xref: /freebsd/sys/netinet/tcp_input.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_input.h"
40 #include "opt_tcp_sack.h"
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/mac.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>		/* for proc0 declaration */
48 #include <sys/protosw.h>
49 #include <sys/signalvar.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 
56 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
69 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_options.h>
72 #include <netinet/ip6.h>
73 #include <netinet/icmp6.h>
74 #include <netinet6/in6_pcb.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/nd6.h>
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_fsm.h>
79 #include <netinet/tcp_seq.h>
80 #include <netinet/tcp_timer.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet6/tcp6_var.h>
83 #include <netinet/tcpip.h>
84 #ifdef TCPDEBUG
85 #include <netinet/tcp_debug.h>
86 #endif /* TCPDEBUG */
87 
88 #ifdef FAST_IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/ipsec6.h>
91 #endif /*FAST_IPSEC*/
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #include <netinet6/ipsec6.h>
96 #include <netkey/key.h>
97 #endif /*IPSEC*/
98 
99 #include <machine/in_cksum.h>
100 
101 static const int tcprexmtthresh = 3;
102 
103 struct	tcpstat tcpstat;
104 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
105     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
106 
107 static int log_in_vain = 0;
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
109     &log_in_vain, 0, "Log all incoming TCP connections");
110 
111 static int blackhole = 0;
112 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
113 	&blackhole, 0, "Do not send RST when dropping refused connections");
114 
115 int tcp_delack_enabled = 1;
116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
117     &tcp_delack_enabled, 0,
118     "Delay ACK to try and piggyback it onto a data packet");
119 
120 #ifdef TCP_DROP_SYNFIN
121 static int drop_synfin = 0;
122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
123     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
124 #endif
125 
126 static int tcp_do_rfc3042 = 1;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
128     &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
129 
130 static int tcp_do_rfc3390 = 1;
131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
132     &tcp_do_rfc3390, 0,
133     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
134 
135 static int tcp_insecure_rst = 0;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
137     &tcp_insecure_rst, 0,
138     "Follow the old (insecure) criteria for accepting RST packets.");
139 
140 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
141 	    "TCP Segment Reassembly Queue");
142 
143 static int tcp_reass_maxseg = 0;
144 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RDTUN,
145 	   &tcp_reass_maxseg, 0,
146 	   "Global maximum number of TCP Segments in Reassembly Queue");
147 
148 int tcp_reass_qsize = 0;
149 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
150 	   &tcp_reass_qsize, 0,
151 	   "Global number of TCP Segments currently in Reassembly Queue");
152 
153 static int tcp_reass_maxqlen = 48;
154 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxqlen, CTLFLAG_RW,
155 	   &tcp_reass_maxqlen, 0,
156 	   "Maximum number of TCP Segments per individual Reassembly Queue");
157 
158 static int tcp_reass_overflows = 0;
159 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
160 	   &tcp_reass_overflows, 0,
161 	   "Global number of TCP Segment Reassembly Queue Overflows");
162 
163 struct inpcbhead tcb;
164 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
165 struct inpcbinfo tcbinfo;
166 struct mtx	*tcbinfo_mtx;
167 
168 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
169 
170 static void	 tcp_pulloutofband(struct socket *,
171 		     struct tcphdr *, struct mbuf *, int);
172 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
173 		     struct mbuf *);
174 static void	 tcp_xmit_timer(struct tcpcb *, int);
175 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
176 static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
177 		     struct tcphdr *, struct mbuf *, int);
178 
179 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
180 #ifdef INET6
181 #define ND6_HINT(tp) \
182 do { \
183 	if ((tp) && (tp)->t_inpcb && \
184 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
185 		nd6_nud_hint(NULL, NULL, 0); \
186 } while (0)
187 #else
188 #define ND6_HINT(tp)
189 #endif
190 
191 /*
192  * Indicate whether this ack should be delayed.  We can delay the ack if
193  *	- there is no delayed ack timer in progress and
194  *	- our last ack wasn't a 0-sized window.  We never want to delay
195  *	  the ack that opens up a 0-sized window and
196  *		- delayed acks are enabled or
197  *		- this is a half-synchronized T/TCP connection.
198  */
199 #define DELAY_ACK(tp)							\
200 	((!callout_active(tp->tt_delack) &&				\
201 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
202 	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
203 
204 /* Initialize TCP reassembly queue */
205 uma_zone_t	tcp_reass_zone;
206 void
207 tcp_reass_init()
208 {
209 	tcp_reass_maxseg = nmbclusters / 16;
210 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
211 	    &tcp_reass_maxseg);
212 	tcp_reass_zone = uma_zcreate("tcpreass", sizeof (struct tseg_qent),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214 	uma_zone_set_max(tcp_reass_zone, tcp_reass_maxseg);
215 }
216 
217 static int
218 tcp_reass(tp, th, tlenp, m)
219 	register struct tcpcb *tp;
220 	register struct tcphdr *th;
221 	int *tlenp;
222 	struct mbuf *m;
223 {
224 	struct tseg_qent *q;
225 	struct tseg_qent *p = NULL;
226 	struct tseg_qent *nq;
227 	struct tseg_qent *te = NULL;
228 	struct socket *so = tp->t_inpcb->inp_socket;
229 	int flags;
230 
231 	INP_LOCK_ASSERT(tp->t_inpcb);
232 
233 	/*
234 	 * XXX: tcp_reass() is rather inefficient with its data structures
235 	 * and should be rewritten (see NetBSD for optimizations).  While
236 	 * doing that it should move to its own file tcp_reass.c.
237 	 */
238 
239 	/*
240 	 * Call with th==NULL after become established to
241 	 * force pre-ESTABLISHED data up to user socket.
242 	 */
243 	if (th == NULL)
244 		goto present;
245 
246 	/*
247 	 * Limit the number of segments in the reassembly queue to prevent
248 	 * holding on to too many segments (and thus running out of mbufs).
249 	 * Make sure to let the missing segment through which caused this
250 	 * queue.  Always keep one global queue entry spare to be able to
251 	 * process the missing segment.
252 	 */
253 	if (th->th_seq != tp->rcv_nxt &&
254 	    (tcp_reass_qsize + 1 >= tcp_reass_maxseg ||
255 	     tp->t_segqlen >= tcp_reass_maxqlen)) {
256 		tcp_reass_overflows++;
257 		tcpstat.tcps_rcvmemdrop++;
258 		m_freem(m);
259 		*tlenp = 0;
260 		return (0);
261 	}
262 
263 	/*
264 	 * Allocate a new queue entry. If we can't, or hit the zone limit
265 	 * just drop the pkt.
266 	 */
267 	te = uma_zalloc(tcp_reass_zone, M_NOWAIT);
268 	if (te == NULL) {
269 		tcpstat.tcps_rcvmemdrop++;
270 		m_freem(m);
271 		*tlenp = 0;
272 		return (0);
273 	}
274 	tp->t_segqlen++;
275 	tcp_reass_qsize++;
276 
277 	/*
278 	 * Find a segment which begins after this one does.
279 	 */
280 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
281 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
282 			break;
283 		p = q;
284 	}
285 
286 	/*
287 	 * If there is a preceding segment, it may provide some of
288 	 * our data already.  If so, drop the data from the incoming
289 	 * segment.  If it provides all of our data, drop us.
290 	 */
291 	if (p != NULL) {
292 		register int i;
293 		/* conversion to int (in i) handles seq wraparound */
294 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
295 		if (i > 0) {
296 			if (i >= *tlenp) {
297 				tcpstat.tcps_rcvduppack++;
298 				tcpstat.tcps_rcvdupbyte += *tlenp;
299 				m_freem(m);
300 				uma_zfree(tcp_reass_zone, te);
301 				tp->t_segqlen--;
302 				tcp_reass_qsize--;
303 				/*
304 				 * Try to present any queued data
305 				 * at the left window edge to the user.
306 				 * This is needed after the 3-WHS
307 				 * completes.
308 				 */
309 				goto present;	/* ??? */
310 			}
311 			m_adj(m, i);
312 			*tlenp -= i;
313 			th->th_seq += i;
314 		}
315 	}
316 	tcpstat.tcps_rcvoopack++;
317 	tcpstat.tcps_rcvoobyte += *tlenp;
318 
319 	/*
320 	 * While we overlap succeeding segments trim them or,
321 	 * if they are completely covered, dequeue them.
322 	 */
323 	while (q) {
324 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
325 		if (i <= 0)
326 			break;
327 		if (i < q->tqe_len) {
328 			q->tqe_th->th_seq += i;
329 			q->tqe_len -= i;
330 			m_adj(q->tqe_m, i);
331 			break;
332 		}
333 
334 		nq = LIST_NEXT(q, tqe_q);
335 		LIST_REMOVE(q, tqe_q);
336 		m_freem(q->tqe_m);
337 		uma_zfree(tcp_reass_zone, q);
338 		tp->t_segqlen--;
339 		tcp_reass_qsize--;
340 		q = nq;
341 	}
342 
343 	/* Insert the new segment queue entry into place. */
344 	te->tqe_m = m;
345 	te->tqe_th = th;
346 	te->tqe_len = *tlenp;
347 
348 	if (p == NULL) {
349 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
350 	} else {
351 		LIST_INSERT_AFTER(p, te, tqe_q);
352 	}
353 
354 present:
355 	/*
356 	 * Present data to user, advancing rcv_nxt through
357 	 * completed sequence space.
358 	 */
359 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
360 		return (0);
361 	q = LIST_FIRST(&tp->t_segq);
362 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
363 		return (0);
364 	SOCKBUF_LOCK(&so->so_rcv);
365 	do {
366 		tp->rcv_nxt += q->tqe_len;
367 		flags = q->tqe_th->th_flags & TH_FIN;
368 		nq = LIST_NEXT(q, tqe_q);
369 		LIST_REMOVE(q, tqe_q);
370 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
371 			m_freem(q->tqe_m);
372 		else
373 			sbappendstream_locked(&so->so_rcv, q->tqe_m);
374 		uma_zfree(tcp_reass_zone, q);
375 		tp->t_segqlen--;
376 		tcp_reass_qsize--;
377 		q = nq;
378 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
379 	ND6_HINT(tp);
380 	sorwakeup_locked(so);
381 	return (flags);
382 }
383 
384 /*
385  * TCP input routine, follows pages 65-76 of the
386  * protocol specification dated September, 1981 very closely.
387  */
388 #ifdef INET6
389 int
390 tcp6_input(mp, offp, proto)
391 	struct mbuf **mp;
392 	int *offp, proto;
393 {
394 	register struct mbuf *m = *mp;
395 	struct in6_ifaddr *ia6;
396 
397 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
398 
399 	/*
400 	 * draft-itojun-ipv6-tcp-to-anycast
401 	 * better place to put this in?
402 	 */
403 	ia6 = ip6_getdstifaddr(m);
404 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
405 		struct ip6_hdr *ip6;
406 
407 		ip6 = mtod(m, struct ip6_hdr *);
408 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
409 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
410 		return IPPROTO_DONE;
411 	}
412 
413 	tcp_input(m, *offp);
414 	return IPPROTO_DONE;
415 }
416 #endif
417 
418 void
419 tcp_input(m, off0)
420 	register struct mbuf *m;
421 	int off0;
422 {
423 	register struct tcphdr *th;
424 	register struct ip *ip = NULL;
425 	register struct ipovly *ipov;
426 	register struct inpcb *inp = NULL;
427 	u_char *optp = NULL;
428 	int optlen = 0;
429 	int len, tlen, off;
430 	int drop_hdrlen;
431 	register struct tcpcb *tp = 0;
432 	register int thflags;
433 	struct socket *so = 0;
434 	int todrop, acked, ourfinisacked, needoutput = 0;
435 	u_long tiwin;
436 	struct tcpopt to;		/* options in this segment */
437 	int headlocked = 0;
438 #ifdef IPFIREWALL_FORWARD
439 	struct m_tag *fwd_tag;
440 #endif
441 	int rstreason; /* For badport_bandlim accounting purposes */
442 
443 	struct ip6_hdr *ip6 = NULL;
444 #ifdef INET6
445 	int isipv6;
446 #else
447 	const int isipv6 = 0;
448 #endif
449 
450 #ifdef TCPDEBUG
451 	/*
452 	 * The size of tcp_saveipgen must be the size of the max ip header,
453 	 * now IPv6.
454 	 */
455 	u_char tcp_saveipgen[40];
456 	struct tcphdr tcp_savetcp;
457 	short ostate = 0;
458 #endif
459 
460 #ifdef INET6
461 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
462 #endif
463 	bzero((char *)&to, sizeof(to));
464 
465 	tcpstat.tcps_rcvtotal++;
466 
467 	if (isipv6) {
468 #ifdef INET6
469 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
470 		ip6 = mtod(m, struct ip6_hdr *);
471 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
472 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
473 			tcpstat.tcps_rcvbadsum++;
474 			goto drop;
475 		}
476 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
477 
478 		/*
479 		 * Be proactive about unspecified IPv6 address in source.
480 		 * As we use all-zero to indicate unbounded/unconnected pcb,
481 		 * unspecified IPv6 address can be used to confuse us.
482 		 *
483 		 * Note that packets with unspecified IPv6 destination is
484 		 * already dropped in ip6_input.
485 		 */
486 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
487 			/* XXX stat */
488 			goto drop;
489 		}
490 #else
491 		th = NULL;		/* XXX: avoid compiler warning */
492 #endif
493 	} else {
494 		/*
495 		 * Get IP and TCP header together in first mbuf.
496 		 * Note: IP leaves IP header in first mbuf.
497 		 */
498 		if (off0 > sizeof (struct ip)) {
499 			ip_stripoptions(m, (struct mbuf *)0);
500 			off0 = sizeof(struct ip);
501 		}
502 		if (m->m_len < sizeof (struct tcpiphdr)) {
503 			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
504 				tcpstat.tcps_rcvshort++;
505 				return;
506 			}
507 		}
508 		ip = mtod(m, struct ip *);
509 		ipov = (struct ipovly *)ip;
510 		th = (struct tcphdr *)((caddr_t)ip + off0);
511 		tlen = ip->ip_len;
512 
513 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
514 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
515 				th->th_sum = m->m_pkthdr.csum_data;
516 			else
517 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
518 						ip->ip_dst.s_addr,
519 						htonl(m->m_pkthdr.csum_data +
520 							ip->ip_len +
521 							IPPROTO_TCP));
522 			th->th_sum ^= 0xffff;
523 #ifdef TCPDEBUG
524 			ipov->ih_len = (u_short)tlen;
525 			ipov->ih_len = htons(ipov->ih_len);
526 #endif
527 		} else {
528 			/*
529 			 * Checksum extended TCP header and data.
