xref: /freebsd/sys/netinet/tcp_input.c (revision 7f9dff23d3092aa33ad45b2b63e52469b3c13a6e)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_inet.h"
54 #include "opt_inet6.h"
55 #include "opt_ipsec.h"
56 #include "opt_tcpdebug.h"
57 
58 #include <sys/param.h>
59 #include <sys/kernel.h>
60 #ifdef TCP_HHOOK
61 #include <sys/hhook.h>
62 #endif
63 #include <sys/malloc.h>
64 #include <sys/mbuf.h>
65 #include <sys/proc.h>		/* for proc0 declaration */
66 #include <sys/protosw.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 
75 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
76 
77 #include <vm/uma.h>
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/route.h>
82 #include <net/vnet.h>
83 
84 #define TCPSTATES		/* for logging */
85 
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
92 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
93 #include <netinet/ip_var.h>
94 #include <netinet/ip_options.h>
95 #include <netinet/ip6.h>
96 #include <netinet/icmp6.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/in6_var.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #ifdef TCP_RFC7413
102 #include <netinet/tcp_fastopen.h>
103 #endif
104 #include <netinet/tcp.h>
105 #include <netinet/tcp_fsm.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet6/tcp6_var.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/cc/cc.h>
112 #ifdef TCPPCAP
113 #include <netinet/tcp_pcap.h>
114 #endif
115 #include <netinet/tcp_syncache.h>
116 #ifdef TCPDEBUG
117 #include <netinet/tcp_debug.h>
118 #endif /* TCPDEBUG */
119 #ifdef TCP_OFFLOAD
120 #include <netinet/tcp_offload.h>
121 #endif
122 
123 #ifdef IPSEC
124 #include <netipsec/ipsec.h>
125 #include <netipsec/ipsec6.h>
126 #endif /*IPSEC*/
127 
128 #include <machine/in_cksum.h>
129 
130 #include <security/mac/mac_framework.h>
131 
132 const int tcprexmtthresh = 3;
133 
134 int tcp_log_in_vain = 0;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
136     &tcp_log_in_vain, 0,
137     "Log all incoming TCP segments to closed ports");
138 
139 VNET_DEFINE(int, blackhole) = 0;
140 #define	V_blackhole		VNET(blackhole)
141 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
142     &VNET_NAME(blackhole), 0,
143     "Do not send RST on segments to closed ports");
144 
145 VNET_DEFINE(int, tcp_delack_enabled) = 1;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
147     &VNET_NAME(tcp_delack_enabled), 0,
148     "Delay ACK to try and piggyback it onto a data packet");
149 
150 VNET_DEFINE(int, drop_synfin) = 0;
151 #define	V_drop_synfin		VNET(drop_synfin)
152 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
153     &VNET_NAME(drop_synfin), 0,
154     "Drop TCP packets with SYN+FIN set");
155 
156 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
158     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
159     "Use calculated pipe/in-flight bytes per RFC 6675");
160 
161 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
162 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
164     &VNET_NAME(tcp_do_rfc3042), 0,
165     "Enable RFC 3042 (Limited Transmit)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3390), 0,
170     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
171 
172 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
174     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
175     "Slow-start flight size (initial congestion window) in number of segments");
176 
177 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
179     &VNET_NAME(tcp_do_rfc3465), 0,
180     "Enable RFC 3465 (Appropriate Byte Counting)");
181 
182 VNET_DEFINE(int, tcp_abc_l_var) = 2;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
184     &VNET_NAME(tcp_abc_l_var), 2,
185     "Cap the max cwnd increment during slow-start to this number of segments");
186 
187 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
188 
189 VNET_DEFINE(int, tcp_do_ecn) = 2;
190 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
191     &VNET_NAME(tcp_do_ecn), 0,
192     "TCP ECN support");
193 
194 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
195 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
196     &VNET_NAME(tcp_ecn_maxretries), 0,
197     "Max retries before giving up on ECN");
198 
199 VNET_DEFINE(int, tcp_insecure_syn) = 0;
200 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_insecure_syn), 0,
203     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
204 
205 VNET_DEFINE(int, tcp_insecure_rst) = 0;
206 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_insecure_rst), 0,
209     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
210 
211 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
212 #define	V_tcp_recvspace	VNET(tcp_recvspace)
213 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
214     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
215 
216 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
217 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
219     &VNET_NAME(tcp_do_autorcvbuf), 0,
220     "Enable automatic receive buffer sizing");
221 
222 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
223 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
225     &VNET_NAME(tcp_autorcvbuf_inc), 0,
226     "Incrementor step size of automatic receive buffer");
227 
228 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
229 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
231     &VNET_NAME(tcp_autorcvbuf_max), 0,
232     "Max size of automatic receive buffer");
233 
234 VNET_DEFINE(struct inpcbhead, tcb);
235 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
236 VNET_DEFINE(struct inpcbinfo, tcbinfo);
237 
238 /*
239  * TCP statistics are stored in an array of counter(9)s, which size matches
240  * size of struct tcpstat.  TCP running connection count is a regular array.
241  */
242 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
243 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
244     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
245 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
246 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
247     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
248     "TCP connection counts by TCP state");
249 
250 static void
251 tcp_vnet_init(const void *unused)
252 {
253 
254 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
255 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
256 }
257 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
258     tcp_vnet_init, NULL);
259 
260 #ifdef VIMAGE
261 static void
262 tcp_vnet_uninit(const void *unused)
263 {
264 
265 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
266 	VNET_PCPUSTAT_FREE(tcpstat);
267 }
268 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
269     tcp_vnet_uninit, NULL);
270 #endif /* VIMAGE */
271 
272 /*
273  * Kernel module interface for updating tcpstat.  The argument is an index
274  * into tcpstat treated as an array.
275  */
276 void
277 kmod_tcpstat_inc(int statnum)
278 {
279 
280 	counter_u64_add(VNET(tcpstat)[statnum], 1);
281 }
282 
283 #ifdef TCP_HHOOK
284 /*
285  * Wrapper for the TCP established input helper hook.
286  */
287 void
288 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
289 {
290 	struct tcp_hhook_data hhook_data;
291 
292 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
293 		hhook_data.tp = tp;
294 		hhook_data.th = th;
295 		hhook_data.to = to;
296 
297 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
298 		    tp->osd);
299 	}
300 }
301 #endif
302 
303 /*
304  * CC wrapper hook functions
305  */
306 void
307 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
308     uint16_t type)
309 {
310 	INP_WLOCK_ASSERT(tp->t_inpcb);
311 
312 	tp->ccv->nsegs = nsegs;
313 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
314 	if (tp->snd_cwnd <= tp->snd_wnd)
315 		tp->ccv->flags |= CCF_CWND_LIMITED;
316 	else
317 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
318 
319 	if (type == CC_ACK) {
320 		if (tp->snd_cwnd > tp->snd_ssthresh) {
321 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
322 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
323 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
324 				tp->t_bytes_acked -= tp->snd_cwnd;
325 				tp->ccv->flags |= CCF_ABC_SENTAWND;
326 			}
327 		} else {
328 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
329 				tp->t_bytes_acked = 0;
330 		}
331 	}
332 
333 	if (CC_ALGO(tp)->ack_received != NULL) {
334 		/* XXXLAS: Find a way to live without this */
335 		tp->ccv->curack = th->th_ack;
336 		CC_ALGO(tp)->ack_received(tp->ccv, type);
337 	}
338 }
339 
340 void
341 cc_conn_init(struct tcpcb *tp)
342 {
343 	struct hc_metrics_lite metrics;
344 	struct inpcb *inp = tp->t_inpcb;
345 	u_int maxseg;
346 	int rtt;
347 
348 	INP_WLOCK_ASSERT(tp->t_inpcb);
349 
350 	tcp_hc_get(&inp->inp_inc, &metrics);
351 	maxseg = tcp_maxseg(tp);
352 
353 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
354 		tp->t_srtt = rtt;
355 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
356 		TCPSTAT_INC(tcps_usedrtt);
357 		if (metrics.rmx_rttvar) {
358 			tp->t_rttvar = metrics.rmx_rttvar;
359 			TCPSTAT_INC(tcps_usedrttvar);
360 		} else {
361 			/* default variation is +- 1 rtt */
362 			tp->t_rttvar =
363 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
364 		}
365 		TCPT_RANGESET(tp->t_rxtcur,
366 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
367 		    tp->t_rttmin, TCPTV_REXMTMAX);
368 	}
369 	if (metrics.rmx_ssthresh) {
370 		/*
371 		 * There's some sort of gateway or interface
372 		 * buffer limit on the path.  Use this to set
373 		 * the slow start threshold, but set the
374 		 * threshold to no less than 2*mss.
375 		 */
376 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
377 		TCPSTAT_INC(tcps_usedssthresh);
378 	}
379 
380 	/*
381 	 * Set the initial slow-start flight size.
382 	 *
383 	 * RFC5681 Section 3.1 specifies the default conservative values.
384 	 * RFC3390 specifies slightly more aggressive values.
385 	 * RFC6928 increases it to ten segments.
386 	 * Support for user specified value for initial flight size.
387 	 *
388 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
389 	 * reduce the initial CWND to one segment as congestion is likely
390 	 * requiring us to be cautious.
391 	 */
392 	if (tp->snd_cwnd == 1)
393 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
394 	else if (V_tcp_initcwnd_segments)
395 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg,
396 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
397 	else if (V_tcp_do_rfc3390)
398 		tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380));
399 	else {
400 		/* Per RFC5681 Section 3.1 */
401 		if (maxseg > 2190)
402 			tp->snd_cwnd = 2 * maxseg;
403 		else if (maxseg > 1095)
404 			tp->snd_cwnd = 3 * maxseg;
405 		else
406 			tp->snd_cwnd = 4 * maxseg;
407 	}
408 
409 	if (CC_ALGO(tp)->conn_init != NULL)
410 		CC_ALGO(tp)->conn_init(tp->ccv);
411 }
412 
413 void inline
414 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
415 {
416 	u_int maxseg;
417 
418 	INP_WLOCK_ASSERT(tp->t_inpcb);
419 
420 	switch(type) {
421 	case CC_NDUPACK:
422 		if (!IN_FASTRECOVERY(tp->t_flags)) {
423 			tp->snd_recover = tp->snd_max;
424 			if (tp->t_flags & TF_ECN_PERMIT)
425 				tp->t_flags |= TF_ECN_SND_CWR;
426 		}
427 		break;
428 	case CC_ECN:
429 		if (!IN_CONGRECOVERY(tp->t_flags)) {
430 			TCPSTAT_INC(tcps_ecn_rcwnd);
431 			tp->snd_recover = tp->snd_max;
432 			if (tp->t_flags & TF_ECN_PERMIT)
433 				tp->t_flags |= TF_ECN_SND_CWR;
434 		}
435 		break;
436 	case CC_RTO:
437 		maxseg = tcp_maxseg(tp);
438 		tp->t_dupacks = 0;
439 		tp->t_bytes_acked = 0;
440 		EXIT_RECOVERY(tp->t_flags);
441 		if (CC_ALGO(tp)->cong_signal == NULL) {
442 			/*
443 			 * RFC5681 Section 3.1
444 			 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4)
445 			 */
446 			tp->snd_ssthresh =
447 			    max((tp->snd_max - tp->snd_una) / 2 / maxseg, 2)
448 				* maxseg;
449 			tp->snd_cwnd = maxseg;
450 		}
451 		break;
452 	case CC_RTO_ERR:
453 		TCPSTAT_INC(tcps_sndrexmitbad);
454 		/* RTO was unnecessary, so reset everything. */
455 		tp->snd_cwnd = tp->snd_cwnd_prev;
456 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
457 		tp->snd_recover = tp->snd_recover_prev;
458 		if (tp->t_flags & TF_WASFRECOVERY)
459 			ENTER_FASTRECOVERY(tp->t_flags);
460 		if (tp->t_flags & TF_WASCRECOVERY)
461 			ENTER_CONGRECOVERY(tp->t_flags);
462 		tp->snd_nxt = tp->snd_max;
463 		tp->t_flags &= ~TF_PREVVALID;
464 		tp->t_badrxtwin = 0;
465 		break;
466 	}
467 
468 	if (CC_ALGO(tp)->cong_signal != NULL) {
469 		if (th != NULL)
470 			tp->ccv->curack = th->th_ack;
471 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
472 	}
473 }
474 
475 void inline
476 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
477 {
478 	INP_WLOCK_ASSERT(tp->t_inpcb);
479 
480 	/* XXXLAS: KASSERT that we're in recovery? */
481 
482 	if (CC_ALGO(tp)->post_recovery != NULL) {
483 		tp->ccv->curack = th->th_ack;
484 		CC_ALGO(tp)->post_recovery(tp->ccv);
485 	}
486 	/* XXXLAS: EXIT_RECOVERY ? */
487 	tp->t_bytes_acked = 0;
488 }
489 
490 #ifdef TCP_SIGNATURE
491 static inline int
492 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
493     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
494 {
495 	int ret;
496 
497 	tcp_fields_to_net(th);
498 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
499 	tcp_fields_to_host(th);
500 	return (ret);
501 }
502 #endif
503 
504 /*
505  * Indicate whether this ack should be delayed.  We can delay the ack if
506  * following conditions are met:
507  *	- There is no delayed ack timer in progress.
508  *	- Our last ack wasn't a 0-sized window. We never want to delay
509  *	  the ack that opens up a 0-sized window.
510  *	- LRO wasn't used for this segment. We make sure by checking that the
511  *	  segment size is not larger than the MSS.
512  */
513 #define DELAY_ACK(tp, tlen)						\
514 	((!tcp_timer_active(tp, TT_DELACK) &&				\
515 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
516 	    (tlen <= tp->t_maxseg) &&					\
517 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
518 
519 static void inline
520 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
521 {
522 	INP_WLOCK_ASSERT(tp->t_inpcb);
523 
524 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
525 		switch (iptos & IPTOS_ECN_MASK) {
526 		case IPTOS_ECN_CE:
527 		    tp->ccv->flags |= CCF_IPHDR_CE;
528 		    break;
529 		case IPTOS_ECN_ECT0:
530 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
531 		    break;
532 		case IPTOS_ECN_ECT1:
533 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
534 		    break;
535 		}
536 
537 		if (th->th_flags & TH_CWR)
538 			tp->ccv->flags |= CCF_TCPHDR_CWR;
539 		else
540 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
541 
542 		if (tp->t_flags & TF_DELACK)
543 			tp->ccv->flags |= CCF_DELACK;
544 		else
545 			tp->ccv->flags &= ~CCF_DELACK;
546 
547 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
548 
549 		if (tp->ccv->flags & CCF_ACKNOW)
550 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
551 	}
552 }
553 
554 /*
555  * TCP input handling is split into multiple parts:
556  *   tcp6_input is a thin wrapper around tcp_input for the extended
557  *	ip6_protox[] call format in ip6_input
558  *   tcp_input handles primary segment validation, inpcb lookup and
559  *	SYN processing on listen sockets
560  *   tcp_do_segment processes the ACK and text of the segment for
561  *	establishing, established and closing connections
562  */
563 #ifdef INET6
564 int
565 tcp6_input(struct mbuf **mp, int *offp, int proto)
566 {
567 	struct mbuf *m = *mp;
568 	struct in6_ifaddr *ia6;
569 	struct ip6_hdr *ip6;
570 
571 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
572 
573 	/*
574 	 * draft-itojun-ipv6-tcp-to-anycast
575 	 * better place to put this in?
576 	 */
577 	ip6 = mtod(m, struct ip6_hdr *);
578 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
579 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
580 		struct ip6_hdr *ip6;
581 
582 		ifa_free(&ia6->ia_ifa);
583 		ip6 = mtod(m, struct ip6_hdr *);
584 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
585 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
586 		return (IPPROTO_DONE);
587 	}
588 	if (ia6)
589 		ifa_free(&ia6->ia_ifa);
590 
591 	return (tcp_input(mp, offp, proto));
592 }
593 #endif /* INET6 */
594 
595 int
596 tcp_input(struct mbuf **mp, int *offp, int proto)
597 {
598 	struct mbuf *m = *mp;
599 	struct tcphdr *th = NULL;
600 	struct ip *ip = NULL;
601 	struct inpcb *inp = NULL;
602 	struct tcpcb *tp = NULL;
603 	struct socket *so = NULL;
604 	u_char *optp = NULL;
605 	int off0;
606 	int optlen = 0;
607 #ifdef INET
608 	int len;
609 #endif
610 	int tlen = 0, off;
611 	int drop_hdrlen;
612 	int thflags;
613 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
614 #ifdef TCP_SIGNATURE
615 	uint8_t sig_checked = 0;
616 #endif
617 	uint8_t iptos;
618 	struct m_tag *fwd_tag = NULL;
619 #ifdef INET6
620 	struct ip6_hdr *ip6 = NULL;
621 	int isipv6;
622 #else
623 	const void *ip6 = NULL;
624 #endif /* INET6 */
625 	struct tcpopt to;		/* options in this segment */
626 	char *s = NULL;			/* address and port logging */
627 	int ti_locked;
628 #ifdef TCPDEBUG
629 	/*
630 	 * The size of tcp_saveipgen must be the size of the max ip header,
631 	 * now IPv6.
