xref: /freebsd/sys/netinet/tcp_input.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/proc.h>		/* for proc0 declaration */
47 #include <sys/protosw.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <sys/systm.h>
54 #include <sys/vimage.h>
55 
56 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #define TCPSTATES		/* for logging */
64 
65 #include <netinet/in.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
71 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_options.h>
74 #include <netinet/ip6.h>
75 #include <netinet/icmp6.h>
76 #include <netinet6/in6_pcb.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/nd6.h>
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #include <netinet6/tcp6_var.h>
85 #include <netinet/tcpip.h>
86 #include <netinet/tcp_syncache.h>
87 #ifdef TCPDEBUG
88 #include <netinet/tcp_debug.h>
89 #endif /* TCPDEBUG */
90 #include <netinet/vinet.h>
91 
92 #ifdef INET6
93 #include <netinet6/vinet6.h>
94 #endif
95 
96 #ifdef IPSEC
97 #include <netipsec/ipsec.h>
98 #include <netipsec/ipsec6.h>
99 #endif /*IPSEC*/
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static const int tcprexmtthresh = 3;
106 
107 #ifdef VIMAGE_GLOBALS
108 struct	tcpstat tcpstat;
109 int	blackhole;
110 int	tcp_delack_enabled;
111 int	drop_synfin;
112 int	tcp_do_rfc3042;
113 int	tcp_do_rfc3390;
114 int	tcp_do_ecn;
115 int	tcp_ecn_maxretries;
116 int	tcp_insecure_rst;
117 int	tcp_do_autorcvbuf;
118 int	tcp_autorcvbuf_inc;
119 int	tcp_autorcvbuf_max;
120 int	tcp_do_rfc3465;
121 int	tcp_abc_l_var;
122 #endif
123 
124 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_STATS, stats,
125     CTLFLAG_RW, tcpstat , tcpstat,
126     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
127 
128 int tcp_log_in_vain = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
130     &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
131 
132 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
133     blackhole, 0, "Do not send RST on segments to closed ports");
134 
135 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, delayed_ack,
136     CTLFLAG_RW, tcp_delack_enabled, 0,
137     "Delay ACK to try and piggyback it onto a data packet");
138 
139 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, drop_synfin,
140     CTLFLAG_RW, drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
141 
142 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
143     tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
144 
145 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
146     tcp_do_rfc3390, 0,
147     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
148 
149 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
150     tcp_do_rfc3465, 0,
151     "Enable RFC 3465 (Appropriate Byte Counting)");
152 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
153     tcp_abc_l_var, 2,
154     "Cap the max cwnd increment during slow-start to this number of segments");
155 
156 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
157 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, enable,
158     CTLFLAG_RW, tcp_do_ecn, 0, "TCP ECN support");
159 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, maxretries,
160     CTLFLAG_RW, tcp_ecn_maxretries, 0, "Max retries before giving up on ECN");
161 
162 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, insecure_rst,
163     CTLFLAG_RW, tcp_insecure_rst, 0,
164     "Follow the old (insecure) criteria for accepting RST packets");
165 
166 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_auto,
167     CTLFLAG_RW, tcp_do_autorcvbuf, 0,
168     "Enable automatic receive buffer sizing");
169 
170 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_inc,
171     CTLFLAG_RW, tcp_autorcvbuf_inc, 0,
172     "Incrementor step size of automatic receive buffer");
173 
174 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_max,
175     CTLFLAG_RW, tcp_autorcvbuf_max, 0,
176     "Max size of automatic receive buffer");
177 
178 int	tcp_read_locking = 1;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
180     &tcp_read_locking, 0, "Enable read locking strategy");
181 
182 int	tcp_rlock_atfirst;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rlock_atfirst, CTLFLAG_RD,
184     &tcp_rlock_atfirst, 0, "");
185 
186 int	tcp_wlock_atfirst;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_wlock_atfirst, CTLFLAG_RD,
188     &tcp_wlock_atfirst, 0, "");
189 
190 int	tcp_wlock_upgraded;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_upgraded, CTLFLAG_RD,
192     &tcp_wlock_upgraded, 0, "");
193 
194 int	tcp_wlock_relocked;
195 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_relocked, CTLFLAG_RD,
196     &tcp_wlock_relocked, 0, "");
197 
198 int	tcp_wlock_looped;
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_looped, CTLFLAG_RD,
200     &tcp_wlock_looped, 0, "");
201 
202 #ifdef VIMAGE_GLOBALS
203 struct inpcbhead tcb;
204 struct inpcbinfo tcbinfo;
205 #endif
206 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
207 
208 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
209 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
210 		     struct socket *, struct tcpcb *, int, int, uint8_t,
211 		     int);
212 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
213 		     struct tcpcb *, int, int);
214 static void	 tcp_pulloutofband(struct socket *,
215 		     struct tcphdr *, struct mbuf *, int);
216 static void	 tcp_xmit_timer(struct tcpcb *, int);
217 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
218 static void inline
219 		 tcp_congestion_exp(struct tcpcb *);
220 
221 static void inline
222 tcp_congestion_exp(struct tcpcb *tp)
223 {
224 	u_int win;
225 
226 	win = min(tp->snd_wnd, tp->snd_cwnd) /
227 	    2 / tp->t_maxseg;
228 	if (win < 2)
229 		win = 2;
230 	tp->snd_ssthresh = win * tp->t_maxseg;
231 	ENTER_FASTRECOVERY(tp);
232 	tp->snd_recover = tp->snd_max;
233 	if (tp->t_flags & TF_ECN_PERMIT)
234 		tp->t_flags |= TF_ECN_SND_CWR;
235 }
236 
237 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
238 #ifdef INET6
239 #define ND6_HINT(tp) \
240 do { \
241 	if ((tp) && (tp)->t_inpcb && \
242 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
243 		nd6_nud_hint(NULL, NULL, 0); \
244 } while (0)
245 #else
246 #define ND6_HINT(tp)
247 #endif
248 
249 /*
250  * Indicate whether this ack should be delayed.  We can delay the ack if
251  *	- there is no delayed ack timer in progress and
252  *	- our last ack wasn't a 0-sized window.  We never want to delay
253  *	  the ack that opens up a 0-sized window and
254  *		- delayed acks are enabled or
255  *		- this is a half-synchronized T/TCP connection.
256  */
257 #define DELAY_ACK(tp)							\
258 	((!tcp_timer_active(tp, TT_DELACK) &&				\
259 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
260 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
261 
262 /*
263  * TCP input handling is split into multiple parts:
264  *   tcp6_input is a thin wrapper around tcp_input for the extended
265  *	ip6_protox[] call format in ip6_input
266  *   tcp_input handles primary segment validation, inpcb lookup and
267  *	SYN processing on listen sockets
268  *   tcp_do_segment processes the ACK and text of the segment for
269  *	establishing, established and closing connections
270  */
271 #ifdef INET6
272 int
273 tcp6_input(struct mbuf **mp, int *offp, int proto)
274 {
275 	INIT_VNET_INET6(curvnet);
276 	struct mbuf *m = *mp;
277 	struct in6_ifaddr *ia6;
278 
279 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
280 
281 	/*
282 	 * draft-itojun-ipv6-tcp-to-anycast
283 	 * better place to put this in?
284 	 */
285 	ia6 = ip6_getdstifaddr(m);
286 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
287 		struct ip6_hdr *ip6;
288 
289 		ip6 = mtod(m, struct ip6_hdr *);
290 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
291 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
292 		return IPPROTO_DONE;
293 	}
294 
295 	tcp_input(m, *offp);
296 	return IPPROTO_DONE;
297 }
298 #endif
299 
300 void
301 tcp_input(struct mbuf *m, int off0)
302 {
303 	INIT_VNET_INET(curvnet);
304 #ifdef INET6
305 	INIT_VNET_INET6(curvnet);
306 #endif
307 #ifdef IPSEC
308 	INIT_VNET_IPSEC(curvnet);
309 #endif
310 	struct tcphdr *th;
311 	struct ip *ip = NULL;
312 	struct ipovly *ipov;
313 	struct inpcb *inp = NULL;
314 	struct tcpcb *tp = NULL;
315 	struct socket *so = NULL;
316 	u_char *optp = NULL;
317 	int optlen = 0;
318 	int len, tlen, off;
319 	int drop_hdrlen;
320 	int thflags;
321 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
322 	uint8_t iptos;
323 #ifdef IPFIREWALL_FORWARD
324 	struct m_tag *fwd_tag;
325 #endif
326 #ifdef INET6
327 	struct ip6_hdr *ip6 = NULL;
328 	int isipv6;
329 #else
330 	const void *ip6 = NULL;
331 	const int isipv6 = 0;
332 #endif
333 	struct tcpopt to;		/* options in this segment */
334 	char *s = NULL;			/* address and port logging */
335 	int ti_locked;
336 #define	TI_UNLOCKED	1
337 #define	TI_RLOCKED	2
338 #define	TI_WLOCKED	3
339 
340 #ifdef TCPDEBUG
341 	/*
342 	 * The size of tcp_saveipgen must be the size of the max ip header,
343 	 * now IPv6.
344 	 */
345 	u_char tcp_saveipgen[IP6_HDR_LEN];
346 	struct tcphdr tcp_savetcp;
347 	short ostate = 0;
348 #endif
349 
350 #ifdef INET6
351 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
352 #endif
353 
354 	to.to_flags = 0;
355 	TCPSTAT_INC(tcps_rcvtotal);
356 
357 	if (isipv6) {
358 #ifdef INET6
359 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
360 		ip6 = mtod(m, struct ip6_hdr *);
361 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
362 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
363 			TCPSTAT_INC(tcps_rcvbadsum);
364 			goto drop;
365 		}
366 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
367 
368 		/*
369 		 * Be proactive about unspecified IPv6 address in source.
370 		 * As we use all-zero to indicate unbounded/unconnected pcb,
371 		 * unspecified IPv6 address can be used to confuse us.
372 		 *
373 		 * Note that packets with unspecified IPv6 destination is
374 		 * already dropped in ip6_input.
375 		 */
376 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
377 			/* XXX stat */
378 			goto drop;
379 		}
380 #else
381 		th = NULL;		/* XXX: Avoid compiler warning. */
382 #endif
383 	} else {
384 		/*
385 		 * Get IP and TCP header together in first mbuf.
386 		 * Note: IP leaves IP header in first mbuf.
387 		 */
388 		if (off0 > sizeof (struct ip)) {
389 			ip_stripoptions(m, (struct mbuf *)0);
390 			off0 = sizeof(struct ip);
391 		}
392 		if (m->m_len < sizeof (struct tcpiphdr)) {
393 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
394 			    == NULL) {
395 				TCPSTAT_INC(tcps_rcvshort);
396 				return;
397 			}
398 		}
399 		ip = mtod(m, struct ip *);
400 		ipov = (struct ipovly *)ip;
401 		th = (struct tcphdr *)((caddr_t)ip + off0);
402 		tlen = ip->ip_len;
403 
404 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
405 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
406 				th->th_sum = m->m_pkthdr.csum_data;
407 			else
408 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
409 						ip->ip_dst.s_addr,
410 						htonl(m->m_pkthdr.csum_data +
411 							ip->ip_len +
412 							IPPROTO_TCP));
413 			th->th_sum ^= 0xffff;
414 #ifdef TCPDEBUG
415 			ipov->ih_len = (u_short)tlen;
416 			ipov->ih_len = htons(ipov->ih_len);
417 #endif
418 		} else {
419 			/*
420 			 * Checksum extended TCP header and data.
421 			 */
422 			len = sizeof (struct ip) + tlen;
423 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
424 			ipov->ih_len = (u_short)tlen;
425 			ipov->ih_len = htons(ipov->ih_len);
426 			th->th_sum = in_cksum(m, len);
427 		}
428 		if (th->th_sum) {
429 			TCPSTAT_INC(tcps_rcvbadsum);
430 			goto drop;
431 		}
432 		/* Re-initialization for later version check */
433 		ip->ip_v = IPVERSION;
434 	}
435 
436 #ifdef INET6
437 	if (isipv6)
438 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
439 	else
440 #endif
441 		iptos = ip->ip_tos;
442 
443 	/*
444 	 * Check that TCP offset makes sense,
445 	 * pull out TCP options and adjust length.		XXX
446 	 */
447 	off = th->th_off << 2;
448 	if (off < sizeof (struct tcphdr) || off > tlen) {
449 		TCPSTAT_INC(tcps_rcvbadoff);
450 		goto drop;
451 	}
452 	tlen -= off;	/* tlen is used instead of ti->ti_len */
453 	if (off > sizeof (struct tcphdr)) {
454 		if (isipv6) {
455 #ifdef INET6
456 			IP6_EXTHDR_CHECK(m, off0, off, );
457 			ip6 = mtod(m, struct ip6_hdr *);
458 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
459 #endif
460 		} else {
461 			if (m->m_len < sizeof(struct ip) + off) {
462 				if ((m = m_pullup(m, sizeof (struct ip) + off))
463 				    == NULL) {
464 					TCPSTAT_INC(tcps_rcvshort);
465 					return;
466 				}
467 				ip = mtod(m, struct ip *);
468 				ipov = (struct ipovly *)ip;
469 				th = (struct tcphdr *)((caddr_t)ip + off0);
470 			}
471 		}
472 		optlen = off - sizeof (struct tcphdr);
473 		optp = (u_char *)(th + 1);
474 	}
475 	thflags = th->th_flags;
476 
477 	/*
478 	 * Convert TCP protocol specific fields to host format.
479 	 */
480 	th->th_seq = ntohl(th->th_seq);
481 	th->th_ack = ntohl(th->th_ack);
482 	th->th_win = ntohs(th->th_win);
483 	th->th_urp = ntohs(th->th_urp);
484 
485 	/*
486 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
487 	 */
488 	drop_hdrlen = off0 + off;
489 
490 	/*
491 	 * Locate pcb for segment, which requires a lock on tcbinfo.
492 	 * Optimisticaly acquire a global read lock rather than a write lock
493 	 * unless header flags necessarily imply a state change.  There are
494 	 * two cases where we might discover later we need a write lock
495 	 * despite the flags: ACKs moving a connection out of the syncache,
496 	 * and ACKs for a connection in TIMEWAIT.
497 	 */
498 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
499 	    tcp_read_locking == 0) {
500 		INP_INFO_WLOCK(&V_tcbinfo);
501 		ti_locked = TI_WLOCKED;
502 		tcp_wlock_atfirst++;
503 	} else {
504 		INP_INFO_RLOCK(&V_tcbinfo);
505 		ti_locked = TI_RLOCKED;
506 		tcp_rlock_atfirst++;
507 	}
508 
509 findpcb:
510 #ifdef INVARIANTS
511 	if (ti_locked == TI_RLOCKED)
512 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
513 	else if (ti_locked == TI_WLOCKED)
514 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
515 	else
516 		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
517 #endif
518 
519 #ifdef IPFIREWALL_FORWARD
520 	/*
521 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
522 	 */
523 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
524 
525 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
526 		struct sockaddr_in *next_hop;
527 
528 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
529 		/*
530 		 * Transparently forwarded. Pretend to be the destination.
531 		 * already got one like this?
