xref: /freebsd/sys/netinet/tcp_input.c (revision a0ca4af9455b844c5e094fc1b09b1390ffa979fc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  */
49 
50 #include <sys/cdefs.h>
51 #include "opt_inet.h"
52 #include "opt_inet6.h"
53 #include "opt_ipsec.h"
54 #include "opt_rss.h"
55 
56 #include <sys/param.h>
57 #include <sys/arb.h>
58 #include <sys/kernel.h>
59 #ifdef TCP_HHOOK
60 #include <sys/hhook.h>
61 #endif
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/qmath.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 #include <sys/stats.h>
75 
76 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
77 
78 #include <vm/uma.h>
79 
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #define TCPSTATES		/* for logging */
87 
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_rss.h>
92 #include <netinet/in_systm.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
95 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
96 #include <netinet/ip_var.h>
97 #include <netinet/ip_options.h>
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_rss.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #include <netinet6/nd6.h>
105 #include <netinet/tcp.h>
106 #include <netinet/tcp_fsm.h>
107 #include <netinet/tcp_seq.h>
108 #include <netinet/tcp_timer.h>
109 #include <netinet/tcp_var.h>
110 #include <netinet/tcp_log_buf.h>
111 #include <netinet6/tcp6_var.h>
112 #include <netinet/tcpip.h>
113 #include <netinet/cc/cc.h>
114 #include <netinet/tcp_fastopen.h>
115 #ifdef TCPPCAP
116 #include <netinet/tcp_pcap.h>
117 #endif
118 #include <netinet/tcp_syncache.h>
119 #ifdef TCP_OFFLOAD
120 #include <netinet/tcp_offload.h>
121 #endif
122 #include <netinet/tcp_ecn.h>
123 #include <netinet/udp.h>
124 
125 #include <netipsec/ipsec_support.h>
126 
127 #include <machine/in_cksum.h>
128 
129 #include <security/mac/mac_framework.h>
130 
131 const int tcprexmtthresh = 3;
132 
133 VNET_DEFINE(int, tcp_log_in_vain) = 0;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
135     &VNET_NAME(tcp_log_in_vain), 0,
136     "Log all incoming TCP segments to closed ports");
137 
138 VNET_DEFINE(int, blackhole) = 0;
139 #define	V_blackhole		VNET(blackhole)
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
141     &VNET_NAME(blackhole), 0,
142     "Do not send RST on segments to closed ports");
143 
144 VNET_DEFINE(bool, blackhole_local) = false;
145 #define	V_blackhole_local	VNET(blackhole_local)
146 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
147     CTLFLAG_RW, &VNET_NAME(blackhole_local), false,
148     "Enforce net.inet.tcp.blackhole for locally originated packets");
149 
150 VNET_DEFINE(int, tcp_delack_enabled) = 1;
151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
152     &VNET_NAME(tcp_delack_enabled), 0,
153     "Delay ACK to try and piggyback it onto a data packet");
154 
155 VNET_DEFINE(int, drop_synfin) = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
157     &VNET_NAME(drop_synfin), 0,
158     "Drop TCP packets with SYN+FIN set");
159 
160 VNET_DEFINE(int, tcp_do_prr) = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW,
162     &VNET_NAME(tcp_do_prr), 1,
163     "Enable Proportional Rate Reduction per RFC 6937");
164 
165 VNET_DEFINE(int, tcp_do_newcwv) = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
167     &VNET_NAME(tcp_do_newcwv), 0,
168     "Enable New Congestion Window Validation per RFC7661");
169 
170 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
172     &VNET_NAME(tcp_do_rfc3042), 0,
173     "Enable RFC 3042 (Limited Transmit)");
174 
175 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
177     &VNET_NAME(tcp_do_rfc3390), 0,
178     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
179 
180 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
182     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
183     "Slow-start flight size (initial congestion window) in number of segments");
184 
185 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_do_rfc3465), 0,
188     "Enable RFC 3465 (Appropriate Byte Counting)");
189 
190 VNET_DEFINE(int, tcp_abc_l_var) = 2;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
192     &VNET_NAME(tcp_abc_l_var), 2,
193     "Cap the max cwnd increment during slow-start to this number of segments");
194 
195 VNET_DEFINE(int, tcp_insecure_syn) = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_insecure_syn), 0,
198     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
199 
200 VNET_DEFINE(int, tcp_insecure_rst) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_insecure_rst), 0,
203     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
204 
205 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
206 #define	V_tcp_recvspace	VNET(tcp_recvspace)
207 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
209 
210 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_do_autorcvbuf), 0,
213     "Enable automatic receive buffer sizing");
214 
215 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
217     &VNET_NAME(tcp_autorcvbuf_max), 0,
218     "Max size of automatic receive buffer");
219 
220 VNET_DEFINE(struct inpcbinfo, tcbinfo);
221 
222 /*
223  * TCP statistics are stored in an array of counter(9)s, which size matches
224  * size of struct tcpstat.  TCP running connection count is a regular array.
225  */
226 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
227 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
228     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
229 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
230 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
231     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
232     "TCP connection counts by TCP state");
233 
234 /*
235  * Kernel module interface for updating tcpstat.  The first argument is an index
236  * into tcpstat treated as an array.
237  */
238 void
239 kmod_tcpstat_add(int statnum, int val)
240 {
241 
242 	counter_u64_add(VNET(tcpstat)[statnum], val);
243 }
244 
245 /*
246  * Make sure that we only start a SACK loss recovery when
247  * receiving a duplicate ACK with a SACK block, and also
248  * complete SACK loss recovery in case the other end
249  * reneges.
250  */
251 static bool inline
252 tcp_is_sack_recovery(struct tcpcb *tp, struct tcpopt *to)
253 {
254 	return ((tp->t_flags & TF_SACK_PERMIT) &&
255 		((to->to_flags & TOF_SACK) ||
256 		(!TAILQ_EMPTY(&tp->snd_holes))));
257 }
258 
259 #ifdef TCP_HHOOK
260 /*
261  * Wrapper for the TCP established input helper hook.
262  */
263 void
264 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
265 {
266 	struct tcp_hhook_data hhook_data;
267 
268 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
269 		hhook_data.tp = tp;
270 		hhook_data.th = th;
271 		hhook_data.to = to;
272 
273 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
274 		    &tp->t_osd);
275 	}
276 }
277 #endif
278 
279 /*
280  * CC wrapper hook functions
281  */
282 void
283 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
284     uint16_t type)
285 {
286 #ifdef STATS
287 	int32_t gput;
288 #endif
289 
290 	INP_WLOCK_ASSERT(tptoinpcb(tp));
291 
292 	tp->t_ccv.nsegs = nsegs;
293 	tp->t_ccv.bytes_this_ack = BYTES_THIS_ACK(tp, th);
294 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
295 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
296 	     (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
297 		tp->t_ccv.flags |= CCF_CWND_LIMITED;
298 	else
299 		tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
300 
301 	if (type == CC_ACK) {
302 #ifdef STATS
303 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
304 		    ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
305 		if (!IN_RECOVERY(tp->t_flags))
306 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
307 			   tp->t_ccv.bytes_this_ack / (tcp_maxseg(tp) * nsegs));
308 		if ((tp->t_flags & TF_GPUTINPROG) &&
309 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
310 			/*
311 			 * Compute goodput in bits per millisecond.
312 			 */
313 			gput = (((int64_t)SEQ_SUB(th->th_ack, tp->gput_seq)) << 3) /
314 			    max(1, tcp_ts_getticks() - tp->gput_ts);
315 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
316 			    gput);
317 			/*
318 			 * XXXLAS: This is a temporary hack, and should be
319 			 * chained off VOI_TCP_GPUT when stats(9) grows an API
320 			 * to deal with chained VOIs.
321 			 */
322 			if (tp->t_stats_gput_prev > 0)
323 				stats_voi_update_abs_s32(tp->t_stats,
324 				    VOI_TCP_GPUT_ND,
325 				    ((gput - tp->t_stats_gput_prev) * 100) /
326 				    tp->t_stats_gput_prev);
327 			tp->t_flags &= ~TF_GPUTINPROG;
328 			tp->t_stats_gput_prev = gput;
329 		}
330 #endif /* STATS */
331 		if (tp->snd_cwnd > tp->snd_ssthresh) {
332 			tp->t_bytes_acked += tp->t_ccv.bytes_this_ack;
333 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
334 				tp->t_bytes_acked -= tp->snd_cwnd;
335 				tp->t_ccv.flags |= CCF_ABC_SENTAWND;
336 			}
337 		} else {
338 				tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
339 				tp->t_bytes_acked = 0;
340 		}
341 	}
342 
343 	if (CC_ALGO(tp)->ack_received != NULL) {
344 		/* XXXLAS: Find a way to live without this */
345 		tp->t_ccv.curack = th->th_ack;
346 		CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
347 	}
348 #ifdef STATS
349 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
350 #endif
351 }
352 
353 void
354 cc_conn_init(struct tcpcb *tp)
355 {
356 	struct hc_metrics_lite metrics;
357 	struct inpcb *inp = tptoinpcb(tp);
358 	u_int maxseg;
359 	int rtt;
360 
361 	INP_WLOCK_ASSERT(inp);
362 
363 	tcp_hc_get(&inp->inp_inc, &metrics);
364 	maxseg = tcp_maxseg(tp);
365 
366 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
367 		tp->t_srtt = rtt;
368 		TCPSTAT_INC(tcps_usedrtt);
369 		if (metrics.rmx_rttvar) {
370 			tp->t_rttvar = metrics.rmx_rttvar;
371 			TCPSTAT_INC(tcps_usedrttvar);
372 		} else {
373 			/* default variation is +- 1 rtt */
374 			tp->t_rttvar =
375 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
376 		}
377 		TCPT_RANGESET(tp->t_rxtcur,
378 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
379 		    tp->t_rttmin, TCPTV_REXMTMAX);
380 	}
381 	if (metrics.rmx_ssthresh) {
382 		/*
383 		 * There's some sort of gateway or interface
384 		 * buffer limit on the path.  Use this to set
385 		 * the slow start threshold, but set the
386 		 * threshold to no less than 2*mss.
387 		 */
388 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
389 		TCPSTAT_INC(tcps_usedssthresh);
390 	}
391 
392 	/*
393 	 * Set the initial slow-start flight size.
394 	 *
395 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
396 	 * reduce the initial CWND to one segment as congestion is likely
397 	 * requiring us to be cautious.
398 	 */
399 	if (tp->snd_cwnd == 1)
400 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
401 	else
402 		tp->snd_cwnd = tcp_compute_initwnd(maxseg);
403 
404 	if (CC_ALGO(tp)->conn_init != NULL)
405 		CC_ALGO(tp)->conn_init(&tp->t_ccv);
406 }
407 
408 void inline
409 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
410 {
411 	INP_WLOCK_ASSERT(tptoinpcb(tp));
412 
413 #ifdef STATS
414 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
415 #endif
416 
417 	switch(type) {
418 	case CC_NDUPACK:
419 		if (!IN_FASTRECOVERY(tp->t_flags)) {
420 			tp->snd_recover = tp->snd_max;
421 			if (tp->t_flags2 & TF2_ECN_PERMIT)
422 				tp->t_flags2 |= TF2_ECN_SND_CWR;
423 		}
424 		break;
425 	case CC_ECN:
426 		if (!IN_CONGRECOVERY(tp->t_flags) ||
427 		    /*
428 		     * Allow ECN reaction on ACK to CWR, if
429 		     * that data segment was also CE marked.
430 		     */
431 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
432 			EXIT_CONGRECOVERY(tp->t_flags);
433 			TCPSTAT_INC(tcps_ecn_rcwnd);
434 			tp->snd_recover = tp->snd_max + 1;
435 			if (tp->t_flags2 & TF2_ECN_PERMIT)
436 				tp->t_flags2 |= TF2_ECN_SND_CWR;
437 		}
438 		break;
439 	case CC_RTO:
440 		tp->t_dupacks = 0;
441 		tp->t_bytes_acked = 0;
442 		if ((tp->t_rxtshift > 1) ||
443 		    !((tp->t_flags & TF_SACK_PERMIT) &&
444 		      (!TAILQ_EMPTY(&tp->snd_holes))))
445 			EXIT_RECOVERY(tp->t_flags);
446 		if (tp->t_flags2 & TF2_ECN_PERMIT)
447 			tp->t_flags2 |= TF2_ECN_SND_CWR;
448 		break;
449 	case CC_RTO_ERR:
450 		TCPSTAT_INC(tcps_sndrexmitbad);
451 		/* RTO was unnecessary, so reset everything. */
452 		tp->snd_cwnd = tp->snd_cwnd_prev;
453 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
454 		tp->snd_recover = tp->snd_recover_prev;
455 		if (tp->t_flags & TF_WASFRECOVERY)
456 			ENTER_FASTRECOVERY(tp->t_flags);
457 		if (tp->t_flags & TF_WASCRECOVERY)
458 			ENTER_CONGRECOVERY(tp->t_flags);
459 		tp->snd_nxt = tp->snd_max;
460 		tp->t_flags &= ~TF_PREVVALID;
461 		tp->t_badrxtwin = 0;
462 		break;
463 	}
464 	if (SEQ_LT(tp->snd_fack, tp->snd_una) ||
465 	    SEQ_GT(tp->snd_fack, tp->snd_max)) {
466 		tp->snd_fack = tp->snd_una;
467 	}
468 
469 	if (CC_ALGO(tp)->cong_signal != NULL) {
470 		if (th != NULL)
471 			tp->t_ccv.curack = th->th_ack;
472 		CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
473 	}
474 }
475 
476 void inline
477 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
478 {
479 	INP_WLOCK_ASSERT(tptoinpcb(tp));
480 
481 	if (CC_ALGO(tp)->post_recovery != NULL) {
482 		if (SEQ_LT(tp->snd_fack, th->th_ack) ||
483 		    SEQ_GT(tp->snd_fack, tp->snd_max)) {
484 			tp->snd_fack = th->th_ack;
485 		}
486 		tp->t_ccv.curack = th->th_ack;
487 		CC_ALGO(tp)->post_recovery(&tp->t_ccv);
488 	}
489 	EXIT_RECOVERY(tp->t_flags);
490 
491 	tp->t_bytes_acked = 0;
492 	tp->sackhint.delivered_data = 0;
493 	tp->sackhint.prr_delivered = 0;
494 	tp->sackhint.prr_out = 0;
495 }
496 
497 /*
498  * Indicate whether this ack should be delayed.  We can delay the ack if
499  * following conditions are met:
500  *	- There is no delayed ack timer in progress.
501  *	- Our last ack wasn't a 0-sized window. We never want to delay
502  *	  the ack that opens up a 0-sized window.
503  *	- LRO wasn't used for this segment. We make sure by checking that the
504  *	  segment size is not larger than the MSS.
505  */
506 #define DELAY_ACK(tp, tlen)						\
507 	((!tcp_timer_active(tp, TT_DELACK) &&				\
508 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
509 	    (tlen <= tp->t_maxseg) &&					\
510 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
511 
512 void inline
513 cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos)
514 {
515 	INP_WLOCK_ASSERT(tptoinpcb(tp));
516 
517 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
518 		switch (iptos & IPTOS_ECN_MASK) {
519 		case IPTOS_ECN_CE:
520 			tp->t_ccv.flags |= CCF_IPHDR_CE;
521 			break;
522 		case IPTOS_ECN_ECT0:
523 			/* FALLTHROUGH */
524 		case IPTOS_ECN_ECT1:
525 			/* FALLTHROUGH */
526 		case IPTOS_ECN_NOTECT:
527 			tp->t_ccv.flags &= ~CCF_IPHDR_CE;
528 			break;
529 		}
530 
531 		if (flags & TH_CWR)
532 			tp->t_ccv.flags |= CCF_TCPHDR_CWR;
533 		else
534 			tp->t_ccv.flags &= ~CCF_TCPHDR_CWR;
535 
536 		CC_ALGO(tp)->ecnpkt_handler(&tp->t_ccv);
537 
538 		if (tp->t_ccv.flags & CCF_ACKNOW) {
539 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
540 			tp->t_flags |= TF_ACKNOW;
541 		}
542 	}
543 }
544 
545 void inline
546 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
547 {
548 	cc_ecnpkt_handler_flags(tp, tcp_get_flags(th), iptos);
549 }
550 
551 /*
552  * TCP input handling is split into multiple parts:
553  *   tcp6_input is a thin wrapper around tcp_input for the extended
554  *	ip6_protox[] call format in ip6_input
555  *   tcp_input handles primary segment validation, inpcb lookup and
556  *	SYN processing on listen sockets
557  *   tcp_do_segment processes the ACK and text of the segment for
558  *	establishing, established and closing connections
559  */
560 #ifdef INET6
561 int
562 tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
563 {
564 	struct mbuf *m;
565 	struct in6_ifaddr *ia6;
566 	struct ip6_hdr *ip6;
567 
568 	m = *mp;
569 	if (m->m_len < *offp + sizeof(struct tcphdr)) {
570 		m = m_pullup(m, *offp + sizeof(struct tcphdr));
571 		if (m == NULL) {
572 			*mp = m;
573 			TCPSTAT_INC(tcps_rcvshort);
574 			return (IPPROTO_DONE);
575 		}
576 	}
577 
578 	/*
579 	 * draft-itojun-ipv6-tcp-to-anycast
580 	 * better place to put this in?
581 	 */
582 	ip6 = mtod(m, struct ip6_hdr *);
583 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
584 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
585 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
586 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
587 		*mp = NULL;
588 		return (IPPROTO_DONE);
589 	}
590 
591 	*mp = m;
592 	return (tcp_input_with_port(mp, offp, proto, port));
593 }
594 
595 int
596 tcp6_input(struct mbuf **mp, int *offp, int proto)
597 {
598 
599 	return(tcp6_input_with_port(mp, offp, proto, 0));
600 }
601 #endif /* INET6 */
602 
603 int
604 tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
605 {
606 	struct mbuf *m = *mp;
607 	struct tcphdr *th = NULL;
608 	struct ip *ip = NULL;
609 	struct inpcb *inp = NULL;
610 	struct tcpcb *tp = NULL;
611 	struct socket *so = NULL;
612 	u_char *optp = NULL;
613 	int off0;
614 	int optlen = 0;
615 #ifdef INET
616 	int len;
617 	uint8_t ipttl;
618 #endif
619 	int tlen = 0, off;
620 	int drop_hdrlen;
621 	int thflags;
622 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
623 	int lookupflag;
624 	uint8_t iptos;
625 	struct m_tag *fwd_tag = NULL;
626 #ifdef INET6
627 	struct ip6_hdr *ip6 = NULL;
628 	int isipv6;
629 #else
630 	const void *ip6 = NULL;
631 #endif /* INET6 */
632 	struct tcpopt to;		/* options in this segment */
633 	char *s = NULL;			/* address and port logging */
634 
635 	NET_EPOCH_ASSERT();
636 
637 #ifdef INET6
638 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
639 #endif
640 
641 	off0 = *offp;
642 	m = *mp;
643 	*mp = NULL;
644 	to.to_flags = 0;
645 	TCPSTAT_INC(tcps_rcvtotal);
646 
647 	m->m_pkthdr.tcp_tun_port = port;
648 #ifdef INET6
649 	if (isipv6) {
650 		ip6 = mtod(m, struct ip6_hdr *);
651 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
652 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
653 		if (port)
654 			goto skip6_csum;
655 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
656 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
657 				th->th_sum = m->m_pkthdr.csum_data;
658 			else
659 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
660 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
661 			th->th_sum ^= 0xffff;
662 		} else
663 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
664 		if (th->th_sum) {
665 			TCPSTAT_INC(tcps_rcvbadsum);
666 			goto drop;
667 		}
668 	skip6_csum:
669 		/*
670 		 * Be proactive about unspecified IPv6 address in source.
