xref: /freebsd/sys/netinet/tcp_input.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 
40 #include <sys/param.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/proc.h>		/* for proc0 declaration */
45 #include <sys/protosw.h>
46 #include <sys/signalvar.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 #include <sys/systm.h>
52 
53 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
54 
55 #include <vm/uma.h>
56 
57 #include <net/if.h>
58 #include <net/route.h>
59 
60 #define TCPSTATES		/* for logging */
61 
62 #include <netinet/in.h>
63 #include <netinet/in_pcb.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
68 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_options.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/in6_pcb.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #include <netinet/tcp_syncache.h>
84 #ifdef TCPDEBUG
85 #include <netinet/tcp_debug.h>
86 #endif /* TCPDEBUG */
87 
88 #ifdef IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/ipsec6.h>
91 #endif /*IPSEC*/
92 
93 #include <machine/in_cksum.h>
94 
95 #include <security/mac/mac_framework.h>
96 
97 static const int tcprexmtthresh = 3;
98 
99 struct	tcpstat tcpstat;
100 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
101     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
102 
103 int tcp_log_in_vain = 0;
104 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
105     &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
106 
107 static int blackhole = 0;
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
109     &blackhole, 0, "Do not send RST on segments to closed ports");
110 
111 int tcp_delack_enabled = 1;
112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
113     &tcp_delack_enabled, 0,
114     "Delay ACK to try and piggyback it onto a data packet");
115 
116 static int drop_synfin = 0;
117 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
118     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
119 
120 static int tcp_do_rfc3042 = 1;
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
122     &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
123 
124 static int tcp_do_rfc3390 = 1;
125 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
126     &tcp_do_rfc3390, 0,
127     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
128 
129 static int tcp_insecure_rst = 0;
130 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
131     &tcp_insecure_rst, 0,
132     "Follow the old (insecure) criteria for accepting RST packets");
133 
134 int	tcp_do_autorcvbuf = 1;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
136     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
137 
138 int	tcp_autorcvbuf_inc = 16*1024;
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
140     &tcp_autorcvbuf_inc, 0,
141     "Incrementor step size of automatic receive buffer");
142 
143 int	tcp_autorcvbuf_max = 256*1024;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
145     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
146 
147 struct inpcbhead tcb;
148 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
149 struct inpcbinfo tcbinfo;
150 
151 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
152 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
153 		     struct socket *, struct tcpcb *, int, int);
154 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
155 		     struct tcpcb *, int, int);
156 static void	 tcp_pulloutofband(struct socket *,
157 		     struct tcphdr *, struct mbuf *, int);
158 static void	 tcp_xmit_timer(struct tcpcb *, int);
159 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
160 
161 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
162 #ifdef INET6
163 #define ND6_HINT(tp) \
164 do { \
165 	if ((tp) && (tp)->t_inpcb && \
166 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
167 		nd6_nud_hint(NULL, NULL, 0); \
168 } while (0)
169 #else
170 #define ND6_HINT(tp)
171 #endif
172 
173 /*
174  * Indicate whether this ack should be delayed.  We can delay the ack if
175  *	- there is no delayed ack timer in progress and
176  *	- our last ack wasn't a 0-sized window.  We never want to delay
177  *	  the ack that opens up a 0-sized window and
178  *		- delayed acks are enabled or
179  *		- this is a half-synchronized T/TCP connection.
180  */
181 #define DELAY_ACK(tp)							\
182 	((!tcp_timer_active(tp, TT_DELACK) &&				\
183 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
184 	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
185 
186 
187 /*
188  * TCP input handling is split into multiple parts:
189  *   tcp6_input is a thin wrapper around tcp_input for the extended
190  *	ip6_protox[] call format in ip6_input
191  *   tcp_input handles primary segment validation, inpcb lookup and
192  *	SYN processing on listen sockets
193  *   tcp_do_segment processes the ACK and text of the segment for
194  *	establishing, established and closing connections
195  */
196 #ifdef INET6
197 int
198 tcp6_input(struct mbuf **mp, int *offp, int proto)
199 {
200 	struct mbuf *m = *mp;
201 	struct in6_ifaddr *ia6;
202 
203 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
204 
205 	/*
206 	 * draft-itojun-ipv6-tcp-to-anycast
207 	 * better place to put this in?
208 	 */
209 	ia6 = ip6_getdstifaddr(m);
210 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
211 		struct ip6_hdr *ip6;
212 
213 		ip6 = mtod(m, struct ip6_hdr *);
214 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
215 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
216 		return IPPROTO_DONE;
217 	}
218 
219 	tcp_input(m, *offp);
220 	return IPPROTO_DONE;
221 }
222 #endif
223 
224 void
225 tcp_input(struct mbuf *m, int off0)
226 {
227 	struct tcphdr *th;
228 	struct ip *ip = NULL;
229 	struct ipovly *ipov;
230 	struct inpcb *inp = NULL;
231 	struct tcpcb *tp = NULL;
232 	struct socket *so = NULL;
233 	u_char *optp = NULL;
234 	int optlen = 0;
235 	int len, tlen, off;
236 	int drop_hdrlen;
237 	int thflags;
238 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
239 #ifdef IPFIREWALL_FORWARD
240 	struct m_tag *fwd_tag;
241 #endif
242 #ifdef INET6
243 	struct ip6_hdr *ip6 = NULL;
244 	int isipv6;
245 #else
246 	const void *ip6 = NULL;
247 	const int isipv6 = 0;
248 #endif
249 	struct tcpopt to;		/* options in this segment */
250 	char *s = NULL;			/* address and port logging */
251 
252 #ifdef TCPDEBUG
253 	/*
254 	 * The size of tcp_saveipgen must be the size of the max ip header,
255 	 * now IPv6.
256 	 */
257 	u_char tcp_saveipgen[IP6_HDR_LEN];
258 	struct tcphdr tcp_savetcp;
259 	short ostate = 0;
260 #endif
261 
262 #ifdef INET6
263 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
264 #endif
265 
266 	to.to_flags = 0;
267 	tcpstat.tcps_rcvtotal++;
268 
269 	if (isipv6) {
270 #ifdef INET6
271 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
272 		ip6 = mtod(m, struct ip6_hdr *);
273 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
274 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
275 			tcpstat.tcps_rcvbadsum++;
276 			goto drop;
277 		}
278 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
279 
280 		/*
281 		 * Be proactive about unspecified IPv6 address in source.
282 		 * As we use all-zero to indicate unbounded/unconnected pcb,
283 		 * unspecified IPv6 address can be used to confuse us.
284 		 *
285 		 * Note that packets with unspecified IPv6 destination is
286 		 * already dropped in ip6_input.
287 		 */
288 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
289 			/* XXX stat */
290 			goto drop;
291 		}
292 #else
293 		th = NULL;		/* XXX: Avoid compiler warning. */
294 #endif
295 	} else {
296 		/*
297 		 * Get IP and TCP header together in first mbuf.
298 		 * Note: IP leaves IP header in first mbuf.
299 		 */
300 		if (off0 > sizeof (struct ip)) {
301 			ip_stripoptions(m, (struct mbuf *)0);
302 			off0 = sizeof(struct ip);
303 		}
304 		if (m->m_len < sizeof (struct tcpiphdr)) {
305 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
306 			    == NULL) {
307 				tcpstat.tcps_rcvshort++;
308 				return;
309 			}
310 		}
311 		ip = mtod(m, struct ip *);
312 		ipov = (struct ipovly *)ip;
313 		th = (struct tcphdr *)((caddr_t)ip + off0);
314 		tlen = ip->ip_len;
315 
316 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
317 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
318 				th->th_sum = m->m_pkthdr.csum_data;
319 			else
320 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
321 						ip->ip_dst.s_addr,
322 						htonl(m->m_pkthdr.csum_data +
323 							ip->ip_len +
324 							IPPROTO_TCP));
325 			th->th_sum ^= 0xffff;
326 #ifdef TCPDEBUG
327 			ipov->ih_len = (u_short)tlen;
328 			ipov->ih_len = htons(ipov->ih_len);
329 #endif
330 		} else {
331 			/*
332 			 * Checksum extended TCP header and data.
333 			 */
334 			len = sizeof (struct ip) + tlen;
335 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
336 			ipov->ih_len = (u_short)tlen;
337 			ipov->ih_len = htons(ipov->ih_len);
338 			th->th_sum = in_cksum(m, len);
339 		}
340 		if (th->th_sum) {
341 			tcpstat.tcps_rcvbadsum++;
342 			goto drop;
343 		}
344 		/* Re-initialization for later version check */
345 		ip->ip_v = IPVERSION;
346 	}
347 
348 	/*
349 	 * Check that TCP offset makes sense,
350 	 * pull out TCP options and adjust length.		XXX
351 	 */
352 	off = th->th_off << 2;
353 	if (off < sizeof (struct tcphdr) || off > tlen) {
354 		tcpstat.tcps_rcvbadoff++;
355 		goto drop;
356 	}
357 	tlen -= off;	/* tlen is used instead of ti->ti_len */
358 	if (off > sizeof (struct tcphdr)) {
359 		if (isipv6) {
360 #ifdef INET6
361 			IP6_EXTHDR_CHECK(m, off0, off, );
362 			ip6 = mtod(m, struct ip6_hdr *);
363 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
364 #endif
365 		} else {
366 			if (m->m_len < sizeof(struct ip) + off) {
367 				if ((m = m_pullup(m, sizeof (struct ip) + off))
368 				    == NULL) {
369 					tcpstat.tcps_rcvshort++;
370 					return;
371 				}
372 				ip = mtod(m, struct ip *);
373 				ipov = (struct ipovly *)ip;
374 				th = (struct tcphdr *)((caddr_t)ip + off0);
375 			}
376 		}
377 		optlen = off - sizeof (struct tcphdr);
378 		optp = (u_char *)(th + 1);
379 	}
380 	thflags = th->th_flags;
381 
382 	/*
383 	 * Convert TCP protocol specific fields to host format.
384 	 */
385 	th->th_seq = ntohl(th->th_seq);
386 	th->th_ack = ntohl(th->th_ack);
387 	th->th_win = ntohs(th->th_win);
388 	th->th_urp = ntohs(th->th_urp);
389 
390 	/*
391 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
392 	 */
393 	drop_hdrlen = off0 + off;
394 
395 	/*
396 	 * Locate pcb for segment.
397 	 */
398 	INP_INFO_WLOCK(&tcbinfo);
399 findpcb:
400 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
401 #ifdef IPFIREWALL_FORWARD
402 	/*
403 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
404 	 */
405 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
406 
407 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
408 		struct sockaddr_in *next_hop;
409 
410 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
411 		/*
412 		 * Transparently forwarded. Pretend to be the destination.
413 		 * already got one like this?
414 		 */
415 		inp = in_pcblookup_hash(&tcbinfo,
416 					ip->ip_src, th->th_sport,
417 					ip->ip_dst, th->th_dport,
418 					0, m->m_pkthdr.rcvif);
419 		if (!inp) {
420 			/* It's new.  Try to find the ambushing socket. */
421 			inp = in_pcblookup_hash(&tcbinfo,
422 						ip->ip_src, th->th_sport,
423 						next_hop->sin_addr,
424 						next_hop->sin_port ?
425 						    ntohs(next_hop->sin_port) :
426 						    th->th_dport,
427 						INPLOOKUP_WILDCARD,
428 						m->m_pkthdr.rcvif);
429 		}
430 		/* Remove the tag from the packet.  We don't need it anymore. */
431 		m_tag_delete(m, fwd_tag);
432 	} else
433 #endif /* IPFIREWALL_FORWARD */
434 	{
435 		if (isipv6) {
436 #ifdef INET6
437 			inp = in6_pcblookup_hash(&tcbinfo,
438 						 &ip6->ip6_src, th->th_sport,
439 						 &ip6->ip6_dst, th->th_dport,
440 						 INPLOOKUP_WILDCARD,
441 						 m->m_pkthdr.rcvif);
442 #endif
443 		} else
444 			inp = in_pcblookup_hash(&tcbinfo,
445 						ip->ip_src, th->th_sport,
446 						ip->ip_dst, th->th_dport,
447 						INPLOOKUP_WILDCARD,
448 						m->m_pkthdr.rcvif);
449 	}
450 
451 	/*
452 	 * If the INPCB does not exist then all data in the incoming
453 	 * segment is discarded and an appropriate RST is sent back.
454 	 */
455 	if (inp == NULL) {
456 		/*
457 		 * Log communication attempts to ports that are not
458 		 * in use.
459 		 */
460 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
461 		    tcp_log_in_vain == 2) {
462 			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
463 				log(LOG_INFO, "%s; %s: Connection attempt "
464 				    "to closed port\n", s, __func__);
465 		}
466 		/*
467 		 * When blackholing do not respond with a RST but
468 		 * completely ignore the segment and drop it.
469 		 */
470 		if ((blackhole == 1 && (thflags & TH_SYN)) ||
471 		    blackhole == 2)
472 			goto dropunlock;
473 
474 		rstreason = BANDLIM_RST_CLOSEDPORT;
475 		goto dropwithreset;
476 	}
477 	INP_LOCK(inp);
478 
479 #ifdef IPSEC
480 #ifdef INET6
481 	if (isipv6 && ipsec6_in_reject(m, inp)) {
482 		ipsec6stat.in_polvio++;
483 		goto dropunlock;
484 	} else
485 #endif /* INET6 */
486 	if (ipsec4_in_reject(m, inp) != 0) {
487 		ipsec4stat.in_polvio++;
488 		goto dropunlock;
489 	}
490 #endif /* IPSEC */
491 
492 	/*
493 	 * Check the minimum TTL for socket.
