xref: /freebsd/sys/netinet/tcp_input.c (revision bc96e1c7cf2ba4d4041ee04a3f4a45feed36a503)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_tcp_input.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/protosw.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/systm.h>
57 
58 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70 #include <netinet/ip_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/in6_pcb.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #ifdef TCPDEBUG
84 #include <netinet/tcp_debug.h>
85 #endif /* TCPDEBUG */
86 
87 #ifdef FAST_IPSEC
88 #include <netipsec/ipsec.h>
89 #ifdef INET6
90 #include <netipsec/ipsec6.h>
91 #endif
92 #endif /*FAST_IPSEC*/
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #include <netinet6/ipsec6.h>
97 #include <netkey/key.h>
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 
102 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
103 
104 static const int tcprexmtthresh = 3;
105 tcp_cc	tcp_ccgen;
106 
107 struct	tcpstat tcpstat;
108 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
109     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
110 
111 static int log_in_vain = 0;
112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
113     &log_in_vain, 0, "Log all incoming TCP connections");
114 
115 static int blackhole = 0;
116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
117 	&blackhole, 0, "Do not send RST when dropping refused connections");
118 
119 int tcp_delack_enabled = 1;
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
121     &tcp_delack_enabled, 0,
122     "Delay ACK to try and piggyback it onto a data packet");
123 
124 #ifdef TCP_DROP_SYNFIN
125 static int drop_synfin = 0;
126 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
127     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
128 #endif
129 
130 struct inpcbhead tcb;
131 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
132 struct inpcbinfo tcbinfo;
133 struct mtx	*tcbinfo_mtx;
134 
135 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
136 static void	 tcp_pulloutofband(struct socket *,
137 		     struct tcphdr *, struct mbuf *, int);
138 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
139 		     struct mbuf *);
140 static void	 tcp_xmit_timer(struct tcpcb *, int);
141 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
142 
143 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
144 #ifdef INET6
145 #define ND6_HINT(tp) \
146 do { \
147 	if ((tp) && (tp)->t_inpcb && \
148 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
149 	    (tp)->t_inpcb->in6p_route.ro_rt) \
150 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
151 } while (0)
152 #else
153 #define ND6_HINT(tp)
154 #endif
155 
156 /*
157  * Indicate whether this ack should be delayed.  We can delay the ack if
158  *	- delayed acks are enabled and
159  *	- there is no delayed ack timer in progress and
160  *	- our last ack wasn't a 0-sized window.  We never want to delay
161  *	  the ack that opens up a 0-sized window.
162  */
163 #define DELAY_ACK(tp) \
164 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
165 	(tp->t_flags & TF_RXWIN0SENT) == 0)
166 
167 static int
168 tcp_reass(tp, th, tlenp, m)
169 	register struct tcpcb *tp;
170 	register struct tcphdr *th;
171 	int *tlenp;
172 	struct mbuf *m;
173 {
174 	struct tseg_qent *q;
175 	struct tseg_qent *p = NULL;
176 	struct tseg_qent *nq;
177 	struct tseg_qent *te;
178 	struct socket *so = tp->t_inpcb->inp_socket;
179 	int flags;
180 
181 	/*
182 	 * Call with th==0 after become established to
183 	 * force pre-ESTABLISHED data up to user socket.
184 	 */
185 	if (th == 0)
186 		goto present;
187 
188 	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
189 	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
190 	       M_NOWAIT);
191 	if (te == NULL) {
192 		tcpstat.tcps_rcvmemdrop++;
193 		m_freem(m);
194 		return (0);
195 	}
196 
197 	/*
198 	 * Find a segment which begins after this one does.
199 	 */
200 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
201 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
202 			break;
203 		p = q;
204 	}
205 
206 	/*
207 	 * If there is a preceding segment, it may provide some of
208 	 * our data already.  If so, drop the data from the incoming
209 	 * segment.  If it provides all of our data, drop us.
210 	 */
211 	if (p != NULL) {
212 		register int i;
213 		/* conversion to int (in i) handles seq wraparound */
214 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
215 		if (i > 0) {
216 			if (i >= *tlenp) {
217 				tcpstat.tcps_rcvduppack++;
218 				tcpstat.tcps_rcvdupbyte += *tlenp;
219 				m_freem(m);
220 				FREE(te, M_TSEGQ);
221 				/*
222 				 * Try to present any queued data
223 				 * at the left window edge to the user.
224 				 * This is needed after the 3-WHS
225 				 * completes.
226 				 */
227 				goto present;	/* ??? */
228 			}
229 			m_adj(m, i);
230 			*tlenp -= i;
231 			th->th_seq += i;
232 		}
233 	}
234 	tcpstat.tcps_rcvoopack++;
235 	tcpstat.tcps_rcvoobyte += *tlenp;
236 
237 	/*
238 	 * While we overlap succeeding segments trim them or,
239 	 * if they are completely covered, dequeue them.
240 	 */
241 	while (q) {
242 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
243 		if (i <= 0)
244 			break;
245 		if (i < q->tqe_len) {
246 			q->tqe_th->th_seq += i;
247 			q->tqe_len -= i;
248 			m_adj(q->tqe_m, i);
249 			break;
250 		}
251 
252 		nq = LIST_NEXT(q, tqe_q);
253 		LIST_REMOVE(q, tqe_q);
254 		m_freem(q->tqe_m);
255 		FREE(q, M_TSEGQ);
256 		q = nq;
257 	}
258 
259 	/* Insert the new segment queue entry into place. */
260 	te->tqe_m = m;
261 	te->tqe_th = th;
262 	te->tqe_len = *tlenp;
263 
264 	if (p == NULL) {
265 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
266 	} else {
267 		LIST_INSERT_AFTER(p, te, tqe_q);
268 	}
269 
270 present:
271 	/*
272 	 * Present data to user, advancing rcv_nxt through
273 	 * completed sequence space.
274 	 */
275 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
276 		return (0);
277 	q = LIST_FIRST(&tp->t_segq);
278 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
279 		return (0);
280 	do {
281 		tp->rcv_nxt += q->tqe_len;
282 		flags = q->tqe_th->th_flags & TH_FIN;
283 		nq = LIST_NEXT(q, tqe_q);
284 		LIST_REMOVE(q, tqe_q);
285 		if (so->so_state & SS_CANTRCVMORE)
286 			m_freem(q->tqe_m);
287 		else
288 			sbappend(&so->so_rcv, q->tqe_m);
289 		FREE(q, M_TSEGQ);
290 		q = nq;
291 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
292 	ND6_HINT(tp);
293 	sorwakeup(so);
294 	return (flags);
295 }
296 
297 /*
298  * TCP input routine, follows pages 65-76 of the
299  * protocol specification dated September, 1981 very closely.
300  */
301 #ifdef INET6
302 int
303 tcp6_input(mp, offp, proto)
304 	struct mbuf **mp;
305 	int *offp, proto;
306 {
307 	register struct mbuf *m = *mp;
308 	struct in6_ifaddr *ia6;
309 
310 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
311 
312 	/*
313 	 * draft-itojun-ipv6-tcp-to-anycast
314 	 * better place to put this in?
315 	 */
316 	ia6 = ip6_getdstifaddr(m);
317 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
318 		struct ip6_hdr *ip6;
319 
320 		ip6 = mtod(m, struct ip6_hdr *);
321 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
322 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
323 		return IPPROTO_DONE;
324 	}
325 
326 	tcp_input(m, *offp);
327 	return IPPROTO_DONE;
328 }
329 #endif
330 
331 void
332 tcp_input(m, off0)
333 	register struct mbuf *m;
334 	int off0;
335 {
336 	register struct tcphdr *th;
337 	register struct ip *ip = NULL;
338 	register struct ipovly *ipov;
339 	register struct inpcb *inp = NULL;
340 	u_char *optp = NULL;
341 	int optlen = 0;
342 	int len, tlen, off;
343 	int drop_hdrlen;
344 	register struct tcpcb *tp = 0;
345 	register int thflags;
346 	struct socket *so = 0;
347 	int todrop, acked, ourfinisacked, needoutput = 0;
348 	u_long tiwin;
349 	struct tcpopt to;		/* options in this segment */
350 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
351 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
352 	int headlocked = 0;
353 	struct sockaddr_in *next_hop = NULL;
354 	int rstreason; /* For badport_bandlim accounting purposes */
355 
356 	struct ip6_hdr *ip6 = NULL;
357 #ifdef INET6
358 	int isipv6;
359 #else
360 	const int isipv6 = 0;
361 #endif
362 
363 #ifdef TCPDEBUG
364 	/*
365 	 * The size of tcp_saveipgen must be the size of the max ip header,
366 	 * now IPv6.
367 	 */
368 	u_char tcp_saveipgen[40];
369 	struct tcphdr tcp_savetcp;
370 	short ostate = 0;
371 #endif
372 
373 #ifdef MAC
374 	int error;
375 #endif
376 
377 	/* Grab info from MT_TAG mbufs prepended to the chain. */
378 	for (;m && m->m_type == MT_TAG; m = m->m_next) {
379 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
380 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
381 	}
382 #ifdef INET6
383 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
384 #endif
385 	bzero((char *)&to, sizeof(to));
386 
387 	tcpstat.tcps_rcvtotal++;
388 
389 	if (isipv6) {
390 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
391 		ip6 = mtod(m, struct ip6_hdr *);
392 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
393 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
394 			tcpstat.tcps_rcvbadsum++;
395 			goto drop;
396 		}
397 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
398 
399 		/*
400 		 * Be proactive about unspecified IPv6 address in source.
401 		 * As we use all-zero to indicate unbounded/unconnected pcb,
402 		 * unspecified IPv6 address can be used to confuse us.
403 		 *
404 		 * Note that packets with unspecified IPv6 destination is
405 		 * already dropped in ip6_input.
406 		 */
407 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
408 			/* XXX stat */
409 			goto drop;
410 		}
411 	} else {
412 		/*
413 		 * Get IP and TCP header together in first mbuf.
414 		 * Note: IP leaves IP header in first mbuf.
415 		 */
416 		if (off0 > sizeof (struct ip)) {
417 			ip_stripoptions(m, (struct mbuf *)0);
418 			off0 = sizeof(struct ip);
419 		}
420 		if (m->m_len < sizeof (struct tcpiphdr)) {
421 			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
422 				tcpstat.tcps_rcvshort++;
423 				return;
424 			}
425 		}
426 		ip = mtod(m, struct ip *);
427 		ipov = (struct ipovly *)ip;
428 		th = (struct tcphdr *)((caddr_t)ip + off0);
429 		tlen = ip->ip_len;
430 
431 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
432 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
433 				th->th_sum = m->m_pkthdr.csum_data;
434 			else
435 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
436 						ip->ip_dst.s_addr,
437 						htonl(m->m_pkthdr.csum_data +
438 							ip->ip_len +
439 							IPPROTO_TCP));
440 			th->th_sum ^= 0xffff;
441 		} else {
442 			/*
443 			 * Checksum extended TCP header and data.
444 			 */
445 			len = sizeof (struct ip) + tlen;
446 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
447 			ipov->ih_len = (u_short)tlen;
448 			ipov->ih_len = htons(ipov->ih_len);
449 			th->th_sum = in_cksum(m, len);
450 		}
451 		if (th->th_sum) {
452 			tcpstat.tcps_rcvbadsum++;
453 			goto drop;
454 		}
455 #ifdef INET6
456 		/* Re-initialization for later version check */
457 		ip->ip_v = IPVERSION;
458 #endif
459 	}
460 
461 	/*
462 	 * Check that TCP offset makes sense,
463 	 * pull out TCP options and adjust length.		XXX
464 	 */
465 	off = th->th_off << 2;
466 	if (off < sizeof (struct tcphdr) || off > tlen) {
467 		tcpstat.tcps_rcvbadoff++;
468 		goto drop;
469 	}
470 	tlen -= off;	/* tlen is used instead of ti->ti_len */
471 	if (off > sizeof (struct tcphdr)) {
472 		if (isipv6) {
473 			IP6_EXTHDR_CHECK(m, off0, off, );
474 			ip6 = mtod(m, struct ip6_hdr *);
475 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
476 		} else {
477 			if (m->m_len < sizeof(struct ip) + off) {
478 				if ((m = m_pullup(m, sizeof (struct ip) + off))
479 						== 0) {
480 					tcpstat.tcps_rcvshort++;
481 					return;
482 				}
483 				ip = mtod(m, struct ip *);
484 				ipov = (struct ipovly *)ip;
485 				th = (struct tcphdr *)((caddr_t)ip + off0);
486 			}
487 		}
488 		optlen = off - sizeof (struct tcphdr);
489 		optp = (u_char *)(th + 1);
490 	}
491 	thflags = th->th_flags;
492 
493 #ifdef TCP_DROP_SYNFIN
494 	/*
495 	 * If the drop_synfin option is enabled, drop all packets with
496 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
497 	 * identifying the TCP/IP stack.