532 		 */
533 		inp = in_pcblookup_hash(&V_tcbinfo,
534 					ip->ip_src, th->th_sport,
535 					ip->ip_dst, th->th_dport,
536 					0, m->m_pkthdr.rcvif);
537 		if (!inp) {
538 			/* It's new.  Try to find the ambushing socket. */
539 			inp = in_pcblookup_hash(&V_tcbinfo,
540 						ip->ip_src, th->th_sport,
541 						next_hop->sin_addr,
542 						next_hop->sin_port ?
543 						    ntohs(next_hop->sin_port) :
544 						    th->th_dport,
545 						INPLOOKUP_WILDCARD,
546 						m->m_pkthdr.rcvif);
547 		}
548 		/* Remove the tag from the packet.  We don't need it anymore. */
549 		m_tag_delete(m, fwd_tag);
550 	} else
551 #endif /* IPFIREWALL_FORWARD */
552 	{
553 		if (isipv6) {
554 #ifdef INET6
555 			inp = in6_pcblookup_hash(&V_tcbinfo,
556 						 &ip6->ip6_src, th->th_sport,
557 						 &ip6->ip6_dst, th->th_dport,
558 						 INPLOOKUP_WILDCARD,
559 						 m->m_pkthdr.rcvif);
560 #endif
561 		} else
562 			inp = in_pcblookup_hash(&V_tcbinfo,
563 						ip->ip_src, th->th_sport,
564 						ip->ip_dst, th->th_dport,
565 						INPLOOKUP_WILDCARD,
566 						m->m_pkthdr.rcvif);
567 	}
568 
569 	/*
570 	 * If the INPCB does not exist then all data in the incoming
571 	 * segment is discarded and an appropriate RST is sent back.
572 	 * XXX MRT Send RST using which routing table?
573 	 */
574 	if (inp == NULL) {
575 		/*
576 		 * Log communication attempts to ports that are not
577 		 * in use.
578 		 */
579 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
580 		    tcp_log_in_vain == 2) {
581 			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
582 				log(LOG_INFO, "%s; %s: Connection attempt "
583 				    "to closed port\n", s, __func__);
584 		}
585 		/*
586 		 * When blackholing do not respond with a RST but
587 		 * completely ignore the segment and drop it.
588 		 */
589 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
590 		    V_blackhole == 2)
591 			goto dropunlock;
592 
593 		rstreason = BANDLIM_RST_CLOSEDPORT;
594 		goto dropwithreset;
595 	}
596 	INP_WLOCK(inp);
597 	if (!(inp->inp_flags & INP_HW_FLOWID)
598 	    && (m->m_flags & M_FLOWID)
599 	    && ((inp->inp_socket == NULL)
600 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
601 		inp->inp_flags |= INP_HW_FLOWID;
602 		inp->inp_flags &= ~INP_SW_FLOWID;
603 		inp->inp_flowid = m->m_pkthdr.flowid;
604 	}
605 #ifdef IPSEC
606 #ifdef INET6
607 	if (isipv6 && ipsec6_in_reject(m, inp)) {
608 		V_ipsec6stat.in_polvio++;
609 		goto dropunlock;
610 	} else
611 #endif /* INET6 */
612 	if (ipsec4_in_reject(m, inp) != 0) {
613 		V_ipsec4stat.in_polvio++;
614 		goto dropunlock;
615 	}
616 #endif /* IPSEC */
617 
618 	/*
619 	 * Check the minimum TTL for socket.
620 	 */
621 	if (inp->inp_ip_minttl != 0) {
622 #ifdef INET6
623 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
624 			goto dropunlock;
625 		else
626 #endif
627 		if (inp->inp_ip_minttl > ip->ip_ttl)
628 			goto dropunlock;
629 	}
630 
631 	/*
632 	 * A previous connection in TIMEWAIT state is supposed to catch stray
633 	 * or duplicate segments arriving late.  If this segment was a
634 	 * legitimate new connection attempt the old INPCB gets removed and
635 	 * we can try again to find a listening socket.
636 	 *
637 	 * At this point, due to earlier optimism, we may hold a read lock on
638 	 * the inpcbinfo, rather than a write lock.  If so, we need to
639 	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
640 	 * all locks, acquire a global write lock, and then re-acquire the
641 	 * inpcb lock.  We may at that point discover that another thread has
642 	 * tried to free the inpcb, in which case we need to loop back and
643 	 * try to find a new inpcb to deliver to.
644 	 */
645 	if (inp->inp_flags & INP_TIMEWAIT) {
646 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
647 		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
648 
649 		if (ti_locked == TI_RLOCKED) {
650 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
651 				in_pcbref(inp);
652 				INP_WUNLOCK(inp);
653 				INP_INFO_RUNLOCK(&V_tcbinfo);
654 				INP_INFO_WLOCK(&V_tcbinfo);
655 				ti_locked = TI_WLOCKED;
656 				INP_WLOCK(inp);
657 				if (in_pcbrele(inp)) {
658 					tcp_wlock_looped++;
659 					inp = NULL;
660 					goto findpcb;
661 				}
662 				tcp_wlock_relocked++;
663 			} else {
664 				ti_locked = TI_WLOCKED;
665 				tcp_wlock_upgraded++;
666 			}
667 		}
668 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
669 
670 		if (thflags & TH_SYN)
671 			tcp_dooptions(&to, optp, optlen, TO_SYN);
672 		/*
673 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
674 		 */
675 		if (tcp_twcheck(inp, &to, th, m, tlen))
676 			goto findpcb;
677 		INP_INFO_WUNLOCK(&V_tcbinfo);
678 		return;
679 	}
680 	/*
681 	 * The TCPCB may no longer exist if the connection is winding
682 	 * down or it is in the CLOSED state.  Either way we drop the
683 	 * segment and send an appropriate response.
684 	 */
685 	tp = intotcpcb(inp);
686 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
687 		rstreason = BANDLIM_RST_CLOSEDPORT;
688 		goto dropwithreset;
689 	}
690 
691 	/*
692 	 * We've identified a valid inpcb, but it could be that we need an
693 	 * inpcbinfo write lock and have only a read lock.  In this case,
694 	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
695 	 * case above.
696 	 */
697 	if (tp->t_state != TCPS_ESTABLISHED ||
698 	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
699 	    tcp_read_locking == 0) {
700 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
701 		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
702 
703 		if (ti_locked == TI_RLOCKED) {
704 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
705 				in_pcbref(inp);
706 				INP_WUNLOCK(inp);
707 				INP_INFO_RUNLOCK(&V_tcbinfo);
708 				INP_INFO_WLOCK(&V_tcbinfo);
709 				ti_locked = TI_WLOCKED;
710 				INP_WLOCK(inp);
711 				if (in_pcbrele(inp)) {
712 					tcp_wlock_looped++;
713 					inp = NULL;
714 					goto findpcb;
715 				}
716 				tcp_wlock_relocked++;
717 			} else {
718 				ti_locked = TI_WLOCKED;
719 				tcp_wlock_upgraded++;
720 			}
721 		}
722 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
723 	}
724 
725 #ifdef MAC
726 	INP_WLOCK_ASSERT(inp);
727 	if (mac_inpcb_check_deliver(inp, m))
728 		goto dropunlock;
729 #endif
730 	so = inp->inp_socket;
731 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
732 #ifdef TCPDEBUG
733 	if (so->so_options & SO_DEBUG) {
734 		ostate = tp->t_state;
735 		if (isipv6) {
736 #ifdef INET6
737 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
738 #endif
739 		} else
740 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
741 		tcp_savetcp = *th;
742 	}
743 #endif
744 	/*
745 	 * When the socket is accepting connections (the INPCB is in LISTEN
746 	 * state) we look into the SYN cache if this is a new connection
747 	 * attempt or the completion of a previous one.
748 	 */
749 	if (so->so_options & SO_ACCEPTCONN) {
750 		struct in_conninfo inc;
751 
752 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
753 		    "tp not listening", __func__));
754 
755 		bzero(&inc, sizeof(inc));
756 #ifdef INET6
757 		if (isipv6) {
758 			inc.inc_flags |= INC_ISIPV6;
759 			inc.inc6_faddr = ip6->ip6_src;
760 			inc.inc6_laddr = ip6->ip6_dst;
761 		} else
762 #endif
763 		{
764 			inc.inc_faddr = ip->ip_src;
765 			inc.inc_laddr = ip->ip_dst;
766 		}
767 		inc.inc_fport = th->th_sport;
768 		inc.inc_lport = th->th_dport;
769 
770 		/*
771 		 * Check for an existing connection attempt in syncache if
772 		 * the flag is only ACK.  A successful lookup creates a new
773 		 * socket appended to the listen queue in SYN_RECEIVED state.
774 		 */
775 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
776 			/*
777 			 * Parse the TCP options here because
778 			 * syncookies need access to the reflected
779 			 * timestamp.
780 			 */
781 			tcp_dooptions(&to, optp, optlen, 0);
782 			/*
783 			 * NB: syncache_expand() doesn't unlock
784 			 * inp and tcpinfo locks.
785 			 */
786 			if (!syncache_expand(&inc, &to, th, &so, m)) {
787 				/*
788 				 * No syncache entry or ACK was not
789 				 * for our SYN/ACK.  Send a RST.
790 				 * NB: syncache did its own logging
791 				 * of the failure cause.
792 				 */
793 				rstreason = BANDLIM_RST_OPENPORT;
794 				goto dropwithreset;
795 			}
796 			if (so == NULL) {
797 				/*
798 				 * We completed the 3-way handshake
799 				 * but could not allocate a socket
800 				 * either due to memory shortage,
801 				 * listen queue length limits or
802 				 * global socket limits.  Send RST
803 				 * or wait and have the remote end
804 				 * retransmit the ACK for another
805 				 * try.
806 				 */
807 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
808 					log(LOG_DEBUG, "%s; %s: Listen socket: "
809 					    "Socket allocation failed due to "
810 					    "limits or memory shortage, %s\n",
811 					    s, __func__,
812 					    V_tcp_sc_rst_sock_fail ?
813 					    "sending RST" : "try again");
814 				if (V_tcp_sc_rst_sock_fail) {
815 					rstreason = BANDLIM_UNLIMITED;
816 					goto dropwithreset;
817 				} else
818 					goto dropunlock;
819 			}
820 			/*
821 			 * Socket is created in state SYN_RECEIVED.
822 			 * Unlock the listen socket, lock the newly
823 			 * created socket and update the tp variable.
824 			 */
825 			INP_WUNLOCK(inp);	/* listen socket */
826 			inp = sotoinpcb(so);
827 			INP_WLOCK(inp);		/* new connection */
828 			tp = intotcpcb(inp);
829 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
830 			    ("%s: ", __func__));
831 			/*
832 			 * Process the segment and the data it
833 			 * contains.  tcp_do_segment() consumes
834 			 * the mbuf chain and unlocks the inpcb.
835 			 */
836 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
837 			    iptos, ti_locked);
838 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
839 			return;
840 		}
841 		/*
842 		 * Segment flag validation for new connection attempts:
843 		 *
844 		 * Our (SYN|ACK) response was rejected.
845 		 * Check with syncache and remove entry to prevent
846 		 * retransmits.
847 		 *
848 		 * NB: syncache_chkrst does its own logging of failure
849 		 * causes.
850 		 */
851 		if (thflags & TH_RST) {
852 			syncache_chkrst(&inc, th);
853 			goto dropunlock;
854 		}
855 		/*
856 		 * We can't do anything without SYN.
857 		 */
858 		if ((thflags & TH_SYN) == 0) {
859 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
860 				log(LOG_DEBUG, "%s; %s: Listen socket: "
861 				    "SYN is missing, segment ignored\n",
862 				    s, __func__);
863 			TCPSTAT_INC(tcps_badsyn);
864 			goto dropunlock;
865 		}
866 		/*
867 		 * (SYN|ACK) is bogus on a listen socket.
868 		 */
869 		if (thflags & TH_ACK) {
870 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
871 				log(LOG_DEBUG, "%s; %s: Listen socket: "
872 				    "SYN|ACK invalid, segment rejected\n",
873 				    s, __func__);
874 			syncache_badack(&inc);	/* XXX: Not needed! */
875 			TCPSTAT_INC(tcps_badsyn);
876 			rstreason = BANDLIM_RST_OPENPORT;
877 			goto dropwithreset;
878 		}
879 		/*
880 		 * If the drop_synfin option is enabled, drop all
881 		 * segments with both the SYN and FIN bits set.
882 		 * This prevents e.g. nmap from identifying the
883 		 * TCP/IP stack.
884 		 * XXX: Poor reasoning.  nmap has other methods
885 		 * and is constantly refining its stack detection
886 		 * strategies.
887 		 * XXX: This is a violation of the TCP specification
888 		 * and was used by RFC1644.
889 		 */
890 		if ((thflags & TH_FIN) && V_drop_synfin) {
891 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
892 				log(LOG_DEBUG, "%s; %s: Listen socket: "
893 				    "SYN|FIN segment ignored (based on "
894 				    "sysctl setting)\n", s, __func__);
895 			TCPSTAT_INC(tcps_badsyn);
896                 	goto dropunlock;
897 		}
898 		/*
899 		 * Segment's flags are (SYN) or (SYN|FIN).
900 		 *
901 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
902 		 * as they do not affect the state of the TCP FSM.
903 		 * The data pointed to by TH_URG and th_urp is ignored.
904 		 */
905 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
906 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
907 		KASSERT(thflags & (TH_SYN),
908 		    ("%s: Listen socket: TH_SYN not set", __func__));
909 #ifdef INET6
910 		/*
911 		 * If deprecated address is forbidden,
912 		 * we do not accept SYN to deprecated interface
913 		 * address to prevent any new inbound connection from
914 		 * getting established.
915 		 * When we do not accept SYN, we send a TCP RST,
916 		 * with deprecated source address (instead of dropping
917 		 * it).  We compromise it as it is much better for peer
918 		 * to send a RST, and RST will be the final packet
919 		 * for the exchange.
920 		 *
921 		 * If we do not forbid deprecated addresses, we accept
922 		 * the SYN packet.  RFC2462 does not suggest dropping
923 		 * SYN in this case.
924 		 * If we decipher RFC2462 5.5.4, it says like this:
925 		 * 1. use of deprecated addr with existing
926 		 *    communication is okay - "SHOULD continue to be
927 		 *    used"
928 		 * 2. use of it with new communication:
929 		 *   (2a) "SHOULD NOT be used if alternate address
930 		 *        with sufficient scope is available"
931 		 *   (2b) nothing mentioned otherwise.
932 		 * Here we fall into (2b) case as we have no choice in
933 		 * our source address selection - we must obey the peer.
934 		 *
935 		 * The wording in RFC2462 is confusing, and there are
936 		 * multiple description text for deprecated address
937 		 * handling - worse, they are not exactly the same.
938 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
939 		 */
940 		if (isipv6 && !V_ip6_use_deprecated) {
941 			struct in6_ifaddr *ia6;
942 
943 			if ((ia6 = ip6_getdstifaddr(m)) &&
944 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
945 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
946 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
947 					"Connection attempt to deprecated "
948 					"IPv6 address rejected\n",
949 					s, __func__);
950 				rstreason = BANDLIM_RST_OPENPORT;
951 				goto dropwithreset;
952 			}
953 		}
954 #endif
955 		/*
956 		 * Basic sanity checks on incoming SYN requests:
957 		 *   Don't respond if the destination is a link layer
958 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
959 		 *   If it is from this socket it must be forged.
