xref: /freebsd/sys/netinet/tcp_input.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/proc.h>		/* for proc0 declaration */
46 #include <sys/protosw.h>
47 #include <sys/signalvar.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <sys/systm.h>
53 
54 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
55 
56 #include <vm/uma.h>
57 
58 #include <net/if.h>
59 #include <net/route.h>
60 #include <net/vnet.h>
61 
62 #define TCPSTATES		/* for logging */
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
70 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #include <netinet/ip6.h>
74 #include <netinet/icmp6.h>
75 #include <netinet6/in6_pcb.h>
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #include <netinet/tcp.h>
79 #include <netinet/tcp_fsm.h>
80 #include <netinet/tcp_seq.h>
81 #include <netinet/tcp_timer.h>
82 #include <netinet/tcp_var.h>
83 #include <netinet6/tcp6_var.h>
84 #include <netinet/tcpip.h>
85 #include <netinet/tcp_syncache.h>
86 #ifdef TCPDEBUG
87 #include <netinet/tcp_debug.h>
88 #endif /* TCPDEBUG */
89 
90 #ifdef IPSEC
91 #include <netipsec/ipsec.h>
92 #include <netipsec/ipsec6.h>
93 #endif /*IPSEC*/
94 
95 #include <machine/in_cksum.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 static const int tcprexmtthresh = 3;
100 
101 VNET_DEFINE(struct tcpstat, tcpstat);
102 SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
103     &VNET_NAME(tcpstat), tcpstat,
104     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
105 
106 int tcp_log_in_vain = 0;
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
108     &tcp_log_in_vain, 0,
109     "Log all incoming TCP segments to closed ports");
110 
111 VNET_DEFINE(int, blackhole) = 0;
112 #define	V_blackhole		VNET(blackhole)
113 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
114     &VNET_NAME(blackhole), 0,
115     "Do not send RST on segments to closed ports");
116 
117 VNET_DEFINE(int, tcp_delack_enabled) = 1;
118 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
119     &VNET_NAME(tcp_delack_enabled), 0,
120     "Delay ACK to try and piggyback it onto a data packet");
121 
122 VNET_DEFINE(int, drop_synfin) = 0;
123 #define	V_drop_synfin		VNET(drop_synfin)
124 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
125     &VNET_NAME(drop_synfin), 0,
126     "Drop TCP packets with SYN+FIN set");
127 
128 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
129 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
130 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
131     &VNET_NAME(tcp_do_rfc3042), 0,
132     "Enable RFC 3042 (Limited Transmit)");
133 
134 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
135 #define	V_tcp_do_rfc3390	VNET(tcp_do_rfc3390)
136 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
137     &VNET_NAME(tcp_do_rfc3390), 0,
138     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
139 
140 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
141 #define	V_tcp_do_rfc3465	VNET(tcp_do_rfc3465)
142 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
143     &VNET_NAME(tcp_do_rfc3465), 0,
144     "Enable RFC 3465 (Appropriate Byte Counting)");
145 
146 VNET_DEFINE(int, tcp_abc_l_var) = 2;
147 #define	V_tcp_abc_l_var		VNET(tcp_abc_l_var)
148 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
149     &VNET_NAME(tcp_abc_l_var), 2,
150     "Cap the max cwnd increment during slow-start to this number of segments");
151 
152 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
153 
154 VNET_DEFINE(int, tcp_do_ecn) = 0;
155 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
156     &VNET_NAME(tcp_do_ecn), 0,
157     "TCP ECN support");
158 
159 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
160 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
161     &VNET_NAME(tcp_ecn_maxretries), 0,
162     "Max retries before giving up on ECN");
163 
164 VNET_DEFINE(int, tcp_insecure_rst) = 0;
165 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
166 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
167     &VNET_NAME(tcp_insecure_rst), 0,
168     "Follow the old (insecure) criteria for accepting RST packets");
169 
170 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
171 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
172 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
173     &VNET_NAME(tcp_do_autorcvbuf), 0,
174     "Enable automatic receive buffer sizing");
175 
176 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
177 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
178 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
179     &VNET_NAME(tcp_autorcvbuf_inc), 0,
180     "Incrementor step size of automatic receive buffer");
181 
182 VNET_DEFINE(int, tcp_autorcvbuf_max) = 256*1024;
183 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
184 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
185     &VNET_NAME(tcp_autorcvbuf_max), 0,
186     "Max size of automatic receive buffer");
187 
188 int	tcp_read_locking = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
190     &tcp_read_locking, 0, "Enable read locking strategy");
191 
192 VNET_DEFINE(struct inpcbhead, tcb);
193 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
194 VNET_DEFINE(struct inpcbinfo, tcbinfo);
195 
196 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
197 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
198 		     struct socket *, struct tcpcb *, int, int, uint8_t,
199 		     int);
200 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
201 		     struct tcpcb *, int, int);
202 static void	 tcp_pulloutofband(struct socket *,
203 		     struct tcphdr *, struct mbuf *, int);
204 static void	 tcp_xmit_timer(struct tcpcb *, int);
205 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
206 static void inline
207 		 tcp_congestion_exp(struct tcpcb *);
208 
209 /*
210  * Kernel module interface for updating tcpstat.  The argument is an index
211  * into tcpstat treated as an array of u_long.  While this encodes the
212  * general layout of tcpstat into the caller, it doesn't encode its location,
213  * so that future changes to add, for example, per-CPU stats support won't
214  * cause binary compatibility problems for kernel modules.
215  */
216 void
217 kmod_tcpstat_inc(int statnum)
218 {
219 
220 	(*((u_long *)&V_tcpstat + statnum))++;
221 }
222 
223 static void inline
224 tcp_congestion_exp(struct tcpcb *tp)
225 {
226 	u_int win;
227 
228 	win = min(tp->snd_wnd, tp->snd_cwnd) /
229 	    2 / tp->t_maxseg;
230 	if (win < 2)
231 		win = 2;
232 	tp->snd_ssthresh = win * tp->t_maxseg;
233 	ENTER_FASTRECOVERY(tp);
234 	tp->snd_recover = tp->snd_max;
235 	if (tp->t_flags & TF_ECN_PERMIT)
236 		tp->t_flags |= TF_ECN_SND_CWR;
237 }
238 
239 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
240 #ifdef INET6
241 #define ND6_HINT(tp) \
242 do { \
243 	if ((tp) && (tp)->t_inpcb && \
244 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
245 		nd6_nud_hint(NULL, NULL, 0); \
246 } while (0)
247 #else
248 #define ND6_HINT(tp)
249 #endif
250 
251 /*
252  * Indicate whether this ack should be delayed.  We can delay the ack if
253  *	- there is no delayed ack timer in progress and
254  *	- our last ack wasn't a 0-sized window.  We never want to delay
255  *	  the ack that opens up a 0-sized window and
256  *		- delayed acks are enabled or
257  *		- this is a half-synchronized T/TCP connection.
258  */
259 #define DELAY_ACK(tp)							\
260 	((!tcp_timer_active(tp, TT_DELACK) &&				\
261 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
262 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
263 
264 /*
265  * TCP input handling is split into multiple parts:
266  *   tcp6_input is a thin wrapper around tcp_input for the extended
267  *	ip6_protox[] call format in ip6_input
268  *   tcp_input handles primary segment validation, inpcb lookup and
269  *	SYN processing on listen sockets
270  *   tcp_do_segment processes the ACK and text of the segment for
271  *	establishing, established and closing connections
272  */
273 #ifdef INET6
274 int
275 tcp6_input(struct mbuf **mp, int *offp, int proto)
276 {
277 	struct mbuf *m = *mp;
278 	struct in6_ifaddr *ia6;
279 
280 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
281 
282 	/*
283 	 * draft-itojun-ipv6-tcp-to-anycast
284 	 * better place to put this in?
