xref: /freebsd/sys/netinet/tcp_input.c (revision 95d45410b5100e07f6f98450bcd841a8945d4726)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #include <netinet6/tcp6_var.h>
106 #include <netinet/tcpip.h>
107 #include <netinet/tcp_syncache.h>
108 #ifdef TCPDEBUG
109 #include <netinet/tcp_debug.h>
110 #endif /* TCPDEBUG */
111 #ifdef TCP_OFFLOAD
112 #include <netinet/tcp_offload.h>
113 #endif
114 
115 #ifdef IPSEC
116 #include <netipsec/ipsec.h>
117 #include <netipsec/ipsec6.h>
118 #endif /*IPSEC*/
119 
120 #include <machine/in_cksum.h>
121 
122 #include <security/mac/mac_framework.h>
123 
124 const int tcprexmtthresh = 3;
125 
126 int tcp_log_in_vain = 0;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128     &tcp_log_in_vain, 0,
129     "Log all incoming TCP segments to closed ports");
130 
131 VNET_DEFINE(int, blackhole) = 0;
132 #define	V_blackhole		VNET(blackhole)
133 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
134     &VNET_NAME(blackhole), 0,
135     "Do not send RST on segments to closed ports");
136 
137 VNET_DEFINE(int, tcp_delack_enabled) = 1;
138 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
139     &VNET_NAME(tcp_delack_enabled), 0,
140     "Delay ACK to try and piggyback it onto a data packet");
141 
142 VNET_DEFINE(int, drop_synfin) = 0;
143 #define	V_drop_synfin		VNET(drop_synfin)
144 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
145     &VNET_NAME(drop_synfin), 0,
146     "Drop TCP packets with SYN+FIN set");
147 
148 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
151     &VNET_NAME(tcp_do_rfc3042), 0,
152     "Enable RFC 3042 (Limited Transmit)");
153 
154 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc3390), 0,
157     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158 
159 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160     "Experimental TCP extensions");
161 
162 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
164     &VNET_NAME(tcp_do_initcwnd10), 0,
165     "Enable RFC 6928 (Increasing initial CWND to 10)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3465), 0,
170     "Enable RFC 3465 (Appropriate Byte Counting)");
171 
172 VNET_DEFINE(int, tcp_abc_l_var) = 2;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
174     &VNET_NAME(tcp_abc_l_var), 2,
175     "Cap the max cwnd increment during slow-start to this number of segments");
176 
177 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178 
179 VNET_DEFINE(int, tcp_do_ecn) = 0;
180 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
181     &VNET_NAME(tcp_do_ecn), 0,
182     "TCP ECN support");
183 
184 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
186     &VNET_NAME(tcp_ecn_maxretries), 0,
187     "Max retries before giving up on ECN");
188 
189 VNET_DEFINE(int, tcp_insecure_rst) = 0;
190 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
191 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
192     &VNET_NAME(tcp_insecure_rst), 0,
193     "Follow the old (insecure) criteria for accepting RST packets");
194 
195 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
196 #define	V_tcp_recvspace	VNET(tcp_recvspace)
197 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
198     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
199 
200 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
201 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
202 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
203     &VNET_NAME(tcp_do_autorcvbuf), 0,
204     "Enable automatic receive buffer sizing");
205 
206 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
207 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
208 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
209     &VNET_NAME(tcp_autorcvbuf_inc), 0,
210     "Incrementor step size of automatic receive buffer");
211 
212 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
213 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
214 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
215     &VNET_NAME(tcp_autorcvbuf_max), 0,
216     "Max size of automatic receive buffer");
217 
218 VNET_DEFINE(struct inpcbhead, tcb);
219 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
220 VNET_DEFINE(struct inpcbinfo, tcbinfo);
221 
222 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
223 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
224 		     struct socket *, struct tcpcb *, int, int, uint8_t,
225 		     int);
226 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
227 		     struct tcpcb *, int, int);
228 static void	 tcp_pulloutofband(struct socket *,
229 		     struct tcphdr *, struct mbuf *, int);
230 static void	 tcp_xmit_timer(struct tcpcb *, int);
231 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
232 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
233 			    uint16_t type);
234 static void inline	cc_conn_init(struct tcpcb *tp);
235 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
236 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
237 			    struct tcphdr *th, struct tcpopt *to);
238 
239 /*
240  * TCP statistics are stored in an "array" of counter(9)s.
241  */
242 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
243 VNET_PCPUSTAT_SYSINIT(tcpstat);
244 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
245     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
246 
247 #ifdef VIMAGE
248 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
249 #endif /* VIMAGE */
250 /*
251  * Kernel module interface for updating tcpstat.  The argument is an index
252  * into tcpstat treated as an array.
253  */
254 void
255 kmod_tcpstat_inc(int statnum)
256 {
257 
258 	counter_u64_add(VNET(tcpstat)[statnum], 1);
259 }
260 
261 /*
262  * Wrapper for the TCP established input helper hook.
263  */
264 static void inline
265 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
266 {
267 	struct tcp_hhook_data hhook_data;
268 
269 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
270 		hhook_data.tp = tp;
271 		hhook_data.th = th;
272 		hhook_data.to = to;
273 
274 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
275 		    tp->osd);
276 	}
277 }
278 
279 /*
280  * CC wrapper hook functions
281  */
282 static void inline
283 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
284 {
285 	INP_WLOCK_ASSERT(tp->t_inpcb);
286 
287 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
288 	if (tp->snd_cwnd <= tp->snd_wnd)
289 		tp->ccv->flags |= CCF_CWND_LIMITED;
290 	else
291 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
292 
293 	if (type == CC_ACK) {
294 		if (tp->snd_cwnd > tp->snd_ssthresh) {
295 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
296 			     V_tcp_abc_l_var * tp->t_maxseg);
297 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
298 				tp->t_bytes_acked -= tp->snd_cwnd;
299 				tp->ccv->flags |= CCF_ABC_SENTAWND;
300 			}
301 		} else {
302 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
303 				tp->t_bytes_acked = 0;
304 		}
305 	}
306 
307 	if (CC_ALGO(tp)->ack_received != NULL) {
308 		/* XXXLAS: Find a way to live without this */
309 		tp->ccv->curack = th->th_ack;
310 		CC_ALGO(tp)->ack_received(tp->ccv, type);
311 	}
312 }
313 
314 static void inline
315 cc_conn_init(struct tcpcb *tp)
316 {
317 	struct hc_metrics_lite metrics;
318 	struct inpcb *inp = tp->t_inpcb;
319 	int rtt;
320 
321 	INP_WLOCK_ASSERT(tp->t_inpcb);
322 
323 	tcp_hc_get(&inp->inp_inc, &metrics);
324 
325 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
326 		tp->t_srtt = rtt;
327 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
328 		TCPSTAT_INC(tcps_usedrtt);
329 		if (metrics.rmx_rttvar) {
330 			tp->t_rttvar = metrics.rmx_rttvar;
331 			TCPSTAT_INC(tcps_usedrttvar);
332 		} else {
333 			/* default variation is +- 1 rtt */
334 			tp->t_rttvar =
335 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
336 		}
337 		TCPT_RANGESET(tp->t_rxtcur,
338 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
339 		    tp->t_rttmin, TCPTV_REXMTMAX);
340 	}
341 	if (metrics.rmx_ssthresh) {
342 		/*
343 		 * There's some sort of gateway or interface
344 		 * buffer limit on the path.  Use this to set
345 		 * the slow start threshhold, but set the
346 		 * threshold to no less than 2*mss.
347 		 */
348 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
349 		TCPSTAT_INC(tcps_usedssthresh);
350 	}
351 
352 	/*
353 	 * Set the initial slow-start flight size.
354 	 *
355 	 * RFC5681 Section 3.1 specifies the default conservative values.
356 	 * RFC3390 specifies slightly more aggressive values.
357 	 * RFC6928 increases it to ten segments.
358 	 *
359 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
360 	 * reduce the initial CWND to one segment as congestion is likely
361 	 * requiring us to be cautious.
362 	 */
363 	if (tp->snd_cwnd == 1)
364 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
365 	else if (V_tcp_do_initcwnd10)
366 		tp->snd_cwnd = min(10 * tp->t_maxseg,
367 		    max(2 * tp->t_maxseg, 14600));
368 	else if (V_tcp_do_rfc3390)
369 		tp->snd_cwnd = min(4 * tp->t_maxseg,
370 		    max(2 * tp->t_maxseg, 4380));
371 	else {
372 		/* Per RFC5681 Section 3.1 */
373 		if (tp->t_maxseg > 2190)
374 			tp->snd_cwnd = 2 * tp->t_maxseg;
375 		else if (tp->t_maxseg > 1095)
376 			tp->snd_cwnd = 3 * tp->t_maxseg;
377 		else
378 			tp->snd_cwnd = 4 * tp->t_maxseg;
379 	}
380 
381 	if (CC_ALGO(tp)->conn_init != NULL)
382 		CC_ALGO(tp)->conn_init(tp->ccv);
383 }
384 
385 void inline
386 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
387 {
388 	INP_WLOCK_ASSERT(tp->t_inpcb);
389 
390 	switch(type) {
391 	case CC_NDUPACK:
392 		if (!IN_FASTRECOVERY(tp->t_flags)) {
393 			tp->snd_recover = tp->snd_max;
394 			if (tp->t_flags & TF_ECN_PERMIT)
395 				tp->t_flags |= TF_ECN_SND_CWR;
396 		}
397 		break;
398 	case CC_ECN:
399 		if (!IN_CONGRECOVERY(tp->t_flags)) {
400 			TCPSTAT_INC(tcps_ecn_rcwnd);
401 			tp->snd_recover = tp->snd_max;
402 			if (tp->t_flags & TF_ECN_PERMIT)
403 				tp->t_flags |= TF_ECN_SND_CWR;
404 		}
405 		break;
406 	case CC_RTO:
407 		tp->t_dupacks = 0;
408 		tp->t_bytes_acked = 0;
409 		EXIT_RECOVERY(tp->t_flags);
410 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411 		    tp->t_maxseg) * tp->t_maxseg;
412 		tp->snd_cwnd = tp->t_maxseg;
413 		break;
414 	case CC_RTO_ERR:
415 		TCPSTAT_INC(tcps_sndrexmitbad);
416 		/* RTO was unnecessary, so reset everything. */
417 		tp->snd_cwnd = tp->snd_cwnd_prev;
418 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419 		tp->snd_recover = tp->snd_recover_prev;
420 		if (tp->t_flags & TF_WASFRECOVERY)
421 			ENTER_FASTRECOVERY(tp->t_flags);
422 		if (tp->t_flags & TF_WASCRECOVERY)
423 			ENTER_CONGRECOVERY(tp->t_flags);
424 		tp->snd_nxt = tp->snd_max;
425 		tp->t_flags &= ~TF_PREVVALID;
426 		tp->t_badrxtwin = 0;
427 		break;
428 	}
429 
430 	if (CC_ALGO(tp)->cong_signal != NULL) {
431 		if (th != NULL)
432 			tp->ccv->curack = th->th_ack;
433 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434 	}
435 }
436 
437 static void inline
438 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439 {
440 	INP_WLOCK_ASSERT(tp->t_inpcb);
441 
442 	/* XXXLAS: KASSERT that we're in recovery? */
443 
444 	if (CC_ALGO(tp)->post_recovery != NULL) {
445 		tp->ccv->curack = th->th_ack;
446 		CC_ALGO(tp)->post_recovery(tp->ccv);
447 	}
448 	/* XXXLAS: EXIT_RECOVERY ? */
449 	tp->t_bytes_acked = 0;
450 }
451 
452 #ifdef TCP_SIGNATURE
453 static inline int
454 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
455     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
456 {
457 	int ret;
458 
459 	tcp_fields_to_net(th);
460 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
461 	tcp_fields_to_host(th);
462 	return (ret);
463 }
464 #endif
465 
466 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
467 #ifdef INET6
468 #define ND6_HINT(tp) \
469 do { \
470 	if ((tp) && (tp)->t_inpcb && \
471 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
472 		nd6_nud_hint(NULL, NULL, 0); \
473 } while (0)
474 #else
475 #define ND6_HINT(tp)
476 #endif
477 
478 /*
479  * Indicate whether this ack should be delayed.  We can delay the ack if
480  * following conditions are met:
481  *	- There is no delayed ack timer in progress.
482  *	- Our last ack wasn't a 0-sized window. We never want to delay
483  *	  the ack that opens up a 0-sized window.
484  *	- LRO wasn't used for this segment. We make sure by checking that the
485  *	  segment size is not larger than the MSS.
486  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
487  *	  connection.
488  */
489 #define DELAY_ACK(tp, tlen)						\
490 	((!tcp_timer_active(tp, TT_DELACK) &&				\
491 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
492 	    (tlen <= tp->t_maxopd) &&					\
493 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
494 
495 /*
496  * TCP input handling is split into multiple parts:
497  *   tcp6_input is a thin wrapper around tcp_input for the extended
498  *	ip6_protox[] call format in ip6_input
499  *   tcp_input handles primary segment validation, inpcb lookup and
500  *	SYN processing on listen sockets
501  *   tcp_do_segment processes the ACK and text of the segment for
502  *	establishing, established and closing connections
503  */
504 #ifdef INET6
505 int
506 tcp6_input(struct mbuf **mp, int *offp, int proto)
507 {
508 	struct mbuf *m = *mp;
509 	struct in6_ifaddr *ia6;
510 
511 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
512 
513 	/*
514 	 * draft-itojun-ipv6-tcp-to-anycast
515 	 * better place to put this in?
516 	 */
517 	ia6 = ip6_getdstifaddr(m);
518 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
519 		struct ip6_hdr *ip6;
520 
521 		ifa_free(&ia6->ia_ifa);
522 		ip6 = mtod(m, struct ip6_hdr *);
523 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
524 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
525 		return IPPROTO_DONE;
526 	}
527 	if (ia6)
528 		ifa_free(&ia6->ia_ifa);
529 
530 	tcp_input(m, *offp);
531 	return IPPROTO_DONE;
532 }
533 #endif /* INET6 */
534 
535 void
536 tcp_input(struct mbuf *m, int off0)
537 {
538 	struct tcphdr *th = NULL;
539 	struct ip *ip = NULL;
540 	struct inpcb *inp = NULL;
541 	struct tcpcb *tp = NULL;
542 	struct socket *so = NULL;
543 	u_char *optp = NULL;
544 	int optlen = 0;
545 #ifdef INET
546 	int len;
547 #endif
548 	int tlen = 0, off;
549 	int drop_hdrlen;
550 	int thflags;
551 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
552 #ifdef TCP_SIGNATURE
553 	uint8_t sig_checked = 0;
554 #endif
555 	uint8_t iptos = 0;
556 	struct m_tag *fwd_tag = NULL;
557 #ifdef INET6
558 	struct ip6_hdr *ip6 = NULL;
559 	int isipv6;
560 #else
561 	const void *ip6 = NULL;
562 #endif /* INET6 */
563 	struct tcpopt to;		/* options in this segment */
564 	char *s = NULL;			/* address and port logging */
565 	int ti_locked;
566 #define	TI_UNLOCKED	1
567 #define	TI_WLOCKED	2
568 
569 #ifdef TCPDEBUG
570 	/*
571 	 * The size of tcp_saveipgen must be the size of the max ip header,
572 	 * now IPv6.
