xref: /freebsd/sys/netinet/tcp_input.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_inet.h"
54 #include "opt_inet6.h"
55 #include "opt_ipsec.h"
56 #include "opt_tcpdebug.h"
57 
58 #include <sys/param.h>
59 #include <sys/kernel.h>
60 #ifdef TCP_HHOOK
61 #include <sys/hhook.h>
62 #endif
63 #include <sys/malloc.h>
64 #include <sys/mbuf.h>
65 #include <sys/proc.h>		/* for proc0 declaration */
66 #include <sys/protosw.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 
75 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
76 
77 #include <vm/uma.h>
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/route.h>
82 #include <net/vnet.h>
83 
84 #define TCPSTATES		/* for logging */
85 
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
92 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
93 #include <netinet/ip_var.h>
94 #include <netinet/ip_options.h>
95 #include <netinet/ip6.h>
96 #include <netinet/icmp6.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/in6_var.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #ifdef TCP_RFC7413
102 #include <netinet/tcp_fastopen.h>
103 #endif
104 #include <netinet/tcp.h>
105 #include <netinet/tcp_fsm.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet6/tcp6_var.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/cc/cc.h>
112 #ifdef TCPPCAP
113 #include <netinet/tcp_pcap.h>
114 #endif
115 #include <netinet/tcp_syncache.h>
116 #ifdef TCPDEBUG
117 #include <netinet/tcp_debug.h>
118 #endif /* TCPDEBUG */
119 #ifdef TCP_OFFLOAD
120 #include <netinet/tcp_offload.h>
121 #endif
122 
123 #include <netipsec/ipsec_support.h>
124 
125 #include <machine/in_cksum.h>
126 
127 #include <security/mac/mac_framework.h>
128 
129 const int tcprexmtthresh = 3;
130 
131 int tcp_log_in_vain = 0;
132 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
133     &tcp_log_in_vain, 0,
134     "Log all incoming TCP segments to closed ports");
135 
136 VNET_DEFINE(int, blackhole) = 0;
137 #define	V_blackhole		VNET(blackhole)
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
139     &VNET_NAME(blackhole), 0,
140     "Do not send RST on segments to closed ports");
141 
142 VNET_DEFINE(int, tcp_delack_enabled) = 1;
143 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
144     &VNET_NAME(tcp_delack_enabled), 0,
145     "Delay ACK to try and piggyback it onto a data packet");
146 
147 VNET_DEFINE(int, drop_synfin) = 0;
148 #define	V_drop_synfin		VNET(drop_synfin)
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
150     &VNET_NAME(drop_synfin), 0,
151     "Drop TCP packets with SYN+FIN set");
152 
153 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
156     "Use calculated pipe/in-flight bytes per RFC 6675");
157 
158 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
159 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
160 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
161     &VNET_NAME(tcp_do_rfc3042), 0,
162     "Enable RFC 3042 (Limited Transmit)");
163 
164 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
166     &VNET_NAME(tcp_do_rfc3390), 0,
167     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
168 
169 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
171     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
172     "Slow-start flight size (initial congestion window) in number of segments");
173 
174 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
176     &VNET_NAME(tcp_do_rfc3465), 0,
177     "Enable RFC 3465 (Appropriate Byte Counting)");
178 
179 VNET_DEFINE(int, tcp_abc_l_var) = 2;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
181     &VNET_NAME(tcp_abc_l_var), 2,
182     "Cap the max cwnd increment during slow-start to this number of segments");
183 
184 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
185 
186 VNET_DEFINE(int, tcp_do_ecn) = 2;
187 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
188     &VNET_NAME(tcp_do_ecn), 0,
189     "TCP ECN support");
190 
191 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
192 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
193     &VNET_NAME(tcp_ecn_maxretries), 0,
194     "Max retries before giving up on ECN");
195 
196 VNET_DEFINE(int, tcp_insecure_syn) = 0;
197 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
199     &VNET_NAME(tcp_insecure_syn), 0,
200     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
201 
202 VNET_DEFINE(int, tcp_insecure_rst) = 0;
203 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
205     &VNET_NAME(tcp_insecure_rst), 0,
206     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
207 
208 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
209 #define	V_tcp_recvspace	VNET(tcp_recvspace)
210 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
211     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
212 
213 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
214 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
216     &VNET_NAME(tcp_do_autorcvbuf), 0,
217     "Enable automatic receive buffer sizing");
218 
219 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
220 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
222     &VNET_NAME(tcp_autorcvbuf_inc), 0,
223     "Incrementor step size of automatic receive buffer");
224 
225 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
226 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
228     &VNET_NAME(tcp_autorcvbuf_max), 0,
229     "Max size of automatic receive buffer");
230 
231 VNET_DEFINE(struct inpcbhead, tcb);
232 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
233 VNET_DEFINE(struct inpcbinfo, tcbinfo);
234 
235 /*
236  * TCP statistics are stored in an array of counter(9)s, which size matches
237  * size of struct tcpstat.  TCP running connection count is a regular array.
238  */
239 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
240 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
241     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
242 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
243 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
244     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
245     "TCP connection counts by TCP state");
246 
247 static void
248 tcp_vnet_init(const void *unused)
249 {
250 
251 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
252 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
253 }
254 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
255     tcp_vnet_init, NULL);
256 
257 #ifdef VIMAGE
258 static void
259 tcp_vnet_uninit(const void *unused)
260 {
261 
262 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
263 	VNET_PCPUSTAT_FREE(tcpstat);
264 }
265 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
266     tcp_vnet_uninit, NULL);
267 #endif /* VIMAGE */
268 
269 /*
270  * Kernel module interface for updating tcpstat.  The argument is an index
271  * into tcpstat treated as an array.
272  */
273 void
274 kmod_tcpstat_inc(int statnum)
275 {
276 
277 	counter_u64_add(VNET(tcpstat)[statnum], 1);
278 }
279 
280 #ifdef TCP_HHOOK
281 /*
282  * Wrapper for the TCP established input helper hook.
283  */
284 void
285 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
286 {
287 	struct tcp_hhook_data hhook_data;
288 
289 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
290 		hhook_data.tp = tp;
291 		hhook_data.th = th;
292 		hhook_data.to = to;
293 
294 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
295 		    tp->osd);
296 	}
297 }
298 #endif
299 
300 /*
301  * CC wrapper hook functions
302  */
303 void
304 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
305     uint16_t type)
306 {
307 	INP_WLOCK_ASSERT(tp->t_inpcb);
308 
309 	tp->ccv->nsegs = nsegs;
310 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
311 	if (tp->snd_cwnd <= tp->snd_wnd)
312 		tp->ccv->flags |= CCF_CWND_LIMITED;
313 	else
314 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
315 
316 	if (type == CC_ACK) {
317 		if (tp->snd_cwnd > tp->snd_ssthresh) {
318 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
319 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
320 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
321 				tp->t_bytes_acked -= tp->snd_cwnd;
322 				tp->ccv->flags |= CCF_ABC_SENTAWND;
323 			}
324 		} else {
325 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
326 				tp->t_bytes_acked = 0;
327 		}
328 	}
329 
330 	if (CC_ALGO(tp)->ack_received != NULL) {
331 		/* XXXLAS: Find a way to live without this */
332 		tp->ccv->curack = th->th_ack;
333 		CC_ALGO(tp)->ack_received(tp->ccv, type);
334 	}
335 }
336 
337 void
338 cc_conn_init(struct tcpcb *tp)
339 {
340 	struct hc_metrics_lite metrics;
341 	struct inpcb *inp = tp->t_inpcb;
342 	u_int maxseg;
343 	int rtt;
344 
345 	INP_WLOCK_ASSERT(tp->t_inpcb);
346 
347 	tcp_hc_get(&inp->inp_inc, &metrics);
348 	maxseg = tcp_maxseg(tp);
349 
350 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
351 		tp->t_srtt = rtt;
352 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
353 		TCPSTAT_INC(tcps_usedrtt);
354 		if (metrics.rmx_rttvar) {
355 			tp->t_rttvar = metrics.rmx_rttvar;
356 			TCPSTAT_INC(tcps_usedrttvar);
357 		} else {
358 			/* default variation is +- 1 rtt */
359 			tp->t_rttvar =
360 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
361 		}
362 		TCPT_RANGESET(tp->t_rxtcur,
363 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
364 		    tp->t_rttmin, TCPTV_REXMTMAX);
365 	}
366 	if (metrics.rmx_ssthresh) {
367 		/*
368 		 * There's some sort of gateway or interface
369 		 * buffer limit on the path.  Use this to set
370 		 * the slow start threshold, but set the
371 		 * threshold to no less than 2*mss.
372 		 */
373 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
374 		TCPSTAT_INC(tcps_usedssthresh);
375 	}
376 
377 	/*
378 	 * Set the initial slow-start flight size.
379 	 *
380 	 * RFC5681 Section 3.1 specifies the default conservative values.
381 	 * RFC3390 specifies slightly more aggressive values.
382 	 * RFC6928 increases it to ten segments.
383 	 * Support for user specified value for initial flight size.
384 	 *
385 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
386 	 * reduce the initial CWND to one segment as congestion is likely
387 	 * requiring us to be cautious.
388 	 */
389 	if (tp->snd_cwnd == 1)
390 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
391 	else if (V_tcp_initcwnd_segments)
392 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg,
393 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
394 	else if (V_tcp_do_rfc3390)
395 		tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380));
396 	else {
397 		/* Per RFC5681 Section 3.1 */
398 		if (maxseg > 2190)
399 			tp->snd_cwnd = 2 * maxseg;
400 		else if (maxseg > 1095)
401 			tp->snd_cwnd = 3 * maxseg;
402 		else
403 			tp->snd_cwnd = 4 * maxseg;
404 	}
405 
406 	if (CC_ALGO(tp)->conn_init != NULL)
407 		CC_ALGO(tp)->conn_init(tp->ccv);
408 }
409 
410 void inline
411 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
412 {
413 	u_int maxseg;
414 
415 	INP_WLOCK_ASSERT(tp->t_inpcb);
416 
417 	switch(type) {
418 	case CC_NDUPACK:
419 		if (!IN_FASTRECOVERY(tp->t_flags)) {
420 			tp->snd_recover = tp->snd_max;
421 			if (tp->t_flags & TF_ECN_PERMIT)
422 				tp->t_flags |= TF_ECN_SND_CWR;
423 		}
424 		break;
425 	case CC_ECN:
426 		if (!IN_CONGRECOVERY(tp->t_flags)) {
427 			TCPSTAT_INC(tcps_ecn_rcwnd);
428 			tp->snd_recover = tp->snd_max;
429 			if (tp->t_flags & TF_ECN_PERMIT)
430 				tp->t_flags |= TF_ECN_SND_CWR;
431 		}
432 		break;
433 	case CC_RTO:
434 		maxseg = tcp_maxseg(tp);
435 		tp->t_dupacks = 0;
436 		tp->t_bytes_acked = 0;
437 		EXIT_RECOVERY(tp->t_flags);
438 		if (CC_ALGO(tp)->cong_signal == NULL) {
439 			/*
440 			 * RFC5681 Section 3.1
441 			 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4)
442 			 */
443 			tp->snd_ssthresh =
444 			    max((tp->snd_max - tp->snd_una) / 2 / maxseg, 2)
445 				* maxseg;
446 			tp->snd_cwnd = maxseg;
447 		}
448 		break;
449 	case CC_RTO_ERR:
450 		TCPSTAT_INC(tcps_sndrexmitbad);
451 		/* RTO was unnecessary, so reset everything. */
452 		tp->snd_cwnd = tp->snd_cwnd_prev;
453 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
454 		tp->snd_recover = tp->snd_recover_prev;
455 		if (tp->t_flags & TF_WASFRECOVERY)
456 			ENTER_FASTRECOVERY(tp->t_flags);
457 		if (tp->t_flags & TF_WASCRECOVERY)
458 			ENTER_CONGRECOVERY(tp->t_flags);
459 		tp->snd_nxt = tp->snd_max;
460 		tp->t_flags &= ~TF_PREVVALID;
461 		tp->t_badrxtwin = 0;
462 		break;
463 	}
464 
465 	if (CC_ALGO(tp)->cong_signal != NULL) {
466 		if (th != NULL)
467 			tp->ccv->curack = th->th_ack;
468 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
469 	}
470 }
471 
472 void inline
473 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
474 {
475 	INP_WLOCK_ASSERT(tp->t_inpcb);
476 
477 	/* XXXLAS: KASSERT that we're in recovery? */
478 
479 	if (CC_ALGO(tp)->post_recovery != NULL) {
480 		tp->ccv->curack = th->th_ack;
481 		CC_ALGO(tp)->post_recovery(tp->ccv);
482 	}
483 	/* XXXLAS: EXIT_RECOVERY ? */
484 	tp->t_bytes_acked = 0;
485 }
486 
487 /*
488  * Indicate whether this ack should be delayed.  We can delay the ack if
489  * following conditions are met:
490  *	- There is no delayed ack timer in progress.
491  *	- Our last ack wasn't a 0-sized window. We never want to delay
492  *	  the ack that opens up a 0-sized window.
493  *	- LRO wasn't used for this segment. We make sure by checking that the
494  *	  segment size is not larger than the MSS.
495  */
496 #define DELAY_ACK(tp, tlen)						\
497 	((!tcp_timer_active(tp, TT_DELACK) &&				\
498 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
499 	    (tlen <= tp->t_maxseg) &&					\
500 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
501 
502 static void inline
503 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
504 {
505 	INP_WLOCK_ASSERT(tp->t_inpcb);
506 
507 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
508 		switch (iptos & IPTOS_ECN_MASK) {
509 		case IPTOS_ECN_CE:
510 		    tp->ccv->flags |= CCF_IPHDR_CE;
511 		    break;
512 		case IPTOS_ECN_ECT0:
513 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
514 		    break;
515 		case IPTOS_ECN_ECT1:
516 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
517 		    break;
518 		}
519 
520 		if (th->th_flags & TH_CWR)
521 			tp->ccv->flags |= CCF_TCPHDR_CWR;
522 		else
523 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
524 
525 		if (tp->t_flags & TF_DELACK)
526 			tp->ccv->flags |= CCF_DELACK;
527 		else
528 			tp->ccv->flags &= ~CCF_DELACK;
529 
530 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
531 
532 		if (tp->ccv->flags & CCF_ACKNOW)
533 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
534 	}
535 }
536 
537 /*
538  * TCP input handling is split into multiple parts:
539  *   tcp6_input is a thin wrapper around tcp_input for the extended
540  *	ip6_protox[] call format in ip6_input
541  *   tcp_input handles primary segment validation, inpcb lookup and
542  *	SYN processing on listen sockets
543  *   tcp_do_segment processes the ACK and text of the segment for
544  *	establishing, established and closing connections
545  */
546 #ifdef INET6
547 int
548 tcp6_input(struct mbuf **mp, int *offp, int proto)
549 {
550 	struct mbuf *m = *mp;
551 	struct in6_ifaddr *ia6;
552 	struct ip6_hdr *ip6;
553 
554 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
555 
556 	/*
557 	 * draft-itojun-ipv6-tcp-to-anycast
558 	 * better place to put this in?
559 	 */
560 	ip6 = mtod(m, struct ip6_hdr *);
561 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
562 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
563 		struct ip6_hdr *ip6;
564 
565 		ifa_free(&ia6->ia_ifa);
566 		ip6 = mtod(m, struct ip6_hdr *);
567 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
568 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
569 		return (IPPROTO_DONE);
570 	}
571 	if (ia6)
572 		ifa_free(&ia6->ia_ifa);
573 
574 	return (tcp_input(mp, offp, proto));
575 }
576 #endif /* INET6 */
577 
578 int
579 tcp_input(struct mbuf **mp, int *offp, int proto)
580 {
581 	struct mbuf *m = *mp;
582 	struct tcphdr *th = NULL;
583 	struct ip *ip = NULL;
584 	struct inpcb *inp = NULL;
585 	struct tcpcb *tp = NULL;
586 	struct socket *so = NULL;
587 	u_char *optp = NULL;
588 	int off0;
589 	int optlen = 0;
590 #ifdef INET
591 	int len;
592 #endif
593 	int tlen = 0, off;
594 	int drop_hdrlen;
595 	int thflags;
596 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
597 	uint8_t iptos;
598 	struct m_tag *fwd_tag = NULL;
599 #ifdef INET6
600 	struct ip6_hdr *ip6 = NULL;
601 	int isipv6;
602 #else
603 	const void *ip6 = NULL;
604 #endif /* INET6 */
605 	struct tcpopt to;		/* options in this segment */
606 	char *s = NULL;			/* address and port logging */
607 	int ti_locked;
608 #ifdef TCPDEBUG
609 	/*
610 	 * The size of tcp_saveipgen must be the size of the max ip header,
611 	 * now IPv6.