960 		 *   Don't respond if the source or destination is a
961 		 *	global or subnet broad- or multicast address.
962 		 *   Note that it is quite possible to receive unicast
963 		 *	link-layer packets with a broadcast IP address. Use
964 		 *	in_broadcast() to find them.
965 		 */
966 		if (m->m_flags & (M_BCAST|M_MCAST)) {
967 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
968 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
969 				"Connection attempt from broad- or multicast "
970 				"link layer address ignored\n", s, __func__);
971 			goto dropunlock;
972 		}
973 		if (isipv6) {
974 #ifdef INET6
975 			if (th->th_dport == th->th_sport &&
976 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
977 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
978 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
979 					"Connection attempt to/from self "
980 					"ignored\n", s, __func__);
981 				goto dropunlock;
982 			}
983 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
984 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
985 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
986 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
987 					"Connection attempt from/to multicast "
988 					"address ignored\n", s, __func__);
989 				goto dropunlock;
990 			}
991 #endif
992 		} else {
993 			if (th->th_dport == th->th_sport &&
994 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
995 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
996 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
997 					"Connection attempt from/to self "
998 					"ignored\n", s, __func__);
999 				goto dropunlock;
1000 			}
1001 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1002 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1003 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1004 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1005 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1006 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1007 					"Connection attempt from/to broad- "
1008 					"or multicast address ignored\n",
1009 					s, __func__);
1010 				goto dropunlock;
1011 			}
1012 		}
1013 		/*
1014 		 * SYN appears to be valid.  Create compressed TCP state
1015 		 * for syncache.
1016 		 */
1017 #ifdef TCPDEBUG
1018 		if (so->so_options & SO_DEBUG)
1019 			tcp_trace(TA_INPUT, ostate, tp,
1020 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1021 #endif
1022 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1023 		syncache_add(&inc, &to, th, inp, &so, m);
1024 		/*
1025 		 * Entry added to syncache and mbuf consumed.
1026 		 * Everything already unlocked by syncache_add().
1027 		 */
1028 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1029 		return;
1030 	}
1031 
1032 	/*
1033 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1034 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1035 	 * the inpcb, and unlocks pcbinfo.
1036 	 */
1037 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1038 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1039 	return;
1040 
1041 dropwithreset:
1042 	if (ti_locked == TI_RLOCKED)
1043 		INP_INFO_RUNLOCK(&V_tcbinfo);
1044 	else if (ti_locked == TI_WLOCKED)
1045 		INP_INFO_WUNLOCK(&V_tcbinfo);
1046 	else
1047 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1048 	ti_locked = TI_UNLOCKED;
1049 
1050 	if (inp != NULL) {
1051 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1052 		INP_WUNLOCK(inp);
1053 	} else
1054 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1055 	m = NULL;	/* mbuf chain got consumed. */
1056 	goto drop;
1057 
1058 dropunlock:
1059 	if (ti_locked == TI_RLOCKED)
1060 		INP_INFO_RUNLOCK(&V_tcbinfo);
1061 	else if (ti_locked == TI_WLOCKED)
1062 		INP_INFO_WUNLOCK(&V_tcbinfo);
1063 	else
1064 		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1065 	ti_locked = TI_UNLOCKED;
1066 
1067 	if (inp != NULL)
1068 		INP_WUNLOCK(inp);
1069 
1070 drop:
1071 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1072 	if (s != NULL)
1073 		free(s, M_TCPLOG);
1074 	if (m != NULL)
1075 		m_freem(m);
1076 }
1077 
1078 static void
1079 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1080     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1081     int ti_locked)
1082 {
1083 	INIT_VNET_INET(tp->t_vnet);
1084 	int thflags, acked, ourfinisacked, needoutput = 0;
1085 	int rstreason, todrop, win;
1086 	u_long tiwin;
1087 	struct tcpopt to;
1088 
1089 #ifdef TCPDEBUG
1090 	/*
1091 	 * The size of tcp_saveipgen must be the size of the max ip header,
1092 	 * now IPv6.
1093 	 */
1094 	u_char tcp_saveipgen[IP6_HDR_LEN];
1095 	struct tcphdr tcp_savetcp;
1096 	short ostate = 0;
1097 #endif
1098 	thflags = th->th_flags;
1099 
1100 	/*
1101 	 * If this is either a state-changing packet or current state isn't
1102 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1103 	 * allow either a read lock or a write lock, as we may have acquired
1104 	 * a write lock due to a race.
1105 	 *
1106 	 * Require a global write lock for SYN/FIN/RST segments or
1107 	 * non-established connections; otherwise accept either a read or
1108 	 * write lock, as we may have conservatively acquired a write lock in
1109 	 * certain cases in tcp_input() (is this still true?).  Currently we
1110 	 * will never enter with no lock, so we try to drop it quickly in the
1111 	 * common pure ack/pure data cases.
1112 	 */
1113 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1114 	    tp->t_state != TCPS_ESTABLISHED) {
1115 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1116 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1117 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1118 	} else {
1119 #ifdef INVARIANTS
1120 		if (ti_locked == TI_RLOCKED)
1121 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1122 		else if (ti_locked == TI_WLOCKED)
1123 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1124 		else
1125 			panic("%s: ti_locked %d for EST", __func__,
1126 			    ti_locked);
1127 #endif
1128 	}
1129 	INP_WLOCK_ASSERT(tp->t_inpcb);
1130 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1131 	    __func__));
1132 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1133 	    __func__));
1134 
1135 	/*
1136 	 * Segment received on connection.
1137 	 * Reset idle time and keep-alive timer.
1138 	 * XXX: This should be done after segment
1139 	 * validation to ignore broken/spoofed segs.
1140 	 */
1141 	tp->t_rcvtime = ticks;
1142 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1143 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1144 
1145 	/*
1146 	 * Unscale the window into a 32-bit value.
1147 	 * For the SYN_SENT state the scale is zero.
1148 	 */
1149 	tiwin = th->th_win << tp->snd_scale;
1150 
1151 	/*
1152 	 * TCP ECN processing.
1153 	 */
1154 	if (tp->t_flags & TF_ECN_PERMIT) {
1155 		switch (iptos & IPTOS_ECN_MASK) {
1156 		case IPTOS_ECN_CE:
1157 			tp->t_flags |= TF_ECN_SND_ECE;
1158 			TCPSTAT_INC(tcps_ecn_ce);
1159 			break;
1160 		case IPTOS_ECN_ECT0:
1161 			TCPSTAT_INC(tcps_ecn_ect0);
1162 			break;
1163 		case IPTOS_ECN_ECT1:
1164 			TCPSTAT_INC(tcps_ecn_ect1);
1165 			break;
1166 		}
1167 
1168 		if (thflags & TH_CWR)
1169 			tp->t_flags &= ~TF_ECN_SND_ECE;
1170 
1171 		/*
1172 		 * Congestion experienced.
1173 		 * Ignore if we are already trying to recover.
1174 		 */
1175 		if ((thflags & TH_ECE) &&
1176 		    SEQ_LEQ(th->th_ack, tp->snd_recover)) {
1177 			TCPSTAT_INC(tcps_ecn_rcwnd);
1178 			tcp_congestion_exp(tp);
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * Parse options on any incoming segment.
1184 	 */
1185 	tcp_dooptions(&to, (u_char *)(th + 1),
1186 	    (th->th_off << 2) - sizeof(struct tcphdr),
1187 	    (thflags & TH_SYN) ? TO_SYN : 0);
1188 
1189 	/*
1190 	 * If echoed timestamp is later than the current time,
1191 	 * fall back to non RFC1323 RTT calculation.  Normalize
1192 	 * timestamp if syncookies were used when this connection
1193 	 * was established.
1194 	 */
1195 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1196 		to.to_tsecr -= tp->ts_offset;
1197 		if (TSTMP_GT(to.to_tsecr, ticks))
1198 			to.to_tsecr = 0;
1199 	}
1200 
1201 	/*
1202 	 * Process options only when we get SYN/ACK back. The SYN case
1203 	 * for incoming connections is handled in tcp_syncache.
1204 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1205 	 * or <SYN,ACK>) segment itself is never scaled.
1206 	 * XXX this is traditional behavior, may need to be cleaned up.
1207 	 */
1208 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1209 		if ((to.to_flags & TOF_SCALE) &&
1210 		    (tp->t_flags & TF_REQ_SCALE)) {
1211 			tp->t_flags |= TF_RCVD_SCALE;
1212 			tp->snd_scale = to.to_wscale;
1213 		}
1214 		/*
1215 		 * Initial send window.  It will be updated with
1216 		 * the next incoming segment to the scaled value.
1217 		 */
1218 		tp->snd_wnd = th->th_win;
1219 		if (to.to_flags & TOF_TS) {
1220 			tp->t_flags |= TF_RCVD_TSTMP;
1221 			tp->ts_recent = to.to_tsval;
1222 			tp->ts_recent_age = ticks;
1223 		}
1224 		if (to.to_flags & TOF_MSS)
1225 			tcp_mss(tp, to.to_mss);
1226 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1227 		    (to.to_flags & TOF_SACKPERM) == 0)
1228 			tp->t_flags &= ~TF_SACK_PERMIT;
1229 	}
1230 
1231 	/*
1232 	 * Header prediction: check for the two common cases
1233 	 * of a uni-directional data xfer.  If the packet has
1234 	 * no control flags, is in-sequence, the window didn't
1235 	 * change and we're not retransmitting, it's a
1236 	 * candidate.  If the length is zero and the ack moved
1237 	 * forward, we're the sender side of the xfer.  Just
1238 	 * free the data acked & wake any higher level process
1239 	 * that was blocked waiting for space.  If the length
1240 	 * is non-zero and the ack didn't move, we're the
1241 	 * receiver side.  If we're getting packets in-order
1242 	 * (the reassembly queue is empty), add the data to
1243 	 * the socket buffer and note that we need a delayed ack.
1244 	 * Make sure that the hidden state-flags are also off.
1245 	 * Since we check for TCPS_ESTABLISHED first, it can only
1246 	 * be TH_NEEDSYN.
1247 	 */
1248 	if (tp->t_state == TCPS_ESTABLISHED &&
1249 	    th->th_seq == tp->rcv_nxt &&
1250 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1251 	    tp->snd_nxt == tp->snd_max &&
1252 	    tiwin && tiwin == tp->snd_wnd &&
1253 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1254 	    LIST_EMPTY(&tp->t_segq) &&
1255 	    ((to.to_flags & TOF_TS) == 0 ||
1256 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1257 
1258 		/*
1259 		 * If last ACK falls within this segment's sequence numbers,
1260 		 * record the timestamp.
1261 		 * NOTE that the test is modified according to the latest
1262 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1263 		 */
1264 		if ((to.to_flags & TOF_TS) != 0 &&
1265 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1266 			tp->ts_recent_age = ticks;
1267 			tp->ts_recent = to.to_tsval;
1268 		}
1269 
1270 		if (tlen == 0) {
1271 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1272 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1273 			    tp->snd_cwnd >= tp->snd_wnd &&
1274 			    ((!V_tcp_do_newreno &&
1275 			      !(tp->t_flags & TF_SACK_PERMIT) &&
1276 			      tp->t_dupacks < tcprexmtthresh) ||
1277 			     ((V_tcp_do_newreno ||
1278 			       (tp->t_flags & TF_SACK_PERMIT)) &&
1279 			      !IN_FASTRECOVERY(tp) &&
1280 			      (to.to_flags & TOF_SACK) == 0 &&
1281 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1282 				/*
1283 				 * This is a pure ack for outstanding data.
1284 				 */
1285 				if (ti_locked == TI_RLOCKED)
1286 					INP_INFO_RUNLOCK(&V_tcbinfo);
1287 				else if (ti_locked == TI_WLOCKED)
1288 					INP_INFO_WUNLOCK(&V_tcbinfo);
1289 				else
1290 					panic("%s: ti_locked %d on pure ACK",
1291 					    __func__, ti_locked);
1292 				ti_locked = TI_UNLOCKED;
1293 
1294 				TCPSTAT_INC(tcps_predack);
1295 
1296 				/*
1297 				 * "bad retransmit" recovery.
1298 				 */
1299 				if (tp->t_rxtshift == 1 &&
1300 				    ticks < tp->t_badrxtwin) {
1301 					TCPSTAT_INC(tcps_sndrexmitbad);
1302 					tp->snd_cwnd = tp->snd_cwnd_prev;
1303 					tp->snd_ssthresh =
1304 					    tp->snd_ssthresh_prev;
1305 					tp->snd_recover = tp->snd_recover_prev;
1306 					if (tp->t_flags & TF_WASFRECOVERY)
1307 					    ENTER_FASTRECOVERY(tp);
1308 					tp->snd_nxt = tp->snd_max;
1309 					tp->t_badrxtwin = 0;
1310 				}
1311 
1312 				/*
1313 				 * Recalculate the transmit timer / rtt.
1314 				 *
1315 				 * Some boxes send broken timestamp replies
1316 				 * during the SYN+ACK phase, ignore
1317 				 * timestamps of 0 or we could calculate a
1318 				 * huge RTT and blow up the retransmit timer.
1319 				 */
1320 				if ((to.to_flags & TOF_TS) != 0 &&
1321 				    to.to_tsecr) {
1322 					if (!tp->t_rttlow ||
1323 					    tp->t_rttlow > ticks - to.to_tsecr)
1324 						tp->t_rttlow = ticks - to.to_tsecr;
1325 					tcp_xmit_timer(tp,
1326 					    ticks - to.to_tsecr + 1);
1327 				} else if (tp->t_rtttime &&
1328 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1329 					if (!tp->t_rttlow ||
1330 					    tp->t_rttlow > ticks - tp->t_rtttime)
1331 						tp->t_rttlow = ticks - tp->t_rtttime;
1332 					tcp_xmit_timer(tp,
1333 							ticks - tp->t_rtttime);
1334 				}
1335 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1336 				acked = th->th_ack - tp->snd_una;
1337 				TCPSTAT_INC(tcps_rcvackpack);
1338 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1339 				sbdrop(&so->so_snd, acked);
1340 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1341 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1342 					tp->snd_recover = th->th_ack - 1;
1343 				tp->snd_una = th->th_ack;
1344 				/*
1345 				 * Pull snd_wl2 up to prevent seq wrap relative
1346 				 * to th_ack.
1347 				 */
1348 				tp->snd_wl2 = th->th_ack;
1349 				tp->t_dupacks = 0;
1350 				m_freem(m);
1351 				ND6_HINT(tp); /* Some progress has been made. */
1352 
1353 				/*
1354 				 * If all outstanding data are acked, stop
1355 				 * retransmit timer, otherwise restart timer
1356 				 * using current (possibly backed-off) value.
1357 				 * If process is waiting for space,
1358 				 * wakeup/selwakeup/signal.  If data
1359 				 * are ready to send, let tcp_output
1360 				 * decide between more output or persist.