671 		 * As we use all-zero to indicate unbounded/unconnected pcb,
672 		 * unspecified IPv6 address can be used to confuse us.
673 		 *
674 		 * Note that packets with unspecified IPv6 destination is
675 		 * already dropped in ip6_input.
676 		 */
677 		KASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst),
678 		    ("%s: unspecified destination v6 address", __func__));
679 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
680 			IP6STAT_INC(ip6s_badscope); /* XXX */
681 			goto drop;
682 		}
683 		iptos = IPV6_TRAFFIC_CLASS(ip6);
684 	}
685 #endif
686 #if defined(INET) && defined(INET6)
687 	else
688 #endif
689 #ifdef INET
690 	{
691 		/*
692 		 * Get IP and TCP header together in first mbuf.
693 		 * Note: IP leaves IP header in first mbuf.
694 		 */
695 		if (off0 > sizeof (struct ip)) {
696 			ip_stripoptions(m);
697 			off0 = sizeof(struct ip);
698 		}
699 		if (m->m_len < sizeof (struct tcpiphdr)) {
700 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
701 			    == NULL) {
702 				TCPSTAT_INC(tcps_rcvshort);
703 				return (IPPROTO_DONE);
704 			}
705 		}
706 		ip = mtod(m, struct ip *);
707 		th = (struct tcphdr *)((caddr_t)ip + off0);
708 		tlen = ntohs(ip->ip_len) - off0;
709 
710 		iptos = ip->ip_tos;
711 		if (port)
712 			goto skip_csum;
713 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
714 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
715 				th->th_sum = m->m_pkthdr.csum_data;
716 			else
717 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
718 				    ip->ip_dst.s_addr,
719 				    htonl(m->m_pkthdr.csum_data + tlen +
720 				    IPPROTO_TCP));
721 			th->th_sum ^= 0xffff;
722 		} else {
723 			struct ipovly *ipov = (struct ipovly *)ip;
724 
725 			/*
726 			 * Checksum extended TCP header and data.
727 			 */
728 			len = off0 + tlen;
729 			ipttl = ip->ip_ttl;
730 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
731 			ipov->ih_len = htons(tlen);
732 			th->th_sum = in_cksum(m, len);
733 			/* Reset length for SDT probes. */
734 			ip->ip_len = htons(len);
735 			/* Reset TOS bits */
736 			ip->ip_tos = iptos;
737 			/* Re-initialization for later version check */
738 			ip->ip_ttl = ipttl;
739 			ip->ip_v = IPVERSION;
740 			ip->ip_hl = off0 >> 2;
741 		}
742 	skip_csum:
743 		if (th->th_sum && (port == 0)) {
744 			TCPSTAT_INC(tcps_rcvbadsum);
745 			goto drop;
746 		}
747 		KASSERT(ip->ip_dst.s_addr != INADDR_ANY,
748 		    ("%s: unspecified destination v4 address", __func__));
749 		if (__predict_false(ip->ip_src.s_addr == INADDR_ANY)) {
750 			IPSTAT_INC(ips_badaddr);
751 			goto drop;
752 		}
753 	}
754 #endif /* INET */
755 
756 	/*
757 	 * Check that TCP offset makes sense,
758 	 * pull out TCP options and adjust length.		XXX
759 	 */
760 	off = th->th_off << 2;
761 	if (off < sizeof (struct tcphdr) || off > tlen) {
762 		TCPSTAT_INC(tcps_rcvbadoff);
763 		goto drop;
764 	}
765 	tlen -= off;	/* tlen is used instead of ti->ti_len */
766 	if (off > sizeof (struct tcphdr)) {
767 #ifdef INET6
768 		if (isipv6) {
769 			if (m->m_len < off0 + off) {
770 				m = m_pullup(m, off0 + off);
771 				if (m == NULL) {
772 					TCPSTAT_INC(tcps_rcvshort);
773 					return (IPPROTO_DONE);
774 				}
775 			}
776 			ip6 = mtod(m, struct ip6_hdr *);
777 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
778 		}
779 #endif
780 #if defined(INET) && defined(INET6)
781 		else
782 #endif
783 #ifdef INET
784 		{
785 			if (m->m_len < sizeof(struct ip) + off) {
786 				if ((m = m_pullup(m, sizeof (struct ip) + off))
787 				    == NULL) {
788 					TCPSTAT_INC(tcps_rcvshort);
789 					return (IPPROTO_DONE);
790 				}
791 				ip = mtod(m, struct ip *);
792 				th = (struct tcphdr *)((caddr_t)ip + off0);
793 			}
794 		}
795 #endif
796 		optlen = off - sizeof (struct tcphdr);
797 		optp = (u_char *)(th + 1);
798 	}
799 	thflags = tcp_get_flags(th);
800 
801 	/*
802 	 * Convert TCP protocol specific fields to host format.
803 	 */
804 	tcp_fields_to_host(th);
805 
806 	/*
807 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
808 	 */
809 	drop_hdrlen = off0 + off;
810 
811 	/*
812 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
813 	 */
814         if (
815 #ifdef INET6
816 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
817 #ifdef INET
818 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
819 #endif
820 #endif
821 #if defined(INET) && !defined(INET6)
822 	    (m->m_flags & M_IP_NEXTHOP)
823 #endif
824 	    )
825 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
826 
827 	/*
828 	 * For initial SYN packets we don't need write lock on matching
829 	 * PCB, be it a listening one or a synchronized one.  The packet
830 	 * shall not modify its state.
831 	 */
832 	lookupflag = INPLOOKUP_WILDCARD |
833 	    ((thflags & (TH_ACK|TH_SYN)) == TH_SYN ?
834 	    INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB);
835 findpcb:
836 	tp = NULL;
837 #ifdef INET6
838 	if (isipv6 && fwd_tag != NULL) {
839 		struct sockaddr_in6 *next_hop6;
840 
841 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
842 		/*
843 		 * Transparently forwarded. Pretend to be the destination.
844 		 * Already got one like this?
845 		 */
846 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
847 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
848 		    lookupflag & ~INPLOOKUP_WILDCARD, m->m_pkthdr.rcvif, m);
849 		if (!inp) {
850 			/*
851 			 * It's new.  Try to find the ambushing socket.
852 			 * Because we've rewritten the destination address,
853 			 * any hardware-generated hash is ignored.
854 			 */
855 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
856 			    th->th_sport, &next_hop6->sin6_addr,
857 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
858 			    th->th_dport, lookupflag, m->m_pkthdr.rcvif);
859 		}
860 	} else if (isipv6) {
861 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
862 		    th->th_sport, &ip6->ip6_dst, th->th_dport, lookupflag,
863 		    m->m_pkthdr.rcvif, m);
864 	}
865 #endif /* INET6 */
866 #if defined(INET6) && defined(INET)
867 	else
868 #endif
869 #ifdef INET
870 	if (fwd_tag != NULL) {
871 		struct sockaddr_in *next_hop;
872 
873 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
874 		/*
875 		 * Transparently forwarded. Pretend to be the destination.
876 		 * already got one like this?
877 		 */
878 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
879 		    ip->ip_dst, th->th_dport, lookupflag & ~INPLOOKUP_WILDCARD,
880 		    m->m_pkthdr.rcvif, m);
881 		if (!inp) {
882 			/*
883 			 * It's new.  Try to find the ambushing socket.
884 			 * Because we've rewritten the destination address,
885 			 * any hardware-generated hash is ignored.
886 			 */
887 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
888 			    th->th_sport, next_hop->sin_addr,
889 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
890 			    th->th_dport, lookupflag, m->m_pkthdr.rcvif);
891 		}
892 	} else
893 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
894 		    th->th_sport, ip->ip_dst, th->th_dport, lookupflag,
895 		    m->m_pkthdr.rcvif, m);
896 #endif /* INET */
897 
898 	/*
899 	 * If the INPCB does not exist then all data in the incoming
900 	 * segment is discarded and an appropriate RST is sent back.
901 	 * XXX MRT Send RST using which routing table?
902 	 */
903 	if (inp == NULL) {
904 		if (rstreason != 0) {
905 			/* We came here after second (safety) lookup. */
906 			MPASS((lookupflag & INPLOOKUP_WILDCARD) == 0);
907 			goto dropwithreset;
908 		}
909 		/*
910 		 * Log communication attempts to ports that are not
911 		 * in use.
912 		 */
913 		if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
914 		    V_tcp_log_in_vain == 2) {
915 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
916 				log(LOG_INFO, "%s; %s: Connection attempt "
917 				    "to closed port\n", s, __func__);
918 		}
919 		rstreason = BANDLIM_RST_CLOSEDPORT;
920 		goto dropwithreset;
921 	}
922 	INP_LOCK_ASSERT(inp);
923 
924 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
925 	    !SOLISTENING(inp->inp_socket)) {
926 		if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
927 			inp->inp_flowid = m->m_pkthdr.flowid;
928 			inp->inp_flowtype = M_HASHTYPE_GET(m);
929 #ifdef	RSS
930 		} else {
931 			  /* assign flowid by software RSS hash */
932 #ifdef INET6
933 			  if (isipv6) {
934 				rss_proto_software_hash_v6(&inp->in6p_faddr,
935 							   &inp->in6p_laddr,
936 							   inp->inp_fport,
937 							   inp->inp_lport,
938 							   IPPROTO_TCP,
939 							   &inp->inp_flowid,
940 							   &inp->inp_flowtype);
941 			  } else
942 #endif	/* INET6 */
943 			  {
944 				rss_proto_software_hash_v4(inp->inp_faddr,
945 							   inp->inp_laddr,
946 							   inp->inp_fport,
947 							   inp->inp_lport,
948 							   IPPROTO_TCP,
949 							   &inp->inp_flowid,
950 							   &inp->inp_flowtype);
951 			  }
952 #endif	/* RSS */
953 		}
954 	}
955 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
956 #ifdef INET6
957 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
958 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
959 		goto dropunlock;
960 	}
961 #ifdef INET
962 	else
963 #endif
964 #endif /* INET6 */
965 #ifdef INET
966 	if (IPSEC_ENABLED(ipv4) &&
967 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
968 		goto dropunlock;
969 	}
970 #endif /* INET */
971 #endif /* IPSEC */
972 
973 	/*
974 	 * Check the minimum TTL for socket.
975 	 */
976 	if (inp->inp_ip_minttl != 0) {
977 #ifdef INET6
978 		if (isipv6) {
979 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
980 				goto dropunlock;
981 		} else
982 #endif
983 		if (inp->inp_ip_minttl > ip->ip_ttl)
984 			goto dropunlock;
985 	}
986 
987 	tp = intotcpcb(inp);
988 	switch (tp->t_state) {
989 	case TCPS_TIME_WAIT:
990 		/*
991 		 * A previous connection in TIMEWAIT state is supposed to catch
992 		 * stray or duplicate segments arriving late.  If this segment
993 		 * was a legitimate new connection attempt, the old INPCB gets
994 		 * removed and we can try again to find a listening socket.
995 		 */
996 		tcp_dooptions(&to, optp, optlen,
997 		    (thflags & TH_SYN) ? TO_SYN : 0);
998 		/*
999 		 * tcp_twcheck unlocks the inp always, and frees the m if fails.
1000 		 */
1001 		if (tcp_twcheck(inp, &to, th, m, tlen))
1002 			goto findpcb;
1003 		return (IPPROTO_DONE);
1004 	case TCPS_CLOSED:
1005 		/*
1006 		 * The TCPCB may no longer exist if the connection is winding
1007 		 * down or it is in the CLOSED state.  Either way we drop the
1008 		 * segment and send an appropriate response.
1009 		 */
1010 		rstreason = BANDLIM_RST_CLOSEDPORT;
1011 		goto dropwithreset;
1012 	}
1013 
1014 	if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) {
1015 		rstreason = BANDLIM_RST_CLOSEDPORT;
1016 		goto dropwithreset;
1017 	}
1018 
1019 #ifdef TCP_OFFLOAD
1020 	if (tp->t_flags & TF_TOE) {
1021 		tcp_offload_input(tp, m);
1022 		m = NULL;	/* consumed by the TOE driver */
1023 		goto dropunlock;
1024 	}
1025 #endif
1026 
1027 #ifdef MAC
1028 	if (mac_inpcb_check_deliver(inp, m))
1029 		goto dropunlock;
1030 #endif
1031 	so = inp->inp_socket;
1032 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1033 	/*
1034 	 * When the socket is accepting connections (the INPCB is in LISTEN
1035 	 * state) we look into the SYN cache if this is a new connection
1036 	 * attempt or the completion of a previous one.
1037 	 */
1038 	KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so),
1039 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1040 	if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) {
1041 		struct in_conninfo inc;
1042 
1043 		bzero(&inc, sizeof(inc));
1044 #ifdef INET6
1045 		if (isipv6) {
1046 			inc.inc_flags |= INC_ISIPV6;
1047 			if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1048 				inc.inc_flags |= INC_IPV6MINMTU;
1049 			inc.inc6_faddr = ip6->ip6_src;
1050 			inc.inc6_laddr = ip6->ip6_dst;
1051 		} else
1052 #endif
1053 		{
1054 			inc.inc_faddr = ip->ip_src;
1055 			inc.inc_laddr = ip->ip_dst;
1056 		}
1057 		inc.inc_fport = th->th_sport;
1058 		inc.inc_lport = th->th_dport;
1059 		inc.inc_fibnum = so->so_fibnum;
1060 
1061 		/*
1062 		 * Check for an existing connection attempt in syncache if
1063 		 * the flag is only ACK.  A successful lookup creates a new
1064 		 * socket appended to the listen queue in SYN_RECEIVED state.
1065 		 */
1066 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1067 			/*
1068 			 * Parse the TCP options here because
1069 			 * syncookies need access to the reflected
1070 			 * timestamp.
1071 			 */
1072 			tcp_dooptions(&to, optp, optlen, 0);
1073 			/*
1074 			 * NB: syncache_expand() doesn't unlock inp.
1075 			 */
1076 			rstreason = syncache_expand(&inc, &to, th, &so, m, port);
1077 			if (rstreason < 0) {
1078 				/*
1079 				 * A failing TCP MD5 signature comparison
1080 				 * must result in the segment being dropped
1081 				 * and must not produce any response back
1082 				 * to the sender.
1083 				 */
1084 				goto dropunlock;
1085 			} else if (rstreason == 0) {
1086 				/*
1087 				 * No syncache entry, or ACK was not for our
1088 				 * SYN/ACK.  Do our protection against double
1089 				 * ACK.  If peer sent us 2 ACKs, then for the
1090 				 * first one syncache_expand() successfully
1091 				 * converted syncache entry into a socket,
1092 				 * while we were waiting on the inpcb lock.  We
1093 				 * don't want to sent RST for the second ACK,
1094 				 * so we perform second lookup without wildcard
1095 				 * match, hoping to find the new socket.  If
1096 				 * the ACK is stray indeed, rstreason would
1097 				 * hint the above code that the lookup was a
1098 				 * second attempt.
1099 				 *
1100 				 * NB: syncache did its own logging
1101 				 * of the failure cause.
1102 				 */
1103 				INP_WUNLOCK(inp);
1104 				rstreason = BANDLIM_RST_OPENPORT;
1105 				lookupflag &= ~INPLOOKUP_WILDCARD;
1106 				goto findpcb;
1107 			}
1108 tfo_socket_result:
1109 			if (so == NULL) {
1110 				/*
1111 				 * We completed the 3-way handshake
1112 				 * but could not allocate a socket
1113 				 * either due to memory shortage,
1114 				 * listen queue length limits or
1115 				 * global socket limits.  Send RST
1116 				 * or wait and have the remote end
1117 				 * retransmit the ACK for another
1118 				 * try.
1119 				 */
1120 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1121 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1122 					    "Socket allocation failed due to "
1123 					    "limits or memory shortage, %s\n",
1124 					    s, __func__,
1125 					    V_tcp_sc_rst_sock_fail ?
1126 					    "sending RST" : "try again");
1127 				if (V_tcp_sc_rst_sock_fail) {
1128 					rstreason = BANDLIM_UNLIMITED;
1129 					goto dropwithreset;
1130 				} else
1131 					goto dropunlock;
1132 			}
1133 			/*
1134 			 * Socket is created in state SYN_RECEIVED.
1135 			 * Unlock the listen socket, lock the newly
1136 			 * created socket and update the tp variable.
1137 			 * If we came here via jump to tfo_socket_result,
1138 			 * then listening socket is read-locked.
1139 			 */
1140 			INP_UNLOCK(inp);	/* listen socket */
1141 			inp = sotoinpcb(so);
1142 			/*
1143 			 * New connection inpcb is already locked by
1144 			 * syncache_expand().
1145 			 */
1146 			INP_WLOCK_ASSERT(inp);
1147 			tp = intotcpcb(inp);
1148 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1149 			    ("%s: ", __func__));
1150 			/*
1151 			 * Process the segment and the data it
1152 			 * contains.  tcp_do_segment() consumes
1153 			 * the mbuf chain and unlocks the inpcb.
1154 			 */
1155 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1156 			tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen,
1157 			    tlen, iptos);
1158 			return (IPPROTO_DONE);
1159 		}
1160 		/*
1161 		 * Segment flag validation for new connection attempts:
1162 		 *
1163 		 * Our (SYN|ACK) response was rejected.
1164 		 * Check with syncache and remove entry to prevent
1165 		 * retransmits.
