xref: /freebsd/sys/netinet/tcp_input.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/signalvar.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/systm.h>
72 
73 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74 
75 #include <vm/uma.h>
76 
77 #include <net/if.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80 
81 #define TCPSTATES		/* for logging */
82 
83 #include <netinet/cc.h>
84 #include <netinet/in.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91 #include <netinet/ip_var.h>
92 #include <netinet/ip_options.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet/tcp_fsm.h>
99 #include <netinet/tcp_seq.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
102 #include <netinet6/tcp6_var.h>
103 #include <netinet/tcpip.h>
104 #include <netinet/tcp_syncache.h>
105 #ifdef TCPDEBUG
106 #include <netinet/tcp_debug.h>
107 #endif /* TCPDEBUG */
108 #ifdef TCP_OFFLOAD
109 #include <netinet/tcp_offload.h>
110 #endif
111 
112 #ifdef IPSEC
113 #include <netipsec/ipsec.h>
114 #include <netipsec/ipsec6.h>
115 #endif /*IPSEC*/
116 
117 #include <machine/in_cksum.h>
118 
119 #include <security/mac/mac_framework.h>
120 
121 const int tcprexmtthresh = 3;
122 
123 VNET_DEFINE(struct tcpstat, tcpstat);
124 SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
125     &VNET_NAME(tcpstat), tcpstat,
126     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
127 
128 int tcp_log_in_vain = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
130     &tcp_log_in_vain, 0,
131     "Log all incoming TCP segments to closed ports");
132 
133 VNET_DEFINE(int, blackhole) = 0;
134 #define	V_blackhole		VNET(blackhole)
135 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
136     &VNET_NAME(blackhole), 0,
137     "Do not send RST on segments to closed ports");
138 
139 VNET_DEFINE(int, tcp_delack_enabled) = 1;
140 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
141     &VNET_NAME(tcp_delack_enabled), 0,
142     "Delay ACK to try and piggyback it onto a data packet");
143 
144 VNET_DEFINE(int, drop_synfin) = 0;
145 #define	V_drop_synfin		VNET(drop_synfin)
146 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
147     &VNET_NAME(drop_synfin), 0,
148     "Drop TCP packets with SYN+FIN set");
149 
150 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
151 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
152 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
153     &VNET_NAME(tcp_do_rfc3042), 0,
154     "Enable RFC 3042 (Limited Transmit)");
155 
156 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
157 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
158     &VNET_NAME(tcp_do_rfc3390), 0,
159     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
160 
161 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
162     "Experimental TCP extensions");
163 
164 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
165 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
166     &VNET_NAME(tcp_do_initcwnd10), 0,
167     "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)");
168 
169 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
170 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
171     &VNET_NAME(tcp_do_rfc3465), 0,
172     "Enable RFC 3465 (Appropriate Byte Counting)");
173 
174 VNET_DEFINE(int, tcp_abc_l_var) = 2;
175 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
176     &VNET_NAME(tcp_abc_l_var), 2,
177     "Cap the max cwnd increment during slow-start to this number of segments");
178 
179 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
180 
181 VNET_DEFINE(int, tcp_do_ecn) = 0;
182 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
183     &VNET_NAME(tcp_do_ecn), 0,
184     "TCP ECN support");
185 
186 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
187 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
188     &VNET_NAME(tcp_ecn_maxretries), 0,
189     "Max retries before giving up on ECN");
190 
191 VNET_DEFINE(int, tcp_insecure_rst) = 0;
192 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
193 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
194     &VNET_NAME(tcp_insecure_rst), 0,
195     "Follow the old (insecure) criteria for accepting RST packets");
196 
197 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
198 #define	V_tcp_recvspace	VNET(tcp_recvspace)
199 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
200     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
201 
202 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
203 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
204 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
205     &VNET_NAME(tcp_do_autorcvbuf), 0,
206     "Enable automatic receive buffer sizing");
207 
208 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
209 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
210 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
211     &VNET_NAME(tcp_autorcvbuf_inc), 0,
212     "Incrementor step size of automatic receive buffer");
213 
214 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
215 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
216 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
217     &VNET_NAME(tcp_autorcvbuf_max), 0,
218     "Max size of automatic receive buffer");
219 
220 VNET_DEFINE(struct inpcbhead, tcb);
221 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
222 VNET_DEFINE(struct inpcbinfo, tcbinfo);
223 
224 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
225 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
226 		     struct socket *, struct tcpcb *, int, int, uint8_t,
227 		     int);
228 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
229 		     struct tcpcb *, int, int);
230 static void	 tcp_pulloutofband(struct socket *,
231 		     struct tcphdr *, struct mbuf *, int);
232 static void	 tcp_xmit_timer(struct tcpcb *, int);
233 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
234 static void inline 	tcp_fields_to_host(struct tcphdr *);
235 #ifdef TCP_SIGNATURE
236 static void inline 	tcp_fields_to_net(struct tcphdr *);
237 static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
238 			    int, struct tcpopt *, struct tcphdr *, u_int);
239 #endif
240 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
241 			    uint16_t type);
242 static void inline	cc_conn_init(struct tcpcb *tp);
243 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
244 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
245 			    struct tcphdr *th, struct tcpopt *to);
246 
247 /*
248  * Kernel module interface for updating tcpstat.  The argument is an index
249  * into tcpstat treated as an array of u_long.  While this encodes the
250  * general layout of tcpstat into the caller, it doesn't encode its location,
251  * so that future changes to add, for example, per-CPU stats support won't
252  * cause binary compatibility problems for kernel modules.
253  */
254 void
255 kmod_tcpstat_inc(int statnum)
256 {
257 
258 	(*((u_long *)&V_tcpstat + statnum))++;
259 }
260 
261 /*
262  * Wrapper for the TCP established input helper hook.
263  */
264 static void inline
265 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
266 {
267 	struct tcp_hhook_data hhook_data;
268 
269 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
270 		hhook_data.tp = tp;
271 		hhook_data.th = th;
272 		hhook_data.to = to;
273 
274 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
275 		    tp->osd);
276 	}
277 }
278 
279 /*
280  * CC wrapper hook functions
281  */
282 static void inline
283 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
284 {
285 	INP_WLOCK_ASSERT(tp->t_inpcb);
286 
287 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
288 	if (tp->snd_cwnd == min(tp->snd_cwnd, tp->snd_wnd))
289 		tp->ccv->flags |= CCF_CWND_LIMITED;
290 	else
291 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
292 
293 	if (type == CC_ACK) {
294 		if (tp->snd_cwnd > tp->snd_ssthresh) {
295 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
296 			     V_tcp_abc_l_var * tp->t_maxseg);
297 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
298 				tp->t_bytes_acked -= tp->snd_cwnd;
299 				tp->ccv->flags |= CCF_ABC_SENTAWND;
300 			}
301 		} else {
302 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
303 				tp->t_bytes_acked = 0;
304 		}
305 	}
306 
307 	if (CC_ALGO(tp)->ack_received != NULL) {
308 		/* XXXLAS: Find a way to live without this */
309 		tp->ccv->curack = th->th_ack;
310 		CC_ALGO(tp)->ack_received(tp->ccv, type);
311 	}
312 }
313 
314 static void inline
315 cc_conn_init(struct tcpcb *tp)
316 {
317 	struct hc_metrics_lite metrics;
318 	struct inpcb *inp = tp->t_inpcb;
319 	int rtt;
320 
321 	INP_WLOCK_ASSERT(tp->t_inpcb);
322 
323 	tcp_hc_get(&inp->inp_inc, &metrics);
324 
325 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
326 		tp->t_srtt = rtt;
327 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
328 		TCPSTAT_INC(tcps_usedrtt);
329 		if (metrics.rmx_rttvar) {
330 			tp->t_rttvar = metrics.rmx_rttvar;
331 			TCPSTAT_INC(tcps_usedrttvar);
332 		} else {
333 			/* default variation is +- 1 rtt */
334 			tp->t_rttvar =
335 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
336 		}
337 		TCPT_RANGESET(tp->t_rxtcur,
338 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
339 		    tp->t_rttmin, TCPTV_REXMTMAX);
340 	}
341 	if (metrics.rmx_ssthresh) {
342 		/*
343 		 * There's some sort of gateway or interface
344 		 * buffer limit on the path.  Use this to set
345 		 * the slow start threshhold, but set the
346 		 * threshold to no less than 2*mss.
347 		 */
348 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
349 		TCPSTAT_INC(tcps_usedssthresh);
350 	}
351 
352 	/*
353 	 * Set the initial slow-start flight size.
354 	 *
355 	 * RFC5681 Section 3.1 specifies the default conservative values.
356 	 * RFC3390 specifies slightly more aggressive values.
357 	 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments.
358 	 *
359 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
360 	 * reduce the initial CWND to one segment as congestion is likely
361 	 * requiring us to be cautious.
362 	 */
363 	if (tp->snd_cwnd == 1)
364 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
365 	else if (V_tcp_do_initcwnd10)
366 		tp->snd_cwnd = min(10 * tp->t_maxseg,
367 		    max(2 * tp->t_maxseg, 14600));
368 	else if (V_tcp_do_rfc3390)
369 		tp->snd_cwnd = min(4 * tp->t_maxseg,
370 		    max(2 * tp->t_maxseg, 4380));
371 	else {
372 		/* Per RFC5681 Section 3.1 */
373 		if (tp->t_maxseg > 2190)
374 			tp->snd_cwnd = 2 * tp->t_maxseg;
375 		else if (tp->t_maxseg > 1095)
376 			tp->snd_cwnd = 3 * tp->t_maxseg;
377 		else
378 			tp->snd_cwnd = 4 * tp->t_maxseg;
379 	}
380 
381 	if (CC_ALGO(tp)->conn_init != NULL)
382 		CC_ALGO(tp)->conn_init(tp->ccv);
383 }
384 
385 void inline
386 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
387 {
388 	INP_WLOCK_ASSERT(tp->t_inpcb);
389 
390 	switch(type) {
391 	case CC_NDUPACK:
392 		if (!IN_FASTRECOVERY(tp->t_flags)) {
393 			tp->snd_recover = tp->snd_max;
394 			if (tp->t_flags & TF_ECN_PERMIT)
395 				tp->t_flags |= TF_ECN_SND_CWR;
396 		}
397 		break;
398 	case CC_ECN:
399 		if (!IN_CONGRECOVERY(tp->t_flags)) {
400 			TCPSTAT_INC(tcps_ecn_rcwnd);
401 			tp->snd_recover = tp->snd_max;
402 			if (tp->t_flags & TF_ECN_PERMIT)
403 				tp->t_flags |= TF_ECN_SND_CWR;
404 		}
405 		break;
406 	case CC_RTO:
407 		tp->t_dupacks = 0;
408 		tp->t_bytes_acked = 0;
409 		EXIT_RECOVERY(tp->t_flags);
410 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411 		    tp->t_maxseg) * tp->t_maxseg;
412 		tp->snd_cwnd = tp->t_maxseg;
413 		break;
414 	case CC_RTO_ERR:
415 		TCPSTAT_INC(tcps_sndrexmitbad);
416 		/* RTO was unnecessary, so reset everything. */
417 		tp->snd_cwnd = tp->snd_cwnd_prev;
418 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419 		tp->snd_recover = tp->snd_recover_prev;
420 		if (tp->t_flags & TF_WASFRECOVERY)
421 			ENTER_FASTRECOVERY(tp->t_flags);
422 		if (tp->t_flags & TF_WASCRECOVERY)
423 			ENTER_CONGRECOVERY(tp->t_flags);
424 		tp->snd_nxt = tp->snd_max;
425 		tp->t_flags &= ~TF_PREVVALID;
426 		tp->t_badrxtwin = 0;
427 		break;
428 	}
429 
430 	if (CC_ALGO(tp)->cong_signal != NULL) {
431 		if (th != NULL)
432 			tp->ccv->curack = th->th_ack;
433 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434 	}
435 }
436 
437 static void inline
438 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439 {
440 	INP_WLOCK_ASSERT(tp->t_inpcb);
441 
442 	/* XXXLAS: KASSERT that we're in recovery? */
443 
444 	if (CC_ALGO(tp)->post_recovery != NULL) {
445 		tp->ccv->curack = th->th_ack;
446 		CC_ALGO(tp)->post_recovery(tp->ccv);
447 	}
448 	/* XXXLAS: EXIT_RECOVERY ? */
449 	tp->t_bytes_acked = 0;
450 }
451 
452 static inline void
453 tcp_fields_to_host(struct tcphdr *th)
454 {
455 
456 	th->th_seq = ntohl(th->th_seq);
457 	th->th_ack = ntohl(th->th_ack);
458 	th->th_win = ntohs(th->th_win);
459 	th->th_urp = ntohs(th->th_urp);
460 }
461 
462 #ifdef TCP_SIGNATURE
463 static inline void
464 tcp_fields_to_net(struct tcphdr *th)
465 {
466 
467 	th->th_seq = htonl(th->th_seq);
468 	th->th_ack = htonl(th->th_ack);
469 	th->th_win = htons(th->th_win);
470 	th->th_urp = htons(th->th_urp);
471 }
472 
473 static inline int
474 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
475     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
476 {
477 	int ret;
478 
479 	tcp_fields_to_net(th);
480 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
481 	tcp_fields_to_host(th);
482 	return (ret);
483 }
484 #endif
485 
486 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
487 #ifdef INET6
488 #define ND6_HINT(tp) \
489 do { \
490 	if ((tp) && (tp)->t_inpcb && \
491 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
492 		nd6_nud_hint(NULL, NULL, 0); \
493 } while (0)
494 #else
495 #define ND6_HINT(tp)
496 #endif
497 
498 /*
499  * Indicate whether this ack should be delayed.  We can delay the ack if
500  *	- there is no delayed ack timer in progress and
501  *	- our last ack wasn't a 0-sized window.  We never want to delay
502  *	  the ack that opens up a 0-sized window and
503  *		- delayed acks are enabled or
504  *		- this is a half-synchronized T/TCP connection.
505  */
506 #define DELAY_ACK(tp)							\
507 	((!tcp_timer_active(tp, TT_DELACK) &&				\
508 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
509 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
510 
511 /*
512  * TCP input handling is split into multiple parts:
513  *   tcp6_input is a thin wrapper around tcp_input for the extended
514  *	ip6_protox[] call format in ip6_input
515  *   tcp_input handles primary segment validation, inpcb lookup and
516  *	SYN processing on listen sockets
517  *   tcp_do_segment processes the ACK and text of the segment for
518  *	establishing, established and closing connections
519  */
520 #ifdef INET6
521 int
522 tcp6_input(struct mbuf **mp, int *offp, int proto)
523 {
524 	struct mbuf *m = *mp;
525 	struct in6_ifaddr *ia6;
526 
527 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
528 
529 	/*
530 	 * draft-itojun-ipv6-tcp-to-anycast
531 	 * better place to put this in?
532 	 */
533 	ia6 = ip6_getdstifaddr(m);
534 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
535 		struct ip6_hdr *ip6;
536 
537 		ifa_free(&ia6->ia_ifa);
538 		ip6 = mtod(m, struct ip6_hdr *);
539 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
540 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
541 		return IPPROTO_DONE;
542 	}
543 	if (ia6)
544 		ifa_free(&ia6->ia_ifa);
545 
546 	tcp_input(m, *offp);
547 	return IPPROTO_DONE;
548 }
549 #endif /* INET6 */
550 
551 void
552 tcp_input(struct mbuf *m, int off0)
553 {
554 	struct tcphdr *th = NULL;
555 	struct ip *ip = NULL;
556 	struct inpcb *inp = NULL;
557 	struct tcpcb *tp = NULL;
558 	struct socket *so = NULL;
559 	u_char *optp = NULL;
560 	int optlen = 0;
561 #ifdef INET
562 	int len;
563 #endif
564 	int tlen = 0, off;
565 	int drop_hdrlen;
566 	int thflags;
567 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
568 #ifdef TCP_SIGNATURE
569 	uint8_t sig_checked = 0;
570 #endif
571 	uint8_t iptos = 0;
572 	struct m_tag *fwd_tag = NULL;
573 #ifdef INET6
574 	struct ip6_hdr *ip6 = NULL;
575 	int isipv6;
576 #else
577 	const void *ip6 = NULL;
578 #endif /* INET6 */
579 	struct tcpopt to;		/* options in this segment */
580 	char *s = NULL;			/* address and port logging */
581 	int ti_locked;
582 #define	TI_UNLOCKED	1
583 #define	TI_WLOCKED	2
584 
585 #ifdef TCPDEBUG
586 	/*
587 	 * The size of tcp_saveipgen must be the size of the max ip header,
588 	 * now IPv6.