1361 				 */
1362 #ifdef TCPDEBUG
1363 				if (so->so_options & SO_DEBUG)
1364 					tcp_trace(TA_INPUT, ostate, tp,
1365 					    (void *)tcp_saveipgen,
1366 					    &tcp_savetcp, 0);
1367 #endif
1368 				if (tp->snd_una == tp->snd_max)
1369 					tcp_timer_activate(tp, TT_REXMT, 0);
1370 				else if (!tcp_timer_active(tp, TT_PERSIST))
1371 					tcp_timer_activate(tp, TT_REXMT,
1372 						      tp->t_rxtcur);
1373 				sowwakeup(so);
1374 				if (so->so_snd.sb_cc)
1375 					(void) tcp_output(tp);
1376 				goto check_delack;
1377 			}
1378 		} else if (th->th_ack == tp->snd_una &&
1379 		    tlen <= sbspace(&so->so_rcv)) {
1380 			int newsize = 0;	/* automatic sockbuf scaling */
1381 
1382 			/*
1383 			 * This is a pure, in-sequence data packet with
1384 			 * nothing on the reassembly queue and we have enough
1385 			 * buffer space to take it.
1386 			 */
1387 			if (ti_locked == TI_RLOCKED)
1388 				INP_INFO_RUNLOCK(&V_tcbinfo);
1389 			else if (ti_locked == TI_WLOCKED)
1390 				INP_INFO_WUNLOCK(&V_tcbinfo);
1391 			else
1392 				panic("%s: ti_locked %d on pure data "
1393 				    "segment", __func__, ti_locked);
1394 			ti_locked = TI_UNLOCKED;
1395 
1396 			/* Clean receiver SACK report if present */
1397 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1398 				tcp_clean_sackreport(tp);
1399 			TCPSTAT_INC(tcps_preddat);
1400 			tp->rcv_nxt += tlen;
1401 			/*
1402 			 * Pull snd_wl1 up to prevent seq wrap relative to
1403 			 * th_seq.
1404 			 */
1405 			tp->snd_wl1 = th->th_seq;
1406 			/*
1407 			 * Pull rcv_up up to prevent seq wrap relative to
1408 			 * rcv_nxt.
1409 			 */
1410 			tp->rcv_up = tp->rcv_nxt;
1411 			TCPSTAT_INC(tcps_rcvpack);
1412 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1413 			ND6_HINT(tp);	/* Some progress has been made */
1414 #ifdef TCPDEBUG
1415 			if (so->so_options & SO_DEBUG)
1416 				tcp_trace(TA_INPUT, ostate, tp,
1417 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1418 #endif
1419 		/*
1420 		 * Automatic sizing of receive socket buffer.  Often the send
1421 		 * buffer size is not optimally adjusted to the actual network
1422 		 * conditions at hand (delay bandwidth product).  Setting the
1423 		 * buffer size too small limits throughput on links with high
1424 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1425 		 *
1426 		 * On the receive side the socket buffer memory is only rarely
1427 		 * used to any significant extent.  This allows us to be much
1428 		 * more aggressive in scaling the receive socket buffer.  For
1429 		 * the case that the buffer space is actually used to a large
1430 		 * extent and we run out of kernel memory we can simply drop
1431 		 * the new segments; TCP on the sender will just retransmit it
1432 		 * later.  Setting the buffer size too big may only consume too
1433 		 * much kernel memory if the application doesn't read() from
1434 		 * the socket or packet loss or reordering makes use of the
1435 		 * reassembly queue.
1436 		 *
1437 		 * The criteria to step up the receive buffer one notch are:
1438 		 *  1. the number of bytes received during the time it takes
1439 		 *     one timestamp to be reflected back to us (the RTT);
1440 		 *  2. received bytes per RTT is within seven eighth of the
1441 		 *     current socket buffer size;
1442 		 *  3. receive buffer size has not hit maximal automatic size;
1443 		 *
1444 		 * This algorithm does one step per RTT at most and only if
1445 		 * we receive a bulk stream w/o packet losses or reorderings.
1446 		 * Shrinking the buffer during idle times is not necessary as
1447 		 * it doesn't consume any memory when idle.
1448 		 *
1449 		 * TODO: Only step up if the application is actually serving
1450 		 * the buffer to better manage the socket buffer resources.
1451 		 */
1452 			if (V_tcp_do_autorcvbuf &&
1453 			    to.to_tsecr &&
1454 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1455 				if (to.to_tsecr > tp->rfbuf_ts &&
1456 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1457 					if (tp->rfbuf_cnt >
1458 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1459 					    so->so_rcv.sb_hiwat <
1460 					    V_tcp_autorcvbuf_max) {
1461 						newsize =
1462 						    min(so->so_rcv.sb_hiwat +
1463 						    V_tcp_autorcvbuf_inc,
1464 						    V_tcp_autorcvbuf_max);
1465 					}
1466 					/* Start over with next RTT. */
1467 					tp->rfbuf_ts = 0;
1468 					tp->rfbuf_cnt = 0;
1469 				} else
1470 					tp->rfbuf_cnt += tlen;	/* add up */
1471 			}
1472 
1473 			/* Add data to socket buffer. */
1474 			SOCKBUF_LOCK(&so->so_rcv);
1475 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1476 				m_freem(m);
1477 			} else {
1478 				/*
1479 				 * Set new socket buffer size.
1480 				 * Give up when limit is reached.
1481 				 */
1482 				if (newsize)
1483 					if (!sbreserve_locked(&so->so_rcv,
1484 					    newsize, so, NULL))
1485 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1486 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1487 				sbappendstream_locked(&so->so_rcv, m);
1488 			}
1489 			/* NB: sorwakeup_locked() does an implicit unlock. */
1490 			sorwakeup_locked(so);
1491 			if (DELAY_ACK(tp)) {
1492 				tp->t_flags |= TF_DELACK;
1493 			} else {
1494 				tp->t_flags |= TF_ACKNOW;
1495 				tcp_output(tp);
1496 			}
1497 			goto check_delack;
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * Calculate amount of space in receive window,
1503 	 * and then do TCP input processing.
1504 	 * Receive window is amount of space in rcv queue,
1505 	 * but not less than advertised window.
1506 	 */
1507 	win = sbspace(&so->so_rcv);
1508 	if (win < 0)
1509 		win = 0;
1510 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1511 
1512 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1513 	tp->rfbuf_ts = 0;
1514 	tp->rfbuf_cnt = 0;
1515 
1516 	switch (tp->t_state) {
1517 
1518 	/*
1519 	 * If the state is SYN_RECEIVED:
1520 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1521 	 */
1522 	case TCPS_SYN_RECEIVED:
1523 		if ((thflags & TH_ACK) &&
1524 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1525 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1526 				rstreason = BANDLIM_RST_OPENPORT;
1527 				goto dropwithreset;
1528 		}
1529 		break;
1530 
1531 	/*
1532 	 * If the state is SYN_SENT:
1533 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1534 	 *	if seg contains a RST, then drop the connection.
1535 	 *	if seg does not contain SYN, then drop it.
1536 	 * Otherwise this is an acceptable SYN segment
1537 	 *	initialize tp->rcv_nxt and tp->irs
1538 	 *	if seg contains ack then advance tp->snd_una
1539 	 *	if seg contains an ECE and ECN support is enabled, the stream
1540 	 *	    is ECN capable.
1541 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1542 	 *	arrange for segment to be acked (eventually)
1543 	 *	continue processing rest of data/controls, beginning with URG
1544 	 */
1545 	case TCPS_SYN_SENT:
1546 		if ((thflags & TH_ACK) &&
1547 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1548 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1549 			rstreason = BANDLIM_UNLIMITED;
1550 			goto dropwithreset;
1551 		}
1552 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1553 			tp = tcp_drop(tp, ECONNREFUSED);
1554 		if (thflags & TH_RST)
1555 			goto drop;
1556 		if (!(thflags & TH_SYN))
1557 			goto drop;
1558 
1559 		tp->irs = th->th_seq;
1560 		tcp_rcvseqinit(tp);
1561 		if (thflags & TH_ACK) {
1562 			TCPSTAT_INC(tcps_connects);
1563 			soisconnected(so);
1564 #ifdef MAC
1565 			SOCK_LOCK(so);
1566 			mac_socketpeer_set_from_mbuf(m, so);
1567 			SOCK_UNLOCK(so);
1568 #endif
1569 			/* Do window scaling on this connection? */
1570 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1571 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1572 				tp->rcv_scale = tp->request_r_scale;
1573 			}
1574 			tp->rcv_adv += tp->rcv_wnd;
1575 			tp->snd_una++;		/* SYN is acked */
1576 			/*
1577 			 * If there's data, delay ACK; if there's also a FIN
1578 			 * ACKNOW will be turned on later.
1579 			 */
1580 			if (DELAY_ACK(tp) && tlen != 0)
1581 				tcp_timer_activate(tp, TT_DELACK,
1582 				    tcp_delacktime);
1583 			else
1584 				tp->t_flags |= TF_ACKNOW;
1585 
1586 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1587 				tp->t_flags |= TF_ECN_PERMIT;
1588 				TCPSTAT_INC(tcps_ecn_shs);
1589 			}
1590 
1591 			/*
1592 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1593 			 * Transitions:
1594 			 *	SYN_SENT  --> ESTABLISHED
1595 			 *	SYN_SENT* --> FIN_WAIT_1
1596 			 */
1597 			tp->t_starttime = ticks;
1598 			if (tp->t_flags & TF_NEEDFIN) {
1599 				tp->t_state = TCPS_FIN_WAIT_1;
1600 				tp->t_flags &= ~TF_NEEDFIN;
1601 				thflags &= ~TH_SYN;
1602 			} else {
1603 				tp->t_state = TCPS_ESTABLISHED;
1604 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1605 			}
1606 		} else {
1607 			/*
1608 			 * Received initial SYN in SYN-SENT[*] state =>
1609 			 * simultaneous open.  If segment contains CC option
1610 			 * and there is a cached CC, apply TAO test.
1611 			 * If it succeeds, connection is * half-synchronized.
1612 			 * Otherwise, do 3-way handshake:
1613 			 *        SYN-SENT -> SYN-RECEIVED
1614 			 *        SYN-SENT* -> SYN-RECEIVED*
1615 			 * If there was no CC option, clear cached CC value.
1616 			 */
1617 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1618 			tcp_timer_activate(tp, TT_REXMT, 0);
1619 			tp->t_state = TCPS_SYN_RECEIVED;
1620 		}
1621 
1622 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1623 		    "ti_locked %d", __func__, ti_locked));
1624 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1625 		INP_WLOCK_ASSERT(tp->t_inpcb);
1626 
1627 		/*
1628 		 * Advance th->th_seq to correspond to first data byte.
1629 		 * If data, trim to stay within window,
1630 		 * dropping FIN if necessary.
1631 		 */
1632 		th->th_seq++;
1633 		if (tlen > tp->rcv_wnd) {
1634 			todrop = tlen - tp->rcv_wnd;
1635 			m_adj(m, -todrop);
1636 			tlen = tp->rcv_wnd;
1637 			thflags &= ~TH_FIN;
1638 			TCPSTAT_INC(tcps_rcvpackafterwin);
1639 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1640 		}
1641 		tp->snd_wl1 = th->th_seq - 1;
1642 		tp->rcv_up = th->th_seq;
1643 		/*
1644 		 * Client side of transaction: already sent SYN and data.
1645 		 * If the remote host used T/TCP to validate the SYN,
1646 		 * our data will be ACK'd; if so, enter normal data segment
1647 		 * processing in the middle of step 5, ack processing.
1648 		 * Otherwise, goto step 6.
1649 		 */
1650 		if (thflags & TH_ACK)
1651 			goto process_ACK;
1652 
1653 		goto step6;
1654 
1655 	/*
1656 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1657 	 *      do normal processing.
1658 	 *
1659 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1660 	 */
1661 	case TCPS_LAST_ACK:
1662 	case TCPS_CLOSING:
1663 		break;  /* continue normal processing */
1664 	}
1665 
1666 	/*
1667 	 * States other than LISTEN or SYN_SENT.
1668 	 * First check the RST flag and sequence number since reset segments
1669 	 * are exempt from the timestamp and connection count tests.  This
1670 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1671 	 * below which allowed reset segments in half the sequence space
1672 	 * to fall though and be processed (which gives forged reset
1673 	 * segments with a random sequence number a 50 percent chance of
1674 	 * killing a connection).
1675 	 * Then check timestamp, if present.
1676 	 * Then check the connection count, if present.
1677 	 * Then check that at least some bytes of segment are within
1678 	 * receive window.  If segment begins before rcv_nxt,
1679 	 * drop leading data (and SYN); if nothing left, just ack.
1680 	 *
1681 	 *
1682 	 * If the RST bit is set, check the sequence number to see
1683 	 * if this is a valid reset segment.
1684 	 * RFC 793 page 37:
1685 	 *   In all states except SYN-SENT, all reset (RST) segments
1686 	 *   are validated by checking their SEQ-fields.  A reset is
1687 	 *   valid if its sequence number is in the window.
1688 	 * Note: this does not take into account delayed ACKs, so
1689 	 *   we should test against last_ack_sent instead of rcv_nxt.
1690 	 *   The sequence number in the reset segment is normally an
1691 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1692 	 *   send a reset with the sequence number at the rightmost edge
1693 	 *   of our receive window, and we have to handle this case.
1694 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1695 	 *   that brute force RST attacks are possible.  To combat this,
1696 	 *   we use a much stricter check while in the ESTABLISHED state,
1697 	 *   only accepting RSTs where the sequence number is equal to
1698 	 *   last_ack_sent.  In all other states (the states in which a
1699 	 *   RST is more likely), the more permissive check is used.
1700 	 * If we have multiple segments in flight, the initial reset
1701 	 * segment sequence numbers will be to the left of last_ack_sent,
1702 	 * but they will eventually catch up.
1703 	 * In any case, it never made sense to trim reset segments to
1704 	 * fit the receive window since RFC 1122 says:
1705 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1706 	 *
1707 	 *    A TCP SHOULD allow a received RST segment to include data.
1708 	 *
1709 	 *    DISCUSSION
1710 	 *         It has been suggested that a RST segment could contain
1711 	 *         ASCII text that encoded and explained the cause of the
1712 	 *         RST.  No standard has yet been established for such
1713 	 *         data.
1714 	 *
1715 	 * If the reset segment passes the sequence number test examine
1716 	 * the state:
1717 	 *    SYN_RECEIVED STATE:
1718 	 *	If passive open, return to LISTEN state.
1719 	 *	If active open, inform user that connection was refused.
1720 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1721 	 *	Inform user that connection was reset, and close tcb.
1722 	 *    CLOSING, LAST_ACK STATES:
1723 	 *	Close the tcb.
1724 	 *    TIME_WAIT STATE:
1725 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1726 	 *      RFC 1337.