494 	 */
495 	if (inp->inp_ip_minttl != 0) {
496 #ifdef INET6
497 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
498 			goto dropunlock;
499 		else
500 #endif
501 		if (inp->inp_ip_minttl > ip->ip_ttl)
502 			goto dropunlock;
503 	}
504 
505 	/*
506 	 * A previous connection in TIMEWAIT state is supposed to catch
507 	 * stray or duplicate segments arriving late.  If this segment
508 	 * was a legitimate new connection attempt the old INPCB gets
509 	 * removed and we can try again to find a listening socket.
510 	 */
511 	if (inp->inp_vflag & INP_TIMEWAIT) {
512 		if (thflags & TH_SYN)
513 			tcp_dooptions(&to, optp, optlen, TO_SYN);
514 		/*
515 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
516 		 */
517 		if (tcp_twcheck(inp, &to, th, m, tlen))
518 			goto findpcb;
519 		INP_INFO_WUNLOCK(&tcbinfo);
520 		return;
521 	}
522 	/*
523 	 * The TCPCB may no longer exist if the connection is winding
524 	 * down or it is in the CLOSED state.  Either way we drop the
525 	 * segment and send an appropriate response.
526 	 */
527 	tp = intotcpcb(inp);
528 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
529 		rstreason = BANDLIM_RST_CLOSEDPORT;
530 		goto dropwithreset;
531 	}
532 
533 #ifdef MAC
534 	INP_LOCK_ASSERT(inp);
535 	if (mac_check_inpcb_deliver(inp, m))
536 		goto dropunlock;
537 #endif
538 	so = inp->inp_socket;
539 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
540 #ifdef TCPDEBUG
541 	if (so->so_options & SO_DEBUG) {
542 		ostate = tp->t_state;
543 		if (isipv6) {
544 #ifdef INET6
545 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
546 #endif
547 		} else
548 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
549 		tcp_savetcp = *th;
550 	}
551 #endif
552 	/*
553 	 * When the socket is accepting connections (the INPCB is in LISTEN
554 	 * state) we look into the SYN cache if this is a new connection
555 	 * attempt or the completion of a previous one.
556 	 */
557 	if (so->so_options & SO_ACCEPTCONN) {
558 		struct in_conninfo inc;
559 
560 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
561 		    "tp not listening", __func__));
562 
563 		bzero(&inc, sizeof(inc));
564 		inc.inc_isipv6 = isipv6;
565 #ifdef INET6
566 		if (isipv6) {
567 			inc.inc6_faddr = ip6->ip6_src;
568 			inc.inc6_laddr = ip6->ip6_dst;
569 		} else
570 #endif
571 		{
572 			inc.inc_faddr = ip->ip_src;
573 			inc.inc_laddr = ip->ip_dst;
574 		}
575 		inc.inc_fport = th->th_sport;
576 		inc.inc_lport = th->th_dport;
577 
578 		/*
579 		 * Check for an existing connection attempt in syncache if
580 		 * the flag is only ACK.  A successful lookup creates a new
581 		 * socket appended to the listen queue in SYN_RECEIVED state.
582 		 */
583 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
584 			/*
585 			 * Parse the TCP options here because
586 			 * syncookies need access to the reflected
587 			 * timestamp.
588 			 */
589 			tcp_dooptions(&to, optp, optlen, 0);
590 			/*
591 			 * NB: syncache_expand() doesn't unlock
592 			 * inp and tcpinfo locks.
593 			 */
594 			if (!syncache_expand(&inc, &to, th, &so, m)) {
595 				/*
596 				 * No syncache entry or ACK was not
597 				 * for our SYN/ACK.  Send a RST.
598 				 * NB: syncache did its own logging
599 				 * of the failure cause.
600 				 */
601 				rstreason = BANDLIM_RST_OPENPORT;
602 				goto dropwithreset;
603 			}
604 			if (so == NULL) {
605 				/*
606 				 * We completed the 3-way handshake
607 				 * but could not allocate a socket
608 				 * either due to memory shortage,
609 				 * listen queue length limits or
610 				 * global socket limits.  Send RST
611 				 * or wait and have the remote end
612 				 * retransmit the ACK for another
613 				 * try.
614 				 */
615 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
616 					log(LOG_DEBUG, "%s; %s: Listen socket: "
617 					    "Socket allocation failed due to "
618 					    "limits or memory shortage, %s\n",
619 					    s, __func__, (tcp_sc_rst_sock_fail ?
620 					    "sending RST" : "try again"));
621 				if (tcp_sc_rst_sock_fail) {
622 					rstreason = BANDLIM_UNLIMITED;
623 					goto dropwithreset;
624 				} else
625 					goto dropunlock;
626 			}
627 			/*
628 			 * Socket is created in state SYN_RECEIVED.
629 			 * Unlock the listen socket, lock the newly
630 			 * created socket and update the tp variable.
631 			 */
632 			INP_UNLOCK(inp);	/* listen socket */
633 			inp = sotoinpcb(so);
634 			INP_LOCK(inp);		/* new connection */
635 			tp = intotcpcb(inp);
636 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
637 			    ("%s: ", __func__));
638 			/*
639 			 * Process the segment and the data it
640 			 * contains.  tcp_do_segment() consumes
641 			 * the mbuf chain and unlocks the inpcb.
642 			 */
643 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
644 			INP_INFO_UNLOCK_ASSERT(&tcbinfo);
645 			return;
646 		}
647 		/*
648 		 * Segment flag validation for new connection attempts:
649 		 *
650 		 * Our (SYN|ACK) response was rejected.
651 		 * Check with syncache and remove entry to prevent
652 		 * retransmits.
653 		 *
654 		 * NB: syncache_chkrst does its own logging of failure
655 		 * causes.
656 		 */
657 		if (thflags & TH_RST) {
658 			syncache_chkrst(&inc, th);
659 			goto dropunlock;
660 		}
661 		/*
662 		 * We can't do anything without SYN.
663 		 */
664 		if ((thflags & TH_SYN) == 0) {
665 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
666 				log(LOG_DEBUG, "%s; %s: Listen socket: "
667 				    "SYN is missing, segment ignored\n",
668 				    s, __func__);
669 			tcpstat.tcps_badsyn++;
670 			goto dropunlock;
671 		}
672 		/*
673 		 * (SYN|ACK) is bogus on a listen socket.
674 		 */
675 		if (thflags & TH_ACK) {
676 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
677 				log(LOG_DEBUG, "%s; %s: Listen socket: "
678 				    "SYN|ACK invalid, segment rejected\n",
679 				    s, __func__);
680 			syncache_badack(&inc);	/* XXX: Not needed! */
681 			tcpstat.tcps_badsyn++;
682 			rstreason = BANDLIM_RST_OPENPORT;
683 			goto dropwithreset;
684 		}
685 		/*
686 		 * If the drop_synfin option is enabled, drop all
687 		 * segments with both the SYN and FIN bits set.
688 		 * This prevents e.g. nmap from identifying the
689 		 * TCP/IP stack.
690 		 * XXX: Poor reasoning.  nmap has other methods
691 		 * and is constantly refining its stack detection
692 		 * strategies.
693 		 * XXX: This is a violation of the TCP specification
694 		 * and was used by RFC1644.
695 		 */
696 		if ((thflags & TH_FIN) && drop_synfin) {
697 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
698 				log(LOG_DEBUG, "%s; %s: Listen socket: "
699 				    "SYN|FIN segment ignored (based on "
700 				    "sysctl setting)\n", s, __func__);
701 			tcpstat.tcps_badsyn++;
702                 	goto dropunlock;
703 		}
704 		/*
705 		 * Segment's flags are (SYN) or (SYN|FIN).
706 		 *
707 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
708 		 * as they do not affect the state of the TCP FSM.
709 		 * The data pointed to by TH_URG and th_urp is ignored.
710 		 */
711 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
712 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
713 		KASSERT(thflags & (TH_SYN),
714 		    ("%s: Listen socket: TH_SYN not set", __func__));
715 #ifdef INET6
716 		/*
717 		 * If deprecated address is forbidden,
718 		 * we do not accept SYN to deprecated interface
719 		 * address to prevent any new inbound connection from
720 		 * getting established.
721 		 * When we do not accept SYN, we send a TCP RST,
722 		 * with deprecated source address (instead of dropping
723 		 * it).  We compromise it as it is much better for peer
724 		 * to send a RST, and RST will be the final packet
725 		 * for the exchange.
726 		 *
727 		 * If we do not forbid deprecated addresses, we accept
728 		 * the SYN packet.  RFC2462 does not suggest dropping
729 		 * SYN in this case.
730 		 * If we decipher RFC2462 5.5.4, it says like this:
731 		 * 1. use of deprecated addr with existing
732 		 *    communication is okay - "SHOULD continue to be
733 		 *    used"
734 		 * 2. use of it with new communication:
735 		 *   (2a) "SHOULD NOT be used if alternate address
736 		 *        with sufficient scope is available"
737 		 *   (2b) nothing mentioned otherwise.
738 		 * Here we fall into (2b) case as we have no choice in
739 		 * our source address selection - we must obey the peer.
740 		 *
741 		 * The wording in RFC2462 is confusing, and there are
742 		 * multiple description text for deprecated address
743 		 * handling - worse, they are not exactly the same.
744 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
745 		 */
746 		if (isipv6 && !ip6_use_deprecated) {
747 			struct in6_ifaddr *ia6;
748 
749 			if ((ia6 = ip6_getdstifaddr(m)) &&
750 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
751 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
752 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
753 					"Connection attempt to deprecated "
754 					"IPv6 address rejected\n",
755 					s, __func__);
756 				rstreason = BANDLIM_RST_OPENPORT;
757 				goto dropwithreset;
758 			}
759 		}
760 #endif
761 		/*
762 		 * Basic sanity checks on incoming SYN requests:
763 		 *   Don't respond if the destination is a link layer
764 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
765 		 *   If it is from this socket it must be forged.
766 		 *   Don't respond if the source or destination is a
767 		 *	global or subnet broad- or multicast address.
768 		 *   Note that it is quite possible to receive unicast
769 		 *	link-layer packets with a broadcast IP address. Use
770 		 *	in_broadcast() to find them.
771 		 */
772 		if (m->m_flags & (M_BCAST|M_MCAST)) {
773 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
774 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
775 				"Connection attempt from broad- or multicast "
776 				"link layer address ignored\n", s, __func__);
777 			goto dropunlock;
778 		}
779 		if (isipv6) {
780 #ifdef INET6
781 			if (th->th_dport == th->th_sport &&
782 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
783 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
784 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
785 					"Connection attempt to/from self "
786 					"ignored\n", s, __func__);
787 				goto dropunlock;
788 			}
789 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
790 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
791 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
792 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
793 					"Connection attempt from/to multicast "
794 					"address ignored\n", s, __func__);
795 				goto dropunlock;
796 			}
797 #endif
798 		} else {
799 			if (th->th_dport == th->th_sport &&
800 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
801 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
802 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
803 					"Connection attempt from/to self "
804 					"ignored\n", s, __func__);
805 				goto dropunlock;
806 			}
807 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
808 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
809 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
810 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
811 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
812 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
813 					"Connection attempt from/to broad- "
814 					"or multicast address ignored\n",
815 					s, __func__);
816 				goto dropunlock;
817 			}
818 		}
819 		/*
820 		 * SYN appears to be valid.  Create compressed TCP state
821 		 * for syncache.
822 		 */
823 #ifdef TCPDEBUG
824 		if (so->so_options & SO_DEBUG)
825 			tcp_trace(TA_INPUT, ostate, tp,
826 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
827 #endif
828 		tcp_dooptions(&to, optp, optlen, TO_SYN);
829 		syncache_add(&inc, &to, th, inp, &so, m);
830 		/*
831 		 * Entry added to syncache and mbuf consumed.
832 		 * Everything already unlocked by syncache_add().
833 		 */
834 		INP_INFO_UNLOCK_ASSERT(&tcbinfo);
835 		return;
836 	}
837 
838 	/*
839 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
840 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
841 	 * the inpcb, and unlocks pcbinfo.
842 	 */
843 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
844 	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
845 	return;
846 
847 dropwithreset:
848 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
849 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
850 	m = NULL;	/* mbuf chain got consumed. */
851 dropunlock:
852 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
853 	if (inp != NULL)
854 		INP_UNLOCK(inp);
855 	INP_INFO_WUNLOCK(&tcbinfo);
856 drop:
857 	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
858 	if (s != NULL)
859 		free(s, M_TCPLOG);
860 	if (m != NULL)
861 		m_freem(m);
862 	return;
863 }
864 
865 static void
866 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
867     struct tcpcb *tp, int drop_hdrlen, int tlen)
868 {
869 	int thflags, acked, ourfinisacked, needoutput = 0;
870 	int headlocked = 1;
871 	int rstreason, todrop, win;
872 	u_long tiwin;
873 	struct tcpopt to;
874 
875 #ifdef TCPDEBUG
876 	/*
877 	 * The size of tcp_saveipgen must be the size of the max ip header,
878 	 * now IPv6.
879 	 */
880 	u_char tcp_saveipgen[IP6_HDR_LEN];
881 	struct tcphdr tcp_savetcp;
882 	short ostate = 0;
883 #endif
884 	thflags = th->th_flags;
885 
886 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
887 	INP_LOCK_ASSERT(tp->t_inpcb);
888 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
889 	    __func__));
890 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
891 	    __func__));
892 
893 	/*
894 	 * Segment received on connection.