498 	 *
499 	 * This is a violation of the TCP specification.
500 	 */
501 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
502 		goto drop;
503 #endif
504 
505 	/*
506 	 * Convert TCP protocol specific fields to host format.
507 	 */
508 	th->th_seq = ntohl(th->th_seq);
509 	th->th_ack = ntohl(th->th_ack);
510 	th->th_win = ntohs(th->th_win);
511 	th->th_urp = ntohs(th->th_urp);
512 
513 	/*
514 	 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
515 	 * until after ip6_savecontrol() is called and before other functions
516 	 * which don't want those proto headers.
517 	 * Because ip6_savecontrol() is going to parse the mbuf to
518 	 * search for data to be passed up to user-land, it wants mbuf
519 	 * parameters to be unchanged.
520 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
521 	 * latest version of the advanced API (20020110).
522 	 */
523 	drop_hdrlen = off0 + off;
524 
525 	/*
526 	 * Locate pcb for segment.
527 	 */
528 	INP_INFO_WLOCK(&tcbinfo);
529 	headlocked = 1;
530 findpcb:
531 	/* IPFIREWALL_FORWARD section */
532 	if (next_hop != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
533 		/*
534 		 * Transparently forwarded. Pretend to be the destination.
535 		 * already got one like this?
536 		 */
537 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
538 					ip->ip_dst, th->th_dport,
539 					0, m->m_pkthdr.rcvif);
540 		if (!inp) {
541 			/* It's new.  Try find the ambushing socket. */
542 			inp = in_pcblookup_hash(&tcbinfo,
543 						ip->ip_src, th->th_sport,
544 						next_hop->sin_addr,
545 						next_hop->sin_port ?
546 						    ntohs(next_hop->sin_port) :
547 						    th->th_dport,
548 						1, m->m_pkthdr.rcvif);
549 		}
550 	} else {
551 		if (isipv6)
552 			inp = in6_pcblookup_hash(&tcbinfo,
553 						 &ip6->ip6_src, th->th_sport,
554 						 &ip6->ip6_dst, th->th_dport,
555 						 1, m->m_pkthdr.rcvif);
556 		else
557 			inp = in_pcblookup_hash(&tcbinfo,
558 						ip->ip_src, th->th_sport,
559 						ip->ip_dst, th->th_dport,
560 						1, m->m_pkthdr.rcvif);
561       }
562 
563 #ifdef IPSEC
564 	if (isipv6) {
565 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
566 			ipsec6stat.in_polvio++;
567 			goto drop;
568 		}
569 	} else {
570 		if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
571 			ipsecstat.in_polvio++;
572 			goto drop;
573 		}
574 	}
575 #endif
576 #ifdef FAST_IPSEC
577 	if (isipv6) {
578 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
579 			goto drop;
580 		}
581 	} else if (inp != NULL && ipsec4_in_reject(m, inp)) {
582 		goto drop;
583 	}
584 #endif /*FAST_IPSEC*/
585 
586 	/*
587 	 * If the state is CLOSED (i.e., TCB does not exist) then
588 	 * all data in the incoming segment is discarded.
589 	 * If the TCB exists but is in CLOSED state, it is embryonic,
590 	 * but should either do a listen or a connect soon.
591 	 */
592 	if (inp == NULL) {
593 		if (log_in_vain) {
594 #ifdef INET6
595 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
596 #else
597 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
598 #endif
599 
600 			if (isipv6) {
601 				strcpy(dbuf, "[");
602 				strcpy(sbuf, "[");
603 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
604 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
605 				strcat(dbuf, "]");
606 				strcat(sbuf, "]");
607 			} else {
608 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
609 				strcpy(sbuf, inet_ntoa(ip->ip_src));
610 			}
611 			switch (log_in_vain) {
612 			case 1:
613 				if (thflags & TH_SYN)
614 					log(LOG_INFO,
615 					    "Connection attempt to TCP %s:%d "
616 					    "from %s:%d\n",
617 					    dbuf, ntohs(th->th_dport), sbuf,
618 					    ntohs(th->th_sport));
619 				break;
620 			case 2:
621 				log(LOG_INFO,
622 				    "Connection attempt to TCP %s:%d "
623 				    "from %s:%d flags:0x%x\n",
624 				    dbuf, ntohs(th->th_dport), sbuf,
625 				    ntohs(th->th_sport), thflags);
626 				break;
627 			default:
628 				break;
629 			}
630 		}
631 		if (blackhole) {
632 			switch (blackhole) {
633 			case 1:
634 				if (thflags & TH_SYN)
635 					goto drop;
636 				break;
637 			case 2:
638 				goto drop;
639 			default:
640 				goto drop;
641 			}
642 		}
643 		rstreason = BANDLIM_RST_CLOSEDPORT;
644 		goto dropwithreset;
645 	}
646 	INP_LOCK(inp);
647 	tp = intotcpcb(inp);
648 	if (tp == 0) {
649 		INP_UNLOCK(inp);
650 		rstreason = BANDLIM_RST_CLOSEDPORT;
651 		goto dropwithreset;
652 	}
653 	if (tp->t_state == TCPS_CLOSED)
654 		goto drop;
655 
656 	/* Unscale the window into a 32-bit value. */
657 	if ((thflags & TH_SYN) == 0)
658 		tiwin = th->th_win << tp->snd_scale;
659 	else
660 		tiwin = th->th_win;
661 
662 	so = inp->inp_socket;
663 #ifdef MAC
664 	error = mac_check_socket_deliver(so, m);
665 	if (error)
666 		goto drop;
667 #endif
668 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
669 		struct in_conninfo inc;
670 #ifdef TCPDEBUG
671 		if (so->so_options & SO_DEBUG) {
672 			ostate = tp->t_state;
673 			if (isipv6)
674 				bcopy((char *)ip6, (char *)tcp_saveipgen,
675 					sizeof(*ip6));
676 			else
677 				bcopy((char *)ip, (char *)tcp_saveipgen,
678 					sizeof(*ip));
679 			tcp_savetcp = *th;
680 		}
681 #endif
682 		/* skip if this isn't a listen socket */
683 		if ((so->so_options & SO_ACCEPTCONN) == 0)
684 			goto after_listen;
685 #ifdef INET6
686 		inc.inc_isipv6 = isipv6;
687 #endif
688 		if (isipv6) {
689 			inc.inc6_faddr = ip6->ip6_src;
690 			inc.inc6_laddr = ip6->ip6_dst;
691 			inc.inc6_route.ro_rt = NULL;		/* XXX */
692 		} else {
693 			inc.inc_faddr = ip->ip_src;
694 			inc.inc_laddr = ip->ip_dst;
695 			inc.inc_route.ro_rt = NULL;		/* XXX */
696 		}
697 		inc.inc_fport = th->th_sport;
698 		inc.inc_lport = th->th_dport;
699 
700 	        /*
701 	         * If the state is LISTEN then ignore segment if it contains
702 		 * a RST.  If the segment contains an ACK then it is bad and
703 		 * send a RST.  If it does not contain a SYN then it is not
704 		 * interesting; drop it.
705 		 *
706 		 * If the state is SYN_RECEIVED (syncache) and seg contains
707 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
708 		 * contains a RST, check the sequence number to see if it
709 		 * is a valid reset segment.
710 		 */
711 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
712 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
713 				if (!syncache_expand(&inc, th, &so, m)) {
714 					/*
715 					 * No syncache entry, or ACK was not
716 					 * for our SYN/ACK.  Send a RST.
717 					 */
718 					tcpstat.tcps_badsyn++;
719 					rstreason = BANDLIM_RST_OPENPORT;
720 					goto dropwithreset;
721 				}
722 				if (so == NULL) {
723 					/*
724 					 * Could not complete 3-way handshake,
725 					 * connection is being closed down, and
726 					 * syncache will free mbuf.
727 					 */
728 					INP_UNLOCK(inp);
729 					INP_INFO_WUNLOCK(&tcbinfo);
730 					return;
731 				}
732 				/*
733 				 * Socket is created in state SYN_RECEIVED.
734 				 * Continue processing segment.
735 				 */
736 				INP_UNLOCK(inp);
737 				inp = sotoinpcb(so);
738 				INP_LOCK(inp);
739 				tp = intotcpcb(inp);
740 				/*
741 				 * This is what would have happened in
742 				 * tcp_output() when the SYN,ACK was sent.
743 				 */
744 				tp->snd_up = tp->snd_una;
745 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
746 				tp->last_ack_sent = tp->rcv_nxt;
747 /*
748  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
749  * until the _second_ ACK is received:
750  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
751  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
752  *        move to ESTAB, set snd_wnd to tiwin.
753  */
754 				tp->snd_wnd = tiwin;	/* unscaled */
755 				goto after_listen;
756 			}
757 			if (thflags & TH_RST) {
758 				syncache_chkrst(&inc, th);
759 				goto drop;
760 			}
761 			if (thflags & TH_ACK) {
762 				syncache_badack(&inc);
763 				tcpstat.tcps_badsyn++;
764 				rstreason = BANDLIM_RST_OPENPORT;
765 				goto dropwithreset;
766 			}
767 			goto drop;
768 		}
769 
770 		/*
771 		 * Segment's flags are (SYN) or (SYN|FIN).
772 		 */
773 #ifdef INET6
774 		/*
775 		 * If deprecated address is forbidden,
776 		 * we do not accept SYN to deprecated interface
777 		 * address to prevent any new inbound connection from
778 		 * getting established.
779 		 * When we do not accept SYN, we send a TCP RST,
780 		 * with deprecated source address (instead of dropping
781 		 * it).  We compromise it as it is much better for peer
782 		 * to send a RST, and RST will be the final packet
783 		 * for the exchange.
784 		 *
785 		 * If we do not forbid deprecated addresses, we accept
786 		 * the SYN packet.  RFC2462 does not suggest dropping
787 		 * SYN in this case.
788 		 * If we decipher RFC2462 5.5.4, it says like this:
789 		 * 1. use of deprecated addr with existing
790 		 *    communication is okay - "SHOULD continue to be
791 		 *    used"
792 		 * 2. use of it with new communication:
793 		 *   (2a) "SHOULD NOT be used if alternate address
794 		 *        with sufficient scope is available"
795 		 *   (2b) nothing mentioned otherwise.
796 		 * Here we fall into (2b) case as we have no choice in
797 		 * our source address selection - we must obey the peer.
798 		 *
799 		 * The wording in RFC2462 is confusing, and there are
800 		 * multiple description text for deprecated address
801 		 * handling - worse, they are not exactly the same.
802 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
803 		 */
804 		if (isipv6 && !ip6_use_deprecated) {
805 			struct in6_ifaddr *ia6;
806 
807 			if ((ia6 = ip6_getdstifaddr(m)) &&
808 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
809 				INP_UNLOCK(inp);
810 				tp = NULL;
811 				rstreason = BANDLIM_RST_OPENPORT;
812 				goto dropwithreset;
813 			}
814 		}
815 #endif
816 		/*
817 		 * If it is from this socket, drop it, it must be forged.
818 		 * Don't bother responding if the destination was a broadcast.
819 		 */
820 		if (th->th_dport == th->th_sport) {
821 			if (isipv6) {
822 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
823 						       &ip6->ip6_src))
824 					goto drop;
825 			} else {
826 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
827 					goto drop;
828 			}
829 		}
830 		/*
831 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
832 		 *
833 		 * Note that it is quite possible to receive unicast
834 		 * link-layer packets with a broadcast IP address. Use
835 		 * in_broadcast() to find them.
