xref: /freebsd/sys/netinet/tcp_input.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/signalvar.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/systm.h>
72 
73 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74 
75 #include <vm/uma.h>
76 
77 #include <net/if.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80 
81 #define TCPSTATES		/* for logging */
82 
83 #include <netinet/cc.h>
84 #include <netinet/in.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91 #include <netinet/ip_var.h>
92 #include <netinet/ip_options.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet/tcp_fsm.h>
99 #include <netinet/tcp_seq.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
102 #include <netinet6/tcp6_var.h>
103 #include <netinet/tcpip.h>
104 #include <netinet/tcp_syncache.h>
105 #ifdef TCPDEBUG
106 #include <netinet/tcp_debug.h>
107 #endif /* TCPDEBUG */
108 
109 #ifdef IPSEC
110 #include <netipsec/ipsec.h>
111 #include <netipsec/ipsec6.h>
112 #endif /*IPSEC*/
113 
114 #include <machine/in_cksum.h>
115 
116 #include <security/mac/mac_framework.h>
117 
118 const int tcprexmtthresh = 3;
119 
120 VNET_DEFINE(struct tcpstat, tcpstat);
121 SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
122     &VNET_NAME(tcpstat), tcpstat,
123     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
124 
125 int tcp_log_in_vain = 0;
126 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
127     &tcp_log_in_vain, 0,
128     "Log all incoming TCP segments to closed ports");
129 
130 VNET_DEFINE(int, blackhole) = 0;
131 #define	V_blackhole		VNET(blackhole)
132 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
133     &VNET_NAME(blackhole), 0,
134     "Do not send RST on segments to closed ports");
135 
136 VNET_DEFINE(int, tcp_delack_enabled) = 1;
137 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
138     &VNET_NAME(tcp_delack_enabled), 0,
139     "Delay ACK to try and piggyback it onto a data packet");
140 
141 VNET_DEFINE(int, drop_synfin) = 0;
142 #define	V_drop_synfin		VNET(drop_synfin)
143 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
144     &VNET_NAME(drop_synfin), 0,
145     "Drop TCP packets with SYN+FIN set");
146 
147 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
148 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
149 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
150     &VNET_NAME(tcp_do_rfc3042), 0,
151     "Enable RFC 3042 (Limited Transmit)");
152 
153 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
154 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc3390), 0,
156     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
157 
158 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
159 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
160     &VNET_NAME(tcp_do_rfc3465), 0,
161     "Enable RFC 3465 (Appropriate Byte Counting)");
162 
163 VNET_DEFINE(int, tcp_abc_l_var) = 2;
164 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
165     &VNET_NAME(tcp_abc_l_var), 2,
166     "Cap the max cwnd increment during slow-start to this number of segments");
167 
168 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
169 
170 VNET_DEFINE(int, tcp_do_ecn) = 0;
171 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
172     &VNET_NAME(tcp_do_ecn), 0,
173     "TCP ECN support");
174 
175 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
176 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
177     &VNET_NAME(tcp_ecn_maxretries), 0,
178     "Max retries before giving up on ECN");
179 
180 VNET_DEFINE(int, tcp_insecure_rst) = 0;
181 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
182 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
183     &VNET_NAME(tcp_insecure_rst), 0,
184     "Follow the old (insecure) criteria for accepting RST packets");
185 
186 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
187 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
188 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
189     &VNET_NAME(tcp_do_autorcvbuf), 0,
190     "Enable automatic receive buffer sizing");
191 
192 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
193 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
194 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
195     &VNET_NAME(tcp_autorcvbuf_inc), 0,
196     "Incrementor step size of automatic receive buffer");
197 
198 VNET_DEFINE(int, tcp_autorcvbuf_max) = 256*1024;
199 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
200 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
201     &VNET_NAME(tcp_autorcvbuf_max), 0,
202     "Max size of automatic receive buffer");
203 
204 VNET_DEFINE(struct inpcbhead, tcb);
205 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
206 VNET_DEFINE(struct inpcbinfo, tcbinfo);
207 
208 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
209 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
210 		     struct socket *, struct tcpcb *, int, int, uint8_t,
211 		     int);
212 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
213 		     struct tcpcb *, int, int);
214 static void	 tcp_pulloutofband(struct socket *,
215 		     struct tcphdr *, struct mbuf *, int);
216 static void	 tcp_xmit_timer(struct tcpcb *, int);
217 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
218 static void inline 	tcp_fields_to_host(struct tcphdr *);
219 #ifdef TCP_SIGNATURE
220 static void inline 	tcp_fields_to_net(struct tcphdr *);
221 static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
222 			    int, struct tcpopt *, struct tcphdr *, u_int);
223 #endif
224 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
225 			    uint16_t type);
226 static void inline	cc_conn_init(struct tcpcb *tp);
227 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
228 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
229 			    struct tcphdr *th, struct tcpopt *to);
230 
231 /*
232  * Kernel module interface for updating tcpstat.  The argument is an index
233  * into tcpstat treated as an array of u_long.  While this encodes the
234  * general layout of tcpstat into the caller, it doesn't encode its location,
235  * so that future changes to add, for example, per-CPU stats support won't
236  * cause binary compatibility problems for kernel modules.
237  */
238 void
239 kmod_tcpstat_inc(int statnum)
240 {
241 
242 	(*((u_long *)&V_tcpstat + statnum))++;
243 }
244 
245 /*
246  * Wrapper for the TCP established input helper hook.
247  */
248 static void inline
249 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
250 {
251 	struct tcp_hhook_data hhook_data;
252 
253 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
254 		hhook_data.tp = tp;
255 		hhook_data.th = th;
256 		hhook_data.to = to;
257 
258 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
259 		    tp->osd);
260 	}
261 }
262 
263 /*
264  * CC wrapper hook functions
265  */
266 static void inline
267 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
268 {
269 	INP_WLOCK_ASSERT(tp->t_inpcb);
270 
271 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
272 	if (tp->snd_cwnd == min(tp->snd_cwnd, tp->snd_wnd))
273 		tp->ccv->flags |= CCF_CWND_LIMITED;
274 	else
275 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
276 
277 	if (type == CC_ACK) {
278 		if (tp->snd_cwnd > tp->snd_ssthresh) {
279 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
280 			     V_tcp_abc_l_var * tp->t_maxseg);
281 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
282 				tp->t_bytes_acked -= tp->snd_cwnd;
283 				tp->ccv->flags |= CCF_ABC_SENTAWND;
284 			}
285 		} else {
286 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
287 				tp->t_bytes_acked = 0;
288 		}
289 	}
290 
291 	if (CC_ALGO(tp)->ack_received != NULL) {
292 		/* XXXLAS: Find a way to live without this */
293 		tp->ccv->curack = th->th_ack;
294 		CC_ALGO(tp)->ack_received(tp->ccv, type);
295 	}
296 }
297 
298 static void inline
299 cc_conn_init(struct tcpcb *tp)
300 {
301 	struct hc_metrics_lite metrics;
302 	struct inpcb *inp = tp->t_inpcb;
303 	int rtt;
304 #ifdef INET6
305 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
306 #endif
307 
308 	INP_WLOCK_ASSERT(tp->t_inpcb);
309 
310 	tcp_hc_get(&inp->inp_inc, &metrics);
311 
312 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
313 		tp->t_srtt = rtt;
314 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
315 		TCPSTAT_INC(tcps_usedrtt);
316 		if (metrics.rmx_rttvar) {
317 			tp->t_rttvar = metrics.rmx_rttvar;
318 			TCPSTAT_INC(tcps_usedrttvar);
319 		} else {
320 			/* default variation is +- 1 rtt */
321 			tp->t_rttvar =
322 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
323 		}
324 		TCPT_RANGESET(tp->t_rxtcur,
325 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
326 		    tp->t_rttmin, TCPTV_REXMTMAX);
327 	}
328 	if (metrics.rmx_ssthresh) {
329 		/*
330 		 * There's some sort of gateway or interface
331 		 * buffer limit on the path.  Use this to set
332 		 * the slow start threshhold, but set the
333 		 * threshold to no less than 2*mss.
334 		 */
335 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
336 		TCPSTAT_INC(tcps_usedssthresh);
337 	}
338 
339 	/*
340 	 * Set the slow-start flight size depending on whether this
341 	 * is a local network or not.
342 	 *
343 	 * Extend this so we cache the cwnd too and retrieve it here.
344 	 * Make cwnd even bigger than RFC3390 suggests but only if we
345 	 * have previous experience with the remote host. Be careful
346 	 * not make cwnd bigger than remote receive window or our own
347 	 * send socket buffer. Maybe put some additional upper bound
348 	 * on the retrieved cwnd. Should do incremental updates to
349 	 * hostcache when cwnd collapses so next connection doesn't
350 	 * overloads the path again.
351 	 *
352 	 * XXXAO: Initializing the CWND from the hostcache is broken
353 	 * and in its current form not RFC conformant.  It is disabled
354 	 * until fixed or removed entirely.
355 	 *
356 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
357 	 * We currently check only in syncache_socket for that.
358 	 */
359 /* #define TCP_METRICS_CWND */
360 #ifdef TCP_METRICS_CWND
361 	if (metrics.rmx_cwnd)
362 		tp->snd_cwnd = max(tp->t_maxseg, min(metrics.rmx_cwnd / 2,
363 		    min(tp->snd_wnd, so->so_snd.sb_hiwat)));
364 	else
365 #endif
366 	if (V_tcp_do_rfc3390)
367 		tp->snd_cwnd = min(4 * tp->t_maxseg,
368 		    max(2 * tp->t_maxseg, 4380));
369 #ifdef INET6
370 	else if (isipv6 && in6_localaddr(&inp->in6p_faddr))
371 		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
372 #endif
373 #if defined(INET) && defined(INET6)
374 	else if (!isipv6 && in_localaddr(inp->inp_faddr))
375 		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
376 #endif
377 #ifdef INET
378 	else if (in_localaddr(inp->inp_faddr))
379 		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
380 #endif
381 	else
382 		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz;
383 
384 	if (CC_ALGO(tp)->conn_init != NULL)
385 		CC_ALGO(tp)->conn_init(tp->ccv);
386 }
387 
388 void inline
389 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
390 {
391 	INP_WLOCK_ASSERT(tp->t_inpcb);
392 
393 	switch(type) {
394 	case CC_NDUPACK:
395 		if (!IN_FASTRECOVERY(tp->t_flags)) {
396 			tp->snd_recover = tp->snd_max;
397 			if (tp->t_flags & TF_ECN_PERMIT)
398 				tp->t_flags |= TF_ECN_SND_CWR;
399 		}
400 		break;
401 	case CC_ECN:
402 		if (!IN_CONGRECOVERY(tp->t_flags)) {
403 			TCPSTAT_INC(tcps_ecn_rcwnd);
404 			tp->snd_recover = tp->snd_max;
405 			if (tp->t_flags & TF_ECN_PERMIT)
406 				tp->t_flags |= TF_ECN_SND_CWR;
407 		}
408 		break;
409 	case CC_RTO:
410 		tp->t_dupacks = 0;
411 		tp->t_bytes_acked = 0;
412 		EXIT_RECOVERY(tp->t_flags);
413 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
414 		    tp->t_maxseg) * tp->t_maxseg;
415 		tp->snd_cwnd = tp->t_maxseg;
416 		break;
417 	case CC_RTO_ERR:
418 		TCPSTAT_INC(tcps_sndrexmitbad);
419 		/* RTO was unnecessary, so reset everything. */
420 		tp->snd_cwnd = tp->snd_cwnd_prev;
421 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
422 		tp->snd_recover = tp->snd_recover_prev;
423 		if (tp->t_flags & TF_WASFRECOVERY)
424 			ENTER_FASTRECOVERY(tp->t_flags);
425 		if (tp->t_flags & TF_WASCRECOVERY)
426 			ENTER_CONGRECOVERY(tp->t_flags);
427 		tp->snd_nxt = tp->snd_max;
428 		tp->t_flags &= ~TF_PREVVALID;
429 		tp->t_badrxtwin = 0;
430 		break;
431 	}
432 
433 	if (CC_ALGO(tp)->cong_signal != NULL) {
434 		if (th != NULL)
435 			tp->ccv->curack = th->th_ack;
436 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
437 	}
438 }
439 
440 static void inline
441 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
442 {
443 	INP_WLOCK_ASSERT(tp->t_inpcb);
444 
445 	/* XXXLAS: KASSERT that we're in recovery? */
446 
447 	if (CC_ALGO(tp)->post_recovery != NULL) {
448 		tp->ccv->curack = th->th_ack;
449 		CC_ALGO(tp)->post_recovery(tp->ccv);
450 	}
451 	/* XXXLAS: EXIT_RECOVERY ? */
452 	tp->t_bytes_acked = 0;
453 }
454 
455 static inline void
456 tcp_fields_to_host(struct tcphdr *th)
457 {
458 
459 	th->th_seq = ntohl(th->th_seq);
460 	th->th_ack = ntohl(th->th_ack);
461 	th->th_win = ntohs(th->th_win);
462 	th->th_urp = ntohs(th->th_urp);
463 }
464 
465 #ifdef TCP_SIGNATURE
466 static inline void
467 tcp_fields_to_net(struct tcphdr *th)
468 {
469 
470 	th->th_seq = htonl(th->th_seq);
471 	th->th_ack = htonl(th->th_ack);
472 	th->th_win = htons(th->th_win);
473 	th->th_urp = htons(th->th_urp);
474 }
475 
476 static inline int
477 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
478     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
479 {
480 	int ret;
481 
482 	tcp_fields_to_net(th);
483 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
484 	tcp_fields_to_host(th);
485 	return (ret);
486 }
487 #endif
488 
489 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
490 #ifdef INET6
491 #define ND6_HINT(tp) \
492 do { \
493 	if ((tp) && (tp)->t_inpcb && \
494 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
495 		nd6_nud_hint(NULL, NULL, 0); \
496 } while (0)
497 #else
498 #define ND6_HINT(tp)
499 #endif
500 
501 /*
502  * Indicate whether this ack should be delayed.  We can delay the ack if
503  *	- there is no delayed ack timer in progress and
504  *	- our last ack wasn't a 0-sized window.  We never want to delay
505  *	  the ack that opens up a 0-sized window and
506  *		- delayed acks are enabled or
507  *		- this is a half-synchronized T/TCP connection.
508  */
509 #define DELAY_ACK(tp)							\
510 	((!tcp_timer_active(tp, TT_DELACK) &&				\
511 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
512 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
513 
514 /*
515  * TCP input handling is split into multiple parts:
516  *   tcp6_input is a thin wrapper around tcp_input for the extended
517  *	ip6_protox[] call format in ip6_input
518  *   tcp_input handles primary segment validation, inpcb lookup and
519  *	SYN processing on listen sockets
520  *   tcp_do_segment processes the ACK and text of the segment for
521  *	establishing, established and closing connections
522  */
523 #ifdef INET6
524 int
525 tcp6_input(struct mbuf **mp, int *offp, int proto)
526 {
527 	struct mbuf *m = *mp;
528 	struct in6_ifaddr *ia6;
529 
530 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
531 
532 	/*
533 	 * draft-itojun-ipv6-tcp-to-anycast
534 	 * better place to put this in?
