1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 2007-2008,2010 7 * Swinburne University of Technology, Melbourne, Australia. 8 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org> 9 * Copyright (c) 2010 The FreeBSD Foundation 10 * Copyright (c) 2010-2011 Juniper Networks, Inc. 11 * All rights reserved. 12 * 13 * Portions of this software were developed at the Centre for Advanced Internet 14 * Architectures, Swinburne University of Technology, by Lawrence Stewart, 15 * James Healy and David Hayes, made possible in part by a grant from the Cisco 16 * University Research Program Fund at Community Foundation Silicon Valley. 17 * 18 * Portions of this software were developed at the Centre for Advanced 19 * Internet Architectures, Swinburne University of Technology, Melbourne, 20 * Australia by David Hayes under sponsorship from the FreeBSD Foundation. 21 * 22 * Portions of this software were developed by Robert N. M. Watson under 23 * contract to Juniper Networks, Inc. 24 * 25 * Redistribution and use in source and binary forms, with or without 26 * modification, are permitted provided that the following conditions 27 * are met: 28 * 1. Redistributions of source code must retain the above copyright 29 * notice, this list of conditions and the following disclaimer. 30 * 2. Redistributions in binary form must reproduce the above copyright 31 * notice, this list of conditions and the following disclaimer in the 32 * documentation and/or other materials provided with the distribution. 33 * 3. Neither the name of the University nor the names of its contributors 34 * may be used to endorse or promote products derived from this software 35 * without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 47 * SUCH DAMAGE. 48 */ 49 50 #include <sys/cdefs.h> 51 #include "opt_inet.h" 52 #include "opt_inet6.h" 53 #include "opt_ipsec.h" 54 #include "opt_rss.h" 55 56 #include <sys/param.h> 57 #include <sys/arb.h> 58 #include <sys/kernel.h> 59 #ifdef TCP_HHOOK 60 #include <sys/hhook.h> 61 #endif 62 #include <sys/malloc.h> 63 #include <sys/mbuf.h> 64 #include <sys/proc.h> /* for proc0 declaration */ 65 #include <sys/protosw.h> 66 #include <sys/qmath.h> 67 #include <sys/sdt.h> 68 #include <sys/signalvar.h> 69 #include <sys/socket.h> 70 #include <sys/socketvar.h> 71 #include <sys/sysctl.h> 72 #include <sys/syslog.h> 73 #include <sys/systm.h> 74 #include <sys/stats.h> 75 76 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */ 77 78 #include <vm/uma.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #define TCPSTATES /* for logging */ 87 88 #include <netinet/in.h> 89 #include <netinet/in_kdtrace.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_rss.h> 92 #include <netinet/in_systm.h> 93 #include <netinet/ip.h> 94 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 95 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 96 #include <netinet/ip_var.h> 97 #include <netinet/ip_options.h> 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/in6_pcb.h> 101 #include <netinet6/in6_rss.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #include <netinet6/nd6.h> 105 #include <netinet/tcp.h> 106 #include <netinet/tcp_fsm.h> 107 #include <netinet/tcp_seq.h> 108 #include <netinet/tcp_timer.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet/tcp_log_buf.h> 111 #include <netinet6/tcp6_var.h> 112 #include <netinet/tcpip.h> 113 #include <netinet/cc/cc.h> 114 #include <netinet/tcp_fastopen.h> 115 #ifdef TCPPCAP 116 #include <netinet/tcp_pcap.h> 117 #endif 118 #include <netinet/tcp_syncache.h> 119 #ifdef TCP_OFFLOAD 120 #include <netinet/tcp_offload.h> 121 #endif 122 #include <netinet/tcp_ecn.h> 123 #include <netinet/udp.h> 124 125 #include <netipsec/ipsec_support.h> 126 127 #include <machine/in_cksum.h> 128 129 #include <security/mac/mac_framework.h> 130 131 const int tcprexmtthresh = 3; 132 133 VNET_DEFINE(int, tcp_log_in_vain) = 0; 134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 135 &VNET_NAME(tcp_log_in_vain), 0, 136 "Log all incoming TCP segments to closed ports"); 137 138 VNET_DEFINE(int, blackhole) = 0; 139 #define V_blackhole VNET(blackhole) 140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 141 &VNET_NAME(blackhole), 0, 142 "Do not send RST on segments to closed ports"); 143 144 VNET_DEFINE(bool, blackhole_local) = false; 145 #define V_blackhole_local VNET(blackhole_local) 146 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 147 CTLFLAG_RW, &VNET_NAME(blackhole_local), false, 148 "Enforce net.inet.tcp.blackhole for locally originated packets"); 149 150 VNET_DEFINE(int, tcp_delack_enabled) = 1; 151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW, 152 &VNET_NAME(tcp_delack_enabled), 0, 153 "Delay ACK to try and piggyback it onto a data packet"); 154 155 VNET_DEFINE(int, drop_synfin) = 0; 156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW, 157 &VNET_NAME(drop_synfin), 0, 158 "Drop TCP packets with SYN+FIN set"); 159 160 VNET_DEFINE(int, tcp_do_prr) = 1; 161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW, 162 &VNET_NAME(tcp_do_prr), 1, 163 "Enable Proportional Rate Reduction per RFC 6937"); 164 165 VNET_DEFINE(int, tcp_do_newcwv) = 0; 166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW, 167 &VNET_NAME(tcp_do_newcwv), 0, 168 "Enable New Congestion Window Validation per RFC7661"); 169 170 VNET_DEFINE(int, tcp_do_rfc3042) = 1; 171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW, 172 &VNET_NAME(tcp_do_rfc3042), 0, 173 "Enable RFC 3042 (Limited Transmit)"); 174 175 VNET_DEFINE(int, tcp_do_rfc3390) = 1; 176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW, 177 &VNET_NAME(tcp_do_rfc3390), 0, 178 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)"); 179 180 VNET_DEFINE(int, tcp_initcwnd_segments) = 10; 181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments, 182 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0, 183 "Slow-start flight size (initial congestion window) in number of segments"); 184 185 VNET_DEFINE(int, tcp_do_rfc3465) = 1; 186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW, 187 &VNET_NAME(tcp_do_rfc3465), 0, 188 "Enable RFC 3465 (Appropriate Byte Counting)"); 189 190 VNET_DEFINE(int, tcp_abc_l_var) = 2; 191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW, 192 &VNET_NAME(tcp_abc_l_var), 2, 193 "Cap the max cwnd increment during slow-start to this number of segments"); 194 195 VNET_DEFINE(int, tcp_insecure_syn) = 0; 196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(tcp_insecure_syn), 0, 198 "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets"); 199 200 VNET_DEFINE(int, tcp_insecure_rst) = 0; 201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(tcp_insecure_rst), 0, 203 "Follow RFC793 instead of RFC5961 criteria for accepting RST packets"); 204 205 VNET_DEFINE(int, tcp_recvspace) = 1024*64; 206 #define V_tcp_recvspace VNET(tcp_recvspace) 207 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW, 208 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size"); 209 210 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1; 211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW, 212 &VNET_NAME(tcp_do_autorcvbuf), 0, 213 "Enable automatic receive buffer sizing"); 214 215 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024; 216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW, 217 &VNET_NAME(tcp_autorcvbuf_max), 0, 218 "Max size of automatic receive buffer"); 219 220 VNET_DEFINE(struct inpcbinfo, tcbinfo); 221 222 /* 223 * TCP statistics are stored in an array of counter(9)s, which size matches 224 * size of struct tcpstat. TCP running connection count is a regular array. 225 */ 226 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat); 227 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat, 228 tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); 229 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]); 230 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD | 231 CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES, 232 "TCP connection counts by TCP state"); 233 234 /* 235 * Kernel module interface for updating tcpstat. The first argument is an index 236 * into tcpstat treated as an array. 237 */ 238 void 239 kmod_tcpstat_add(int statnum, int val) 240 { 241 242 counter_u64_add(VNET(tcpstat)[statnum], val); 243 } 244 245 /* 246 * Make sure that we only start a SACK loss recovery when 247 * receiving a duplicate ACK with a SACK block, and also 248 * complete SACK loss recovery in case the other end 249 * reneges. 250 */ 251 static bool inline 252 tcp_is_sack_recovery(struct tcpcb *tp, struct tcpopt *to) 253 { 254 return ((tp->t_flags & TF_SACK_PERMIT) && 255 ((to->to_flags & TOF_SACK) || 256 (!TAILQ_EMPTY(&tp->snd_holes)))); 257 } 258 259 #ifdef TCP_HHOOK 260 /* 261 * Wrapper for the TCP established input helper hook. 262 */ 263 void 264 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) 265 { 266 struct tcp_hhook_data hhook_data; 267 268 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) { 269 hhook_data.tp = tp; 270 hhook_data.th = th; 271 hhook_data.to = to; 272 273 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data, 274 &tp->t_osd); 275 } 276 } 277 #endif 278 279 /* 280 * CC wrapper hook functions 281 */ 282 void 283 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs, 284 uint16_t type) 285 { 286 #ifdef STATS 287 int32_t gput; 288 #endif 289 290 INP_WLOCK_ASSERT(tptoinpcb(tp)); 291 292 tp->t_ccv.nsegs = nsegs; 293 tp->t_ccv.bytes_this_ack = BYTES_THIS_ACK(tp, th); 294 if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) || 295 (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) && 296 (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2)))) 297 tp->t_ccv.flags |= CCF_CWND_LIMITED; 298 else 299 tp->t_ccv.flags &= ~CCF_CWND_LIMITED; 300 301 if (type == CC_ACK) { 302 #ifdef STATS 303 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, 304 ((int32_t)tp->snd_cwnd) - tp->snd_wnd); 305 if (!IN_RECOVERY(tp->t_flags)) 306 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN, 307 tp->t_ccv.bytes_this_ack / (tcp_maxseg(tp) * nsegs)); 308 if ((tp->t_flags & TF_GPUTINPROG) && 309 SEQ_GEQ(th->th_ack, tp->gput_ack)) { 310 /* 311 * Compute goodput in bits per millisecond. 312 */ 313 gput = (((int64_t)SEQ_SUB(th->th_ack, tp->gput_seq)) << 3) / 314 max(1, tcp_ts_getticks() - tp->gput_ts); 315 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, 316 gput); 317 /* 318 * XXXLAS: This is a temporary hack, and should be 319 * chained off VOI_TCP_GPUT when stats(9) grows an API 320 * to deal with chained VOIs. 321 */ 322 if (tp->t_stats_gput_prev > 0) 323 stats_voi_update_abs_s32(tp->t_stats, 324 VOI_TCP_GPUT_ND, 325 ((gput - tp->t_stats_gput_prev) * 100) / 326 tp->t_stats_gput_prev); 327 tp->t_flags &= ~TF_GPUTINPROG; 328 tp->t_stats_gput_prev = gput; 329 } 330 #endif /* STATS */ 331 if (tp->snd_cwnd > tp->snd_ssthresh) { 332 tp->t_bytes_acked += tp->t_ccv.bytes_this_ack; 333 if (tp->t_bytes_acked >= tp->snd_cwnd) { 334 tp->t_bytes_acked -= tp->snd_cwnd; 335 tp->t_ccv.flags |= CCF_ABC_SENTAWND; 336 } 337 } else { 338 tp->t_ccv.flags &= ~CCF_ABC_SENTAWND; 339 tp->t_bytes_acked = 0; 340 } 341 } 342 343 if (CC_ALGO(tp)->ack_received != NULL) { 344 /* XXXLAS: Find a way to live without this */ 345 tp->t_ccv.curack = th->th_ack; 346 CC_ALGO(tp)->ack_received(&tp->t_ccv, type); 347 } 348 #ifdef STATS 349 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd); 350 #endif 351 } 352 353 void 354 cc_conn_init(struct tcpcb *tp) 355 { 356 struct hc_metrics_lite metrics; 357 struct inpcb *inp = tptoinpcb(tp); 358 u_int maxseg; 359 int rtt; 360 361 INP_WLOCK_ASSERT(inp); 362 363 tcp_hc_get(&inp->inp_inc, &metrics); 364 maxseg = tcp_maxseg(tp); 365 366 if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) { 367 tp->t_srtt = rtt; 368 TCPSTAT_INC(tcps_usedrtt); 369 if (metrics.rmx_rttvar) { 370 tp->t_rttvar = metrics.rmx_rttvar; 371 TCPSTAT_INC(tcps_usedrttvar); 372 } else { 373 /* default variation is +- 1 rtt */ 374 tp->t_rttvar = 375 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 376 } 377 TCPT_RANGESET(tp->t_rxtcur, 378 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 379 tp->t_rttmin, TCPTV_REXMTMAX); 380 } 381 if (metrics.rmx_ssthresh) { 382 /* 383 * There's some sort of gateway or interface 384 * buffer limit on the path. Use this to set 385 * the slow start threshold, but set the 386 * threshold to no less than 2*mss. 387 */ 388 tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh); 389 TCPSTAT_INC(tcps_usedssthresh); 390 } 391 392 /* 393 * Set the initial slow-start flight size. 394 * 395 * If a SYN or SYN/ACK was lost and retransmitted, we have to 396 * reduce the initial CWND to one segment as congestion is likely 397 * requiring us to be cautious. 398 */ 399 if (tp->snd_cwnd == 1) 400 tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */ 401 else 402 tp->snd_cwnd = tcp_compute_initwnd(maxseg); 403 404 if (CC_ALGO(tp)->conn_init != NULL) 405 CC_ALGO(tp)->conn_init(&tp->t_ccv); 406 } 407 408 void inline 409 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type) 410 { 411 INP_WLOCK_ASSERT(tptoinpcb(tp)); 412 413 #ifdef STATS 414 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); 415 #endif 416 417 switch(type) { 418 case CC_NDUPACK: 419 if (!IN_FASTRECOVERY(tp->t_flags)) { 420 tp->snd_recover = tp->snd_max; 421 if (tp->t_flags2 & TF2_ECN_PERMIT) 422 tp->t_flags2 |= TF2_ECN_SND_CWR; 423 } 424 break; 425 case CC_ECN: 426 if (!IN_CONGRECOVERY(tp->t_flags) || 427 /* 428 * Allow ECN reaction on ACK to CWR, if 429 * that data segment was also CE marked. 430 */ 431 SEQ_GEQ(th->th_ack, tp->snd_recover)) { 432 EXIT_CONGRECOVERY(tp->t_flags); 433 TCPSTAT_INC(tcps_ecn_rcwnd); 434 tp->snd_recover = tp->snd_max + 1; 435 if (tp->t_flags2 & TF2_ECN_PERMIT) 436 tp->t_flags2 |= TF2_ECN_SND_CWR; 437 } 438 break; 439 case CC_RTO: 440 tp->t_dupacks = 0; 441 tp->t_bytes_acked = 0; 442 if ((tp->t_rxtshift > 1) || 443 !((tp->t_flags & TF_SACK_PERMIT) && 444 (!TAILQ_EMPTY(&tp->snd_holes)))) 445 EXIT_RECOVERY(tp->t_flags); 446 if (tp->t_flags2 & TF2_ECN_PERMIT) 447 tp->t_flags2 |= TF2_ECN_SND_CWR; 448 break; 449 case CC_RTO_ERR: 450 TCPSTAT_INC(tcps_sndrexmitbad); 451 /* RTO was unnecessary, so reset everything. */ 452 tp->snd_cwnd = tp->snd_cwnd_prev; 453 tp->snd_ssthresh = tp->snd_ssthresh_prev; 454 tp->snd_recover = tp->snd_recover_prev; 455 if (tp->t_flags & TF_WASFRECOVERY) 456 ENTER_FASTRECOVERY(tp->t_flags); 457 if (tp->t_flags & TF_WASCRECOVERY) 458 ENTER_CONGRECOVERY(tp->t_flags); 459 tp->snd_nxt = tp->snd_max; 460 tp->t_flags &= ~TF_PREVVALID; 461 tp->t_badrxtwin = 0; 462 break; 463 } 464 if (SEQ_LT(tp->snd_fack, tp->snd_una) || 465 SEQ_GT(tp->snd_fack, tp->snd_max)) { 466 tp->snd_fack = tp->snd_una; 467 } 468 469 if (CC_ALGO(tp)->cong_signal != NULL) { 470 if (th != NULL) 471 tp->t_ccv.curack = th->th_ack; 472 CC_ALGO(tp)->cong_signal(&tp->t_ccv, type); 473 } 474 } 475 476 void inline 477 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th) 478 { 479 INP_WLOCK_ASSERT(tptoinpcb(tp)); 480 481 if (CC_ALGO(tp)->post_recovery != NULL) { 482 if (SEQ_LT(tp->snd_fack, th->th_ack) || 483 SEQ_GT(tp->snd_fack, tp->snd_max)) { 484 tp->snd_fack = th->th_ack; 485 } 486 tp->t_ccv.curack = th->th_ack; 487 CC_ALGO(tp)->post_recovery(&tp->t_ccv); 488 } 489 EXIT_RECOVERY(tp->t_flags); 490 491 tp->t_bytes_acked = 0; 492 tp->sackhint.delivered_data = 0; 493 tp->sackhint.prr_delivered = 0; 494 tp->sackhint.prr_out = 0; 495 } 496 497 /* 498 * Indicate whether this ack should be delayed. We can delay the ack if 499 * following conditions are met: 500 * - There is no delayed ack timer in progress. 501 * - Our last ack wasn't a 0-sized window. We never want to delay 502 * the ack that opens up a 0-sized window. 