632 	 */
633 	u_char tcp_saveipgen[IP6_HDR_LEN];
634 	struct tcphdr tcp_savetcp;
635 	short ostate = 0;
636 #endif
637 
638 #ifdef INET6
639 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
640 #endif
641 
642 	off0 = *offp;
643 	m = *mp;
644 	*mp = NULL;
645 	to.to_flags = 0;
646 	TCPSTAT_INC(tcps_rcvtotal);
647 
648 #ifdef INET6
649 	if (isipv6) {
650 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
651 
652 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
653 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
654 			if (m == NULL) {
655 				TCPSTAT_INC(tcps_rcvshort);
656 				return (IPPROTO_DONE);
657 			}
658 		}
659 
660 		ip6 = mtod(m, struct ip6_hdr *);
661 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
662 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
663 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
664 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
665 				th->th_sum = m->m_pkthdr.csum_data;
666 			else
667 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
668 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
669 			th->th_sum ^= 0xffff;
670 		} else
671 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
672 		if (th->th_sum) {
673 			TCPSTAT_INC(tcps_rcvbadsum);
674 			goto drop;
675 		}
676 
677 		/*
678 		 * Be proactive about unspecified IPv6 address in source.
679 		 * As we use all-zero to indicate unbounded/unconnected pcb,
680 		 * unspecified IPv6 address can be used to confuse us.
681 		 *
682 		 * Note that packets with unspecified IPv6 destination is
683 		 * already dropped in ip6_input.
684 		 */
685 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
686 			/* XXX stat */
687 			goto drop;
688 		}
689 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
690 	}
691 #endif
692 #if defined(INET) && defined(INET6)
693 	else
694 #endif
695 #ifdef INET
696 	{
697 		/*
698 		 * Get IP and TCP header together in first mbuf.
699 		 * Note: IP leaves IP header in first mbuf.
700 		 */
701 		if (off0 > sizeof (struct ip)) {
702 			ip_stripoptions(m);
703 			off0 = sizeof(struct ip);
704 		}
705 		if (m->m_len < sizeof (struct tcpiphdr)) {
706 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
707 			    == NULL) {
708 				TCPSTAT_INC(tcps_rcvshort);
709 				return (IPPROTO_DONE);
710 			}
711 		}
712 		ip = mtod(m, struct ip *);
713 		th = (struct tcphdr *)((caddr_t)ip + off0);
714 		tlen = ntohs(ip->ip_len) - off0;
715 
716 		iptos = ip->ip_tos;
717 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
718 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
719 				th->th_sum = m->m_pkthdr.csum_data;
720 			else
721 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
722 				    ip->ip_dst.s_addr,
723 				    htonl(m->m_pkthdr.csum_data + tlen +
724 				    IPPROTO_TCP));
725 			th->th_sum ^= 0xffff;
726 		} else {
727 			struct ipovly *ipov = (struct ipovly *)ip;
728 
729 			/*
730 			 * Checksum extended TCP header and data.
731 			 */
732 			len = off0 + tlen;
733 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
734 			ipov->ih_len = htons(tlen);
735 			th->th_sum = in_cksum(m, len);
736 			/* Reset length for SDT probes. */
737 			ip->ip_len = htons(len);
738 			/* Reset TOS bits */
739 			ip->ip_tos = iptos;
740 			/* Re-initialization for later version check */
741 			ip->ip_v = IPVERSION;
742 		}
743 
744 		if (th->th_sum) {
745 			TCPSTAT_INC(tcps_rcvbadsum);
746 			goto drop;
747 		}
748 	}
749 #endif /* INET */
750 
751 	/*
752 	 * Check that TCP offset makes sense,
753 	 * pull out TCP options and adjust length.		XXX
754 	 */
755 	off = th->th_off << 2;
756 	if (off < sizeof (struct tcphdr) || off > tlen) {
757 		TCPSTAT_INC(tcps_rcvbadoff);
758 		goto drop;
759 	}
760 	tlen -= off;	/* tlen is used instead of ti->ti_len */
761 	if (off > sizeof (struct tcphdr)) {
762 #ifdef INET6
763 		if (isipv6) {
764 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
765 			ip6 = mtod(m, struct ip6_hdr *);
766 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
767 		}
768 #endif
769 #if defined(INET) && defined(INET6)
770 		else
771 #endif
772 #ifdef INET
773 		{
774 			if (m->m_len < sizeof(struct ip) + off) {
775 				if ((m = m_pullup(m, sizeof (struct ip) + off))
776 				    == NULL) {
777 					TCPSTAT_INC(tcps_rcvshort);
778 					return (IPPROTO_DONE);
779 				}
780 				ip = mtod(m, struct ip *);
781 				th = (struct tcphdr *)((caddr_t)ip + off0);
782 			}
783 		}
784 #endif
785 		optlen = off - sizeof (struct tcphdr);
786 		optp = (u_char *)(th + 1);
787 	}
788 	thflags = th->th_flags;
789 
790 	/*
791 	 * Convert TCP protocol specific fields to host format.
792 	 */
793 	tcp_fields_to_host(th);
794 
795 	/*
796 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
797 	 */
798 	drop_hdrlen = off0 + off;
799 
800 	/*
801 	 * Locate pcb for segment; if we're likely to add or remove a
802 	 * connection then first acquire pcbinfo lock.  There are three cases
803 	 * where we might discover later we need a write lock despite the
804 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
805 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
806 	 */
807 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
808 		INP_INFO_RLOCK(&V_tcbinfo);
809 		ti_locked = TI_RLOCKED;
810 	} else
811 		ti_locked = TI_UNLOCKED;
812 
813 	/*
814 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
815 	 */
816         if (
817 #ifdef INET6
818 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
819 #ifdef INET
820 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
821 #endif
822 #endif
823 #if defined(INET) && !defined(INET6)
824 	    (m->m_flags & M_IP_NEXTHOP)
825 #endif
826 	    )
827 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
828 
829 findpcb:
830 #ifdef INVARIANTS
831 	if (ti_locked == TI_RLOCKED) {
832 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
833 	} else {
834 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
835 	}
836 #endif
837 #ifdef INET6
838 	if (isipv6 && fwd_tag != NULL) {
839 		struct sockaddr_in6 *next_hop6;
840 
841 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
842 		/*
843 		 * Transparently forwarded. Pretend to be the destination.
844 		 * Already got one like this?
845 		 */
846 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
847 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
848 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
849 		if (!inp) {
850 			/*
851 			 * It's new.  Try to find the ambushing socket.
852 			 * Because we've rewritten the destination address,
853 			 * any hardware-generated hash is ignored.
854 			 */
855 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
856 			    th->th_sport, &next_hop6->sin6_addr,
857 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
858 			    th->th_dport, INPLOOKUP_WILDCARD |
859 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
860 		}
861 	} else if (isipv6) {
862 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
863 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
864 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
865 		    m->m_pkthdr.rcvif, m);
866 	}
867 #endif /* INET6 */
868 #if defined(INET6) && defined(INET)
869 	else
870 #endif
871 #ifdef INET
872 	if (fwd_tag != NULL) {
873 		struct sockaddr_in *next_hop;
874 
875 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
876 		/*
877 		 * Transparently forwarded. Pretend to be the destination.
878 		 * already got one like this?
879 		 */
880 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
881 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
882 		    m->m_pkthdr.rcvif, m);
883 		if (!inp) {
884 			/*
885 			 * It's new.  Try to find the ambushing socket.
886 			 * Because we've rewritten the destination address,
887 			 * any hardware-generated hash is ignored.
888 			 */
889 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
890 			    th->th_sport, next_hop->sin_addr,
891 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
892 			    th->th_dport, INPLOOKUP_WILDCARD |
893 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
894 		}
895 	} else
896 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
897 		    th->th_sport, ip->ip_dst, th->th_dport,
898 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
899 		    m->m_pkthdr.rcvif, m);
900 #endif /* INET */
901 
902 	/*
903 	 * If the INPCB does not exist then all data in the incoming
904 	 * segment is discarded and an appropriate RST is sent back.
905 	 * XXX MRT Send RST using which routing table?
906 	 */
907 	if (inp == NULL) {
908 		/*
909 		 * Log communication attempts to ports that are not
910 		 * in use.
911 		 */
912 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
913 		    tcp_log_in_vain == 2) {
914 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
915 				log(LOG_INFO, "%s; %s: Connection attempt "
916 				    "to closed port\n", s, __func__);
917 		}
918 		/*
919 		 * When blackholing do not respond with a RST but
920 		 * completely ignore the segment and drop it.
921 		 */
922 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
923 		    V_blackhole == 2)
924 			goto dropunlock;
925 
926 		rstreason = BANDLIM_RST_CLOSEDPORT;
927 		goto dropwithreset;
928 	}
929 	INP_WLOCK_ASSERT(inp);
930 	/*
931 	 * While waiting for inp lock during the lookup, another thread
932 	 * can have dropped the inpcb, in which case we need to loop back
933 	 * and try to find a new inpcb to deliver to.
934 	 */
935 	if (inp->inp_flags & INP_DROPPED) {
936 		INP_WUNLOCK(inp);
937 		inp = NULL;
938 		goto findpcb;
939 	}
940 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
941 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
942 	    ((inp->inp_socket == NULL) ||
943 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
944 		inp->inp_flowid = m->m_pkthdr.flowid;
945 		inp->inp_flowtype = M_HASHTYPE_GET(m);
946 	}
947 #ifdef IPSEC
948 #ifdef INET6
949 	if (isipv6 && ipsec6_in_reject(m, inp)) {
950 		goto dropunlock;
951 	} else
952 #endif /* INET6 */
953 	if (ipsec4_in_reject(m, inp) != 0) {
954 		goto dropunlock;
955 	}
956 #endif /* IPSEC */
957 
958 	/*
959 	 * Check the minimum TTL for socket.
960 	 */
961 	if (inp->inp_ip_minttl != 0) {
962 #ifdef INET6
963 		if (isipv6) {
964 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
965 				goto dropunlock;
966 		} else
967 #endif
968 		if (inp->inp_ip_minttl > ip->ip_ttl)
969 			goto dropunlock;
970 	}
971 
972 	/*
973 	 * A previous connection in TIMEWAIT state is supposed to catch stray
974 	 * or duplicate segments arriving late.  If this segment was a
975 	 * legitimate new connection attempt, the old INPCB gets removed and
976 	 * we can try again to find a listening socket.
977 	 *
978 	 * At this point, due to earlier optimism, we may hold only an inpcb
979 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
980 	 * acquire it, or if that fails, acquire a reference on the inpcb,
981 	 * drop all locks, acquire a global write lock, and then re-acquire
982 	 * the inpcb lock.  We may at that point discover that another thread
983 	 * has tried to free the inpcb, in which case we need to loop back
984 	 * and try to find a new inpcb to deliver to.
985 	 *
986 	 * XXXRW: It may be time to rethink timewait locking.
987 	 */
988 relocked:
989 	if (inp->inp_flags & INP_TIMEWAIT) {
990 		if (ti_locked == TI_UNLOCKED) {
991 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
992 				in_pcbref(inp);
993 				INP_WUNLOCK(inp);
994 				INP_INFO_RLOCK(&V_tcbinfo);
995 				ti_locked = TI_RLOCKED;
996 				INP_WLOCK(inp);
997 				if (in_pcbrele_wlocked(inp)) {
998 					inp = NULL;
999 					goto findpcb;
1000 				} else if (inp->inp_flags & INP_DROPPED) {
1001 					INP_WUNLOCK(inp);
1002 					inp = NULL;
1003 					goto findpcb;
1004 				}
1005 			} else
1006 				ti_locked = TI_RLOCKED;
1007 		}
1008 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1009 
1010 		if (thflags & TH_SYN)
1011 			tcp_dooptions(&to, optp, optlen, TO_SYN);
1012 		/*
1013 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
1014 		 */
1015 		if (tcp_twcheck(inp, &to, th, m, tlen))
1016 			goto findpcb;
1017 		INP_INFO_RUNLOCK(&V_tcbinfo);
1018 		return (IPPROTO_DONE);
1019 	}
1020 	/*
1021 	 * The TCPCB may no longer exist if the connection is winding
1022 	 * down or it is in the CLOSED state.  Either way we drop the
1023 	 * segment and send an appropriate response.
1024 	 */
1025 	tp = intotcpcb(inp);
1026 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1027 		rstreason = BANDLIM_RST_CLOSEDPORT;
1028 		goto dropwithreset;
1029 	}
1030 
1031 #ifdef TCP_OFFLOAD
1032 	if (tp->t_flags & TF_TOE) {
1033 		tcp_offload_input(tp, m);
1034 		m = NULL;	/* consumed by the TOE driver */
1035 		goto dropunlock;
1036 	}
1037 #endif
1038 
1039 	/*
1040 	 * We've identified a valid inpcb, but it could be that we need an
1041 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1042 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1043 	 * relock, we have to jump back to 'relocked' as the connection might
1044 	 * now be in TIMEWAIT.
1045 	 */
1046 #ifdef INVARIANTS
1047 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1048 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1049 #endif
1050 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1051 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1052 	       !IS_FASTOPEN(tp->t_flags)))) {
1053 		if (ti_locked == TI_UNLOCKED) {
1054 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1055 				in_pcbref(inp);
1056 				INP_WUNLOCK(inp);
1057 				INP_INFO_RLOCK(&V_tcbinfo);
1058 				ti_locked = TI_RLOCKED;
1059 				INP_WLOCK(inp);
1060 				if (in_pcbrele_wlocked(inp)) {
1061 					inp = NULL;
1062 					goto findpcb;
1063 				} else if (inp->inp_flags & INP_DROPPED) {
1064 					INP_WUNLOCK(inp);
1065 					inp = NULL;
1066 					goto findpcb;
1067 				}
1068 				goto relocked;
1069 			} else
1070 				ti_locked = TI_RLOCKED;
1071 		}
1072 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1073 	}
1074 
1075 #ifdef MAC
1076 	INP_WLOCK_ASSERT(inp);
1077 	if (mac_inpcb_check_deliver(inp, m))
1078 		goto dropunlock;
1079 #endif
1080 	so = inp->inp_socket;
1081 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1082 #ifdef TCPDEBUG
1083 	if (so->so_options & SO_DEBUG) {
1084 		ostate = tp->t_state;
1085 #ifdef INET6
1086 		if (isipv6) {
1087 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1088 		} else
1089 #endif
1090 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1091 		tcp_savetcp = *th;
1092 	}
1093 #endif /* TCPDEBUG */
1094 	/*
1095 	 * When the socket is accepting connections (the INPCB is in LISTEN
1096 	 * state) we look into the SYN cache if this is a new connection
1097 	 * attempt or the completion of a previous one.
1098 	 */
1099 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1100 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1101 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1102 		struct in_conninfo inc;
1103 
1104 		bzero(&inc, sizeof(inc));
1105 #ifdef INET6
1106 		if (isipv6) {
1107 			inc.inc_flags |= INC_ISIPV6;
1108 			inc.inc6_faddr = ip6->ip6_src;
1109 			inc.inc6_laddr = ip6->ip6_dst;
1110 		} else
1111 #endif
1112 		{
1113 			inc.inc_faddr = ip->ip_src;
1114 			inc.inc_laddr = ip->ip_dst;
1115 		}
1116 		inc.inc_fport = th->th_sport;
1117 		inc.inc_lport = th->th_dport;
1118 		inc.inc_fibnum = so->so_fibnum;
1119 
1120 		/*
1121 		 * Check for an existing connection attempt in syncache if
1122 		 * the flag is only ACK.  A successful lookup creates a new
1123 		 * socket appended to the listen queue in SYN_RECEIVED state.
1124 		 */
1125 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1126 
1127 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1128 			/*
1129 			 * Parse the TCP options here because
1130 			 * syncookies need access to the reflected
1131 			 * timestamp.