573 	 */
574 	u_char tcp_saveipgen[IP6_HDR_LEN];
575 	struct tcphdr tcp_savetcp;
576 	short ostate = 0;
577 #endif
578 
579 #ifdef INET6
580 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
581 #endif
582 
583 	to.to_flags = 0;
584 	TCPSTAT_INC(tcps_rcvtotal);
585 
586 #ifdef INET6
587 	if (isipv6) {
588 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
589 
590 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
591 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
592 			if (m == NULL) {
593 				TCPSTAT_INC(tcps_rcvshort);
594 				return;
595 			}
596 		}
597 
598 		ip6 = mtod(m, struct ip6_hdr *);
599 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
600 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
601 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
602 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
603 				th->th_sum = m->m_pkthdr.csum_data;
604 			else
605 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
606 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
607 			th->th_sum ^= 0xffff;
608 		} else
609 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
610 		if (th->th_sum) {
611 			TCPSTAT_INC(tcps_rcvbadsum);
612 			goto drop;
613 		}
614 
615 		/*
616 		 * Be proactive about unspecified IPv6 address in source.
617 		 * As we use all-zero to indicate unbounded/unconnected pcb,
618 		 * unspecified IPv6 address can be used to confuse us.
619 		 *
620 		 * Note that packets with unspecified IPv6 destination is
621 		 * already dropped in ip6_input.
622 		 */
623 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
624 			/* XXX stat */
625 			goto drop;
626 		}
627 	}
628 #endif
629 #if defined(INET) && defined(INET6)
630 	else
631 #endif
632 #ifdef INET
633 	{
634 		/*
635 		 * Get IP and TCP header together in first mbuf.
636 		 * Note: IP leaves IP header in first mbuf.
637 		 */
638 		if (off0 > sizeof (struct ip)) {
639 			ip_stripoptions(m);
640 			off0 = sizeof(struct ip);
641 		}
642 		if (m->m_len < sizeof (struct tcpiphdr)) {
643 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
644 			    == NULL) {
645 				TCPSTAT_INC(tcps_rcvshort);
646 				return;
647 			}
648 		}
649 		ip = mtod(m, struct ip *);
650 		th = (struct tcphdr *)((caddr_t)ip + off0);
651 		tlen = ntohs(ip->ip_len) - off0;
652 
653 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
654 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
655 				th->th_sum = m->m_pkthdr.csum_data;
656 			else
657 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
658 				    ip->ip_dst.s_addr,
659 				    htonl(m->m_pkthdr.csum_data + tlen +
660 				    IPPROTO_TCP));
661 			th->th_sum ^= 0xffff;
662 		} else {
663 			struct ipovly *ipov = (struct ipovly *)ip;
664 
665 			/*
666 			 * Checksum extended TCP header and data.
667 			 */
668 			len = off0 + tlen;
669 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
670 			ipov->ih_len = htons(tlen);
671 			th->th_sum = in_cksum(m, len);
672 			/* Reset length for SDT probes. */
673 			ip->ip_len = htons(tlen + off0);
674 		}
675 
676 		if (th->th_sum) {
677 			TCPSTAT_INC(tcps_rcvbadsum);
678 			goto drop;
679 		}
680 		/* Re-initialization for later version check */
681 		ip->ip_v = IPVERSION;
682 	}
683 #endif /* INET */
684 
685 #ifdef INET6
686 	if (isipv6)
687 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
688 #endif
689 #if defined(INET) && defined(INET6)
690 	else
691 #endif
692 #ifdef INET
693 		iptos = ip->ip_tos;
694 #endif
695 
696 	/*
697 	 * Check that TCP offset makes sense,
698 	 * pull out TCP options and adjust length.		XXX
699 	 */
700 	off = th->th_off << 2;
701 	if (off < sizeof (struct tcphdr) || off > tlen) {
702 		TCPSTAT_INC(tcps_rcvbadoff);
703 		goto drop;
704 	}
705 	tlen -= off;	/* tlen is used instead of ti->ti_len */
706 	if (off > sizeof (struct tcphdr)) {
707 #ifdef INET6
708 		if (isipv6) {
709 			IP6_EXTHDR_CHECK(m, off0, off, );
710 			ip6 = mtod(m, struct ip6_hdr *);
711 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
712 		}
713 #endif
714 #if defined(INET) && defined(INET6)
715 		else
716 #endif
717 #ifdef INET
718 		{
719 			if (m->m_len < sizeof(struct ip) + off) {
720 				if ((m = m_pullup(m, sizeof (struct ip) + off))
721 				    == NULL) {
722 					TCPSTAT_INC(tcps_rcvshort);
723 					return;
724 				}
725 				ip = mtod(m, struct ip *);
726 				th = (struct tcphdr *)((caddr_t)ip + off0);
727 			}
728 		}
729 #endif
730 		optlen = off - sizeof (struct tcphdr);
731 		optp = (u_char *)(th + 1);
732 	}
733 	thflags = th->th_flags;
734 
735 	/*
736 	 * Convert TCP protocol specific fields to host format.
737 	 */
738 	tcp_fields_to_host(th);
739 
740 	/*
741 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
742 	 */
743 	drop_hdrlen = off0 + off;
744 
745 	/*
746 	 * Locate pcb for segment; if we're likely to add or remove a
747 	 * connection then first acquire pcbinfo lock.  There are two cases
748 	 * where we might discover later we need a write lock despite the
749 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
750 	 * a connection in TIMEWAIT.
751 	 */
752 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
753 		INP_INFO_WLOCK(&V_tcbinfo);
754 		ti_locked = TI_WLOCKED;
755 	} else
756 		ti_locked = TI_UNLOCKED;
757 
758 	/*
759 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
760 	 */
761         if (
762 #ifdef INET6
763 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
764 #ifdef INET
765 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
766 #endif
767 #endif
768 #if defined(INET) && !defined(INET6)
769 	    (m->m_flags & M_IP_NEXTHOP)
770 #endif
771 	    )
772 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
773 
774 findpcb:
775 #ifdef INVARIANTS
776 	if (ti_locked == TI_WLOCKED) {
777 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
778 	} else {
779 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
780 	}
781 #endif
782 #ifdef INET6
783 	if (isipv6 && fwd_tag != NULL) {
784 		struct sockaddr_in6 *next_hop6;
785 
786 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
787 		/*
788 		 * Transparently forwarded. Pretend to be the destination.
789 		 * Already got one like this?
790 		 */
791 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
792 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
793 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
794 		if (!inp) {
795 			/*
796 			 * It's new.  Try to find the ambushing socket.
797 			 * Because we've rewritten the destination address,
798 			 * any hardware-generated hash is ignored.
799 			 */
800 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
801 			    th->th_sport, &next_hop6->sin6_addr,
802 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
803 			    th->th_dport, INPLOOKUP_WILDCARD |
804 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
805 		}
806 	} else if (isipv6) {
807 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
808 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
809 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
810 		    m->m_pkthdr.rcvif, m);
811 	}
812 #endif /* INET6 */
813 #if defined(INET6) && defined(INET)
814 	else
815 #endif
816 #ifdef INET
817 	if (fwd_tag != NULL) {
818 		struct sockaddr_in *next_hop;
819 
820 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
821 		/*
822 		 * Transparently forwarded. Pretend to be the destination.
823 		 * already got one like this?
824 		 */
825 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
826 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
827 		    m->m_pkthdr.rcvif, m);
828 		if (!inp) {
829 			/*
830 			 * It's new.  Try to find the ambushing socket.
831 			 * Because we've rewritten the destination address,
832 			 * any hardware-generated hash is ignored.
833 			 */
834 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
835 			    th->th_sport, next_hop->sin_addr,
836 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
837 			    th->th_dport, INPLOOKUP_WILDCARD |
838 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
839 		}
840 	} else
841 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
842 		    th->th_sport, ip->ip_dst, th->th_dport,
843 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
844 		    m->m_pkthdr.rcvif, m);
845 #endif /* INET */
846 
847 	/*
848 	 * If the INPCB does not exist then all data in the incoming
849 	 * segment is discarded and an appropriate RST is sent back.
850 	 * XXX MRT Send RST using which routing table?
851 	 */
852 	if (inp == NULL) {
853 		/*
854 		 * Log communication attempts to ports that are not
855 		 * in use.
856 		 */
857 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
858 		    tcp_log_in_vain == 2) {
859 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
860 				log(LOG_INFO, "%s; %s: Connection attempt "
861 				    "to closed port\n", s, __func__);
862 		}
863 		/*
864 		 * When blackholing do not respond with a RST but
865 		 * completely ignore the segment and drop it.
866 		 */
867 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
868 		    V_blackhole == 2)
869 			goto dropunlock;
870 
871 		rstreason = BANDLIM_RST_CLOSEDPORT;
872 		goto dropwithreset;
873 	}
874 	INP_WLOCK_ASSERT(inp);
875 	if (!(inp->inp_flags & INP_HW_FLOWID)
876 	    && (m->m_flags & M_FLOWID)
877 	    && ((inp->inp_socket == NULL)
878 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
879 		inp->inp_flags |= INP_HW_FLOWID;
880 		inp->inp_flags &= ~INP_SW_FLOWID;
881 		inp->inp_flowid = m->m_pkthdr.flowid;
882 		inp->inp_flowtype = M_HASHTYPE_GET(m);
883 	}
884 #ifdef IPSEC
885 #ifdef INET6
886 	if (isipv6 && ipsec6_in_reject(m, inp)) {
887 		IPSEC6STAT_INC(ips_in_polvio);
888 		goto dropunlock;
889 	} else
890 #endif /* INET6 */
891 	if (ipsec4_in_reject(m, inp) != 0) {
892 		IPSECSTAT_INC(ips_in_polvio);
893 		goto dropunlock;
894 	}
895 #endif /* IPSEC */
896 
897 	/*
898 	 * Check the minimum TTL for socket.
899 	 */
900 	if (inp->inp_ip_minttl != 0) {
901 #ifdef INET6
902 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
903 			goto dropunlock;
904 		else
905 #endif
906 		if (inp->inp_ip_minttl > ip->ip_ttl)
907 			goto dropunlock;
908 	}
909 
910 	/*
911 	 * A previous connection in TIMEWAIT state is supposed to catch stray
912 	 * or duplicate segments arriving late.  If this segment was a
913 	 * legitimate new connection attempt, the old INPCB gets removed and
914 	 * we can try again to find a listening socket.
915 	 *
916 	 * At this point, due to earlier optimism, we may hold only an inpcb
917 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
918 	 * acquire it, or if that fails, acquire a reference on the inpcb,
919 	 * drop all locks, acquire a global write lock, and then re-acquire
920 	 * the inpcb lock.  We may at that point discover that another thread
921 	 * has tried to free the inpcb, in which case we need to loop back
922 	 * and try to find a new inpcb to deliver to.
923 	 *
924 	 * XXXRW: It may be time to rethink timewait locking.
925 	 */
926 relocked:
927 	if (inp->inp_flags & INP_TIMEWAIT) {
928 		if (ti_locked == TI_UNLOCKED) {
929 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
930 				in_pcbref(inp);
931 				INP_WUNLOCK(inp);
932 				INP_INFO_WLOCK(&V_tcbinfo);
933 				ti_locked = TI_WLOCKED;
934 				INP_WLOCK(inp);
935 				if (in_pcbrele_wlocked(inp)) {
936 					inp = NULL;
937 					goto findpcb;
938 				}
939 			} else
940 				ti_locked = TI_WLOCKED;
941 		}
942 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
943 
944 		if (thflags & TH_SYN)
945 			tcp_dooptions(&to, optp, optlen, TO_SYN);
946 		/*
947 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
948 		 */
949 		if (tcp_twcheck(inp, &to, th, m, tlen))
950 			goto findpcb;
951 		INP_INFO_WUNLOCK(&V_tcbinfo);
952 		return;
953 	}
954 	/*
955 	 * The TCPCB may no longer exist if the connection is winding
956 	 * down or it is in the CLOSED state.  Either way we drop the
957 	 * segment and send an appropriate response.
958 	 */
959 	tp = intotcpcb(inp);
960 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
961 		rstreason = BANDLIM_RST_CLOSEDPORT;
962 		goto dropwithreset;
963 	}
964 
965 #ifdef TCP_OFFLOAD
966 	if (tp->t_flags & TF_TOE) {
967 		tcp_offload_input(tp, m);
968 		m = NULL;	/* consumed by the TOE driver */
969 		goto dropunlock;
970 	}
971 #endif
972 
973 	/*
974 	 * We've identified a valid inpcb, but it could be that we need an
975 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
976 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
977 	 * relock, we have to jump back to 'relocked' as the connection might
978 	 * now be in TIMEWAIT.
979 	 */
980 #ifdef INVARIANTS
981 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
982 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
983 #endif
984 	if (tp->t_state != TCPS_ESTABLISHED) {
985 		if (ti_locked == TI_UNLOCKED) {
986 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
987 				in_pcbref(inp);
988 				INP_WUNLOCK(inp);
989 				INP_INFO_WLOCK(&V_tcbinfo);
990 				ti_locked = TI_WLOCKED;
991 				INP_WLOCK(inp);
992 				if (in_pcbrele_wlocked(inp)) {
993 					inp = NULL;
994 					goto findpcb;
995 				}
996 				goto relocked;
997 			} else
998 				ti_locked = TI_WLOCKED;
999 		}
1000 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1001 	}
1002 
1003 #ifdef MAC
1004 	INP_WLOCK_ASSERT(inp);
1005 	if (mac_inpcb_check_deliver(inp, m))
1006 		goto dropunlock;
1007 #endif
1008 	so = inp->inp_socket;
1009 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1010 #ifdef TCPDEBUG
1011 	if (so->so_options & SO_DEBUG) {
1012 		ostate = tp->t_state;
1013 #ifdef INET6
1014 		if (isipv6) {
1015 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1016 		} else
1017 #endif
1018 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1019 		tcp_savetcp = *th;
1020 	}
1021 #endif /* TCPDEBUG */
1022 	/*
1023 	 * When the socket is accepting connections (the INPCB is in LISTEN
1024 	 * state) we look into the SYN cache if this is a new connection
1025 	 * attempt or the completion of a previous one.  Because listen
1026 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1027 	 * held in this case.
1028 	 */
1029 	if (so->so_options & SO_ACCEPTCONN) {
1030 		struct in_conninfo inc;
1031 
1032 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1033 		    "tp not listening", __func__));
1034 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1035 
1036 		bzero(&inc, sizeof(inc));
1037 #ifdef INET6
1038 		if (isipv6) {
1039 			inc.inc_flags |= INC_ISIPV6;
1040 			inc.inc6_faddr = ip6->ip6_src;
1041 			inc.inc6_laddr = ip6->ip6_dst;
1042 		} else
1043 #endif
1044 		{
1045 			inc.inc_faddr = ip->ip_src;
1046 			inc.inc_laddr = ip->ip_dst;
1047 		}
1048 		inc.inc_fport = th->th_sport;
1049 		inc.inc_lport = th->th_dport;
1050 		inc.inc_fibnum = so->so_fibnum;
1051 
1052 		/*
1053 		 * Check for an existing connection attempt in syncache if
1054 		 * the flag is only ACK.  A successful lookup creates a new
1055 		 * socket appended to the listen queue in SYN_RECEIVED state.
1056 		 */
1057 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1058 			/*
1059 			 * Parse the TCP options here because
1060 			 * syncookies need access to the reflected
1061 			 * timestamp.
1062 			 */
1063 			tcp_dooptions(&to, optp, optlen, 0);
1064 			/*
1065 			 * NB: syncache_expand() doesn't unlock
1066 			 * inp and tcpinfo locks.
1067 			 */
1068 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1069 				/*
1070 				 * No syncache entry or ACK was not
1071 				 * for our SYN/ACK.  Send a RST.
1072 				 * NB: syncache did its own logging
1073 				 * of the failure cause.