1166 		 *
1167 		 * NB: syncache_chkrst does its own logging of failure
1168 		 * causes.
1169 		 */
1170 		if (thflags & TH_RST) {
1171 			syncache_chkrst(&inc, th, m, port);
1172 			goto dropunlock;
1173 		}
1174 		/*
1175 		 * We can't do anything without SYN.
1176 		 */
1177 		if ((thflags & TH_SYN) == 0) {
1178 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1179 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1180 				    "SYN is missing, segment ignored\n",
1181 				    s, __func__);
1182 			TCPSTAT_INC(tcps_badsyn);
1183 			goto dropunlock;
1184 		}
1185 		/*
1186 		 * (SYN|ACK) is bogus on a listen socket.
1187 		 */
1188 		if (thflags & TH_ACK) {
1189 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1190 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1191 				    "SYN|ACK invalid, segment rejected\n",
1192 				    s, __func__);
1193 			syncache_badack(&inc, port);	/* XXX: Not needed! */
1194 			TCPSTAT_INC(tcps_badsyn);
1195 			rstreason = BANDLIM_RST_OPENPORT;
1196 			goto dropwithreset;
1197 		}
1198 		/*
1199 		 * If the drop_synfin option is enabled, drop all
1200 		 * segments with both the SYN and FIN bits set.
1201 		 * This prevents e.g. nmap from identifying the
1202 		 * TCP/IP stack.
1203 		 * XXX: Poor reasoning.  nmap has other methods
1204 		 * and is constantly refining its stack detection
1205 		 * strategies.
1206 		 * XXX: This is a violation of the TCP specification
1207 		 * and was used by RFC1644.
1208 		 */
1209 		if ((thflags & TH_FIN) && V_drop_synfin) {
1210 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1211 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1212 				    "SYN|FIN segment ignored (based on "
1213 				    "sysctl setting)\n", s, __func__);
1214 			TCPSTAT_INC(tcps_badsyn);
1215 			goto dropunlock;
1216 		}
1217 		/*
1218 		 * Segment's flags are (SYN) or (SYN|FIN).
1219 		 *
1220 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1221 		 * as they do not affect the state of the TCP FSM.
1222 		 * The data pointed to by TH_URG and th_urp is ignored.
1223 		 */
1224 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1225 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1226 		KASSERT(thflags & (TH_SYN),
1227 		    ("%s: Listen socket: TH_SYN not set", __func__));
1228 		INP_RLOCK_ASSERT(inp);
1229 #ifdef INET6
1230 		/*
1231 		 * If deprecated address is forbidden,
1232 		 * we do not accept SYN to deprecated interface
1233 		 * address to prevent any new inbound connection from
1234 		 * getting established.
1235 		 * When we do not accept SYN, we send a TCP RST,
1236 		 * with deprecated source address (instead of dropping
1237 		 * it).  We compromise it as it is much better for peer
1238 		 * to send a RST, and RST will be the final packet
1239 		 * for the exchange.
1240 		 *
1241 		 * If we do not forbid deprecated addresses, we accept
1242 		 * the SYN packet.  RFC2462 does not suggest dropping
1243 		 * SYN in this case.
1244 		 * If we decipher RFC2462 5.5.4, it says like this:
1245 		 * 1. use of deprecated addr with existing
1246 		 *    communication is okay - "SHOULD continue to be
1247 		 *    used"
1248 		 * 2. use of it with new communication:
1249 		 *   (2a) "SHOULD NOT be used if alternate address
1250 		 *        with sufficient scope is available"
1251 		 *   (2b) nothing mentioned otherwise.
1252 		 * Here we fall into (2b) case as we have no choice in
1253 		 * our source address selection - we must obey the peer.
1254 		 *
1255 		 * The wording in RFC2462 is confusing, and there are
1256 		 * multiple description text for deprecated address
1257 		 * handling - worse, they are not exactly the same.
1258 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1259 		 */
1260 		if (isipv6 && !V_ip6_use_deprecated) {
1261 			struct in6_ifaddr *ia6;
1262 
1263 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
1264 			if (ia6 != NULL &&
1265 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1266 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1267 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1268 					"Connection attempt to deprecated "
1269 					"IPv6 address rejected\n",
1270 					s, __func__);
1271 				rstreason = BANDLIM_RST_OPENPORT;
1272 				goto dropwithreset;
1273 			}
1274 		}
1275 #endif /* INET6 */
1276 		/*
1277 		 * Basic sanity checks on incoming SYN requests:
1278 		 *   Don't respond if the destination is a link layer
1279 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1280 		 *   If it is from this socket it must be forged.
1281 		 *   Don't respond if the source or destination is a
1282 		 *	global or subnet broad- or multicast address.
1283 		 *   Note that it is quite possible to receive unicast
1284 		 *	link-layer packets with a broadcast IP address. Use
1285 		 *	in_broadcast() to find them.
1286 		 */
1287 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1288 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1289 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1290 				"Connection attempt from broad- or multicast "
1291 				"link layer address ignored\n", s, __func__);
1292 			goto dropunlock;
1293 		}
1294 #ifdef INET6
1295 		if (isipv6) {
1296 			if (th->th_dport == th->th_sport &&
1297 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1298 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1299 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1300 					"Connection attempt to/from self "
1301 					"ignored\n", s, __func__);
1302 				goto dropunlock;
1303 			}
1304 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1305 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1306 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1307 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1308 					"Connection attempt from/to multicast "
1309 					"address ignored\n", s, __func__);
1310 				goto dropunlock;
1311 			}
1312 		}
1313 #endif
1314 #if defined(INET) && defined(INET6)
1315 		else
1316 #endif
1317 #ifdef INET
1318 		{
1319 			if (th->th_dport == th->th_sport &&
1320 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1321 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1322 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1323 					"Connection attempt from/to self "
1324 					"ignored\n", s, __func__);
1325 				goto dropunlock;
1326 			}
1327 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1328 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1329 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1330 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1331 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1332 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1333 					"Connection attempt from/to broad- "
1334 					"or multicast address ignored\n",
1335 					s, __func__);
1336 				goto dropunlock;
1337 			}
1338 		}
1339 #endif
1340 		/*
1341 		 * SYN appears to be valid.  Create compressed TCP state
1342 		 * for syncache.
1343 		 */
1344 		TCP_PROBE3(debug__input, tp, th, m);
1345 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1346 		if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL,
1347 		    iptos, port)) != NULL)
1348 			goto tfo_socket_result;
1349 
1350 		/*
1351 		 * Entry added to syncache and mbuf consumed.
1352 		 * Only the listen socket is unlocked by syncache_add().
1353 		 */
1354 		return (IPPROTO_DONE);
1355 	} else if (tp->t_state == TCPS_LISTEN) {
1356 		/*
1357 		 * When a listen socket is torn down the SO_ACCEPTCONN
1358 		 * flag is removed first while connections are drained
1359 		 * from the accept queue in a unlock/lock cycle of the
1360 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1361 		 * attempt go through unhandled.
1362 		 */
1363 		goto dropunlock;
1364 	}
1365 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1366 	if (tp->t_flags & TF_SIGNATURE) {
1367 		tcp_dooptions(&to, optp, optlen, thflags);
1368 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1369 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1370 			goto dropunlock;
1371 		}
1372 		if (!TCPMD5_ENABLED() ||
1373 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1374 			goto dropunlock;
1375 	}
1376 #endif
1377 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1378 
1379 	/*
1380 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1381 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1382 	 * the inpcb, and unlocks pcbinfo.
1383 	 *
1384 	 * XXXGL: in case of a pure SYN arriving on existing connection
1385 	 * TCP stacks won't need to modify the PCB, they would either drop
1386 	 * the segment silently, or send a challenge ACK.  However, we try
1387 	 * to upgrade the lock, because calling convention for stacks is
1388 	 * write-lock on PCB.  If upgrade fails, drop the SYN.
1389 	 */
1390 	if ((lookupflag & INPLOOKUP_RLOCKPCB) && INP_TRY_UPGRADE(inp) == 0)
1391 		goto dropunlock;
1392 
1393 	tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, tlen, iptos);
1394 	return (IPPROTO_DONE);
1395 
1396 dropwithreset:
1397 	/*
1398 	 * When blackholing do not respond with a RST but
1399 	 * completely ignore the segment and drop it.
1400 	 */
1401 	if (((rstreason == BANDLIM_RST_OPENPORT && V_blackhole == 3) ||
1402 	    (rstreason == BANDLIM_RST_CLOSEDPORT &&
1403 	    ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole > 1))) &&
1404 	    (V_blackhole_local || (
1405 #ifdef INET6
1406 	    isipv6 ? !in6_localaddr(&ip6->ip6_src) :
1407 #endif
1408 #ifdef INET
1409 	    !in_localip(ip->ip_src)
1410 #else
1411 	    true
1412 #endif
1413 	    )))
1414 		goto dropunlock;
1415 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1416 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
1417 	m = NULL;	/* mbuf chain got consumed. */
1418 
1419 dropunlock:
1420 	if (m != NULL)
1421 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1422 
1423 	if (inp != NULL)
1424 		INP_UNLOCK(inp);
1425 
1426 drop:
1427 	if (s != NULL)
1428 		free(s, M_TCPLOG);
1429 	if (m != NULL)
1430 		m_freem(m);
1431 	return (IPPROTO_DONE);
1432 }
1433 
1434 /*
1435  * Automatic sizing of receive socket buffer.  Often the send
1436  * buffer size is not optimally adjusted to the actual network
1437  * conditions at hand (delay bandwidth product).  Setting the
1438  * buffer size too small limits throughput on links with high
1439  * bandwidth and high delay (eg. trans-continental/oceanic links).
1440  *
1441  * On the receive side the socket buffer memory is only rarely
1442  * used to any significant extent.  This allows us to be much
1443  * more aggressive in scaling the receive socket buffer.  For
1444  * the case that the buffer space is actually used to a large
1445  * extent and we run out of kernel memory we can simply drop
1446  * the new segments; TCP on the sender will just retransmit it
1447  * later.  Setting the buffer size too big may only consume too
1448  * much kernel memory if the application doesn't read() from
1449  * the socket or packet loss or reordering makes use of the
1450  * reassembly queue.
1451  *
1452  * The criteria to step up the receive buffer one notch are:
1453  *  1. Application has not set receive buffer size with
1454  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1455  *  2. the number of bytes received during 1/2 of an sRTT
1456  *     is at least 3/8 of the current socket buffer size.
1457  *  3. receive buffer size has not hit maximal automatic size;
1458  *
1459  * If all of the criteria are met we increaset the socket buffer
1460  * by a 1/2 (bounded by the max). This allows us to keep ahead
1461  * of slow-start but also makes it so our peer never gets limited
1462  * by our rwnd which we then open up causing a burst.
1463  *
1464  * This algorithm does two steps per RTT at most and only if
1465  * we receive a bulk stream w/o packet losses or reorderings.
1466  * Shrinking the buffer during idle times is not necessary as
1467  * it doesn't consume any memory when idle.
1468  *
1469  * TODO: Only step up if the application is actually serving
1470  * the buffer to better manage the socket buffer resources.
1471  */
1472 int
1473 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1474     struct tcpcb *tp, int tlen)
1475 {
1476 	int newsize = 0;
1477 
1478 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1479 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1480 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1481 	    ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1482 		if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1483 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1484 			newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1485 		}
1486 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1487 
1488 		/* Start over with next RTT. */
1489 		tp->rfbuf_ts = 0;
1490 		tp->rfbuf_cnt = 0;
1491 	} else {
1492 		tp->rfbuf_cnt += tlen;	/* add up */
1493 	}
1494 	return (newsize);
1495 }
1496 
1497 int
1498 tcp_input(struct mbuf **mp, int *offp, int proto)
1499 {
1500 	return(tcp_input_with_port(mp, offp, proto, 0));
1501 }
1502 
1503 static void
1504 tcp_handle_wakeup(struct tcpcb *tp)
1505 {
1506 
1507 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1508 
1509 	if (tp->t_flags & TF_WAKESOR) {
1510 		struct socket *so = tptosocket(tp);
1511 
1512 		tp->t_flags &= ~TF_WAKESOR;
1513 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1514 		sorwakeup_locked(so);
1515 	}
1516 }
1517 
1518 void
1519 tcp_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
1520     int drop_hdrlen, int tlen, uint8_t iptos)
1521 {
1522 	uint16_t thflags;
1523 	int acked, ourfinisacked, needoutput = 0;
1524 	sackstatus_t sack_changed;
1525 	int rstreason, todrop, win, incforsyn = 0;
1526 	uint32_t tiwin;
1527 	uint16_t nsegs;
1528 	char *s;
1529 	struct inpcb *inp = tptoinpcb(tp);
1530 	struct socket *so = tptosocket(tp);
1531 	struct in_conninfo *inc = &inp->inp_inc;
1532 	struct mbuf *mfree;
1533 	struct tcpopt to;
1534 	int tfo_syn;
1535 	u_int maxseg = 0;
1536 
1537 	thflags = tcp_get_flags(th);
1538 	tp->sackhint.last_sack_ack = 0;
1539 	sack_changed = SACK_NOCHANGE;
1540 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1541 
1542 	NET_EPOCH_ASSERT();
1543 	INP_WLOCK_ASSERT(inp);
1544 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1545 	    __func__));
1546 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1547 	    __func__));
1548 
1549 #ifdef TCPPCAP
1550 	/* Save segment, if requested. */
1551 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1552 #endif
1553 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1554 	    tlen, NULL, true);
1555 
1556 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1557 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1558 			log(LOG_DEBUG, "%s; %s: "
1559 			    "SYN|FIN segment ignored (based on "
1560 			    "sysctl setting)\n", s, __func__);
1561 			free(s, M_TCPLOG);
1562 		}
1563 		goto drop;
1564 	}
1565 
1566 	/*
1567 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1568 	 * check SEQ.ACK first.
1569 	 */
1570 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1571 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1572 		rstreason = BANDLIM_UNLIMITED;
1573 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1574 		goto dropwithreset;
1575 	}
1576 
1577 	/*
1578 	 * Segment received on connection.
1579 	 * Reset idle time and keep-alive timer.
1580 	 * XXX: This should be done after segment
1581 	 * validation to ignore broken/spoofed segs.
1582 	 */
1583 	if  (tp->t_idle_reduce &&
1584 	     (tp->snd_max == tp->snd_una) &&
1585 	     ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
1586 		cc_after_idle(tp);
1587 	tp->t_rcvtime = ticks;
1588 
1589 	if (thflags & TH_FIN)
1590 		tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
1591 	/*
1592 	 * Scale up the window into a 32-bit value.
1593 	 * For the SYN_SENT state the scale is zero.
1594 	 */
1595 	tiwin = th->th_win << tp->snd_scale;
1596 #ifdef STATS
1597 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1598 #endif
1599 
1600 	/*
1601 	 * TCP ECN processing.
1602 	 */
1603 	if (tcp_ecn_input_segment(tp, thflags, tlen,
1604 	    tcp_packets_this_ack(tp, th->th_ack),
1605 	    iptos))
1606 		cc_cong_signal(tp, th, CC_ECN);
1607 
1608 	/*
1609 	 * Parse options on any incoming segment.
1610 	 */
1611 	tcp_dooptions(&to, (u_char *)(th + 1),
1612 	    (th->th_off << 2) - sizeof(struct tcphdr),
1613 	    (thflags & TH_SYN) ? TO_SYN : 0);
1614 	if (tp->t_flags2 & TF2_PROC_SACK_PROHIBIT) {
1615 		/*
1616 		 * We don't look at sack's from the
1617 		 * peer because the MSS is too small which
1618 		 * can subject us to an attack.
1619 		 */
1620 		to.to_flags &= ~TOF_SACK;
1621 	}
1622 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1623 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1624 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1625 		TCPSTAT_INC(tcps_sig_err_sigopt);
1626 		/* XXX: should drop? */
1627 	}
1628 #endif
1629 	/*
1630 	 * If echoed timestamp is later than the current time,
1631 	 * fall back to non RFC1323 RTT calculation.  Normalize
1632 	 * timestamp if syncookies were used when this connection
1633 	 * was established.
1634 	 */
1635 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1636 		to.to_tsecr -= tp->ts_offset;
1637 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) {
1638 			to.to_tsecr = 0;
1639 		} else if (tp->t_rxtshift == 1 &&
1640 			 tp->t_flags & TF_PREVVALID &&
1641 			 tp->t_badrxtwin != 0 &&
1642 			 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) {
1643 			cc_cong_signal(tp, th, CC_RTO_ERR);
1644 		}
1645 	}
1646 	/*
1647 	 * Process options only when we get SYN/ACK back. The SYN case
1648 	 * for incoming connections is handled in tcp_syncache.
1649 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1650 	 * or <SYN,ACK>) segment itself is never scaled.
1651 	 * XXX this is traditional behavior, may need to be cleaned up.
1652 	 */
1653 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1654 		/* Handle parallel SYN for ECN */
1655 		tcp_ecn_input_parallel_syn(tp, thflags, iptos);
1656 		if ((to.to_flags & TOF_SCALE) &&
1657 		    (tp->t_flags & TF_REQ_SCALE) &&
1658 		    !(tp->t_flags & TF_NOOPT)) {
1659 			tp->t_flags |= TF_RCVD_SCALE;
1660 			tp->snd_scale = to.to_wscale;
1661 		} else {
1662 			tp->t_flags &= ~TF_REQ_SCALE;
1663 		}
1664 		/*
1665 		 * Initial send window.  It will be updated with
1666 		 * the next incoming segment to the scaled value.
1667 		 */
1668 		tp->snd_wnd = th->th_win;
1669 		if ((to.to_flags & TOF_TS) &&
1670 		    (tp->t_flags & TF_REQ_TSTMP) &&
1671 		    !(tp->t_flags & TF_NOOPT)) {
1672 			tp->t_flags |= TF_RCVD_TSTMP;
1673 			tp->ts_recent = to.to_tsval;
1674 			tp->ts_recent_age = tcp_ts_getticks();
1675 		} else {
1676 			tp->t_flags &= ~TF_REQ_TSTMP;
1677 		}
1678 		if (to.to_flags & TOF_MSS) {
1679 			tcp_mss(tp, to.to_mss);
1680 		}
1681 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1682 		    (!(to.to_flags & TOF_SACKPERM) ||
1683 		    (tp->t_flags & TF_NOOPT))) {
1684 			tp->t_flags &= ~TF_SACK_PERMIT;
1685 		}
1686 		if (tp->t_flags & TF_FASTOPEN) {
1687 			if ((to.to_flags & TOF_FASTOPEN) &&
1688 			    !(tp->t_flags & TF_NOOPT)) {
1689 				uint16_t mss;
1690 
1691 				if (to.to_flags & TOF_MSS) {
1692 					mss = to.to_mss;
1693 				} else {
1694 					if ((inp->inp_vflag & INP_IPV6) != 0) {
1695 						mss = TCP6_MSS;
1696 					} else {
1697 						mss = TCP_MSS;
1698 					}
1699 				}
1700 				tcp_fastopen_update_cache(tp, mss,
1701 				    to.to_tfo_len, to.to_tfo_cookie);
1702 			} else {
1703 				tcp_fastopen_disable_path(tp);
1704 			}
1705 		}
1706 	}
1707 
1708 	/*
1709 	 * If timestamps were negotiated during SYN/ACK and a
1710 	 * segment without a timestamp is received, silently drop
1711 	 * the segment, unless it is a RST segment or missing timestamps are
1712 	 * tolerated.
