path-dependent
3408  * parameters from pre-set or cached values in the routing entry.
3409  *
3410  * Also take into account the space needed for options that we
3411  * send regularly.  Make maxseg shorter by that amount to assure
3412  * that we can send maxseg amount of data even when the options
3413  * are present.  Store the upper limit of the length of options plus
3414  * data in maxopd.
3415  *
3416  * NOTE that this routine is only called when we process an incoming
3417  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3418  * settings are handled in tcp_mssopt().
3419  */
3420 void
3421 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3422     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3423 {
3424 	int mss = 0;
3425 	u_long maxmtu = 0;
3426 	struct inpcb *inp = tp->t_inpcb;
3427 	struct hc_metrics_lite metrics;
3428 	int origoffer;
3429 #ifdef INET6
3430 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3431 	size_t min_protoh = isipv6 ?
3432 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3433 			    sizeof (struct tcpiphdr);
3434 #else
3435 	const size_t min_protoh = sizeof(struct tcpiphdr);
3436 #endif
3437 
3438 	INP_WLOCK_ASSERT(tp->t_inpcb);
3439 
3440 	if (mtuoffer != -1) {
3441 		KASSERT(offer == -1, ("%s: conflict", __func__));
3442 		offer = mtuoffer - min_protoh;
3443 	}
3444 	origoffer = offer;
3445 
3446 	/* Initialize. */
3447 #ifdef INET6
3448 	if (isipv6) {
3449 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3450 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3451 	}
3452 #endif
3453 #if defined(INET) && defined(INET6)
3454 	else
3455 #endif
3456 #ifdef INET
3457 	{
3458 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3459 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3460 	}
3461 #endif
3462 
3463 	/*
3464 	 * No route to sender, stay with default mss and return.
3465 	 */
3466 	if (maxmtu == 0) {
3467 		/*
3468 		 * In case we return early we need to initialize metrics
3469 		 * to a defined state as tcp_hc_get() would do for us
3470 		 * if there was no cache hit.
3471 		 */
3472 		if (metricptr != NULL)
3473 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3474 		return;
3475 	}
3476 
3477 	/* What have we got? */
3478 	switch (offer) {
3479 		case 0:
3480 			/*
3481 			 * Offer == 0 means that there was no MSS on the SYN
3482 			 * segment, in this case we use tcp_mssdflt as
3483 			 * already assigned to t_maxopd above.
3484 			 */
3485 			offer = tp->t_maxopd;
3486 			break;
3487 
3488 		case -1:
3489 			/*
3490 			 * Offer == -1 means that we didn't receive SYN yet.
3491 			 */
3492 			/* FALLTHROUGH */
3493 
3494 		default:
3495 			/*
3496 			 * Prevent DoS attack with too small MSS. Round up
3497 			 * to at least minmss.
3498 			 */
3499 			offer = max(offer, V_tcp_minmss);
3500 	}
3501 
3502 	/*
3503 	 * rmx information is now retrieved from tcp_hostcache.
3504 	 */
3505 	tcp_hc_get(&inp->inp_inc, &metrics);
3506 	if (metricptr != NULL)
3507 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3508 
3509 	/*
3510 	 * If there's a discovered mtu in tcp hostcache, use it.
3511 	 * Else, use the link mtu.
3512 	 */
3513 	if (metrics.rmx_mtu)
3514 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3515 	else {
3516 #ifdef INET6
3517 		if (isipv6) {
3518 			mss = maxmtu - min_protoh;
3519 			if (!V_path_mtu_discovery &&
3520 			    !in6_localaddr(&inp->in6p_faddr))
3521 				mss = min(mss, V_tcp_v6mssdflt);
3522 		}
3523 #endif
3524 #if defined(INET) && defined(INET6)
3525 		else
3526 #endif
3527 #ifdef INET
3528 		{
3529 			mss = maxmtu - min_protoh;
3530 			if (!V_path_mtu_discovery &&
3531 			    !in_localaddr(inp->inp_faddr))
3532 				mss = min(mss, V_tcp_mssdflt);
3533 		}
3534 #endif
3535 		/*
3536 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3537 		 * probably violates the TCP spec.
3538 		 * The problem is that, since we don't know the
3539 		 * other end's MSS, we are supposed to use a conservative
3540 		 * default.  But, if we do that, then MTU discovery will
3541 		 * never actually take place, because the conservative
3542 		 * default is much less than the MTUs typically seen
3543 		 * on the Internet today.  For the moment, we'll sweep
3544 		 * this under the carpet.
3545 		 *
3546 		 * The conservative default might not actually be a problem
3547 		 * if the only case this occurs is when sending an initial
3548 		 * SYN with options and data to a host we've never talked
3549 		 * to before.  Then, they will reply with an MSS value which
3550 		 * will get recorded and the new parameters should get
3551 		 * recomputed.  For Further Study.
3552 		 */
3553 	}
3554 	mss = min(mss, offer);
3555 
3556 	/*
3557 	 * Sanity check: make sure that maxopd will be large
3558 	 * enough to allow some data on segments even if the
3559 	 * all the option space is used (40bytes).  Otherwise
3560 	 * funny things may happen in tcp_output.
3561 	 */
3562 	mss = max(mss, 64);
3563 
3564 	/*
3565 	 * maxopd stores the maximum length of data AND options
3566 	 * in a segment; maxseg is the amount of data in a normal
3567 	 * segment.  We need to store this value (maxopd) apart
3568 	 * from maxseg, because now every segment carries options
3569 	 * and thus we normally have somewhat less data in segments.