285 	 */
286 	ia6 = ip6_getdstifaddr(m);
287 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
288 		struct ip6_hdr *ip6;
289 
290 		ifa_free(&ia6->ia_ifa);
291 		ip6 = mtod(m, struct ip6_hdr *);
292 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
293 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
294 		return IPPROTO_DONE;
295 	}
296 
297 	tcp_input(m, *offp);
298 	return IPPROTO_DONE;
299 }
300 #endif
301 
302 void
303 tcp_input(struct mbuf *m, int off0)
304 {
305 	struct tcphdr *th;
306 	struct ip *ip = NULL;
307 	struct ipovly *ipov;
308 	struct inpcb *inp = NULL;
309 	struct tcpcb *tp = NULL;
310 	struct socket *so = NULL;
311 	u_char *optp = NULL;
312 	int optlen = 0;
313 	int len, tlen, off;
314 	int drop_hdrlen;
315 	int thflags;
316 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
317 	uint8_t iptos;
318 #ifdef IPFIREWALL_FORWARD
319 	struct m_tag *fwd_tag;
320 #endif
321 #ifdef INET6
322 	struct ip6_hdr *ip6 = NULL;
323 	int isipv6;
324 #else
325 	const void *ip6 = NULL;
326 	const int isipv6 = 0;
327 #endif
328 	struct tcpopt to;		/* options in this segment */
329 	char *s = NULL;			/* address and port logging */
330 	int ti_locked;
331 #define	TI_UNLOCKED	1
332 #define	TI_RLOCKED	2
333 #define	TI_WLOCKED	3
334 
335 #ifdef TCPDEBUG
336 	/*
337 	 * The size of tcp_saveipgen must be the size of the max ip header,
338 	 * now IPv6.
339 	 */
340 	u_char tcp_saveipgen[IP6_HDR_LEN];
341 	struct tcphdr tcp_savetcp;
342 	short ostate = 0;
343 #endif
344 
345 #ifdef INET6
346 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
347 #endif
348 
349 	to.to_flags = 0;
350 	TCPSTAT_INC(tcps_rcvtotal);
351 
352 	if (isipv6) {
353 #ifdef INET6
354 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
355 		ip6 = mtod(m, struct ip6_hdr *);
356 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
357 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
358 			TCPSTAT_INC(tcps_rcvbadsum);
359 			goto drop;
360 		}
361 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
362 
363 		/*
364 		 * Be proactive about unspecified IPv6 address in source.
365 		 * As we use all-zero to indicate unbounded/unconnected pcb,
366 		 * unspecified IPv6 address can be used to confuse us.
367 		 *
368 		 * Note that packets with unspecified IPv6 destination is
369 		 * already dropped in ip6_input.
370 		 */
371 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
372 			/* XXX stat */
373 			goto drop;
374 		}
375 #else
376 		th = NULL;		/* XXX: Avoid compiler warning. */
377 #endif
378 	} else {
379 		/*
380 		 * Get IP and TCP header together in first mbuf.
381 		 * Note: IP leaves IP header in first mbuf.
382 		 */
383 		if (off0 > sizeof (struct ip)) {
384 			ip_stripoptions(m, (struct mbuf *)0);
385 			off0 = sizeof(struct ip);
386 		}
387 		if (m->m_len < sizeof (struct tcpiphdr)) {
388 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
389 			    == NULL) {
390 				TCPSTAT_INC(tcps_rcvshort);
391 				return;
392 			}
393 		}
394 		ip = mtod(m, struct ip *);
395 		ipov = (struct ipovly *)ip;
396 		th = (struct tcphdr *)((caddr_t)ip + off0);
397 		tlen = ip->ip_len;
398 
399 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
400 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
401 				th->th_sum = m->m_pkthdr.csum_data;
402 			else
403 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
404 						ip->ip_dst.s_addr,
405 						htonl(m->m_pkthdr.csum_data +
406 							ip->ip_len +
407 							IPPROTO_TCP));
408 			th->th_sum ^= 0xffff;
409 #ifdef TCPDEBUG
410 			ipov->ih_len = (u_short)tlen;
411 			ipov->ih_len = htons(ipov->ih_len);
412 #endif
413 		} else {
414 			/*
415 			 * Checksum extended TCP header and data.
416 			 */
417 			len = sizeof (struct ip) + tlen;
418 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
419 			ipov->ih_len = (u_short)tlen;
420 			ipov->ih_len = htons(ipov->ih_len);
421 			th->th_sum = in_cksum(m, len);
422 		}
423 		if (th->th_sum) {
424 			TCPSTAT_INC(tcps_rcvbadsum);
425 			goto drop;
426 		}
427 		/* Re-initialization for later version check */
428 		ip->ip_v = IPVERSION;
429 	}
430 
431 #ifdef INET6
432 	if (isipv6)
433 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
434 	else
435 #endif
436 		iptos = ip->ip_tos;
437 
438 	/*
439 	 * Check that TCP offset makes sense,
440 	 * pull out TCP options and adjust length.		XXX
441 	 */
442 	off = th->th_off << 2;
443 	if (off < sizeof (struct tcphdr) || off > tlen) {
444 		TCPSTAT_INC(tcps_rcvbadoff);
445 		goto drop;
446 	}
447 	tlen -= off;	/* tlen is used instead of ti->ti_len */
448 	if (off > sizeof (struct tcphdr)) {
449 		if (isipv6) {
450 #ifdef INET6
451 			IP6_EXTHDR_CHECK(m, off0, off, );
452 			ip6 = mtod(m, struct ip6_hdr *);
453 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
454 #endif
455 		} else {
456 			if (m->m_len < sizeof(struct ip) + off) {
457 				if ((m = m_pullup(m, sizeof (struct ip) + off))
458 				    == NULL) {
459 					TCPSTAT_INC(tcps_rcvshort);
460 					return;
461 				}
462 				ip = mtod(m, struct ip *);
463 				ipov = (struct ipovly *)ip;
464 				th = (struct tcphdr *)((caddr_t)ip + off0);
465 			}
466 		}
467 		optlen = off - sizeof (struct tcphdr);
468 		optp = (u_char *)(th + 1);
469 	}
470 	thflags = th->th_flags;
471 
472 	/*
473 	 * Convert TCP protocol specific fields to host format.
474 	 */
475 	th->th_seq = ntohl(th->th_seq);
476 	th->th_ack = ntohl(th->th_ack);
477 	th->th_win = ntohs(th->th_win);
478 	th->th_urp = ntohs(th->th_urp);
479 
480 	/*
481 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
482 	 */
483 	drop_hdrlen = off0 + off;
484 
485 	/*
486 	 * Locate pcb for segment, which requires a lock on tcbinfo.
487 	 * Optimisticaly acquire a global read lock rather than a write lock
488 	 * unless header flags necessarily imply a state change.  There are
489 	 * two cases where we might discover later we need a write lock
490 	 * despite the flags: ACKs moving a connection out of the syncache,
491 	 * and ACKs for a connection in TIMEWAIT.
492 	 */
493 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
494 	    tcp_read_locking == 0) {
495 		INP_INFO_WLOCK(&V_tcbinfo);
496 		ti_locked = TI_WLOCKED;
497 	} else {
498 		INP_INFO_RLOCK(&V_tcbinfo);
499 		ti_locked = TI_RLOCKED;
500 	}
501 
502 findpcb:
503 #ifdef INVARIANTS
504 	if (ti_locked == TI_RLOCKED)
505 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
506 	else if (ti_locked == TI_WLOCKED)
507 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
508 	else
509 		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
510 #endif
511 
512 #ifdef IPFIREWALL_FORWARD
513 	/*
514 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
515 	 */
516 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
517 
518 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
519 		struct sockaddr_in *next_hop;
520 
521 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
522 		/*
523 		 * Transparently forwarded. Pretend to be the destination.
524 		 * already got one like this?
525 		 */
526 		inp = in_pcblookup_hash(&V_tcbinfo,
527 					ip->ip_src, th->th_sport,
528 					ip->ip_dst, th->th_dport,
529 					0, m->m_pkthdr.rcvif);
530 		if (!inp) {
531 			/* It's new.  Try to find the ambushing socket. */
532 			inp = in_pcblookup_hash(&V_tcbinfo,
533 						ip->ip_src, th->th_sport,
534 						next_hop->sin_addr,
535 						next_hop->sin_port ?