503 * - LRO wasn't used for this segment. We make sure by checking that the 504 * segment size is not larger than the MSS. 505 */ 506 #define DELAY_ACK(tp, tlen) \ 507 ((!tcp_timer_active(tp, TT_DELACK) && \ 508 (tp->t_flags & TF_RXWIN0SENT) == 0) && \ 509 (tlen <= tp->t_maxseg) && \ 510 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN))) 511 512 void inline 513 cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos) 514 { 515 INP_WLOCK_ASSERT(tptoinpcb(tp)); 516 517 if (CC_ALGO(tp)->ecnpkt_handler != NULL) { 518 switch (iptos & IPTOS_ECN_MASK) { 519 case IPTOS_ECN_CE: 520 tp->t_ccv.flags |= CCF_IPHDR_CE; 521 break; 522 case IPTOS_ECN_ECT0: 523 /* FALLTHROUGH */ 524 case IPTOS_ECN_ECT1: 525 /* FALLTHROUGH */ 526 case IPTOS_ECN_NOTECT: 527 tp->t_ccv.flags &= ~CCF_IPHDR_CE; 528 break; 529 } 530 531 if (flags & TH_CWR) 532 tp->t_ccv.flags |= CCF_TCPHDR_CWR; 533 else 534 tp->t_ccv.flags &= ~CCF_TCPHDR_CWR; 535 536 CC_ALGO(tp)->ecnpkt_handler(&tp->t_ccv); 537 538 if (tp->t_ccv.flags & CCF_ACKNOW) { 539 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); 540 tp->t_flags |= TF_ACKNOW; 541 } 542 } 543 } 544 545 void inline 546 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos) 547 { 548 cc_ecnpkt_handler_flags(tp, tcp_get_flags(th), iptos); 549 } 550 551 /* 552 * TCP input handling is split into multiple parts: 553 * tcp6_input is a thin wrapper around tcp_input for the extended 554 * ip6_protox[] call format in ip6_input 555 * tcp_input handles primary segment validation, inpcb lookup and 556 * SYN processing on listen sockets 557 * tcp_do_segment processes the ACK and text of the segment for 558 * establishing, established and closing connections 559 */ 560 #ifdef INET6 561 int 562 tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port) 563 { 564 struct mbuf *m; 565 struct in6_ifaddr *ia6; 566 struct ip6_hdr *ip6; 567 568 m = *mp; 569 if (m->m_len < *offp + sizeof(struct tcphdr)) { 570 m = m_pullup(m, *offp + sizeof(struct tcphdr)); 571 if (m == NULL) { 572 *mp = m; 573 TCPSTAT_INC(tcps_rcvshort); 574 return (IPPROTO_DONE); 575 } 576 } 577 578 /* 579 * draft-itojun-ipv6-tcp-to-anycast 580 * better place to put this in? 581 */ 582 ip6 = mtod(m, struct ip6_hdr *); 583 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 584 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { 585 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 586 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); 587 *mp = NULL; 588 return (IPPROTO_DONE); 589 } 590 591 *mp = m; 592 return (tcp_input_with_port(mp, offp, proto, port)); 593 } 594 595 int 596 tcp6_input(struct mbuf **mp, int *offp, int proto) 597 { 598 599 return(tcp6_input_with_port(mp, offp, proto, 0)); 600 } 601 #endif /* INET6 */ 602 603 int 604 tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port) 605 { 606 struct mbuf *m = *mp; 607 struct tcphdr *th = NULL; 608 struct ip *ip = NULL; 609 struct inpcb *inp = NULL; 610 struct tcpcb *tp = NULL; 611 struct socket *so = NULL; 612 u_char *optp = NULL; 613 int off0; 614 int optlen = 0; 615 #ifdef INET 616 int len; 617 uint8_t ipttl; 618 #endif 619 int tlen = 0, off; 620 int drop_hdrlen; 621 int thflags; 622 int rstreason = 0; /* For badport_bandlim accounting purposes */ 623 int lookupflag; 624 uint8_t iptos; 625 struct m_tag *fwd_tag = NULL; 626 #ifdef INET6 627 struct ip6_hdr *ip6 = NULL; 628 int isipv6; 629 #else 630 const void *ip6 = NULL; 631 #endif /* INET6 */ 632 struct tcpopt to; /* options in this segment */ 633 char *s = NULL; /* address and port logging */ 634 635 NET_EPOCH_ASSERT(); 636 637 #ifdef INET6 638 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; 639 #endif 640 641 off0 = *offp; 642 m = *mp; 643 *mp = NULL; 644 to.to_flags = 0; 645 TCPSTAT_INC(tcps_rcvtotal); 646 647 m->m_pkthdr.tcp_tun_port = port; 648 #ifdef INET6 649 if (isipv6) { 650 ip6 = mtod(m, struct ip6_hdr *); 651 th = (struct tcphdr *)((caddr_t)ip6 + off0); 652 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; 653 if (port) 654 goto skip6_csum; 655 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) { 656 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 657 th->th_sum = m->m_pkthdr.csum_data; 658 else 659 th->th_sum = in6_cksum_pseudo(ip6, tlen, 660 IPPROTO_TCP, m->m_pkthdr.csum_data); 661 th->th_sum ^= 0xffff; 662 } else 663 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen); 664 if (th->th_sum) { 665 TCPSTAT_INC(tcps_rcvbadsum); 666 goto drop; 667 } 668 skip6_csum: 669 /* 670 * Be proactive about unspecified IPv6 address in source. 671 * As we use all-zero to indicate unbounded/unconnected pcb, 672 * unspecified IPv6 address can be used to confuse us. 673 * 674 * Note that packets with unspecified IPv6 destination is 675 * already dropped in ip6_input. 676 */ 677 KASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst), 678 ("%s: unspecified destination v6 address", __func__)); 679 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 680 IP6STAT_INC(ip6s_badscope); /* XXX */ 681 goto drop; 682 } 683 iptos = IPV6_TRAFFIC_CLASS(ip6); 684 } 685 #endif 686 #if defined(INET) && defined(INET6) 687 else 688 #endif 689 #ifdef INET 690 { 691 /* 692 * Get IP and TCP header together in first mbuf. 693 * Note: IP leaves IP header in first mbuf. 694 */ 695 if (off0 > sizeof (struct ip)) { 696 ip_stripoptions(m); 697 off0 = sizeof(struct ip); 698 } 699 if (m->m_len < sizeof (struct tcpiphdr)) { 700 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) 701 == NULL) { 702 TCPSTAT_INC(tcps_rcvshort); 703 return (IPPROTO_DONE); 704 } 705 } 706 ip = mtod(m, struct ip *); 707 th = (struct tcphdr *)((caddr_t)ip + off0); 708 tlen = ntohs(ip->ip_len) - off0; 709 710 iptos = ip->ip_tos; 711 if (port) 712 goto skip_csum; 713 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 714 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 715 th->th_sum = m->m_pkthdr.csum_data; 716 else 717 th->th_sum = in_pseudo(ip->ip_src.s_addr, 718 ip->ip_dst.s_addr, 719 htonl(m->m_pkthdr.csum_data + tlen + 720 IPPROTO_TCP)); 721 th->th_sum ^= 0xffff; 722 } else { 723 struct ipovly *ipov = (struct ipovly *)ip; 724 725 /* 726 * Checksum extended TCP header and data. 727 */ 728 len = off0 + tlen; 729 ipttl = ip->ip_ttl; 730 bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); 731 ipov->ih_len = htons(tlen); 732 th->th_sum = in_cksum(m, len); 733 /* Reset length for SDT probes. */ 734 ip->ip_len = htons(len); 735 /* Reset TOS bits */ 736 ip->ip_tos = iptos; 737 /* Re-initialization for later version check */ 738 ip->ip_ttl = ipttl; 739 ip->ip_v = IPVERSION; 740 ip->ip_hl = off0 >> 2; 741 } 742 skip_csum: 743 if (th->th_sum && (port == 0)) { 744 TCPSTAT_INC(tcps_rcvbadsum); 745 goto drop; 746 } 747 KASSERT(ip->ip_dst.s_addr != INADDR_ANY, 748 ("%s: unspecified destination v4 address", __func__)); 749 if (__predict_false(ip->ip_src.s_addr == INADDR_ANY)) { 750 IPSTAT_INC(ips_badaddr); 751 goto drop; 752 } 753 } 754 #endif /* INET */ 755 756 /* 757 * Check that TCP offset makes sense, 758 * pull out TCP options and adjust length. XXX 759 */ 760 off = th->th_off << 2; 761 if (off < sizeof (struct tcphdr) || off > tlen) { 762 TCPSTAT_INC(tcps_rcvbadoff); 763 goto drop; 764 } 765 tlen -= off; /* tlen is used instead of ti->ti_len */ 766 if (off > sizeof (struct tcphdr)) { 767 #ifdef INET6 768 if (isipv6) { 769 if (m->m_len < off0 + off) { 770 m = m_pullup(m, off0 + off); 771 if (m == NULL) { 772 TCPSTAT_INC(tcps_rcvshort); 773 return (IPPROTO_DONE); 774 } 775 } 776 ip6 = mtod(m, struct ip6_hdr *); 777 th = (struct tcphdr *)((caddr_t)ip6 + off0); 778 } 779 #endif 780 #if defined(INET) && defined(INET6) 781 else 782 #endif 783 #ifdef INET 784 { 785 if (m->m_len < sizeof(struct ip) + off) { 786 if ((m = m_pullup(m, sizeof (struct ip) + off)) 787 == NULL) { 788 TCPSTAT_INC(tcps_rcvshort); 789 return (IPPROTO_DONE); 790 } 791 ip = mtod(m, struct ip *); 792 th = (struct tcphdr *)((caddr_t)ip + off0); 793 } 794 } 795 #endif 796 optlen = off - sizeof (struct tcphdr); 797 optp = (u_char *)(th + 1); 798 } 799 thflags = tcp_get_flags(th); 800 801 /* 802 * Convert TCP protocol specific fields to host format. 803 */ 804 tcp_fields_to_host(th); 805 806 /* 807 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options. 808 */ 809 drop_hdrlen = off0 + off; 810 811 /* 812 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 813 */ 814 if ( 815 #ifdef INET6 816 (isipv6 && (m->m_flags & M_IP6_NEXTHOP)) 817 #ifdef INET 818 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP)) 819 #endif 820 #endif 821 #if defined(INET) && !defined(INET6) 822 (m->m_flags & M_IP_NEXTHOP) 823 #endif 824 ) 825 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 826 827 /* 828 * For initial SYN packets we don't need write lock on matching 829 * PCB, be it a listening one or a synchronized one. The packet 830 * shall not modify its state. 831 */ 832 lookupflag = INPLOOKUP_WILDCARD | 833 ((thflags & (TH_ACK|TH_SYN)) == TH_SYN ? 834 INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB); 835 findpcb: 836 tp = NULL; 837 #ifdef INET6 838 if (isipv6 && fwd_tag != NULL) { 839 struct sockaddr_in6 *next_hop6; 840 841 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1); 842 /* 843 * Transparently forwarded. Pretend to be the destination. 844 * Already got one like this? 845 */ 846 inp = in6_pcblookup_mbuf(&V_tcbinfo, 847 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport, 848 lookupflag & ~INPLOOKUP_WILDCARD, m->m_pkthdr.rcvif, m); 849 if (!inp) { 850 /* 851 * It's new. Try to find the ambushing socket. 852 * Because we've rewritten the destination address, 853 * any hardware-generated hash is ignored. 854 */ 855 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src, 856 th->th_sport, &next_hop6->sin6_addr, 857 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) : 858 th->th_dport, lookupflag, m->m_pkthdr.rcvif); 859 } 860 } else if (isipv6) { 861 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src, 862 th->th_sport, &ip6->ip6_dst, th->th_dport, lookupflag, 863 m->m_pkthdr.rcvif, m); 864 } 865 #endif /* INET6 */ 866 #if defined(INET6) && defined(INET) 867 else 868 #endif 869 #ifdef INET 870 if (fwd_tag != NULL) { 871 struct sockaddr_in *next_hop; 872 873 next_hop = (struct sockaddr_in *)(fwd_tag+1); 874 /* 875 * Transparently forwarded. Pretend to be the destination. 876 * already got one like this? 877 */ 878 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport, 879 ip->ip_dst, th->th_dport, lookupflag & ~INPLOOKUP_WILDCARD, 880 m->m_pkthdr.rcvif, m); 881 if (!inp) { 882 /* 883 * It's new. Try to find the ambushing socket. 884 * Because we've rewritten the destination address, 885 * any hardware-generated hash is ignored. 886 */ 887 inp = in_pcblookup(&V_tcbinfo, ip->ip_src, 888 th->th_sport, next_hop->sin_addr, 889 next_hop->sin_port ? ntohs(next_hop->sin_port) : 890 th->th_dport, lookupflag, m->m_pkthdr.rcvif); 891 } 892 } else 893 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, 894 th->th_sport, ip->ip_dst, th->th_dport, lookupflag, 895 m->m_pkthdr.rcvif, m); 896 #endif /* INET */ 897 898 /* 899 * If the INPCB does not exist then all data in the incoming 900 * segment is discarded and an appropriate RST is sent back. 901 * XXX MRT Send RST using which routing table? 902 */ 903 if (inp == NULL) { 904 if (rstreason != 0) { 905 /* We came here after second (safety) lookup. */ 906 MPASS((lookupflag & INPLOOKUP_WILDCARD) == 0); 907 goto dropwithreset; 908 } 909 /* 910 * Log communication attempts to ports that are not 911 * in use. 912 */ 913 if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) || 914 V_tcp_log_in_vain == 2) { 915 if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6))) 916 log(LOG_INFO, "%s; %s: Connection attempt " 917 "to closed port\n", s, __func__); 918 } 919 rstreason = BANDLIM_RST_CLOSEDPORT; 920 goto dropwithreset; 921 } 922 INP_LOCK_ASSERT(inp); 923 924 if ((inp->inp_flowtype == M_HASHTYPE_NONE) && 925 !SOLISTENING(inp->inp_socket)) { 926 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 927 inp->inp_flowid = m->m_pkthdr.flowid; 928 inp->inp_flowtype = M_HASHTYPE_GET(m); 929 #ifdef RSS 930 } else { 931 /* assign flowid by software RSS hash */ 932 #ifdef INET6 933 if (isipv6) { 934 rss_proto_software_hash_v6(&inp->in6p_faddr, 935 &inp->in6p_laddr, 936 inp->inp_fport, 937 inp->inp_lport, 938 IPPROTO_TCP, 939 &inp->inp_flowid, 940 &inp->inp_flowtype); 941 } else 942 #endif /* INET6 */ 943 { 944 rss_proto_software_hash_v4(inp->inp_faddr, 945 inp->inp_laddr, 946 inp->inp_fport, 947 inp->inp_lport, 948 IPPROTO_TCP, 949 &inp->inp_flowid, 950 &inp->inp_flowtype); 951 } 952 #endif /* RSS */ 953 } 954 } 955 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 956 #ifdef INET6 957 if (isipv6 && IPSEC_ENABLED(ipv6) && 958 IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) { 959 goto dropunlock; 960 } 961 #ifdef INET 962 else 963 #endif 964 #endif /* INET6 */ 965 #ifdef INET 966 if (IPSEC_ENABLED(ipv4) && 967 IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) { 968 goto dropunlock; 969 } 970 #endif /* INET */ 971 #endif /* IPSEC */ 972 973 /* 974 * Check the minimum TTL for socket. 975 */ 976 if (inp->inp_ip_minttl != 0) { 977 #ifdef INET6 978 if (isipv6) { 979 if (inp->inp_ip_minttl > ip6->ip6_hlim) 980 goto dropunlock; 981 } else 982 #endif 983 if (inp->inp_ip_minttl > ip->ip_ttl) 984 goto dropunlock; 985 } 986 987 tp = intotcpcb(inp); 988 switch (tp->t_state) { 989 case TCPS_TIME_WAIT: 990 /* 991 * A previous connection in TIMEWAIT state is supposed to catch 992 * stray or duplicate segments arriving late. If this segment 993 * was a legitimate new connection attempt, the old INPCB gets 994 * removed and we can try again to find a listening socket. 995 */ 996 tcp_dooptions(&to, optp, optlen, 997 (thflags & TH_SYN) ? TO_SYN : 0); 998 /* 999 * tcp_twcheck unlocks the inp always, and frees the m if fails. 1000 */ 1001 if (tcp_twcheck(inp, &to, th, m, tlen)) 1002 goto findpcb; 1003 return (IPPROTO_DONE); 1004 case TCPS_CLOSED: 1005 /* 1006 * The TCPCB may no longer exist if the connection is winding 1007 * down or it is in the CLOSED state. Either way we drop the 1008 * segment and send an appropriate response. 1009 */ 1010 rstreason = BANDLIM_RST_CLOSEDPORT; 1011 goto dropwithreset; 1012 } 1013 1014 if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) { 1015 rstreason = BANDLIM_RST_CLOSEDPORT; 1016 goto dropwithreset; 1017 } 1018 1019 #ifdef TCP_OFFLOAD 1020 if (tp->t_flags & TF_TOE) { 1021 tcp_offload_input(tp, m); 1022 m = NULL; /* consumed by the TOE driver */ 1023 goto dropunlock; 1024 } 1025 #endif 1026 1027 #ifdef MAC 1028 if (mac_inpcb_check_deliver(inp, m)) 1029 goto dropunlock; 1030 #endif 1031 so = inp->inp_socket; 1032 KASSERT(so != NULL, ("%s: so == NULL", __func__)); 1033 /* 1034 * When the socket is accepting connections (the INPCB is in LISTEN 1035 * state) we look into the SYN cache if this is a new connection 1036 * attempt or the completion of a previous one. 1037 */ 1038 KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so), 1039 ("%s: so accepting but tp %p not listening", __func__, tp)); 1040 if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) { 1041 struct in_conninfo inc; 1042 1043 bzero(&inc, sizeof(inc)); 1044 #ifdef INET6 1045 if (isipv6) { 1046 inc.inc_flags |= INC_ISIPV6; 1047 if (inp->inp_inc.inc_flags & INC_IPV6MINMTU) 1048 inc.inc_flags |= INC_IPV6MINMTU; 1049 inc.inc6_faddr = ip6->ip6_src; 1050 inc.inc6_laddr = ip6->ip6_dst; 1051 } else 1052 #endif 1053 { 1054 inc.inc_faddr = ip->ip_src; 1055 inc.inc_laddr = ip->ip_dst; 1056 } 1057 inc.inc_fport = th->th_sport; 1058 inc.inc_lport = th->th_dport; 1059 inc.inc_fibnum = so->so_fibnum; 1060 1061 /* 1062 * Check for an existing connection attempt in syncache if 1063 * the flag is only ACK. A successful lookup creates a new 1064 * socket appended to the listen queue in SYN_RECEIVED state. 1065 */ 1066 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) { 1067 /* 1068 * Parse the TCP options here because 1069 * syncookies need access to the reflected 1070 * timestamp. 1071 */ 1072 tcp_dooptions(&to, optp, optlen, 0); 1073 /* 1074 * NB: syncache_expand() doesn't unlock inp. 1075 */ 1076 rstreason = syncache_expand(&inc, &to, th, &so, m, port); 1077 if (rstreason < 0) { 1078 /* 1079 * A failing TCP MD5 signature comparison 1080 * must result in the segment being dropped 1081 * and must not produce any response back 1082 * to the sender. 1083 */ 1084 goto dropunlock; 1085 } else if (rstreason == 0) { 1086 /* 1087 * No syncache entry, or ACK was not for our 1088 * SYN/ACK. Do our protection against double 1089 * ACK. If peer sent us 2 ACKs, then for the 1090 * first one syncache_expand() successfully 1091 * converted syncache entry into a socket, 1092 * while we were waiting on the inpcb lock. We 1093 * don't want to sent RST for the second ACK, 1094 * so we perform second lookup without wildcard 1095 * match, hoping to find the new socket. If 1096 * the ACK is stray indeed, rstreason would 1097 * hint the above code that the lookup was a 1098 * second attempt. 