612 	 */
613 	u_char tcp_saveipgen[IP6_HDR_LEN];
614 	struct tcphdr tcp_savetcp;
615 	short ostate = 0;
616 #endif
617 
618 #ifdef INET6
619 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
620 #endif
621 
622 	off0 = *offp;
623 	m = *mp;
624 	*mp = NULL;
625 	to.to_flags = 0;
626 	TCPSTAT_INC(tcps_rcvtotal);
627 
628 #ifdef INET6
629 	if (isipv6) {
630 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
631 
632 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
633 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
634 			if (m == NULL) {
635 				TCPSTAT_INC(tcps_rcvshort);
636 				return (IPPROTO_DONE);
637 			}
638 		}
639 
640 		ip6 = mtod(m, struct ip6_hdr *);
641 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
642 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
643 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
644 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
645 				th->th_sum = m->m_pkthdr.csum_data;
646 			else
647 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
648 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
649 			th->th_sum ^= 0xffff;
650 		} else
651 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
652 		if (th->th_sum) {
653 			TCPSTAT_INC(tcps_rcvbadsum);
654 			goto drop;
655 		}
656 
657 		/*
658 		 * Be proactive about unspecified IPv6 address in source.
659 		 * As we use all-zero to indicate unbounded/unconnected pcb,
660 		 * unspecified IPv6 address can be used to confuse us.
661 		 *
662 		 * Note that packets with unspecified IPv6 destination is
663 		 * already dropped in ip6_input.
664 		 */
665 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
666 			/* XXX stat */
667 			goto drop;
668 		}
669 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
670 	}
671 #endif
672 #if defined(INET) && defined(INET6)
673 	else
674 #endif
675 #ifdef INET
676 	{
677 		/*
678 		 * Get IP and TCP header together in first mbuf.
679 		 * Note: IP leaves IP header in first mbuf.
680 		 */
681 		if (off0 > sizeof (struct ip)) {
682 			ip_stripoptions(m);
683 			off0 = sizeof(struct ip);
684 		}
685 		if (m->m_len < sizeof (struct tcpiphdr)) {
686 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
687 			    == NULL) {
688 				TCPSTAT_INC(tcps_rcvshort);
689 				return (IPPROTO_DONE);
690 			}
691 		}
692 		ip = mtod(m, struct ip *);
693 		th = (struct tcphdr *)((caddr_t)ip + off0);
694 		tlen = ntohs(ip->ip_len) - off0;
695 
696 		iptos = ip->ip_tos;
697 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
698 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
699 				th->th_sum = m->m_pkthdr.csum_data;
700 			else
701 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
702 				    ip->ip_dst.s_addr,
703 				    htonl(m->m_pkthdr.csum_data + tlen +
704 				    IPPROTO_TCP));
705 			th->th_sum ^= 0xffff;
706 		} else {
707 			struct ipovly *ipov = (struct ipovly *)ip;
708 
709 			/*
710 			 * Checksum extended TCP header and data.
711 			 */
712 			len = off0 + tlen;
713 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
714 			ipov->ih_len = htons(tlen);
715 			th->th_sum = in_cksum(m, len);
716 			/* Reset length for SDT probes. */
717 			ip->ip_len = htons(len);
718 			/* Reset TOS bits */
719 			ip->ip_tos = iptos;
720 			/* Re-initialization for later version check */
721 			ip->ip_v = IPVERSION;
722 		}
723 
724 		if (th->th_sum) {
725 			TCPSTAT_INC(tcps_rcvbadsum);
726 			goto drop;
727 		}
728 	}
729 #endif /* INET */
730 
731 	/*
732 	 * Check that TCP offset makes sense,
733 	 * pull out TCP options and adjust length.		XXX
734 	 */
735 	off = th->th_off << 2;
736 	if (off < sizeof (struct tcphdr) || off > tlen) {
737 		TCPSTAT_INC(tcps_rcvbadoff);
738 		goto drop;
739 	}
740 	tlen -= off;	/* tlen is used instead of ti->ti_len */
741 	if (off > sizeof (struct tcphdr)) {
742 #ifdef INET6
743 		if (isipv6) {
744 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
745 			ip6 = mtod(m, struct ip6_hdr *);
746 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
747 		}
748 #endif
749 #if defined(INET) && defined(INET6)
750 		else
751 #endif
752 #ifdef INET
753 		{
754 			if (m->m_len < sizeof(struct ip) + off) {
755 				if ((m = m_pullup(m, sizeof (struct ip) + off))
756 				    == NULL) {
757 					TCPSTAT_INC(tcps_rcvshort);
758 					return (IPPROTO_DONE);
759 				}
760 				ip = mtod(m, struct ip *);
761 				th = (struct tcphdr *)((caddr_t)ip + off0);
762 			}
763 		}
764 #endif
765 		optlen = off - sizeof (struct tcphdr);
766 		optp = (u_char *)(th + 1);
767 	}
768 	thflags = th->th_flags;
769 
770 	/*
771 	 * Convert TCP protocol specific fields to host format.
772 	 */
773 	tcp_fields_to_host(th);
774 
775 	/*
776 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
777 	 */
778 	drop_hdrlen = off0 + off;
779 
780 	/*
781 	 * Locate pcb for segment; if we're likely to add or remove a
782 	 * connection then first acquire pcbinfo lock.  There are three cases
783 	 * where we might discover later we need a write lock despite the
784 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
785 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
786 	 */
787 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
788 		INP_INFO_RLOCK(&V_tcbinfo);
789 		ti_locked = TI_RLOCKED;
790 	} else
791 		ti_locked = TI_UNLOCKED;
792 
793 	/*
794 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
795 	 */
796         if (
797 #ifdef INET6
798 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
799 #ifdef INET
800 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
801 #endif
802 #endif
803 #if defined(INET) && !defined(INET6)
804 	    (m->m_flags & M_IP_NEXTHOP)
805 #endif
806 	    )
807 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
808 
809 findpcb:
810 #ifdef INVARIANTS
811 	if (ti_locked == TI_RLOCKED) {
812 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
813 	} else {
814 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
815 	}
816 #endif
817 #ifdef INET6
818 	if (isipv6 && fwd_tag != NULL) {
819 		struct sockaddr_in6 *next_hop6;
820 
821 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
822 		/*
823 		 * Transparently forwarded. Pretend to be the destination.
824 		 * Already got one like this?
825 		 */
826 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
827 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
828 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
829 		if (!inp) {
830 			/*
831 			 * It's new.  Try to find the ambushing socket.
832 			 * Because we've rewritten the destination address,
833 			 * any hardware-generated hash is ignored.
834 			 */
835 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
836 			    th->th_sport, &next_hop6->sin6_addr,
837 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
838 			    th->th_dport, INPLOOKUP_WILDCARD |
839 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
840 		}
841 	} else if (isipv6) {
842 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
843 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
844 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
845 		    m->m_pkthdr.rcvif, m);
846 	}
847 #endif /* INET6 */
848 #if defined(INET6) && defined(INET)
849 	else
850 #endif
851 #ifdef INET
852 	if (fwd_tag != NULL) {
853 		struct sockaddr_in *next_hop;
854 
855 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
856 		/*
857 		 * Transparently forwarded. Pretend to be the destination.
858 		 * already got one like this?
859 		 */
860 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
861 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
862 		    m->m_pkthdr.rcvif, m);
863 		if (!inp) {
864 			/*
865 			 * It's new.  Try to find the ambushing socket.
866 			 * Because we've rewritten the destination address,
867 			 * any hardware-generated hash is ignored.
868 			 */
869 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
870 			    th->th_sport, next_hop->sin_addr,
871 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
872 			    th->th_dport, INPLOOKUP_WILDCARD |
873 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
874 		}
875 	} else
876 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
877 		    th->th_sport, ip->ip_dst, th->th_dport,
878 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
879 		    m->m_pkthdr.rcvif, m);
880 #endif /* INET */
881 
882 	/*
883 	 * If the INPCB does not exist then all data in the incoming
884 	 * segment is discarded and an appropriate RST is sent back.
885 	 * XXX MRT Send RST using which routing table?
886 	 */
887 	if (inp == NULL) {
888 		/*
889 		 * Log communication attempts to ports that are not
890 		 * in use.
891 		 */
892 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
893 		    tcp_log_in_vain == 2) {
894 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
895 				log(LOG_INFO, "%s; %s: Connection attempt "
896 				    "to closed port\n", s, __func__);
897 		}
898 		/*
899 		 * When blackholing do not respond with a RST but
900 		 * completely ignore the segment and drop it.
901 		 */
902 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
903 		    V_blackhole == 2)
904 			goto dropunlock;
905 
906 		rstreason = BANDLIM_RST_CLOSEDPORT;
907 		goto dropwithreset;
908 	}
909 	INP_WLOCK_ASSERT(inp);
910 	/*
911 	 * While waiting for inp lock during the lookup, another thread
912 	 * can have dropped the inpcb, in which case we need to loop back
913 	 * and try to find a new inpcb to deliver to.
914 	 */
915 	if (inp->inp_flags & INP_DROPPED) {
916 		INP_WUNLOCK(inp);
917 		inp = NULL;
918 		goto findpcb;
919 	}
920 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
921 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
922 	    ((inp->inp_socket == NULL) ||
923 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
924 		inp->inp_flowid = m->m_pkthdr.flowid;
925 		inp->inp_flowtype = M_HASHTYPE_GET(m);
926 	}
927 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
928 #ifdef INET6
929 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
930 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
931 		goto dropunlock;
932 	}
933 #ifdef INET
934 	else
935 #endif
936 #endif /* INET6 */
937 #ifdef INET
938 	if (IPSEC_ENABLED(ipv4) &&
939 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
940 		goto dropunlock;
941 	}
942 #endif /* INET */
943 #endif /* IPSEC */
944 
945 	/*
946 	 * Check the minimum TTL for socket.
947 	 */
948 	if (inp->inp_ip_minttl != 0) {
949 #ifdef INET6
950 		if (isipv6) {
951 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
952 				goto dropunlock;
953 		} else
954 #endif
955 		if (inp->inp_ip_minttl > ip->ip_ttl)
956 			goto dropunlock;
957 	}
958 
959 	/*
960 	 * A previous connection in TIMEWAIT state is supposed to catch stray
961 	 * or duplicate segments arriving late.  If this segment was a
962 	 * legitimate new connection attempt, the old INPCB gets removed and
963 	 * we can try again to find a listening socket.
964 	 *
965 	 * At this point, due to earlier optimism, we may hold only an inpcb
966 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
967 	 * acquire it, or if that fails, acquire a reference on the inpcb,
968 	 * drop all locks, acquire a global write lock, and then re-acquire
969 	 * the inpcb lock.  We may at that point discover that another thread
970 	 * has tried to free the inpcb, in which case we need to loop back
971 	 * and try to find a new inpcb to deliver to.
972 	 *
973 	 * XXXRW: It may be time to rethink timewait locking.
974 	 */
975 relocked:
976 	if (inp->inp_flags & INP_TIMEWAIT) {
977 		if (ti_locked == TI_UNLOCKED) {
978 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
979 				in_pcbref(inp);
980 				INP_WUNLOCK(inp);
981 				INP_INFO_RLOCK(&V_tcbinfo);
982 				ti_locked = TI_RLOCKED;
983 				INP_WLOCK(inp);
984 				if (in_pcbrele_wlocked(inp)) {
985 					inp = NULL;
986 					goto findpcb;
987 				} else if (inp->inp_flags & INP_DROPPED) {
988 					INP_WUNLOCK(inp);
989 					inp = NULL;
990 					goto findpcb;
991 				}
992 			} else
993 				ti_locked = TI_RLOCKED;
994 		}
995 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
996 
997 		if (thflags & TH_SYN)
998 			tcp_dooptions(&to, optp, optlen, TO_SYN);
999 		/*
1000 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
1001 		 */
1002 		if (tcp_twcheck(inp, &to, th, m, tlen))
1003 			goto findpcb;
1004 		INP_INFO_RUNLOCK(&V_tcbinfo);
1005 		return (IPPROTO_DONE);
1006 	}
1007 	/*
1008 	 * The TCPCB may no longer exist if the connection is winding
1009 	 * down or it is in the CLOSED state.  Either way we drop the
1010 	 * segment and send an appropriate response.
1011 	 */
1012 	tp = intotcpcb(inp);
1013 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1014 		rstreason = BANDLIM_RST_CLOSEDPORT;
1015 		goto dropwithreset;
1016 	}
1017 
1018 #ifdef TCP_OFFLOAD
1019 	if (tp->t_flags & TF_TOE) {
1020 		tcp_offload_input(tp, m);
1021 		m = NULL;	/* consumed by the TOE driver */
1022 		goto dropunlock;
1023 	}
1024 #endif
1025 
1026 	/*
1027 	 * We've identified a valid inpcb, but it could be that we need an
1028 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1029 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1030 	 * relock, we have to jump back to 'relocked' as the connection might
1031 	 * now be in TIMEWAIT.
1032 	 */
1033 #ifdef INVARIANTS
1034 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1035 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1036 #endif
1037 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1038 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1039 	       !IS_FASTOPEN(tp->t_flags)))) {
1040 		if (ti_locked == TI_UNLOCKED) {
1041 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1042 				in_pcbref(inp);
1043 				INP_WUNLOCK(inp);
1044 				INP_INFO_RLOCK(&V_tcbinfo);
1045 				ti_locked = TI_RLOCKED;
1046 				INP_WLOCK(inp);
1047 				if (in_pcbrele_wlocked(inp)) {
1048 					inp = NULL;
1049 					goto findpcb;
1050 				} else if (inp->inp_flags & INP_DROPPED) {
1051 					INP_WUNLOCK(inp);
1052 					inp = NULL;
1053 					goto findpcb;
1054 				}
1055 				goto relocked;
1056 			} else
1057 				ti_locked = TI_RLOCKED;
1058 		}
1059 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1060 	}
1061 
1062 #ifdef MAC
1063 	INP_WLOCK_ASSERT(inp);
1064 	if (mac_inpcb_check_deliver(inp, m))
1065 		goto dropunlock;
1066 #endif
1067 	so = inp->inp_socket;
1068 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1069 #ifdef TCPDEBUG
1070 	if (so->so_options & SO_DEBUG) {
1071 		ostate = tp->t_state;
1072 #ifdef INET6
1073 		if (isipv6) {
1074 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1075 		} else
1076 #endif
1077 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1078 		tcp_savetcp = *th;
1079 	}
1080 #endif /* TCPDEBUG */
1081 	/*
1082 	 * When the socket is accepting connections (the INPCB is in LISTEN
1083 	 * state) we look into the SYN cache if this is a new connection
1084 	 * attempt or the completion of a previous one.
1085 	 */
1086 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1087 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1088 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1089 		struct in_conninfo inc;
1090 
1091 		bzero(&inc, sizeof(inc));
1092 #ifdef INET6
1093 		if (isipv6) {
1094 			inc.inc_flags |= INC_ISIPV6;
1095 			inc.inc6_faddr = ip6->ip6_src;
1096 			inc.inc6_laddr = ip6->ip6_dst;
1097 		} else
1098 #endif
1099 		{
1100 			inc.inc_faddr = ip->ip_src;
1101 			inc.inc_laddr = ip->ip_dst;
1102 		}
1103 		inc.inc_fport = th->th_sport;
1104 		inc.inc_lport = th->th_dport;
1105 		inc.inc_fibnum = so->so_fibnum;
1106 
1107 		/*
1108 		 * Check for an existing connection attempt in syncache if
1109 		 * the flag is only ACK.  A successful lookup creates a new
1110 		 * socket appended to the listen queue in SYN_RECEIVED state.
1111 		 */
1112 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1113 
1114 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1115 			/*
1116 			 * Parse the TCP options here because
1117 			 * syncookies need access to the reflected
1118 			 * timestamp.
1119 			 */
1120 			tcp_dooptions(&to, optp, optlen, 0);
1121 			/*
1122 			 * NB: syncache_expand() doesn't unlock
1123 			 * inp and tcpinfo locks.