895 	 * Reset idle time and keep-alive timer.
896 	 * XXX: This should be done after segment
897 	 * validation to ignore broken/spoofed segs.
898 	 */
899 	tp->t_rcvtime = ticks;
900 	if (TCPS_HAVEESTABLISHED(tp->t_state))
901 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
902 
903 	/*
904 	 * Unscale the window into a 32-bit value.
905 	 * For the SYN_SENT state the scale is zero.
906 	 */
907 	tiwin = th->th_win << tp->snd_scale;
908 
909 	/*
910 	 * Parse options on any incoming segment.
911 	 */
912 	tcp_dooptions(&to, (u_char *)(th + 1),
913 	    (th->th_off << 2) - sizeof(struct tcphdr),
914 	    (thflags & TH_SYN) ? TO_SYN : 0);
915 
916 	/*
917 	 * If echoed timestamp is later than the current time,
918 	 * fall back to non RFC1323 RTT calculation.  Normalize
919 	 * timestamp if syncookies were used when this connection
920 	 * was established.
921 	 */
922 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
923 		to.to_tsecr -= tp->ts_offset;
924 		if (TSTMP_GT(to.to_tsecr, ticks))
925 			to.to_tsecr = 0;
926 	}
927 
928 	/*
929 	 * Process options only when we get SYN/ACK back. The SYN case
930 	 * for incoming connections is handled in tcp_syncache.
931 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
932 	 * or <SYN,ACK>) segment itself is never scaled.
933 	 * XXX this is traditional behavior, may need to be cleaned up.
934 	 */
935 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
936 		if ((to.to_flags & TOF_SCALE) &&
937 		    (tp->t_flags & TF_REQ_SCALE)) {
938 			tp->t_flags |= TF_RCVD_SCALE;
939 			tp->snd_scale = to.to_wscale;
940 		}
941 		/*
942 		 * Initial send window.  It will be updated with
943 		 * the next incoming segment to the scaled value.
944 		 */
945 		tp->snd_wnd = th->th_win;
946 		if (to.to_flags & TOF_TS) {
947 			tp->t_flags |= TF_RCVD_TSTMP;
948 			tp->ts_recent = to.to_tsval;
949 			tp->ts_recent_age = ticks;
950 		}
951 		if (to.to_flags & TOF_MSS)
952 			tcp_mss(tp, to.to_mss);
953 		if ((tp->t_flags & TF_SACK_PERMIT) &&
954 		    (to.to_flags & TOF_SACKPERM) == 0)
955 			tp->t_flags &= ~TF_SACK_PERMIT;
956 	}
957 
958 	/*
959 	 * Header prediction: check for the two common cases
960 	 * of a uni-directional data xfer.  If the packet has
961 	 * no control flags, is in-sequence, the window didn't
962 	 * change and we're not retransmitting, it's a
963 	 * candidate.  If the length is zero and the ack moved
964 	 * forward, we're the sender side of the xfer.  Just
965 	 * free the data acked & wake any higher level process
966 	 * that was blocked waiting for space.  If the length
967 	 * is non-zero and the ack didn't move, we're the
968 	 * receiver side.  If we're getting packets in-order
969 	 * (the reassembly queue is empty), add the data to
970 	 * the socket buffer and note that we need a delayed ack.
971 	 * Make sure that the hidden state-flags are also off.
972 	 * Since we check for TCPS_ESTABLISHED first, it can only
973 	 * be TH_NEEDSYN.
974 	 */
975 	if (tp->t_state == TCPS_ESTABLISHED &&
976 	    th->th_seq == tp->rcv_nxt &&
977 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
978 	    tp->snd_nxt == tp->snd_max &&
979 	    tiwin && tiwin == tp->snd_wnd &&
980 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
981 	    LIST_EMPTY(&tp->t_segq) &&
982 	    ((to.to_flags & TOF_TS) == 0 ||
983 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
984 
985 		/*
986 		 * If last ACK falls within this segment's sequence numbers,
987 		 * record the timestamp.
988 		 * NOTE that the test is modified according to the latest
989 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
990 		 */
991 		if ((to.to_flags & TOF_TS) != 0 &&
992 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
993 			tp->ts_recent_age = ticks;
994 			tp->ts_recent = to.to_tsval;
995 		}
996 
997 		if (tlen == 0) {
998 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
999 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1000 			    tp->snd_cwnd >= tp->snd_wnd &&
1001 			    ((!tcp_do_newreno &&
1002 			      !(tp->t_flags & TF_SACK_PERMIT) &&
1003 			      tp->t_dupacks < tcprexmtthresh) ||
1004 			     ((tcp_do_newreno ||
1005 			       (tp->t_flags & TF_SACK_PERMIT)) &&
1006 			      !IN_FASTRECOVERY(tp) &&
1007 			      (to.to_flags & TOF_SACK) == 0 &&
1008 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1009 				KASSERT(headlocked,
1010 				    ("%s: headlocked", __func__));
1011 				INP_INFO_WUNLOCK(&tcbinfo);
1012 				headlocked = 0;
1013 				/*
1014 				 * This is a pure ack for outstanding data.
1015 				 */
1016 				++tcpstat.tcps_predack;
1017 				/*
1018 				 * "bad retransmit" recovery.
1019 				 */
1020 				if (tp->t_rxtshift == 1 &&
1021 				    ticks < tp->t_badrxtwin) {
1022 					++tcpstat.tcps_sndrexmitbad;
1023 					tp->snd_cwnd = tp->snd_cwnd_prev;
1024 					tp->snd_ssthresh =
1025 					    tp->snd_ssthresh_prev;
1026 					tp->snd_recover = tp->snd_recover_prev;
1027 					if (tp->t_flags & TF_WASFRECOVERY)
1028 					    ENTER_FASTRECOVERY(tp);
1029 					tp->snd_nxt = tp->snd_max;
1030 					tp->t_badrxtwin = 0;
1031 				}
1032 
1033 				/*
1034 				 * Recalculate the transmit timer / rtt.
1035 				 *
1036 				 * Some boxes send broken timestamp replies
1037 				 * during the SYN+ACK phase, ignore
1038 				 * timestamps of 0 or we could calculate a
1039 				 * huge RTT and blow up the retransmit timer.
1040 				 */
1041 				if ((to.to_flags & TOF_TS) != 0 &&
1042 				    to.to_tsecr) {
1043 					if (!tp->t_rttlow ||
1044 					    tp->t_rttlow > ticks - to.to_tsecr)
1045 						tp->t_rttlow = ticks - to.to_tsecr;
1046 					tcp_xmit_timer(tp,
1047 					    ticks - to.to_tsecr + 1);
1048 				} else if (tp->t_rtttime &&
1049 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1050 					if (!tp->t_rttlow ||
1051 					    tp->t_rttlow > ticks - tp->t_rtttime)
1052 						tp->t_rttlow = ticks - tp->t_rtttime;
1053 					tcp_xmit_timer(tp,
1054 							ticks - tp->t_rtttime);
1055 				}
1056 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1057 				acked = th->th_ack - tp->snd_una;
1058 				tcpstat.tcps_rcvackpack++;
1059 				tcpstat.tcps_rcvackbyte += acked;
1060 				sbdrop(&so->so_snd, acked);
1061 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1062 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1063 					tp->snd_recover = th->th_ack - 1;
1064 				tp->snd_una = th->th_ack;
1065 				/*
1066 				 * Pull snd_wl2 up to prevent seq wrap relative
1067 				 * to th_ack.
1068 				 */
1069 				tp->snd_wl2 = th->th_ack;
1070 				tp->t_dupacks = 0;
1071 				m_freem(m);
1072 				ND6_HINT(tp); /* Some progress has been made. */
1073 
1074 				/*
1075 				 * If all outstanding data are acked, stop
1076 				 * retransmit timer, otherwise restart timer
1077 				 * using current (possibly backed-off) value.
1078 				 * If process is waiting for space,
1079 				 * wakeup/selwakeup/signal.  If data
1080 				 * are ready to send, let tcp_output
1081 				 * decide between more output or persist.
1082 				 */
1083 #ifdef TCPDEBUG
1084 				if (so->so_options & SO_DEBUG)
1085 					tcp_trace(TA_INPUT, ostate, tp,
1086 					    (void *)tcp_saveipgen,
1087 					    &tcp_savetcp, 0);
1088 #endif
1089 				if (tp->snd_una == tp->snd_max)
1090 					tcp_timer_activate(tp, TT_REXMT, 0);
1091 				else if (!tcp_timer_active(tp, TT_PERSIST))
1092 					tcp_timer_activate(tp, TT_REXMT,
1093 						      tp->t_rxtcur);
1094 				sowwakeup(so);
1095 				if (so->so_snd.sb_cc)
1096 					(void) tcp_output(tp);
1097 				goto check_delack;
1098 			}
1099 		} else if (th->th_ack == tp->snd_una &&
1100 		    tlen <= sbspace(&so->so_rcv)) {
1101 			int newsize = 0;	/* automatic sockbuf scaling */
1102 
1103 			KASSERT(headlocked, ("%s: headlocked", __func__));
1104 			INP_INFO_WUNLOCK(&tcbinfo);
1105 			headlocked = 0;
1106 			/*
1107 			 * This is a pure, in-sequence data packet
1108 			 * with nothing on the reassembly queue and
1109 			 * we have enough buffer space to take it.
1110 			 */
1111 			/* Clean receiver SACK report if present */
1112 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1113 				tcp_clean_sackreport(tp);
1114 			++tcpstat.tcps_preddat;
1115 			tp->rcv_nxt += tlen;
1116 			/*
1117 			 * Pull snd_wl1 up to prevent seq wrap relative to
1118 			 * th_seq.
1119 			 */
1120 			tp->snd_wl1 = th->th_seq;
1121 			/*
1122 			 * Pull rcv_up up to prevent seq wrap relative to
1123 			 * rcv_nxt.
1124 			 */
1125 			tp->rcv_up = tp->rcv_nxt;
1126 			tcpstat.tcps_rcvpack++;
1127 			tcpstat.tcps_rcvbyte += tlen;
1128 			ND6_HINT(tp);	/* Some progress has been made */
1129 #ifdef TCPDEBUG
1130 			if (so->so_options & SO_DEBUG)
1131 				tcp_trace(TA_INPUT, ostate, tp,
1132 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1133 #endif
1134 		/*
1135 		 * Automatic sizing of receive socket buffer.  Often the send
1136 		 * buffer size is not optimally adjusted to the actual network
1137 		 * conditions at hand (delay bandwidth product).  Setting the
1138 		 * buffer size too small limits throughput on links with high
1139 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1140 		 *
1141 		 * On the receive side the socket buffer memory is only rarely
1142 		 * used to any significant extent.  This allows us to be much
1143 		 * more aggressive in scaling the receive socket buffer.  For
1144 		 * the case that the buffer space is actually used to a large
1145 		 * extent and we run out of kernel memory we can simply drop
1146 		 * the new segments; TCP on the sender will just retransmit it
1147 		 * later.  Setting the buffer size too big may only consume too
1148 		 * much kernel memory if the application doesn't read() from
1149 		 * the socket or packet loss or reordering makes use of the
1150 		 * reassembly queue.
1151 		 *
1152 		 * The criteria to step up the receive buffer one notch are:
1153 		 *  1. the number of bytes received during the time it takes
1154 		 *     one timestamp to be reflected back to us (the RTT);
1155 		 *  2. received bytes per RTT is within seven eighth of the
1156 		 *     current socket buffer size;
1157 		 *  3. receive buffer size has not hit maximal automatic size;
1158 		 *
1159 		 * This algorithm does one step per RTT at most and only if
1160 		 * we receive a bulk stream w/o packet losses or reorderings.
1161 		 * Shrinking the buffer during idle times is not necessary as
1162 		 * it doesn't consume any memory when idle.
1163 		 *
1164 		 * TODO: Only step up if the application is actually serving
1165 		 * the buffer to better manage the socket buffer resources.
1166 		 */
1167 			if (tcp_do_autorcvbuf &&
1168 			    to.to_tsecr &&
1169 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1170 				if (to.to_tsecr > tp->rfbuf_ts &&
1171 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1172 					if (tp->rfbuf_cnt >
1173 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1174 					    so->so_rcv.sb_hiwat <
1175 					    tcp_autorcvbuf_max) {
1176 						newsize =
1177 						    min(so->so_rcv.sb_hiwat +
1178 						    tcp_autorcvbuf_inc,
1179 						    tcp_autorcvbuf_max);
1180 					}
1181 					/* Start over with next RTT. */
1182 					tp->rfbuf_ts = 0;
1183 					tp->rfbuf_cnt = 0;
1184 				} else
1185 					tp->rfbuf_cnt += tlen;	/* add up */
1186 			}
1187 
1188 			/* Add data to socket buffer. */
1189 			SOCKBUF_LOCK(&so->so_rcv);
1190 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1191 				m_freem(m);
1192 			} else {
1193 				/*
1194 				 * Set new socket buffer size.
1195 				 * Give up when limit is reached.