1132 			 */
1133 			tcp_dooptions(&to, optp, optlen, 0);
1134 			/*
1135 			 * NB: syncache_expand() doesn't unlock
1136 			 * inp and tcpinfo locks.
1137 			 */
1138 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1139 				/*
1140 				 * No syncache entry or ACK was not
1141 				 * for our SYN/ACK.  Send a RST.
1142 				 * NB: syncache did its own logging
1143 				 * of the failure cause.
1144 				 */
1145 				rstreason = BANDLIM_RST_OPENPORT;
1146 				goto dropwithreset;
1147 			}
1148 #ifdef TCP_RFC7413
1149 tfo_socket_result:
1150 #endif
1151 			if (so == NULL) {
1152 				/*
1153 				 * We completed the 3-way handshake
1154 				 * but could not allocate a socket
1155 				 * either due to memory shortage,
1156 				 * listen queue length limits or
1157 				 * global socket limits.  Send RST
1158 				 * or wait and have the remote end
1159 				 * retransmit the ACK for another
1160 				 * try.
1161 				 */
1162 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1163 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1164 					    "Socket allocation failed due to "
1165 					    "limits or memory shortage, %s\n",
1166 					    s, __func__,
1167 					    V_tcp_sc_rst_sock_fail ?
1168 					    "sending RST" : "try again");
1169 				if (V_tcp_sc_rst_sock_fail) {
1170 					rstreason = BANDLIM_UNLIMITED;
1171 					goto dropwithreset;
1172 				} else
1173 					goto dropunlock;
1174 			}
1175 			/*
1176 			 * Socket is created in state SYN_RECEIVED.
1177 			 * Unlock the listen socket, lock the newly
1178 			 * created socket and update the tp variable.
1179 			 */
1180 			INP_WUNLOCK(inp);	/* listen socket */
1181 			inp = sotoinpcb(so);
1182 			/*
1183 			 * New connection inpcb is already locked by
1184 			 * syncache_expand().
1185 			 */
1186 			INP_WLOCK_ASSERT(inp);
1187 			tp = intotcpcb(inp);
1188 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1189 			    ("%s: ", __func__));
1190 #ifdef TCP_SIGNATURE
1191 			if (sig_checked == 0)  {
1192 				tcp_dooptions(&to, optp, optlen,
1193 				    (thflags & TH_SYN) ? TO_SYN : 0);
1194 				if (!tcp_signature_verify_input(m, off0, tlen,
1195 				    optlen, &to, th, tp->t_flags)) {
1196 
1197 					/*
1198 					 * In SYN_SENT state if it receives an
1199 					 * RST, it is allowed for further
1200 					 * processing.
1201 					 */
1202 					if ((thflags & TH_RST) == 0 ||
1203 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1204 						goto dropunlock;
1205 				}
1206 				sig_checked = 1;
1207 			}
1208 #endif
1209 
1210 			/*
1211 			 * Process the segment and the data it
1212 			 * contains.  tcp_do_segment() consumes
1213 			 * the mbuf chain and unlocks the inpcb.
1214 			 */
1215 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1216 			    iptos, ti_locked);
1217 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1218 			return (IPPROTO_DONE);
1219 		}
1220 		/*
1221 		 * Segment flag validation for new connection attempts:
1222 		 *
1223 		 * Our (SYN|ACK) response was rejected.
1224 		 * Check with syncache and remove entry to prevent
1225 		 * retransmits.
1226 		 *
1227 		 * NB: syncache_chkrst does its own logging of failure
1228 		 * causes.
1229 		 */
1230 		if (thflags & TH_RST) {
1231 			syncache_chkrst(&inc, th);
1232 			goto dropunlock;
1233 		}
1234 		/*
1235 		 * We can't do anything without SYN.
1236 		 */
1237 		if ((thflags & TH_SYN) == 0) {
1238 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1239 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1240 				    "SYN is missing, segment ignored\n",
1241 				    s, __func__);
1242 			TCPSTAT_INC(tcps_badsyn);
1243 			goto dropunlock;
1244 		}
1245 		/*
1246 		 * (SYN|ACK) is bogus on a listen socket.
1247 		 */
1248 		if (thflags & TH_ACK) {
1249 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1250 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1251 				    "SYN|ACK invalid, segment rejected\n",
1252 				    s, __func__);
1253 			syncache_badack(&inc);	/* XXX: Not needed! */
1254 			TCPSTAT_INC(tcps_badsyn);
1255 			rstreason = BANDLIM_RST_OPENPORT;
1256 			goto dropwithreset;
1257 		}
1258 		/*
1259 		 * If the drop_synfin option is enabled, drop all
1260 		 * segments with both the SYN and FIN bits set.
1261 		 * This prevents e.g. nmap from identifying the
1262 		 * TCP/IP stack.
1263 		 * XXX: Poor reasoning.  nmap has other methods
1264 		 * and is constantly refining its stack detection
1265 		 * strategies.
1266 		 * XXX: This is a violation of the TCP specification
1267 		 * and was used by RFC1644.
1268 		 */
1269 		if ((thflags & TH_FIN) && V_drop_synfin) {
1270 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1271 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1272 				    "SYN|FIN segment ignored (based on "
1273 				    "sysctl setting)\n", s, __func__);
1274 			TCPSTAT_INC(tcps_badsyn);
1275 			goto dropunlock;
1276 		}
1277 		/*
1278 		 * Segment's flags are (SYN) or (SYN|FIN).
1279 		 *
1280 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1281 		 * as they do not affect the state of the TCP FSM.
1282 		 * The data pointed to by TH_URG and th_urp is ignored.
1283 		 */
1284 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1285 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1286 		KASSERT(thflags & (TH_SYN),
1287 		    ("%s: Listen socket: TH_SYN not set", __func__));
1288 #ifdef INET6
1289 		/*
1290 		 * If deprecated address is forbidden,
1291 		 * we do not accept SYN to deprecated interface
1292 		 * address to prevent any new inbound connection from
1293 		 * getting established.
1294 		 * When we do not accept SYN, we send a TCP RST,
1295 		 * with deprecated source address (instead of dropping
1296 		 * it).  We compromise it as it is much better for peer
1297 		 * to send a RST, and RST will be the final packet
1298 		 * for the exchange.
1299 		 *
1300 		 * If we do not forbid deprecated addresses, we accept
1301 		 * the SYN packet.  RFC2462 does not suggest dropping
1302 		 * SYN in this case.
1303 		 * If we decipher RFC2462 5.5.4, it says like this:
1304 		 * 1. use of deprecated addr with existing
1305 		 *    communication is okay - "SHOULD continue to be
1306 		 *    used"
1307 		 * 2. use of it with new communication:
1308 		 *   (2a) "SHOULD NOT be used if alternate address
1309 		 *        with sufficient scope is available"
1310 		 *   (2b) nothing mentioned otherwise.
1311 		 * Here we fall into (2b) case as we have no choice in
1312 		 * our source address selection - we must obey the peer.
1313 		 *
1314 		 * The wording in RFC2462 is confusing, and there are
1315 		 * multiple description text for deprecated address
1316 		 * handling - worse, they are not exactly the same.
1317 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1318 		 */
1319 		if (isipv6 && !V_ip6_use_deprecated) {
1320 			struct in6_ifaddr *ia6;
1321 
1322 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1323 			if (ia6 != NULL &&
1324 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1325 				ifa_free(&ia6->ia_ifa);
1326 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1327 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1328 					"Connection attempt to deprecated "
1329 					"IPv6 address rejected\n",
1330 					s, __func__);
1331 				rstreason = BANDLIM_RST_OPENPORT;
1332 				goto dropwithreset;
1333 			}
1334 			if (ia6)
1335 				ifa_free(&ia6->ia_ifa);
1336 		}
1337 #endif /* INET6 */
1338 		/*
1339 		 * Basic sanity checks on incoming SYN requests:
1340 		 *   Don't respond if the destination is a link layer
1341 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1342 		 *   If it is from this socket it must be forged.
1343 		 *   Don't respond if the source or destination is a
1344 		 *	global or subnet broad- or multicast address.
1345 		 *   Note that it is quite possible to receive unicast
1346 		 *	link-layer packets with a broadcast IP address. Use
1347 		 *	in_broadcast() to find them.
1348 		 */
1349 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1350 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1351 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1352 				"Connection attempt from broad- or multicast "
1353 				"link layer address ignored\n", s, __func__);
1354 			goto dropunlock;
1355 		}
1356 #ifdef INET6
1357 		if (isipv6) {
1358 			if (th->th_dport == th->th_sport &&
1359 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1360 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1361 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1362 					"Connection attempt to/from self "
1363 					"ignored\n", s, __func__);
1364 				goto dropunlock;
1365 			}
1366 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1367 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1368 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1369 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1370 					"Connection attempt from/to multicast "
1371 					"address ignored\n", s, __func__);
1372 				goto dropunlock;
1373 			}
1374 		}
1375 #endif
1376 #if defined(INET) && defined(INET6)
1377 		else
1378 #endif
1379 #ifdef INET
1380 		{
1381 			if (th->th_dport == th->th_sport &&
1382 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1383 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1384 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1385 					"Connection attempt from/to self "
1386 					"ignored\n", s, __func__);
1387 				goto dropunlock;
1388 			}
1389 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1390 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1391 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1392 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1393 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1394 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1395 					"Connection attempt from/to broad- "
1396 					"or multicast address ignored\n",
1397 					s, __func__);
1398 				goto dropunlock;
1399 			}
1400 		}
1401 #endif
1402 		/*
1403 		 * SYN appears to be valid.  Create compressed TCP state
1404 		 * for syncache.
1405 		 */
1406 #ifdef TCPDEBUG
1407 		if (so->so_options & SO_DEBUG)
1408 			tcp_trace(TA_INPUT, ostate, tp,
1409 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1410 #endif
1411 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1412 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1413 #ifdef TCP_RFC7413
1414 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1415 			goto tfo_socket_result;
1416 #else
1417 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1418 #endif
1419 		/*
1420 		 * Entry added to syncache and mbuf consumed.
1421 		 * Only the listen socket is unlocked by syncache_add().
1422 		 */
1423 		if (ti_locked == TI_RLOCKED) {
1424 			INP_INFO_RUNLOCK(&V_tcbinfo);
1425 			ti_locked = TI_UNLOCKED;
1426 		}
1427 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1428 		return (IPPROTO_DONE);
1429 	} else if (tp->t_state == TCPS_LISTEN) {
1430 		/*
1431 		 * When a listen socket is torn down the SO_ACCEPTCONN
1432 		 * flag is removed first while connections are drained
1433 		 * from the accept queue in a unlock/lock cycle of the
1434 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1435 		 * attempt go through unhandled.
1436 		 */
1437 		goto dropunlock;
1438 	}
1439 
1440 #ifdef TCP_SIGNATURE
1441 	if (sig_checked == 0)  {
1442 		tcp_dooptions(&to, optp, optlen,
1443 		    (thflags & TH_SYN) ? TO_SYN : 0);
1444 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1445 		    th, tp->t_flags)) {
1446 
1447 			/*
1448 			 * In SYN_SENT state if it receives an RST, it is
1449 			 * allowed for further processing.
1450 			 */
1451 			if ((thflags & TH_RST) == 0 ||
1452 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1453 				goto dropunlock;
1454 		}
1455 		sig_checked = 1;
1456 	}
1457 #endif
1458 
1459 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1460 
1461 	/*
1462 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1463 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1464 	 * the inpcb, and unlocks pcbinfo.
1465 	 */
1466 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1467 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1468 	return (IPPROTO_DONE);
1469 
1470 dropwithreset:
1471 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1472 
1473 	if (ti_locked == TI_RLOCKED) {
1474 		INP_INFO_RUNLOCK(&V_tcbinfo);
1475 		ti_locked = TI_UNLOCKED;
1476 	}
1477 #ifdef INVARIANTS
1478 	else {
1479 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1480 		    "ti_locked: %d", __func__, ti_locked));
1481 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1482 	}
1483 #endif
1484 
1485 	if (inp != NULL) {
1486 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1487 		INP_WUNLOCK(inp);
1488 	} else
1489 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1490 	m = NULL;	/* mbuf chain got consumed. */
1491 	goto drop;
1492 
1493 dropunlock:
1494 	if (m != NULL)
1495 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1496 
1497 	if (ti_locked == TI_RLOCKED) {
1498 		INP_INFO_RUNLOCK(&V_tcbinfo);
1499 		ti_locked = TI_UNLOCKED;
1500 	}
1501 #ifdef INVARIANTS
1502 	else {
1503 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1504 		    "ti_locked: %d", __func__, ti_locked));
1505 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1506 	}
1507 #endif
1508 
1509 	if (inp != NULL)
1510 		INP_WUNLOCK(inp);
1511 
1512 drop:
1513 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1514 	if (s != NULL)
1515 		free(s, M_TCPLOG);
1516 	if (m != NULL)
1517 		m_freem(m);
1518 	return (IPPROTO_DONE);
1519 }
1520 
1521 void
1522 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1523     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1524     int ti_locked)
1525 {
1526 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1527 	int rstreason, todrop, win;
1528 	uint32_t tiwin;
1529 	uint16_t nsegs;
1530 	char *s;
1531 	struct in_conninfo *inc;
1532 	struct mbuf *mfree;
1533 	struct tcpopt to;
1534 #ifdef TCP_RFC7413
1535 	int tfo_syn;
1536 #endif
1537 
1538 #ifdef TCPDEBUG
1539 	/*
1540 	 * The size of tcp_saveipgen must be the size of the max ip header,
1541 	 * now IPv6.
1542 	 */
1543 	u_char tcp_saveipgen[IP6_HDR_LEN];
1544 	struct tcphdr tcp_savetcp;
1545 	short ostate = 0;
1546 #endif
1547 	thflags = th->th_flags;
1548 	inc = &tp->t_inpcb->inp_inc;
1549 	tp->sackhint.last_sack_ack = 0;
1550 	sack_changed = 0;
1551 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1552 
1553 	/*
1554 	 * If this is either a state-changing packet or current state isn't
1555 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1556 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1557 	 * caller may have unnecessarily acquired a write lock due to a race.
1558 	 */
1559 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1560 	    tp->t_state != TCPS_ESTABLISHED) {
1561 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1562 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1563 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1564 	} else {
1565 #ifdef INVARIANTS
1566 		if (ti_locked == TI_RLOCKED)
1567 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1568 		else {
1569 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1570 			    "ti_locked: %d", __func__, ti_locked));
1571 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1572 		}
1573 #endif
1574 	}
1575 	INP_WLOCK_ASSERT(tp->t_inpcb);
1576 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1577 	    __func__));
1578 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1579 	    __func__));
1580 
1581 #ifdef TCPPCAP
1582 	/* Save segment, if requested. */
1583 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1584 #endif
1585 
1586 	/*
1587 	 * Segment received on connection.
1588 	 * Reset idle time and keep-alive timer.
1589 	 * XXX: This should be done after segment
1590 	 * validation to ignore broken/spoofed segs.
1591 	 */
1592 	tp->t_rcvtime = ticks;
1593 
1594 	/*
1595 	 * Scale up the window into a 32-bit value.
1596 	 * For the SYN_SENT state the scale is zero.
1597 	 */
1598 	tiwin = th->th_win << tp->snd_scale;
1599 
1600 	/*
1601 	 * TCP ECN processing.
1602 	 */
1603 	if (tp->t_flags & TF_ECN_PERMIT) {
1604 		if (thflags & TH_CWR)
1605 			tp->t_flags &= ~TF_ECN_SND_ECE;
1606 		switch (iptos & IPTOS_ECN_MASK) {
1607 		case IPTOS_ECN_CE:
1608 			tp->t_flags |= TF_ECN_SND_ECE;
1609 			TCPSTAT_INC(tcps_ecn_ce);
1610 			break;
1611 		case IPTOS_ECN_ECT0:
1612 			TCPSTAT_INC(tcps_ecn_ect0);
1613 			break;
1614 		case IPTOS_ECN_ECT1:
1615 			TCPSTAT_INC(tcps_ecn_ect1);
1616 			break;
1617 		}
1618 
1619 		/* Process a packet differently from RFC3168. */
1620 		cc_ecnpkt_handler(tp, th, iptos);
1621 
1622 		/* Congestion experienced. */
1623 		if (thflags & TH_ECE) {
1624 			cc_cong_signal(tp, th, CC_ECN);
1625 		}
1626 	}
1627 
1628 	/*
1629 	 * Parse options on any incoming segment.