530 			 */
531 			len = sizeof (struct ip) + tlen;
532 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
533 			ipov->ih_len = (u_short)tlen;
534 			ipov->ih_len = htons(ipov->ih_len);
535 			th->th_sum = in_cksum(m, len);
536 		}
537 		if (th->th_sum) {
538 			tcpstat.tcps_rcvbadsum++;
539 			goto drop;
540 		}
541 #ifdef INET6
542 		/* Re-initialization for later version check */
543 		ip->ip_v = IPVERSION;
544 #endif
545 	}
546 
547 	/*
548 	 * Check that TCP offset makes sense,
549 	 * pull out TCP options and adjust length.		XXX
550 	 */
551 	off = th->th_off << 2;
552 	if (off < sizeof (struct tcphdr) || off > tlen) {
553 		tcpstat.tcps_rcvbadoff++;
554 		goto drop;
555 	}
556 	tlen -= off;	/* tlen is used instead of ti->ti_len */
557 	if (off > sizeof (struct tcphdr)) {
558 		if (isipv6) {
559 #ifdef INET6
560 			IP6_EXTHDR_CHECK(m, off0, off, );
561 			ip6 = mtod(m, struct ip6_hdr *);
562 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
563 #endif
564 		} else {
565 			if (m->m_len < sizeof(struct ip) + off) {
566 				if ((m = m_pullup(m, sizeof (struct ip) + off))
567 						== 0) {
568 					tcpstat.tcps_rcvshort++;
569 					return;
570 				}
571 				ip = mtod(m, struct ip *);
572 				ipov = (struct ipovly *)ip;
573 				th = (struct tcphdr *)((caddr_t)ip + off0);
574 			}
575 		}
576 		optlen = off - sizeof (struct tcphdr);
577 		optp = (u_char *)(th + 1);
578 	}
579 	thflags = th->th_flags;
580 
581 #ifdef TCP_DROP_SYNFIN
582 	/*
583 	 * If the drop_synfin option is enabled, drop all packets with
584 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
585 	 * identifying the TCP/IP stack.
586 	 *
587 	 * This is a violation of the TCP specification.
588 	 */
589 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
590 		goto drop;
591 #endif
592 
593 	/*
594 	 * Convert TCP protocol specific fields to host format.
595 	 */
596 	th->th_seq = ntohl(th->th_seq);
597 	th->th_ack = ntohl(th->th_ack);
598 	th->th_win = ntohs(th->th_win);
599 	th->th_urp = ntohs(th->th_urp);
600 
601 	/*
602 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
603 	 * until after ip6_savecontrol() is called and before other functions
604 	 * which don't want those proto headers.
605 	 * Because ip6_savecontrol() is going to parse the mbuf to
606 	 * search for data to be passed up to user-land, it wants mbuf
607 	 * parameters to be unchanged.
608 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
609 	 * latest version of the advanced API (20020110).
610 	 */
611 	drop_hdrlen = off0 + off;
612 
613 	/*
614 	 * Locate pcb for segment.
615 	 */
616 	INP_INFO_WLOCK(&tcbinfo);
617 	headlocked = 1;
618 findpcb:
619 	KASSERT(headlocked, ("tcp_input: findpcb: head not locked"));
620 #ifdef IPFIREWALL_FORWARD
621 	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
622 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
623 
624 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
625 		struct sockaddr_in *next_hop;
626 
627 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
628 		/*
629 		 * Transparently forwarded. Pretend to be the destination.
630 		 * already got one like this?
631 		 */
632 		inp = in_pcblookup_hash(&tcbinfo,
633 					ip->ip_src, th->th_sport,
634 					ip->ip_dst, th->th_dport,
635 					0, m->m_pkthdr.rcvif);
636 		if (!inp) {
637 			/* It's new.  Try to find the ambushing socket. */
638 			inp = in_pcblookup_hash(&tcbinfo,
639 						ip->ip_src, th->th_sport,
640 						next_hop->sin_addr,
641 						next_hop->sin_port ?
642 						    ntohs(next_hop->sin_port) :
643 						    th->th_dport,
644 						1, m->m_pkthdr.rcvif);
645 		}
646 		/* Remove the tag from the packet.  We don't need it anymore. */
647 		m_tag_delete(m, fwd_tag);
648 	} else {
649 #endif /* IPFIREWALL_FORWARD */
650 		if (isipv6) {
651 #ifdef INET6
652 			inp = in6_pcblookup_hash(&tcbinfo,
653 						 &ip6->ip6_src, th->th_sport,
654 						 &ip6->ip6_dst, th->th_dport,
655 						 1, m->m_pkthdr.rcvif);
656 #endif
657 		} else
658 			inp = in_pcblookup_hash(&tcbinfo,
659 						ip->ip_src, th->th_sport,
660 						ip->ip_dst, th->th_dport,
661 						1, m->m_pkthdr.rcvif);
662 #ifdef IPFIREWALL_FORWARD
663 	}
664 #endif /* IPFIREWALL_FORWARD */
665 
666 #if defined(IPSEC) || defined(FAST_IPSEC)
667 #ifdef INET6
668 	if (isipv6) {
669 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
670 #ifdef IPSEC
671 			ipsec6stat.in_polvio++;
672 #endif
673 			goto drop;
674 		}
675 	} else
676 #endif /* INET6 */
677 	if (inp != NULL && ipsec4_in_reject(m, inp)) {
678 #ifdef IPSEC
679 		ipsecstat.in_polvio++;
680 #endif
681 		goto drop;
682 	}
683 #endif /*IPSEC || FAST_IPSEC*/
684 
685 	/*
686 	 * If the state is CLOSED (i.e., TCB does not exist) then
687 	 * all data in the incoming segment is discarded.
688 	 * If the TCB exists but is in CLOSED state, it is embryonic,
689 	 * but should either do a listen or a connect soon.
690 	 */
691 	if (inp == NULL) {
692 		if (log_in_vain) {
693 #ifdef INET6
694 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
695 #else
696 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
697 #endif
698 
699 			if (isipv6) {
700 #ifdef INET6
701 				strcpy(dbuf, "[");
702 				strcpy(sbuf, "[");
703 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
704 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
705 				strcat(dbuf, "]");
706 				strcat(sbuf, "]");
707 #endif
708 			} else {
709 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
710 				strcpy(sbuf, inet_ntoa(ip->ip_src));
711 			}
712 			switch (log_in_vain) {
713 			case 1:
714 				if ((thflags & TH_SYN) == 0)
715 					break;
716 				/* FALLTHROUGH */
717 			case 2:
718 				log(LOG_INFO,
719 				    "Connection attempt to TCP %s:%d "
720 				    "from %s:%d flags:0x%02x\n",
721 				    dbuf, ntohs(th->th_dport), sbuf,
722 				    ntohs(th->th_sport), thflags);
723 				break;
724 			default:
725 				break;
726 			}
727 		}
728 		if (blackhole) {
729 			switch (blackhole) {
730 			case 1:
731 				if (thflags & TH_SYN)
732 					goto drop;
733 				break;
734 			case 2:
735 				goto drop;
736 			default:
737 				goto drop;
738 			}
739 		}
740 		rstreason = BANDLIM_RST_CLOSEDPORT;
741 		goto dropwithreset;
742 	}
743 	INP_LOCK(inp);
744 
745 	/* Check the minimum TTL for socket. */
746 	if (inp->inp_ip_minttl != 0) {
747 #ifdef INET6
748 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
749 			goto drop;
750 		else
751 #endif
752 		if (inp->inp_ip_minttl > ip->ip_ttl)
753 			goto drop;
754 	}
755 
756 	if (inp->inp_vflag & INP_TIMEWAIT) {
757 		/*
758 		 * The only option of relevance is TOF_CC, and only if
759 		 * present in a SYN segment.  See tcp_timewait().
760 		 */
761 		if (thflags & TH_SYN)
762 			tcp_dooptions(&to, optp, optlen, 1);
763 		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
764 		    &to, th, m, tlen))
765 			goto findpcb;
766 		/*
767 		 * tcp_timewait unlocks inp.
768 		 */
769 		INP_INFO_WUNLOCK(&tcbinfo);
770 		return;
771 	}
772 	tp = intotcpcb(inp);
773 	if (tp == 0) {
774 		INP_UNLOCK(inp);
775 		rstreason = BANDLIM_RST_CLOSEDPORT;
776 		goto dropwithreset;
777 	}
778 	if (tp->t_state == TCPS_CLOSED)
779 		goto drop;
780 
781 #ifdef MAC
782 	INP_LOCK_ASSERT(inp);
783 	if (mac_check_inpcb_deliver(inp, m))
784 		goto drop;
785 #endif
786 	so = inp->inp_socket;
787 #ifdef TCPDEBUG
788 	if (so->so_options & SO_DEBUG) {
789 		ostate = tp->t_state;
790 		if (isipv6)
791 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
792 		else
793 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
794 		tcp_savetcp = *th;
795 	}
796 #endif
797 	if (so->so_options & SO_ACCEPTCONN) {
798 		struct in_conninfo inc;
799 
800 #ifdef INET6
801 		inc.inc_isipv6 = isipv6;
802 #endif
803 		if (isipv6) {
804 			inc.inc6_faddr = ip6->ip6_src;
805 			inc.inc6_laddr = ip6->ip6_dst;
806 		} else {
807 			inc.inc_faddr = ip->ip_src;
808 			inc.inc_laddr = ip->ip_dst;
809 		}
810 		inc.inc_fport = th->th_sport;
811 		inc.inc_lport = th->th_dport;
812 
813 	        /*
814 	         * If the state is LISTEN then ignore segment if it contains
815 		 * a RST.  If the segment contains an ACK then it is bad and
816 		 * send a RST.  If it does not contain a SYN then it is not
817 		 * interesting; drop it.
818 		 *
819 		 * If the state is SYN_RECEIVED (syncache) and seg contains
820 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
821 		 * contains a RST, check the sequence number to see if it
822 		 * is a valid reset segment.
823 		 */
824 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
825 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
826 				if (!syncache_expand(&inc, th, &so, m)) {
827 					/*
828 					 * No syncache entry, or ACK was not
829 					 * for our SYN/ACK.  Send a RST.
830 					 */
831 					tcpstat.tcps_badsyn++;
832 					rstreason = BANDLIM_RST_OPENPORT;
833 					goto dropwithreset;
834 				}
835 				if (so == NULL) {
836 					/*
837 					 * Could not complete 3-way handshake,
838 					 * connection is being closed down, and
839 					 * syncache has free'd mbuf.
840 					 */
841 					INP_UNLOCK(inp);
842 					INP_INFO_WUNLOCK(&tcbinfo);
843 					return;
844 				}
845 				/*
846 				 * Socket is created in state SYN_RECEIVED.
847 				 * Continue processing segment.
848 				 */
849 				INP_UNLOCK(inp);
850 				inp = sotoinpcb(so);
851 				INP_LOCK(inp);
852 				tp = intotcpcb(inp);
853 				/*
854 				 * This is what would have happened in
855 				 * tcp_output() when the SYN,ACK was sent.
856 				 */
857 				tp->snd_up = tp->snd_una;
858 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
859 				tp->last_ack_sent = tp->rcv_nxt;
860 				goto after_listen;
861 			}
862 			if (thflags & TH_RST) {
863 				syncache_chkrst(&inc, th);
864 				goto drop;
865 			}
866 			if (thflags & TH_ACK) {
867 				syncache_badack(&inc);
868 				tcpstat.tcps_badsyn++;
869 				rstreason = BANDLIM_RST_OPENPORT;
870 				goto dropwithreset;
871 			}
872 			goto drop;
873 		}
874 
875 		/*
876 		 * Segment's flags are (SYN) or (SYN|FIN).
877 		 */
878 #ifdef INET6
879 		/*
880 		 * If deprecated address is forbidden,
881 		 * we do not accept SYN to deprecated interface
882 		 * address to prevent any new inbound connection from
883 		 * getting established.
884 		 * When we do not accept SYN, we send a TCP RST,
885 		 * with deprecated source address (instead of dropping
886 		 * it).  We compromise it as it is much better for peer
887 		 * to send a RST, and RST will be the final packet
888 		 * for the exchange.
889 		 *
890 		 * If we do not forbid deprecated addresses, we accept
891 		 * the SYN packet.  RFC2462 does not suggest dropping
892 		 * SYN in this case.
893 		 * If we decipher RFC2462 5.5.4, it says like this:
894 		 * 1. use of deprecated addr with existing
895 		 *    communication is okay - "SHOULD continue to be
896 		 *    used"
897 		 * 2. use of it with new communication:
898 		 *   (2a) "SHOULD NOT be used if alternate address
899 		 *        with sufficient scope is available"
900 		 *   (2b) nothing mentioned otherwise.
901 		 * Here we fall into (2b) case as we have no choice in
902 		 * our source address selection - we must obey the peer.
903 		 *
904 		 * The wording in RFC2462 is confusing, and there are
905 		 * multiple description text for deprecated address
906 		 * handling - worse, they are not exactly the same.
907 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
908 		 */
909 		if (isipv6 && !ip6_use_deprecated) {
910 			struct in6_ifaddr *ia6;
911 
912 			if ((ia6 = ip6_getdstifaddr(m)) &&
913 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
914 				INP_UNLOCK(inp);
915 				tp = NULL;
916 				rstreason = BANDLIM_RST_OPENPORT;
917 				goto dropwithreset;
918 			}
919 		}
920 #endif
921 		/*
922 		 * If it is from this socket, drop it, it must be forged.
923 		 * Don't bother responding if the destination was a broadcast.
924 		 */
925 		if (th->th_dport == th->th_sport) {
926 			if (isipv6) {
927 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
928 						       &ip6->ip6_src))
929 					goto drop;
930 			} else {
931 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
932 					goto drop;
933 			}
934 		}
935 		/*
936 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
937 		 *
938 		 * Note that it is quite possible to receive unicast
939 		 * link-layer packets with a broadcast IP address. Use
940 		 * in_broadcast() to find them.