1124 			 */
1125 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1126 			if (rstreason < 0) {
1127 				/*
1128 				 * A failing TCP MD5 signature comparison
1129 				 * must result in the segment being dropped
1130 				 * and must not produce any response back
1131 				 * to the sender.
1132 				 */
1133 				goto dropunlock;
1134 			} else if (rstreason == 0) {
1135 				/*
1136 				 * No syncache entry or ACK was not
1137 				 * for our SYN/ACK.  Send a RST.
1138 				 * NB: syncache did its own logging
1139 				 * of the failure cause.
1140 				 */
1141 				rstreason = BANDLIM_RST_OPENPORT;
1142 				goto dropwithreset;
1143 			}
1144 #ifdef TCP_RFC7413
1145 tfo_socket_result:
1146 #endif
1147 			if (so == NULL) {
1148 				/*
1149 				 * We completed the 3-way handshake
1150 				 * but could not allocate a socket
1151 				 * either due to memory shortage,
1152 				 * listen queue length limits or
1153 				 * global socket limits.  Send RST
1154 				 * or wait and have the remote end
1155 				 * retransmit the ACK for another
1156 				 * try.
1157 				 */
1158 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1159 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1160 					    "Socket allocation failed due to "
1161 					    "limits or memory shortage, %s\n",
1162 					    s, __func__,
1163 					    V_tcp_sc_rst_sock_fail ?
1164 					    "sending RST" : "try again");
1165 				if (V_tcp_sc_rst_sock_fail) {
1166 					rstreason = BANDLIM_UNLIMITED;
1167 					goto dropwithreset;
1168 				} else
1169 					goto dropunlock;
1170 			}
1171 			/*
1172 			 * Socket is created in state SYN_RECEIVED.
1173 			 * Unlock the listen socket, lock the newly
1174 			 * created socket and update the tp variable.
1175 			 */
1176 			INP_WUNLOCK(inp);	/* listen socket */
1177 			inp = sotoinpcb(so);
1178 			/*
1179 			 * New connection inpcb is already locked by
1180 			 * syncache_expand().
1181 			 */
1182 			INP_WLOCK_ASSERT(inp);
1183 			tp = intotcpcb(inp);
1184 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1185 			    ("%s: ", __func__));
1186 			/*
1187 			 * Process the segment and the data it
1188 			 * contains.  tcp_do_segment() consumes
1189 			 * the mbuf chain and unlocks the inpcb.
1190 			 */
1191 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1192 			    iptos, ti_locked);
1193 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1194 			return (IPPROTO_DONE);
1195 		}
1196 		/*
1197 		 * Segment flag validation for new connection attempts:
1198 		 *
1199 		 * Our (SYN|ACK) response was rejected.
1200 		 * Check with syncache and remove entry to prevent
1201 		 * retransmits.
1202 		 *
1203 		 * NB: syncache_chkrst does its own logging of failure
1204 		 * causes.
1205 		 */
1206 		if (thflags & TH_RST) {
1207 			syncache_chkrst(&inc, th);
1208 			goto dropunlock;
1209 		}
1210 		/*
1211 		 * We can't do anything without SYN.
1212 		 */
1213 		if ((thflags & TH_SYN) == 0) {
1214 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1215 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1216 				    "SYN is missing, segment ignored\n",
1217 				    s, __func__);
1218 			TCPSTAT_INC(tcps_badsyn);
1219 			goto dropunlock;
1220 		}
1221 		/*
1222 		 * (SYN|ACK) is bogus on a listen socket.
1223 		 */
1224 		if (thflags & TH_ACK) {
1225 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1226 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1227 				    "SYN|ACK invalid, segment rejected\n",
1228 				    s, __func__);
1229 			syncache_badack(&inc);	/* XXX: Not needed! */
1230 			TCPSTAT_INC(tcps_badsyn);
1231 			rstreason = BANDLIM_RST_OPENPORT;
1232 			goto dropwithreset;
1233 		}
1234 		/*
1235 		 * If the drop_synfin option is enabled, drop all
1236 		 * segments with both the SYN and FIN bits set.
1237 		 * This prevents e.g. nmap from identifying the
1238 		 * TCP/IP stack.
1239 		 * XXX: Poor reasoning.  nmap has other methods
1240 		 * and is constantly refining its stack detection
1241 		 * strategies.
1242 		 * XXX: This is a violation of the TCP specification
1243 		 * and was used by RFC1644.
1244 		 */
1245 		if ((thflags & TH_FIN) && V_drop_synfin) {
1246 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1247 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1248 				    "SYN|FIN segment ignored (based on "
1249 				    "sysctl setting)\n", s, __func__);
1250 			TCPSTAT_INC(tcps_badsyn);
1251 			goto dropunlock;
1252 		}
1253 		/*
1254 		 * Segment's flags are (SYN) or (SYN|FIN).
1255 		 *
1256 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1257 		 * as they do not affect the state of the TCP FSM.
1258 		 * The data pointed to by TH_URG and th_urp is ignored.
1259 		 */
1260 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1261 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1262 		KASSERT(thflags & (TH_SYN),
1263 		    ("%s: Listen socket: TH_SYN not set", __func__));
1264 #ifdef INET6
1265 		/*
1266 		 * If deprecated address is forbidden,
1267 		 * we do not accept SYN to deprecated interface
1268 		 * address to prevent any new inbound connection from
1269 		 * getting established.
1270 		 * When we do not accept SYN, we send a TCP RST,
1271 		 * with deprecated source address (instead of dropping
1272 		 * it).  We compromise it as it is much better for peer
1273 		 * to send a RST, and RST will be the final packet
1274 		 * for the exchange.
1275 		 *
1276 		 * If we do not forbid deprecated addresses, we accept
1277 		 * the SYN packet.  RFC2462 does not suggest dropping
1278 		 * SYN in this case.
1279 		 * If we decipher RFC2462 5.5.4, it says like this:
1280 		 * 1. use of deprecated addr with existing
1281 		 *    communication is okay - "SHOULD continue to be
1282 		 *    used"
1283 		 * 2. use of it with new communication:
1284 		 *   (2a) "SHOULD NOT be used if alternate address
1285 		 *        with sufficient scope is available"
1286 		 *   (2b) nothing mentioned otherwise.
1287 		 * Here we fall into (2b) case as we have no choice in
1288 		 * our source address selection - we must obey the peer.
1289 		 *
1290 		 * The wording in RFC2462 is confusing, and there are
1291 		 * multiple description text for deprecated address
1292 		 * handling - worse, they are not exactly the same.
1293 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1294 		 */
1295 		if (isipv6 && !V_ip6_use_deprecated) {
1296 			struct in6_ifaddr *ia6;
1297 
1298 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1299 			if (ia6 != NULL &&
1300 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1301 				ifa_free(&ia6->ia_ifa);
1302 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1303 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1304 					"Connection attempt to deprecated "
1305 					"IPv6 address rejected\n",
1306 					s, __func__);
1307 				rstreason = BANDLIM_RST_OPENPORT;
1308 				goto dropwithreset;
1309 			}
1310 			if (ia6)
1311 				ifa_free(&ia6->ia_ifa);
1312 		}
1313 #endif /* INET6 */
1314 		/*
1315 		 * Basic sanity checks on incoming SYN requests:
1316 		 *   Don't respond if the destination is a link layer
1317 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1318 		 *   If it is from this socket it must be forged.
1319 		 *   Don't respond if the source or destination is a
1320 		 *	global or subnet broad- or multicast address.
1321 		 *   Note that it is quite possible to receive unicast
1322 		 *	link-layer packets with a broadcast IP address. Use
1323 		 *	in_broadcast() to find them.
1324 		 */
1325 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1326 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1327 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1328 				"Connection attempt from broad- or multicast "
1329 				"link layer address ignored\n", s, __func__);
1330 			goto dropunlock;
1331 		}
1332 #ifdef INET6
1333 		if (isipv6) {
1334 			if (th->th_dport == th->th_sport &&
1335 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1336 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1337 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1338 					"Connection attempt to/from self "
1339 					"ignored\n", s, __func__);
1340 				goto dropunlock;
1341 			}
1342 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1343 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1344 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1345 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1346 					"Connection attempt from/to multicast "
1347 					"address ignored\n", s, __func__);
1348 				goto dropunlock;
1349 			}
1350 		}
1351 #endif
1352 #if defined(INET) && defined(INET6)
1353 		else
1354 #endif
1355 #ifdef INET
1356 		{
1357 			if (th->th_dport == th->th_sport &&
1358 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1359 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1360 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1361 					"Connection attempt from/to self "
1362 					"ignored\n", s, __func__);
1363 				goto dropunlock;
1364 			}
1365 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1366 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1367 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1368 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1369 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1370 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1371 					"Connection attempt from/to broad- "
1372 					"or multicast address ignored\n",
1373 					s, __func__);
1374 				goto dropunlock;
1375 			}
1376 		}
1377 #endif
1378 		/*
1379 		 * SYN appears to be valid.  Create compressed TCP state
1380 		 * for syncache.
1381 		 */
1382 #ifdef TCPDEBUG
1383 		if (so->so_options & SO_DEBUG)
1384 			tcp_trace(TA_INPUT, ostate, tp,
1385 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1386 #endif
1387 		TCP_PROBE3(debug__input, tp, th, m);
1388 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1389 #ifdef TCP_RFC7413
1390 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1391 			goto tfo_socket_result;
1392 #else
1393 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1394 #endif
1395 		/*
1396 		 * Entry added to syncache and mbuf consumed.
1397 		 * Only the listen socket is unlocked by syncache_add().
1398 		 */
1399 		if (ti_locked == TI_RLOCKED) {
1400 			INP_INFO_RUNLOCK(&V_tcbinfo);
1401 			ti_locked = TI_UNLOCKED;
1402 		}
1403 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1404 		return (IPPROTO_DONE);
1405 	} else if (tp->t_state == TCPS_LISTEN) {
1406 		/*
1407 		 * When a listen socket is torn down the SO_ACCEPTCONN
1408 		 * flag is removed first while connections are drained
1409 		 * from the accept queue in a unlock/lock cycle of the
1410 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1411 		 * attempt go through unhandled.
1412 		 */
1413 		goto dropunlock;
1414 	}
1415 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1416 	if (tp->t_flags & TF_SIGNATURE) {
1417 		tcp_dooptions(&to, optp, optlen, thflags);
1418 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1419 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1420 			goto dropunlock;
1421 		}
1422 		if (!TCPMD5_ENABLED() ||
1423 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1424 			goto dropunlock;
1425 	}
1426 #endif
1427 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1428 
1429 	/*
1430 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1431 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1432 	 * the inpcb, and unlocks pcbinfo.
1433 	 */
1434 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1435 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1436 	return (IPPROTO_DONE);
1437 
1438 dropwithreset:
1439 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1440 
1441 	if (ti_locked == TI_RLOCKED) {
1442 		INP_INFO_RUNLOCK(&V_tcbinfo);
1443 		ti_locked = TI_UNLOCKED;
1444 	}
1445 #ifdef INVARIANTS
1446 	else {
1447 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1448 		    "ti_locked: %d", __func__, ti_locked));
1449 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1450 	}
1451 #endif
1452 
1453 	if (inp != NULL) {
1454 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1455 		INP_WUNLOCK(inp);
1456 	} else
1457 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1458 	m = NULL;	/* mbuf chain got consumed. */
1459 	goto drop;
1460 
1461 dropunlock:
1462 	if (m != NULL)
1463 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1464 
1465 	if (ti_locked == TI_RLOCKED) {
1466 		INP_INFO_RUNLOCK(&V_tcbinfo);
1467 		ti_locked = TI_UNLOCKED;
1468 	}
1469 #ifdef INVARIANTS
1470 	else {
1471 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1472 		    "ti_locked: %d", __func__, ti_locked));
1473 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1474 	}
1475 #endif
1476 
1477 	if (inp != NULL)
1478 		INP_WUNLOCK(inp);
1479 
1480 drop:
1481 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1482 	if (s != NULL)
1483 		free(s, M_TCPLOG);
1484 	if (m != NULL)
1485 		m_freem(m);
1486 	return (IPPROTO_DONE);
1487 }
1488 
1489 /*
1490  * Automatic sizing of receive socket buffer.  Often the send
1491  * buffer size is not optimally adjusted to the actual network
1492  * conditions at hand (delay bandwidth product).  Setting the
1493  * buffer size too small limits throughput on links with high
1494  * bandwidth and high delay (eg. trans-continental/oceanic links).
1495  *
1496  * On the receive side the socket buffer memory is only rarely
1497  * used to any significant extent.  This allows us to be much
1498  * more aggressive in scaling the receive socket buffer.  For
1499  * the case that the buffer space is actually used to a large
1500  * extent and we run out of kernel memory we can simply drop
1501  * the new segments; TCP on the sender will just retransmit it
1502  * later.  Setting the buffer size too big may only consume too
1503  * much kernel memory if the application doesn't read() from
1504  * the socket or packet loss or reordering makes use of the
1505  * reassembly queue.
1506  *
1507  * The criteria to step up the receive buffer one notch are:
1508  *  1. Application has not set receive buffer size with
1509  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1510  *  2. the number of bytes received during the time it takes
1511  *     one timestamp to be reflected back to us (the RTT);
1512  *  3. received bytes per RTT is within seven eighth of the
1513  *     current socket buffer size;
1514  *  4. receive buffer size has not hit maximal automatic size;
1515  *
1516  * This algorithm does one step per RTT at most and only if
1517  * we receive a bulk stream w/o packet losses or reorderings.
1518  * Shrinking the buffer during idle times is not necessary as
1519  * it doesn't consume any memory when idle.
1520  *
1521  * TODO: Only step up if the application is actually serving
1522  * the buffer to better manage the socket buffer resources.
1523  */
1524 int
1525 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1526     struct tcpcb *tp, int tlen)
1527 {
1528 	int newsize = 0;
1529 
1530 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1531 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1532 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1533 	    (tp->t_srtt >> TCP_RTT_SHIFT)) {
1534 		if (tp->rfbuf_cnt > (so->so_rcv.sb_hiwat / 8 * 7) &&
1535 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1536 			newsize = min(so->so_rcv.sb_hiwat +
1537 			    V_tcp_autorcvbuf_inc, V_tcp_autorcvbuf_max);
1538 		}
1539 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1540 
1541 		/* Start over with next RTT. */
1542 		tp->rfbuf_ts = 0;
1543 		tp->rfbuf_cnt = 0;
1544 	} else {
1545 		tp->rfbuf_cnt += tlen;	/* add up */
1546 	}
1547 
1548 	return (newsize);
1549 }
1550 
1551 void
1552 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1553     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1554     int ti_locked)
1555 {
1556 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1557 	int rstreason, todrop, win;
1558 	uint32_t tiwin;
1559 	uint16_t nsegs;
1560 	char *s;
1561 	struct in_conninfo *inc;
1562 	struct mbuf *mfree;
1563 	struct tcpopt to;
1564 #ifdef TCP_RFC7413
1565 	int tfo_syn;
1566 #endif
1567 
1568 #ifdef TCPDEBUG
1569 	/*
1570 	 * The size of tcp_saveipgen must be the size of the max ip header,
1571 	 * now IPv6.
1572 	 */
1573 	u_char tcp_saveipgen[IP6_HDR_LEN];
1574 	struct tcphdr tcp_savetcp;
1575 	short ostate = 0;
1576 #endif
1577 	thflags = th->th_flags;
1578 	inc = &tp->t_inpcb->inp_inc;
1579 	tp->sackhint.last_sack_ack = 0;
1580 	sack_changed = 0;
1581 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1582 
1583 	/*
1584 	 * If this is either a state-changing packet or current state isn't
1585 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1586 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1587 	 * caller may have unnecessarily acquired a write lock due to a race.
1588 	 */
1589 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1590 	    tp->t_state != TCPS_ESTABLISHED) {
1591 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1592 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1593 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1594 	} else {
1595 #ifdef INVARIANTS
1596 		if (ti_locked == TI_RLOCKED)
1597 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1598 		else {
1599 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1600 			    "ti_locked: %d", __func__, ti_locked));
1601 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1602 		}
1603 #endif
1604 	}
1605 	INP_WLOCK_ASSERT(tp->t_inpcb);
1606 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1607 	    __func__));
1608 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1609 	    __func__));
1610 
1611 #ifdef TCPPCAP
1612 	/* Save segment, if requested. */
1613 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1614 #endif
1615 
1616 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1617 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1618 			log(LOG_DEBUG, "%s; %s: "
1619 			    "SYN|FIN segment ignored (based on "
1620 			    "sysctl setting)\n", s, __func__);
1621 			free(s, M_TCPLOG);
1622 		}
1623 		goto drop;
1624 	}
1625 
1626 	/*
1627 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1628 	 * check SEQ.ACK first.