1630 	 */
1631 	tcp_dooptions(&to, (u_char *)(th + 1),
1632 	    (th->th_off << 2) - sizeof(struct tcphdr),
1633 	    (thflags & TH_SYN) ? TO_SYN : 0);
1634 
1635 	/*
1636 	 * If echoed timestamp is later than the current time,
1637 	 * fall back to non RFC1323 RTT calculation.  Normalize
1638 	 * timestamp if syncookies were used when this connection
1639 	 * was established.
1640 	 */
1641 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1642 		to.to_tsecr -= tp->ts_offset;
1643 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1644 			to.to_tsecr = 0;
1645 	}
1646 	/*
1647 	 * If timestamps were negotiated during SYN/ACK they should
1648 	 * appear on every segment during this session and vice versa.
1649 	 */
1650 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1651 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1652 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1653 			    "no action\n", s, __func__);
1654 			free(s, M_TCPLOG);
1655 		}
1656 	}
1657 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1658 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1659 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1660 			    "no action\n", s, __func__);
1661 			free(s, M_TCPLOG);
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * Process options only when we get SYN/ACK back. The SYN case
1667 	 * for incoming connections is handled in tcp_syncache.
1668 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1669 	 * or <SYN,ACK>) segment itself is never scaled.
1670 	 * XXX this is traditional behavior, may need to be cleaned up.
1671 	 */
1672 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1673 		if ((to.to_flags & TOF_SCALE) &&
1674 		    (tp->t_flags & TF_REQ_SCALE)) {
1675 			tp->t_flags |= TF_RCVD_SCALE;
1676 			tp->snd_scale = to.to_wscale;
1677 		}
1678 		/*
1679 		 * Initial send window.  It will be updated with
1680 		 * the next incoming segment to the scaled value.
1681 		 */
1682 		tp->snd_wnd = th->th_win;
1683 		if (to.to_flags & TOF_TS) {
1684 			tp->t_flags |= TF_RCVD_TSTMP;
1685 			tp->ts_recent = to.to_tsval;
1686 			tp->ts_recent_age = tcp_ts_getticks();
1687 		}
1688 		if (to.to_flags & TOF_MSS)
1689 			tcp_mss(tp, to.to_mss);
1690 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1691 		    (to.to_flags & TOF_SACKPERM) == 0)
1692 			tp->t_flags &= ~TF_SACK_PERMIT;
1693 	}
1694 
1695 	/*
1696 	 * Header prediction: check for the two common cases
1697 	 * of a uni-directional data xfer.  If the packet has
1698 	 * no control flags, is in-sequence, the window didn't
1699 	 * change and we're not retransmitting, it's a
1700 	 * candidate.  If the length is zero and the ack moved
1701 	 * forward, we're the sender side of the xfer.  Just
1702 	 * free the data acked & wake any higher level process
1703 	 * that was blocked waiting for space.  If the length
1704 	 * is non-zero and the ack didn't move, we're the
1705 	 * receiver side.  If we're getting packets in-order
1706 	 * (the reassembly queue is empty), add the data to
1707 	 * the socket buffer and note that we need a delayed ack.
1708 	 * Make sure that the hidden state-flags are also off.
1709 	 * Since we check for TCPS_ESTABLISHED first, it can only
1710 	 * be TH_NEEDSYN.
1711 	 */
1712 	if (tp->t_state == TCPS_ESTABLISHED &&
1713 	    th->th_seq == tp->rcv_nxt &&
1714 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1715 	    tp->snd_nxt == tp->snd_max &&
1716 	    tiwin && tiwin == tp->snd_wnd &&
1717 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1718 	    LIST_EMPTY(&tp->t_segq) &&
1719 	    ((to.to_flags & TOF_TS) == 0 ||
1720 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1721 
1722 		/*
1723 		 * If last ACK falls within this segment's sequence numbers,
1724 		 * record the timestamp.
1725 		 * NOTE that the test is modified according to the latest
1726 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1727 		 */
1728 		if ((to.to_flags & TOF_TS) != 0 &&
1729 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1730 			tp->ts_recent_age = tcp_ts_getticks();
1731 			tp->ts_recent = to.to_tsval;
1732 		}
1733 
1734 		if (tlen == 0) {
1735 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1736 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1737 			    !IN_RECOVERY(tp->t_flags) &&
1738 			    (to.to_flags & TOF_SACK) == 0 &&
1739 			    TAILQ_EMPTY(&tp->snd_holes)) {
1740 				/*
1741 				 * This is a pure ack for outstanding data.
1742 				 */
1743 				if (ti_locked == TI_RLOCKED)
1744 					INP_INFO_RUNLOCK(&V_tcbinfo);
1745 				ti_locked = TI_UNLOCKED;
1746 
1747 				TCPSTAT_INC(tcps_predack);
1748 
1749 				/*
1750 				 * "bad retransmit" recovery.
1751 				 */
1752 				if (tp->t_rxtshift == 1 &&
1753 				    tp->t_flags & TF_PREVVALID &&
1754 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1755 					cc_cong_signal(tp, th, CC_RTO_ERR);
1756 				}
1757 
1758 				/*
1759 				 * Recalculate the transmit timer / rtt.
1760 				 *
1761 				 * Some boxes send broken timestamp replies
1762 				 * during the SYN+ACK phase, ignore
1763 				 * timestamps of 0 or we could calculate a
1764 				 * huge RTT and blow up the retransmit timer.
1765 				 */
1766 				if ((to.to_flags & TOF_TS) != 0 &&
1767 				    to.to_tsecr) {
1768 					uint32_t t;
1769 
1770 					t = tcp_ts_getticks() - to.to_tsecr;
1771 					if (!tp->t_rttlow || tp->t_rttlow > t)
1772 						tp->t_rttlow = t;
1773 					tcp_xmit_timer(tp,
1774 					    TCP_TS_TO_TICKS(t) + 1);
1775 				} else if (tp->t_rtttime &&
1776 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1777 					if (!tp->t_rttlow ||
1778 					    tp->t_rttlow > ticks - tp->t_rtttime)
1779 						tp->t_rttlow = ticks - tp->t_rtttime;
1780 					tcp_xmit_timer(tp,
1781 							ticks - tp->t_rtttime);
1782 				}
1783 				acked = BYTES_THIS_ACK(tp, th);
1784 
1785 #ifdef TCP_HHOOK
1786 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1787 				hhook_run_tcp_est_in(tp, th, &to);
1788 #endif
1789 
1790 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1791 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1792 				sbdrop(&so->so_snd, acked);
1793 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1794 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1795 					tp->snd_recover = th->th_ack - 1;
1796 
1797 				/*
1798 				 * Let the congestion control algorithm update
1799 				 * congestion control related information. This
1800 				 * typically means increasing the congestion
1801 				 * window.
1802 				 */
1803 				cc_ack_received(tp, th, nsegs, CC_ACK);
1804 
1805 				tp->snd_una = th->th_ack;
1806 				/*
1807 				 * Pull snd_wl2 up to prevent seq wrap relative
1808 				 * to th_ack.
1809 				 */
1810 				tp->snd_wl2 = th->th_ack;
1811 				tp->t_dupacks = 0;
1812 				m_freem(m);
1813 
1814 				/*
1815 				 * If all outstanding data are acked, stop
1816 				 * retransmit timer, otherwise restart timer
1817 				 * using current (possibly backed-off) value.
1818 				 * If process is waiting for space,
1819 				 * wakeup/selwakeup/signal.  If data
1820 				 * are ready to send, let tcp_output
1821 				 * decide between more output or persist.
1822 				 */
1823 #ifdef TCPDEBUG
1824 				if (so->so_options & SO_DEBUG)
1825 					tcp_trace(TA_INPUT, ostate, tp,
1826 					    (void *)tcp_saveipgen,
1827 					    &tcp_savetcp, 0);
1828 #endif
1829 				TCP_PROBE3(debug__input, tp, th,
1830 					mtod(m, const char *));
1831 				if (tp->snd_una == tp->snd_max)
1832 					tcp_timer_activate(tp, TT_REXMT, 0);
1833 				else if (!tcp_timer_active(tp, TT_PERSIST))
1834 					tcp_timer_activate(tp, TT_REXMT,
1835 						      tp->t_rxtcur);
1836 				sowwakeup(so);
1837 				if (sbavail(&so->so_snd))
1838 					(void) tp->t_fb->tfb_tcp_output(tp);
1839 				goto check_delack;
1840 			}
1841 		} else if (th->th_ack == tp->snd_una &&
1842 		    tlen <= sbspace(&so->so_rcv)) {
1843 			int newsize = 0;	/* automatic sockbuf scaling */
1844 
1845 			/*
1846 			 * This is a pure, in-sequence data packet with
1847 			 * nothing on the reassembly queue and we have enough
1848 			 * buffer space to take it.
1849 			 */
1850 			if (ti_locked == TI_RLOCKED)
1851 				INP_INFO_RUNLOCK(&V_tcbinfo);
1852 			ti_locked = TI_UNLOCKED;
1853 
1854 			/* Clean receiver SACK report if present */
1855 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1856 				tcp_clean_sackreport(tp);
1857 			TCPSTAT_INC(tcps_preddat);
1858 			tp->rcv_nxt += tlen;
1859 			/*
1860 			 * Pull snd_wl1 up to prevent seq wrap relative to
1861 			 * th_seq.
1862 			 */
1863 			tp->snd_wl1 = th->th_seq;
1864 			/*
1865 			 * Pull rcv_up up to prevent seq wrap relative to
1866 			 * rcv_nxt.
1867 			 */
1868 			tp->rcv_up = tp->rcv_nxt;
1869 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1870 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1871 #ifdef TCPDEBUG
1872 			if (so->so_options & SO_DEBUG)
1873 				tcp_trace(TA_INPUT, ostate, tp,
1874 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1875 #endif
1876 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1877 
1878 		/*
1879 		 * Automatic sizing of receive socket buffer.  Often the send
1880 		 * buffer size is not optimally adjusted to the actual network
1881 		 * conditions at hand (delay bandwidth product).  Setting the
1882 		 * buffer size too small limits throughput on links with high
1883 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1884 		 *
1885 		 * On the receive side the socket buffer memory is only rarely
1886 		 * used to any significant extent.  This allows us to be much
1887 		 * more aggressive in scaling the receive socket buffer.  For
1888 		 * the case that the buffer space is actually used to a large
1889 		 * extent and we run out of kernel memory we can simply drop
1890 		 * the new segments; TCP on the sender will just retransmit it
1891 		 * later.  Setting the buffer size too big may only consume too
1892 		 * much kernel memory if the application doesn't read() from
1893 		 * the socket or packet loss or reordering makes use of the
1894 		 * reassembly queue.
1895 		 *
1896 		 * The criteria to step up the receive buffer one notch are:
1897 		 *  1. Application has not set receive buffer size with
1898 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1899 		 *  2. the number of bytes received during the time it takes
1900 		 *     one timestamp to be reflected back to us (the RTT);
1901 		 *  3. received bytes per RTT is within seven eighth of the
1902 		 *     current socket buffer size;
1903 		 *  4. receive buffer size has not hit maximal automatic size;
1904 		 *
1905 		 * This algorithm does one step per RTT at most and only if
1906 		 * we receive a bulk stream w/o packet losses or reorderings.
1907 		 * Shrinking the buffer during idle times is not necessary as
1908 		 * it doesn't consume any memory when idle.
1909 		 *
1910 		 * TODO: Only step up if the application is actually serving
1911 		 * the buffer to better manage the socket buffer resources.
1912 		 */
1913 			if (V_tcp_do_autorcvbuf &&
1914 			    (to.to_flags & TOF_TS) &&
1915 			    to.to_tsecr &&
1916 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1917 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1918 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1919 					if (tp->rfbuf_cnt >
1920 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1921 					    so->so_rcv.sb_hiwat <
1922 					    V_tcp_autorcvbuf_max) {
1923 						newsize =
1924 						    min(so->so_rcv.sb_hiwat +
1925 						    V_tcp_autorcvbuf_inc,
1926 						    V_tcp_autorcvbuf_max);
1927 					}
1928 					/* Start over with next RTT. */
1929 					tp->rfbuf_ts = 0;
1930 					tp->rfbuf_cnt = 0;
1931 				} else
1932 					tp->rfbuf_cnt += tlen;	/* add up */
1933 			}
1934 
1935 			/* Add data to socket buffer. */
1936 			SOCKBUF_LOCK(&so->so_rcv);
1937 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1938 				m_freem(m);
1939 			} else {
1940 				/*
1941 				 * Set new socket buffer size.
1942 				 * Give up when limit is reached.
1943 				 */
1944 				if (newsize)
1945 					if (!sbreserve_locked(&so->so_rcv,
1946 					    newsize, so, NULL))
1947 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1948 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1949 				sbappendstream_locked(&so->so_rcv, m, 0);
1950 			}
1951 			/* NB: sorwakeup_locked() does an implicit unlock. */
1952 			sorwakeup_locked(so);
1953 			if (DELAY_ACK(tp, tlen)) {
1954 				tp->t_flags |= TF_DELACK;
1955 			} else {
1956 				tp->t_flags |= TF_ACKNOW;
1957 				tp->t_fb->tfb_tcp_output(tp);
1958 			}
1959 			goto check_delack;
1960 		}
1961 	}
1962 
1963 	/*
1964 	 * Calculate amount of space in receive window,
1965 	 * and then do TCP input processing.
1966 	 * Receive window is amount of space in rcv queue,
1967 	 * but not less than advertised window.
1968 	 */
1969 	win = sbspace(&so->so_rcv);
1970 	if (win < 0)
1971 		win = 0;
1972 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1973 
1974 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1975 	tp->rfbuf_ts = 0;
1976 	tp->rfbuf_cnt = 0;
1977 
1978 	switch (tp->t_state) {
1979 
1980 	/*
1981 	 * If the state is SYN_RECEIVED:
1982 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1983 	 */
1984 	case TCPS_SYN_RECEIVED:
1985 		if ((thflags & TH_ACK) &&
1986 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1987 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1988 				rstreason = BANDLIM_RST_OPENPORT;
1989 				goto dropwithreset;
1990 		}
1991 #ifdef TCP_RFC7413
1992 		if (IS_FASTOPEN(tp->t_flags)) {
1993 			/*
1994 			 * When a TFO connection is in SYN_RECEIVED, the
1995 			 * only valid packets are the initial SYN, a
1996 			 * retransmit/copy of the initial SYN (possibly with
1997 			 * a subset of the original data), a valid ACK, a
1998 			 * FIN, or a RST.
1999 			 */
2000 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
2001 				rstreason = BANDLIM_RST_OPENPORT;
2002 				goto dropwithreset;
2003 			} else if (thflags & TH_SYN) {
2004 				/* non-initial SYN is ignored */
2005 				if ((tcp_timer_active(tp, TT_DELACK) ||
2006 				     tcp_timer_active(tp, TT_REXMT)))
2007 					goto drop;
2008 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
2009 				goto drop;
2010 			}
2011 		}
2012 #endif
2013 		break;
2014 
2015 	/*
2016 	 * If the state is SYN_SENT:
2017 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2018 	 *	if seg contains a RST, then drop the connection.
2019 	 *	if seg does not contain SYN, then drop it.
2020 	 * Otherwise this is an acceptable SYN segment
2021 	 *	initialize tp->rcv_nxt and tp->irs
2022 	 *	if seg contains ack then advance tp->snd_una
2023 	 *	if seg contains an ECE and ECN support is enabled, the stream
2024 	 *	    is ECN capable.
2025 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2026 	 *	arrange for segment to be acked (eventually)
2027 	 *	continue processing rest of data/controls, beginning with URG
2028 	 */
2029 	case TCPS_SYN_SENT:
2030 		if ((thflags & TH_ACK) &&
2031 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2032 		     SEQ_GT(th->th_ack, tp->snd_max))) {
2033 			rstreason = BANDLIM_UNLIMITED;
2034 			goto dropwithreset;
2035 		}
2036 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2037 			TCP_PROBE5(connect__refused, NULL, tp,
2038 			    mtod(m, const char *), tp, th);
2039 			tp = tcp_drop(tp, ECONNREFUSED);
2040 		}
2041 		if (thflags & TH_RST)
2042 			goto drop;
2043 		if (!(thflags & TH_SYN))
2044 			goto drop;
2045 
2046 		tp->irs = th->th_seq;
2047 		tcp_rcvseqinit(tp);
2048 		if (thflags & TH_ACK) {
2049 			TCPSTAT_INC(tcps_connects);
2050 			soisconnected(so);
2051 #ifdef MAC
2052 			mac_socketpeer_set_from_mbuf(m, so);
2053 #endif
2054 			/* Do window scaling on this connection? */
2055 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2056 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2057 				tp->rcv_scale = tp->request_r_scale;
2058 			}
2059 			tp->rcv_adv += min(tp->rcv_wnd,
2060 			    TCP_MAXWIN << tp->rcv_scale);
2061 			tp->snd_una++;		/* SYN is acked */
2062 			/*
2063 			 * If there's data, delay ACK; if there's also a FIN
2064 			 * ACKNOW will be turned on later.