1727 	 */
1728 	if (thflags & TH_RST) {
1729 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1730 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1731 			switch (tp->t_state) {
1732 
1733 			case TCPS_SYN_RECEIVED:
1734 				so->so_error = ECONNREFUSED;
1735 				goto close;
1736 
1737 			case TCPS_ESTABLISHED:
1738 				if (V_tcp_insecure_rst == 0 &&
1739 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1740 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1741 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1742 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1743 					TCPSTAT_INC(tcps_badrst);
1744 					goto drop;
1745 				}
1746 				/* FALLTHROUGH */
1747 			case TCPS_FIN_WAIT_1:
1748 			case TCPS_FIN_WAIT_2:
1749 			case TCPS_CLOSE_WAIT:
1750 				so->so_error = ECONNRESET;
1751 			close:
1752 				KASSERT(ti_locked == TI_WLOCKED,
1753 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1754 				    ti_locked));
1755 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1756 
1757 				tp->t_state = TCPS_CLOSED;
1758 				TCPSTAT_INC(tcps_drops);
1759 				tp = tcp_close(tp);
1760 				break;
1761 
1762 			case TCPS_CLOSING:
1763 			case TCPS_LAST_ACK:
1764 				KASSERT(ti_locked == TI_WLOCKED,
1765 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1766 				    ti_locked));
1767 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1768 
1769 				tp = tcp_close(tp);
1770 				break;
1771 			}
1772 		}
1773 		goto drop;
1774 	}
1775 
1776 	/*
1777 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1778 	 * and it's less than ts_recent, drop it.
1779 	 */
1780 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1781 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1782 
1783 		/* Check to see if ts_recent is over 24 days old.  */
1784 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1785 			/*
1786 			 * Invalidate ts_recent.  If this segment updates
1787 			 * ts_recent, the age will be reset later and ts_recent
1788 			 * will get a valid value.  If it does not, setting
1789 			 * ts_recent to zero will at least satisfy the
1790 			 * requirement that zero be placed in the timestamp
1791 			 * echo reply when ts_recent isn't valid.  The
1792 			 * age isn't reset until we get a valid ts_recent
1793 			 * because we don't want out-of-order segments to be
1794 			 * dropped when ts_recent is old.
1795 			 */
1796 			tp->ts_recent = 0;
1797 		} else {
1798 			TCPSTAT_INC(tcps_rcvduppack);
1799 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1800 			TCPSTAT_INC(tcps_pawsdrop);
1801 			if (tlen)
1802 				goto dropafterack;
1803 			goto drop;
1804 		}
1805 	}
1806 
1807 	/*
1808 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1809 	 * this connection before trimming the data to fit the receive
1810 	 * window.  Check the sequence number versus IRS since we know
1811 	 * the sequence numbers haven't wrapped.  This is a partial fix
1812 	 * for the "LAND" DoS attack.
1813 	 */
1814 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1815 		rstreason = BANDLIM_RST_OPENPORT;
1816 		goto dropwithreset;
1817 	}
1818 
1819 	todrop = tp->rcv_nxt - th->th_seq;
1820 	if (todrop > 0) {
1821 		if (thflags & TH_SYN) {
1822 			thflags &= ~TH_SYN;
1823 			th->th_seq++;
1824 			if (th->th_urp > 1)
1825 				th->th_urp--;
1826 			else
1827 				thflags &= ~TH_URG;
1828 			todrop--;
1829 		}
1830 		/*
1831 		 * Following if statement from Stevens, vol. 2, p. 960.
1832 		 */
1833 		if (todrop > tlen
1834 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1835 			/*
1836 			 * Any valid FIN must be to the left of the window.
1837 			 * At this point the FIN must be a duplicate or out
1838 			 * of sequence; drop it.
1839 			 */
1840 			thflags &= ~TH_FIN;
1841 
1842 			/*
1843 			 * Send an ACK to resynchronize and drop any data.
1844 			 * But keep on processing for RST or ACK.
1845 			 */
1846 			tp->t_flags |= TF_ACKNOW;
1847 			todrop = tlen;
1848 			TCPSTAT_INC(tcps_rcvduppack);
1849 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1850 		} else {
1851 			TCPSTAT_INC(tcps_rcvpartduppack);
1852 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1853 		}
1854 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1855 		th->th_seq += todrop;
1856 		tlen -= todrop;
1857 		if (th->th_urp > todrop)
1858 			th->th_urp -= todrop;
1859 		else {
1860 			thflags &= ~TH_URG;
1861 			th->th_urp = 0;
1862 		}
1863 	}
1864 
1865 	/*
1866 	 * If new data are received on a connection after the
1867 	 * user processes are gone, then RST the other end.
1868 	 */
1869 	if ((so->so_state & SS_NOFDREF) &&
1870 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1871 		char *s;
1872 
1873 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
1874 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
1875 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1876 
1877 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1878 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
1879 			    "was closed, sending RST and removing tcpcb\n",
1880 			    s, __func__, tcpstates[tp->t_state], tlen);
1881 			free(s, M_TCPLOG);
1882 		}
1883 		tp = tcp_close(tp);
1884 		TCPSTAT_INC(tcps_rcvafterclose);
1885 		rstreason = BANDLIM_UNLIMITED;
1886 		goto dropwithreset;
1887 	}
1888 
1889 	/*
1890 	 * If segment ends after window, drop trailing data
1891 	 * (and PUSH and FIN); if nothing left, just ACK.
1892 	 */
1893 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1894 	if (todrop > 0) {
1895 		TCPSTAT_INC(tcps_rcvpackafterwin);
1896 		if (todrop >= tlen) {
1897 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1898 			/*
1899 			 * If window is closed can only take segments at
1900 			 * window edge, and have to drop data and PUSH from
1901 			 * incoming segments.  Continue processing, but
1902 			 * remember to ack.  Otherwise, drop segment
1903 			 * and ack.
1904 			 */
1905 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1906 				tp->t_flags |= TF_ACKNOW;
1907 				TCPSTAT_INC(tcps_rcvwinprobe);
1908 			} else
1909 				goto dropafterack;
1910 		} else
1911 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1912 		m_adj(m, -todrop);
1913 		tlen -= todrop;
1914 		thflags &= ~(TH_PUSH|TH_FIN);
1915 	}
1916 
1917 	/*
1918 	 * If last ACK falls within this segment's sequence numbers,
1919 	 * record its timestamp.
1920 	 * NOTE:
1921 	 * 1) That the test incorporates suggestions from the latest
1922 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1923 	 * 2) That updating only on newer timestamps interferes with
1924 	 *    our earlier PAWS tests, so this check should be solely
1925 	 *    predicated on the sequence space of this segment.
1926 	 * 3) That we modify the segment boundary check to be
1927 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1928 	 *    instead of RFC1323's
1929 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1930 	 *    This modified check allows us to overcome RFC1323's
1931 	 *    limitations as described in Stevens TCP/IP Illustrated
1932 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1933 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1934 	 */
1935 	if ((to.to_flags & TOF_TS) != 0 &&
1936 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1937 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1938 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1939 		tp->ts_recent_age = ticks;
1940 		tp->ts_recent = to.to_tsval;
1941 	}
1942 
1943 	/*
1944 	 * If a SYN is in the window, then this is an
1945 	 * error and we send an RST and drop the connection.
1946 	 */
1947 	if (thflags & TH_SYN) {
1948 		KASSERT(ti_locked == TI_WLOCKED,
1949 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
1950 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1951 
1952 		tp = tcp_drop(tp, ECONNRESET);
1953 		rstreason = BANDLIM_UNLIMITED;
1954 		goto drop;
1955 	}
1956 
1957 	/*
1958 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1959 	 * flag is on (half-synchronized state), then queue data for
1960 	 * later processing; else drop segment and return.
1961 	 */
1962 	if ((thflags & TH_ACK) == 0) {
1963 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1964 		    (tp->t_flags & TF_NEEDSYN))
1965 			goto step6;
1966 		else if (tp->t_flags & TF_ACKNOW)
1967 			goto dropafterack;
1968 		else
1969 			goto drop;
1970 	}
1971 
1972 	/*
1973 	 * Ack processing.
1974 	 */
1975 	switch (tp->t_state) {
1976 
1977 	/*
1978 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1979 	 * ESTABLISHED state and continue processing.
1980 	 * The ACK was checked above.
1981 	 */
1982 	case TCPS_SYN_RECEIVED:
1983 
1984 		TCPSTAT_INC(tcps_connects);
1985 		soisconnected(so);
1986 		/* Do window scaling? */
1987 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1988 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1989 			tp->rcv_scale = tp->request_r_scale;
1990 			tp->snd_wnd = tiwin;
1991 		}
1992 		/*
1993 		 * Make transitions:
1994 		 *      SYN-RECEIVED  -> ESTABLISHED
1995 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1996 		 */
1997 		tp->t_starttime = ticks;
1998 		if (tp->t_flags & TF_NEEDFIN) {
1999 			tp->t_state = TCPS_FIN_WAIT_1;
2000 			tp->t_flags &= ~TF_NEEDFIN;
2001 		} else {
2002 			tp->t_state = TCPS_ESTABLISHED;
2003 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2004 		}
2005 		/*
2006 		 * If segment contains data or ACK, will call tcp_reass()
2007 		 * later; if not, do so now to pass queued data to user.
2008 		 */
2009 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2010 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2011 			    (struct mbuf *)0);
2012 		tp->snd_wl1 = th->th_seq - 1;
2013 		/* FALLTHROUGH */
2014 
2015 	/*
2016 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2017 	 * ACKs.  If the ack is in the range
2018 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2019 	 * then advance tp->snd_una to th->th_ack and drop
2020 	 * data from the retransmission queue.  If this ACK reflects
2021 	 * more up to date window information we update our window information.
2022 	 */
2023 	case TCPS_ESTABLISHED:
2024 	case TCPS_FIN_WAIT_1:
2025 	case TCPS_FIN_WAIT_2:
2026 	case TCPS_CLOSE_WAIT:
2027 	case TCPS_CLOSING:
2028 	case TCPS_LAST_ACK:
2029 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2030 			TCPSTAT_INC(tcps_rcvacktoomuch);
2031 			goto dropafterack;
2032 		}
2033 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2034 		    ((to.to_flags & TOF_SACK) ||
2035 		     !TAILQ_EMPTY(&tp->snd_holes)))
2036 			tcp_sack_doack(tp, &to, th->th_ack);
2037 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2038 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2039 				TCPSTAT_INC(tcps_rcvdupack);
2040 				/*
2041 				 * If we have outstanding data (other than
2042 				 * a window probe), this is a completely
2043 				 * duplicate ack (ie, window info didn't
2044 				 * change), the ack is the biggest we've
2045 				 * seen and we've seen exactly our rexmt
2046 				 * threshhold of them, assume a packet
2047 				 * has been dropped and retransmit it.
2048 				 * Kludge snd_nxt & the congestion
2049 				 * window so we send only this one
2050 				 * packet.
2051 				 *
2052 				 * We know we're losing at the current
2053 				 * window size so do congestion avoidance
2054 				 * (set ssthresh to half the current window
2055 				 * and pull our congestion window back to
2056 				 * the new ssthresh).
2057 				 *
2058 				 * Dup acks mean that packets have left the
2059 				 * network (they're now cached at the receiver)
2060 				 * so bump cwnd by the amount in the receiver
2061 				 * to keep a constant cwnd packets in the
2062 				 * network.
2063 				 *
2064 				 * When using TCP ECN, notify the peer that
2065 				 * we reduced the cwnd.
2066 				 */
2067 				if (!tcp_timer_active(tp, TT_REXMT) ||
2068 				    th->th_ack != tp->snd_una)
2069 					tp->t_dupacks = 0;
2070 				else if (++tp->t_dupacks > tcprexmtthresh ||
2071 				    ((V_tcp_do_newreno ||
2072 				      (tp->t_flags & TF_SACK_PERMIT)) &&
2073 				     IN_FASTRECOVERY(tp))) {
2074 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2075 					    IN_FASTRECOVERY(tp)) {
2076 						int awnd;
2077 
2078 						/*
2079 						 * Compute the amount of data in flight first.
2080 						 * We can inject new data into the pipe iff
2081 						 * we have less than 1/2 the original window's
2082 						 * worth of data in flight.
2083 						 */
2084 						awnd = (tp->snd_nxt - tp->snd_fack) +
2085 							tp->sackhint.sack_bytes_rexmit;
2086 						if (awnd < tp->snd_ssthresh) {
2087 							tp->snd_cwnd += tp->t_maxseg;
2088 							if (tp->snd_cwnd > tp->snd_ssthresh)
2089 								tp->snd_cwnd = tp->snd_ssthresh;
2090 						}
2091 					} else
2092 						tp->snd_cwnd += tp->t_maxseg;
2093 					(void) tcp_output(tp);
2094 					goto drop;
2095 				} else if (tp->t_dupacks == tcprexmtthresh) {
2096 					tcp_seq onxt = tp->snd_nxt;
2097 
2098 					/*
2099 					 * If we're doing sack, check to
2100 					 * see if we're already in sack
2101 					 * recovery. If we're not doing sack,
2102 					 * check to see if we're in newreno
2103 					 * recovery.
2104 					 */
2105 					if (tp->t_flags & TF_SACK_PERMIT) {
2106 						if (IN_FASTRECOVERY(tp)) {
2107 							tp->t_dupacks = 0;
2108 							break;
2109 						}
2110 					} else if (V_tcp_do_newreno ||
2111 					    V_tcp_do_ecn) {
2112 						if (SEQ_LEQ(th->th_ack,
2113 						    tp->snd_recover)) {
2114 							tp->t_dupacks = 0;
2115 							break;
2116 						}
2117 					}
2118 					tcp_congestion_exp(tp);
2119 					tcp_timer_activate(tp, TT_REXMT, 0);
2120 					tp->t_rtttime = 0;
2121 					if (tp->t_flags & TF_SACK_PERMIT) {
2122 						TCPSTAT_INC(
2123 						    tcps_sack_recovery_episode);
2124 						tp->sack_newdata = tp->snd_nxt;
2125 						tp->snd_cwnd = tp->t_maxseg;
2126 						(void) tcp_output(tp);
2127 						goto drop;
2128 					}
2129 					tp->snd_nxt = th->th_ack;
2130 					tp->snd_cwnd = tp->t_maxseg;
2131 					(void) tcp_output(tp);
2132 					KASSERT(tp->snd_limited <= 2,
2133 					    ("%s: tp->snd_limited too big",
2134 					    __func__));
2135 					tp->snd_cwnd = tp->snd_ssthresh +
2136 					     tp->t_maxseg *
2137 					     (tp->t_dupacks - tp->snd_limited);
2138 					if (SEQ_GT(onxt, tp->snd_nxt))
2139 						tp->snd_nxt = onxt;
2140 					goto drop;
2141 				} else if (V_tcp_do_rfc3042) {
2142 					u_long oldcwnd = tp->snd_cwnd;
2143 					tcp_seq oldsndmax = tp->snd_max;
2144 					u_int sent;
2145 
2146 					KASSERT(tp->t_dupacks == 1 ||
2147 					    tp->t_dupacks == 2,
2148 					    ("%s: dupacks not 1 or 2",
2149 					    __func__));
2150 					if (tp->t_dupacks == 1)
2151 						tp->snd_limited = 0;
2152 					tp->snd_cwnd =
2153 					    (tp->snd_nxt - tp->snd_una) +
2154 					    (tp->t_dupacks - tp->snd_limited) *
2155 					    tp->t_maxseg;
2156 					(void) tcp_output(tp);
2157 					sent = tp->snd_max - oldsndmax;
2158 					if (sent > tp->t_maxseg) {
2159 						KASSERT((tp->t_dupacks == 2 &&
2160 						    tp->snd_limited == 0) ||
2161 						   (sent == tp->t_maxseg + 1 &&
2162 						    tp->t_flags & TF_SENTFIN),
2163 						    ("%s: sent too much",
2164 						    __func__));
2165 						tp->snd_limited = 2;
2166 					} else if (sent > 0)
2167 						++tp->snd_limited;
2168 					tp->snd_cwnd = oldcwnd;
2169 					goto drop;
2170 				}
2171 			} else
2172 				tp->t_dupacks = 0;
2173 			break;
2174 		}
2175 
2176 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2177 		    ("%s: th_ack <= snd_una", __func__));
2178 
2179 		/*
2180 		 * If the congestion window was inflated to account
2181 		 * for the other side's cached packets, retract it.