1074 				 */
1075 				rstreason = BANDLIM_RST_OPENPORT;
1076 				goto dropwithreset;
1077 			}
1078 			if (so == NULL) {
1079 				/*
1080 				 * We completed the 3-way handshake
1081 				 * but could not allocate a socket
1082 				 * either due to memory shortage,
1083 				 * listen queue length limits or
1084 				 * global socket limits.  Send RST
1085 				 * or wait and have the remote end
1086 				 * retransmit the ACK for another
1087 				 * try.
1088 				 */
1089 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1090 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1091 					    "Socket allocation failed due to "
1092 					    "limits or memory shortage, %s\n",
1093 					    s, __func__,
1094 					    V_tcp_sc_rst_sock_fail ?
1095 					    "sending RST" : "try again");
1096 				if (V_tcp_sc_rst_sock_fail) {
1097 					rstreason = BANDLIM_UNLIMITED;
1098 					goto dropwithreset;
1099 				} else
1100 					goto dropunlock;
1101 			}
1102 			/*
1103 			 * Socket is created in state SYN_RECEIVED.
1104 			 * Unlock the listen socket, lock the newly
1105 			 * created socket and update the tp variable.
1106 			 */
1107 			INP_WUNLOCK(inp);	/* listen socket */
1108 			inp = sotoinpcb(so);
1109 			INP_WLOCK(inp);		/* new connection */
1110 			tp = intotcpcb(inp);
1111 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1112 			    ("%s: ", __func__));
1113 #ifdef TCP_SIGNATURE
1114 			if (sig_checked == 0)  {
1115 				tcp_dooptions(&to, optp, optlen,
1116 				    (thflags & TH_SYN) ? TO_SYN : 0);
1117 				if (!tcp_signature_verify_input(m, off0, tlen,
1118 				    optlen, &to, th, tp->t_flags)) {
1119 
1120 					/*
1121 					 * In SYN_SENT state if it receives an
1122 					 * RST, it is allowed for further
1123 					 * processing.
1124 					 */
1125 					if ((thflags & TH_RST) == 0 ||
1126 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1127 						goto dropunlock;
1128 				}
1129 				sig_checked = 1;
1130 			}
1131 #endif
1132 
1133 			/*
1134 			 * Process the segment and the data it
1135 			 * contains.  tcp_do_segment() consumes
1136 			 * the mbuf chain and unlocks the inpcb.
1137 			 */
1138 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1139 			    iptos, ti_locked);
1140 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1141 			return;
1142 		}
1143 		/*
1144 		 * Segment flag validation for new connection attempts:
1145 		 *
1146 		 * Our (SYN|ACK) response was rejected.
1147 		 * Check with syncache and remove entry to prevent
1148 		 * retransmits.
1149 		 *
1150 		 * NB: syncache_chkrst does its own logging of failure
1151 		 * causes.
1152 		 */
1153 		if (thflags & TH_RST) {
1154 			syncache_chkrst(&inc, th);
1155 			goto dropunlock;
1156 		}
1157 		/*
1158 		 * We can't do anything without SYN.
1159 		 */
1160 		if ((thflags & TH_SYN) == 0) {
1161 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1162 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1163 				    "SYN is missing, segment ignored\n",
1164 				    s, __func__);
1165 			TCPSTAT_INC(tcps_badsyn);
1166 			goto dropunlock;
1167 		}
1168 		/*
1169 		 * (SYN|ACK) is bogus on a listen socket.
1170 		 */
1171 		if (thflags & TH_ACK) {
1172 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1173 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1174 				    "SYN|ACK invalid, segment rejected\n",
1175 				    s, __func__);
1176 			syncache_badack(&inc);	/* XXX: Not needed! */
1177 			TCPSTAT_INC(tcps_badsyn);
1178 			rstreason = BANDLIM_RST_OPENPORT;
1179 			goto dropwithreset;
1180 		}
1181 		/*
1182 		 * If the drop_synfin option is enabled, drop all
1183 		 * segments with both the SYN and FIN bits set.
1184 		 * This prevents e.g. nmap from identifying the
1185 		 * TCP/IP stack.
1186 		 * XXX: Poor reasoning.  nmap has other methods
1187 		 * and is constantly refining its stack detection
1188 		 * strategies.
1189 		 * XXX: This is a violation of the TCP specification
1190 		 * and was used by RFC1644.
1191 		 */
1192 		if ((thflags & TH_FIN) && V_drop_synfin) {
1193 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1194 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1195 				    "SYN|FIN segment ignored (based on "
1196 				    "sysctl setting)\n", s, __func__);
1197 			TCPSTAT_INC(tcps_badsyn);
1198 			goto dropunlock;
1199 		}
1200 		/*
1201 		 * Segment's flags are (SYN) or (SYN|FIN).
1202 		 *
1203 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1204 		 * as they do not affect the state of the TCP FSM.
1205 		 * The data pointed to by TH_URG and th_urp is ignored.
1206 		 */
1207 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1208 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1209 		KASSERT(thflags & (TH_SYN),
1210 		    ("%s: Listen socket: TH_SYN not set", __func__));
1211 #ifdef INET6
1212 		/*
1213 		 * If deprecated address is forbidden,
1214 		 * we do not accept SYN to deprecated interface
1215 		 * address to prevent any new inbound connection from
1216 		 * getting established.
1217 		 * When we do not accept SYN, we send a TCP RST,
1218 		 * with deprecated source address (instead of dropping
1219 		 * it).  We compromise it as it is much better for peer
1220 		 * to send a RST, and RST will be the final packet
1221 		 * for the exchange.
1222 		 *
1223 		 * If we do not forbid deprecated addresses, we accept
1224 		 * the SYN packet.  RFC2462 does not suggest dropping
1225 		 * SYN in this case.
1226 		 * If we decipher RFC2462 5.5.4, it says like this:
1227 		 * 1. use of deprecated addr with existing
1228 		 *    communication is okay - "SHOULD continue to be
1229 		 *    used"
1230 		 * 2. use of it with new communication:
1231 		 *   (2a) "SHOULD NOT be used if alternate address
1232 		 *        with sufficient scope is available"
1233 		 *   (2b) nothing mentioned otherwise.
1234 		 * Here we fall into (2b) case as we have no choice in
1235 		 * our source address selection - we must obey the peer.
1236 		 *
1237 		 * The wording in RFC2462 is confusing, and there are
1238 		 * multiple description text for deprecated address
1239 		 * handling - worse, they are not exactly the same.
1240 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1241 		 */
1242 		if (isipv6 && !V_ip6_use_deprecated) {
1243 			struct in6_ifaddr *ia6;
1244 
1245 			ia6 = ip6_getdstifaddr(m);
1246 			if (ia6 != NULL &&
1247 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1248 				ifa_free(&ia6->ia_ifa);
1249 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1250 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1251 					"Connection attempt to deprecated "
1252 					"IPv6 address rejected\n",
1253 					s, __func__);
1254 				rstreason = BANDLIM_RST_OPENPORT;
1255 				goto dropwithreset;
1256 			}
1257 			if (ia6)
1258 				ifa_free(&ia6->ia_ifa);
1259 		}
1260 #endif /* INET6 */
1261 		/*
1262 		 * Basic sanity checks on incoming SYN requests:
1263 		 *   Don't respond if the destination is a link layer
1264 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1265 		 *   If it is from this socket it must be forged.
1266 		 *   Don't respond if the source or destination is a
1267 		 *	global or subnet broad- or multicast address.
1268 		 *   Note that it is quite possible to receive unicast
1269 		 *	link-layer packets with a broadcast IP address. Use
1270 		 *	in_broadcast() to find them.
1271 		 */
1272 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1273 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1274 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1275 				"Connection attempt from broad- or multicast "
1276 				"link layer address ignored\n", s, __func__);
1277 			goto dropunlock;
1278 		}
1279 #ifdef INET6
1280 		if (isipv6) {
1281 			if (th->th_dport == th->th_sport &&
1282 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1283 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1284 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1285 					"Connection attempt to/from self "
1286 					"ignored\n", s, __func__);
1287 				goto dropunlock;
1288 			}
1289 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1290 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1291 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1292 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1293 					"Connection attempt from/to multicast "
1294 					"address ignored\n", s, __func__);
1295 				goto dropunlock;
1296 			}
1297 		}
1298 #endif
1299 #if defined(INET) && defined(INET6)
1300 		else
1301 #endif
1302 #ifdef INET
1303 		{
1304 			if (th->th_dport == th->th_sport &&
1305 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1306 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1307 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1308 					"Connection attempt from/to self "
1309 					"ignored\n", s, __func__);
1310 				goto dropunlock;
1311 			}
1312 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1313 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1314 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1315 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1316 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1317 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1318 					"Connection attempt from/to broad- "
1319 					"or multicast address ignored\n",
1320 					s, __func__);
1321 				goto dropunlock;
1322 			}
1323 		}
1324 #endif
1325 		/*
1326 		 * SYN appears to be valid.  Create compressed TCP state
1327 		 * for syncache.
1328 		 */
1329 #ifdef TCPDEBUG
1330 		if (so->so_options & SO_DEBUG)
1331 			tcp_trace(TA_INPUT, ostate, tp,
1332 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1333 #endif
1334 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1335 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1336 		/*
1337 		 * Entry added to syncache and mbuf consumed.
1338 		 * Everything already unlocked by syncache_add().
1339 		 */
1340 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1341 		return;
1342 	} else if (tp->t_state == TCPS_LISTEN) {
1343 		/*
1344 		 * When a listen socket is torn down the SO_ACCEPTCONN
1345 		 * flag is removed first while connections are drained
1346 		 * from the accept queue in a unlock/lock cycle of the
1347 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1348 		 * attempt go through unhandled.
1349 		 */
1350 		goto dropunlock;
1351 	}
1352 
1353 #ifdef TCP_SIGNATURE
1354 	if (sig_checked == 0)  {
1355 		tcp_dooptions(&to, optp, optlen,
1356 		    (thflags & TH_SYN) ? TO_SYN : 0);
1357 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1358 		    th, tp->t_flags)) {
1359 
1360 			/*
1361 			 * In SYN_SENT state if it receives an RST, it is
1362 			 * allowed for further processing.
1363 			 */
1364 			if ((thflags & TH_RST) == 0 ||
1365 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1366 				goto dropunlock;
1367 		}
1368 		sig_checked = 1;
1369 	}
1370 #endif
1371 
1372 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1373 
1374 	/*
1375 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1376 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1377 	 * the inpcb, and unlocks pcbinfo.
1378 	 */
1379 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1380 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1381 	return;
1382 
1383 dropwithreset:
1384 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1385 
1386 	if (ti_locked == TI_WLOCKED) {
1387 		INP_INFO_WUNLOCK(&V_tcbinfo);
1388 		ti_locked = TI_UNLOCKED;
1389 	}
1390 #ifdef INVARIANTS
1391 	else {
1392 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1393 		    "ti_locked: %d", __func__, ti_locked));
1394 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1395 	}
1396 #endif
1397 
1398 	if (inp != NULL) {
1399 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1400 		INP_WUNLOCK(inp);
1401 	} else
1402 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1403 	m = NULL;	/* mbuf chain got consumed. */
1404 	goto drop;
1405 
1406 dropunlock:
1407 	if (m != NULL)
1408 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1409 
1410 	if (ti_locked == TI_WLOCKED) {
1411 		INP_INFO_WUNLOCK(&V_tcbinfo);
1412 		ti_locked = TI_UNLOCKED;
1413 	}
1414 #ifdef INVARIANTS
1415 	else {
1416 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1417 		    "ti_locked: %d", __func__, ti_locked));
1418 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1419 	}
1420 #endif
1421 
1422 	if (inp != NULL)
1423 		INP_WUNLOCK(inp);
1424 
1425 drop:
1426 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1427 	if (s != NULL)
1428 		free(s, M_TCPLOG);
1429 	if (m != NULL)
1430 		m_freem(m);
1431 }
1432 
1433 static void
1434 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1435     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1436     int ti_locked)
1437 {
1438 	int thflags, acked, ourfinisacked, needoutput = 0;
1439 	int rstreason, todrop, win;
1440 	u_long tiwin;
1441 	char *s;
1442 	struct in_conninfo *inc;
1443 	struct mbuf *mfree;
1444 	struct tcpopt to;
1445 
1446 #ifdef TCPDEBUG
1447 	/*
1448 	 * The size of tcp_saveipgen must be the size of the max ip header,
1449 	 * now IPv6.
1450 	 */
1451 	u_char tcp_saveipgen[IP6_HDR_LEN];
1452 	struct tcphdr tcp_savetcp;
1453 	short ostate = 0;
1454 #endif
1455 	thflags = th->th_flags;
1456 	inc = &tp->t_inpcb->inp_inc;
1457 	tp->sackhint.last_sack_ack = 0;
1458 
1459 	/*
1460 	 * If this is either a state-changing packet or current state isn't
1461 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1462 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1463 	 * caller may have unnecessarily acquired a write lock due to a race.
1464 	 */
1465 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1466 	    tp->t_state != TCPS_ESTABLISHED) {
1467 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1468 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1469 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1470 	} else {
1471 #ifdef INVARIANTS
1472 		if (ti_locked == TI_WLOCKED)
1473 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1474 		else {
1475 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1476 			    "ti_locked: %d", __func__, ti_locked));
1477 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1478 		}
1479 #endif
1480 	}
1481 	INP_WLOCK_ASSERT(tp->t_inpcb);
1482 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1483 	    __func__));
1484 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1485 	    __func__));
1486 
1487 	/*
1488 	 * Segment received on connection.
1489 	 * Reset idle time and keep-alive timer.
1490 	 * XXX: This should be done after segment
1491 	 * validation to ignore broken/spoofed segs.
1492 	 */
1493 	tp->t_rcvtime = ticks;
1494 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1495 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1496 
1497 	/*
1498 	 * Unscale the window into a 32-bit value.
1499 	 * For the SYN_SENT state the scale is zero.
1500 	 */
1501 	tiwin = th->th_win << tp->snd_scale;
1502 
1503 	/*
1504 	 * TCP ECN processing.
1505 	 */
1506 	if (tp->t_flags & TF_ECN_PERMIT) {
1507 		if (thflags & TH_CWR)
1508 			tp->t_flags &= ~TF_ECN_SND_ECE;
1509 		switch (iptos & IPTOS_ECN_MASK) {
1510 		case IPTOS_ECN_CE:
1511 			tp->t_flags |= TF_ECN_SND_ECE;
1512 			TCPSTAT_INC(tcps_ecn_ce);
1513 			break;
1514 		case IPTOS_ECN_ECT0:
1515 			TCPSTAT_INC(tcps_ecn_ect0);
1516 			break;
1517 		case IPTOS_ECN_ECT1:
1518 			TCPSTAT_INC(tcps_ecn_ect1);
1519 			break;
1520 		}
1521 		/* Congestion experienced. */
1522 		if (thflags & TH_ECE) {
1523 			cc_cong_signal(tp, th, CC_ECN);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Parse options on any incoming segment.
1529 	 */
1530 	tcp_dooptions(&to, (u_char *)(th + 1),
1531 	    (th->th_off << 2) - sizeof(struct tcphdr),
1532 	    (thflags & TH_SYN) ? TO_SYN : 0);
1533 
1534 	/*
1535 	 * If echoed timestamp is later than the current time,
1536 	 * fall back to non RFC1323 RTT calculation.  Normalize
1537 	 * timestamp if syncookies were used when this connection
1538 	 * was established.