1099 * 1100 * NB: syncache did its own logging 1101 * of the failure cause. 1102 */ 1103 INP_WUNLOCK(inp); 1104 rstreason = BANDLIM_RST_OPENPORT; 1105 lookupflag &= ~INPLOOKUP_WILDCARD; 1106 goto findpcb; 1107 } 1108 tfo_socket_result: 1109 if (so == NULL) { 1110 /* 1111 * We completed the 3-way handshake 1112 * but could not allocate a socket 1113 * either due to memory shortage, 1114 * listen queue length limits or 1115 * global socket limits. Send RST 1116 * or wait and have the remote end 1117 * retransmit the ACK for another 1118 * try. 1119 */ 1120 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1121 log(LOG_DEBUG, "%s; %s: Listen socket: " 1122 "Socket allocation failed due to " 1123 "limits or memory shortage, %s\n", 1124 s, __func__, 1125 V_tcp_sc_rst_sock_fail ? 1126 "sending RST" : "try again"); 1127 if (V_tcp_sc_rst_sock_fail) { 1128 rstreason = BANDLIM_UNLIMITED; 1129 goto dropwithreset; 1130 } else 1131 goto dropunlock; 1132 } 1133 /* 1134 * Socket is created in state SYN_RECEIVED. 1135 * Unlock the listen socket, lock the newly 1136 * created socket and update the tp variable. 1137 * If we came here via jump to tfo_socket_result, 1138 * then listening socket is read-locked. 1139 */ 1140 INP_UNLOCK(inp); /* listen socket */ 1141 inp = sotoinpcb(so); 1142 /* 1143 * New connection inpcb is already locked by 1144 * syncache_expand(). 1145 */ 1146 INP_WLOCK_ASSERT(inp); 1147 tp = intotcpcb(inp); 1148 KASSERT(tp->t_state == TCPS_SYN_RECEIVED, 1149 ("%s: ", __func__)); 1150 /* 1151 * Process the segment and the data it 1152 * contains. tcp_do_segment() consumes 1153 * the mbuf chain and unlocks the inpcb. 1154 */ 1155 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1156 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, 1157 tlen, iptos); 1158 return (IPPROTO_DONE); 1159 } 1160 /* 1161 * Segment flag validation for new connection attempts: 1162 * 1163 * Our (SYN|ACK) response was rejected. 1164 * Check with syncache and remove entry to prevent 1165 * retransmits. 1166 * 1167 * NB: syncache_chkrst does its own logging of failure 1168 * causes. 1169 */ 1170 if (thflags & TH_RST) { 1171 syncache_chkrst(&inc, th, m, port); 1172 goto dropunlock; 1173 } 1174 /* 1175 * We can't do anything without SYN. 1176 */ 1177 if ((thflags & TH_SYN) == 0) { 1178 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1179 log(LOG_DEBUG, "%s; %s: Listen socket: " 1180 "SYN is missing, segment ignored\n", 1181 s, __func__); 1182 TCPSTAT_INC(tcps_badsyn); 1183 goto dropunlock; 1184 } 1185 /* 1186 * (SYN|ACK) is bogus on a listen socket. 1187 */ 1188 if (thflags & TH_ACK) { 1189 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1190 log(LOG_DEBUG, "%s; %s: Listen socket: " 1191 "SYN|ACK invalid, segment rejected\n", 1192 s, __func__); 1193 syncache_badack(&inc, port); /* XXX: Not needed! */ 1194 TCPSTAT_INC(tcps_badsyn); 1195 rstreason = BANDLIM_RST_OPENPORT; 1196 goto dropwithreset; 1197 } 1198 /* 1199 * If the drop_synfin option is enabled, drop all 1200 * segments with both the SYN and FIN bits set. 1201 * This prevents e.g. nmap from identifying the 1202 * TCP/IP stack. 1203 * XXX: Poor reasoning. nmap has other methods 1204 * and is constantly refining its stack detection 1205 * strategies. 1206 * XXX: This is a violation of the TCP specification 1207 * and was used by RFC1644. 1208 */ 1209 if ((thflags & TH_FIN) && V_drop_synfin) { 1210 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1211 log(LOG_DEBUG, "%s; %s: Listen socket: " 1212 "SYN|FIN segment ignored (based on " 1213 "sysctl setting)\n", s, __func__); 1214 TCPSTAT_INC(tcps_badsyn); 1215 goto dropunlock; 1216 } 1217 /* 1218 * Segment's flags are (SYN) or (SYN|FIN). 1219 * 1220 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored 1221 * as they do not affect the state of the TCP FSM. 1222 * The data pointed to by TH_URG and th_urp is ignored. 1223 */ 1224 KASSERT((thflags & (TH_RST|TH_ACK)) == 0, 1225 ("%s: Listen socket: TH_RST or TH_ACK set", __func__)); 1226 KASSERT(thflags & (TH_SYN), 1227 ("%s: Listen socket: TH_SYN not set", __func__)); 1228 INP_RLOCK_ASSERT(inp); 1229 #ifdef INET6 1230 /* 1231 * If deprecated address is forbidden, 1232 * we do not accept SYN to deprecated interface 1233 * address to prevent any new inbound connection from 1234 * getting established. 1235 * When we do not accept SYN, we send a TCP RST, 1236 * with deprecated source address (instead of dropping 1237 * it). We compromise it as it is much better for peer 1238 * to send a RST, and RST will be the final packet 1239 * for the exchange. 1240 * 1241 * If we do not forbid deprecated addresses, we accept 1242 * the SYN packet. RFC2462 does not suggest dropping 1243 * SYN in this case. 1244 * If we decipher RFC2462 5.5.4, it says like this: 1245 * 1. use of deprecated addr with existing 1246 * communication is okay - "SHOULD continue to be 1247 * used" 1248 * 2. use of it with new communication: 1249 * (2a) "SHOULD NOT be used if alternate address 1250 * with sufficient scope is available" 1251 * (2b) nothing mentioned otherwise. 1252 * Here we fall into (2b) case as we have no choice in 1253 * our source address selection - we must obey the peer. 1254 * 1255 * The wording in RFC2462 is confusing, and there are 1256 * multiple description text for deprecated address 1257 * handling - worse, they are not exactly the same. 1258 * I believe 5.5.4 is the best one, so we follow 5.5.4. 1259 */ 1260 if (isipv6 && !V_ip6_use_deprecated) { 1261 struct in6_ifaddr *ia6; 1262 1263 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1264 if (ia6 != NULL && 1265 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { 1266 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1267 log(LOG_DEBUG, "%s; %s: Listen socket: " 1268 "Connection attempt to deprecated " 1269 "IPv6 address rejected\n", 1270 s, __func__); 1271 rstreason = BANDLIM_RST_OPENPORT; 1272 goto dropwithreset; 1273 } 1274 } 1275 #endif /* INET6 */ 1276 /* 1277 * Basic sanity checks on incoming SYN requests: 1278 * Don't respond if the destination is a link layer 1279 * broadcast according to RFC1122 4.2.3.10, p. 104. 1280 * If it is from this socket it must be forged. 1281 * Don't respond if the source or destination is a 1282 * global or subnet broad- or multicast address. 1283 * Note that it is quite possible to receive unicast 1284 * link-layer packets with a broadcast IP address. Use 1285 * in_broadcast() to find them. 1286 */ 1287 if (m->m_flags & (M_BCAST|M_MCAST)) { 1288 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1289 log(LOG_DEBUG, "%s; %s: Listen socket: " 1290 "Connection attempt from broad- or multicast " 1291 "link layer address ignored\n", s, __func__); 1292 goto dropunlock; 1293 } 1294 #ifdef INET6 1295 if (isipv6) { 1296 if (th->th_dport == th->th_sport && 1297 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) { 1298 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1299 log(LOG_DEBUG, "%s; %s: Listen socket: " 1300 "Connection attempt to/from self " 1301 "ignored\n", s, __func__); 1302 goto dropunlock; 1303 } 1304 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 1305 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 1306 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1307 log(LOG_DEBUG, "%s; %s: Listen socket: " 1308 "Connection attempt from/to multicast " 1309 "address ignored\n", s, __func__); 1310 goto dropunlock; 1311 } 1312 } 1313 #endif 1314 #if defined(INET) && defined(INET6) 1315 else 1316 #endif 1317 #ifdef INET 1318 { 1319 if (th->th_dport == th->th_sport && 1320 ip->ip_dst.s_addr == ip->ip_src.s_addr) { 1321 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1322 log(LOG_DEBUG, "%s; %s: Listen socket: " 1323 "Connection attempt from/to self " 1324 "ignored\n", s, __func__); 1325 goto dropunlock; 1326 } 1327 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 1328 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 1329 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 1330 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { 1331 if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) 1332 log(LOG_DEBUG, "%s; %s: Listen socket: " 1333 "Connection attempt from/to broad- " 1334 "or multicast address ignored\n", 1335 s, __func__); 1336 goto dropunlock; 1337 } 1338 } 1339 #endif 1340 /* 1341 * SYN appears to be valid. Create compressed TCP state 1342 * for syncache. 1343 */ 1344 TCP_PROBE3(debug__input, tp, th, m); 1345 tcp_dooptions(&to, optp, optlen, TO_SYN); 1346 if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL, 1347 iptos, port)) != NULL) 1348 goto tfo_socket_result; 1349 1350 /* 1351 * Entry added to syncache and mbuf consumed. 1352 * Only the listen socket is unlocked by syncache_add(). 1353 */ 1354 return (IPPROTO_DONE); 1355 } else if (tp->t_state == TCPS_LISTEN) { 1356 /* 1357 * When a listen socket is torn down the SO_ACCEPTCONN 1358 * flag is removed first while connections are drained 1359 * from the accept queue in a unlock/lock cycle of the 1360 * ACCEPT_LOCK, opening a race condition allowing a SYN 1361 * attempt go through unhandled. 1362 */ 1363 goto dropunlock; 1364 } 1365 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1366 if (tp->t_flags & TF_SIGNATURE) { 1367 tcp_dooptions(&to, optp, optlen, thflags); 1368 if ((to.to_flags & TOF_SIGNATURE) == 0) { 1369 TCPSTAT_INC(tcps_sig_err_nosigopt); 1370 goto dropunlock; 1371 } 1372 if (!TCPMD5_ENABLED() || 1373 TCPMD5_INPUT(m, th, to.to_signature) != 0) 1374 goto dropunlock; 1375 } 1376 #endif 1377 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1378 1379 /* 1380 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later 1381 * state. tcp_do_segment() always consumes the mbuf chain, unlocks 1382 * the inpcb, and unlocks pcbinfo. 1383 * 1384 * XXXGL: in case of a pure SYN arriving on existing connection 1385 * TCP stacks won't need to modify the PCB, they would either drop 1386 * the segment silently, or send a challenge ACK. However, we try 1387 * to upgrade the lock, because calling convention for stacks is 1388 * write-lock on PCB. If upgrade fails, drop the SYN. 1389 */ 1390 if ((lookupflag & INPLOOKUP_RLOCKPCB) && INP_TRY_UPGRADE(inp) == 0) 1391 goto dropunlock; 1392 1393 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, tlen, iptos); 1394 return (IPPROTO_DONE); 1395 1396 dropwithreset: 1397 /* 1398 * When blackholing do not respond with a RST but 1399 * completely ignore the segment and drop it. 1400 */ 1401 if (((rstreason == BANDLIM_RST_OPENPORT && V_blackhole == 3) || 1402 (rstreason == BANDLIM_RST_CLOSEDPORT && 1403 ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole > 1))) && 1404 (V_blackhole_local || ( 1405 #ifdef INET6 1406 isipv6 ? !in6_localaddr(&ip6->ip6_src) : 1407 #endif 1408 #ifdef INET 1409 !in_localip(ip->ip_src) 1410 #else 1411 true 1412 #endif 1413 ))) 1414 goto dropunlock; 1415 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1416 tcp_dropwithreset(m, th, tp, tlen, rstreason); 1417 m = NULL; /* mbuf chain got consumed. */ 1418 1419 dropunlock: 1420 if (m != NULL) 1421 TCP_PROBE5(receive, NULL, tp, m, tp, th); 1422 1423 if (inp != NULL) 1424 INP_UNLOCK(inp); 1425 1426 drop: 1427 if (s != NULL) 1428 free(s, M_TCPLOG); 1429 if (m != NULL) 1430 m_freem(m); 1431 return (IPPROTO_DONE); 1432 } 1433 1434 /* 1435 * Automatic sizing of receive socket buffer. Often the send 1436 * buffer size is not optimally adjusted to the actual network 1437 * conditions at hand (delay bandwidth product). Setting the 1438 * buffer size too small limits throughput on links with high 1439 * bandwidth and high delay (eg. trans-continental/oceanic links). 1440 * 1441 * On the receive side the socket buffer memory is only rarely 1442 * used to any significant extent. This allows us to be much 1443 * more aggressive in scaling the receive socket buffer. For 1444 * the case that the buffer space is actually used to a large 1445 * extent and we run out of kernel memory we can simply drop 1446 * the new segments; TCP on the sender will just retransmit it 1447 * later. Setting the buffer size too big may only consume too 1448 * much kernel memory if the application doesn't read() from 1449 * the socket or packet loss or reordering makes use of the 1450 * reassembly queue. 1451 * 1452 * The criteria to step up the receive buffer one notch are: 1453 * 1. Application has not set receive buffer size with 1454 * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE. 1455 * 2. the number of bytes received during 1/2 of an sRTT 1456 * is at least 3/8 of the current socket buffer size. 1457 * 3. receive buffer size has not hit maximal automatic size; 1458 * 1459 * If all of the criteria are met we increaset the socket buffer 1460 * by a 1/2 (bounded by the max). This allows us to keep ahead 1461 * of slow-start but also makes it so our peer never gets limited 1462 * by our rwnd which we then open up causing a burst. 1463 * 1464 * This algorithm does two steps per RTT at most and only if 1465 * we receive a bulk stream w/o packet losses or reorderings. 1466 * Shrinking the buffer during idle times is not necessary as 1467 * it doesn't consume any memory when idle. 1468 * 1469 * TODO: Only step up if the application is actually serving 1470 * the buffer to better manage the socket buffer resources. 1471 */ 1472 int 1473 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so, 1474 struct tcpcb *tp, int tlen) 1475 { 1476 int newsize = 0; 1477 1478 if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) && 1479 tp->t_srtt != 0 && tp->rfbuf_ts != 0 && 1480 TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) > 1481 ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) { 1482 if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) && 1483 so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) { 1484 newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max); 1485 } 1486 TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize); 1487 1488 /* Start over with next RTT. */ 1489 tp->rfbuf_ts = 0; 1490 tp->rfbuf_cnt = 0; 1491 } else { 1492 tp->rfbuf_cnt += tlen; /* add up */ 1493 } 1494 return (newsize); 1495 } 1496 1497 int 1498 tcp_input(struct mbuf **mp, int *offp, int proto) 1499 { 1500 return(tcp_input_with_port(mp, offp, proto, 0)); 1501 } 1502 1503 static void 1504 tcp_handle_wakeup(struct tcpcb *tp) 1505 { 1506 1507 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1508 1509 if (tp->t_flags & TF_WAKESOR) { 1510 struct socket *so = tptosocket(tp); 1511 1512 tp->t_flags &= ~TF_WAKESOR; 1513 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1514 sorwakeup_locked(so); 1515 } 1516 } 1517 1518 void 1519 tcp_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th, 1520 int drop_hdrlen, int tlen, uint8_t iptos) 1521 { 1522 uint16_t thflags; 1523 int acked, ourfinisacked, needoutput = 0; 1524 sackstatus_t sack_changed; 1525 int rstreason, todrop, win, incforsyn = 0; 1526 uint32_t tiwin; 1527 uint16_t nsegs; 1528 char *s; 1529 struct inpcb *inp = tptoinpcb(tp); 1530 struct socket *so = tptosocket(tp); 1531 struct in_conninfo *inc = &inp->inp_inc; 1532 struct mbuf *mfree; 1533 struct tcpopt to; 1534 int tfo_syn; 1535 u_int maxseg = 0; 1536 1537 thflags = tcp_get_flags(th); 1538 tp->sackhint.last_sack_ack = 0; 1539 sack_changed = SACK_NOCHANGE; 1540 nsegs = max(1, m->m_pkthdr.lro_nsegs); 1541 1542 NET_EPOCH_ASSERT(); 1543 INP_WLOCK_ASSERT(inp); 1544 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", 1545 __func__)); 1546 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", 1547 __func__)); 1548 1549 #ifdef TCPPCAP 1550 /* Save segment, if requested. */ 1551 tcp_pcap_add(th, m, &(tp->t_inpkts)); 1552 #endif 1553 TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, 1554 tlen, NULL, true); 1555 1556 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { 1557 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1558 log(LOG_DEBUG, "%s; %s: " 1559 "SYN|FIN segment ignored (based on " 1560 "sysctl setting)\n", s, __func__); 1561 free(s, M_TCPLOG); 1562 } 1563 goto drop; 1564 } 1565 1566 /* 1567 * If a segment with the ACK-bit set arrives in the SYN-SENT state 1568 * check SEQ.ACK first. 