1629 	 */
1630 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1631 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1632 		rstreason = BANDLIM_UNLIMITED;
1633 		goto dropwithreset;
1634 	}
1635 
1636 	/*
1637 	 * Segment received on connection.
1638 	 * Reset idle time and keep-alive timer.
1639 	 * XXX: This should be done after segment
1640 	 * validation to ignore broken/spoofed segs.
1641 	 */
1642 	tp->t_rcvtime = ticks;
1643 
1644 	/*
1645 	 * Scale up the window into a 32-bit value.
1646 	 * For the SYN_SENT state the scale is zero.
1647 	 */
1648 	tiwin = th->th_win << tp->snd_scale;
1649 
1650 	/*
1651 	 * TCP ECN processing.
1652 	 */
1653 	if (tp->t_flags & TF_ECN_PERMIT) {
1654 		if (thflags & TH_CWR)
1655 			tp->t_flags &= ~TF_ECN_SND_ECE;
1656 		switch (iptos & IPTOS_ECN_MASK) {
1657 		case IPTOS_ECN_CE:
1658 			tp->t_flags |= TF_ECN_SND_ECE;
1659 			TCPSTAT_INC(tcps_ecn_ce);
1660 			break;
1661 		case IPTOS_ECN_ECT0:
1662 			TCPSTAT_INC(tcps_ecn_ect0);
1663 			break;
1664 		case IPTOS_ECN_ECT1:
1665 			TCPSTAT_INC(tcps_ecn_ect1);
1666 			break;
1667 		}
1668 
1669 		/* Process a packet differently from RFC3168. */
1670 		cc_ecnpkt_handler(tp, th, iptos);
1671 
1672 		/* Congestion experienced. */
1673 		if (thflags & TH_ECE) {
1674 			cc_cong_signal(tp, th, CC_ECN);
1675 		}
1676 	}
1677 
1678 	/*
1679 	 * Parse options on any incoming segment.
1680 	 */
1681 	tcp_dooptions(&to, (u_char *)(th + 1),
1682 	    (th->th_off << 2) - sizeof(struct tcphdr),
1683 	    (thflags & TH_SYN) ? TO_SYN : 0);
1684 
1685 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1686 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1687 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1688 		TCPSTAT_INC(tcps_sig_err_sigopt);
1689 		/* XXX: should drop? */
1690 	}
1691 #endif
1692 	/*
1693 	 * If echoed timestamp is later than the current time,
1694 	 * fall back to non RFC1323 RTT calculation.  Normalize
1695 	 * timestamp if syncookies were used when this connection
1696 	 * was established.
1697 	 */
1698 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1699 		to.to_tsecr -= tp->ts_offset;
1700 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1701 			to.to_tsecr = 0;
1702 	}
1703 	/*
1704 	 * If timestamps were negotiated during SYN/ACK they should
1705 	 * appear on every segment during this session and vice versa.
1706 	 */
1707 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1708 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1709 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1710 			    "no action\n", s, __func__);
1711 			free(s, M_TCPLOG);
1712 		}
1713 	}
1714 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1715 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1716 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1717 			    "no action\n", s, __func__);
1718 			free(s, M_TCPLOG);
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * Process options only when we get SYN/ACK back. The SYN case
1724 	 * for incoming connections is handled in tcp_syncache.
1725 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1726 	 * or <SYN,ACK>) segment itself is never scaled.
1727 	 * XXX this is traditional behavior, may need to be cleaned up.
1728 	 */
1729 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1730 		if ((to.to_flags & TOF_SCALE) &&
1731 		    (tp->t_flags & TF_REQ_SCALE)) {
1732 			tp->t_flags |= TF_RCVD_SCALE;
1733 			tp->snd_scale = to.to_wscale;
1734 		}
1735 		/*
1736 		 * Initial send window.  It will be updated with
1737 		 * the next incoming segment to the scaled value.
1738 		 */
1739 		tp->snd_wnd = th->th_win;
1740 		if (to.to_flags & TOF_TS) {
1741 			tp->t_flags |= TF_RCVD_TSTMP;
1742 			tp->ts_recent = to.to_tsval;
1743 			tp->ts_recent_age = tcp_ts_getticks();
1744 		}
1745 		if (to.to_flags & TOF_MSS)
1746 			tcp_mss(tp, to.to_mss);
1747 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1748 		    (to.to_flags & TOF_SACKPERM) == 0)
1749 			tp->t_flags &= ~TF_SACK_PERMIT;
1750 	}
1751 
1752 	/*
1753 	 * Header prediction: check for the two common cases
1754 	 * of a uni-directional data xfer.  If the packet has
1755 	 * no control flags, is in-sequence, the window didn't
1756 	 * change and we're not retransmitting, it's a
1757 	 * candidate.  If the length is zero and the ack moved
1758 	 * forward, we're the sender side of the xfer.  Just
1759 	 * free the data acked & wake any higher level process
1760 	 * that was blocked waiting for space.  If the length
1761 	 * is non-zero and the ack didn't move, we're the
1762 	 * receiver side.  If we're getting packets in-order
1763 	 * (the reassembly queue is empty), add the data to
1764 	 * the socket buffer and note that we need a delayed ack.
1765 	 * Make sure that the hidden state-flags are also off.
1766 	 * Since we check for TCPS_ESTABLISHED first, it can only
1767 	 * be TH_NEEDSYN.
1768 	 */
1769 	if (tp->t_state == TCPS_ESTABLISHED &&
1770 	    th->th_seq == tp->rcv_nxt &&
1771 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1772 	    tp->snd_nxt == tp->snd_max &&
1773 	    tiwin && tiwin == tp->snd_wnd &&
1774 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1775 	    LIST_EMPTY(&tp->t_segq) &&
1776 	    ((to.to_flags & TOF_TS) == 0 ||
1777 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1778 
1779 		/*
1780 		 * If last ACK falls within this segment's sequence numbers,
1781 		 * record the timestamp.
1782 		 * NOTE that the test is modified according to the latest
1783 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1784 		 */
1785 		if ((to.to_flags & TOF_TS) != 0 &&
1786 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1787 			tp->ts_recent_age = tcp_ts_getticks();
1788 			tp->ts_recent = to.to_tsval;
1789 		}
1790 
1791 		if (tlen == 0) {
1792 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1793 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1794 			    !IN_RECOVERY(tp->t_flags) &&
1795 			    (to.to_flags & TOF_SACK) == 0 &&
1796 			    TAILQ_EMPTY(&tp->snd_holes)) {
1797 				/*
1798 				 * This is a pure ack for outstanding data.
1799 				 */
1800 				if (ti_locked == TI_RLOCKED)
1801 					INP_INFO_RUNLOCK(&V_tcbinfo);
1802 				ti_locked = TI_UNLOCKED;
1803 
1804 				TCPSTAT_INC(tcps_predack);
1805 
1806 				/*
1807 				 * "bad retransmit" recovery.
1808 				 */
1809 				if (tp->t_rxtshift == 1 &&
1810 				    tp->t_flags & TF_PREVVALID &&
1811 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1812 					cc_cong_signal(tp, th, CC_RTO_ERR);
1813 				}
1814 
1815 				/*
1816 				 * Recalculate the transmit timer / rtt.
1817 				 *
1818 				 * Some boxes send broken timestamp replies
1819 				 * during the SYN+ACK phase, ignore
1820 				 * timestamps of 0 or we could calculate a
1821 				 * huge RTT and blow up the retransmit timer.
1822 				 */
1823 				if ((to.to_flags & TOF_TS) != 0 &&
1824 				    to.to_tsecr) {
1825 					uint32_t t;
1826 
1827 					t = tcp_ts_getticks() - to.to_tsecr;
1828 					if (!tp->t_rttlow || tp->t_rttlow > t)
1829 						tp->t_rttlow = t;
1830 					tcp_xmit_timer(tp,
1831 					    TCP_TS_TO_TICKS(t) + 1);
1832 				} else if (tp->t_rtttime &&
1833 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1834 					if (!tp->t_rttlow ||
1835 					    tp->t_rttlow > ticks - tp->t_rtttime)
1836 						tp->t_rttlow = ticks - tp->t_rtttime;
1837 					tcp_xmit_timer(tp,
1838 							ticks - tp->t_rtttime);
1839 				}
1840 				acked = BYTES_THIS_ACK(tp, th);
1841 
1842 #ifdef TCP_HHOOK
1843 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1844 				hhook_run_tcp_est_in(tp, th, &to);
1845 #endif
1846 
1847 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1848 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1849 				sbdrop(&so->so_snd, acked);
1850 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1851 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1852 					tp->snd_recover = th->th_ack - 1;
1853 
1854 				/*
1855 				 * Let the congestion control algorithm update
1856 				 * congestion control related information. This
1857 				 * typically means increasing the congestion
1858 				 * window.
1859 				 */
1860 				cc_ack_received(tp, th, nsegs, CC_ACK);
1861 
1862 				tp->snd_una = th->th_ack;
1863 				/*
1864 				 * Pull snd_wl2 up to prevent seq wrap relative
1865 				 * to th_ack.
1866 				 */
1867 				tp->snd_wl2 = th->th_ack;
1868 				tp->t_dupacks = 0;
1869 				m_freem(m);
1870 
1871 				/*
1872 				 * If all outstanding data are acked, stop
1873 				 * retransmit timer, otherwise restart timer
1874 				 * using current (possibly backed-off) value.
1875 				 * If process is waiting for space,
1876 				 * wakeup/selwakeup/signal.  If data
1877 				 * are ready to send, let tcp_output
1878 				 * decide between more output or persist.
1879 				 */
1880 #ifdef TCPDEBUG
1881 				if (so->so_options & SO_DEBUG)
1882 					tcp_trace(TA_INPUT, ostate, tp,
1883 					    (void *)tcp_saveipgen,
1884 					    &tcp_savetcp, 0);
1885 #endif
1886 				TCP_PROBE3(debug__input, tp, th, m);
1887 				if (tp->snd_una == tp->snd_max)
1888 					tcp_timer_activate(tp, TT_REXMT, 0);
1889 				else if (!tcp_timer_active(tp, TT_PERSIST))
1890 					tcp_timer_activate(tp, TT_REXMT,
1891 						      tp->t_rxtcur);
1892 				sowwakeup(so);
1893 				if (sbavail(&so->so_snd))
1894 					(void) tp->t_fb->tfb_tcp_output(tp);
1895 				goto check_delack;
1896 			}
1897 		} else if (th->th_ack == tp->snd_una &&
1898 		    tlen <= sbspace(&so->so_rcv)) {
1899 			int newsize = 0;	/* automatic sockbuf scaling */
1900 
1901 			/*
1902 			 * This is a pure, in-sequence data packet with
1903 			 * nothing on the reassembly queue and we have enough
1904 			 * buffer space to take it.
1905 			 */
1906 			if (ti_locked == TI_RLOCKED)
1907 				INP_INFO_RUNLOCK(&V_tcbinfo);
1908 			ti_locked = TI_UNLOCKED;
1909 
1910 			/* Clean receiver SACK report if present */
1911 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1912 				tcp_clean_sackreport(tp);
1913 			TCPSTAT_INC(tcps_preddat);
1914 			tp->rcv_nxt += tlen;
1915 			/*
1916 			 * Pull snd_wl1 up to prevent seq wrap relative to
1917 			 * th_seq.
1918 			 */
1919 			tp->snd_wl1 = th->th_seq;
1920 			/*
1921 			 * Pull rcv_up up to prevent seq wrap relative to
1922 			 * rcv_nxt.
1923 			 */
1924 			tp->rcv_up = tp->rcv_nxt;
1925 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1926 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1927 #ifdef TCPDEBUG
1928 			if (so->so_options & SO_DEBUG)
1929 				tcp_trace(TA_INPUT, ostate, tp,
1930 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1931 #endif
1932 			TCP_PROBE3(debug__input, tp, th, m);
1933 
1934 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1935 
1936 			/* Add data to socket buffer. */
1937 			SOCKBUF_LOCK(&so->so_rcv);
1938 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1939 				m_freem(m);
1940 			} else {
1941 				/*
1942 				 * Set new socket buffer size.
1943 				 * Give up when limit is reached.
1944 				 */
1945 				if (newsize)
1946 					if (!sbreserve_locked(&so->so_rcv,
1947 					    newsize, so, NULL))
1948 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1949 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1950 				sbappendstream_locked(&so->so_rcv, m, 0);
1951 			}
1952 			/* NB: sorwakeup_locked() does an implicit unlock. */
1953 			sorwakeup_locked(so);
1954 			if (DELAY_ACK(tp, tlen)) {
1955 				tp->t_flags |= TF_DELACK;
1956 			} else {
1957 				tp->t_flags |= TF_ACKNOW;
1958 				tp->t_fb->tfb_tcp_output(tp);
1959 			}
1960 			goto check_delack;
1961 		}
1962 	}
1963 
1964 	/*
1965 	 * Calculate amount of space in receive window,
1966 	 * and then do TCP input processing.
1967 	 * Receive window is amount of space in rcv queue,
1968 	 * but not less than advertised window.
1969 	 */
1970 	win = sbspace(&so->so_rcv);
1971 	if (win < 0)
1972 		win = 0;
1973 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1974 
1975 	switch (tp->t_state) {
1976 
1977 	/*
1978 	 * If the state is SYN_RECEIVED:
1979 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1980 	 */
1981 	case TCPS_SYN_RECEIVED:
1982 		if ((thflags & TH_ACK) &&
1983 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1984 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1985 				rstreason = BANDLIM_RST_OPENPORT;
1986 				goto dropwithreset;
1987 		}
1988 #ifdef TCP_RFC7413
1989 		if (IS_FASTOPEN(tp->t_flags)) {
1990 			/*
1991 			 * When a TFO connection is in SYN_RECEIVED, the
1992 			 * only valid packets are the initial SYN, a
1993 			 * retransmit/copy of the initial SYN (possibly with
1994 			 * a subset of the original data), a valid ACK, a
1995 			 * FIN, or a RST.
1996 			 */
1997 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1998 				rstreason = BANDLIM_RST_OPENPORT;
1999 				goto dropwithreset;
2000 			} else if (thflags & TH_SYN) {
2001 				/* non-initial SYN is ignored */
2002 				if ((tcp_timer_active(tp, TT_DELACK) ||
2003 				     tcp_timer_active(tp, TT_REXMT)))
2004 					goto drop;
2005 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
2006 				goto drop;
2007 			}
2008 		}
2009 #endif
2010 		break;
2011 
2012 	/*
2013 	 * If the state is SYN_SENT:
2014 	 *	if seg contains a RST, then drop the connection.
2015 	 *	if seg does not contain SYN, then drop it.
2016 	 * Otherwise this is an acceptable SYN segment
2017 	 *	initialize tp->rcv_nxt and tp->irs
2018 	 *	if seg contains ack then advance tp->snd_una
2019 	 *	if seg contains an ECE and ECN support is enabled, the stream
2020 	 *	    is ECN capable.
2021 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2022 	 *	arrange for segment to be acked (eventually)
2023 	 *	continue processing rest of data/controls, beginning with URG
2024 	 */
2025 	case TCPS_SYN_SENT:
2026 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2027 			TCP_PROBE5(connect__refused, NULL, tp,
2028 			    m, tp, th);
2029 			tp = tcp_drop(tp, ECONNREFUSED);
2030 		}
2031 		if (thflags & TH_RST)
2032 			goto drop;
2033 		if (!(thflags & TH_SYN))
2034 			goto drop;
2035 
2036 		tp->irs = th->th_seq;
2037 		tcp_rcvseqinit(tp);
2038 		if (thflags & TH_ACK) {
2039 			TCPSTAT_INC(tcps_connects);
2040 			soisconnected(so);
2041 #ifdef MAC
2042 			mac_socketpeer_set_from_mbuf(m, so);
2043 #endif
2044 			/* Do window scaling on this connection? */
2045 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2046 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2047 				tp->rcv_scale = tp->request_r_scale;
2048 			}
2049 			tp->rcv_adv += min(tp->rcv_wnd,
2050 			    TCP_MAXWIN << tp->rcv_scale);
2051 			tp->snd_una++;		/* SYN is acked */
2052 			/*
2053 			 * If there's data, delay ACK; if there's also a FIN
2054 			 * ACKNOW will be turned on later.