1713 	 * See section 3.2 of RFC 7323.
1714 	 */
1715 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1716 		if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) {
1717 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1718 				log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1719 				    "segment processed normally\n",
1720 				    s, __func__);
1721 				free(s, M_TCPLOG);
1722 			}
1723 		} else {
1724 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1725 				log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1726 				    "segment silently dropped\n", s, __func__);
1727 				free(s, M_TCPLOG);
1728 			}
1729 			goto drop;
1730 		}
1731 	}
1732 	/*
1733 	 * If timestamps were not negotiated during SYN/ACK and a
1734 	 * segment with a timestamp is received, ignore the
1735 	 * timestamp and process the packet normally.
1736 	 * See section 3.2 of RFC 7323.
1737 	 */
1738 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1739 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1740 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1741 			    "segment processed normally\n", s, __func__);
1742 			free(s, M_TCPLOG);
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * Header prediction: check for the two common cases
1748 	 * of a uni-directional data xfer.  If the packet has
1749 	 * no control flags, is in-sequence, the window didn't
1750 	 * change and we're not retransmitting, it's a
1751 	 * candidate.  If the length is zero and the ack moved
1752 	 * forward, we're the sender side of the xfer.  Just
1753 	 * free the data acked & wake any higher level process
1754 	 * that was blocked waiting for space.  If the length
1755 	 * is non-zero and the ack didn't move, we're the
1756 	 * receiver side.  If we're getting packets in-order
1757 	 * (the reassembly queue is empty), add the data to
1758 	 * the socket buffer and note that we need a delayed ack.
1759 	 * Make sure that the hidden state-flags are also off.
1760 	 * Since we check for TCPS_ESTABLISHED first, it can only
1761 	 * be TH_NEEDSYN.
1762 	 */
1763 	if (tp->t_state == TCPS_ESTABLISHED &&
1764 	    th->th_seq == tp->rcv_nxt &&
1765 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1766 	    tp->snd_nxt == tp->snd_max &&
1767 	    tiwin && tiwin == tp->snd_wnd &&
1768 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1769 	    SEGQ_EMPTY(tp) &&
1770 	    ((to.to_flags & TOF_TS) == 0 ||
1771 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1772 		/*
1773 		 * If last ACK falls within this segment's sequence numbers,
1774 		 * record the timestamp.
1775 		 * NOTE that the test is modified according to the latest
1776 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1777 		 */
1778 		if ((to.to_flags & TOF_TS) != 0 &&
1779 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1780 			tp->ts_recent_age = tcp_ts_getticks();
1781 			tp->ts_recent = to.to_tsval;
1782 		}
1783 
1784 		if (tlen == 0) {
1785 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1786 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1787 			    !IN_RECOVERY(tp->t_flags) &&
1788 			    (to.to_flags & TOF_SACK) == 0 &&
1789 			    TAILQ_EMPTY(&tp->snd_holes)) {
1790 				/*
1791 				 * This is a pure ack for outstanding data.
1792 				 */
1793 				TCPSTAT_INC(tcps_predack);
1794 
1795 				/*
1796 				 * "bad retransmit" recovery without timestamps.
1797 				 */
1798 				if ((to.to_flags & TOF_TS) == 0 &&
1799 				    tp->t_rxtshift == 1 &&
1800 				    tp->t_flags & TF_PREVVALID &&
1801 				    tp->t_badrxtwin != 0 &&
1802 				    TSTMP_LT(ticks, tp->t_badrxtwin)) {
1803 					cc_cong_signal(tp, th, CC_RTO_ERR);
1804 				}
1805 
1806 				/*
1807 				 * Recalculate the transmit timer / rtt.
1808 				 *
1809 				 * Some boxes send broken timestamp replies
1810 				 * during the SYN+ACK phase, ignore
1811 				 * timestamps of 0 or we could calculate a
1812 				 * huge RTT and blow up the retransmit timer.
1813 				 */
1814 				if ((to.to_flags & TOF_TS) != 0 &&
1815 				    to.to_tsecr) {
1816 					uint32_t t;
1817 
1818 					t = tcp_ts_getticks() - to.to_tsecr;
1819 					if (!tp->t_rttlow || tp->t_rttlow > t)
1820 						tp->t_rttlow = t;
1821 					tcp_xmit_timer(tp,
1822 					    TCP_TS_TO_TICKS(t) + 1);
1823 				} else if (tp->t_rtttime &&
1824 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1825 					if (!tp->t_rttlow ||
1826 					    tp->t_rttlow > ticks - tp->t_rtttime)
1827 						tp->t_rttlow = ticks - tp->t_rtttime;
1828 					tcp_xmit_timer(tp,
1829 							ticks - tp->t_rtttime);
1830 				}
1831 				acked = BYTES_THIS_ACK(tp, th);
1832 
1833 #ifdef TCP_HHOOK
1834 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1835 				hhook_run_tcp_est_in(tp, th, &to);
1836 #endif
1837 
1838 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1839 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1840 				sbdrop(&so->so_snd, acked);
1841 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1842 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1843 					tp->snd_recover = th->th_ack - 1;
1844 
1845 				/*
1846 				 * Let the congestion control algorithm update
1847 				 * congestion control related information. This
1848 				 * typically means increasing the congestion
1849 				 * window.
1850 				 */
1851 				cc_ack_received(tp, th, nsegs, CC_ACK);
1852 
1853 				tp->snd_una = th->th_ack;
1854 				/*
1855 				 * Pull snd_wl2 up to prevent seq wrap relative
1856 				 * to th_ack.
1857 				 */
1858 				tp->snd_wl2 = th->th_ack;
1859 				tp->t_dupacks = 0;
1860 				m_freem(m);
1861 
1862 				/*
1863 				 * If all outstanding data are acked, stop
1864 				 * retransmit timer, otherwise restart timer
1865 				 * using current (possibly backed-off) value.
1866 				 * If process is waiting for space,
1867 				 * wakeup/selwakeup/signal.  If data
1868 				 * are ready to send, let tcp_output
1869 				 * decide between more output or persist.
1870 				 */
1871 				TCP_PROBE3(debug__input, tp, th, m);
1872 				/*
1873 				 * Clear t_acktime if remote side has ACKd
1874 				 * all data in the socket buffer.
1875 				 * Otherwise, update t_acktime if we received
1876 				 * a sufficiently large ACK.
1877 				 */
1878 				if (sbavail(&so->so_snd) == 0)
1879 					tp->t_acktime = 0;
1880 				else if (acked > 1)
1881 					tp->t_acktime = ticks;
1882 				if (tp->snd_una == tp->snd_max)
1883 					tcp_timer_activate(tp, TT_REXMT, 0);
1884 				else if (!tcp_timer_active(tp, TT_PERSIST))
1885 					tcp_timer_activate(tp, TT_REXMT,
1886 					    TP_RXTCUR(tp));
1887 				sowwakeup(so);
1888 				/*
1889 				 * Only call tcp_output when there
1890 				 * is new data available to be sent
1891 				 * or we need to send an ACK.
1892 				 */
1893 				if ((tp->t_flags & TF_ACKNOW) ||
1894 				    (sbavail(&so->so_snd) >=
1895 				     SEQ_SUB(tp->snd_max, tp->snd_una))) {
1896 					(void) tcp_output(tp);
1897 				}
1898 				goto check_delack;
1899 			}
1900 		} else if (th->th_ack == tp->snd_una &&
1901 		    tlen <= sbspace(&so->so_rcv)) {
1902 			int newsize = 0;	/* automatic sockbuf scaling */
1903 
1904 			/*
1905 			 * This is a pure, in-sequence data packet with
1906 			 * nothing on the reassembly queue and we have enough
1907 			 * buffer space to take it.
1908 			 */
1909 			/* Clean receiver SACK report if present */
1910 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1911 				tcp_clean_sackreport(tp);
1912 			TCPSTAT_INC(tcps_preddat);
1913 			tp->rcv_nxt += tlen;
1914 			if (tlen &&
1915 			    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
1916 			    (tp->t_fbyte_in == 0)) {
1917 				tp->t_fbyte_in = ticks;
1918 				if (tp->t_fbyte_in == 0)
1919 					tp->t_fbyte_in = 1;
1920 				if (tp->t_fbyte_out && tp->t_fbyte_in)
1921 					tp->t_flags2 |= TF2_FBYTES_COMPLETE;
1922 			}
1923 			/*
1924 			 * Pull snd_wl1 up to prevent seq wrap relative to
1925 			 * th_seq.
1926 			 */
1927 			tp->snd_wl1 = th->th_seq;
1928 			/*
1929 			 * Pull rcv_up up to prevent seq wrap relative to
1930 			 * rcv_nxt.
1931 			 */
1932 			tp->rcv_up = tp->rcv_nxt;
1933 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1934 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1935 			TCP_PROBE3(debug__input, tp, th, m);
1936 
1937 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1938 
1939 			/* Add data to socket buffer. */
1940 			SOCKBUF_LOCK(&so->so_rcv);
1941 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1942 				m_freem(m);
1943 			} else {
1944 				/*
1945 				 * Set new socket buffer size.
1946 				 * Give up when limit is reached.
1947 				 */
1948 				if (newsize)
1949 					if (!sbreserve_locked(so, SO_RCV,
1950 					    newsize, NULL))
1951 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1952 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1953 				sbappendstream_locked(&so->so_rcv, m, 0);
1954 			}
1955 			/* NB: sorwakeup_locked() does an implicit unlock. */
1956 			sorwakeup_locked(so);
1957 			if (DELAY_ACK(tp, tlen)) {
1958 				tp->t_flags |= TF_DELACK;
1959 			} else {
1960 				tp->t_flags |= TF_ACKNOW;
1961 				(void) tcp_output(tp);
1962 			}
1963 			goto check_delack;
1964 		}
1965 	}
1966 
1967 	/*
1968 	 * Calculate amount of space in receive window,
1969 	 * and then do TCP input processing.
1970 	 * Receive window is amount of space in rcv queue,
1971 	 * but not less than advertised window.
1972 	 */
1973 	win = sbspace(&so->so_rcv);
1974 	if (win < 0)
1975 		win = 0;
1976 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1977 
1978 	switch (tp->t_state) {
1979 	/*
1980 	 * If the state is SYN_RECEIVED:
1981 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1982 	 */
1983 	case TCPS_SYN_RECEIVED:
1984 		if (thflags & TH_RST) {
1985 			/* Handle RST segments later. */
1986 			break;
1987 		}
1988 		if ((thflags & TH_ACK) &&
1989 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1990 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1991 				rstreason = BANDLIM_RST_OPENPORT;
1992 				tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1993 				goto dropwithreset;
1994 		}
1995 		if (tp->t_flags & TF_FASTOPEN) {
1996 			/*
1997 			 * When a TFO connection is in SYN_RECEIVED, the
1998 			 * only valid packets are the initial SYN, a
1999 			 * retransmit/copy of the initial SYN (possibly with
2000 			 * a subset of the original data), a valid ACK, a
2001 			 * FIN, or a RST.
2002 			 */
2003 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
2004 				rstreason = BANDLIM_RST_OPENPORT;
2005 				tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2006 				goto dropwithreset;
2007 			} else if (thflags & TH_SYN) {
2008 				/* non-initial SYN is ignored */
2009 				if ((tcp_timer_active(tp, TT_DELACK) ||
2010 				     tcp_timer_active(tp, TT_REXMT)))
2011 					goto drop;
2012 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
2013 				goto drop;
2014 			}
2015 		}
2016 		break;
2017 
2018 	/*
2019 	 * If the state is SYN_SENT:
2020 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
2021 	 *	    been verified), then drop the connection.
2022 	 *	if seg contains a RST without an ACK, drop the seg.
2023 	 *	if seg does not contain SYN, then drop the seg.
2024 	 * Otherwise this is an acceptable SYN segment
2025 	 *	initialize tp->rcv_nxt and tp->irs
2026 	 *	if seg contains ack then advance tp->snd_una
2027 	 *	if seg contains an ECE and ECN support is enabled, the stream
2028 	 *	    is ECN capable.
2029 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2030 	 *	arrange for segment to be acked (eventually)
2031 	 *	continue processing rest of data/controls, beginning with URG
2032 	 */
2033 	case TCPS_SYN_SENT:
2034 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2035 			TCP_PROBE5(connect__refused, NULL, tp,
2036 			    m, tp, th);
2037 			tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2038 			tp = tcp_drop(tp, ECONNREFUSED);
2039 		}
2040 		if (thflags & TH_RST)
2041 			goto drop;
2042 		if (!(thflags & TH_SYN))
2043 			goto drop;
2044 
2045 		tp->irs = th->th_seq;
2046 		tcp_rcvseqinit(tp);
2047 		if (thflags & TH_ACK) {
2048 			int tfo_partial_ack = 0;
2049 
2050 			TCPSTAT_INC(tcps_connects);
2051 			soisconnected(so);
2052 #ifdef MAC
2053 			mac_socketpeer_set_from_mbuf(m, so);
2054 #endif
2055 			/* Do window scaling on this connection? */
2056 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2057 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2058 				tp->rcv_scale = tp->request_r_scale;
2059 			}
2060 			tp->rcv_adv += min(tp->rcv_wnd,
2061 			    TCP_MAXWIN << tp->rcv_scale);
2062 			tp->snd_una++;		/* SYN is acked */
2063 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2064 				tp->snd_nxt = tp->snd_una;
2065 			/*
2066 			 * If not all the data that was sent in the TFO SYN
2067 			 * has been acked, resend the remainder right away.
2068 			 */
2069 			if ((tp->t_flags & TF_FASTOPEN) &&
2070 			    (tp->snd_una != tp->snd_max)) {
2071 				tp->snd_nxt = th->th_ack;
2072 				tfo_partial_ack = 1;
2073 			}
2074 			/*
2075 			 * If there's data, delay ACK; if there's also a FIN
2076 			 * ACKNOW will be turned on later.
2077 			 */
2078 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2079 				tcp_timer_activate(tp, TT_DELACK,
2080 				    tcp_delacktime);
2081 			else
2082 				tp->t_flags |= TF_ACKNOW;
2083 
2084 			tcp_ecn_input_syn_sent(tp, thflags, iptos);
2085 
2086 			/*
2087 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2088 			 * Transitions:
2089 			 *	SYN_SENT  --> ESTABLISHED
2090 			 *	SYN_SENT* --> FIN_WAIT_1
2091 			 */
2092 			tp->t_starttime = ticks;
2093 			if (tp->t_flags & TF_NEEDFIN) {
2094 				tp->t_acktime = ticks;
2095 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2096 				tp->t_flags &= ~TF_NEEDFIN;
2097 				thflags &= ~TH_SYN;
2098 			} else {
2099 				tcp_state_change(tp, TCPS_ESTABLISHED);
2100 				TCP_PROBE5(connect__established, NULL, tp,
2101 				    m, tp, th);
2102 				cc_conn_init(tp);
2103 				tcp_timer_activate(tp, TT_KEEP,
2104 				    TP_KEEPIDLE(tp));
2105 			}
2106 		} else {
2107 			/*
2108 			 * Received initial SYN in SYN-SENT[*] state =>
2109 			 * simultaneous open.
2110 			 * If it succeeds, connection is * half-synchronized.
2111 			 * Otherwise, do 3-way handshake:
2112 			 *        SYN-SENT -> SYN-RECEIVED
2113 			 *        SYN-SENT* -> SYN-RECEIVED*
2114 			 */
2115 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
2116 			tcp_timer_activate(tp, TT_REXMT, 0);
2117 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2118 		}
2119 
2120 		/*
2121 		 * Advance th->th_seq to correspond to first data byte.
2122 		 * If data, trim to stay within window,
2123 		 * dropping FIN if necessary.
2124 		 */
2125 		th->th_seq++;
2126 		if (tlen > tp->rcv_wnd) {
2127 			todrop = tlen - tp->rcv_wnd;
2128 			m_adj(m, -todrop);
2129 			tlen = tp->rcv_wnd;
2130 			thflags &= ~TH_FIN;
2131 			TCPSTAT_INC(tcps_rcvpackafterwin);
2132 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2133 		}
2134 		tp->snd_wl1 = th->th_seq - 1;
2135 		tp->rcv_up = th->th_seq;
2136 		/*
2137 		 * Client side of transaction: already sent SYN and data.
2138 		 * If the remote host used T/TCP to validate the SYN,
2139 		 * our data will be ACK'd; if so, enter normal data segment
2140 		 * processing in the middle of step 5, ack processing.
2141 		 * Otherwise, goto step 6.
2142 		 */
2143 		if (thflags & TH_ACK)
2144 			goto process_ACK;
2145 
2146 		goto step6;
2147 	}
2148 
2149 	/*
2150 	 * States other than LISTEN or SYN_SENT.
2151 	 * First check the RST flag and sequence number since reset segments
2152 	 * are exempt from the timestamp and connection count tests.  This
2153 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2154 	 * below which allowed reset segments in half the sequence space
2155 	 * to fall though and be processed (which gives forged reset
2156 	 * segments with a random sequence number a 50 percent chance of
2157 	 * killing a connection).
2158 	 * Then check timestamp, if present.
2159 	 * Then check the connection count, if present.
2160 	 * Then check that at least some bytes of segment are within
2161 	 * receive window.  If segment begins before rcv_nxt,
2162 	 * drop leading data (and SYN); if nothing left, just ack.
2163 	 */
2164 	if (thflags & TH_RST) {
2165 		/*
2166 		 * RFC5961 Section 3.2
2167 		 *
2168 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2169 		 * - If RST is in window, we send challenge ACK.
2170 		 *
2171 		 * Note: to take into account delayed ACKs, we should
2172 		 *   test against last_ack_sent instead of rcv_nxt.
2173 		 * Note 2: we handle special case of closed window, not
2174 		 *   covered by the RFC.