589 	 */
590 	u_char tcp_saveipgen[IP6_HDR_LEN];
591 	struct tcphdr tcp_savetcp;
592 	short ostate = 0;
593 #endif
594 
595 #ifdef INET6
596 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
597 #endif
598 
599 	to.to_flags = 0;
600 	TCPSTAT_INC(tcps_rcvtotal);
601 
602 #ifdef INET6
603 	if (isipv6) {
604 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
605 
606 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
607 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
608 			if (m == NULL) {
609 				TCPSTAT_INC(tcps_rcvshort);
610 				return;
611 			}
612 		}
613 
614 		ip6 = mtod(m, struct ip6_hdr *);
615 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
616 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
617 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
618 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
619 				th->th_sum = m->m_pkthdr.csum_data;
620 			else
621 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
622 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
623 			th->th_sum ^= 0xffff;
624 		} else
625 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
626 		if (th->th_sum) {
627 			TCPSTAT_INC(tcps_rcvbadsum);
628 			goto drop;
629 		}
630 
631 		/*
632 		 * Be proactive about unspecified IPv6 address in source.
633 		 * As we use all-zero to indicate unbounded/unconnected pcb,
634 		 * unspecified IPv6 address can be used to confuse us.
635 		 *
636 		 * Note that packets with unspecified IPv6 destination is
637 		 * already dropped in ip6_input.
638 		 */
639 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
640 			/* XXX stat */
641 			goto drop;
642 		}
643 	}
644 #endif
645 #if defined(INET) && defined(INET6)
646 	else
647 #endif
648 #ifdef INET
649 	{
650 		/*
651 		 * Get IP and TCP header together in first mbuf.
652 		 * Note: IP leaves IP header in first mbuf.
653 		 */
654 		if (off0 > sizeof (struct ip)) {
655 			ip_stripoptions(m);
656 			off0 = sizeof(struct ip);
657 		}
658 		if (m->m_len < sizeof (struct tcpiphdr)) {
659 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
660 			    == NULL) {
661 				TCPSTAT_INC(tcps_rcvshort);
662 				return;
663 			}
664 		}
665 		ip = mtod(m, struct ip *);
666 		th = (struct tcphdr *)((caddr_t)ip + off0);
667 		tlen = ntohs(ip->ip_len) - off0;
668 
669 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
670 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
671 				th->th_sum = m->m_pkthdr.csum_data;
672 			else
673 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
674 				    ip->ip_dst.s_addr,
675 				    htonl(m->m_pkthdr.csum_data + tlen +
676 				    IPPROTO_TCP));
677 			th->th_sum ^= 0xffff;
678 		} else {
679 			struct ipovly *ipov = (struct ipovly *)ip;
680 
681 			/*
682 			 * Checksum extended TCP header and data.
683 			 */
684 			len = off0 + tlen;
685 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
686 			ipov->ih_len = htons(tlen);
687 			th->th_sum = in_cksum(m, len);
688 		}
689 		if (th->th_sum) {
690 			TCPSTAT_INC(tcps_rcvbadsum);
691 			goto drop;
692 		}
693 		/* Re-initialization for later version check */
694 		ip->ip_v = IPVERSION;
695 	}
696 #endif /* INET */
697 
698 #ifdef INET6
699 	if (isipv6)
700 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
701 #endif
702 #if defined(INET) && defined(INET6)
703 	else
704 #endif
705 #ifdef INET
706 		iptos = ip->ip_tos;
707 #endif
708 
709 	/*
710 	 * Check that TCP offset makes sense,
711 	 * pull out TCP options and adjust length.		XXX
712 	 */
713 	off = th->th_off << 2;
714 	if (off < sizeof (struct tcphdr) || off > tlen) {
715 		TCPSTAT_INC(tcps_rcvbadoff);
716 		goto drop;
717 	}
718 	tlen -= off;	/* tlen is used instead of ti->ti_len */
719 	if (off > sizeof (struct tcphdr)) {
720 #ifdef INET6
721 		if (isipv6) {
722 			IP6_EXTHDR_CHECK(m, off0, off, );
723 			ip6 = mtod(m, struct ip6_hdr *);
724 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
725 		}
726 #endif
727 #if defined(INET) && defined(INET6)
728 		else
729 #endif
730 #ifdef INET
731 		{
732 			if (m->m_len < sizeof(struct ip) + off) {
733 				if ((m = m_pullup(m, sizeof (struct ip) + off))
734 				    == NULL) {
735 					TCPSTAT_INC(tcps_rcvshort);
736 					return;
737 				}
738 				ip = mtod(m, struct ip *);
739 				th = (struct tcphdr *)((caddr_t)ip + off0);
740 			}
741 		}
742 #endif
743 		optlen = off - sizeof (struct tcphdr);
744 		optp = (u_char *)(th + 1);
745 	}
746 	thflags = th->th_flags;
747 
748 	/*
749 	 * Convert TCP protocol specific fields to host format.
750 	 */
751 	tcp_fields_to_host(th);
752 
753 	/*
754 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
755 	 */
756 	drop_hdrlen = off0 + off;
757 
758 	/*
759 	 * Locate pcb for segment; if we're likely to add or remove a
760 	 * connection then first acquire pcbinfo lock.  There are two cases
761 	 * where we might discover later we need a write lock despite the
762 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
763 	 * a connection in TIMEWAIT.
764 	 */
765 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
766 		INP_INFO_WLOCK(&V_tcbinfo);
767 		ti_locked = TI_WLOCKED;
768 	} else
769 		ti_locked = TI_UNLOCKED;
770 
771 findpcb:
772 #ifdef INVARIANTS
773 	if (ti_locked == TI_WLOCKED) {
774 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
775 	} else {
776 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
777 	}
778 #endif
779 
780 	/*
781 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
782 	 */
783 	if (m->m_flags & M_IP_NEXTHOP)
784 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
785 
786 #ifdef INET6
787 	if (isipv6 && fwd_tag != NULL) {
788 		struct sockaddr_in6 *next_hop6;
789 
790 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
791 		/*
792 		 * Transparently forwarded. Pretend to be the destination.
793 		 * Already got one like this?
794 		 */
795 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
796 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
797 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
798 		if (!inp) {
799 			/*
800 			 * It's new.  Try to find the ambushing socket.
801 			 * Because we've rewritten the destination address,
802 			 * any hardware-generated hash is ignored.
803 			 */
804 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
805 			    th->th_sport, &next_hop6->sin6_addr,
806 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
807 			    th->th_dport, INPLOOKUP_WILDCARD |
808 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
809 		}
810 		/* Remove the tag from the packet.  We don't need it anymore. */
811 		m_tag_delete(m, fwd_tag);
812 		m->m_flags &= ~M_IP_NEXTHOP;
813 	} else if (isipv6) {
814 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
815 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
816 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
817 		    m->m_pkthdr.rcvif, m);
818 	}
819 #endif /* INET6 */
820 #if defined(INET6) && defined(INET)
821 	else
822 #endif
823 #ifdef INET
824 	if (fwd_tag != NULL) {
825 		struct sockaddr_in *next_hop;
826 
827 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
828 		/*
829 		 * Transparently forwarded. Pretend to be the destination.
830 		 * already got one like this?
831 		 */
832 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
833 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
834 		    m->m_pkthdr.rcvif, m);
835 		if (!inp) {
836 			/*
837 			 * It's new.  Try to find the ambushing socket.
838 			 * Because we've rewritten the destination address,
839 			 * any hardware-generated hash is ignored.
840 			 */
841 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
842 			    th->th_sport, next_hop->sin_addr,
843 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
844 			    th->th_dport, INPLOOKUP_WILDCARD |
845 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
846 		}
847 		/* Remove the tag from the packet.  We don't need it anymore. */
848 		m_tag_delete(m, fwd_tag);
849 		m->m_flags &= ~M_IP_NEXTHOP;
850 	} else
851 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
852 		    th->th_sport, ip->ip_dst, th->th_dport,
853 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
854 		    m->m_pkthdr.rcvif, m);
855 #endif /* INET */
856 
857 	/*
858 	 * If the INPCB does not exist then all data in the incoming
859 	 * segment is discarded and an appropriate RST is sent back.
860 	 * XXX MRT Send RST using which routing table?
861 	 */
862 	if (inp == NULL) {
863 		/*
864 		 * Log communication attempts to ports that are not
865 		 * in use.
866 		 */
867 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
868 		    tcp_log_in_vain == 2) {
869 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
870 				log(LOG_INFO, "%s; %s: Connection attempt "
871 				    "to closed port\n", s, __func__);
872 		}
873 		/*
874 		 * When blackholing do not respond with a RST but
875 		 * completely ignore the segment and drop it.
876 		 */
877 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
878 		    V_blackhole == 2)
879 			goto dropunlock;
880 
881 		rstreason = BANDLIM_RST_CLOSEDPORT;
882 		goto dropwithreset;
883 	}
884 	INP_WLOCK_ASSERT(inp);
885 	if (!(inp->inp_flags & INP_HW_FLOWID)
886 	    && (m->m_flags & M_FLOWID)
887 	    && ((inp->inp_socket == NULL)
888 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
889 		inp->inp_flags |= INP_HW_FLOWID;
890 		inp->inp_flags &= ~INP_SW_FLOWID;
891 		inp->inp_flowid = m->m_pkthdr.flowid;
892 	}
893 #ifdef IPSEC
894 #ifdef INET6
895 	if (isipv6 && ipsec6_in_reject(m, inp)) {
896 		V_ipsec6stat.in_polvio++;
897 		goto dropunlock;
898 	} else
899 #endif /* INET6 */
900 	if (ipsec4_in_reject(m, inp) != 0) {
901 		V_ipsec4stat.in_polvio++;
902 		goto dropunlock;
903 	}
904 #endif /* IPSEC */
905 
906 	/*
907 	 * Check the minimum TTL for socket.
908 	 */
909 	if (inp->inp_ip_minttl != 0) {
910 #ifdef INET6
911 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
912 			goto dropunlock;
913 		else
914 #endif
915 		if (inp->inp_ip_minttl > ip->ip_ttl)
916 			goto dropunlock;
917 	}
918 
919 	/*
920 	 * A previous connection in TIMEWAIT state is supposed to catch stray
921 	 * or duplicate segments arriving late.  If this segment was a
922 	 * legitimate new connection attempt, the old INPCB gets removed and
923 	 * we can try again to find a listening socket.
924 	 *
925 	 * At this point, due to earlier optimism, we may hold only an inpcb
926 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
927 	 * acquire it, or if that fails, acquire a reference on the inpcb,
928 	 * drop all locks, acquire a global write lock, and then re-acquire
929 	 * the inpcb lock.  We may at that point discover that another thread
930 	 * has tried to free the inpcb, in which case we need to loop back
931 	 * and try to find a new inpcb to deliver to.
932 	 *
933 	 * XXXRW: It may be time to rethink timewait locking.
934 	 */
935 relocked:
936 	if (inp->inp_flags & INP_TIMEWAIT) {
937 		if (ti_locked == TI_UNLOCKED) {
938 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
939 				in_pcbref(inp);
940 				INP_WUNLOCK(inp);
941 				INP_INFO_WLOCK(&V_tcbinfo);
942 				ti_locked = TI_WLOCKED;
943 				INP_WLOCK(inp);
944 				if (in_pcbrele_wlocked(inp)) {
945 					inp = NULL;
946 					goto findpcb;
947 				}
948 			} else
949 				ti_locked = TI_WLOCKED;
950 		}
951 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
952 
953 		if (thflags & TH_SYN)
954 			tcp_dooptions(&to, optp, optlen, TO_SYN);
955 		/*
956 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
957 		 */
958 		if (tcp_twcheck(inp, &to, th, m, tlen))
959 			goto findpcb;
960 		INP_INFO_WUNLOCK(&V_tcbinfo);
961 		return;
962 	}
963 	/*
964 	 * The TCPCB may no longer exist if the connection is winding
965 	 * down or it is in the CLOSED state.  Either way we drop the
966 	 * segment and send an appropriate response.
967 	 */
968 	tp = intotcpcb(inp);
969 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
970 		rstreason = BANDLIM_RST_CLOSEDPORT;
971 		goto dropwithreset;
972 	}
973 
974 #ifdef TCP_OFFLOAD
975 	if (tp->t_flags & TF_TOE) {
976 		tcp_offload_input(tp, m);
977 		m = NULL;	/* consumed by the TOE driver */
978 		goto dropunlock;
979 	}
980 #endif
981 
982 	/*
983 	 * We've identified a valid inpcb, but it could be that we need an
984 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
985 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
986 	 * relock, we have to jump back to 'relocked' as the connection might
987 	 * now be in TIMEWAIT.
988 	 */
989 #ifdef INVARIANTS
990 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
991 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
992 #endif
993 	if (tp->t_state != TCPS_ESTABLISHED) {
994 		if (ti_locked == TI_UNLOCKED) {
995 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
996 				in_pcbref(inp);
997 				INP_WUNLOCK(inp);
998 				INP_INFO_WLOCK(&V_tcbinfo);
999 				ti_locked = TI_WLOCKED;
1000 				INP_WLOCK(inp);
1001 				if (in_pcbrele_wlocked(inp)) {
1002 					inp = NULL;
1003 					goto findpcb;
1004 				}
1005 				goto relocked;
1006 			} else
1007 				ti_locked = TI_WLOCKED;
1008 		}
1009 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1010 	}
1011 
1012 #ifdef MAC
1013 	INP_WLOCK_ASSERT(inp);
1014 	if (mac_inpcb_check_deliver(inp, m))
1015 		goto dropunlock;
1016 #endif
1017 	so = inp->inp_socket;
1018 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1019 #ifdef TCPDEBUG
1020 	if (so->so_options & SO_DEBUG) {
1021 		ostate = tp->t_state;
1022 #ifdef INET6
1023 		if (isipv6) {
1024 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1025 		} else
1026 #endif
1027 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1028 		tcp_savetcp = *th;
1029 	}
1030 #endif /* TCPDEBUG */
1031 	/*
1032 	 * When the socket is accepting connections (the INPCB is in LISTEN
1033 	 * state) we look into the SYN cache if this is a new connection
1034 	 * attempt or the completion of a previous one.  Because listen
1035 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1036 	 * held in this case.
1037 	 */
1038 	if (so->so_options & SO_ACCEPTCONN) {
1039 		struct in_conninfo inc;
1040 
1041 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1042 		    "tp not listening", __func__));
1043 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1044 
1045 		bzero(&inc, sizeof(inc));
1046 #ifdef INET6
1047 		if (isipv6) {
1048 			inc.inc_flags |= INC_ISIPV6;
1049 			inc.inc6_faddr = ip6->ip6_src;
1050 			inc.inc6_laddr = ip6->ip6_dst;
1051 		} else
1052 #endif
1053 		{
1054 			inc.inc_faddr = ip->ip_src;
1055 			inc.inc_laddr = ip->ip_dst;
1056 		}
1057 		inc.inc_fport = th->th_sport;
1058 		inc.inc_lport = th->th_dport;
1059 		inc.inc_fibnum = so->so_fibnum;
1060 
1061 		/*
1062 		 * Check for an existing connection attempt in syncache if
1063 		 * the flag is only ACK.  A successful lookup creates a new
1064 		 * socket appended to the listen queue in SYN_RECEIVED state.