1569 */ 1570 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && 1571 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { 1572 rstreason = BANDLIM_UNLIMITED; 1573 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 1574 goto dropwithreset; 1575 } 1576 1577 /* 1578 * Segment received on connection. 1579 * Reset idle time and keep-alive timer. 1580 * XXX: This should be done after segment 1581 * validation to ignore broken/spoofed segs. 1582 */ 1583 if (tp->t_idle_reduce && 1584 (tp->snd_max == tp->snd_una) && 1585 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) 1586 cc_after_idle(tp); 1587 tp->t_rcvtime = ticks; 1588 1589 if (thflags & TH_FIN) 1590 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN); 1591 /* 1592 * Scale up the window into a 32-bit value. 1593 * For the SYN_SENT state the scale is zero. 1594 */ 1595 tiwin = th->th_win << tp->snd_scale; 1596 #ifdef STATS 1597 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); 1598 #endif 1599 1600 /* 1601 * TCP ECN processing. 1602 */ 1603 if (tcp_ecn_input_segment(tp, thflags, tlen, 1604 tcp_packets_this_ack(tp, th->th_ack), 1605 iptos)) 1606 cc_cong_signal(tp, th, CC_ECN); 1607 1608 /* 1609 * Parse options on any incoming segment. 1610 */ 1611 tcp_dooptions(&to, (u_char *)(th + 1), 1612 (th->th_off << 2) - sizeof(struct tcphdr), 1613 (thflags & TH_SYN) ? TO_SYN : 0); 1614 if (tp->t_flags2 & TF2_PROC_SACK_PROHIBIT) { 1615 /* 1616 * We don't look at sack's from the 1617 * peer because the MSS is too small which 1618 * can subject us to an attack. 1619 */ 1620 to.to_flags &= ~TOF_SACK; 1621 } 1622 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1623 if ((tp->t_flags & TF_SIGNATURE) != 0 && 1624 (to.to_flags & TOF_SIGNATURE) == 0) { 1625 TCPSTAT_INC(tcps_sig_err_sigopt); 1626 /* XXX: should drop? */ 1627 } 1628 #endif 1629 /* 1630 * If echoed timestamp is later than the current time, 1631 * fall back to non RFC1323 RTT calculation. Normalize 1632 * timestamp if syncookies were used when this connection 1633 * was established. 1634 */ 1635 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { 1636 to.to_tsecr -= tp->ts_offset; 1637 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) { 1638 to.to_tsecr = 0; 1639 } else if (tp->t_rxtshift == 1 && 1640 tp->t_flags & TF_PREVVALID && 1641 tp->t_badrxtwin != 0 && 1642 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) { 1643 cc_cong_signal(tp, th, CC_RTO_ERR); 1644 } 1645 } 1646 /* 1647 * Process options only when we get SYN/ACK back. The SYN case 1648 * for incoming connections is handled in tcp_syncache. 1649 * According to RFC1323 the window field in a SYN (i.e., a <SYN> 1650 * or <SYN,ACK>) segment itself is never scaled. 1651 * XXX this is traditional behavior, may need to be cleaned up. 1652 */ 1653 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { 1654 /* Handle parallel SYN for ECN */ 1655 tcp_ecn_input_parallel_syn(tp, thflags, iptos); 1656 if ((to.to_flags & TOF_SCALE) && 1657 (tp->t_flags & TF_REQ_SCALE) && 1658 !(tp->t_flags & TF_NOOPT)) { 1659 tp->t_flags |= TF_RCVD_SCALE; 1660 tp->snd_scale = to.to_wscale; 1661 } else { 1662 tp->t_flags &= ~TF_REQ_SCALE; 1663 } 1664 /* 1665 * Initial send window. It will be updated with 1666 * the next incoming segment to the scaled value. 1667 */ 1668 tp->snd_wnd = th->th_win; 1669 if ((to.to_flags & TOF_TS) && 1670 (tp->t_flags & TF_REQ_TSTMP) && 1671 !(tp->t_flags & TF_NOOPT)) { 1672 tp->t_flags |= TF_RCVD_TSTMP; 1673 tp->ts_recent = to.to_tsval; 1674 tp->ts_recent_age = tcp_ts_getticks(); 1675 } else { 1676 tp->t_flags &= ~TF_REQ_TSTMP; 1677 } 1678 if (to.to_flags & TOF_MSS) { 1679 tcp_mss(tp, to.to_mss); 1680 } 1681 if ((tp->t_flags & TF_SACK_PERMIT) && 1682 (!(to.to_flags & TOF_SACKPERM) || 1683 (tp->t_flags & TF_NOOPT))) { 1684 tp->t_flags &= ~TF_SACK_PERMIT; 1685 } 1686 if (tp->t_flags & TF_FASTOPEN) { 1687 if ((to.to_flags & TOF_FASTOPEN) && 1688 !(tp->t_flags & TF_NOOPT)) { 1689 uint16_t mss; 1690 1691 if (to.to_flags & TOF_MSS) { 1692 mss = to.to_mss; 1693 } else { 1694 if ((inp->inp_vflag & INP_IPV6) != 0) { 1695 mss = TCP6_MSS; 1696 } else { 1697 mss = TCP_MSS; 1698 } 1699 } 1700 tcp_fastopen_update_cache(tp, mss, 1701 to.to_tfo_len, to.to_tfo_cookie); 1702 } else { 1703 tcp_fastopen_disable_path(tp); 1704 } 1705 } 1706 } 1707 1708 /* 1709 * If timestamps were negotiated during SYN/ACK and a 1710 * segment without a timestamp is received, silently drop 1711 * the segment, unless it is a RST segment or missing timestamps are 1712 * tolerated. 1713 * See section 3.2 of RFC 7323. 1714 */ 1715 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) { 1716 if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) { 1717 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1718 log(LOG_DEBUG, "%s; %s: Timestamp missing, " 1719 "segment processed normally\n", 1720 s, __func__); 1721 free(s, M_TCPLOG); 1722 } 1723 } else { 1724 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1725 log(LOG_DEBUG, "%s; %s: Timestamp missing, " 1726 "segment silently dropped\n", s, __func__); 1727 free(s, M_TCPLOG); 1728 } 1729 goto drop; 1730 } 1731 } 1732 /* 1733 * If timestamps were not negotiated during SYN/ACK and a 1734 * segment with a timestamp is received, ignore the 1735 * timestamp and process the packet normally. 1736 * See section 3.2 of RFC 7323. 1737 */ 1738 if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) { 1739 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 1740 log(LOG_DEBUG, "%s; %s: Timestamp not expected, " 1741 "segment processed normally\n", s, __func__); 1742 free(s, M_TCPLOG); 1743 } 1744 } 1745 1746 /* 1747 * Header prediction: check for the two common cases 1748 * of a uni-directional data xfer. If the packet has 1749 * no control flags, is in-sequence, the window didn't 1750 * change and we're not retransmitting, it's a 1751 * candidate. If the length is zero and the ack moved 1752 * forward, we're the sender side of the xfer. Just 1753 * free the data acked & wake any higher level process 1754 * that was blocked waiting for space. If the length 1755 * is non-zero and the ack didn't move, we're the 1756 * receiver side. If we're getting packets in-order 1757 * (the reassembly queue is empty), add the data to 1758 * the socket buffer and note that we need a delayed ack. 1759 * Make sure that the hidden state-flags are also off. 1760 * Since we check for TCPS_ESTABLISHED first, it can only 1761 * be TH_NEEDSYN. 1762 */ 1763 if (tp->t_state == TCPS_ESTABLISHED && 1764 th->th_seq == tp->rcv_nxt && 1765 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 1766 tp->snd_nxt == tp->snd_max && 1767 tiwin && tiwin == tp->snd_wnd && 1768 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && 1769 SEGQ_EMPTY(tp) && 1770 ((to.to_flags & TOF_TS) == 0 || 1771 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) { 1772 /* 1773 * If last ACK falls within this segment's sequence numbers, 1774 * record the timestamp. 1775 * NOTE that the test is modified according to the latest 1776 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 1777 */ 1778 if ((to.to_flags & TOF_TS) != 0 && 1779 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { 1780 tp->ts_recent_age = tcp_ts_getticks(); 1781 tp->ts_recent = to.to_tsval; 1782 } 1783 1784 if (tlen == 0) { 1785 if (SEQ_GT(th->th_ack, tp->snd_una) && 1786 SEQ_LEQ(th->th_ack, tp->snd_max) && 1787 !IN_RECOVERY(tp->t_flags) && 1788 (to.to_flags & TOF_SACK) == 0 && 1789 TAILQ_EMPTY(&tp->snd_holes)) { 1790 /* 1791 * This is a pure ack for outstanding data. 1792 */ 1793 TCPSTAT_INC(tcps_predack); 1794 1795 /* 1796 * "bad retransmit" recovery without timestamps. 1797 */ 1798 if ((to.to_flags & TOF_TS) == 0 && 1799 tp->t_rxtshift == 1 && 1800 tp->t_flags & TF_PREVVALID && 1801 tp->t_badrxtwin != 0 && 1802 TSTMP_LT(ticks, tp->t_badrxtwin)) { 1803 cc_cong_signal(tp, th, CC_RTO_ERR); 1804 } 1805 1806 /* 1807 * Recalculate the transmit timer / rtt. 1808 * 1809 * Some boxes send broken timestamp replies 1810 * during the SYN+ACK phase, ignore 1811 * timestamps of 0 or we could calculate a 1812 * huge RTT and blow up the retransmit timer. 1813 */ 1814 if ((to.to_flags & TOF_TS) != 0 && 1815 to.to_tsecr) { 1816 uint32_t t; 1817 1818 t = tcp_ts_getticks() - to.to_tsecr; 1819 if (!tp->t_rttlow || tp->t_rttlow > t) 1820 tp->t_rttlow = t; 1821 tcp_xmit_timer(tp, 1822 TCP_TS_TO_TICKS(t) + 1); 1823 } else if (tp->t_rtttime && 1824 SEQ_GT(th->th_ack, tp->t_rtseq)) { 1825 if (!tp->t_rttlow || 1826 tp->t_rttlow > ticks - tp->t_rtttime) 1827 tp->t_rttlow = ticks - tp->t_rtttime; 1828 tcp_xmit_timer(tp, 1829 ticks - tp->t_rtttime); 1830 } 1831 acked = BYTES_THIS_ACK(tp, th); 1832 1833 #ifdef TCP_HHOOK 1834 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 1835 hhook_run_tcp_est_in(tp, th, &to); 1836 #endif 1837 1838 TCPSTAT_ADD(tcps_rcvackpack, nsegs); 1839 TCPSTAT_ADD(tcps_rcvackbyte, acked); 1840 sbdrop(&so->so_snd, acked); 1841 if (SEQ_GT(tp->snd_una, tp->snd_recover) && 1842 SEQ_LEQ(th->th_ack, tp->snd_recover)) 1843 tp->snd_recover = th->th_ack - 1; 1844 1845 /* 1846 * Let the congestion control algorithm update 1847 * congestion control related information. This 1848 * typically means increasing the congestion 1849 * window. 1850 */ 1851 cc_ack_received(tp, th, nsegs, CC_ACK); 1852 1853 tp->snd_una = th->th_ack; 1854 /* 1855 * Pull snd_wl2 up to prevent seq wrap relative 1856 * to th_ack. 1857 */ 1858 tp->snd_wl2 = th->th_ack; 1859 tp->t_dupacks = 0; 1860 m_freem(m); 1861 1862 /* 1863 * If all outstanding data are acked, stop 1864 * retransmit timer, otherwise restart timer 1865 * using current (possibly backed-off) value. 1866 * If process is waiting for space, 1867 * wakeup/selwakeup/signal. If data 1868 * are ready to send, let tcp_output 1869 * decide between more output or persist. 1870 */ 1871 TCP_PROBE3(debug__input, tp, th, m); 1872 /* 1873 * Clear t_acktime if remote side has ACKd 1874 * all data in the socket buffer. 1875 * Otherwise, update t_acktime if we received 1876 * a sufficiently large ACK. 1877 */ 1878 if (sbavail(&so->so_snd) == 0) 1879 tp->t_acktime = 0; 1880 else if (acked > 1) 1881 tp->t_acktime = ticks; 1882 if (tp->snd_una == tp->snd_max) 1883 tcp_timer_activate(tp, TT_REXMT, 0); 1884 else if (!tcp_timer_active(tp, TT_PERSIST)) 1885 tcp_timer_activate(tp, TT_REXMT, 1886 TP_RXTCUR(tp)); 1887 sowwakeup(so); 1888 /* 1889 * Only call tcp_output when there 1890 * is new data available to be sent 1891 * or we need to send an ACK. 1892 */ 1893 if ((tp->t_flags & TF_ACKNOW) || 1894 (sbavail(&so->so_snd) >= 1895 SEQ_SUB(tp->snd_max, tp->snd_una))) { 1896 (void) tcp_output(tp); 1897 } 1898 goto check_delack; 1899 } 1900 } else if (th->th_ack == tp->snd_una && 1901 tlen <= sbspace(&so->so_rcv)) { 1902 int newsize = 0; /* automatic sockbuf scaling */ 1903 1904 /* 1905 * This is a pure, in-sequence data packet with 1906 * nothing on the reassembly queue and we have enough 1907 * buffer space to take it. 1908 */ 1909 /* Clean receiver SACK report if present */ 1910 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks) 1911 tcp_clean_sackreport(tp); 1912 TCPSTAT_INC(tcps_preddat); 1913 tp->rcv_nxt += tlen; 1914 if (tlen && 1915 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 1916 (tp->t_fbyte_in == 0)) { 1917 tp->t_fbyte_in = ticks; 1918 if (tp->t_fbyte_in == 0) 1919 tp->t_fbyte_in = 1; 1920 if (tp->t_fbyte_out && tp->t_fbyte_in) 1921 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 1922 } 1923 /* 1924 * Pull snd_wl1 up to prevent seq wrap relative to 1925 * th_seq. 1926 */ 1927 tp->snd_wl1 = th->th_seq; 1928 /* 1929 * Pull rcv_up up to prevent seq wrap relative to 1930 * rcv_nxt. 1931 */ 1932 tp->rcv_up = tp->rcv_nxt; 1933 TCPSTAT_ADD(tcps_rcvpack, nsegs); 1934 TCPSTAT_ADD(tcps_rcvbyte, tlen); 1935 TCP_PROBE3(debug__input, tp, th, m); 1936 1937 newsize = tcp_autorcvbuf(m, th, so, tp, tlen); 1938 1939 /* Add data to socket buffer. */ 1940 SOCKBUF_LOCK(&so->so_rcv); 1941 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1942 m_freem(m); 1943 } else { 1944 /* 1945 * Set new socket buffer size. 1946 * Give up when limit is reached. 1947 */ 1948 if (newsize) 1949 if (!sbreserve_locked(so, SO_RCV, 1950 newsize, NULL)) 1951 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1952 m_adj(m, drop_hdrlen); /* delayed header drop */ 1953 sbappendstream_locked(&so->so_rcv, m, 0); 1954 } 1955 /* NB: sorwakeup_locked() does an implicit unlock. */ 1956 sorwakeup_locked(so); 1957 if (DELAY_ACK(tp, tlen)) { 1958 tp->t_flags |= TF_DELACK; 1959 } else { 1960 tp->t_flags |= TF_ACKNOW; 1961 (void) tcp_output(tp); 1962 } 1963 goto check_delack; 1964 } 1965 } 1966 1967 /* 1968 * Calculate amount of space in receive window, 1969 * and then do TCP input processing. 1970 * Receive window is amount of space in rcv queue, 1971 * but not less than advertised window. 1972 */ 1973 win = sbspace(&so->so_rcv); 1974 if (win < 0) 1975 win = 0; 1976 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 1977 1978 switch (tp->t_state) { 1979 /* 1980 * If the state is SYN_RECEIVED: 1981 * if seg contains an ACK, but not for our SYN/ACK, send a RST. 1982 */ 1983 case TCPS_SYN_RECEIVED: 1984 if (thflags & TH_RST) { 1985 /* Handle RST segments later. */ 1986 break; 1987 } 1988 if ((thflags & TH_ACK) && 1989 (SEQ_LEQ(th->th_ack, tp->snd_una) || 1990 SEQ_GT(th->th_ack, tp->snd_max))) { 1991 rstreason = BANDLIM_RST_OPENPORT; 1992 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 1993 goto dropwithreset; 1994 } 1995 if (tp->t_flags & TF_FASTOPEN) { 1996 /* 1997 * When a TFO connection is in SYN_RECEIVED, the 1998 * only valid packets are the initial SYN, a 1999 * retransmit/copy of the initial SYN (possibly with 2000 * a subset of the original data), a valid ACK, a 2001 * FIN, or a RST. 2002 */ 2003 if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) { 2004 rstreason = BANDLIM_RST_OPENPORT; 2005 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 2006 goto dropwithreset; 2007 } else if (thflags & TH_SYN) { 2008 /* non-initial SYN is ignored */ 2009 if ((tcp_timer_active(tp, TT_DELACK) || 2010 tcp_timer_active(tp, TT_REXMT))) 2011 goto drop; 2012 } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) { 2013 goto drop; 2014 } 2015 } 2016 break; 2017 2018 /* 2019 * If the state is SYN_SENT: 2020 * if seg contains a RST with valid ACK (SEQ.ACK has already 2021 * been verified), then drop the connection. 2022 * if seg contains a RST without an ACK, drop the seg. 2023 * if seg does not contain SYN, then drop the seg. 2024 * Otherwise this is an acceptable SYN segment 2025 * initialize tp->rcv_nxt and tp->irs 2026 * if seg contains ack then advance tp->snd_una 2027 * if seg contains an ECE and ECN support is enabled, the stream 2028 * is ECN capable. 2029 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 2030 * arrange for segment to be acked (eventually) 2031 * continue processing rest of data/controls, beginning with URG 2032 */ 2033 case TCPS_SYN_SENT: 2034 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) { 2035 TCP_PROBE5(connect__refused, NULL, tp, 2036 m, tp, th); 2037 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 2038 tp = tcp_drop(tp, ECONNREFUSED); 2039 } 2040 if (thflags & TH_RST) 2041 goto drop; 2042 if (!(thflags & TH_SYN)) 2043 goto drop; 2044 2045 tp->irs = th->th_seq; 2046 tcp_rcvseqinit(tp); 2047 if (thflags & TH_ACK) { 2048 int tfo_partial_ack = 0; 2049 2050 TCPSTAT_INC(tcps_connects); 2051 soisconnected(so); 2052 #ifdef MAC 2053 mac_socketpeer_set_from_mbuf(m, so); 2054 #endif 2055 /* Do window scaling on this connection? */ 2056 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2057 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2058 tp->rcv_scale = tp->request_r_scale; 2059 } 2060 tp->rcv_adv += min(tp->rcv_wnd, 2061 TCP_MAXWIN << tp->rcv_scale); 2062 tp->snd_una++; /* SYN is acked */ 2063 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 2064 tp->snd_nxt = tp->snd_una; 2065 /* 2066 * If not all the data that was sent in the TFO SYN 2067 * has been acked, resend the remainder right away. 2068 */ 2069 if ((tp->t_flags & TF_FASTOPEN) && 2070 (tp->snd_una != tp->snd_max)) { 2071 tp->snd_nxt = th->th_ack; 2072 tfo_partial_ack = 1; 2073 } 2074 /* 2075 * If there's data, delay ACK; if there's also a FIN 2076 * ACKNOW will be turned on later. 