2055 			 */
2056 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2057 				tcp_timer_activate(tp, TT_DELACK,
2058 				    tcp_delacktime);
2059 			else
2060 				tp->t_flags |= TF_ACKNOW;
2061 
2062 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2063 				tp->t_flags |= TF_ECN_PERMIT;
2064 				TCPSTAT_INC(tcps_ecn_shs);
2065 			}
2066 
2067 			/*
2068 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2069 			 * Transitions:
2070 			 *	SYN_SENT  --> ESTABLISHED
2071 			 *	SYN_SENT* --> FIN_WAIT_1
2072 			 */
2073 			tp->t_starttime = ticks;
2074 			if (tp->t_flags & TF_NEEDFIN) {
2075 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2076 				tp->t_flags &= ~TF_NEEDFIN;
2077 				thflags &= ~TH_SYN;
2078 			} else {
2079 				tcp_state_change(tp, TCPS_ESTABLISHED);
2080 				TCP_PROBE5(connect__established, NULL, tp,
2081 				    m, tp, th);
2082 				cc_conn_init(tp);
2083 				tcp_timer_activate(tp, TT_KEEP,
2084 				    TP_KEEPIDLE(tp));
2085 			}
2086 		} else {
2087 			/*
2088 			 * Received initial SYN in SYN-SENT[*] state =>
2089 			 * simultaneous open.
2090 			 * If it succeeds, connection is * half-synchronized.
2091 			 * Otherwise, do 3-way handshake:
2092 			 *        SYN-SENT -> SYN-RECEIVED
2093 			 *        SYN-SENT* -> SYN-RECEIVED*
2094 			 */
2095 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2096 			tcp_timer_activate(tp, TT_REXMT, 0);
2097 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2098 		}
2099 
2100 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2101 		    "ti_locked %d", __func__, ti_locked));
2102 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2103 		INP_WLOCK_ASSERT(tp->t_inpcb);
2104 
2105 		/*
2106 		 * Advance th->th_seq to correspond to first data byte.
2107 		 * If data, trim to stay within window,
2108 		 * dropping FIN if necessary.
2109 		 */
2110 		th->th_seq++;
2111 		if (tlen > tp->rcv_wnd) {
2112 			todrop = tlen - tp->rcv_wnd;
2113 			m_adj(m, -todrop);
2114 			tlen = tp->rcv_wnd;
2115 			thflags &= ~TH_FIN;
2116 			TCPSTAT_INC(tcps_rcvpackafterwin);
2117 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2118 		}
2119 		tp->snd_wl1 = th->th_seq - 1;
2120 		tp->rcv_up = th->th_seq;
2121 		/*
2122 		 * Client side of transaction: already sent SYN and data.
2123 		 * If the remote host used T/TCP to validate the SYN,
2124 		 * our data will be ACK'd; if so, enter normal data segment
2125 		 * processing in the middle of step 5, ack processing.
2126 		 * Otherwise, goto step 6.
2127 		 */
2128 		if (thflags & TH_ACK)
2129 			goto process_ACK;
2130 
2131 		goto step6;
2132 
2133 	/*
2134 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2135 	 *      do normal processing.
2136 	 *
2137 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2138 	 */
2139 	case TCPS_LAST_ACK:
2140 	case TCPS_CLOSING:
2141 		break;  /* continue normal processing */
2142 	}
2143 
2144 	/*
2145 	 * States other than LISTEN or SYN_SENT.
2146 	 * First check the RST flag and sequence number since reset segments
2147 	 * are exempt from the timestamp and connection count tests.  This
2148 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2149 	 * below which allowed reset segments in half the sequence space
2150 	 * to fall though and be processed (which gives forged reset
2151 	 * segments with a random sequence number a 50 percent chance of
2152 	 * killing a connection).
2153 	 * Then check timestamp, if present.
2154 	 * Then check the connection count, if present.
2155 	 * Then check that at least some bytes of segment are within
2156 	 * receive window.  If segment begins before rcv_nxt,
2157 	 * drop leading data (and SYN); if nothing left, just ack.
2158 	 */
2159 	if (thflags & TH_RST) {
2160 		/*
2161 		 * RFC5961 Section 3.2
2162 		 *
2163 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2164 		 * - If RST is in window, we send challenge ACK.
2165 		 *
2166 		 * Note: to take into account delayed ACKs, we should
2167 		 *   test against last_ack_sent instead of rcv_nxt.
2168 		 * Note 2: we handle special case of closed window, not
2169 		 *   covered by the RFC.
2170 		 */
2171 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2172 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2173 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2174 
2175 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2176 			KASSERT(ti_locked == TI_RLOCKED,
2177 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2178 			    __func__, ti_locked, th, tp));
2179 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2180 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2181 			    __func__, th, tp));
2182 
2183 			if (V_tcp_insecure_rst ||
2184 			    tp->last_ack_sent == th->th_seq) {
2185 				TCPSTAT_INC(tcps_drops);
2186 				/* Drop the connection. */
2187 				switch (tp->t_state) {
2188 				case TCPS_SYN_RECEIVED:
2189 					so->so_error = ECONNREFUSED;
2190 					goto close;
2191 				case TCPS_ESTABLISHED:
2192 				case TCPS_FIN_WAIT_1:
2193 				case TCPS_FIN_WAIT_2:
2194 				case TCPS_CLOSE_WAIT:
2195 				case TCPS_CLOSING:
2196 				case TCPS_LAST_ACK:
2197 					so->so_error = ECONNRESET;
2198 				close:
2199 					/* FALLTHROUGH */
2200 				default:
2201 					tp = tcp_close(tp);
2202 				}
2203 			} else {
2204 				TCPSTAT_INC(tcps_badrst);
2205 				/* Send challenge ACK. */
2206 				tcp_respond(tp, mtod(m, void *), th, m,
2207 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2208 				tp->last_ack_sent = tp->rcv_nxt;
2209 				m = NULL;
2210 			}
2211 		}
2212 		goto drop;
2213 	}
2214 
2215 	/*
2216 	 * RFC5961 Section 4.2
2217 	 * Send challenge ACK for any SYN in synchronized state.
2218 	 */
2219 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2220 	    tp->t_state != TCPS_SYN_RECEIVED) {
2221 		KASSERT(ti_locked == TI_RLOCKED,
2222 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2223 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2224 
2225 		TCPSTAT_INC(tcps_badsyn);
2226 		if (V_tcp_insecure_syn &&
2227 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2228 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2229 			tp = tcp_drop(tp, ECONNRESET);
2230 			rstreason = BANDLIM_UNLIMITED;
2231 		} else {
2232 			/* Send challenge ACK. */
2233 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2234 			    tp->snd_nxt, TH_ACK);
2235 			tp->last_ack_sent = tp->rcv_nxt;
2236 			m = NULL;
2237 		}
2238 		goto drop;
2239 	}
2240 
2241 	/*
2242 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2243 	 * and it's less than ts_recent, drop it.
2244 	 */
2245 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2246 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2247 
2248 		/* Check to see if ts_recent is over 24 days old.  */
2249 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2250 			/*
2251 			 * Invalidate ts_recent.  If this segment updates
2252 			 * ts_recent, the age will be reset later and ts_recent
2253 			 * will get a valid value.  If it does not, setting
2254 			 * ts_recent to zero will at least satisfy the
2255 			 * requirement that zero be placed in the timestamp
2256 			 * echo reply when ts_recent isn't valid.  The
2257 			 * age isn't reset until we get a valid ts_recent
2258 			 * because we don't want out-of-order segments to be
2259 			 * dropped when ts_recent is old.
2260 			 */
2261 			tp->ts_recent = 0;
2262 		} else {
2263 			TCPSTAT_INC(tcps_rcvduppack);
2264 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2265 			TCPSTAT_INC(tcps_pawsdrop);
2266 			if (tlen)
2267 				goto dropafterack;
2268 			goto drop;
2269 		}
2270 	}
2271 
2272 	/*
2273 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2274 	 * this connection before trimming the data to fit the receive
2275 	 * window.  Check the sequence number versus IRS since we know
2276 	 * the sequence numbers haven't wrapped.  This is a partial fix
2277 	 * for the "LAND" DoS attack.
2278 	 */
2279 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2280 		rstreason = BANDLIM_RST_OPENPORT;
2281 		goto dropwithreset;
2282 	}
2283 
2284 	todrop = tp->rcv_nxt - th->th_seq;
2285 	if (todrop > 0) {
2286 		if (thflags & TH_SYN) {
2287 			thflags &= ~TH_SYN;
2288 			th->th_seq++;
2289 			if (th->th_urp > 1)
2290 				th->th_urp--;
2291 			else
2292 				thflags &= ~TH_URG;
2293 			todrop--;
2294 		}
2295 		/*
2296 		 * Following if statement from Stevens, vol. 2, p. 960.
2297 		 */
2298 		if (todrop > tlen
2299 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2300 			/*
2301 			 * Any valid FIN must be to the left of the window.
2302 			 * At this point the FIN must be a duplicate or out
2303 			 * of sequence; drop it.
2304 			 */
2305 			thflags &= ~TH_FIN;
2306 
2307 			/*
2308 			 * Send an ACK to resynchronize and drop any data.
2309 			 * But keep on processing for RST or ACK.
2310 			 */
2311 			tp->t_flags |= TF_ACKNOW;
2312 			todrop = tlen;
2313 			TCPSTAT_INC(tcps_rcvduppack);
2314 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2315 		} else {
2316 			TCPSTAT_INC(tcps_rcvpartduppack);
2317 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2318 		}
2319 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2320 		th->th_seq += todrop;
2321 		tlen -= todrop;
2322 		if (th->th_urp > todrop)
2323 			th->th_urp -= todrop;
2324 		else {
2325 			thflags &= ~TH_URG;
2326 			th->th_urp = 0;
2327 		}
2328 	}
2329 
2330 	/*
2331 	 * If new data are received on a connection after the
2332 	 * user processes are gone, then RST the other end.
2333 	 */
2334 	if ((so->so_state & SS_NOFDREF) &&
2335 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2336 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2337 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2338 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2339 
2340 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2341 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2342 			    "after socket was closed, "
2343 			    "sending RST and removing tcpcb\n",
2344 			    s, __func__, tcpstates[tp->t_state], tlen);
2345 			free(s, M_TCPLOG);
2346 		}
2347 		tp = tcp_close(tp);
2348 		TCPSTAT_INC(tcps_rcvafterclose);
2349 		rstreason = BANDLIM_UNLIMITED;
2350 		goto dropwithreset;
2351 	}
2352 
2353 	/*
2354 	 * If segment ends after window, drop trailing data
2355 	 * (and PUSH and FIN); if nothing left, just ACK.
2356 	 */
2357 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2358 	if (todrop > 0) {
2359 		TCPSTAT_INC(tcps_rcvpackafterwin);
2360 		if (todrop >= tlen) {
2361 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2362 			/*
2363 			 * If window is closed can only take segments at
2364 			 * window edge, and have to drop data and PUSH from
2365 			 * incoming segments.  Continue processing, but
2366 			 * remember to ack.  Otherwise, drop segment
2367 			 * and ack.
2368 			 */
2369 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2370 				tp->t_flags |= TF_ACKNOW;
2371 				TCPSTAT_INC(tcps_rcvwinprobe);
2372 			} else
2373 				goto dropafterack;
2374 		} else
2375 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2376 		m_adj(m, -todrop);
2377 		tlen -= todrop;
2378 		thflags &= ~(TH_PUSH|TH_FIN);
2379 	}
2380 
2381 	/*
2382 	 * If last ACK falls within this segment's sequence numbers,
2383 	 * record its timestamp.
2384 	 * NOTE:
2385 	 * 1) That the test incorporates suggestions from the latest
2386 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2387 	 * 2) That updating only on newer timestamps interferes with
2388 	 *    our earlier PAWS tests, so this check should be solely
2389 	 *    predicated on the sequence space of this segment.
2390 	 * 3) That we modify the segment boundary check to be
2391 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2392 	 *    instead of RFC1323's
2393 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2394 	 *    This modified check allows us to overcome RFC1323's
2395 	 *    limitations as described in Stevens TCP/IP Illustrated
2396 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2397 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2398 	 */
2399 	if ((to.to_flags & TOF_TS) != 0 &&
2400 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2401 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2402 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2403 		tp->ts_recent_age = tcp_ts_getticks();
2404 		tp->ts_recent = to.to_tsval;
2405 	}
2406 
2407 	/*
2408 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2409 	 * flag is on (half-synchronized state), then queue data for
2410 	 * later processing; else drop segment and return.
2411 	 */
2412 	if ((thflags & TH_ACK) == 0) {
2413 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2414 		    (tp->t_flags & TF_NEEDSYN)) {
2415 #ifdef TCP_RFC7413
2416 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2417 			    IS_FASTOPEN(tp->t_flags)) {
2418 				tp->snd_wnd = tiwin;
2419 				cc_conn_init(tp);
2420 			}
2421 #endif
2422 			goto step6;
2423 		} else if (tp->t_flags & TF_ACKNOW)
2424 			goto dropafterack;
2425 		else
2426 			goto drop;
2427 	}
2428 
2429 	/*
2430 	 * Ack processing.
2431 	 */
2432 	switch (tp->t_state) {
2433 
2434 	/*
2435 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2436 	 * ESTABLISHED state and continue processing.
2437 	 * The ACK was checked above.
2438 	 */
2439 	case TCPS_SYN_RECEIVED:
2440 
2441 		TCPSTAT_INC(tcps_connects);
2442 		soisconnected(so);
2443 		/* Do window scaling? */
2444 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2445 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2446 			tp->rcv_scale = tp->request_r_scale;
2447 			tp->snd_wnd = tiwin;
2448 		}
2449 		/*
2450 		 * Make transitions:
2451 		 *      SYN-RECEIVED  -> ESTABLISHED
2452 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2453 		 */
2454 		tp->t_starttime = ticks;
2455 		if (tp->t_flags & TF_NEEDFIN) {
2456 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2457 			tp->t_flags &= ~TF_NEEDFIN;
2458 		} else {
2459 			tcp_state_change(tp, TCPS_ESTABLISHED);
2460 			TCP_PROBE5(accept__established, NULL, tp,
2461 			    m, tp, th);
2462 #ifdef TCP_RFC7413
2463 			if (tp->t_tfo_pending) {
2464 				tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2465 				tp->t_tfo_pending = NULL;
2466 
2467 				/*
2468 				 * Account for the ACK of our SYN prior to
2469 				 * regular ACK processing below.
2470 				 */
2471 				tp->snd_una++;
2472 			}
2473 			/*
2474 			 * TFO connections call cc_conn_init() during SYN
2475 			 * processing.  Calling it again here for such
2476 			 * connections is not harmless as it would undo the
2477 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2478 			 * is retransmitted.
2479 			 */
2480 			if (!IS_FASTOPEN(tp->t_flags))
2481 #endif
2482 				cc_conn_init(tp);
2483 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2484 		}
2485 		/*
2486 		 * If segment contains data or ACK, will call tcp_reass()
2487 		 * later; if not, do so now to pass queued data to user.
2488 		 */
2489 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2490 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2491 			    (struct mbuf *)0);
2492 		tp->snd_wl1 = th->th_seq - 1;
2493 		/* FALLTHROUGH */
2494 
2495 	/*
2496 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2497 	 * ACKs.  If the ack is in the range
2498 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2499 	 * then advance tp->snd_una to th->th_ack and drop
2500 	 * data from the retransmission queue.  If this ACK reflects
2501 	 * more up to date window information we update our window information.
2502 	 */
2503 	case TCPS_ESTABLISHED:
2504 	case TCPS_FIN_WAIT_1:
2505 	case TCPS_FIN_WAIT_2:
2506 	case TCPS_CLOSE_WAIT:
2507 	case TCPS_CLOSING:
2508 	case TCPS_LAST_ACK:
2509 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2510 			TCPSTAT_INC(tcps_rcvacktoomuch);
2511 			goto dropafterack;
2512 		}
2513 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2514 		    ((to.to_flags & TOF_SACK) ||
2515 		     !TAILQ_EMPTY(&tp->snd_holes)))
2516 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2517 		else
2518 			/*
2519 			 * Reset the value so that previous (valid) value
2520 			 * from the last ack with SACK doesn't get used.