1065 		 */
1066 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1067 			/*
1068 			 * Parse the TCP options here because
1069 			 * syncookies need access to the reflected
1070 			 * timestamp.
1071 			 */
1072 			tcp_dooptions(&to, optp, optlen, 0);
1073 			/*
1074 			 * NB: syncache_expand() doesn't unlock
1075 			 * inp and tcpinfo locks.
1076 			 */
1077 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1078 				/*
1079 				 * No syncache entry or ACK was not
1080 				 * for our SYN/ACK.  Send a RST.
1081 				 * NB: syncache did its own logging
1082 				 * of the failure cause.
1083 				 */
1084 				rstreason = BANDLIM_RST_OPENPORT;
1085 				goto dropwithreset;
1086 			}
1087 			if (so == NULL) {
1088 				/*
1089 				 * We completed the 3-way handshake
1090 				 * but could not allocate a socket
1091 				 * either due to memory shortage,
1092 				 * listen queue length limits or
1093 				 * global socket limits.  Send RST
1094 				 * or wait and have the remote end
1095 				 * retransmit the ACK for another
1096 				 * try.
1097 				 */
1098 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1099 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1100 					    "Socket allocation failed due to "
1101 					    "limits or memory shortage, %s\n",
1102 					    s, __func__,
1103 					    V_tcp_sc_rst_sock_fail ?
1104 					    "sending RST" : "try again");
1105 				if (V_tcp_sc_rst_sock_fail) {
1106 					rstreason = BANDLIM_UNLIMITED;
1107 					goto dropwithreset;
1108 				} else
1109 					goto dropunlock;
1110 			}
1111 			/*
1112 			 * Socket is created in state SYN_RECEIVED.
1113 			 * Unlock the listen socket, lock the newly
1114 			 * created socket and update the tp variable.
1115 			 */
1116 			INP_WUNLOCK(inp);	/* listen socket */
1117 			inp = sotoinpcb(so);
1118 			INP_WLOCK(inp);		/* new connection */
1119 			tp = intotcpcb(inp);
1120 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1121 			    ("%s: ", __func__));
1122 #ifdef TCP_SIGNATURE
1123 			if (sig_checked == 0)  {
1124 				tcp_dooptions(&to, optp, optlen,
1125 				    (thflags & TH_SYN) ? TO_SYN : 0);
1126 				if (!tcp_signature_verify_input(m, off0, tlen,
1127 				    optlen, &to, th, tp->t_flags)) {
1128 
1129 					/*
1130 					 * In SYN_SENT state if it receives an
1131 					 * RST, it is allowed for further
1132 					 * processing.
1133 					 */
1134 					if ((thflags & TH_RST) == 0 ||
1135 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1136 						goto dropunlock;
1137 				}
1138 				sig_checked = 1;
1139 			}
1140 #endif
1141 
1142 			/*
1143 			 * Process the segment and the data it
1144 			 * contains.  tcp_do_segment() consumes
1145 			 * the mbuf chain and unlocks the inpcb.
1146 			 */
1147 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1148 			    iptos, ti_locked);
1149 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1150 			return;
1151 		}
1152 		/*
1153 		 * Segment flag validation for new connection attempts:
1154 		 *
1155 		 * Our (SYN|ACK) response was rejected.
1156 		 * Check with syncache and remove entry to prevent
1157 		 * retransmits.
1158 		 *
1159 		 * NB: syncache_chkrst does its own logging of failure
1160 		 * causes.
1161 		 */
1162 		if (thflags & TH_RST) {
1163 			syncache_chkrst(&inc, th);
1164 			goto dropunlock;
1165 		}
1166 		/*
1167 		 * We can't do anything without SYN.
1168 		 */
1169 		if ((thflags & TH_SYN) == 0) {
1170 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1171 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1172 				    "SYN is missing, segment ignored\n",
1173 				    s, __func__);
1174 			TCPSTAT_INC(tcps_badsyn);
1175 			goto dropunlock;
1176 		}
1177 		/*
1178 		 * (SYN|ACK) is bogus on a listen socket.
1179 		 */
1180 		if (thflags & TH_ACK) {
1181 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1182 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1183 				    "SYN|ACK invalid, segment rejected\n",
1184 				    s, __func__);
1185 			syncache_badack(&inc);	/* XXX: Not needed! */
1186 			TCPSTAT_INC(tcps_badsyn);
1187 			rstreason = BANDLIM_RST_OPENPORT;
1188 			goto dropwithreset;
1189 		}
1190 		/*
1191 		 * If the drop_synfin option is enabled, drop all
1192 		 * segments with both the SYN and FIN bits set.
1193 		 * This prevents e.g. nmap from identifying the
1194 		 * TCP/IP stack.
1195 		 * XXX: Poor reasoning.  nmap has other methods
1196 		 * and is constantly refining its stack detection
1197 		 * strategies.
1198 		 * XXX: This is a violation of the TCP specification
1199 		 * and was used by RFC1644.
1200 		 */
1201 		if ((thflags & TH_FIN) && V_drop_synfin) {
1202 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1203 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1204 				    "SYN|FIN segment ignored (based on "
1205 				    "sysctl setting)\n", s, __func__);
1206 			TCPSTAT_INC(tcps_badsyn);
1207 			goto dropunlock;
1208 		}
1209 		/*
1210 		 * Segment's flags are (SYN) or (SYN|FIN).
1211 		 *
1212 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1213 		 * as they do not affect the state of the TCP FSM.
1214 		 * The data pointed to by TH_URG and th_urp is ignored.
1215 		 */
1216 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1217 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1218 		KASSERT(thflags & (TH_SYN),
1219 		    ("%s: Listen socket: TH_SYN not set", __func__));
1220 #ifdef INET6
1221 		/*
1222 		 * If deprecated address is forbidden,
1223 		 * we do not accept SYN to deprecated interface
1224 		 * address to prevent any new inbound connection from
1225 		 * getting established.
1226 		 * When we do not accept SYN, we send a TCP RST,
1227 		 * with deprecated source address (instead of dropping
1228 		 * it).  We compromise it as it is much better for peer
1229 		 * to send a RST, and RST will be the final packet
1230 		 * for the exchange.
1231 		 *
1232 		 * If we do not forbid deprecated addresses, we accept
1233 		 * the SYN packet.  RFC2462 does not suggest dropping
1234 		 * SYN in this case.
1235 		 * If we decipher RFC2462 5.5.4, it says like this:
1236 		 * 1. use of deprecated addr with existing
1237 		 *    communication is okay - "SHOULD continue to be
1238 		 *    used"
1239 		 * 2. use of it with new communication:
1240 		 *   (2a) "SHOULD NOT be used if alternate address
1241 		 *        with sufficient scope is available"
1242 		 *   (2b) nothing mentioned otherwise.
1243 		 * Here we fall into (2b) case as we have no choice in
1244 		 * our source address selection - we must obey the peer.
1245 		 *
1246 		 * The wording in RFC2462 is confusing, and there are
1247 		 * multiple description text for deprecated address
1248 		 * handling - worse, they are not exactly the same.
1249 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1250 		 */
1251 		if (isipv6 && !V_ip6_use_deprecated) {
1252 			struct in6_ifaddr *ia6;
1253 
1254 			ia6 = ip6_getdstifaddr(m);
1255 			if (ia6 != NULL &&
1256 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1257 				ifa_free(&ia6->ia_ifa);
1258 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1259 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1260 					"Connection attempt to deprecated "
1261 					"IPv6 address rejected\n",
1262 					s, __func__);
1263 				rstreason = BANDLIM_RST_OPENPORT;
1264 				goto dropwithreset;
1265 			}
1266 			if (ia6)
1267 				ifa_free(&ia6->ia_ifa);
1268 		}
1269 #endif /* INET6 */
1270 		/*
1271 		 * Basic sanity checks on incoming SYN requests:
1272 		 *   Don't respond if the destination is a link layer
1273 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1274 		 *   If it is from this socket it must be forged.
1275 		 *   Don't respond if the source or destination is a
1276 		 *	global or subnet broad- or multicast address.
1277 		 *   Note that it is quite possible to receive unicast
1278 		 *	link-layer packets with a broadcast IP address. Use
1279 		 *	in_broadcast() to find them.
1280 		 */
1281 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1282 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1283 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1284 				"Connection attempt from broad- or multicast "
1285 				"link layer address ignored\n", s, __func__);
1286 			goto dropunlock;
1287 		}
1288 #ifdef INET6
1289 		if (isipv6) {
1290 			if (th->th_dport == th->th_sport &&
1291 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1292 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1293 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1294 					"Connection attempt to/from self "
1295 					"ignored\n", s, __func__);
1296 				goto dropunlock;
1297 			}
1298 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1299 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1300 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1301 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1302 					"Connection attempt from/to multicast "
1303 					"address ignored\n", s, __func__);
1304 				goto dropunlock;
1305 			}
1306 		}
1307 #endif
1308 #if defined(INET) && defined(INET6)
1309 		else
1310 #endif
1311 #ifdef INET
1312 		{
1313 			if (th->th_dport == th->th_sport &&
1314 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1315 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1316 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1317 					"Connection attempt from/to self "
1318 					"ignored\n", s, __func__);
1319 				goto dropunlock;
1320 			}
1321 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1322 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1323 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1324 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1325 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1326 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1327 					"Connection attempt from/to broad- "
1328 					"or multicast address ignored\n",
1329 					s, __func__);
1330 				goto dropunlock;
1331 			}
1332 		}
1333 #endif
1334 		/*
1335 		 * SYN appears to be valid.  Create compressed TCP state
1336 		 * for syncache.
1337 		 */
1338 #ifdef TCPDEBUG
1339 		if (so->so_options & SO_DEBUG)
1340 			tcp_trace(TA_INPUT, ostate, tp,
1341 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1342 #endif
1343 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1344 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1345 		/*
1346 		 * Entry added to syncache and mbuf consumed.
1347 		 * Everything already unlocked by syncache_add().
1348 		 */
1349 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1350 		return;
1351 	}
1352 
1353 #ifdef TCP_SIGNATURE
1354 	if (sig_checked == 0)  {
1355 		tcp_dooptions(&to, optp, optlen,
1356 		    (thflags & TH_SYN) ? TO_SYN : 0);
1357 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1358 		    th, tp->t_flags)) {
1359 
1360 			/*
1361 			 * In SYN_SENT state if it receives an RST, it is
1362 			 * allowed for further processing.
1363 			 */
1364 			if ((thflags & TH_RST) == 0 ||
1365 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1366 				goto dropunlock;
1367 		}
1368 		sig_checked = 1;
1369 	}
1370 #endif
1371 
1372 	/*
1373 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1374 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1375 	 * the inpcb, and unlocks pcbinfo.
1376 	 */
1377 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1378 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1379 	return;
1380 
1381 dropwithreset:
1382 	if (ti_locked == TI_WLOCKED) {
1383 		INP_INFO_WUNLOCK(&V_tcbinfo);
1384 		ti_locked = TI_UNLOCKED;
1385 	}
1386 #ifdef INVARIANTS
1387 	else {
1388 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1389 		    "ti_locked: %d", __func__, ti_locked));
1390 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1391 	}
1392 #endif
1393 
1394 	if (inp != NULL) {
1395 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1396 		INP_WUNLOCK(inp);
1397 	} else
1398 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1399 	m = NULL;	/* mbuf chain got consumed. */
1400 	goto drop;
1401 
1402 dropunlock:
1403 	if (ti_locked == TI_WLOCKED) {
1404 		INP_INFO_WUNLOCK(&V_tcbinfo);
1405 		ti_locked = TI_UNLOCKED;
1406 	}
1407 #ifdef INVARIANTS
1408 	else {
1409 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1410 		    "ti_locked: %d", __func__, ti_locked));
1411 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1412 	}
1413 #endif
1414 
1415 	if (inp != NULL)
1416 		INP_WUNLOCK(inp);
1417 
1418 drop:
1419 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1420 	if (s != NULL)
1421 		free(s, M_TCPLOG);
1422 	if (m != NULL)
1423 		m_freem(m);
1424 }
1425 
1426 static void
1427 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1428     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1429     int ti_locked)
1430 {
1431 	int thflags, acked, ourfinisacked, needoutput = 0;
1432 	int rstreason, todrop, win;
1433 	u_long tiwin;
1434 	struct tcpopt to;
1435 
1436 #ifdef TCPDEBUG
1437 	/*
1438 	 * The size of tcp_saveipgen must be the size of the max ip header,
1439 	 * now IPv6.
1440 	 */
1441 	u_char tcp_saveipgen[IP6_HDR_LEN];
1442 	struct tcphdr tcp_savetcp;
1443 	short ostate = 0;
1444 #endif
1445 	thflags = th->th_flags;
1446 	tp->sackhint.last_sack_ack = 0;
1447 
1448 	/*
1449 	 * If this is either a state-changing packet or current state isn't
1450 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1451 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1452 	 * caller may have unnecessarily acquired a write lock due to a race.
1453 	 */
1454 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1455 	    tp->t_state != TCPS_ESTABLISHED) {
1456 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1457 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1458 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1459 	} else {
1460 #ifdef INVARIANTS
1461 		if (ti_locked == TI_WLOCKED)
1462 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1463 		else {
1464 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1465 			    "ti_locked: %d", __func__, ti_locked));
1466 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1467 		}
1468 #endif
1469 	}
1470 	INP_WLOCK_ASSERT(tp->t_inpcb);
1471 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1472 	    __func__));
1473 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1474 	    __func__));
1475 
1476 	/*
1477 	 * Segment received on connection.
1478 	 * Reset idle time and keep-alive timer.
1479 	 * XXX: This should be done after segment
1480 	 * validation to ignore broken/spoofed segs.
1481 	 */
1482 	tp->t_rcvtime = ticks;
1483 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1484 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1485 
1486 	/*
1487 	 * Unscale the window into a 32-bit value.
1488 	 * For the SYN_SENT state the scale is zero.
1489 	 */
1490 	tiwin = th->th_win << tp->snd_scale;
1491 
1492 	/*
1493 	 * TCP ECN processing.
1494 	 */
1495 	if (tp->t_flags & TF_ECN_PERMIT) {
1496 		if (thflags & TH_CWR)
1497 			tp->t_flags &= ~TF_ECN_SND_ECE;
1498 		switch (iptos & IPTOS_ECN_MASK) {
1499 		case IPTOS_ECN_CE:
1500 			tp->t_flags |= TF_ECN_SND_ECE;
1501 			TCPSTAT_INC(tcps_ecn_ce);
1502 			break;
1503 		case IPTOS_ECN_ECT0:
1504 			TCPSTAT_INC(tcps_ecn_ect0);
1505 			break;
1506 		case IPTOS_ECN_ECT1:
1507 			TCPSTAT_INC(tcps_ecn_ect1);
1508 			break;
1509 		}
1510 		/* Congestion experienced. */
1511 		if (thflags & TH_ECE) {
1512 			cc_cong_signal(tp, th, CC_ECN);
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Parse options on any incoming segment.
1518 	 */
1519 	tcp_dooptions(&to, (u_char *)(th + 1),
1520 	    (th->th_off << 2) - sizeof(struct tcphdr),
1521 	    (thflags & TH_SYN) ? TO_SYN : 0);
1522 
1523 	/*
1524 	 * If echoed timestamp is later than the current time,
1525 	 * fall back to non RFC1323 RTT calculation.  Normalize
1526 	 * timestamp if syncookies were used when this connection
1527 	 * was established.
1528 	 */
1529 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1530 		to.to_tsecr -= tp->ts_offset;
1531 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1532 			to.to_tsecr = 0;
1533 	}
1534 
1535 	/*
1536 	 * Process options only when we get SYN/ACK back. The SYN case
1537 	 * for incoming connections is handled in tcp_syncache.