536 						    ntohs(next_hop->sin_port) :
537 						    th->th_dport,
538 						INPLOOKUP_WILDCARD,
539 						m->m_pkthdr.rcvif);
540 		}
541 		/* Remove the tag from the packet.  We don't need it anymore. */
542 		m_tag_delete(m, fwd_tag);
543 	} else
544 #endif /* IPFIREWALL_FORWARD */
545 	{
546 		if (isipv6) {
547 #ifdef INET6
548 			inp = in6_pcblookup_hash(&V_tcbinfo,
549 						 &ip6->ip6_src, th->th_sport,
550 						 &ip6->ip6_dst, th->th_dport,
551 						 INPLOOKUP_WILDCARD,
552 						 m->m_pkthdr.rcvif);
553 #endif
554 		} else
555 			inp = in_pcblookup_hash(&V_tcbinfo,
556 						ip->ip_src, th->th_sport,
557 						ip->ip_dst, th->th_dport,
558 						INPLOOKUP_WILDCARD,
559 						m->m_pkthdr.rcvif);
560 	}
561 
562 	/*
563 	 * If the INPCB does not exist then all data in the incoming
564 	 * segment is discarded and an appropriate RST is sent back.
565 	 * XXX MRT Send RST using which routing table?
566 	 */
567 	if (inp == NULL) {
568 		/*
569 		 * Log communication attempts to ports that are not
570 		 * in use.
571 		 */
572 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
573 		    tcp_log_in_vain == 2) {
574 			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
575 				log(LOG_INFO, "%s; %s: Connection attempt "
576 				    "to closed port\n", s, __func__);
577 		}
578 		/*
579 		 * When blackholing do not respond with a RST but
580 		 * completely ignore the segment and drop it.
581 		 */
582 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
583 		    V_blackhole == 2)
584 			goto dropunlock;
585 
586 		rstreason = BANDLIM_RST_CLOSEDPORT;
587 		goto dropwithreset;
588 	}
589 	INP_WLOCK(inp);
590 	if (!(inp->inp_flags & INP_HW_FLOWID)
591 	    && (m->m_flags & M_FLOWID)
592 	    && ((inp->inp_socket == NULL)
593 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
594 		inp->inp_flags |= INP_HW_FLOWID;
595 		inp->inp_flags &= ~INP_SW_FLOWID;
596 		inp->inp_flowid = m->m_pkthdr.flowid;
597 	}
598 #ifdef IPSEC
599 #ifdef INET6
600 	if (isipv6 && ipsec6_in_reject(m, inp)) {
601 		V_ipsec6stat.in_polvio++;
602 		goto dropunlock;
603 	} else
604 #endif /* INET6 */
605 	if (ipsec4_in_reject(m, inp) != 0) {
606 		V_ipsec4stat.in_polvio++;
607 		goto dropunlock;
608 	}
609 #endif /* IPSEC */
610 
611 	/*
612 	 * Check the minimum TTL for socket.
613 	 */
614 	if (inp->inp_ip_minttl != 0) {
615 #ifdef INET6
616 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
617 			goto dropunlock;
618 		else
619 #endif
620 		if (inp->inp_ip_minttl > ip->ip_ttl)
621 			goto dropunlock;
622 	}
623 
624 	/*
625 	 * A previous connection in TIMEWAIT state is supposed to catch stray
626 	 * or duplicate segments arriving late.  If this segment was a
627 	 * legitimate new connection attempt the old INPCB gets removed and
628 	 * we can try again to find a listening socket.
629 	 *
630 	 * At this point, due to earlier optimism, we may hold a read lock on
631 	 * the inpcbinfo, rather than a write lock.  If so, we need to
632 	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
633 	 * all locks, acquire a global write lock, and then re-acquire the
634 	 * inpcb lock.  We may at that point discover that another thread has
635 	 * tried to free the inpcb, in which case we need to loop back and
636 	 * try to find a new inpcb to deliver to.
637 	 */
638 relocked:
639 	if (inp->inp_flags & INP_TIMEWAIT) {
640 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
641 		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
642 
643 		if (ti_locked == TI_RLOCKED) {
644 			if (INP_INFO_TRY_UPGRADE(&V_tcbinfo) == 0) {
645 				in_pcbref(inp);
646 				INP_WUNLOCK(inp);
647 				INP_INFO_RUNLOCK(&V_tcbinfo);
648 				INP_INFO_WLOCK(&V_tcbinfo);
649 				ti_locked = TI_WLOCKED;
650 				INP_WLOCK(inp);
651 				if (in_pcbrele(inp)) {
652 					inp = NULL;
653 					goto findpcb;
654 				}
655 			} else
656 				ti_locked = TI_WLOCKED;
657 		}
658 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
659 
660 		if (thflags & TH_SYN)
661 			tcp_dooptions(&to, optp, optlen, TO_SYN);
662 		/*
663 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
664 		 */
665 		if (tcp_twcheck(inp, &to, th, m, tlen))
666 			goto findpcb;
667 		INP_INFO_WUNLOCK(&V_tcbinfo);
668 		return;
669 	}
670 	/*
671 	 * The TCPCB may no longer exist if the connection is winding
672 	 * down or it is in the CLOSED state.  Either way we drop the
673 	 * segment and send an appropriate response.
674 	 */
675 	tp = intotcpcb(inp);
676 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
677 		rstreason = BANDLIM_RST_CLOSEDPORT;
678 		goto dropwithreset;
679 	}
680 
681 	/*
682 	 * We've identified a valid inpcb, but it could be that we need an
683 	 * inpcbinfo write lock and have only a read lock.  In this case,
684 	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
685 	 * case above.  If we relock, we have to jump back to 'relocked' as
686 	 * the connection might now be in TIMEWAIT.
687 	 */
688 	if (tp->t_state != TCPS_ESTABLISHED ||
689 	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
690 	    tcp_read_locking == 0) {
691 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
692 		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
693 
694 		if (ti_locked == TI_RLOCKED) {
695 			if (INP_INFO_TRY_UPGRADE(&V_tcbinfo) == 0) {
696 				in_pcbref(inp);
697 				INP_WUNLOCK(inp);
698 				INP_INFO_RUNLOCK(&V_tcbinfo);
699 				INP_INFO_WLOCK(&V_tcbinfo);
700 				ti_locked = TI_WLOCKED;
701 				INP_WLOCK(inp);
702 				if (in_pcbrele(inp)) {
703 					inp = NULL;
704 					goto findpcb;
705 				}
706 				goto relocked;
707 			} else
708 				ti_locked = TI_WLOCKED;
709 		}
710 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
711 	}
712 
713 #ifdef MAC
714 	INP_WLOCK_ASSERT(inp);
715 	if (mac_inpcb_check_deliver(inp, m))
716 		goto dropunlock;
717 #endif
718 	so = inp->inp_socket;
719 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
720 #ifdef TCPDEBUG
721 	if (so->so_options & SO_DEBUG) {
722 		ostate = tp->t_state;
723 		if (isipv6) {
724 #ifdef INET6
725 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
726 #endif
727 		} else
728 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
729 		tcp_savetcp = *th;
730 	}
731 #endif
732 	/*
733 	 * When the socket is accepting connections (the INPCB is in LISTEN
734 	 * state) we look into the SYN cache if this is a new connection
735 	 * attempt or the completion of a previous one.
736 	 */
737 	if (so->so_options & SO_ACCEPTCONN) {
738 		struct in_conninfo inc;
739 
740 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
741 		    "tp not listening", __func__));
742 
743 		bzero(&inc, sizeof(inc));
744 #ifdef INET6
745 		if (isipv6) {
746 			inc.inc_flags |= INC_ISIPV6;
747 			inc.inc6_faddr = ip6->ip6_src;
748 			inc.inc6_laddr = ip6->ip6_dst;
749 		} else
750 #endif
751 		{
752 			inc.inc_faddr = ip->ip_src;
753 			inc.inc_laddr = ip->ip_dst;
754 		}
755 		inc.inc_fport = th->th_sport;
756 		inc.inc_lport = th->th_dport;
757 		inc.inc_fibnum = so->so_fibnum;
758 
759 		/*
760 		 * Check for an existing connection attempt in syncache if
761 		 * the flag is only ACK.  A successful lookup creates a new
762 		 * socket appended to the listen queue in SYN_RECEIVED state.