535 	 */
536 	ia6 = ip6_getdstifaddr(m);
537 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
538 		struct ip6_hdr *ip6;
539 
540 		ifa_free(&ia6->ia_ifa);
541 		ip6 = mtod(m, struct ip6_hdr *);
542 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
543 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
544 		return IPPROTO_DONE;
545 	}
546 
547 	tcp_input(m, *offp);
548 	return IPPROTO_DONE;
549 }
550 #endif /* INET6 */
551 
552 void
553 tcp_input(struct mbuf *m, int off0)
554 {
555 	struct tcphdr *th = NULL;
556 	struct ip *ip = NULL;
557 #ifdef INET
558 	struct ipovly *ipov;
559 #endif
560 	struct inpcb *inp = NULL;
561 	struct tcpcb *tp = NULL;
562 	struct socket *so = NULL;
563 	u_char *optp = NULL;
564 	int optlen = 0;
565 #ifdef INET
566 	int len;
567 #endif
568 	int tlen = 0, off;
569 	int drop_hdrlen;
570 	int thflags;
571 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
572 #ifdef TCP_SIGNATURE
573 	uint8_t sig_checked = 0;
574 #endif
575 	uint8_t iptos = 0;
576 #ifdef INET
577 #ifdef IPFIREWALL_FORWARD
578 	struct m_tag *fwd_tag;
579 #endif
580 #endif /* INET */
581 #ifdef INET6
582 	struct ip6_hdr *ip6 = NULL;
583 	int isipv6;
584 #else
585 	const void *ip6 = NULL;
586 #if (defined(INET) && defined(IPFIREWALL_FORWARD)) || defined(TCPDEBUG)
587 	const int isipv6 = 0;
588 #endif
589 #endif /* INET6 */
590 	struct tcpopt to;		/* options in this segment */
591 	char *s = NULL;			/* address and port logging */
592 	int ti_locked;
593 #define	TI_UNLOCKED	1
594 #define	TI_WLOCKED	2
595 
596 #ifdef TCPDEBUG
597 	/*
598 	 * The size of tcp_saveipgen must be the size of the max ip header,
599 	 * now IPv6.
600 	 */
601 	u_char tcp_saveipgen[IP6_HDR_LEN];
602 	struct tcphdr tcp_savetcp;
603 	short ostate = 0;
604 #endif
605 
606 #ifdef INET6
607 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
608 #endif
609 
610 	to.to_flags = 0;
611 	TCPSTAT_INC(tcps_rcvtotal);
612 
613 #ifdef INET6
614 	if (isipv6) {
615 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
616 		ip6 = mtod(m, struct ip6_hdr *);
617 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
618 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
619 			TCPSTAT_INC(tcps_rcvbadsum);
620 			goto drop;
621 		}
622 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
623 
624 		/*
625 		 * Be proactive about unspecified IPv6 address in source.
626 		 * As we use all-zero to indicate unbounded/unconnected pcb,
627 		 * unspecified IPv6 address can be used to confuse us.
628 		 *
629 		 * Note that packets with unspecified IPv6 destination is
630 		 * already dropped in ip6_input.
631 		 */
632 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
633 			/* XXX stat */
634 			goto drop;
635 		}
636 	}
637 #endif
638 #if defined(INET) && defined(INET6)
639 	else
640 #endif
641 #ifdef INET
642 	{
643 		/*
644 		 * Get IP and TCP header together in first mbuf.
645 		 * Note: IP leaves IP header in first mbuf.
646 		 */
647 		if (off0 > sizeof (struct ip)) {
648 			ip_stripoptions(m, (struct mbuf *)0);
649 			off0 = sizeof(struct ip);
650 		}
651 		if (m->m_len < sizeof (struct tcpiphdr)) {
652 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
653 			    == NULL) {
654 				TCPSTAT_INC(tcps_rcvshort);
655 				return;
656 			}
657 		}
658 		ip = mtod(m, struct ip *);
659 		ipov = (struct ipovly *)ip;
660 		th = (struct tcphdr *)((caddr_t)ip + off0);
661 		tlen = ip->ip_len;
662 
663 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
664 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
665 				th->th_sum = m->m_pkthdr.csum_data;
666 			else
667 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
668 						ip->ip_dst.s_addr,
669 						htonl(m->m_pkthdr.csum_data +
670 							ip->ip_len +
671 							IPPROTO_TCP));
672 			th->th_sum ^= 0xffff;
673 #ifdef TCPDEBUG
674 			ipov->ih_len = (u_short)tlen;
675 			ipov->ih_len = htons(ipov->ih_len);
676 #endif
677 		} else {
678 			/*
679 			 * Checksum extended TCP header and data.
680 			 */
681 			len = sizeof (struct ip) + tlen;
682 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
683 			ipov->ih_len = (u_short)tlen;
684 			ipov->ih_len = htons(ipov->ih_len);
685 			th->th_sum = in_cksum(m, len);
686 		}
687 		if (th->th_sum) {
688 			TCPSTAT_INC(tcps_rcvbadsum);
689 			goto drop;
690 		}
691 		/* Re-initialization for later version check */
692 		ip->ip_v = IPVERSION;
693 	}
694 #endif /* INET */
695 
696 #ifdef INET6
697 	if (isipv6)
698 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
699 #endif
700 #if defined(INET) && defined(INET6)
701 	else
702 #endif
703 #ifdef INET
704 		iptos = ip->ip_tos;
705 #endif
706 
707 	/*
708 	 * Check that TCP offset makes sense,
709 	 * pull out TCP options and adjust length.		XXX
710 	 */
711 	off = th->th_off << 2;
712 	if (off < sizeof (struct tcphdr) || off > tlen) {
713 		TCPSTAT_INC(tcps_rcvbadoff);
714 		goto drop;
715 	}
716 	tlen -= off;	/* tlen is used instead of ti->ti_len */
717 	if (off > sizeof (struct tcphdr)) {
718 #ifdef INET6
719 		if (isipv6) {
720 			IP6_EXTHDR_CHECK(m, off0, off, );
721 			ip6 = mtod(m, struct ip6_hdr *);
722 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
723 		}
724 #endif
725 #if defined(INET) && defined(INET6)
726 		else
727 #endif
728 #ifdef INET
729 		{
730 			if (m->m_len < sizeof(struct ip) + off) {
731 				if ((m = m_pullup(m, sizeof (struct ip) + off))
732 				    == NULL) {
733 					TCPSTAT_INC(tcps_rcvshort);
734 					return;
735 				}
736 				ip = mtod(m, struct ip *);
737 				ipov = (struct ipovly *)ip;
738 				th = (struct tcphdr *)((caddr_t)ip + off0);
739 			}
740 		}
741 #endif
742 		optlen = off - sizeof (struct tcphdr);
743 		optp = (u_char *)(th + 1);
744 	}
745 	thflags = th->th_flags;
746 
747 	/*
748 	 * Convert TCP protocol specific fields to host format.
749 	 */
750 	tcp_fields_to_host(th);
751 
752 	/*
753 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
754 	 */
755 	drop_hdrlen = off0 + off;
756 
757 	/*
758 	 * Locate pcb for segment; if we're likely to add or remove a
759 	 * connection then first acquire pcbinfo lock.  There are two cases
760 	 * where we might discover later we need a write lock despite the
761 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
762 	 * a connection in TIMEWAIT.
763 	 */
764 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
765 		INP_INFO_WLOCK(&V_tcbinfo);
766 		ti_locked = TI_WLOCKED;
767 	} else
768 		ti_locked = TI_UNLOCKED;
769 
770 findpcb:
771 #ifdef INVARIANTS
772 	if (ti_locked == TI_WLOCKED) {
773 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
774 	} else {
775 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
776 	}
777 #endif
778 
779 #ifdef INET
780 #ifdef IPFIREWALL_FORWARD
781 	/*
782 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
783 	 */
784 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
785 
786 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
787 		struct sockaddr_in *next_hop;
788 
789 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
790 		/*
791 		 * Transparently forwarded. Pretend to be the destination.
792 		 * already got one like this?
793 		 */
794 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
795 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
796 		    m->m_pkthdr.rcvif, m);
797 		if (!inp) {
798 			/*
799 			 * It's new.  Try to find the ambushing socket.
800 			 * Because we've rewritten the destination address,
801 			 * any hardware-generated hash is ignored.
802 			 */
803 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
804 			    th->th_sport, next_hop->sin_addr,
805 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
806 			    th->th_dport, INPLOOKUP_WILDCARD |
807 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
808 		}
809 		/* Remove the tag from the packet.  We don't need it anymore. */
810 		m_tag_delete(m, fwd_tag);
811 	} else
812 #endif /* IPFIREWALL_FORWARD */
813 #endif /* INET */
814 	{
815 #ifdef INET6
816 		if (isipv6)
817 			inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
818 			    th->th_sport, &ip6->ip6_dst, th->th_dport,
819 			    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
820 			    m->m_pkthdr.rcvif, m);
821 #endif
822 #if defined(INET) && defined(INET6)
823 		else
824 #endif
825 #ifdef INET
826 			inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
827 			    th->th_sport, ip->ip_dst, th->th_dport,
828 			    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
829 			    m->m_pkthdr.rcvif, m);
830 #endif
831 	}
832 
833 	/*
834 	 * If the INPCB does not exist then all data in the incoming
835 	 * segment is discarded and an appropriate RST is sent back.
836 	 * XXX MRT Send RST using which routing table?
837 	 */
838 	if (inp == NULL) {
839 		/*
840 		 * Log communication attempts to ports that are not
841 		 * in use.
842 		 */
843 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
844 		    tcp_log_in_vain == 2) {
845 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
846 				log(LOG_INFO, "%s; %s: Connection attempt "
847 				    "to closed port\n", s, __func__);
848 		}
849 		/*
850 		 * When blackholing do not respond with a RST but
851 		 * completely ignore the segment and drop it.
852 		 */
853 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
854 		    V_blackhole == 2)
855 			goto dropunlock;
856 
857 		rstreason = BANDLIM_RST_CLOSEDPORT;
858 		goto dropwithreset;
859 	}
860 	INP_WLOCK_ASSERT(inp);
861 	if (!(inp->inp_flags & INP_HW_FLOWID)
862 	    && (m->m_flags & M_FLOWID)
863 	    && ((inp->inp_socket == NULL)
864 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
865 		inp->inp_flags |= INP_HW_FLOWID;
866 		inp->inp_flags &= ~INP_SW_FLOWID;
867 		inp->inp_flowid = m->m_pkthdr.flowid;
868 	}
869 #ifdef IPSEC
870 #ifdef INET6
871 	if (isipv6 && ipsec6_in_reject(m, inp)) {
872 		V_ipsec6stat.in_polvio++;
873 		goto dropunlock;
874 	} else
875 #endif /* INET6 */
876 	if (ipsec4_in_reject(m, inp) != 0) {
877 		V_ipsec4stat.in_polvio++;
878 		goto dropunlock;
879 	}
880 #endif /* IPSEC */
881 
882 	/*
883 	 * Check the minimum TTL for socket.
884 	 */
885 	if (inp->inp_ip_minttl != 0) {
886 #ifdef INET6
887 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
888 			goto dropunlock;
889 		else
890 #endif
891 		if (inp->inp_ip_minttl > ip->ip_ttl)
892 			goto dropunlock;
893 	}
894 
895 	/*
896 	 * A previous connection in TIMEWAIT state is supposed to catch stray
897 	 * or duplicate segments arriving late.  If this segment was a
898 	 * legitimate new connection attempt the old INPCB gets removed and
899 	 * we can try again to find a listening socket.
900 	 *
901 	 * At this point, due to earlier optimism, we may hold only an inpcb
902 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
903 	 * acquire it, or if that fails, acquire a reference on the inpcb,
904 	 * drop all locks, acquire a global write lock, and then re-acquire
905 	 * the inpcb lock.  We may at that point discover that another thread
906 	 * has tried to free the inpcb, in which case we need to loop back
907 	 * and try to find a new inpcb to deliver to.
908 	 *
909 	 * XXXRW: It may be time to rethink timewait locking.
910 	 */
911 relocked:
912 	if (inp->inp_flags & INP_TIMEWAIT) {
913 		if (ti_locked == TI_UNLOCKED) {
914 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
915 				in_pcbref(inp);
916 				INP_WUNLOCK(inp);
917 				INP_INFO_WLOCK(&V_tcbinfo);
918 				ti_locked = TI_WLOCKED;
919 				INP_WLOCK(inp);
920 				if (in_pcbrele_wlocked(inp)) {
921 					inp = NULL;
922 					goto findpcb;
923 				}
924 			} else
925 				ti_locked = TI_WLOCKED;
926 		}
927 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
928 
929 #ifdef TCP_SIGNATURE
930 		tcp_dooptions(&to, optp, optlen,
931 		    (thflags & TH_SYN) ? TO_SYN : 0);
932 		if (sig_checked == 0) {
933 			tp = intotcpcb(inp);
934 			if (tp == NULL || tp->t_state == TCPS_CLOSED) {
935 				rstreason = BANDLIM_RST_CLOSEDPORT;
936 				goto dropwithreset;
937 			}
938 			if (!tcp_signature_verify_input(m, off0, tlen, optlen,
939 			    &to, th, tp->t_flags))
940 				goto dropunlock;
941 			sig_checked = 1;
942 		}
943 #else
944 		if (thflags & TH_SYN)
945 			tcp_dooptions(&to, optp, optlen, TO_SYN);
946 #endif
947 		/*
948 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
949 		 */
950 		if (tcp_twcheck(inp, &to, th, m, tlen))
951 			goto findpcb;
952 		INP_INFO_WUNLOCK(&V_tcbinfo);
953 		return;
954 	}
955 	/*
956 	 * The TCPCB may no longer exist if the connection is winding
957 	 * down or it is in the CLOSED state.  Either way we drop the
958 	 * segment and send an appropriate response.
959 	 */
960 	tp = intotcpcb(inp);
961 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
962 		rstreason = BANDLIM_RST_CLOSEDPORT;
963 		goto dropwithreset;
964 	}
965 
966 	/*
967 	 * We've identified a valid inpcb, but it could be that we need an
968 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
969 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
970 	 * relock, we have to jump back to 'relocked' as the connection might
971 	 * now be in TIMEWAIT.
972 	 */
973 #ifdef INVARIANTS
974 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
975 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
976 #endif
977 	if (tp->t_state != TCPS_ESTABLISHED) {
978 		if (ti_locked == TI_UNLOCKED) {
979 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
980 				in_pcbref(inp);
981 				INP_WUNLOCK(inp);
982 				INP_INFO_WLOCK(&V_tcbinfo);
983 				ti_locked = TI_WLOCKED;
984 				INP_WLOCK(inp);
985 				if (in_pcbrele_wlocked(inp)) {
986 					inp = NULL;
987 					goto findpcb;
988 				}
989 				goto relocked;
990 			} else
991 				ti_locked = TI_WLOCKED;
992 		}
993 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
994 	}
995 
996 #ifdef MAC
997 	INP_WLOCK_ASSERT(inp);
998 	if (mac_inpcb_check_deliver(inp, m))
999 		goto dropunlock;
1000 #endif
1001 	so = inp->inp_socket;
1002 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1003 #ifdef TCPDEBUG
1004 	if (so->so_options & SO_DEBUG) {
1005 		ostate = tp->t_state;
1006 		if (isipv6) {
1007 #ifdef INET6
1008 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1009 #endif
1010 		} else
1011 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1012 		tcp_savetcp = *th;
1013 	}
1014 #endif /* TCPDEBUG */
1015 	/*
1016 	 * When the socket is accepting connections (the INPCB is in LISTEN
1017 	 * state) we look into the SYN cache if this is a new connection
1018 	 * attempt or the completion of a previous one.  Because listen
1019 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1020 	 * held in this case.