1538 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1539 	 * or <SYN,ACK>) segment itself is never scaled.
1540 	 * XXX this is traditional behavior, may need to be cleaned up.
1541 	 */
1542 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1543 		if ((to.to_flags & TOF_SCALE) &&
1544 		    (tp->t_flags & TF_REQ_SCALE)) {
1545 			tp->t_flags |= TF_RCVD_SCALE;
1546 			tp->snd_scale = to.to_wscale;
1547 		}
1548 		/*
1549 		 * Initial send window.  It will be updated with
1550 		 * the next incoming segment to the scaled value.
1551 		 */
1552 		tp->snd_wnd = th->th_win;
1553 		if (to.to_flags & TOF_TS) {
1554 			tp->t_flags |= TF_RCVD_TSTMP;
1555 			tp->ts_recent = to.to_tsval;
1556 			tp->ts_recent_age = tcp_ts_getticks();
1557 		}
1558 		if (to.to_flags & TOF_MSS)
1559 			tcp_mss(tp, to.to_mss);
1560 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1561 		    (to.to_flags & TOF_SACKPERM) == 0)
1562 			tp->t_flags &= ~TF_SACK_PERMIT;
1563 	}
1564 
1565 	/*
1566 	 * Header prediction: check for the two common cases
1567 	 * of a uni-directional data xfer.  If the packet has
1568 	 * no control flags, is in-sequence, the window didn't
1569 	 * change and we're not retransmitting, it's a
1570 	 * candidate.  If the length is zero and the ack moved
1571 	 * forward, we're the sender side of the xfer.  Just
1572 	 * free the data acked & wake any higher level process
1573 	 * that was blocked waiting for space.  If the length
1574 	 * is non-zero and the ack didn't move, we're the
1575 	 * receiver side.  If we're getting packets in-order
1576 	 * (the reassembly queue is empty), add the data to
1577 	 * the socket buffer and note that we need a delayed ack.
1578 	 * Make sure that the hidden state-flags are also off.
1579 	 * Since we check for TCPS_ESTABLISHED first, it can only
1580 	 * be TH_NEEDSYN.
1581 	 */
1582 	if (tp->t_state == TCPS_ESTABLISHED &&
1583 	    th->th_seq == tp->rcv_nxt &&
1584 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1585 	    tp->snd_nxt == tp->snd_max &&
1586 	    tiwin && tiwin == tp->snd_wnd &&
1587 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1588 	    LIST_EMPTY(&tp->t_segq) &&
1589 	    ((to.to_flags & TOF_TS) == 0 ||
1590 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1591 
1592 		/*
1593 		 * If last ACK falls within this segment's sequence numbers,
1594 		 * record the timestamp.
1595 		 * NOTE that the test is modified according to the latest
1596 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1597 		 */
1598 		if ((to.to_flags & TOF_TS) != 0 &&
1599 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1600 			tp->ts_recent_age = tcp_ts_getticks();
1601 			tp->ts_recent = to.to_tsval;
1602 		}
1603 
1604 		if (tlen == 0) {
1605 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1606 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1607 			    !IN_RECOVERY(tp->t_flags) &&
1608 			    (to.to_flags & TOF_SACK) == 0 &&
1609 			    TAILQ_EMPTY(&tp->snd_holes)) {
1610 				/*
1611 				 * This is a pure ack for outstanding data.
1612 				 */
1613 				if (ti_locked == TI_WLOCKED)
1614 					INP_INFO_WUNLOCK(&V_tcbinfo);
1615 				ti_locked = TI_UNLOCKED;
1616 
1617 				TCPSTAT_INC(tcps_predack);
1618 
1619 				/*
1620 				 * "bad retransmit" recovery.
1621 				 */
1622 				if (tp->t_rxtshift == 1 &&
1623 				    tp->t_flags & TF_PREVVALID &&
1624 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1625 					cc_cong_signal(tp, th, CC_RTO_ERR);
1626 				}
1627 
1628 				/*
1629 				 * Recalculate the transmit timer / rtt.
1630 				 *
1631 				 * Some boxes send broken timestamp replies
1632 				 * during the SYN+ACK phase, ignore
1633 				 * timestamps of 0 or we could calculate a
1634 				 * huge RTT and blow up the retransmit timer.
1635 				 */
1636 				if ((to.to_flags & TOF_TS) != 0 &&
1637 				    to.to_tsecr) {
1638 					u_int t;
1639 
1640 					t = tcp_ts_getticks() - to.to_tsecr;
1641 					if (!tp->t_rttlow || tp->t_rttlow > t)
1642 						tp->t_rttlow = t;
1643 					tcp_xmit_timer(tp,
1644 					    TCP_TS_TO_TICKS(t) + 1);
1645 				} else if (tp->t_rtttime &&
1646 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1647 					if (!tp->t_rttlow ||
1648 					    tp->t_rttlow > ticks - tp->t_rtttime)
1649 						tp->t_rttlow = ticks - tp->t_rtttime;
1650 					tcp_xmit_timer(tp,
1651 							ticks - tp->t_rtttime);
1652 				}
1653 				acked = BYTES_THIS_ACK(tp, th);
1654 
1655 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1656 				hhook_run_tcp_est_in(tp, th, &to);
1657 
1658 				TCPSTAT_INC(tcps_rcvackpack);
1659 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1660 				sbdrop(&so->so_snd, acked);
1661 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1662 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1663 					tp->snd_recover = th->th_ack - 1;
1664 
1665 				/*
1666 				 * Let the congestion control algorithm update
1667 				 * congestion control related information. This
1668 				 * typically means increasing the congestion
1669 				 * window.
1670 				 */
1671 				cc_ack_received(tp, th, CC_ACK);
1672 
1673 				tp->snd_una = th->th_ack;
1674 				/*
1675 				 * Pull snd_wl2 up to prevent seq wrap relative
1676 				 * to th_ack.
1677 				 */
1678 				tp->snd_wl2 = th->th_ack;
1679 				tp->t_dupacks = 0;
1680 				m_freem(m);
1681 				ND6_HINT(tp); /* Some progress has been made. */
1682 
1683 				/*
1684 				 * If all outstanding data are acked, stop
1685 				 * retransmit timer, otherwise restart timer
1686 				 * using current (possibly backed-off) value.
1687 				 * If process is waiting for space,
1688 				 * wakeup/selwakeup/signal.  If data
1689 				 * are ready to send, let tcp_output
1690 				 * decide between more output or persist.
1691 				 */
1692 #ifdef TCPDEBUG
1693 				if (so->so_options & SO_DEBUG)
1694 					tcp_trace(TA_INPUT, ostate, tp,
1695 					    (void *)tcp_saveipgen,
1696 					    &tcp_savetcp, 0);
1697 #endif
1698 				if (tp->snd_una == tp->snd_max)
1699 					tcp_timer_activate(tp, TT_REXMT, 0);
1700 				else if (!tcp_timer_active(tp, TT_PERSIST))
1701 					tcp_timer_activate(tp, TT_REXMT,
1702 						      tp->t_rxtcur);
1703 				sowwakeup(so);
1704 				if (so->so_snd.sb_cc)
1705 					(void) tcp_output(tp);
1706 				goto check_delack;
1707 			}
1708 		} else if (th->th_ack == tp->snd_una &&
1709 		    tlen <= sbspace(&so->so_rcv)) {
1710 			int newsize = 0;	/* automatic sockbuf scaling */
1711 
1712 			/*
1713 			 * This is a pure, in-sequence data packet with
1714 			 * nothing on the reassembly queue and we have enough
1715 			 * buffer space to take it.
1716 			 */
1717 			if (ti_locked == TI_WLOCKED)
1718 				INP_INFO_WUNLOCK(&V_tcbinfo);
1719 			ti_locked = TI_UNLOCKED;
1720 
1721 			/* Clean receiver SACK report if present */
1722 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1723 				tcp_clean_sackreport(tp);
1724 			TCPSTAT_INC(tcps_preddat);
1725 			tp->rcv_nxt += tlen;
1726 			/*
1727 			 * Pull snd_wl1 up to prevent seq wrap relative to
1728 			 * th_seq.
1729 			 */
1730 			tp->snd_wl1 = th->th_seq + tlen;
1731 			/*
1732 			 * Pull rcv_up up to prevent seq wrap relative to
1733 			 * rcv_nxt.
1734 			 */
1735 			tp->rcv_up = tp->rcv_nxt;
1736 			TCPSTAT_INC(tcps_rcvpack);
1737 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1738 			ND6_HINT(tp);	/* Some progress has been made */
1739 #ifdef TCPDEBUG
1740 			if (so->so_options & SO_DEBUG)
1741 				tcp_trace(TA_INPUT, ostate, tp,
1742 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1743 #endif
1744 		/*
1745 		 * Automatic sizing of receive socket buffer.  Often the send
1746 		 * buffer size is not optimally adjusted to the actual network
1747 		 * conditions at hand (delay bandwidth product).  Setting the
1748 		 * buffer size too small limits throughput on links with high
1749 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1750 		 *
1751 		 * On the receive side the socket buffer memory is only rarely
1752 		 * used to any significant extent.  This allows us to be much
1753 		 * more aggressive in scaling the receive socket buffer.  For
1754 		 * the case that the buffer space is actually used to a large
1755 		 * extent and we run out of kernel memory we can simply drop
1756 		 * the new segments; TCP on the sender will just retransmit it
1757 		 * later.  Setting the buffer size too big may only consume too
1758 		 * much kernel memory if the application doesn't read() from
1759 		 * the socket or packet loss or reordering makes use of the
1760 		 * reassembly queue.
1761 		 *
1762 		 * The criteria to step up the receive buffer one notch are:
1763 		 *  1. the number of bytes received during the time it takes
1764 		 *     one timestamp to be reflected back to us (the RTT);
1765 		 *  2. received bytes per RTT is within seven eighth of the
1766 		 *     current socket buffer size;
1767 		 *  3. receive buffer size has not hit maximal automatic size;
1768 		 *
1769 		 * This algorithm does one step per RTT at most and only if
1770 		 * we receive a bulk stream w/o packet losses or reorderings.
1771 		 * Shrinking the buffer during idle times is not necessary as
1772 		 * it doesn't consume any memory when idle.
1773 		 *
1774 		 * TODO: Only step up if the application is actually serving
1775 		 * the buffer to better manage the socket buffer resources.
1776 		 */
1777 			if (V_tcp_do_autorcvbuf &&
1778 			    to.to_tsecr &&
1779 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1780 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1781 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1782 					if (tp->rfbuf_cnt >
1783 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1784 					    so->so_rcv.sb_hiwat <
1785 					    V_tcp_autorcvbuf_max) {
1786 						newsize =
1787 						    min(so->so_rcv.sb_hiwat +
1788 						    V_tcp_autorcvbuf_inc,
1789 						    V_tcp_autorcvbuf_max);
1790 					}
1791 					/* Start over with next RTT. */
1792 					tp->rfbuf_ts = 0;
1793 					tp->rfbuf_cnt = 0;
1794 				} else
1795 					tp->rfbuf_cnt += tlen;	/* add up */
1796 			}
1797 
1798 			/* Add data to socket buffer. */
1799 			SOCKBUF_LOCK(&so->so_rcv);
1800 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1801 				m_freem(m);
1802 			} else {
1803 				/*
1804 				 * Set new socket buffer size.
1805 				 * Give up when limit is reached.
1806 				 */
1807 				if (newsize)
1808 					if (!sbreserve_locked(&so->so_rcv,
1809 					    newsize, so, NULL))
1810 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1811 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1812 				sbappendstream_locked(&so->so_rcv, m);
1813 			}
1814 			/* NB: sorwakeup_locked() does an implicit unlock. */
1815 			sorwakeup_locked(so);
1816 			if (DELAY_ACK(tp)) {
1817 				tp->t_flags |= TF_DELACK;
1818 			} else {
1819 				tp->t_flags |= TF_ACKNOW;
1820 				tcp_output(tp);
1821 			}
1822 			goto check_delack;
1823 		}
1824 	}
1825 
1826 	/*
1827 	 * Calculate amount of space in receive window,
1828 	 * and then do TCP input processing.
1829 	 * Receive window is amount of space in rcv queue,
1830 	 * but not less than advertised window.
1831 	 */
1832 	win = sbspace(&so->so_rcv);
1833 	if (win < 0)
1834 		win = 0;
1835 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1836 
1837 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1838 	tp->rfbuf_ts = 0;
1839 	tp->rfbuf_cnt = 0;
1840 
1841 	switch (tp->t_state) {
1842 
1843 	/*
1844 	 * If the state is SYN_RECEIVED:
1845 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1846 	 */
1847 	case TCPS_SYN_RECEIVED:
1848 		if ((thflags & TH_ACK) &&
1849 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1850 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1851 				rstreason = BANDLIM_RST_OPENPORT;
1852 				goto dropwithreset;
1853 		}
1854 		break;
1855 
1856 	/*
1857 	 * If the state is SYN_SENT:
1858 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1859 	 *	if seg contains a RST, then drop the connection.
1860 	 *	if seg does not contain SYN, then drop it.
1861 	 * Otherwise this is an acceptable SYN segment
1862 	 *	initialize tp->rcv_nxt and tp->irs
1863 	 *	if seg contains ack then advance tp->snd_una
1864 	 *	if seg contains an ECE and ECN support is enabled, the stream
1865 	 *	    is ECN capable.
1866 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1867 	 *	arrange for segment to be acked (eventually)
1868 	 *	continue processing rest of data/controls, beginning with URG
1869 	 */
1870 	case TCPS_SYN_SENT:
1871 		if ((thflags & TH_ACK) &&
1872 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1873 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1874 			rstreason = BANDLIM_UNLIMITED;
1875 			goto dropwithreset;
1876 		}
1877 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1878 			tp = tcp_drop(tp, ECONNREFUSED);
1879 		if (thflags & TH_RST)
1880 			goto drop;
1881 		if (!(thflags & TH_SYN))
1882 			goto drop;
1883 
1884 		tp->irs = th->th_seq;
1885 		tcp_rcvseqinit(tp);
1886 		if (thflags & TH_ACK) {
1887 			TCPSTAT_INC(tcps_connects);
1888 			soisconnected(so);
1889 #ifdef MAC
1890 			mac_socketpeer_set_from_mbuf(m, so);
1891 #endif
1892 			/* Do window scaling on this connection? */
1893 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1894 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1895 				tp->rcv_scale = tp->request_r_scale;
1896 			}
1897 			tp->rcv_adv += imin(tp->rcv_wnd,
1898 			    TCP_MAXWIN << tp->rcv_scale);
1899 			tp->snd_una++;		/* SYN is acked */
1900 			/*
1901 			 * If there's data, delay ACK; if there's also a FIN
1902 			 * ACKNOW will be turned on later.
1903 			 */
1904 			if (DELAY_ACK(tp) && tlen != 0)
1905 				tcp_timer_activate(tp, TT_DELACK,
1906 				    tcp_delacktime);
1907 			else
1908 				tp->t_flags |= TF_ACKNOW;
1909 
1910 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1911 				tp->t_flags |= TF_ECN_PERMIT;
1912 				TCPSTAT_INC(tcps_ecn_shs);
1913 			}
1914 
1915 			/*
1916 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1917 			 * Transitions:
1918 			 *	SYN_SENT  --> ESTABLISHED
1919 			 *	SYN_SENT* --> FIN_WAIT_1
1920 			 */
1921 			tp->t_starttime = ticks;
1922 			if (tp->t_flags & TF_NEEDFIN) {
1923 				tp->t_state = TCPS_FIN_WAIT_1;
1924 				tp->t_flags &= ~TF_NEEDFIN;
1925 				thflags &= ~TH_SYN;
1926 			} else {
1927 				tp->t_state = TCPS_ESTABLISHED;
1928 				cc_conn_init(tp);
1929 				tcp_timer_activate(tp, TT_KEEP,
1930 				    TP_KEEPIDLE(tp));
1931 			}
1932 		} else {
1933 			/*
1934 			 * Received initial SYN in SYN-SENT[*] state =>
1935 			 * simultaneous open.  If segment contains CC option
1936 			 * and there is a cached CC, apply TAO test.