763 		 */
764 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
765 			/*
766 			 * Parse the TCP options here because
767 			 * syncookies need access to the reflected
768 			 * timestamp.
769 			 */
770 			tcp_dooptions(&to, optp, optlen, 0);
771 			/*
772 			 * NB: syncache_expand() doesn't unlock
773 			 * inp and tcpinfo locks.
774 			 */
775 			if (!syncache_expand(&inc, &to, th, &so, m)) {
776 				/*
777 				 * No syncache entry or ACK was not
778 				 * for our SYN/ACK.  Send a RST.
779 				 * NB: syncache did its own logging
780 				 * of the failure cause.
781 				 */
782 				rstreason = BANDLIM_RST_OPENPORT;
783 				goto dropwithreset;
784 			}
785 			if (so == NULL) {
786 				/*
787 				 * We completed the 3-way handshake
788 				 * but could not allocate a socket
789 				 * either due to memory shortage,
790 				 * listen queue length limits or
791 				 * global socket limits.  Send RST
792 				 * or wait and have the remote end
793 				 * retransmit the ACK for another
794 				 * try.
795 				 */
796 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
797 					log(LOG_DEBUG, "%s; %s: Listen socket: "
798 					    "Socket allocation failed due to "
799 					    "limits or memory shortage, %s\n",
800 					    s, __func__,
801 					    V_tcp_sc_rst_sock_fail ?
802 					    "sending RST" : "try again");
803 				if (V_tcp_sc_rst_sock_fail) {
804 					rstreason = BANDLIM_UNLIMITED;
805 					goto dropwithreset;
806 				} else
807 					goto dropunlock;
808 			}
809 			/*
810 			 * Socket is created in state SYN_RECEIVED.
811 			 * Unlock the listen socket, lock the newly
812 			 * created socket and update the tp variable.
813 			 */
814 			INP_WUNLOCK(inp);	/* listen socket */
815 			inp = sotoinpcb(so);
816 			INP_WLOCK(inp);		/* new connection */
817 			tp = intotcpcb(inp);
818 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
819 			    ("%s: ", __func__));
820 			/*
821 			 * Process the segment and the data it
822 			 * contains.  tcp_do_segment() consumes
823 			 * the mbuf chain and unlocks the inpcb.
824 			 */
825 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
826 			    iptos, ti_locked);
827 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
828 			return;
829 		}
830 		/*
831 		 * Segment flag validation for new connection attempts:
832 		 *
833 		 * Our (SYN|ACK) response was rejected.
834 		 * Check with syncache and remove entry to prevent
835 		 * retransmits.
836 		 *
837 		 * NB: syncache_chkrst does its own logging of failure
838 		 * causes.
839 		 */
840 		if (thflags & TH_RST) {
841 			syncache_chkrst(&inc, th);
842 			goto dropunlock;
843 		}
844 		/*
845 		 * We can't do anything without SYN.
846 		 */
847 		if ((thflags & TH_SYN) == 0) {
848 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
849 				log(LOG_DEBUG, "%s; %s: Listen socket: "
850 				    "SYN is missing, segment ignored\n",
851 				    s, __func__);
852 			TCPSTAT_INC(tcps_badsyn);
853 			goto dropunlock;
854 		}
855 		/*
856 		 * (SYN|ACK) is bogus on a listen socket.
857 		 */
858 		if (thflags & TH_ACK) {
859 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
860 				log(LOG_DEBUG, "%s; %s: Listen socket: "
861 				    "SYN|ACK invalid, segment rejected\n",
862 				    s, __func__);
863 			syncache_badack(&inc);	/* XXX: Not needed! */
864 			TCPSTAT_INC(tcps_badsyn);
865 			rstreason = BANDLIM_RST_OPENPORT;
866 			goto dropwithreset;
867 		}
868 		/*
869 		 * If the drop_synfin option is enabled, drop all
870 		 * segments with both the SYN and FIN bits set.
871 		 * This prevents e.g. nmap from identifying the
872 		 * TCP/IP stack.
873 		 * XXX: Poor reasoning.  nmap has other methods
874 		 * and is constantly refining its stack detection
875 		 * strategies.
876 		 * XXX: This is a violation of the TCP specification
877 		 * and was used by RFC1644.
878 		 */
879 		if ((thflags & TH_FIN) && V_drop_synfin) {
880 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
881 				log(LOG_DEBUG, "%s; %s: Listen socket: "
882 				    "SYN|FIN segment ignored (based on "
883 				    "sysctl setting)\n", s, __func__);
884 			TCPSTAT_INC(tcps_badsyn);
885                 	goto dropunlock;
886 		}
887 		/*
888 		 * Segment's flags are (SYN) or (SYN|FIN).
889 		 *
890 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
891 		 * as they do not affect the state of the TCP FSM.
892 		 * The data pointed to by TH_URG and th_urp is ignored.
893 		 */
894 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
895 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
896 		KASSERT(thflags & (TH_SYN),
897 		    ("%s: Listen socket: TH_SYN not set", __func__));
898 #ifdef INET6
899 		/*
900 		 * If deprecated address is forbidden,
901 		 * we do not accept SYN to deprecated interface
902 		 * address to prevent any new inbound connection from
903 		 * getting established.
904 		 * When we do not accept SYN, we send a TCP RST,
905 		 * with deprecated source address (instead of dropping
906 		 * it).  We compromise it as it is much better for peer
907 		 * to send a RST, and RST will be the final packet
908 		 * for the exchange.
909 		 *
910 		 * If we do not forbid deprecated addresses, we accept
911 		 * the SYN packet.  RFC2462 does not suggest dropping
912 		 * SYN in this case.
913 		 * If we decipher RFC2462 5.5.4, it says like this:
914 		 * 1. use of deprecated addr with existing
915 		 *    communication is okay - "SHOULD continue to be
916 		 *    used"
917 		 * 2. use of it with new communication:
918 		 *   (2a) "SHOULD NOT be used if alternate address
919 		 *        with sufficient scope is available"
920 		 *   (2b) nothing mentioned otherwise.
921 		 * Here we fall into (2b) case as we have no choice in
922 		 * our source address selection - we must obey the peer.
923 		 *
924 		 * The wording in RFC2462 is confusing, and there are
925 		 * multiple description text for deprecated address
926 		 * handling - worse, they are not exactly the same.
927 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
928 		 */
929 		if (isipv6 && !V_ip6_use_deprecated) {
930 			struct in6_ifaddr *ia6;
931 
932 			ia6 = ip6_getdstifaddr(m);
933 			if (ia6 != NULL &&
934 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
935 				ifa_free(&ia6->ia_ifa);
936 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
937 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
938 					"Connection attempt to deprecated "
939 					"IPv6 address rejected\n",
940 					s, __func__);
941 				rstreason = BANDLIM_RST_OPENPORT;
942 				goto dropwithreset;
943 			}
944 			ifa_free(&ia6->ia_ifa);
945 		}
946 #endif
947 		/*
948 		 * Basic sanity checks on incoming SYN requests:
949 		 *   Don't respond if the destination is a link layer
950 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
951 		 *   If it is from this socket it must be forged.
952 		 *   Don't respond if the source or destination is a
953 		 *	global or subnet broad- or multicast address.
954 		 *   Note that it is quite possible to receive unicast
955 		 *	link-layer packets with a broadcast IP address. Use
956 		 *	in_broadcast() to find them.