1021 	 */
1022 	if (so->so_options & SO_ACCEPTCONN) {
1023 		struct in_conninfo inc;
1024 
1025 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1026 		    "tp not listening", __func__));
1027 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1028 
1029 		bzero(&inc, sizeof(inc));
1030 #ifdef INET6
1031 		if (isipv6) {
1032 			inc.inc_flags |= INC_ISIPV6;
1033 			inc.inc6_faddr = ip6->ip6_src;
1034 			inc.inc6_laddr = ip6->ip6_dst;
1035 		} else
1036 #endif
1037 		{
1038 			inc.inc_faddr = ip->ip_src;
1039 			inc.inc_laddr = ip->ip_dst;
1040 		}
1041 		inc.inc_fport = th->th_sport;
1042 		inc.inc_lport = th->th_dport;
1043 		inc.inc_fibnum = so->so_fibnum;
1044 
1045 		/*
1046 		 * Check for an existing connection attempt in syncache if
1047 		 * the flag is only ACK.  A successful lookup creates a new
1048 		 * socket appended to the listen queue in SYN_RECEIVED state.
1049 		 */
1050 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1051 			/*
1052 			 * Parse the TCP options here because
1053 			 * syncookies need access to the reflected
1054 			 * timestamp.
1055 			 */
1056 			tcp_dooptions(&to, optp, optlen, 0);
1057 			/*
1058 			 * NB: syncache_expand() doesn't unlock
1059 			 * inp and tcpinfo locks.
1060 			 */
1061 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1062 				/*
1063 				 * No syncache entry or ACK was not
1064 				 * for our SYN/ACK.  Send a RST.
1065 				 * NB: syncache did its own logging
1066 				 * of the failure cause.
1067 				 */
1068 				rstreason = BANDLIM_RST_OPENPORT;
1069 				goto dropwithreset;
1070 			}
1071 			if (so == NULL) {
1072 				/*
1073 				 * We completed the 3-way handshake
1074 				 * but could not allocate a socket
1075 				 * either due to memory shortage,
1076 				 * listen queue length limits or
1077 				 * global socket limits.  Send RST
1078 				 * or wait and have the remote end
1079 				 * retransmit the ACK for another
1080 				 * try.
1081 				 */
1082 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1083 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1084 					    "Socket allocation failed due to "
1085 					    "limits or memory shortage, %s\n",
1086 					    s, __func__,
1087 					    V_tcp_sc_rst_sock_fail ?
1088 					    "sending RST" : "try again");
1089 				if (V_tcp_sc_rst_sock_fail) {
1090 					rstreason = BANDLIM_UNLIMITED;
1091 					goto dropwithreset;
1092 				} else
1093 					goto dropunlock;
1094 			}
1095 			/*
1096 			 * Socket is created in state SYN_RECEIVED.
1097 			 * Unlock the listen socket, lock the newly
1098 			 * created socket and update the tp variable.
1099 			 */
1100 			INP_WUNLOCK(inp);	/* listen socket */
1101 			inp = sotoinpcb(so);
1102 			INP_WLOCK(inp);		/* new connection */
1103 			tp = intotcpcb(inp);
1104 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1105 			    ("%s: ", __func__));
1106 #ifdef TCP_SIGNATURE
1107 			if (sig_checked == 0)  {
1108 				tcp_dooptions(&to, optp, optlen,
1109 				    (thflags & TH_SYN) ? TO_SYN : 0);
1110 				if (!tcp_signature_verify_input(m, off0, tlen,
1111 				    optlen, &to, th, tp->t_flags)) {
1112 
1113 					/*
1114 					 * In SYN_SENT state if it receives an
1115 					 * RST, it is allowed for further
1116 					 * processing.
1117 					 */
1118 					if ((thflags & TH_RST) == 0 ||
1119 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1120 						goto dropunlock;
1121 				}
1122 				sig_checked = 1;
1123 			}
1124 #endif
1125 
1126 			/*
1127 			 * Process the segment and the data it
1128 			 * contains.  tcp_do_segment() consumes
1129 			 * the mbuf chain and unlocks the inpcb.
1130 			 */
1131 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1132 			    iptos, ti_locked);
1133 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1134 			return;
1135 		}
1136 		/*
1137 		 * Segment flag validation for new connection attempts:
1138 		 *
1139 		 * Our (SYN|ACK) response was rejected.
1140 		 * Check with syncache and remove entry to prevent
1141 		 * retransmits.
1142 		 *
1143 		 * NB: syncache_chkrst does its own logging of failure
1144 		 * causes.
1145 		 */
1146 		if (thflags & TH_RST) {
1147 			syncache_chkrst(&inc, th);
1148 			goto dropunlock;
1149 		}
1150 		/*
1151 		 * We can't do anything without SYN.
1152 		 */
1153 		if ((thflags & TH_SYN) == 0) {
1154 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1155 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1156 				    "SYN is missing, segment ignored\n",
1157 				    s, __func__);
1158 			TCPSTAT_INC(tcps_badsyn);
1159 			goto dropunlock;
1160 		}
1161 		/*
1162 		 * (SYN|ACK) is bogus on a listen socket.
1163 		 */
1164 		if (thflags & TH_ACK) {
1165 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1166 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1167 				    "SYN|ACK invalid, segment rejected\n",
1168 				    s, __func__);
1169 			syncache_badack(&inc);	/* XXX: Not needed! */
1170 			TCPSTAT_INC(tcps_badsyn);
1171 			rstreason = BANDLIM_RST_OPENPORT;
1172 			goto dropwithreset;
1173 		}
1174 		/*
1175 		 * If the drop_synfin option is enabled, drop all
1176 		 * segments with both the SYN and FIN bits set.
1177 		 * This prevents e.g. nmap from identifying the
1178 		 * TCP/IP stack.
1179 		 * XXX: Poor reasoning.  nmap has other methods
1180 		 * and is constantly refining its stack detection
1181 		 * strategies.
1182 		 * XXX: This is a violation of the TCP specification
1183 		 * and was used by RFC1644.
1184 		 */
1185 		if ((thflags & TH_FIN) && V_drop_synfin) {
1186 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1187 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1188 				    "SYN|FIN segment ignored (based on "
1189 				    "sysctl setting)\n", s, __func__);
1190 			TCPSTAT_INC(tcps_badsyn);
1191 			goto dropunlock;
1192 		}
1193 		/*
1194 		 * Segment's flags are (SYN) or (SYN|FIN).
1195 		 *
1196 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1197 		 * as they do not affect the state of the TCP FSM.
1198 		 * The data pointed to by TH_URG and th_urp is ignored.
1199 		 */
1200 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1201 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1202 		KASSERT(thflags & (TH_SYN),
1203 		    ("%s: Listen socket: TH_SYN not set", __func__));
1204 #ifdef INET6
1205 		/*
1206 		 * If deprecated address is forbidden,
1207 		 * we do not accept SYN to deprecated interface
1208 		 * address to prevent any new inbound connection from
1209 		 * getting established.
1210 		 * When we do not accept SYN, we send a TCP RST,
1211 		 * with deprecated source address (instead of dropping
1212 		 * it).  We compromise it as it is much better for peer
1213 		 * to send a RST, and RST will be the final packet
1214 		 * for the exchange.
1215 		 *
1216 		 * If we do not forbid deprecated addresses, we accept
1217 		 * the SYN packet.  RFC2462 does not suggest dropping
1218 		 * SYN in this case.
1219 		 * If we decipher RFC2462 5.5.4, it says like this:
1220 		 * 1. use of deprecated addr with existing
1221 		 *    communication is okay - "SHOULD continue to be
1222 		 *    used"
1223 		 * 2. use of it with new communication:
1224 		 *   (2a) "SHOULD NOT be used if alternate address
1225 		 *        with sufficient scope is available"
1226 		 *   (2b) nothing mentioned otherwise.
1227 		 * Here we fall into (2b) case as we have no choice in
1228 		 * our source address selection - we must obey the peer.
1229 		 *
1230 		 * The wording in RFC2462 is confusing, and there are
1231 		 * multiple description text for deprecated address
1232 		 * handling - worse, they are not exactly the same.
1233 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1234 		 */
1235 		if (isipv6 && !V_ip6_use_deprecated) {
1236 			struct in6_ifaddr *ia6;
1237 
1238 			ia6 = ip6_getdstifaddr(m);
1239 			if (ia6 != NULL &&
1240 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1241 				ifa_free(&ia6->ia_ifa);
1242 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1243 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1244 					"Connection attempt to deprecated "
1245 					"IPv6 address rejected\n",
1246 					s, __func__);
1247 				rstreason = BANDLIM_RST_OPENPORT;
1248 				goto dropwithreset;
1249 			}
1250 			ifa_free(&ia6->ia_ifa);
1251 		}
1252 #endif /* INET6 */
1253 		/*
1254 		 * Basic sanity checks on incoming SYN requests:
1255 		 *   Don't respond if the destination is a link layer
1256 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1257 		 *   If it is from this socket it must be forged.
1258 		 *   Don't respond if the source or destination is a
1259 		 *	global or subnet broad- or multicast address.
1260 		 *   Note that it is quite possible to receive unicast
1261 		 *	link-layer packets with a broadcast IP address. Use
1262 		 *	in_broadcast() to find them.
1263 		 */
1264 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1265 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1266 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1267 				"Connection attempt from broad- or multicast "
1268 				"link layer address ignored\n", s, __func__);
1269 			goto dropunlock;
1270 		}
1271 #ifdef INET6
1272 		if (isipv6) {
1273 			if (th->th_dport == th->th_sport &&
1274 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1275 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1276 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1277 					"Connection attempt to/from self "
1278 					"ignored\n", s, __func__);
1279 				goto dropunlock;
1280 			}
1281 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1282 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1283 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1284 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1285 					"Connection attempt from/to multicast "
1286 					"address ignored\n", s, __func__);
1287 				goto dropunlock;
1288 			}
1289 		}
1290 #endif
1291 #if defined(INET) && defined(INET6)
1292 		else
1293 #endif
1294 #ifdef INET
1295 		{
1296 			if (th->th_dport == th->th_sport &&
1297 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1298 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1299 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1300 					"Connection attempt from/to self "
1301 					"ignored\n", s, __func__);
1302 				goto dropunlock;
1303 			}
1304 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1305 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1306 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1307 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1308 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1309 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1310 					"Connection attempt from/to broad- "
1311 					"or multicast address ignored\n",
1312 					s, __func__);
1313 				goto dropunlock;
1314 			}
1315 		}
1316 #endif
1317 		/*
1318 		 * SYN appears to be valid.  Create compressed TCP state
1319 		 * for syncache.
1320 		 */
1321 #ifdef TCPDEBUG
1322 		if (so->so_options & SO_DEBUG)
1323 			tcp_trace(TA_INPUT, ostate, tp,
1324 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1325 #endif
1326 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1327 		syncache_add(&inc, &to, th, inp, &so, m);
1328 		/*
1329 		 * Entry added to syncache and mbuf consumed.
1330 		 * Everything already unlocked by syncache_add().
1331 		 */
1332 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1333 		return;
1334 	}
1335 
1336 #ifdef TCP_SIGNATURE
1337 	if (sig_checked == 0)  {
1338 		tcp_dooptions(&to, optp, optlen,
1339 		    (thflags & TH_SYN) ? TO_SYN : 0);
1340 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1341 		    th, tp->t_flags)) {
1342 
1343 			/*
1344 			 * In SYN_SENT state if it receives an RST, it is
1345 			 * allowed for further processing.
1346 			 */
1347 			if ((thflags & TH_RST) == 0 ||
1348 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1349 				goto dropunlock;
1350 		}
1351 		sig_checked = 1;
1352 	}
1353 #endif
1354 
1355 	/*
1356 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1357 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1358 	 * the inpcb, and unlocks pcbinfo.
1359 	 */
1360 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1361 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1362 	return;
1363 
1364 dropwithreset:
1365 	if (ti_locked == TI_WLOCKED) {
1366 		INP_INFO_WUNLOCK(&V_tcbinfo);
1367 		ti_locked = TI_UNLOCKED;
1368 	}
1369 #ifdef INVARIANTS
1370 	else {
1371 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1372 		    "ti_locked: %d", __func__, ti_locked));
1373 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1374 	}
1375 #endif
1376 
1377 	if (inp != NULL) {
1378 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1379 		INP_WUNLOCK(inp);
1380 	} else
1381 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1382 	m = NULL;	/* mbuf chain got consumed. */
1383 	goto drop;
1384 
1385 dropunlock:
1386 	if (ti_locked == TI_WLOCKED) {
1387 		INP_INFO_WUNLOCK(&V_tcbinfo);
1388 		ti_locked = TI_UNLOCKED;
1389 	}
1390 #ifdef INVARIANTS
1391 	else {
1392 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1393 		    "ti_locked: %d", __func__, ti_locked));
1394 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1395 	}
1396 #endif
1397 
1398 	if (inp != NULL)
1399 		INP_WUNLOCK(inp);
1400 
1401 drop:
1402 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1403 	if (s != NULL)
1404 		free(s, M_TCPLOG);
1405 	if (m != NULL)
1406 		m_freem(m);
1407 }
1408 
1409 static void
1410 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1411     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1412     int ti_locked)
1413 {
1414 	int thflags, acked, ourfinisacked, needoutput = 0;
1415 	int rstreason, todrop, win;
1416 	u_long tiwin;
1417 	struct tcpopt to;
1418 
1419 #ifdef TCPDEBUG
1420 	/*
1421 	 * The size of tcp_saveipgen must be the size of the max ip header,
1422 	 * now IPv6.
1423 	 */
1424 	u_char tcp_saveipgen[IP6_HDR_LEN];
1425 	struct tcphdr tcp_savetcp;
1426 	short ostate = 0;
1427 #endif
1428 	thflags = th->th_flags;
1429 	tp->sackhint.last_sack_ack = 0;
1430 
1431 	/*
1432 	 * If this is either a state-changing packet or current state isn't
1433 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1434 	 * allow either a read lock or a write lock, as we may have acquired
1435 	 * a write lock due to a race.
1436 	 *
1437 	 * Require a global write lock for SYN/FIN/RST segments or
1438 	 * non-established connections; otherwise accept either a read or
1439 	 * write lock, as we may have conservatively acquired a write lock in
1440 	 * certain cases in tcp_input() (is this still true?).  Currently we
1441 	 * will never enter with no lock, so we try to drop it quickly in the
1442 	 * common pure ack/pure data cases.
1443 	 */
1444 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1445 	    tp->t_state != TCPS_ESTABLISHED) {
1446 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1447 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1448 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1449 	} else {
1450 #ifdef INVARIANTS
1451 		if (ti_locked == TI_WLOCKED)
1452 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1453 		else {
1454 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1455 			    "ti_locked: %d", __func__, ti_locked));
1456 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1457 		}
1458 #endif
1459 	}
1460 	INP_WLOCK_ASSERT(tp->t_inpcb);
1461 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1462 	    __func__));
1463 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1464 	    __func__));
1465 
1466 	/*
1467 	 * Segment received on connection.
1468 	 * Reset idle time and keep-alive timer.
1469 	 * XXX: This should be done after segment
1470 	 * validation to ignore broken/spoofed segs.
1471 	 */
1472 	tp->t_rcvtime = ticks;
1473 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1474 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1475 
1476 	/*
1477 	 * Unscale the window into a 32-bit value.
1478 	 * For the SYN_SENT state the scale is zero.
1479 	 */
1480 	tiwin = th->th_win << tp->snd_scale;
1481 
1482 	/*
1483 	 * TCP ECN processing.