1937 			 * If it succeeds, connection is * half-synchronized.
1938 			 * Otherwise, do 3-way handshake:
1939 			 *        SYN-SENT -> SYN-RECEIVED
1940 			 *        SYN-SENT* -> SYN-RECEIVED*
1941 			 * If there was no CC option, clear cached CC value.
1942 			 */
1943 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1944 			tcp_timer_activate(tp, TT_REXMT, 0);
1945 			tp->t_state = TCPS_SYN_RECEIVED;
1946 		}
1947 
1948 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1949 		    "ti_locked %d", __func__, ti_locked));
1950 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1951 		INP_WLOCK_ASSERT(tp->t_inpcb);
1952 
1953 		/*
1954 		 * Advance th->th_seq to correspond to first data byte.
1955 		 * If data, trim to stay within window,
1956 		 * dropping FIN if necessary.
1957 		 */
1958 		th->th_seq++;
1959 		if (tlen > tp->rcv_wnd) {
1960 			todrop = tlen - tp->rcv_wnd;
1961 			m_adj(m, -todrop);
1962 			tlen = tp->rcv_wnd;
1963 			thflags &= ~TH_FIN;
1964 			TCPSTAT_INC(tcps_rcvpackafterwin);
1965 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1966 		}
1967 		tp->snd_wl1 = th->th_seq - 1;
1968 		tp->rcv_up = th->th_seq;
1969 		/*
1970 		 * Client side of transaction: already sent SYN and data.
1971 		 * If the remote host used T/TCP to validate the SYN,
1972 		 * our data will be ACK'd; if so, enter normal data segment
1973 		 * processing in the middle of step 5, ack processing.
1974 		 * Otherwise, goto step 6.
1975 		 */
1976 		if (thflags & TH_ACK)
1977 			goto process_ACK;
1978 
1979 		goto step6;
1980 
1981 	/*
1982 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1983 	 *      do normal processing.
1984 	 *
1985 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1986 	 */
1987 	case TCPS_LAST_ACK:
1988 	case TCPS_CLOSING:
1989 		break;  /* continue normal processing */
1990 	}
1991 
1992 	/*
1993 	 * States other than LISTEN or SYN_SENT.
1994 	 * First check the RST flag and sequence number since reset segments
1995 	 * are exempt from the timestamp and connection count tests.  This
1996 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1997 	 * below which allowed reset segments in half the sequence space
1998 	 * to fall though and be processed (which gives forged reset
1999 	 * segments with a random sequence number a 50 percent chance of
2000 	 * killing a connection).
2001 	 * Then check timestamp, if present.
2002 	 * Then check the connection count, if present.
2003 	 * Then check that at least some bytes of segment are within
2004 	 * receive window.  If segment begins before rcv_nxt,
2005 	 * drop leading data (and SYN); if nothing left, just ack.
2006 	 *
2007 	 *
2008 	 * If the RST bit is set, check the sequence number to see
2009 	 * if this is a valid reset segment.
2010 	 * RFC 793 page 37:
2011 	 *   In all states except SYN-SENT, all reset (RST) segments
2012 	 *   are validated by checking their SEQ-fields.  A reset is
2013 	 *   valid if its sequence number is in the window.
2014 	 * Note: this does not take into account delayed ACKs, so
2015 	 *   we should test against last_ack_sent instead of rcv_nxt.
2016 	 *   The sequence number in the reset segment is normally an
2017 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2018 	 *   send a reset with the sequence number at the rightmost edge
2019 	 *   of our receive window, and we have to handle this case.
2020 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2021 	 *   that brute force RST attacks are possible.  To combat this,
2022 	 *   we use a much stricter check while in the ESTABLISHED state,
2023 	 *   only accepting RSTs where the sequence number is equal to
2024 	 *   last_ack_sent.  In all other states (the states in which a
2025 	 *   RST is more likely), the more permissive check is used.
2026 	 * If we have multiple segments in flight, the initial reset
2027 	 * segment sequence numbers will be to the left of last_ack_sent,
2028 	 * but they will eventually catch up.
2029 	 * In any case, it never made sense to trim reset segments to
2030 	 * fit the receive window since RFC 1122 says:
2031 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2032 	 *
2033 	 *    A TCP SHOULD allow a received RST segment to include data.
2034 	 *
2035 	 *    DISCUSSION
2036 	 *         It has been suggested that a RST segment could contain
2037 	 *         ASCII text that encoded and explained the cause of the
2038 	 *         RST.  No standard has yet been established for such
2039 	 *         data.
2040 	 *
2041 	 * If the reset segment passes the sequence number test examine
2042 	 * the state:
2043 	 *    SYN_RECEIVED STATE:
2044 	 *	If passive open, return to LISTEN state.
2045 	 *	If active open, inform user that connection was refused.
2046 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2047 	 *	Inform user that connection was reset, and close tcb.
2048 	 *    CLOSING, LAST_ACK STATES:
2049 	 *	Close the tcb.
2050 	 *    TIME_WAIT STATE:
2051 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2052 	 *      RFC 1337.
2053 	 */
2054 	if (thflags & TH_RST) {
2055 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2056 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2057 			switch (tp->t_state) {
2058 
2059 			case TCPS_SYN_RECEIVED:
2060 				so->so_error = ECONNREFUSED;
2061 				goto close;
2062 
2063 			case TCPS_ESTABLISHED:
2064 				if (V_tcp_insecure_rst == 0 &&
2065 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2066 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2067 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2068 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2069 					TCPSTAT_INC(tcps_badrst);
2070 					goto drop;
2071 				}
2072 				/* FALLTHROUGH */
2073 			case TCPS_FIN_WAIT_1:
2074 			case TCPS_FIN_WAIT_2:
2075 			case TCPS_CLOSE_WAIT:
2076 				so->so_error = ECONNRESET;
2077 			close:
2078 				KASSERT(ti_locked == TI_WLOCKED,
2079 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2080 				    ti_locked));
2081 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2082 
2083 				tp->t_state = TCPS_CLOSED;
2084 				TCPSTAT_INC(tcps_drops);
2085 				tp = tcp_close(tp);
2086 				break;
2087 
2088 			case TCPS_CLOSING:
2089 			case TCPS_LAST_ACK:
2090 				KASSERT(ti_locked == TI_WLOCKED,
2091 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2092 				    ti_locked));
2093 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2094 
2095 				tp = tcp_close(tp);
2096 				break;
2097 			}
2098 		}
2099 		goto drop;
2100 	}
2101 
2102 	/*
2103 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2104 	 * and it's less than ts_recent, drop it.
2105 	 */
2106 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2107 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2108 
2109 		/* Check to see if ts_recent is over 24 days old.  */
2110 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2111 			/*
2112 			 * Invalidate ts_recent.  If this segment updates
2113 			 * ts_recent, the age will be reset later and ts_recent
2114 			 * will get a valid value.  If it does not, setting
2115 			 * ts_recent to zero will at least satisfy the
2116 			 * requirement that zero be placed in the timestamp
2117 			 * echo reply when ts_recent isn't valid.  The
2118 			 * age isn't reset until we get a valid ts_recent
2119 			 * because we don't want out-of-order segments to be
2120 			 * dropped when ts_recent is old.
2121 			 */
2122 			tp->ts_recent = 0;
2123 		} else {
2124 			TCPSTAT_INC(tcps_rcvduppack);
2125 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2126 			TCPSTAT_INC(tcps_pawsdrop);
2127 			if (tlen)
2128 				goto dropafterack;
2129 			goto drop;
2130 		}
2131 	}
2132 
2133 	/*
2134 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2135 	 * this connection before trimming the data to fit the receive
2136 	 * window.  Check the sequence number versus IRS since we know
2137 	 * the sequence numbers haven't wrapped.  This is a partial fix
2138 	 * for the "LAND" DoS attack.
2139 	 */
2140 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2141 		rstreason = BANDLIM_RST_OPENPORT;
2142 		goto dropwithreset;
2143 	}
2144 
2145 	todrop = tp->rcv_nxt - th->th_seq;
2146 	if (todrop > 0) {
2147 		/*
2148 		 * If this is a duplicate SYN for our current connection,
2149 		 * advance over it and pretend and it's not a SYN.
2150 		 */
2151 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2152 			thflags &= ~TH_SYN;
2153 			th->th_seq++;
2154 			if (th->th_urp > 1)
2155 				th->th_urp--;
2156 			else
2157 				thflags &= ~TH_URG;
2158 			todrop--;
2159 		}
2160 		/*
2161 		 * Following if statement from Stevens, vol. 2, p. 960.
2162 		 */
2163 		if (todrop > tlen
2164 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2165 			/*
2166 			 * Any valid FIN must be to the left of the window.
2167 			 * At this point the FIN must be a duplicate or out
2168 			 * of sequence; drop it.
2169 			 */
2170 			thflags &= ~TH_FIN;
2171 
2172 			/*
2173 			 * Send an ACK to resynchronize and drop any data.
2174 			 * But keep on processing for RST or ACK.
2175 			 */
2176 			tp->t_flags |= TF_ACKNOW;
2177 			todrop = tlen;
2178 			TCPSTAT_INC(tcps_rcvduppack);
2179 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2180 		} else {
2181 			TCPSTAT_INC(tcps_rcvpartduppack);
2182 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2183 		}
2184 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2185 		th->th_seq += todrop;
2186 		tlen -= todrop;
2187 		if (th->th_urp > todrop)
2188 			th->th_urp -= todrop;
2189 		else {
2190 			thflags &= ~TH_URG;
2191 			th->th_urp = 0;
2192 		}
2193 	}
2194 
2195 	/*
2196 	 * If new data are received on a connection after the
2197 	 * user processes are gone, then RST the other end.
2198 	 */
2199 	if ((so->so_state & SS_NOFDREF) &&
2200 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2201 		char *s;
2202 
2203 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2204 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2205 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2206 
2207 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2208 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2209 			    "was closed, sending RST and removing tcpcb\n",
2210 			    s, __func__, tcpstates[tp->t_state], tlen);
2211 			free(s, M_TCPLOG);
2212 		}
2213 		tp = tcp_close(tp);
2214 		TCPSTAT_INC(tcps_rcvafterclose);
2215 		rstreason = BANDLIM_UNLIMITED;
2216 		goto dropwithreset;
2217 	}
2218 
2219 	/*
2220 	 * If segment ends after window, drop trailing data
2221 	 * (and PUSH and FIN); if nothing left, just ACK.
2222 	 */
2223 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2224 	if (todrop > 0) {
2225 		TCPSTAT_INC(tcps_rcvpackafterwin);
2226 		if (todrop >= tlen) {
2227 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2228 			/*
2229 			 * If window is closed can only take segments at
2230 			 * window edge, and have to drop data and PUSH from
2231 			 * incoming segments.  Continue processing, but
2232 			 * remember to ack.  Otherwise, drop segment
2233 			 * and ack.
2234 			 */
2235 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2236 				tp->t_flags |= TF_ACKNOW;
2237 				TCPSTAT_INC(tcps_rcvwinprobe);
2238 			} else
2239 				goto dropafterack;
2240 		} else
2241 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2242 		m_adj(m, -todrop);
2243 		tlen -= todrop;
2244 		thflags &= ~(TH_PUSH|TH_FIN);
2245 	}
2246 
2247 	/*
2248 	 * If last ACK falls within this segment's sequence numbers,
2249 	 * record its timestamp.
2250 	 * NOTE:
2251 	 * 1) That the test incorporates suggestions from the latest
2252 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2253 	 * 2) That updating only on newer timestamps interferes with
2254 	 *    our earlier PAWS tests, so this check should be solely
2255 	 *    predicated on the sequence space of this segment.
2256 	 * 3) That we modify the segment boundary check to be
2257 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2258 	 *    instead of RFC1323's
2259 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2260 	 *    This modified check allows us to overcome RFC1323's
2261 	 *    limitations as described in Stevens TCP/IP Illustrated
2262 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2263 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2264 	 */
2265 	if ((to.to_flags & TOF_TS) != 0 &&
2266 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2267 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2268 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2269 		tp->ts_recent_age = tcp_ts_getticks();
2270 		tp->ts_recent = to.to_tsval;
2271 	}
2272 
2273 	/*
2274 	 * If a SYN is in the window, then this is an
2275 	 * error and we send an RST and drop the connection.
2276 	 */
2277 	if (thflags & TH_SYN) {
2278 		KASSERT(ti_locked == TI_WLOCKED,
2279 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2280 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2281 
2282 		tp = tcp_drop(tp, ECONNRESET);
2283 		rstreason = BANDLIM_UNLIMITED;
2284 		goto drop;
2285 	}
2286 
2287 	/*
2288 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2289 	 * flag is on (half-synchronized state), then queue data for
2290 	 * later processing; else drop segment and return.
2291 	 */
2292 	if ((thflags & TH_ACK) == 0) {
2293 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2294 		    (tp->t_flags & TF_NEEDSYN))
2295 			goto step6;
2296 		else if (tp->t_flags & TF_ACKNOW)
2297 			goto dropafterack;
2298 		else
2299 			goto drop;
2300 	}
2301 
2302 	/*
2303 	 * Ack processing.
2304 	 */
2305 	switch (tp->t_state) {
2306 
2307 	/*
2308 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2309 	 * ESTABLISHED state and continue processing.
2310 	 * The ACK was checked above.
2311 	 */
2312 	case TCPS_SYN_RECEIVED:
2313 
2314 		TCPSTAT_INC(tcps_connects);
2315 		soisconnected(so);
2316 		/* Do window scaling? */
2317 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2318 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2319 			tp->rcv_scale = tp->request_r_scale;
2320 			tp->snd_wnd = tiwin;
2321 		}
2322 		/*
2323 		 * Make transitions:
2324 		 *      SYN-RECEIVED  -> ESTABLISHED
2325 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2326 		 */
2327 		tp->t_starttime = ticks;
2328 		if (tp->t_flags & TF_NEEDFIN) {
2329 			tp->t_state = TCPS_FIN_WAIT_1;
2330 			tp->t_flags &= ~TF_NEEDFIN;
2331 		} else {
2332 			tp->t_state = TCPS_ESTABLISHED;
2333 			cc_conn_init(tp);
2334 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2335 		}
2336 		/*
2337 		 * If segment contains data or ACK, will call tcp_reass()
2338 		 * later; if not, do so now to pass queued data to user.
2339 		 */
2340 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2341 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2342 			    (struct mbuf *)0);
2343 		/* FALLTHROUGH */
2344 
2345 	/*
2346 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2347 	 * ACKs.  If the ack is in the range
2348 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2349 	 * then advance tp->snd_una to th->th_ack and drop
2350 	 * data from the retransmission queue.  If this ACK reflects
2351 	 * more up to date window information we update our window information.
2352 	 */
2353 	case TCPS_ESTABLISHED:
2354 	case TCPS_FIN_WAIT_1:
2355 	case TCPS_FIN_WAIT_2:
2356 	case TCPS_CLOSE_WAIT:
2357 	case TCPS_CLOSING:
2358 	case TCPS_LAST_ACK:
2359 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2360 			TCPSTAT_INC(tcps_rcvacktoomuch);
2361 			goto dropafterack;
2362 		}
2363 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2364 		    ((to.to_flags & TOF_SACK) ||
2365 		     !TAILQ_EMPTY(&tp->snd_holes)))
2366 			tcp_sack_doack(tp, &to, th->th_ack);
2367 
2368 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2369 		hhook_run_tcp_est_in(tp, th, &to);
2370 
2371 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2372 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2373 				TCPSTAT_INC(tcps_rcvdupack);
2374 				/*
2375 				 * If we have outstanding data (other than
2376 				 * a window probe), this is a completely
2377 				 * duplicate ack (ie, window info didn't
2378 				 * change), the ack is the biggest we've
2379 				 * seen and we've seen exactly our rexmt
2380 				 * threshhold of them, assume a packet
2381 				 * has been dropped and retransmit it.