2077 */ 2078 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack) 2079 tcp_timer_activate(tp, TT_DELACK, 2080 tcp_delacktime); 2081 else 2082 tp->t_flags |= TF_ACKNOW; 2083 2084 tcp_ecn_input_syn_sent(tp, thflags, iptos); 2085 2086 /* 2087 * Received <SYN,ACK> in SYN_SENT[*] state. 2088 * Transitions: 2089 * SYN_SENT --> ESTABLISHED 2090 * SYN_SENT* --> FIN_WAIT_1 2091 */ 2092 tp->t_starttime = ticks; 2093 if (tp->t_flags & TF_NEEDFIN) { 2094 tp->t_acktime = ticks; 2095 tcp_state_change(tp, TCPS_FIN_WAIT_1); 2096 tp->t_flags &= ~TF_NEEDFIN; 2097 thflags &= ~TH_SYN; 2098 } else { 2099 tcp_state_change(tp, TCPS_ESTABLISHED); 2100 TCP_PROBE5(connect__established, NULL, tp, 2101 m, tp, th); 2102 cc_conn_init(tp); 2103 tcp_timer_activate(tp, TT_KEEP, 2104 TP_KEEPIDLE(tp)); 2105 } 2106 } else { 2107 /* 2108 * Received initial SYN in SYN-SENT[*] state => 2109 * simultaneous open. 2110 * If it succeeds, connection is * half-synchronized. 2111 * Otherwise, do 3-way handshake: 2112 * SYN-SENT -> SYN-RECEIVED 2113 * SYN-SENT* -> SYN-RECEIVED* 2114 */ 2115 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN); 2116 tcp_timer_activate(tp, TT_REXMT, 0); 2117 tcp_state_change(tp, TCPS_SYN_RECEIVED); 2118 } 2119 2120 /* 2121 * Advance th->th_seq to correspond to first data byte. 2122 * If data, trim to stay within window, 2123 * dropping FIN if necessary. 2124 */ 2125 th->th_seq++; 2126 if (tlen > tp->rcv_wnd) { 2127 todrop = tlen - tp->rcv_wnd; 2128 m_adj(m, -todrop); 2129 tlen = tp->rcv_wnd; 2130 thflags &= ~TH_FIN; 2131 TCPSTAT_INC(tcps_rcvpackafterwin); 2132 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 2133 } 2134 tp->snd_wl1 = th->th_seq - 1; 2135 tp->rcv_up = th->th_seq; 2136 /* 2137 * Client side of transaction: already sent SYN and data. 2138 * If the remote host used T/TCP to validate the SYN, 2139 * our data will be ACK'd; if so, enter normal data segment 2140 * processing in the middle of step 5, ack processing. 2141 * Otherwise, goto step 6. 2142 */ 2143 if (thflags & TH_ACK) 2144 goto process_ACK; 2145 2146 goto step6; 2147 } 2148 2149 /* 2150 * States other than LISTEN or SYN_SENT. 2151 * First check the RST flag and sequence number since reset segments 2152 * are exempt from the timestamp and connection count tests. This 2153 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix 2154 * below which allowed reset segments in half the sequence space 2155 * to fall though and be processed (which gives forged reset 2156 * segments with a random sequence number a 50 percent chance of 2157 * killing a connection). 2158 * Then check timestamp, if present. 2159 * Then check the connection count, if present. 2160 * Then check that at least some bytes of segment are within 2161 * receive window. If segment begins before rcv_nxt, 2162 * drop leading data (and SYN); if nothing left, just ack. 2163 */ 2164 if (thflags & TH_RST) { 2165 /* 2166 * RFC5961 Section 3.2 2167 * 2168 * - RST drops connection only if SEG.SEQ == RCV.NXT. 2169 * - If RST is in window, we send challenge ACK. 2170 * 2171 * Note: to take into account delayed ACKs, we should 2172 * test against last_ack_sent instead of rcv_nxt. 2173 * Note 2: we handle special case of closed window, not 2174 * covered by the RFC. 2175 */ 2176 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && 2177 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || 2178 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) { 2179 KASSERT(tp->t_state != TCPS_SYN_SENT, 2180 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p", 2181 __func__, th, tp)); 2182 2183 if (V_tcp_insecure_rst || 2184 tp->last_ack_sent == th->th_seq) { 2185 TCPSTAT_INC(tcps_drops); 2186 /* Drop the connection. */ 2187 switch (tp->t_state) { 2188 case TCPS_SYN_RECEIVED: 2189 so->so_error = ECONNREFUSED; 2190 goto close; 2191 case TCPS_ESTABLISHED: 2192 case TCPS_FIN_WAIT_1: 2193 case TCPS_FIN_WAIT_2: 2194 case TCPS_CLOSE_WAIT: 2195 case TCPS_CLOSING: 2196 case TCPS_LAST_ACK: 2197 so->so_error = ECONNRESET; 2198 close: 2199 /* FALLTHROUGH */ 2200 default: 2201 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST); 2202 tp = tcp_close(tp); 2203 } 2204 } else { 2205 TCPSTAT_INC(tcps_badrst); 2206 /* Send challenge ACK. */ 2207 tcp_respond(tp, mtod(m, void *), th, m, 2208 tp->rcv_nxt, tp->snd_nxt, TH_ACK); 2209 tp->last_ack_sent = tp->rcv_nxt; 2210 m = NULL; 2211 } 2212 } 2213 goto drop; 2214 } 2215 2216 /* 2217 * RFC5961 Section 4.2 2218 * Send challenge ACK for any SYN in synchronized state. 2219 */ 2220 if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT && 2221 tp->t_state != TCPS_SYN_RECEIVED) { 2222 TCPSTAT_INC(tcps_badsyn); 2223 if (V_tcp_insecure_syn && 2224 SEQ_GEQ(th->th_seq, tp->last_ack_sent) && 2225 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { 2226 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 2227 tp = tcp_drop(tp, ECONNRESET); 2228 rstreason = BANDLIM_UNLIMITED; 2229 } else { 2230 tcp_ecn_input_syn_sent(tp, thflags, iptos); 2231 /* Send challenge ACK. */ 2232 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt, 2233 tp->snd_nxt, TH_ACK); 2234 tp->last_ack_sent = tp->rcv_nxt; 2235 m = NULL; 2236 } 2237 goto drop; 2238 } 2239 2240 /* 2241 * RFC 1323 PAWS: If we have a timestamp reply on this segment 2242 * and it's less than ts_recent, drop it. 2243 */ 2244 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && 2245 TSTMP_LT(to.to_tsval, tp->ts_recent)) { 2246 /* Check to see if ts_recent is over 24 days old. */ 2247 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) { 2248 /* 2249 * Invalidate ts_recent. If this segment updates 2250 * ts_recent, the age will be reset later and ts_recent 2251 * will get a valid value. If it does not, setting 2252 * ts_recent to zero will at least satisfy the 2253 * requirement that zero be placed in the timestamp 2254 * echo reply when ts_recent isn't valid. The 2255 * age isn't reset until we get a valid ts_recent 2256 * because we don't want out-of-order segments to be 2257 * dropped when ts_recent is old. 2258 */ 2259 tp->ts_recent = 0; 2260 } else { 2261 TCPSTAT_INC(tcps_rcvduppack); 2262 TCPSTAT_ADD(tcps_rcvdupbyte, tlen); 2263 TCPSTAT_INC(tcps_pawsdrop); 2264 if (tlen) 2265 goto dropafterack; 2266 goto drop; 2267 } 2268 } 2269 2270 /* 2271 * In the SYN-RECEIVED state, validate that the packet belongs to 2272 * this connection before trimming the data to fit the receive 2273 * window. Check the sequence number versus IRS since we know 2274 * the sequence numbers haven't wrapped. This is a partial fix 2275 * for the "LAND" DoS attack. 2276 */ 2277 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { 2278 rstreason = BANDLIM_RST_OPENPORT; 2279 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 2280 goto dropwithreset; 2281 } 2282 2283 todrop = tp->rcv_nxt - th->th_seq; 2284 if (todrop > 0) { 2285 if (thflags & TH_SYN) { 2286 thflags &= ~TH_SYN; 2287 th->th_seq++; 2288 if (th->th_urp > 1) 2289 th->th_urp--; 2290 else 2291 thflags &= ~TH_URG; 2292 todrop--; 2293 } 2294 /* 2295 * Following if statement from Stevens, vol. 2, p. 960. 2296 */ 2297 if (todrop > tlen 2298 || (todrop == tlen && (thflags & TH_FIN) == 0)) { 2299 /* 2300 * Any valid FIN must be to the left of the window. 2301 * At this point the FIN must be a duplicate or out 2302 * of sequence; drop it. 2303 */ 2304 thflags &= ~TH_FIN; 2305 2306 /* 2307 * Send an ACK to resynchronize and drop any data. 2308 * But keep on processing for RST or ACK. 2309 */ 2310 tp->t_flags |= TF_ACKNOW; 2311 todrop = tlen; 2312 TCPSTAT_INC(tcps_rcvduppack); 2313 TCPSTAT_ADD(tcps_rcvdupbyte, todrop); 2314 } else { 2315 TCPSTAT_INC(tcps_rcvpartduppack); 2316 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop); 2317 } 2318 /* 2319 * DSACK - add SACK block for dropped range 2320 */ 2321 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) { 2322 tcp_update_sack_list(tp, th->th_seq, 2323 th->th_seq + todrop); 2324 /* 2325 * ACK now, as the next in-sequence segment 2326 * will clear the DSACK block again 2327 */ 2328 tp->t_flags |= TF_ACKNOW; 2329 } 2330 drop_hdrlen += todrop; /* drop from the top afterwards */ 2331 th->th_seq += todrop; 2332 tlen -= todrop; 2333 if (th->th_urp > todrop) 2334 th->th_urp -= todrop; 2335 else { 2336 thflags &= ~TH_URG; 2337 th->th_urp = 0; 2338 } 2339 } 2340 2341 /* 2342 * If new data are received on a connection after the 2343 * user processes are gone, then RST the other end if 2344 * no FIN has been processed. 2345 */ 2346 if ((tp->t_flags & TF_CLOSED) && tlen > 0 && 2347 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2348 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 2349 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data " 2350 "after socket was closed, " 2351 "sending RST and removing tcpcb\n", 2352 s, __func__, tcpstates[tp->t_state], tlen); 2353 free(s, M_TCPLOG); 2354 } 2355 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); 2356 /* tcp_close will kill the inp pre-log the Reset */ 2357 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 2358 tp = tcp_close(tp); 2359 TCPSTAT_INC(tcps_rcvafterclose); 2360 rstreason = BANDLIM_UNLIMITED; 2361 goto dropwithreset; 2362 } 2363 2364 /* 2365 * If segment ends after window, drop trailing data 2366 * (and PUSH and FIN); if nothing left, just ACK. 2367 */ 2368 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd); 2369 if (todrop > 0) { 2370 TCPSTAT_INC(tcps_rcvpackafterwin); 2371 if (todrop >= tlen) { 2372 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen); 2373 /* 2374 * If window is closed can only take segments at 2375 * window edge, and have to drop data and PUSH from 2376 * incoming segments. Continue processing, but 2377 * remember to ack. Otherwise, drop segment 2378 * and ack. 2379 */ 2380 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { 2381 tp->t_flags |= TF_ACKNOW; 2382 TCPSTAT_INC(tcps_rcvwinprobe); 2383 } else 2384 goto dropafterack; 2385 } else 2386 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); 2387 m_adj(m, -todrop); 2388 tlen -= todrop; 2389 thflags &= ~(TH_PUSH|TH_FIN); 2390 } 2391 2392 /* 2393 * If last ACK falls within this segment's sequence numbers, 2394 * record its timestamp. 2395 * NOTE: 2396 * 1) That the test incorporates suggestions from the latest 2397 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 2398 * 2) That updating only on newer timestamps interferes with 2399 * our earlier PAWS tests, so this check should be solely 2400 * predicated on the sequence space of this segment. 2401 * 3) That we modify the segment boundary check to be 2402 * Last.ACK.Sent <= SEG.SEQ + SEG.Len 2403 * instead of RFC1323's 2404 * Last.ACK.Sent < SEG.SEQ + SEG.Len, 2405 * This modified check allows us to overcome RFC1323's 2406 * limitations as described in Stevens TCP/IP Illustrated 2407 * Vol. 2 p.869. In such cases, we can still calculate the 2408 * RTT correctly when RCV.NXT == Last.ACK.Sent. 2409 */ 2410 if ((to.to_flags & TOF_TS) != 0 && 2411 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 2412 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 2413 ((thflags & (TH_SYN|TH_FIN)) != 0))) { 2414 tp->ts_recent_age = tcp_ts_getticks(); 2415 tp->ts_recent = to.to_tsval; 2416 } 2417 2418 /* 2419 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN 2420 * flag is on (half-synchronized state), then queue data for 2421 * later processing; else drop segment and return. 2422 */ 2423 if ((thflags & TH_ACK) == 0) { 2424 if (tp->t_state == TCPS_SYN_RECEIVED || 2425 (tp->t_flags & TF_NEEDSYN)) { 2426 if (tp->t_state == TCPS_SYN_RECEIVED && 2427 (tp->t_flags & TF_FASTOPEN)) { 2428 tp->snd_wnd = tiwin; 2429 cc_conn_init(tp); 2430 } 2431 goto step6; 2432 } else if (tp->t_flags & TF_ACKNOW) 2433 goto dropafterack; 2434 else 2435 goto drop; 2436 } 2437 2438 /* 2439 * Ack processing. 2440 */ 2441 switch (tp->t_state) { 2442 /* 2443 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter 2444 * ESTABLISHED state and continue processing. 2445 * The ACK was checked above. 2446 */ 2447 case TCPS_SYN_RECEIVED: 2448 2449 TCPSTAT_INC(tcps_connects); 2450 if (tp->t_flags & TF_SONOTCONN) { 2451 /* 2452 * Usually SYN_RECEIVED had been created from a LISTEN, 2453 * and solisten_enqueue() has already marked the socket 2454 * layer as connected. If it didn't, which can happen 2455 * only with an accept_filter(9), then the tp is marked 2456 * with TF_SONOTCONN. The other reason for this mark 2457 * to be set is a simultaneous open, a SYN_RECEIVED 2458 * that had been created from SYN_SENT. 2459 */ 2460 tp->t_flags &= ~TF_SONOTCONN; 2461 soisconnected(so); 2462 } 2463 /* Do window scaling? */ 2464 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2465 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2466 tp->rcv_scale = tp->request_r_scale; 2467 } 2468 tp->snd_wnd = tiwin; 2469 /* 2470 * Make transitions: 2471 * SYN-RECEIVED -> ESTABLISHED 2472 * SYN-RECEIVED* -> FIN-WAIT-1 2473 */ 2474 tp->t_starttime = ticks; 2475 if ((tp->t_flags & TF_FASTOPEN) && tp->t_tfo_pending) { 2476 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 2477 tp->t_tfo_pending = NULL; 2478 } 2479 if (tp->t_flags & TF_NEEDFIN) { 2480 tp->t_acktime = ticks; 2481 tcp_state_change(tp, TCPS_FIN_WAIT_1); 2482 tp->t_flags &= ~TF_NEEDFIN; 2483 } else { 2484 tcp_state_change(tp, TCPS_ESTABLISHED); 2485 TCP_PROBE5(accept__established, NULL, tp, 2486 m, tp, th); 2487 /* 2488 * TFO connections call cc_conn_init() during SYN 2489 * processing. Calling it again here for such 2490 * connections is not harmless as it would undo the 2491 * snd_cwnd reduction that occurs when a TFO SYN|ACK 2492 * is retransmitted. 2493 */ 2494 if (!(tp->t_flags & TF_FASTOPEN)) 2495 cc_conn_init(tp); 2496 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); 2497 } 2498 /* 2499 * Account for the ACK of our SYN prior to 2500 * regular ACK processing below, except for 2501 * simultaneous SYN, which is handled later. 2502 */ 2503 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) 2504 incforsyn = 1; 2505 /* 2506 * If segment contains data or ACK, will call tcp_reass() 2507 * later; if not, do so now to pass queued data to user. 2508 */ 2509 if (tlen == 0 && (thflags & TH_FIN) == 0) { 2510 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, 2511 (struct mbuf *)0); 2512 tcp_handle_wakeup(tp); 2513 } 2514 tp->snd_wl1 = th->th_seq - 1; 2515 /* FALLTHROUGH */ 2516 2517 /* 2518 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 2519 * ACKs. If the ack is in the range 2520 * tp->snd_una < th->th_ack <= tp->snd_max 2521 * then advance tp->snd_una to th->th_ack and drop 2522 * data from the retransmission queue. If this ACK reflects 2523 * more up to date window information we update our window information. 2524 */ 2525 case TCPS_ESTABLISHED: 2526 case TCPS_FIN_WAIT_1: 2527 case TCPS_FIN_WAIT_2: 2528 case TCPS_CLOSE_WAIT: 2529 case TCPS_CLOSING: 2530 case TCPS_LAST_ACK: 2531 if (SEQ_GT(th->th_ack, tp->snd_max)) { 2532 TCPSTAT_INC(tcps_rcvacktoomuch); 2533 goto dropafterack; 2534 } 2535 if (tcp_is_sack_recovery(tp, &to)) { 2536 sack_changed = tcp_sack_doack(tp, &to, th->th_ack); 2537 if ((sack_changed != SACK_NOCHANGE) && 2538 (tp->t_flags & TF_LRD)) { 2539 tcp_sack_lost_retransmission(tp, th); 2540 } 2541 } else 2542 /* 2543 * Reset the value so that previous (valid) value 2544 * from the last ack with SACK doesn't get used. 2545 */ 2546 tp->sackhint.sacked_bytes = 0; 2547 2548 #ifdef TCP_HHOOK 2549 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ 2550 hhook_run_tcp_est_in(tp, th, &to); 2551 #endif 2552 2553 if (SEQ_LEQ(th->th_ack, tp->snd_una)) { 2554 maxseg = tcp_maxseg(tp); 2555 if (tlen == 0 && 2556 (tiwin == tp->snd_wnd || 2557 (tp->t_flags & TF_SACK_PERMIT))) { 2558 /* 2559 * If this is the first time we've seen a 2560 * FIN from the remote, this is not a 2561 * duplicate and it needs to be processed 2562 * normally. This happens during a 2563 * simultaneous close. 2564 */ 2565 if ((thflags & TH_FIN) && 2566 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) { 2567 tp->t_dupacks = 0; 2568 break; 2569 } 2570 TCPSTAT_INC(tcps_rcvdupack); 2571 /* 2572 * If we have outstanding data (other than 2573 * a window probe), this is a completely 2574 * duplicate ack (ie, window info didn't 2575 * change and FIN isn't set), 2576 * the ack is the biggest we've 2577 * seen and we've seen exactly our rexmt 2578 * threshold of them, assume a packet 2579 * has been dropped and retransmit it. 2580 * Kludge snd_nxt & the congestion 2581 * window so we send only this one 2582 * packet. 