2175 		 */
2176 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2177 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2178 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2179 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2180 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2181 			    __func__, th, tp));
2182 
2183 			if (V_tcp_insecure_rst ||
2184 			    tp->last_ack_sent == th->th_seq) {
2185 				TCPSTAT_INC(tcps_drops);
2186 				/* Drop the connection. */
2187 				switch (tp->t_state) {
2188 				case TCPS_SYN_RECEIVED:
2189 					so->so_error = ECONNREFUSED;
2190 					goto close;
2191 				case TCPS_ESTABLISHED:
2192 				case TCPS_FIN_WAIT_1:
2193 				case TCPS_FIN_WAIT_2:
2194 				case TCPS_CLOSE_WAIT:
2195 				case TCPS_CLOSING:
2196 				case TCPS_LAST_ACK:
2197 					so->so_error = ECONNRESET;
2198 				close:
2199 					/* FALLTHROUGH */
2200 				default:
2201 					tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
2202 					tp = tcp_close(tp);
2203 				}
2204 			} else {
2205 				TCPSTAT_INC(tcps_badrst);
2206 				/* Send challenge ACK. */
2207 				tcp_respond(tp, mtod(m, void *), th, m,
2208 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2209 				tp->last_ack_sent = tp->rcv_nxt;
2210 				m = NULL;
2211 			}
2212 		}
2213 		goto drop;
2214 	}
2215 
2216 	/*
2217 	 * RFC5961 Section 4.2
2218 	 * Send challenge ACK for any SYN in synchronized state.
2219 	 */
2220 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2221 	    tp->t_state != TCPS_SYN_RECEIVED) {
2222 		TCPSTAT_INC(tcps_badsyn);
2223 		if (V_tcp_insecure_syn &&
2224 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2225 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2226 			tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2227 			tp = tcp_drop(tp, ECONNRESET);
2228 			rstreason = BANDLIM_UNLIMITED;
2229 		} else {
2230 			tcp_ecn_input_syn_sent(tp, thflags, iptos);
2231 			/* Send challenge ACK. */
2232 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2233 			    tp->snd_nxt, TH_ACK);
2234 			tp->last_ack_sent = tp->rcv_nxt;
2235 			m = NULL;
2236 		}
2237 		goto drop;
2238 	}
2239 
2240 	/*
2241 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2242 	 * and it's less than ts_recent, drop it.
2243 	 */
2244 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2245 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2246 		/* Check to see if ts_recent is over 24 days old.  */
2247 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2248 			/*
2249 			 * Invalidate ts_recent.  If this segment updates
2250 			 * ts_recent, the age will be reset later and ts_recent
2251 			 * will get a valid value.  If it does not, setting
2252 			 * ts_recent to zero will at least satisfy the
2253 			 * requirement that zero be placed in the timestamp
2254 			 * echo reply when ts_recent isn't valid.  The
2255 			 * age isn't reset until we get a valid ts_recent
2256 			 * because we don't want out-of-order segments to be
2257 			 * dropped when ts_recent is old.
2258 			 */
2259 			tp->ts_recent = 0;
2260 		} else {
2261 			TCPSTAT_INC(tcps_rcvduppack);
2262 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2263 			TCPSTAT_INC(tcps_pawsdrop);
2264 			if (tlen)
2265 				goto dropafterack;
2266 			goto drop;
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2272 	 * this connection before trimming the data to fit the receive
2273 	 * window.  Check the sequence number versus IRS since we know
2274 	 * the sequence numbers haven't wrapped.  This is a partial fix
2275 	 * for the "LAND" DoS attack.
2276 	 */
2277 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2278 		rstreason = BANDLIM_RST_OPENPORT;
2279 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2280 		goto dropwithreset;
2281 	}
2282 
2283 	todrop = tp->rcv_nxt - th->th_seq;
2284 	if (todrop > 0) {
2285 		if (thflags & TH_SYN) {
2286 			thflags &= ~TH_SYN;
2287 			th->th_seq++;
2288 			if (th->th_urp > 1)
2289 				th->th_urp--;
2290 			else
2291 				thflags &= ~TH_URG;
2292 			todrop--;
2293 		}
2294 		/*
2295 		 * Following if statement from Stevens, vol. 2, p. 960.
2296 		 */
2297 		if (todrop > tlen
2298 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2299 			/*
2300 			 * Any valid FIN must be to the left of the window.
2301 			 * At this point the FIN must be a duplicate or out
2302 			 * of sequence; drop it.
2303 			 */
2304 			thflags &= ~TH_FIN;
2305 
2306 			/*
2307 			 * Send an ACK to resynchronize and drop any data.
2308 			 * But keep on processing for RST or ACK.
2309 			 */
2310 			tp->t_flags |= TF_ACKNOW;
2311 			todrop = tlen;
2312 			TCPSTAT_INC(tcps_rcvduppack);
2313 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2314 		} else {
2315 			TCPSTAT_INC(tcps_rcvpartduppack);
2316 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2317 		}
2318 		/*
2319 		 * DSACK - add SACK block for dropped range
2320 		 */
2321 		if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2322 			tcp_update_sack_list(tp, th->th_seq,
2323 			    th->th_seq + todrop);
2324 			/*
2325 			 * ACK now, as the next in-sequence segment
2326 			 * will clear the DSACK block again
2327 			 */
2328 			tp->t_flags |= TF_ACKNOW;
2329 		}
2330 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2331 		th->th_seq += todrop;
2332 		tlen -= todrop;
2333 		if (th->th_urp > todrop)
2334 			th->th_urp -= todrop;
2335 		else {
2336 			thflags &= ~TH_URG;
2337 			th->th_urp = 0;
2338 		}
2339 	}
2340 
2341 	/*
2342 	 * If new data are received on a connection after the
2343 	 * user processes are gone, then RST the other end if
2344 	 * no FIN has been processed.
2345 	 */
2346 	if ((tp->t_flags & TF_CLOSED) && tlen > 0 &&
2347 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2348 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2349 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2350 			    "after socket was closed, "
2351 			    "sending RST and removing tcpcb\n",
2352 			    s, __func__, tcpstates[tp->t_state], tlen);
2353 			free(s, M_TCPLOG);
2354 		}
2355 		tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
2356 		/* tcp_close will kill the inp pre-log the Reset */
2357 		tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2358 		tp = tcp_close(tp);
2359 		TCPSTAT_INC(tcps_rcvafterclose);
2360 		rstreason = BANDLIM_UNLIMITED;
2361 		goto dropwithreset;
2362 	}
2363 
2364 	/*
2365 	 * If segment ends after window, drop trailing data
2366 	 * (and PUSH and FIN); if nothing left, just ACK.
2367 	 */
2368 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2369 	if (todrop > 0) {
2370 		TCPSTAT_INC(tcps_rcvpackafterwin);
2371 		if (todrop >= tlen) {
2372 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2373 			/*
2374 			 * If window is closed can only take segments at
2375 			 * window edge, and have to drop data and PUSH from
2376 			 * incoming segments.  Continue processing, but
2377 			 * remember to ack.  Otherwise, drop segment
2378 			 * and ack.
2379 			 */
2380 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2381 				tp->t_flags |= TF_ACKNOW;
2382 				TCPSTAT_INC(tcps_rcvwinprobe);
2383 			} else
2384 				goto dropafterack;
2385 		} else
2386 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2387 		m_adj(m, -todrop);
2388 		tlen -= todrop;
2389 		thflags &= ~(TH_PUSH|TH_FIN);
2390 	}
2391 
2392 	/*
2393 	 * If last ACK falls within this segment's sequence numbers,
2394 	 * record its timestamp.
2395 	 * NOTE:
2396 	 * 1) That the test incorporates suggestions from the latest
2397 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2398 	 * 2) That updating only on newer timestamps interferes with
2399 	 *    our earlier PAWS tests, so this check should be solely
2400 	 *    predicated on the sequence space of this segment.
2401 	 * 3) That we modify the segment boundary check to be
2402 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2403 	 *    instead of RFC1323's
2404 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2405 	 *    This modified check allows us to overcome RFC1323's
2406 	 *    limitations as described in Stevens TCP/IP Illustrated
2407 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2408 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2409 	 */
2410 	if ((to.to_flags & TOF_TS) != 0 &&
2411 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2412 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2413 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2414 		tp->ts_recent_age = tcp_ts_getticks();
2415 		tp->ts_recent = to.to_tsval;
2416 	}
2417 
2418 	/*
2419 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2420 	 * flag is on (half-synchronized state), then queue data for
2421 	 * later processing; else drop segment and return.
2422 	 */
2423 	if ((thflags & TH_ACK) == 0) {
2424 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2425 		    (tp->t_flags & TF_NEEDSYN)) {
2426 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2427 			    (tp->t_flags & TF_FASTOPEN)) {
2428 				tp->snd_wnd = tiwin;
2429 				cc_conn_init(tp);
2430 			}
2431 			goto step6;
2432 		} else if (tp->t_flags & TF_ACKNOW)
2433 			goto dropafterack;
2434 		else
2435 			goto drop;
2436 	}
2437 
2438 	/*
2439 	 * Ack processing.
2440 	 */
2441 	switch (tp->t_state) {
2442 	/*
2443 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2444 	 * ESTABLISHED state and continue processing.
2445 	 * The ACK was checked above.
2446 	 */
2447 	case TCPS_SYN_RECEIVED:
2448 
2449 		TCPSTAT_INC(tcps_connects);
2450 		if (tp->t_flags & TF_SONOTCONN) {
2451 			/*
2452 			 * Usually SYN_RECEIVED had been created from a LISTEN,
2453 			 * and solisten_enqueue() has already marked the socket
2454 			 * layer as connected.  If it didn't, which can happen
2455 			 * only with an accept_filter(9), then the tp is marked
2456 			 * with TF_SONOTCONN.  The other reason for this mark
2457 			 * to be set is a simultaneous open, a SYN_RECEIVED
2458 			 * that had been created from SYN_SENT.
2459 			 */
2460 			tp->t_flags &= ~TF_SONOTCONN;
2461 			soisconnected(so);
2462 		}
2463 		/* Do window scaling? */
2464 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2465 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2466 			tp->rcv_scale = tp->request_r_scale;
2467 		}
2468 		tp->snd_wnd = tiwin;
2469 		/*
2470 		 * Make transitions:
2471 		 *      SYN-RECEIVED  -> ESTABLISHED
2472 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2473 		 */
2474 		tp->t_starttime = ticks;
2475 		if ((tp->t_flags & TF_FASTOPEN) && tp->t_tfo_pending) {
2476 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2477 			tp->t_tfo_pending = NULL;
2478 		}
2479 		if (tp->t_flags & TF_NEEDFIN) {
2480 			tp->t_acktime = ticks;
2481 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2482 			tp->t_flags &= ~TF_NEEDFIN;
2483 		} else {
2484 			tcp_state_change(tp, TCPS_ESTABLISHED);
2485 			TCP_PROBE5(accept__established, NULL, tp,
2486 			    m, tp, th);
2487 			/*
2488 			 * TFO connections call cc_conn_init() during SYN
2489 			 * processing.  Calling it again here for such
2490 			 * connections is not harmless as it would undo the
2491 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2492 			 * is retransmitted.
2493 			 */
2494 			if (!(tp->t_flags & TF_FASTOPEN))
2495 				cc_conn_init(tp);
2496 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2497 		}
2498 		/*
2499 		 * Account for the ACK of our SYN prior to
2500 		 * regular ACK processing below, except for
2501 		 * simultaneous SYN, which is handled later.
2502 		 */
2503 		if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
2504 			incforsyn = 1;
2505 		/*
2506 		 * If segment contains data or ACK, will call tcp_reass()
2507 		 * later; if not, do so now to pass queued data to user.
2508 		 */
2509 		if (tlen == 0 && (thflags & TH_FIN) == 0) {
2510 			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2511 			    (struct mbuf *)0);
2512 			tcp_handle_wakeup(tp);
2513 		}
2514 		tp->snd_wl1 = th->th_seq - 1;
2515 		/* FALLTHROUGH */
2516 
2517 	/*
2518 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2519 	 * ACKs.  If the ack is in the range
2520 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2521 	 * then advance tp->snd_una to th->th_ack and drop
2522 	 * data from the retransmission queue.  If this ACK reflects
2523 	 * more up to date window information we update our window information.
2524 	 */
2525 	case TCPS_ESTABLISHED:
2526 	case TCPS_FIN_WAIT_1:
2527 	case TCPS_FIN_WAIT_2:
2528 	case TCPS_CLOSE_WAIT:
2529 	case TCPS_CLOSING:
2530 	case TCPS_LAST_ACK:
2531 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2532 			TCPSTAT_INC(tcps_rcvacktoomuch);
2533 			goto dropafterack;
2534 		}
2535 		if (tcp_is_sack_recovery(tp, &to)) {
2536 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2537 			if ((sack_changed != SACK_NOCHANGE) &&
2538 			    (tp->t_flags & TF_LRD)) {
2539 				tcp_sack_lost_retransmission(tp, th);
2540 			}
2541 		} else
2542 			/*
2543 			 * Reset the value so that previous (valid) value
2544 			 * from the last ack with SACK doesn't get used.
2545 			 */
2546 			tp->sackhint.sacked_bytes = 0;
2547 
2548 #ifdef TCP_HHOOK
2549 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2550 		hhook_run_tcp_est_in(tp, th, &to);
2551 #endif
2552 
2553 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2554 			maxseg = tcp_maxseg(tp);
2555 			if (tlen == 0 &&
2556 			    (tiwin == tp->snd_wnd ||
2557 			    (tp->t_flags & TF_SACK_PERMIT))) {
2558 				/*
2559 				 * If this is the first time we've seen a
2560 				 * FIN from the remote, this is not a
2561 				 * duplicate and it needs to be processed
2562 				 * normally.  This happens during a
2563 				 * simultaneous close.
2564 				 */
2565 				if ((thflags & TH_FIN) &&
2566 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2567 					tp->t_dupacks = 0;
2568 					break;
2569 				}
2570 				TCPSTAT_INC(tcps_rcvdupack);
2571 				/*
2572 				 * If we have outstanding data (other than
2573 				 * a window probe), this is a completely
2574 				 * duplicate ack (ie, window info didn't
2575 				 * change and FIN isn't set),
2576 				 * the ack is the biggest we've
2577 				 * seen and we've seen exactly our rexmt
2578 				 * threshold of them, assume a packet
2579 				 * has been dropped and retransmit it.
2580 				 * Kludge snd_nxt & the congestion
2581 				 * window so we send only this one
2582 				 * packet.
2583 				 *
2584 				 * We know we're losing at the current
2585 				 * window size so do congestion avoidance
2586 				 * (set ssthresh to half the current window
2587 				 * and pull our congestion window back to
2588 				 * the new ssthresh).
2589 				 *
2590 				 * Dup acks mean that packets have left the
2591 				 * network (they're now cached at the receiver)
2592 				 * so bump cwnd by the amount in the receiver
2593 				 * to keep a constant cwnd packets in the
2594 				 * network.
2595 				 *
2596 				 * When using TCP ECN, notify the peer that
2597 				 * we reduced the cwnd.
2598 				 */
2599 				/*
2600 				 * Following 2 kinds of acks should not affect
2601 				 * dupack counting:
2602 				 * 1) Old acks
2603 				 * 2) Acks with SACK but without any new SACK
2604 				 * information in them. These could result from
2605 				 * any anomaly in the network like a switch
2606 				 * duplicating packets or a possible DoS attack.
2607 				 */
2608 				if (th->th_ack != tp->snd_una ||
2609 				    (tcp_is_sack_recovery(tp, &to) &&
2610 				    (sack_changed == SACK_NOCHANGE))) {
2611 					break;
2612 				} else if (!tcp_timer_active(tp, TT_REXMT)) {
2613 					tp->t_dupacks = 0;
2614 				} else if (++tp->t_dupacks > tcprexmtthresh ||
2615 					    IN_FASTRECOVERY(tp->t_flags)) {
2616 					cc_ack_received(tp, th, nsegs,
2617 					    CC_DUPACK);
2618 					if (V_tcp_do_prr &&
2619 					    IN_FASTRECOVERY(tp->t_flags) &&
2620 					    (tp->t_flags & TF_SACK_PERMIT)) {
2621 						tcp_do_prr_ack(tp, th, &to,
2622 						    sack_changed, &maxseg);
2623 					} else if (tcp_is_sack_recovery(tp, &to) &&
2624 						    IN_FASTRECOVERY(tp->t_flags)) {
2625 						int awnd;
2626 
2627 						/*
2628 						 * Compute the amount of data in flight first.
2629 						 * We can inject new data into the pipe iff
2630 						 * we have less than 1/2 the original window's
2631 						 * worth of data in flight.
2632 						 */
2633 						if (V_tcp_do_newsack) {
2634 							awnd = tcp_compute_pipe(tp);
2635 						} else {
2636 							awnd = (tp->snd_nxt - tp->snd_fack) +
2637 								tp->sackhint.sack_bytes_rexmit;
2638 						}
2639 						if (awnd < tp->snd_ssthresh) {
2640 							tp->snd_cwnd += maxseg;
2641 							if (tp->snd_cwnd > tp->snd_ssthresh)
2642 								tp->snd_cwnd = tp->snd_ssthresh;
2643 						}
2644 					} else {
2645 						tp->snd_cwnd += maxseg;
2646 					}
2647 					(void) tcp_output(tp);
2648 					goto drop;
2649 				} else if (tp->t_dupacks == tcprexmtthresh ||
2650 					    (tp->t_flags & TF_SACK_PERMIT &&
2651 					     V_tcp_do_newsack &&
2652 					     tp->sackhint.sacked_bytes >
2653 					     (tcprexmtthresh - 1) * maxseg)) {
2654 enter_recovery:
2655 					/*
2656 					 * Above is the RFC6675 trigger condition of
2657 					 * more than (dupthresh-1)*maxseg sacked data.
2658 					 * If the count of holes in the
2659 					 * scoreboard is >= dupthresh, we could
2660 					 * also enter loss recovery, but don't
2661 					 * have that value readily available.
2662 					 */
2663 					tp->t_dupacks = tcprexmtthresh;
2664 					tcp_seq onxt = tp->snd_nxt;
2665 
2666 					/*
2667 					 * If we're doing sack, or prr, check
2668 					 * to see if we're already in sack
2669 					 * recovery. If we're not doing sack,
2670 					 * check to see if we're in newreno
2671 					 * recovery.