2065 			 */
2066 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2067 				tcp_timer_activate(tp, TT_DELACK,
2068 				    tcp_delacktime);
2069 			else
2070 				tp->t_flags |= TF_ACKNOW;
2071 
2072 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2073 				tp->t_flags |= TF_ECN_PERMIT;
2074 				TCPSTAT_INC(tcps_ecn_shs);
2075 			}
2076 
2077 			/*
2078 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2079 			 * Transitions:
2080 			 *	SYN_SENT  --> ESTABLISHED
2081 			 *	SYN_SENT* --> FIN_WAIT_1
2082 			 */
2083 			tp->t_starttime = ticks;
2084 			if (tp->t_flags & TF_NEEDFIN) {
2085 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2086 				tp->t_flags &= ~TF_NEEDFIN;
2087 				thflags &= ~TH_SYN;
2088 			} else {
2089 				tcp_state_change(tp, TCPS_ESTABLISHED);
2090 				TCP_PROBE5(connect__established, NULL, tp,
2091 				    mtod(m, const char *), tp, th);
2092 				cc_conn_init(tp);
2093 				tcp_timer_activate(tp, TT_KEEP,
2094 				    TP_KEEPIDLE(tp));
2095 			}
2096 		} else {
2097 			/*
2098 			 * Received initial SYN in SYN-SENT[*] state =>
2099 			 * simultaneous open.
2100 			 * If it succeeds, connection is * half-synchronized.
2101 			 * Otherwise, do 3-way handshake:
2102 			 *        SYN-SENT -> SYN-RECEIVED
2103 			 *        SYN-SENT* -> SYN-RECEIVED*
2104 			 */
2105 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2106 			tcp_timer_activate(tp, TT_REXMT, 0);
2107 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2108 		}
2109 
2110 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2111 		    "ti_locked %d", __func__, ti_locked));
2112 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2113 		INP_WLOCK_ASSERT(tp->t_inpcb);
2114 
2115 		/*
2116 		 * Advance th->th_seq to correspond to first data byte.
2117 		 * If data, trim to stay within window,
2118 		 * dropping FIN if necessary.
2119 		 */
2120 		th->th_seq++;
2121 		if (tlen > tp->rcv_wnd) {
2122 			todrop = tlen - tp->rcv_wnd;
2123 			m_adj(m, -todrop);
2124 			tlen = tp->rcv_wnd;
2125 			thflags &= ~TH_FIN;
2126 			TCPSTAT_INC(tcps_rcvpackafterwin);
2127 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2128 		}
2129 		tp->snd_wl1 = th->th_seq - 1;
2130 		tp->rcv_up = th->th_seq;
2131 		/*
2132 		 * Client side of transaction: already sent SYN and data.
2133 		 * If the remote host used T/TCP to validate the SYN,
2134 		 * our data will be ACK'd; if so, enter normal data segment
2135 		 * processing in the middle of step 5, ack processing.
2136 		 * Otherwise, goto step 6.
2137 		 */
2138 		if (thflags & TH_ACK)
2139 			goto process_ACK;
2140 
2141 		goto step6;
2142 
2143 	/*
2144 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2145 	 *      do normal processing.
2146 	 *
2147 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2148 	 */
2149 	case TCPS_LAST_ACK:
2150 	case TCPS_CLOSING:
2151 		break;  /* continue normal processing */
2152 	}
2153 
2154 	/*
2155 	 * States other than LISTEN or SYN_SENT.
2156 	 * First check the RST flag and sequence number since reset segments
2157 	 * are exempt from the timestamp and connection count tests.  This
2158 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2159 	 * below which allowed reset segments in half the sequence space
2160 	 * to fall though and be processed (which gives forged reset
2161 	 * segments with a random sequence number a 50 percent chance of
2162 	 * killing a connection).
2163 	 * Then check timestamp, if present.
2164 	 * Then check the connection count, if present.
2165 	 * Then check that at least some bytes of segment are within
2166 	 * receive window.  If segment begins before rcv_nxt,
2167 	 * drop leading data (and SYN); if nothing left, just ack.
2168 	 */
2169 	if (thflags & TH_RST) {
2170 		/*
2171 		 * RFC5961 Section 3.2
2172 		 *
2173 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2174 		 * - If RST is in window, we send challenge ACK.
2175 		 *
2176 		 * Note: to take into account delayed ACKs, we should
2177 		 *   test against last_ack_sent instead of rcv_nxt.
2178 		 * Note 2: we handle special case of closed window, not
2179 		 *   covered by the RFC.
2180 		 */
2181 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2182 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2183 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2184 
2185 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2186 			KASSERT(ti_locked == TI_RLOCKED,
2187 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2188 			    __func__, ti_locked, th, tp));
2189 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2190 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2191 			    __func__, th, tp));
2192 
2193 			if (V_tcp_insecure_rst ||
2194 			    tp->last_ack_sent == th->th_seq) {
2195 				TCPSTAT_INC(tcps_drops);
2196 				/* Drop the connection. */
2197 				switch (tp->t_state) {
2198 				case TCPS_SYN_RECEIVED:
2199 					so->so_error = ECONNREFUSED;
2200 					goto close;
2201 				case TCPS_ESTABLISHED:
2202 				case TCPS_FIN_WAIT_1:
2203 				case TCPS_FIN_WAIT_2:
2204 				case TCPS_CLOSE_WAIT:
2205 				case TCPS_CLOSING:
2206 				case TCPS_LAST_ACK:
2207 					so->so_error = ECONNRESET;
2208 				close:
2209 					/* FALLTHROUGH */
2210 				default:
2211 					tp = tcp_close(tp);
2212 				}
2213 			} else {
2214 				TCPSTAT_INC(tcps_badrst);
2215 				/* Send challenge ACK. */
2216 				tcp_respond(tp, mtod(m, void *), th, m,
2217 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2218 				tp->last_ack_sent = tp->rcv_nxt;
2219 				m = NULL;
2220 			}
2221 		}
2222 		goto drop;
2223 	}
2224 
2225 	/*
2226 	 * RFC5961 Section 4.2
2227 	 * Send challenge ACK for any SYN in synchronized state.
2228 	 */
2229 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2230 	    tp->t_state != TCPS_SYN_RECEIVED) {
2231 		KASSERT(ti_locked == TI_RLOCKED,
2232 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2233 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2234 
2235 		TCPSTAT_INC(tcps_badsyn);
2236 		if (V_tcp_insecure_syn &&
2237 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2238 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2239 			tp = tcp_drop(tp, ECONNRESET);
2240 			rstreason = BANDLIM_UNLIMITED;
2241 		} else {
2242 			/* Send challenge ACK. */
2243 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2244 			    tp->snd_nxt, TH_ACK);
2245 			tp->last_ack_sent = tp->rcv_nxt;
2246 			m = NULL;
2247 		}
2248 		goto drop;
2249 	}
2250 
2251 	/*
2252 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2253 	 * and it's less than ts_recent, drop it.
2254 	 */
2255 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2256 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2257 
2258 		/* Check to see if ts_recent is over 24 days old.  */
2259 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2260 			/*
2261 			 * Invalidate ts_recent.  If this segment updates
2262 			 * ts_recent, the age will be reset later and ts_recent
2263 			 * will get a valid value.  If it does not, setting
2264 			 * ts_recent to zero will at least satisfy the
2265 			 * requirement that zero be placed in the timestamp
2266 			 * echo reply when ts_recent isn't valid.  The
2267 			 * age isn't reset until we get a valid ts_recent
2268 			 * because we don't want out-of-order segments to be
2269 			 * dropped when ts_recent is old.
2270 			 */
2271 			tp->ts_recent = 0;
2272 		} else {
2273 			TCPSTAT_INC(tcps_rcvduppack);
2274 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2275 			TCPSTAT_INC(tcps_pawsdrop);
2276 			if (tlen)
2277 				goto dropafterack;
2278 			goto drop;
2279 		}
2280 	}
2281 
2282 	/*
2283 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2284 	 * this connection before trimming the data to fit the receive
2285 	 * window.  Check the sequence number versus IRS since we know
2286 	 * the sequence numbers haven't wrapped.  This is a partial fix
2287 	 * for the "LAND" DoS attack.
2288 	 */
2289 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2290 		rstreason = BANDLIM_RST_OPENPORT;
2291 		goto dropwithreset;
2292 	}
2293 
2294 	todrop = tp->rcv_nxt - th->th_seq;
2295 	if (todrop > 0) {
2296 		if (thflags & TH_SYN) {
2297 			thflags &= ~TH_SYN;
2298 			th->th_seq++;
2299 			if (th->th_urp > 1)
2300 				th->th_urp--;
2301 			else
2302 				thflags &= ~TH_URG;
2303 			todrop--;
2304 		}
2305 		/*
2306 		 * Following if statement from Stevens, vol. 2, p. 960.
2307 		 */
2308 		if (todrop > tlen
2309 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2310 			/*
2311 			 * Any valid FIN must be to the left of the window.
2312 			 * At this point the FIN must be a duplicate or out
2313 			 * of sequence; drop it.
2314 			 */
2315 			thflags &= ~TH_FIN;
2316 
2317 			/*
2318 			 * Send an ACK to resynchronize and drop any data.
2319 			 * But keep on processing for RST or ACK.
2320 			 */
2321 			tp->t_flags |= TF_ACKNOW;
2322 			todrop = tlen;
2323 			TCPSTAT_INC(tcps_rcvduppack);
2324 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2325 		} else {
2326 			TCPSTAT_INC(tcps_rcvpartduppack);
2327 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2328 		}
2329 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2330 		th->th_seq += todrop;
2331 		tlen -= todrop;
2332 		if (th->th_urp > todrop)
2333 			th->th_urp -= todrop;
2334 		else {
2335 			thflags &= ~TH_URG;
2336 			th->th_urp = 0;
2337 		}
2338 	}
2339 
2340 	/*
2341 	 * If new data are received on a connection after the
2342 	 * user processes are gone, then RST the other end.
2343 	 */
2344 	if ((so->so_state & SS_NOFDREF) &&
2345 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2346 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2347 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2348 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2349 
2350 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2351 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2352 			    "after socket was closed, "
2353 			    "sending RST and removing tcpcb\n",
2354 			    s, __func__, tcpstates[tp->t_state], tlen);
2355 			free(s, M_TCPLOG);
2356 		}
2357 		tp = tcp_close(tp);
2358 		TCPSTAT_INC(tcps_rcvafterclose);
2359 		rstreason = BANDLIM_UNLIMITED;
2360 		goto dropwithreset;
2361 	}
2362 
2363 	/*
2364 	 * If segment ends after window, drop trailing data
2365 	 * (and PUSH and FIN); if nothing left, just ACK.
2366 	 */
2367 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2368 	if (todrop > 0) {
2369 		TCPSTAT_INC(tcps_rcvpackafterwin);
2370 		if (todrop >= tlen) {
2371 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2372 			/*
2373 			 * If window is closed can only take segments at
2374 			 * window edge, and have to drop data and PUSH from
2375 			 * incoming segments.  Continue processing, but
2376 			 * remember to ack.  Otherwise, drop segment
2377 			 * and ack.
2378 			 */
2379 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2380 				tp->t_flags |= TF_ACKNOW;
2381 				TCPSTAT_INC(tcps_rcvwinprobe);
2382 			} else
2383 				goto dropafterack;
2384 		} else
2385 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2386 		m_adj(m, -todrop);
2387 		tlen -= todrop;
2388 		thflags &= ~(TH_PUSH|TH_FIN);
2389 	}
2390 
2391 	/*
2392 	 * If last ACK falls within this segment's sequence numbers,
2393 	 * record its timestamp.
2394 	 * NOTE:
2395 	 * 1) That the test incorporates suggestions from the latest
2396 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2397 	 * 2) That updating only on newer timestamps interferes with
2398 	 *    our earlier PAWS tests, so this check should be solely
2399 	 *    predicated on the sequence space of this segment.
2400 	 * 3) That we modify the segment boundary check to be
2401 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2402 	 *    instead of RFC1323's
2403 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2404 	 *    This modified check allows us to overcome RFC1323's
2405 	 *    limitations as described in Stevens TCP/IP Illustrated
2406 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2407 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2408 	 */
2409 	if ((to.to_flags & TOF_TS) != 0 &&
2410 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2411 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2412 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2413 		tp->ts_recent_age = tcp_ts_getticks();
2414 		tp->ts_recent = to.to_tsval;
2415 	}
2416 
2417 	/*
2418 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2419 	 * flag is on (half-synchronized state), then queue data for
2420 	 * later processing; else drop segment and return.
2421 	 */
2422 	if ((thflags & TH_ACK) == 0) {
2423 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2424 		    (tp->t_flags & TF_NEEDSYN)) {
2425 #ifdef TCP_RFC7413
2426 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2427 			    IS_FASTOPEN(tp->t_flags)) {
2428 				tp->snd_wnd = tiwin;
2429 				cc_conn_init(tp);
2430 			}
2431 #endif
2432 			goto step6;
2433 		} else if (tp->t_flags & TF_ACKNOW)
2434 			goto dropafterack;
2435 		else
2436 			goto drop;
2437 	}
2438 
2439 	/*
2440 	 * Ack processing.
2441 	 */
2442 	switch (tp->t_state) {
2443 
2444 	/*
2445 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2446 	 * ESTABLISHED state and continue processing.
2447 	 * The ACK was checked above.
2448 	 */
2449 	case TCPS_SYN_RECEIVED:
2450 
2451 		TCPSTAT_INC(tcps_connects);
2452 		soisconnected(so);
2453 		/* Do window scaling? */
2454 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2455 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2456 			tp->rcv_scale = tp->request_r_scale;
2457 			tp->snd_wnd = tiwin;
2458 		}
2459 		/*
2460 		 * Make transitions:
2461 		 *      SYN-RECEIVED  -> ESTABLISHED
2462 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2463 		 */
2464 		tp->t_starttime = ticks;
2465 		if (tp->t_flags & TF_NEEDFIN) {
2466 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2467 			tp->t_flags &= ~TF_NEEDFIN;
2468 		} else {
2469 			tcp_state_change(tp, TCPS_ESTABLISHED);
2470 			TCP_PROBE5(accept__established, NULL, tp,
2471 			    mtod(m, const char *), tp, th);
2472 #ifdef TCP_RFC7413
2473 			if (tp->t_tfo_pending) {
2474 				tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2475 				tp->t_tfo_pending = NULL;
2476 
2477 				/*
2478 				 * Account for the ACK of our SYN prior to
2479 				 * regular ACK processing below.
2480 				 */
2481 				tp->snd_una++;
2482 			}
2483 			/*
2484 			 * TFO connections call cc_conn_init() during SYN
2485 			 * processing.  Calling it again here for such
2486 			 * connections is not harmless as it would undo the
2487 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2488 			 * is retransmitted.
2489 			 */
2490 			if (!IS_FASTOPEN(tp->t_flags))
2491 #endif
2492 				cc_conn_init(tp);
2493 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2494 		}
2495 		/*
2496 		 * If segment contains data or ACK, will call tcp_reass()
2497 		 * later; if not, do so now to pass queued data to user.
2498 		 */
2499 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2500 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2501 			    (struct mbuf *)0);
2502 		tp->snd_wl1 = th->th_seq - 1;
2503 		/* FALLTHROUGH */
2504 
2505 	/*
2506 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2507 	 * ACKs.  If the ack is in the range
2508 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2509 	 * then advance tp->snd_una to th->th_ack and drop
2510 	 * data from the retransmission queue.  If this ACK reflects
2511 	 * more up to date window information we update our window information.
2512 	 */
2513 	case TCPS_ESTABLISHED:
2514 	case TCPS_FIN_WAIT_1:
2515 	case TCPS_FIN_WAIT_2:
2516 	case TCPS_CLOSE_WAIT:
2517 	case TCPS_CLOSING:
2518 	case TCPS_LAST_ACK:
2519 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2520 			TCPSTAT_INC(tcps_rcvacktoomuch);
2521 			goto dropafterack;
2522 		}
2523 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2524 		    ((to.to_flags & TOF_SACK) ||
2525 		     !TAILQ_EMPTY(&tp->snd_holes)))
2526 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2527 		else
2528 			/*
2529 			 * Reset the value so that previous (valid) value
2530 			 * from the last ack with SACK doesn't get used.