941 		 */
942 		if (m->m_flags & (M_BCAST|M_MCAST))
943 			goto drop;
944 		if (isipv6) {
945 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
946 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
947 				goto drop;
948 		} else {
949 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
950 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
951 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
952 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
953 				goto drop;
954 		}
955 		/*
956 		 * SYN appears to be valid; create compressed TCP state
957 		 * for syncache, or perform t/tcp connection.
958 		 */
959 		if (so->so_qlen <= so->so_qlimit) {
960 #ifdef TCPDEBUG
961 			if (so->so_options & SO_DEBUG)
962 				tcp_trace(TA_INPUT, ostate, tp,
963 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
964 #endif
965 			tcp_dooptions(&to, optp, optlen, 1);
966 			if (!syncache_add(&inc, &to, th, &so, m))
967 				goto drop;
968 			if (so == NULL) {
969 				/*
970 				 * Entry added to syncache, mbuf used to
971 				 * send SYN,ACK packet.
972 				 */
973 				KASSERT(headlocked, ("headlocked"));
974 				INP_UNLOCK(inp);
975 				INP_INFO_WUNLOCK(&tcbinfo);
976 				return;
977 			}
978 			/*
979 			 * Segment passed TAO tests.
980 			 * XXX: Can't happen at the moment.
981 			 */
982 			INP_UNLOCK(inp);
983 			inp = sotoinpcb(so);
984 			INP_LOCK(inp);
985 			tp = intotcpcb(inp);
986 			tp->t_starttime = ticks;
987 			tp->t_state = TCPS_ESTABLISHED;
988 
989 			/*
990 			 * T/TCP logic:
991 			 * If there is a FIN or if there is data, then
992 			 * delay SYN,ACK(SYN) in the hope of piggy-backing
993 			 * it on a response segment.  Otherwise must send
994 			 * ACK now in case the other side is slow starting.
995 			 */
996 			if (thflags & TH_FIN || tlen != 0)
997 				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
998 			else
999 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1000 			tiwin = th->th_win << tp->snd_scale;
1001 			tcpstat.tcps_connects++;
1002 			soisconnected(so);
1003 			goto trimthenstep6;
1004 		}
1005 		goto drop;
1006 	}
1007 after_listen:
1008 	KASSERT(headlocked, ("tcp_input: after_listen: head not locked"));
1009 	INP_LOCK_ASSERT(inp);
1010 
1011 	/* Syncache takes care of sockets in the listen state. */
1012 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN"));
1013 
1014 	/*
1015 	 * This is the second part of the MSS DoS prevention code (after
1016 	 * minmss on the sending side) and it deals with too many too small
1017 	 * tcp packets in a too short timeframe (1 second).
1018 	 *
1019 	 * For every full second we count the number of received packets
1020 	 * and bytes. If we get a lot of packets per second for this connection
1021 	 * (tcp_minmssoverload) we take a closer look at it and compute the
1022 	 * average packet size for the past second. If that is less than
1023 	 * tcp_minmss we get too many packets with very small payload which
1024 	 * is not good and burdens our system (and every packet generates
1025 	 * a wakeup to the process connected to our socket). We can reasonable
1026 	 * expect this to be small packet DoS attack to exhaust our CPU
1027 	 * cycles.
1028 	 *
1029 	 * Care has to be taken for the minimum packet overload value. This
1030 	 * value defines the minimum number of packets per second before we
1031 	 * start to worry. This must not be too low to avoid killing for
1032 	 * example interactive connections with many small packets like
1033 	 * telnet or SSH.
1034 	 *
1035 	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1036 	 * this check.
1037 	 *
1038 	 * Account for packet if payload packet, skip over ACK, etc.
1039 	 */
1040 	if (tcp_minmss && tcp_minmssoverload &&
1041 	    tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1042 		if ((unsigned int)(tp->rcv_second - ticks) < hz) {
1043 			tp->rcv_pps++;
1044 			tp->rcv_byps += tlen + off;
1045 			if (tp->rcv_pps > tcp_minmssoverload) {
1046 				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1047 					printf("too many small tcp packets from "
1048 					       "%s:%u, av. %lubyte/packet, "
1049 					       "dropping connection\n",
1050 #ifdef INET6
1051 						isipv6 ?
1052 						ip6_sprintf(&inp->inp_inc.inc6_faddr) :
1053 #endif
1054 						inet_ntoa(inp->inp_inc.inc_faddr),
1055 						inp->inp_inc.inc_fport,
1056 						tp->rcv_byps / tp->rcv_pps);
1057 					KASSERT(headlocked, ("tcp_input: "
1058 					    "after_listen: tcp_drop: head "
1059 					    "not locked"));
1060 					tp = tcp_drop(tp, ECONNRESET);
1061 					tcpstat.tcps_minmssdrops++;
1062 					goto drop;
1063 				}
1064 			}
1065 		} else {
1066 			tp->rcv_second = ticks + hz;
1067 			tp->rcv_pps = 1;
1068 			tp->rcv_byps = tlen + off;
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * Segment received on connection.
1074 	 * Reset idle time and keep-alive timer.
1075 	 */
1076 	tp->t_rcvtime = ticks;
1077 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1078 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1079 
1080 	/*
1081 	 * Unscale the window into a 32-bit value.
1082 	 * This value is bogus for the TCPS_SYN_SENT state
1083 	 * and is overwritten later.
1084 	 */
1085 	tiwin = th->th_win << tp->snd_scale;
1086 
1087 	/*
1088 	 * Process options only when we get SYN/ACK back. The SYN case
1089 	 * for incoming connections is handled in tcp_syncache.
1090 	 * XXX this is traditional behavior, may need to be cleaned up.
1091 	 */
1092 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
1093 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1094 		if ((to.to_flags & TOF_SCALE) &&
1095 		    (tp->t_flags & TF_REQ_SCALE)) {
1096 			tp->t_flags |= TF_RCVD_SCALE;
1097 			tp->snd_scale = to.to_requested_s_scale;
1098 			tp->snd_wnd = th->th_win << tp->snd_scale;
1099 			tiwin = tp->snd_wnd;
1100 		}
1101 		if (to.to_flags & TOF_TS) {
1102 			tp->t_flags |= TF_RCVD_TSTMP;
1103 			tp->ts_recent = to.to_tsval;
1104 			tp->ts_recent_age = ticks;
1105 		}
1106 		if (to.to_flags & TOF_MSS)
1107 			tcp_mss(tp, to.to_mss);
1108 		if (tp->sack_enable) {
1109 			if (!(to.to_flags & TOF_SACK))
1110 				tp->sack_enable = 0;
1111 			else
1112 				tp->t_flags |= TF_SACK_PERMIT;
1113 		}
1114 
1115 	}
1116 
1117 	/*
1118 	 * Header prediction: check for the two common cases
1119 	 * of a uni-directional data xfer.  If the packet has
1120 	 * no control flags, is in-sequence, the window didn't
1121 	 * change and we're not retransmitting, it's a
1122 	 * candidate.  If the length is zero and the ack moved
1123 	 * forward, we're the sender side of the xfer.  Just
1124 	 * free the data acked & wake any higher level process
1125 	 * that was blocked waiting for space.  If the length
1126 	 * is non-zero and the ack didn't move, we're the
1127 	 * receiver side.  If we're getting packets in-order
1128 	 * (the reassembly queue is empty), add the data to
1129 	 * the socket buffer and note that we need a delayed ack.
1130 	 * Make sure that the hidden state-flags are also off.
1131 	 * Since we check for TCPS_ESTABLISHED above, it can only
1132 	 * be TH_NEEDSYN.
1133 	 */
1134 	if (tp->t_state == TCPS_ESTABLISHED &&
1135 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1136 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1137 	    ((to.to_flags & TOF_TS) == 0 ||
1138 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1139 	     th->th_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd &&
1140 	     tp->snd_nxt == tp->snd_max) {
1141 
1142 		/*
1143 		 * If last ACK falls within this segment's sequence numbers,
1144 		 * record the timestamp.
1145 		 * NOTE that the test is modified according to the latest
1146 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1147 		 */
1148 		if ((to.to_flags & TOF_TS) != 0 &&
1149 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1150 			tp->ts_recent_age = ticks;
1151 			tp->ts_recent = to.to_tsval;
1152 		}
1153 
1154 		if (tlen == 0) {
1155 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1156 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1157 			    tp->snd_cwnd >= tp->snd_wnd &&
1158 			    ((!tcp_do_newreno && !tp->sack_enable &&
1159 			      tp->t_dupacks < tcprexmtthresh) ||
1160 			     ((tcp_do_newreno || tp->sack_enable) &&
1161 			      !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 &&
1162 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1163 				KASSERT(headlocked, ("headlocked"));
1164 				INP_INFO_WUNLOCK(&tcbinfo);
1165 				headlocked = 0;
1166 				/*
1167 				 * this is a pure ack for outstanding data.
1168 				 */
1169 				++tcpstat.tcps_predack;
1170 				/*
1171 				 * "bad retransmit" recovery
1172 				 */
1173 				if (tp->t_rxtshift == 1 &&
1174 				    ticks < tp->t_badrxtwin) {
1175 					++tcpstat.tcps_sndrexmitbad;
1176 					tp->snd_cwnd = tp->snd_cwnd_prev;
1177 					tp->snd_ssthresh =
1178 					    tp->snd_ssthresh_prev;
1179 					tp->snd_recover = tp->snd_recover_prev;
1180 					if (tp->t_flags & TF_WASFRECOVERY)
1181 					    ENTER_FASTRECOVERY(tp);
1182 					tp->snd_nxt = tp->snd_max;
1183 					tp->t_badrxtwin = 0;
1184 				}
1185 
1186 				/*
1187 				 * Recalculate the transmit timer / rtt.
1188 				 *
1189 				 * Some boxes send broken timestamp replies
1190 				 * during the SYN+ACK phase, ignore
1191 				 * timestamps of 0 or we could calculate a
1192 				 * huge RTT and blow up the retransmit timer.
1193 				 */
1194 				if ((to.to_flags & TOF_TS) != 0 &&
1195 				    to.to_tsecr) {
1196 					if (!tp->t_rttlow ||
1197 					    tp->t_rttlow > ticks - to.to_tsecr)
1198 						tp->t_rttlow = ticks - to.to_tsecr;
1199 					tcp_xmit_timer(tp,
1200 					    ticks - to.to_tsecr + 1);
1201 				} else if (tp->t_rtttime &&
1202 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1203 					if (!tp->t_rttlow ||
1204 					    tp->t_rttlow > ticks - tp->t_rtttime)
1205 						tp->t_rttlow = ticks - tp->t_rtttime;
1206 					tcp_xmit_timer(tp,
1207 							ticks - tp->t_rtttime);
1208 				}
1209 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1210 				acked = th->th_ack - tp->snd_una;
1211 				tcpstat.tcps_rcvackpack++;
1212 				tcpstat.tcps_rcvackbyte += acked;
1213 				sbdrop(&so->so_snd, acked);
1214 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1215 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1216 					tp->snd_recover = th->th_ack - 1;
1217 				tp->snd_una = th->th_ack;
1218 				/*
1219 				 * pull snd_wl2 up to prevent seq wrap relative
1220 				 * to th_ack.
1221 				 */
1222 				tp->snd_wl2 = th->th_ack;
1223 				tp->t_dupacks = 0;
1224 				m_freem(m);
1225 				ND6_HINT(tp); /* some progress has been done */
1226 
1227 				/*
1228 				 * If all outstanding data are acked, stop
1229 				 * retransmit timer, otherwise restart timer
1230 				 * using current (possibly backed-off) value.
1231 				 * If process is waiting for space,
1232 				 * wakeup/selwakeup/signal.  If data
1233 				 * are ready to send, let tcp_output
1234 				 * decide between more output or persist.
1235 
1236 #ifdef TCPDEBUG
1237 				if (so->so_options & SO_DEBUG)
1238 					tcp_trace(TA_INPUT, ostate, tp,
1239 					    (void *)tcp_saveipgen,
1240 					    &tcp_savetcp, 0);
1241 #endif
1242 				 */
1243 				if (tp->snd_una == tp->snd_max)
1244 					callout_stop(tp->tt_rexmt);
1245 				else if (!callout_active(tp->tt_persist))
1246 					callout_reset(tp->tt_rexmt,
1247 						      tp->t_rxtcur,
1248 						      tcp_timer_rexmt, tp);
1249 
1250 				sowwakeup(so);
1251 				if (so->so_snd.sb_cc)
1252 					(void) tcp_output(tp);
1253 				goto check_delack;
1254 			}
1255 		} else if (th->th_ack == tp->snd_una &&
1256 		    LIST_EMPTY(&tp->t_segq) &&
1257 		    tlen <= sbspace(&so->so_rcv)) {
1258 			KASSERT(headlocked, ("headlocked"));
1259 			INP_INFO_WUNLOCK(&tcbinfo);
1260 			headlocked = 0;
1261 			/*
1262 			 * this is a pure, in-sequence data packet
1263 			 * with nothing on the reassembly queue and
1264 			 * we have enough buffer space to take it.
1265 			 */
1266 			/* Clean receiver SACK report if present */
1267 			if (tp->sack_enable && tp->rcv_numsacks)
1268 				tcp_clean_sackreport(tp);
1269 			++tcpstat.tcps_preddat;
1270 			tp->rcv_nxt += tlen;
1271 			/*
1272 			 * Pull snd_wl1 up to prevent seq wrap relative to
1273 			 * th_seq.
1274 			 */
1275 			tp->snd_wl1 = th->th_seq;
1276 			/*
1277 			 * Pull rcv_up up to prevent seq wrap relative to
1278 			 * rcv_nxt.
1279 			 */
1280 			tp->rcv_up = tp->rcv_nxt;
1281 			tcpstat.tcps_rcvpack++;
1282 			tcpstat.tcps_rcvbyte += tlen;
1283 			ND6_HINT(tp);	/* some progress has been done */
1284 			/*
1285 #ifdef TCPDEBUG
1286 			if (so->so_options & SO_DEBUG)
1287 				tcp_trace(TA_INPUT, ostate, tp,
1288 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1289 #endif
1290 			 * Add data to socket buffer.