2382 				 * Kludge snd_nxt & the congestion
2383 				 * window so we send only this one
2384 				 * packet.
2385 				 *
2386 				 * We know we're losing at the current
2387 				 * window size so do congestion avoidance
2388 				 * (set ssthresh to half the current window
2389 				 * and pull our congestion window back to
2390 				 * the new ssthresh).
2391 				 *
2392 				 * Dup acks mean that packets have left the
2393 				 * network (they're now cached at the receiver)
2394 				 * so bump cwnd by the amount in the receiver
2395 				 * to keep a constant cwnd packets in the
2396 				 * network.
2397 				 *
2398 				 * When using TCP ECN, notify the peer that
2399 				 * we reduced the cwnd.
2400 				 */
2401 				if (!tcp_timer_active(tp, TT_REXMT) ||
2402 				    th->th_ack != tp->snd_una)
2403 					tp->t_dupacks = 0;
2404 				else if (++tp->t_dupacks > tcprexmtthresh ||
2405 				     IN_FASTRECOVERY(tp->t_flags)) {
2406 					cc_ack_received(tp, th, CC_DUPACK);
2407 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2408 					    IN_FASTRECOVERY(tp->t_flags)) {
2409 						int awnd;
2410 
2411 						/*
2412 						 * Compute the amount of data in flight first.
2413 						 * We can inject new data into the pipe iff
2414 						 * we have less than 1/2 the original window's
2415 						 * worth of data in flight.
2416 						 */
2417 						awnd = (tp->snd_nxt - tp->snd_fack) +
2418 							tp->sackhint.sack_bytes_rexmit;
2419 						if (awnd < tp->snd_ssthresh) {
2420 							tp->snd_cwnd += tp->t_maxseg;
2421 							if (tp->snd_cwnd > tp->snd_ssthresh)
2422 								tp->snd_cwnd = tp->snd_ssthresh;
2423 						}
2424 					} else
2425 						tp->snd_cwnd += tp->t_maxseg;
2426 					if ((thflags & TH_FIN) &&
2427 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2428 						/*
2429 						 * If its a fin we need to process
2430 						 * it to avoid a race where both
2431 						 * sides enter FIN-WAIT and send FIN|ACK
2432 						 * at the same time.
2433 						 */
2434 						break;
2435 					}
2436 					(void) tcp_output(tp);
2437 					goto drop;
2438 				} else if (tp->t_dupacks == tcprexmtthresh) {
2439 					tcp_seq onxt = tp->snd_nxt;
2440 
2441 					/*
2442 					 * If we're doing sack, check to
2443 					 * see if we're already in sack
2444 					 * recovery. If we're not doing sack,
2445 					 * check to see if we're in newreno
2446 					 * recovery.
2447 					 */
2448 					if (tp->t_flags & TF_SACK_PERMIT) {
2449 						if (IN_FASTRECOVERY(tp->t_flags)) {
2450 							tp->t_dupacks = 0;
2451 							break;
2452 						}
2453 					} else {
2454 						if (SEQ_LEQ(th->th_ack,
2455 						    tp->snd_recover)) {
2456 							tp->t_dupacks = 0;
2457 							break;
2458 						}
2459 					}
2460 					/* Congestion signal before ack. */
2461 					cc_cong_signal(tp, th, CC_NDUPACK);
2462 					cc_ack_received(tp, th, CC_DUPACK);
2463 					tcp_timer_activate(tp, TT_REXMT, 0);
2464 					tp->t_rtttime = 0;
2465 					if (tp->t_flags & TF_SACK_PERMIT) {
2466 						TCPSTAT_INC(
2467 						    tcps_sack_recovery_episode);
2468 						tp->sack_newdata = tp->snd_nxt;
2469 						tp->snd_cwnd = tp->t_maxseg;
2470 						(void) tcp_output(tp);
2471 						goto drop;
2472 					}
2473 					tp->snd_nxt = th->th_ack;
2474 					tp->snd_cwnd = tp->t_maxseg;
2475 					if ((thflags & TH_FIN) &&
2476 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2477 						/*
2478 						 * If its a fin we need to process
2479 						 * it to avoid a race where both
2480 						 * sides enter FIN-WAIT and send FIN|ACK
2481 						 * at the same time.
2482 						 */
2483 						break;
2484 					}
2485 					(void) tcp_output(tp);
2486 					KASSERT(tp->snd_limited <= 2,
2487 					    ("%s: tp->snd_limited too big",
2488 					    __func__));
2489 					tp->snd_cwnd = tp->snd_ssthresh +
2490 					     tp->t_maxseg *
2491 					     (tp->t_dupacks - tp->snd_limited);
2492 					if (SEQ_GT(onxt, tp->snd_nxt))
2493 						tp->snd_nxt = onxt;
2494 					goto drop;
2495 				} else if (V_tcp_do_rfc3042) {
2496 					cc_ack_received(tp, th, CC_DUPACK);
2497 					u_long oldcwnd = tp->snd_cwnd;
2498 					tcp_seq oldsndmax = tp->snd_max;
2499 					u_int sent;
2500 
2501 					KASSERT(tp->t_dupacks == 1 ||
2502 					    tp->t_dupacks == 2,
2503 					    ("%s: dupacks not 1 or 2",
2504 					    __func__));
2505 					if (tp->t_dupacks == 1)
2506 						tp->snd_limited = 0;
2507 					tp->snd_cwnd =
2508 					    (tp->snd_nxt - tp->snd_una) +
2509 					    (tp->t_dupacks - tp->snd_limited) *
2510 					    tp->t_maxseg;
2511 					if ((thflags & TH_FIN) &&
2512 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2513 						/*
2514 						 * If its a fin we need to process
2515 						 * it to avoid a race where both
2516 						 * sides enter FIN-WAIT and send FIN|ACK
2517 						 * at the same time.
2518 						 */
2519 						break;
2520 					}
2521 					(void) tcp_output(tp);
2522 					sent = tp->snd_max - oldsndmax;
2523 					if (sent > tp->t_maxseg) {
2524 						KASSERT((tp->t_dupacks == 2 &&
2525 						    tp->snd_limited == 0) ||
2526 						   (sent == tp->t_maxseg + 1 &&
2527 						    tp->t_flags & TF_SENTFIN),
2528 						    ("%s: sent too much",
2529 						    __func__));
2530 						tp->snd_limited = 2;
2531 					} else if (sent > 0)
2532 						++tp->snd_limited;
2533 					tp->snd_cwnd = oldcwnd;
2534 					goto drop;
2535 				}
2536 			} else
2537 				tp->t_dupacks = 0;
2538 			break;
2539 		}
2540 
2541 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2542 		    ("%s: th_ack <= snd_una", __func__));
2543 
2544 		/*
2545 		 * If the congestion window was inflated to account
2546 		 * for the other side's cached packets, retract it.
2547 		 */
2548 		if (IN_FASTRECOVERY(tp->t_flags)) {
2549 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2550 				if (tp->t_flags & TF_SACK_PERMIT)
2551 					tcp_sack_partialack(tp, th);
2552 				else
2553 					tcp_newreno_partial_ack(tp, th);
2554 			} else
2555 				cc_post_recovery(tp, th);
2556 		}
2557 		tp->t_dupacks = 0;
2558 		/*
2559 		 * If we reach this point, ACK is not a duplicate,
2560 		 *     i.e., it ACKs something we sent.
2561 		 */
2562 		if (tp->t_flags & TF_NEEDSYN) {
2563 			/*
2564 			 * T/TCP: Connection was half-synchronized, and our
2565 			 * SYN has been ACK'd (so connection is now fully
2566 			 * synchronized).  Go to non-starred state,
2567 			 * increment snd_una for ACK of SYN, and check if
2568 			 * we can do window scaling.
2569 			 */
2570 			tp->t_flags &= ~TF_NEEDSYN;
2571 			tp->snd_una++;
2572 			/* Do window scaling? */
2573 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2574 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2575 				tp->rcv_scale = tp->request_r_scale;
2576 				/* Send window already scaled. */
2577 			}
2578 		}
2579 
2580 process_ACK:
2581 		INP_WLOCK_ASSERT(tp->t_inpcb);
2582 
2583 		acked = BYTES_THIS_ACK(tp, th);
2584 		TCPSTAT_INC(tcps_rcvackpack);
2585 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2586 
2587 		/*
2588 		 * If we just performed our first retransmit, and the ACK
2589 		 * arrives within our recovery window, then it was a mistake
2590 		 * to do the retransmit in the first place.  Recover our
2591 		 * original cwnd and ssthresh, and proceed to transmit where
2592 		 * we left off.
2593 		 */
2594 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2595 		    (int)(ticks - tp->t_badrxtwin) < 0)
2596 			cc_cong_signal(tp, th, CC_RTO_ERR);
2597 
2598 		/*
2599 		 * If we have a timestamp reply, update smoothed
2600 		 * round trip time.  If no timestamp is present but
2601 		 * transmit timer is running and timed sequence
2602 		 * number was acked, update smoothed round trip time.
2603 		 * Since we now have an rtt measurement, cancel the
2604 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2605 		 * Recompute the initial retransmit timer.
2606 		 *
2607 		 * Some boxes send broken timestamp replies
2608 		 * during the SYN+ACK phase, ignore
2609 		 * timestamps of 0 or we could calculate a
2610 		 * huge RTT and blow up the retransmit timer.
2611 		 */
2612 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2613 			u_int t;
2614 
2615 			t = tcp_ts_getticks() - to.to_tsecr;
2616 			if (!tp->t_rttlow || tp->t_rttlow > t)
2617 				tp->t_rttlow = t;
2618 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2619 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2620 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2621 				tp->t_rttlow = ticks - tp->t_rtttime;
2622 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2623 		}
2624 
2625 		/*
2626 		 * If all outstanding data is acked, stop retransmit
2627 		 * timer and remember to restart (more output or persist).
2628 		 * If there is more data to be acked, restart retransmit
2629 		 * timer, using current (possibly backed-off) value.
2630 		 */
2631 		if (th->th_ack == tp->snd_max) {
2632 			tcp_timer_activate(tp, TT_REXMT, 0);
2633 			needoutput = 1;
2634 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2635 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2636 
2637 		/*
2638 		 * If no data (only SYN) was ACK'd,
2639 		 *    skip rest of ACK processing.
2640 		 */
2641 		if (acked == 0)
2642 			goto step6;
2643 
2644 		/*
2645 		 * Let the congestion control algorithm update congestion
2646 		 * control related information. This typically means increasing
2647 		 * the congestion window.
2648 		 */
2649 		cc_ack_received(tp, th, CC_ACK);
2650 
2651 		SOCKBUF_LOCK(&so->so_snd);
2652 		if (acked > so->so_snd.sb_cc) {
2653 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2654 			ourfinisacked = 1;
2655 		} else {
2656 			sbdrop_locked(&so->so_snd, acked);
2657 			ourfinisacked = 0;
2658 		}
2659 		/* NB: sowwakeup_locked() does an implicit unlock. */
2660 		sowwakeup_locked(so);
2661 		/* Detect una wraparound. */
2662 		if (!IN_RECOVERY(tp->t_flags) &&
2663 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2664 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2665 			tp->snd_recover = th->th_ack - 1;
2666 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2667 		if (IN_RECOVERY(tp->t_flags) &&
2668 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2669 			EXIT_RECOVERY(tp->t_flags);
2670 		}
2671 		tp->snd_una = th->th_ack;
2672 		if (tp->t_flags & TF_SACK_PERMIT) {
2673 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2674 				tp->snd_recover = tp->snd_una;
2675 		}
2676 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2677 			tp->snd_nxt = tp->snd_una;
2678 
2679 		switch (tp->t_state) {
2680 
2681 		/*
2682 		 * In FIN_WAIT_1 STATE in addition to the processing
2683 		 * for the ESTABLISHED state if our FIN is now acknowledged
2684 		 * then enter FIN_WAIT_2.
2685 		 */
2686 		case TCPS_FIN_WAIT_1:
2687 			if (ourfinisacked) {
2688 				/*
2689 				 * If we can't receive any more
2690 				 * data, then closing user can proceed.
2691 				 * Starting the timer is contrary to the
2692 				 * specification, but if we don't get a FIN
2693 				 * we'll hang forever.
2694 				 *
2695 				 * XXXjl:
2696 				 * we should release the tp also, and use a
2697 				 * compressed state.
2698 				 */
2699 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2700 					soisdisconnected(so);
2701 					tcp_timer_activate(tp, TT_2MSL,
2702 					    (tcp_fast_finwait2_recycle ?
2703 					    tcp_finwait2_timeout :
2704 					    TP_MAXIDLE(tp)));
2705 				}
2706 				tp->t_state = TCPS_FIN_WAIT_2;
2707 			}
2708 			break;
2709 
2710 		/*
2711 		 * In CLOSING STATE in addition to the processing for
2712 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2713 		 * then enter the TIME-WAIT state, otherwise ignore
2714 		 * the segment.
2715 		 */
2716 		case TCPS_CLOSING:
2717 			if (ourfinisacked) {
2718 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2719 				tcp_twstart(tp);
2720 				INP_INFO_WUNLOCK(&V_tcbinfo);
2721 				m_freem(m);
2722 				return;
2723 			}
2724 			break;
2725 
2726 		/*
2727 		 * In LAST_ACK, we may still be waiting for data to drain
2728 		 * and/or to be acked, as well as for the ack of our FIN.
2729 		 * If our FIN is now acknowledged, delete the TCB,
2730 		 * enter the closed state and return.
2731 		 */
2732 		case TCPS_LAST_ACK:
2733 			if (ourfinisacked) {
2734 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2735 				tp = tcp_close(tp);
2736 				goto drop;
2737 			}
2738 			break;
2739 		}
2740 	}
2741 
2742 step6:
2743 	INP_WLOCK_ASSERT(tp->t_inpcb);
2744 
2745 	/*
2746 	 * Window update acceptance logic.  We have to be careful not
2747 	 * to accept window updates from old segments in the presence
2748 	 * of reordering or duplication.
2749 	 *
2750 	 * A window update is valid when:
2751 	 *  - the segment ACK's new data.
2752 	 *  - the segment carries new data and its ACK is current.
2753 	 *  - the segment matches the current SEQ and ACK but increases
2754 	 *    the window.  This is the escape from persist mode, if there
2755 	 *    data to be sent.
2756 	 *
2757 	 * XXXAO: The presence of new SACK information would allow to
2758 	 * accept window updates during retransmits.  We don't have an
2759 	 * easy way to test for that the moment.
2760 	 *
2761 	 * NB: The other side isn't allowed to shrink the window when
2762 	 * not sending or acking new data.  This behavior is strongly
2763 	 * discouraged by RFC793, section 3.7, page 42 anyways.
2764 	 *
2765 	 * XXXAO: tiwin >= minmss to avoid jitter?
2766 	 */
2767         if ((thflags & TH_ACK) && tiwin != tp->snd_wnd &&
2768 	    (SEQ_GT(th->th_ack, tp->snd_wl2) ||
2769 	     (th->th_ack == tp->snd_wl2 &&
2770 	      (SEQ_GT(th->th_seq + tlen, tp->snd_wl1) ||
2771 	      (th->th_seq == tp->snd_wl1 && tlen == 0 && tiwin > tp->snd_wnd))))) {
2772 #if 0
2773 		char *s;
2774 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2775 			log(LOG_DEBUG, "%s; %s: window update %lu -> %lu\n",
2776 			    s, __func__, tp->snd_wnd, tiwin);
2777 			free(s, M_TCPLOG);
2778 		}
2779 #endif
2780 		/* Keep track of pure window updates. */
2781 		if (th->th_seq == tp->snd_wl1 && tlen == 0 &&
2782 		    tiwin > tp->snd_wnd)
2783 			TCPSTAT_INC(tcps_rcvwinupd);
2784 		/*
2785 		 * When the new window is larger, nudge output
2786 		 * as we may be able to send more data.