1484 	 */
1485 	if (tp->t_flags & TF_ECN_PERMIT) {
1486 		if (thflags & TH_CWR)
1487 			tp->t_flags &= ~TF_ECN_SND_ECE;
1488 		switch (iptos & IPTOS_ECN_MASK) {
1489 		case IPTOS_ECN_CE:
1490 			tp->t_flags |= TF_ECN_SND_ECE;
1491 			TCPSTAT_INC(tcps_ecn_ce);
1492 			break;
1493 		case IPTOS_ECN_ECT0:
1494 			TCPSTAT_INC(tcps_ecn_ect0);
1495 			break;
1496 		case IPTOS_ECN_ECT1:
1497 			TCPSTAT_INC(tcps_ecn_ect1);
1498 			break;
1499 		}
1500 		/* Congestion experienced. */
1501 		if (thflags & TH_ECE) {
1502 			cc_cong_signal(tp, th, CC_ECN);
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * Parse options on any incoming segment.
1508 	 */
1509 	tcp_dooptions(&to, (u_char *)(th + 1),
1510 	    (th->th_off << 2) - sizeof(struct tcphdr),
1511 	    (thflags & TH_SYN) ? TO_SYN : 0);
1512 
1513 	/*
1514 	 * If echoed timestamp is later than the current time,
1515 	 * fall back to non RFC1323 RTT calculation.  Normalize
1516 	 * timestamp if syncookies were used when this connection
1517 	 * was established.
1518 	 */
1519 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1520 		to.to_tsecr -= tp->ts_offset;
1521 		if (TSTMP_GT(to.to_tsecr, ticks))
1522 			to.to_tsecr = 0;
1523 	}
1524 
1525 	/*
1526 	 * Process options only when we get SYN/ACK back. The SYN case
1527 	 * for incoming connections is handled in tcp_syncache.
1528 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1529 	 * or <SYN,ACK>) segment itself is never scaled.
1530 	 * XXX this is traditional behavior, may need to be cleaned up.
1531 	 */
1532 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1533 		if ((to.to_flags & TOF_SCALE) &&
1534 		    (tp->t_flags & TF_REQ_SCALE)) {
1535 			tp->t_flags |= TF_RCVD_SCALE;
1536 			tp->snd_scale = to.to_wscale;
1537 		}
1538 		/*
1539 		 * Initial send window.  It will be updated with
1540 		 * the next incoming segment to the scaled value.
1541 		 */
1542 		tp->snd_wnd = th->th_win;
1543 		if (to.to_flags & TOF_TS) {
1544 			tp->t_flags |= TF_RCVD_TSTMP;
1545 			tp->ts_recent = to.to_tsval;
1546 			tp->ts_recent_age = ticks;
1547 		}
1548 		if (to.to_flags & TOF_MSS)
1549 			tcp_mss(tp, to.to_mss);
1550 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1551 		    (to.to_flags & TOF_SACKPERM) == 0)
1552 			tp->t_flags &= ~TF_SACK_PERMIT;
1553 	}
1554 
1555 	/*
1556 	 * Header prediction: check for the two common cases
1557 	 * of a uni-directional data xfer.  If the packet has
1558 	 * no control flags, is in-sequence, the window didn't
1559 	 * change and we're not retransmitting, it's a
1560 	 * candidate.  If the length is zero and the ack moved
1561 	 * forward, we're the sender side of the xfer.  Just
1562 	 * free the data acked & wake any higher level process
1563 	 * that was blocked waiting for space.  If the length
1564 	 * is non-zero and the ack didn't move, we're the
1565 	 * receiver side.  If we're getting packets in-order
1566 	 * (the reassembly queue is empty), add the data to
1567 	 * the socket buffer and note that we need a delayed ack.
1568 	 * Make sure that the hidden state-flags are also off.
1569 	 * Since we check for TCPS_ESTABLISHED first, it can only
1570 	 * be TH_NEEDSYN.
1571 	 */
1572 	if (tp->t_state == TCPS_ESTABLISHED &&
1573 	    th->th_seq == tp->rcv_nxt &&
1574 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1575 	    tp->snd_nxt == tp->snd_max &&
1576 	    tiwin && tiwin == tp->snd_wnd &&
1577 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1578 	    LIST_EMPTY(&tp->t_segq) &&
1579 	    ((to.to_flags & TOF_TS) == 0 ||
1580 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1581 
1582 		/*
1583 		 * If last ACK falls within this segment's sequence numbers,
1584 		 * record the timestamp.
1585 		 * NOTE that the test is modified according to the latest
1586 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1587 		 */
1588 		if ((to.to_flags & TOF_TS) != 0 &&
1589 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1590 			tp->ts_recent_age = ticks;
1591 			tp->ts_recent = to.to_tsval;
1592 		}
1593 
1594 		if (tlen == 0) {
1595 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1596 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1597 			    !IN_RECOVERY(tp->t_flags) &&
1598 			    (to.to_flags & TOF_SACK) == 0 &&
1599 			    TAILQ_EMPTY(&tp->snd_holes)) {
1600 				/*
1601 				 * This is a pure ack for outstanding data.
1602 				 */
1603 				if (ti_locked == TI_WLOCKED)
1604 					INP_INFO_WUNLOCK(&V_tcbinfo);
1605 				ti_locked = TI_UNLOCKED;
1606 
1607 				TCPSTAT_INC(tcps_predack);
1608 
1609 				/*
1610 				 * "bad retransmit" recovery.
1611 				 */
1612 				if (tp->t_rxtshift == 1 &&
1613 				    tp->t_flags & TF_PREVVALID &&
1614 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1615 					cc_cong_signal(tp, th, CC_RTO_ERR);
1616 				}
1617 
1618 				/*
1619 				 * Recalculate the transmit timer / rtt.
1620 				 *
1621 				 * Some boxes send broken timestamp replies
1622 				 * during the SYN+ACK phase, ignore
1623 				 * timestamps of 0 or we could calculate a
1624 				 * huge RTT and blow up the retransmit timer.
1625 				 */
1626 				if ((to.to_flags & TOF_TS) != 0 &&
1627 				    to.to_tsecr) {
1628 					if (!tp->t_rttlow ||
1629 					    tp->t_rttlow > ticks - to.to_tsecr)
1630 						tp->t_rttlow = ticks - to.to_tsecr;
1631 					tcp_xmit_timer(tp,
1632 					    ticks - to.to_tsecr + 1);
1633 				} else if (tp->t_rtttime &&
1634 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1635 					if (!tp->t_rttlow ||
1636 					    tp->t_rttlow > ticks - tp->t_rtttime)
1637 						tp->t_rttlow = ticks - tp->t_rtttime;
1638 					tcp_xmit_timer(tp,
1639 							ticks - tp->t_rtttime);
1640 				}
1641 				acked = BYTES_THIS_ACK(tp, th);
1642 
1643 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1644 				hhook_run_tcp_est_in(tp, th, &to);
1645 
1646 				TCPSTAT_INC(tcps_rcvackpack);
1647 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1648 				sbdrop(&so->so_snd, acked);
1649 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1650 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1651 					tp->snd_recover = th->th_ack - 1;
1652 
1653 				/*
1654 				 * Let the congestion control algorithm update
1655 				 * congestion control related information. This
1656 				 * typically means increasing the congestion
1657 				 * window.
1658 				 */
1659 				cc_ack_received(tp, th, CC_ACK);
1660 
1661 				tp->snd_una = th->th_ack;
1662 				/*
1663 				 * Pull snd_wl2 up to prevent seq wrap relative
1664 				 * to th_ack.
1665 				 */
1666 				tp->snd_wl2 = th->th_ack;
1667 				tp->t_dupacks = 0;
1668 				m_freem(m);
1669 				ND6_HINT(tp); /* Some progress has been made. */
1670 
1671 				/*
1672 				 * If all outstanding data are acked, stop
1673 				 * retransmit timer, otherwise restart timer
1674 				 * using current (possibly backed-off) value.
1675 				 * If process is waiting for space,
1676 				 * wakeup/selwakeup/signal.  If data
1677 				 * are ready to send, let tcp_output
1678 				 * decide between more output or persist.
1679 				 */
1680 #ifdef TCPDEBUG
1681 				if (so->so_options & SO_DEBUG)
1682 					tcp_trace(TA_INPUT, ostate, tp,
1683 					    (void *)tcp_saveipgen,
1684 					    &tcp_savetcp, 0);
1685 #endif
1686 				if (tp->snd_una == tp->snd_max)
1687 					tcp_timer_activate(tp, TT_REXMT, 0);
1688 				else if (!tcp_timer_active(tp, TT_PERSIST))
1689 					tcp_timer_activate(tp, TT_REXMT,
1690 						      tp->t_rxtcur);
1691 				sowwakeup(so);
1692 				if (so->so_snd.sb_cc)
1693 					(void) tcp_output(tp);
1694 				goto check_delack;
1695 			}
1696 		} else if (th->th_ack == tp->snd_una &&
1697 		    tlen <= sbspace(&so->so_rcv)) {
1698 			int newsize = 0;	/* automatic sockbuf scaling */
1699 
1700 			/*
1701 			 * This is a pure, in-sequence data packet with
1702 			 * nothing on the reassembly queue and we have enough
1703 			 * buffer space to take it.
1704 			 */
1705 			if (ti_locked == TI_WLOCKED)
1706 				INP_INFO_WUNLOCK(&V_tcbinfo);
1707 			ti_locked = TI_UNLOCKED;
1708 
1709 			/* Clean receiver SACK report if present */
1710 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1711 				tcp_clean_sackreport(tp);
1712 			TCPSTAT_INC(tcps_preddat);
1713 			tp->rcv_nxt += tlen;
1714 			/*
1715 			 * Pull snd_wl1 up to prevent seq wrap relative to
1716 			 * th_seq.
1717 			 */
1718 			tp->snd_wl1 = th->th_seq;
1719 			/*
1720 			 * Pull rcv_up up to prevent seq wrap relative to
1721 			 * rcv_nxt.
1722 			 */
1723 			tp->rcv_up = tp->rcv_nxt;
1724 			TCPSTAT_INC(tcps_rcvpack);
1725 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1726 			ND6_HINT(tp);	/* Some progress has been made */
1727 #ifdef TCPDEBUG
1728 			if (so->so_options & SO_DEBUG)
1729 				tcp_trace(TA_INPUT, ostate, tp,
1730 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1731 #endif
1732 		/*
1733 		 * Automatic sizing of receive socket buffer.  Often the send
1734 		 * buffer size is not optimally adjusted to the actual network
1735 		 * conditions at hand (delay bandwidth product).  Setting the
1736 		 * buffer size too small limits throughput on links with high
1737 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1738 		 *
1739 		 * On the receive side the socket buffer memory is only rarely
1740 		 * used to any significant extent.  This allows us to be much
1741 		 * more aggressive in scaling the receive socket buffer.  For
1742 		 * the case that the buffer space is actually used to a large
1743 		 * extent and we run out of kernel memory we can simply drop
1744 		 * the new segments; TCP on the sender will just retransmit it
1745 		 * later.  Setting the buffer size too big may only consume too
1746 		 * much kernel memory if the application doesn't read() from
1747 		 * the socket or packet loss or reordering makes use of the
1748 		 * reassembly queue.
1749 		 *
1750 		 * The criteria to step up the receive buffer one notch are:
1751 		 *  1. the number of bytes received during the time it takes
1752 		 *     one timestamp to be reflected back to us (the RTT);
1753 		 *  2. received bytes per RTT is within seven eighth of the
1754 		 *     current socket buffer size;
1755 		 *  3. receive buffer size has not hit maximal automatic size;
1756 		 *
1757 		 * This algorithm does one step per RTT at most and only if
1758 		 * we receive a bulk stream w/o packet losses or reorderings.
1759 		 * Shrinking the buffer during idle times is not necessary as
1760 		 * it doesn't consume any memory when idle.
1761 		 *
1762 		 * TODO: Only step up if the application is actually serving
1763 		 * the buffer to better manage the socket buffer resources.
1764 		 */
1765 			if (V_tcp_do_autorcvbuf &&
1766 			    to.to_tsecr &&
1767 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1768 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1769 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1770 					if (tp->rfbuf_cnt >
1771 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1772 					    so->so_rcv.sb_hiwat <
1773 					    V_tcp_autorcvbuf_max) {
1774 						newsize =
1775 						    min(so->so_rcv.sb_hiwat +
1776 						    V_tcp_autorcvbuf_inc,
1777 						    V_tcp_autorcvbuf_max);
1778 					}
1779 					/* Start over with next RTT. */
1780 					tp->rfbuf_ts = 0;
1781 					tp->rfbuf_cnt = 0;
1782 				} else
1783 					tp->rfbuf_cnt += tlen;	/* add up */
1784 			}
1785 
1786 			/* Add data to socket buffer. */
1787 			SOCKBUF_LOCK(&so->so_rcv);
1788 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1789 				m_freem(m);
1790 			} else {
1791 				/*
1792 				 * Set new socket buffer size.
1793 				 * Give up when limit is reached.
1794 				 */
1795 				if (newsize)
1796 					if (!sbreserve_locked(&so->so_rcv,
1797 					    newsize, so, NULL))
1798 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1799 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1800 				sbappendstream_locked(&so->so_rcv, m);
1801 			}
1802 			/* NB: sorwakeup_locked() does an implicit unlock. */
1803 			sorwakeup_locked(so);
1804 			if (DELAY_ACK(tp)) {
1805 				tp->t_flags |= TF_DELACK;
1806 			} else {
1807 				tp->t_flags |= TF_ACKNOW;
1808 				tcp_output(tp);
1809 			}
1810 			goto check_delack;
1811 		}
1812 	}
1813 
1814 	/*
1815 	 * Calculate amount of space in receive window,
1816 	 * and then do TCP input processing.
1817 	 * Receive window is amount of space in rcv queue,
1818 	 * but not less than advertised window.
1819 	 */
1820 	win = sbspace(&so->so_rcv);
1821 	if (win < 0)
1822 		win = 0;
1823 	KASSERT(SEQ_GEQ(tp->rcv_adv, tp->rcv_nxt),
1824 	    ("tcp_input negative window: tp %p rcv_nxt %u rcv_adv %u", tp,
1825 	    tp->rcv_nxt, tp->rcv_adv));
1826 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1827 
1828 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1829 	tp->rfbuf_ts = 0;
1830 	tp->rfbuf_cnt = 0;
1831 
1832 	switch (tp->t_state) {
1833 
1834 	/*
1835 	 * If the state is SYN_RECEIVED:
1836 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1837 	 */
1838 	case TCPS_SYN_RECEIVED:
1839 		if ((thflags & TH_ACK) &&
1840 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1841 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1842 				rstreason = BANDLIM_RST_OPENPORT;
1843 				goto dropwithreset;
1844 		}
1845 		break;
1846 
1847 	/*
1848 	 * If the state is SYN_SENT:
1849 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1850 	 *	if seg contains a RST, then drop the connection.
1851 	 *	if seg does not contain SYN, then drop it.
1852 	 * Otherwise this is an acceptable SYN segment
1853 	 *	initialize tp->rcv_nxt and tp->irs
1854 	 *	if seg contains ack then advance tp->snd_una
1855 	 *	if seg contains an ECE and ECN support is enabled, the stream
1856 	 *	    is ECN capable.