957 		 */
958 		if (m->m_flags & (M_BCAST|M_MCAST)) {
959 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
960 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
961 				"Connection attempt from broad- or multicast "
962 				"link layer address ignored\n", s, __func__);
963 			goto dropunlock;
964 		}
965 		if (isipv6) {
966 #ifdef INET6
967 			if (th->th_dport == th->th_sport &&
968 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
969 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
970 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
971 					"Connection attempt to/from self "
972 					"ignored\n", s, __func__);
973 				goto dropunlock;
974 			}
975 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
976 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
977 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
978 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
979 					"Connection attempt from/to multicast "
980 					"address ignored\n", s, __func__);
981 				goto dropunlock;
982 			}
983 #endif
984 		} else {
985 			if (th->th_dport == th->th_sport &&
986 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
987 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
988 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
989 					"Connection attempt from/to self "
990 					"ignored\n", s, __func__);
991 				goto dropunlock;
992 			}
993 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
994 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
995 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
996 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
997 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
998 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
999 					"Connection attempt from/to broad- "
1000 					"or multicast address ignored\n",
1001 					s, __func__);
1002 				goto dropunlock;
1003 			}
1004 		}
1005 		/*
1006 		 * SYN appears to be valid.  Create compressed TCP state
1007 		 * for syncache.
1008 		 */
1009 #ifdef TCPDEBUG
1010 		if (so->so_options & SO_DEBUG)
1011 			tcp_trace(TA_INPUT, ostate, tp,
1012 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1013 #endif
1014 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1015 		syncache_add(&inc, &to, th, inp, &so, m);
1016 		/*
1017 		 * Entry added to syncache and mbuf consumed.
1018 		 * Everything already unlocked by syncache_add().
1019 		 */
1020 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1021 		return;
1022 	}
1023 
1024 	/*
1025 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1026 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1027 	 * the inpcb, and unlocks pcbinfo.
1028 	 */
1029 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1030 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1031 	return;
1032 
1033 dropwithreset:
1034 	if (ti_locked == TI_RLOCKED)
1035 		INP_INFO_RUNLOCK(&V_tcbinfo);
1036 	else if (ti_locked == TI_WLOCKED)
1037 		INP_INFO_WUNLOCK(&V_tcbinfo);
1038 	else
1039 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1040 	ti_locked = TI_UNLOCKED;
1041 
1042 	if (inp != NULL) {
1043 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1044 		INP_WUNLOCK(inp);
1045 	} else
1046 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1047 	m = NULL;	/* mbuf chain got consumed. */
1048 	goto drop;
1049 
1050 dropunlock:
1051 	if (ti_locked == TI_RLOCKED)
1052 		INP_INFO_RUNLOCK(&V_tcbinfo);
1053 	else if (ti_locked == TI_WLOCKED)
1054 		INP_INFO_WUNLOCK(&V_tcbinfo);
1055 	else
1056 		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1057 	ti_locked = TI_UNLOCKED;
1058 
1059 	if (inp != NULL)
1060 		INP_WUNLOCK(inp);
1061 
1062 drop:
1063 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1064 	if (s != NULL)
1065 		free(s, M_TCPLOG);
1066 	if (m != NULL)
1067 		m_freem(m);
1068 }
1069 
1070 static void
1071 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1072     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1073     int ti_locked)
1074 {
1075 	int thflags, acked, ourfinisacked, needoutput = 0;
1076 	int rstreason, todrop, win;
1077 	u_long tiwin;
1078 	struct tcpopt to;
1079 
1080 #ifdef TCPDEBUG
1081 	/*
1082 	 * The size of tcp_saveipgen must be the size of the max ip header,
1083 	 * now IPv6.
1084 	 */
1085 	u_char tcp_saveipgen[IP6_HDR_LEN];
1086 	struct tcphdr tcp_savetcp;
1087 	short ostate = 0;
1088 #endif
1089 	thflags = th->th_flags;
1090 
1091 	/*
1092 	 * If this is either a state-changing packet or current state isn't
1093 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1094 	 * allow either a read lock or a write lock, as we may have acquired
1095 	 * a write lock due to a race.
1096 	 *
1097 	 * Require a global write lock for SYN/FIN/RST segments or
1098 	 * non-established connections; otherwise accept either a read or
1099 	 * write lock, as we may have conservatively acquired a write lock in
1100 	 * certain cases in tcp_input() (is this still true?).  Currently we
1101 	 * will never enter with no lock, so we try to drop it quickly in the
1102 	 * common pure ack/pure data cases.
1103 	 */
1104 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1105 	    tp->t_state != TCPS_ESTABLISHED) {
1106 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1107 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1108 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1109 	} else {
1110 #ifdef INVARIANTS
1111 		if (ti_locked == TI_RLOCKED)
1112 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1113 		else if (ti_locked == TI_WLOCKED)
1114 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1115 		else
1116 			panic("%s: ti_locked %d for EST", __func__,
1117 			    ti_locked);
1118 #endif
1119 	}
1120 	INP_WLOCK_ASSERT(tp->t_inpcb);
1121 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1122 	    __func__));
1123 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1124 	    __func__));
1125 
1126 	/*
1127 	 * Segment received on connection.
1128 	 * Reset idle time and keep-alive timer.
1129 	 * XXX: This should be done after segment
1130 	 * validation to ignore broken/spoofed segs.
1131 	 */
1132 	tp->t_rcvtime = ticks;
1133 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1134 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1135 
1136 	/*
1137 	 * Unscale the window into a 32-bit value.
1138 	 * For the SYN_SENT state the scale is zero.
1139 	 */
1140 	tiwin = th->th_win << tp->snd_scale;
1141 
1142 	/*
1143 	 * TCP ECN processing.
1144 	 */
1145 	if (tp->t_flags & TF_ECN_PERMIT) {
1146 		if (thflags & TH_CWR)
1147 			tp->t_flags &= ~TF_ECN_SND_ECE;
1148 		switch (iptos & IPTOS_ECN_MASK) {
1149 		case IPTOS_ECN_CE:
1150 			tp->t_flags |= TF_ECN_SND_ECE;
1151 			TCPSTAT_INC(tcps_ecn_ce);
1152 			break;
1153 		case IPTOS_ECN_ECT0:
1154 			TCPSTAT_INC(tcps_ecn_ect0);
1155 			break;
1156 		case IPTOS_ECN_ECT1:
1157 			TCPSTAT_INC(tcps_ecn_ect1);
1158 			break;
1159 		}
1160 		/*
1161 		 * Congestion experienced.
1162 		 * Ignore if we are already trying to recover.
1163 		 */
1164 		if ((thflags & TH_ECE) &&
1165 		    SEQ_LEQ(th->th_ack, tp->snd_recover)) {
1166 			TCPSTAT_INC(tcps_ecn_rcwnd);
1167 			tcp_congestion_exp(tp);
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * Parse options on any incoming segment.
1173 	 */
1174 	tcp_dooptions(&to, (u_char *)(th + 1),
1175 	    (th->th_off << 2) - sizeof(struct tcphdr),
1176 	    (thflags & TH_SYN) ? TO_SYN : 0);
1177 
1178 	/*
1179 	 * If echoed timestamp is later than the current time,
1180 	 * fall back to non RFC1323 RTT calculation.  Normalize
1181 	 * timestamp if syncookies were used when this connection
1182 	 * was established.
1183 	 */
1184 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1185 		to.to_tsecr -= tp->ts_offset;
1186 		if (TSTMP_GT(to.to_tsecr, ticks))
1187 			to.to_tsecr = 0;
1188 	}
1189 
1190 	/*
1191 	 * Process options only when we get SYN/ACK back. The SYN case
1192 	 * for incoming connections is handled in tcp_syncache.
1193 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1194 	 * or <SYN,ACK>) segment itself is never scaled.
1195 	 * XXX this is traditional behavior, may need to be cleaned up.
1196 	 */
1197 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1198 		if ((to.to_flags & TOF_SCALE) &&
1199 		    (tp->t_flags & TF_REQ_SCALE)) {
1200 			tp->t_flags |= TF_RCVD_SCALE;
1201 			tp->snd_scale = to.to_wscale;
1202 		}
1203 		/*
1204 		 * Initial send window.  It will be updated with
1205 		 * the next incoming segment to the scaled value.