1196 				 */
1197 				if (newsize)
1198 					if (!sbreserve_locked(&so->so_rcv,
1199 					    newsize, so, curthread))
1200 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1201 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1202 				sbappendstream_locked(&so->so_rcv, m);
1203 			}
1204 			/* NB: sorwakeup_locked() does an implicit unlock. */
1205 			sorwakeup_locked(so);
1206 			if (DELAY_ACK(tp)) {
1207 				tp->t_flags |= TF_DELACK;
1208 			} else {
1209 				tp->t_flags |= TF_ACKNOW;
1210 				tcp_output(tp);
1211 			}
1212 			goto check_delack;
1213 		}
1214 	}
1215 
1216 	/*
1217 	 * Calculate amount of space in receive window,
1218 	 * and then do TCP input processing.
1219 	 * Receive window is amount of space in rcv queue,
1220 	 * but not less than advertised window.
1221 	 */
1222 	win = sbspace(&so->so_rcv);
1223 	if (win < 0)
1224 		win = 0;
1225 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1226 
1227 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1228 	tp->rfbuf_ts = 0;
1229 	tp->rfbuf_cnt = 0;
1230 
1231 	switch (tp->t_state) {
1232 
1233 	/*
1234 	 * If the state is SYN_RECEIVED:
1235 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1236 	 */
1237 	case TCPS_SYN_RECEIVED:
1238 		if ((thflags & TH_ACK) &&
1239 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1240 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1241 				rstreason = BANDLIM_RST_OPENPORT;
1242 				goto dropwithreset;
1243 		}
1244 		break;
1245 
1246 	/*
1247 	 * If the state is SYN_SENT:
1248 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1249 	 *	if seg contains a RST, then drop the connection.
1250 	 *	if seg does not contain SYN, then drop it.
1251 	 * Otherwise this is an acceptable SYN segment
1252 	 *	initialize tp->rcv_nxt and tp->irs
1253 	 *	if seg contains ack then advance tp->snd_una
1254 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1255 	 *	arrange for segment to be acked (eventually)
1256 	 *	continue processing rest of data/controls, beginning with URG
1257 	 */
1258 	case TCPS_SYN_SENT:
1259 		if ((thflags & TH_ACK) &&
1260 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1261 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1262 			rstreason = BANDLIM_UNLIMITED;
1263 			goto dropwithreset;
1264 		}
1265 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1266 			tp = tcp_drop(tp, ECONNREFUSED);
1267 		if (thflags & TH_RST)
1268 			goto drop;
1269 		if (!(thflags & TH_SYN))
1270 			goto drop;
1271 
1272 		tp->irs = th->th_seq;
1273 		tcp_rcvseqinit(tp);
1274 		if (thflags & TH_ACK) {
1275 			tcpstat.tcps_connects++;
1276 			soisconnected(so);
1277 #ifdef MAC
1278 			SOCK_LOCK(so);
1279 			mac_set_socket_peer_from_mbuf(m, so);
1280 			SOCK_UNLOCK(so);
1281 #endif
1282 			/* Do window scaling on this connection? */
1283 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1284 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1285 				tp->rcv_scale = tp->request_r_scale;
1286 			}
1287 			tp->rcv_adv += tp->rcv_wnd;
1288 			tp->snd_una++;		/* SYN is acked */
1289 			/*
1290 			 * If there's data, delay ACK; if there's also a FIN
1291 			 * ACKNOW will be turned on later.
1292 			 */
1293 			if (DELAY_ACK(tp) && tlen != 0)
1294 				tcp_timer_activate(tp, TT_DELACK,
1295 				    tcp_delacktime);
1296 			else
1297 				tp->t_flags |= TF_ACKNOW;
1298 			/*
1299 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1300 			 * Transitions:
1301 			 *	SYN_SENT  --> ESTABLISHED
1302 			 *	SYN_SENT* --> FIN_WAIT_1
1303 			 */
1304 			tp->t_starttime = ticks;
1305 			if (tp->t_flags & TF_NEEDFIN) {
1306 				tp->t_state = TCPS_FIN_WAIT_1;
1307 				tp->t_flags &= ~TF_NEEDFIN;
1308 				thflags &= ~TH_SYN;
1309 			} else {
1310 				tp->t_state = TCPS_ESTABLISHED;
1311 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1312 			}
1313 		} else {
1314 			/*
1315 			 * Received initial SYN in SYN-SENT[*] state =>
1316 			 * simultaneous open.  If segment contains CC option
1317 			 * and there is a cached CC, apply TAO test.
1318 			 * If it succeeds, connection is * half-synchronized.
1319 			 * Otherwise, do 3-way handshake:
1320 			 *        SYN-SENT -> SYN-RECEIVED
1321 			 *        SYN-SENT* -> SYN-RECEIVED*
1322 			 * If there was no CC option, clear cached CC value.
1323 			 */
1324 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1325 			tcp_timer_activate(tp, TT_REXMT, 0);
1326 			tp->t_state = TCPS_SYN_RECEIVED;
1327 		}
1328 
1329 		KASSERT(headlocked, ("%s: trimthenstep6: head not locked",
1330 		    __func__));
1331 		INP_LOCK_ASSERT(tp->t_inpcb);
1332 
1333 		/*
1334 		 * Advance th->th_seq to correspond to first data byte.
1335 		 * If data, trim to stay within window,
1336 		 * dropping FIN if necessary.
1337 		 */
1338 		th->th_seq++;
1339 		if (tlen > tp->rcv_wnd) {
1340 			todrop = tlen - tp->rcv_wnd;
1341 			m_adj(m, -todrop);
1342 			tlen = tp->rcv_wnd;
1343 			thflags &= ~TH_FIN;
1344 			tcpstat.tcps_rcvpackafterwin++;
1345 			tcpstat.tcps_rcvbyteafterwin += todrop;
1346 		}
1347 		tp->snd_wl1 = th->th_seq - 1;
1348 		tp->rcv_up = th->th_seq;
1349 		/*
1350 		 * Client side of transaction: already sent SYN and data.
1351 		 * If the remote host used T/TCP to validate the SYN,
1352 		 * our data will be ACK'd; if so, enter normal data segment
1353 		 * processing in the middle of step 5, ack processing.
1354 		 * Otherwise, goto step 6.
1355 		 */
1356 		if (thflags & TH_ACK)
1357 			goto process_ACK;
1358 
1359 		goto step6;
1360 
1361 	/*
1362 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1363 	 *      do normal processing.
1364 	 *
1365 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1366 	 */
1367 	case TCPS_LAST_ACK:
1368 	case TCPS_CLOSING:
1369 		break;  /* continue normal processing */
1370 	}
1371 
1372 	/*
1373 	 * States other than LISTEN or SYN_SENT.
1374 	 * First check the RST flag and sequence number since reset segments
1375 	 * are exempt from the timestamp and connection count tests.  This
1376 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1377 	 * below which allowed reset segments in half the sequence space
1378 	 * to fall though and be processed (which gives forged reset
1379 	 * segments with a random sequence number a 50 percent chance of
1380 	 * killing a connection).
1381 	 * Then check timestamp, if present.
1382 	 * Then check the connection count, if present.
1383 	 * Then check that at least some bytes of segment are within
1384 	 * receive window.  If segment begins before rcv_nxt,
1385 	 * drop leading data (and SYN); if nothing left, just ack.
1386 	 *
1387 	 *
1388 	 * If the RST bit is set, check the sequence number to see
1389 	 * if this is a valid reset segment.
1390 	 * RFC 793 page 37:
1391 	 *   In all states except SYN-SENT, all reset (RST) segments
1392 	 *   are validated by checking their SEQ-fields.  A reset is
1393 	 *   valid if its sequence number is in the window.
1394 	 * Note: this does not take into account delayed ACKs, so
1395 	 *   we should test against last_ack_sent instead of rcv_nxt.
1396 	 *   The sequence number in the reset segment is normally an
1397 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1398 	 *   send a reset with the sequence number at the rightmost edge
1399 	 *   of our receive window, and we have to handle this case.
1400 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1401 	 *   that brute force RST attacks are possible.  To combat this,
1402 	 *   we use a much stricter check while in the ESTABLISHED state,
1403 	 *   only accepting RSTs where the sequence number is equal to
1404 	 *   last_ack_sent.  In all other states (the states in which a
1405 	 *   RST is more likely), the more permissive check is used.
1406 	 * If we have multiple segments in flight, the intial reset
1407 	 * segment sequence numbers will be to the left of last_ack_sent,
1408 	 * but they will eventually catch up.
1409 	 * In any case, it never made sense to trim reset segments to
1410 	 * fit the receive window since RFC 1122 says:
1411 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1412 	 *
1413 	 *    A TCP SHOULD allow a received RST segment to include data.
1414 	 *
1415 	 *    DISCUSSION
1416 	 *         It has been suggested that a RST segment could contain
1417 	 *         ASCII text that encoded and explained the cause of the
1418 	 *         RST.  No standard has yet been established for such
1419 	 *         data.
1420 	 *
1421 	 * If the reset segment passes the sequence number test examine
1422 	 * the state:
1423 	 *    SYN_RECEIVED STATE:
1424 	 *	If passive open, return to LISTEN state.
1425 	 *	If active open, inform user that connection was refused.
1426 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1427 	 *	Inform user that connection was reset, and close tcb.
1428 	 *    CLOSING, LAST_ACK STATES:
1429 	 *	Close the tcb.
1430 	 *    TIME_WAIT STATE:
1431 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1432 	 *      RFC 1337.
1433 	 */
1434 	if (thflags & TH_RST) {
1435 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1436 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1437 			switch (tp->t_state) {
1438 
1439 			case TCPS_SYN_RECEIVED:
1440 				so->so_error = ECONNREFUSED;
1441 				goto close;
1442 
1443 			case TCPS_ESTABLISHED:
1444 				if (tcp_insecure_rst == 0 &&
1445 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1446 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1447 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1448 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1449 					tcpstat.tcps_badrst++;
1450 					goto drop;
1451 				}
1452 				/* FALLTHROUGH */
1453 			case TCPS_FIN_WAIT_1:
1454 			case TCPS_FIN_WAIT_2:
1455 			case TCPS_CLOSE_WAIT:
1456 				so->so_error = ECONNRESET;
1457 			close:
1458 				tp->t_state = TCPS_CLOSED;
1459 				tcpstat.tcps_drops++;
1460 				KASSERT(headlocked, ("%s: trimthenstep6: "
1461 				    "tcp_close: head not locked", __func__));
1462 				tp = tcp_close(tp);
1463 				break;
1464 
1465 			case TCPS_CLOSING:
1466 			case TCPS_LAST_ACK:
1467 				KASSERT(headlocked, ("%s: trimthenstep6: "
1468 				    "tcp_close.2: head not locked", __func__));
1469 				tp = tcp_close(tp);
1470 				break;
1471 			}
1472 		}
1473 		goto drop;
1474 	}
1475 
1476 	/*
1477 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1478 	 * and it's less than ts_recent, drop it.
1479 	 */
1480 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1481 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1482 
1483 		/* Check to see if ts_recent is over 24 days old.  */
1484 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1485 			/*
1486 			 * Invalidate ts_recent.  If this segment updates
1487 			 * ts_recent, the age will be reset later and ts_recent
1488 			 * will get a valid value.  If it does not, setting
1489 			 * ts_recent to zero will at least satisfy the
1490 			 * requirement that zero be placed in the timestamp
1491 			 * echo reply when ts_recent isn't valid.  The
1492 			 * age isn't reset until we get a valid ts_recent
1493 			 * because we don't want out-of-order segments to be
1494 			 * dropped when ts_recent is old.
1495 			 */
1496 			tp->ts_recent = 0;
1497 		} else {
1498 			tcpstat.tcps_rcvduppack++;
1499 			tcpstat.tcps_rcvdupbyte += tlen;
1500 			tcpstat.tcps_pawsdrop++;
1501 			if (tlen)
1502 				goto dropafterack;
1503 			goto drop;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1509 	 * this connection before trimming the data to fit the receive
1510 	 * window.  Check the sequence number versus IRS since we know
1511 	 * the sequence numbers haven't wrapped.  This is a partial fix
1512 	 * for the "LAND" DoS attack.
1513 	 */
1514 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1515 		rstreason = BANDLIM_RST_OPENPORT;
1516 		goto dropwithreset;
1517 	}
1518 
1519 	todrop = tp->rcv_nxt - th->th_seq;
1520 	if (todrop > 0) {
1521 		if (thflags & TH_SYN) {
1522 			thflags &= ~TH_SYN;
1523 			th->th_seq++;
1524 			if (th->th_urp > 1)
1525 				th->th_urp--;
1526 			else
1527 				thflags &= ~TH_URG;
1528 			todrop--;
1529 		}
1530 		/*
1531 		 * Following if statement from Stevens, vol. 2, p. 960.
1532 		 */
1533 		if (todrop > tlen
1534 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1535 			/*
1536 			 * Any valid FIN must be to the left of the window.
1537 			 * At this point the FIN must be a duplicate or out
1538 			 * of sequence; drop it.
1539 			 */
1540 			thflags &= ~TH_FIN;
1541 
1542 			/*
1543 			 * Send an ACK to resynchronize and drop any data.
1544 			 * But keep on processing for RST or ACK.
1545 			 */
1546 			tp->t_flags |= TF_ACKNOW;
1547 			todrop = tlen;
1548 			tcpstat.tcps_rcvduppack++;
1549 			tcpstat.tcps_rcvdupbyte += todrop;
1550 		} else {
1551 			tcpstat.tcps_rcvpartduppack++;
1552 			tcpstat.tcps_rcvpartdupbyte += todrop;
1553 		}
1554 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1555 		th->th_seq += todrop;
1556 		tlen -= todrop;
1557 		if (th->th_urp > todrop)
1558 			th->th_urp -= todrop;
1559 		else {
1560 			thflags &= ~TH_URG;
1561 			th->th_urp = 0;
1562 		}
1563 	}
1564 
1565 	/*
1566 	 * If new data are received on a connection after the
1567 	 * user processes are gone, then RST the other end.