3570 	 */
3571 	tp->t_maxopd = mss;
3572 
3573 	/*
3574 	 * origoffer==-1 indicates that no segments were received yet.
3575 	 * In this case we just guess.
3576 	 */
3577 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3578 	    (origoffer == -1 ||
3579 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3580 		mss -= TCPOLEN_TSTAMP_APPA;
3581 
3582 	tp->t_maxseg = mss;
3583 }
3584 
3585 void
3586 tcp_mss(struct tcpcb *tp, int offer)
3587 {
3588 	int mss;
3589 	u_long bufsize;
3590 	struct inpcb *inp;
3591 	struct socket *so;
3592 	struct hc_metrics_lite metrics;
3593 	struct tcp_ifcap cap;
3594 
3595 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3596 
3597 	bzero(&cap, sizeof(cap));
3598 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3599 
3600 	mss = tp->t_maxseg;
3601 	inp = tp->t_inpcb;
3602 
3603 	/*
3604 	 * If there's a pipesize, change the socket buffer to that size,
3605 	 * don't change if sb_hiwat is different than default (then it
3606 	 * has been changed on purpose with setsockopt).
3607 	 * Make the socket buffers an integral number of mss units;
3608 	 * if the mss is larger than the socket buffer, decrease the mss.
3609 	 */
3610 	so = inp->inp_socket;
3611 	SOCKBUF_LOCK(&so->so_snd);
3612 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3613 		bufsize = metrics.rmx_sendpipe;
3614 	else
3615 		bufsize = so->so_snd.sb_hiwat;
3616 	if (bufsize < mss)
3617 		mss = bufsize;
3618 	else {
3619 		bufsize = roundup(bufsize, mss);
3620 		if (bufsize > sb_max)
3621 			bufsize = sb_max;
3622 		if (bufsize > so->so_snd.sb_hiwat)
3623 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3624 	}
3625 	SOCKBUF_UNLOCK(&so->so_snd);
3626 	tp->t_maxseg = mss;
3627 
3628 	SOCKBUF_LOCK(&so->so_rcv);
3629 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3630 		bufsize = metrics.rmx_recvpipe;
3631 	else
3632 		bufsize = so->so_rcv.sb_hiwat;
3633 	if (bufsize > mss) {
3634 		bufsize = roundup(bufsize, mss);
3635 		if (bufsize > sb_max)
3636 			bufsize = sb_max;
3637 		if (bufsize > so->so_rcv.sb_hiwat)
3638 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3639 	}
3640 	SOCKBUF_UNLOCK(&so->so_rcv);
3641 
3642 	/* Check the interface for TSO capabilities. */
3643 	if (cap.ifcap & CSUM_TSO) {
3644 		tp->t_flags |= TF_TSO;
3645 		tp->t_tsomax = cap.tsomax;
3646 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3647 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3648 	}
3649 }
3650 
3651 /*
3652  * Determine the MSS option to send on an outgoing SYN.
3653  */
3654 int
3655 tcp_mssopt(struct in_conninfo *inc)
3656 {
3657 	int mss = 0;
3658 	u_long maxmtu = 0;
3659 	u_long thcmtu = 0;
3660 	size_t min_protoh;
3661 
3662 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3663 
3664 #ifdef INET6
3665 	if (inc->inc_flags & INC_ISIPV6) {
3666 		mss = V_tcp_v6mssdflt;
3667 		maxmtu = tcp_maxmtu6(inc, NULL);
3668 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3669 	}
3670 #endif
3671 #if defined(INET) && defined(INET6)
3672 	else
3673 #endif
3674 #ifdef INET
3675 	{
3676 		mss = V_tcp_mssdflt;
3677 		maxmtu = tcp_maxmtu(inc, NULL);
3678 		min_protoh = sizeof(struct tcpiphdr);
3679 	}
3680 #endif
3681 #if defined(INET6) || defined(INET)
3682 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3683 #endif
3684 
3685 	if (maxmtu && thcmtu)
3686 		mss = min(maxmtu, thcmtu) - min_protoh;
3687 	else if (maxmtu || thcmtu)
3688 		mss = max(maxmtu, thcmtu) - min_protoh;
3689 
3690 	return (mss);
3691 }
3692 
3693 
3694 /*
3695  * On a partial ack arrives, force the retransmission of the
3696  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3697  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3698  * be started again.
3699  */
3700 static void
3701 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3702 {
3703 	tcp_seq onxt = tp->snd_nxt;
3704 	u_long  ocwnd = tp->snd_cwnd;
3705 
3706 	INP_WLOCK_ASSERT(tp->t_inpcb);
3707 
3708 	tcp_timer_activate(tp, TT_REXMT, 0);
3709 	tp->t_rtttime = 0;
3710 	tp->snd_nxt = th->th_ack;
3711 	/*
3712 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3713 	 * (tp->snd_una has not yet been updated when this function is called.)
3714 	 */
3715 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3716 	tp->t_flags |= TF_ACKNOW;
3717 	(void) tcp_output(tp);
3718 	tp->snd_cwnd = ocwnd;
3719 	if (SEQ_GT(onxt, tp->snd_nxt))
3720 		tp->snd_nxt = onxt;
3721 	/*
3722 	 * Partial window deflation.  Relies on fact that tp->snd_una
3723 	 * not updated yet.
3724 	 */
3725 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3726 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3727 	else
3728 		tp->snd_cwnd = 0;
3729 	tp->snd_cwnd += tp->t_maxseg;
3730 }
3731