2583 * 2584 * We know we're losing at the current 2585 * window size so do congestion avoidance 2586 * (set ssthresh to half the current window 2587 * and pull our congestion window back to 2588 * the new ssthresh). 2589 * 2590 * Dup acks mean that packets have left the 2591 * network (they're now cached at the receiver) 2592 * so bump cwnd by the amount in the receiver 2593 * to keep a constant cwnd packets in the 2594 * network. 2595 * 2596 * When using TCP ECN, notify the peer that 2597 * we reduced the cwnd. 2598 */ 2599 /* 2600 * Following 2 kinds of acks should not affect 2601 * dupack counting: 2602 * 1) Old acks 2603 * 2) Acks with SACK but without any new SACK 2604 * information in them. These could result from 2605 * any anomaly in the network like a switch 2606 * duplicating packets or a possible DoS attack. 2607 */ 2608 if (th->th_ack != tp->snd_una || 2609 (tcp_is_sack_recovery(tp, &to) && 2610 (sack_changed == SACK_NOCHANGE))) { 2611 break; 2612 } else if (!tcp_timer_active(tp, TT_REXMT)) { 2613 tp->t_dupacks = 0; 2614 } else if (++tp->t_dupacks > tcprexmtthresh || 2615 IN_FASTRECOVERY(tp->t_flags)) { 2616 cc_ack_received(tp, th, nsegs, 2617 CC_DUPACK); 2618 if (V_tcp_do_prr && 2619 IN_FASTRECOVERY(tp->t_flags) && 2620 (tp->t_flags & TF_SACK_PERMIT)) { 2621 tcp_do_prr_ack(tp, th, &to, 2622 sack_changed, &maxseg); 2623 } else if (tcp_is_sack_recovery(tp, &to) && 2624 IN_FASTRECOVERY(tp->t_flags)) { 2625 int awnd; 2626 2627 /* 2628 * Compute the amount of data in flight first. 2629 * We can inject new data into the pipe iff 2630 * we have less than 1/2 the original window's 2631 * worth of data in flight. 2632 */ 2633 if (V_tcp_do_newsack) { 2634 awnd = tcp_compute_pipe(tp); 2635 } else { 2636 awnd = (tp->snd_nxt - tp->snd_fack) + 2637 tp->sackhint.sack_bytes_rexmit; 2638 } 2639 if (awnd < tp->snd_ssthresh) { 2640 tp->snd_cwnd += maxseg; 2641 if (tp->snd_cwnd > tp->snd_ssthresh) 2642 tp->snd_cwnd = tp->snd_ssthresh; 2643 } 2644 } else { 2645 tp->snd_cwnd += maxseg; 2646 } 2647 (void) tcp_output(tp); 2648 goto drop; 2649 } else if (tp->t_dupacks == tcprexmtthresh || 2650 (tp->t_flags & TF_SACK_PERMIT && 2651 V_tcp_do_newsack && 2652 tp->sackhint.sacked_bytes > 2653 (tcprexmtthresh - 1) * maxseg)) { 2654 enter_recovery: 2655 /* 2656 * Above is the RFC6675 trigger condition of 2657 * more than (dupthresh-1)*maxseg sacked data. 2658 * If the count of holes in the 2659 * scoreboard is >= dupthresh, we could 2660 * also enter loss recovery, but don't 2661 * have that value readily available. 2662 */ 2663 tp->t_dupacks = tcprexmtthresh; 2664 tcp_seq onxt = tp->snd_nxt; 2665 2666 /* 2667 * If we're doing sack, or prr, check 2668 * to see if we're already in sack 2669 * recovery. If we're not doing sack, 2670 * check to see if we're in newreno 2671 * recovery. 2672 */ 2673 if (V_tcp_do_prr || 2674 (tp->t_flags & TF_SACK_PERMIT)) { 2675 if (IN_FASTRECOVERY(tp->t_flags)) { 2676 tp->t_dupacks = 0; 2677 break; 2678 } 2679 } else { 2680 if (SEQ_LEQ(th->th_ack, 2681 tp->snd_recover)) { 2682 tp->t_dupacks = 0; 2683 break; 2684 } 2685 } 2686 /* Congestion signal before ack. */ 2687 cc_cong_signal(tp, th, CC_NDUPACK); 2688 cc_ack_received(tp, th, nsegs, 2689 CC_DUPACK); 2690 tcp_timer_activate(tp, TT_REXMT, 0); 2691 tp->t_rtttime = 0; 2692 if (V_tcp_do_prr) { 2693 /* 2694 * snd_ssthresh is already updated by 2695 * cc_cong_signal. 2696 */ 2697 if (tcp_is_sack_recovery(tp, &to)) { 2698 /* 2699 * Exclude Limited Transmit 2700 * segments here 2701 */ 2702 tp->sackhint.prr_delivered = 2703 maxseg; 2704 } else { 2705 tp->sackhint.prr_delivered = 2706 imin(tp->snd_max - tp->snd_una, 2707 imin(INT_MAX / 65536, 2708 tp->t_dupacks) * maxseg); 2709 } 2710 tp->sackhint.recover_fs = max(1, 2711 tp->snd_nxt - tp->snd_una); 2712 } 2713 if (tcp_is_sack_recovery(tp, &to)) { 2714 TCPSTAT_INC(tcps_sack_recovery_episode); 2715 tp->snd_recover = tp->snd_nxt; 2716 tp->snd_cwnd = maxseg; 2717 (void) tcp_output(tp); 2718 if (SEQ_GT(th->th_ack, tp->snd_una)) { 2719 goto resume_partialack; 2720 } 2721 goto drop; 2722 } 2723 tp->snd_nxt = th->th_ack; 2724 tp->snd_cwnd = maxseg; 2725 (void) tcp_output(tp); 2726 KASSERT(tp->snd_limited <= 2, 2727 ("%s: tp->snd_limited too big", 2728 __func__)); 2729 tp->snd_cwnd = tp->snd_ssthresh + 2730 maxseg * 2731 (tp->t_dupacks - tp->snd_limited); 2732 if (SEQ_GT(onxt, tp->snd_nxt)) 2733 tp->snd_nxt = onxt; 2734 goto drop; 2735 } else if (V_tcp_do_rfc3042) { 2736 /* 2737 * Process first and second duplicate 2738 * ACKs. Each indicates a segment 2739 * leaving the network, creating room 2740 * for more. Make sure we can send a 2741 * packet on reception of each duplicate 2742 * ACK by increasing snd_cwnd by one 2743 * segment. Restore the original 2744 * snd_cwnd after packet transmission. 2745 */ 2746 cc_ack_received(tp, th, nsegs, CC_DUPACK); 2747 uint32_t oldcwnd = tp->snd_cwnd; 2748 tcp_seq oldsndmax = tp->snd_max; 2749 u_int sent; 2750 int avail; 2751 2752 KASSERT(tp->t_dupacks == 1 || 2753 tp->t_dupacks == 2, 2754 ("%s: dupacks not 1 or 2", 2755 __func__)); 2756 if (tp->t_dupacks == 1) 2757 tp->snd_limited = 0; 2758 tp->snd_cwnd = 2759 (tp->snd_nxt - tp->snd_una) + 2760 (tp->t_dupacks - tp->snd_limited) * 2761 maxseg; 2762 /* 2763 * Only call tcp_output when there 2764 * is new data available to be sent 2765 * or we need to send an ACK. 2766 */ 2767 SOCKBUF_LOCK(&so->so_snd); 2768 avail = sbavail(&so->so_snd); 2769 SOCKBUF_UNLOCK(&so->so_snd); 2770 if (tp->t_flags & TF_ACKNOW || 2771 (avail >= 2772 SEQ_SUB(tp->snd_nxt, tp->snd_una))) { 2773 (void) tcp_output(tp); 2774 } 2775 sent = SEQ_SUB(tp->snd_max, oldsndmax); 2776 if (sent > maxseg) { 2777 KASSERT((tp->t_dupacks == 2 && 2778 tp->snd_limited == 0) || 2779 (sent == maxseg + 1 && 2780 tp->t_flags & TF_SENTFIN), 2781 ("%s: sent too much", 2782 __func__)); 2783 tp->snd_limited = 2; 2784 } else if (sent > 0) { 2785 ++tp->snd_limited; 2786 } 2787 tp->snd_cwnd = oldcwnd; 2788 goto drop; 2789 } 2790 } 2791 break; 2792 } else { 2793 /* 2794 * This ack is advancing the left edge, reset the 2795 * counter. 2796 */ 2797 tp->t_dupacks = 0; 2798 /* 2799 * If this ack also has new SACK info, increment the 2800 * counter as per rfc6675. The variable 2801 * sack_changed tracks all changes to the SACK 2802 * scoreboard, including when partial ACKs without 2803 * SACK options are received, and clear the scoreboard 2804 * from the left side. Such partial ACKs should not be 2805 * counted as dupacks here. 2806 */ 2807 if (tcp_is_sack_recovery(tp, &to) && 2808 (sack_changed != SACK_NOCHANGE)) { 2809 tp->t_dupacks++; 2810 /* limit overhead by setting maxseg last */ 2811 if (!IN_FASTRECOVERY(tp->t_flags) && 2812 (tp->sackhint.sacked_bytes > 2813 ((tcprexmtthresh - 1) * 2814 (maxseg = tcp_maxseg(tp))))) { 2815 goto enter_recovery; 2816 } 2817 } 2818 } 2819 2820 resume_partialack: 2821 KASSERT(SEQ_GT(th->th_ack, tp->snd_una), 2822 ("%s: th_ack <= snd_una", __func__)); 2823 2824 /* 2825 * If the congestion window was inflated to account 2826 * for the other side's cached packets, retract it. 2827 */ 2828 if (SEQ_LT(th->th_ack, tp->snd_recover)) { 2829 if (IN_FASTRECOVERY(tp->t_flags)) { 2830 if (tp->t_flags & TF_SACK_PERMIT) { 2831 if (V_tcp_do_prr && 2832 (to.to_flags & TOF_SACK)) { 2833 tcp_timer_activate(tp, 2834 TT_REXMT, 0); 2835 tp->t_rtttime = 0; 2836 tcp_do_prr_ack(tp, th, &to, 2837 sack_changed, &maxseg); 2838 tp->t_flags |= TF_ACKNOW; 2839 (void) tcp_output(tp); 2840 } else { 2841 tcp_sack_partialack(tp, th, 2842 &maxseg); 2843 } 2844 } else { 2845 tcp_newreno_partial_ack(tp, th); 2846 } 2847 } else if (IN_CONGRECOVERY(tp->t_flags) && 2848 (V_tcp_do_prr)) { 2849 tp->sackhint.delivered_data = 2850 BYTES_THIS_ACK(tp, th); 2851 tp->snd_fack = th->th_ack; 2852 /* 2853 * During ECN cwnd reduction 2854 * always use PRR-SSRB 2855 */ 2856 tcp_do_prr_ack(tp, th, &to, SACK_CHANGE, 2857 &maxseg); 2858 (void) tcp_output(tp); 2859 } 2860 } 2861 /* 2862 * If we reach this point, ACK is not a duplicate, 2863 * i.e., it ACKs something we sent. 2864 */ 2865 if (tp->t_flags & TF_NEEDSYN) { 2866 /* 2867 * T/TCP: Connection was half-synchronized, and our 2868 * SYN has been ACK'd (so connection is now fully 2869 * synchronized). Go to non-starred state, 2870 * increment snd_una for ACK of SYN, and check if 2871 * we can do window scaling. 2872 */ 2873 tp->t_flags &= ~TF_NEEDSYN; 2874 tp->snd_una++; 2875 /* Do window scaling? */ 2876 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2877 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2878 tp->rcv_scale = tp->request_r_scale; 2879 /* Send window already scaled. */ 2880 } 2881 } 2882 2883 process_ACK: 2884 INP_WLOCK_ASSERT(inp); 2885 2886 /* 2887 * Adjust for the SYN bit in sequence space, 2888 * but don't account for it in cwnd calculations. 2889 * This is for the SYN_RECEIVED, non-simultaneous 2890 * SYN case. SYN_SENT and simultaneous SYN are 2891 * treated elsewhere. 2892 */ 2893 if (incforsyn) 2894 tp->snd_una++; 2895 acked = BYTES_THIS_ACK(tp, th); 2896 KASSERT(acked >= 0, ("%s: acked unexepectedly negative " 2897 "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__, 2898 tp->snd_una, th->th_ack, tp, m)); 2899 TCPSTAT_ADD(tcps_rcvackpack, nsegs); 2900 TCPSTAT_ADD(tcps_rcvackbyte, acked); 2901 2902 /* 2903 * If we just performed our first retransmit, and the ACK 2904 * arrives within our recovery window, then it was a mistake 2905 * to do the retransmit in the first place. Recover our 2906 * original cwnd and ssthresh, and proceed to transmit where 2907 * we left off. 2908 */ 2909 if (tp->t_rxtshift == 1 && 2910 tp->t_flags & TF_PREVVALID && 2911 tp->t_badrxtwin != 0 && 2912 to.to_flags & TOF_TS && 2913 to.to_tsecr != 0 && 2914 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) 2915 cc_cong_signal(tp, th, CC_RTO_ERR); 2916 2917 /* 2918 * If we have a timestamp reply, update smoothed 2919 * round trip time. If no timestamp is present but 2920 * transmit timer is running and timed sequence 2921 * number was acked, update smoothed round trip time. 2922 * Since we now have an rtt measurement, cancel the 2923 * timer backoff (cf., Phil Karn's retransmit alg.). 2924 * Recompute the initial retransmit timer. 2925 * 2926 * Some boxes send broken timestamp replies 2927 * during the SYN+ACK phase, ignore 2928 * timestamps of 0 or we could calculate a 2929 * huge RTT and blow up the retransmit timer. 2930 */ 2931 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) { 2932 uint32_t t; 2933 2934 t = tcp_ts_getticks() - to.to_tsecr; 2935 if (!tp->t_rttlow || tp->t_rttlow > t) 2936 tp->t_rttlow = t; 2937 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1); 2938 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { 2939 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime) 2940 tp->t_rttlow = ticks - tp->t_rtttime; 2941 tcp_xmit_timer(tp, ticks - tp->t_rtttime); 2942 } 2943 2944 SOCKBUF_LOCK(&so->so_snd); 2945 /* 2946 * Clear t_acktime if remote side has ACKd all data in the 2947 * socket buffer and FIN (if applicable). 2948 * Otherwise, update t_acktime if we received a sufficiently 2949 * large ACK. 2950 */ 2951 if ((tp->t_state <= TCPS_CLOSE_WAIT && 2952 acked == sbavail(&so->so_snd)) || 2953 acked > sbavail(&so->so_snd)) 2954 tp->t_acktime = 0; 2955 else if (acked > 1) 2956 tp->t_acktime = ticks; 2957 2958 /* 2959 * If all outstanding data is acked, stop retransmit 2960 * timer and remember to restart (more output or persist). 2961 * If there is more data to be acked, restart retransmit 2962 * timer, using current (possibly backed-off) value. 2963 */ 2964 if (th->th_ack == tp->snd_max) { 2965 tcp_timer_activate(tp, TT_REXMT, 0); 2966 needoutput = 1; 2967 } else if (!tcp_timer_active(tp, TT_PERSIST)) 2968 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp)); 2969 2970 /* 2971 * If no data (only SYN) was ACK'd, 2972 * skip rest of ACK processing. 2973 */ 2974 if (acked == 0) { 2975 SOCKBUF_UNLOCK(&so->so_snd); 2976 goto step6; 2977 } 2978 2979 /* 2980 * Let the congestion control algorithm update congestion 2981 * control related information. This typically means increasing 2982 * the congestion window. 2983 */ 2984 cc_ack_received(tp, th, nsegs, CC_ACK); 2985 2986 if (acked > sbavail(&so->so_snd)) { 2987 if (tp->snd_wnd >= sbavail(&so->so_snd)) 2988 tp->snd_wnd -= sbavail(&so->so_snd); 2989 else 2990 tp->snd_wnd = 0; 2991 mfree = sbcut_locked(&so->so_snd, 2992 (int)sbavail(&so->so_snd)); 2993 ourfinisacked = 1; 2994 } else { 2995 mfree = sbcut_locked(&so->so_snd, acked); 2996 if (tp->snd_wnd >= (uint32_t) acked) 2997 tp->snd_wnd -= acked; 2998 else 2999 tp->snd_wnd = 0; 3000 ourfinisacked = 0; 3001 } 3002 /* NB: sowwakeup_locked() does an implicit unlock. */ 3003 sowwakeup_locked(so); 3004 m_freem(mfree); 3005 /* Detect una wraparound. */ 3006 if (!IN_RECOVERY(tp->t_flags) && 3007 SEQ_GT(tp->snd_una, tp->snd_recover) && 3008 SEQ_LEQ(th->th_ack, tp->snd_recover)) 3009 tp->snd_recover = th->th_ack - 1; 3010 tp->snd_una = th->th_ack; 3011 if (IN_RECOVERY(tp->t_flags) && 3012 SEQ_GEQ(th->th_ack, tp->snd_recover)) { 3013 cc_post_recovery(tp, th); 3014 } 3015 if (tp->t_flags & TF_SACK_PERMIT) { 3016 if (SEQ_GT(tp->snd_una, tp->snd_recover)) 3017 tp->snd_recover = tp->snd_una; 3018 } 3019 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 3020 tp->snd_nxt = tp->snd_una; 3021 3022 switch (tp->t_state) { 3023 /* 3024 * In FIN_WAIT_1 STATE in addition to the processing 3025 * for the ESTABLISHED state if our FIN is now acknowledged 3026 * then enter FIN_WAIT_2. 3027 */ 3028 case TCPS_FIN_WAIT_1: 3029 if (ourfinisacked) { 3030 /* 3031 * If we can't receive any more 3032 * data, then closing user can proceed. 3033 * Starting the timer is contrary to the 3034 * specification, but if we don't get a FIN 3035 * we'll hang forever. 3036 */ 3037 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3038 tcp_free_sackholes(tp); 3039 soisdisconnected(so); 3040 tcp_timer_activate(tp, TT_2MSL, 3041 (tcp_fast_finwait2_recycle ? 3042 tcp_finwait2_timeout : 3043 TP_MAXIDLE(tp))); 3044 } 3045 tcp_state_change(tp, TCPS_FIN_WAIT_2); 3046 } 3047 break; 3048 3049 /* 3050 * In CLOSING STATE in addition to the processing for 3051 * the ESTABLISHED state if the ACK acknowledges our FIN 3052 * then enter the TIME-WAIT state, otherwise ignore 3053 * the segment. 3054 */ 3055 case TCPS_CLOSING: 3056 if (ourfinisacked) { 3057 tcp_twstart(tp); 3058 m_freem(m); 3059 return; 3060 } 3061 break; 3062 3063 /* 3064 * In LAST_ACK, we may still be waiting for data to drain 3065 * and/or to be acked, as well as for the ack of our FIN. 3066 * If our FIN is now acknowledged, delete the TCB, 3067 * enter the closed state and return. 3068 */ 3069 case TCPS_LAST_ACK: 3070 if (ourfinisacked) { 3071 tp = tcp_close(tp); 3072 goto drop; 3073 } 3074 break; 3075 } 3076 } 3077 3078 step6: 3079 INP_WLOCK_ASSERT(inp); 3080 3081 /* 3082 * Update window information. 3083 * Don't look at window if no ACK: TAC's send garbage on first SYN. 3084 */ 3085 if ((thflags & TH_ACK) && 3086 (SEQ_LT(tp->snd_wl1, th->th_seq) || 3087 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 3088 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 3089 /* keep track of pure window updates */ 3090 if (tlen == 0 && 3091 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 3092 TCPSTAT_INC(tcps_rcvwinupd); 3093 tp->snd_wnd = tiwin; 3094 tp->snd_wl1 = th->th_seq; 3095 tp->snd_wl2 = th->th_ack; 3096 if (tp->snd_wnd > tp->max_sndwnd) 3097 tp->max_sndwnd = tp->snd_wnd; 3098 needoutput = 1; 3099 } 3100 3101 /* 3102 * Process segments with URG. 3103 */ 3104 if ((thflags & TH_URG) && th->th_urp && 3105 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 3106 /* 3107 * This is a kludge, but if we receive and accept 3108 * random urgent pointers, we'll crash in 3109 * soreceive. It's hard to imagine someone 3110 * actually wanting to send this much urgent data. 3111 */ 3112 SOCKBUF_LOCK(&so->so_rcv); 3113 if (th->th_urp + sbavail(&so->so_rcv) > sb_max) { 3114 th->th_urp = 0; /* XXX */ 3115 thflags &= ~TH_URG; /* XXX */ 3116 SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */ 3117 goto dodata; /* XXX */ 3118 } 3119 /* 3120 * If this segment advances the known urgent pointer, 3121 * then mark the data stream. This should not happen 3122 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 3123 * a FIN has been received from the remote side. 3124 * In these states we ignore the URG. 3125 * 3126 * According to RFC961 (Assigned Protocols), 3127 * the urgent pointer points to the last octet 3128 * of urgent data. We continue, however, 3129 * to consider it to indicate the first octet 3130 * of data past the urgent section as the original 3131 * spec states (in one of two places). 