836 		 */
837 		if (m->m_flags & (M_BCAST|M_MCAST))
838 			goto drop;
839 		if (isipv6) {
840 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
841 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
842 				goto drop;
843 		} else {
844 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
845 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
846 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
847 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
848 				goto drop;
849 		}
850 		/*
851 		 * SYN appears to be valid; create compressed TCP state
852 		 * for syncache, or perform t/tcp connection.
853 		 */
854 		if (so->so_qlen <= so->so_qlimit) {
855 			tcp_dooptions(&to, optp, optlen, 1);
856 			if (!syncache_add(&inc, &to, th, &so, m))
857 				goto drop;
858 			if (so == NULL) {
859 				/*
860 				 * Entry added to syncache, mbuf used to
861 				 * send SYN,ACK packet.
862 				 */
863 				KASSERT(headlocked, ("headlocked"));
864 				INP_UNLOCK(inp);
865 				INP_INFO_WUNLOCK(&tcbinfo);
866 				return;
867 			}
868 			/*
869 			 * Segment passed TAO tests.
870 			 */
871 			INP_UNLOCK(inp);
872 			inp = sotoinpcb(so);
873 			INP_LOCK(inp);
874 			tp = intotcpcb(inp);
875 			tp->snd_wnd = tiwin;
876 			tp->t_starttime = ticks;
877 			tp->t_state = TCPS_ESTABLISHED;
878 
879 			/*
880 			 * If there is a FIN, or if there is data and the
881 			 * connection is local, then delay SYN,ACK(SYN) in
882 			 * the hope of piggy-backing it on a response
883 			 * segment.  Otherwise must send ACK now in case
884 			 * the other side is slow starting.
885 			 */
886 			if (DELAY_ACK(tp) &&
887 			    ((thflags & TH_FIN) ||
888 			     (tlen != 0 &&
889 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
890 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
891 				callout_reset(tp->tt_delack, tcp_delacktime,
892 						tcp_timer_delack, tp);
893 				tp->t_flags |= TF_NEEDSYN;
894 			} else
895 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
896 
897 			tcpstat.tcps_connects++;
898 			soisconnected(so);
899 			goto trimthenstep6;
900 		}
901 		goto drop;
902 	}
903 after_listen:
904 
905 /* XXX temp debugging */
906 	/* should not happen - syncache should pick up these connections */
907 	if (tp->t_state == TCPS_LISTEN)
908 		panic("tcp_input: TCPS_LISTEN");
909 
910 	/*
911 	 * Segment received on connection.
912 	 * Reset idle time and keep-alive timer.
913 	 */
914 	tp->t_rcvtime = ticks;
915 	if (TCPS_HAVEESTABLISHED(tp->t_state))
916 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
917 
918 	/*
919 	 * Process options.
920 	 * XXX this is tradtitional behavior, may need to be cleaned up.
921 	 */
922 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
923 	if (thflags & TH_SYN) {
924 		if (to.to_flags & TOF_SCALE) {
925 			tp->t_flags |= TF_RCVD_SCALE;
926 			tp->requested_s_scale = to.to_requested_s_scale;
927 		}
928 		if (to.to_flags & TOF_TS) {
929 			tp->t_flags |= TF_RCVD_TSTMP;
930 			tp->ts_recent = to.to_tsval;
931 			tp->ts_recent_age = ticks;
932 		}
933 		if (to.to_flags & (TOF_CC|TOF_CCNEW))
934 			tp->t_flags |= TF_RCVD_CC;
935 		if (to.to_flags & TOF_MSS)
936 			tcp_mss(tp, to.to_mss);
937 	}
938 
939 	/*
940 	 * Header prediction: check for the two common cases
941 	 * of a uni-directional data xfer.  If the packet has
942 	 * no control flags, is in-sequence, the window didn't
943 	 * change and we're not retransmitting, it's a
944 	 * candidate.  If the length is zero and the ack moved
945 	 * forward, we're the sender side of the xfer.  Just
946 	 * free the data acked & wake any higher level process
947 	 * that was blocked waiting for space.  If the length
948 	 * is non-zero and the ack didn't move, we're the
949 	 * receiver side.  If we're getting packets in-order
950 	 * (the reassembly queue is empty), add the data to
951 	 * the socket buffer and note that we need a delayed ack.
952 	 * Make sure that the hidden state-flags are also off.
953 	 * Since we check for TCPS_ESTABLISHED above, it can only
954 	 * be TH_NEEDSYN.
955 	 */
956 	if (tp->t_state == TCPS_ESTABLISHED &&
957 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
958 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
959 	    ((to.to_flags & TOF_TS) == 0 ||
960 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
961 	    /*
962 	     * Using the CC option is compulsory if once started:
963 	     *   the segment is OK if no T/TCP was negotiated or
964 	     *   if the segment has a CC option equal to CCrecv
965 	     */
966 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
967 	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
968 	    th->th_seq == tp->rcv_nxt &&
969 	    tiwin && tiwin == tp->snd_wnd &&
970 	    tp->snd_nxt == tp->snd_max) {
971 
972 		/*
973 		 * If last ACK falls within this segment's sequence numbers,
974 		 * record the timestamp.
975 		 * NOTE that the test is modified according to the latest
976 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
977 		 */
978 		if ((to.to_flags & TOF_TS) != 0 &&
979 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
980 			tp->ts_recent_age = ticks;
981 			tp->ts_recent = to.to_tsval;
982 		}
983 
984 		if (tlen == 0) {
985 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
986 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
987 			    tp->snd_cwnd >= tp->snd_wnd &&
988 			    tp->t_dupacks < tcprexmtthresh) {
989 				KASSERT(headlocked, ("headlocked"));
990 				INP_INFO_WUNLOCK(&tcbinfo);
991 				headlocked = 0;
992 				/*
993 				 * this is a pure ack for outstanding data.
994 				 */
995 				++tcpstat.tcps_predack;
996 				/*
997 				 * "bad retransmit" recovery
998 				 */
999 				if (tp->t_rxtshift == 1 &&
1000 				    ticks < tp->t_badrxtwin) {
1001 					tp->snd_cwnd = tp->snd_cwnd_prev;
1002 					tp->snd_ssthresh =
1003 					    tp->snd_ssthresh_prev;
1004 					tp->snd_nxt = tp->snd_max;
1005 					tp->t_badrxtwin = 0;
1006 				}
1007 
1008 				/*
1009 				 * Recalculate the transmit timer / rtt.
1010 				 *
1011 				 * Some boxes send broken timestamp replies
1012 				 * during the SYN+ACK phase, ignore
1013 				 * timestamps of 0 or we could calculate a
1014 				 * huge RTT and blow up the retransmit timer.
1015 				 */
1016 				if ((to.to_flags & TOF_TS) != 0 &&
1017 				    to.to_tsecr) {
1018 					tcp_xmit_timer(tp,
1019 					    ticks - to.to_tsecr + 1);
1020 				} else if (tp->t_rtttime &&
1021 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1022 					tcp_xmit_timer(tp,
1023 							ticks - tp->t_rtttime);
1024 				}
1025 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1026 				acked = th->th_ack - tp->snd_una;
1027 				tcpstat.tcps_rcvackpack++;
1028 				tcpstat.tcps_rcvackbyte += acked;
1029 				sbdrop(&so->so_snd, acked);
1030 				tp->snd_una = th->th_ack;
1031 				tp->t_dupacks = 0;
1032 				m_freem(m);
1033 				ND6_HINT(tp); /* some progress has been done */
1034 
1035 				/*
1036 				 * If all outstanding data are acked, stop
1037 				 * retransmit timer, otherwise restart timer
1038 				 * using current (possibly backed-off) value.
1039 				 * If process is waiting for space,
1040 				 * wakeup/selwakeup/signal.  If data
1041 				 * are ready to send, let tcp_output
1042 				 * decide between more output or persist.
1043 				 */
1044 				if (tp->snd_una == tp->snd_max)
1045 					callout_stop(tp->tt_rexmt);
1046 				else if (!callout_active(tp->tt_persist))
1047 					callout_reset(tp->tt_rexmt,
1048 						      tp->t_rxtcur,
1049 						      tcp_timer_rexmt, tp);
1050 
1051 				sowwakeup(so);
1052 				if (so->so_snd.sb_cc)
1053 					(void) tcp_output(tp);
1054 				INP_UNLOCK(inp);
1055 				return;
1056 			}
1057 		} else if (th->th_ack == tp->snd_una &&
1058 		    LIST_EMPTY(&tp->t_segq) &&
1059 		    tlen <= sbspace(&so->so_rcv)) {
1060 			KASSERT(headlocked, ("headlocked"));
1061 			INP_INFO_WUNLOCK(&tcbinfo);
1062 			headlocked = 0;
1063 			/*
1064 			 * this is a pure, in-sequence data packet
1065 			 * with nothing on the reassembly queue and
1066 			 * we have enough buffer space to take it.
1067 			 */
1068 			++tcpstat.tcps_preddat;
1069 			tp->rcv_nxt += tlen;
1070 			tcpstat.tcps_rcvpack++;
1071 			tcpstat.tcps_rcvbyte += tlen;
1072 			ND6_HINT(tp);	/* some progress has been done */
1073 			/*
1074 			 * Add data to socket buffer.
1075 			 */
1076 			if (so->so_state & SS_CANTRCVMORE) {
1077 				m_freem(m);
1078 			} else {
1079 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1080 				sbappend(&so->so_rcv, m);
1081 			}
1082 			sorwakeup(so);
1083 			if (DELAY_ACK(tp)) {
1084 	                        callout_reset(tp->tt_delack, tcp_delacktime,
1085 	                            tcp_timer_delack, tp);
1086 			} else {
1087 				tp->t_flags |= TF_ACKNOW;
1088 				tcp_output(tp);
1089 			}
1090 			INP_UNLOCK(inp);
1091 			return;
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * Calculate amount of space in receive window,
1097 	 * and then do TCP input processing.
1098 	 * Receive window is amount of space in rcv queue,
1099 	 * but not less than advertised window.
1100 	 */
1101 	{ int win;
1102 
1103 	win = sbspace(&so->so_rcv);
1104 	if (win < 0)
1105 		win = 0;
1106 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1107 	}
1108 
1109 	switch (tp->t_state) {
1110 
1111 	/*
1112 	 * If the state is SYN_RECEIVED:
1113 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1114 	 */
1115 	case TCPS_SYN_RECEIVED:
1116 		if ((thflags & TH_ACK) &&
1117 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1118 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1119 				rstreason = BANDLIM_RST_OPENPORT;
1120 				goto dropwithreset;
1121 		}
1122 		break;
1123 
1124 	/*
1125 	 * If the state is SYN_SENT:
1126 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1127 	 *	if seg contains a RST, then drop the connection.
1128 	 *	if seg does not contain SYN, then drop it.
1129 	 * Otherwise this is an acceptable SYN segment
1130 	 *	initialize tp->rcv_nxt and tp->irs
1131 	 *	if seg contains ack then advance tp->snd_una
1132 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1133 	 *	arrange for segment to be acked (eventually)
1134 	 *	continue processing rest of data/controls, beginning with URG
1135 	 */
1136 	case TCPS_SYN_SENT:
1137 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1138 			taop = &tao_noncached;
1139 			bzero(taop, sizeof(*taop));
1140 		}
1141 
1142 		if ((thflags & TH_ACK) &&
1143 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1144 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1145 			/*
1146 			 * If we have a cached CCsent for the remote host,
1147 			 * hence we haven't just crashed and restarted,
1148 			 * do not send a RST.  This may be a retransmission
1149 			 * from the other side after our earlier ACK was lost.
1150 			 * Our new SYN, when it arrives, will serve as the
1151 			 * needed ACK.