1539 	 */
1540 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1541 		to.to_tsecr -= tp->ts_offset;
1542 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1543 			to.to_tsecr = 0;
1544 	}
1545 	/*
1546 	 * If timestamps were negotiated during SYN/ACK they should
1547 	 * appear on every segment during this session and vice versa.
1548 	 */
1549 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1550 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1551 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1552 			    "no action\n", s, __func__);
1553 			free(s, M_TCPLOG);
1554 		}
1555 	}
1556 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1557 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1558 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1559 			    "no action\n", s, __func__);
1560 			free(s, M_TCPLOG);
1561 		}
1562 	}
1563 
1564 	/*
1565 	 * Process options only when we get SYN/ACK back. The SYN case
1566 	 * for incoming connections is handled in tcp_syncache.
1567 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1568 	 * or <SYN,ACK>) segment itself is never scaled.
1569 	 * XXX this is traditional behavior, may need to be cleaned up.
1570 	 */
1571 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1572 		if ((to.to_flags & TOF_SCALE) &&
1573 		    (tp->t_flags & TF_REQ_SCALE)) {
1574 			tp->t_flags |= TF_RCVD_SCALE;
1575 			tp->snd_scale = to.to_wscale;
1576 		}
1577 		/*
1578 		 * Initial send window.  It will be updated with
1579 		 * the next incoming segment to the scaled value.
1580 		 */
1581 		tp->snd_wnd = th->th_win;
1582 		if (to.to_flags & TOF_TS) {
1583 			tp->t_flags |= TF_RCVD_TSTMP;
1584 			tp->ts_recent = to.to_tsval;
1585 			tp->ts_recent_age = tcp_ts_getticks();
1586 		}
1587 		if (to.to_flags & TOF_MSS)
1588 			tcp_mss(tp, to.to_mss);
1589 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1590 		    (to.to_flags & TOF_SACKPERM) == 0)
1591 			tp->t_flags &= ~TF_SACK_PERMIT;
1592 	}
1593 
1594 	/*
1595 	 * Header prediction: check for the two common cases
1596 	 * of a uni-directional data xfer.  If the packet has
1597 	 * no control flags, is in-sequence, the window didn't
1598 	 * change and we're not retransmitting, it's a
1599 	 * candidate.  If the length is zero and the ack moved
1600 	 * forward, we're the sender side of the xfer.  Just
1601 	 * free the data acked & wake any higher level process
1602 	 * that was blocked waiting for space.  If the length
1603 	 * is non-zero and the ack didn't move, we're the
1604 	 * receiver side.  If we're getting packets in-order
1605 	 * (the reassembly queue is empty), add the data to
1606 	 * the socket buffer and note that we need a delayed ack.
1607 	 * Make sure that the hidden state-flags are also off.
1608 	 * Since we check for TCPS_ESTABLISHED first, it can only
1609 	 * be TH_NEEDSYN.
1610 	 */
1611 	if (tp->t_state == TCPS_ESTABLISHED &&
1612 	    th->th_seq == tp->rcv_nxt &&
1613 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1614 	    tp->snd_nxt == tp->snd_max &&
1615 	    tiwin && tiwin == tp->snd_wnd &&
1616 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1617 	    tp->t_segq == NULL && ((to.to_flags & TOF_TS) == 0 ||
1618 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1619 
1620 		/*
1621 		 * If last ACK falls within this segment's sequence numbers,
1622 		 * record the timestamp.
1623 		 * NOTE that the test is modified according to the latest
1624 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1625 		 */
1626 		if ((to.to_flags & TOF_TS) != 0 &&
1627 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1628 			tp->ts_recent_age = tcp_ts_getticks();
1629 			tp->ts_recent = to.to_tsval;
1630 		}
1631 
1632 		if (tlen == 0) {
1633 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1634 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1635 			    !IN_RECOVERY(tp->t_flags) &&
1636 			    (to.to_flags & TOF_SACK) == 0 &&
1637 			    TAILQ_EMPTY(&tp->snd_holes)) {
1638 				/*
1639 				 * This is a pure ack for outstanding data.
1640 				 */
1641 				if (ti_locked == TI_WLOCKED)
1642 					INP_INFO_WUNLOCK(&V_tcbinfo);
1643 				ti_locked = TI_UNLOCKED;
1644 
1645 				TCPSTAT_INC(tcps_predack);
1646 
1647 				/*
1648 				 * "bad retransmit" recovery.
1649 				 */
1650 				if (tp->t_rxtshift == 1 &&
1651 				    tp->t_flags & TF_PREVVALID &&
1652 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1653 					cc_cong_signal(tp, th, CC_RTO_ERR);
1654 				}
1655 
1656 				/*
1657 				 * Recalculate the transmit timer / rtt.
1658 				 *
1659 				 * Some boxes send broken timestamp replies
1660 				 * during the SYN+ACK phase, ignore
1661 				 * timestamps of 0 or we could calculate a
1662 				 * huge RTT and blow up the retransmit timer.
1663 				 */
1664 				if ((to.to_flags & TOF_TS) != 0 &&
1665 				    to.to_tsecr) {
1666 					u_int t;
1667 
1668 					t = tcp_ts_getticks() - to.to_tsecr;
1669 					if (!tp->t_rttlow || tp->t_rttlow > t)
1670 						tp->t_rttlow = t;
1671 					tcp_xmit_timer(tp,
1672 					    TCP_TS_TO_TICKS(t) + 1);
1673 				} else if (tp->t_rtttime &&
1674 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1675 					if (!tp->t_rttlow ||
1676 					    tp->t_rttlow > ticks - tp->t_rtttime)
1677 						tp->t_rttlow = ticks - tp->t_rtttime;
1678 					tcp_xmit_timer(tp,
1679 							ticks - tp->t_rtttime);
1680 				}
1681 				acked = BYTES_THIS_ACK(tp, th);
1682 
1683 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1684 				hhook_run_tcp_est_in(tp, th, &to);
1685 
1686 				TCPSTAT_INC(tcps_rcvackpack);
1687 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1688 				sbdrop(&so->so_snd, acked);
1689 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1690 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1691 					tp->snd_recover = th->th_ack - 1;
1692 
1693 				/*
1694 				 * Let the congestion control algorithm update
1695 				 * congestion control related information. This
1696 				 * typically means increasing the congestion
1697 				 * window.
1698 				 */
1699 				cc_ack_received(tp, th, CC_ACK);
1700 
1701 				tp->snd_una = th->th_ack;
1702 				/*
1703 				 * Pull snd_wl2 up to prevent seq wrap relative
1704 				 * to th_ack.
1705 				 */
1706 				tp->snd_wl2 = th->th_ack;
1707 				tp->t_dupacks = 0;
1708 				m_freem(m);
1709 				ND6_HINT(tp); /* Some progress has been made. */
1710 
1711 				/*
1712 				 * If all outstanding data are acked, stop
1713 				 * retransmit timer, otherwise restart timer
1714 				 * using current (possibly backed-off) value.
1715 				 * If process is waiting for space,
1716 				 * wakeup/selwakeup/signal.  If data
1717 				 * are ready to send, let tcp_output
1718 				 * decide between more output or persist.
1719 				 */
1720 #ifdef TCPDEBUG
1721 				if (so->so_options & SO_DEBUG)
1722 					tcp_trace(TA_INPUT, ostate, tp,
1723 					    (void *)tcp_saveipgen,
1724 					    &tcp_savetcp, 0);
1725 #endif
1726 				if (tp->snd_una == tp->snd_max)
1727 					tcp_timer_activate(tp, TT_REXMT, 0);
1728 				else if (!tcp_timer_active(tp, TT_PERSIST))
1729 					tcp_timer_activate(tp, TT_REXMT,
1730 						      tp->t_rxtcur);
1731 				sowwakeup(so);
1732 				if (so->so_snd.sb_cc)
1733 					(void) tcp_output(tp);
1734 				goto check_delack;
1735 			}
1736 		} else if (th->th_ack == tp->snd_una &&
1737 		    tlen <= sbspace(&so->so_rcv)) {
1738 			int newsize = 0;	/* automatic sockbuf scaling */
1739 
1740 			/*
1741 			 * This is a pure, in-sequence data packet with
1742 			 * nothing on the reassembly queue and we have enough
1743 			 * buffer space to take it.
1744 			 */
1745 			if (ti_locked == TI_WLOCKED)
1746 				INP_INFO_WUNLOCK(&V_tcbinfo);
1747 			ti_locked = TI_UNLOCKED;
1748 
1749 			/* Clean receiver SACK report if present */
1750 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1751 				tcp_clean_sackreport(tp);
1752 			TCPSTAT_INC(tcps_preddat);
1753 			tp->rcv_nxt += tlen;
1754 			/*
1755 			 * Pull snd_wl1 up to prevent seq wrap relative to
1756 			 * th_seq.
1757 			 */
1758 			tp->snd_wl1 = th->th_seq;
1759 			/*
1760 			 * Pull rcv_up up to prevent seq wrap relative to
1761 			 * rcv_nxt.
1762 			 */
1763 			tp->rcv_up = tp->rcv_nxt;
1764 			TCPSTAT_INC(tcps_rcvpack);
1765 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1766 			ND6_HINT(tp);	/* Some progress has been made */
1767 #ifdef TCPDEBUG
1768 			if (so->so_options & SO_DEBUG)
1769 				tcp_trace(TA_INPUT, ostate, tp,
1770 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1771 #endif
1772 		/*
1773 		 * Automatic sizing of receive socket buffer.  Often the send
1774 		 * buffer size is not optimally adjusted to the actual network
1775 		 * conditions at hand (delay bandwidth product).  Setting the
1776 		 * buffer size too small limits throughput on links with high
1777 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1778 		 *
1779 		 * On the receive side the socket buffer memory is only rarely
1780 		 * used to any significant extent.  This allows us to be much
1781 		 * more aggressive in scaling the receive socket buffer.  For
1782 		 * the case that the buffer space is actually used to a large
1783 		 * extent and we run out of kernel memory we can simply drop
1784 		 * the new segments; TCP on the sender will just retransmit it
1785 		 * later.  Setting the buffer size too big may only consume too
1786 		 * much kernel memory if the application doesn't read() from
1787 		 * the socket or packet loss or reordering makes use of the
1788 		 * reassembly queue.
1789 		 *
1790 		 * The criteria to step up the receive buffer one notch are:
1791 		 *  1. the number of bytes received during the time it takes
1792 		 *     one timestamp to be reflected back to us (the RTT);
1793 		 *  2. received bytes per RTT is within seven eighth of the
1794 		 *     current socket buffer size;
1795 		 *  3. receive buffer size has not hit maximal automatic size;
1796 		 *
1797 		 * This algorithm does one step per RTT at most and only if
1798 		 * we receive a bulk stream w/o packet losses or reorderings.
1799 		 * Shrinking the buffer during idle times is not necessary as
1800 		 * it doesn't consume any memory when idle.
1801 		 *
1802 		 * TODO: Only step up if the application is actually serving
1803 		 * the buffer to better manage the socket buffer resources.
1804 		 */
1805 			if (V_tcp_do_autorcvbuf &&
1806 			    to.to_tsecr &&
1807 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1808 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1809 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1810 					if (tp->rfbuf_cnt >
1811 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1812 					    so->so_rcv.sb_hiwat <
1813 					    V_tcp_autorcvbuf_max) {
1814 						newsize =
1815 						    min(so->so_rcv.sb_hiwat +
1816 						    V_tcp_autorcvbuf_inc,
1817 						    V_tcp_autorcvbuf_max);
1818 					}
1819 					/* Start over with next RTT. */
1820 					tp->rfbuf_ts = 0;
1821 					tp->rfbuf_cnt = 0;
1822 				} else
1823 					tp->rfbuf_cnt += tlen;	/* add up */
1824 			}
1825 
1826 			/* Add data to socket buffer. */
1827 			SOCKBUF_LOCK(&so->so_rcv);
1828 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1829 				m_freem(m);
1830 			} else {
1831 				/*
1832 				 * Set new socket buffer size.
1833 				 * Give up when limit is reached.
1834 				 */
1835 				if (newsize)
1836 					if (!sbreserve_locked(&so->so_rcv,
1837 					    newsize, so, NULL))
1838 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1839 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1840 				sbappendstream_locked(&so->so_rcv, m);
1841 			}
1842 			/* NB: sorwakeup_locked() does an implicit unlock. */
1843 			sorwakeup_locked(so);
1844 			if (DELAY_ACK(tp, tlen)) {
1845 				tp->t_flags |= TF_DELACK;
1846 			} else {
1847 				tp->t_flags |= TF_ACKNOW;
1848 				tcp_output(tp);
1849 			}
1850 			goto check_delack;
1851 		}
1852 	}
1853 
1854 	/*
1855 	 * Calculate amount of space in receive window,
1856 	 * and then do TCP input processing.
1857 	 * Receive window is amount of space in rcv queue,
1858 	 * but not less than advertised window.
1859 	 */
1860 	win = sbspace(&so->so_rcv);
1861 	if (win < 0)
1862 		win = 0;
1863 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1864 
1865 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1866 	tp->rfbuf_ts = 0;
1867 	tp->rfbuf_cnt = 0;
1868 
1869 	switch (tp->t_state) {
1870 
1871 	/*
1872 	 * If the state is SYN_RECEIVED:
1873 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1874 	 */
1875 	case TCPS_SYN_RECEIVED:
1876 		if ((thflags & TH_ACK) &&
1877 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1878 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1879 				rstreason = BANDLIM_RST_OPENPORT;
1880 				goto dropwithreset;
1881 		}
1882 		break;
1883 
1884 	/*
1885 	 * If the state is SYN_SENT:
1886 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1887 	 *	if seg contains a RST, then drop the connection.
1888 	 *	if seg does not contain SYN, then drop it.
1889 	 * Otherwise this is an acceptable SYN segment
1890 	 *	initialize tp->rcv_nxt and tp->irs
1891 	 *	if seg contains ack then advance tp->snd_una
1892 	 *	if seg contains an ECE and ECN support is enabled, the stream
1893 	 *	    is ECN capable.
1894 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1895 	 *	arrange for segment to be acked (eventually)
1896 	 *	continue processing rest of data/controls, beginning with URG
1897 	 */
1898 	case TCPS_SYN_SENT:
1899 		if ((thflags & TH_ACK) &&
1900 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1901 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1902 			rstreason = BANDLIM_UNLIMITED;
1903 			goto dropwithreset;
1904 		}
1905 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1906 			TCP_PROBE5(connect__refused, NULL, tp,
1907 			    mtod(m, const char *), tp, th);
1908 			tp = tcp_drop(tp, ECONNREFUSED);
1909 		}
1910 		if (thflags & TH_RST)
1911 			goto drop;
1912 		if (!(thflags & TH_SYN))
1913 			goto drop;
1914 
1915 		tp->irs = th->th_seq;
1916 		tcp_rcvseqinit(tp);
1917 		if (thflags & TH_ACK) {
1918 			TCPSTAT_INC(tcps_connects);
1919 			soisconnected(so);
1920 #ifdef MAC
1921 			mac_socketpeer_set_from_mbuf(m, so);
1922 #endif
1923 			/* Do window scaling on this connection? */
1924 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1925 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1926 				tp->rcv_scale = tp->request_r_scale;
1927 			}
1928 			tp->rcv_adv += imin(tp->rcv_wnd,
1929 			    TCP_MAXWIN << tp->rcv_scale);
1930 			tp->snd_una++;		/* SYN is acked */
1931 			/*
1932 			 * If there's data, delay ACK; if there's also a FIN
1933 			 * ACKNOW will be turned on later.