2787 		 */
2788 		if (tiwin > tp->snd_wnd)
2789 			needoutput = 1;
2790 		tp->snd_wnd = tiwin;
2791 		if (tp->snd_wnd > tp->max_sndwnd)
2792 			tp->max_sndwnd = tp->snd_wnd;
2793 	}
2794 	if (SEQ_GT(th->th_ack, tp->snd_wl2))
2795 		tp->snd_wl2 = th->th_ack;
2796 
2797 	/*
2798 	 * Process segments with URG.
2799 	 */
2800 	if ((thflags & TH_URG) && th->th_urp &&
2801 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2802 		/*
2803 		 * This is a kludge, but if we receive and accept
2804 		 * random urgent pointers, we'll crash in
2805 		 * soreceive.  It's hard to imagine someone
2806 		 * actually wanting to send this much urgent data.
2807 		 */
2808 		SOCKBUF_LOCK(&so->so_rcv);
2809 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2810 			th->th_urp = 0;			/* XXX */
2811 			thflags &= ~TH_URG;		/* XXX */
2812 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2813 			goto dodata;			/* XXX */
2814 		}
2815 		/*
2816 		 * If this segment advances the known urgent pointer,
2817 		 * then mark the data stream.  This should not happen
2818 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2819 		 * a FIN has been received from the remote side.
2820 		 * In these states we ignore the URG.
2821 		 *
2822 		 * According to RFC961 (Assigned Protocols),
2823 		 * the urgent pointer points to the last octet
2824 		 * of urgent data.  We continue, however,
2825 		 * to consider it to indicate the first octet
2826 		 * of data past the urgent section as the original
2827 		 * spec states (in one of two places).
2828 		 */
2829 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2830 			tp->rcv_up = th->th_seq + th->th_urp;
2831 			so->so_oobmark = so->so_rcv.sb_cc +
2832 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2833 			if (so->so_oobmark == 0)
2834 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2835 			sohasoutofband(so);
2836 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2837 		}
2838 		SOCKBUF_UNLOCK(&so->so_rcv);
2839 		/*
2840 		 * Remove out of band data so doesn't get presented to user.
2841 		 * This can happen independent of advancing the URG pointer,
2842 		 * but if two URG's are pending at once, some out-of-band
2843 		 * data may creep in... ick.
2844 		 */
2845 		if (th->th_urp <= (u_long)tlen &&
2846 		    !(so->so_options & SO_OOBINLINE)) {
2847 			/* hdr drop is delayed */
2848 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2849 		}
2850 	} else {
2851 		/*
2852 		 * If no out of band data is expected,
2853 		 * pull receive urgent pointer along
2854 		 * with the receive window.
2855 		 */
2856 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2857 			tp->rcv_up = tp->rcv_nxt;
2858 	}
2859 dodata:							/* XXX */
2860 	INP_WLOCK_ASSERT(tp->t_inpcb);
2861 
2862 	/*
2863 	 * Process the segment text, merging it into the TCP sequencing queue,
2864 	 * and arranging for acknowledgment of receipt if necessary.
2865 	 * This process logically involves adjusting tp->rcv_wnd as data
2866 	 * is presented to the user (this happens in tcp_usrreq.c,
2867 	 * case PRU_RCVD).  If a FIN has already been received on this
2868 	 * connection then we just ignore the text.
2869 	 */
2870 	if ((tlen || (thflags & TH_FIN)) &&
2871 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2872 		tcp_seq save_start = th->th_seq;
2873 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2874 		/*
2875 		 * Insert segment which includes th into TCP reassembly queue
2876 		 * with control block tp.  Set thflags to whether reassembly now
2877 		 * includes a segment with FIN.  This handles the common case
2878 		 * inline (segment is the next to be received on an established
2879 		 * connection, and the queue is empty), avoiding linkage into
2880 		 * and removal from the queue and repetition of various
2881 		 * conversions.
2882 		 * Set DELACK for segments received in order, but ack
2883 		 * immediately when segments are out of order (so
2884 		 * fast retransmit can work).
2885 		 */
2886 		if (th->th_seq == tp->rcv_nxt &&
2887 		    LIST_EMPTY(&tp->t_segq) &&
2888 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2889 			if (DELAY_ACK(tp))
2890 				tp->t_flags |= TF_DELACK;
2891 			else
2892 				tp->t_flags |= TF_ACKNOW;
2893 			tp->rcv_nxt += tlen;
2894 			thflags = th->th_flags & TH_FIN;
2895 			TCPSTAT_INC(tcps_rcvpack);
2896 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2897 			ND6_HINT(tp);
2898 			SOCKBUF_LOCK(&so->so_rcv);
2899 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2900 				m_freem(m);
2901 			else
2902 				sbappendstream_locked(&so->so_rcv, m);
2903 			/* NB: sorwakeup_locked() does an implicit unlock. */
2904 			sorwakeup_locked(so);
2905 		} else {
2906 			/*
2907 			 * XXX: Due to the header drop above "th" is
2908 			 * theoretically invalid by now.  Fortunately
2909 			 * m_adj() doesn't actually frees any mbufs
2910 			 * when trimming from the head.
2911 			 */
2912 			thflags = tcp_reass(tp, th, &tlen, m);
2913 			tp->t_flags |= TF_ACKNOW;
2914 		}
2915 		if (SEQ_GT(th->th_seq, tp->snd_wl1))
2916 			tp->snd_wl1 = th->th_seq + tlen;
2917 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2918 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2919 #if 0
2920 		/*
2921 		 * Note the amount of data that peer has sent into
2922 		 * our window, in order to estimate the sender's
2923 		 * buffer size.
2924 		 * XXX: Unused.
2925 		 */
2926 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2927 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2928 		else
2929 			len = so->so_rcv.sb_hiwat;
2930 #endif
2931 	} else {
2932 		m_freem(m);
2933 		thflags &= ~TH_FIN;
2934 	}
2935 
2936 	/*
2937 	 * If FIN is received ACK the FIN and let the user know
2938 	 * that the connection is closing.
2939 	 */
2940 	if (thflags & TH_FIN) {
2941 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2942 			socantrcvmore(so);
2943 			/*
2944 			 * If connection is half-synchronized
2945 			 * (ie NEEDSYN flag on) then delay ACK,
2946 			 * so it may be piggybacked when SYN is sent.
2947 			 * Otherwise, since we received a FIN then no
2948 			 * more input can be expected, send ACK now.
2949 			 */
2950 			if (tp->t_flags & TF_NEEDSYN)
2951 				tp->t_flags |= TF_DELACK;
2952 			else
2953 				tp->t_flags |= TF_ACKNOW;
2954 			tp->rcv_nxt++;
2955 		}
2956 		switch (tp->t_state) {
2957 
2958 		/*
2959 		 * In SYN_RECEIVED and ESTABLISHED STATES
2960 		 * enter the CLOSE_WAIT state.
2961 		 */
2962 		case TCPS_SYN_RECEIVED:
2963 			tp->t_starttime = ticks;
2964 			/* FALLTHROUGH */
2965 		case TCPS_ESTABLISHED:
2966 			tp->t_state = TCPS_CLOSE_WAIT;
2967 			break;
2968 
2969 		/*
2970 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2971 		 * enter the CLOSING state.
2972 		 */
2973 		case TCPS_FIN_WAIT_1:
2974 			tp->t_state = TCPS_CLOSING;
2975 			break;
2976 
2977 		/*
2978 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2979 		 * starting the time-wait timer, turning off the other
2980 		 * standard timers.
2981 		 */
2982 		case TCPS_FIN_WAIT_2:
2983 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2984 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2985 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2986 			    ti_locked));
2987 
2988 			tcp_twstart(tp);
2989 			INP_INFO_WUNLOCK(&V_tcbinfo);
2990 			return;
2991 		}
2992 	}
2993 	if (ti_locked == TI_WLOCKED)
2994 		INP_INFO_WUNLOCK(&V_tcbinfo);
2995 	ti_locked = TI_UNLOCKED;
2996 
2997 #ifdef TCPDEBUG
2998 	if (so->so_options & SO_DEBUG)
2999 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3000 			  &tcp_savetcp, 0);
3001 #endif
3002 
3003 	/*
3004 	 * Return any desired output.
3005 	 */
3006 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3007 		(void) tcp_output(tp);
3008 
3009 check_delack:
3010 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3011 	    __func__, ti_locked));
3012 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3013 	INP_WLOCK_ASSERT(tp->t_inpcb);
3014 
3015 	if (tp->t_flags & TF_DELACK) {
3016 		tp->t_flags &= ~TF_DELACK;
3017 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3018 	}
3019 	INP_WUNLOCK(tp->t_inpcb);
3020 	return;
3021 
3022 dropafterack:
3023 	/*
3024 	 * Generate an ACK dropping incoming segment if it occupies
3025 	 * sequence space, where the ACK reflects our state.
3026 	 *
3027 	 * We can now skip the test for the RST flag since all
3028 	 * paths to this code happen after packets containing
3029 	 * RST have been dropped.
3030 	 *
3031 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3032 	 * segment we received passes the SYN-RECEIVED ACK test.
3033 	 * If it fails send a RST.  This breaks the loop in the
3034 	 * "LAND" DoS attack, and also prevents an ACK storm
3035 	 * between two listening ports that have been sent forged
3036 	 * SYN segments, each with the source address of the other.
3037 	 */
3038 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3039 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3040 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3041 		rstreason = BANDLIM_RST_OPENPORT;
3042 		goto dropwithreset;
3043 	}
3044 #ifdef TCPDEBUG
3045 	if (so->so_options & SO_DEBUG)
3046 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3047 			  &tcp_savetcp, 0);
3048 #endif
3049 	if (ti_locked == TI_WLOCKED)
3050 		INP_INFO_WUNLOCK(&V_tcbinfo);
3051 	ti_locked = TI_UNLOCKED;
3052 
3053 	tp->t_flags |= TF_ACKNOW;
3054 	(void) tcp_output(tp);
3055 	INP_WUNLOCK(tp->t_inpcb);
3056 	m_freem(m);
3057 	return;
3058 
3059 dropwithreset:
3060 	if (ti_locked == TI_WLOCKED)
3061 		INP_INFO_WUNLOCK(&V_tcbinfo);
3062 	ti_locked = TI_UNLOCKED;
3063 
3064 	if (tp != NULL) {
3065 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3066 		INP_WUNLOCK(tp->t_inpcb);
3067 	} else
3068 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3069 	return;
3070 
3071 drop:
3072 	if (ti_locked == TI_WLOCKED) {
3073 		INP_INFO_WUNLOCK(&V_tcbinfo);
3074 		ti_locked = TI_UNLOCKED;
3075 	}
3076 #ifdef INVARIANTS
3077 	else
3078 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3079 #endif
3080 
3081 	/*
3082 	 * Drop space held by incoming segment and return.
3083 	 */
3084 #ifdef TCPDEBUG
3085 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3086 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3087 			  &tcp_savetcp, 0);
3088 #endif
3089 	if (tp != NULL)
3090 		INP_WUNLOCK(tp->t_inpcb);
3091 	m_freem(m);
3092 }
3093 
3094 /*
3095  * Issue RST and make ACK acceptable to originator of segment.
3096  * The mbuf must still include the original packet header.
3097  * tp may be NULL.
3098  */
3099 static void
3100 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3101     int tlen, int rstreason)
3102 {
3103 #ifdef INET
3104 	struct ip *ip;
3105 #endif
3106 #ifdef INET6
3107 	struct ip6_hdr *ip6;
3108 #endif
3109 
3110 	if (tp != NULL) {
3111 		INP_WLOCK_ASSERT(tp->t_inpcb);
3112 	}
3113 
3114 	/* Don't bother if destination was broadcast/multicast. */
3115 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3116 		goto drop;
3117 #ifdef INET6
3118 	if (mtod(m, struct ip *)->ip_v == 6) {
3119 		ip6 = mtod(m, struct ip6_hdr *);
3120 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3121 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3122 			goto drop;
3123 		/* IPv6 anycast check is done at tcp6_input() */
3124 	}
3125 #endif
3126 #if defined(INET) && defined(INET6)
3127 	else
3128 #endif
3129 #ifdef INET
3130 	{
3131 		ip = mtod(m, struct ip *);
3132 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3133 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3134 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3135 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3136 			goto drop;
3137 	}
3138 #endif
3139 
3140 	/* Perform bandwidth limiting. */
3141 	if (badport_bandlim(rstreason) < 0)
3142 		goto drop;
3143 
3144 	/* tcp_respond consumes the mbuf chain. */
3145 	if (th->th_flags & TH_ACK) {
3146 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3147 		    th->th_ack, TH_RST);
3148 	} else {
3149 		if (th->th_flags & TH_SYN)
3150 			tlen++;
3151 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3152 		    (tcp_seq)0, TH_RST|TH_ACK);
3153 	}
3154 	return;
3155 drop:
3156 	m_freem(m);
3157 }
3158 
3159 /*
3160  * Parse TCP options and place in tcpopt.
3161  */
3162 static void
3163 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3164 {
3165 	int opt, optlen;
3166 
3167 	to->to_flags = 0;
3168 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3169 		opt = cp[0];
3170 		if (opt == TCPOPT_EOL)
3171 			break;
3172 		if (opt == TCPOPT_NOP)
3173 			optlen = 1;
3174 		else {
3175 			if (cnt < 2)
3176 				break;
3177 			optlen = cp[1];
3178 			if (optlen < 2 || optlen > cnt)
3179 				break;
3180 		}
3181 		switch (opt) {
3182 		case TCPOPT_MAXSEG:
3183 			if (optlen != TCPOLEN_MAXSEG)
3184 				continue;
3185 			if (!(flags & TO_SYN))
3186 				continue;
3187 			to->to_flags |= TOF_MSS;
3188 			bcopy((char *)cp + 2,
3189 			    (char *)&to->to_mss, sizeof(to->to_mss));
3190 			to->to_mss = ntohs(to->to_mss);
3191 			break;
3192 		case TCPOPT_WINDOW:
3193 			if (optlen != TCPOLEN_WINDOW)
3194 				continue;
3195 			if (!(flags & TO_SYN))
3196 				continue;
3197 			to->to_flags |= TOF_SCALE;
3198 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3199 			break;
3200 		case TCPOPT_TIMESTAMP:
3201 			if (optlen != TCPOLEN_TIMESTAMP)
3202 				continue;
3203 			to->to_flags |= TOF_TS;
3204 			bcopy((char *)cp + 2,
3205 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3206 			to->to_tsval = ntohl(to->to_tsval);
3207 			bcopy((char *)cp + 6,
3208 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3209 			to->to_tsecr = ntohl(to->to_tsecr);
3210 			break;
3211 #ifdef TCP_SIGNATURE
3212 		/*
3213 		 * XXX In order to reply to a host which has set the
3214 		 * TCP_SIGNATURE option in its initial SYN, we have to
3215 		 * record the fact that the option was observed here
3216 		 * for the syncache code to perform the correct response.