2531 			 */
2532 			tp->sackhint.sacked_bytes = 0;
2533 
2534 #ifdef TCP_HHOOK
2535 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2536 		hhook_run_tcp_est_in(tp, th, &to);
2537 #endif
2538 
2539 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2540 			u_int maxseg;
2541 
2542 			maxseg = tcp_maxseg(tp);
2543 			if (tlen == 0 &&
2544 			    (tiwin == tp->snd_wnd ||
2545 			    (tp->t_flags & TF_SACK_PERMIT))) {
2546 				/*
2547 				 * If this is the first time we've seen a
2548 				 * FIN from the remote, this is not a
2549 				 * duplicate and it needs to be processed
2550 				 * normally.  This happens during a
2551 				 * simultaneous close.
2552 				 */
2553 				if ((thflags & TH_FIN) &&
2554 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2555 					tp->t_dupacks = 0;
2556 					break;
2557 				}
2558 				TCPSTAT_INC(tcps_rcvdupack);
2559 				/*
2560 				 * If we have outstanding data (other than
2561 				 * a window probe), this is a completely
2562 				 * duplicate ack (ie, window info didn't
2563 				 * change and FIN isn't set),
2564 				 * the ack is the biggest we've
2565 				 * seen and we've seen exactly our rexmt
2566 				 * threshold of them, assume a packet
2567 				 * has been dropped and retransmit it.
2568 				 * Kludge snd_nxt & the congestion
2569 				 * window so we send only this one
2570 				 * packet.
2571 				 *
2572 				 * We know we're losing at the current
2573 				 * window size so do congestion avoidance
2574 				 * (set ssthresh to half the current window
2575 				 * and pull our congestion window back to
2576 				 * the new ssthresh).
2577 				 *
2578 				 * Dup acks mean that packets have left the
2579 				 * network (they're now cached at the receiver)
2580 				 * so bump cwnd by the amount in the receiver
2581 				 * to keep a constant cwnd packets in the
2582 				 * network.
2583 				 *
2584 				 * When using TCP ECN, notify the peer that
2585 				 * we reduced the cwnd.
2586 				 */
2587 				/*
2588 				 * Following 2 kinds of acks should not affect
2589 				 * dupack counting:
2590 				 * 1) Old acks
2591 				 * 2) Acks with SACK but without any new SACK
2592 				 * information in them. These could result from
2593 				 * any anomaly in the network like a switch
2594 				 * duplicating packets or a possible DoS attack.
2595 				 */
2596 				if (th->th_ack != tp->snd_una ||
2597 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2598 				    !sack_changed))
2599 					break;
2600 				else if (!tcp_timer_active(tp, TT_REXMT))
2601 					tp->t_dupacks = 0;
2602 				else if (++tp->t_dupacks > tcprexmtthresh ||
2603 				     IN_FASTRECOVERY(tp->t_flags)) {
2604 					cc_ack_received(tp, th, nsegs,
2605 					    CC_DUPACK);
2606 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2607 					    IN_FASTRECOVERY(tp->t_flags)) {
2608 						int awnd;
2609 
2610 						/*
2611 						 * Compute the amount of data in flight first.
2612 						 * We can inject new data into the pipe iff
2613 						 * we have less than 1/2 the original window's
2614 						 * worth of data in flight.
2615 						 */
2616 						if (V_tcp_do_rfc6675_pipe)
2617 							awnd = tcp_compute_pipe(tp);
2618 						else
2619 							awnd = (tp->snd_nxt - tp->snd_fack) +
2620 								tp->sackhint.sack_bytes_rexmit;
2621 
2622 						if (awnd < tp->snd_ssthresh) {
2623 							tp->snd_cwnd += maxseg;
2624 							/*
2625 							 * RFC5681 Section 3.2 talks about cwnd
2626 							 * inflation on additional dupacks and
2627 							 * deflation on recovering from loss.
2628 							 *
2629 							 * We keep cwnd into check so that
2630 							 * we don't have to 'deflate' it when we
2631 							 * get out of recovery.
2632 							 */
2633 							if (tp->snd_cwnd > tp->snd_ssthresh)
2634 								tp->snd_cwnd = tp->snd_ssthresh;
2635 						}
2636 					} else
2637 						tp->snd_cwnd += maxseg;
2638 					(void) tp->t_fb->tfb_tcp_output(tp);
2639 					goto drop;
2640 				} else if (tp->t_dupacks == tcprexmtthresh) {
2641 					tcp_seq onxt = tp->snd_nxt;
2642 
2643 					/*
2644 					 * If we're doing sack, check to
2645 					 * see if we're already in sack
2646 					 * recovery. If we're not doing sack,
2647 					 * check to see if we're in newreno
2648 					 * recovery.
2649 					 */
2650 					if (tp->t_flags & TF_SACK_PERMIT) {
2651 						if (IN_FASTRECOVERY(tp->t_flags)) {
2652 							tp->t_dupacks = 0;
2653 							break;
2654 						}
2655 					} else {
2656 						if (SEQ_LEQ(th->th_ack,
2657 						    tp->snd_recover)) {
2658 							tp->t_dupacks = 0;
2659 							break;
2660 						}
2661 					}
2662 					/* Congestion signal before ack. */
2663 					cc_cong_signal(tp, th, CC_NDUPACK);
2664 					cc_ack_received(tp, th, nsegs,
2665 					    CC_DUPACK);
2666 					tcp_timer_activate(tp, TT_REXMT, 0);
2667 					tp->t_rtttime = 0;
2668 					if (tp->t_flags & TF_SACK_PERMIT) {
2669 						TCPSTAT_INC(
2670 						    tcps_sack_recovery_episode);
2671 						tp->sack_newdata = tp->snd_nxt;
2672 						if (CC_ALGO(tp)->cong_signal == NULL)
2673 							tp->snd_cwnd = maxseg;
2674 						(void) tp->t_fb->tfb_tcp_output(tp);
2675 						goto drop;
2676 					}
2677 					tp->snd_nxt = th->th_ack;
2678 					if (CC_ALGO(tp)->cong_signal == NULL)
2679 						tp->snd_cwnd = maxseg;
2680 					(void) tp->t_fb->tfb_tcp_output(tp);
2681 					KASSERT(tp->snd_limited <= 2,
2682 					    ("%s: tp->snd_limited too big",
2683 					    __func__));
2684 					if (CC_ALGO(tp)->cong_signal == NULL)
2685 						tp->snd_cwnd = tp->snd_ssthresh +
2686 						    maxseg *
2687 						    (tp->t_dupacks - tp->snd_limited);
2688 					if (SEQ_GT(onxt, tp->snd_nxt))
2689 						tp->snd_nxt = onxt;
2690 					goto drop;
2691 				} else if (V_tcp_do_rfc3042) {
2692 					/*
2693 					 * Process first and second duplicate
2694 					 * ACKs. Each indicates a segment
2695 					 * leaving the network, creating room
2696 					 * for more. Make sure we can send a
2697 					 * packet on reception of each duplicate
2698 					 * ACK by increasing snd_cwnd by one
2699 					 * segment. Restore the original
2700 					 * snd_cwnd after packet transmission.
2701 					 */
2702 					cc_ack_received(tp, th, nsegs,
2703 					    CC_DUPACK);
2704 					uint32_t oldcwnd = tp->snd_cwnd;
2705 					tcp_seq oldsndmax = tp->snd_max;
2706 					u_int sent;
2707 					int avail;
2708 
2709 					KASSERT(tp->t_dupacks == 1 ||
2710 					    tp->t_dupacks == 2,
2711 					    ("%s: dupacks not 1 or 2",
2712 					    __func__));
2713 					if (tp->t_dupacks == 1)
2714 						tp->snd_limited = 0;
2715 					tp->snd_cwnd =
2716 					    (tp->snd_nxt - tp->snd_una) +
2717 					    (tp->t_dupacks - tp->snd_limited) *
2718 					    maxseg;
2719 					/*
2720 					 * Only call tcp_output when there
2721 					 * is new data available to be sent.
2722 					 * Otherwise we would send pure ACKs.
2723 					 */
2724 					SOCKBUF_LOCK(&so->so_snd);
2725 					avail = sbavail(&so->so_snd) -
2726 					    (tp->snd_nxt - tp->snd_una);
2727 					SOCKBUF_UNLOCK(&so->so_snd);
2728 					if (avail > 0)
2729 						(void) tp->t_fb->tfb_tcp_output(tp);
2730 					sent = tp->snd_max - oldsndmax;
2731 					if (sent > maxseg) {
2732 						KASSERT((tp->t_dupacks == 2 &&
2733 						    tp->snd_limited == 0) ||
2734 						   (sent == maxseg + 1 &&
2735 						    tp->t_flags & TF_SENTFIN),
2736 						    ("%s: sent too much",
2737 						    __func__));
2738 						tp->snd_limited = 2;
2739 					} else if (sent > 0)
2740 						++tp->snd_limited;
2741 					tp->snd_cwnd = oldcwnd;
2742 					goto drop;
2743 				}
2744 			}
2745 			break;
2746 		} else {
2747 			/*
2748 			 * This ack is advancing the left edge, reset the
2749 			 * counter.
2750 			 */
2751 			tp->t_dupacks = 0;
2752 			/*
2753 			 * If this ack also has new SACK info, increment the
2754 			 * counter as per rfc6675.
2755 			 */
2756 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2757 				tp->t_dupacks++;
2758 		}
2759 
2760 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2761 		    ("%s: th_ack <= snd_una", __func__));
2762 
2763 		/*
2764 		 * If the congestion window was inflated to account
2765 		 * for the other side's cached packets, retract it.
2766 		 */
2767 		if (IN_FASTRECOVERY(tp->t_flags)) {
2768 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2769 				if (tp->t_flags & TF_SACK_PERMIT)
2770 					tcp_sack_partialack(tp, th);
2771 				else
2772 					tcp_newreno_partial_ack(tp, th);
2773 			} else
2774 				cc_post_recovery(tp, th);
2775 		}
2776 		/*
2777 		 * If we reach this point, ACK is not a duplicate,
2778 		 *     i.e., it ACKs something we sent.
2779 		 */
2780 		if (tp->t_flags & TF_NEEDSYN) {
2781 			/*
2782 			 * T/TCP: Connection was half-synchronized, and our
2783 			 * SYN has been ACK'd (so connection is now fully
2784 			 * synchronized).  Go to non-starred state,
2785 			 * increment snd_una for ACK of SYN, and check if
2786 			 * we can do window scaling.
2787 			 */
2788 			tp->t_flags &= ~TF_NEEDSYN;
2789 			tp->snd_una++;
2790 			/* Do window scaling? */
2791 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2792 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2793 				tp->rcv_scale = tp->request_r_scale;
2794 				/* Send window already scaled. */
2795 			}
2796 		}
2797 
2798 process_ACK:
2799 		INP_WLOCK_ASSERT(tp->t_inpcb);
2800 
2801 		acked = BYTES_THIS_ACK(tp, th);
2802 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2803 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2804 		    tp->snd_una, th->th_ack, tp, m));
2805 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2806 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2807 
2808 		/*
2809 		 * If we just performed our first retransmit, and the ACK
2810 		 * arrives within our recovery window, then it was a mistake
2811 		 * to do the retransmit in the first place.  Recover our
2812 		 * original cwnd and ssthresh, and proceed to transmit where
2813 		 * we left off.
2814 		 */
2815 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2816 		    (int)(ticks - tp->t_badrxtwin) < 0)
2817 			cc_cong_signal(tp, th, CC_RTO_ERR);
2818 
2819 		/*
2820 		 * If we have a timestamp reply, update smoothed
2821 		 * round trip time.  If no timestamp is present but
2822 		 * transmit timer is running and timed sequence
2823 		 * number was acked, update smoothed round trip time.
2824 		 * Since we now have an rtt measurement, cancel the
2825 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2826 		 * Recompute the initial retransmit timer.
2827 		 *
2828 		 * Some boxes send broken timestamp replies
2829 		 * during the SYN+ACK phase, ignore
2830 		 * timestamps of 0 or we could calculate a
2831 		 * huge RTT and blow up the retransmit timer.
2832 		 */
2833 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2834 			uint32_t t;
2835 
2836 			t = tcp_ts_getticks() - to.to_tsecr;
2837 			if (!tp->t_rttlow || tp->t_rttlow > t)
2838 				tp->t_rttlow = t;
2839 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2840 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2841 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2842 				tp->t_rttlow = ticks - tp->t_rtttime;
2843 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2844 		}
2845 
2846 		/*
2847 		 * If all outstanding data is acked, stop retransmit
2848 		 * timer and remember to restart (more output or persist).
2849 		 * If there is more data to be acked, restart retransmit
2850 		 * timer, using current (possibly backed-off) value.
2851 		 */
2852 		if (th->th_ack == tp->snd_max) {
2853 			tcp_timer_activate(tp, TT_REXMT, 0);
2854 			needoutput = 1;
2855 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2856 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2857 
2858 		/*
2859 		 * If no data (only SYN) was ACK'd,
2860 		 *    skip rest of ACK processing.
2861 		 */
2862 		if (acked == 0)
2863 			goto step6;
2864 
2865 		/*
2866 		 * Let the congestion control algorithm update congestion
2867 		 * control related information. This typically means increasing
2868 		 * the congestion window.
2869 		 */
2870 		cc_ack_received(tp, th, nsegs, CC_ACK);
2871 
2872 		SOCKBUF_LOCK(&so->so_snd);
2873 		if (acked > sbavail(&so->so_snd)) {
2874 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2875 				tp->snd_wnd -= sbavail(&so->so_snd);
2876 			else
2877 				tp->snd_wnd = 0;
2878 			mfree = sbcut_locked(&so->so_snd,
2879 			    (int)sbavail(&so->so_snd));
2880 			ourfinisacked = 1;
2881 		} else {
2882 			mfree = sbcut_locked(&so->so_snd, acked);
2883 			if (tp->snd_wnd >= (uint32_t) acked)
2884 				tp->snd_wnd -= acked;
2885 			else
2886 				tp->snd_wnd = 0;
2887 			ourfinisacked = 0;
2888 		}
2889 		/* NB: sowwakeup_locked() does an implicit unlock. */
2890 		sowwakeup_locked(so);
2891 		m_freem(mfree);
2892 		/* Detect una wraparound. */
2893 		if (!IN_RECOVERY(tp->t_flags) &&
2894 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2895 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2896 			tp->snd_recover = th->th_ack - 1;
2897 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2898 		if (IN_RECOVERY(tp->t_flags) &&
2899 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2900 			EXIT_RECOVERY(tp->t_flags);
2901 		}
2902 		tp->snd_una = th->th_ack;
2903 		if (tp->t_flags & TF_SACK_PERMIT) {
2904 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2905 				tp->snd_recover = tp->snd_una;
2906 		}
2907 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2908 			tp->snd_nxt = tp->snd_una;
2909 
2910 		switch (tp->t_state) {
2911 
2912 		/*
2913 		 * In FIN_WAIT_1 STATE in addition to the processing
2914 		 * for the ESTABLISHED state if our FIN is now acknowledged
2915 		 * then enter FIN_WAIT_2.
2916 		 */
2917 		case TCPS_FIN_WAIT_1:
2918 			if (ourfinisacked) {
2919 				/*
2920 				 * If we can't receive any more
2921 				 * data, then closing user can proceed.
2922 				 * Starting the timer is contrary to the
2923 				 * specification, but if we don't get a FIN
2924 				 * we'll hang forever.
2925 				 *
2926 				 * XXXjl:
2927 				 * we should release the tp also, and use a
2928 				 * compressed state.
2929 				 */
2930 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2931 					soisdisconnected(so);
2932 					tcp_timer_activate(tp, TT_2MSL,
2933 					    (tcp_fast_finwait2_recycle ?
2934 					    tcp_finwait2_timeout :
2935 					    TP_MAXIDLE(tp)));
2936 				}
2937 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2938 			}
2939 			break;
2940 
2941 		/*
2942 		 * In CLOSING STATE in addition to the processing for
2943 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2944 		 * then enter the TIME-WAIT state, otherwise ignore
2945 		 * the segment.
2946 		 */
2947 		case TCPS_CLOSING:
2948 			if (ourfinisacked) {
2949 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2950 				tcp_twstart(tp);
2951 				INP_INFO_RUNLOCK(&V_tcbinfo);
2952 				m_freem(m);
2953 				return;
2954 			}
2955 			break;
2956 
2957 		/*
2958 		 * In LAST_ACK, we may still be waiting for data to drain
2959 		 * and/or to be acked, as well as for the ack of our FIN.