3132 */ 3133 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { 3134 tp->rcv_up = th->th_seq + th->th_urp; 3135 so->so_oobmark = sbavail(&so->so_rcv) + 3136 (tp->rcv_up - tp->rcv_nxt) - 1; 3137 if (so->so_oobmark == 0) 3138 so->so_rcv.sb_state |= SBS_RCVATMARK; 3139 sohasoutofband(so); 3140 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 3141 } 3142 SOCKBUF_UNLOCK(&so->so_rcv); 3143 /* 3144 * Remove out of band data so doesn't get presented to user. 3145 * This can happen independent of advancing the URG pointer, 3146 * but if two URG's are pending at once, some out-of-band 3147 * data may creep in... ick. 3148 */ 3149 if (th->th_urp <= (uint32_t)tlen && 3150 !(so->so_options & SO_OOBINLINE)) { 3151 /* hdr drop is delayed */ 3152 tcp_pulloutofband(so, th, m, drop_hdrlen); 3153 } 3154 } else { 3155 /* 3156 * If no out of band data is expected, 3157 * pull receive urgent pointer along 3158 * with the receive window. 3159 */ 3160 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 3161 tp->rcv_up = tp->rcv_nxt; 3162 } 3163 dodata: /* XXX */ 3164 INP_WLOCK_ASSERT(inp); 3165 3166 /* 3167 * Process the segment text, merging it into the TCP sequencing queue, 3168 * and arranging for acknowledgment of receipt if necessary. 3169 * This process logically involves adjusting tp->rcv_wnd as data 3170 * is presented to the user (this happens in tcp_usrreq.c, 3171 * case PRU_RCVD). If a FIN has already been received on this 3172 * connection then we just ignore the text. 3173 */ 3174 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && 3175 (tp->t_flags & TF_FASTOPEN)); 3176 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && 3177 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 3178 tcp_seq save_start = th->th_seq; 3179 tcp_seq save_rnxt = tp->rcv_nxt; 3180 int save_tlen = tlen; 3181 m_adj(m, drop_hdrlen); /* delayed header drop */ 3182 /* 3183 * Insert segment which includes th into TCP reassembly queue 3184 * with control block tp. Set thflags to whether reassembly now 3185 * includes a segment with FIN. This handles the common case 3186 * inline (segment is the next to be received on an established 3187 * connection, and the queue is empty), avoiding linkage into 3188 * and removal from the queue and repetition of various 3189 * conversions. 3190 * Set DELACK for segments received in order, but ack 3191 * immediately when segments are out of order (so 3192 * fast retransmit can work). 3193 */ 3194 if (th->th_seq == tp->rcv_nxt && 3195 SEGQ_EMPTY(tp) && 3196 (TCPS_HAVEESTABLISHED(tp->t_state) || 3197 tfo_syn)) { 3198 if (DELAY_ACK(tp, tlen) || tfo_syn) 3199 tp->t_flags |= TF_DELACK; 3200 else 3201 tp->t_flags |= TF_ACKNOW; 3202 tp->rcv_nxt += tlen; 3203 if (tlen && 3204 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && 3205 (tp->t_fbyte_in == 0)) { 3206 tp->t_fbyte_in = ticks; 3207 if (tp->t_fbyte_in == 0) 3208 tp->t_fbyte_in = 1; 3209 if (tp->t_fbyte_out && tp->t_fbyte_in) 3210 tp->t_flags2 |= TF2_FBYTES_COMPLETE; 3211 } 3212 thflags = tcp_get_flags(th) & TH_FIN; 3213 TCPSTAT_INC(tcps_rcvpack); 3214 TCPSTAT_ADD(tcps_rcvbyte, tlen); 3215 SOCKBUF_LOCK(&so->so_rcv); 3216 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3217 m_freem(m); 3218 else 3219 sbappendstream_locked(&so->so_rcv, m, 0); 3220 tp->t_flags |= TF_WAKESOR; 3221 } else { 3222 /* 3223 * XXX: Due to the header drop above "th" is 3224 * theoretically invalid by now. Fortunately 3225 * m_adj() doesn't actually frees any mbufs 3226 * when trimming from the head. 3227 */ 3228 tcp_seq temp = save_start; 3229 3230 thflags = tcp_reass(tp, th, &temp, &tlen, m); 3231 tp->t_flags |= TF_ACKNOW; 3232 } 3233 if ((tp->t_flags & TF_SACK_PERMIT) && 3234 (save_tlen > 0) && 3235 TCPS_HAVEESTABLISHED(tp->t_state)) { 3236 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { 3237 /* 3238 * DSACK actually handled in the fastpath 3239 * above. 3240 */ 3241 tcp_update_sack_list(tp, save_start, 3242 save_start + save_tlen); 3243 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { 3244 if ((tp->rcv_numsacks >= 1) && 3245 (tp->sackblks[0].end == save_start)) { 3246 /* 3247 * Partial overlap, recorded at todrop 3248 * above. 3249 */ 3250 tcp_update_sack_list(tp, 3251 tp->sackblks[0].start, 3252 tp->sackblks[0].end); 3253 } else { 3254 tcp_update_dsack_list(tp, save_start, 3255 save_start + save_tlen); 3256 } 3257 } else if (tlen >= save_tlen) { 3258 /* Update of sackblks. */ 3259 tcp_update_dsack_list(tp, save_start, 3260 save_start + save_tlen); 3261 } else if (tlen > 0) { 3262 tcp_update_dsack_list(tp, save_start, 3263 save_start + tlen); 3264 } 3265 } 3266 tcp_handle_wakeup(tp); 3267 #if 0 3268 /* 3269 * Note the amount of data that peer has sent into 3270 * our window, in order to estimate the sender's 3271 * buffer size. 3272 * XXX: Unused. 3273 */ 3274 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) 3275 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 3276 else 3277 len = so->so_rcv.sb_hiwat; 3278 #endif 3279 } else { 3280 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { 3281 if (tlen > 0) { 3282 if ((thflags & TH_FIN) != 0) { 3283 log(LOG_DEBUG, "%s; %s: %s: " 3284 "Received %d bytes of data and FIN " 3285 "after having received a FIN, " 3286 "just dropping both\n", 3287 s, __func__, 3288 tcpstates[tp->t_state], tlen); 3289 } else { 3290 log(LOG_DEBUG, "%s; %s: %s: " 3291 "Received %d bytes of data " 3292 "after having received a FIN, " 3293 "just dropping it\n", 3294 s, __func__, 3295 tcpstates[tp->t_state], tlen); 3296 } 3297 } else { 3298 if ((thflags & TH_FIN) != 0) { 3299 log(LOG_DEBUG, "%s; %s: %s: " 3300 "Received FIN " 3301 "after having received a FIN, " 3302 "just dropping it\n", 3303 s, __func__, 3304 tcpstates[tp->t_state]); 3305 } 3306 } 3307 free(s, M_TCPLOG); 3308 } 3309 m_freem(m); 3310 thflags &= ~TH_FIN; 3311 } 3312 3313 /* 3314 * If FIN is received ACK the FIN and let the user know 3315 * that the connection is closing. 3316 */ 3317 if (thflags & TH_FIN) { 3318 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 3319 /* The socket upcall is handled by socantrcvmore. */ 3320 socantrcvmore(so); 3321 /* 3322 * If connection is half-synchronized 3323 * (ie NEEDSYN flag on) then delay ACK, 3324 * so it may be piggybacked when SYN is sent. 3325 * Otherwise, since we received a FIN then no 3326 * more input can be expected, send ACK now. 3327 */ 3328 if (tp->t_flags & TF_NEEDSYN) 3329 tp->t_flags |= TF_DELACK; 3330 else 3331 tp->t_flags |= TF_ACKNOW; 3332 tp->rcv_nxt++; 3333 } 3334 switch (tp->t_state) { 3335 /* 3336 * In SYN_RECEIVED and ESTABLISHED STATES 3337 * enter the CLOSE_WAIT state. 3338 */ 3339 case TCPS_SYN_RECEIVED: 3340 tp->t_starttime = ticks; 3341 /* FALLTHROUGH */ 3342 case TCPS_ESTABLISHED: 3343 tcp_state_change(tp, TCPS_CLOSE_WAIT); 3344 break; 3345 3346 /* 3347 * If still in FIN_WAIT_1 STATE FIN has not been acked so 3348 * enter the CLOSING state. 3349 */ 3350 case TCPS_FIN_WAIT_1: 3351 tcp_state_change(tp, TCPS_CLOSING); 3352 break; 3353 3354 /* 3355 * In FIN_WAIT_2 state enter the TIME_WAIT state, 3356 * starting the time-wait timer, turning off the other 3357 * standard timers. 3358 */ 3359 case TCPS_FIN_WAIT_2: 3360 tcp_twstart(tp); 3361 return; 3362 } 3363 } 3364 TCP_PROBE3(debug__input, tp, th, m); 3365 3366 /* 3367 * Return any desired output. 3368 */ 3369 if (needoutput || (tp->t_flags & TF_ACKNOW)) { 3370 (void) tcp_output(tp); 3371 } 3372 check_delack: 3373 INP_WLOCK_ASSERT(inp); 3374 3375 if (tp->t_flags & TF_DELACK) { 3376 tp->t_flags &= ~TF_DELACK; 3377 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); 3378 } 3379 INP_WUNLOCK(inp); 3380 return; 3381 3382 dropafterack: 3383 /* 3384 * Generate an ACK dropping incoming segment if it occupies 3385 * sequence space, where the ACK reflects our state. 3386 * 3387 * We can now skip the test for the RST flag since all 3388 * paths to this code happen after packets containing 3389 * RST have been dropped. 3390 * 3391 * In the SYN-RECEIVED state, don't send an ACK unless the 3392 * segment we received passes the SYN-RECEIVED ACK test. 3393 * If it fails send a RST. This breaks the loop in the 3394 * "LAND" DoS attack, and also prevents an ACK storm 3395 * between two listening ports that have been sent forged 3396 * SYN segments, each with the source address of the other. 3397 */ 3398 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && 3399 (SEQ_GT(tp->snd_una, th->th_ack) || 3400 SEQ_GT(th->th_ack, tp->snd_max)) ) { 3401 rstreason = BANDLIM_RST_OPENPORT; 3402 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); 3403 goto dropwithreset; 3404 } 3405 TCP_PROBE3(debug__input, tp, th, m); 3406 tp->t_flags |= TF_ACKNOW; 3407 (void) tcp_output(tp); 3408 INP_WUNLOCK(inp); 3409 m_freem(m); 3410 return; 3411 3412 dropwithreset: 3413 if (tp != NULL) { 3414 tcp_dropwithreset(m, th, tp, tlen, rstreason); 3415 INP_WUNLOCK(inp); 3416 } else 3417 tcp_dropwithreset(m, th, NULL, tlen, rstreason); 3418 return; 3419 3420 drop: 3421 /* 3422 * Drop space held by incoming segment and return. 3423 */ 3424 TCP_PROBE3(debug__input, tp, th, m); 3425 if (tp != NULL) { 3426 INP_WUNLOCK(inp); 3427 } 3428 m_freem(m); 3429 } 3430 3431 /* 3432 * Issue RST and make ACK acceptable to originator of segment. 3433 * The mbuf must still include the original packet header. 3434 * tp may be NULL. 3435 */ 3436 void 3437 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, 3438 int tlen, int rstreason) 3439 { 3440 #ifdef INET 3441 struct ip *ip; 3442 #endif 3443 #ifdef INET6 3444 struct ip6_hdr *ip6; 3445 #endif 3446 3447 if (tp != NULL) { 3448 INP_LOCK_ASSERT(tptoinpcb(tp)); 3449 } 3450 3451 /* Don't bother if destination was broadcast/multicast. */ 3452 if ((tcp_get_flags(th) & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) 3453 goto drop; 3454 #ifdef INET6 3455 if (mtod(m, struct ip *)->ip_v == 6) { 3456 ip6 = mtod(m, struct ip6_hdr *); 3457 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || 3458 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) 3459 goto drop; 3460 /* IPv6 anycast check is done at tcp6_input() */ 3461 } 3462 #endif 3463 #if defined(INET) && defined(INET6) 3464 else 3465 #endif 3466 #ifdef INET 3467 { 3468 ip = mtod(m, struct ip *); 3469 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 3470 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || 3471 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || 3472 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 3473 goto drop; 3474 } 3475 #endif 3476 3477 /* Perform bandwidth limiting. */ 3478 if (badport_bandlim(rstreason) < 0) 3479 goto drop; 3480 3481 /* tcp_respond consumes the mbuf chain. */ 3482 if (tcp_get_flags(th) & TH_ACK) { 3483 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, 3484 th->th_ack, TH_RST); 3485 } else { 3486 if (tcp_get_flags(th) & TH_SYN) 3487 tlen++; 3488 if (tcp_get_flags(th) & TH_FIN) 3489 tlen++; 3490 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, 3491 (tcp_seq)0, TH_RST|TH_ACK); 3492 } 3493 return; 3494 drop: 3495 m_freem(m); 3496 } 3497 3498 /* 3499 * Parse TCP options and place in tcpopt. 3500 */ 3501 void 3502 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags) 3503 { 3504 int opt, optlen; 3505 3506 to->to_flags = 0; 3507 for (; cnt > 0; cnt -= optlen, cp += optlen) { 3508 opt = cp[0]; 3509 if (opt == TCPOPT_EOL) 3510 break; 3511 if (opt == TCPOPT_NOP) 3512 optlen = 1; 3513 else { 3514 if (cnt < 2) 3515 break; 3516 optlen = cp[1]; 3517 if (optlen < 2 || optlen > cnt) 3518 break; 3519 } 3520 switch (opt) { 3521 case TCPOPT_MAXSEG: 3522 if (optlen != TCPOLEN_MAXSEG) 3523 continue; 3524 if (!(flags & TO_SYN)) 3525 continue; 3526 to->to_flags |= TOF_MSS; 3527 bcopy((char *)cp + 2, 3528 (char *)&to->to_mss, sizeof(to->to_mss)); 3529 to->to_mss = ntohs(to->to_mss); 3530 break; 3531 case TCPOPT_WINDOW: 3532 if (optlen != TCPOLEN_WINDOW) 3533 continue; 3534 if (!(flags & TO_SYN)) 3535 continue; 3536 to->to_flags |= TOF_SCALE; 3537 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT); 3538 break; 3539 case TCPOPT_TIMESTAMP: 3540 if (optlen != TCPOLEN_TIMESTAMP) 3541 continue; 3542 to->to_flags |= TOF_TS; 3543 bcopy((char *)cp + 2, 3544 (char *)&to->to_tsval, sizeof(to->to_tsval)); 3545 to->to_tsval = ntohl(to->to_tsval); 3546 bcopy((char *)cp + 6, 3547 (char *)&to->to_tsecr, sizeof(to->to_tsecr)); 3548 to->to_tsecr = ntohl(to->to_tsecr); 3549 break; 3550 case TCPOPT_SIGNATURE: 3551 /* 3552 * In order to reply to a host which has set the 3553 * TCP_SIGNATURE option in its initial SYN, we have 3554 * to record the fact that the option was observed 3555 * here for the syncache code to perform the correct 3556 * response. 3557 */ 3558 if (optlen != TCPOLEN_SIGNATURE) 3559 continue; 3560 to->to_flags |= TOF_SIGNATURE; 3561 to->to_signature = cp + 2; 3562 break; 3563 case TCPOPT_SACK_PERMITTED: 3564 if (optlen != TCPOLEN_SACK_PERMITTED) 3565 continue; 3566 if (!(flags & TO_SYN)) 3567 continue; 3568 if (!V_tcp_do_sack) 3569 continue; 3570 to->to_flags |= TOF_SACKPERM; 3571 break; 3572 case TCPOPT_SACK: 3573 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) 3574 continue; 3575 if (flags & TO_SYN) 3576 continue; 3577 to->to_flags |= TOF_SACK; 3578 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; 3579 to->to_sacks = cp + 2; 3580 TCPSTAT_INC(tcps_sack_rcv_blocks); 3581 break; 3582 case TCPOPT_FAST_OPEN: 3583 /* 3584 * Cookie length validation is performed by the 3585 * server side cookie checking code or the client 3586 * side cookie cache update code. 3587 */ 3588 if (!(flags & TO_SYN)) 3589 continue; 3590 if (!V_tcp_fastopen_client_enable && 3591 !V_tcp_fastopen_server_enable) 3592 continue; 3593 to->to_flags |= TOF_FASTOPEN; 3594 to->to_tfo_len = optlen - 2; 3595 to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL; 3596 break; 3597 default: 3598 continue; 3599 } 3600 } 3601 } 3602 3603 /* 3604 * Pull out of band byte out of a segment so 3605 * it doesn't appear in the user's data queue. 3606 * It is still reflected in the segment length for 3607 * sequencing purposes. 3608 */ 3609 void 3610 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, 3611 int off) 3612 { 3613 int cnt = off + th->th_urp - 1; 3614 3615 while (cnt >= 0) { 3616 if (m->m_len > cnt) { 3617 char *cp = mtod(m, caddr_t) + cnt; 3618 struct tcpcb *tp = sototcpcb(so); 3619 3620 INP_WLOCK_ASSERT(tptoinpcb(tp)); 3621 3622 tp->t_iobc = *cp; 3623 tp->t_oobflags |= TCPOOB_HAVEDATA; 3624 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 3625 m->m_len--; 3626 if (m->m_flags & M_PKTHDR) 3627 m->m_pkthdr.len--; 3628 return; 3629 } 3630 cnt -= m->m_len; 3631 m = m->m_next; 3632 if (m == NULL) 3633 break; 3634 } 3635 panic("tcp_pulloutofband"); 3636 } 3637 3638 /* 3639 * Collect new round-trip time estimate 3640 * and update averages and current timeout. 3641 */ 3642 void 3643 tcp_xmit_timer(struct tcpcb *tp, int rtt) 3644 { 3645 int delta; 3646 3647 INP_WLOCK_ASSERT(tptoinpcb(tp)); 3648 3649 TCPSTAT_INC(tcps_rttupdated); 3650 if (tp->t_rttupdated < UCHAR_MAX) 3651 tp->t_rttupdated++; 3652 #ifdef STATS 3653 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, 3654 imax(0, rtt * 1000 / hz)); 3655 #endif 3656 if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) { 3657 /* 3658 * srtt is stored as fixed point with 5 bits after the 3659 * binary point (i.e., scaled by 8). The following magic 3660 * is equivalent to the smoothing algorithm in rfc793 with 3661 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 3662 * point). Adjust rtt to origin 0. 3663 */ 3664 delta = ((rtt - 1) << TCP_DELTA_SHIFT) 3665 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); 3666 3667 if ((tp->t_srtt += delta) <= 0) 3668 tp->t_srtt = 1; 3669 3670 /* 3671 * We accumulate a smoothed rtt variance (actually, a 3672 * smoothed mean difference), then set the retransmit 3673 * timer to smoothed rtt + 4 times the smoothed variance. 