1934 			 */
1935 			if (DELAY_ACK(tp, tlen) && tlen != 0)
1936 				tcp_timer_activate(tp, TT_DELACK,
1937 				    tcp_delacktime);
1938 			else
1939 				tp->t_flags |= TF_ACKNOW;
1940 
1941 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1942 				tp->t_flags |= TF_ECN_PERMIT;
1943 				TCPSTAT_INC(tcps_ecn_shs);
1944 			}
1945 
1946 			/*
1947 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1948 			 * Transitions:
1949 			 *	SYN_SENT  --> ESTABLISHED
1950 			 *	SYN_SENT* --> FIN_WAIT_1
1951 			 */
1952 			tp->t_starttime = ticks;
1953 			if (tp->t_flags & TF_NEEDFIN) {
1954 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1955 				tp->t_flags &= ~TF_NEEDFIN;
1956 				thflags &= ~TH_SYN;
1957 			} else {
1958 				tcp_state_change(tp, TCPS_ESTABLISHED);
1959 				TCP_PROBE5(connect__established, NULL, tp,
1960 				    mtod(m, const char *), tp, th);
1961 				cc_conn_init(tp);
1962 				tcp_timer_activate(tp, TT_KEEP,
1963 				    TP_KEEPIDLE(tp));
1964 			}
1965 		} else {
1966 			/*
1967 			 * Received initial SYN in SYN-SENT[*] state =>
1968 			 * simultaneous open.
1969 			 * If it succeeds, connection is * half-synchronized.
1970 			 * Otherwise, do 3-way handshake:
1971 			 *        SYN-SENT -> SYN-RECEIVED
1972 			 *        SYN-SENT* -> SYN-RECEIVED*
1973 			 */
1974 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1975 			tcp_timer_activate(tp, TT_REXMT, 0);
1976 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
1977 		}
1978 
1979 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1980 		    "ti_locked %d", __func__, ti_locked));
1981 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1982 		INP_WLOCK_ASSERT(tp->t_inpcb);
1983 
1984 		/*
1985 		 * Advance th->th_seq to correspond to first data byte.
1986 		 * If data, trim to stay within window,
1987 		 * dropping FIN if necessary.
1988 		 */
1989 		th->th_seq++;
1990 		if (tlen > tp->rcv_wnd) {
1991 			todrop = tlen - tp->rcv_wnd;
1992 			m_adj(m, -todrop);
1993 			tlen = tp->rcv_wnd;
1994 			thflags &= ~TH_FIN;
1995 			TCPSTAT_INC(tcps_rcvpackafterwin);
1996 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1997 		}
1998 		tp->snd_wl1 = th->th_seq - 1;
1999 		tp->rcv_up = th->th_seq;
2000 		/*
2001 		 * Client side of transaction: already sent SYN and data.
2002 		 * If the remote host used T/TCP to validate the SYN,
2003 		 * our data will be ACK'd; if so, enter normal data segment
2004 		 * processing in the middle of step 5, ack processing.
2005 		 * Otherwise, goto step 6.
2006 		 */
2007 		if (thflags & TH_ACK)
2008 			goto process_ACK;
2009 
2010 		goto step6;
2011 
2012 	/*
2013 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2014 	 *      do normal processing.
2015 	 *
2016 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2017 	 */
2018 	case TCPS_LAST_ACK:
2019 	case TCPS_CLOSING:
2020 		break;  /* continue normal processing */
2021 	}
2022 
2023 	/*
2024 	 * States other than LISTEN or SYN_SENT.
2025 	 * First check the RST flag and sequence number since reset segments
2026 	 * are exempt from the timestamp and connection count tests.  This
2027 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2028 	 * below which allowed reset segments in half the sequence space
2029 	 * to fall though and be processed (which gives forged reset
2030 	 * segments with a random sequence number a 50 percent chance of
2031 	 * killing a connection).
2032 	 * Then check timestamp, if present.
2033 	 * Then check the connection count, if present.
2034 	 * Then check that at least some bytes of segment are within
2035 	 * receive window.  If segment begins before rcv_nxt,
2036 	 * drop leading data (and SYN); if nothing left, just ack.
2037 	 *
2038 	 *
2039 	 * If the RST bit is set, check the sequence number to see
2040 	 * if this is a valid reset segment.
2041 	 * RFC 793 page 37:
2042 	 *   In all states except SYN-SENT, all reset (RST) segments
2043 	 *   are validated by checking their SEQ-fields.  A reset is
2044 	 *   valid if its sequence number is in the window.
2045 	 * Note: this does not take into account delayed ACKs, so
2046 	 *   we should test against last_ack_sent instead of rcv_nxt.
2047 	 *   The sequence number in the reset segment is normally an
2048 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2049 	 *   send a reset with the sequence number at the rightmost edge
2050 	 *   of our receive window, and we have to handle this case.
2051 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2052 	 *   that brute force RST attacks are possible.  To combat this,
2053 	 *   we use a much stricter check while in the ESTABLISHED state,
2054 	 *   only accepting RSTs where the sequence number is equal to
2055 	 *   last_ack_sent.  In all other states (the states in which a
2056 	 *   RST is more likely), the more permissive check is used.
2057 	 * If we have multiple segments in flight, the initial reset
2058 	 * segment sequence numbers will be to the left of last_ack_sent,
2059 	 * but they will eventually catch up.
2060 	 * In any case, it never made sense to trim reset segments to
2061 	 * fit the receive window since RFC 1122 says:
2062 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2063 	 *
2064 	 *    A TCP SHOULD allow a received RST segment to include data.
2065 	 *
2066 	 *    DISCUSSION
2067 	 *         It has been suggested that a RST segment could contain
2068 	 *         ASCII text that encoded and explained the cause of the
2069 	 *         RST.  No standard has yet been established for such
2070 	 *         data.
2071 	 *
2072 	 * If the reset segment passes the sequence number test examine
2073 	 * the state:
2074 	 *    SYN_RECEIVED STATE:
2075 	 *	If passive open, return to LISTEN state.
2076 	 *	If active open, inform user that connection was refused.
2077 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2078 	 *	Inform user that connection was reset, and close tcb.
2079 	 *    CLOSING, LAST_ACK STATES:
2080 	 *	Close the tcb.
2081 	 *    TIME_WAIT STATE:
2082 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2083 	 *      RFC 1337.
2084 	 */
2085 	if (thflags & TH_RST) {
2086 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2087 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2088 			switch (tp->t_state) {
2089 
2090 			case TCPS_SYN_RECEIVED:
2091 				so->so_error = ECONNREFUSED;
2092 				goto close;
2093 
2094 			case TCPS_ESTABLISHED:
2095 				if (V_tcp_insecure_rst == 0 &&
2096 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2097 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2098 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2099 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2100 					TCPSTAT_INC(tcps_badrst);
2101 					goto drop;
2102 				}
2103 				/* FALLTHROUGH */
2104 			case TCPS_FIN_WAIT_1:
2105 			case TCPS_FIN_WAIT_2:
2106 			case TCPS_CLOSE_WAIT:
2107 				so->so_error = ECONNRESET;
2108 			close:
2109 				KASSERT(ti_locked == TI_WLOCKED,
2110 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2111 				    ti_locked));
2112 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2113 
2114 				tcp_state_change(tp, TCPS_CLOSED);
2115 				TCPSTAT_INC(tcps_drops);
2116 				tp = tcp_close(tp);
2117 				break;
2118 
2119 			case TCPS_CLOSING:
2120 			case TCPS_LAST_ACK:
2121 				KASSERT(ti_locked == TI_WLOCKED,
2122 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2123 				    ti_locked));
2124 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2125 
2126 				tp = tcp_close(tp);
2127 				break;
2128 			}
2129 		}
2130 		goto drop;
2131 	}
2132 
2133 	/*
2134 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2135 	 * and it's less than ts_recent, drop it.
2136 	 */
2137 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2138 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2139 
2140 		/* Check to see if ts_recent is over 24 days old.  */
2141 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2142 			/*
2143 			 * Invalidate ts_recent.  If this segment updates
2144 			 * ts_recent, the age will be reset later and ts_recent
2145 			 * will get a valid value.  If it does not, setting
2146 			 * ts_recent to zero will at least satisfy the
2147 			 * requirement that zero be placed in the timestamp
2148 			 * echo reply when ts_recent isn't valid.  The
2149 			 * age isn't reset until we get a valid ts_recent
2150 			 * because we don't want out-of-order segments to be
2151 			 * dropped when ts_recent is old.
2152 			 */
2153 			tp->ts_recent = 0;
2154 		} else {
2155 			TCPSTAT_INC(tcps_rcvduppack);
2156 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2157 			TCPSTAT_INC(tcps_pawsdrop);
2158 			if (tlen)
2159 				goto dropafterack;
2160 			goto drop;
2161 		}
2162 	}
2163 
2164 	/*
2165 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2166 	 * this connection before trimming the data to fit the receive
2167 	 * window.  Check the sequence number versus IRS since we know
2168 	 * the sequence numbers haven't wrapped.  This is a partial fix
2169 	 * for the "LAND" DoS attack.
2170 	 */
2171 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2172 		rstreason = BANDLIM_RST_OPENPORT;
2173 		goto dropwithreset;
2174 	}
2175 
2176 	todrop = tp->rcv_nxt - th->th_seq;
2177 	if (todrop > 0) {
2178 		/*
2179 		 * If this is a duplicate SYN for our current connection,
2180 		 * advance over it and pretend and it's not a SYN.
2181 		 */
2182 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2183 			thflags &= ~TH_SYN;
2184 			th->th_seq++;
2185 			if (th->th_urp > 1)
2186 				th->th_urp--;
2187 			else
2188 				thflags &= ~TH_URG;
2189 			todrop--;
2190 		}
2191 		/*
2192 		 * Following if statement from Stevens, vol. 2, p. 960.
2193 		 */
2194 		if (todrop > tlen
2195 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2196 			/*
2197 			 * Any valid FIN must be to the left of the window.
2198 			 * At this point the FIN must be a duplicate or out
2199 			 * of sequence; drop it.
2200 			 */
2201 			thflags &= ~TH_FIN;
2202 
2203 			/*
2204 			 * Send an ACK to resynchronize and drop any data.
2205 			 * But keep on processing for RST or ACK.
2206 			 */
2207 			tp->t_flags |= TF_ACKNOW;
2208 			todrop = tlen;
2209 			TCPSTAT_INC(tcps_rcvduppack);
2210 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2211 		} else {
2212 			TCPSTAT_INC(tcps_rcvpartduppack);
2213 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2214 		}
2215 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2216 		th->th_seq += todrop;
2217 		tlen -= todrop;
2218 		if (th->th_urp > todrop)
2219 			th->th_urp -= todrop;
2220 		else {
2221 			thflags &= ~TH_URG;
2222 			th->th_urp = 0;
2223 		}
2224 	}
2225 
2226 	/*
2227 	 * If new data are received on a connection after the
2228 	 * user processes are gone, then RST the other end.
2229 	 */
2230 	if ((so->so_state & SS_NOFDREF) &&
2231 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2232 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2233 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2234 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2235 
2236 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2237 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2238 			    "after socket was closed, "
2239 			    "sending RST and removing tcpcb\n",
2240 			    s, __func__, tcpstates[tp->t_state], tlen);
2241 			free(s, M_TCPLOG);
2242 		}
2243 		tp = tcp_close(tp);
2244 		TCPSTAT_INC(tcps_rcvafterclose);
2245 		rstreason = BANDLIM_UNLIMITED;
2246 		goto dropwithreset;
2247 	}
2248 
2249 	/*
2250 	 * If segment ends after window, drop trailing data
2251 	 * (and PUSH and FIN); if nothing left, just ACK.
2252 	 */
2253 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2254 	if (todrop > 0) {
2255 		TCPSTAT_INC(tcps_rcvpackafterwin);
2256 		if (todrop >= tlen) {
2257 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2258 			/*
2259 			 * If window is closed can only take segments at
2260 			 * window edge, and have to drop data and PUSH from
2261 			 * incoming segments.  Continue processing, but
2262 			 * remember to ack.  Otherwise, drop segment
2263 			 * and ack.
2264 			 */
2265 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2266 				tp->t_flags |= TF_ACKNOW;
2267 				TCPSTAT_INC(tcps_rcvwinprobe);
2268 			} else
2269 				goto dropafterack;
2270 		} else
2271 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2272 		m_adj(m, -todrop);
2273 		tlen -= todrop;
2274 		thflags &= ~(TH_PUSH|TH_FIN);
2275 	}
2276 
2277 	/*
2278 	 * If last ACK falls within this segment's sequence numbers,
2279 	 * record its timestamp.
2280 	 * NOTE:
2281 	 * 1) That the test incorporates suggestions from the latest
2282 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2283 	 * 2) That updating only on newer timestamps interferes with
2284 	 *    our earlier PAWS tests, so this check should be solely
2285 	 *    predicated on the sequence space of this segment.
2286 	 * 3) That we modify the segment boundary check to be
2287 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2288 	 *    instead of RFC1323's
2289 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2290 	 *    This modified check allows us to overcome RFC1323's
2291 	 *    limitations as described in Stevens TCP/IP Illustrated
2292 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2293 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2294 	 */
2295 	if ((to.to_flags & TOF_TS) != 0 &&
2296 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2297 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2298 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2299 		tp->ts_recent_age = tcp_ts_getticks();
2300 		tp->ts_recent = to.to_tsval;
2301 	}
2302 
2303 	/*
2304 	 * If a SYN is in the window, then this is an
2305 	 * error and we send an RST and drop the connection.
2306 	 */
2307 	if (thflags & TH_SYN) {
2308 		KASSERT(ti_locked == TI_WLOCKED,
2309 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2310 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2311 
2312 		tp = tcp_drop(tp, ECONNRESET);
2313 		rstreason = BANDLIM_UNLIMITED;
2314 		goto drop;
2315 	}
2316 
2317 	/*
2318 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2319 	 * flag is on (half-synchronized state), then queue data for
2320 	 * later processing; else drop segment and return.
2321 	 */
2322 	if ((thflags & TH_ACK) == 0) {
2323 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2324 		    (tp->t_flags & TF_NEEDSYN))
2325 			goto step6;
2326 		else if (tp->t_flags & TF_ACKNOW)
2327 			goto dropafterack;
2328 		else
2329 			goto drop;
2330 	}
2331 
2332 	/*
2333 	 * Ack processing.
2334 	 */
2335 	switch (tp->t_state) {
2336 
2337 	/*
2338 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2339 	 * ESTABLISHED state and continue processing.
2340 	 * The ACK was checked above.
2341 	 */
2342 	case TCPS_SYN_RECEIVED:
2343 
2344 		TCPSTAT_INC(tcps_connects);
2345 		soisconnected(so);
2346 		/* Do window scaling? */
2347 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2348 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2349 			tp->rcv_scale = tp->request_r_scale;
2350 			tp->snd_wnd = tiwin;
2351 		}
2352 		/*
2353 		 * Make transitions:
2354 		 *      SYN-RECEIVED  -> ESTABLISHED
2355 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2356 		 */
2357 		tp->t_starttime = ticks;
2358 		if (tp->t_flags & TF_NEEDFIN) {
2359 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2360 			tp->t_flags &= ~TF_NEEDFIN;
2361 		} else {
2362 			tcp_state_change(tp, TCPS_ESTABLISHED);
2363 			TCP_PROBE5(accept__established, NULL, tp,
2364 			    mtod(m, const char *), tp, th);
2365 			cc_conn_init(tp);
2366 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2367 		}
2368 		/*
2369 		 * If segment contains data or ACK, will call tcp_reass()
2370 		 * later; if not, do so now to pass queued data to user.