2182 		 */
2183 		if (V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
2184 			if (IN_FASTRECOVERY(tp)) {
2185 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2186 					if (tp->t_flags & TF_SACK_PERMIT)
2187 						tcp_sack_partialack(tp, th);
2188 					else
2189 						tcp_newreno_partial_ack(tp, th);
2190 				} else {
2191 					/*
2192 					 * Out of fast recovery.
2193 					 * Window inflation should have left us
2194 					 * with approximately snd_ssthresh
2195 					 * outstanding data.
2196 					 * But in case we would be inclined to
2197 					 * send a burst, better to do it via
2198 					 * the slow start mechanism.
2199 					 */
2200 					if (SEQ_GT(th->th_ack +
2201 							tp->snd_ssthresh,
2202 						   tp->snd_max))
2203 						tp->snd_cwnd = tp->snd_max -
2204 								th->th_ack +
2205 								tp->t_maxseg;
2206 					else
2207 						tp->snd_cwnd = tp->snd_ssthresh;
2208 				}
2209 			}
2210 		} else {
2211 			if (tp->t_dupacks >= tcprexmtthresh &&
2212 			    tp->snd_cwnd > tp->snd_ssthresh)
2213 				tp->snd_cwnd = tp->snd_ssthresh;
2214 		}
2215 		tp->t_dupacks = 0;
2216 		/*
2217 		 * If we reach this point, ACK is not a duplicate,
2218 		 *     i.e., it ACKs something we sent.
2219 		 */
2220 		if (tp->t_flags & TF_NEEDSYN) {
2221 			/*
2222 			 * T/TCP: Connection was half-synchronized, and our
2223 			 * SYN has been ACK'd (so connection is now fully
2224 			 * synchronized).  Go to non-starred state,
2225 			 * increment snd_una for ACK of SYN, and check if
2226 			 * we can do window scaling.
2227 			 */
2228 			tp->t_flags &= ~TF_NEEDSYN;
2229 			tp->snd_una++;
2230 			/* Do window scaling? */
2231 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2232 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2233 				tp->rcv_scale = tp->request_r_scale;
2234 				/* Send window already scaled. */
2235 			}
2236 		}
2237 
2238 process_ACK:
2239 		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2240 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2241 		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2242 		INP_WLOCK_ASSERT(tp->t_inpcb);
2243 
2244 		acked = th->th_ack - tp->snd_una;
2245 		TCPSTAT_INC(tcps_rcvackpack);
2246 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2247 
2248 		/*
2249 		 * If we just performed our first retransmit, and the ACK
2250 		 * arrives within our recovery window, then it was a mistake
2251 		 * to do the retransmit in the first place.  Recover our
2252 		 * original cwnd and ssthresh, and proceed to transmit where
2253 		 * we left off.
2254 		 */
2255 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2256 			TCPSTAT_INC(tcps_sndrexmitbad);
2257 			tp->snd_cwnd = tp->snd_cwnd_prev;
2258 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2259 			tp->snd_recover = tp->snd_recover_prev;
2260 			if (tp->t_flags & TF_WASFRECOVERY)
2261 				ENTER_FASTRECOVERY(tp);
2262 			tp->snd_nxt = tp->snd_max;
2263 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2264 		}
2265 
2266 		/*
2267 		 * If we have a timestamp reply, update smoothed
2268 		 * round trip time.  If no timestamp is present but
2269 		 * transmit timer is running and timed sequence
2270 		 * number was acked, update smoothed round trip time.
2271 		 * Since we now have an rtt measurement, cancel the
2272 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2273 		 * Recompute the initial retransmit timer.
2274 		 *
2275 		 * Some boxes send broken timestamp replies
2276 		 * during the SYN+ACK phase, ignore
2277 		 * timestamps of 0 or we could calculate a
2278 		 * huge RTT and blow up the retransmit timer.
2279 		 */
2280 		if ((to.to_flags & TOF_TS) != 0 &&
2281 		    to.to_tsecr) {
2282 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2283 				tp->t_rttlow = ticks - to.to_tsecr;
2284 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2285 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2286 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2287 				tp->t_rttlow = ticks - tp->t_rtttime;
2288 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2289 		}
2290 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2291 
2292 		/*
2293 		 * If all outstanding data is acked, stop retransmit
2294 		 * timer and remember to restart (more output or persist).
2295 		 * If there is more data to be acked, restart retransmit
2296 		 * timer, using current (possibly backed-off) value.
2297 		 */
2298 		if (th->th_ack == tp->snd_max) {
2299 			tcp_timer_activate(tp, TT_REXMT, 0);
2300 			needoutput = 1;
2301 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2302 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2303 
2304 		/*
2305 		 * If no data (only SYN) was ACK'd,
2306 		 *    skip rest of ACK processing.
2307 		 */
2308 		if (acked == 0)
2309 			goto step6;
2310 
2311 		/*
2312 		 * When new data is acked, open the congestion window.
2313 		 * Method depends on which congestion control state we're
2314 		 * in (slow start or cong avoid) and if ABC (RFC 3465) is
2315 		 * enabled.
2316 		 *
2317 		 * slow start: cwnd <= ssthresh
2318 		 * cong avoid: cwnd > ssthresh
2319 		 *
2320 		 * slow start and ABC (RFC 3465):
2321 		 *   Grow cwnd exponentially by the amount of data
2322 		 *   ACKed capping the max increment per ACK to
2323 		 *   (abc_l_var * maxseg) bytes.
2324 		 *
2325 		 * slow start without ABC (RFC 2581):
2326 		 *   Grow cwnd exponentially by maxseg per ACK.
2327 		 *
2328 		 * cong avoid and ABC (RFC 3465):
2329 		 *   Grow cwnd linearly by maxseg per RTT for each
2330 		 *   cwnd worth of ACKed data.
2331 		 *
2332 		 * cong avoid without ABC (RFC 2581):
2333 		 *   Grow cwnd linearly by approximately maxseg per RTT using
2334 		 *   maxseg^2 / cwnd per ACK as the increment.
2335 		 *   If cwnd > maxseg^2, fix the cwnd increment at 1 byte to
2336 		 *   avoid capping cwnd.
2337 		 */
2338 		if ((!V_tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2339 		    !IN_FASTRECOVERY(tp)) {
2340 			u_int cw = tp->snd_cwnd;
2341 			u_int incr = tp->t_maxseg;
2342 			/* In congestion avoidance? */
2343 			if (cw > tp->snd_ssthresh) {
2344 				if (V_tcp_do_rfc3465) {
2345 					tp->t_bytes_acked += acked;
2346 					if (tp->t_bytes_acked >= tp->snd_cwnd)
2347 						tp->t_bytes_acked -= cw;
2348 					else
2349 						incr = 0;
2350 				}
2351 				else
2352 					incr = max((incr * incr / cw), 1);
2353 			/*
2354 			 * In slow-start with ABC enabled and no RTO in sight?
2355 			 * (Must not use abc_l_var > 1 if slow starting after an
2356 			 * RTO. On RTO, snd_nxt = snd_una, so the snd_nxt ==
2357 			 * snd_max check is sufficient to handle this).
2358 			 */
2359 			} else if (V_tcp_do_rfc3465 &&
2360 			    tp->snd_nxt == tp->snd_max)
2361 				incr = min(acked,
2362 				    V_tcp_abc_l_var * tp->t_maxseg);
2363 			/* ABC is on by default, so (incr == 0) frequently. */
2364 			if (incr > 0)
2365 				tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2366 		}
2367 		SOCKBUF_LOCK(&so->so_snd);
2368 		if (acked > so->so_snd.sb_cc) {
2369 			tp->snd_wnd -= so->so_snd.sb_cc;
2370 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2371 			ourfinisacked = 1;
2372 		} else {
2373 			sbdrop_locked(&so->so_snd, acked);
2374 			tp->snd_wnd -= acked;
2375 			ourfinisacked = 0;
2376 		}
2377 		/* NB: sowwakeup_locked() does an implicit unlock. */
2378 		sowwakeup_locked(so);
2379 		/* Detect una wraparound. */
2380 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2381 		    !IN_FASTRECOVERY(tp) &&
2382 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2383 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2384 			tp->snd_recover = th->th_ack - 1;
2385 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2386 		    IN_FASTRECOVERY(tp) &&
2387 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2388 			EXIT_FASTRECOVERY(tp);
2389 			tp->t_bytes_acked = 0;
2390 		}
2391 		tp->snd_una = th->th_ack;
2392 		if (tp->t_flags & TF_SACK_PERMIT) {
2393 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2394 				tp->snd_recover = tp->snd_una;
2395 		}
2396 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2397 			tp->snd_nxt = tp->snd_una;
2398 
2399 		switch (tp->t_state) {
2400 
2401 		/*
2402 		 * In FIN_WAIT_1 STATE in addition to the processing
2403 		 * for the ESTABLISHED state if our FIN is now acknowledged
2404 		 * then enter FIN_WAIT_2.
2405 		 */
2406 		case TCPS_FIN_WAIT_1:
2407 			if (ourfinisacked) {
2408 				/*
2409 				 * If we can't receive any more
2410 				 * data, then closing user can proceed.
2411 				 * Starting the timer is contrary to the
2412 				 * specification, but if we don't get a FIN
2413 				 * we'll hang forever.
2414 				 *
2415 				 * XXXjl:
2416 				 * we should release the tp also, and use a
2417 				 * compressed state.
2418 				 */
2419 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2420 					int timeout;
2421 
2422 					soisdisconnected(so);
2423 					timeout = (tcp_fast_finwait2_recycle) ?
2424 						tcp_finwait2_timeout : tcp_maxidle;
2425 					tcp_timer_activate(tp, TT_2MSL, timeout);
2426 				}
2427 				tp->t_state = TCPS_FIN_WAIT_2;
2428 			}
2429 			break;
2430 
2431 		/*
2432 		 * In CLOSING STATE in addition to the processing for
2433 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2434 		 * then enter the TIME-WAIT state, otherwise ignore
2435 		 * the segment.
2436 		 */
2437 		case TCPS_CLOSING:
2438 			if (ourfinisacked) {
2439 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2440 				tcp_twstart(tp);
2441 				INP_INFO_WUNLOCK(&V_tcbinfo);
2442 				m_freem(m);
2443 				return;
2444 			}
2445 			break;
2446 
2447 		/*
2448 		 * In LAST_ACK, we may still be waiting for data to drain
2449 		 * and/or to be acked, as well as for the ack of our FIN.
2450 		 * If our FIN is now acknowledged, delete the TCB,
2451 		 * enter the closed state and return.
2452 		 */
2453 		case TCPS_LAST_ACK:
2454 			if (ourfinisacked) {
2455 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2456 				tp = tcp_close(tp);
2457 				goto drop;
2458 			}
2459 			break;
2460 		}
2461 	}
2462 
2463 step6:
2464 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2465 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2466 	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2467 	INP_WLOCK_ASSERT(tp->t_inpcb);
2468 
2469 	/*
2470 	 * Update window information.
2471 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2472 	 */
2473 	if ((thflags & TH_ACK) &&
2474 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2475 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2476 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2477 		/* keep track of pure window updates */
2478 		if (tlen == 0 &&
2479 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2480 			TCPSTAT_INC(tcps_rcvwinupd);
2481 		tp->snd_wnd = tiwin;
2482 		tp->snd_wl1 = th->th_seq;
2483 		tp->snd_wl2 = th->th_ack;
2484 		if (tp->snd_wnd > tp->max_sndwnd)
2485 			tp->max_sndwnd = tp->snd_wnd;
2486 		needoutput = 1;
2487 	}
2488 
2489 	/*
2490 	 * Process segments with URG.
2491 	 */
2492 	if ((thflags & TH_URG) && th->th_urp &&
2493 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2494 		/*
2495 		 * This is a kludge, but if we receive and accept
2496 		 * random urgent pointers, we'll crash in
2497 		 * soreceive.  It's hard to imagine someone
2498 		 * actually wanting to send this much urgent data.
2499 		 */
2500 		SOCKBUF_LOCK(&so->so_rcv);
2501 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2502 			th->th_urp = 0;			/* XXX */
2503 			thflags &= ~TH_URG;		/* XXX */
2504 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2505 			goto dodata;			/* XXX */
2506 		}
2507 		/*
2508 		 * If this segment advances the known urgent pointer,
2509 		 * then mark the data stream.  This should not happen
2510 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2511 		 * a FIN has been received from the remote side.
2512 		 * In these states we ignore the URG.
2513 		 *
2514 		 * According to RFC961 (Assigned Protocols),
2515 		 * the urgent pointer points to the last octet
2516 		 * of urgent data.  We continue, however,
2517 		 * to consider it to indicate the first octet
2518 		 * of data past the urgent section as the original
2519 		 * spec states (in one of two places).
2520 		 */
2521 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2522 			tp->rcv_up = th->th_seq + th->th_urp;
2523 			so->so_oobmark = so->so_rcv.sb_cc +
2524 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2525 			if (so->so_oobmark == 0)
2526 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2527 			sohasoutofband(so);
2528 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2529 		}
2530 		SOCKBUF_UNLOCK(&so->so_rcv);
2531 		/*
2532 		 * Remove out of band data so doesn't get presented to user.
2533 		 * This can happen independent of advancing the URG pointer,
2534 		 * but if two URG's are pending at once, some out-of-band
2535 		 * data may creep in... ick.
2536 		 */
2537 		if (th->th_urp <= (u_long)tlen &&
2538 		    !(so->so_options & SO_OOBINLINE)) {
2539 			/* hdr drop is delayed */
2540 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2541 		}
2542 	} else {
2543 		/*
2544 		 * If no out of band data is expected,
2545 		 * pull receive urgent pointer along
2546 		 * with the receive window.
2547 		 */
2548 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2549 			tp->rcv_up = tp->rcv_nxt;
2550 	}
2551 dodata:							/* XXX */
2552 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2553 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2554 	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2555 	INP_WLOCK_ASSERT(tp->t_inpcb);
2556 
2557 	/*
2558 	 * Process the segment text, merging it into the TCP sequencing queue,
2559 	 * and arranging for acknowledgment of receipt if necessary.
2560 	 * This process logically involves adjusting tp->rcv_wnd as data
2561 	 * is presented to the user (this happens in tcp_usrreq.c,
2562 	 * case PRU_RCVD).  If a FIN has already been received on this
2563 	 * connection then we just ignore the text.
2564 	 */
2565 	if ((tlen || (thflags & TH_FIN)) &&
2566 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2567 		tcp_seq save_start = th->th_seq;
2568 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2569 		/*
2570 		 * Insert segment which includes th into TCP reassembly queue
2571 		 * with control block tp.  Set thflags to whether reassembly now
2572 		 * includes a segment with FIN.  This handles the common case
2573 		 * inline (segment is the next to be received on an established
2574 		 * connection, and the queue is empty), avoiding linkage into
2575 		 * and removal from the queue and repetition of various
2576 		 * conversions.