2521 			 */
2522 			tp->sackhint.sacked_bytes = 0;
2523 
2524 #ifdef TCP_HHOOK
2525 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2526 		hhook_run_tcp_est_in(tp, th, &to);
2527 #endif
2528 
2529 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2530 			u_int maxseg;
2531 
2532 			maxseg = tcp_maxseg(tp);
2533 			if (tlen == 0 &&
2534 			    (tiwin == tp->snd_wnd ||
2535 			    (tp->t_flags & TF_SACK_PERMIT))) {
2536 				/*
2537 				 * If this is the first time we've seen a
2538 				 * FIN from the remote, this is not a
2539 				 * duplicate and it needs to be processed
2540 				 * normally.  This happens during a
2541 				 * simultaneous close.
2542 				 */
2543 				if ((thflags & TH_FIN) &&
2544 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2545 					tp->t_dupacks = 0;
2546 					break;
2547 				}
2548 				TCPSTAT_INC(tcps_rcvdupack);
2549 				/*
2550 				 * If we have outstanding data (other than
2551 				 * a window probe), this is a completely
2552 				 * duplicate ack (ie, window info didn't
2553 				 * change and FIN isn't set),
2554 				 * the ack is the biggest we've
2555 				 * seen and we've seen exactly our rexmt
2556 				 * threshold of them, assume a packet
2557 				 * has been dropped and retransmit it.
2558 				 * Kludge snd_nxt & the congestion
2559 				 * window so we send only this one
2560 				 * packet.
2561 				 *
2562 				 * We know we're losing at the current
2563 				 * window size so do congestion avoidance
2564 				 * (set ssthresh to half the current window
2565 				 * and pull our congestion window back to
2566 				 * the new ssthresh).
2567 				 *
2568 				 * Dup acks mean that packets have left the
2569 				 * network (they're now cached at the receiver)
2570 				 * so bump cwnd by the amount in the receiver
2571 				 * to keep a constant cwnd packets in the
2572 				 * network.
2573 				 *
2574 				 * When using TCP ECN, notify the peer that
2575 				 * we reduced the cwnd.
2576 				 */
2577 				/*
2578 				 * Following 2 kinds of acks should not affect
2579 				 * dupack counting:
2580 				 * 1) Old acks
2581 				 * 2) Acks with SACK but without any new SACK
2582 				 * information in them. These could result from
2583 				 * any anomaly in the network like a switch
2584 				 * duplicating packets or a possible DoS attack.
2585 				 */
2586 				if (th->th_ack != tp->snd_una ||
2587 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2588 				    !sack_changed))
2589 					break;
2590 				else if (!tcp_timer_active(tp, TT_REXMT))
2591 					tp->t_dupacks = 0;
2592 				else if (++tp->t_dupacks > tcprexmtthresh ||
2593 				     IN_FASTRECOVERY(tp->t_flags)) {
2594 					cc_ack_received(tp, th, nsegs,
2595 					    CC_DUPACK);
2596 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2597 					    IN_FASTRECOVERY(tp->t_flags)) {
2598 						int awnd;
2599 
2600 						/*
2601 						 * Compute the amount of data in flight first.
2602 						 * We can inject new data into the pipe iff
2603 						 * we have less than 1/2 the original window's
2604 						 * worth of data in flight.
2605 						 */
2606 						if (V_tcp_do_rfc6675_pipe)
2607 							awnd = tcp_compute_pipe(tp);
2608 						else
2609 							awnd = (tp->snd_nxt - tp->snd_fack) +
2610 								tp->sackhint.sack_bytes_rexmit;
2611 
2612 						if (awnd < tp->snd_ssthresh) {
2613 							tp->snd_cwnd += maxseg;
2614 							/*
2615 							 * RFC5681 Section 3.2 talks about cwnd
2616 							 * inflation on additional dupacks and
2617 							 * deflation on recovering from loss.
2618 							 *
2619 							 * We keep cwnd into check so that
2620 							 * we don't have to 'deflate' it when we
2621 							 * get out of recovery.
2622 							 */
2623 							if (tp->snd_cwnd > tp->snd_ssthresh)
2624 								tp->snd_cwnd = tp->snd_ssthresh;
2625 						}
2626 					} else
2627 						tp->snd_cwnd += maxseg;
2628 					(void) tp->t_fb->tfb_tcp_output(tp);
2629 					goto drop;
2630 				} else if (tp->t_dupacks == tcprexmtthresh) {
2631 					tcp_seq onxt = tp->snd_nxt;
2632 
2633 					/*
2634 					 * If we're doing sack, check to
2635 					 * see if we're already in sack
2636 					 * recovery. If we're not doing sack,
2637 					 * check to see if we're in newreno
2638 					 * recovery.
2639 					 */
2640 					if (tp->t_flags & TF_SACK_PERMIT) {
2641 						if (IN_FASTRECOVERY(tp->t_flags)) {
2642 							tp->t_dupacks = 0;
2643 							break;
2644 						}
2645 					} else {
2646 						if (SEQ_LEQ(th->th_ack,
2647 						    tp->snd_recover)) {
2648 							tp->t_dupacks = 0;
2649 							break;
2650 						}
2651 					}
2652 					/* Congestion signal before ack. */
2653 					cc_cong_signal(tp, th, CC_NDUPACK);
2654 					cc_ack_received(tp, th, nsegs,
2655 					    CC_DUPACK);
2656 					tcp_timer_activate(tp, TT_REXMT, 0);
2657 					tp->t_rtttime = 0;
2658 					if (tp->t_flags & TF_SACK_PERMIT) {
2659 						TCPSTAT_INC(
2660 						    tcps_sack_recovery_episode);
2661 						tp->sack_newdata = tp->snd_nxt;
2662 						if (CC_ALGO(tp)->cong_signal == NULL)
2663 							tp->snd_cwnd = maxseg;
2664 						(void) tp->t_fb->tfb_tcp_output(tp);
2665 						goto drop;
2666 					}
2667 					tp->snd_nxt = th->th_ack;
2668 					if (CC_ALGO(tp)->cong_signal == NULL)
2669 						tp->snd_cwnd = maxseg;
2670 					(void) tp->t_fb->tfb_tcp_output(tp);
2671 					KASSERT(tp->snd_limited <= 2,
2672 					    ("%s: tp->snd_limited too big",
2673 					    __func__));
2674 					if (CC_ALGO(tp)->cong_signal == NULL)
2675 						tp->snd_cwnd = tp->snd_ssthresh +
2676 						    maxseg *
2677 						    (tp->t_dupacks - tp->snd_limited);
2678 					if (SEQ_GT(onxt, tp->snd_nxt))
2679 						tp->snd_nxt = onxt;
2680 					goto drop;
2681 				} else if (V_tcp_do_rfc3042) {
2682 					/*
2683 					 * Process first and second duplicate
2684 					 * ACKs. Each indicates a segment
2685 					 * leaving the network, creating room
2686 					 * for more. Make sure we can send a
2687 					 * packet on reception of each duplicate
2688 					 * ACK by increasing snd_cwnd by one
2689 					 * segment. Restore the original
2690 					 * snd_cwnd after packet transmission.
2691 					 */
2692 					cc_ack_received(tp, th, nsegs,
2693 					    CC_DUPACK);
2694 					uint32_t oldcwnd = tp->snd_cwnd;
2695 					tcp_seq oldsndmax = tp->snd_max;
2696 					u_int sent;
2697 					int avail;
2698 
2699 					KASSERT(tp->t_dupacks == 1 ||
2700 					    tp->t_dupacks == 2,
2701 					    ("%s: dupacks not 1 or 2",
2702 					    __func__));
2703 					if (tp->t_dupacks == 1)
2704 						tp->snd_limited = 0;
2705 					tp->snd_cwnd =
2706 					    (tp->snd_nxt - tp->snd_una) +
2707 					    (tp->t_dupacks - tp->snd_limited) *
2708 					    maxseg;
2709 					/*
2710 					 * Only call tcp_output when there
2711 					 * is new data available to be sent.
2712 					 * Otherwise we would send pure ACKs.
2713 					 */
2714 					SOCKBUF_LOCK(&so->so_snd);
2715 					avail = sbavail(&so->so_snd) -
2716 					    (tp->snd_nxt - tp->snd_una);
2717 					SOCKBUF_UNLOCK(&so->so_snd);
2718 					if (avail > 0)
2719 						(void) tp->t_fb->tfb_tcp_output(tp);
2720 					sent = tp->snd_max - oldsndmax;
2721 					if (sent > maxseg) {
2722 						KASSERT((tp->t_dupacks == 2 &&
2723 						    tp->snd_limited == 0) ||
2724 						   (sent == maxseg + 1 &&
2725 						    tp->t_flags & TF_SENTFIN),
2726 						    ("%s: sent too much",
2727 						    __func__));
2728 						tp->snd_limited = 2;
2729 					} else if (sent > 0)
2730 						++tp->snd_limited;
2731 					tp->snd_cwnd = oldcwnd;
2732 					goto drop;
2733 				}
2734 			}
2735 			break;
2736 		} else {
2737 			/*
2738 			 * This ack is advancing the left edge, reset the
2739 			 * counter.
2740 			 */
2741 			tp->t_dupacks = 0;
2742 			/*
2743 			 * If this ack also has new SACK info, increment the
2744 			 * counter as per rfc6675.
2745 			 */
2746 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2747 				tp->t_dupacks++;
2748 		}
2749 
2750 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2751 		    ("%s: th_ack <= snd_una", __func__));
2752 
2753 		/*
2754 		 * If the congestion window was inflated to account
2755 		 * for the other side's cached packets, retract it.
2756 		 */
2757 		if (IN_FASTRECOVERY(tp->t_flags)) {
2758 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2759 				if (tp->t_flags & TF_SACK_PERMIT)
2760 					tcp_sack_partialack(tp, th);
2761 				else
2762 					tcp_newreno_partial_ack(tp, th);
2763 			} else
2764 				cc_post_recovery(tp, th);
2765 		}
2766 		/*
2767 		 * If we reach this point, ACK is not a duplicate,
2768 		 *     i.e., it ACKs something we sent.
2769 		 */
2770 		if (tp->t_flags & TF_NEEDSYN) {
2771 			/*
2772 			 * T/TCP: Connection was half-synchronized, and our
2773 			 * SYN has been ACK'd (so connection is now fully
2774 			 * synchronized).  Go to non-starred state,
2775 			 * increment snd_una for ACK of SYN, and check if
2776 			 * we can do window scaling.
2777 			 */
2778 			tp->t_flags &= ~TF_NEEDSYN;
2779 			tp->snd_una++;
2780 			/* Do window scaling? */
2781 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2782 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2783 				tp->rcv_scale = tp->request_r_scale;
2784 				/* Send window already scaled. */
2785 			}
2786 		}
2787 
2788 process_ACK:
2789 		INP_WLOCK_ASSERT(tp->t_inpcb);
2790 
2791 		acked = BYTES_THIS_ACK(tp, th);
2792 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2793 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2794 		    tp->snd_una, th->th_ack, tp, m));
2795 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2796 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2797 
2798 		/*
2799 		 * If we just performed our first retransmit, and the ACK
2800 		 * arrives within our recovery window, then it was a mistake
2801 		 * to do the retransmit in the first place.  Recover our
2802 		 * original cwnd and ssthresh, and proceed to transmit where
2803 		 * we left off.
2804 		 */
2805 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2806 		    (int)(ticks - tp->t_badrxtwin) < 0)
2807 			cc_cong_signal(tp, th, CC_RTO_ERR);
2808 
2809 		/*
2810 		 * If we have a timestamp reply, update smoothed
2811 		 * round trip time.  If no timestamp is present but
2812 		 * transmit timer is running and timed sequence
2813 		 * number was acked, update smoothed round trip time.
2814 		 * Since we now have an rtt measurement, cancel the
2815 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2816 		 * Recompute the initial retransmit timer.
2817 		 *
2818 		 * Some boxes send broken timestamp replies
2819 		 * during the SYN+ACK phase, ignore
2820 		 * timestamps of 0 or we could calculate a
2821 		 * huge RTT and blow up the retransmit timer.
2822 		 */
2823 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2824 			uint32_t t;
2825 
2826 			t = tcp_ts_getticks() - to.to_tsecr;
2827 			if (!tp->t_rttlow || tp->t_rttlow > t)
2828 				tp->t_rttlow = t;
2829 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2830 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2831 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2832 				tp->t_rttlow = ticks - tp->t_rtttime;
2833 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2834 		}
2835 
2836 		/*
2837 		 * If all outstanding data is acked, stop retransmit
2838 		 * timer and remember to restart (more output or persist).
2839 		 * If there is more data to be acked, restart retransmit
2840 		 * timer, using current (possibly backed-off) value.
2841 		 */
2842 		if (th->th_ack == tp->snd_max) {
2843 			tcp_timer_activate(tp, TT_REXMT, 0);
2844 			needoutput = 1;
2845 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2846 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2847 
2848 		/*
2849 		 * If no data (only SYN) was ACK'd,
2850 		 *    skip rest of ACK processing.
2851 		 */
2852 		if (acked == 0)
2853 			goto step6;
2854 
2855 		/*
2856 		 * Let the congestion control algorithm update congestion
2857 		 * control related information. This typically means increasing
2858 		 * the congestion window.
2859 		 */
2860 		cc_ack_received(tp, th, nsegs, CC_ACK);
2861 
2862 		SOCKBUF_LOCK(&so->so_snd);
2863 		if (acked > sbavail(&so->so_snd)) {
2864 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2865 				tp->snd_wnd -= sbavail(&so->so_snd);
2866 			else
2867 				tp->snd_wnd = 0;
2868 			mfree = sbcut_locked(&so->so_snd,
2869 			    (int)sbavail(&so->so_snd));
2870 			ourfinisacked = 1;
2871 		} else {
2872 			mfree = sbcut_locked(&so->so_snd, acked);
2873 			if (tp->snd_wnd >= (uint32_t) acked)
2874 				tp->snd_wnd -= acked;
2875 			else
2876 				tp->snd_wnd = 0;
2877 			ourfinisacked = 0;
2878 		}
2879 		/* NB: sowwakeup_locked() does an implicit unlock. */
2880 		sowwakeup_locked(so);
2881 		m_freem(mfree);
2882 		/* Detect una wraparound. */
2883 		if (!IN_RECOVERY(tp->t_flags) &&
2884 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2885 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2886 			tp->snd_recover = th->th_ack - 1;
2887 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2888 		if (IN_RECOVERY(tp->t_flags) &&
2889 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2890 			EXIT_RECOVERY(tp->t_flags);
2891 		}
2892 		tp->snd_una = th->th_ack;
2893 		if (tp->t_flags & TF_SACK_PERMIT) {
2894 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2895 				tp->snd_recover = tp->snd_una;
2896 		}
2897 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2898 			tp->snd_nxt = tp->snd_una;
2899 
2900 		switch (tp->t_state) {
2901 
2902 		/*
2903 		 * In FIN_WAIT_1 STATE in addition to the processing
2904 		 * for the ESTABLISHED state if our FIN is now acknowledged
2905 		 * then enter FIN_WAIT_2.
2906 		 */
2907 		case TCPS_FIN_WAIT_1:
2908 			if (ourfinisacked) {
2909 				/*
2910 				 * If we can't receive any more
2911 				 * data, then closing user can proceed.
2912 				 * Starting the timer is contrary to the
2913 				 * specification, but if we don't get a FIN
2914 				 * we'll hang forever.
2915 				 *
2916 				 * XXXjl:
2917 				 * we should release the tp also, and use a
2918 				 * compressed state.
2919 				 */
2920 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2921 					soisdisconnected(so);
2922 					tcp_timer_activate(tp, TT_2MSL,
2923 					    (tcp_fast_finwait2_recycle ?
2924 					    tcp_finwait2_timeout :
2925 					    TP_MAXIDLE(tp)));
2926 				}
2927 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2928 			}
2929 			break;
2930 
2931 		/*
2932 		 * In CLOSING STATE in addition to the processing for
2933 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2934 		 * then enter the TIME-WAIT state, otherwise ignore
2935 		 * the segment.
2936 		 */
2937 		case TCPS_CLOSING:
2938 			if (ourfinisacked) {
2939 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2940 				tcp_twstart(tp);
2941 				INP_INFO_RUNLOCK(&V_tcbinfo);
2942 				m_freem(m);
2943 				return;
2944 			}
2945 			break;
2946 
2947 		/*
2948 		 * In LAST_ACK, we may still be waiting for data to drain
2949 		 * and/or to be acked, as well as for the ack of our FIN.
2950 		 * If our FIN is now acknowledged, delete the TCB,
2951 		 * enter the closed state and return.