2371 		 */
2372 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2373 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2374 			    (struct mbuf *)0);
2375 		tp->snd_wl1 = th->th_seq - 1;
2376 		/* FALLTHROUGH */
2377 
2378 	/*
2379 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2380 	 * ACKs.  If the ack is in the range
2381 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2382 	 * then advance tp->snd_una to th->th_ack and drop
2383 	 * data from the retransmission queue.  If this ACK reflects
2384 	 * more up to date window information we update our window information.
2385 	 */
2386 	case TCPS_ESTABLISHED:
2387 	case TCPS_FIN_WAIT_1:
2388 	case TCPS_FIN_WAIT_2:
2389 	case TCPS_CLOSE_WAIT:
2390 	case TCPS_CLOSING:
2391 	case TCPS_LAST_ACK:
2392 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2393 			TCPSTAT_INC(tcps_rcvacktoomuch);
2394 			goto dropafterack;
2395 		}
2396 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2397 		    ((to.to_flags & TOF_SACK) ||
2398 		     !TAILQ_EMPTY(&tp->snd_holes)))
2399 			tcp_sack_doack(tp, &to, th->th_ack);
2400 
2401 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2402 		hhook_run_tcp_est_in(tp, th, &to);
2403 
2404 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2405 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2406 				/*
2407 				 * If this is the first time we've seen a
2408 				 * FIN from the remote, this is not a
2409 				 * duplicate and it needs to be processed
2410 				 * normally.  This happens during a
2411 				 * simultaneous close.
2412 				 */
2413 				if ((thflags & TH_FIN) &&
2414 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2415 					tp->t_dupacks = 0;
2416 					break;
2417 				}
2418 				TCPSTAT_INC(tcps_rcvdupack);
2419 				/*
2420 				 * If we have outstanding data (other than
2421 				 * a window probe), this is a completely
2422 				 * duplicate ack (ie, window info didn't
2423 				 * change and FIN isn't set),
2424 				 * the ack is the biggest we've
2425 				 * seen and we've seen exactly our rexmt
2426 				 * threshhold of them, assume a packet
2427 				 * has been dropped and retransmit it.
2428 				 * Kludge snd_nxt & the congestion
2429 				 * window so we send only this one
2430 				 * packet.
2431 				 *
2432 				 * We know we're losing at the current
2433 				 * window size so do congestion avoidance
2434 				 * (set ssthresh to half the current window
2435 				 * and pull our congestion window back to
2436 				 * the new ssthresh).
2437 				 *
2438 				 * Dup acks mean that packets have left the
2439 				 * network (they're now cached at the receiver)
2440 				 * so bump cwnd by the amount in the receiver
2441 				 * to keep a constant cwnd packets in the
2442 				 * network.
2443 				 *
2444 				 * When using TCP ECN, notify the peer that
2445 				 * we reduced the cwnd.
2446 				 */
2447 				if (!tcp_timer_active(tp, TT_REXMT) ||
2448 				    th->th_ack != tp->snd_una)
2449 					tp->t_dupacks = 0;
2450 				else if (++tp->t_dupacks > tcprexmtthresh ||
2451 				     IN_FASTRECOVERY(tp->t_flags)) {
2452 					cc_ack_received(tp, th, CC_DUPACK);
2453 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2454 					    IN_FASTRECOVERY(tp->t_flags)) {
2455 						int awnd;
2456 
2457 						/*
2458 						 * Compute the amount of data in flight first.
2459 						 * We can inject new data into the pipe iff
2460 						 * we have less than 1/2 the original window's
2461 						 * worth of data in flight.
2462 						 */
2463 						awnd = (tp->snd_nxt - tp->snd_fack) +
2464 							tp->sackhint.sack_bytes_rexmit;
2465 						if (awnd < tp->snd_ssthresh) {
2466 							tp->snd_cwnd += tp->t_maxseg;
2467 							if (tp->snd_cwnd > tp->snd_ssthresh)
2468 								tp->snd_cwnd = tp->snd_ssthresh;
2469 						}
2470 					} else
2471 						tp->snd_cwnd += tp->t_maxseg;
2472 					(void) tcp_output(tp);
2473 					goto drop;
2474 				} else if (tp->t_dupacks == tcprexmtthresh) {
2475 					tcp_seq onxt = tp->snd_nxt;
2476 
2477 					/*
2478 					 * If we're doing sack, check to
2479 					 * see if we're already in sack
2480 					 * recovery. If we're not doing sack,
2481 					 * check to see if we're in newreno
2482 					 * recovery.
2483 					 */
2484 					if (tp->t_flags & TF_SACK_PERMIT) {
2485 						if (IN_FASTRECOVERY(tp->t_flags)) {
2486 							tp->t_dupacks = 0;
2487 							break;
2488 						}
2489 					} else {
2490 						if (SEQ_LEQ(th->th_ack,
2491 						    tp->snd_recover)) {
2492 							tp->t_dupacks = 0;
2493 							break;
2494 						}
2495 					}
2496 					/* Congestion signal before ack. */
2497 					cc_cong_signal(tp, th, CC_NDUPACK);
2498 					cc_ack_received(tp, th, CC_DUPACK);
2499 					tcp_timer_activate(tp, TT_REXMT, 0);
2500 					tp->t_rtttime = 0;
2501 					if (tp->t_flags & TF_SACK_PERMIT) {
2502 						TCPSTAT_INC(
2503 						    tcps_sack_recovery_episode);
2504 						tp->sack_newdata = tp->snd_nxt;
2505 						tp->snd_cwnd = tp->t_maxseg;
2506 						(void) tcp_output(tp);
2507 						goto drop;
2508 					}
2509 					tp->snd_nxt = th->th_ack;
2510 					tp->snd_cwnd = tp->t_maxseg;
2511 					(void) tcp_output(tp);
2512 					KASSERT(tp->snd_limited <= 2,
2513 					    ("%s: tp->snd_limited too big",
2514 					    __func__));
2515 					tp->snd_cwnd = tp->snd_ssthresh +
2516 					     tp->t_maxseg *
2517 					     (tp->t_dupacks - tp->snd_limited);
2518 					if (SEQ_GT(onxt, tp->snd_nxt))
2519 						tp->snd_nxt = onxt;
2520 					goto drop;
2521 				} else if (V_tcp_do_rfc3042) {
2522 					cc_ack_received(tp, th, CC_DUPACK);
2523 					u_long oldcwnd = tp->snd_cwnd;
2524 					tcp_seq oldsndmax = tp->snd_max;
2525 					u_int sent;
2526 					int avail;
2527 
2528 					KASSERT(tp->t_dupacks == 1 ||
2529 					    tp->t_dupacks == 2,
2530 					    ("%s: dupacks not 1 or 2",
2531 					    __func__));
2532 					if (tp->t_dupacks == 1)
2533 						tp->snd_limited = 0;
2534 					tp->snd_cwnd =
2535 					    (tp->snd_nxt - tp->snd_una) +
2536 					    (tp->t_dupacks - tp->snd_limited) *
2537 					    tp->t_maxseg;
2538 					/*
2539 					 * Only call tcp_output when there
2540 					 * is new data available to be sent.
2541 					 * Otherwise we would send pure ACKs.
2542 					 */
2543 					SOCKBUF_LOCK(&so->so_snd);
2544 					avail = so->so_snd.sb_cc -
2545 					    (tp->snd_nxt - tp->snd_una);
2546 					SOCKBUF_UNLOCK(&so->so_snd);
2547 					if (avail > 0)
2548 						(void) tcp_output(tp);
2549 					sent = tp->snd_max - oldsndmax;
2550 					if (sent > tp->t_maxseg) {
2551 						KASSERT((tp->t_dupacks == 2 &&
2552 						    tp->snd_limited == 0) ||
2553 						   (sent == tp->t_maxseg + 1 &&
2554 						    tp->t_flags & TF_SENTFIN),
2555 						    ("%s: sent too much",
2556 						    __func__));
2557 						tp->snd_limited = 2;
2558 					} else if (sent > 0)
2559 						++tp->snd_limited;
2560 					tp->snd_cwnd = oldcwnd;
2561 					goto drop;
2562 				}
2563 			} else
2564 				tp->t_dupacks = 0;
2565 			break;
2566 		}
2567 
2568 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2569 		    ("%s: th_ack <= snd_una", __func__));
2570 
2571 		/*
2572 		 * If the congestion window was inflated to account
2573 		 * for the other side's cached packets, retract it.
2574 		 */
2575 		if (IN_FASTRECOVERY(tp->t_flags)) {
2576 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2577 				if (tp->t_flags & TF_SACK_PERMIT)
2578 					tcp_sack_partialack(tp, th);
2579 				else
2580 					tcp_newreno_partial_ack(tp, th);
2581 			} else
2582 				cc_post_recovery(tp, th);
2583 		}
2584 		tp->t_dupacks = 0;
2585 		/*
2586 		 * If we reach this point, ACK is not a duplicate,
2587 		 *     i.e., it ACKs something we sent.
2588 		 */
2589 		if (tp->t_flags & TF_NEEDSYN) {
2590 			/*
2591 			 * T/TCP: Connection was half-synchronized, and our
2592 			 * SYN has been ACK'd (so connection is now fully
2593 			 * synchronized).  Go to non-starred state,
2594 			 * increment snd_una for ACK of SYN, and check if
2595 			 * we can do window scaling.
2596 			 */
2597 			tp->t_flags &= ~TF_NEEDSYN;
2598 			tp->snd_una++;
2599 			/* Do window scaling? */
2600 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2601 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2602 				tp->rcv_scale = tp->request_r_scale;
2603 				/* Send window already scaled. */
2604 			}
2605 		}
2606 
2607 process_ACK:
2608 		INP_WLOCK_ASSERT(tp->t_inpcb);
2609 
2610 		acked = BYTES_THIS_ACK(tp, th);
2611 		TCPSTAT_INC(tcps_rcvackpack);
2612 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2613 
2614 		/*
2615 		 * If we just performed our first retransmit, and the ACK
2616 		 * arrives within our recovery window, then it was a mistake
2617 		 * to do the retransmit in the first place.  Recover our
2618 		 * original cwnd and ssthresh, and proceed to transmit where
2619 		 * we left off.
2620 		 */
2621 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2622 		    (int)(ticks - tp->t_badrxtwin) < 0)
2623 			cc_cong_signal(tp, th, CC_RTO_ERR);
2624 
2625 		/*
2626 		 * If we have a timestamp reply, update smoothed
2627 		 * round trip time.  If no timestamp is present but
2628 		 * transmit timer is running and timed sequence
2629 		 * number was acked, update smoothed round trip time.
2630 		 * Since we now have an rtt measurement, cancel the
2631 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2632 		 * Recompute the initial retransmit timer.
2633 		 *
2634 		 * Some boxes send broken timestamp replies
2635 		 * during the SYN+ACK phase, ignore
2636 		 * timestamps of 0 or we could calculate a
2637 		 * huge RTT and blow up the retransmit timer.
2638 		 */
2639 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2640 			u_int t;
2641 
2642 			t = tcp_ts_getticks() - to.to_tsecr;
2643 			if (!tp->t_rttlow || tp->t_rttlow > t)
2644 				tp->t_rttlow = t;
2645 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2646 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2647 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2648 				tp->t_rttlow = ticks - tp->t_rtttime;
2649 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2650 		}
2651 
2652 		/*
2653 		 * If all outstanding data is acked, stop retransmit
2654 		 * timer and remember to restart (more output or persist).
2655 		 * If there is more data to be acked, restart retransmit
2656 		 * timer, using current (possibly backed-off) value.
2657 		 */
2658 		if (th->th_ack == tp->snd_max) {
2659 			tcp_timer_activate(tp, TT_REXMT, 0);
2660 			needoutput = 1;
2661 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2662 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2663 
2664 		/*
2665 		 * If no data (only SYN) was ACK'd,
2666 		 *    skip rest of ACK processing.
2667 		 */
2668 		if (acked == 0)
2669 			goto step6;
2670 
2671 		/*
2672 		 * Let the congestion control algorithm update congestion
2673 		 * control related information. This typically means increasing
2674 		 * the congestion window.
2675 		 */
2676 		cc_ack_received(tp, th, CC_ACK);
2677 
2678 		SOCKBUF_LOCK(&so->so_snd);
2679 		if (acked > so->so_snd.sb_cc) {
2680 			tp->snd_wnd -= so->so_snd.sb_cc;
2681 			mfree = sbcut_locked(&so->so_snd,
2682 			    (int)so->so_snd.sb_cc);
2683 			ourfinisacked = 1;
2684 		} else {
2685 			mfree = sbcut_locked(&so->so_snd, acked);
2686 			tp->snd_wnd -= acked;
2687 			ourfinisacked = 0;
2688 		}
2689 		/* NB: sowwakeup_locked() does an implicit unlock. */
2690 		sowwakeup_locked(so);
2691 		m_freem(mfree);
2692 		/* Detect una wraparound. */
2693 		if (!IN_RECOVERY(tp->t_flags) &&
2694 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2695 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2696 			tp->snd_recover = th->th_ack - 1;
2697 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2698 		if (IN_RECOVERY(tp->t_flags) &&
2699 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2700 			EXIT_RECOVERY(tp->t_flags);
2701 		}
2702 		tp->snd_una = th->th_ack;
2703 		if (tp->t_flags & TF_SACK_PERMIT) {
2704 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2705 				tp->snd_recover = tp->snd_una;
2706 		}
2707 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2708 			tp->snd_nxt = tp->snd_una;
2709 
2710 		switch (tp->t_state) {
2711 
2712 		/*
2713 		 * In FIN_WAIT_1 STATE in addition to the processing
2714 		 * for the ESTABLISHED state if our FIN is now acknowledged
2715 		 * then enter FIN_WAIT_2.
2716 		 */
2717 		case TCPS_FIN_WAIT_1:
2718 			if (ourfinisacked) {
2719 				/*
2720 				 * If we can't receive any more
2721 				 * data, then closing user can proceed.
2722 				 * Starting the timer is contrary to the
2723 				 * specification, but if we don't get a FIN
2724 				 * we'll hang forever.
2725 				 *
2726 				 * XXXjl:
2727 				 * we should release the tp also, and use a
2728 				 * compressed state.
2729 				 */
2730 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2731 					soisdisconnected(so);
2732 					tcp_timer_activate(tp, TT_2MSL,
2733 					    (tcp_fast_finwait2_recycle ?
2734 					    tcp_finwait2_timeout :
2735 					    TP_MAXIDLE(tp)));
2736 				}
2737 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2738 			}
2739 			break;
2740 
2741 		/*
2742 		 * In CLOSING STATE in addition to the processing for
2743 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2744 		 * then enter the TIME-WAIT state, otherwise ignore
2745 		 * the segment.
2746 		 */
2747 		case TCPS_CLOSING:
2748 			if (ourfinisacked) {
2749 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2750 				tcp_twstart(tp);
2751 				INP_INFO_WUNLOCK(&V_tcbinfo);
2752 				m_freem(m);
2753 				return;
2754 			}
2755 			break;
2756 
2757 		/*
2758 		 * In LAST_ACK, we may still be waiting for data to drain
2759 		 * and/or to be acked, as well as for the ack of our FIN.
2760 		 * If our FIN is now acknowledged, delete the TCB,
2761 		 * enter the closed state and return.
2762 		 */
2763 		case TCPS_LAST_ACK:
2764 			if (ourfinisacked) {
2765 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2766 				tp = tcp_close(tp);
2767 				goto drop;
2768 			}
2769 			break;
2770 		}
2771 	}
2772 
2773 step6:
2774 	INP_WLOCK_ASSERT(tp->t_inpcb);
2775 
2776 	/*
2777 	 * Update window information.