1291 			 */
1292 			SOCKBUF_LOCK(&so->so_rcv);
1293 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1294 				m_freem(m);
1295 			} else {
1296 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1297 				sbappendstream_locked(&so->so_rcv, m);
1298 			}
1299 			sorwakeup_locked(so);
1300 			if (DELAY_ACK(tp)) {
1301 				tp->t_flags |= TF_DELACK;
1302 			} else {
1303 				tp->t_flags |= TF_ACKNOW;
1304 				tcp_output(tp);
1305 			}
1306 			goto check_delack;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * Calculate amount of space in receive window,
1312 	 * and then do TCP input processing.
1313 	 * Receive window is amount of space in rcv queue,
1314 	 * but not less than advertised window.
1315 	 */
1316 	{ int win;
1317 
1318 	win = sbspace(&so->so_rcv);
1319 	if (win < 0)
1320 		win = 0;
1321 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1322 	}
1323 
1324 	switch (tp->t_state) {
1325 
1326 	/*
1327 	 * If the state is SYN_RECEIVED:
1328 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1329 	 */
1330 	case TCPS_SYN_RECEIVED:
1331 		if ((thflags & TH_ACK) &&
1332 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1333 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1334 				rstreason = BANDLIM_RST_OPENPORT;
1335 				goto dropwithreset;
1336 		}
1337 		break;
1338 
1339 	/*
1340 	 * If the state is SYN_SENT:
1341 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1342 	 *	if seg contains a RST, then drop the connection.
1343 	 *	if seg does not contain SYN, then drop it.
1344 	 * Otherwise this is an acceptable SYN segment
1345 	 *	initialize tp->rcv_nxt and tp->irs
1346 	 *	if seg contains ack then advance tp->snd_una
1347 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1348 	 *	arrange for segment to be acked (eventually)
1349 	 *	continue processing rest of data/controls, beginning with URG
1350 	 */
1351 	case TCPS_SYN_SENT:
1352 		if ((thflags & TH_ACK) &&
1353 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1354 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1355 			rstreason = BANDLIM_UNLIMITED;
1356 			goto dropwithreset;
1357 		}
1358 		if (thflags & TH_RST) {
1359 			if (thflags & TH_ACK) {
1360 				KASSERT(headlocked, ("tcp_input: after_listen"
1361 				    ": tcp_drop.2: head not locked"));
1362 				tp = tcp_drop(tp, ECONNREFUSED);
1363 			}
1364 			goto drop;
1365 		}
1366 		if ((thflags & TH_SYN) == 0)
1367 			goto drop;
1368 
1369 		/* Initial send window, already scaled. */
1370 		tp->snd_wnd = th->th_win;
1371 
1372 		tp->irs = th->th_seq;
1373 		tcp_rcvseqinit(tp);
1374 		if (thflags & TH_ACK) {
1375 			tcpstat.tcps_connects++;
1376 			soisconnected(so);
1377 #ifdef MAC
1378 			SOCK_LOCK(so);
1379 			mac_set_socket_peer_from_mbuf(m, so);
1380 			SOCK_UNLOCK(so);
1381 #endif
1382 			/* Do window scaling on this connection? */
1383 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1384 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1385 				tp->rcv_scale = tp->request_r_scale;
1386 			}
1387 			tp->rcv_adv += tp->rcv_wnd;
1388 			tp->snd_una++;		/* SYN is acked */
1389 			/*
1390 			 * If there's data, delay ACK; if there's also a FIN
1391 			 * ACKNOW will be turned on later.
1392 			 */
1393 			if (DELAY_ACK(tp) && tlen != 0)
1394 				callout_reset(tp->tt_delack, tcp_delacktime,
1395 				    tcp_timer_delack, tp);
1396 			else
1397 				tp->t_flags |= TF_ACKNOW;
1398 			/*
1399 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1400 			 * Transitions:
1401 			 *	SYN_SENT  --> ESTABLISHED
1402 			 *	SYN_SENT* --> FIN_WAIT_1
1403 			 */
1404 			tp->t_starttime = ticks;
1405 			if (tp->t_flags & TF_NEEDFIN) {
1406 				tp->t_state = TCPS_FIN_WAIT_1;
1407 				tp->t_flags &= ~TF_NEEDFIN;
1408 				thflags &= ~TH_SYN;
1409 			} else {
1410 				tp->t_state = TCPS_ESTABLISHED;
1411 				callout_reset(tp->tt_keep, tcp_keepidle,
1412 					      tcp_timer_keep, tp);
1413 			}
1414 		} else {
1415 			/*
1416 			 * Received initial SYN in SYN-SENT[*] state =>
1417 			 * simultaneous open.  If segment contains CC option
1418 			 * and there is a cached CC, apply TAO test.
1419 			 * If it succeeds, connection is * half-synchronized.
1420 			 * Otherwise, do 3-way handshake:
1421 			 *        SYN-SENT -> SYN-RECEIVED
1422 			 *        SYN-SENT* -> SYN-RECEIVED*
1423 			 * If there was no CC option, clear cached CC value.
1424 			 */
1425 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1426 			callout_stop(tp->tt_rexmt);
1427 			tp->t_state = TCPS_SYN_RECEIVED;
1428 		}
1429 
1430 trimthenstep6:
1431 		KASSERT(headlocked, ("tcp_input: trimthenstep6: head not "
1432 		    "locked"));
1433 		INP_LOCK_ASSERT(inp);
1434 
1435 		/*
1436 		 * Advance th->th_seq to correspond to first data byte.
1437 		 * If data, trim to stay within window,
1438 		 * dropping FIN if necessary.
1439 		 */
1440 		th->th_seq++;
1441 		if (tlen > tp->rcv_wnd) {
1442 			todrop = tlen - tp->rcv_wnd;
1443 			m_adj(m, -todrop);
1444 			tlen = tp->rcv_wnd;
1445 			thflags &= ~TH_FIN;
1446 			tcpstat.tcps_rcvpackafterwin++;
1447 			tcpstat.tcps_rcvbyteafterwin += todrop;
1448 		}
1449 		tp->snd_wl1 = th->th_seq - 1;
1450 		tp->rcv_up = th->th_seq;
1451 		/*
1452 		 * Client side of transaction: already sent SYN and data.
1453 		 * If the remote host used T/TCP to validate the SYN,
1454 		 * our data will be ACK'd; if so, enter normal data segment
1455 		 * processing in the middle of step 5, ack processing.
1456 		 * Otherwise, goto step 6.
1457 		 */
1458 		if (thflags & TH_ACK)
1459 			goto process_ACK;
1460 
1461 		goto step6;
1462 
1463 	/*
1464 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1465 	 *      do normal processing.
1466 	 *
1467 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1468 	 */
1469 	case TCPS_LAST_ACK:
1470 	case TCPS_CLOSING:
1471 	case TCPS_TIME_WAIT:
1472 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1473 		break;  /* continue normal processing */
1474 	}
1475 
1476 	/*
1477 	 * States other than LISTEN or SYN_SENT.
1478 	 * First check the RST flag and sequence number since reset segments
1479 	 * are exempt from the timestamp and connection count tests.  This
1480 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1481 	 * below which allowed reset segments in half the sequence space
1482 	 * to fall though and be processed (which gives forged reset
1483 	 * segments with a random sequence number a 50 percent chance of
1484 	 * killing a connection).
1485 	 * Then check timestamp, if present.
1486 	 * Then check the connection count, if present.
1487 	 * Then check that at least some bytes of segment are within
1488 	 * receive window.  If segment begins before rcv_nxt,
1489 	 * drop leading data (and SYN); if nothing left, just ack.
1490 	 *
1491 	 *
1492 	 * If the RST bit is set, check the sequence number to see
1493 	 * if this is a valid reset segment.
1494 	 * RFC 793 page 37:
1495 	 *   In all states except SYN-SENT, all reset (RST) segments
1496 	 *   are validated by checking their SEQ-fields.  A reset is
1497 	 *   valid if its sequence number is in the window.
1498 	 * Note: this does not take into account delayed ACKs, so
1499 	 *   we should test against last_ack_sent instead of rcv_nxt.
1500 	 *   The sequence number in the reset segment is normally an
1501 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1502 	 *   send a reset with the sequence number at the rightmost edge
1503 	 *   of our receive window, and we have to handle this case.
1504 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1505 	 *   that brute force RST attacks are possible.  To combat this,
1506 	 *   we use a much stricter check while in the ESTABLISHED state,
1507 	 *   only accepting RSTs where the sequence number is equal to
1508 	 *   last_ack_sent.  In all other states (the states in which a
1509 	 *   RST is more likely), the more permissive check is used.
1510 	 * If we have multiple segments in flight, the intial reset
1511 	 * segment sequence numbers will be to the left of last_ack_sent,
1512 	 * but they will eventually catch up.
1513 	 * In any case, it never made sense to trim reset segments to
1514 	 * fit the receive window since RFC 1122 says:
1515 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1516 	 *
1517 	 *    A TCP SHOULD allow a received RST segment to include data.
1518 	 *
1519 	 *    DISCUSSION
1520 	 *         It has been suggested that a RST segment could contain
1521 	 *         ASCII text that encoded and explained the cause of the
1522 	 *         RST.  No standard has yet been established for such
1523 	 *         data.
1524 	 *
1525 	 * If the reset segment passes the sequence number test examine
1526 	 * the state:
1527 	 *    SYN_RECEIVED STATE:
1528 	 *	If passive open, return to LISTEN state.
1529 	 *	If active open, inform user that connection was refused.
1530 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1531 	 *	Inform user that connection was reset, and close tcb.
1532 	 *    CLOSING, LAST_ACK STATES:
1533 	 *	Close the tcb.
1534 	 *    TIME_WAIT STATE:
1535 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1536 	 *      RFC 1337.
1537 	 */
1538 	if (thflags & TH_RST) {
1539 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1540 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1541 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
1542 			switch (tp->t_state) {
1543 
1544 			case TCPS_SYN_RECEIVED:
1545 				so->so_error = ECONNREFUSED;
1546 				goto close;
1547 
1548 			case TCPS_ESTABLISHED:
1549 				if (tp->last_ack_sent != th->th_seq &&
1550 			 	    tcp_insecure_rst == 0) {
1551 					tcpstat.tcps_badrst++;
1552 					goto drop;
1553 				}
1554 			case TCPS_FIN_WAIT_1:
1555 			case TCPS_FIN_WAIT_2:
1556 			case TCPS_CLOSE_WAIT:
1557 				so->so_error = ECONNRESET;
1558 			close:
1559 				tp->t_state = TCPS_CLOSED;
1560 				tcpstat.tcps_drops++;
1561 				KASSERT(headlocked, ("tcp_input: "
1562 				    "trimthenstep6: tcp_close: head not "
1563 				    "locked"));
1564 				tp = tcp_close(tp);
1565 				break;
1566 
1567 			case TCPS_CLOSING:
1568 			case TCPS_LAST_ACK:
1569 				KASSERT(headlocked, ("trimthenstep6: "
1570 				    "tcp_close.2: head not locked"));
1571 				tp = tcp_close(tp);
1572 				break;
1573 
1574 			case TCPS_TIME_WAIT:
1575 				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1576 				    ("timewait"));
1577 				break;
1578 			}
1579 		}
1580 		goto drop;
1581 	}
1582 
1583 	/*
1584 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1585 	 * and it's less than ts_recent, drop it.
1586 	 */
1587 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1588 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1589 
1590 		/* Check to see if ts_recent is over 24 days old.  */
1591 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1592 			/*
1593 			 * Invalidate ts_recent.  If this segment updates
1594 			 * ts_recent, the age will be reset later and ts_recent
1595 			 * will get a valid value.  If it does not, setting
1596 			 * ts_recent to zero will at least satisfy the
1597 			 * requirement that zero be placed in the timestamp
1598 			 * echo reply when ts_recent isn't valid.  The
1599 			 * age isn't reset until we get a valid ts_recent
1600 			 * because we don't want out-of-order segments to be
1601 			 * dropped when ts_recent is old.
1602 			 */
1603 			tp->ts_recent = 0;
1604 		} else {
1605 			tcpstat.tcps_rcvduppack++;
1606 			tcpstat.tcps_rcvdupbyte += tlen;
1607 			tcpstat.tcps_pawsdrop++;
1608 			if (tlen)
1609 				goto dropafterack;
1610 			goto drop;
1611 		}
1612 	}
1613 
1614 	/*
1615 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1616 	 * this connection before trimming the data to fit the receive
1617 	 * window.  Check the sequence number versus IRS since we know
1618 	 * the sequence numbers haven't wrapped.  This is a partial fix
1619 	 * for the "LAND" DoS attack.
1620 	 */
1621 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1622 		rstreason = BANDLIM_RST_OPENPORT;
1623 		goto dropwithreset;
1624 	}
1625 
1626 	todrop = tp->rcv_nxt - th->th_seq;
1627 	if (todrop > 0) {
1628 		if (thflags & TH_SYN) {
1629 			thflags &= ~TH_SYN;
1630 			th->th_seq++;
1631 			if (th->th_urp > 1)
1632 				th->th_urp--;
1633 			else
1634 				thflags &= ~TH_URG;
1635 			todrop--;
1636 		}
1637 		/*
1638 		 * Following if statement from Stevens, vol. 2, p. 960.
1639 		 */
1640 		if (todrop > tlen
1641 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1642 			/*
1643 			 * Any valid FIN must be to the left of the window.
1644 			 * At this point the FIN must be a duplicate or out
1645 			 * of sequence; drop it.
1646 			 */
1647 			thflags &= ~TH_FIN;
1648 
1649 			/*
1650 			 * Send an ACK to resynchronize and drop any data.
1651 			 * But keep on processing for RST or ACK.
1652 			 */
1653 			tp->t_flags |= TF_ACKNOW;
1654 			todrop = tlen;
1655 			tcpstat.tcps_rcvduppack++;
1656 			tcpstat.tcps_rcvdupbyte += todrop;
1657 		} else {
1658 			tcpstat.tcps_rcvpartduppack++;
1659 			tcpstat.tcps_rcvpartdupbyte += todrop;
1660 		}
1661 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1662 		th->th_seq += todrop;
1663 		tlen -= todrop;
1664 		if (th->th_urp > todrop)
1665 			th->th_urp -= todrop;
1666 		else {
1667 			thflags &= ~TH_URG;
1668 			th->th_urp = 0;
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * If new data are received on a connection after the
1674 	 * user processes are gone, then RST the other end.