3217 		 */
3218 		case TCPOPT_SIGNATURE:
3219 			if (optlen != TCPOLEN_SIGNATURE)
3220 				continue;
3221 			to->to_flags |= TOF_SIGNATURE;
3222 			to->to_signature = cp + 2;
3223 			break;
3224 #endif
3225 		case TCPOPT_SACK_PERMITTED:
3226 			if (optlen != TCPOLEN_SACK_PERMITTED)
3227 				continue;
3228 			if (!(flags & TO_SYN))
3229 				continue;
3230 			if (!V_tcp_do_sack)
3231 				continue;
3232 			to->to_flags |= TOF_SACKPERM;
3233 			break;
3234 		case TCPOPT_SACK:
3235 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3236 				continue;
3237 			if (flags & TO_SYN)
3238 				continue;
3239 			to->to_flags |= TOF_SACK;
3240 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3241 			to->to_sacks = cp + 2;
3242 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3243 			break;
3244 		default:
3245 			continue;
3246 		}
3247 	}
3248 }
3249 
3250 /*
3251  * Pull out of band byte out of a segment so
3252  * it doesn't appear in the user's data queue.
3253  * It is still reflected in the segment length for
3254  * sequencing purposes.
3255  */
3256 static void
3257 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3258     int off)
3259 {
3260 	int cnt = off + th->th_urp - 1;
3261 
3262 	while (cnt >= 0) {
3263 		if (m->m_len > cnt) {
3264 			char *cp = mtod(m, caddr_t) + cnt;
3265 			struct tcpcb *tp = sototcpcb(so);
3266 
3267 			INP_WLOCK_ASSERT(tp->t_inpcb);
3268 
3269 			tp->t_iobc = *cp;
3270 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3271 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3272 			m->m_len--;
3273 			if (m->m_flags & M_PKTHDR)
3274 				m->m_pkthdr.len--;
3275 			return;
3276 		}
3277 		cnt -= m->m_len;
3278 		m = m->m_next;
3279 		if (m == NULL)
3280 			break;
3281 	}
3282 	panic("tcp_pulloutofband");
3283 }
3284 
3285 /*
3286  * Collect new round-trip time estimate
3287  * and update averages and current timeout.
3288  */
3289 static void
3290 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3291 {
3292 	int delta;
3293 
3294 	INP_WLOCK_ASSERT(tp->t_inpcb);
3295 
3296 	TCPSTAT_INC(tcps_rttupdated);
3297 	tp->t_rttupdated++;
3298 	if (tp->t_srtt != 0) {
3299 		/*
3300 		 * srtt is stored as fixed point with 5 bits after the
3301 		 * binary point (i.e., scaled by 8).  The following magic
3302 		 * is equivalent to the smoothing algorithm in rfc793 with
3303 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3304 		 * point).  Adjust rtt to origin 0.
3305 		 */
3306 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3307 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3308 
3309 		if ((tp->t_srtt += delta) <= 0)
3310 			tp->t_srtt = 1;
3311 
3312 		/*
3313 		 * We accumulate a smoothed rtt variance (actually, a
3314 		 * smoothed mean difference), then set the retransmit
3315 		 * timer to smoothed rtt + 4 times the smoothed variance.
3316 		 * rttvar is stored as fixed point with 4 bits after the
3317 		 * binary point (scaled by 16).  The following is
3318 		 * equivalent to rfc793 smoothing with an alpha of .75
3319 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3320 		 * rfc793's wired-in beta.
3321 		 */
3322 		if (delta < 0)
3323 			delta = -delta;
3324 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3325 		if ((tp->t_rttvar += delta) <= 0)
3326 			tp->t_rttvar = 1;
3327 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3328 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3329 	} else {
3330 		/*
3331 		 * No rtt measurement yet - use the unsmoothed rtt.
3332 		 * Set the variance to half the rtt (so our first
3333 		 * retransmit happens at 3*rtt).
3334 		 */
3335 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3336 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3337 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3338 	}
3339 	tp->t_rtttime = 0;
3340 	tp->t_rxtshift = 0;
3341 
3342 	/*
3343 	 * the retransmit should happen at rtt + 4 * rttvar.
3344 	 * Because of the way we do the smoothing, srtt and rttvar
3345 	 * will each average +1/2 tick of bias.  When we compute
3346 	 * the retransmit timer, we want 1/2 tick of rounding and
3347 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3348 	 * firing of the timer.  The bias will give us exactly the
3349 	 * 1.5 tick we need.  But, because the bias is
3350 	 * statistical, we have to test that we don't drop below
3351 	 * the minimum feasible timer (which is 2 ticks).
3352 	 */
3353 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3354 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3355 
3356 	/*
3357 	 * We received an ack for a packet that wasn't retransmitted;
3358 	 * it is probably safe to discard any error indications we've
3359 	 * received recently.  This isn't quite right, but close enough
3360 	 * for now (a route might have failed after we sent a segment,
3361 	 * and the return path might not be symmetrical).
3362 	 */
3363 	tp->t_softerror = 0;
3364 }
3365 
3366 /*
3367  * Determine a reasonable value for maxseg size.
3368  * If the route is known, check route for mtu.
3369  * If none, use an mss that can be handled on the outgoing interface
3370  * without forcing IP to fragment.  If no route is found, route has no mtu,
3371  * or the destination isn't local, use a default, hopefully conservative
3372  * size (usually 512 or the default IP max size, but no more than the mtu
3373  * of the interface), as we can't discover anything about intervening
3374  * gateways or networks.  We also initialize the congestion/slow start
3375  * window to be a single segment if the destination isn't local.
3376  * While looking at the routing entry, we also initialize other path-dependent
3377  * parameters from pre-set or cached values in the routing entry.
3378  *
3379  * Also take into account the space needed for options that we
3380  * send regularly.  Make maxseg shorter by that amount to assure
3381  * that we can send maxseg amount of data even when the options
3382  * are present.  Store the upper limit of the length of options plus
3383  * data in maxopd.
3384  *
3385  * NOTE that this routine is only called when we process an incoming
3386  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3387  * settings are handled in tcp_mssopt().
3388  */
3389 void
3390 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3391     struct hc_metrics_lite *metricptr, int *mtuflags)
3392 {
3393 	int mss = 0;
3394 	u_long maxmtu = 0;
3395 	struct inpcb *inp = tp->t_inpcb;
3396 	struct hc_metrics_lite metrics;
3397 	int origoffer;
3398 #ifdef INET6
3399 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3400 	size_t min_protoh = isipv6 ?
3401 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3402 			    sizeof (struct tcpiphdr);
3403 #else
3404 	const size_t min_protoh = sizeof(struct tcpiphdr);
3405 #endif
3406 
3407 	INP_WLOCK_ASSERT(tp->t_inpcb);
3408 
3409 	if (mtuoffer != -1) {
3410 		KASSERT(offer == -1, ("%s: conflict", __func__));
3411 		offer = mtuoffer - min_protoh;
3412 	}
3413 	origoffer = offer;
3414 
3415 	/* Initialize. */
3416 #ifdef INET6
3417 	if (isipv6) {
3418 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3419 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3420 	}
3421 #endif
3422 #if defined(INET) && defined(INET6)
3423 	else
3424 #endif
3425 #ifdef INET
3426 	{
3427 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3428 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3429 	}
3430 #endif
3431 
3432 	/*
3433 	 * No route to sender, stay with default mss and return.
3434 	 */
3435 	if (maxmtu == 0) {
3436 		/*
3437 		 * In case we return early we need to initialize metrics
3438 		 * to a defined state as tcp_hc_get() would do for us
3439 		 * if there was no cache hit.
3440 		 */
3441 		if (metricptr != NULL)
3442 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3443 		return;
3444 	}
3445 
3446 	/* What have we got? */
3447 	switch (offer) {
3448 		case 0:
3449 			/*
3450 			 * Offer == 0 means that there was no MSS on the SYN
3451 			 * segment, in this case we use tcp_mssdflt as
3452 			 * already assigned to t_maxopd above.
3453 			 */
3454 			offer = tp->t_maxopd;
3455 			break;
3456 
3457 		case -1:
3458 			/*
3459 			 * Offer == -1 means that we didn't receive SYN yet.
3460 			 */
3461 			/* FALLTHROUGH */
3462 
3463 		default:
3464 			/*
3465 			 * Prevent DoS attack with too small MSS. Round up
3466 			 * to at least minmss.
3467 			 */
3468 			offer = max(offer, V_tcp_minmss);
3469 	}
3470 
3471 	/*
3472 	 * rmx information is now retrieved from tcp_hostcache.
3473 	 */
3474 	tcp_hc_get(&inp->inp_inc, &metrics);
3475 	if (metricptr != NULL)
3476 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3477 
3478 	/*
3479 	 * If there's a discovered mtu int tcp hostcache, use it
3480 	 * else, use the link mtu.
3481 	 */
3482 	if (metrics.rmx_mtu)
3483 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3484 	else {
3485 #ifdef INET6
3486 		if (isipv6) {
3487 			mss = maxmtu - min_protoh;
3488 			if (!V_path_mtu_discovery &&
3489 			    !in6_localaddr(&inp->in6p_faddr))
3490 				mss = min(mss, V_tcp_v6mssdflt);
3491 		}
3492 #endif
3493 #if defined(INET) && defined(INET6)
3494 		else
3495 #endif
3496 #ifdef INET
3497 		{
3498 			mss = maxmtu - min_protoh;
3499 			if (!V_path_mtu_discovery &&
3500 			    !in_localaddr(inp->inp_faddr))
3501 				mss = min(mss, V_tcp_mssdflt);
3502 		}
3503 #endif
3504 		/*
3505 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3506 		 * probably violates the TCP spec.
3507 		 * The problem is that, since we don't know the
3508 		 * other end's MSS, we are supposed to use a conservative
3509 		 * default.  But, if we do that, then MTU discovery will
3510 		 * never actually take place, because the conservative
3511 		 * default is much less than the MTUs typically seen
3512 		 * on the Internet today.  For the moment, we'll sweep
3513 		 * this under the carpet.
3514 		 *
3515 		 * The conservative default might not actually be a problem
3516 		 * if the only case this occurs is when sending an initial
3517 		 * SYN with options and data to a host we've never talked
3518 		 * to before.  Then, they will reply with an MSS value which
3519 		 * will get recorded and the new parameters should get
3520 		 * recomputed.  For Further Study.
3521 		 */
3522 	}
3523 	mss = min(mss, offer);
3524 
3525 	/*
3526 	 * Sanity check: make sure that maxopd will be large
3527 	 * enough to allow some data on segments even if the
3528 	 * all the option space is used (40bytes).  Otherwise
3529 	 * funny things may happen in tcp_output.
3530 	 */
3531 	mss = max(mss, 64);
3532 
3533 	/*
3534 	 * maxopd stores the maximum length of data AND options
3535 	 * in a segment; maxseg is the amount of data in a normal
3536 	 * segment.  We need to store this value (maxopd) apart
3537 	 * from maxseg, because now every segment carries options
3538 	 * and thus we normally have somewhat less data in segments.
3539 	 */
3540 	tp->t_maxopd = mss;
3541 
3542 	/*
3543 	 * origoffer==-1 indicates that no segments were received yet.
3544 	 * In this case we just guess.
3545 	 */
3546 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3547 	    (origoffer == -1 ||
3548 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3549 		mss -= TCPOLEN_TSTAMP_APPA;
3550 
3551 	tp->t_maxseg = mss;
3552 }
3553 
3554 void
3555 tcp_mss(struct tcpcb *tp, int offer)
3556 {
3557 	int mss;
3558 	u_long bufsize;
3559 	struct inpcb *inp;
3560 	struct socket *so;
3561 	struct hc_metrics_lite metrics;
3562 	int mtuflags = 0;
3563 
3564 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3565 
3566 	tcp_mss_update(tp, offer, -1, &metrics, &mtuflags);
3567 
3568 	mss = tp->t_maxseg;
3569 	inp = tp->t_inpcb;
3570 
3571 	/*
3572 	 * If there's a pipesize, change the socket buffer to that size,
3573 	 * don't change if sb_hiwat is different than default (then it
3574 	 * has been changed on purpose with setsockopt).
3575 	 * Make the socket buffers an integral number of mss units;
3576 	 * if the mss is larger than the socket buffer, decrease the mss.
3577 	 */
3578 	so = inp->inp_socket;
3579 	SOCKBUF_LOCK(&so->so_snd);
3580 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3581 		bufsize = metrics.rmx_sendpipe;
3582 	else
3583 		bufsize = so->so_snd.sb_hiwat;
3584 	if (bufsize < mss)
3585 		mss = bufsize;
3586 	else {
3587 		bufsize = roundup(bufsize, mss);
3588 		if (bufsize > sb_max)
3589 			bufsize = sb_max;
3590 		if (bufsize > so->so_snd.sb_hiwat)
3591 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3592 	}
3593 	SOCKBUF_UNLOCK(&so->so_snd);
3594 	tp->t_maxseg = mss;
3595 
3596 	SOCKBUF_LOCK(&so->so_rcv);
3597 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3598 		bufsize = metrics.rmx_recvpipe;
3599 	else
3600 		bufsize = so->so_rcv.sb_hiwat;
3601 	if (bufsize > mss) {
3602 		bufsize = roundup(bufsize, mss);
3603 		if (bufsize > sb_max)
3604 			bufsize = sb_max;
3605 		if (bufsize > so->so_rcv.sb_hiwat)
3606 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3607 	}
3608 	SOCKBUF_UNLOCK(&so->so_rcv);
3609 
3610 	/* Check the interface for TSO capabilities. */
3611 	if (mtuflags & CSUM_TSO)
3612 		tp->t_flags |= TF_TSO;
3613 }
3614 
3615 /*
3616  * Determine the MSS option to send on an outgoing SYN.
3617  */
3618 int
3619 tcp_mssopt(struct in_conninfo *inc)
3620 {
3621 	int mss = 0;
3622 	u_long maxmtu = 0;
3623 	u_long thcmtu = 0;
3624 	size_t min_protoh;
3625 
3626 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3627 
3628 #ifdef INET6
3629 	if (inc->inc_flags & INC_ISIPV6) {
3630 		mss = V_tcp_v6mssdflt;
3631 		maxmtu = tcp_maxmtu6(inc, NULL);
3632 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3633 	}
3634 #endif
3635 #if defined(INET) && defined(INET6)
3636 	else
3637 #endif
3638 #ifdef INET
3639 	{
3640 		mss = V_tcp_mssdflt;
3641 		maxmtu = tcp_maxmtu(inc, NULL);
3642 		min_protoh = sizeof(struct tcpiphdr);
3643 	}
3644 #endif
3645 #if defined(INET6) || defined(INET)
3646 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3647 #endif
3648 
3649 	if (maxmtu && thcmtu)
3650 		mss = min(maxmtu, thcmtu) - min_protoh;
3651 	else if (maxmtu || thcmtu)
3652 		mss = max(maxmtu, thcmtu) - min_protoh;
3653 
3654 	return (mss);
3655 }
3656 
3657 
3658 /*
3659  * On a partial ack arrives, force the retransmission of the
3660  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3661  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3662  * be started again.
3663  */
3664 static void
3665 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3666 {
3667 	tcp_seq onxt = tp->snd_nxt;
3668 	u_long  ocwnd = tp->snd_cwnd;
3669 
3670 	INP_WLOCK_ASSERT(tp->t_inpcb);
3671 
3672 	tcp_timer_activate(tp, TT_REXMT, 0);
3673 	tp->t_rtttime = 0;
3674 	tp->snd_nxt = th->th_ack;
3675 	/*
3676 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3677 	 * (tp->snd_una has not yet been updated when this function is called.)
3678 	 */
3679 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3680 	tp->t_flags |= TF_ACKNOW;
3681 	(void) tcp_output(tp);
3682 	tp->snd_cwnd = ocwnd;
3683 	if (SEQ_GT(onxt, tp->snd_nxt))
3684 		tp->snd_nxt = onxt;
3685 	/*
3686 	 * Partial window deflation.  Relies on fact that tp->snd_una
3687 	 * not updated yet.
3688 	 */
3689 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3690 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3691 	else
3692 		tp->snd_cwnd = 0;
3693 	tp->snd_cwnd += tp->t_maxseg;
3694 }
3695