2952 		 */
2953 		case TCPS_LAST_ACK:
2954 			if (ourfinisacked) {
2955 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2956 				tp = tcp_close(tp);
2957 				goto drop;
2958 			}
2959 			break;
2960 		}
2961 	}
2962 
2963 step6:
2964 	INP_WLOCK_ASSERT(tp->t_inpcb);
2965 
2966 	/*
2967 	 * Update window information.
2968 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2969 	 */
2970 	if ((thflags & TH_ACK) &&
2971 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2972 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2973 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2974 		/* keep track of pure window updates */
2975 		if (tlen == 0 &&
2976 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2977 			TCPSTAT_INC(tcps_rcvwinupd);
2978 		tp->snd_wnd = tiwin;
2979 		tp->snd_wl1 = th->th_seq;
2980 		tp->snd_wl2 = th->th_ack;
2981 		if (tp->snd_wnd > tp->max_sndwnd)
2982 			tp->max_sndwnd = tp->snd_wnd;
2983 		needoutput = 1;
2984 	}
2985 
2986 	/*
2987 	 * Process segments with URG.
2988 	 */
2989 	if ((thflags & TH_URG) && th->th_urp &&
2990 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2991 		/*
2992 		 * This is a kludge, but if we receive and accept
2993 		 * random urgent pointers, we'll crash in
2994 		 * soreceive.  It's hard to imagine someone
2995 		 * actually wanting to send this much urgent data.
2996 		 */
2997 		SOCKBUF_LOCK(&so->so_rcv);
2998 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2999 			th->th_urp = 0;			/* XXX */
3000 			thflags &= ~TH_URG;		/* XXX */
3001 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
3002 			goto dodata;			/* XXX */
3003 		}
3004 		/*
3005 		 * If this segment advances the known urgent pointer,
3006 		 * then mark the data stream.  This should not happen
3007 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3008 		 * a FIN has been received from the remote side.
3009 		 * In these states we ignore the URG.
3010 		 *
3011 		 * According to RFC961 (Assigned Protocols),
3012 		 * the urgent pointer points to the last octet
3013 		 * of urgent data.  We continue, however,
3014 		 * to consider it to indicate the first octet
3015 		 * of data past the urgent section as the original
3016 		 * spec states (in one of two places).
3017 		 */
3018 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3019 			tp->rcv_up = th->th_seq + th->th_urp;
3020 			so->so_oobmark = sbavail(&so->so_rcv) +
3021 			    (tp->rcv_up - tp->rcv_nxt) - 1;
3022 			if (so->so_oobmark == 0)
3023 				so->so_rcv.sb_state |= SBS_RCVATMARK;
3024 			sohasoutofband(so);
3025 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3026 		}
3027 		SOCKBUF_UNLOCK(&so->so_rcv);
3028 		/*
3029 		 * Remove out of band data so doesn't get presented to user.
3030 		 * This can happen independent of advancing the URG pointer,
3031 		 * but if two URG's are pending at once, some out-of-band
3032 		 * data may creep in... ick.
3033 		 */
3034 		if (th->th_urp <= (uint32_t)tlen &&
3035 		    !(so->so_options & SO_OOBINLINE)) {
3036 			/* hdr drop is delayed */
3037 			tcp_pulloutofband(so, th, m, drop_hdrlen);
3038 		}
3039 	} else {
3040 		/*
3041 		 * If no out of band data is expected,
3042 		 * pull receive urgent pointer along
3043 		 * with the receive window.
3044 		 */
3045 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3046 			tp->rcv_up = tp->rcv_nxt;
3047 	}
3048 dodata:							/* XXX */
3049 	INP_WLOCK_ASSERT(tp->t_inpcb);
3050 
3051 	/*
3052 	 * Process the segment text, merging it into the TCP sequencing queue,
3053 	 * and arranging for acknowledgment of receipt if necessary.
3054 	 * This process logically involves adjusting tp->rcv_wnd as data
3055 	 * is presented to the user (this happens in tcp_usrreq.c,
3056 	 * case PRU_RCVD).  If a FIN has already been received on this
3057 	 * connection then we just ignore the text.
3058 	 */
3059 #ifdef TCP_RFC7413
3060 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3061 		   IS_FASTOPEN(tp->t_flags));
3062 #else
3063 #define	tfo_syn	(false)
3064 #endif
3065 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
3066 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3067 		tcp_seq save_start = th->th_seq;
3068 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3069 		/*
3070 		 * Insert segment which includes th into TCP reassembly queue
3071 		 * with control block tp.  Set thflags to whether reassembly now
3072 		 * includes a segment with FIN.  This handles the common case
3073 		 * inline (segment is the next to be received on an established
3074 		 * connection, and the queue is empty), avoiding linkage into
3075 		 * and removal from the queue and repetition of various
3076 		 * conversions.
3077 		 * Set DELACK for segments received in order, but ack
3078 		 * immediately when segments are out of order (so
3079 		 * fast retransmit can work).
3080 		 */
3081 		if (th->th_seq == tp->rcv_nxt &&
3082 		    LIST_EMPTY(&tp->t_segq) &&
3083 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3084 		     tfo_syn)) {
3085 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3086 				tp->t_flags |= TF_DELACK;
3087 			else
3088 				tp->t_flags |= TF_ACKNOW;
3089 			tp->rcv_nxt += tlen;
3090 			thflags = th->th_flags & TH_FIN;
3091 			TCPSTAT_INC(tcps_rcvpack);
3092 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3093 			SOCKBUF_LOCK(&so->so_rcv);
3094 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3095 				m_freem(m);
3096 			else
3097 				sbappendstream_locked(&so->so_rcv, m, 0);
3098 			/* NB: sorwakeup_locked() does an implicit unlock. */
3099 			sorwakeup_locked(so);
3100 		} else {
3101 			/*
3102 			 * XXX: Due to the header drop above "th" is
3103 			 * theoretically invalid by now.  Fortunately
3104 			 * m_adj() doesn't actually frees any mbufs
3105 			 * when trimming from the head.
3106 			 */
3107 			thflags = tcp_reass(tp, th, &tlen, m);
3108 			tp->t_flags |= TF_ACKNOW;
3109 		}
3110 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3111 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3112 #if 0
3113 		/*
3114 		 * Note the amount of data that peer has sent into
3115 		 * our window, in order to estimate the sender's
3116 		 * buffer size.
3117 		 * XXX: Unused.
3118 		 */
3119 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3120 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3121 		else
3122 			len = so->so_rcv.sb_hiwat;
3123 #endif
3124 	} else {
3125 		m_freem(m);
3126 		thflags &= ~TH_FIN;
3127 	}
3128 
3129 	/*
3130 	 * If FIN is received ACK the FIN and let the user know
3131 	 * that the connection is closing.
3132 	 */
3133 	if (thflags & TH_FIN) {
3134 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3135 			socantrcvmore(so);
3136 			/*
3137 			 * If connection is half-synchronized
3138 			 * (ie NEEDSYN flag on) then delay ACK,
3139 			 * so it may be piggybacked when SYN is sent.
3140 			 * Otherwise, since we received a FIN then no
3141 			 * more input can be expected, send ACK now.
3142 			 */
3143 			if (tp->t_flags & TF_NEEDSYN)
3144 				tp->t_flags |= TF_DELACK;
3145 			else
3146 				tp->t_flags |= TF_ACKNOW;
3147 			tp->rcv_nxt++;
3148 		}
3149 		switch (tp->t_state) {
3150 
3151 		/*
3152 		 * In SYN_RECEIVED and ESTABLISHED STATES
3153 		 * enter the CLOSE_WAIT state.
3154 		 */
3155 		case TCPS_SYN_RECEIVED:
3156 			tp->t_starttime = ticks;
3157 			/* FALLTHROUGH */
3158 		case TCPS_ESTABLISHED:
3159 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3160 			break;
3161 
3162 		/*
3163 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3164 		 * enter the CLOSING state.
3165 		 */
3166 		case TCPS_FIN_WAIT_1:
3167 			tcp_state_change(tp, TCPS_CLOSING);
3168 			break;
3169 
3170 		/*
3171 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3172 		 * starting the time-wait timer, turning off the other
3173 		 * standard timers.
3174 		 */
3175 		case TCPS_FIN_WAIT_2:
3176 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3177 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3178 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3179 			    ti_locked));
3180 
3181 			tcp_twstart(tp);
3182 			INP_INFO_RUNLOCK(&V_tcbinfo);
3183 			return;
3184 		}
3185 	}
3186 	if (ti_locked == TI_RLOCKED)
3187 		INP_INFO_RUNLOCK(&V_tcbinfo);
3188 	ti_locked = TI_UNLOCKED;
3189 
3190 #ifdef TCPDEBUG
3191 	if (so->so_options & SO_DEBUG)
3192 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3193 			  &tcp_savetcp, 0);
3194 #endif
3195 	TCP_PROBE3(debug__input, tp, th, m);
3196 
3197 	/*
3198 	 * Return any desired output.
3199 	 */
3200 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3201 		(void) tp->t_fb->tfb_tcp_output(tp);
3202 
3203 check_delack:
3204 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3205 	    __func__, ti_locked));
3206 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3207 	INP_WLOCK_ASSERT(tp->t_inpcb);
3208 
3209 	if (tp->t_flags & TF_DELACK) {
3210 		tp->t_flags &= ~TF_DELACK;
3211 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3212 	}
3213 	INP_WUNLOCK(tp->t_inpcb);
3214 	return;
3215 
3216 dropafterack:
3217 	/*
3218 	 * Generate an ACK dropping incoming segment if it occupies
3219 	 * sequence space, where the ACK reflects our state.
3220 	 *
3221 	 * We can now skip the test for the RST flag since all
3222 	 * paths to this code happen after packets containing
3223 	 * RST have been dropped.
3224 	 *
3225 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3226 	 * segment we received passes the SYN-RECEIVED ACK test.
3227 	 * If it fails send a RST.  This breaks the loop in the
3228 	 * "LAND" DoS attack, and also prevents an ACK storm
3229 	 * between two listening ports that have been sent forged
3230 	 * SYN segments, each with the source address of the other.
3231 	 */
3232 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3233 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3234 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3235 		rstreason = BANDLIM_RST_OPENPORT;
3236 		goto dropwithreset;
3237 	}
3238 #ifdef TCPDEBUG
3239 	if (so->so_options & SO_DEBUG)
3240 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3241 			  &tcp_savetcp, 0);
3242 #endif
3243 	TCP_PROBE3(debug__input, tp, th, m);
3244 	if (ti_locked == TI_RLOCKED)
3245 		INP_INFO_RUNLOCK(&V_tcbinfo);
3246 	ti_locked = TI_UNLOCKED;
3247 
3248 	tp->t_flags |= TF_ACKNOW;
3249 	(void) tp->t_fb->tfb_tcp_output(tp);
3250 	INP_WUNLOCK(tp->t_inpcb);
3251 	m_freem(m);
3252 	return;
3253 
3254 dropwithreset:
3255 	if (ti_locked == TI_RLOCKED)
3256 		INP_INFO_RUNLOCK(&V_tcbinfo);
3257 	ti_locked = TI_UNLOCKED;
3258 
3259 	if (tp != NULL) {
3260 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3261 		INP_WUNLOCK(tp->t_inpcb);
3262 	} else
3263 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3264 	return;
3265 
3266 drop:
3267 	if (ti_locked == TI_RLOCKED) {
3268 		INP_INFO_RUNLOCK(&V_tcbinfo);
3269 		ti_locked = TI_UNLOCKED;
3270 	}
3271 #ifdef INVARIANTS
3272 	else
3273 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3274 #endif
3275 
3276 	/*
3277 	 * Drop space held by incoming segment and return.
3278 	 */
3279 #ifdef TCPDEBUG
3280 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3281 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3282 			  &tcp_savetcp, 0);
3283 #endif
3284 	TCP_PROBE3(debug__input, tp, th, m);
3285 	if (tp != NULL)
3286 		INP_WUNLOCK(tp->t_inpcb);
3287 	m_freem(m);
3288 #ifndef TCP_RFC7413
3289 #undef	tfo_syn
3290 #endif
3291 }
3292 
3293 /*
3294  * Issue RST and make ACK acceptable to originator of segment.
3295  * The mbuf must still include the original packet header.
3296  * tp may be NULL.
3297  */
3298 void
3299 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3300     int tlen, int rstreason)
3301 {
3302 #ifdef INET
3303 	struct ip *ip;
3304 #endif
3305 #ifdef INET6
3306 	struct ip6_hdr *ip6;
3307 #endif
3308 
3309 	if (tp != NULL) {
3310 		INP_WLOCK_ASSERT(tp->t_inpcb);
3311 	}
3312 
3313 	/* Don't bother if destination was broadcast/multicast. */
3314 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3315 		goto drop;
3316 #ifdef INET6
3317 	if (mtod(m, struct ip *)->ip_v == 6) {
3318 		ip6 = mtod(m, struct ip6_hdr *);
3319 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3320 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3321 			goto drop;
3322 		/* IPv6 anycast check is done at tcp6_input() */
3323 	}
3324 #endif
3325 #if defined(INET) && defined(INET6)
3326 	else
3327 #endif
3328 #ifdef INET
3329 	{
3330 		ip = mtod(m, struct ip *);
3331 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3332 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3333 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3334 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3335 			goto drop;
3336 	}
3337 #endif
3338 
3339 	/* Perform bandwidth limiting. */
3340 	if (badport_bandlim(rstreason) < 0)
3341 		goto drop;
3342 
3343 	/* tcp_respond consumes the mbuf chain. */
3344 	if (th->th_flags & TH_ACK) {
3345 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3346 		    th->th_ack, TH_RST);
3347 	} else {
3348 		if (th->th_flags & TH_SYN)
3349 			tlen++;
3350 		if (th->th_flags & TH_FIN)
3351 			tlen++;
3352 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3353 		    (tcp_seq)0, TH_RST|TH_ACK);
3354 	}
3355 	return;
3356 drop:
3357 	m_freem(m);
3358 }
3359 
3360 /*
3361  * Parse TCP options and place in tcpopt.
3362  */
3363 void
3364 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3365 {
3366 	int opt, optlen;
3367 
3368 	to->to_flags = 0;
3369 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3370 		opt = cp[0];
3371 		if (opt == TCPOPT_EOL)
3372 			break;
3373 		if (opt == TCPOPT_NOP)
3374 			optlen = 1;
3375 		else {
3376 			if (cnt < 2)
3377 				break;
3378 			optlen = cp[1];
3379 			if (optlen < 2 || optlen > cnt)
3380 				break;
3381 		}
3382 		switch (opt) {
3383 		case TCPOPT_MAXSEG:
3384 			if (optlen != TCPOLEN_MAXSEG)
3385 				continue;
3386 			if (!(flags & TO_SYN))
3387 				continue;
3388 			to->to_flags |= TOF_MSS;
3389 			bcopy((char *)cp + 2,
3390 			    (char *)&to->to_mss, sizeof(to->to_mss));
3391 			to->to_mss = ntohs(to->to_mss);
3392 			break;
3393 		case TCPOPT_WINDOW:
3394 			if (optlen != TCPOLEN_WINDOW)
3395 				continue;
3396 			if (!(flags & TO_SYN))
3397 				continue;
3398 			to->to_flags |= TOF_SCALE;
3399 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3400 			break;
3401 		case TCPOPT_TIMESTAMP:
3402 			if (optlen != TCPOLEN_TIMESTAMP)
3403 				continue;
3404 			to->to_flags |= TOF_TS;
3405 			bcopy((char *)cp + 2,
3406 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3407 			to->to_tsval = ntohl(to->to_tsval);
3408 			bcopy((char *)cp + 6,
3409 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3410 			to->to_tsecr = ntohl(to->to_tsecr);
3411 			break;
3412 		case TCPOPT_SIGNATURE:
3413 			/*
3414 			 * In order to reply to a host which has set the
3415 			 * TCP_SIGNATURE option in its initial SYN, we have
3416 			 * to record the fact that the option was observed
3417 			 * here for the syncache code to perform the correct
3418 			 * response.