1675 	 */
1676 	if ((so->so_state & SS_NOFDREF) &&
1677 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1678 		KASSERT(headlocked, ("trimthenstep6: tcp_close.3: head not "
1679 		    "locked"));
1680 		tp = tcp_close(tp);
1681 		tcpstat.tcps_rcvafterclose++;
1682 		rstreason = BANDLIM_UNLIMITED;
1683 		goto dropwithreset;
1684 	}
1685 
1686 	/*
1687 	 * If segment ends after window, drop trailing data
1688 	 * (and PUSH and FIN); if nothing left, just ACK.
1689 	 */
1690 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1691 	if (todrop > 0) {
1692 		tcpstat.tcps_rcvpackafterwin++;
1693 		if (todrop >= tlen) {
1694 			tcpstat.tcps_rcvbyteafterwin += tlen;
1695 			/*
1696 			 * If a new connection request is received
1697 			 * while in TIME_WAIT, drop the old connection
1698 			 * and start over if the sequence numbers
1699 			 * are above the previous ones.
1700 			 */
1701 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1702 			if (thflags & TH_SYN &&
1703 			    tp->t_state == TCPS_TIME_WAIT &&
1704 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1705 				KASSERT(headlocked, ("trimthenstep6: "
1706 				    "tcp_close.4: head not locked"));
1707 				tp = tcp_close(tp);
1708 				goto findpcb;
1709 			}
1710 			/*
1711 			 * If window is closed can only take segments at
1712 			 * window edge, and have to drop data and PUSH from
1713 			 * incoming segments.  Continue processing, but
1714 			 * remember to ack.  Otherwise, drop segment
1715 			 * and ack.
1716 			 */
1717 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1718 				tp->t_flags |= TF_ACKNOW;
1719 				tcpstat.tcps_rcvwinprobe++;
1720 			} else
1721 				goto dropafterack;
1722 		} else
1723 			tcpstat.tcps_rcvbyteafterwin += todrop;
1724 		m_adj(m, -todrop);
1725 		tlen -= todrop;
1726 		thflags &= ~(TH_PUSH|TH_FIN);
1727 	}
1728 
1729 	/*
1730 	 * If last ACK falls within this segment's sequence numbers,
1731 	 * record its timestamp.
1732 	 * NOTE:
1733 	 * 1) That the test incorporates suggestions from the latest
1734 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1735 	 * 2) That updating only on newer timestamps interferes with
1736 	 *    our earlier PAWS tests, so this check should be solely
1737 	 *    predicated on the sequence space of this segment.
1738 	 * 3) That we modify the segment boundary check to be
1739 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1740 	 *    instead of RFC1323's
1741 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1742 	 *    This modified check allows us to overcome RFC1323's
1743 	 *    limitations as described in Stevens TCP/IP Illustrated
1744 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1745 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1746 	 */
1747 	if ((to.to_flags & TOF_TS) != 0 &&
1748 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1749 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1750 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1751 		tp->ts_recent_age = ticks;
1752 		tp->ts_recent = to.to_tsval;
1753 	}
1754 
1755 	/*
1756 	 * If a SYN is in the window, then this is an
1757 	 * error and we send an RST and drop the connection.
1758 	 */
1759 	if (thflags & TH_SYN) {
1760 		KASSERT(headlocked, ("tcp_input: tcp_drop: trimthenstep6: "
1761 		    "head not locked"));
1762 		tp = tcp_drop(tp, ECONNRESET);
1763 		rstreason = BANDLIM_UNLIMITED;
1764 		goto drop;
1765 	}
1766 
1767 	/*
1768 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1769 	 * flag is on (half-synchronized state), then queue data for
1770 	 * later processing; else drop segment and return.
1771 	 */
1772 	if ((thflags & TH_ACK) == 0) {
1773 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1774 		    (tp->t_flags & TF_NEEDSYN))
1775 			goto step6;
1776 		else
1777 			goto drop;
1778 	}
1779 
1780 	/*
1781 	 * Ack processing.
1782 	 */
1783 	switch (tp->t_state) {
1784 
1785 	/*
1786 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1787 	 * ESTABLISHED state and continue processing.
1788 	 * The ACK was checked above.
1789 	 */
1790 	case TCPS_SYN_RECEIVED:
1791 
1792 		tcpstat.tcps_connects++;
1793 		soisconnected(so);
1794 		/* Do window scaling? */
1795 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1796 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1797 			tp->rcv_scale = tp->request_r_scale;
1798 			tp->snd_wnd = tiwin;
1799 		}
1800 		/*
1801 		 * Make transitions:
1802 		 *      SYN-RECEIVED  -> ESTABLISHED
1803 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1804 		 */
1805 		tp->t_starttime = ticks;
1806 		if (tp->t_flags & TF_NEEDFIN) {
1807 			tp->t_state = TCPS_FIN_WAIT_1;
1808 			tp->t_flags &= ~TF_NEEDFIN;
1809 		} else {
1810 			tp->t_state = TCPS_ESTABLISHED;
1811 			callout_reset(tp->tt_keep, tcp_keepidle,
1812 				      tcp_timer_keep, tp);
1813 		}
1814 		/*
1815 		 * If segment contains data or ACK, will call tcp_reass()
1816 		 * later; if not, do so now to pass queued data to user.
1817 		 */
1818 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1819 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1820 			    (struct mbuf *)0);
1821 		tp->snd_wl1 = th->th_seq - 1;
1822 		/* FALLTHROUGH */
1823 
1824 	/*
1825 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1826 	 * ACKs.  If the ack is in the range
1827 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1828 	 * then advance tp->snd_una to th->th_ack and drop
1829 	 * data from the retransmission queue.  If this ACK reflects
1830 	 * more up to date window information we update our window information.
1831 	 */
1832 	case TCPS_ESTABLISHED:
1833 	case TCPS_FIN_WAIT_1:
1834 	case TCPS_FIN_WAIT_2:
1835 	case TCPS_CLOSE_WAIT:
1836 	case TCPS_CLOSING:
1837 	case TCPS_LAST_ACK:
1838 	case TCPS_TIME_WAIT:
1839 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1840 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1841 			tcpstat.tcps_rcvacktoomuch++;
1842 			goto dropafterack;
1843 		}
1844 		if (tp->sack_enable &&
1845 		    (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
1846 			tcp_sack_doack(tp, &to, th->th_ack);
1847 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1848 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1849 				tcpstat.tcps_rcvdupack++;
1850 				/*
1851 				 * If we have outstanding data (other than
1852 				 * a window probe), this is a completely
1853 				 * duplicate ack (ie, window info didn't
1854 				 * change), the ack is the biggest we've
1855 				 * seen and we've seen exactly our rexmt
1856 				 * threshhold of them, assume a packet
1857 				 * has been dropped and retransmit it.
1858 				 * Kludge snd_nxt & the congestion
1859 				 * window so we send only this one
1860 				 * packet.
1861 				 *
1862 				 * We know we're losing at the current
1863 				 * window size so do congestion avoidance
1864 				 * (set ssthresh to half the current window
1865 				 * and pull our congestion window back to
1866 				 * the new ssthresh).
1867 				 *
1868 				 * Dup acks mean that packets have left the
1869 				 * network (they're now cached at the receiver)
1870 				 * so bump cwnd by the amount in the receiver
1871 				 * to keep a constant cwnd packets in the
1872 				 * network.
1873 				 */
1874 				if (!callout_active(tp->tt_rexmt) ||
1875 				    th->th_ack != tp->snd_una)
1876 					tp->t_dupacks = 0;
1877 				else if (++tp->t_dupacks > tcprexmtthresh ||
1878 					 ((tcp_do_newreno || tp->sack_enable) &&
1879 					  IN_FASTRECOVERY(tp))) {
1880                                         if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
1881 						int awnd;
1882 
1883 						/*
1884 						 * Compute the amount of data in flight first.
1885 						 * We can inject new data into the pipe iff
1886 						 * we have less than 1/2 the original window's
1887 						 * worth of data in flight.
1888 						 */
1889 						awnd = (tp->snd_nxt - tp->snd_fack) +
1890 							tp->sackhint.sack_bytes_rexmit;
1891 						if (awnd < tp->snd_ssthresh) {
1892 							tp->snd_cwnd += tp->t_maxseg;
1893 							if (tp->snd_cwnd > tp->snd_ssthresh)
1894 								tp->snd_cwnd = tp->snd_ssthresh;
1895 						}
1896 					} else
1897 						tp->snd_cwnd += tp->t_maxseg;
1898 					(void) tcp_output(tp);
1899 					goto drop;
1900 				} else if (tp->t_dupacks == tcprexmtthresh) {
1901 					tcp_seq onxt = tp->snd_nxt;
1902 					u_int win;
1903 
1904 					/*
1905 					 * If we're doing sack, check to
1906 					 * see if we're already in sack
1907 					 * recovery. If we're not doing sack,
1908 					 * check to see if we're in newreno
1909 					 * recovery.
1910 					 */
1911 					if (tp->sack_enable) {
1912 						if (IN_FASTRECOVERY(tp)) {
1913 							tp->t_dupacks = 0;
1914 							break;
1915 						}
1916 					} else if (tcp_do_newreno) {
1917 						if (SEQ_LEQ(th->th_ack,
1918 						    tp->snd_recover)) {
1919 							tp->t_dupacks = 0;
1920 							break;
1921 						}
1922 					}
1923 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1924 					    2 / tp->t_maxseg;
1925 					if (win < 2)
1926 						win = 2;
1927 					tp->snd_ssthresh = win * tp->t_maxseg;
1928 					ENTER_FASTRECOVERY(tp);
1929 					tp->snd_recover = tp->snd_max;
1930 					callout_stop(tp->tt_rexmt);
1931 					tp->t_rtttime = 0;
1932 					if (tp->sack_enable) {
1933 						tcpstat.tcps_sack_recovery_episode++;
1934 						tp->sack_newdata = tp->snd_nxt;
1935 						tp->snd_cwnd = tp->t_maxseg;
1936 						(void) tcp_output(tp);
1937 						goto drop;
1938 					}
1939 					tp->snd_nxt = th->th_ack;
1940 					tp->snd_cwnd = tp->t_maxseg;
1941 					(void) tcp_output(tp);
1942 					KASSERT(tp->snd_limited <= 2,
1943 					    ("tp->snd_limited too big"));
1944 					tp->snd_cwnd = tp->snd_ssthresh +
1945 					     tp->t_maxseg *
1946 					     (tp->t_dupacks - tp->snd_limited);
1947 					if (SEQ_GT(onxt, tp->snd_nxt))
1948 						tp->snd_nxt = onxt;
1949 					goto drop;
1950 				} else if (tcp_do_rfc3042) {
1951 					u_long oldcwnd = tp->snd_cwnd;
1952 					tcp_seq oldsndmax = tp->snd_max;
1953 					u_int sent;
1954 
1955 					KASSERT(tp->t_dupacks == 1 ||
1956 					    tp->t_dupacks == 2,
1957 					    ("dupacks not 1 or 2"));
1958 					if (tp->t_dupacks == 1)
1959 						tp->snd_limited = 0;
1960 					tp->snd_cwnd =
1961 					    (tp->snd_nxt - tp->snd_una) +
1962 					    (tp->t_dupacks - tp->snd_limited) *
1963 					    tp->t_maxseg;
1964 					(void) tcp_output(tp);
1965 					sent = tp->snd_max - oldsndmax;
1966 					if (sent > tp->t_maxseg) {
1967 						KASSERT((tp->t_dupacks == 2 &&
1968 						    tp->snd_limited == 0) ||
1969 						   (sent == tp->t_maxseg + 1 &&
1970 						    tp->t_flags & TF_SENTFIN),
1971 						    ("sent too much"));
1972 						tp->snd_limited = 2;
1973 					} else if (sent > 0)
1974 						++tp->snd_limited;
1975 					tp->snd_cwnd = oldcwnd;
1976 					goto drop;
1977 				}
1978 			} else
1979 				tp->t_dupacks = 0;
1980 			break;
1981 		}
1982 
1983 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1984 
1985 		/*
1986 		 * If the congestion window was inflated to account
1987 		 * for the other side's cached packets, retract it.
1988 		 */
1989 		if (tcp_do_newreno || tp->sack_enable) {
1990 			if (IN_FASTRECOVERY(tp)) {
1991 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1992 					if (tp->sack_enable)
1993 						tcp_sack_partialack(tp, th);
1994 					else
1995 						tcp_newreno_partial_ack(tp, th);
1996 				} else {
1997 					/*
1998 					 * Out of fast recovery.
1999 					 * Window inflation should have left us
2000 					 * with approximately snd_ssthresh
2001 					 * outstanding data.
2002 					 * But in case we would be inclined to
2003 					 * send a burst, better to do it via
2004 					 * the slow start mechanism.
2005 					 */
2006 					if (SEQ_GT(th->th_ack +
2007 							tp->snd_ssthresh,
2008 						   tp->snd_max))
2009 						tp->snd_cwnd = tp->snd_max -
2010 								th->th_ack +
2011 								tp->t_maxseg;
2012 					else
2013 						tp->snd_cwnd = tp->snd_ssthresh;
2014 				}
2015 			}
2016 		} else {
2017 			if (tp->t_dupacks >= tcprexmtthresh &&
2018 			    tp->snd_cwnd > tp->snd_ssthresh)
2019 				tp->snd_cwnd = tp->snd_ssthresh;
2020 		}
2021 		tp->t_dupacks = 0;
2022 		/*
2023 		 * If we reach this point, ACK is not a duplicate,
2024 		 *     i.e., it ACKs something we sent.
2025 		 */
2026 		if (tp->t_flags & TF_NEEDSYN) {
2027 			/*
2028 			 * T/TCP: Connection was half-synchronized, and our
2029 			 * SYN has been ACK'd (so connection is now fully
2030 			 * synchronized).  Go to non-starred state,
2031 			 * increment snd_una for ACK of SYN, and check if
2032 			 * we can do window scaling.