1857 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1858 	 *	arrange for segment to be acked (eventually)
1859 	 *	continue processing rest of data/controls, beginning with URG
1860 	 */
1861 	case TCPS_SYN_SENT:
1862 		if ((thflags & TH_ACK) &&
1863 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1864 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1865 			rstreason = BANDLIM_UNLIMITED;
1866 			goto dropwithreset;
1867 		}
1868 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1869 			tp = tcp_drop(tp, ECONNREFUSED);
1870 		if (thflags & TH_RST)
1871 			goto drop;
1872 		if (!(thflags & TH_SYN))
1873 			goto drop;
1874 
1875 		tp->irs = th->th_seq;
1876 		tcp_rcvseqinit(tp);
1877 		if (thflags & TH_ACK) {
1878 			TCPSTAT_INC(tcps_connects);
1879 			soisconnected(so);
1880 #ifdef MAC
1881 			mac_socketpeer_set_from_mbuf(m, so);
1882 #endif
1883 			/* Do window scaling on this connection? */
1884 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1885 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1886 				tp->rcv_scale = tp->request_r_scale;
1887 			}
1888 			tp->rcv_adv += imin(tp->rcv_wnd,
1889 			    TCP_MAXWIN << tp->rcv_scale);
1890 			tp->snd_una++;		/* SYN is acked */
1891 			/*
1892 			 * If there's data, delay ACK; if there's also a FIN
1893 			 * ACKNOW will be turned on later.
1894 			 */
1895 			if (DELAY_ACK(tp) && tlen != 0)
1896 				tcp_timer_activate(tp, TT_DELACK,
1897 				    tcp_delacktime);
1898 			else
1899 				tp->t_flags |= TF_ACKNOW;
1900 
1901 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1902 				tp->t_flags |= TF_ECN_PERMIT;
1903 				TCPSTAT_INC(tcps_ecn_shs);
1904 			}
1905 
1906 			/*
1907 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1908 			 * Transitions:
1909 			 *	SYN_SENT  --> ESTABLISHED
1910 			 *	SYN_SENT* --> FIN_WAIT_1
1911 			 */
1912 			tp->t_starttime = ticks;
1913 			if (tp->t_flags & TF_NEEDFIN) {
1914 				tp->t_state = TCPS_FIN_WAIT_1;
1915 				tp->t_flags &= ~TF_NEEDFIN;
1916 				thflags &= ~TH_SYN;
1917 			} else {
1918 				tp->t_state = TCPS_ESTABLISHED;
1919 				cc_conn_init(tp);
1920 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1921 			}
1922 		} else {
1923 			/*
1924 			 * Received initial SYN in SYN-SENT[*] state =>
1925 			 * simultaneous open.  If segment contains CC option
1926 			 * and there is a cached CC, apply TAO test.
1927 			 * If it succeeds, connection is * half-synchronized.
1928 			 * Otherwise, do 3-way handshake:
1929 			 *        SYN-SENT -> SYN-RECEIVED
1930 			 *        SYN-SENT* -> SYN-RECEIVED*
1931 			 * If there was no CC option, clear cached CC value.
1932 			 */
1933 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1934 			tcp_timer_activate(tp, TT_REXMT, 0);
1935 			tp->t_state = TCPS_SYN_RECEIVED;
1936 		}
1937 
1938 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1939 		    "ti_locked %d", __func__, ti_locked));
1940 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1941 		INP_WLOCK_ASSERT(tp->t_inpcb);
1942 
1943 		/*
1944 		 * Advance th->th_seq to correspond to first data byte.
1945 		 * If data, trim to stay within window,
1946 		 * dropping FIN if necessary.
1947 		 */
1948 		th->th_seq++;
1949 		if (tlen > tp->rcv_wnd) {
1950 			todrop = tlen - tp->rcv_wnd;
1951 			m_adj(m, -todrop);
1952 			tlen = tp->rcv_wnd;
1953 			thflags &= ~TH_FIN;
1954 			TCPSTAT_INC(tcps_rcvpackafterwin);
1955 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1956 		}
1957 		tp->snd_wl1 = th->th_seq - 1;
1958 		tp->rcv_up = th->th_seq;
1959 		/*
1960 		 * Client side of transaction: already sent SYN and data.
1961 		 * If the remote host used T/TCP to validate the SYN,
1962 		 * our data will be ACK'd; if so, enter normal data segment
1963 		 * processing in the middle of step 5, ack processing.
1964 		 * Otherwise, goto step 6.
1965 		 */
1966 		if (thflags & TH_ACK)
1967 			goto process_ACK;
1968 
1969 		goto step6;
1970 
1971 	/*
1972 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1973 	 *      do normal processing.
1974 	 *
1975 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1976 	 */
1977 	case TCPS_LAST_ACK:
1978 	case TCPS_CLOSING:
1979 		break;  /* continue normal processing */
1980 	}
1981 
1982 	/*
1983 	 * States other than LISTEN or SYN_SENT.
1984 	 * First check the RST flag and sequence number since reset segments
1985 	 * are exempt from the timestamp and connection count tests.  This
1986 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1987 	 * below which allowed reset segments in half the sequence space
1988 	 * to fall though and be processed (which gives forged reset
1989 	 * segments with a random sequence number a 50 percent chance of
1990 	 * killing a connection).
1991 	 * Then check timestamp, if present.
1992 	 * Then check the connection count, if present.
1993 	 * Then check that at least some bytes of segment are within
1994 	 * receive window.  If segment begins before rcv_nxt,
1995 	 * drop leading data (and SYN); if nothing left, just ack.
1996 	 *
1997 	 *
1998 	 * If the RST bit is set, check the sequence number to see
1999 	 * if this is a valid reset segment.
2000 	 * RFC 793 page 37:
2001 	 *   In all states except SYN-SENT, all reset (RST) segments
2002 	 *   are validated by checking their SEQ-fields.  A reset is
2003 	 *   valid if its sequence number is in the window.
2004 	 * Note: this does not take into account delayed ACKs, so
2005 	 *   we should test against last_ack_sent instead of rcv_nxt.
2006 	 *   The sequence number in the reset segment is normally an
2007 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2008 	 *   send a reset with the sequence number at the rightmost edge
2009 	 *   of our receive window, and we have to handle this case.
2010 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2011 	 *   that brute force RST attacks are possible.  To combat this,
2012 	 *   we use a much stricter check while in the ESTABLISHED state,
2013 	 *   only accepting RSTs where the sequence number is equal to
2014 	 *   last_ack_sent.  In all other states (the states in which a
2015 	 *   RST is more likely), the more permissive check is used.
2016 	 * If we have multiple segments in flight, the initial reset
2017 	 * segment sequence numbers will be to the left of last_ack_sent,
2018 	 * but they will eventually catch up.
2019 	 * In any case, it never made sense to trim reset segments to
2020 	 * fit the receive window since RFC 1122 says:
2021 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2022 	 *
2023 	 *    A TCP SHOULD allow a received RST segment to include data.
2024 	 *
2025 	 *    DISCUSSION
2026 	 *         It has been suggested that a RST segment could contain
2027 	 *         ASCII text that encoded and explained the cause of the
2028 	 *         RST.  No standard has yet been established for such
2029 	 *         data.
2030 	 *
2031 	 * If the reset segment passes the sequence number test examine
2032 	 * the state:
2033 	 *    SYN_RECEIVED STATE:
2034 	 *	If passive open, return to LISTEN state.
2035 	 *	If active open, inform user that connection was refused.
2036 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2037 	 *	Inform user that connection was reset, and close tcb.
2038 	 *    CLOSING, LAST_ACK STATES:
2039 	 *	Close the tcb.
2040 	 *    TIME_WAIT STATE:
2041 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2042 	 *      RFC 1337.
2043 	 */
2044 	if (thflags & TH_RST) {
2045 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2046 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2047 			switch (tp->t_state) {
2048 
2049 			case TCPS_SYN_RECEIVED:
2050 				so->so_error = ECONNREFUSED;
2051 				goto close;
2052 
2053 			case TCPS_ESTABLISHED:
2054 				if (V_tcp_insecure_rst == 0 &&
2055 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2056 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2057 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2058 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2059 					TCPSTAT_INC(tcps_badrst);
2060 					goto drop;
2061 				}
2062 				/* FALLTHROUGH */
2063 			case TCPS_FIN_WAIT_1:
2064 			case TCPS_FIN_WAIT_2:
2065 			case TCPS_CLOSE_WAIT:
2066 				so->so_error = ECONNRESET;
2067 			close:
2068 				KASSERT(ti_locked == TI_WLOCKED,
2069 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2070 				    ti_locked));
2071 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2072 
2073 				tp->t_state = TCPS_CLOSED;
2074 				TCPSTAT_INC(tcps_drops);
2075 				tp = tcp_close(tp);
2076 				break;
2077 
2078 			case TCPS_CLOSING:
2079 			case TCPS_LAST_ACK:
2080 				KASSERT(ti_locked == TI_WLOCKED,
2081 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2082 				    ti_locked));
2083 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2084 
2085 				tp = tcp_close(tp);
2086 				break;
2087 			}
2088 		}
2089 		goto drop;
2090 	}
2091 
2092 	/*
2093 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2094 	 * and it's less than ts_recent, drop it.
2095 	 */
2096 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2097 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2098 
2099 		/* Check to see if ts_recent is over 24 days old.  */
2100 		if (ticks - tp->ts_recent_age > TCP_PAWS_IDLE) {
2101 			/*
2102 			 * Invalidate ts_recent.  If this segment updates
2103 			 * ts_recent, the age will be reset later and ts_recent
2104 			 * will get a valid value.  If it does not, setting
2105 			 * ts_recent to zero will at least satisfy the
2106 			 * requirement that zero be placed in the timestamp
2107 			 * echo reply when ts_recent isn't valid.  The
2108 			 * age isn't reset until we get a valid ts_recent
2109 			 * because we don't want out-of-order segments to be
2110 			 * dropped when ts_recent is old.
2111 			 */
2112 			tp->ts_recent = 0;
2113 		} else {
2114 			TCPSTAT_INC(tcps_rcvduppack);
2115 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2116 			TCPSTAT_INC(tcps_pawsdrop);
2117 			if (tlen)
2118 				goto dropafterack;
2119 			goto drop;
2120 		}
2121 	}
2122 
2123 	/*
2124 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2125 	 * this connection before trimming the data to fit the receive
2126 	 * window.  Check the sequence number versus IRS since we know
2127 	 * the sequence numbers haven't wrapped.  This is a partial fix
2128 	 * for the "LAND" DoS attack.
2129 	 */
2130 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2131 		rstreason = BANDLIM_RST_OPENPORT;
2132 		goto dropwithreset;
2133 	}
2134 
2135 	todrop = tp->rcv_nxt - th->th_seq;
2136 	if (todrop > 0) {
2137 		/*
2138 		 * If this is a duplicate SYN for our current connection,
2139 		 * advance over it and pretend and it's not a SYN.
2140 		 */
2141 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2142 			thflags &= ~TH_SYN;
2143 			th->th_seq++;
2144 			if (th->th_urp > 1)
2145 				th->th_urp--;
2146 			else
2147 				thflags &= ~TH_URG;
2148 			todrop--;
2149 		}
2150 		/*
2151 		 * Following if statement from Stevens, vol. 2, p. 960.
2152 		 */
2153 		if (todrop > tlen
2154 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2155 			/*
2156 			 * Any valid FIN must be to the left of the window.
2157 			 * At this point the FIN must be a duplicate or out
2158 			 * of sequence; drop it.
2159 			 */
2160 			thflags &= ~TH_FIN;
2161 
2162 			/*
2163 			 * Send an ACK to resynchronize and drop any data.
2164 			 * But keep on processing for RST or ACK.
2165 			 */
2166 			tp->t_flags |= TF_ACKNOW;
2167 			todrop = tlen;
2168 			TCPSTAT_INC(tcps_rcvduppack);
2169 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2170 		} else {
2171 			TCPSTAT_INC(tcps_rcvpartduppack);
2172 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2173 		}
2174 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2175 		th->th_seq += todrop;
2176 		tlen -= todrop;
2177 		if (th->th_urp > todrop)
2178 			th->th_urp -= todrop;
2179 		else {
2180 			thflags &= ~TH_URG;
2181 			th->th_urp = 0;
2182 		}
2183 	}
2184 
2185 	/*
2186 	 * If new data are received on a connection after the
2187 	 * user processes are gone, then RST the other end.
2188 	 */
2189 	if ((so->so_state & SS_NOFDREF) &&
2190 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2191 		char *s;
2192 
2193 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2194 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2195 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2196 
2197 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2198 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2199 			    "was closed, sending RST and removing tcpcb\n",
2200 			    s, __func__, tcpstates[tp->t_state], tlen);
2201 			free(s, M_TCPLOG);
2202 		}
2203 		tp = tcp_close(tp);
2204 		TCPSTAT_INC(tcps_rcvafterclose);
2205 		rstreason = BANDLIM_UNLIMITED;
2206 		goto dropwithreset;
2207 	}
2208 
2209 	/*
2210 	 * If segment ends after window, drop trailing data
2211 	 * (and PUSH and FIN); if nothing left, just ACK.
2212 	 */
2213 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2214 	if (todrop > 0) {
2215 		TCPSTAT_INC(tcps_rcvpackafterwin);
2216 		if (todrop >= tlen) {
2217 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2218 			/*
2219 			 * If window is closed can only take segments at
2220 			 * window edge, and have to drop data and PUSH from
2221 			 * incoming segments.  Continue processing, but
2222 			 * remember to ack.  Otherwise, drop segment
2223 			 * and ack.
2224 			 */
2225 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2226 				tp->t_flags |= TF_ACKNOW;
2227 				TCPSTAT_INC(tcps_rcvwinprobe);
2228 			} else
2229 				goto dropafterack;
2230 		} else
2231 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2232 		m_adj(m, -todrop);
2233 		tlen -= todrop;
2234 		thflags &= ~(TH_PUSH|TH_FIN);
2235 	}
2236 
2237 	/*
2238 	 * If last ACK falls within this segment's sequence numbers,
2239 	 * record its timestamp.
2240 	 * NOTE:
2241 	 * 1) That the test incorporates suggestions from the latest
2242 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2243 	 * 2) That updating only on newer timestamps interferes with
2244 	 *    our earlier PAWS tests, so this check should be solely
2245 	 *    predicated on the sequence space of this segment.
2246 	 * 3) That we modify the segment boundary check to be
2247 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2248 	 *    instead of RFC1323's
2249 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2250 	 *    This modified check allows us to overcome RFC1323's
2251 	 *    limitations as described in Stevens TCP/IP Illustrated
2252 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2253 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2254 	 */
2255 	if ((to.to_flags & TOF_TS) != 0 &&
2256 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2257 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2258 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2259 		tp->ts_recent_age = ticks;
2260 		tp->ts_recent = to.to_tsval;
2261 	}
2262 
2263 	/*
2264 	 * If a SYN is in the window, then this is an
2265 	 * error and we send an RST and drop the connection.
2266 	 */
2267 	if (thflags & TH_SYN) {
2268 		KASSERT(ti_locked == TI_WLOCKED,
2269 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2270 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2271 
2272 		tp = tcp_drop(tp, ECONNRESET);
2273 		rstreason = BANDLIM_UNLIMITED;
2274 		goto drop;
2275 	}
2276 
2277 	/*
2278 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2279 	 * flag is on (half-synchronized state), then queue data for
2280 	 * later processing; else drop segment and return.
2281 	 */
2282 	if ((thflags & TH_ACK) == 0) {
2283 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2284 		    (tp->t_flags & TF_NEEDSYN))
2285 			goto step6;
2286 		else if (tp->t_flags & TF_ACKNOW)
2287 			goto dropafterack;
2288 		else
2289 			goto drop;
2290 	}
2291 
2292 	/*
2293 	 * Ack processing.
2294 	 */
2295 	switch (tp->t_state) {
2296 
2297 	/*
2298 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2299 	 * ESTABLISHED state and continue processing.
2300 	 * The ACK was checked above.