1206 		 */
1207 		tp->snd_wnd = th->th_win;
1208 		if (to.to_flags & TOF_TS) {
1209 			tp->t_flags |= TF_RCVD_TSTMP;
1210 			tp->ts_recent = to.to_tsval;
1211 			tp->ts_recent_age = ticks;
1212 		}
1213 		if (to.to_flags & TOF_MSS)
1214 			tcp_mss(tp, to.to_mss);
1215 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1216 		    (to.to_flags & TOF_SACKPERM) == 0)
1217 			tp->t_flags &= ~TF_SACK_PERMIT;
1218 	}
1219 
1220 	/*
1221 	 * Header prediction: check for the two common cases
1222 	 * of a uni-directional data xfer.  If the packet has
1223 	 * no control flags, is in-sequence, the window didn't
1224 	 * change and we're not retransmitting, it's a
1225 	 * candidate.  If the length is zero and the ack moved
1226 	 * forward, we're the sender side of the xfer.  Just
1227 	 * free the data acked & wake any higher level process
1228 	 * that was blocked waiting for space.  If the length
1229 	 * is non-zero and the ack didn't move, we're the
1230 	 * receiver side.  If we're getting packets in-order
1231 	 * (the reassembly queue is empty), add the data to
1232 	 * the socket buffer and note that we need a delayed ack.
1233 	 * Make sure that the hidden state-flags are also off.
1234 	 * Since we check for TCPS_ESTABLISHED first, it can only
1235 	 * be TH_NEEDSYN.
1236 	 */
1237 	if (tp->t_state == TCPS_ESTABLISHED &&
1238 	    th->th_seq == tp->rcv_nxt &&
1239 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1240 	    tp->snd_nxt == tp->snd_max &&
1241 	    tiwin && tiwin == tp->snd_wnd &&
1242 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1243 	    LIST_EMPTY(&tp->t_segq) &&
1244 	    ((to.to_flags & TOF_TS) == 0 ||
1245 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1246 
1247 		/*
1248 		 * If last ACK falls within this segment's sequence numbers,
1249 		 * record the timestamp.
1250 		 * NOTE that the test is modified according to the latest
1251 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1252 		 */
1253 		if ((to.to_flags & TOF_TS) != 0 &&
1254 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1255 			tp->ts_recent_age = ticks;
1256 			tp->ts_recent = to.to_tsval;
1257 		}
1258 
1259 		if (tlen == 0) {
1260 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1261 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1262 			    tp->snd_cwnd >= tp->snd_wnd &&
1263 			    ((!V_tcp_do_newreno &&
1264 			      !(tp->t_flags & TF_SACK_PERMIT) &&
1265 			      tp->t_dupacks < tcprexmtthresh) ||
1266 			     ((V_tcp_do_newreno ||
1267 			       (tp->t_flags & TF_SACK_PERMIT)) &&
1268 			      !IN_FASTRECOVERY(tp) &&
1269 			      (to.to_flags & TOF_SACK) == 0 &&
1270 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1271 				/*
1272 				 * This is a pure ack for outstanding data.
1273 				 */
1274 				if (ti_locked == TI_RLOCKED)
1275 					INP_INFO_RUNLOCK(&V_tcbinfo);
1276 				else if (ti_locked == TI_WLOCKED)
1277 					INP_INFO_WUNLOCK(&V_tcbinfo);
1278 				else
1279 					panic("%s: ti_locked %d on pure ACK",
1280 					    __func__, ti_locked);
1281 				ti_locked = TI_UNLOCKED;
1282 
1283 				TCPSTAT_INC(tcps_predack);
1284 
1285 				/*
1286 				 * "bad retransmit" recovery.
1287 				 */
1288 				if (tp->t_rxtshift == 1 &&
1289 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1290 					TCPSTAT_INC(tcps_sndrexmitbad);
1291 					tp->snd_cwnd = tp->snd_cwnd_prev;
1292 					tp->snd_ssthresh =
1293 					    tp->snd_ssthresh_prev;
1294 					tp->snd_recover = tp->snd_recover_prev;
1295 					if (tp->t_flags & TF_WASFRECOVERY)
1296 					    ENTER_FASTRECOVERY(tp);
1297 					tp->snd_nxt = tp->snd_max;
1298 					tp->t_badrxtwin = 0;
1299 				}
1300 
1301 				/*
1302 				 * Recalculate the transmit timer / rtt.
1303 				 *
1304 				 * Some boxes send broken timestamp replies
1305 				 * during the SYN+ACK phase, ignore
1306 				 * timestamps of 0 or we could calculate a
1307 				 * huge RTT and blow up the retransmit timer.
1308 				 */
1309 				if ((to.to_flags & TOF_TS) != 0 &&
1310 				    to.to_tsecr) {
1311 					if (!tp->t_rttlow ||
1312 					    tp->t_rttlow > ticks - to.to_tsecr)
1313 						tp->t_rttlow = ticks - to.to_tsecr;
1314 					tcp_xmit_timer(tp,
1315 					    ticks - to.to_tsecr + 1);
1316 				} else if (tp->t_rtttime &&
1317 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1318 					if (!tp->t_rttlow ||
1319 					    tp->t_rttlow > ticks - tp->t_rtttime)
1320 						tp->t_rttlow = ticks - tp->t_rtttime;
1321 					tcp_xmit_timer(tp,
1322 							ticks - tp->t_rtttime);
1323 				}
1324 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1325 				acked = th->th_ack - tp->snd_una;
1326 				TCPSTAT_INC(tcps_rcvackpack);
1327 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1328 				sbdrop(&so->so_snd, acked);
1329 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1330 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1331 					tp->snd_recover = th->th_ack - 1;
1332 				tp->snd_una = th->th_ack;
1333 				/*
1334 				 * Pull snd_wl2 up to prevent seq wrap relative
1335 				 * to th_ack.
1336 				 */
1337 				tp->snd_wl2 = th->th_ack;
1338 				tp->t_dupacks = 0;
1339 				m_freem(m);
1340 				ND6_HINT(tp); /* Some progress has been made. */
1341 
1342 				/*
1343 				 * If all outstanding data are acked, stop
1344 				 * retransmit timer, otherwise restart timer
1345 				 * using current (possibly backed-off) value.
1346 				 * If process is waiting for space,
1347 				 * wakeup/selwakeup/signal.  If data
1348 				 * are ready to send, let tcp_output
1349 				 * decide between more output or persist.
1350 				 */
1351 #ifdef TCPDEBUG
1352 				if (so->so_options & SO_DEBUG)
1353 					tcp_trace(TA_INPUT, ostate, tp,
1354 					    (void *)tcp_saveipgen,
1355 					    &tcp_savetcp, 0);
1356 #endif
1357 				if (tp->snd_una == tp->snd_max)
1358 					tcp_timer_activate(tp, TT_REXMT, 0);
1359 				else if (!tcp_timer_active(tp, TT_PERSIST))
1360 					tcp_timer_activate(tp, TT_REXMT,
1361 						      tp->t_rxtcur);
1362 				sowwakeup(so);
1363 				if (so->so_snd.sb_cc)
1364 					(void) tcp_output(tp);
1365 				goto check_delack;
1366 			}
1367 		} else if (th->th_ack == tp->snd_una &&
1368 		    tlen <= sbspace(&so->so_rcv)) {
1369 			int newsize = 0;	/* automatic sockbuf scaling */
1370 
1371 			/*
1372 			 * This is a pure, in-sequence data packet with
1373 			 * nothing on the reassembly queue and we have enough
1374 			 * buffer space to take it.
1375 			 */
1376 			if (ti_locked == TI_RLOCKED)
1377 				INP_INFO_RUNLOCK(&V_tcbinfo);
1378 			else if (ti_locked == TI_WLOCKED)
1379 				INP_INFO_WUNLOCK(&V_tcbinfo);
1380 			else
1381 				panic("%s: ti_locked %d on pure data "
1382 				    "segment", __func__, ti_locked);
1383 			ti_locked = TI_UNLOCKED;
1384 
1385 			/* Clean receiver SACK report if present */
1386 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1387 				tcp_clean_sackreport(tp);
1388 			TCPSTAT_INC(tcps_preddat);
1389 			tp->rcv_nxt += tlen;
1390 			/*
1391 			 * Pull snd_wl1 up to prevent seq wrap relative to
1392 			 * th_seq.