2033 			 */
2034 			tp->t_flags &= ~TF_NEEDSYN;
2035 			tp->snd_una++;
2036 			/* Do window scaling? */
2037 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2038 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2039 				tp->rcv_scale = tp->request_r_scale;
2040 				/* Send window already scaled. */
2041 			}
2042 		}
2043 
2044 process_ACK:
2045 		KASSERT(headlocked, ("tcp_input: process_ACK: head not "
2046 		    "locked"));
2047 		INP_LOCK_ASSERT(inp);
2048 
2049 		acked = th->th_ack - tp->snd_una;
2050 		tcpstat.tcps_rcvackpack++;
2051 		tcpstat.tcps_rcvackbyte += acked;
2052 
2053 		/*
2054 		 * If we just performed our first retransmit, and the ACK
2055 		 * arrives within our recovery window, then it was a mistake
2056 		 * to do the retransmit in the first place.  Recover our
2057 		 * original cwnd and ssthresh, and proceed to transmit where
2058 		 * we left off.
2059 		 */
2060 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2061 			++tcpstat.tcps_sndrexmitbad;
2062 			tp->snd_cwnd = tp->snd_cwnd_prev;
2063 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2064 			tp->snd_recover = tp->snd_recover_prev;
2065 			if (tp->t_flags & TF_WASFRECOVERY)
2066 				ENTER_FASTRECOVERY(tp);
2067 			tp->snd_nxt = tp->snd_max;
2068 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2069 		}
2070 
2071 		/*
2072 		 * If we have a timestamp reply, update smoothed
2073 		 * round trip time.  If no timestamp is present but
2074 		 * transmit timer is running and timed sequence
2075 		 * number was acked, update smoothed round trip time.
2076 		 * Since we now have an rtt measurement, cancel the
2077 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2078 		 * Recompute the initial retransmit timer.
2079 		 *
2080 		 * Some boxes send broken timestamp replies
2081 		 * during the SYN+ACK phase, ignore
2082 		 * timestamps of 0 or we could calculate a
2083 		 * huge RTT and blow up the retransmit timer.
2084 		 */
2085 		if ((to.to_flags & TOF_TS) != 0 &&
2086 		    to.to_tsecr) {
2087 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2088 				tp->t_rttlow = ticks - to.to_tsecr;
2089 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2090 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2091 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2092 				tp->t_rttlow = ticks - tp->t_rtttime;
2093 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2094 		}
2095 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2096 
2097 		/*
2098 		 * If all outstanding data is acked, stop retransmit
2099 		 * timer and remember to restart (more output or persist).
2100 		 * If there is more data to be acked, restart retransmit
2101 		 * timer, using current (possibly backed-off) value.
2102 		 */
2103 		if (th->th_ack == tp->snd_max) {
2104 			callout_stop(tp->tt_rexmt);
2105 			needoutput = 1;
2106 		} else if (!callout_active(tp->tt_persist))
2107 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2108 				      tcp_timer_rexmt, tp);
2109 
2110 		/*
2111 		 * If no data (only SYN) was ACK'd,
2112 		 *    skip rest of ACK processing.
2113 		 */
2114 		if (acked == 0)
2115 			goto step6;
2116 
2117 		/*
2118 		 * When new data is acked, open the congestion window.
2119 		 * If the window gives us less than ssthresh packets
2120 		 * in flight, open exponentially (maxseg per packet).
2121 		 * Otherwise open linearly: maxseg per window
2122 		 * (maxseg^2 / cwnd per packet).
2123 		 */
2124 		if ((!tcp_do_newreno && !tp->sack_enable) ||
2125 		    !IN_FASTRECOVERY(tp)) {
2126 			register u_int cw = tp->snd_cwnd;
2127 			register u_int incr = tp->t_maxseg;
2128 			if (cw > tp->snd_ssthresh)
2129 				incr = incr * incr / cw;
2130 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2131 		}
2132 		SOCKBUF_LOCK(&so->so_snd);
2133 		if (acked > so->so_snd.sb_cc) {
2134 			tp->snd_wnd -= so->so_snd.sb_cc;
2135 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2136 			ourfinisacked = 1;
2137 		} else {
2138 			sbdrop_locked(&so->so_snd, acked);
2139 			tp->snd_wnd -= acked;
2140 			ourfinisacked = 0;
2141 		}
2142 		sowwakeup_locked(so);
2143 		/* detect una wraparound */
2144 		if ((tcp_do_newreno || tp->sack_enable) &&
2145 		    !IN_FASTRECOVERY(tp) &&
2146 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2147 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2148 			tp->snd_recover = th->th_ack - 1;
2149 		if ((tcp_do_newreno || tp->sack_enable) &&
2150 		    IN_FASTRECOVERY(tp) &&
2151 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2152 			EXIT_FASTRECOVERY(tp);
2153 		tp->snd_una = th->th_ack;
2154 		if (tp->sack_enable) {
2155 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2156 				tp->snd_recover = tp->snd_una;
2157 		}
2158 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2159 			tp->snd_nxt = tp->snd_una;
2160 
2161 		switch (tp->t_state) {
2162 
2163 		/*
2164 		 * In FIN_WAIT_1 STATE in addition to the processing
2165 		 * for the ESTABLISHED state if our FIN is now acknowledged
2166 		 * then enter FIN_WAIT_2.
2167 		 */
2168 		case TCPS_FIN_WAIT_1:
2169 			if (ourfinisacked) {
2170 				/*
2171 				 * If we can't receive any more
2172 				 * data, then closing user can proceed.
2173 				 * Starting the timer is contrary to the
2174 				 * specification, but if we don't get a FIN
2175 				 * we'll hang forever.
2176 				 */
2177 		/* XXXjl
2178 		 * we should release the tp also, and use a
2179 		 * compressed state.
2180 		 */
2181 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2182 					soisdisconnected(so);
2183 					callout_reset(tp->tt_2msl, tcp_maxidle,
2184 						      tcp_timer_2msl, tp);
2185 				}
2186 				tp->t_state = TCPS_FIN_WAIT_2;
2187 			}
2188 			break;
2189 
2190 		/*
2191 		 * In CLOSING STATE in addition to the processing for
2192 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2193 		 * then enter the TIME-WAIT state, otherwise ignore
2194 		 * the segment.
2195 		 */
2196 		case TCPS_CLOSING:
2197 			if (ourfinisacked) {
2198 				KASSERT(headlocked, ("tcp_input: process_ACK: "
2199 				    "head not locked"));
2200 				tcp_twstart(tp);
2201 				INP_INFO_WUNLOCK(&tcbinfo);
2202 				m_freem(m);
2203 				return;
2204 			}
2205 			break;
2206 
2207 		/*
2208 		 * In LAST_ACK, we may still be waiting for data to drain
2209 		 * and/or to be acked, as well as for the ack of our FIN.
2210 		 * If our FIN is now acknowledged, delete the TCB,
2211 		 * enter the closed state and return.
2212 		 */
2213 		case TCPS_LAST_ACK:
2214 			if (ourfinisacked) {
2215 				KASSERT(headlocked, ("tcp_input: process_ACK:"
2216 				    " tcp_close: head not locked"));
2217 				tp = tcp_close(tp);
2218 				goto drop;
2219 			}
2220 			break;
2221 
2222 		/*
2223 		 * In TIME_WAIT state the only thing that should arrive
2224 		 * is a retransmission of the remote FIN.  Acknowledge
2225 		 * it and restart the finack timer.
2226 		 */
2227 		case TCPS_TIME_WAIT:
2228 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2229 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2230 				      tcp_timer_2msl, tp);
2231 			goto dropafterack;
2232 		}
2233 	}
2234 
2235 step6:
2236 	KASSERT(headlocked, ("tcp_input: step6: head not locked"));
2237 	INP_LOCK_ASSERT(inp);
2238 
2239 	/*
2240 	 * Update window information.
2241 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2242 	 */
2243 	if ((thflags & TH_ACK) &&
2244 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2245 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2246 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2247 		/* keep track of pure window updates */
2248 		if (tlen == 0 &&
2249 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2250 			tcpstat.tcps_rcvwinupd++;
2251 		tp->snd_wnd = tiwin;
2252 		tp->snd_wl1 = th->th_seq;
2253 		tp->snd_wl2 = th->th_ack;
2254 		if (tp->snd_wnd > tp->max_sndwnd)
2255 			tp->max_sndwnd = tp->snd_wnd;
2256 		needoutput = 1;
2257 	}
2258 
2259 	/*
2260 	 * Process segments with URG.
2261 	 */
2262 	if ((thflags & TH_URG) && th->th_urp &&
2263 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2264 		/*
2265 		 * This is a kludge, but if we receive and accept
2266 		 * random urgent pointers, we'll crash in
2267 		 * soreceive.  It's hard to imagine someone
2268 		 * actually wanting to send this much urgent data.
2269 		 */
2270 		SOCKBUF_LOCK(&so->so_rcv);
2271 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2272 			th->th_urp = 0;			/* XXX */
2273 			thflags &= ~TH_URG;		/* XXX */
2274 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2275 			goto dodata;			/* XXX */
2276 		}
2277 		/*
2278 		 * If this segment advances the known urgent pointer,
2279 		 * then mark the data stream.  This should not happen
2280 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2281 		 * a FIN has been received from the remote side.
2282 		 * In these states we ignore the URG.
2283 		 *
2284 		 * According to RFC961 (Assigned Protocols),
2285 		 * the urgent pointer points to the last octet
2286 		 * of urgent data.  We continue, however,
2287 		 * to consider it to indicate the first octet
2288 		 * of data past the urgent section as the original
2289 		 * spec states (in one of two places).
2290 		 */
2291 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2292 			tp->rcv_up = th->th_seq + th->th_urp;
2293 			so->so_oobmark = so->so_rcv.sb_cc +
2294 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2295 			if (so->so_oobmark == 0)
2296 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2297 			sohasoutofband(so);
2298 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2299 		}
2300 		SOCKBUF_UNLOCK(&so->so_rcv);
2301 		/*
2302 		 * Remove out of band data so doesn't get presented to user.
2303 		 * This can happen independent of advancing the URG pointer,
2304 		 * but if two URG's are pending at once, some out-of-band
2305 		 * data may creep in... ick.
2306 		 */
2307 		if (th->th_urp <= (u_long)tlen &&
2308 		    !(so->so_options & SO_OOBINLINE)) {
2309 			/* hdr drop is delayed */
2310 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2311 		}
2312 	} else {
2313 		/*
2314 		 * If no out of band data is expected,
2315 		 * pull receive urgent pointer along
2316 		 * with the receive window.
2317 		 */
2318 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2319 			tp->rcv_up = tp->rcv_nxt;
2320 	}
2321 dodata:							/* XXX */
2322 	KASSERT(headlocked, ("tcp_input: dodata: head not locked"));
2323 	INP_LOCK_ASSERT(inp);
2324 
2325 	/*
2326 	 * Process the segment text, merging it into the TCP sequencing queue,
2327 	 * and arranging for acknowledgment of receipt if necessary.
2328 	 * This process logically involves adjusting tp->rcv_wnd as data
2329 	 * is presented to the user (this happens in tcp_usrreq.c,
2330 	 * case PRU_RCVD).  If a FIN has already been received on this
2331 	 * connection then we just ignore the text.
2332 	 */
2333 	if ((tlen || (thflags & TH_FIN)) &&
2334 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2335 		tcp_seq save_start = th->th_seq;
2336 		tcp_seq save_end = th->th_seq + tlen;
2337 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2338 		/*
2339 		 * Insert segment which includes th into TCP reassembly queue
2340 		 * with control block tp.  Set thflags to whether reassembly now
2341 		 * includes a segment with FIN.  This handles the common case
2342 		 * inline (segment is the next to be received on an established
2343 		 * connection, and the queue is empty), avoiding linkage into
2344 		 * and removal from the queue and repetition of various
2345 		 * conversions.
2346 		 * Set DELACK for segments received in order, but ack
2347 		 * immediately when segments are out of order (so
2348 		 * fast retransmit can work).
2349 		 */
2350 		if (th->th_seq == tp->rcv_nxt &&
2351 		    LIST_EMPTY(&tp->t_segq) &&
2352 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2353 			if (DELAY_ACK(tp))
2354 				tp->t_flags |= TF_DELACK;
2355 			else
2356 				tp->t_flags |= TF_ACKNOW;
2357 			tp->rcv_nxt += tlen;
2358 			thflags = th->th_flags & TH_FIN;
2359 			tcpstat.tcps_rcvpack++;
2360 			tcpstat.tcps_rcvbyte += tlen;
2361 			ND6_HINT(tp);
2362 			SOCKBUF_LOCK(&so->so_rcv);
2363 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2364 				m_freem(m);
2365 			else
2366 				sbappendstream_locked(&so->so_rcv, m);
2367 			sorwakeup_locked(so);
2368 		} else {
2369 			thflags = tcp_reass(tp, th, &tlen, m);
2370 			tp->t_flags |= TF_ACKNOW;
2371 		}
2372 		if (tlen > 0 && tp->sack_enable)
2373 			tcp_update_sack_list(tp, save_start, save_end);
2374 		/*
2375 		 * Note the amount of data that peer has sent into
2376 		 * our window, in order to estimate the sender's
2377 		 * buffer size.
2378 		 */
2379 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2380 	} else {
2381 		m_freem(m);
2382 		thflags &= ~TH_FIN;
2383 	}
2384 
2385 	/*
2386 	 * If FIN is received ACK the FIN and let the user know
2387 	 * that the connection is closing.
2388 	 */
2389 	if (thflags & TH_FIN) {
2390 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2391 			socantrcvmore(so);
2392 			/*
2393 			 * If connection is half-synchronized
2394 			 * (ie NEEDSYN flag on) then delay ACK,
2395 			 * so it may be piggybacked when SYN is sent.
2396 			 * Otherwise, since we received a FIN then no
2397 			 * more input can be expected, send ACK now.
2398 			 */
2399 			if (tp->t_flags & TF_NEEDSYN)
2400 				tp->t_flags |= TF_DELACK;
2401 			else
2402 				tp->t_flags |= TF_ACKNOW;
2403 			tp->rcv_nxt++;
2404 		}
2405 		switch (tp->t_state) {
2406 
2407 		/*
2408 		 * In SYN_RECEIVED and ESTABLISHED STATES
2409 		 * enter the CLOSE_WAIT state.
2410 		 */
2411 		case TCPS_SYN_RECEIVED:
2412 			tp->t_starttime = ticks;
2413 			/*FALLTHROUGH*/
2414 		case TCPS_ESTABLISHED:
2415 			tp->t_state = TCPS_CLOSE_WAIT;
2416 			break;
2417 
2418 		/*
2419 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2420 		 * enter the CLOSING state.