2301 	 */
2302 	case TCPS_SYN_RECEIVED:
2303 
2304 		TCPSTAT_INC(tcps_connects);
2305 		soisconnected(so);
2306 		/* Do window scaling? */
2307 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2308 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2309 			tp->rcv_scale = tp->request_r_scale;
2310 			tp->snd_wnd = tiwin;
2311 		}
2312 		/*
2313 		 * Make transitions:
2314 		 *      SYN-RECEIVED  -> ESTABLISHED
2315 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2316 		 */
2317 		tp->t_starttime = ticks;
2318 		if (tp->t_flags & TF_NEEDFIN) {
2319 			tp->t_state = TCPS_FIN_WAIT_1;
2320 			tp->t_flags &= ~TF_NEEDFIN;
2321 		} else {
2322 			tp->t_state = TCPS_ESTABLISHED;
2323 			cc_conn_init(tp);
2324 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2325 		}
2326 		/*
2327 		 * If segment contains data or ACK, will call tcp_reass()
2328 		 * later; if not, do so now to pass queued data to user.
2329 		 */
2330 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2331 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2332 			    (struct mbuf *)0);
2333 		tp->snd_wl1 = th->th_seq - 1;
2334 		/* FALLTHROUGH */
2335 
2336 	/*
2337 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2338 	 * ACKs.  If the ack is in the range
2339 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2340 	 * then advance tp->snd_una to th->th_ack and drop
2341 	 * data from the retransmission queue.  If this ACK reflects
2342 	 * more up to date window information we update our window information.
2343 	 */
2344 	case TCPS_ESTABLISHED:
2345 	case TCPS_FIN_WAIT_1:
2346 	case TCPS_FIN_WAIT_2:
2347 	case TCPS_CLOSE_WAIT:
2348 	case TCPS_CLOSING:
2349 	case TCPS_LAST_ACK:
2350 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2351 			TCPSTAT_INC(tcps_rcvacktoomuch);
2352 			goto dropafterack;
2353 		}
2354 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2355 		    ((to.to_flags & TOF_SACK) ||
2356 		     !TAILQ_EMPTY(&tp->snd_holes)))
2357 			tcp_sack_doack(tp, &to, th->th_ack);
2358 
2359 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2360 		hhook_run_tcp_est_in(tp, th, &to);
2361 
2362 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2363 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2364 				TCPSTAT_INC(tcps_rcvdupack);
2365 				/*
2366 				 * If we have outstanding data (other than
2367 				 * a window probe), this is a completely
2368 				 * duplicate ack (ie, window info didn't
2369 				 * change), the ack is the biggest we've
2370 				 * seen and we've seen exactly our rexmt
2371 				 * threshhold of them, assume a packet
2372 				 * has been dropped and retransmit it.
2373 				 * Kludge snd_nxt & the congestion
2374 				 * window so we send only this one
2375 				 * packet.
2376 				 *
2377 				 * We know we're losing at the current
2378 				 * window size so do congestion avoidance
2379 				 * (set ssthresh to half the current window
2380 				 * and pull our congestion window back to
2381 				 * the new ssthresh).
2382 				 *
2383 				 * Dup acks mean that packets have left the
2384 				 * network (they're now cached at the receiver)
2385 				 * so bump cwnd by the amount in the receiver
2386 				 * to keep a constant cwnd packets in the
2387 				 * network.
2388 				 *
2389 				 * When using TCP ECN, notify the peer that
2390 				 * we reduced the cwnd.
2391 				 */
2392 				if (!tcp_timer_active(tp, TT_REXMT) ||
2393 				    th->th_ack != tp->snd_una)
2394 					tp->t_dupacks = 0;
2395 				else if (++tp->t_dupacks > tcprexmtthresh ||
2396 				     IN_FASTRECOVERY(tp->t_flags)) {
2397 					cc_ack_received(tp, th, CC_DUPACK);
2398 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2399 					    IN_FASTRECOVERY(tp->t_flags)) {
2400 						int awnd;
2401 
2402 						/*
2403 						 * Compute the amount of data in flight first.
2404 						 * We can inject new data into the pipe iff
2405 						 * we have less than 1/2 the original window's
2406 						 * worth of data in flight.
2407 						 */
2408 						awnd = (tp->snd_nxt - tp->snd_fack) +
2409 							tp->sackhint.sack_bytes_rexmit;
2410 						if (awnd < tp->snd_ssthresh) {
2411 							tp->snd_cwnd += tp->t_maxseg;
2412 							if (tp->snd_cwnd > tp->snd_ssthresh)
2413 								tp->snd_cwnd = tp->snd_ssthresh;
2414 						}
2415 					} else
2416 						tp->snd_cwnd += tp->t_maxseg;
2417 					(void) tcp_output(tp);
2418 					goto drop;
2419 				} else if (tp->t_dupacks == tcprexmtthresh) {
2420 					tcp_seq onxt = tp->snd_nxt;
2421 
2422 					/*
2423 					 * If we're doing sack, check to
2424 					 * see if we're already in sack
2425 					 * recovery. If we're not doing sack,
2426 					 * check to see if we're in newreno
2427 					 * recovery.
2428 					 */
2429 					if (tp->t_flags & TF_SACK_PERMIT) {
2430 						if (IN_FASTRECOVERY(tp->t_flags)) {
2431 							tp->t_dupacks = 0;
2432 							break;
2433 						}
2434 					} else {
2435 						if (SEQ_LEQ(th->th_ack,
2436 						    tp->snd_recover)) {
2437 							tp->t_dupacks = 0;
2438 							break;
2439 						}
2440 					}
2441 					/* Congestion signal before ack. */
2442 					cc_cong_signal(tp, th, CC_NDUPACK);
2443 					cc_ack_received(tp, th, CC_DUPACK);
2444 					tcp_timer_activate(tp, TT_REXMT, 0);
2445 					tp->t_rtttime = 0;
2446 					if (tp->t_flags & TF_SACK_PERMIT) {
2447 						TCPSTAT_INC(
2448 						    tcps_sack_recovery_episode);
2449 						tp->sack_newdata = tp->snd_nxt;
2450 						tp->snd_cwnd = tp->t_maxseg;
2451 						(void) tcp_output(tp);
2452 						goto drop;
2453 					}
2454 					tp->snd_nxt = th->th_ack;
2455 					tp->snd_cwnd = tp->t_maxseg;
2456 					(void) tcp_output(tp);
2457 					KASSERT(tp->snd_limited <= 2,
2458 					    ("%s: tp->snd_limited too big",
2459 					    __func__));
2460 					tp->snd_cwnd = tp->snd_ssthresh +
2461 					     tp->t_maxseg *
2462 					     (tp->t_dupacks - tp->snd_limited);
2463 					if (SEQ_GT(onxt, tp->snd_nxt))
2464 						tp->snd_nxt = onxt;
2465 					goto drop;
2466 				} else if (V_tcp_do_rfc3042) {
2467 					cc_ack_received(tp, th, CC_DUPACK);
2468 					u_long oldcwnd = tp->snd_cwnd;
2469 					tcp_seq oldsndmax = tp->snd_max;
2470 					u_int sent;
2471 
2472 					KASSERT(tp->t_dupacks == 1 ||
2473 					    tp->t_dupacks == 2,
2474 					    ("%s: dupacks not 1 or 2",
2475 					    __func__));
2476 					if (tp->t_dupacks == 1)
2477 						tp->snd_limited = 0;
2478 					tp->snd_cwnd =
2479 					    (tp->snd_nxt - tp->snd_una) +
2480 					    (tp->t_dupacks - tp->snd_limited) *
2481 					    tp->t_maxseg;
2482 					(void) tcp_output(tp);
2483 					sent = tp->snd_max - oldsndmax;
2484 					if (sent > tp->t_maxseg) {
2485 						KASSERT((tp->t_dupacks == 2 &&
2486 						    tp->snd_limited == 0) ||
2487 						   (sent == tp->t_maxseg + 1 &&
2488 						    tp->t_flags & TF_SENTFIN),
2489 						    ("%s: sent too much",
2490 						    __func__));
2491 						tp->snd_limited = 2;
2492 					} else if (sent > 0)
2493 						++tp->snd_limited;
2494 					tp->snd_cwnd = oldcwnd;
2495 					goto drop;
2496 				}
2497 			} else
2498 				tp->t_dupacks = 0;
2499 			break;
2500 		}
2501 
2502 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2503 		    ("%s: th_ack <= snd_una", __func__));
2504 
2505 		/*
2506 		 * If the congestion window was inflated to account
2507 		 * for the other side's cached packets, retract it.
2508 		 */
2509 		if (IN_FASTRECOVERY(tp->t_flags)) {
2510 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2511 				if (tp->t_flags & TF_SACK_PERMIT)
2512 					tcp_sack_partialack(tp, th);
2513 				else
2514 					tcp_newreno_partial_ack(tp, th);
2515 			} else
2516 				cc_post_recovery(tp, th);
2517 		}
2518 		tp->t_dupacks = 0;
2519 		/*
2520 		 * If we reach this point, ACK is not a duplicate,
2521 		 *     i.e., it ACKs something we sent.
2522 		 */
2523 		if (tp->t_flags & TF_NEEDSYN) {
2524 			/*
2525 			 * T/TCP: Connection was half-synchronized, and our
2526 			 * SYN has been ACK'd (so connection is now fully
2527 			 * synchronized).  Go to non-starred state,
2528 			 * increment snd_una for ACK of SYN, and check if
2529 			 * we can do window scaling.
2530 			 */
2531 			tp->t_flags &= ~TF_NEEDSYN;
2532 			tp->snd_una++;
2533 			/* Do window scaling? */
2534 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2535 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2536 				tp->rcv_scale = tp->request_r_scale;
2537 				/* Send window already scaled. */
2538 			}
2539 		}
2540 
2541 process_ACK:
2542 		INP_WLOCK_ASSERT(tp->t_inpcb);
2543 
2544 		acked = BYTES_THIS_ACK(tp, th);
2545 		TCPSTAT_INC(tcps_rcvackpack);
2546 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2547 
2548 		/*
2549 		 * If we just performed our first retransmit, and the ACK
2550 		 * arrives within our recovery window, then it was a mistake
2551 		 * to do the retransmit in the first place.  Recover our
2552 		 * original cwnd and ssthresh, and proceed to transmit where
2553 		 * we left off.
2554 		 */
2555 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2556 		    (int)(ticks - tp->t_badrxtwin) < 0)
2557 			cc_cong_signal(tp, th, CC_RTO_ERR);
2558 
2559 		/*
2560 		 * If we have a timestamp reply, update smoothed
2561 		 * round trip time.  If no timestamp is present but
2562 		 * transmit timer is running and timed sequence
2563 		 * number was acked, update smoothed round trip time.
2564 		 * Since we now have an rtt measurement, cancel the
2565 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2566 		 * Recompute the initial retransmit timer.
2567 		 *
2568 		 * Some boxes send broken timestamp replies
2569 		 * during the SYN+ACK phase, ignore
2570 		 * timestamps of 0 or we could calculate a
2571 		 * huge RTT and blow up the retransmit timer.
2572 		 */
2573 		if ((to.to_flags & TOF_TS) != 0 &&
2574 		    to.to_tsecr) {
2575 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2576 				tp->t_rttlow = ticks - to.to_tsecr;
2577 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2578 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2579 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2580 				tp->t_rttlow = ticks - tp->t_rtttime;
2581 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2582 		}
2583 
2584 		/*
2585 		 * If all outstanding data is acked, stop retransmit
2586 		 * timer and remember to restart (more output or persist).
2587 		 * If there is more data to be acked, restart retransmit
2588 		 * timer, using current (possibly backed-off) value.
2589 		 */
2590 		if (th->th_ack == tp->snd_max) {
2591 			tcp_timer_activate(tp, TT_REXMT, 0);
2592 			needoutput = 1;
2593 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2594 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2595 
2596 		/*
2597 		 * If no data (only SYN) was ACK'd,
2598 		 *    skip rest of ACK processing.
2599 		 */
2600 		if (acked == 0)
2601 			goto step6;
2602 
2603 		/*
2604 		 * Let the congestion control algorithm update congestion
2605 		 * control related information. This typically means increasing
2606 		 * the congestion window.
2607 		 */
2608 		cc_ack_received(tp, th, CC_ACK);
2609 
2610 		SOCKBUF_LOCK(&so->so_snd);
2611 		if (acked > so->so_snd.sb_cc) {
2612 			tp->snd_wnd -= so->so_snd.sb_cc;
2613 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2614 			ourfinisacked = 1;
2615 		} else {
2616 			sbdrop_locked(&so->so_snd, acked);
2617 			tp->snd_wnd -= acked;
2618 			ourfinisacked = 0;
2619 		}
2620 		/* NB: sowwakeup_locked() does an implicit unlock. */
2621 		sowwakeup_locked(so);
2622 		/* Detect una wraparound. */
2623 		if (!IN_RECOVERY(tp->t_flags) &&
2624 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2625 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2626 			tp->snd_recover = th->th_ack - 1;
2627 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2628 		if (IN_RECOVERY(tp->t_flags) &&
2629 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2630 			EXIT_RECOVERY(tp->t_flags);
2631 		}
2632 		tp->snd_una = th->th_ack;
2633 		if (tp->t_flags & TF_SACK_PERMIT) {
2634 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2635 				tp->snd_recover = tp->snd_una;
2636 		}
2637 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2638 			tp->snd_nxt = tp->snd_una;
2639 
2640 		switch (tp->t_state) {
2641 
2642 		/*
2643 		 * In FIN_WAIT_1 STATE in addition to the processing
2644 		 * for the ESTABLISHED state if our FIN is now acknowledged
2645 		 * then enter FIN_WAIT_2.
2646 		 */
2647 		case TCPS_FIN_WAIT_1:
2648 			if (ourfinisacked) {
2649 				/*
2650 				 * If we can't receive any more
2651 				 * data, then closing user can proceed.
2652 				 * Starting the timer is contrary to the
2653 				 * specification, but if we don't get a FIN
2654 				 * we'll hang forever.
2655 				 *
2656 				 * XXXjl:
2657 				 * we should release the tp also, and use a
2658 				 * compressed state.
2659 				 */
2660 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2661 					int timeout;
2662 
2663 					soisdisconnected(so);
2664 					timeout = (tcp_fast_finwait2_recycle) ?
2665 						tcp_finwait2_timeout : tcp_maxidle;
2666 					tcp_timer_activate(tp, TT_2MSL, timeout);
2667 				}
2668 				tp->t_state = TCPS_FIN_WAIT_2;
2669 			}
2670 			break;
2671 
2672 		/*
2673 		 * In CLOSING STATE in addition to the processing for
2674 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2675 		 * then enter the TIME-WAIT state, otherwise ignore
2676 		 * the segment.
2677 		 */
2678 		case TCPS_CLOSING:
2679 			if (ourfinisacked) {
2680 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2681 				tcp_twstart(tp);
2682 				INP_INFO_WUNLOCK(&V_tcbinfo);
2683 				m_freem(m);
2684 				return;
2685 			}
2686 			break;
2687 
2688 		/*
2689 		 * In LAST_ACK, we may still be waiting for data to drain
2690 		 * and/or to be acked, as well as for the ack of our FIN.
2691 		 * If our FIN is now acknowledged, delete the TCB,
2692 		 * enter the closed state and return.
2693 		 */
2694 		case TCPS_LAST_ACK:
2695 			if (ourfinisacked) {
2696 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2697 				tp = tcp_close(tp);
2698 				goto drop;
2699 			}
2700 			break;
2701 		}
2702 	}
2703 
2704 step6:
2705 	INP_WLOCK_ASSERT(tp->t_inpcb);
2706 
2707 	/*
2708 	 * Update window information.