2577 		 * Set DELACK for segments received in order, but ack
2578 		 * immediately when segments are out of order (so
2579 		 * fast retransmit can work).
2580 		 */
2581 		if (th->th_seq == tp->rcv_nxt &&
2582 		    LIST_EMPTY(&tp->t_segq) &&
2583 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2584 			if (DELAY_ACK(tp))
2585 				tp->t_flags |= TF_DELACK;
2586 			else
2587 				tp->t_flags |= TF_ACKNOW;
2588 			tp->rcv_nxt += tlen;
2589 			thflags = th->th_flags & TH_FIN;
2590 			TCPSTAT_INC(tcps_rcvpack);
2591 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2592 			ND6_HINT(tp);
2593 			SOCKBUF_LOCK(&so->so_rcv);
2594 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2595 				m_freem(m);
2596 			else
2597 				sbappendstream_locked(&so->so_rcv, m);
2598 			/* NB: sorwakeup_locked() does an implicit unlock. */
2599 			sorwakeup_locked(so);
2600 		} else {
2601 			/*
2602 			 * XXX: Due to the header drop above "th" is
2603 			 * theoretically invalid by now.  Fortunately
2604 			 * m_adj() doesn't actually frees any mbufs
2605 			 * when trimming from the head.
2606 			 */
2607 			thflags = tcp_reass(tp, th, &tlen, m);
2608 			tp->t_flags |= TF_ACKNOW;
2609 		}
2610 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2611 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2612 #if 0
2613 		/*
2614 		 * Note the amount of data that peer has sent into
2615 		 * our window, in order to estimate the sender's
2616 		 * buffer size.
2617 		 * XXX: Unused.
2618 		 */
2619 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2620 #endif
2621 	} else {
2622 		m_freem(m);
2623 		thflags &= ~TH_FIN;
2624 	}
2625 
2626 	/*
2627 	 * If FIN is received ACK the FIN and let the user know
2628 	 * that the connection is closing.
2629 	 */
2630 	if (thflags & TH_FIN) {
2631 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2632 			socantrcvmore(so);
2633 			/*
2634 			 * If connection is half-synchronized
2635 			 * (ie NEEDSYN flag on) then delay ACK,
2636 			 * so it may be piggybacked when SYN is sent.
2637 			 * Otherwise, since we received a FIN then no
2638 			 * more input can be expected, send ACK now.
2639 			 */
2640 			if (tp->t_flags & TF_NEEDSYN)
2641 				tp->t_flags |= TF_DELACK;
2642 			else
2643 				tp->t_flags |= TF_ACKNOW;
2644 			tp->rcv_nxt++;
2645 		}
2646 		switch (tp->t_state) {
2647 
2648 		/*
2649 		 * In SYN_RECEIVED and ESTABLISHED STATES
2650 		 * enter the CLOSE_WAIT state.
2651 		 */
2652 		case TCPS_SYN_RECEIVED:
2653 			tp->t_starttime = ticks;
2654 			/* FALLTHROUGH */
2655 		case TCPS_ESTABLISHED:
2656 			tp->t_state = TCPS_CLOSE_WAIT;
2657 			break;
2658 
2659 		/*
2660 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2661 		 * enter the CLOSING state.
2662 		 */
2663 		case TCPS_FIN_WAIT_1:
2664 			tp->t_state = TCPS_CLOSING;
2665 			break;
2666 
2667 		/*
2668 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2669 		 * starting the time-wait timer, turning off the other
2670 		 * standard timers.
2671 		 */
2672 		case TCPS_FIN_WAIT_2:
2673 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2674 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2675 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2676 			    ti_locked));
2677 
2678 			tcp_twstart(tp);
2679 			INP_INFO_WUNLOCK(&V_tcbinfo);
2680 			return;
2681 		}
2682 	}
2683 	if (ti_locked == TI_RLOCKED)
2684 		INP_INFO_RUNLOCK(&V_tcbinfo);
2685 	else if (ti_locked == TI_WLOCKED)
2686 		INP_INFO_WUNLOCK(&V_tcbinfo);
2687 	else
2688 		panic("%s: dodata epilogue ti_locked %d", __func__,
2689 		    ti_locked);
2690 	ti_locked = TI_UNLOCKED;
2691 
2692 #ifdef TCPDEBUG
2693 	if (so->so_options & SO_DEBUG)
2694 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2695 			  &tcp_savetcp, 0);
2696 #endif
2697 
2698 	/*
2699 	 * Return any desired output.
2700 	 */
2701 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2702 		(void) tcp_output(tp);
2703 
2704 check_delack:
2705 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2706 	    __func__, ti_locked));
2707 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2708 	INP_WLOCK_ASSERT(tp->t_inpcb);
2709 
2710 	if (tp->t_flags & TF_DELACK) {
2711 		tp->t_flags &= ~TF_DELACK;
2712 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2713 	}
2714 	INP_WUNLOCK(tp->t_inpcb);
2715 	return;
2716 
2717 dropafterack:
2718 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2719 	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2720 
2721 	/*
2722 	 * Generate an ACK dropping incoming segment if it occupies
2723 	 * sequence space, where the ACK reflects our state.
2724 	 *
2725 	 * We can now skip the test for the RST flag since all
2726 	 * paths to this code happen after packets containing
2727 	 * RST have been dropped.
2728 	 *
2729 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2730 	 * segment we received passes the SYN-RECEIVED ACK test.
2731 	 * If it fails send a RST.  This breaks the loop in the
2732 	 * "LAND" DoS attack, and also prevents an ACK storm
2733 	 * between two listening ports that have been sent forged
2734 	 * SYN segments, each with the source address of the other.
2735 	 */
2736 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2737 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2738 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2739 		rstreason = BANDLIM_RST_OPENPORT;
2740 		goto dropwithreset;
2741 	}
2742 #ifdef TCPDEBUG
2743 	if (so->so_options & SO_DEBUG)
2744 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2745 			  &tcp_savetcp, 0);
2746 #endif
2747 	if (ti_locked == TI_RLOCKED)
2748 		INP_INFO_RUNLOCK(&V_tcbinfo);
2749 	else if (ti_locked == TI_WLOCKED)
2750 		INP_INFO_WUNLOCK(&V_tcbinfo);
2751 	else
2752 		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2753 		    ti_locked);
2754 	ti_locked = TI_UNLOCKED;
2755 
2756 	tp->t_flags |= TF_ACKNOW;
2757 	(void) tcp_output(tp);
2758 	INP_WUNLOCK(tp->t_inpcb);
2759 	m_freem(m);
2760 	return;
2761 
2762 dropwithreset:
2763 	if (ti_locked == TI_RLOCKED)
2764 		INP_INFO_RUNLOCK(&V_tcbinfo);
2765 	else if (ti_locked == TI_WLOCKED)
2766 		INP_INFO_WUNLOCK(&V_tcbinfo);
2767 	else
2768 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2769 	ti_locked = TI_UNLOCKED;
2770 
2771 	if (tp != NULL) {
2772 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2773 		INP_WUNLOCK(tp->t_inpcb);
2774 	} else
2775 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2776 	return;
2777 
2778 drop:
2779 	if (ti_locked == TI_RLOCKED)
2780 		INP_INFO_RUNLOCK(&V_tcbinfo);
2781 	else if (ti_locked == TI_WLOCKED)
2782 		INP_INFO_WUNLOCK(&V_tcbinfo);
2783 #ifdef INVARIANTS
2784 	else
2785 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2786 #endif
2787 	ti_locked = TI_UNLOCKED;
2788 
2789 	/*
2790 	 * Drop space held by incoming segment and return.
2791 	 */
2792 #ifdef TCPDEBUG
2793 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2794 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2795 			  &tcp_savetcp, 0);
2796 #endif
2797 	if (tp != NULL)
2798 		INP_WUNLOCK(tp->t_inpcb);
2799 	m_freem(m);
2800 }
2801 
2802 /*
2803  * Issue RST and make ACK acceptable to originator of segment.
2804  * The mbuf must still include the original packet header.
2805  * tp may be NULL.
2806  */
2807 static void
2808 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2809     int tlen, int rstreason)
2810 {
2811 	struct ip *ip;
2812 #ifdef INET6
2813 	struct ip6_hdr *ip6;
2814 #endif
2815 
2816 	if (tp != NULL) {
2817 		INP_WLOCK_ASSERT(tp->t_inpcb);
2818 	}
2819 
2820 	/* Don't bother if destination was broadcast/multicast. */
2821 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2822 		goto drop;
2823 #ifdef INET6
2824 	if (mtod(m, struct ip *)->ip_v == 6) {
2825 		ip6 = mtod(m, struct ip6_hdr *);
2826 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2827 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2828 			goto drop;
2829 		/* IPv6 anycast check is done at tcp6_input() */
2830 	} else
2831 #endif
2832 	{
2833 		ip = mtod(m, struct ip *);
2834 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2835 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2836 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2837 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2838 			goto drop;
2839 	}
2840 
2841 	/* Perform bandwidth limiting. */
2842 	if (badport_bandlim(rstreason) < 0)
2843 		goto drop;
2844 
2845 	/* tcp_respond consumes the mbuf chain. */
2846 	if (th->th_flags & TH_ACK) {
2847 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2848 		    th->th_ack, TH_RST);
2849 	} else {
2850 		if (th->th_flags & TH_SYN)
2851 			tlen++;
2852 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2853 		    (tcp_seq)0, TH_RST|TH_ACK);
2854 	}
2855 	return;
2856 drop:
2857 	m_freem(m);
2858 }
2859 
2860 /*
2861  * Parse TCP options and place in tcpopt.
2862  */
2863 static void
2864 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2865 {
2866 	INIT_VNET_INET(curvnet);
2867 	int opt, optlen;
2868 
2869 	to->to_flags = 0;
2870 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2871 		opt = cp[0];
2872 		if (opt == TCPOPT_EOL)
2873 			break;
2874 		if (opt == TCPOPT_NOP)
2875 			optlen = 1;
2876 		else {
2877 			if (cnt < 2)
2878 				break;
2879 			optlen = cp[1];
2880 			if (optlen < 2 || optlen > cnt)
2881 				break;
2882 		}
2883 		switch (opt) {
2884 		case TCPOPT_MAXSEG:
2885 			if (optlen != TCPOLEN_MAXSEG)
2886 				continue;
2887 			if (!(flags & TO_SYN))
2888 				continue;
2889 			to->to_flags |= TOF_MSS;
2890 			bcopy((char *)cp + 2,
2891 			    (char *)&to->to_mss, sizeof(to->to_mss));
2892 			to->to_mss = ntohs(to->to_mss);
2893 			break;
2894 		case TCPOPT_WINDOW:
2895 			if (optlen != TCPOLEN_WINDOW)
2896 				continue;
2897 			if (!(flags & TO_SYN))
2898 				continue;
2899 			to->to_flags |= TOF_SCALE;
2900 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2901 			break;
2902 		case TCPOPT_TIMESTAMP:
2903 			if (optlen != TCPOLEN_TIMESTAMP)
2904 				continue;
2905 			to->to_flags |= TOF_TS;
2906 			bcopy((char *)cp + 2,
2907 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2908 			to->to_tsval = ntohl(to->to_tsval);
2909 			bcopy((char *)cp + 6,
2910 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2911 			to->to_tsecr = ntohl(to->to_tsecr);
2912 			break;
2913 #ifdef TCP_SIGNATURE
2914 		/*
2915 		 * XXX In order to reply to a host which has set the
2916 		 * TCP_SIGNATURE option in its initial SYN, we have to
2917 		 * record the fact that the option was observed here
2918 		 * for the syncache code to perform the correct response.
2919 		 */
2920 		case TCPOPT_SIGNATURE:
2921 			if (optlen != TCPOLEN_SIGNATURE)
2922 				continue;
2923 			to->to_flags |= TOF_SIGNATURE;
2924 			to->to_signature = cp + 2;
2925 			break;
2926 #endif
2927 		case TCPOPT_SACK_PERMITTED:
2928 			if (optlen != TCPOLEN_SACK_PERMITTED)
2929 				continue;
2930 			if (!(flags & TO_SYN))
2931 				continue;
2932 			if (!V_tcp_do_sack)
2933 				continue;
2934 			to->to_flags |= TOF_SACKPERM;
2935 			break;
2936 		case TCPOPT_SACK:
2937 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2938 				continue;
2939 			if (flags & TO_SYN)
2940 				continue;
2941 			to->to_flags |= TOF_SACK;
2942 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2943 			to->to_sacks = cp + 2;
2944 			TCPSTAT_INC(tcps_sack_rcv_blocks);
2945 			break;
2946 		default:
2947 			continue;
2948 		}
2949 	}
2950 }
2951 
2952 /*
2953  * Pull out of band byte out of a segment so
2954  * it doesn't appear in the user's data queue.
2955  * It is still reflected in the segment length for
2956  * sequencing purposes.
2957  */
2958 static void
2959 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2960     int off)
2961 {
2962 	int cnt = off + th->th_urp - 1;
2963 
2964 	while (cnt >= 0) {
2965 		if (m->m_len > cnt) {
2966 			char *cp = mtod(m, caddr_t) + cnt;
2967 			struct tcpcb *tp = sototcpcb(so);
2968 
2969 			INP_WLOCK_ASSERT(tp->t_inpcb);
2970 
2971 			tp->t_iobc = *cp;
2972 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2973 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2974 			m->m_len--;
2975 			if (m->m_flags & M_PKTHDR)
2976 				m->m_pkthdr.len--;
2977 			return;
2978 		}
2979 		cnt -= m->m_len;
2980 		m = m->m_next;
2981 		if (m == NULL)
2982 			break;
2983 	}
2984 	panic("tcp_pulloutofband");
2985 }
2986 
2987 /*
2988  * Collect new round-trip time estimate
2989  * and update averages and current timeout.
2990  */
2991 static void
2992 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2993 {
2994 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
2995 	int delta;
2996 
2997 	INP_WLOCK_ASSERT(tp->t_inpcb);
2998 
2999 	TCPSTAT_INC(tcps_rttupdated);
3000 	tp->t_rttupdated++;
3001 	if (tp->t_srtt != 0) {
3002 		/*
3003 		 * srtt is stored as fixed point with 5 bits after the
3004 		 * binary point (i.e., scaled by 8).  The following magic
3005 		 * is equivalent to the smoothing algorithm in rfc793 with
3006 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3007 		 * point).  Adjust rtt to origin 0.
3008 		 */
3009 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3010 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3011 
3012 		if ((tp->t_srtt += delta) <= 0)
3013 			tp->t_srtt = 1;
3014 
3015 		/*
3016 		 * We accumulate a smoothed rtt variance (actually, a
3017 		 * smoothed mean difference), then set the retransmit
3018 		 * timer to smoothed rtt + 4 times the smoothed variance.
3019 		 * rttvar is stored as fixed point with 4 bits after the
3020 		 * binary point (scaled by 16).  The following is
3021 		 * equivalent to rfc793 smoothing with an alpha of .75
3022 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3023 		 * rfc793's wired-in beta.