2421 		 */
2422 		case TCPS_FIN_WAIT_1:
2423 			tp->t_state = TCPS_CLOSING;
2424 			break;
2425 
2426 		/*
2427 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2428 		 * starting the time-wait timer, turning off the other
2429 		 * standard timers.
2430 		 */
2431 		case TCPS_FIN_WAIT_2:
2432 			KASSERT(headlocked == 1, ("tcp_input: dodata: "
2433 			    "TCP_FIN_WAIT_2: head not locked"));
2434 			tcp_twstart(tp);
2435 			INP_INFO_WUNLOCK(&tcbinfo);
2436 			return;
2437 
2438 		/*
2439 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2440 		 */
2441 		case TCPS_TIME_WAIT:
2442 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2443 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2444 				      tcp_timer_2msl, tp);
2445 			break;
2446 		}
2447 	}
2448 	INP_INFO_WUNLOCK(&tcbinfo);
2449 	headlocked = 0;
2450 #ifdef TCPDEBUG
2451 	if (so->so_options & SO_DEBUG)
2452 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2453 			  &tcp_savetcp, 0);
2454 #endif
2455 
2456 	/*
2457 	 * Return any desired output.
2458 	 */
2459 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2460 		(void) tcp_output(tp);
2461 
2462 check_delack:
2463 	KASSERT(headlocked == 0, ("tcp_input: check_delack: head locked"));
2464 	INP_LOCK_ASSERT(inp);
2465 	if (tp->t_flags & TF_DELACK) {
2466 		tp->t_flags &= ~TF_DELACK;
2467 		callout_reset(tp->tt_delack, tcp_delacktime,
2468 		    tcp_timer_delack, tp);
2469 	}
2470 	INP_UNLOCK(inp);
2471 	return;
2472 
2473 dropafterack:
2474 	KASSERT(headlocked, ("tcp_input: dropafterack: head not locked"));
2475 	/*
2476 	 * Generate an ACK dropping incoming segment if it occupies
2477 	 * sequence space, where the ACK reflects our state.
2478 	 *
2479 	 * We can now skip the test for the RST flag since all
2480 	 * paths to this code happen after packets containing
2481 	 * RST have been dropped.
2482 	 *
2483 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2484 	 * segment we received passes the SYN-RECEIVED ACK test.
2485 	 * If it fails send a RST.  This breaks the loop in the
2486 	 * "LAND" DoS attack, and also prevents an ACK storm
2487 	 * between two listening ports that have been sent forged
2488 	 * SYN segments, each with the source address of the other.
2489 	 */
2490 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2491 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2492 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2493 		rstreason = BANDLIM_RST_OPENPORT;
2494 		goto dropwithreset;
2495 	}
2496 #ifdef TCPDEBUG
2497 	if (so->so_options & SO_DEBUG)
2498 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2499 			  &tcp_savetcp, 0);
2500 #endif
2501 	KASSERT(headlocked, ("headlocked should be 1"));
2502 	INP_INFO_WUNLOCK(&tcbinfo);
2503 	tp->t_flags |= TF_ACKNOW;
2504 	(void) tcp_output(tp);
2505 	INP_UNLOCK(inp);
2506 	m_freem(m);
2507 	return;
2508 
2509 dropwithreset:
2510 	KASSERT(headlocked, ("tcp_input: dropwithreset: head not locked"));
2511 	/*
2512 	 * Generate a RST, dropping incoming segment.
2513 	 * Make ACK acceptable to originator of segment.
2514 	 * Don't bother to respond if destination was broadcast/multicast.
2515 	 */
2516 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2517 		goto drop;
2518 	if (isipv6) {
2519 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2520 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2521 			goto drop;
2522 	} else {
2523 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2524 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2525 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2526 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2527 			goto drop;
2528 	}
2529 	/* IPv6 anycast check is done at tcp6_input() */
2530 
2531 	/*
2532 	 * Perform bandwidth limiting.
2533 	 */
2534 	if (badport_bandlim(rstreason) < 0)
2535 		goto drop;
2536 
2537 #ifdef TCPDEBUG
2538 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2539 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2540 			  &tcp_savetcp, 0);
2541 #endif
2542 
2543 	if (thflags & TH_ACK)
2544 		/* mtod() below is safe as long as hdr dropping is delayed */
2545 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2546 			    TH_RST);
2547 	else {
2548 		if (thflags & TH_SYN)
2549 			tlen++;
2550 		/* mtod() below is safe as long as hdr dropping is delayed */
2551 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2552 			    (tcp_seq)0, TH_RST|TH_ACK);
2553 	}
2554 
2555 	if (tp)
2556 		INP_UNLOCK(inp);
2557 	if (headlocked)
2558 		INP_INFO_WUNLOCK(&tcbinfo);
2559 	return;
2560 
2561 drop:
2562 	/*
2563 	 * Drop space held by incoming segment and return.
2564 	 */
2565 #ifdef TCPDEBUG
2566 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2567 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2568 			  &tcp_savetcp, 0);
2569 #endif
2570 	if (tp)
2571 		INP_UNLOCK(inp);
2572 	if (headlocked)
2573 		INP_INFO_WUNLOCK(&tcbinfo);
2574 	m_freem(m);
2575 	return;
2576 }
2577 
2578 /*
2579  * Parse TCP options and place in tcpopt.
2580  */
2581 static void
2582 tcp_dooptions(to, cp, cnt, is_syn)
2583 	struct tcpopt *to;
2584 	u_char *cp;
2585 	int cnt;
2586 	int is_syn;
2587 {
2588 	int opt, optlen;
2589 
2590 	to->to_flags = 0;
2591 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2592 		opt = cp[0];
2593 		if (opt == TCPOPT_EOL)
2594 			break;
2595 		if (opt == TCPOPT_NOP)
2596 			optlen = 1;
2597 		else {
2598 			if (cnt < 2)
2599 				break;
2600 			optlen = cp[1];
2601 			if (optlen < 2 || optlen > cnt)
2602 				break;
2603 		}
2604 		switch (opt) {
2605 		case TCPOPT_MAXSEG:
2606 			if (optlen != TCPOLEN_MAXSEG)
2607 				continue;
2608 			if (!is_syn)
2609 				continue;
2610 			to->to_flags |= TOF_MSS;
2611 			bcopy((char *)cp + 2,
2612 			    (char *)&to->to_mss, sizeof(to->to_mss));
2613 			to->to_mss = ntohs(to->to_mss);
2614 			break;
2615 		case TCPOPT_WINDOW:
2616 			if (optlen != TCPOLEN_WINDOW)
2617 				continue;
2618 			if (! is_syn)
2619 				continue;
2620 			to->to_flags |= TOF_SCALE;
2621 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2622 			break;
2623 		case TCPOPT_TIMESTAMP:
2624 			if (optlen != TCPOLEN_TIMESTAMP)
2625 				continue;
2626 			to->to_flags |= TOF_TS;
2627 			bcopy((char *)cp + 2,
2628 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2629 			to->to_tsval = ntohl(to->to_tsval);
2630 			bcopy((char *)cp + 6,
2631 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2632 			to->to_tsecr = ntohl(to->to_tsecr);
2633 			/*
2634 			 * If echoed timestamp is later than the current time,
2635 			 * fall back to non RFC1323 RTT calculation.
2636 			 */
2637 			if ((to->to_tsecr != 0) && TSTMP_GT(to->to_tsecr, ticks))
2638 				to->to_tsecr = 0;
2639 			break;
2640 #ifdef TCP_SIGNATURE
2641 		/*
2642 		 * XXX In order to reply to a host which has set the
2643 		 * TCP_SIGNATURE option in its initial SYN, we have to
2644 		 * record the fact that the option was observed here
2645 		 * for the syncache code to perform the correct response.
2646 		 */
2647 		case TCPOPT_SIGNATURE:
2648 			if (optlen != TCPOLEN_SIGNATURE)
2649 				continue;
2650 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2651 			break;
2652 #endif
2653 		case TCPOPT_SACK_PERMITTED:
2654 			if (!tcp_do_sack ||
2655 			    optlen != TCPOLEN_SACK_PERMITTED)
2656 				continue;
2657 			if (is_syn) {
2658 				/* MUST only be set on SYN */
2659 				to->to_flags |= TOF_SACK;
2660 			}
2661 			break;
2662 		case TCPOPT_SACK:
2663 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2664 				continue;
2665 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2666 			to->to_sacks = cp + 2;
2667 			tcpstat.tcps_sack_rcv_blocks++;
2668 			break;
2669 		default:
2670 			continue;
2671 		}
2672 	}
2673 }
2674 
2675 /*
2676  * Pull out of band byte out of a segment so
2677  * it doesn't appear in the user's data queue.
2678  * It is still reflected in the segment length for
2679  * sequencing purposes.
2680  */
2681 static void
2682 tcp_pulloutofband(so, th, m, off)
2683 	struct socket *so;
2684 	struct tcphdr *th;
2685 	register struct mbuf *m;
2686 	int off;		/* delayed to be droped hdrlen */
2687 {
2688 	int cnt = off + th->th_urp - 1;
2689 
2690 	while (cnt >= 0) {
2691 		if (m->m_len > cnt) {
2692 			char *cp = mtod(m, caddr_t) + cnt;
2693 			struct tcpcb *tp = sototcpcb(so);
2694 
2695 			tp->t_iobc = *cp;
2696 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2697 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2698 			m->m_len--;
2699 			if (m->m_flags & M_PKTHDR)
2700 				m->m_pkthdr.len--;
2701 			return;
2702 		}
2703 		cnt -= m->m_len;
2704 		m = m->m_next;
2705 		if (m == 0)
2706 			break;
2707 	}
2708 	panic("tcp_pulloutofband");
2709 }
2710 
2711 /*
2712  * Collect new round-trip time estimate
2713  * and update averages and current timeout.
2714  */
2715 static void
2716 tcp_xmit_timer(tp, rtt)
2717 	register struct tcpcb *tp;
2718 	int rtt;
2719 {
2720 	register int delta;
2721 
2722 	INP_LOCK_ASSERT(tp->t_inpcb);
2723 
2724 	tcpstat.tcps_rttupdated++;
2725 	tp->t_rttupdated++;
2726 	if (tp->t_srtt != 0) {
2727 		/*
2728 		 * srtt is stored as fixed point with 5 bits after the
2729 		 * binary point (i.e., scaled by 8).  The following magic
2730 		 * is equivalent to the smoothing algorithm in rfc793 with
2731 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2732 		 * point).  Adjust rtt to origin 0.
2733 		 */
2734 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2735 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2736 
2737 		if ((tp->t_srtt += delta) <= 0)
2738 			tp->t_srtt = 1;
2739 
2740 		/*
2741 		 * We accumulate a smoothed rtt variance (actually, a
2742 		 * smoothed mean difference), then set the retransmit
2743 		 * timer to smoothed rtt + 4 times the smoothed variance.
2744 		 * rttvar is stored as fixed point with 4 bits after the
2745 		 * binary point (scaled by 16).  The following is
2746 		 * equivalent to rfc793 smoothing with an alpha of .75
2747 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2748 		 * rfc793's wired-in beta.
2749 		 */
2750 		if (delta < 0)
2751 			delta = -delta;
2752 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2753 		if ((tp->t_rttvar += delta) <= 0)
2754 			tp->t_rttvar = 1;
2755 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2756 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2757 	} else {
2758 		/*
2759 		 * No rtt measurement yet - use the unsmoothed rtt.
2760 		 * Set the variance to half the rtt (so our first
2761 		 * retransmit happens at 3*rtt).
2762 		 */
2763 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2764 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2765 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2766 	}
2767 	tp->t_rtttime = 0;
2768 	tp->t_rxtshift = 0;
2769 
2770 	/*
2771 	 * the retransmit should happen at rtt + 4 * rttvar.
2772 	 * Because of the way we do the smoothing, srtt and rttvar
2773 	 * will each average +1/2 tick of bias.  When we compute
2774 	 * the retransmit timer, we want 1/2 tick of rounding and
2775 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2776 	 * firing of the timer.  The bias will give us exactly the
2777 	 * 1.5 tick we need.  But, because the bias is
2778 	 * statistical, we have to test that we don't drop below
2779 	 * the minimum feasible timer (which is 2 ticks).
2780 	 */
2781 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2782 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2783 
2784 	/*
2785 	 * We received an ack for a packet that wasn't retransmitted;
2786 	 * it is probably safe to discard any error indications we've
2787 	 * received recently.  This isn't quite right, but close enough
2788 	 * for now (a route might have failed after we sent a segment,
2789 	 * and the return path might not be symmetrical).
2790 	 */
2791 	tp->t_softerror = 0;
2792 }
2793 
2794 /*
2795  * Determine a reasonable value for maxseg size.
2796  * If the route is known, check route for mtu.
2797  * If none, use an mss that can be handled on the outgoing
2798  * interface without forcing IP to fragment; if bigger than
2799  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2800  * to utilize large mbufs.  If no route is found, route has no mtu,
2801  * or the destination isn't local, use a default, hopefully conservative
2802  * size (usually 512 or the default IP max size, but no more than the mtu
2803  * of the interface), as we can't discover anything about intervening
2804  * gateways or networks.  We also initialize the congestion/slow start
2805  * window to be a single segment if the destination isn't local.
2806  * While looking at the routing entry, we also initialize other path-dependent
2807  * parameters from pre-set or cached values in the routing entry.
2808  *
2809  * Also take into account the space needed for options that we
2810  * send regularly.  Make maxseg shorter by that amount to assure
2811  * that we can send maxseg amount of data even when the options
2812  * are present.  Store the upper limit of the length of options plus
2813  * data in maxopd.
2814  *
2815  *
2816  * In case of T/TCP, we call this routine during implicit connection
2817  * setup as well (offer = -1), to initialize maxseg from the cached
2818  * MSS of our peer.
2819  *
2820  * NOTE that this routine is only called when we process an incoming
2821  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2822  */
2823 void
2824 tcp_mss(tp, offer)
2825 	struct tcpcb *tp;
2826 	int offer;
2827 {
2828 	int rtt, mss;
2829 	u_long bufsize;
2830 	u_long maxmtu;
2831 	struct inpcb *inp = tp->t_inpcb;
2832 	struct socket *so;
2833 	struct hc_metrics_lite metrics;
2834 	int origoffer = offer;
2835 #ifdef INET6
2836 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2837 	size_t min_protoh = isipv6 ?