1568 	 */
1569 	if ((so->so_state & SS_NOFDREF) &&
1570 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1571 		char *s;
1572 
1573 		KASSERT(headlocked, ("%s: trimthenstep6: tcp_close.3: head "
1574 		    "not locked", __func__));
1575 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1576 			log(LOG_DEBUG, "%s; %s: %s: Received data after socket "
1577 			    "was closed, sending RST and removing tcpcb\n",
1578 			    s, __func__, tcpstates[tp->t_state]);
1579 			free(s, M_TCPLOG);
1580 		}
1581 		tp = tcp_close(tp);
1582 		tcpstat.tcps_rcvafterclose++;
1583 		rstreason = BANDLIM_UNLIMITED;
1584 		goto dropwithreset;
1585 	}
1586 
1587 	/*
1588 	 * If segment ends after window, drop trailing data
1589 	 * (and PUSH and FIN); if nothing left, just ACK.
1590 	 */
1591 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1592 	if (todrop > 0) {
1593 		tcpstat.tcps_rcvpackafterwin++;
1594 		if (todrop >= tlen) {
1595 			tcpstat.tcps_rcvbyteafterwin += tlen;
1596 			/*
1597 			 * If window is closed can only take segments at
1598 			 * window edge, and have to drop data and PUSH from
1599 			 * incoming segments.  Continue processing, but
1600 			 * remember to ack.  Otherwise, drop segment
1601 			 * and ack.
1602 			 */
1603 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1604 				tp->t_flags |= TF_ACKNOW;
1605 				tcpstat.tcps_rcvwinprobe++;
1606 			} else
1607 				goto dropafterack;
1608 		} else
1609 			tcpstat.tcps_rcvbyteafterwin += todrop;
1610 		m_adj(m, -todrop);
1611 		tlen -= todrop;
1612 		thflags &= ~(TH_PUSH|TH_FIN);
1613 	}
1614 
1615 	/*
1616 	 * If last ACK falls within this segment's sequence numbers,
1617 	 * record its timestamp.
1618 	 * NOTE:
1619 	 * 1) That the test incorporates suggestions from the latest
1620 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1621 	 * 2) That updating only on newer timestamps interferes with
1622 	 *    our earlier PAWS tests, so this check should be solely
1623 	 *    predicated on the sequence space of this segment.
1624 	 * 3) That we modify the segment boundary check to be
1625 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1626 	 *    instead of RFC1323's
1627 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1628 	 *    This modified check allows us to overcome RFC1323's
1629 	 *    limitations as described in Stevens TCP/IP Illustrated
1630 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1631 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1632 	 */
1633 	if ((to.to_flags & TOF_TS) != 0 &&
1634 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1635 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1636 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1637 		tp->ts_recent_age = ticks;
1638 		tp->ts_recent = to.to_tsval;
1639 	}
1640 
1641 	/*
1642 	 * If a SYN is in the window, then this is an
1643 	 * error and we send an RST and drop the connection.
1644 	 */
1645 	if (thflags & TH_SYN) {
1646 		KASSERT(headlocked, ("%s: tcp_drop: trimthenstep6: "
1647 		    "head not locked", __func__));
1648 		tp = tcp_drop(tp, ECONNRESET);
1649 		rstreason = BANDLIM_UNLIMITED;
1650 		goto drop;
1651 	}
1652 
1653 	/*
1654 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1655 	 * flag is on (half-synchronized state), then queue data for
1656 	 * later processing; else drop segment and return.
1657 	 */
1658 	if ((thflags & TH_ACK) == 0) {
1659 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1660 		    (tp->t_flags & TF_NEEDSYN))
1661 			goto step6;
1662 		else if (tp->t_flags & TF_ACKNOW)
1663 			goto dropafterack;
1664 		else
1665 			goto drop;
1666 	}
1667 
1668 	/*
1669 	 * Ack processing.
1670 	 */
1671 	switch (tp->t_state) {
1672 
1673 	/*
1674 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1675 	 * ESTABLISHED state and continue processing.
1676 	 * The ACK was checked above.
1677 	 */
1678 	case TCPS_SYN_RECEIVED:
1679 
1680 		tcpstat.tcps_connects++;
1681 		soisconnected(so);
1682 		/* Do window scaling? */
1683 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1684 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1685 			tp->rcv_scale = tp->request_r_scale;
1686 			tp->snd_wnd = tiwin;
1687 		}
1688 		/*
1689 		 * Make transitions:
1690 		 *      SYN-RECEIVED  -> ESTABLISHED
1691 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1692 		 */
1693 		tp->t_starttime = ticks;
1694 		if (tp->t_flags & TF_NEEDFIN) {
1695 			tp->t_state = TCPS_FIN_WAIT_1;
1696 			tp->t_flags &= ~TF_NEEDFIN;
1697 		} else {
1698 			tp->t_state = TCPS_ESTABLISHED;
1699 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1700 		}
1701 		/*
1702 		 * If segment contains data or ACK, will call tcp_reass()
1703 		 * later; if not, do so now to pass queued data to user.
1704 		 */
1705 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1706 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1707 			    (struct mbuf *)0);
1708 		tp->snd_wl1 = th->th_seq - 1;
1709 		/* FALLTHROUGH */
1710 
1711 	/*
1712 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1713 	 * ACKs.  If the ack is in the range
1714 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1715 	 * then advance tp->snd_una to th->th_ack and drop
1716 	 * data from the retransmission queue.  If this ACK reflects
1717 	 * more up to date window information we update our window information.
1718 	 */
1719 	case TCPS_ESTABLISHED:
1720 	case TCPS_FIN_WAIT_1:
1721 	case TCPS_FIN_WAIT_2:
1722 	case TCPS_CLOSE_WAIT:
1723 	case TCPS_CLOSING:
1724 	case TCPS_LAST_ACK:
1725 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1726 			tcpstat.tcps_rcvacktoomuch++;
1727 			goto dropafterack;
1728 		}
1729 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1730 		    ((to.to_flags & TOF_SACK) ||
1731 		     !TAILQ_EMPTY(&tp->snd_holes)))
1732 			tcp_sack_doack(tp, &to, th->th_ack);
1733 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1734 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1735 				tcpstat.tcps_rcvdupack++;
1736 				/*
1737 				 * If we have outstanding data (other than
1738 				 * a window probe), this is a completely
1739 				 * duplicate ack (ie, window info didn't
1740 				 * change), the ack is the biggest we've
1741 				 * seen and we've seen exactly our rexmt
1742 				 * threshhold of them, assume a packet
1743 				 * has been dropped and retransmit it.
1744 				 * Kludge snd_nxt & the congestion
1745 				 * window so we send only this one
1746 				 * packet.
1747 				 *
1748 				 * We know we're losing at the current
1749 				 * window size so do congestion avoidance
1750 				 * (set ssthresh to half the current window
1751 				 * and pull our congestion window back to
1752 				 * the new ssthresh).
1753 				 *
1754 				 * Dup acks mean that packets have left the
1755 				 * network (they're now cached at the receiver)
1756 				 * so bump cwnd by the amount in the receiver
1757 				 * to keep a constant cwnd packets in the
1758 				 * network.
1759 				 */
1760 				if (!tcp_timer_active(tp, TT_REXMT) ||
1761 				    th->th_ack != tp->snd_una)
1762 					tp->t_dupacks = 0;
1763 				else if (++tp->t_dupacks > tcprexmtthresh ||
1764 				    ((tcp_do_newreno ||
1765 				      (tp->t_flags & TF_SACK_PERMIT)) &&
1766 				     IN_FASTRECOVERY(tp))) {
1767 					if ((tp->t_flags & TF_SACK_PERMIT) &&
1768 					    IN_FASTRECOVERY(tp)) {
1769 						int awnd;
1770 
1771 						/*
1772 						 * Compute the amount of data in flight first.
1773 						 * We can inject new data into the pipe iff
1774 						 * we have less than 1/2 the original window's
1775 						 * worth of data in flight.
1776 						 */
1777 						awnd = (tp->snd_nxt - tp->snd_fack) +
1778 							tp->sackhint.sack_bytes_rexmit;
1779 						if (awnd < tp->snd_ssthresh) {
1780 							tp->snd_cwnd += tp->t_maxseg;
1781 							if (tp->snd_cwnd > tp->snd_ssthresh)
1782 								tp->snd_cwnd = tp->snd_ssthresh;
1783 						}
1784 					} else
1785 						tp->snd_cwnd += tp->t_maxseg;
1786 					(void) tcp_output(tp);
1787 					goto drop;
1788 				} else if (tp->t_dupacks == tcprexmtthresh) {
1789 					tcp_seq onxt = tp->snd_nxt;
1790 					u_int win;
1791 
1792 					/*
1793 					 * If we're doing sack, check to
1794 					 * see if we're already in sack
1795 					 * recovery. If we're not doing sack,
1796 					 * check to see if we're in newreno
1797 					 * recovery.
1798 					 */
1799 					if (tp->t_flags & TF_SACK_PERMIT) {
1800 						if (IN_FASTRECOVERY(tp)) {
1801 							tp->t_dupacks = 0;
1802 							break;
1803 						}
1804 					} else if (tcp_do_newreno) {
1805 						if (SEQ_LEQ(th->th_ack,
1806 						    tp->snd_recover)) {
1807 							tp->t_dupacks = 0;
1808 							break;
1809 						}
1810 					}
1811 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1812 					    2 / tp->t_maxseg;
1813 					if (win < 2)
1814 						win = 2;
1815 					tp->snd_ssthresh = win * tp->t_maxseg;
1816 					ENTER_FASTRECOVERY(tp);
1817 					tp->snd_recover = tp->snd_max;
1818 					tcp_timer_activate(tp, TT_REXMT, 0);
1819 					tp->t_rtttime = 0;
1820 					if (tp->t_flags & TF_SACK_PERMIT) {
1821 						tcpstat.tcps_sack_recovery_episode++;
1822 						tp->sack_newdata = tp->snd_nxt;
1823 						tp->snd_cwnd = tp->t_maxseg;
1824 						(void) tcp_output(tp);
1825 						goto drop;
1826 					}
1827 					tp->snd_nxt = th->th_ack;
1828 					tp->snd_cwnd = tp->t_maxseg;
1829 					(void) tcp_output(tp);
1830 					KASSERT(tp->snd_limited <= 2,
1831 					    ("%s: tp->snd_limited too big",
1832 					    __func__));
1833 					tp->snd_cwnd = tp->snd_ssthresh +
1834 					     tp->t_maxseg *
1835 					     (tp->t_dupacks - tp->snd_limited);
1836 					if (SEQ_GT(onxt, tp->snd_nxt))
1837 						tp->snd_nxt = onxt;
1838 					goto drop;
1839 				} else if (tcp_do_rfc3042) {
1840 					u_long oldcwnd = tp->snd_cwnd;
1841 					tcp_seq oldsndmax = tp->snd_max;
1842 					u_int sent;
1843 
1844 					KASSERT(tp->t_dupacks == 1 ||
1845 					    tp->t_dupacks == 2,
1846 					    ("%s: dupacks not 1 or 2",
1847 					    __func__));
1848 					if (tp->t_dupacks == 1)
1849 						tp->snd_limited = 0;
1850 					tp->snd_cwnd =
1851 					    (tp->snd_nxt - tp->snd_una) +
1852 					    (tp->t_dupacks - tp->snd_limited) *
1853 					    tp->t_maxseg;
1854 					(void) tcp_output(tp);
1855 					sent = tp->snd_max - oldsndmax;
1856 					if (sent > tp->t_maxseg) {
1857 						KASSERT((tp->t_dupacks == 2 &&
1858 						    tp->snd_limited == 0) ||
1859 						   (sent == tp->t_maxseg + 1 &&
1860 						    tp->t_flags & TF_SENTFIN),
1861 						    ("%s: sent too much",
1862 						    __func__));
1863 						tp->snd_limited = 2;
1864 					} else if (sent > 0)
1865 						++tp->snd_limited;
1866 					tp->snd_cwnd = oldcwnd;
1867 					goto drop;
1868 				}
1869 			} else
1870 				tp->t_dupacks = 0;
1871 			break;
1872 		}
1873 
1874 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
1875 		    ("%s: th_ack <= snd_una", __func__));
1876 
1877 		/*
1878 		 * If the congestion window was inflated to account
1879 		 * for the other side's cached packets, retract it.
1880 		 */
1881 		if (tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
1882 			if (IN_FASTRECOVERY(tp)) {
1883 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1884 					if (tp->t_flags & TF_SACK_PERMIT)
1885 						tcp_sack_partialack(tp, th);
1886 					else
1887 						tcp_newreno_partial_ack(tp, th);
1888 				} else {
1889 					/*
1890 					 * Out of fast recovery.
1891 					 * Window inflation should have left us
1892 					 * with approximately snd_ssthresh
1893 					 * outstanding data.
1894 					 * But in case we would be inclined to
1895 					 * send a burst, better to do it via
1896 					 * the slow start mechanism.