2709 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2710 	 */
2711 	if ((thflags & TH_ACK) &&
2712 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2713 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2714 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2715 		/* keep track of pure window updates */
2716 		if (tlen == 0 &&
2717 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2718 			TCPSTAT_INC(tcps_rcvwinupd);
2719 		tp->snd_wnd = tiwin;
2720 		tp->snd_wl1 = th->th_seq;
2721 		tp->snd_wl2 = th->th_ack;
2722 		if (tp->snd_wnd > tp->max_sndwnd)
2723 			tp->max_sndwnd = tp->snd_wnd;
2724 		needoutput = 1;
2725 	}
2726 
2727 	/*
2728 	 * Process segments with URG.
2729 	 */
2730 	if ((thflags & TH_URG) && th->th_urp &&
2731 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2732 		/*
2733 		 * This is a kludge, but if we receive and accept
2734 		 * random urgent pointers, we'll crash in
2735 		 * soreceive.  It's hard to imagine someone
2736 		 * actually wanting to send this much urgent data.
2737 		 */
2738 		SOCKBUF_LOCK(&so->so_rcv);
2739 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2740 			th->th_urp = 0;			/* XXX */
2741 			thflags &= ~TH_URG;		/* XXX */
2742 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2743 			goto dodata;			/* XXX */
2744 		}
2745 		/*
2746 		 * If this segment advances the known urgent pointer,
2747 		 * then mark the data stream.  This should not happen
2748 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2749 		 * a FIN has been received from the remote side.
2750 		 * In these states we ignore the URG.
2751 		 *
2752 		 * According to RFC961 (Assigned Protocols),
2753 		 * the urgent pointer points to the last octet
2754 		 * of urgent data.  We continue, however,
2755 		 * to consider it to indicate the first octet
2756 		 * of data past the urgent section as the original
2757 		 * spec states (in one of two places).
2758 		 */
2759 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2760 			tp->rcv_up = th->th_seq + th->th_urp;
2761 			so->so_oobmark = so->so_rcv.sb_cc +
2762 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2763 			if (so->so_oobmark == 0)
2764 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2765 			sohasoutofband(so);
2766 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2767 		}
2768 		SOCKBUF_UNLOCK(&so->so_rcv);
2769 		/*
2770 		 * Remove out of band data so doesn't get presented to user.
2771 		 * This can happen independent of advancing the URG pointer,
2772 		 * but if two URG's are pending at once, some out-of-band
2773 		 * data may creep in... ick.
2774 		 */
2775 		if (th->th_urp <= (u_long)tlen &&
2776 		    !(so->so_options & SO_OOBINLINE)) {
2777 			/* hdr drop is delayed */
2778 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2779 		}
2780 	} else {
2781 		/*
2782 		 * If no out of band data is expected,
2783 		 * pull receive urgent pointer along
2784 		 * with the receive window.
2785 		 */
2786 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2787 			tp->rcv_up = tp->rcv_nxt;
2788 	}
2789 dodata:							/* XXX */
2790 	INP_WLOCK_ASSERT(tp->t_inpcb);
2791 
2792 	/*
2793 	 * Process the segment text, merging it into the TCP sequencing queue,
2794 	 * and arranging for acknowledgment of receipt if necessary.
2795 	 * This process logically involves adjusting tp->rcv_wnd as data
2796 	 * is presented to the user (this happens in tcp_usrreq.c,
2797 	 * case PRU_RCVD).  If a FIN has already been received on this
2798 	 * connection then we just ignore the text.
2799 	 */
2800 	if ((tlen || (thflags & TH_FIN)) &&
2801 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2802 		tcp_seq save_start = th->th_seq;
2803 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2804 		/*
2805 		 * Insert segment which includes th into TCP reassembly queue
2806 		 * with control block tp.  Set thflags to whether reassembly now
2807 		 * includes a segment with FIN.  This handles the common case
2808 		 * inline (segment is the next to be received on an established
2809 		 * connection, and the queue is empty), avoiding linkage into
2810 		 * and removal from the queue and repetition of various
2811 		 * conversions.
2812 		 * Set DELACK for segments received in order, but ack
2813 		 * immediately when segments are out of order (so
2814 		 * fast retransmit can work).
2815 		 */
2816 		if (th->th_seq == tp->rcv_nxt &&
2817 		    LIST_EMPTY(&tp->t_segq) &&
2818 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2819 			if (DELAY_ACK(tp))
2820 				tp->t_flags |= TF_DELACK;
2821 			else
2822 				tp->t_flags |= TF_ACKNOW;
2823 			tp->rcv_nxt += tlen;
2824 			thflags = th->th_flags & TH_FIN;
2825 			TCPSTAT_INC(tcps_rcvpack);
2826 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2827 			ND6_HINT(tp);
2828 			SOCKBUF_LOCK(&so->so_rcv);
2829 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2830 				m_freem(m);
2831 			else
2832 				sbappendstream_locked(&so->so_rcv, m);
2833 			/* NB: sorwakeup_locked() does an implicit unlock. */
2834 			sorwakeup_locked(so);
2835 		} else {
2836 			/*
2837 			 * XXX: Due to the header drop above "th" is
2838 			 * theoretically invalid by now.  Fortunately
2839 			 * m_adj() doesn't actually frees any mbufs
2840 			 * when trimming from the head.
2841 			 */
2842 			thflags = tcp_reass(tp, th, &tlen, m);
2843 			tp->t_flags |= TF_ACKNOW;
2844 		}
2845 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2846 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2847 #if 0
2848 		/*
2849 		 * Note the amount of data that peer has sent into
2850 		 * our window, in order to estimate the sender's
2851 		 * buffer size.
2852 		 * XXX: Unused.
2853 		 */
2854 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2855 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2856 		else
2857 			len = so->so_rcv.sb_hiwat;
2858 #endif
2859 	} else {
2860 		m_freem(m);
2861 		thflags &= ~TH_FIN;
2862 	}
2863 
2864 	/*
2865 	 * If FIN is received ACK the FIN and let the user know
2866 	 * that the connection is closing.
2867 	 */
2868 	if (thflags & TH_FIN) {
2869 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2870 			socantrcvmore(so);
2871 			/*
2872 			 * If connection is half-synchronized
2873 			 * (ie NEEDSYN flag on) then delay ACK,
2874 			 * so it may be piggybacked when SYN is sent.
2875 			 * Otherwise, since we received a FIN then no
2876 			 * more input can be expected, send ACK now.
2877 			 */
2878 			if (tp->t_flags & TF_NEEDSYN)
2879 				tp->t_flags |= TF_DELACK;
2880 			else
2881 				tp->t_flags |= TF_ACKNOW;
2882 			tp->rcv_nxt++;
2883 		}
2884 		switch (tp->t_state) {
2885 
2886 		/*
2887 		 * In SYN_RECEIVED and ESTABLISHED STATES
2888 		 * enter the CLOSE_WAIT state.
2889 		 */
2890 		case TCPS_SYN_RECEIVED:
2891 			tp->t_starttime = ticks;
2892 			/* FALLTHROUGH */
2893 		case TCPS_ESTABLISHED:
2894 			tp->t_state = TCPS_CLOSE_WAIT;
2895 			break;
2896 
2897 		/*
2898 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2899 		 * enter the CLOSING state.
2900 		 */
2901 		case TCPS_FIN_WAIT_1:
2902 			tp->t_state = TCPS_CLOSING;
2903 			break;
2904 
2905 		/*
2906 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2907 		 * starting the time-wait timer, turning off the other
2908 		 * standard timers.
2909 		 */
2910 		case TCPS_FIN_WAIT_2:
2911 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2912 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2913 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2914 			    ti_locked));
2915 
2916 			tcp_twstart(tp);
2917 			INP_INFO_WUNLOCK(&V_tcbinfo);
2918 			return;
2919 		}
2920 	}
2921 	if (ti_locked == TI_WLOCKED)
2922 		INP_INFO_WUNLOCK(&V_tcbinfo);
2923 	ti_locked = TI_UNLOCKED;
2924 
2925 #ifdef TCPDEBUG
2926 	if (so->so_options & SO_DEBUG)
2927 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2928 			  &tcp_savetcp, 0);
2929 #endif
2930 
2931 	/*
2932 	 * Return any desired output.
2933 	 */
2934 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2935 		(void) tcp_output(tp);
2936 
2937 check_delack:
2938 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2939 	    __func__, ti_locked));
2940 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2941 	INP_WLOCK_ASSERT(tp->t_inpcb);
2942 
2943 	if (tp->t_flags & TF_DELACK) {
2944 		tp->t_flags &= ~TF_DELACK;
2945 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2946 	}
2947 	INP_WUNLOCK(tp->t_inpcb);
2948 	return;
2949 
2950 dropafterack:
2951 	/*
2952 	 * Generate an ACK dropping incoming segment if it occupies
2953 	 * sequence space, where the ACK reflects our state.
2954 	 *
2955 	 * We can now skip the test for the RST flag since all
2956 	 * paths to this code happen after packets containing
2957 	 * RST have been dropped.
2958 	 *
2959 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2960 	 * segment we received passes the SYN-RECEIVED ACK test.
2961 	 * If it fails send a RST.  This breaks the loop in the
2962 	 * "LAND" DoS attack, and also prevents an ACK storm
2963 	 * between two listening ports that have been sent forged
2964 	 * SYN segments, each with the source address of the other.
2965 	 */
2966 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2967 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2968 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2969 		rstreason = BANDLIM_RST_OPENPORT;
2970 		goto dropwithreset;
2971 	}
2972 #ifdef TCPDEBUG
2973 	if (so->so_options & SO_DEBUG)
2974 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2975 			  &tcp_savetcp, 0);
2976 #endif
2977 	if (ti_locked == TI_WLOCKED)
2978 		INP_INFO_WUNLOCK(&V_tcbinfo);
2979 	ti_locked = TI_UNLOCKED;
2980 
2981 	tp->t_flags |= TF_ACKNOW;
2982 	(void) tcp_output(tp);
2983 	INP_WUNLOCK(tp->t_inpcb);
2984 	m_freem(m);
2985 	return;
2986 
2987 dropwithreset:
2988 	if (ti_locked == TI_WLOCKED)
2989 		INP_INFO_WUNLOCK(&V_tcbinfo);
2990 	ti_locked = TI_UNLOCKED;
2991 
2992 	if (tp != NULL) {
2993 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2994 		INP_WUNLOCK(tp->t_inpcb);
2995 	} else
2996 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2997 	return;
2998 
2999 drop:
3000 	if (ti_locked == TI_WLOCKED) {
3001 		INP_INFO_WUNLOCK(&V_tcbinfo);
3002 		ti_locked = TI_UNLOCKED;
3003 	}
3004 #ifdef INVARIANTS
3005 	else
3006 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3007 #endif
3008 
3009 	/*
3010 	 * Drop space held by incoming segment and return.
3011 	 */
3012 #ifdef TCPDEBUG
3013 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3014 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3015 			  &tcp_savetcp, 0);
3016 #endif
3017 	if (tp != NULL)
3018 		INP_WUNLOCK(tp->t_inpcb);
3019 	m_freem(m);
3020 }
3021 
3022 /*
3023  * Issue RST and make ACK acceptable to originator of segment.
3024  * The mbuf must still include the original packet header.
3025  * tp may be NULL.
3026  */
3027 static void
3028 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3029     int tlen, int rstreason)
3030 {
3031 #ifdef INET
3032 	struct ip *ip;
3033 #endif
3034 #ifdef INET6
3035 	struct ip6_hdr *ip6;
3036 #endif
3037 
3038 	if (tp != NULL) {
3039 		INP_WLOCK_ASSERT(tp->t_inpcb);
3040 	}
3041 
3042 	/* Don't bother if destination was broadcast/multicast. */
3043 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3044 		goto drop;
3045 #ifdef INET6
3046 	if (mtod(m, struct ip *)->ip_v == 6) {
3047 		ip6 = mtod(m, struct ip6_hdr *);
3048 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3049 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3050 			goto drop;
3051 		/* IPv6 anycast check is done at tcp6_input() */
3052 	}
3053 #endif
3054 #if defined(INET) && defined(INET6)
3055 	else
3056 #endif
3057 #ifdef INET
3058 	{
3059 		ip = mtod(m, struct ip *);
3060 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3061 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3062 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3063 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3064 			goto drop;
3065 	}
3066 #endif
3067 
3068 	/* Perform bandwidth limiting. */
3069 	if (badport_bandlim(rstreason) < 0)
3070 		goto drop;
3071 
3072 	/* tcp_respond consumes the mbuf chain. */
3073 	if (th->th_flags & TH_ACK) {
3074 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3075 		    th->th_ack, TH_RST);
3076 	} else {
3077 		if (th->th_flags & TH_SYN)
3078 			tlen++;
3079 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3080 		    (tcp_seq)0, TH_RST|TH_ACK);
3081 	}
3082 	return;
3083 drop:
3084 	m_freem(m);
3085 }
3086 
3087 /*
3088  * Parse TCP options and place in tcpopt.
3089  */
3090 static void
3091 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3092 {
3093 	int opt, optlen;
3094 
3095 	to->to_flags = 0;
3096 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3097 		opt = cp[0];
3098 		if (opt == TCPOPT_EOL)
3099 			break;
3100 		if (opt == TCPOPT_NOP)
3101 			optlen = 1;
3102 		else {
3103 			if (cnt < 2)
3104 				break;
3105 			optlen = cp[1];
3106 			if (optlen < 2 || optlen > cnt)
3107 				break;
3108 		}
3109 		switch (opt) {
3110 		case TCPOPT_MAXSEG:
3111 			if (optlen != TCPOLEN_MAXSEG)
3112 				continue;
3113 			if (!(flags & TO_SYN))
3114 				continue;
3115 			to->to_flags |= TOF_MSS;
3116 			bcopy((char *)cp + 2,
3117 			    (char *)&to->to_mss, sizeof(to->to_mss));
3118 			to->to_mss = ntohs(to->to_mss);
3119 			break;
3120 		case TCPOPT_WINDOW:
3121 			if (optlen != TCPOLEN_WINDOW)
3122 				continue;
3123 			if (!(flags & TO_SYN))
3124 				continue;
3125 			to->to_flags |= TOF_SCALE;
3126 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3127 			break;
3128 		case TCPOPT_TIMESTAMP:
3129 			if (optlen != TCPOLEN_TIMESTAMP)
3130 				continue;
3131 			to->to_flags |= TOF_TS;
3132 			bcopy((char *)cp + 2,
3133 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3134 			to->to_tsval = ntohl(to->to_tsval);
3135 			bcopy((char *)cp + 6,
3136 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3137 			to->to_tsecr = ntohl(to->to_tsecr);
3138 			break;
3139 #ifdef TCP_SIGNATURE
3140 		/*
3141 		 * XXX In order to reply to a host which has set the
3142 		 * TCP_SIGNATURE option in its initial SYN, we have to
3143 		 * record the fact that the option was observed here
3144 		 * for the syncache code to perform the correct response.
3145 		 */
3146 		case TCPOPT_SIGNATURE:
3147 			if (optlen != TCPOLEN_SIGNATURE)
3148 				continue;
3149 			to->to_flags |= TOF_SIGNATURE;
3150 			to->to_signature = cp + 2;
3151 			break;
3152 #endif
3153 		case TCPOPT_SACK_PERMITTED:
3154 			if (optlen != TCPOLEN_SACK_PERMITTED)
3155 				continue;
3156 			if (!(flags & TO_SYN))
3157 				continue;
3158 			if (!V_tcp_do_sack)
3159 				continue;
3160 			to->to_flags |= TOF_SACKPERM;
3161 			break;
3162 		case TCPOPT_SACK:
3163 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3164 				continue;
3165 			if (flags & TO_SYN)
3166 				continue;
3167 			to->to_flags |= TOF_SACK;
3168 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3169 			to->to_sacks = cp + 2;
3170 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3171 			break;
3172 		default:
3173 			continue;
3174 		}
3175 	}
3176 }
3177 
3178 /*
3179  * Pull out of band byte out of a segment so
3180  * it doesn't appear in the user's data queue.