1393 			 */
1394 			tp->snd_wl1 = th->th_seq;
1395 			/*
1396 			 * Pull rcv_up up to prevent seq wrap relative to
1397 			 * rcv_nxt.
1398 			 */
1399 			tp->rcv_up = tp->rcv_nxt;
1400 			TCPSTAT_INC(tcps_rcvpack);
1401 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1402 			ND6_HINT(tp);	/* Some progress has been made */
1403 #ifdef TCPDEBUG
1404 			if (so->so_options & SO_DEBUG)
1405 				tcp_trace(TA_INPUT, ostate, tp,
1406 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1407 #endif
1408 		/*
1409 		 * Automatic sizing of receive socket buffer.  Often the send
1410 		 * buffer size is not optimally adjusted to the actual network
1411 		 * conditions at hand (delay bandwidth product).  Setting the
1412 		 * buffer size too small limits throughput on links with high
1413 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1414 		 *
1415 		 * On the receive side the socket buffer memory is only rarely
1416 		 * used to any significant extent.  This allows us to be much
1417 		 * more aggressive in scaling the receive socket buffer.  For
1418 		 * the case that the buffer space is actually used to a large
1419 		 * extent and we run out of kernel memory we can simply drop
1420 		 * the new segments; TCP on the sender will just retransmit it
1421 		 * later.  Setting the buffer size too big may only consume too
1422 		 * much kernel memory if the application doesn't read() from
1423 		 * the socket or packet loss or reordering makes use of the
1424 		 * reassembly queue.
1425 		 *
1426 		 * The criteria to step up the receive buffer one notch are:
1427 		 *  1. the number of bytes received during the time it takes
1428 		 *     one timestamp to be reflected back to us (the RTT);
1429 		 *  2. received bytes per RTT is within seven eighth of the
1430 		 *     current socket buffer size;
1431 		 *  3. receive buffer size has not hit maximal automatic size;
1432 		 *
1433 		 * This algorithm does one step per RTT at most and only if
1434 		 * we receive a bulk stream w/o packet losses or reorderings.
1435 		 * Shrinking the buffer during idle times is not necessary as
1436 		 * it doesn't consume any memory when idle.
1437 		 *
1438 		 * TODO: Only step up if the application is actually serving
1439 		 * the buffer to better manage the socket buffer resources.
1440 		 */
1441 			if (V_tcp_do_autorcvbuf &&
1442 			    to.to_tsecr &&
1443 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1444 				if (to.to_tsecr > tp->rfbuf_ts &&
1445 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1446 					if (tp->rfbuf_cnt >
1447 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1448 					    so->so_rcv.sb_hiwat <
1449 					    V_tcp_autorcvbuf_max) {
1450 						newsize =
1451 						    min(so->so_rcv.sb_hiwat +
1452 						    V_tcp_autorcvbuf_inc,
1453 						    V_tcp_autorcvbuf_max);
1454 					}
1455 					/* Start over with next RTT. */
1456 					tp->rfbuf_ts = 0;
1457 					tp->rfbuf_cnt = 0;
1458 				} else
1459 					tp->rfbuf_cnt += tlen;	/* add up */
1460 			}
1461 
1462 			/* Add data to socket buffer. */
1463 			SOCKBUF_LOCK(&so->so_rcv);
1464 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1465 				m_freem(m);
1466 			} else {
1467 				/*
1468 				 * Set new socket buffer size.
1469 				 * Give up when limit is reached.
1470 				 */
1471 				if (newsize)
1472 					if (!sbreserve_locked(&so->so_rcv,
1473 					    newsize, so, NULL))
1474 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1475 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1476 				sbappendstream_locked(&so->so_rcv, m);
1477 			}
1478 			/* NB: sorwakeup_locked() does an implicit unlock. */
1479 			sorwakeup_locked(so);
1480 			if (DELAY_ACK(tp)) {
1481 				tp->t_flags |= TF_DELACK;
1482 			} else {
1483 				tp->t_flags |= TF_ACKNOW;
1484 				tcp_output(tp);
1485 			}
1486 			goto check_delack;
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * Calculate amount of space in receive window,
1492 	 * and then do TCP input processing.
1493 	 * Receive window is amount of space in rcv queue,
1494 	 * but not less than advertised window.
1495 	 */
1496 	win = sbspace(&so->so_rcv);
1497 	if (win < 0)
1498 		win = 0;
1499 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1500 
1501 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1502 	tp->rfbuf_ts = 0;
1503 	tp->rfbuf_cnt = 0;
1504 
1505 	switch (tp->t_state) {
1506 
1507 	/*
1508 	 * If the state is SYN_RECEIVED:
1509 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1510 	 */
1511 	case TCPS_SYN_RECEIVED:
1512 		if ((thflags & TH_ACK) &&
1513 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1514 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1515 				rstreason = BANDLIM_RST_OPENPORT;
1516 				goto dropwithreset;
1517 		}
1518 		break;
1519 
1520 	/*
1521 	 * If the state is SYN_SENT:
1522 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1523 	 *	if seg contains a RST, then drop the connection.
1524 	 *	if seg does not contain SYN, then drop it.
1525 	 * Otherwise this is an acceptable SYN segment
1526 	 *	initialize tp->rcv_nxt and tp->irs
1527 	 *	if seg contains ack then advance tp->snd_una
1528 	 *	if seg contains an ECE and ECN support is enabled, the stream
1529 	 *	    is ECN capable.
1530 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1531 	 *	arrange for segment to be acked (eventually)
1532 	 *	continue processing rest of data/controls, beginning with URG
1533 	 */
1534 	case TCPS_SYN_SENT:
1535 		if ((thflags & TH_ACK) &&
1536 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1537 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1538 			rstreason = BANDLIM_UNLIMITED;
1539 			goto dropwithreset;
1540 		}
1541 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1542 			tp = tcp_drop(tp, ECONNREFUSED);
1543 		if (thflags & TH_RST)
1544 			goto drop;
1545 		if (!(thflags & TH_SYN))
1546 			goto drop;
1547 
1548 		tp->irs = th->th_seq;
1549 		tcp_rcvseqinit(tp);
1550 		if (thflags & TH_ACK) {
1551 			TCPSTAT_INC(tcps_connects);
1552 			soisconnected(so);
1553 #ifdef MAC
1554 			mac_socketpeer_set_from_mbuf(m, so);
1555 #endif
1556 			/* Do window scaling on this connection? */
1557 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1558 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1559 				tp->rcv_scale = tp->request_r_scale;
1560 			}
1561 			tp->rcv_adv += tp->rcv_wnd;
1562 			tp->snd_una++;		/* SYN is acked */
1563 			/*
1564 			 * If there's data, delay ACK; if there's also a FIN
1565 			 * ACKNOW will be turned on later.
1566 			 */
1567 			if (DELAY_ACK(tp) && tlen != 0)
1568 				tcp_timer_activate(tp, TT_DELACK,
1569 				    tcp_delacktime);
1570 			else
1571 				tp->t_flags |= TF_ACKNOW;
1572 
1573 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1574 				tp->t_flags |= TF_ECN_PERMIT;
1575 				TCPSTAT_INC(tcps_ecn_shs);
1576 			}
1577 
1578 			/*
1579 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1580 			 * Transitions:
1581 			 *	SYN_SENT  --> ESTABLISHED
1582 			 *	SYN_SENT* --> FIN_WAIT_1
1583 			 */
1584 			tp->t_starttime = ticks;
1585 			if (tp->t_flags & TF_NEEDFIN) {
1586 				tp->t_state = TCPS_FIN_WAIT_1;
1587 				tp->t_flags &= ~TF_NEEDFIN;
1588 				thflags &= ~TH_SYN;
1589 			} else {
1590 				tp->t_state = TCPS_ESTABLISHED;
1591 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1592 			}
1593 		} else {
1594 			/*
1595 			 * Received initial SYN in SYN-SENT[*] state =>
1596 			 * simultaneous open.  If segment contains CC option
1597 			 * and there is a cached CC, apply TAO test.