3674 * rttvar is stored as fixed point with 4 bits after the 3675 * binary point (scaled by 16). The following is 3676 * equivalent to rfc793 smoothing with an alpha of .75 3677 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 3678 * rfc793's wired-in beta. 3679 */ 3680 if (delta < 0) 3681 delta = -delta; 3682 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); 3683 if ((tp->t_rttvar += delta) <= 0) 3684 tp->t_rttvar = 1; 3685 } else { 3686 /* 3687 * No rtt measurement yet - use the unsmoothed rtt. 3688 * Set the variance to half the rtt (so our first 3689 * retransmit happens at 3*rtt). 3690 */ 3691 tp->t_srtt = rtt << TCP_RTT_SHIFT; 3692 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); 3693 } 3694 tp->t_rtttime = 0; 3695 tp->t_rxtshift = 0; 3696 3697 /* 3698 * the retransmit should happen at rtt + 4 * rttvar. 3699 * Because of the way we do the smoothing, srtt and rttvar 3700 * will each average +1/2 tick of bias. When we compute 3701 * the retransmit timer, we want 1/2 tick of rounding and 3702 * 1 extra tick because of +-1/2 tick uncertainty in the 3703 * firing of the timer. The bias will give us exactly the 3704 * 1.5 tick we need. But, because the bias is 3705 * statistical, we have to test that we don't drop below 3706 * the minimum feasible timer (which is 2 ticks). 3707 */ 3708 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 3709 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); 3710 3711 /* 3712 * We received an ack for a packet that wasn't retransmitted; 3713 * it is probably safe to discard any error indications we've 3714 * received recently. This isn't quite right, but close enough 3715 * for now (a route might have failed after we sent a segment, 3716 * and the return path might not be symmetrical). 3717 */ 3718 tp->t_softerror = 0; 3719 } 3720 3721 /* 3722 * Determine a reasonable value for maxseg size. 3723 * If the route is known, check route for mtu. 3724 * If none, use an mss that can be handled on the outgoing interface 3725 * without forcing IP to fragment. If no route is found, route has no mtu, 3726 * or the destination isn't local, use a default, hopefully conservative 3727 * size (usually 512 or the default IP max size, but no more than the mtu 3728 * of the interface), as we can't discover anything about intervening 3729 * gateways or networks. We also initialize the congestion/slow start 3730 * window to be a single segment if the destination isn't local. 3731 * While looking at the routing entry, we also initialize other path-dependent 3732 * parameters from pre-set or cached values in the routing entry. 3733 * 3734 * NOTE that resulting t_maxseg doesn't include space for TCP options or 3735 * IP options, e.g. IPSEC data, since length of this data may vary, and 3736 * thus it is calculated for every segment separately in tcp_output(). 3737 * 3738 * NOTE that this routine is only called when we process an incoming 3739 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS 3740 * settings are handled in tcp_mssopt(). 3741 */ 3742 void 3743 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer, 3744 struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap) 3745 { 3746 int mss = 0; 3747 uint32_t maxmtu = 0; 3748 struct inpcb *inp = tptoinpcb(tp); 3749 struct hc_metrics_lite metrics; 3750 #ifdef INET6 3751 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; 3752 size_t min_protoh = isipv6 ? 3753 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : 3754 sizeof (struct tcpiphdr); 3755 #else 3756 size_t min_protoh = sizeof(struct tcpiphdr); 3757 #endif 3758 3759 INP_WLOCK_ASSERT(inp); 3760 3761 if (tp->t_port) 3762 min_protoh += V_tcp_udp_tunneling_overhead; 3763 if (mtuoffer != -1) { 3764 KASSERT(offer == -1, ("%s: conflict", __func__)); 3765 offer = mtuoffer - min_protoh; 3766 } 3767 3768 /* Initialize. */ 3769 #ifdef INET6 3770 if (isipv6) { 3771 maxmtu = tcp_maxmtu6(&inp->inp_inc, cap); 3772 tp->t_maxseg = V_tcp_v6mssdflt; 3773 } 3774 #endif 3775 #if defined(INET) && defined(INET6) 3776 else 3777 #endif 3778 #ifdef INET 3779 { 3780 maxmtu = tcp_maxmtu(&inp->inp_inc, cap); 3781 tp->t_maxseg = V_tcp_mssdflt; 3782 } 3783 #endif 3784 3785 /* 3786 * No route to sender, stay with default mss and return. 3787 */ 3788 if (maxmtu == 0) { 3789 /* 3790 * In case we return early we need to initialize metrics 3791 * to a defined state as tcp_hc_get() would do for us 3792 * if there was no cache hit. 3793 */ 3794 if (metricptr != NULL) 3795 bzero(metricptr, sizeof(struct hc_metrics_lite)); 3796 return; 3797 } 3798 3799 /* What have we got? */ 3800 switch (offer) { 3801 case 0: 3802 /* 3803 * Offer == 0 means that there was no MSS on the SYN 3804 * segment, in this case we use tcp_mssdflt as 3805 * already assigned to t_maxseg above. 3806 */ 3807 offer = tp->t_maxseg; 3808 break; 3809 3810 case -1: 3811 /* 3812 * Offer == -1 means that we didn't receive SYN yet. 3813 */ 3814 /* FALLTHROUGH */ 3815 3816 default: 3817 /* 3818 * Prevent DoS attack with too small MSS. Round up 3819 * to at least minmss. 3820 */ 3821 offer = max(offer, V_tcp_minmss); 3822 } 3823 3824 /* 3825 * rmx information is now retrieved from tcp_hostcache. 3826 */ 3827 tcp_hc_get(&inp->inp_inc, &metrics); 3828 if (metricptr != NULL) 3829 bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite)); 3830 3831 /* 3832 * If there's a discovered mtu in tcp hostcache, use it. 3833 * Else, use the link mtu. 3834 */ 3835 if (metrics.rmx_mtu) 3836 mss = min(metrics.rmx_mtu, maxmtu) - min_protoh; 3837 else { 3838 #ifdef INET6 3839 if (isipv6) { 3840 mss = maxmtu - min_protoh; 3841 if (!V_path_mtu_discovery && 3842 !in6_localaddr(&inp->in6p_faddr)) 3843 mss = min(mss, V_tcp_v6mssdflt); 3844 } 3845 #endif 3846 #if defined(INET) && defined(INET6) 3847 else 3848 #endif 3849 #ifdef INET 3850 { 3851 mss = maxmtu - min_protoh; 3852 if (!V_path_mtu_discovery && 3853 !in_localaddr(inp->inp_faddr)) 3854 mss = min(mss, V_tcp_mssdflt); 3855 } 3856 #endif 3857 /* 3858 * XXX - The above conditional (mss = maxmtu - min_protoh) 3859 * probably violates the TCP spec. 3860 * The problem is that, since we don't know the 3861 * other end's MSS, we are supposed to use a conservative 3862 * default. But, if we do that, then MTU discovery will 3863 * never actually take place, because the conservative 3864 * default is much less than the MTUs typically seen 3865 * on the Internet today. For the moment, we'll sweep 3866 * this under the carpet. 3867 * 3868 * The conservative default might not actually be a problem 3869 * if the only case this occurs is when sending an initial 3870 * SYN with options and data to a host we've never talked 3871 * to before. Then, they will reply with an MSS value which 3872 * will get recorded and the new parameters should get 3873 * recomputed. For Further Study. 3874 */ 3875 } 3876 mss = min(mss, offer); 3877 3878 /* 3879 * Sanity check: make sure that maxseg will be large 3880 * enough to allow some data on segments even if the 3881 * all the option space is used (40bytes). Otherwise 3882 * funny things may happen in tcp_output. 3883 * 3884 * XXXGL: shouldn't we reserve space for IP/IPv6 options? 3885 */ 3886 mss = max(mss, 64); 3887 3888 tp->t_maxseg = mss; 3889 if (tp->t_maxseg < V_tcp_mssdflt) { 3890 /* 3891 * The MSS is so small we should not process incoming 3892 * SACK's since we are subject to attack in such a 3893 * case. 3894 */ 3895 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3896 } else { 3897 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3898 } 3899 3900 } 3901 3902 void 3903 tcp_mss(struct tcpcb *tp, int offer) 3904 { 3905 int mss; 3906 uint32_t bufsize; 3907 struct inpcb *inp = tptoinpcb(tp); 3908 struct socket *so; 3909 struct hc_metrics_lite metrics; 3910 struct tcp_ifcap cap; 3911 3912 KASSERT(tp != NULL, ("%s: tp == NULL", __func__)); 3913 3914 bzero(&cap, sizeof(cap)); 3915 tcp_mss_update(tp, offer, -1, &metrics, &cap); 3916 3917 mss = tp->t_maxseg; 3918 3919 /* 3920 * If there's a pipesize, change the socket buffer to that size, 3921 * don't change if sb_hiwat is different than default (then it 3922 * has been changed on purpose with setsockopt). 3923 * Make the socket buffers an integral number of mss units; 3924 * if the mss is larger than the socket buffer, decrease the mss. 3925 */ 3926 so = inp->inp_socket; 3927 SOCKBUF_LOCK(&so->so_snd); 3928 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe) 3929 bufsize = metrics.rmx_sendpipe; 3930 else 3931 bufsize = so->so_snd.sb_hiwat; 3932 if (bufsize < mss) 3933 mss = bufsize; 3934 else { 3935 bufsize = roundup(bufsize, mss); 3936 if (bufsize > sb_max) 3937 bufsize = sb_max; 3938 if (bufsize > so->so_snd.sb_hiwat) 3939 (void)sbreserve_locked(so, SO_SND, bufsize, NULL); 3940 } 3941 SOCKBUF_UNLOCK(&so->so_snd); 3942 /* 3943 * Sanity check: make sure that maxseg will be large 3944 * enough to allow some data on segments even if the 3945 * all the option space is used (40bytes). Otherwise 3946 * funny things may happen in tcp_output. 3947 * 3948 * XXXGL: shouldn't we reserve space for IP/IPv6 options? 3949 */ 3950 tp->t_maxseg = max(mss, 64); 3951 if (tp->t_maxseg < V_tcp_mssdflt) { 3952 /* 3953 * The MSS is so small we should not process incoming 3954 * SACK's since we are subject to attack in such a 3955 * case. 3956 */ 3957 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3958 } else { 3959 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3960 } 3961 3962 SOCKBUF_LOCK(&so->so_rcv); 3963 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe) 3964 bufsize = metrics.rmx_recvpipe; 3965 else 3966 bufsize = so->so_rcv.sb_hiwat; 3967 if (bufsize > mss) { 3968 bufsize = roundup(bufsize, mss); 3969 if (bufsize > sb_max) 3970 bufsize = sb_max; 3971 if (bufsize > so->so_rcv.sb_hiwat) 3972 (void)sbreserve_locked(so, SO_RCV, bufsize, NULL); 3973 } 3974 SOCKBUF_UNLOCK(&so->so_rcv); 3975 3976 /* Check the interface for TSO capabilities. */ 3977 if (cap.ifcap & CSUM_TSO) { 3978 tp->t_flags |= TF_TSO; 3979 tp->t_tsomax = cap.tsomax; 3980 tp->t_tsomaxsegcount = cap.tsomaxsegcount; 3981 tp->t_tsomaxsegsize = cap.tsomaxsegsize; 3982 } 3983 } 3984 3985 /* 3986 * Determine the MSS option to send on an outgoing SYN. 3987 */ 3988 int 3989 tcp_mssopt(struct in_conninfo *inc) 3990 { 3991 int mss = 0; 3992 uint32_t thcmtu = 0; 3993 uint32_t maxmtu = 0; 3994 size_t min_protoh; 3995 3996 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer")); 3997 3998 #ifdef INET6 3999 if (inc->inc_flags & INC_ISIPV6) { 4000 mss = V_tcp_v6mssdflt; 4001 maxmtu = tcp_maxmtu6(inc, NULL); 4002 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 4003 } 4004 #endif 4005 #if defined(INET) && defined(INET6) 4006 else 4007 #endif 4008 #ifdef INET 4009 { 4010 mss = V_tcp_mssdflt; 4011 maxmtu = tcp_maxmtu(inc, NULL); 4012 min_protoh = sizeof(struct tcpiphdr); 4013 } 4014 #endif 4015 #if defined(INET6) || defined(INET) 4016 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */ 4017 #endif 4018 4019 if (maxmtu && thcmtu) 4020 mss = min(maxmtu, thcmtu) - min_protoh; 4021 else if (maxmtu || thcmtu) 4022 mss = max(maxmtu, thcmtu) - min_protoh; 4023 4024 return (mss); 4025 } 4026 4027 void 4028 tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, 4029 sackstatus_t sack_changed, u_int *maxsegp) 4030 { 4031 int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0; 4032 u_int maxseg; 4033 4034 INP_WLOCK_ASSERT(tptoinpcb(tp)); 4035 4036 if (*maxsegp == 0) { 4037 *maxsegp = tcp_maxseg(tp); 4038 } 4039 maxseg = *maxsegp; 4040 /* 4041 * Compute the amount of data that this ACK is indicating 4042 * (del_data) and an estimate of how many bytes are in the 4043 * network. 4044 */ 4045 if (tcp_is_sack_recovery(tp, to) || 4046 (IN_CONGRECOVERY(tp->t_flags) && 4047 !IN_FASTRECOVERY(tp->t_flags))) { 4048 del_data = tp->sackhint.delivered_data; 4049 if (V_tcp_do_newsack) 4050 pipe = tcp_compute_pipe(tp); 4051 else 4052 pipe = (tp->snd_nxt - tp->snd_fack) + 4053 tp->sackhint.sack_bytes_rexmit; 4054 } else { 4055 if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg + 4056 tp->snd_recover - tp->snd_una)) { 4057 del_data = maxseg; 4058 } 4059 pipe = imax(0, tp->snd_max - tp->snd_una - 4060 imin(INT_MAX / 65536, tp->t_dupacks) * maxseg); 4061 } 4062 tp->sackhint.prr_delivered += del_data; 4063 /* 4064 * Proportional Rate Reduction 4065 */ 4066 if (pipe >= tp->snd_ssthresh) { 4067 if (tp->sackhint.recover_fs == 0) 4068 tp->sackhint.recover_fs = 4069 imax(1, tp->snd_nxt - tp->snd_una); 4070 snd_cnt = howmany((long)tp->sackhint.prr_delivered * 4071 tp->snd_ssthresh, tp->sackhint.recover_fs) - 4072 tp->sackhint.prr_out + maxseg - 1; 4073 } else { 4074 /* 4075 * PRR 6937bis heuristic: 4076 * - A partial ack without SACK block beneath snd_recover 4077 * indicates further loss. 4078 * - An SACK scoreboard update adding a new hole indicates 4079 * further loss, so be conservative and send at most one 4080 * segment. 4081 * - Prevent ACK splitting attacks, by being conservative 4082 * when no new data is acked. 4083 */ 4084 if ((sack_changed == SACK_NEWLOSS) || (del_data == 0)) { 4085 limit = tp->sackhint.prr_delivered - 4086 tp->sackhint.prr_out; 4087 } else { 4088 limit = imax(tp->sackhint.prr_delivered - 4089 tp->sackhint.prr_out, del_data) + 4090 maxseg; 4091 } 4092 snd_cnt = imin((tp->snd_ssthresh - pipe), limit); 4093 } 4094 snd_cnt = imax(snd_cnt, 0) / maxseg; 4095 /* 4096 * Send snd_cnt new data into the network in response to this ack. 4097 * If there is going to be a SACK retransmission, adjust snd_cwnd 4098 * accordingly. 4099 */ 4100 if (IN_FASTRECOVERY(tp->t_flags)) { 4101 if (tcp_is_sack_recovery(tp, to)) { 4102 tp->snd_cwnd = tp->snd_nxt - tp->snd_recover + 4103 tp->sackhint.sack_bytes_rexmit + 4104 (snd_cnt * maxseg); 4105 } else { 4106 tp->snd_cwnd = (tp->snd_max - tp->snd_una) + 4107 (snd_cnt * maxseg); 4108 } 4109 } else if (IN_CONGRECOVERY(tp->t_flags)) { 4110 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg); 4111 } 4112 tp->snd_cwnd = imax(maxseg, tp->snd_cwnd); 4113 } 4114 4115 /* 4116 * On a partial ack arrives, force the retransmission of the 4117 * next unacknowledged segment. Do not clear tp->t_dupacks. 4118 * By setting snd_nxt to ti_ack, this forces retransmission timer to 4119 * be started again. 4120 */ 4121 void 4122 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th) 4123 { 4124 tcp_seq onxt = tp->snd_nxt; 4125 uint32_t ocwnd = tp->snd_cwnd; 4126 u_int maxseg = tcp_maxseg(tp); 4127 4128 INP_WLOCK_ASSERT(tptoinpcb(tp)); 4129 4130 tcp_timer_activate(tp, TT_REXMT, 0); 4131 tp->t_rtttime = 0; 4132 tp->snd_nxt = th->th_ack; 4133 /* 4134 * Set snd_cwnd to one segment beyond acknowledged offset. 4135 * (tp->snd_una has not yet been updated when this function is called.) 4136 */ 4137 tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th); 4138 tp->t_flags |= TF_ACKNOW; 4139 (void) tcp_output(tp); 4140 tp->snd_cwnd = ocwnd; 4141 if (SEQ_GT(onxt, tp->snd_nxt)) 4142 tp->snd_nxt = onxt; 4143 /* 4144 * Partial window deflation. Relies on fact that tp->snd_una 4145 * not updated yet. 4146 */ 4147 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th)) 4148 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th); 4149 else 4150 tp->snd_cwnd = 0; 4151 tp->snd_cwnd += maxseg; 4152 } 4153 4154 int 4155 tcp_compute_pipe(struct tcpcb *tp) 4156 { 4157 if (tp->t_fb->tfb_compute_pipe == NULL) { 4158 return (tp->snd_max - tp->snd_una + 4159 tp->sackhint.sack_bytes_rexmit - 4160 tp->sackhint.sacked_bytes - 4161 tp->sackhint.lost_bytes); 4162 } else { 4163 return((*tp->t_fb->tfb_compute_pipe)(tp)); 4164 } 4165 } 4166 4167 uint32_t 4168 tcp_compute_initwnd(uint32_t maxseg) 4169 { 4170 /* 4171 * Calculate the Initial Window, also used as Restart Window 4172 * 4173 * RFC5681 Section 3.1 specifies the default conservative values. 4174 * RFC3390 specifies slightly more aggressive values. 4175 * RFC6928 increases it to ten segments. 4176 * Support for user specified value for initial flight size. 4177 */ 4178 if (V_tcp_initcwnd_segments) 4179 return min(V_tcp_initcwnd_segments * maxseg, 4180 max(2 * maxseg, V_tcp_initcwnd_segments * 1460)); 4181 else if (V_tcp_do_rfc3390) 4182 return min(4 * maxseg, max(2 * maxseg, 4380)); 4183 else { 4184 /* Per RFC5681 Section 3.1 */ 4185 if (maxseg > 2190) 4186 return (2 * maxseg); 4187 else if (maxseg > 1095) 4188 return (3 * maxseg); 4189 else 4190 return (4 * maxseg); 4191 } 4192 } 4193