3181  * It is still reflected in the segment length for
3182  * sequencing purposes.
3183  */
3184 static void
3185 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3186     int off)
3187 {
3188 	int cnt = off + th->th_urp - 1;
3189 
3190 	while (cnt >= 0) {
3191 		if (m->m_len > cnt) {
3192 			char *cp = mtod(m, caddr_t) + cnt;
3193 			struct tcpcb *tp = sototcpcb(so);
3194 
3195 			INP_WLOCK_ASSERT(tp->t_inpcb);
3196 
3197 			tp->t_iobc = *cp;
3198 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3199 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3200 			m->m_len--;
3201 			if (m->m_flags & M_PKTHDR)
3202 				m->m_pkthdr.len--;
3203 			return;
3204 		}
3205 		cnt -= m->m_len;
3206 		m = m->m_next;
3207 		if (m == NULL)
3208 			break;
3209 	}
3210 	panic("tcp_pulloutofband");
3211 }
3212 
3213 /*
3214  * Collect new round-trip time estimate
3215  * and update averages and current timeout.
3216  */
3217 static void
3218 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3219 {
3220 	int delta;
3221 
3222 	INP_WLOCK_ASSERT(tp->t_inpcb);
3223 
3224 	TCPSTAT_INC(tcps_rttupdated);
3225 	tp->t_rttupdated++;
3226 	if (tp->t_srtt != 0) {
3227 		/*
3228 		 * srtt is stored as fixed point with 5 bits after the
3229 		 * binary point (i.e., scaled by 8).  The following magic
3230 		 * is equivalent to the smoothing algorithm in rfc793 with
3231 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3232 		 * point).  Adjust rtt to origin 0.
3233 		 */
3234 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3235 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3236 
3237 		if ((tp->t_srtt += delta) <= 0)
3238 			tp->t_srtt = 1;
3239 
3240 		/*
3241 		 * We accumulate a smoothed rtt variance (actually, a
3242 		 * smoothed mean difference), then set the retransmit
3243 		 * timer to smoothed rtt + 4 times the smoothed variance.
3244 		 * rttvar is stored as fixed point with 4 bits after the
3245 		 * binary point (scaled by 16).  The following is
3246 		 * equivalent to rfc793 smoothing with an alpha of .75
3247 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3248 		 * rfc793's wired-in beta.
3249 		 */
3250 		if (delta < 0)
3251 			delta = -delta;
3252 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3253 		if ((tp->t_rttvar += delta) <= 0)
3254 			tp->t_rttvar = 1;
3255 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3256 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3257 	} else {
3258 		/*
3259 		 * No rtt measurement yet - use the unsmoothed rtt.
3260 		 * Set the variance to half the rtt (so our first
3261 		 * retransmit happens at 3*rtt).
3262 		 */
3263 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3264 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3265 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3266 	}
3267 	tp->t_rtttime = 0;
3268 	tp->t_rxtshift = 0;
3269 
3270 	/*
3271 	 * the retransmit should happen at rtt + 4 * rttvar.
3272 	 * Because of the way we do the smoothing, srtt and rttvar
3273 	 * will each average +1/2 tick of bias.  When we compute
3274 	 * the retransmit timer, we want 1/2 tick of rounding and
3275 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3276 	 * firing of the timer.  The bias will give us exactly the
3277 	 * 1.5 tick we need.  But, because the bias is
3278 	 * statistical, we have to test that we don't drop below
3279 	 * the minimum feasible timer (which is 2 ticks).
3280 	 */
3281 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3282 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3283 
3284 	/*
3285 	 * We received an ack for a packet that wasn't retransmitted;
3286 	 * it is probably safe to discard any error indications we've
3287 	 * received recently.  This isn't quite right, but close enough
3288 	 * for now (a route might have failed after we sent a segment,
3289 	 * and the return path might not be symmetrical).
3290 	 */
3291 	tp->t_softerror = 0;
3292 }
3293 
3294 /*
3295  * Determine a reasonable value for maxseg size.
3296  * If the route is known, check route for mtu.
3297  * If none, use an mss that can be handled on the outgoing
3298  * interface without forcing IP to fragment; if bigger than
3299  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3300  * to utilize large mbufs.  If no route is found, route has no mtu,
3301  * or the destination isn't local, use a default, hopefully conservative
3302  * size (usually 512 or the default IP max size, but no more than the mtu
3303  * of the interface), as we can't discover anything about intervening
3304  * gateways or networks.  We also initialize the congestion/slow start
3305  * window to be a single segment if the destination isn't local.
3306  * While looking at the routing entry, we also initialize other path-dependent
3307  * parameters from pre-set or cached values in the routing entry.
3308  *
3309  * Also take into account the space needed for options that we
3310  * send regularly.  Make maxseg shorter by that amount to assure
3311  * that we can send maxseg amount of data even when the options
3312  * are present.  Store the upper limit of the length of options plus
3313  * data in maxopd.
3314  *
3315  * In case of T/TCP, we call this routine during implicit connection
3316  * setup as well (offer = -1), to initialize maxseg from the cached
3317  * MSS of our peer.
3318  *
3319  * NOTE that this routine is only called when we process an incoming
3320  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3321  */
3322 void
3323 tcp_mss_update(struct tcpcb *tp, int offer,
3324     struct hc_metrics_lite *metricptr, int *mtuflags)
3325 {
3326 	int mss = 0;
3327 	u_long maxmtu = 0;
3328 	struct inpcb *inp = tp->t_inpcb;
3329 	struct hc_metrics_lite metrics;
3330 	int origoffer = offer;
3331 #ifdef INET6
3332 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3333 	size_t min_protoh = isipv6 ?
3334 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3335 			    sizeof (struct tcpiphdr);
3336 #else
3337 	const size_t min_protoh = sizeof(struct tcpiphdr);
3338 #endif
3339 
3340 	INP_WLOCK_ASSERT(tp->t_inpcb);
3341 
3342 	/* Initialize. */
3343 #ifdef INET6
3344 	if (isipv6) {
3345 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3346 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3347 	}
3348 #endif
3349 #if defined(INET) && defined(INET6)
3350 	else
3351 #endif
3352 #ifdef INET
3353 	{
3354 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3355 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3356 	}
3357 #endif
3358 
3359 	/*
3360 	 * No route to sender, stay with default mss and return.
3361 	 */
3362 	if (maxmtu == 0) {
3363 		/*
3364 		 * In case we return early we need to initialize metrics
3365 		 * to a defined state as tcp_hc_get() would do for us
3366 		 * if there was no cache hit.
3367 		 */
3368 		if (metricptr != NULL)
3369 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3370 		return;
3371 	}
3372 
3373 	/* What have we got? */
3374 	switch (offer) {
3375 		case 0:
3376 			/*
3377 			 * Offer == 0 means that there was no MSS on the SYN
3378 			 * segment, in this case we use tcp_mssdflt as
3379 			 * already assigned to t_maxopd above.
3380 			 */
3381 			offer = tp->t_maxopd;
3382 			break;
3383 
3384 		case -1:
3385 			/*
3386 			 * Offer == -1 means that we didn't receive SYN yet.
3387 			 */
3388 			/* FALLTHROUGH */
3389 
3390 		default:
3391 			/*
3392 			 * Prevent DoS attack with too small MSS. Round up
3393 			 * to at least minmss.
3394 			 */
3395 			offer = max(offer, V_tcp_minmss);
3396 	}
3397 
3398 	/*
3399 	 * rmx information is now retrieved from tcp_hostcache.
3400 	 */
3401 	tcp_hc_get(&inp->inp_inc, &metrics);
3402 	if (metricptr != NULL)
3403 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3404 
3405 	/*
3406 	 * If there's a discovered mtu int tcp hostcache, use it
3407 	 * else, use the link mtu.
3408 	 */
3409 	if (metrics.rmx_mtu)
3410 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3411 	else {
3412 #ifdef INET6
3413 		if (isipv6) {
3414 			mss = maxmtu - min_protoh;
3415 			if (!V_path_mtu_discovery &&
3416 			    !in6_localaddr(&inp->in6p_faddr))
3417 				mss = min(mss, V_tcp_v6mssdflt);
3418 		}
3419 #endif
3420 #if defined(INET) && defined(INET6)
3421 		else
3422 #endif
3423 #ifdef INET
3424 		{
3425 			mss = maxmtu - min_protoh;
3426 			if (!V_path_mtu_discovery &&
3427 			    !in_localaddr(inp->inp_faddr))
3428 				mss = min(mss, V_tcp_mssdflt);
3429 		}
3430 #endif
3431 		/*
3432 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3433 		 * probably violates the TCP spec.
3434 		 * The problem is that, since we don't know the
3435 		 * other end's MSS, we are supposed to use a conservative
3436 		 * default.  But, if we do that, then MTU discovery will
3437 		 * never actually take place, because the conservative
3438 		 * default is much less than the MTUs typically seen
3439 		 * on the Internet today.  For the moment, we'll sweep
3440 		 * this under the carpet.
3441 		 *
3442 		 * The conservative default might not actually be a problem
3443 		 * if the only case this occurs is when sending an initial
3444 		 * SYN with options and data to a host we've never talked
3445 		 * to before.  Then, they will reply with an MSS value which
3446 		 * will get recorded and the new parameters should get
3447 		 * recomputed.  For Further Study.
3448 		 */
3449 	}
3450 	mss = min(mss, offer);
3451 
3452 	/*
3453 	 * Sanity check: make sure that maxopd will be large
3454 	 * enough to allow some data on segments even if the
3455 	 * all the option space is used (40bytes).  Otherwise
3456 	 * funny things may happen in tcp_output.
3457 	 */
3458 	mss = max(mss, 64);
3459 
3460 	/*
3461 	 * maxopd stores the maximum length of data AND options
3462 	 * in a segment; maxseg is the amount of data in a normal
3463 	 * segment.  We need to store this value (maxopd) apart
3464 	 * from maxseg, because now every segment carries options
3465 	 * and thus we normally have somewhat less data in segments.
3466 	 */
3467 	tp->t_maxopd = mss;
3468 
3469 	/*
3470 	 * origoffer==-1 indicates that no segments were received yet.
3471 	 * In this case we just guess.
3472 	 */
3473 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3474 	    (origoffer == -1 ||
3475 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3476 		mss -= TCPOLEN_TSTAMP_APPA;
3477 
3478 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3479 	if (mss > MCLBYTES)
3480 		mss &= ~(MCLBYTES-1);
3481 #else
3482 	if (mss > MCLBYTES)
3483 		mss = mss / MCLBYTES * MCLBYTES;
3484 #endif
3485 	tp->t_maxseg = mss;
3486 }
3487 
3488 void
3489 tcp_mss(struct tcpcb *tp, int offer)
3490 {
3491 	int mss;
3492 	u_long bufsize;
3493 	struct inpcb *inp;
3494 	struct socket *so;
3495 	struct hc_metrics_lite metrics;
3496 	int mtuflags = 0;
3497 
3498 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3499 
3500 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3501 
3502 	mss = tp->t_maxseg;
3503 	inp = tp->t_inpcb;
3504 
3505 	/*
3506 	 * If there's a pipesize, change the socket buffer to that size,
3507 	 * don't change if sb_hiwat is different than default (then it
3508 	 * has been changed on purpose with setsockopt).
3509 	 * Make the socket buffers an integral number of mss units;
3510 	 * if the mss is larger than the socket buffer, decrease the mss.
3511 	 */
3512 	so = inp->inp_socket;
3513 	SOCKBUF_LOCK(&so->so_snd);
3514 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3515 		bufsize = metrics.rmx_sendpipe;
3516 	else
3517 		bufsize = so->so_snd.sb_hiwat;
3518 	if (bufsize < mss)
3519 		mss = bufsize;
3520 	else {
3521 		bufsize = roundup(bufsize, mss);
3522 		if (bufsize > sb_max)
3523 			bufsize = sb_max;
3524 		if (bufsize > so->so_snd.sb_hiwat)
3525 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3526 	}
3527 	SOCKBUF_UNLOCK(&so->so_snd);
3528 	tp->t_maxseg = mss;
3529 
3530 	SOCKBUF_LOCK(&so->so_rcv);
3531 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3532 		bufsize = metrics.rmx_recvpipe;
3533 	else
3534 		bufsize = so->so_rcv.sb_hiwat;
3535 	if (bufsize > mss) {
3536 		bufsize = roundup(bufsize, mss);
3537 		if (bufsize > sb_max)
3538 			bufsize = sb_max;
3539 		if (bufsize > so->so_rcv.sb_hiwat)
3540 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3541 	}
3542 	SOCKBUF_UNLOCK(&so->so_rcv);
3543 
3544 	/* Check the interface for TSO capabilities. */
3545 	if (mtuflags & CSUM_TSO)
3546 		tp->t_flags |= TF_TSO;
3547 }
3548 
3549 /*
3550  * Determine the MSS option to send on an outgoing SYN.
3551  */
3552 int
3553 tcp_mssopt(struct in_conninfo *inc)
3554 {
3555 	int mss = 0;
3556 	u_long maxmtu = 0;
3557 	u_long thcmtu = 0;
3558 	size_t min_protoh;
3559 
3560 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3561 
3562 #ifdef INET6
3563 	if (inc->inc_flags & INC_ISIPV6) {
3564 		mss = V_tcp_v6mssdflt;
3565 		maxmtu = tcp_maxmtu6(inc, NULL);
3566 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3567 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3568 	}
3569 #endif
3570 #if defined(INET) && defined(INET6)
3571 	else
3572 #endif
3573 #ifdef INET
3574 	{
3575 		mss = V_tcp_mssdflt;
3576 		maxmtu = tcp_maxmtu(inc, NULL);
3577 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3578 		min_protoh = sizeof(struct tcpiphdr);
3579 	}
3580 #endif
3581 	if (maxmtu && thcmtu)
3582 		mss = min(maxmtu, thcmtu) - min_protoh;
3583 	else if (maxmtu || thcmtu)
3584 		mss = max(maxmtu, thcmtu) - min_protoh;
3585 
3586 	return (mss);
3587 }
3588 
3589 
3590 /*
3591  * On a partial ack arrives, force the retransmission of the
3592  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3593  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3594  * be started again.
3595  */
3596 static void
3597 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3598 {
3599 	tcp_seq onxt = tp->snd_nxt;
3600 	u_long  ocwnd = tp->snd_cwnd;
3601 
3602 	INP_WLOCK_ASSERT(tp->t_inpcb);
3603 
3604 	tcp_timer_activate(tp, TT_REXMT, 0);
3605 	tp->t_rtttime = 0;
3606 	tp->snd_nxt = th->th_ack;
3607 	/*
3608 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3609 	 * (tp->snd_una has not yet been updated when this function is called.)
3610 	 */
3611 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3612 	tp->t_flags |= TF_ACKNOW;
3613 	(void) tcp_output(tp);
3614 	tp->snd_cwnd = ocwnd;
3615 	if (SEQ_GT(onxt, tp->snd_nxt))
3616 		tp->snd_nxt = onxt;
3617 	/*
3618 	 * Partial window deflation.  Relies on fact that tp->snd_una
3619 	 * not updated yet.
3620 	 */
3621 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3622 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3623 	else
3624 		tp->snd_cwnd = 0;
3625 	tp->snd_cwnd += tp->t_maxseg;
3626 }
3627