1897 					 */
1898 					if (SEQ_GT(th->th_ack +
1899 							tp->snd_ssthresh,
1900 						   tp->snd_max))
1901 						tp->snd_cwnd = tp->snd_max -
1902 								th->th_ack +
1903 								tp->t_maxseg;
1904 					else
1905 						tp->snd_cwnd = tp->snd_ssthresh;
1906 				}
1907 			}
1908 		} else {
1909 			if (tp->t_dupacks >= tcprexmtthresh &&
1910 			    tp->snd_cwnd > tp->snd_ssthresh)
1911 				tp->snd_cwnd = tp->snd_ssthresh;
1912 		}
1913 		tp->t_dupacks = 0;
1914 		/*
1915 		 * If we reach this point, ACK is not a duplicate,
1916 		 *     i.e., it ACKs something we sent.
1917 		 */
1918 		if (tp->t_flags & TF_NEEDSYN) {
1919 			/*
1920 			 * T/TCP: Connection was half-synchronized, and our
1921 			 * SYN has been ACK'd (so connection is now fully
1922 			 * synchronized).  Go to non-starred state,
1923 			 * increment snd_una for ACK of SYN, and check if
1924 			 * we can do window scaling.
1925 			 */
1926 			tp->t_flags &= ~TF_NEEDSYN;
1927 			tp->snd_una++;
1928 			/* Do window scaling? */
1929 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1930 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1931 				tp->rcv_scale = tp->request_r_scale;
1932 				/* Send window already scaled. */
1933 			}
1934 		}
1935 
1936 process_ACK:
1937 		KASSERT(headlocked, ("%s: process_ACK: head not locked",
1938 		    __func__));
1939 		INP_LOCK_ASSERT(tp->t_inpcb);
1940 
1941 		acked = th->th_ack - tp->snd_una;
1942 		tcpstat.tcps_rcvackpack++;
1943 		tcpstat.tcps_rcvackbyte += acked;
1944 
1945 		/*
1946 		 * If we just performed our first retransmit, and the ACK
1947 		 * arrives within our recovery window, then it was a mistake
1948 		 * to do the retransmit in the first place.  Recover our
1949 		 * original cwnd and ssthresh, and proceed to transmit where
1950 		 * we left off.
1951 		 */
1952 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1953 			++tcpstat.tcps_sndrexmitbad;
1954 			tp->snd_cwnd = tp->snd_cwnd_prev;
1955 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1956 			tp->snd_recover = tp->snd_recover_prev;
1957 			if (tp->t_flags & TF_WASFRECOVERY)
1958 				ENTER_FASTRECOVERY(tp);
1959 			tp->snd_nxt = tp->snd_max;
1960 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1961 		}
1962 
1963 		/*
1964 		 * If we have a timestamp reply, update smoothed
1965 		 * round trip time.  If no timestamp is present but
1966 		 * transmit timer is running and timed sequence
1967 		 * number was acked, update smoothed round trip time.
1968 		 * Since we now have an rtt measurement, cancel the
1969 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1970 		 * Recompute the initial retransmit timer.
1971 		 *
1972 		 * Some boxes send broken timestamp replies
1973 		 * during the SYN+ACK phase, ignore
1974 		 * timestamps of 0 or we could calculate a
1975 		 * huge RTT and blow up the retransmit timer.
1976 		 */
1977 		if ((to.to_flags & TOF_TS) != 0 &&
1978 		    to.to_tsecr) {
1979 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
1980 				tp->t_rttlow = ticks - to.to_tsecr;
1981 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1982 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1983 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
1984 				tp->t_rttlow = ticks - tp->t_rtttime;
1985 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1986 		}
1987 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1988 
1989 		/*
1990 		 * If all outstanding data is acked, stop retransmit
1991 		 * timer and remember to restart (more output or persist).
1992 		 * If there is more data to be acked, restart retransmit
1993 		 * timer, using current (possibly backed-off) value.
1994 		 */
1995 		if (th->th_ack == tp->snd_max) {
1996 			tcp_timer_activate(tp, TT_REXMT, 0);
1997 			needoutput = 1;
1998 		} else if (!tcp_timer_active(tp, TT_PERSIST))
1999 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2000 
2001 		/*
2002 		 * If no data (only SYN) was ACK'd,
2003 		 *    skip rest of ACK processing.
2004 		 */
2005 		if (acked == 0)
2006 			goto step6;
2007 
2008 		/*
2009 		 * When new data is acked, open the congestion window.
2010 		 * If the window gives us less than ssthresh packets
2011 		 * in flight, open exponentially (maxseg per packet).
2012 		 * Otherwise open linearly: maxseg per window
2013 		 * (maxseg^2 / cwnd per packet).
2014 		 */
2015 		if ((!tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2016 		    !IN_FASTRECOVERY(tp)) {
2017 			u_int cw = tp->snd_cwnd;
2018 			u_int incr = tp->t_maxseg;
2019 			if (cw > tp->snd_ssthresh)
2020 				incr = incr * incr / cw;
2021 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2022 		}
2023 		SOCKBUF_LOCK(&so->so_snd);
2024 		if (acked > so->so_snd.sb_cc) {
2025 			tp->snd_wnd -= so->so_snd.sb_cc;
2026 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2027 			ourfinisacked = 1;
2028 		} else {
2029 			sbdrop_locked(&so->so_snd, acked);
2030 			tp->snd_wnd -= acked;
2031 			ourfinisacked = 0;
2032 		}
2033 		/* NB: sowwakeup_locked() does an implicit unlock. */
2034 		sowwakeup_locked(so);
2035 		/* Detect una wraparound. */
2036 		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2037 		    !IN_FASTRECOVERY(tp) &&
2038 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2039 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2040 			tp->snd_recover = th->th_ack - 1;
2041 		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2042 		    IN_FASTRECOVERY(tp) &&
2043 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2044 			EXIT_FASTRECOVERY(tp);
2045 		tp->snd_una = th->th_ack;
2046 		if (tp->t_flags & TF_SACK_PERMIT) {
2047 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2048 				tp->snd_recover = tp->snd_una;
2049 		}
2050 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2051 			tp->snd_nxt = tp->snd_una;
2052 
2053 		switch (tp->t_state) {
2054 
2055 		/*
2056 		 * In FIN_WAIT_1 STATE in addition to the processing
2057 		 * for the ESTABLISHED state if our FIN is now acknowledged
2058 		 * then enter FIN_WAIT_2.
2059 		 */
2060 		case TCPS_FIN_WAIT_1:
2061 			if (ourfinisacked) {
2062 				/*
2063 				 * If we can't receive any more
2064 				 * data, then closing user can proceed.
2065 				 * Starting the timer is contrary to the
2066 				 * specification, but if we don't get a FIN
2067 				 * we'll hang forever.
2068 				 *
2069 				 * XXXjl:
2070 				 * we should release the tp also, and use a
2071 				 * compressed state.
2072 				 */
2073 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2074 					int timeout;
2075 
2076 					soisdisconnected(so);
2077 					timeout = (tcp_fast_finwait2_recycle) ?
2078 						tcp_finwait2_timeout : tcp_maxidle;
2079 					tcp_timer_activate(tp, TT_2MSL, timeout);
2080 				}
2081 				tp->t_state = TCPS_FIN_WAIT_2;
2082 			}
2083 			break;
2084 
2085 		/*
2086 		 * In CLOSING STATE in addition to the processing for
2087 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2088 		 * then enter the TIME-WAIT state, otherwise ignore
2089 		 * the segment.
2090 		 */
2091 		case TCPS_CLOSING:
2092 			if (ourfinisacked) {
2093 				KASSERT(headlocked, ("%s: process_ACK: "
2094 				    "head not locked", __func__));
2095 				tcp_twstart(tp);
2096 				INP_INFO_WUNLOCK(&tcbinfo);
2097 				headlocked = 0;
2098 				m_freem(m);
2099 				return;
2100 			}
2101 			break;
2102 
2103 		/*
2104 		 * In LAST_ACK, we may still be waiting for data to drain
2105 		 * and/or to be acked, as well as for the ack of our FIN.
2106 		 * If our FIN is now acknowledged, delete the TCB,
2107 		 * enter the closed state and return.
2108 		 */
2109 		case TCPS_LAST_ACK:
2110 			if (ourfinisacked) {
2111 				KASSERT(headlocked, ("%s: process_ACK: "
2112 				    "tcp_close: head not locked", __func__));
2113 				tp = tcp_close(tp);
2114 				goto drop;
2115 			}
2116 			break;
2117 		}
2118 	}
2119 
2120 step6:
2121 	KASSERT(headlocked, ("%s: step6: head not locked", __func__));
2122 	INP_LOCK_ASSERT(tp->t_inpcb);
2123 
2124 	/*
2125 	 * Update window information.
2126 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2127 	 */
2128 	if ((thflags & TH_ACK) &&
2129 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2130 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2131 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2132 		/* keep track of pure window updates */
2133 		if (tlen == 0 &&
2134 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2135 			tcpstat.tcps_rcvwinupd++;
2136 		tp->snd_wnd = tiwin;
2137 		tp->snd_wl1 = th->th_seq;
2138 		tp->snd_wl2 = th->th_ack;
2139 		if (tp->snd_wnd > tp->max_sndwnd)
2140 			tp->max_sndwnd = tp->snd_wnd;
2141 		needoutput = 1;
2142 	}
2143 
2144 	/*
2145 	 * Process segments with URG.
2146 	 */
2147 	if ((thflags & TH_URG) && th->th_urp &&
2148 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2149 		/*
2150 		 * This is a kludge, but if we receive and accept
2151 		 * random urgent pointers, we'll crash in
2152 		 * soreceive.  It's hard to imagine someone
2153 		 * actually wanting to send this much urgent data.
2154 		 */
2155 		SOCKBUF_LOCK(&so->so_rcv);
2156 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2157 			th->th_urp = 0;			/* XXX */
2158 			thflags &= ~TH_URG;		/* XXX */
2159 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2160 			goto dodata;			/* XXX */
2161 		}
2162 		/*
2163 		 * If this segment advances the known urgent pointer,
2164 		 * then mark the data stream.  This should not happen
2165 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2166 		 * a FIN has been received from the remote side.
2167 		 * In these states we ignore the URG.
2168 		 *
2169 		 * According to RFC961 (Assigned Protocols),
2170 		 * the urgent pointer points to the last octet
2171 		 * of urgent data.  We continue, however,
2172 		 * to consider it to indicate the first octet
2173 		 * of data past the urgent section as the original
2174 		 * spec states (in one of two places).
2175 		 */
2176 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2177 			tp->rcv_up = th->th_seq + th->th_urp;
2178 			so->so_oobmark = so->so_rcv.sb_cc +
2179 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2180 			if (so->so_oobmark == 0)
2181 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2182 			sohasoutofband(so);
2183 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2184 		}
2185 		SOCKBUF_UNLOCK(&so->so_rcv);
2186 		/*
2187 		 * Remove out of band data so doesn't get presented to user.
2188 		 * This can happen independent of advancing the URG pointer,
2189 		 * but if two URG's are pending at once, some out-of-band
2190 		 * data may creep in... ick.
2191 		 */
2192 		if (th->th_urp <= (u_long)tlen &&
2193 		    !(so->so_options & SO_OOBINLINE)) {
2194 			/* hdr drop is delayed */
2195 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2196 		}
2197 	} else {
2198 		/*
2199 		 * If no out of band data is expected,
2200 		 * pull receive urgent pointer along
2201 		 * with the receive window.
2202 		 */
2203 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2204 			tp->rcv_up = tp->rcv_nxt;
2205 	}
2206 dodata:							/* XXX */
2207 	KASSERT(headlocked, ("%s: dodata: head not locked", __func__));
2208 	INP_LOCK_ASSERT(tp->t_inpcb);
2209 
2210 	/*
2211 	 * Process the segment text, merging it into the TCP sequencing queue,
2212 	 * and arranging for acknowledgment of receipt if necessary.
2213 	 * This process logically involves adjusting tp->rcv_wnd as data
2214 	 * is presented to the user (this happens in tcp_usrreq.c,
2215 	 * case PRU_RCVD).  If a FIN has already been received on this
2216 	 * connection then we just ignore the text.
2217 	 */
2218 	if ((tlen || (thflags & TH_FIN)) &&
2219 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2220 		tcp_seq save_start = th->th_seq;
2221 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2222 		/*
2223 		 * Insert segment which includes th into TCP reassembly queue
2224 		 * with control block tp.  Set thflags to whether reassembly now
2225 		 * includes a segment with FIN.  This handles the common case
2226 		 * inline (segment is the next to be received on an established
2227 		 * connection, and the queue is empty), avoiding linkage into
2228 		 * and removal from the queue and repetition of various
2229 		 * conversions.
2230 		 * Set DELACK for segments received in order, but ack
2231 		 * immediately when segments are out of order (so
2232 		 * fast retransmit can work).
2233 		 */
2234 		if (th->th_seq == tp->rcv_nxt &&
2235 		    LIST_EMPTY(&tp->t_segq) &&
2236 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2237 			if (DELAY_ACK(tp))
2238 				tp->t_flags |= TF_DELACK;
2239 			else
2240 				tp->t_flags |= TF_ACKNOW;
2241 			tp->rcv_nxt += tlen;
2242 			thflags = th->th_flags & TH_FIN;
2243 			tcpstat.tcps_rcvpack++;
2244 			tcpstat.tcps_rcvbyte += tlen;
2245 			ND6_HINT(tp);
2246 			SOCKBUF_LOCK(&so->so_rcv);
2247 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2248 				m_freem(m);
2249 			else
2250 				sbappendstream_locked(&so->so_rcv, m);
2251 			/* NB: sorwakeup_locked() does an implicit unlock. */
2252 			sorwakeup_locked(so);
2253 		} else {
2254 			/*
2255 			 * XXX: Due to the header drop above "th" is
2256 			 * theoretically invalid by now.  Fortunately
2257 			 * m_adj() doesn't actually frees any mbufs
2258 			 * when trimming from the head.