1152 			 */
1153 			if (taop->tao_ccsent != 0)
1154 				goto drop;
1155 			else {
1156 				rstreason = BANDLIM_UNLIMITED;
1157 				goto dropwithreset;
1158 			}
1159 		}
1160 		if (thflags & TH_RST) {
1161 			if (thflags & TH_ACK)
1162 				tp = tcp_drop(tp, ECONNREFUSED);
1163 			goto drop;
1164 		}
1165 		if ((thflags & TH_SYN) == 0)
1166 			goto drop;
1167 		tp->snd_wnd = th->th_win;	/* initial send window */
1168 		tp->cc_recv = to.to_cc;		/* foreign CC */
1169 
1170 		tp->irs = th->th_seq;
1171 		tcp_rcvseqinit(tp);
1172 		if (thflags & TH_ACK) {
1173 			/*
1174 			 * Our SYN was acked.  If segment contains CC.ECHO
1175 			 * option, check it to make sure this segment really
1176 			 * matches our SYN.  If not, just drop it as old
1177 			 * duplicate, but send an RST if we're still playing
1178 			 * by the old rules.  If no CC.ECHO option, make sure
1179 			 * we don't get fooled into using T/TCP.
1180 			 */
1181 			if (to.to_flags & TOF_CCECHO) {
1182 				if (tp->cc_send != to.to_ccecho) {
1183 					if (taop->tao_ccsent != 0)
1184 						goto drop;
1185 					else {
1186 						rstreason = BANDLIM_UNLIMITED;
1187 						goto dropwithreset;
1188 					}
1189 				}
1190 			} else
1191 				tp->t_flags &= ~TF_RCVD_CC;
1192 			tcpstat.tcps_connects++;
1193 			soisconnected(so);
1194 #ifdef MAC
1195 			mac_set_socket_peer_from_mbuf(m, so);
1196 #endif
1197 			/* Do window scaling on this connection? */
1198 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1199 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1200 				tp->snd_scale = tp->requested_s_scale;
1201 				tp->rcv_scale = tp->request_r_scale;
1202 			}
1203 			/* Segment is acceptable, update cache if undefined. */
1204 			if (taop->tao_ccsent == 0)
1205 				taop->tao_ccsent = to.to_ccecho;
1206 
1207 			tp->rcv_adv += tp->rcv_wnd;
1208 			tp->snd_una++;		/* SYN is acked */
1209 			/*
1210 			 * If there's data, delay ACK; if there's also a FIN
1211 			 * ACKNOW will be turned on later.
1212 			 */
1213 			if (DELAY_ACK(tp) && tlen != 0)
1214                                 callout_reset(tp->tt_delack, tcp_delacktime,
1215                                     tcp_timer_delack, tp);
1216 			else
1217 				tp->t_flags |= TF_ACKNOW;
1218 			/*
1219 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1220 			 * Transitions:
1221 			 *	SYN_SENT  --> ESTABLISHED
1222 			 *	SYN_SENT* --> FIN_WAIT_1
1223 			 */
1224 			tp->t_starttime = ticks;
1225 			if (tp->t_flags & TF_NEEDFIN) {
1226 				tp->t_state = TCPS_FIN_WAIT_1;
1227 				tp->t_flags &= ~TF_NEEDFIN;
1228 				thflags &= ~TH_SYN;
1229 			} else {
1230 				tp->t_state = TCPS_ESTABLISHED;
1231 				callout_reset(tp->tt_keep, tcp_keepidle,
1232 					      tcp_timer_keep, tp);
1233 			}
1234 		} else {
1235 			/*
1236 		 	 * Received initial SYN in SYN-SENT[*] state =>
1237 		 	 * simultaneous open.  If segment contains CC option
1238 		 	 * and there is a cached CC, apply TAO test.
1239 		 	 * If it succeeds, connection is * half-synchronized.
1240 		 	 * Otherwise, do 3-way handshake:
1241 		 	 *        SYN-SENT -> SYN-RECEIVED
1242 		 	 *        SYN-SENT* -> SYN-RECEIVED*
1243 		 	 * If there was no CC option, clear cached CC value.
1244 		 	 */
1245 			tp->t_flags |= TF_ACKNOW;
1246 			callout_stop(tp->tt_rexmt);
1247 			if (to.to_flags & TOF_CC) {
1248 				if (taop->tao_cc != 0 &&
1249 				    CC_GT(to.to_cc, taop->tao_cc)) {
1250 					/*
1251 					 * update cache and make transition:
1252 					 *        SYN-SENT -> ESTABLISHED*
1253 					 *        SYN-SENT* -> FIN-WAIT-1*
1254 					 */
1255 					taop->tao_cc = to.to_cc;
1256 					tp->t_starttime = ticks;
1257 					if (tp->t_flags & TF_NEEDFIN) {
1258 						tp->t_state = TCPS_FIN_WAIT_1;
1259 						tp->t_flags &= ~TF_NEEDFIN;
1260 					} else {
1261 						tp->t_state = TCPS_ESTABLISHED;
1262 						callout_reset(tp->tt_keep,
1263 							      tcp_keepidle,
1264 							      tcp_timer_keep,
1265 							      tp);
1266 					}
1267 					tp->t_flags |= TF_NEEDSYN;
1268 				} else
1269 					tp->t_state = TCPS_SYN_RECEIVED;
1270 			} else {
1271 				/* CC.NEW or no option => invalidate cache */
1272 				taop->tao_cc = 0;
1273 				tp->t_state = TCPS_SYN_RECEIVED;
1274 			}
1275 		}
1276 
1277 trimthenstep6:
1278 		/*
1279 		 * Advance th->th_seq to correspond to first data byte.
1280 		 * If data, trim to stay within window,
1281 		 * dropping FIN if necessary.
1282 		 */
1283 		th->th_seq++;
1284 		if (tlen > tp->rcv_wnd) {
1285 			todrop = tlen - tp->rcv_wnd;
1286 			m_adj(m, -todrop);
1287 			tlen = tp->rcv_wnd;
1288 			thflags &= ~TH_FIN;
1289 			tcpstat.tcps_rcvpackafterwin++;
1290 			tcpstat.tcps_rcvbyteafterwin += todrop;
1291 		}
1292 		tp->snd_wl1 = th->th_seq - 1;
1293 		tp->rcv_up = th->th_seq;
1294 		/*
1295 		 * Client side of transaction: already sent SYN and data.
1296 		 * If the remote host used T/TCP to validate the SYN,
1297 		 * our data will be ACK'd; if so, enter normal data segment
1298 		 * processing in the middle of step 5, ack processing.
1299 		 * Otherwise, goto step 6.
1300 		 */
1301  		if (thflags & TH_ACK)
1302 			goto process_ACK;
1303 
1304 		goto step6;
1305 
1306 	/*
1307 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1308 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1309 	 *              if state == TIME_WAIT and connection duration > MSL,
1310 	 *                  drop packet and send RST;
1311 	 *
1312 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1313 	 *		    ack the FIN (and data) in retransmission queue.
1314 	 *                  Complete close and delete TCPCB.  Then reprocess
1315 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1316 	 *
1317 	 *		else must be old SYN; drop it.
1318 	 *      else do normal processing.
1319 	 */
1320 	case TCPS_LAST_ACK:
1321 	case TCPS_CLOSING:
1322 	case TCPS_TIME_WAIT:
1323 		if ((thflags & TH_SYN) &&
1324 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1325 			if (tp->t_state == TCPS_TIME_WAIT &&
1326 					(ticks - tp->t_starttime) > tcp_msl) {
1327 				rstreason = BANDLIM_UNLIMITED;
1328 				goto dropwithreset;
1329 			}
1330 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1331 				tp = tcp_close(tp);
1332 				goto findpcb;
1333 			}
1334 			else
1335 				goto drop;
1336 		}
1337  		break;  /* continue normal processing */
1338 	}
1339 
1340 	/*
1341 	 * States other than LISTEN or SYN_SENT.
1342 	 * First check the RST flag and sequence number since reset segments
1343 	 * are exempt from the timestamp and connection count tests.  This
1344 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1345 	 * below which allowed reset segments in half the sequence space
1346 	 * to fall though and be processed (which gives forged reset
1347 	 * segments with a random sequence number a 50 percent chance of
1348 	 * killing a connection).
1349 	 * Then check timestamp, if present.
1350 	 * Then check the connection count, if present.
1351 	 * Then check that at least some bytes of segment are within
1352 	 * receive window.  If segment begins before rcv_nxt,
1353 	 * drop leading data (and SYN); if nothing left, just ack.
1354 	 *
1355 	 *
1356 	 * If the RST bit is set, check the sequence number to see
1357 	 * if this is a valid reset segment.
1358 	 * RFC 793 page 37:
1359 	 *   In all states except SYN-SENT, all reset (RST) segments
1360 	 *   are validated by checking their SEQ-fields.  A reset is
1361 	 *   valid if its sequence number is in the window.
1362 	 * Note: this does not take into account delayed ACKs, so
1363 	 *   we should test against last_ack_sent instead of rcv_nxt.
1364 	 *   The sequence number in the reset segment is normally an
1365 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1366 	 *   send a reset with the sequence number at the rightmost edge
1367 	 *   of our receive window, and we have to handle this case.
1368 	 * If we have multiple segments in flight, the intial reset
1369 	 * segment sequence numbers will be to the left of last_ack_sent,
1370 	 * but they will eventually catch up.
1371 	 * In any case, it never made sense to trim reset segments to
1372 	 * fit the receive window since RFC 1122 says:
1373 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1374 	 *
1375 	 *    A TCP SHOULD allow a received RST segment to include data.
1376 	 *
1377 	 *    DISCUSSION
1378 	 *         It has been suggested that a RST segment could contain
1379 	 *         ASCII text that encoded and explained the cause of the
1380 	 *         RST.  No standard has yet been established for such
1381 	 *         data.
1382 	 *
1383 	 * If the reset segment passes the sequence number test examine
1384 	 * the state:
1385 	 *    SYN_RECEIVED STATE:
1386 	 *	If passive open, return to LISTEN state.
1387 	 *	If active open, inform user that connection was refused.
1388 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1389 	 *	Inform user that connection was reset, and close tcb.
1390 	 *    CLOSING, LAST_ACK STATES:
1391 	 *	Close the tcb.
1392 	 *    TIME_WAIT STATE:
1393 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1394 	 *      RFC 1337.
1395 	 */
1396 	if (thflags & TH_RST) {
1397 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1398 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1399 			switch (tp->t_state) {
1400 
1401 			case TCPS_SYN_RECEIVED:
1402 				so->so_error = ECONNREFUSED;
1403 				goto close;
1404 
1405 			case TCPS_ESTABLISHED:
1406 			case TCPS_FIN_WAIT_1:
1407 			case TCPS_FIN_WAIT_2:
1408 			case TCPS_CLOSE_WAIT:
1409 				so->so_error = ECONNRESET;
1410 			close:
1411 				tp->t_state = TCPS_CLOSED;
1412 				tcpstat.tcps_drops++;
1413 				tp = tcp_close(tp);
1414 				break;
1415 
1416 			case TCPS_CLOSING:
1417 			case TCPS_LAST_ACK:
1418 				tp = tcp_close(tp);
1419 				break;
1420 
1421 			case TCPS_TIME_WAIT:
1422 				break;
1423 			}
1424 		}
1425 		goto drop;
1426 	}
1427 
1428 	/*
1429 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1430 	 * and it's less than ts_recent, drop it.
1431 	 */
1432 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1433 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1434 
1435 		/* Check to see if ts_recent is over 24 days old.  */
1436 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1437 			/*
1438 			 * Invalidate ts_recent.  If this segment updates
1439 			 * ts_recent, the age will be reset later and ts_recent
1440 			 * will get a valid value.  If it does not, setting
1441 			 * ts_recent to zero will at least satisfy the
1442 			 * requirement that zero be placed in the timestamp
1443 			 * echo reply when ts_recent isn't valid.  The
1444 			 * age isn't reset until we get a valid ts_recent
1445 			 * because we don't want out-of-order segments to be
1446 			 * dropped when ts_recent is old.