2672 					 */
2673 					if (V_tcp_do_prr ||
2674 					    (tp->t_flags & TF_SACK_PERMIT)) {
2675 						if (IN_FASTRECOVERY(tp->t_flags)) {
2676 							tp->t_dupacks = 0;
2677 							break;
2678 						}
2679 					} else {
2680 						if (SEQ_LEQ(th->th_ack,
2681 						    tp->snd_recover)) {
2682 							tp->t_dupacks = 0;
2683 							break;
2684 						}
2685 					}
2686 					/* Congestion signal before ack. */
2687 					cc_cong_signal(tp, th, CC_NDUPACK);
2688 					cc_ack_received(tp, th, nsegs,
2689 					    CC_DUPACK);
2690 					tcp_timer_activate(tp, TT_REXMT, 0);
2691 					tp->t_rtttime = 0;
2692 					if (V_tcp_do_prr) {
2693 						/*
2694 						 * snd_ssthresh is already updated by
2695 						 * cc_cong_signal.
2696 						 */
2697 						if (tcp_is_sack_recovery(tp, &to)) {
2698 							/*
2699 							 * Exclude Limited Transmit
2700 							 * segments here
2701 							 */
2702 							tp->sackhint.prr_delivered =
2703 							    maxseg;
2704 						} else {
2705 							tp->sackhint.prr_delivered =
2706 							    imin(tp->snd_max - tp->snd_una,
2707 							    imin(INT_MAX / 65536,
2708 								tp->t_dupacks) * maxseg);
2709 						}
2710 						tp->sackhint.recover_fs = max(1,
2711 						    tp->snd_nxt - tp->snd_una);
2712 					}
2713 					if (tcp_is_sack_recovery(tp, &to)) {
2714 						TCPSTAT_INC(tcps_sack_recovery_episode);
2715 						tp->snd_recover = tp->snd_nxt;
2716 						tp->snd_cwnd = maxseg;
2717 						(void) tcp_output(tp);
2718 						if (SEQ_GT(th->th_ack, tp->snd_una)) {
2719 							goto resume_partialack;
2720 						}
2721 						goto drop;
2722 					}
2723 					tp->snd_nxt = th->th_ack;
2724 					tp->snd_cwnd = maxseg;
2725 					(void) tcp_output(tp);
2726 					KASSERT(tp->snd_limited <= 2,
2727 					    ("%s: tp->snd_limited too big",
2728 					    __func__));
2729 					tp->snd_cwnd = tp->snd_ssthresh +
2730 					     maxseg *
2731 					     (tp->t_dupacks - tp->snd_limited);
2732 					if (SEQ_GT(onxt, tp->snd_nxt))
2733 						tp->snd_nxt = onxt;
2734 					goto drop;
2735 				} else if (V_tcp_do_rfc3042) {
2736 					/*
2737 					 * Process first and second duplicate
2738 					 * ACKs. Each indicates a segment
2739 					 * leaving the network, creating room
2740 					 * for more. Make sure we can send a
2741 					 * packet on reception of each duplicate
2742 					 * ACK by increasing snd_cwnd by one
2743 					 * segment. Restore the original
2744 					 * snd_cwnd after packet transmission.
2745 					 */
2746 					cc_ack_received(tp, th, nsegs, CC_DUPACK);
2747 					uint32_t oldcwnd = tp->snd_cwnd;
2748 					tcp_seq oldsndmax = tp->snd_max;
2749 					u_int sent;
2750 					int avail;
2751 
2752 					KASSERT(tp->t_dupacks == 1 ||
2753 					    tp->t_dupacks == 2,
2754 					    ("%s: dupacks not 1 or 2",
2755 					    __func__));
2756 					if (tp->t_dupacks == 1)
2757 						tp->snd_limited = 0;
2758 					tp->snd_cwnd =
2759 					    (tp->snd_nxt - tp->snd_una) +
2760 					    (tp->t_dupacks - tp->snd_limited) *
2761 					    maxseg;
2762 					/*
2763 					 * Only call tcp_output when there
2764 					 * is new data available to be sent
2765 					 * or we need to send an ACK.
2766 					 */
2767 					SOCKBUF_LOCK(&so->so_snd);
2768 					avail = sbavail(&so->so_snd);
2769 					SOCKBUF_UNLOCK(&so->so_snd);
2770 					if (tp->t_flags & TF_ACKNOW ||
2771 					    (avail >=
2772 					     SEQ_SUB(tp->snd_nxt, tp->snd_una))) {
2773 						(void) tcp_output(tp);
2774 					}
2775 					sent = SEQ_SUB(tp->snd_max, oldsndmax);
2776 					if (sent > maxseg) {
2777 						KASSERT((tp->t_dupacks == 2 &&
2778 						    tp->snd_limited == 0) ||
2779 						   (sent == maxseg + 1 &&
2780 						    tp->t_flags & TF_SENTFIN),
2781 						    ("%s: sent too much",
2782 						    __func__));
2783 						tp->snd_limited = 2;
2784 					} else if (sent > 0) {
2785 						++tp->snd_limited;
2786 					}
2787 					tp->snd_cwnd = oldcwnd;
2788 					goto drop;
2789 				}
2790 			}
2791 			break;
2792 		} else {
2793 			/*
2794 			 * This ack is advancing the left edge, reset the
2795 			 * counter.
2796 			 */
2797 			tp->t_dupacks = 0;
2798 			/*
2799 			 * If this ack also has new SACK info, increment the
2800 			 * counter as per rfc6675. The variable
2801 			 * sack_changed tracks all changes to the SACK
2802 			 * scoreboard, including when partial ACKs without
2803 			 * SACK options are received, and clear the scoreboard
2804 			 * from the left side. Such partial ACKs should not be
2805 			 * counted as dupacks here.
2806 			 */
2807 			if (tcp_is_sack_recovery(tp, &to) &&
2808 			    (sack_changed != SACK_NOCHANGE)) {
2809 				tp->t_dupacks++;
2810 				/* limit overhead by setting maxseg last */
2811 				if (!IN_FASTRECOVERY(tp->t_flags) &&
2812 				    (tp->sackhint.sacked_bytes >
2813 				    ((tcprexmtthresh - 1) *
2814 				    (maxseg = tcp_maxseg(tp))))) {
2815 					goto enter_recovery;
2816 				}
2817 			}
2818 		}
2819 
2820 resume_partialack:
2821 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2822 		    ("%s: th_ack <= snd_una", __func__));
2823 
2824 		/*
2825 		 * If the congestion window was inflated to account
2826 		 * for the other side's cached packets, retract it.
2827 		 */
2828 		if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2829 			if (IN_FASTRECOVERY(tp->t_flags)) {
2830 				if (tp->t_flags & TF_SACK_PERMIT) {
2831 					if (V_tcp_do_prr &&
2832 					    (to.to_flags & TOF_SACK)) {
2833 						tcp_timer_activate(tp,
2834 						    TT_REXMT, 0);
2835 						tp->t_rtttime = 0;
2836 						tcp_do_prr_ack(tp, th, &to,
2837 						    sack_changed, &maxseg);
2838 						tp->t_flags |= TF_ACKNOW;
2839 						(void) tcp_output(tp);
2840 					} else {
2841 						tcp_sack_partialack(tp, th,
2842 						    &maxseg);
2843 					}
2844 				} else {
2845 					tcp_newreno_partial_ack(tp, th);
2846 				}
2847 			} else if (IN_CONGRECOVERY(tp->t_flags) &&
2848 				    (V_tcp_do_prr)) {
2849 				tp->sackhint.delivered_data =
2850 				    BYTES_THIS_ACK(tp, th);
2851 				tp->snd_fack = th->th_ack;
2852 				/*
2853 				 * During ECN cwnd reduction
2854 				 * always use PRR-SSRB
2855 				 */
2856 				tcp_do_prr_ack(tp, th, &to, SACK_CHANGE,
2857 				    &maxseg);
2858 				(void) tcp_output(tp);
2859 			}
2860 		}
2861 		/*
2862 		 * If we reach this point, ACK is not a duplicate,
2863 		 *     i.e., it ACKs something we sent.
2864 		 */
2865 		if (tp->t_flags & TF_NEEDSYN) {
2866 			/*
2867 			 * T/TCP: Connection was half-synchronized, and our
2868 			 * SYN has been ACK'd (so connection is now fully
2869 			 * synchronized).  Go to non-starred state,
2870 			 * increment snd_una for ACK of SYN, and check if
2871 			 * we can do window scaling.
2872 			 */
2873 			tp->t_flags &= ~TF_NEEDSYN;
2874 			tp->snd_una++;
2875 			/* Do window scaling? */
2876 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2877 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2878 				tp->rcv_scale = tp->request_r_scale;
2879 				/* Send window already scaled. */
2880 			}
2881 		}
2882 
2883 process_ACK:
2884 		INP_WLOCK_ASSERT(inp);
2885 
2886 		/*
2887 		 * Adjust for the SYN bit in sequence space,
2888 		 * but don't account for it in cwnd calculations.
2889 		 * This is for the SYN_RECEIVED, non-simultaneous
2890 		 * SYN case. SYN_SENT and simultaneous SYN are
2891 		 * treated elsewhere.
2892 		 */
2893 		if (incforsyn)
2894 			tp->snd_una++;
2895 		acked = BYTES_THIS_ACK(tp, th);
2896 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2897 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2898 		    tp->snd_una, th->th_ack, tp, m));
2899 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2900 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2901 
2902 		/*
2903 		 * If we just performed our first retransmit, and the ACK
2904 		 * arrives within our recovery window, then it was a mistake
2905 		 * to do the retransmit in the first place.  Recover our
2906 		 * original cwnd and ssthresh, and proceed to transmit where
2907 		 * we left off.
2908 		 */
2909 		if (tp->t_rxtshift == 1 &&
2910 		    tp->t_flags & TF_PREVVALID &&
2911 		    tp->t_badrxtwin != 0 &&
2912 		    to.to_flags & TOF_TS &&
2913 		    to.to_tsecr != 0 &&
2914 		    TSTMP_LT(to.to_tsecr, tp->t_badrxtwin))
2915 			cc_cong_signal(tp, th, CC_RTO_ERR);
2916 
2917 		/*
2918 		 * If we have a timestamp reply, update smoothed
2919 		 * round trip time.  If no timestamp is present but
2920 		 * transmit timer is running and timed sequence
2921 		 * number was acked, update smoothed round trip time.
2922 		 * Since we now have an rtt measurement, cancel the
2923 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2924 		 * Recompute the initial retransmit timer.
2925 		 *
2926 		 * Some boxes send broken timestamp replies
2927 		 * during the SYN+ACK phase, ignore
2928 		 * timestamps of 0 or we could calculate a
2929 		 * huge RTT and blow up the retransmit timer.
2930 		 */
2931 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2932 			uint32_t t;
2933 
2934 			t = tcp_ts_getticks() - to.to_tsecr;
2935 			if (!tp->t_rttlow || tp->t_rttlow > t)
2936 				tp->t_rttlow = t;
2937 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2938 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2939 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2940 				tp->t_rttlow = ticks - tp->t_rtttime;
2941 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2942 		}
2943 
2944 		SOCKBUF_LOCK(&so->so_snd);
2945 		/*
2946 		 * Clear t_acktime if remote side has ACKd all data in the
2947 		 * socket buffer and FIN (if applicable).
2948 		 * Otherwise, update t_acktime if we received a sufficiently
2949 		 * large ACK.
2950 		 */
2951 		if ((tp->t_state <= TCPS_CLOSE_WAIT &&
2952 		    acked == sbavail(&so->so_snd)) ||
2953 		    acked > sbavail(&so->so_snd))
2954 			tp->t_acktime = 0;
2955 		else if (acked > 1)
2956 			tp->t_acktime = ticks;
2957 
2958 		/*
2959 		 * If all outstanding data is acked, stop retransmit
2960 		 * timer and remember to restart (more output or persist).
2961 		 * If there is more data to be acked, restart retransmit
2962 		 * timer, using current (possibly backed-off) value.
2963 		 */
2964 		if (th->th_ack == tp->snd_max) {
2965 			tcp_timer_activate(tp, TT_REXMT, 0);
2966 			needoutput = 1;
2967 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2968 			tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
2969 
2970 		/*
2971 		 * If no data (only SYN) was ACK'd,
2972 		 *    skip rest of ACK processing.
2973 		 */
2974 		if (acked == 0) {
2975 			SOCKBUF_UNLOCK(&so->so_snd);
2976 			goto step6;
2977 		}
2978 
2979 		/*
2980 		 * Let the congestion control algorithm update congestion
2981 		 * control related information. This typically means increasing
2982 		 * the congestion window.
2983 		 */
2984 		cc_ack_received(tp, th, nsegs, CC_ACK);
2985 
2986 		if (acked > sbavail(&so->so_snd)) {
2987 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2988 				tp->snd_wnd -= sbavail(&so->so_snd);
2989 			else
2990 				tp->snd_wnd = 0;
2991 			mfree = sbcut_locked(&so->so_snd,
2992 			    (int)sbavail(&so->so_snd));
2993 			ourfinisacked = 1;
2994 		} else {
2995 			mfree = sbcut_locked(&so->so_snd, acked);
2996 			if (tp->snd_wnd >= (uint32_t) acked)
2997 				tp->snd_wnd -= acked;
2998 			else
2999 				tp->snd_wnd = 0;
3000 			ourfinisacked = 0;
3001 		}
3002 		/* NB: sowwakeup_locked() does an implicit unlock. */
3003 		sowwakeup_locked(so);
3004 		m_freem(mfree);
3005 		/* Detect una wraparound. */
3006 		if (!IN_RECOVERY(tp->t_flags) &&
3007 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
3008 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
3009 			tp->snd_recover = th->th_ack - 1;
3010 		tp->snd_una = th->th_ack;
3011 		if (IN_RECOVERY(tp->t_flags) &&
3012 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
3013 			cc_post_recovery(tp, th);
3014 		}
3015 		if (tp->t_flags & TF_SACK_PERMIT) {
3016 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
3017 				tp->snd_recover = tp->snd_una;
3018 		}
3019 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3020 			tp->snd_nxt = tp->snd_una;
3021 
3022 		switch (tp->t_state) {
3023 		/*
3024 		 * In FIN_WAIT_1 STATE in addition to the processing
3025 		 * for the ESTABLISHED state if our FIN is now acknowledged
3026 		 * then enter FIN_WAIT_2.
3027 		 */
3028 		case TCPS_FIN_WAIT_1:
3029 			if (ourfinisacked) {
3030 				/*
3031 				 * If we can't receive any more
3032 				 * data, then closing user can proceed.
3033 				 * Starting the timer is contrary to the
3034 				 * specification, but if we don't get a FIN
3035 				 * we'll hang forever.
3036 				 */
3037 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3038 					tcp_free_sackholes(tp);
3039 					soisdisconnected(so);
3040 					tcp_timer_activate(tp, TT_2MSL,
3041 					    (tcp_fast_finwait2_recycle ?
3042 					    tcp_finwait2_timeout :
3043 					    TP_MAXIDLE(tp)));
3044 				}
3045 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
3046 			}
3047 			break;
3048 
3049 		/*
3050 		 * In CLOSING STATE in addition to the processing for
3051 		 * the ESTABLISHED state if the ACK acknowledges our FIN
3052 		 * then enter the TIME-WAIT state, otherwise ignore
3053 		 * the segment.
3054 		 */
3055 		case TCPS_CLOSING:
3056 			if (ourfinisacked) {
3057 				tcp_twstart(tp);
3058 				m_freem(m);
3059 				return;
3060 			}
3061 			break;
3062 
3063 		/*
3064 		 * In LAST_ACK, we may still be waiting for data to drain
3065 		 * and/or to be acked, as well as for the ack of our FIN.
3066 		 * If our FIN is now acknowledged, delete the TCB,
3067 		 * enter the closed state and return.
3068 		 */
3069 		case TCPS_LAST_ACK:
3070 			if (ourfinisacked) {
3071 				tp = tcp_close(tp);
3072 				goto drop;
3073 			}
3074 			break;
3075 		}
3076 	}
3077 
3078 step6:
3079 	INP_WLOCK_ASSERT(inp);
3080 
3081 	/*
3082 	 * Update window information.
3083 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3084 	 */
3085 	if ((thflags & TH_ACK) &&
3086 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3087 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3088 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3089 		/* keep track of pure window updates */
3090 		if (tlen == 0 &&
3091 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3092 			TCPSTAT_INC(tcps_rcvwinupd);
3093 		tp->snd_wnd = tiwin;
3094 		tp->snd_wl1 = th->th_seq;
3095 		tp->snd_wl2 = th->th_ack;
3096 		if (tp->snd_wnd > tp->max_sndwnd)
3097 			tp->max_sndwnd = tp->snd_wnd;
3098 		needoutput = 1;
3099 	}
3100 
3101 	/*
3102 	 * Process segments with URG.
3103 	 */
3104 	if ((thflags & TH_URG) && th->th_urp &&
3105 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3106 		/*
3107 		 * This is a kludge, but if we receive and accept
3108 		 * random urgent pointers, we'll crash in
3109 		 * soreceive.  It's hard to imagine someone
3110 		 * actually wanting to send this much urgent data.
3111 		 */
3112 		SOCKBUF_LOCK(&so->so_rcv);
3113 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3114 			th->th_urp = 0;			/* XXX */
3115 			thflags &= ~TH_URG;		/* XXX */
3116 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
3117 			goto dodata;			/* XXX */
3118 		}
3119 		/*
3120 		 * If this segment advances the known urgent pointer,
3121 		 * then mark the data stream.  This should not happen
3122 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3123 		 * a FIN has been received from the remote side.
3124 		 * In these states we ignore the URG.
3125 		 *
3126 		 * According to RFC961 (Assigned Protocols),
3127 		 * the urgent pointer points to the last octet
3128 		 * of urgent data.  We continue, however,
3129 		 * to consider it to indicate the first octet
3130 		 * of data past the urgent section as the original
3131 		 * spec states (in one of two places).
3132 		 */
3133 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3134 			tp->rcv_up = th->th_seq + th->th_urp;
3135 			so->so_oobmark = sbavail(&so->so_rcv) +
3136 			    (tp->rcv_up - tp->rcv_nxt) - 1;
3137 			if (so->so_oobmark == 0)
3138 				so->so_rcv.sb_state |= SBS_RCVATMARK;
3139 			sohasoutofband(so);
3140 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3141 		}
3142 		SOCKBUF_UNLOCK(&so->so_rcv);
3143 		/*
3144 		 * Remove out of band data so doesn't get presented to user.
3145 		 * This can happen independent of advancing the URG pointer,
3146 		 * but if two URG's are pending at once, some out-of-band
3147 		 * data may creep in... ick.