2259 			 */
2260 			thflags = tcp_reass(tp, th, &tlen, m);
2261 			tp->t_flags |= TF_ACKNOW;
2262 		}
2263 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2264 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2265 #if 0
2266 		/*
2267 		 * Note the amount of data that peer has sent into
2268 		 * our window, in order to estimate the sender's
2269 		 * buffer size.
2270 		 * XXX: Unused.
2271 		 */
2272 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2273 #endif
2274 	} else {
2275 		m_freem(m);
2276 		thflags &= ~TH_FIN;
2277 	}
2278 
2279 	/*
2280 	 * If FIN is received ACK the FIN and let the user know
2281 	 * that the connection is closing.
2282 	 */
2283 	if (thflags & TH_FIN) {
2284 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2285 			socantrcvmore(so);
2286 			/*
2287 			 * If connection is half-synchronized
2288 			 * (ie NEEDSYN flag on) then delay ACK,
2289 			 * so it may be piggybacked when SYN is sent.
2290 			 * Otherwise, since we received a FIN then no
2291 			 * more input can be expected, send ACK now.
2292 			 */
2293 			if (tp->t_flags & TF_NEEDSYN)
2294 				tp->t_flags |= TF_DELACK;
2295 			else
2296 				tp->t_flags |= TF_ACKNOW;
2297 			tp->rcv_nxt++;
2298 		}
2299 		switch (tp->t_state) {
2300 
2301 		/*
2302 		 * In SYN_RECEIVED and ESTABLISHED STATES
2303 		 * enter the CLOSE_WAIT state.
2304 		 */
2305 		case TCPS_SYN_RECEIVED:
2306 			tp->t_starttime = ticks;
2307 			/* FALLTHROUGH */
2308 		case TCPS_ESTABLISHED:
2309 			tp->t_state = TCPS_CLOSE_WAIT;
2310 			break;
2311 
2312 		/*
2313 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2314 		 * enter the CLOSING state.
2315 		 */
2316 		case TCPS_FIN_WAIT_1:
2317 			tp->t_state = TCPS_CLOSING;
2318 			break;
2319 
2320 		/*
2321 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2322 		 * starting the time-wait timer, turning off the other
2323 		 * standard timers.
2324 		 */
2325 		case TCPS_FIN_WAIT_2:
2326 			KASSERT(headlocked == 1, ("%s: dodata: "
2327 			    "TCP_FIN_WAIT_2: head not locked", __func__));
2328 			tcp_twstart(tp);
2329 			INP_INFO_WUNLOCK(&tcbinfo);
2330 			return;
2331 		}
2332 	}
2333 	INP_INFO_WUNLOCK(&tcbinfo);
2334 	headlocked = 0;
2335 #ifdef TCPDEBUG
2336 	if (so->so_options & SO_DEBUG)
2337 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2338 			  &tcp_savetcp, 0);
2339 #endif
2340 
2341 	/*
2342 	 * Return any desired output.
2343 	 */
2344 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2345 		(void) tcp_output(tp);
2346 
2347 check_delack:
2348 	KASSERT(headlocked == 0, ("%s: check_delack: head locked",
2349 	    __func__));
2350 	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
2351 	INP_LOCK_ASSERT(tp->t_inpcb);
2352 	if (tp->t_flags & TF_DELACK) {
2353 		tp->t_flags &= ~TF_DELACK;
2354 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2355 	}
2356 	INP_UNLOCK(tp->t_inpcb);
2357 	return;
2358 
2359 dropafterack:
2360 	KASSERT(headlocked, ("%s: dropafterack: head not locked", __func__));
2361 	/*
2362 	 * Generate an ACK dropping incoming segment if it occupies
2363 	 * sequence space, where the ACK reflects our state.
2364 	 *
2365 	 * We can now skip the test for the RST flag since all
2366 	 * paths to this code happen after packets containing
2367 	 * RST have been dropped.
2368 	 *
2369 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2370 	 * segment we received passes the SYN-RECEIVED ACK test.
2371 	 * If it fails send a RST.  This breaks the loop in the
2372 	 * "LAND" DoS attack, and also prevents an ACK storm
2373 	 * between two listening ports that have been sent forged
2374 	 * SYN segments, each with the source address of the other.
2375 	 */
2376 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2377 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2378 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2379 		rstreason = BANDLIM_RST_OPENPORT;
2380 		goto dropwithreset;
2381 	}
2382 #ifdef TCPDEBUG
2383 	if (so->so_options & SO_DEBUG)
2384 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2385 			  &tcp_savetcp, 0);
2386 #endif
2387 	KASSERT(headlocked, ("%s: headlocked should be 1", __func__));
2388 	INP_INFO_WUNLOCK(&tcbinfo);
2389 	tp->t_flags |= TF_ACKNOW;
2390 	(void) tcp_output(tp);
2391 	INP_UNLOCK(tp->t_inpcb);
2392 	m_freem(m);
2393 	return;
2394 
2395 dropwithreset:
2396 	KASSERT(headlocked, ("%s: dropwithreset: head not locked", __func__));
2397 
2398 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
2399 
2400 	if (tp != NULL)
2401 		INP_UNLOCK(tp->t_inpcb);
2402 	if (headlocked)
2403 		INP_INFO_WUNLOCK(&tcbinfo);
2404 	return;
2405 
2406 drop:
2407 	/*
2408 	 * Drop space held by incoming segment and return.
2409 	 */
2410 #ifdef TCPDEBUG
2411 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2412 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2413 			  &tcp_savetcp, 0);
2414 #endif
2415 	if (tp != NULL)
2416 		INP_UNLOCK(tp->t_inpcb);
2417 	if (headlocked)
2418 		INP_INFO_WUNLOCK(&tcbinfo);
2419 	m_freem(m);
2420 	return;
2421 }
2422 
2423 /*
2424  * Issue RST and make ACK acceptable to originator of segment.
2425  * The mbuf must still include the original packet header.
2426  * tp may be NULL.
2427  */
2428 static void
2429 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2430     int tlen, int rstreason)
2431 {
2432 	struct ip *ip;
2433 #ifdef INET6
2434 	struct ip6_hdr *ip6;
2435 #endif
2436 	/* Don't bother if destination was broadcast/multicast. */
2437 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2438 		goto drop;
2439 #ifdef INET6
2440 	if (mtod(m, struct ip *)->ip_v == 6) {
2441 		ip6 = mtod(m, struct ip6_hdr *);
2442 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2443 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2444 			goto drop;
2445 		/* IPv6 anycast check is done at tcp6_input() */
2446 	} else
2447 #endif
2448 	{
2449 		ip = mtod(m, struct ip *);
2450 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2451 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2452 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2453 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2454 			goto drop;
2455 	}
2456 
2457 	/* Perform bandwidth limiting. */
2458 	if (badport_bandlim(rstreason) < 0)
2459 		goto drop;
2460 
2461 	/* tcp_respond consumes the mbuf chain. */
2462 	if (th->th_flags & TH_ACK) {
2463 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2464 		    th->th_ack, TH_RST);
2465 	} else {
2466 		if (th->th_flags & TH_SYN)
2467 			tlen++;
2468 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2469 		    (tcp_seq)0, TH_RST|TH_ACK);
2470 	}
2471 	return;
2472 drop:
2473 	m_freem(m);
2474 	return;
2475 }
2476 
2477 /*
2478  * Parse TCP options and place in tcpopt.
2479  */
2480 static void
2481 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2482 {
2483 	int opt, optlen;
2484 
2485 	to->to_flags = 0;
2486 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2487 		opt = cp[0];
2488 		if (opt == TCPOPT_EOL)
2489 			break;
2490 		if (opt == TCPOPT_NOP)
2491 			optlen = 1;
2492 		else {
2493 			if (cnt < 2)
2494 				break;
2495 			optlen = cp[1];
2496 			if (optlen < 2 || optlen > cnt)
2497 				break;
2498 		}
2499 		switch (opt) {
2500 		case TCPOPT_MAXSEG:
2501 			if (optlen != TCPOLEN_MAXSEG)
2502 				continue;
2503 			if (!(flags & TO_SYN))
2504 				continue;
2505 			to->to_flags |= TOF_MSS;
2506 			bcopy((char *)cp + 2,
2507 			    (char *)&to->to_mss, sizeof(to->to_mss));
2508 			to->to_mss = ntohs(to->to_mss);
2509 			break;
2510 		case TCPOPT_WINDOW:
2511 			if (optlen != TCPOLEN_WINDOW)
2512 				continue;
2513 			if (!(flags & TO_SYN))
2514 				continue;
2515 			to->to_flags |= TOF_SCALE;
2516 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2517 			break;
2518 		case TCPOPT_TIMESTAMP:
2519 			if (optlen != TCPOLEN_TIMESTAMP)
2520 				continue;
2521 			to->to_flags |= TOF_TS;
2522 			bcopy((char *)cp + 2,
2523 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2524 			to->to_tsval = ntohl(to->to_tsval);
2525 			bcopy((char *)cp + 6,
2526 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2527 			to->to_tsecr = ntohl(to->to_tsecr);
2528 			break;
2529 #ifdef TCP_SIGNATURE
2530 		/*
2531 		 * XXX In order to reply to a host which has set the
2532 		 * TCP_SIGNATURE option in its initial SYN, we have to
2533 		 * record the fact that the option was observed here
2534 		 * for the syncache code to perform the correct response.
2535 		 */
2536 		case TCPOPT_SIGNATURE:
2537 			if (optlen != TCPOLEN_SIGNATURE)
2538 				continue;
2539 			to->to_flags |= TOF_SIGNATURE;
2540 			to->to_signature = cp + 2;
2541 			break;
2542 #endif
2543 		case TCPOPT_SACK_PERMITTED:
2544 			if (optlen != TCPOLEN_SACK_PERMITTED)
2545 				continue;
2546 			if (!(flags & TO_SYN))
2547 				continue;
2548 			if (!tcp_do_sack)
2549 				continue;
2550 			to->to_flags |= TOF_SACKPERM;
2551 			break;
2552 		case TCPOPT_SACK:
2553 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2554 				continue;
2555 			if (flags & TO_SYN)
2556 				continue;
2557 			to->to_flags |= TOF_SACK;
2558 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2559 			to->to_sacks = cp + 2;
2560 			tcpstat.tcps_sack_rcv_blocks++;
2561 			break;
2562 		default:
2563 			continue;
2564 		}
2565 	}
2566 }
2567 
2568 /*
2569  * Pull out of band byte out of a segment so
2570  * it doesn't appear in the user's data queue.
2571  * It is still reflected in the segment length for
2572  * sequencing purposes.
2573  */
2574 static void
2575 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2576     int off)
2577 {
2578 	int cnt = off + th->th_urp - 1;
2579 
2580 	while (cnt >= 0) {
2581 		if (m->m_len > cnt) {
2582 			char *cp = mtod(m, caddr_t) + cnt;
2583 			struct tcpcb *tp = sototcpcb(so);
2584 
2585 			tp->t_iobc = *cp;
2586 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2587 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2588 			m->m_len--;
2589 			if (m->m_flags & M_PKTHDR)
2590 				m->m_pkthdr.len--;
2591 			return;
2592 		}
2593 		cnt -= m->m_len;
2594 		m = m->m_next;
2595 		if (m == NULL)
2596 			break;
2597 	}
2598 	panic("tcp_pulloutofband");
2599 }
2600 
2601 /*
2602  * Collect new round-trip time estimate
2603  * and update averages and current timeout.
2604  */
2605 static void
2606 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2607 {
2608 	int delta;
2609 
2610 	INP_LOCK_ASSERT(tp->t_inpcb);
2611 
2612 	tcpstat.tcps_rttupdated++;
2613 	tp->t_rttupdated++;
2614 	if (tp->t_srtt != 0) {
2615 		/*
2616 		 * srtt is stored as fixed point with 5 bits after the
2617 		 * binary point (i.e., scaled by 8).  The following magic
2618 		 * is equivalent to the smoothing algorithm in rfc793 with
2619 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2620 		 * point).  Adjust rtt to origin 0.
2621 		 */
2622 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2623 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2624 
2625 		if ((tp->t_srtt += delta) <= 0)
2626 			tp->t_srtt = 1;
2627 
2628 		/*
2629 		 * We accumulate a smoothed rtt variance (actually, a
2630 		 * smoothed mean difference), then set the retransmit
2631 		 * timer to smoothed rtt + 4 times the smoothed variance.
2632 		 * rttvar is stored as fixed point with 4 bits after the
2633 		 * binary point (scaled by 16).  The following is
2634 		 * equivalent to rfc793 smoothing with an alpha of .75
2635 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2636 		 * rfc793's wired-in beta.
2637 		 */
2638 		if (delta < 0)
2639 			delta = -delta;
2640 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2641 		if ((tp->t_rttvar += delta) <= 0)
2642 			tp->t_rttvar = 1;
2643 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2644 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2645 	} else {
2646 		/*
2647 		 * No rtt measurement yet - use the unsmoothed rtt.
2648 		 * Set the variance to half the rtt (so our first
2649 		 * retransmit happens at 3*rtt).