1447 			 */
1448 			tp->ts_recent = 0;
1449 		} else {
1450 			tcpstat.tcps_rcvduppack++;
1451 			tcpstat.tcps_rcvdupbyte += tlen;
1452 			tcpstat.tcps_pawsdrop++;
1453 			goto dropafterack;
1454 		}
1455 	}
1456 
1457 	/*
1458 	 * T/TCP mechanism
1459 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1460 	 *   or if its CC is wrong then drop the segment.
1461 	 *   RST segments do not have to comply with this.
1462 	 */
1463 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1464 	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1465  		goto dropafterack;
1466 
1467 	/*
1468 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1469 	 * this connection before trimming the data to fit the receive
1470 	 * window.  Check the sequence number versus IRS since we know
1471 	 * the sequence numbers haven't wrapped.  This is a partial fix
1472 	 * for the "LAND" DoS attack.
1473 	 */
1474 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1475 		rstreason = BANDLIM_RST_OPENPORT;
1476 		goto dropwithreset;
1477 	}
1478 
1479 	todrop = tp->rcv_nxt - th->th_seq;
1480 	if (todrop > 0) {
1481 		if (thflags & TH_SYN) {
1482 			thflags &= ~TH_SYN;
1483 			th->th_seq++;
1484 			if (th->th_urp > 1)
1485 				th->th_urp--;
1486 			else
1487 				thflags &= ~TH_URG;
1488 			todrop--;
1489 		}
1490 		/*
1491 		 * Following if statement from Stevens, vol. 2, p. 960.
1492 		 */
1493 		if (todrop > tlen
1494 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1495 			/*
1496 			 * Any valid FIN must be to the left of the window.
1497 			 * At this point the FIN must be a duplicate or out
1498 			 * of sequence; drop it.
1499 			 */
1500 			thflags &= ~TH_FIN;
1501 
1502 			/*
1503 			 * Send an ACK to resynchronize and drop any data.
1504 			 * But keep on processing for RST or ACK.
1505 			 */
1506 			tp->t_flags |= TF_ACKNOW;
1507 			todrop = tlen;
1508 			tcpstat.tcps_rcvduppack++;
1509 			tcpstat.tcps_rcvdupbyte += todrop;
1510 		} else {
1511 			tcpstat.tcps_rcvpartduppack++;
1512 			tcpstat.tcps_rcvpartdupbyte += todrop;
1513 		}
1514 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1515 		th->th_seq += todrop;
1516 		tlen -= todrop;
1517 		if (th->th_urp > todrop)
1518 			th->th_urp -= todrop;
1519 		else {
1520 			thflags &= ~TH_URG;
1521 			th->th_urp = 0;
1522 		}
1523 	}
1524 
1525 	/*
1526 	 * If new data are received on a connection after the
1527 	 * user processes are gone, then RST the other end.
1528 	 */
1529 	if ((so->so_state & SS_NOFDREF) &&
1530 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1531 		tp = tcp_close(tp);
1532 		tcpstat.tcps_rcvafterclose++;
1533 		rstreason = BANDLIM_UNLIMITED;
1534 		goto dropwithreset;
1535 	}
1536 
1537 	/*
1538 	 * If segment ends after window, drop trailing data
1539 	 * (and PUSH and FIN); if nothing left, just ACK.
1540 	 */
1541 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1542 	if (todrop > 0) {
1543 		tcpstat.tcps_rcvpackafterwin++;
1544 		if (todrop >= tlen) {
1545 			tcpstat.tcps_rcvbyteafterwin += tlen;
1546 			/*
1547 			 * If a new connection request is received
1548 			 * while in TIME_WAIT, drop the old connection
1549 			 * and start over if the sequence numbers
1550 			 * are above the previous ones.
1551 			 */
1552 			if (thflags & TH_SYN &&
1553 			    tp->t_state == TCPS_TIME_WAIT &&
1554 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1555 				tp = tcp_close(tp);
1556 				goto findpcb;
1557 			}
1558 			/*
1559 			 * If window is closed can only take segments at
1560 			 * window edge, and have to drop data and PUSH from
1561 			 * incoming segments.  Continue processing, but
1562 			 * remember to ack.  Otherwise, drop segment
1563 			 * and ack.
1564 			 */
1565 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1566 				tp->t_flags |= TF_ACKNOW;
1567 				tcpstat.tcps_rcvwinprobe++;
1568 			} else
1569 				goto dropafterack;
1570 		} else
1571 			tcpstat.tcps_rcvbyteafterwin += todrop;
1572 		m_adj(m, -todrop);
1573 		tlen -= todrop;
1574 		thflags &= ~(TH_PUSH|TH_FIN);
1575 	}
1576 
1577 	/*
1578 	 * If last ACK falls within this segment's sequence numbers,
1579 	 * record its timestamp.
1580 	 * NOTE that the test is modified according to the latest
1581 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1582 	 */
1583 	if ((to.to_flags & TOF_TS) != 0 &&
1584 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1585 		tp->ts_recent_age = ticks;
1586 		tp->ts_recent = to.to_tsval;
1587 	}
1588 
1589 	/*
1590 	 * If a SYN is in the window, then this is an
1591 	 * error and we send an RST and drop the connection.
1592 	 */
1593 	if (thflags & TH_SYN) {
1594 		tp = tcp_drop(tp, ECONNRESET);
1595 		rstreason = BANDLIM_UNLIMITED;
1596 		goto dropwithreset;
1597 	}
1598 
1599 	/*
1600 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1601 	 * flag is on (half-synchronized state), then queue data for
1602 	 * later processing; else drop segment and return.
1603 	 */
1604 	if ((thflags & TH_ACK) == 0) {
1605 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1606 		    (tp->t_flags & TF_NEEDSYN))
1607 			goto step6;
1608 		else
1609 			goto drop;
1610 	}
1611 
1612 	/*
1613 	 * Ack processing.
1614 	 */
1615 	switch (tp->t_state) {
1616 
1617 	/*
1618 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1619 	 * ESTABLISHED state and continue processing.
1620 	 * The ACK was checked above.
1621 	 */
1622 	case TCPS_SYN_RECEIVED:
1623 
1624 		tcpstat.tcps_connects++;
1625 		soisconnected(so);
1626 		/* Do window scaling? */
1627 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1628 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1629 			tp->snd_scale = tp->requested_s_scale;
1630 			tp->rcv_scale = tp->request_r_scale;
1631 		}
1632 		/*
1633 		 * Upon successful completion of 3-way handshake,
1634 		 * update cache.CC if it was undefined, pass any queued
1635 		 * data to the user, and advance state appropriately.
1636 		 */
1637 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1638 		    taop->tao_cc == 0)
1639 			taop->tao_cc = tp->cc_recv;
1640 
1641 		/*
1642 		 * Make transitions:
1643 		 *      SYN-RECEIVED  -> ESTABLISHED
1644 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1645 		 */
1646 		tp->t_starttime = ticks;
1647 		if (tp->t_flags & TF_NEEDFIN) {
1648 			tp->t_state = TCPS_FIN_WAIT_1;
1649 			tp->t_flags &= ~TF_NEEDFIN;
1650 		} else {
1651 			tp->t_state = TCPS_ESTABLISHED;
1652 			callout_reset(tp->tt_keep, tcp_keepidle,
1653 				      tcp_timer_keep, tp);
1654 		}
1655 		/*
1656 		 * If segment contains data or ACK, will call tcp_reass()
1657 		 * later; if not, do so now to pass queued data to user.
1658 		 */
1659 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1660 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1661 			    (struct mbuf *)0);
1662 		tp->snd_wl1 = th->th_seq - 1;
1663 		/* FALLTHROUGH */
1664 
1665 	/*
1666 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1667 	 * ACKs.  If the ack is in the range
1668 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1669 	 * then advance tp->snd_una to th->th_ack and drop
1670 	 * data from the retransmission queue.  If this ACK reflects
1671 	 * more up to date window information we update our window information.
1672 	 */
1673 	case TCPS_ESTABLISHED:
1674 	case TCPS_FIN_WAIT_1:
1675 	case TCPS_FIN_WAIT_2:
1676 	case TCPS_CLOSE_WAIT:
1677 	case TCPS_CLOSING:
1678 	case TCPS_LAST_ACK:
1679 	case TCPS_TIME_WAIT:
1680 
1681 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1682 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1683 				tcpstat.tcps_rcvdupack++;
1684 				/*
1685 				 * If we have outstanding data (other than
1686 				 * a window probe), this is a completely
1687 				 * duplicate ack (ie, window info didn't
1688 				 * change), the ack is the biggest we've
1689 				 * seen and we've seen exactly our rexmt
1690 				 * threshhold of them, assume a packet
1691 				 * has been dropped and retransmit it.
1692 				 * Kludge snd_nxt & the congestion
1693 				 * window so we send only this one
1694 				 * packet.
1695 				 *
1696 				 * We know we're losing at the current
1697 				 * window size so do congestion avoidance
1698 				 * (set ssthresh to half the current window
1699 				 * and pull our congestion window back to
1700 				 * the new ssthresh).
1701 				 *
1702 				 * Dup acks mean that packets have left the
1703 				 * network (they're now cached at the receiver)
1704 				 * so bump cwnd by the amount in the receiver
1705 				 * to keep a constant cwnd packets in the
1706 				 * network.
1707 				 */
1708 				if (!callout_active(tp->tt_rexmt) ||
1709 				    th->th_ack != tp->snd_una)
1710 					tp->t_dupacks = 0;
1711 				else if (++tp->t_dupacks == tcprexmtthresh) {
1712 					tcp_seq onxt = tp->snd_nxt;
1713 					u_int win =
1714 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1715 						tp->t_maxseg;
1716 					if (tcp_do_newreno &&
1717 					    SEQ_LT(th->th_ack,
1718 						   tp->snd_recover)) {
1719 						/* False retransmit, should not
1720 						 * cut window
1721 						 */
1722 						tp->snd_cwnd += tp->t_maxseg;
1723 						tp->t_dupacks = 0;
1724 						(void) tcp_output(tp);
1725 						goto drop;
1726 					}
1727 					if (win < 2)
1728 						win = 2;
1729 					tp->snd_ssthresh = win * tp->t_maxseg;
1730 					tp->snd_recover = tp->snd_max;
1731 					callout_stop(tp->tt_rexmt);
1732 					tp->t_rtttime = 0;
1733 					tp->snd_nxt = th->th_ack;
1734 					tp->snd_cwnd = tp->t_maxseg;
1735 					(void) tcp_output(tp);
1736 					tp->snd_cwnd = tp->snd_ssthresh +
1737 						tp->t_maxseg * tp->t_dupacks;
1738 					if (SEQ_GT(onxt, tp->snd_nxt))
1739 						tp->snd_nxt = onxt;
1740 					goto drop;
1741 				} else if (tp->t_dupacks > tcprexmtthresh) {
1742 					tp->snd_cwnd += tp->t_maxseg;
1743 					(void) tcp_output(tp);
1744 					goto drop;
1745 				}
1746 			} else
1747 				tp->t_dupacks = 0;
1748 			break;
1749 		}
1750 		/*
1751 		 * If the congestion window was inflated to account
1752 		 * for the other side's cached packets, retract it.
1753 		 */
1754 		if (tcp_do_newreno) {
1755 			int is_partialack = SEQ_LT(th->th_ack, tp->snd_recover);
1756 			if (tp->t_dupacks >= tcprexmtthresh) {
1757 				if (is_partialack) {
1758 					tcp_newreno_partial_ack(tp, th);
1759 				} else {
1760 					/*
1761 					 * Window inflation should have left us
1762 					 * with approximately snd_ssthresh
1763 					 * outstanding data.
1764 					 * But in case we would be inclined to
1765 					 * send a burst, better to do it via
1766 					 * the slow start mechanism.
1767 					 */
1768 					if (SEQ_GT(th->th_ack +
1769 							tp->snd_ssthresh,
1770 						   tp->snd_max))
1771 						tp->snd_cwnd = tp->snd_max -
1772 								th->th_ack +
1773 								tp->t_maxseg;
1774 					else
1775 						tp->snd_cwnd = tp->snd_ssthresh;
1776 				}
1777 			}
1778 			/*
1779 			 * Reset dupacks, except on partial acks in
1780 			 *   fast recovery.