3024 		 */
3025 		if (delta < 0)
3026 			delta = -delta;
3027 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3028 		if ((tp->t_rttvar += delta) <= 0)
3029 			tp->t_rttvar = 1;
3030 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3031 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3032 	} else {
3033 		/*
3034 		 * No rtt measurement yet - use the unsmoothed rtt.
3035 		 * Set the variance to half the rtt (so our first
3036 		 * retransmit happens at 3*rtt).
3037 		 */
3038 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3039 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3040 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3041 	}
3042 	tp->t_rtttime = 0;
3043 	tp->t_rxtshift = 0;
3044 
3045 	/*
3046 	 * the retransmit should happen at rtt + 4 * rttvar.
3047 	 * Because of the way we do the smoothing, srtt and rttvar
3048 	 * will each average +1/2 tick of bias.  When we compute
3049 	 * the retransmit timer, we want 1/2 tick of rounding and
3050 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3051 	 * firing of the timer.  The bias will give us exactly the
3052 	 * 1.5 tick we need.  But, because the bias is
3053 	 * statistical, we have to test that we don't drop below
3054 	 * the minimum feasible timer (which is 2 ticks).
3055 	 */
3056 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3057 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3058 
3059 	/*
3060 	 * We received an ack for a packet that wasn't retransmitted;
3061 	 * it is probably safe to discard any error indications we've
3062 	 * received recently.  This isn't quite right, but close enough
3063 	 * for now (a route might have failed after we sent a segment,
3064 	 * and the return path might not be symmetrical).
3065 	 */
3066 	tp->t_softerror = 0;
3067 }
3068 
3069 /*
3070  * Determine a reasonable value for maxseg size.
3071  * If the route is known, check route for mtu.
3072  * If none, use an mss that can be handled on the outgoing
3073  * interface without forcing IP to fragment; if bigger than
3074  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3075  * to utilize large mbufs.  If no route is found, route has no mtu,
3076  * or the destination isn't local, use a default, hopefully conservative
3077  * size (usually 512 or the default IP max size, but no more than the mtu
3078  * of the interface), as we can't discover anything about intervening
3079  * gateways or networks.  We also initialize the congestion/slow start
3080  * window to be a single segment if the destination isn't local.
3081  * While looking at the routing entry, we also initialize other path-dependent
3082  * parameters from pre-set or cached values in the routing entry.
3083  *
3084  * Also take into account the space needed for options that we
3085  * send regularly.  Make maxseg shorter by that amount to assure
3086  * that we can send maxseg amount of data even when the options
3087  * are present.  Store the upper limit of the length of options plus
3088  * data in maxopd.
3089  *
3090  * In case of T/TCP, we call this routine during implicit connection
3091  * setup as well (offer = -1), to initialize maxseg from the cached
3092  * MSS of our peer.
3093  *
3094  * NOTE that this routine is only called when we process an incoming
3095  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3096  */
3097 void
3098 tcp_mss_update(struct tcpcb *tp, int offer,
3099     struct hc_metrics_lite *metricptr, int *mtuflags)
3100 {
3101 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
3102 	int mss;
3103 	u_long maxmtu;
3104 	struct inpcb *inp = tp->t_inpcb;
3105 	struct hc_metrics_lite metrics;
3106 	int origoffer = offer;
3107 #ifdef INET6
3108 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3109 	size_t min_protoh = isipv6 ?
3110 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3111 			    sizeof (struct tcpiphdr);
3112 #else
3113 	const size_t min_protoh = sizeof(struct tcpiphdr);
3114 #endif
3115 
3116 	INP_WLOCK_ASSERT(tp->t_inpcb);
3117 
3118 	/* Initialize. */
3119 #ifdef INET6
3120 	if (isipv6) {
3121 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3122 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3123 	} else
3124 #endif
3125 	{
3126 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3127 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3128 	}
3129 
3130 	/*
3131 	 * No route to sender, stay with default mss and return.
3132 	 */
3133 	if (maxmtu == 0) {
3134 		/*
3135 		 * In case we return early we need to initialize metrics
3136 		 * to a defined state as tcp_hc_get() would do for us
3137 		 * if there was no cache hit.
3138 		 */
3139 		if (metricptr != NULL)
3140 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3141 		return;
3142 	}
3143 
3144 	/* What have we got? */
3145 	switch (offer) {
3146 		case 0:
3147 			/*
3148 			 * Offer == 0 means that there was no MSS on the SYN
3149 			 * segment, in this case we use tcp_mssdflt as
3150 			 * already assigned to t_maxopd above.
3151 			 */
3152 			offer = tp->t_maxopd;
3153 			break;
3154 
3155 		case -1:
3156 			/*
3157 			 * Offer == -1 means that we didn't receive SYN yet.
3158 			 */
3159 			/* FALLTHROUGH */
3160 
3161 		default:
3162 			/*
3163 			 * Prevent DoS attack with too small MSS. Round up
3164 			 * to at least minmss.
3165 			 */
3166 			offer = max(offer, V_tcp_minmss);
3167 	}
3168 
3169 	/*
3170 	 * rmx information is now retrieved from tcp_hostcache.
3171 	 */
3172 	tcp_hc_get(&inp->inp_inc, &metrics);
3173 	if (metricptr != NULL)
3174 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3175 
3176 	/*
3177 	 * If there's a discovered mtu int tcp hostcache, use it
3178 	 * else, use the link mtu.
3179 	 */
3180 	if (metrics.rmx_mtu)
3181 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3182 	else {
3183 #ifdef INET6
3184 		if (isipv6) {
3185 			mss = maxmtu - min_protoh;
3186 			if (!V_path_mtu_discovery &&
3187 			    !in6_localaddr(&inp->in6p_faddr))
3188 				mss = min(mss, V_tcp_v6mssdflt);
3189 		} else
3190 #endif
3191 		{
3192 			mss = maxmtu - min_protoh;
3193 			if (!V_path_mtu_discovery &&
3194 			    !in_localaddr(inp->inp_faddr))
3195 				mss = min(mss, V_tcp_mssdflt);
3196 		}
3197 		/*
3198 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3199 		 * probably violates the TCP spec.
3200 		 * The problem is that, since we don't know the
3201 		 * other end's MSS, we are supposed to use a conservative
3202 		 * default.  But, if we do that, then MTU discovery will
3203 		 * never actually take place, because the conservative
3204 		 * default is much less than the MTUs typically seen
3205 		 * on the Internet today.  For the moment, we'll sweep
3206 		 * this under the carpet.
3207 		 *
3208 		 * The conservative default might not actually be a problem
3209 		 * if the only case this occurs is when sending an initial
3210 		 * SYN with options and data to a host we've never talked
3211 		 * to before.  Then, they will reply with an MSS value which
3212 		 * will get recorded and the new parameters should get
3213 		 * recomputed.  For Further Study.
3214 		 */
3215 	}
3216 	mss = min(mss, offer);
3217 
3218 	/*
3219 	 * Sanity check: make sure that maxopd will be large
3220 	 * enough to allow some data on segments even if the
3221 	 * all the option space is used (40bytes).  Otherwise
3222 	 * funny things may happen in tcp_output.
3223 	 */
3224 	mss = max(mss, 64);
3225 
3226 	/*
3227 	 * maxopd stores the maximum length of data AND options
3228 	 * in a segment; maxseg is the amount of data in a normal
3229 	 * segment.  We need to store this value (maxopd) apart
3230 	 * from maxseg, because now every segment carries options
3231 	 * and thus we normally have somewhat less data in segments.
3232 	 */
3233 	tp->t_maxopd = mss;
3234 
3235 	/*
3236 	 * origoffer==-1 indicates that no segments were received yet.
3237 	 * In this case we just guess.
3238 	 */
3239 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3240 	    (origoffer == -1 ||
3241 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3242 		mss -= TCPOLEN_TSTAMP_APPA;
3243 
3244 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3245 	if (mss > MCLBYTES)
3246 		mss &= ~(MCLBYTES-1);
3247 #else
3248 	if (mss > MCLBYTES)
3249 		mss = mss / MCLBYTES * MCLBYTES;
3250 #endif
3251 	tp->t_maxseg = mss;
3252 }
3253 
3254 void
3255 tcp_mss(struct tcpcb *tp, int offer)
3256 {
3257 	int rtt, mss;
3258 	u_long bufsize;
3259 	struct inpcb *inp;
3260 	struct socket *so;
3261 	struct hc_metrics_lite metrics;
3262 	int mtuflags = 0;
3263 #ifdef INET6
3264 	int isipv6;
3265 #endif
3266 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3267 	INIT_VNET_INET(tp->t_vnet);
3268 
3269 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3270 
3271 	mss = tp->t_maxseg;
3272 	inp = tp->t_inpcb;
3273 #ifdef INET6
3274 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3275 #endif
3276 
3277 	/*
3278 	 * If there's a pipesize, change the socket buffer to that size,
3279 	 * don't change if sb_hiwat is different than default (then it
3280 	 * has been changed on purpose with setsockopt).
3281 	 * Make the socket buffers an integral number of mss units;
3282 	 * if the mss is larger than the socket buffer, decrease the mss.
3283 	 */
3284 	so = inp->inp_socket;
3285 	SOCKBUF_LOCK(&so->so_snd);
3286 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3287 		bufsize = metrics.rmx_sendpipe;
3288 	else
3289 		bufsize = so->so_snd.sb_hiwat;
3290 	if (bufsize < mss)
3291 		mss = bufsize;
3292 	else {
3293 		bufsize = roundup(bufsize, mss);
3294 		if (bufsize > sb_max)
3295 			bufsize = sb_max;
3296 		if (bufsize > so->so_snd.sb_hiwat)
3297 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3298 	}
3299 	SOCKBUF_UNLOCK(&so->so_snd);
3300 	tp->t_maxseg = mss;
3301 
3302 	SOCKBUF_LOCK(&so->so_rcv);
3303 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3304 		bufsize = metrics.rmx_recvpipe;
3305 	else
3306 		bufsize = so->so_rcv.sb_hiwat;
3307 	if (bufsize > mss) {
3308 		bufsize = roundup(bufsize, mss);
3309 		if (bufsize > sb_max)
3310 			bufsize = sb_max;
3311 		if (bufsize > so->so_rcv.sb_hiwat)
3312 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3313 	}
3314 	SOCKBUF_UNLOCK(&so->so_rcv);
3315 	/*
3316 	 * While we're here, check the others too.
3317 	 */
3318 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3319 		tp->t_srtt = rtt;
3320 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3321 		TCPSTAT_INC(tcps_usedrtt);
3322 		if (metrics.rmx_rttvar) {
3323 			tp->t_rttvar = metrics.rmx_rttvar;
3324 			TCPSTAT_INC(tcps_usedrttvar);
3325 		} else {
3326 			/* default variation is +- 1 rtt */
3327 			tp->t_rttvar =
3328 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3329 		}
3330 		TCPT_RANGESET(tp->t_rxtcur,
3331 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3332 			      tp->t_rttmin, TCPTV_REXMTMAX);
3333 	}
3334 	if (metrics.rmx_ssthresh) {
3335 		/*
3336 		 * There's some sort of gateway or interface
3337 		 * buffer limit on the path.  Use this to set
3338 		 * the slow start threshhold, but set the
3339 		 * threshold to no less than 2*mss.
3340 		 */
3341 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3342 		TCPSTAT_INC(tcps_usedssthresh);
3343 	}
3344 	if (metrics.rmx_bandwidth)
3345 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3346 
3347 	/*
3348 	 * Set the slow-start flight size depending on whether this
3349 	 * is a local network or not.
3350 	 *
3351 	 * Extend this so we cache the cwnd too and retrieve it here.
3352 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3353 	 * have previous experience with the remote host. Be careful
3354 	 * not make cwnd bigger than remote receive window or our own
3355 	 * send socket buffer. Maybe put some additional upper bound
3356 	 * on the retrieved cwnd. Should do incremental updates to
3357 	 * hostcache when cwnd collapses so next connection doesn't
3358 	 * overloads the path again.
3359 	 *
3360 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3361 	 * We currently check only in syncache_socket for that.
3362 	 */
3363 #define TCP_METRICS_CWND
3364 #ifdef TCP_METRICS_CWND
3365 	if (metrics.rmx_cwnd)
3366 		tp->snd_cwnd = max(mss,
3367 				min(metrics.rmx_cwnd / 2,
3368 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3369 	else
3370 #endif
3371 	if (V_tcp_do_rfc3390)
3372 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3373 #ifdef INET6
3374 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3375 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3376 #else
3377 	else if (in_localaddr(inp->inp_faddr))
3378 #endif
3379 		tp->snd_cwnd = mss * V_ss_fltsz_local;
3380 	else
3381 		tp->snd_cwnd = mss * V_ss_fltsz;
3382 
3383 	/* Check the interface for TSO capabilities. */
3384 	if (mtuflags & CSUM_TSO)
3385 		tp->t_flags |= TF_TSO;
3386 }
3387 
3388 /*
3389  * Determine the MSS option to send on an outgoing SYN.
3390  */
3391 int
3392 tcp_mssopt(struct in_conninfo *inc)
3393 {
3394 	INIT_VNET_INET(curvnet);
3395 	int mss = 0;
3396 	u_long maxmtu = 0;
3397 	u_long thcmtu = 0;
3398 	size_t min_protoh;
3399 
3400 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3401 
3402 #ifdef INET6
3403 	if (inc->inc_flags & INC_ISIPV6) {
3404 		mss = V_tcp_v6mssdflt;
3405 		maxmtu = tcp_maxmtu6(inc, NULL);
3406 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3407 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3408 	} else
3409 #endif
3410 	{
3411 		mss = V_tcp_mssdflt;
3412 		maxmtu = tcp_maxmtu(inc, NULL);
3413 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3414 		min_protoh = sizeof(struct tcpiphdr);
3415 	}
3416 	if (maxmtu && thcmtu)
3417 		mss = min(maxmtu, thcmtu) - min_protoh;
3418 	else if (maxmtu || thcmtu)
3419 		mss = max(maxmtu, thcmtu) - min_protoh;
3420 
3421 	return (mss);
3422 }
3423 
3424 
3425 /*
3426  * On a partial ack arrives, force the retransmission of the
3427  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3428  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3429  * be started again.
3430  */
3431 static void
3432 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3433 {
3434 	tcp_seq onxt = tp->snd_nxt;
3435 	u_long  ocwnd = tp->snd_cwnd;
3436 
3437 	INP_WLOCK_ASSERT(tp->t_inpcb);
3438 
3439 	tcp_timer_activate(tp, TT_REXMT, 0);
3440 	tp->t_rtttime = 0;
3441 	tp->snd_nxt = th->th_ack;
3442 	/*
3443 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3444 	 * (tp->snd_una has not yet been updated when this function is called.)
3445 	 */
3446 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3447 	tp->t_flags |= TF_ACKNOW;
3448 	(void) tcp_output(tp);
3449 	tp->snd_cwnd = ocwnd;
3450 	if (SEQ_GT(onxt, tp->snd_nxt))
3451 		tp->snd_nxt = onxt;
3452 	/*
3453 	 * Partial window deflation.  Relies on fact that tp->snd_una
3454 	 * not updated yet.
3455 	 */
3456 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3457 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3458 	else
3459 		tp->snd_cwnd = 0;
3460 	tp->snd_cwnd += tp->t_maxseg;
3461 }
3462