2960 		 * If our FIN is now acknowledged, delete the TCB,
2961 		 * enter the closed state and return.
2962 		 */
2963 		case TCPS_LAST_ACK:
2964 			if (ourfinisacked) {
2965 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2966 				tp = tcp_close(tp);
2967 				goto drop;
2968 			}
2969 			break;
2970 		}
2971 	}
2972 
2973 step6:
2974 	INP_WLOCK_ASSERT(tp->t_inpcb);
2975 
2976 	/*
2977 	 * Update window information.
2978 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2979 	 */
2980 	if ((thflags & TH_ACK) &&
2981 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2982 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2983 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2984 		/* keep track of pure window updates */
2985 		if (tlen == 0 &&
2986 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2987 			TCPSTAT_INC(tcps_rcvwinupd);
2988 		tp->snd_wnd = tiwin;
2989 		tp->snd_wl1 = th->th_seq;
2990 		tp->snd_wl2 = th->th_ack;
2991 		if (tp->snd_wnd > tp->max_sndwnd)
2992 			tp->max_sndwnd = tp->snd_wnd;
2993 		needoutput = 1;
2994 	}
2995 
2996 	/*
2997 	 * Process segments with URG.
2998 	 */
2999 	if ((thflags & TH_URG) && th->th_urp &&
3000 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3001 		/*
3002 		 * This is a kludge, but if we receive and accept
3003 		 * random urgent pointers, we'll crash in
3004 		 * soreceive.  It's hard to imagine someone
3005 		 * actually wanting to send this much urgent data.
3006 		 */
3007 		SOCKBUF_LOCK(&so->so_rcv);
3008 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3009 			th->th_urp = 0;			/* XXX */
3010 			thflags &= ~TH_URG;		/* XXX */
3011 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
3012 			goto dodata;			/* XXX */
3013 		}
3014 		/*
3015 		 * If this segment advances the known urgent pointer,
3016 		 * then mark the data stream.  This should not happen
3017 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3018 		 * a FIN has been received from the remote side.
3019 		 * In these states we ignore the URG.
3020 		 *
3021 		 * According to RFC961 (Assigned Protocols),
3022 		 * the urgent pointer points to the last octet
3023 		 * of urgent data.  We continue, however,
3024 		 * to consider it to indicate the first octet
3025 		 * of data past the urgent section as the original
3026 		 * spec states (in one of two places).
3027 		 */
3028 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3029 			tp->rcv_up = th->th_seq + th->th_urp;
3030 			so->so_oobmark = sbavail(&so->so_rcv) +
3031 			    (tp->rcv_up - tp->rcv_nxt) - 1;
3032 			if (so->so_oobmark == 0)
3033 				so->so_rcv.sb_state |= SBS_RCVATMARK;
3034 			sohasoutofband(so);
3035 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3036 		}
3037 		SOCKBUF_UNLOCK(&so->so_rcv);
3038 		/*
3039 		 * Remove out of band data so doesn't get presented to user.
3040 		 * This can happen independent of advancing the URG pointer,
3041 		 * but if two URG's are pending at once, some out-of-band
3042 		 * data may creep in... ick.
3043 		 */
3044 		if (th->th_urp <= (uint32_t)tlen &&
3045 		    !(so->so_options & SO_OOBINLINE)) {
3046 			/* hdr drop is delayed */
3047 			tcp_pulloutofband(so, th, m, drop_hdrlen);
3048 		}
3049 	} else {
3050 		/*
3051 		 * If no out of band data is expected,
3052 		 * pull receive urgent pointer along
3053 		 * with the receive window.
3054 		 */
3055 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3056 			tp->rcv_up = tp->rcv_nxt;
3057 	}
3058 dodata:							/* XXX */
3059 	INP_WLOCK_ASSERT(tp->t_inpcb);
3060 
3061 	/*
3062 	 * Process the segment text, merging it into the TCP sequencing queue,
3063 	 * and arranging for acknowledgment of receipt if necessary.
3064 	 * This process logically involves adjusting tp->rcv_wnd as data
3065 	 * is presented to the user (this happens in tcp_usrreq.c,
3066 	 * case PRU_RCVD).  If a FIN has already been received on this
3067 	 * connection then we just ignore the text.
3068 	 */
3069 #ifdef TCP_RFC7413
3070 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3071 		   IS_FASTOPEN(tp->t_flags));
3072 #else
3073 #define	tfo_syn	(false)
3074 #endif
3075 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
3076 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3077 		tcp_seq save_start = th->th_seq;
3078 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3079 		/*
3080 		 * Insert segment which includes th into TCP reassembly queue
3081 		 * with control block tp.  Set thflags to whether reassembly now
3082 		 * includes a segment with FIN.  This handles the common case
3083 		 * inline (segment is the next to be received on an established
3084 		 * connection, and the queue is empty), avoiding linkage into
3085 		 * and removal from the queue and repetition of various
3086 		 * conversions.
3087 		 * Set DELACK for segments received in order, but ack
3088 		 * immediately when segments are out of order (so
3089 		 * fast retransmit can work).
3090 		 */
3091 		if (th->th_seq == tp->rcv_nxt &&
3092 		    LIST_EMPTY(&tp->t_segq) &&
3093 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3094 		     tfo_syn)) {
3095 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3096 				tp->t_flags |= TF_DELACK;
3097 			else
3098 				tp->t_flags |= TF_ACKNOW;
3099 			tp->rcv_nxt += tlen;
3100 			thflags = th->th_flags & TH_FIN;
3101 			TCPSTAT_INC(tcps_rcvpack);
3102 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3103 			SOCKBUF_LOCK(&so->so_rcv);
3104 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3105 				m_freem(m);
3106 			else
3107 				sbappendstream_locked(&so->so_rcv, m, 0);
3108 			/* NB: sorwakeup_locked() does an implicit unlock. */
3109 			sorwakeup_locked(so);
3110 		} else {
3111 			/*
3112 			 * XXX: Due to the header drop above "th" is
3113 			 * theoretically invalid by now.  Fortunately
3114 			 * m_adj() doesn't actually frees any mbufs
3115 			 * when trimming from the head.
3116 			 */
3117 			thflags = tcp_reass(tp, th, &tlen, m);
3118 			tp->t_flags |= TF_ACKNOW;
3119 		}
3120 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3121 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3122 #if 0
3123 		/*
3124 		 * Note the amount of data that peer has sent into
3125 		 * our window, in order to estimate the sender's
3126 		 * buffer size.
3127 		 * XXX: Unused.
3128 		 */
3129 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3130 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3131 		else
3132 			len = so->so_rcv.sb_hiwat;
3133 #endif
3134 	} else {
3135 		m_freem(m);
3136 		thflags &= ~TH_FIN;
3137 	}
3138 
3139 	/*
3140 	 * If FIN is received ACK the FIN and let the user know
3141 	 * that the connection is closing.
3142 	 */
3143 	if (thflags & TH_FIN) {
3144 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3145 			socantrcvmore(so);
3146 			/*
3147 			 * If connection is half-synchronized
3148 			 * (ie NEEDSYN flag on) then delay ACK,
3149 			 * so it may be piggybacked when SYN is sent.
3150 			 * Otherwise, since we received a FIN then no
3151 			 * more input can be expected, send ACK now.
3152 			 */
3153 			if (tp->t_flags & TF_NEEDSYN)
3154 				tp->t_flags |= TF_DELACK;
3155 			else
3156 				tp->t_flags |= TF_ACKNOW;
3157 			tp->rcv_nxt++;
3158 		}
3159 		switch (tp->t_state) {
3160 
3161 		/*
3162 		 * In SYN_RECEIVED and ESTABLISHED STATES
3163 		 * enter the CLOSE_WAIT state.
3164 		 */
3165 		case TCPS_SYN_RECEIVED:
3166 			tp->t_starttime = ticks;
3167 			/* FALLTHROUGH */
3168 		case TCPS_ESTABLISHED:
3169 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3170 			break;
3171 
3172 		/*
3173 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3174 		 * enter the CLOSING state.
3175 		 */
3176 		case TCPS_FIN_WAIT_1:
3177 			tcp_state_change(tp, TCPS_CLOSING);
3178 			break;
3179 
3180 		/*
3181 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3182 		 * starting the time-wait timer, turning off the other
3183 		 * standard timers.
3184 		 */
3185 		case TCPS_FIN_WAIT_2:
3186 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3187 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3188 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3189 			    ti_locked));
3190 
3191 			tcp_twstart(tp);
3192 			INP_INFO_RUNLOCK(&V_tcbinfo);
3193 			return;
3194 		}
3195 	}
3196 	if (ti_locked == TI_RLOCKED)
3197 		INP_INFO_RUNLOCK(&V_tcbinfo);
3198 	ti_locked = TI_UNLOCKED;
3199 
3200 #ifdef TCPDEBUG
3201 	if (so->so_options & SO_DEBUG)
3202 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3203 			  &tcp_savetcp, 0);
3204 #endif
3205 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3206 
3207 	/*
3208 	 * Return any desired output.
3209 	 */
3210 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3211 		(void) tp->t_fb->tfb_tcp_output(tp);
3212 
3213 check_delack:
3214 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3215 	    __func__, ti_locked));
3216 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3217 	INP_WLOCK_ASSERT(tp->t_inpcb);
3218 
3219 	if (tp->t_flags & TF_DELACK) {
3220 		tp->t_flags &= ~TF_DELACK;
3221 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3222 	}
3223 	INP_WUNLOCK(tp->t_inpcb);
3224 	return;
3225 
3226 dropafterack:
3227 	/*
3228 	 * Generate an ACK dropping incoming segment if it occupies
3229 	 * sequence space, where the ACK reflects our state.
3230 	 *
3231 	 * We can now skip the test for the RST flag since all
3232 	 * paths to this code happen after packets containing
3233 	 * RST have been dropped.
3234 	 *
3235 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3236 	 * segment we received passes the SYN-RECEIVED ACK test.
3237 	 * If it fails send a RST.  This breaks the loop in the
3238 	 * "LAND" DoS attack, and also prevents an ACK storm
3239 	 * between two listening ports that have been sent forged
3240 	 * SYN segments, each with the source address of the other.
3241 	 */
3242 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3243 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3244 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3245 		rstreason = BANDLIM_RST_OPENPORT;
3246 		goto dropwithreset;
3247 	}
3248 #ifdef TCPDEBUG
3249 	if (so->so_options & SO_DEBUG)
3250 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3251 			  &tcp_savetcp, 0);
3252 #endif
3253 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3254 	if (ti_locked == TI_RLOCKED)
3255 		INP_INFO_RUNLOCK(&V_tcbinfo);
3256 	ti_locked = TI_UNLOCKED;
3257 
3258 	tp->t_flags |= TF_ACKNOW;
3259 	(void) tp->t_fb->tfb_tcp_output(tp);
3260 	INP_WUNLOCK(tp->t_inpcb);
3261 	m_freem(m);
3262 	return;
3263 
3264 dropwithreset:
3265 	if (ti_locked == TI_RLOCKED)
3266 		INP_INFO_RUNLOCK(&V_tcbinfo);
3267 	ti_locked = TI_UNLOCKED;
3268 
3269 	if (tp != NULL) {
3270 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3271 		INP_WUNLOCK(tp->t_inpcb);
3272 	} else
3273 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3274 	return;
3275 
3276 drop:
3277 	if (ti_locked == TI_RLOCKED) {
3278 		INP_INFO_RUNLOCK(&V_tcbinfo);
3279 		ti_locked = TI_UNLOCKED;
3280 	}
3281 #ifdef INVARIANTS
3282 	else
3283 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3284 #endif
3285 
3286 	/*
3287 	 * Drop space held by incoming segment and return.
3288 	 */
3289 #ifdef TCPDEBUG
3290 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3291 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3292 			  &tcp_savetcp, 0);
3293 #endif
3294 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3295 	if (tp != NULL)
3296 		INP_WUNLOCK(tp->t_inpcb);
3297 	m_freem(m);
3298 #ifndef TCP_RFC7413
3299 #undef	tfo_syn
3300 #endif
3301 }
3302 
3303 /*
3304  * Issue RST and make ACK acceptable to originator of segment.
3305  * The mbuf must still include the original packet header.
3306  * tp may be NULL.
3307  */
3308 void
3309 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3310     int tlen, int rstreason)
3311 {
3312 #ifdef INET
3313 	struct ip *ip;
3314 #endif
3315 #ifdef INET6
3316 	struct ip6_hdr *ip6;
3317 #endif
3318 
3319 	if (tp != NULL) {
3320 		INP_WLOCK_ASSERT(tp->t_inpcb);
3321 	}
3322 
3323 	/* Don't bother if destination was broadcast/multicast. */
3324 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3325 		goto drop;
3326 #ifdef INET6
3327 	if (mtod(m, struct ip *)->ip_v == 6) {
3328 		ip6 = mtod(m, struct ip6_hdr *);
3329 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3330 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3331 			goto drop;
3332 		/* IPv6 anycast check is done at tcp6_input() */
3333 	}
3334 #endif
3335 #if defined(INET) && defined(INET6)
3336 	else
3337 #endif
3338 #ifdef INET
3339 	{
3340 		ip = mtod(m, struct ip *);
3341 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3342 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3343 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3344 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3345 			goto drop;
3346 	}
3347 #endif
3348 
3349 	/* Perform bandwidth limiting. */
3350 	if (badport_bandlim(rstreason) < 0)
3351 		goto drop;
3352 
3353 	/* tcp_respond consumes the mbuf chain. */
3354 	if (th->th_flags & TH_ACK) {
3355 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3356 		    th->th_ack, TH_RST);
3357 	} else {
3358 		if (th->th_flags & TH_SYN)
3359 			tlen++;
3360 		if (th->th_flags & TH_FIN)
3361 			tlen++;
3362 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3363 		    (tcp_seq)0, TH_RST|TH_ACK);
3364 	}
3365 	return;
3366 drop:
3367 	m_freem(m);
3368 }
3369 
3370 /*
3371  * Parse TCP options and place in tcpopt.
3372  */
3373 void
3374 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3375 {
3376 	int opt, optlen;
3377 
3378 	to->to_flags = 0;
3379 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3380 		opt = cp[0];
3381 		if (opt == TCPOPT_EOL)
3382 			break;
3383 		if (opt == TCPOPT_NOP)
3384 			optlen = 1;
3385 		else {
3386 			if (cnt < 2)
3387 				break;
3388 			optlen = cp[1];
3389 			if (optlen < 2 || optlen > cnt)
3390 				break;
3391 		}
3392 		switch (opt) {
3393 		case TCPOPT_MAXSEG:
3394 			if (optlen != TCPOLEN_MAXSEG)
3395 				continue;
3396 			if (!(flags & TO_SYN))
3397 				continue;
3398 			to->to_flags |= TOF_MSS;
3399 			bcopy((char *)cp + 2,
3400 			    (char *)&to->to_mss, sizeof(to->to_mss));
3401 			to->to_mss = ntohs(to->to_mss);
3402 			break;
3403 		case TCPOPT_WINDOW:
3404 			if (optlen != TCPOLEN_WINDOW)
3405 				continue;
3406 			if (!(flags & TO_SYN))
3407 				continue;
3408 			to->to_flags |= TOF_SCALE;
3409 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3410 			break;
3411 		case TCPOPT_TIMESTAMP:
3412 			if (optlen != TCPOLEN_TIMESTAMP)
3413 				continue;
3414 			to->to_flags |= TOF_TS;
3415 			bcopy((char *)cp + 2,
3416 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3417 			to->to_tsval = ntohl(to->to_tsval);
3418 			bcopy((char *)cp + 6,
3419 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3420 			to->to_tsecr = ntohl(to->to_tsecr);
3421 			break;
3422 #ifdef TCP_SIGNATURE
3423 		/*
3424 		 * XXX In order to reply to a host which has set the
3425 		 * TCP_SIGNATURE option in its initial SYN, we have to
3426 		 * record the fact that the option was observed here
3427 		 * for the syncache code to perform the correct response.