1781 			 */
1782 			if (!(tp->t_dupacks >= tcprexmtthresh && is_partialack))
1783 				tp->t_dupacks = 0;
1784                 } else {
1785                         if (tp->t_dupacks >= tcprexmtthresh &&
1786                             tp->snd_cwnd > tp->snd_ssthresh)
1787 				tp->snd_cwnd = tp->snd_ssthresh;
1788 			tp->t_dupacks = 0;
1789                 }
1790 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1791 			tcpstat.tcps_rcvacktoomuch++;
1792 			goto dropafterack;
1793 		}
1794 		/*
1795 		 * If we reach this point, ACK is not a duplicate,
1796 		 *     i.e., it ACKs something we sent.
1797 		 */
1798 		if (tp->t_flags & TF_NEEDSYN) {
1799 			/*
1800 			 * T/TCP: Connection was half-synchronized, and our
1801 			 * SYN has been ACK'd (so connection is now fully
1802 			 * synchronized).  Go to non-starred state,
1803 			 * increment snd_una for ACK of SYN, and check if
1804 			 * we can do window scaling.
1805 			 */
1806 			tp->t_flags &= ~TF_NEEDSYN;
1807 			tp->snd_una++;
1808 			/* Do window scaling? */
1809 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1810 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1811 				tp->snd_scale = tp->requested_s_scale;
1812 				tp->rcv_scale = tp->request_r_scale;
1813 			}
1814 		}
1815 
1816 process_ACK:
1817 		acked = th->th_ack - tp->snd_una;
1818 		tcpstat.tcps_rcvackpack++;
1819 		tcpstat.tcps_rcvackbyte += acked;
1820 
1821 		/*
1822 		 * If we just performed our first retransmit, and the ACK
1823 		 * arrives within our recovery window, then it was a mistake
1824 		 * to do the retransmit in the first place.  Recover our
1825 		 * original cwnd and ssthresh, and proceed to transmit where
1826 		 * we left off.
1827 		 */
1828 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1829 			++tcpstat.tcps_sndrexmitbad;
1830 			tp->snd_cwnd = tp->snd_cwnd_prev;
1831 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1832 			tp->snd_nxt = tp->snd_max;
1833 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1834 		}
1835 
1836 		/*
1837 		 * If we have a timestamp reply, update smoothed
1838 		 * round trip time.  If no timestamp is present but
1839 		 * transmit timer is running and timed sequence
1840 		 * number was acked, update smoothed round trip time.
1841 		 * Since we now have an rtt measurement, cancel the
1842 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1843 		 * Recompute the initial retransmit timer.
1844 		 *
1845 		 * Some boxes send broken timestamp replies
1846 		 * during the SYN+ACK phase, ignore
1847 		 * timestamps of 0 or we could calculate a
1848 		 * huge RTT and blow up the retransmit timer.
1849 		 */
1850 		if ((to.to_flags & TOF_TS) != 0 &&
1851 		    to.to_tsecr) {
1852 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1853 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1854 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1855 		}
1856 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1857 
1858 		/*
1859 		 * If all outstanding data is acked, stop retransmit
1860 		 * timer and remember to restart (more output or persist).
1861 		 * If there is more data to be acked, restart retransmit
1862 		 * timer, using current (possibly backed-off) value.
1863 		 */
1864 		if (th->th_ack == tp->snd_max) {
1865 			callout_stop(tp->tt_rexmt);
1866 			needoutput = 1;
1867 		} else if (!callout_active(tp->tt_persist))
1868 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1869 				      tcp_timer_rexmt, tp);
1870 
1871 		/*
1872 		 * If no data (only SYN) was ACK'd,
1873 		 *    skip rest of ACK processing.
1874 		 */
1875 		if (acked == 0)
1876 			goto step6;
1877 
1878 		/*
1879 		 * When new data is acked, open the congestion window.
1880 		 * If the window gives us less than ssthresh packets
1881 		 * in flight, open exponentially (maxseg per packet).
1882 		 * Otherwise open linearly: maxseg per window
1883 		 * (maxseg^2 / cwnd per packet).
1884 		 */
1885 		{
1886 		register u_int cw = tp->snd_cwnd;
1887 		register u_int incr = tp->t_maxseg;
1888 
1889 		if (cw > tp->snd_ssthresh)
1890 			incr = incr * incr / cw;
1891 		/*
1892 		 * If t_dupacks != 0 here, it indicates that we are still
1893 		 * in NewReno fast recovery mode, so we leave the congestion
1894 		 * window alone.
1895 		 */
1896 		if (!tcp_do_newreno || tp->t_dupacks == 0)
1897 			tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
1898 		}
1899 		if (acked > so->so_snd.sb_cc) {
1900 			tp->snd_wnd -= so->so_snd.sb_cc;
1901 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1902 			ourfinisacked = 1;
1903 		} else {
1904 			sbdrop(&so->so_snd, acked);
1905 			tp->snd_wnd -= acked;
1906 			ourfinisacked = 0;
1907 		}
1908 		sowwakeup(so);
1909 		tp->snd_una = th->th_ack;
1910 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1911 			tp->snd_nxt = tp->snd_una;
1912 
1913 		switch (tp->t_state) {
1914 
1915 		/*
1916 		 * In FIN_WAIT_1 STATE in addition to the processing
1917 		 * for the ESTABLISHED state if our FIN is now acknowledged
1918 		 * then enter FIN_WAIT_2.
1919 		 */
1920 		case TCPS_FIN_WAIT_1:
1921 			if (ourfinisacked) {
1922 				/*
1923 				 * If we can't receive any more
1924 				 * data, then closing user can proceed.
1925 				 * Starting the timer is contrary to the
1926 				 * specification, but if we don't get a FIN
1927 				 * we'll hang forever.
1928 				 */
1929 				if (so->so_state & SS_CANTRCVMORE) {
1930 					soisdisconnected(so);
1931 					callout_reset(tp->tt_2msl, tcp_maxidle,
1932 						      tcp_timer_2msl, tp);
1933 				}
1934 				tp->t_state = TCPS_FIN_WAIT_2;
1935 			}
1936 			break;
1937 
1938 	 	/*
1939 		 * In CLOSING STATE in addition to the processing for
1940 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1941 		 * then enter the TIME-WAIT state, otherwise ignore
1942 		 * the segment.
1943 		 */
1944 		case TCPS_CLOSING:
1945 			if (ourfinisacked) {
1946 				tp->t_state = TCPS_TIME_WAIT;
1947 				tcp_canceltimers(tp);
1948 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
1949 				if (tp->cc_recv != 0 &&
1950 				    (ticks - tp->t_starttime) < tcp_msl)
1951 					callout_reset(tp->tt_2msl,
1952 						      tp->t_rxtcur *
1953 						      TCPTV_TWTRUNC,
1954 						      tcp_timer_2msl, tp);
1955 				else
1956 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
1957 						      tcp_timer_2msl, tp);
1958 				soisdisconnected(so);
1959 			}
1960 			break;
1961 
1962 		/*
1963 		 * In LAST_ACK, we may still be waiting for data to drain
1964 		 * and/or to be acked, as well as for the ack of our FIN.
1965 		 * If our FIN is now acknowledged, delete the TCB,
1966 		 * enter the closed state and return.
1967 		 */
1968 		case TCPS_LAST_ACK:
1969 			if (ourfinisacked) {
1970 				tp = tcp_close(tp);
1971 				goto drop;
1972 			}
1973 			break;
1974 
1975 		/*
1976 		 * In TIME_WAIT state the only thing that should arrive
1977 		 * is a retransmission of the remote FIN.  Acknowledge
1978 		 * it and restart the finack timer.
1979 		 */
1980 		case TCPS_TIME_WAIT:
1981 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
1982 				      tcp_timer_2msl, tp);
1983 			goto dropafterack;
1984 		}
1985 	}
1986 
1987 step6:
1988 	/*
1989 	 * Update window information.
1990 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1991 	 */
1992 	if ((thflags & TH_ACK) &&
1993 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1994 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1995 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1996 		/* keep track of pure window updates */
1997 		if (tlen == 0 &&
1998 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1999 			tcpstat.tcps_rcvwinupd++;
2000 		tp->snd_wnd = tiwin;
2001 		tp->snd_wl1 = th->th_seq;
2002 		tp->snd_wl2 = th->th_ack;
2003 		if (tp->snd_wnd > tp->max_sndwnd)
2004 			tp->max_sndwnd = tp->snd_wnd;
2005 		needoutput = 1;
2006 	}
2007 
2008 	/*
2009 	 * Process segments with URG.
2010 	 */
2011 	if ((thflags & TH_URG) && th->th_urp &&
2012 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2013 		/*
2014 		 * This is a kludge, but if we receive and accept
2015 		 * random urgent pointers, we'll crash in
2016 		 * soreceive.  It's hard to imagine someone
2017 		 * actually wanting to send this much urgent data.
2018 		 */
2019 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2020 			th->th_urp = 0;			/* XXX */
2021 			thflags &= ~TH_URG;		/* XXX */
2022 			goto dodata;			/* XXX */
2023 		}
2024 		/*
2025 		 * If this segment advances the known urgent pointer,
2026 		 * then mark the data stream.  This should not happen
2027 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2028 		 * a FIN has been received from the remote side.
2029 		 * In these states we ignore the URG.
2030 		 *
2031 		 * According to RFC961 (Assigned Protocols),
2032 		 * the urgent pointer points to the last octet
2033 		 * of urgent data.  We continue, however,
2034 		 * to consider it to indicate the first octet
2035 		 * of data past the urgent section as the original
2036 		 * spec states (in one of two places).
2037 		 */
2038 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2039 			tp->rcv_up = th->th_seq + th->th_urp;
2040 			so->so_oobmark = so->so_rcv.sb_cc +
2041 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2042 			if (so->so_oobmark == 0)
2043 				so->so_state |= SS_RCVATMARK;
2044 			sohasoutofband(so);
2045 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2046 		}
2047 		/*
2048 		 * Remove out of band data so doesn't get presented to user.
2049 		 * This can happen independent of advancing the URG pointer,
2050 		 * but if two URG's are pending at once, some out-of-band
2051 		 * data may creep in... ick.
2052 		 */
2053 		if (th->th_urp <= (u_long)tlen &&
2054 		    !(so->so_options & SO_OOBINLINE)) {
2055 			/* hdr drop is delayed */
2056 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2057 		}
2058 	} else {
2059 		/*
2060 		 * If no out of band data is expected,
2061 		 * pull receive urgent pointer along
2062 		 * with the receive window.
2063 		 */
2064 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2065 			tp->rcv_up = tp->rcv_nxt;
2066 	}
2067 dodata:							/* XXX */
2068 	KASSERT(headlocked, ("headlocked"));
2069 	INP_INFO_WUNLOCK(&tcbinfo);
2070 	headlocked = 0;
2071 	/*
2072 	 * Process the segment text, merging it into the TCP sequencing queue,
2073 	 * and arranging for acknowledgment of receipt if necessary.
2074 	 * This process logically involves adjusting tp->rcv_wnd as data
2075 	 * is presented to the user (this happens in tcp_usrreq.c,
2076 	 * case PRU_RCVD).  If a FIN has already been received on this
2077 	 * connection then we just ignore the text.
2078 	 */
2079 	if ((tlen || (thflags & TH_FIN)) &&
2080 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2081 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2082 		/*
2083 		 * Insert segment which includes th into TCP reassembly queue
2084 		 * with control block tp.  Set thflags to whether reassembly now
2085 		 * includes a segment with FIN.  This handles the common case
2086 		 * inline (segment is the next to be received on an established
2087 		 * connection, and the queue is empty), avoiding linkage into
2088 		 * and removal from the queue and repetition of various
2089 		 * conversions.
2090 		 * Set DELACK for segments received in order, but ack
2091 		 * immediately when segments are out of order (so
2092 		 * fast retransmit can work).