3148 		 */
3149 		if (th->th_urp <= (uint32_t)tlen &&
3150 		    !(so->so_options & SO_OOBINLINE)) {
3151 			/* hdr drop is delayed */
3152 			tcp_pulloutofband(so, th, m, drop_hdrlen);
3153 		}
3154 	} else {
3155 		/*
3156 		 * If no out of band data is expected,
3157 		 * pull receive urgent pointer along
3158 		 * with the receive window.
3159 		 */
3160 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3161 			tp->rcv_up = tp->rcv_nxt;
3162 	}
3163 dodata:							/* XXX */
3164 	INP_WLOCK_ASSERT(inp);
3165 
3166 	/*
3167 	 * Process the segment text, merging it into the TCP sequencing queue,
3168 	 * and arranging for acknowledgment of receipt if necessary.
3169 	 * This process logically involves adjusting tp->rcv_wnd as data
3170 	 * is presented to the user (this happens in tcp_usrreq.c,
3171 	 * case PRU_RCVD).  If a FIN has already been received on this
3172 	 * connection then we just ignore the text.
3173 	 */
3174 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3175 	    (tp->t_flags & TF_FASTOPEN));
3176 	if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
3177 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3178 		tcp_seq save_start = th->th_seq;
3179 		tcp_seq save_rnxt  = tp->rcv_nxt;
3180 		int     save_tlen  = tlen;
3181 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3182 		/*
3183 		 * Insert segment which includes th into TCP reassembly queue
3184 		 * with control block tp.  Set thflags to whether reassembly now
3185 		 * includes a segment with FIN.  This handles the common case
3186 		 * inline (segment is the next to be received on an established
3187 		 * connection, and the queue is empty), avoiding linkage into
3188 		 * and removal from the queue and repetition of various
3189 		 * conversions.
3190 		 * Set DELACK for segments received in order, but ack
3191 		 * immediately when segments are out of order (so
3192 		 * fast retransmit can work).
3193 		 */
3194 		if (th->th_seq == tp->rcv_nxt &&
3195 		    SEGQ_EMPTY(tp) &&
3196 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3197 		     tfo_syn)) {
3198 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3199 				tp->t_flags |= TF_DELACK;
3200 			else
3201 				tp->t_flags |= TF_ACKNOW;
3202 			tp->rcv_nxt += tlen;
3203 			if (tlen &&
3204 			    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
3205 			    (tp->t_fbyte_in == 0)) {
3206 				tp->t_fbyte_in = ticks;
3207 				if (tp->t_fbyte_in == 0)
3208 					tp->t_fbyte_in = 1;
3209 				if (tp->t_fbyte_out && tp->t_fbyte_in)
3210 					tp->t_flags2 |= TF2_FBYTES_COMPLETE;
3211 			}
3212 			thflags = tcp_get_flags(th) & TH_FIN;
3213 			TCPSTAT_INC(tcps_rcvpack);
3214 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3215 			SOCKBUF_LOCK(&so->so_rcv);
3216 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3217 				m_freem(m);
3218 			else
3219 				sbappendstream_locked(&so->so_rcv, m, 0);
3220 			tp->t_flags |= TF_WAKESOR;
3221 		} else {
3222 			/*
3223 			 * XXX: Due to the header drop above "th" is
3224 			 * theoretically invalid by now.  Fortunately
3225 			 * m_adj() doesn't actually frees any mbufs
3226 			 * when trimming from the head.
3227 			 */
3228 			tcp_seq temp = save_start;
3229 
3230 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
3231 			tp->t_flags |= TF_ACKNOW;
3232 		}
3233 		if ((tp->t_flags & TF_SACK_PERMIT) &&
3234 		    (save_tlen > 0) &&
3235 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
3236 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3237 				/*
3238 				 * DSACK actually handled in the fastpath
3239 				 * above.
3240 				 */
3241 				tcp_update_sack_list(tp, save_start,
3242 				    save_start + save_tlen);
3243 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3244 				if ((tp->rcv_numsacks >= 1) &&
3245 				    (tp->sackblks[0].end == save_start)) {
3246 					/*
3247 					 * Partial overlap, recorded at todrop
3248 					 * above.
3249 					 */
3250 					tcp_update_sack_list(tp,
3251 					    tp->sackblks[0].start,
3252 					    tp->sackblks[0].end);
3253 				} else {
3254 					tcp_update_dsack_list(tp, save_start,
3255 					    save_start + save_tlen);
3256 				}
3257 			} else if (tlen >= save_tlen) {
3258 				/* Update of sackblks. */
3259 				tcp_update_dsack_list(tp, save_start,
3260 				    save_start + save_tlen);
3261 			} else if (tlen > 0) {
3262 				tcp_update_dsack_list(tp, save_start,
3263 				    save_start + tlen);
3264 			}
3265 		}
3266 		tcp_handle_wakeup(tp);
3267 #if 0
3268 		/*
3269 		 * Note the amount of data that peer has sent into
3270 		 * our window, in order to estimate the sender's
3271 		 * buffer size.
3272 		 * XXX: Unused.
3273 		 */
3274 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3275 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3276 		else
3277 			len = so->so_rcv.sb_hiwat;
3278 #endif
3279 	} else {
3280 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
3281 			if (tlen > 0) {
3282 				if ((thflags & TH_FIN) != 0) {
3283 					log(LOG_DEBUG, "%s; %s: %s: "
3284 					    "Received %d bytes of data and FIN "
3285 					    "after having received a FIN, "
3286 					    "just dropping both\n",
3287 					    s, __func__,
3288 					    tcpstates[tp->t_state], tlen);
3289 				} else {
3290 					log(LOG_DEBUG, "%s; %s: %s: "
3291 					    "Received %d bytes of data "
3292 					    "after having received a FIN, "
3293 					    "just dropping it\n",
3294 					    s, __func__,
3295 					    tcpstates[tp->t_state], tlen);
3296 				}
3297 			} else {
3298 				if ((thflags & TH_FIN) != 0) {
3299 					log(LOG_DEBUG, "%s; %s: %s: "
3300 					    "Received FIN "
3301 					    "after having received a FIN, "
3302 					    "just dropping it\n",
3303 					    s, __func__,
3304 					    tcpstates[tp->t_state]);
3305 				}
3306 			}
3307 			free(s, M_TCPLOG);
3308 		}
3309 		m_freem(m);
3310 		thflags &= ~TH_FIN;
3311 	}
3312 
3313 	/*
3314 	 * If FIN is received ACK the FIN and let the user know
3315 	 * that the connection is closing.
3316 	 */
3317 	if (thflags & TH_FIN) {
3318 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3319 			/* The socket upcall is handled by socantrcvmore. */
3320 			socantrcvmore(so);
3321 			/*
3322 			 * If connection is half-synchronized
3323 			 * (ie NEEDSYN flag on) then delay ACK,
3324 			 * so it may be piggybacked when SYN is sent.
3325 			 * Otherwise, since we received a FIN then no
3326 			 * more input can be expected, send ACK now.
3327 			 */
3328 			if (tp->t_flags & TF_NEEDSYN)
3329 				tp->t_flags |= TF_DELACK;
3330 			else
3331 				tp->t_flags |= TF_ACKNOW;
3332 			tp->rcv_nxt++;
3333 		}
3334 		switch (tp->t_state) {
3335 		/*
3336 		 * In SYN_RECEIVED and ESTABLISHED STATES
3337 		 * enter the CLOSE_WAIT state.
3338 		 */
3339 		case TCPS_SYN_RECEIVED:
3340 			tp->t_starttime = ticks;
3341 			/* FALLTHROUGH */
3342 		case TCPS_ESTABLISHED:
3343 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3344 			break;
3345 
3346 		/*
3347 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3348 		 * enter the CLOSING state.
3349 		 */
3350 		case TCPS_FIN_WAIT_1:
3351 			tcp_state_change(tp, TCPS_CLOSING);
3352 			break;
3353 
3354 		/*
3355 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3356 		 * starting the time-wait timer, turning off the other
3357 		 * standard timers.
3358 		 */
3359 		case TCPS_FIN_WAIT_2:
3360 			tcp_twstart(tp);
3361 			return;
3362 		}
3363 	}
3364 	TCP_PROBE3(debug__input, tp, th, m);
3365 
3366 	/*
3367 	 * Return any desired output.
3368 	 */
3369 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3370 		(void) tcp_output(tp);
3371 	}
3372 check_delack:
3373 	INP_WLOCK_ASSERT(inp);
3374 
3375 	if (tp->t_flags & TF_DELACK) {
3376 		tp->t_flags &= ~TF_DELACK;
3377 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3378 	}
3379 	INP_WUNLOCK(inp);
3380 	return;
3381 
3382 dropafterack:
3383 	/*
3384 	 * Generate an ACK dropping incoming segment if it occupies
3385 	 * sequence space, where the ACK reflects our state.
3386 	 *
3387 	 * We can now skip the test for the RST flag since all
3388 	 * paths to this code happen after packets containing
3389 	 * RST have been dropped.
3390 	 *
3391 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3392 	 * segment we received passes the SYN-RECEIVED ACK test.
3393 	 * If it fails send a RST.  This breaks the loop in the
3394 	 * "LAND" DoS attack, and also prevents an ACK storm
3395 	 * between two listening ports that have been sent forged
3396 	 * SYN segments, each with the source address of the other.
3397 	 */
3398 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3399 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3400 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3401 		rstreason = BANDLIM_RST_OPENPORT;
3402 		tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
3403 		goto dropwithreset;
3404 	}
3405 	TCP_PROBE3(debug__input, tp, th, m);
3406 	tp->t_flags |= TF_ACKNOW;
3407 	(void) tcp_output(tp);
3408 	INP_WUNLOCK(inp);
3409 	m_freem(m);
3410 	return;
3411 
3412 dropwithreset:
3413 	if (tp != NULL) {
3414 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3415 		INP_WUNLOCK(inp);
3416 	} else
3417 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3418 	return;
3419 
3420 drop:
3421 	/*
3422 	 * Drop space held by incoming segment and return.
3423 	 */
3424 	TCP_PROBE3(debug__input, tp, th, m);
3425 	if (tp != NULL) {
3426 		INP_WUNLOCK(inp);
3427 	}
3428 	m_freem(m);
3429 }
3430 
3431 /*
3432  * Issue RST and make ACK acceptable to originator of segment.
3433  * The mbuf must still include the original packet header.
3434  * tp may be NULL.
3435  */
3436 void
3437 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3438     int tlen, int rstreason)
3439 {
3440 #ifdef INET
3441 	struct ip *ip;
3442 #endif
3443 #ifdef INET6
3444 	struct ip6_hdr *ip6;
3445 #endif
3446 
3447 	if (tp != NULL) {
3448 		INP_LOCK_ASSERT(tptoinpcb(tp));
3449 	}
3450 
3451 	/* Don't bother if destination was broadcast/multicast. */
3452 	if ((tcp_get_flags(th) & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3453 		goto drop;
3454 #ifdef INET6
3455 	if (mtod(m, struct ip *)->ip_v == 6) {
3456 		ip6 = mtod(m, struct ip6_hdr *);
3457 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3458 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3459 			goto drop;
3460 		/* IPv6 anycast check is done at tcp6_input() */
3461 	}
3462 #endif
3463 #if defined(INET) && defined(INET6)
3464 	else
3465 #endif
3466 #ifdef INET
3467 	{
3468 		ip = mtod(m, struct ip *);
3469 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3470 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3471 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3472 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3473 			goto drop;
3474 	}
3475 #endif
3476 
3477 	/* Perform bandwidth limiting. */
3478 	if (badport_bandlim(rstreason) < 0)
3479 		goto drop;
3480 
3481 	/* tcp_respond consumes the mbuf chain. */
3482 	if (tcp_get_flags(th) & TH_ACK) {
3483 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3484 		    th->th_ack, TH_RST);
3485 	} else {
3486 		if (tcp_get_flags(th) & TH_SYN)
3487 			tlen++;
3488 		if (tcp_get_flags(th) & TH_FIN)
3489 			tlen++;
3490 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3491 		    (tcp_seq)0, TH_RST|TH_ACK);
3492 	}
3493 	return;
3494 drop:
3495 	m_freem(m);
3496 }
3497 
3498 /*
3499  * Parse TCP options and place in tcpopt.
3500  */
3501 void
3502 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3503 {
3504 	int opt, optlen;
3505 
3506 	to->to_flags = 0;
3507 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3508 		opt = cp[0];
3509 		if (opt == TCPOPT_EOL)
3510 			break;
3511 		if (opt == TCPOPT_NOP)
3512 			optlen = 1;
3513 		else {
3514 			if (cnt < 2)
3515 				break;
3516 			optlen = cp[1];
3517 			if (optlen < 2 || optlen > cnt)
3518 				break;
3519 		}
3520 		switch (opt) {
3521 		case TCPOPT_MAXSEG:
3522 			if (optlen != TCPOLEN_MAXSEG)
3523 				continue;
3524 			if (!(flags & TO_SYN))
3525 				continue;
3526 			to->to_flags |= TOF_MSS;
3527 			bcopy((char *)cp + 2,
3528 			    (char *)&to->to_mss, sizeof(to->to_mss));
3529 			to->to_mss = ntohs(to->to_mss);
3530 			break;
3531 		case TCPOPT_WINDOW:
3532 			if (optlen != TCPOLEN_WINDOW)
3533 				continue;
3534 			if (!(flags & TO_SYN))
3535 				continue;
3536 			to->to_flags |= TOF_SCALE;
3537 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3538 			break;
3539 		case TCPOPT_TIMESTAMP:
3540 			if (optlen != TCPOLEN_TIMESTAMP)
3541 				continue;
3542 			to->to_flags |= TOF_TS;
3543 			bcopy((char *)cp + 2,
3544 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3545 			to->to_tsval = ntohl(to->to_tsval);
3546 			bcopy((char *)cp + 6,
3547 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3548 			to->to_tsecr = ntohl(to->to_tsecr);
3549 			break;
3550 		case TCPOPT_SIGNATURE:
3551 			/*
3552 			 * In order to reply to a host which has set the
3553 			 * TCP_SIGNATURE option in its initial SYN, we have
3554 			 * to record the fact that the option was observed
3555 			 * here for the syncache code to perform the correct
3556 			 * response.
3557 			 */
3558 			if (optlen != TCPOLEN_SIGNATURE)
3559 				continue;
3560 			to->to_flags |= TOF_SIGNATURE;
3561 			to->to_signature = cp + 2;
3562 			break;
3563 		case TCPOPT_SACK_PERMITTED:
3564 			if (optlen != TCPOLEN_SACK_PERMITTED)
3565 				continue;
3566 			if (!(flags & TO_SYN))
3567 				continue;
3568 			if (!V_tcp_do_sack)
3569 				continue;
3570 			to->to_flags |= TOF_SACKPERM;
3571 			break;
3572 		case TCPOPT_SACK:
3573 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3574 				continue;
3575 			if (flags & TO_SYN)
3576 				continue;
3577 			to->to_flags |= TOF_SACK;
3578 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3579 			to->to_sacks = cp + 2;
3580 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3581 			break;
3582 		case TCPOPT_FAST_OPEN:
3583 			/*
3584 			 * Cookie length validation is performed by the
3585 			 * server side cookie checking code or the client
3586 			 * side cookie cache update code.
3587 			 */
3588 			if (!(flags & TO_SYN))
3589 				continue;
3590 			if (!V_tcp_fastopen_client_enable &&
3591 			    !V_tcp_fastopen_server_enable)
3592 				continue;
3593 			to->to_flags |= TOF_FASTOPEN;
3594 			to->to_tfo_len = optlen - 2;
3595 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3596 			break;
3597 		default:
3598 			continue;
3599 		}
3600 	}
3601 }
3602 
3603 /*
3604  * Pull out of band byte out of a segment so
3605  * it doesn't appear in the user's data queue.
3606  * It is still reflected in the segment length for
3607  * sequencing purposes.
3608  */
3609 void
3610 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3611     int off)
3612 {
3613 	int cnt = off + th->th_urp - 1;
3614 
3615 	while (cnt >= 0) {
3616 		if (m->m_len > cnt) {
3617 			char *cp = mtod(m, caddr_t) + cnt;
3618 			struct tcpcb *tp = sototcpcb(so);
3619 
3620 			INP_WLOCK_ASSERT(tptoinpcb(tp));
3621 
3622 			tp->t_iobc = *cp;
3623 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3624 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3625 			m->m_len--;
3626 			if (m->m_flags & M_PKTHDR)
3627 				m->m_pkthdr.len--;
3628 			return;
3629 		}
3630 		cnt -= m->m_len;
3631 		m = m->m_next;
3632 		if (m == NULL)
3633 			break;
3634 	}
3635 	panic("tcp_pulloutofband");
3636 }
3637 
3638 /*
3639  * Collect new round-trip time estimate
3640  * and update averages and current timeout.
3641  */
3642 void
3643 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3644 {
3645 	int delta;
3646 
3647 	INP_WLOCK_ASSERT(tptoinpcb(tp));
3648 
3649 	TCPSTAT_INC(tcps_rttupdated);
3650 	if (tp->t_rttupdated < UCHAR_MAX)
3651 		tp->t_rttupdated++;
3652 #ifdef STATS
3653 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3654 	    imax(0, rtt * 1000 / hz));
3655 #endif
3656 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3657 		/*
3658 		 * srtt is stored as fixed point with 5 bits after the
3659 		 * binary point (i.e., scaled by 8).  The following magic
3660 		 * is equivalent to the smoothing algorithm in rfc793 with
3661 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3662 		 * point).  Adjust rtt to origin 0.
3663 		 */
3664 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3665 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3666 
3667 		if ((tp->t_srtt += delta) <= 0)
3668 			tp->t_srtt = 1;
3669 
3670 		/*
3671 		 * We accumulate a smoothed rtt variance (actually, a
3672 		 * smoothed mean difference), then set the retransmit
3673 		 * timer to smoothed rtt + 4 times the smoothed variance.
3674 		 * rttvar is stored as fixed point with 4 bits after the
3675 		 * binary point (scaled by 16).  The following is
3676 		 * equivalent to rfc793 smoothing with an alpha of .75
3677 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3678 		 * rfc793's wired-in beta.
3679 		 */
3680 		if (delta < 0)
3681 			delta = -delta;
3682 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3683 		if ((tp->t_rttvar += delta) <= 0)
3684 			tp->t_rttvar = 1;
3685 	} else {
3686 		/*
3687 		 * No rtt measurement yet - use the unsmoothed rtt.
3688 		 * Set the variance to half the rtt (so our first
3689 		 * retransmit happens at 3*rtt).