3428 		 */
3429 		case TCPOPT_SIGNATURE:
3430 			if (optlen != TCPOLEN_SIGNATURE)
3431 				continue;
3432 			to->to_flags |= TOF_SIGNATURE;
3433 			to->to_signature = cp + 2;
3434 			break;
3435 #endif
3436 		case TCPOPT_SACK_PERMITTED:
3437 			if (optlen != TCPOLEN_SACK_PERMITTED)
3438 				continue;
3439 			if (!(flags & TO_SYN))
3440 				continue;
3441 			if (!V_tcp_do_sack)
3442 				continue;
3443 			to->to_flags |= TOF_SACKPERM;
3444 			break;
3445 		case TCPOPT_SACK:
3446 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3447 				continue;
3448 			if (flags & TO_SYN)
3449 				continue;
3450 			to->to_flags |= TOF_SACK;
3451 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3452 			to->to_sacks = cp + 2;
3453 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3454 			break;
3455 #ifdef TCP_RFC7413
3456 		case TCPOPT_FAST_OPEN:
3457 			if ((optlen != TCPOLEN_FAST_OPEN_EMPTY) &&
3458 			    (optlen < TCPOLEN_FAST_OPEN_MIN) &&
3459 			    (optlen > TCPOLEN_FAST_OPEN_MAX))
3460 				continue;
3461 			if (!(flags & TO_SYN))
3462 				continue;
3463 			if (!V_tcp_fastopen_enabled)
3464 				continue;
3465 			to->to_flags |= TOF_FASTOPEN;
3466 			to->to_tfo_len = optlen - 2;
3467 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3468 			break;
3469 #endif
3470 		default:
3471 			continue;
3472 		}
3473 	}
3474 }
3475 
3476 /*
3477  * Pull out of band byte out of a segment so
3478  * it doesn't appear in the user's data queue.
3479  * It is still reflected in the segment length for
3480  * sequencing purposes.
3481  */
3482 void
3483 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3484     int off)
3485 {
3486 	int cnt = off + th->th_urp - 1;
3487 
3488 	while (cnt >= 0) {
3489 		if (m->m_len > cnt) {
3490 			char *cp = mtod(m, caddr_t) + cnt;
3491 			struct tcpcb *tp = sototcpcb(so);
3492 
3493 			INP_WLOCK_ASSERT(tp->t_inpcb);
3494 
3495 			tp->t_iobc = *cp;
3496 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3497 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3498 			m->m_len--;
3499 			if (m->m_flags & M_PKTHDR)
3500 				m->m_pkthdr.len--;
3501 			return;
3502 		}
3503 		cnt -= m->m_len;
3504 		m = m->m_next;
3505 		if (m == NULL)
3506 			break;
3507 	}
3508 	panic("tcp_pulloutofband");
3509 }
3510 
3511 /*
3512  * Collect new round-trip time estimate
3513  * and update averages and current timeout.
3514  */
3515 void
3516 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3517 {
3518 	int delta;
3519 
3520 	INP_WLOCK_ASSERT(tp->t_inpcb);
3521 
3522 	TCPSTAT_INC(tcps_rttupdated);
3523 	tp->t_rttupdated++;
3524 	if (tp->t_srtt != 0) {
3525 		/*
3526 		 * srtt is stored as fixed point with 5 bits after the
3527 		 * binary point (i.e., scaled by 8).  The following magic
3528 		 * is equivalent to the smoothing algorithm in rfc793 with
3529 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3530 		 * point).  Adjust rtt to origin 0.
3531 		 */
3532 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3533 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3534 
3535 		if ((tp->t_srtt += delta) <= 0)
3536 			tp->t_srtt = 1;
3537 
3538 		/*
3539 		 * We accumulate a smoothed rtt variance (actually, a
3540 		 * smoothed mean difference), then set the retransmit
3541 		 * timer to smoothed rtt + 4 times the smoothed variance.
3542 		 * rttvar is stored as fixed point with 4 bits after the
3543 		 * binary point (scaled by 16).  The following is
3544 		 * equivalent to rfc793 smoothing with an alpha of .75
3545 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3546 		 * rfc793's wired-in beta.
3547 		 */
3548 		if (delta < 0)
3549 			delta = -delta;
3550 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3551 		if ((tp->t_rttvar += delta) <= 0)
3552 			tp->t_rttvar = 1;
3553 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3554 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3555 	} else {
3556 		/*
3557 		 * No rtt measurement yet - use the unsmoothed rtt.
3558 		 * Set the variance to half the rtt (so our first
3559 		 * retransmit happens at 3*rtt).
3560 		 */
3561 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3562 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3563 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3564 	}
3565 	tp->t_rtttime = 0;
3566 	tp->t_rxtshift = 0;
3567 
3568 	/*
3569 	 * the retransmit should happen at rtt + 4 * rttvar.
3570 	 * Because of the way we do the smoothing, srtt and rttvar
3571 	 * will each average +1/2 tick of bias.  When we compute
3572 	 * the retransmit timer, we want 1/2 tick of rounding and
3573 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3574 	 * firing of the timer.  The bias will give us exactly the
3575 	 * 1.5 tick we need.  But, because the bias is
3576 	 * statistical, we have to test that we don't drop below
3577 	 * the minimum feasible timer (which is 2 ticks).
3578 	 */
3579 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3580 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3581 
3582 	/*
3583 	 * We received an ack for a packet that wasn't retransmitted;
3584 	 * it is probably safe to discard any error indications we've
3585 	 * received recently.  This isn't quite right, but close enough
3586 	 * for now (a route might have failed after we sent a segment,
3587 	 * and the return path might not be symmetrical).
3588 	 */
3589 	tp->t_softerror = 0;
3590 }
3591 
3592 /*
3593  * Determine a reasonable value for maxseg size.
3594  * If the route is known, check route for mtu.
3595  * If none, use an mss that can be handled on the outgoing interface
3596  * without forcing IP to fragment.  If no route is found, route has no mtu,
3597  * or the destination isn't local, use a default, hopefully conservative
3598  * size (usually 512 or the default IP max size, but no more than the mtu
3599  * of the interface), as we can't discover anything about intervening
3600  * gateways or networks.  We also initialize the congestion/slow start
3601  * window to be a single segment if the destination isn't local.
3602  * While looking at the routing entry, we also initialize other path-dependent
3603  * parameters from pre-set or cached values in the routing entry.
3604  *
3605  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3606  * IP options, e.g. IPSEC data, since length of this data may vary, and
3607  * thus it is calculated for every segment separately in tcp_output().
3608  *
3609  * NOTE that this routine is only called when we process an incoming
3610  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3611  * settings are handled in tcp_mssopt().
3612  */
3613 void
3614 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3615     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3616 {
3617 	int mss = 0;
3618 	uint32_t maxmtu = 0;
3619 	struct inpcb *inp = tp->t_inpcb;
3620 	struct hc_metrics_lite metrics;
3621 #ifdef INET6
3622 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3623 	size_t min_protoh = isipv6 ?
3624 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3625 			    sizeof (struct tcpiphdr);
3626 #else
3627 	const size_t min_protoh = sizeof(struct tcpiphdr);
3628 #endif
3629 
3630 	INP_WLOCK_ASSERT(tp->t_inpcb);
3631 
3632 	if (mtuoffer != -1) {
3633 		KASSERT(offer == -1, ("%s: conflict", __func__));
3634 		offer = mtuoffer - min_protoh;
3635 	}
3636 
3637 	/* Initialize. */
3638 #ifdef INET6
3639 	if (isipv6) {
3640 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3641 		tp->t_maxseg = V_tcp_v6mssdflt;
3642 	}
3643 #endif
3644 #if defined(INET) && defined(INET6)
3645 	else
3646 #endif
3647 #ifdef INET
3648 	{
3649 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3650 		tp->t_maxseg = V_tcp_mssdflt;
3651 	}
3652 #endif
3653 
3654 	/*
3655 	 * No route to sender, stay with default mss and return.
3656 	 */
3657 	if (maxmtu == 0) {
3658 		/*
3659 		 * In case we return early we need to initialize metrics
3660 		 * to a defined state as tcp_hc_get() would do for us
3661 		 * if there was no cache hit.
3662 		 */
3663 		if (metricptr != NULL)
3664 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3665 		return;
3666 	}
3667 
3668 	/* What have we got? */
3669 	switch (offer) {
3670 		case 0:
3671 			/*
3672 			 * Offer == 0 means that there was no MSS on the SYN
3673 			 * segment, in this case we use tcp_mssdflt as
3674 			 * already assigned to t_maxseg above.
3675 			 */
3676 			offer = tp->t_maxseg;
3677 			break;
3678 
3679 		case -1:
3680 			/*
3681 			 * Offer == -1 means that we didn't receive SYN yet.
3682 			 */
3683 			/* FALLTHROUGH */
3684 
3685 		default:
3686 			/*
3687 			 * Prevent DoS attack with too small MSS. Round up
3688 			 * to at least minmss.
3689 			 */
3690 			offer = max(offer, V_tcp_minmss);
3691 	}
3692 
3693 	/*
3694 	 * rmx information is now retrieved from tcp_hostcache.
3695 	 */
3696 	tcp_hc_get(&inp->inp_inc, &metrics);
3697 	if (metricptr != NULL)
3698 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3699 
3700 	/*
3701 	 * If there's a discovered mtu in tcp hostcache, use it.
3702 	 * Else, use the link mtu.
3703 	 */
3704 	if (metrics.rmx_mtu)
3705 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3706 	else {
3707 #ifdef INET6
3708 		if (isipv6) {
3709 			mss = maxmtu - min_protoh;
3710 			if (!V_path_mtu_discovery &&
3711 			    !in6_localaddr(&inp->in6p_faddr))
3712 				mss = min(mss, V_tcp_v6mssdflt);
3713 		}
3714 #endif
3715 #if defined(INET) && defined(INET6)
3716 		else
3717 #endif
3718 #ifdef INET
3719 		{
3720 			mss = maxmtu - min_protoh;
3721 			if (!V_path_mtu_discovery &&
3722 			    !in_localaddr(inp->inp_faddr))
3723 				mss = min(mss, V_tcp_mssdflt);
3724 		}
3725 #endif
3726 		/*
3727 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3728 		 * probably violates the TCP spec.
3729 		 * The problem is that, since we don't know the
3730 		 * other end's MSS, we are supposed to use a conservative
3731 		 * default.  But, if we do that, then MTU discovery will
3732 		 * never actually take place, because the conservative
3733 		 * default is much less than the MTUs typically seen
3734 		 * on the Internet today.  For the moment, we'll sweep
3735 		 * this under the carpet.
3736 		 *
3737 		 * The conservative default might not actually be a problem
3738 		 * if the only case this occurs is when sending an initial
3739 		 * SYN with options and data to a host we've never talked
3740 		 * to before.  Then, they will reply with an MSS value which
3741 		 * will get recorded and the new parameters should get
3742 		 * recomputed.  For Further Study.
3743 		 */
3744 	}
3745 	mss = min(mss, offer);
3746 
3747 	/*
3748 	 * Sanity check: make sure that maxseg will be large
3749 	 * enough to allow some data on segments even if the
3750 	 * all the option space is used (40bytes).  Otherwise
3751 	 * funny things may happen in tcp_output.
3752 	 *
3753 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3754 	 */
3755 	mss = max(mss, 64);
3756 
3757 	tp->t_maxseg = mss;
3758 }
3759 
3760 void
3761 tcp_mss(struct tcpcb *tp, int offer)
3762 {
3763 	int mss;
3764 	uint32_t bufsize;
3765 	struct inpcb *inp;
3766 	struct socket *so;
3767 	struct hc_metrics_lite metrics;
3768 	struct tcp_ifcap cap;
3769 
3770 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3771 
3772 	bzero(&cap, sizeof(cap));
3773 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3774 
3775 	mss = tp->t_maxseg;
3776 	inp = tp->t_inpcb;
3777 
3778 	/*
3779 	 * If there's a pipesize, change the socket buffer to that size,
3780 	 * don't change if sb_hiwat is different than default (then it
3781 	 * has been changed on purpose with setsockopt).
3782 	 * Make the socket buffers an integral number of mss units;
3783 	 * if the mss is larger than the socket buffer, decrease the mss.
3784 	 */
3785 	so = inp->inp_socket;
3786 	SOCKBUF_LOCK(&so->so_snd);
3787 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3788 		bufsize = metrics.rmx_sendpipe;
3789 	else
3790 		bufsize = so->so_snd.sb_hiwat;
3791 	if (bufsize < mss)
3792 		mss = bufsize;
3793 	else {
3794 		bufsize = roundup(bufsize, mss);
3795 		if (bufsize > sb_max)
3796 			bufsize = sb_max;
3797 		if (bufsize > so->so_snd.sb_hiwat)
3798 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3799 	}
3800 	SOCKBUF_UNLOCK(&so->so_snd);
3801 	/*
3802 	 * Sanity check: make sure that maxseg will be large
3803 	 * enough to allow some data on segments even if the
3804 	 * all the option space is used (40bytes).  Otherwise
3805 	 * funny things may happen in tcp_output.
3806 	 *
3807 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3808 	 */
3809 	tp->t_maxseg = max(mss, 64);
3810 
3811 	SOCKBUF_LOCK(&so->so_rcv);
3812 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3813 		bufsize = metrics.rmx_recvpipe;
3814 	else
3815 		bufsize = so->so_rcv.sb_hiwat;
3816 	if (bufsize > mss) {
3817 		bufsize = roundup(bufsize, mss);
3818 		if (bufsize > sb_max)
3819 			bufsize = sb_max;
3820 		if (bufsize > so->so_rcv.sb_hiwat)
3821 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3822 	}
3823 	SOCKBUF_UNLOCK(&so->so_rcv);
3824 
3825 	/* Check the interface for TSO capabilities. */
3826 	if (cap.ifcap & CSUM_TSO) {
3827 		tp->t_flags |= TF_TSO;
3828 		tp->t_tsomax = cap.tsomax;
3829 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3830 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3831 	}
3832 }
3833 
3834 /*
3835  * Determine the MSS option to send on an outgoing SYN.
3836  */
3837 int
3838 tcp_mssopt(struct in_conninfo *inc)
3839 {
3840 	int mss = 0;
3841 	uint32_t thcmtu = 0;
3842 	uint32_t maxmtu = 0;
3843 	size_t min_protoh;
3844 
3845 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3846 
3847 #ifdef INET6
3848 	if (inc->inc_flags & INC_ISIPV6) {
3849 		mss = V_tcp_v6mssdflt;
3850 		maxmtu = tcp_maxmtu6(inc, NULL);
3851 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3852 	}
3853 #endif
3854 #if defined(INET) && defined(INET6)
3855 	else
3856 #endif
3857 #ifdef INET
3858 	{
3859 		mss = V_tcp_mssdflt;
3860 		maxmtu = tcp_maxmtu(inc, NULL);
3861 		min_protoh = sizeof(struct tcpiphdr);
3862 	}
3863 #endif
3864 #if defined(INET6) || defined(INET)
3865 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3866 #endif
3867 
3868 	if (maxmtu && thcmtu)
3869 		mss = min(maxmtu, thcmtu) - min_protoh;
3870 	else if (maxmtu || thcmtu)
3871 		mss = max(maxmtu, thcmtu) - min_protoh;
3872 
3873 	return (mss);
3874 }
3875 
3876 
3877 /*
3878  * On a partial ack arrives, force the retransmission of the
3879  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3880  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3881  * be started again.
3882  */
3883 void
3884 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3885 {
3886 	tcp_seq onxt = tp->snd_nxt;
3887 	uint32_t ocwnd = tp->snd_cwnd;
3888 	u_int maxseg = tcp_maxseg(tp);
3889 
3890 	INP_WLOCK_ASSERT(tp->t_inpcb);
3891 
3892 	tcp_timer_activate(tp, TT_REXMT, 0);
3893 	tp->t_rtttime = 0;
3894 	tp->snd_nxt = th->th_ack;
3895 	/*
3896 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3897 	 * (tp->snd_una has not yet been updated when this function is called.)
3898 	 */
3899 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3900 	tp->t_flags |= TF_ACKNOW;
3901 	(void) tp->t_fb->tfb_tcp_output(tp);
3902 	tp->snd_cwnd = ocwnd;
3903 	if (SEQ_GT(onxt, tp->snd_nxt))
3904 		tp->snd_nxt = onxt;
3905 	/*
3906 	 * Partial window deflation.  Relies on fact that tp->snd_una
3907 	 * not updated yet.
3908 	 */
3909 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3910 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3911 	else
3912 		tp->snd_cwnd = 0;
3913 	tp->snd_cwnd += maxseg;
3914 }
3915 
3916 int
3917 tcp_compute_pipe(struct tcpcb *tp)
3918 {
3919 	return (tp->snd_max - tp->snd_una +
3920 		tp->sackhint.sack_bytes_rexmit -
3921 		tp->sackhint.sacked_bytes);
3922 }
3923