2093 		 */
2094 		if (th->th_seq == tp->rcv_nxt &&
2095 		    LIST_EMPTY(&tp->t_segq) &&
2096 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2097 			if (DELAY_ACK(tp))
2098 				callout_reset(tp->tt_delack, tcp_delacktime,
2099 					      tcp_timer_delack, tp);
2100 			else
2101 				tp->t_flags |= TF_ACKNOW;
2102 			tp->rcv_nxt += tlen;
2103 			thflags = th->th_flags & TH_FIN;
2104 			tcpstat.tcps_rcvpack++;
2105 			tcpstat.tcps_rcvbyte += tlen;
2106 			ND6_HINT(tp);
2107 			if (so->so_state & SS_CANTRCVMORE)
2108 				m_freem(m);
2109 			else
2110 				sbappend(&so->so_rcv, m);
2111 			sorwakeup(so);
2112 		} else {
2113 			thflags = tcp_reass(tp, th, &tlen, m);
2114 			tp->t_flags |= TF_ACKNOW;
2115 		}
2116 
2117 		/*
2118 		 * Note the amount of data that peer has sent into
2119 		 * our window, in order to estimate the sender's
2120 		 * buffer size.
2121 		 */
2122 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2123 	} else {
2124 		m_freem(m);
2125 		thflags &= ~TH_FIN;
2126 	}
2127 
2128 	/*
2129 	 * If FIN is received ACK the FIN and let the user know
2130 	 * that the connection is closing.
2131 	 */
2132 	if (thflags & TH_FIN) {
2133 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2134 			socantrcvmore(so);
2135 			/*
2136 			 * If connection is half-synchronized
2137 			 * (ie NEEDSYN flag on) then delay ACK,
2138 			 * so it may be piggybacked when SYN is sent.
2139 			 * Otherwise, since we received a FIN then no
2140 			 * more input can be expected, send ACK now.
2141 			 */
2142 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2143                                 callout_reset(tp->tt_delack, tcp_delacktime,
2144                                     tcp_timer_delack, tp);
2145 			else
2146 				tp->t_flags |= TF_ACKNOW;
2147 			tp->rcv_nxt++;
2148 		}
2149 		switch (tp->t_state) {
2150 
2151 	 	/*
2152 		 * In SYN_RECEIVED and ESTABLISHED STATES
2153 		 * enter the CLOSE_WAIT state.
2154 		 */
2155 		case TCPS_SYN_RECEIVED:
2156 			tp->t_starttime = ticks;
2157 			/*FALLTHROUGH*/
2158 		case TCPS_ESTABLISHED:
2159 			tp->t_state = TCPS_CLOSE_WAIT;
2160 			break;
2161 
2162 	 	/*
2163 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2164 		 * enter the CLOSING state.
2165 		 */
2166 		case TCPS_FIN_WAIT_1:
2167 			tp->t_state = TCPS_CLOSING;
2168 			break;
2169 
2170 	 	/*
2171 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2172 		 * starting the time-wait timer, turning off the other
2173 		 * standard timers.
2174 		 */
2175 		case TCPS_FIN_WAIT_2:
2176 			tp->t_state = TCPS_TIME_WAIT;
2177 			tcp_canceltimers(tp);
2178 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2179 			if (tp->cc_recv != 0 &&
2180 			    (ticks - tp->t_starttime) < tcp_msl) {
2181 				callout_reset(tp->tt_2msl,
2182 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2183 					      tcp_timer_2msl, tp);
2184 				/* For transaction client, force ACK now. */
2185 				tp->t_flags |= TF_ACKNOW;
2186 			}
2187 			else
2188 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2189 					      tcp_timer_2msl, tp);
2190 			soisdisconnected(so);
2191 			break;
2192 
2193 		/*
2194 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2195 		 */
2196 		case TCPS_TIME_WAIT:
2197 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2198 				      tcp_timer_2msl, tp);
2199 			break;
2200 		}
2201 	}
2202 #ifdef TCPDEBUG
2203 	if (so->so_options & SO_DEBUG)
2204 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2205 			  &tcp_savetcp, 0);
2206 #endif
2207 
2208 	/*
2209 	 * Return any desired output.
2210 	 */
2211 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2212 		(void) tcp_output(tp);
2213 	INP_UNLOCK(inp);
2214 	return;
2215 
2216 dropafterack:
2217 	/*
2218 	 * Generate an ACK dropping incoming segment if it occupies
2219 	 * sequence space, where the ACK reflects our state.
2220 	 *
2221 	 * We can now skip the test for the RST flag since all
2222 	 * paths to this code happen after packets containing
2223 	 * RST have been dropped.
2224 	 *
2225 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2226 	 * segment we received passes the SYN-RECEIVED ACK test.
2227 	 * If it fails send a RST.  This breaks the loop in the
2228 	 * "LAND" DoS attack, and also prevents an ACK storm
2229 	 * between two listening ports that have been sent forged
2230 	 * SYN segments, each with the source address of the other.
2231 	 */
2232 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2233 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2234 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2235 		rstreason = BANDLIM_RST_OPENPORT;
2236 		goto dropwithreset;
2237 	}
2238 #ifdef TCPDEBUG
2239 	if (so->so_options & SO_DEBUG)
2240 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2241 			  &tcp_savetcp, 0);
2242 #endif
2243 	if (headlocked)
2244 		INP_INFO_WUNLOCK(&tcbinfo);
2245 	m_freem(m);
2246 	tp->t_flags |= TF_ACKNOW;
2247 	(void) tcp_output(tp);
2248 	INP_UNLOCK(inp);
2249 	return;
2250 
2251 dropwithreset:
2252 	/*
2253 	 * Generate a RST, dropping incoming segment.
2254 	 * Make ACK acceptable to originator of segment.
2255 	 * Don't bother to respond if destination was broadcast/multicast.
2256 	 */
2257 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2258 		goto drop;
2259 	if (isipv6) {
2260 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2261 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2262 			goto drop;
2263 	} else {
2264 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2265 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2266 	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2267 	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2268 			goto drop;
2269 	}
2270 	/* IPv6 anycast check is done at tcp6_input() */
2271 
2272 	/*
2273 	 * Perform bandwidth limiting.
2274 	 */
2275 	if (badport_bandlim(rstreason) < 0)
2276 		goto drop;
2277 
2278 #ifdef TCPDEBUG
2279 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2280 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2281 			  &tcp_savetcp, 0);
2282 #endif
2283 
2284 	if (tp)
2285 		INP_UNLOCK(inp);
2286 
2287 	if (thflags & TH_ACK)
2288 		/* mtod() below is safe as long as hdr dropping is delayed */
2289 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2290 			    TH_RST);
2291 	else {
2292 		if (thflags & TH_SYN)
2293 			tlen++;
2294 		/* mtod() below is safe as long as hdr dropping is delayed */
2295 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2296 			    (tcp_seq)0, TH_RST|TH_ACK);
2297 	}
2298 	if (headlocked)
2299 		INP_INFO_WUNLOCK(&tcbinfo);
2300 	return;
2301 
2302 drop:
2303 	/*
2304 	 * Drop space held by incoming segment and return.
2305 	 */
2306 #ifdef TCPDEBUG
2307 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2308 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2309 			  &tcp_savetcp, 0);
2310 #endif
2311 	if (tp)
2312 		INP_UNLOCK(inp);
2313 	m_freem(m);
2314 	if (headlocked)
2315 		INP_INFO_WUNLOCK(&tcbinfo);
2316 	return;
2317 }
2318 
2319 /*
2320  * Parse TCP options and place in tcpopt.
2321  */
2322 static void
2323 tcp_dooptions(to, cp, cnt, is_syn)
2324 	struct tcpopt *to;
2325 	u_char *cp;
2326 	int cnt;
2327 {
2328 	int opt, optlen;
2329 
2330 	to->to_flags = 0;
2331 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2332 		opt = cp[0];
2333 		if (opt == TCPOPT_EOL)
2334 			break;
2335 		if (opt == TCPOPT_NOP)
2336 			optlen = 1;
2337 		else {
2338 			if (cnt < 2)
2339 				break;
2340 			optlen = cp[1];
2341 			if (optlen < 2 || optlen > cnt)
2342 				break;
2343 		}
2344 		switch (opt) {
2345 		case TCPOPT_MAXSEG:
2346 			if (optlen != TCPOLEN_MAXSEG)
2347 				continue;
2348 			if (!is_syn)
2349 				continue;
2350 			to->to_flags |= TOF_MSS;
2351 			bcopy((char *)cp + 2,
2352 			    (char *)&to->to_mss, sizeof(to->to_mss));
2353 			to->to_mss = ntohs(to->to_mss);
2354 			break;
2355 		case TCPOPT_WINDOW:
2356 			if (optlen != TCPOLEN_WINDOW)
2357 				continue;
2358 			if (! is_syn)
2359 				continue;
2360 			to->to_flags |= TOF_SCALE;
2361 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2362 			break;
2363 		case TCPOPT_TIMESTAMP:
2364 			if (optlen != TCPOLEN_TIMESTAMP)
2365 				continue;
2366 			to->to_flags |= TOF_TS;
2367 			bcopy((char *)cp + 2,
2368 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2369 			to->to_tsval = ntohl(to->to_tsval);
2370 			bcopy((char *)cp + 6,
2371 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2372 			to->to_tsecr = ntohl(to->to_tsecr);
2373 			break;
2374 		case TCPOPT_CC:
2375 			if (optlen != TCPOLEN_CC)
2376 				continue;
2377 			to->to_flags |= TOF_CC;
2378 			bcopy((char *)cp + 2,
2379 			    (char *)&to->to_cc, sizeof(to->to_cc));
2380 			to->to_cc = ntohl(to->to_cc);
2381 			break;
2382 		case TCPOPT_CCNEW:
2383 			if (optlen != TCPOLEN_CC)
2384 				continue;
2385 			if (!is_syn)
2386 				continue;
2387 			to->to_flags |= TOF_CCNEW;
2388 			bcopy((char *)cp + 2,
2389 			    (char *)&to->to_cc, sizeof(to->to_cc));
2390 			to->to_cc = ntohl(to->to_cc);
2391 			break;
2392 		case TCPOPT_CCECHO:
2393 			if (optlen != TCPOLEN_CC)
2394 				continue;
2395 			if (!is_syn)
2396 				continue;
2397 			to->to_flags |= TOF_CCECHO;
2398 			bcopy((char *)cp + 2,
2399 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2400 			to->to_ccecho = ntohl(to->to_ccecho);
2401 			break;
2402 		default:
2403 			continue;
2404 		}
2405 	}
2406 }
2407 
2408 /*
2409  * Pull out of band byte out of a segment so
2410  * it doesn't appear in the user's data queue.
2411  * It is still reflected in the segment length for
2412  * sequencing purposes.
2413  */
2414 static void
2415 tcp_pulloutofband(so, th, m, off)
2416 	struct socket *so;
2417 	struct tcphdr *th;
2418 	register struct mbuf *m;
2419 	int off;		/* delayed to be droped hdrlen */
2420 {
2421 	int cnt = off + th->th_urp - 1;
2422 
2423 	while (cnt >= 0) {
2424 		if (m->m_len > cnt) {
2425 			char *cp = mtod(m, caddr_t) + cnt;
2426 			struct tcpcb *tp = sototcpcb(so);
2427 
2428 			tp->t_iobc = *cp;
2429 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2430 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2431 			m->m_len--;
2432 			if (m->m_flags & M_PKTHDR)
2433 				m->m_pkthdr.len--;
2434 			return;
2435 		}
2436 		cnt -= m->m_len;
2437 		m = m->m_next;
2438 		if (m == 0)
2439 			break;
2440 	}
2441 	panic("tcp_pulloutofband");
2442 }
2443 
2444 /*
2445  * Collect new round-trip time estimate
2446  * and update averages and current timeout.
2447  */
2448 static void
2449 tcp_xmit_timer(tp, rtt)
2450 	register struct tcpcb *tp;
2451 	int rtt;
2452 {
2453 	register int delta;
2454 
2455 	tcpstat.tcps_rttupdated++;
2456 	tp->t_rttupdated++;
2457 	if (tp->t_srtt != 0) {
2458 		/*
2459 		 * srtt is stored as fixed point with 5 bits after the
2460 		 * binary point (i.e., scaled by 8).  The following magic
2461 		 * is equivalent to the smoothing algorithm in rfc793 with
2462 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2463 		 * point).  Adjust rtt to origin 0.