3690 		 */
3691 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3692 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3693 	}
3694 	tp->t_rtttime = 0;
3695 	tp->t_rxtshift = 0;
3696 
3697 	/*
3698 	 * the retransmit should happen at rtt + 4 * rttvar.
3699 	 * Because of the way we do the smoothing, srtt and rttvar
3700 	 * will each average +1/2 tick of bias.  When we compute
3701 	 * the retransmit timer, we want 1/2 tick of rounding and
3702 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3703 	 * firing of the timer.  The bias will give us exactly the
3704 	 * 1.5 tick we need.  But, because the bias is
3705 	 * statistical, we have to test that we don't drop below
3706 	 * the minimum feasible timer (which is 2 ticks).
3707 	 */
3708 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3709 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3710 
3711 	/*
3712 	 * We received an ack for a packet that wasn't retransmitted;
3713 	 * it is probably safe to discard any error indications we've
3714 	 * received recently.  This isn't quite right, but close enough
3715 	 * for now (a route might have failed after we sent a segment,
3716 	 * and the return path might not be symmetrical).
3717 	 */
3718 	tp->t_softerror = 0;
3719 }
3720 
3721 /*
3722  * Determine a reasonable value for maxseg size.
3723  * If the route is known, check route for mtu.
3724  * If none, use an mss that can be handled on the outgoing interface
3725  * without forcing IP to fragment.  If no route is found, route has no mtu,
3726  * or the destination isn't local, use a default, hopefully conservative
3727  * size (usually 512 or the default IP max size, but no more than the mtu
3728  * of the interface), as we can't discover anything about intervening
3729  * gateways or networks.  We also initialize the congestion/slow start
3730  * window to be a single segment if the destination isn't local.
3731  * While looking at the routing entry, we also initialize other path-dependent
3732  * parameters from pre-set or cached values in the routing entry.
3733  *
3734  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3735  * IP options, e.g. IPSEC data, since length of this data may vary, and
3736  * thus it is calculated for every segment separately in tcp_output().
3737  *
3738  * NOTE that this routine is only called when we process an incoming
3739  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3740  * settings are handled in tcp_mssopt().
3741  */
3742 void
3743 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3744     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3745 {
3746 	int mss = 0;
3747 	uint32_t maxmtu = 0;
3748 	struct inpcb *inp = tptoinpcb(tp);
3749 	struct hc_metrics_lite metrics;
3750 #ifdef INET6
3751 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3752 	size_t min_protoh = isipv6 ?
3753 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3754 			    sizeof (struct tcpiphdr);
3755 #else
3756 	 size_t min_protoh = sizeof(struct tcpiphdr);
3757 #endif
3758 
3759 	INP_WLOCK_ASSERT(inp);
3760 
3761 	if (tp->t_port)
3762 		min_protoh += V_tcp_udp_tunneling_overhead;
3763 	if (mtuoffer != -1) {
3764 		KASSERT(offer == -1, ("%s: conflict", __func__));
3765 		offer = mtuoffer - min_protoh;
3766 	}
3767 
3768 	/* Initialize. */
3769 #ifdef INET6
3770 	if (isipv6) {
3771 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3772 		tp->t_maxseg = V_tcp_v6mssdflt;
3773 	}
3774 #endif
3775 #if defined(INET) && defined(INET6)
3776 	else
3777 #endif
3778 #ifdef INET
3779 	{
3780 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3781 		tp->t_maxseg = V_tcp_mssdflt;
3782 	}
3783 #endif
3784 
3785 	/*
3786 	 * No route to sender, stay with default mss and return.
3787 	 */
3788 	if (maxmtu == 0) {
3789 		/*
3790 		 * In case we return early we need to initialize metrics
3791 		 * to a defined state as tcp_hc_get() would do for us
3792 		 * if there was no cache hit.
3793 		 */
3794 		if (metricptr != NULL)
3795 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3796 		return;
3797 	}
3798 
3799 	/* What have we got? */
3800 	switch (offer) {
3801 		case 0:
3802 			/*
3803 			 * Offer == 0 means that there was no MSS on the SYN
3804 			 * segment, in this case we use tcp_mssdflt as
3805 			 * already assigned to t_maxseg above.
3806 			 */
3807 			offer = tp->t_maxseg;
3808 			break;
3809 
3810 		case -1:
3811 			/*
3812 			 * Offer == -1 means that we didn't receive SYN yet.
3813 			 */
3814 			/* FALLTHROUGH */
3815 
3816 		default:
3817 			/*
3818 			 * Prevent DoS attack with too small MSS. Round up
3819 			 * to at least minmss.
3820 			 */
3821 			offer = max(offer, V_tcp_minmss);
3822 	}
3823 
3824 	/*
3825 	 * rmx information is now retrieved from tcp_hostcache.
3826 	 */
3827 	tcp_hc_get(&inp->inp_inc, &metrics);
3828 	if (metricptr != NULL)
3829 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3830 
3831 	/*
3832 	 * If there's a discovered mtu in tcp hostcache, use it.
3833 	 * Else, use the link mtu.
3834 	 */
3835 	if (metrics.rmx_mtu)
3836 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3837 	else {
3838 #ifdef INET6
3839 		if (isipv6) {
3840 			mss = maxmtu - min_protoh;
3841 			if (!V_path_mtu_discovery &&
3842 			    !in6_localaddr(&inp->in6p_faddr))
3843 				mss = min(mss, V_tcp_v6mssdflt);
3844 		}
3845 #endif
3846 #if defined(INET) && defined(INET6)
3847 		else
3848 #endif
3849 #ifdef INET
3850 		{
3851 			mss = maxmtu - min_protoh;
3852 			if (!V_path_mtu_discovery &&
3853 			    !in_localaddr(inp->inp_faddr))
3854 				mss = min(mss, V_tcp_mssdflt);
3855 		}
3856 #endif
3857 		/*
3858 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3859 		 * probably violates the TCP spec.
3860 		 * The problem is that, since we don't know the
3861 		 * other end's MSS, we are supposed to use a conservative
3862 		 * default.  But, if we do that, then MTU discovery will
3863 		 * never actually take place, because the conservative
3864 		 * default is much less than the MTUs typically seen
3865 		 * on the Internet today.  For the moment, we'll sweep
3866 		 * this under the carpet.
3867 		 *
3868 		 * The conservative default might not actually be a problem
3869 		 * if the only case this occurs is when sending an initial
3870 		 * SYN with options and data to a host we've never talked
3871 		 * to before.  Then, they will reply with an MSS value which
3872 		 * will get recorded and the new parameters should get
3873 		 * recomputed.  For Further Study.
3874 		 */
3875 	}
3876 	mss = min(mss, offer);
3877 
3878 	/*
3879 	 * Sanity check: make sure that maxseg will be large
3880 	 * enough to allow some data on segments even if the
3881 	 * all the option space is used (40bytes).  Otherwise
3882 	 * funny things may happen in tcp_output.
3883 	 *
3884 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3885 	 */
3886 	mss = max(mss, 64);
3887 
3888 	tp->t_maxseg = mss;
3889 	if (tp->t_maxseg < V_tcp_mssdflt) {
3890 		/*
3891 		 * The MSS is so small we should not process incoming
3892 		 * SACK's since we are subject to attack in such a
3893 		 * case.
3894 		 */
3895 		tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3896 	} else {
3897 		tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3898 	}
3899 
3900 }
3901 
3902 void
3903 tcp_mss(struct tcpcb *tp, int offer)
3904 {
3905 	int mss;
3906 	uint32_t bufsize;
3907 	struct inpcb *inp = tptoinpcb(tp);
3908 	struct socket *so;
3909 	struct hc_metrics_lite metrics;
3910 	struct tcp_ifcap cap;
3911 
3912 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3913 
3914 	bzero(&cap, sizeof(cap));
3915 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3916 
3917 	mss = tp->t_maxseg;
3918 
3919 	/*
3920 	 * If there's a pipesize, change the socket buffer to that size,
3921 	 * don't change if sb_hiwat is different than default (then it
3922 	 * has been changed on purpose with setsockopt).
3923 	 * Make the socket buffers an integral number of mss units;
3924 	 * if the mss is larger than the socket buffer, decrease the mss.
3925 	 */
3926 	so = inp->inp_socket;
3927 	SOCKBUF_LOCK(&so->so_snd);
3928 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3929 		bufsize = metrics.rmx_sendpipe;
3930 	else
3931 		bufsize = so->so_snd.sb_hiwat;
3932 	if (bufsize < mss)
3933 		mss = bufsize;
3934 	else {
3935 		bufsize = roundup(bufsize, mss);
3936 		if (bufsize > sb_max)
3937 			bufsize = sb_max;
3938 		if (bufsize > so->so_snd.sb_hiwat)
3939 			(void)sbreserve_locked(so, SO_SND, bufsize, NULL);
3940 	}
3941 	SOCKBUF_UNLOCK(&so->so_snd);
3942 	/*
3943 	 * Sanity check: make sure that maxseg will be large
3944 	 * enough to allow some data on segments even if the
3945 	 * all the option space is used (40bytes).  Otherwise
3946 	 * funny things may happen in tcp_output.
3947 	 *
3948 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3949 	 */
3950 	tp->t_maxseg = max(mss, 64);
3951 	if (tp->t_maxseg < V_tcp_mssdflt) {
3952 		/*
3953 		 * The MSS is so small we should not process incoming
3954 		 * SACK's since we are subject to attack in such a
3955 		 * case.
3956 		 */
3957 		tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3958 	} else {
3959 		tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3960 	}
3961 
3962 	SOCKBUF_LOCK(&so->so_rcv);
3963 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3964 		bufsize = metrics.rmx_recvpipe;
3965 	else
3966 		bufsize = so->so_rcv.sb_hiwat;
3967 	if (bufsize > mss) {
3968 		bufsize = roundup(bufsize, mss);
3969 		if (bufsize > sb_max)
3970 			bufsize = sb_max;
3971 		if (bufsize > so->so_rcv.sb_hiwat)
3972 			(void)sbreserve_locked(so, SO_RCV, bufsize, NULL);
3973 	}
3974 	SOCKBUF_UNLOCK(&so->so_rcv);
3975 
3976 	/* Check the interface for TSO capabilities. */
3977 	if (cap.ifcap & CSUM_TSO) {
3978 		tp->t_flags |= TF_TSO;
3979 		tp->t_tsomax = cap.tsomax;
3980 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3981 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3982 	}
3983 }
3984 
3985 /*
3986  * Determine the MSS option to send on an outgoing SYN.
3987  */
3988 int
3989 tcp_mssopt(struct in_conninfo *inc)
3990 {
3991 	int mss = 0;
3992 	uint32_t thcmtu = 0;
3993 	uint32_t maxmtu = 0;
3994 	size_t min_protoh;
3995 
3996 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3997 
3998 #ifdef INET6
3999 	if (inc->inc_flags & INC_ISIPV6) {
4000 		mss = V_tcp_v6mssdflt;
4001 		maxmtu = tcp_maxmtu6(inc, NULL);
4002 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
4003 	}
4004 #endif
4005 #if defined(INET) && defined(INET6)
4006 	else
4007 #endif
4008 #ifdef INET
4009 	{
4010 		mss = V_tcp_mssdflt;
4011 		maxmtu = tcp_maxmtu(inc, NULL);
4012 		min_protoh = sizeof(struct tcpiphdr);
4013 	}
4014 #endif
4015 #if defined(INET6) || defined(INET)
4016 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
4017 #endif
4018 
4019 	if (maxmtu && thcmtu)
4020 		mss = min(maxmtu, thcmtu) - min_protoh;
4021 	else if (maxmtu || thcmtu)
4022 		mss = max(maxmtu, thcmtu) - min_protoh;
4023 
4024 	return (mss);
4025 }
4026 
4027 void
4028 tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to,
4029     sackstatus_t sack_changed, u_int *maxsegp)
4030 {
4031 	int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0;
4032 	u_int maxseg;
4033 
4034 	INP_WLOCK_ASSERT(tptoinpcb(tp));
4035 
4036 	if (*maxsegp == 0) {
4037 		*maxsegp = tcp_maxseg(tp);
4038 	}
4039 	maxseg = *maxsegp;
4040 	/*
4041 	 * Compute the amount of data that this ACK is indicating
4042 	 * (del_data) and an estimate of how many bytes are in the
4043 	 * network.
4044 	 */
4045 	if (tcp_is_sack_recovery(tp, to) ||
4046 	    (IN_CONGRECOVERY(tp->t_flags) &&
4047 	     !IN_FASTRECOVERY(tp->t_flags))) {
4048 		del_data = tp->sackhint.delivered_data;
4049 		if (V_tcp_do_newsack)
4050 			pipe = tcp_compute_pipe(tp);
4051 		else
4052 			pipe = (tp->snd_nxt - tp->snd_fack) +
4053 				tp->sackhint.sack_bytes_rexmit;
4054 	} else {
4055 		if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg +
4056 					     tp->snd_recover - tp->snd_una)) {
4057 			del_data = maxseg;
4058 		}
4059 		pipe = imax(0, tp->snd_max - tp->snd_una -
4060 			    imin(INT_MAX / 65536, tp->t_dupacks) * maxseg);
4061 	}
4062 	tp->sackhint.prr_delivered += del_data;
4063 	/*
4064 	 * Proportional Rate Reduction
4065 	 */
4066 	if (pipe >= tp->snd_ssthresh) {
4067 		if (tp->sackhint.recover_fs == 0)
4068 			tp->sackhint.recover_fs =
4069 			    imax(1, tp->snd_nxt - tp->snd_una);
4070 		snd_cnt = howmany((long)tp->sackhint.prr_delivered *
4071 			    tp->snd_ssthresh, tp->sackhint.recover_fs) -
4072 			    tp->sackhint.prr_out + maxseg - 1;
4073 	} else {
4074 		/*
4075 		 * PRR 6937bis heuristic:
4076 		 * - A partial ack without SACK block beneath snd_recover
4077 		 * indicates further loss.
4078 		 * - An SACK scoreboard update adding a new hole indicates
4079 		 * further loss, so be conservative and send at most one
4080 		 * segment.
4081 		 * - Prevent ACK splitting attacks, by being conservative
4082 		 * when no new data is acked.
4083 		 */
4084 		if ((sack_changed == SACK_NEWLOSS) || (del_data == 0)) {
4085 			limit = tp->sackhint.prr_delivered -
4086 				tp->sackhint.prr_out;
4087 		} else {
4088 			limit = imax(tp->sackhint.prr_delivered -
4089 				    tp->sackhint.prr_out, del_data) +
4090 				    maxseg;
4091 		}
4092 		snd_cnt = imin((tp->snd_ssthresh - pipe), limit);
4093 	}
4094 	snd_cnt = imax(snd_cnt, 0) / maxseg;
4095 	/*
4096 	 * Send snd_cnt new data into the network in response to this ack.
4097 	 * If there is going to be a SACK retransmission, adjust snd_cwnd
4098 	 * accordingly.
4099 	 */
4100 	if (IN_FASTRECOVERY(tp->t_flags)) {
4101 		if (tcp_is_sack_recovery(tp, to)) {
4102 			tp->snd_cwnd = tp->snd_nxt - tp->snd_recover +
4103 					    tp->sackhint.sack_bytes_rexmit +
4104 					    (snd_cnt * maxseg);
4105 		} else {
4106 			tp->snd_cwnd = (tp->snd_max - tp->snd_una) +
4107 					    (snd_cnt * maxseg);
4108 		}
4109 	} else if (IN_CONGRECOVERY(tp->t_flags)) {
4110 		tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4111 	}
4112 	tp->snd_cwnd = imax(maxseg, tp->snd_cwnd);
4113 }
4114 
4115 /*
4116  * On a partial ack arrives, force the retransmission of the
4117  * next unacknowledged segment.  Do not clear tp->t_dupacks.
4118  * By setting snd_nxt to ti_ack, this forces retransmission timer to
4119  * be started again.
4120  */
4121 void
4122 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
4123 {
4124 	tcp_seq onxt = tp->snd_nxt;
4125 	uint32_t ocwnd = tp->snd_cwnd;
4126 	u_int maxseg = tcp_maxseg(tp);
4127 
4128 	INP_WLOCK_ASSERT(tptoinpcb(tp));
4129 
4130 	tcp_timer_activate(tp, TT_REXMT, 0);
4131 	tp->t_rtttime = 0;
4132 	tp->snd_nxt = th->th_ack;
4133 	/*
4134 	 * Set snd_cwnd to one segment beyond acknowledged offset.
4135 	 * (tp->snd_una has not yet been updated when this function is called.)
4136 	 */
4137 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
4138 	tp->t_flags |= TF_ACKNOW;
4139 	(void) tcp_output(tp);
4140 	tp->snd_cwnd = ocwnd;
4141 	if (SEQ_GT(onxt, tp->snd_nxt))
4142 		tp->snd_nxt = onxt;
4143 	/*
4144 	 * Partial window deflation.  Relies on fact that tp->snd_una
4145 	 * not updated yet.
4146 	 */
4147 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
4148 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
4149 	else
4150 		tp->snd_cwnd = 0;
4151 	tp->snd_cwnd += maxseg;
4152 }
4153 
4154 int
4155 tcp_compute_pipe(struct tcpcb *tp)
4156 {
4157 	if (tp->t_fb->tfb_compute_pipe == NULL) {
4158 		return (tp->snd_max - tp->snd_una +
4159 			tp->sackhint.sack_bytes_rexmit -
4160 			tp->sackhint.sacked_bytes -
4161 			tp->sackhint.lost_bytes);
4162 	} else {
4163 		return((*tp->t_fb->tfb_compute_pipe)(tp));
4164 	}
4165 }
4166 
4167 uint32_t
4168 tcp_compute_initwnd(uint32_t maxseg)
4169 {
4170 	/*
4171 	 * Calculate the Initial Window, also used as Restart Window
4172 	 *
4173 	 * RFC5681 Section 3.1 specifies the default conservative values.
4174 	 * RFC3390 specifies slightly more aggressive values.
4175 	 * RFC6928 increases it to ten segments.
4176 	 * Support for user specified value for initial flight size.
4177 	 */
4178 	if (V_tcp_initcwnd_segments)
4179 		return min(V_tcp_initcwnd_segments * maxseg,
4180 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
4181 	else if (V_tcp_do_rfc3390)
4182 		return min(4 * maxseg, max(2 * maxseg, 4380));
4183 	else {
4184 		/* Per RFC5681 Section 3.1 */
4185 		if (maxseg > 2190)
4186 			return (2 * maxseg);
4187 		else if (maxseg > 1095)
4188 			return (3 * maxseg);
4189 		else
4190 			return (4 * maxseg);
4191 	}
4192 }
4193