2838 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2839 			    sizeof (struct tcpiphdr);
2840 #else
2841 	const size_t min_protoh = sizeof(struct tcpiphdr);
2842 #endif
2843 
2844 	/* initialize */
2845 #ifdef INET6
2846 	if (isipv6) {
2847 		maxmtu = tcp_maxmtu6(&inp->inp_inc);
2848 		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2849 	} else
2850 #endif
2851 	{
2852 		maxmtu = tcp_maxmtu(&inp->inp_inc);
2853 		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2854 	}
2855 	so = inp->inp_socket;
2856 
2857 	/*
2858 	 * no route to sender, stay with default mss and return
2859 	 */
2860 	if (maxmtu == 0)
2861 		return;
2862 
2863 	/* what have we got? */
2864 	switch (offer) {
2865 		case 0:
2866 			/*
2867 			 * Offer == 0 means that there was no MSS on the SYN
2868 			 * segment, in this case we use tcp_mssdflt.
2869 			 */
2870 			offer =
2871 #ifdef INET6
2872 				isipv6 ? tcp_v6mssdflt :
2873 #endif
2874 				tcp_mssdflt;
2875 			break;
2876 
2877 		case -1:
2878 			/*
2879 			 * Offer == -1 means that we didn't receive SYN yet.
2880 			 */
2881 			/* FALLTHROUGH */
2882 
2883 		default:
2884 			/*
2885 			 * Prevent DoS attack with too small MSS. Round up
2886 			 * to at least minmss.
2887 			 */
2888 			offer = max(offer, tcp_minmss);
2889 			/*
2890 			 * Sanity check: make sure that maxopd will be large
2891 			 * enough to allow some data on segments even if the
2892 			 * all the option space is used (40bytes).  Otherwise
2893 			 * funny things may happen in tcp_output.
2894 			 */
2895 			offer = max(offer, 64);
2896 	}
2897 
2898 	/*
2899 	 * rmx information is now retrieved from tcp_hostcache
2900 	 */
2901 	tcp_hc_get(&inp->inp_inc, &metrics);
2902 
2903 	/*
2904 	 * if there's a discovered mtu int tcp hostcache, use it
2905 	 * else, use the link mtu.
2906 	 */
2907 	if (metrics.rmx_mtu)
2908 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2909 	else {
2910 #ifdef INET6
2911 		if (isipv6) {
2912 			mss = maxmtu - min_protoh;
2913 			if (!path_mtu_discovery &&
2914 			    !in6_localaddr(&inp->in6p_faddr))
2915 				mss = min(mss, tcp_v6mssdflt);
2916 		} else
2917 #endif
2918 		{
2919 			mss = maxmtu - min_protoh;
2920 			if (!path_mtu_discovery &&
2921 			    !in_localaddr(inp->inp_faddr))
2922 				mss = min(mss, tcp_mssdflt);
2923 		}
2924 	}
2925 	mss = min(mss, offer);
2926 
2927 	/*
2928 	 * maxopd stores the maximum length of data AND options
2929 	 * in a segment; maxseg is the amount of data in a normal
2930 	 * segment.  We need to store this value (maxopd) apart
2931 	 * from maxseg, because now every segment carries options
2932 	 * and thus we normally have somewhat less data in segments.
2933 	 */
2934 	tp->t_maxopd = mss;
2935 
2936 	/*
2937 	 * origoffer==-1 indicates, that no segments were received yet.
2938 	 * In this case we just guess.
2939 	 */
2940 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2941 	    (origoffer == -1 ||
2942 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2943 		mss -= TCPOLEN_TSTAMP_APPA;
2944 	tp->t_maxseg = mss;
2945 
2946 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2947 		if (mss > MCLBYTES)
2948 			mss &= ~(MCLBYTES-1);
2949 #else
2950 		if (mss > MCLBYTES)
2951 			mss = mss / MCLBYTES * MCLBYTES;
2952 #endif
2953 	tp->t_maxseg = mss;
2954 
2955 	/*
2956 	 * If there's a pipesize, change the socket buffer to that size,
2957 	 * don't change if sb_hiwat is different than default (then it
2958 	 * has been changed on purpose with setsockopt).
2959 	 * Make the socket buffers an integral number of mss units;
2960 	 * if the mss is larger than the socket buffer, decrease the mss.
2961 	 */
2962 	SOCKBUF_LOCK(&so->so_snd);
2963 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2964 		bufsize = metrics.rmx_sendpipe;
2965 	else
2966 		bufsize = so->so_snd.sb_hiwat;
2967 	if (bufsize < mss)
2968 		mss = bufsize;
2969 	else {
2970 		bufsize = roundup(bufsize, mss);
2971 		if (bufsize > sb_max)
2972 			bufsize = sb_max;
2973 		if (bufsize > so->so_snd.sb_hiwat)
2974 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2975 	}
2976 	SOCKBUF_UNLOCK(&so->so_snd);
2977 	tp->t_maxseg = mss;
2978 
2979 	SOCKBUF_LOCK(&so->so_rcv);
2980 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2981 		bufsize = metrics.rmx_recvpipe;
2982 	else
2983 		bufsize = so->so_rcv.sb_hiwat;
2984 	if (bufsize > mss) {
2985 		bufsize = roundup(bufsize, mss);
2986 		if (bufsize > sb_max)
2987 			bufsize = sb_max;
2988 		if (bufsize > so->so_rcv.sb_hiwat)
2989 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2990 	}
2991 	SOCKBUF_UNLOCK(&so->so_rcv);
2992 	/*
2993 	 * While we're here, check the others too
2994 	 */
2995 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2996 		tp->t_srtt = rtt;
2997 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2998 		tcpstat.tcps_usedrtt++;
2999 		if (metrics.rmx_rttvar) {
3000 			tp->t_rttvar = metrics.rmx_rttvar;
3001 			tcpstat.tcps_usedrttvar++;
3002 		} else {
3003 			/* default variation is +- 1 rtt */
3004 			tp->t_rttvar =
3005 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3006 		}
3007 		TCPT_RANGESET(tp->t_rxtcur,
3008 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3009 			      tp->t_rttmin, TCPTV_REXMTMAX);
3010 	}
3011 	if (metrics.rmx_ssthresh) {
3012 		/*
3013 		 * There's some sort of gateway or interface
3014 		 * buffer limit on the path.  Use this to set
3015 		 * the slow start threshhold, but set the
3016 		 * threshold to no less than 2*mss.
3017 		 */
3018 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3019 		tcpstat.tcps_usedssthresh++;
3020 	}
3021 	if (metrics.rmx_bandwidth)
3022 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3023 
3024 	/*
3025 	 * Set the slow-start flight size depending on whether this
3026 	 * is a local network or not.
3027 	 *
3028 	 * Extend this so we cache the cwnd too and retrieve it here.
3029 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3030 	 * have previous experience with the remote host. Be careful
3031 	 * not make cwnd bigger than remote receive window or our own
3032 	 * send socket buffer. Maybe put some additional upper bound
3033 	 * on the retrieved cwnd. Should do incremental updates to
3034 	 * hostcache when cwnd collapses so next connection doesn't
3035 	 * overloads the path again.
3036 	 *
3037 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3038 	 * We currently check only in syncache_socket for that.
3039 	 */
3040 #define TCP_METRICS_CWND
3041 #ifdef TCP_METRICS_CWND
3042 	if (metrics.rmx_cwnd)
3043 		tp->snd_cwnd = max(mss,
3044 				min(metrics.rmx_cwnd / 2,
3045 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3046 	else
3047 #endif
3048 	if (tcp_do_rfc3390)
3049 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3050 #ifdef INET6
3051 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3052 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3053 #else
3054 	else if (in_localaddr(inp->inp_faddr))
3055 #endif
3056 		tp->snd_cwnd = mss * ss_fltsz_local;
3057 	else
3058 		tp->snd_cwnd = mss * ss_fltsz;
3059 }
3060 
3061 /*
3062  * Determine the MSS option to send on an outgoing SYN.
3063  */
3064 int
3065 tcp_mssopt(inc)
3066 	struct in_conninfo *inc;
3067 {
3068 	int mss = 0;
3069 	u_long maxmtu = 0;
3070 	u_long thcmtu = 0;
3071 	size_t min_protoh;
3072 #ifdef INET6
3073 	int isipv6 = inc->inc_isipv6 ? 1 : 0;
3074 #endif
3075 
3076 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3077 
3078 #ifdef INET6
3079 	if (isipv6) {
3080 		mss = tcp_v6mssdflt;
3081 		maxmtu = tcp_maxmtu6(inc);
3082 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3083 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3084 	} else
3085 #endif
3086 	{
3087 		mss = tcp_mssdflt;
3088 		maxmtu = tcp_maxmtu(inc);
3089 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3090 		min_protoh = sizeof(struct tcpiphdr);
3091 	}
3092 	if (maxmtu && thcmtu)
3093 		mss = min(maxmtu, thcmtu) - min_protoh;
3094 	else if (maxmtu || thcmtu)
3095 		mss = max(maxmtu, thcmtu) - min_protoh;
3096 
3097 	return (mss);
3098 }
3099 
3100 
3101 /*
3102  * On a partial ack arrives, force the retransmission of the
3103  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3104  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3105  * be started again.
3106  */
3107 static void
3108 tcp_newreno_partial_ack(tp, th)
3109 	struct tcpcb *tp;
3110 	struct tcphdr *th;
3111 {
3112 	tcp_seq onxt = tp->snd_nxt;
3113 	u_long  ocwnd = tp->snd_cwnd;
3114 
3115 	callout_stop(tp->tt_rexmt);
3116 	tp->t_rtttime = 0;
3117 	tp->snd_nxt = th->th_ack;
3118 	/*
3119 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3120 	 * (tp->snd_una has not yet been updated when this function is called.)
3121 	 */
3122 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3123 	tp->t_flags |= TF_ACKNOW;
3124 	(void) tcp_output(tp);
3125 	tp->snd_cwnd = ocwnd;
3126 	if (SEQ_GT(onxt, tp->snd_nxt))
3127 		tp->snd_nxt = onxt;
3128 	/*
3129 	 * Partial window deflation.  Relies on fact that tp->snd_una
3130 	 * not updated yet.
3131 	 */
3132 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3133 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3134 	else
3135 		tp->snd_cwnd = 0;
3136 	tp->snd_cwnd += tp->t_maxseg;
3137 }
3138 
3139 /*
3140  * Returns 1 if the TIME_WAIT state was killed and we should start over,
3141  * looking for a pcb in the listen state.  Returns 0 otherwise.
3142  */
3143 static int
3144 tcp_timewait(tw, to, th, m, tlen)
3145 	struct tcptw *tw;
3146 	struct tcpopt *to;
3147 	struct tcphdr *th;
3148 	struct mbuf *m;
3149 	int tlen;
3150 {
3151 	int thflags;
3152 	tcp_seq seq;
3153 #ifdef INET6
3154 	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
3155 #else
3156 	const int isipv6 = 0;
3157 #endif
3158 
3159 	/* tcbinfo lock required for tcp_twclose(), tcp_2msl_reset. */
3160 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
3161 	INP_LOCK_ASSERT(tw->tw_inpcb);
3162 
3163 	thflags = th->th_flags;
3164 
3165 	/*
3166 	 * NOTE: for FIN_WAIT_2 (to be added later),
3167 	 * must validate sequence number before accepting RST
3168 	 */
3169 
3170 	/*
3171 	 * If the segment contains RST:
3172 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
3173 	 *      RFC 1337.
3174 	 */
3175 	if (thflags & TH_RST)
3176 		goto drop;
3177 
3178 #if 0
3179 /* PAWS not needed at the moment */
3180 	/*
3181 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3182 	 * and it's less than ts_recent, drop it.
3183 	 */
3184 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3185 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3186 		if ((thflags & TH_ACK) == 0)
3187 			goto drop;
3188 		goto ack;
3189 	}
3190 	/*
3191 	 * ts_recent is never updated because we never accept new segments.
3192 	 */
3193 #endif
3194 
3195 	/*
3196 	 * If a new connection request is received
3197 	 * while in TIME_WAIT, drop the old connection
3198 	 * and start over if the sequence numbers
3199 	 * are above the previous ones.
3200 	 */
3201 	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
3202 		(void) tcp_twclose(tw, 0);
3203 		return (1);
3204 	}
3205 
3206 	/*
3207 	 * Drop the the segment if it does not contain an ACK.
3208 	 */
3209 	if ((thflags & TH_ACK) == 0)
3210 		goto drop;
3211 
3212 	/*
3213 	 * Reset the 2MSL timer if this is a duplicate FIN.
3214 	 */
3215 	if (thflags & TH_FIN) {
3216 		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
3217 		if (seq + 1 == tw->rcv_nxt)
3218 			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
3219 	}
3220 
3221 	/*
3222 	 * Acknowledge the segment if it has data or is not a duplicate ACK.
3223 	 */
3224 	if (thflags != TH_ACK || tlen != 0 ||
3225 	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
3226 		tcp_twrespond(tw, TH_ACK);
3227 	goto drop;
3228 
3229 	/*
3230 	 * Generate a RST, dropping incoming segment.
3231 	 * Make ACK acceptable to originator of segment.
3232 	 * Don't bother to respond if destination was broadcast/multicast.
3233 	 */
3234 	if (m->m_flags & (M_BCAST|M_MCAST))
3235 		goto drop;
3236 	if (isipv6) {
3237 		struct ip6_hdr *ip6;
3238 
3239 		/* IPv6 anycast check is done at tcp6_input() */
3240 		ip6 = mtod(m, struct ip6_hdr *);
3241 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3242 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3243 			goto drop;
3244 	} else {
3245 		struct ip *ip;
3246 
3247 		ip = mtod(m, struct ip *);
3248 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3249 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3250 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3251 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3252 			goto drop;
3253 	}
3254 	if (thflags & TH_ACK) {
3255 		tcp_respond(NULL,
3256 		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3257 	} else {
3258 		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3259 		tcp_respond(NULL,
3260 		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3261 	}
3262 	INP_UNLOCK(tw->tw_inpcb);
3263 	return (0);
3264 
3265 drop:
3266 	INP_UNLOCK(tw->tw_inpcb);
3267 	m_freem(m);
3268 	return (0);
3269 }
3270