2778 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2779 	 */
2780 	if ((thflags & TH_ACK) &&
2781 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2782 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2783 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2784 		/* keep track of pure window updates */
2785 		if (tlen == 0 &&
2786 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2787 			TCPSTAT_INC(tcps_rcvwinupd);
2788 		tp->snd_wnd = tiwin;
2789 		tp->snd_wl1 = th->th_seq;
2790 		tp->snd_wl2 = th->th_ack;
2791 		if (tp->snd_wnd > tp->max_sndwnd)
2792 			tp->max_sndwnd = tp->snd_wnd;
2793 		needoutput = 1;
2794 	}
2795 
2796 	/*
2797 	 * Process segments with URG.
2798 	 */
2799 	if ((thflags & TH_URG) && th->th_urp &&
2800 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2801 		/*
2802 		 * This is a kludge, but if we receive and accept
2803 		 * random urgent pointers, we'll crash in
2804 		 * soreceive.  It's hard to imagine someone
2805 		 * actually wanting to send this much urgent data.
2806 		 */
2807 		SOCKBUF_LOCK(&so->so_rcv);
2808 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2809 			th->th_urp = 0;			/* XXX */
2810 			thflags &= ~TH_URG;		/* XXX */
2811 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2812 			goto dodata;			/* XXX */
2813 		}
2814 		/*
2815 		 * If this segment advances the known urgent pointer,
2816 		 * then mark the data stream.  This should not happen
2817 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2818 		 * a FIN has been received from the remote side.
2819 		 * In these states we ignore the URG.
2820 		 *
2821 		 * According to RFC961 (Assigned Protocols),
2822 		 * the urgent pointer points to the last octet
2823 		 * of urgent data.  We continue, however,
2824 		 * to consider it to indicate the first octet
2825 		 * of data past the urgent section as the original
2826 		 * spec states (in one of two places).
2827 		 */
2828 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2829 			tp->rcv_up = th->th_seq + th->th_urp;
2830 			so->so_oobmark = so->so_rcv.sb_cc +
2831 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2832 			if (so->so_oobmark == 0)
2833 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2834 			sohasoutofband(so);
2835 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2836 		}
2837 		SOCKBUF_UNLOCK(&so->so_rcv);
2838 		/*
2839 		 * Remove out of band data so doesn't get presented to user.
2840 		 * This can happen independent of advancing the URG pointer,
2841 		 * but if two URG's are pending at once, some out-of-band
2842 		 * data may creep in... ick.
2843 		 */
2844 		if (th->th_urp <= (u_long)tlen &&
2845 		    !(so->so_options & SO_OOBINLINE)) {
2846 			/* hdr drop is delayed */
2847 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2848 		}
2849 	} else {
2850 		/*
2851 		 * If no out of band data is expected,
2852 		 * pull receive urgent pointer along
2853 		 * with the receive window.
2854 		 */
2855 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2856 			tp->rcv_up = tp->rcv_nxt;
2857 	}
2858 dodata:							/* XXX */
2859 	INP_WLOCK_ASSERT(tp->t_inpcb);
2860 
2861 	/*
2862 	 * Process the segment text, merging it into the TCP sequencing queue,
2863 	 * and arranging for acknowledgment of receipt if necessary.
2864 	 * This process logically involves adjusting tp->rcv_wnd as data
2865 	 * is presented to the user (this happens in tcp_usrreq.c,
2866 	 * case PRU_RCVD).  If a FIN has already been received on this
2867 	 * connection then we just ignore the text.
2868 	 */
2869 	if ((tlen || (thflags & TH_FIN)) &&
2870 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2871 		tcp_seq save_start = th->th_seq;
2872 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2873 		/*
2874 		 * Insert segment which includes th into TCP reassembly queue
2875 		 * with control block tp.  Set thflags to whether reassembly now
2876 		 * includes a segment with FIN.  This handles the common case
2877 		 * inline (segment is the next to be received on an established
2878 		 * connection, and the queue is empty), avoiding linkage into
2879 		 * and removal from the queue and repetition of various
2880 		 * conversions.
2881 		 * Set DELACK for segments received in order, but ack
2882 		 * immediately when segments are out of order (so
2883 		 * fast retransmit can work).
2884 		 */
2885 		if (th->th_seq == tp->rcv_nxt && tp->t_segq == NULL &&
2886 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2887 			if (DELAY_ACK(tp, tlen))
2888 				tp->t_flags |= TF_DELACK;
2889 			else
2890 				tp->t_flags |= TF_ACKNOW;
2891 			tp->rcv_nxt += tlen;
2892 			thflags = th->th_flags & TH_FIN;
2893 			TCPSTAT_INC(tcps_rcvpack);
2894 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2895 			ND6_HINT(tp);
2896 			SOCKBUF_LOCK(&so->so_rcv);
2897 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2898 				m_freem(m);
2899 			else
2900 				sbappendstream_locked(&so->so_rcv, m);
2901 			/* NB: sorwakeup_locked() does an implicit unlock. */
2902 			sorwakeup_locked(so);
2903 		} else {
2904 			/*
2905 			 * XXX: Due to the header drop above "th" is
2906 			 * theoretically invalid by now.  Fortunately
2907 			 * m_adj() doesn't actually frees any mbufs
2908 			 * when trimming from the head.
2909 			 */
2910 			thflags = tcp_reass(tp, th, &tlen, m);
2911 			tp->t_flags |= TF_ACKNOW;
2912 		}
2913 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2914 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2915 #if 0
2916 		/*
2917 		 * Note the amount of data that peer has sent into
2918 		 * our window, in order to estimate the sender's
2919 		 * buffer size.
2920 		 * XXX: Unused.
2921 		 */
2922 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2923 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2924 		else
2925 			len = so->so_rcv.sb_hiwat;
2926 #endif
2927 	} else {
2928 		m_freem(m);
2929 		thflags &= ~TH_FIN;
2930 	}
2931 
2932 	/*
2933 	 * If FIN is received ACK the FIN and let the user know
2934 	 * that the connection is closing.
2935 	 */
2936 	if (thflags & TH_FIN) {
2937 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2938 			socantrcvmore(so);
2939 			/*
2940 			 * If connection is half-synchronized
2941 			 * (ie NEEDSYN flag on) then delay ACK,
2942 			 * so it may be piggybacked when SYN is sent.
2943 			 * Otherwise, since we received a FIN then no
2944 			 * more input can be expected, send ACK now.
2945 			 */
2946 			if (tp->t_flags & TF_NEEDSYN)
2947 				tp->t_flags |= TF_DELACK;
2948 			else
2949 				tp->t_flags |= TF_ACKNOW;
2950 			tp->rcv_nxt++;
2951 		}
2952 		switch (tp->t_state) {
2953 
2954 		/*
2955 		 * In SYN_RECEIVED and ESTABLISHED STATES
2956 		 * enter the CLOSE_WAIT state.
2957 		 */
2958 		case TCPS_SYN_RECEIVED:
2959 			tp->t_starttime = ticks;
2960 			/* FALLTHROUGH */
2961 		case TCPS_ESTABLISHED:
2962 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
2963 			break;
2964 
2965 		/*
2966 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2967 		 * enter the CLOSING state.
2968 		 */
2969 		case TCPS_FIN_WAIT_1:
2970 			tcp_state_change(tp, TCPS_CLOSING);
2971 			break;
2972 
2973 		/*
2974 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2975 		 * starting the time-wait timer, turning off the other
2976 		 * standard timers.
2977 		 */
2978 		case TCPS_FIN_WAIT_2:
2979 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2980 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2981 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2982 			    ti_locked));
2983 
2984 			tcp_twstart(tp);
2985 			INP_INFO_WUNLOCK(&V_tcbinfo);
2986 			return;
2987 		}
2988 	}
2989 	if (ti_locked == TI_WLOCKED)
2990 		INP_INFO_WUNLOCK(&V_tcbinfo);
2991 	ti_locked = TI_UNLOCKED;
2992 
2993 #ifdef TCPDEBUG
2994 	if (so->so_options & SO_DEBUG)
2995 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2996 			  &tcp_savetcp, 0);
2997 #endif
2998 
2999 	/*
3000 	 * Return any desired output.
3001 	 */
3002 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3003 		(void) tcp_output(tp);
3004 
3005 check_delack:
3006 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3007 	    __func__, ti_locked));
3008 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3009 	INP_WLOCK_ASSERT(tp->t_inpcb);
3010 
3011 	if (tp->t_flags & TF_DELACK) {
3012 		tp->t_flags &= ~TF_DELACK;
3013 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3014 	}
3015 	INP_WUNLOCK(tp->t_inpcb);
3016 	return;
3017 
3018 dropafterack:
3019 	/*
3020 	 * Generate an ACK dropping incoming segment if it occupies
3021 	 * sequence space, where the ACK reflects our state.
3022 	 *
3023 	 * We can now skip the test for the RST flag since all
3024 	 * paths to this code happen after packets containing
3025 	 * RST have been dropped.
3026 	 *
3027 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3028 	 * segment we received passes the SYN-RECEIVED ACK test.
3029 	 * If it fails send a RST.  This breaks the loop in the
3030 	 * "LAND" DoS attack, and also prevents an ACK storm
3031 	 * between two listening ports that have been sent forged
3032 	 * SYN segments, each with the source address of the other.
3033 	 */
3034 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3035 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3036 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3037 		rstreason = BANDLIM_RST_OPENPORT;
3038 		goto dropwithreset;
3039 	}
3040 #ifdef TCPDEBUG
3041 	if (so->so_options & SO_DEBUG)
3042 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3043 			  &tcp_savetcp, 0);
3044 #endif
3045 	if (ti_locked == TI_WLOCKED)
3046 		INP_INFO_WUNLOCK(&V_tcbinfo);
3047 	ti_locked = TI_UNLOCKED;
3048 
3049 	tp->t_flags |= TF_ACKNOW;
3050 	(void) tcp_output(tp);
3051 	INP_WUNLOCK(tp->t_inpcb);
3052 	m_freem(m);
3053 	return;
3054 
3055 dropwithreset:
3056 	if (ti_locked == TI_WLOCKED)
3057 		INP_INFO_WUNLOCK(&V_tcbinfo);
3058 	ti_locked = TI_UNLOCKED;
3059 
3060 	if (tp != NULL) {
3061 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3062 		INP_WUNLOCK(tp->t_inpcb);
3063 	} else
3064 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3065 	return;
3066 
3067 drop:
3068 	if (ti_locked == TI_WLOCKED) {
3069 		INP_INFO_WUNLOCK(&V_tcbinfo);
3070 		ti_locked = TI_UNLOCKED;
3071 	}
3072 #ifdef INVARIANTS
3073 	else
3074 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3075 #endif
3076 
3077 	/*
3078 	 * Drop space held by incoming segment and return.
3079 	 */
3080 #ifdef TCPDEBUG
3081 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3082 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3083 			  &tcp_savetcp, 0);
3084 #endif
3085 	if (tp != NULL)
3086 		INP_WUNLOCK(tp->t_inpcb);
3087 	m_freem(m);
3088 }
3089 
3090 /*
3091  * Issue RST and make ACK acceptable to originator of segment.
3092  * The mbuf must still include the original packet header.
3093  * tp may be NULL.
3094  */
3095 static void
3096 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3097     int tlen, int rstreason)
3098 {
3099 #ifdef INET
3100 	struct ip *ip;
3101 #endif
3102 #ifdef INET6
3103 	struct ip6_hdr *ip6;
3104 #endif
3105 
3106 	if (tp != NULL) {
3107 		INP_WLOCK_ASSERT(tp->t_inpcb);
3108 	}
3109 
3110 	/* Don't bother if destination was broadcast/multicast. */
3111 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3112 		goto drop;
3113 #ifdef INET6
3114 	if (mtod(m, struct ip *)->ip_v == 6) {
3115 		ip6 = mtod(m, struct ip6_hdr *);
3116 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3117 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3118 			goto drop;
3119 		/* IPv6 anycast check is done at tcp6_input() */
3120 	}
3121 #endif
3122 #if defined(INET) && defined(INET6)
3123 	else
3124 #endif
3125 #ifdef INET
3126 	{
3127 		ip = mtod(m, struct ip *);
3128 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3129 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3130 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3131 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3132 			goto drop;
3133 	}
3134 #endif
3135 
3136 	/* Perform bandwidth limiting. */
3137 	if (badport_bandlim(rstreason) < 0)
3138 		goto drop;
3139 
3140 	/* tcp_respond consumes the mbuf chain. */
3141 	if (th->th_flags & TH_ACK) {
3142 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3143 		    th->th_ack, TH_RST);
3144 	} else {
3145 		if (th->th_flags & TH_SYN)
3146 			tlen++;
3147 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3148 		    (tcp_seq)0, TH_RST|TH_ACK);
3149 	}
3150 	return;
3151 drop:
3152 	m_freem(m);
3153 }
3154 
3155 /*
3156  * Parse TCP options and place in tcpopt.
3157  */
3158 static void
3159 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3160 {
3161 	int opt, optlen;
3162 
3163 	to->to_flags = 0;
3164 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3165 		opt = cp[0];
3166 		if (opt == TCPOPT_EOL)
3167 			break;
3168 		if (opt == TCPOPT_NOP)
3169 			optlen = 1;
3170 		else {
3171 			if (cnt < 2)
3172 				break;
3173 			optlen = cp[1];
3174 			if (optlen < 2 || optlen > cnt)
3175 				break;
3176 		}
3177 		switch (opt) {
3178 		case TCPOPT_MAXSEG:
3179 			if (optlen != TCPOLEN_MAXSEG)
3180 				continue;
3181 			if (!(flags & TO_SYN))
3182 				continue;
3183 			to->to_flags |= TOF_MSS;
3184 			bcopy((char *)cp + 2,
3185 			    (char *)&to->to_mss, sizeof(to->to_mss));
3186 			to->to_mss = ntohs(to->to_mss);
3187 			break;
3188 		case TCPOPT_WINDOW:
3189 			if (optlen != TCPOLEN_WINDOW)
3190 				continue;
3191 			if (!(flags & TO_SYN))
3192 				continue;
3193 			to->to_flags |= TOF_SCALE;
3194 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3195 			break;
3196 		case TCPOPT_TIMESTAMP:
3197 			if (optlen != TCPOLEN_TIMESTAMP)
3198 				continue;
3199 			to->to_flags |= TOF_TS;
3200 			bcopy((char *)cp + 2,
3201 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3202 			to->to_tsval = ntohl(to->to_tsval);
3203 			bcopy((char *)cp + 6,
3204 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3205 			to->to_tsecr = ntohl(to->to_tsecr);
3206 			break;
3207 #ifdef TCP_SIGNATURE
3208 		/*
3209 		 * XXX In order to reply to a host which has set the
3210 		 * TCP_SIGNATURE option in its initial SYN, we have to
3211 		 * record the fact that the option was observed here
3212 		 * for the syncache code to perform the correct response.
3213 		 */
3214 		case TCPOPT_SIGNATURE:
3215 			if (optlen != TCPOLEN_SIGNATURE)
3216 				continue;
3217 			to->to_flags |= TOF_SIGNATURE;
3218 			to->to_signature = cp + 2;
3219 			break;
3220 #endif
3221 		case TCPOPT_SACK_PERMITTED:
3222 			if (optlen != TCPOLEN_SACK_PERMITTED)
3223 				continue;
3224 			if (!(flags & TO_SYN))
3225 				continue;
3226 			if (!V_tcp_do_sack)
3227 				continue;
3228 			to->to_flags |= TOF_SACKPERM;
3229 			break;
3230 		case TCPOPT_SACK:
3231 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3232 				continue;
3233 			if (flags & TO_SYN)
3234 				continue;
3235 			to->to_flags |= TOF_SACK;
3236 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3237 			to->to_sacks = cp + 2;
3238 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3239 			break;
3240 		default:
3241 			continue;
3242 		}
3243 	}
3244 }
3245 
3246 /*
3247  * Pull out of band byte out of a segment so
3248  * it doesn't appear in the user's data queue.