2650 		 */
2651 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2652 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2653 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2654 	}
2655 	tp->t_rtttime = 0;
2656 	tp->t_rxtshift = 0;
2657 
2658 	/*
2659 	 * the retransmit should happen at rtt + 4 * rttvar.
2660 	 * Because of the way we do the smoothing, srtt and rttvar
2661 	 * will each average +1/2 tick of bias.  When we compute
2662 	 * the retransmit timer, we want 1/2 tick of rounding and
2663 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2664 	 * firing of the timer.  The bias will give us exactly the
2665 	 * 1.5 tick we need.  But, because the bias is
2666 	 * statistical, we have to test that we don't drop below
2667 	 * the minimum feasible timer (which is 2 ticks).
2668 	 */
2669 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2670 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2671 
2672 	/*
2673 	 * We received an ack for a packet that wasn't retransmitted;
2674 	 * it is probably safe to discard any error indications we've
2675 	 * received recently.  This isn't quite right, but close enough
2676 	 * for now (a route might have failed after we sent a segment,
2677 	 * and the return path might not be symmetrical).
2678 	 */
2679 	tp->t_softerror = 0;
2680 }
2681 
2682 /*
2683  * Determine a reasonable value for maxseg size.
2684  * If the route is known, check route for mtu.
2685  * If none, use an mss that can be handled on the outgoing
2686  * interface without forcing IP to fragment; if bigger than
2687  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2688  * to utilize large mbufs.  If no route is found, route has no mtu,
2689  * or the destination isn't local, use a default, hopefully conservative
2690  * size (usually 512 or the default IP max size, but no more than the mtu
2691  * of the interface), as we can't discover anything about intervening
2692  * gateways or networks.  We also initialize the congestion/slow start
2693  * window to be a single segment if the destination isn't local.
2694  * While looking at the routing entry, we also initialize other path-dependent
2695  * parameters from pre-set or cached values in the routing entry.
2696  *
2697  * Also take into account the space needed for options that we
2698  * send regularly.  Make maxseg shorter by that amount to assure
2699  * that we can send maxseg amount of data even when the options
2700  * are present.  Store the upper limit of the length of options plus
2701  * data in maxopd.
2702  *
2703  * In case of T/TCP, we call this routine during implicit connection
2704  * setup as well (offer = -1), to initialize maxseg from the cached
2705  * MSS of our peer.
2706  *
2707  * NOTE that this routine is only called when we process an incoming
2708  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2709  */
2710 void
2711 tcp_mss(struct tcpcb *tp, int offer)
2712 {
2713 	int rtt, mss;
2714 	u_long bufsize;
2715 	u_long maxmtu;
2716 	struct inpcb *inp = tp->t_inpcb;
2717 	struct socket *so;
2718 	struct hc_metrics_lite metrics;
2719 	int origoffer = offer;
2720 	int mtuflags = 0;
2721 #ifdef INET6
2722 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2723 	size_t min_protoh = isipv6 ?
2724 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2725 			    sizeof (struct tcpiphdr);
2726 #else
2727 	const size_t min_protoh = sizeof(struct tcpiphdr);
2728 #endif
2729 
2730 	/* Initialize. */
2731 #ifdef INET6
2732 	if (isipv6) {
2733 		maxmtu = tcp_maxmtu6(&inp->inp_inc, &mtuflags);
2734 		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2735 	} else
2736 #endif
2737 	{
2738 		maxmtu = tcp_maxmtu(&inp->inp_inc, &mtuflags);
2739 		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2740 	}
2741 	so = inp->inp_socket;
2742 
2743 	/*
2744 	 * No route to sender, stay with default mss and return.
2745 	 */
2746 	if (maxmtu == 0)
2747 		return;
2748 
2749 	/* What have we got? */
2750 	switch (offer) {
2751 		case 0:
2752 			/*
2753 			 * Offer == 0 means that there was no MSS on the SYN
2754 			 * segment, in this case we use tcp_mssdflt.
2755 			 */
2756 			offer =
2757 #ifdef INET6
2758 				isipv6 ? tcp_v6mssdflt :
2759 #endif
2760 				tcp_mssdflt;
2761 			break;
2762 
2763 		case -1:
2764 			/*
2765 			 * Offer == -1 means that we didn't receive SYN yet.
2766 			 */
2767 			/* FALLTHROUGH */
2768 
2769 		default:
2770 			/*
2771 			 * Prevent DoS attack with too small MSS. Round up
2772 			 * to at least minmss.
2773 			 */
2774 			offer = max(offer, tcp_minmss);
2775 			/*
2776 			 * Sanity check: make sure that maxopd will be large
2777 			 * enough to allow some data on segments even if the
2778 			 * all the option space is used (40bytes).  Otherwise
2779 			 * funny things may happen in tcp_output.
2780 			 */
2781 			offer = max(offer, 64);
2782 	}
2783 
2784 	/*
2785 	 * rmx information is now retrieved from tcp_hostcache.
2786 	 */
2787 	tcp_hc_get(&inp->inp_inc, &metrics);
2788 
2789 	/*
2790 	 * If there's a discovered mtu int tcp hostcache, use it
2791 	 * else, use the link mtu.
2792 	 */
2793 	if (metrics.rmx_mtu)
2794 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2795 	else {
2796 #ifdef INET6
2797 		if (isipv6) {
2798 			mss = maxmtu - min_protoh;
2799 			if (!path_mtu_discovery &&
2800 			    !in6_localaddr(&inp->in6p_faddr))
2801 				mss = min(mss, tcp_v6mssdflt);
2802 		} else
2803 #endif
2804 		{
2805 			mss = maxmtu - min_protoh;
2806 			if (!path_mtu_discovery &&
2807 			    !in_localaddr(inp->inp_faddr))
2808 				mss = min(mss, tcp_mssdflt);
2809 		}
2810 	}
2811 	mss = min(mss, offer);
2812 
2813 	/*
2814 	 * maxopd stores the maximum length of data AND options
2815 	 * in a segment; maxseg is the amount of data in a normal
2816 	 * segment.  We need to store this value (maxopd) apart
2817 	 * from maxseg, because now every segment carries options
2818 	 * and thus we normally have somewhat less data in segments.
2819 	 */
2820 	tp->t_maxopd = mss;
2821 
2822 	/*
2823 	 * origoffer==-1 indicates that no segments were received yet.
2824 	 * In this case we just guess.
2825 	 */
2826 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2827 	    (origoffer == -1 ||
2828 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2829 		mss -= TCPOLEN_TSTAMP_APPA;
2830 	tp->t_maxseg = mss;
2831 
2832 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2833 		if (mss > MCLBYTES)
2834 			mss &= ~(MCLBYTES-1);
2835 #else
2836 		if (mss > MCLBYTES)
2837 			mss = mss / MCLBYTES * MCLBYTES;
2838 #endif
2839 	tp->t_maxseg = mss;
2840 
2841 	/*
2842 	 * If there's a pipesize, change the socket buffer to that size,
2843 	 * don't change if sb_hiwat is different than default (then it
2844 	 * has been changed on purpose with setsockopt).
2845 	 * Make the socket buffers an integral number of mss units;
2846 	 * if the mss is larger than the socket buffer, decrease the mss.
2847 	 */
2848 	SOCKBUF_LOCK(&so->so_snd);
2849 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2850 		bufsize = metrics.rmx_sendpipe;
2851 	else
2852 		bufsize = so->so_snd.sb_hiwat;
2853 	if (bufsize < mss)
2854 		mss = bufsize;
2855 	else {
2856 		bufsize = roundup(bufsize, mss);
2857 		if (bufsize > sb_max)
2858 			bufsize = sb_max;
2859 		if (bufsize > so->so_snd.sb_hiwat)
2860 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2861 	}
2862 	SOCKBUF_UNLOCK(&so->so_snd);
2863 	tp->t_maxseg = mss;
2864 
2865 	SOCKBUF_LOCK(&so->so_rcv);
2866 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2867 		bufsize = metrics.rmx_recvpipe;
2868 	else
2869 		bufsize = so->so_rcv.sb_hiwat;
2870 	if (bufsize > mss) {
2871 		bufsize = roundup(bufsize, mss);
2872 		if (bufsize > sb_max)
2873 			bufsize = sb_max;
2874 		if (bufsize > so->so_rcv.sb_hiwat)
2875 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2876 	}
2877 	SOCKBUF_UNLOCK(&so->so_rcv);
2878 	/*
2879 	 * While we're here, check the others too.
2880 	 */
2881 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2882 		tp->t_srtt = rtt;
2883 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2884 		tcpstat.tcps_usedrtt++;
2885 		if (metrics.rmx_rttvar) {
2886 			tp->t_rttvar = metrics.rmx_rttvar;
2887 			tcpstat.tcps_usedrttvar++;
2888 		} else {
2889 			/* default variation is +- 1 rtt */
2890 			tp->t_rttvar =
2891 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2892 		}
2893 		TCPT_RANGESET(tp->t_rxtcur,
2894 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2895 			      tp->t_rttmin, TCPTV_REXMTMAX);
2896 	}
2897 	if (metrics.rmx_ssthresh) {
2898 		/*
2899 		 * There's some sort of gateway or interface
2900 		 * buffer limit on the path.  Use this to set
2901 		 * the slow start threshhold, but set the
2902 		 * threshold to no less than 2*mss.
2903 		 */
2904 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
2905 		tcpstat.tcps_usedssthresh++;
2906 	}
2907 	if (metrics.rmx_bandwidth)
2908 		tp->snd_bandwidth = metrics.rmx_bandwidth;
2909 
2910 	/*
2911 	 * Set the slow-start flight size depending on whether this
2912 	 * is a local network or not.
2913 	 *
2914 	 * Extend this so we cache the cwnd too and retrieve it here.
2915 	 * Make cwnd even bigger than RFC3390 suggests but only if we
2916 	 * have previous experience with the remote host. Be careful
2917 	 * not make cwnd bigger than remote receive window or our own
2918 	 * send socket buffer. Maybe put some additional upper bound
2919 	 * on the retrieved cwnd. Should do incremental updates to
2920 	 * hostcache when cwnd collapses so next connection doesn't
2921 	 * overloads the path again.
2922 	 *
2923 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
2924 	 * We currently check only in syncache_socket for that.
2925 	 */
2926 #define TCP_METRICS_CWND
2927 #ifdef TCP_METRICS_CWND
2928 	if (metrics.rmx_cwnd)
2929 		tp->snd_cwnd = max(mss,
2930 				min(metrics.rmx_cwnd / 2,
2931 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
2932 	else
2933 #endif
2934 	if (tcp_do_rfc3390)
2935 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2936 #ifdef INET6
2937 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2938 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2939 #else
2940 	else if (in_localaddr(inp->inp_faddr))
2941 #endif
2942 		tp->snd_cwnd = mss * ss_fltsz_local;
2943 	else
2944 		tp->snd_cwnd = mss * ss_fltsz;
2945 
2946 	/* Check the interface for TSO capabilities. */
2947 	if (mtuflags & CSUM_TSO)
2948 		tp->t_flags |= TF_TSO;
2949 }
2950 
2951 /*
2952  * Determine the MSS option to send on an outgoing SYN.
2953  */
2954 int
2955 tcp_mssopt(struct in_conninfo *inc)
2956 {
2957 	int mss = 0;
2958 	u_long maxmtu = 0;
2959 	u_long thcmtu = 0;
2960 	size_t min_protoh;
2961 #ifdef INET6
2962 	int isipv6 = inc->inc_isipv6 ? 1 : 0;
2963 #endif
2964 
2965 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
2966 
2967 #ifdef INET6
2968 	if (isipv6) {
2969 		mss = tcp_v6mssdflt;
2970 		maxmtu = tcp_maxmtu6(inc, NULL);
2971 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2972 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2973 	} else
2974 #endif
2975 	{
2976 		mss = tcp_mssdflt;
2977 		maxmtu = tcp_maxmtu(inc, NULL);
2978 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2979 		min_protoh = sizeof(struct tcpiphdr);
2980 	}
2981 	if (maxmtu && thcmtu)
2982 		mss = min(maxmtu, thcmtu) - min_protoh;
2983 	else if (maxmtu || thcmtu)
2984 		mss = max(maxmtu, thcmtu) - min_protoh;
2985 
2986 	return (mss);
2987 }
2988 
2989 
2990 /*
2991  * On a partial ack arrives, force the retransmission of the
2992  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2993  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2994  * be started again.
2995  */
2996 static void
2997 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
2998 {
2999 	tcp_seq onxt = tp->snd_nxt;
3000 	u_long  ocwnd = tp->snd_cwnd;
3001 
3002 	tcp_timer_activate(tp, TT_REXMT, 0);
3003 	tp->t_rtttime = 0;
3004 	tp->snd_nxt = th->th_ack;
3005 	/*
3006 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3007 	 * (tp->snd_una has not yet been updated when this function is called.)
3008 	 */
3009 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3010 	tp->t_flags |= TF_ACKNOW;
3011 	(void) tcp_output(tp);
3012 	tp->snd_cwnd = ocwnd;
3013 	if (SEQ_GT(onxt, tp->snd_nxt))
3014 		tp->snd_nxt = onxt;
3015 	/*
3016 	 * Partial window deflation.  Relies on fact that tp->snd_una
3017 	 * not updated yet.
3018 	 */
3019 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3020 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3021 	else
3022 		tp->snd_cwnd = 0;
3023 	tp->snd_cwnd += tp->t_maxseg;
3024 }
3025