3419 			 */
3420 			if (optlen != TCPOLEN_SIGNATURE)
3421 				continue;
3422 			to->to_flags |= TOF_SIGNATURE;
3423 			to->to_signature = cp + 2;
3424 			break;
3425 		case TCPOPT_SACK_PERMITTED:
3426 			if (optlen != TCPOLEN_SACK_PERMITTED)
3427 				continue;
3428 			if (!(flags & TO_SYN))
3429 				continue;
3430 			if (!V_tcp_do_sack)
3431 				continue;
3432 			to->to_flags |= TOF_SACKPERM;
3433 			break;
3434 		case TCPOPT_SACK:
3435 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3436 				continue;
3437 			if (flags & TO_SYN)
3438 				continue;
3439 			to->to_flags |= TOF_SACK;
3440 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3441 			to->to_sacks = cp + 2;
3442 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3443 			break;
3444 #ifdef TCP_RFC7413
3445 		case TCPOPT_FAST_OPEN:
3446 			if ((optlen != TCPOLEN_FAST_OPEN_EMPTY) &&
3447 			    (optlen < TCPOLEN_FAST_OPEN_MIN) &&
3448 			    (optlen > TCPOLEN_FAST_OPEN_MAX))
3449 				continue;
3450 			if (!(flags & TO_SYN))
3451 				continue;
3452 			if (!V_tcp_fastopen_enabled)
3453 				continue;
3454 			to->to_flags |= TOF_FASTOPEN;
3455 			to->to_tfo_len = optlen - 2;
3456 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3457 			break;
3458 #endif
3459 		default:
3460 			continue;
3461 		}
3462 	}
3463 }
3464 
3465 /*
3466  * Pull out of band byte out of a segment so
3467  * it doesn't appear in the user's data queue.
3468  * It is still reflected in the segment length for
3469  * sequencing purposes.
3470  */
3471 void
3472 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3473     int off)
3474 {
3475 	int cnt = off + th->th_urp - 1;
3476 
3477 	while (cnt >= 0) {
3478 		if (m->m_len > cnt) {
3479 			char *cp = mtod(m, caddr_t) + cnt;
3480 			struct tcpcb *tp = sototcpcb(so);
3481 
3482 			INP_WLOCK_ASSERT(tp->t_inpcb);
3483 
3484 			tp->t_iobc = *cp;
3485 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3486 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3487 			m->m_len--;
3488 			if (m->m_flags & M_PKTHDR)
3489 				m->m_pkthdr.len--;
3490 			return;
3491 		}
3492 		cnt -= m->m_len;
3493 		m = m->m_next;
3494 		if (m == NULL)
3495 			break;
3496 	}
3497 	panic("tcp_pulloutofband");
3498 }
3499 
3500 /*
3501  * Collect new round-trip time estimate
3502  * and update averages and current timeout.
3503  */
3504 void
3505 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3506 {
3507 	int delta;
3508 
3509 	INP_WLOCK_ASSERT(tp->t_inpcb);
3510 
3511 	TCPSTAT_INC(tcps_rttupdated);
3512 	tp->t_rttupdated++;
3513 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3514 		/*
3515 		 * srtt is stored as fixed point with 5 bits after the
3516 		 * binary point (i.e., scaled by 8).  The following magic
3517 		 * is equivalent to the smoothing algorithm in rfc793 with
3518 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3519 		 * point).  Adjust rtt to origin 0.
3520 		 */
3521 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3522 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3523 
3524 		if ((tp->t_srtt += delta) <= 0)
3525 			tp->t_srtt = 1;
3526 
3527 		/*
3528 		 * We accumulate a smoothed rtt variance (actually, a
3529 		 * smoothed mean difference), then set the retransmit
3530 		 * timer to smoothed rtt + 4 times the smoothed variance.
3531 		 * rttvar is stored as fixed point with 4 bits after the
3532 		 * binary point (scaled by 16).  The following is
3533 		 * equivalent to rfc793 smoothing with an alpha of .75
3534 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3535 		 * rfc793's wired-in beta.
3536 		 */
3537 		if (delta < 0)
3538 			delta = -delta;
3539 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3540 		if ((tp->t_rttvar += delta) <= 0)
3541 			tp->t_rttvar = 1;
3542 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3543 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3544 	} else {
3545 		/*
3546 		 * No rtt measurement yet - use the unsmoothed rtt.
3547 		 * Set the variance to half the rtt (so our first
3548 		 * retransmit happens at 3*rtt).
3549 		 */
3550 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3551 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3552 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3553 	}
3554 	tp->t_rtttime = 0;
3555 	tp->t_rxtshift = 0;
3556 
3557 	/*
3558 	 * the retransmit should happen at rtt + 4 * rttvar.
3559 	 * Because of the way we do the smoothing, srtt and rttvar
3560 	 * will each average +1/2 tick of bias.  When we compute
3561 	 * the retransmit timer, we want 1/2 tick of rounding and
3562 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3563 	 * firing of the timer.  The bias will give us exactly the
3564 	 * 1.5 tick we need.  But, because the bias is
3565 	 * statistical, we have to test that we don't drop below
3566 	 * the minimum feasible timer (which is 2 ticks).
3567 	 */
3568 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3569 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3570 
3571 	/*
3572 	 * We received an ack for a packet that wasn't retransmitted;
3573 	 * it is probably safe to discard any error indications we've
3574 	 * received recently.  This isn't quite right, but close enough
3575 	 * for now (a route might have failed after we sent a segment,
3576 	 * and the return path might not be symmetrical).
3577 	 */
3578 	tp->t_softerror = 0;
3579 }
3580 
3581 /*
3582  * Determine a reasonable value for maxseg size.
3583  * If the route is known, check route for mtu.
3584  * If none, use an mss that can be handled on the outgoing interface
3585  * without forcing IP to fragment.  If no route is found, route has no mtu,
3586  * or the destination isn't local, use a default, hopefully conservative
3587  * size (usually 512 or the default IP max size, but no more than the mtu
3588  * of the interface), as we can't discover anything about intervening
3589  * gateways or networks.  We also initialize the congestion/slow start
3590  * window to be a single segment if the destination isn't local.
3591  * While looking at the routing entry, we also initialize other path-dependent
3592  * parameters from pre-set or cached values in the routing entry.
3593  *
3594  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3595  * IP options, e.g. IPSEC data, since length of this data may vary, and
3596  * thus it is calculated for every segment separately in tcp_output().
3597  *
3598  * NOTE that this routine is only called when we process an incoming
3599  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3600  * settings are handled in tcp_mssopt().
3601  */
3602 void
3603 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3604     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3605 {
3606 	int mss = 0;
3607 	uint32_t maxmtu = 0;
3608 	struct inpcb *inp = tp->t_inpcb;
3609 	struct hc_metrics_lite metrics;
3610 #ifdef INET6
3611 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3612 	size_t min_protoh = isipv6 ?
3613 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3614 			    sizeof (struct tcpiphdr);
3615 #else
3616 	const size_t min_protoh = sizeof(struct tcpiphdr);
3617 #endif
3618 
3619 	INP_WLOCK_ASSERT(tp->t_inpcb);
3620 
3621 	if (mtuoffer != -1) {
3622 		KASSERT(offer == -1, ("%s: conflict", __func__));
3623 		offer = mtuoffer - min_protoh;
3624 	}
3625 
3626 	/* Initialize. */
3627 #ifdef INET6
3628 	if (isipv6) {
3629 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3630 		tp->t_maxseg = V_tcp_v6mssdflt;
3631 	}
3632 #endif
3633 #if defined(INET) && defined(INET6)
3634 	else
3635 #endif
3636 #ifdef INET
3637 	{
3638 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3639 		tp->t_maxseg = V_tcp_mssdflt;
3640 	}
3641 #endif
3642 
3643 	/*
3644 	 * No route to sender, stay with default mss and return.
3645 	 */
3646 	if (maxmtu == 0) {
3647 		/*
3648 		 * In case we return early we need to initialize metrics
3649 		 * to a defined state as tcp_hc_get() would do for us
3650 		 * if there was no cache hit.
3651 		 */
3652 		if (metricptr != NULL)
3653 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3654 		return;
3655 	}
3656 
3657 	/* What have we got? */
3658 	switch (offer) {
3659 		case 0:
3660 			/*
3661 			 * Offer == 0 means that there was no MSS on the SYN
3662 			 * segment, in this case we use tcp_mssdflt as
3663 			 * already assigned to t_maxseg above.
3664 			 */
3665 			offer = tp->t_maxseg;
3666 			break;
3667 
3668 		case -1:
3669 			/*
3670 			 * Offer == -1 means that we didn't receive SYN yet.
3671 			 */
3672 			/* FALLTHROUGH */
3673 
3674 		default:
3675 			/*
3676 			 * Prevent DoS attack with too small MSS. Round up
3677 			 * to at least minmss.
3678 			 */
3679 			offer = max(offer, V_tcp_minmss);
3680 	}
3681 
3682 	/*
3683 	 * rmx information is now retrieved from tcp_hostcache.
3684 	 */
3685 	tcp_hc_get(&inp->inp_inc, &metrics);
3686 	if (metricptr != NULL)
3687 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3688 
3689 	/*
3690 	 * If there's a discovered mtu in tcp hostcache, use it.
3691 	 * Else, use the link mtu.
3692 	 */
3693 	if (metrics.rmx_mtu)
3694 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3695 	else {
3696 #ifdef INET6
3697 		if (isipv6) {
3698 			mss = maxmtu - min_protoh;
3699 			if (!V_path_mtu_discovery &&
3700 			    !in6_localaddr(&inp->in6p_faddr))
3701 				mss = min(mss, V_tcp_v6mssdflt);
3702 		}
3703 #endif
3704 #if defined(INET) && defined(INET6)
3705 		else
3706 #endif
3707 #ifdef INET
3708 		{
3709 			mss = maxmtu - min_protoh;
3710 			if (!V_path_mtu_discovery &&
3711 			    !in_localaddr(inp->inp_faddr))
3712 				mss = min(mss, V_tcp_mssdflt);
3713 		}
3714 #endif
3715 		/*
3716 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3717 		 * probably violates the TCP spec.
3718 		 * The problem is that, since we don't know the
3719 		 * other end's MSS, we are supposed to use a conservative
3720 		 * default.  But, if we do that, then MTU discovery will
3721 		 * never actually take place, because the conservative
3722 		 * default is much less than the MTUs typically seen
3723 		 * on the Internet today.  For the moment, we'll sweep
3724 		 * this under the carpet.
3725 		 *
3726 		 * The conservative default might not actually be a problem
3727 		 * if the only case this occurs is when sending an initial
3728 		 * SYN with options and data to a host we've never talked
3729 		 * to before.  Then, they will reply with an MSS value which
3730 		 * will get recorded and the new parameters should get
3731 		 * recomputed.  For Further Study.
3732 		 */
3733 	}
3734 	mss = min(mss, offer);
3735 
3736 	/*
3737 	 * Sanity check: make sure that maxseg will be large
3738 	 * enough to allow some data on segments even if the
3739 	 * all the option space is used (40bytes).  Otherwise
3740 	 * funny things may happen in tcp_output.
3741 	 *
3742 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3743 	 */
3744 	mss = max(mss, 64);
3745 
3746 	tp->t_maxseg = mss;
3747 }
3748 
3749 void
3750 tcp_mss(struct tcpcb *tp, int offer)
3751 {
3752 	int mss;
3753 	uint32_t bufsize;
3754 	struct inpcb *inp;
3755 	struct socket *so;
3756 	struct hc_metrics_lite metrics;
3757 	struct tcp_ifcap cap;
3758 
3759 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3760 
3761 	bzero(&cap, sizeof(cap));
3762 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3763 
3764 	mss = tp->t_maxseg;
3765 	inp = tp->t_inpcb;
3766 
3767 	/*
3768 	 * If there's a pipesize, change the socket buffer to that size,
3769 	 * don't change if sb_hiwat is different than default (then it
3770 	 * has been changed on purpose with setsockopt).
3771 	 * Make the socket buffers an integral number of mss units;
3772 	 * if the mss is larger than the socket buffer, decrease the mss.
3773 	 */
3774 	so = inp->inp_socket;
3775 	SOCKBUF_LOCK(&so->so_snd);
3776 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3777 		bufsize = metrics.rmx_sendpipe;
3778 	else
3779 		bufsize = so->so_snd.sb_hiwat;
3780 	if (bufsize < mss)
3781 		mss = bufsize;
3782 	else {
3783 		bufsize = roundup(bufsize, mss);
3784 		if (bufsize > sb_max)
3785 			bufsize = sb_max;
3786 		if (bufsize > so->so_snd.sb_hiwat)
3787 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3788 	}
3789 	SOCKBUF_UNLOCK(&so->so_snd);
3790 	/*
3791 	 * Sanity check: make sure that maxseg will be large
3792 	 * enough to allow some data on segments even if the
3793 	 * all the option space is used (40bytes).  Otherwise
3794 	 * funny things may happen in tcp_output.
3795 	 *
3796 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3797 	 */
3798 	tp->t_maxseg = max(mss, 64);
3799 
3800 	SOCKBUF_LOCK(&so->so_rcv);
3801 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3802 		bufsize = metrics.rmx_recvpipe;
3803 	else
3804 		bufsize = so->so_rcv.sb_hiwat;
3805 	if (bufsize > mss) {
3806 		bufsize = roundup(bufsize, mss);
3807 		if (bufsize > sb_max)
3808 			bufsize = sb_max;
3809 		if (bufsize > so->so_rcv.sb_hiwat)
3810 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3811 	}
3812 	SOCKBUF_UNLOCK(&so->so_rcv);
3813 
3814 	/* Check the interface for TSO capabilities. */
3815 	if (cap.ifcap & CSUM_TSO) {
3816 		tp->t_flags |= TF_TSO;
3817 		tp->t_tsomax = cap.tsomax;
3818 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3819 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3820 	}
3821 }
3822 
3823 /*
3824  * Determine the MSS option to send on an outgoing SYN.
3825  */
3826 int
3827 tcp_mssopt(struct in_conninfo *inc)
3828 {
3829 	int mss = 0;
3830 	uint32_t thcmtu = 0;
3831 	uint32_t maxmtu = 0;
3832 	size_t min_protoh;
3833 
3834 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3835 
3836 #ifdef INET6
3837 	if (inc->inc_flags & INC_ISIPV6) {
3838 		mss = V_tcp_v6mssdflt;
3839 		maxmtu = tcp_maxmtu6(inc, NULL);
3840 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3841 	}
3842 #endif
3843 #if defined(INET) && defined(INET6)
3844 	else
3845 #endif
3846 #ifdef INET
3847 	{
3848 		mss = V_tcp_mssdflt;
3849 		maxmtu = tcp_maxmtu(inc, NULL);
3850 		min_protoh = sizeof(struct tcpiphdr);
3851 	}
3852 #endif
3853 #if defined(INET6) || defined(INET)
3854 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3855 #endif
3856 
3857 	if (maxmtu && thcmtu)
3858 		mss = min(maxmtu, thcmtu) - min_protoh;
3859 	else if (maxmtu || thcmtu)
3860 		mss = max(maxmtu, thcmtu) - min_protoh;
3861 
3862 	return (mss);
3863 }
3864 
3865 
3866 /*
3867  * On a partial ack arrives, force the retransmission of the
3868  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3869  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3870  * be started again.
3871  */
3872 void
3873 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3874 {
3875 	tcp_seq onxt = tp->snd_nxt;
3876 	uint32_t ocwnd = tp->snd_cwnd;
3877 	u_int maxseg = tcp_maxseg(tp);
3878 
3879 	INP_WLOCK_ASSERT(tp->t_inpcb);
3880 
3881 	tcp_timer_activate(tp, TT_REXMT, 0);
3882 	tp->t_rtttime = 0;
3883 	tp->snd_nxt = th->th_ack;
3884 	/*
3885 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3886 	 * (tp->snd_una has not yet been updated when this function is called.)
3887 	 */
3888 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3889 	tp->t_flags |= TF_ACKNOW;
3890 	(void) tp->t_fb->tfb_tcp_output(tp);
3891 	tp->snd_cwnd = ocwnd;
3892 	if (SEQ_GT(onxt, tp->snd_nxt))
3893 		tp->snd_nxt = onxt;
3894 	/*
3895 	 * Partial window deflation.  Relies on fact that tp->snd_una
3896 	 * not updated yet.
3897 	 */
3898 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3899 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3900 	else
3901 		tp->snd_cwnd = 0;
3902 	tp->snd_cwnd += maxseg;
3903 }
3904 
3905 int
3906 tcp_compute_pipe(struct tcpcb *tp)
3907 {
3908 	return (tp->snd_max - tp->snd_una +
3909 		tp->sackhint.sack_bytes_rexmit -
3910 		tp->sackhint.sacked_bytes);
3911 }
3912