2464 		 */
2465 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2466 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2467 
2468 		if ((tp->t_srtt += delta) <= 0)
2469 			tp->t_srtt = 1;
2470 
2471 		/*
2472 		 * We accumulate a smoothed rtt variance (actually, a
2473 		 * smoothed mean difference), then set the retransmit
2474 		 * timer to smoothed rtt + 4 times the smoothed variance.
2475 		 * rttvar is stored as fixed point with 4 bits after the
2476 		 * binary point (scaled by 16).  The following is
2477 		 * equivalent to rfc793 smoothing with an alpha of .75
2478 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2479 		 * rfc793's wired-in beta.
2480 		 */
2481 		if (delta < 0)
2482 			delta = -delta;
2483 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2484 		if ((tp->t_rttvar += delta) <= 0)
2485 			tp->t_rttvar = 1;
2486 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2487 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2488 	} else {
2489 		/*
2490 		 * No rtt measurement yet - use the unsmoothed rtt.
2491 		 * Set the variance to half the rtt (so our first
2492 		 * retransmit happens at 3*rtt).
2493 		 */
2494 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2495 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2496 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2497 	}
2498 	tp->t_rtttime = 0;
2499 	tp->t_rxtshift = 0;
2500 
2501 	/*
2502 	 * the retransmit should happen at rtt + 4 * rttvar.
2503 	 * Because of the way we do the smoothing, srtt and rttvar
2504 	 * will each average +1/2 tick of bias.  When we compute
2505 	 * the retransmit timer, we want 1/2 tick of rounding and
2506 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2507 	 * firing of the timer.  The bias will give us exactly the
2508 	 * 1.5 tick we need.  But, because the bias is
2509 	 * statistical, we have to test that we don't drop below
2510 	 * the minimum feasible timer (which is 2 ticks).
2511 	 */
2512 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2513 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2514 
2515 	/*
2516 	 * We received an ack for a packet that wasn't retransmitted;
2517 	 * it is probably safe to discard any error indications we've
2518 	 * received recently.  This isn't quite right, but close enough
2519 	 * for now (a route might have failed after we sent a segment,
2520 	 * and the return path might not be symmetrical).
2521 	 */
2522 	tp->t_softerror = 0;
2523 }
2524 
2525 /*
2526  * Determine a reasonable value for maxseg size.
2527  * If the route is known, check route for mtu.
2528  * If none, use an mss that can be handled on the outgoing
2529  * interface without forcing IP to fragment; if bigger than
2530  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2531  * to utilize large mbufs.  If no route is found, route has no mtu,
2532  * or the destination isn't local, use a default, hopefully conservative
2533  * size (usually 512 or the default IP max size, but no more than the mtu
2534  * of the interface), as we can't discover anything about intervening
2535  * gateways or networks.  We also initialize the congestion/slow start
2536  * window to be a single segment if the destination isn't local.
2537  * While looking at the routing entry, we also initialize other path-dependent
2538  * parameters from pre-set or cached values in the routing entry.
2539  *
2540  * Also take into account the space needed for options that we
2541  * send regularly.  Make maxseg shorter by that amount to assure
2542  * that we can send maxseg amount of data even when the options
2543  * are present.  Store the upper limit of the length of options plus
2544  * data in maxopd.
2545  *
2546  * NOTE that this routine is only called when we process an incoming
2547  * segment, for outgoing segments only tcp_mssopt is called.
2548  *
2549  * In case of T/TCP, we call this routine during implicit connection
2550  * setup as well (offer = -1), to initialize maxseg from the cached
2551  * MSS of our peer.
2552  */
2553 void
2554 tcp_mss(tp, offer)
2555 	struct tcpcb *tp;
2556 	int offer;
2557 {
2558 	register struct rtentry *rt;
2559 	struct ifnet *ifp;
2560 	register int rtt, mss;
2561 	u_long bufsize;
2562 	struct inpcb *inp = tp->t_inpcb;
2563 	struct socket *so;
2564 	struct rmxp_tao *taop;
2565 	int origoffer = offer;
2566 #ifdef INET6
2567 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2568 	size_t min_protoh = isipv6 ?
2569 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2570 			    sizeof (struct tcpiphdr);
2571 #else
2572 	const int isipv6 = 0;
2573 	const size_t min_protoh = sizeof (struct tcpiphdr);
2574 #endif
2575 
2576 	if (isipv6)
2577 		rt = tcp_rtlookup6(&inp->inp_inc);
2578 	else
2579 		rt = tcp_rtlookup(&inp->inp_inc);
2580 	if (rt == NULL) {
2581 		tp->t_maxopd = tp->t_maxseg =
2582 				isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2583 		return;
2584 	}
2585 	ifp = rt->rt_ifp;
2586 	so = inp->inp_socket;
2587 
2588 	taop = rmx_taop(rt->rt_rmx);
2589 	/*
2590 	 * Offer == -1 means that we didn't receive SYN yet,
2591 	 * use cached value in that case;
2592 	 */
2593 	if (offer == -1)
2594 		offer = taop->tao_mssopt;
2595 	/*
2596 	 * Offer == 0 means that there was no MSS on the SYN segment,
2597 	 * in this case we use tcp_mssdflt.
2598 	 */
2599 	if (offer == 0)
2600 		offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2601 	else
2602 		/*
2603 		 * Sanity check: make sure that maxopd will be large
2604 		 * enough to allow some data on segments even is the
2605 		 * all the option space is used (40bytes).  Otherwise
2606 		 * funny things may happen in tcp_output.
2607 		 */
2608 		offer = max(offer, 64);
2609 	taop->tao_mssopt = offer;
2610 
2611 	/*
2612 	 * While we're here, check if there's an initial rtt
2613 	 * or rttvar.  Convert from the route-table units
2614 	 * to scaled multiples of the slow timeout timer.
2615 	 */
2616 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2617 		/*
2618 		 * XXX the lock bit for RTT indicates that the value
2619 		 * is also a minimum value; this is subject to time.
2620 		 */
2621 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2622 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2623 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2624 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2625 		tcpstat.tcps_usedrtt++;
2626 		if (rt->rt_rmx.rmx_rttvar) {
2627 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2628 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2629 			tcpstat.tcps_usedrttvar++;
2630 		} else {
2631 			/* default variation is +- 1 rtt */
2632 			tp->t_rttvar =
2633 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2634 		}
2635 		TCPT_RANGESET(tp->t_rxtcur,
2636 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2637 			      tp->t_rttmin, TCPTV_REXMTMAX);
2638 	}
2639 	/*
2640 	 * if there's an mtu associated with the route, use it
2641 	 * else, use the link mtu.
2642 	 */
2643 	if (rt->rt_rmx.rmx_mtu)
2644 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2645 	else {
2646 		if (isipv6) {
2647 			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2648 				min_protoh;
2649 			if (!in6_localaddr(&inp->in6p_faddr))
2650 				mss = min(mss, tcp_v6mssdflt);
2651 		} else {
2652 			mss = ifp->if_mtu - min_protoh;
2653 			if (!in_localaddr(inp->inp_faddr))
2654 				mss = min(mss, tcp_mssdflt);
2655 		}
2656 	}
2657 	mss = min(mss, offer);
2658 	/*
2659 	 * maxopd stores the maximum length of data AND options
2660 	 * in a segment; maxseg is the amount of data in a normal
2661 	 * segment.  We need to store this value (maxopd) apart
2662 	 * from maxseg, because now every segment carries options
2663 	 * and thus we normally have somewhat less data in segments.
2664 	 */
2665 	tp->t_maxopd = mss;
2666 
2667 	/*
2668 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2669 	 * were received yet.  In this case we just guess, otherwise
2670 	 * we do the same as before T/TCP.
2671 	 */
2672  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2673 	    (origoffer == -1 ||
2674 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2675 		mss -= TCPOLEN_TSTAMP_APPA;
2676  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2677 	    (origoffer == -1 ||
2678 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2679 		mss -= TCPOLEN_CC_APPA;
2680 
2681 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2682 		if (mss > MCLBYTES)
2683 			mss &= ~(MCLBYTES-1);
2684 #else
2685 		if (mss > MCLBYTES)
2686 			mss = mss / MCLBYTES * MCLBYTES;
2687 #endif
2688 	/*
2689 	 * If there's a pipesize, change the socket buffer
2690 	 * to that size.  Make the socket buffers an integral
2691 	 * number of mss units; if the mss is larger than
2692 	 * the socket buffer, decrease the mss.
2693 	 */
2694 #ifdef RTV_SPIPE
2695 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2696 #endif
2697 		bufsize = so->so_snd.sb_hiwat;
2698 	if (bufsize < mss)
2699 		mss = bufsize;
2700 	else {
2701 		bufsize = roundup(bufsize, mss);
2702 		if (bufsize > sb_max)
2703 			bufsize = sb_max;
2704 		if (bufsize > so->so_snd.sb_hiwat)
2705 			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2706 	}
2707 	tp->t_maxseg = mss;
2708 
2709 #ifdef RTV_RPIPE
2710 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2711 #endif
2712 		bufsize = so->so_rcv.sb_hiwat;
2713 	if (bufsize > mss) {
2714 		bufsize = roundup(bufsize, mss);
2715 		if (bufsize > sb_max)
2716 			bufsize = sb_max;
2717 		if (bufsize > so->so_rcv.sb_hiwat)
2718 			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2719 	}
2720 
2721 	/*
2722 	 * Set the slow-start flight size depending on whether this
2723 	 * is a local network or not.
2724 	 */
2725 	if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2726 	    (!isipv6 && in_localaddr(inp->inp_faddr)))
2727 		tp->snd_cwnd = mss * ss_fltsz_local;
2728 	else
2729 		tp->snd_cwnd = mss * ss_fltsz;
2730 
2731 	if (rt->rt_rmx.rmx_ssthresh) {
2732 		/*
2733 		 * There's some sort of gateway or interface
2734 		 * buffer limit on the path.  Use this to set
2735 		 * the slow start threshhold, but set the
2736 		 * threshold to no less than 2*mss.
2737 		 */
2738 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2739 		tcpstat.tcps_usedssthresh++;
2740 	}
2741 }
2742 
2743 /*
2744  * Determine the MSS option to send on an outgoing SYN.
2745  */
2746 int
2747 tcp_mssopt(tp)
2748 	struct tcpcb *tp;
2749 {
2750 	struct rtentry *rt;
2751 #ifdef INET6
2752 	int isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2753 	size_t min_protoh = isipv6 ?
2754 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2755 			    sizeof (struct tcpiphdr);
2756 #else
2757 	const int isipv6 = 0;
2758 	const size_t min_protoh = sizeof (struct tcpiphdr);
2759 #endif
2760 
2761 	if (isipv6)
2762 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2763 	else
2764 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2765 	if (rt == NULL)
2766 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2767 
2768 	return (rt->rt_ifp->if_mtu - min_protoh);
2769 }
2770 
2771 
2772 /*
2773  * On a partial ack arrives, force the retransmission of the
2774  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2775  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2776  * be started again.
2777  */
2778 static void
2779 tcp_newreno_partial_ack(tp, th)
2780 	struct tcpcb *tp;
2781 	struct tcphdr *th;
2782 {
2783 	tcp_seq onxt = tp->snd_nxt;
2784 	u_long  ocwnd = tp->snd_cwnd;
2785 
2786 	callout_stop(tp->tt_rexmt);
2787 	tp->t_rtttime = 0;
2788 	tp->snd_nxt = th->th_ack;
2789 	/*
2790 	 * Set snd_cwnd to one segment beyond acknowledged offset.
2791 	 * (tp->snd_una has not yet been updated when this function is called.)
2792 	 */
2793 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2794 	tp->t_flags |= TF_ACKNOW;
2795 	(void) tcp_output(tp);
2796 	tp->snd_cwnd = ocwnd;
2797 	if (SEQ_GT(onxt, tp->snd_nxt))
2798 		tp->snd_nxt = onxt;
2799 	/*
2800 	 * Partial window deflation.  Relies on fact that tp->snd_una
2801 	 * not updated yet.
2802 	 */
2803 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2804 }
2805