3249  * It is still reflected in the segment length for
3250  * sequencing purposes.
3251  */
3252 static void
3253 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3254     int off)
3255 {
3256 	int cnt = off + th->th_urp - 1;
3257 
3258 	while (cnt >= 0) {
3259 		if (m->m_len > cnt) {
3260 			char *cp = mtod(m, caddr_t) + cnt;
3261 			struct tcpcb *tp = sototcpcb(so);
3262 
3263 			INP_WLOCK_ASSERT(tp->t_inpcb);
3264 
3265 			tp->t_iobc = *cp;
3266 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3267 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3268 			m->m_len--;
3269 			if (m->m_flags & M_PKTHDR)
3270 				m->m_pkthdr.len--;
3271 			return;
3272 		}
3273 		cnt -= m->m_len;
3274 		m = m->m_next;
3275 		if (m == NULL)
3276 			break;
3277 	}
3278 	panic("tcp_pulloutofband");
3279 }
3280 
3281 /*
3282  * Collect new round-trip time estimate
3283  * and update averages and current timeout.
3284  */
3285 static void
3286 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3287 {
3288 	int delta;
3289 
3290 	INP_WLOCK_ASSERT(tp->t_inpcb);
3291 
3292 	TCPSTAT_INC(tcps_rttupdated);
3293 	tp->t_rttupdated++;
3294 	if (tp->t_srtt != 0) {
3295 		/*
3296 		 * srtt is stored as fixed point with 5 bits after the
3297 		 * binary point (i.e., scaled by 8).  The following magic
3298 		 * is equivalent to the smoothing algorithm in rfc793 with
3299 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3300 		 * point).  Adjust rtt to origin 0.
3301 		 */
3302 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3303 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3304 
3305 		if ((tp->t_srtt += delta) <= 0)
3306 			tp->t_srtt = 1;
3307 
3308 		/*
3309 		 * We accumulate a smoothed rtt variance (actually, a
3310 		 * smoothed mean difference), then set the retransmit
3311 		 * timer to smoothed rtt + 4 times the smoothed variance.
3312 		 * rttvar is stored as fixed point with 4 bits after the
3313 		 * binary point (scaled by 16).  The following is
3314 		 * equivalent to rfc793 smoothing with an alpha of .75
3315 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3316 		 * rfc793's wired-in beta.
3317 		 */
3318 		if (delta < 0)
3319 			delta = -delta;
3320 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3321 		if ((tp->t_rttvar += delta) <= 0)
3322 			tp->t_rttvar = 1;
3323 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3324 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3325 	} else {
3326 		/*
3327 		 * No rtt measurement yet - use the unsmoothed rtt.
3328 		 * Set the variance to half the rtt (so our first
3329 		 * retransmit happens at 3*rtt).
3330 		 */
3331 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3332 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3333 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3334 	}
3335 	tp->t_rtttime = 0;
3336 	tp->t_rxtshift = 0;
3337 
3338 	/*
3339 	 * the retransmit should happen at rtt + 4 * rttvar.
3340 	 * Because of the way we do the smoothing, srtt and rttvar
3341 	 * will each average +1/2 tick of bias.  When we compute
3342 	 * the retransmit timer, we want 1/2 tick of rounding and
3343 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3344 	 * firing of the timer.  The bias will give us exactly the
3345 	 * 1.5 tick we need.  But, because the bias is
3346 	 * statistical, we have to test that we don't drop below
3347 	 * the minimum feasible timer (which is 2 ticks).
3348 	 */
3349 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3350 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3351 
3352 	/*
3353 	 * We received an ack for a packet that wasn't retransmitted;
3354 	 * it is probably safe to discard any error indications we've
3355 	 * received recently.  This isn't quite right, but close enough
3356 	 * for now (a route might have failed after we sent a segment,
3357 	 * and the return path might not be symmetrical).
3358 	 */
3359 	tp->t_softerror = 0;
3360 }
3361 
3362 /*
3363  * Determine a reasonable value for maxseg size.
3364  * If the route is known, check route for mtu.
3365  * If none, use an mss that can be handled on the outgoing interface
3366  * without forcing IP to fragment.  If no route is found, route has no mtu,
3367  * or the destination isn't local, use a default, hopefully conservative
3368  * size (usually 512 or the default IP max size, but no more than the mtu
3369  * of the interface), as we can't discover anything about intervening
3370  * gateways or networks.  We also initialize the congestion/slow start
3371  * window to be a single segment if the destination isn't local.
3372  * While looking at the routing entry, we also initialize other path-dependent
3373  * parameters from pre-set or cached values in the routing entry.
3374  *
3375  * Also take into account the space needed for options that we
3376  * send regularly.  Make maxseg shorter by that amount to assure
3377  * that we can send maxseg amount of data even when the options
3378  * are present.  Store the upper limit of the length of options plus
3379  * data in maxopd.
3380  *
3381  * NOTE that this routine is only called when we process an incoming
3382  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3383  * settings are handled in tcp_mssopt().
3384  */
3385 void
3386 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3387     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3388 {
3389 	int mss = 0;
3390 	u_long maxmtu = 0;
3391 	struct inpcb *inp = tp->t_inpcb;
3392 	struct hc_metrics_lite metrics;
3393 	int origoffer;
3394 #ifdef INET6
3395 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3396 	size_t min_protoh = isipv6 ?
3397 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3398 			    sizeof (struct tcpiphdr);
3399 #else
3400 	const size_t min_protoh = sizeof(struct tcpiphdr);
3401 #endif
3402 
3403 	INP_WLOCK_ASSERT(tp->t_inpcb);
3404 
3405 	if (mtuoffer != -1) {
3406 		KASSERT(offer == -1, ("%s: conflict", __func__));
3407 		offer = mtuoffer - min_protoh;
3408 	}
3409 	origoffer = offer;
3410 
3411 	/* Initialize. */
3412 #ifdef INET6
3413 	if (isipv6) {
3414 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3415 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3416 	}
3417 #endif
3418 #if defined(INET) && defined(INET6)
3419 	else
3420 #endif
3421 #ifdef INET
3422 	{
3423 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3424 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3425 	}
3426 #endif
3427 
3428 	/*
3429 	 * No route to sender, stay with default mss and return.
3430 	 */
3431 	if (maxmtu == 0) {
3432 		/*
3433 		 * In case we return early we need to initialize metrics
3434 		 * to a defined state as tcp_hc_get() would do for us
3435 		 * if there was no cache hit.
3436 		 */
3437 		if (metricptr != NULL)
3438 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3439 		return;
3440 	}
3441 
3442 	/* What have we got? */
3443 	switch (offer) {
3444 		case 0:
3445 			/*
3446 			 * Offer == 0 means that there was no MSS on the SYN
3447 			 * segment, in this case we use tcp_mssdflt as
3448 			 * already assigned to t_maxopd above.
3449 			 */
3450 			offer = tp->t_maxopd;
3451 			break;
3452 
3453 		case -1:
3454 			/*
3455 			 * Offer == -1 means that we didn't receive SYN yet.
3456 			 */
3457 			/* FALLTHROUGH */
3458 
3459 		default:
3460 			/*
3461 			 * Prevent DoS attack with too small MSS. Round up
3462 			 * to at least minmss.
3463 			 */
3464 			offer = max(offer, V_tcp_minmss);
3465 	}
3466 
3467 	/*
3468 	 * rmx information is now retrieved from tcp_hostcache.
3469 	 */
3470 	tcp_hc_get(&inp->inp_inc, &metrics);
3471 	if (metricptr != NULL)
3472 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3473 
3474 	/*
3475 	 * If there's a discovered mtu in tcp hostcache, use it.
3476 	 * Else, use the link mtu.
3477 	 */
3478 	if (metrics.rmx_mtu)
3479 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3480 	else {
3481 #ifdef INET6
3482 		if (isipv6) {
3483 			mss = maxmtu - min_protoh;
3484 			if (!V_path_mtu_discovery &&
3485 			    !in6_localaddr(&inp->in6p_faddr))
3486 				mss = min(mss, V_tcp_v6mssdflt);
3487 		}
3488 #endif
3489 #if defined(INET) && defined(INET6)
3490 		else
3491 #endif
3492 #ifdef INET
3493 		{
3494 			mss = maxmtu - min_protoh;
3495 			if (!V_path_mtu_discovery &&
3496 			    !in_localaddr(inp->inp_faddr))
3497 				mss = min(mss, V_tcp_mssdflt);
3498 		}
3499 #endif
3500 		/*
3501 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3502 		 * probably violates the TCP spec.
3503 		 * The problem is that, since we don't know the
3504 		 * other end's MSS, we are supposed to use a conservative
3505 		 * default.  But, if we do that, then MTU discovery will
3506 		 * never actually take place, because the conservative
3507 		 * default is much less than the MTUs typically seen
3508 		 * on the Internet today.  For the moment, we'll sweep
3509 		 * this under the carpet.
3510 		 *
3511 		 * The conservative default might not actually be a problem
3512 		 * if the only case this occurs is when sending an initial
3513 		 * SYN with options and data to a host we've never talked
3514 		 * to before.  Then, they will reply with an MSS value which
3515 		 * will get recorded and the new parameters should get
3516 		 * recomputed.  For Further Study.
3517 		 */
3518 	}
3519 	mss = min(mss, offer);
3520 
3521 	/*
3522 	 * Sanity check: make sure that maxopd will be large
3523 	 * enough to allow some data on segments even if the
3524 	 * all the option space is used (40bytes).  Otherwise
3525 	 * funny things may happen in tcp_output.
3526 	 */
3527 	mss = max(mss, 64);
3528 
3529 	/*
3530 	 * maxopd stores the maximum length of data AND options
3531 	 * in a segment; maxseg is the amount of data in a normal
3532 	 * segment.  We need to store this value (maxopd) apart
3533 	 * from maxseg, because now every segment carries options
3534 	 * and thus we normally have somewhat less data in segments.
3535 	 */
3536 	tp->t_maxopd = mss;
3537 
3538 	/*
3539 	 * origoffer==-1 indicates that no segments were received yet.
3540 	 * In this case we just guess.
3541 	 */
3542 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3543 	    (origoffer == -1 ||
3544 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3545 		mss -= TCPOLEN_TSTAMP_APPA;
3546 
3547 	tp->t_maxseg = mss;
3548 }
3549 
3550 void
3551 tcp_mss(struct tcpcb *tp, int offer)
3552 {
3553 	int mss;
3554 	u_long bufsize;
3555 	struct inpcb *inp;
3556 	struct socket *so;
3557 	struct hc_metrics_lite metrics;
3558 	struct tcp_ifcap cap;
3559 
3560 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3561 
3562 	bzero(&cap, sizeof(cap));
3563 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3564 
3565 	mss = tp->t_maxseg;
3566 	inp = tp->t_inpcb;
3567 
3568 	/*
3569 	 * If there's a pipesize, change the socket buffer to that size,
3570 	 * don't change if sb_hiwat is different than default (then it
3571 	 * has been changed on purpose with setsockopt).
3572 	 * Make the socket buffers an integral number of mss units;
3573 	 * if the mss is larger than the socket buffer, decrease the mss.
3574 	 */
3575 	so = inp->inp_socket;
3576 	SOCKBUF_LOCK(&so->so_snd);
3577 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3578 		bufsize = metrics.rmx_sendpipe;
3579 	else
3580 		bufsize = so->so_snd.sb_hiwat;
3581 	if (bufsize < mss)
3582 		mss = bufsize;
3583 	else {
3584 		bufsize = roundup(bufsize, mss);
3585 		if (bufsize > sb_max)
3586 			bufsize = sb_max;
3587 		if (bufsize > so->so_snd.sb_hiwat)
3588 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3589 	}
3590 	SOCKBUF_UNLOCK(&so->so_snd);
3591 	tp->t_maxseg = mss;
3592 
3593 	SOCKBUF_LOCK(&so->so_rcv);
3594 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3595 		bufsize = metrics.rmx_recvpipe;
3596 	else
3597 		bufsize = so->so_rcv.sb_hiwat;
3598 	if (bufsize > mss) {
3599 		bufsize = roundup(bufsize, mss);
3600 		if (bufsize > sb_max)
3601 			bufsize = sb_max;
3602 		if (bufsize > so->so_rcv.sb_hiwat)
3603 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3604 	}
3605 	SOCKBUF_UNLOCK(&so->so_rcv);
3606 
3607 	/* Check the interface for TSO capabilities. */
3608 	if (cap.ifcap & CSUM_TSO) {
3609 		tp->t_flags |= TF_TSO;
3610 		tp->t_tsomax = cap.tsomax;
3611 	}
3612 }
3613 
3614 /*
3615  * Determine the MSS option to send on an outgoing SYN.
3616  */
3617 int
3618 tcp_mssopt(struct in_conninfo *inc)
3619 {
3620 	int mss = 0;
3621 	u_long maxmtu = 0;
3622 	u_long thcmtu = 0;
3623 	size_t min_protoh;
3624 
3625 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3626 
3627 #ifdef INET6
3628 	if (inc->inc_flags & INC_ISIPV6) {
3629 		mss = V_tcp_v6mssdflt;
3630 		maxmtu = tcp_maxmtu6(inc, NULL);
3631 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3632 	}
3633 #endif
3634 #if defined(INET) && defined(INET6)
3635 	else
3636 #endif
3637 #ifdef INET
3638 	{
3639 		mss = V_tcp_mssdflt;
3640 		maxmtu = tcp_maxmtu(inc, NULL);
3641 		min_protoh = sizeof(struct tcpiphdr);
3642 	}
3643 #endif
3644 #if defined(INET6) || defined(INET)
3645 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3646 #endif
3647 
3648 	if (maxmtu && thcmtu)
3649 		mss = min(maxmtu, thcmtu) - min_protoh;
3650 	else if (maxmtu || thcmtu)
3651 		mss = max(maxmtu, thcmtu) - min_protoh;
3652 
3653 	return (mss);
3654 }
3655 
3656 
3657 /*
3658  * On a partial ack arrives, force the retransmission of the
3659  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3660  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3661  * be started again.
3662  */
3663 static void
3664 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3665 {
3666 	tcp_seq onxt = tp->snd_nxt;
3667 	u_long  ocwnd = tp->snd_cwnd;
3668 
3669 	INP_WLOCK_ASSERT(tp->t_inpcb);
3670 
3671 	tcp_timer_activate(tp, TT_REXMT, 0);
3672 	tp->t_rtttime = 0;
3673 	tp->snd_nxt = th->th_ack;
3674 	/*
3675 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3676 	 * (tp->snd_una has not yet been updated when this function is called.)
3677 	 */
3678 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3679 	tp->t_flags |= TF_ACKNOW;
3680 	(void) tcp_output(tp);
3681 	tp->snd_cwnd = ocwnd;
3682 	if (SEQ_GT(onxt, tp->snd_nxt))
3683 		tp->snd_nxt = onxt;
3684 	/*
3685 	 * Partial window deflation.  Relies on fact that tp->snd_una
3686 	 * not updated yet.
3687 	 */
3688 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3689 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3690 	else
3691 		tp->snd_cwnd = 0;
3692 	tp->snd_cwnd += tp->t_maxseg;
3693 }
3694