1598 			 * If it succeeds, connection is * half-synchronized.
1599 			 * Otherwise, do 3-way handshake:
1600 			 *        SYN-SENT -> SYN-RECEIVED
1601 			 *        SYN-SENT* -> SYN-RECEIVED*
1602 			 * If there was no CC option, clear cached CC value.
1603 			 */
1604 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1605 			tcp_timer_activate(tp, TT_REXMT, 0);
1606 			tp->t_state = TCPS_SYN_RECEIVED;
1607 		}
1608 
1609 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1610 		    "ti_locked %d", __func__, ti_locked));
1611 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1612 		INP_WLOCK_ASSERT(tp->t_inpcb);
1613 
1614 		/*
1615 		 * Advance th->th_seq to correspond to first data byte.
1616 		 * If data, trim to stay within window,
1617 		 * dropping FIN if necessary.
1618 		 */
1619 		th->th_seq++;
1620 		if (tlen > tp->rcv_wnd) {
1621 			todrop = tlen - tp->rcv_wnd;
1622 			m_adj(m, -todrop);
1623 			tlen = tp->rcv_wnd;
1624 			thflags &= ~TH_FIN;
1625 			TCPSTAT_INC(tcps_rcvpackafterwin);
1626 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1627 		}
1628 		tp->snd_wl1 = th->th_seq - 1;
1629 		tp->rcv_up = th->th_seq;
1630 		/*
1631 		 * Client side of transaction: already sent SYN and data.
1632 		 * If the remote host used T/TCP to validate the SYN,
1633 		 * our data will be ACK'd; if so, enter normal data segment
1634 		 * processing in the middle of step 5, ack processing.
1635 		 * Otherwise, goto step 6.
1636 		 */
1637 		if (thflags & TH_ACK)
1638 			goto process_ACK;
1639 
1640 		goto step6;
1641 
1642 	/*
1643 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1644 	 *      do normal processing.
1645 	 *
1646 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1647 	 */
1648 	case TCPS_LAST_ACK:
1649 	case TCPS_CLOSING:
1650 		break;  /* continue normal processing */
1651 	}
1652 
1653 	/*
1654 	 * States other than LISTEN or SYN_SENT.
1655 	 * First check the RST flag and sequence number since reset segments
1656 	 * are exempt from the timestamp and connection count tests.  This
1657 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1658 	 * below which allowed reset segments in half the sequence space
1659 	 * to fall though and be processed (which gives forged reset
1660 	 * segments with a random sequence number a 50 percent chance of
1661 	 * killing a connection).
1662 	 * Then check timestamp, if present.
1663 	 * Then check the connection count, if present.
1664 	 * Then check that at least some bytes of segment are within
1665 	 * receive window.  If segment begins before rcv_nxt,
1666 	 * drop leading data (and SYN); if nothing left, just ack.
1667 	 *
1668 	 *
1669 	 * If the RST bit is set, check the sequence number to see
1670 	 * if this is a valid reset segment.
1671 	 * RFC 793 page 37:
1672 	 *   In all states except SYN-SENT, all reset (RST) segments
1673 	 *   are validated by checking their SEQ-fields.  A reset is
1674 	 *   valid if its sequence number is in the window.
1675 	 * Note: this does not take into account delayed ACKs, so
1676 	 *   we should test against last_ack_sent instead of rcv_nxt.
1677 	 *   The sequence number in the reset segment is normally an
1678 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1679 	 *   send a reset with the sequence number at the rightmost edge
1680 	 *   of our receive window, and we have to handle this case.
1681 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1682 	 *   that brute force RST attacks are possible.  To combat this,
1683 	 *   we use a much stricter check while in the ESTABLISHED state,
1684 	 *   only accepting RSTs where the sequence number is equal to
1685 	 *   last_ack_sent.  In all other states (the states in which a
1686 	 *   RST is more likely), the more permissive check is used.
1687 	 * If we have multiple segments in flight, the initial reset
1688 	 * segment sequence numbers will be to the left of last_ack_sent,
1689 	 * but they will eventually catch up.
1690 	 * In any case, it never made sense to trim reset segments to
1691 	 * fit the receive window since RFC 1122 says:
1692 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1693 	 *
1694 	 *    A TCP SHOULD allow a received RST segment to include data.
1695 	 *
1696 	 *    DISCUSSION
1697 	 *         It has been suggested that a RST segment could contain
1698 	 *         ASCII text that encoded and explained the cause of the
1699 	 *         RST.  No standard has yet been established for such
1700 	 *         data.
1701 	 *
1702 	 * If the reset segment passes the sequence number test examine
1703 	 * the state:
1704 	 *    SYN_RECEIVED STATE:
1705 	 *	If passive open, return to LISTEN state.
1706 	 *	If active open, inform user that connection was refused.
1707 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1708 	 *	Inform user that connection was reset, and close tcb.
1709 	 *    CLOSING, LAST_ACK STATES:
1710 	 *	Close the tcb.
1711 	 *    TIME_WAIT STATE:
1712 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1713 	 *      RFC 1337.
1714 	 */
1715 	if (thflags & TH_RST) {
1716 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1717 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1718 			switch (tp->t_state) {
1719 
1720 			case TCPS_SYN_RECEIVED:
1721 				so->so_error = ECONNREFUSED;
1722 				goto close;
1723 
1724 			case TCPS_ESTABLISHED:
1725 				if (V_tcp_insecure_rst == 0 &&
1726 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1727 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1728 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1729 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1730 					TCPSTAT_INC(tcps_badrst);
1731 					goto drop;
1732 				}
1733 				/* FALLTHROUGH */
1734 			case TCPS_FIN_WAIT_1:
1735 			case TCPS_FIN_WAIT_2:
1736 			case TCPS_CLOSE_WAIT:
1737 				so->so_error = ECONNRESET;
1738 			close:
1739 				KASSERT(ti_locked == TI_WLOCKED,
1740 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1741 				    ti_locked));
1742 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1743 
1744 				tp->t_state = TCPS_CLOSED;
1745 				TCPSTAT_INC(tcps_drops);
1746 				tp = tcp_close(tp);
1747 				break;
1748 
1749 			case TCPS_CLOSING:
1750 			case TCPS_LAST_ACK:
1751 				KASSERT(ti_locked == TI_WLOCKED,
1752 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1753 				    ti_locked));
1754 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1755 
1756 				tp = tcp_close(tp);
1757 				break;
1758 			}
1759 		}
1760 		goto drop;
1761 	}
1762 
1763 	/*
1764 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1765 	 * and it's less than ts_recent, drop it.
1766 	 */
1767 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1768 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1769 
1770 		/* Check to see if ts_recent is over 24 days old.  */
1771 		if (ticks - tp->ts_recent_age > TCP_PAWS_IDLE) {
1772 			/*
1773 			 * Invalidate ts_recent.  If this segment updates
1774 			 * ts_recent, the age will be reset later and ts_recent
1775 			 * will get a valid value.  If it does not, setting
1776 			 * ts_recent to zero will at least satisfy the
1777 			 * requirement that zero be placed in the timestamp
1778 			 * echo reply when ts_recent isn't valid.  The
1779 			 * age isn't reset until we get a valid ts_recent
1780 			 * because we don't want out-of-order segments to be
1781 			 * dropped when ts_recent is old.
1782 			 */
1783 			tp->ts_recent = 0;
1784 		} else {
1785 			TCPSTAT_INC(tcps_rcvduppack);
1786 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1787 			TCPSTAT_INC(tcps_pawsdrop);
1788 			if (tlen)
1789 				goto dropafterack;
1790 			goto drop;
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1796 	 * this connection before trimming the data to fit the receive
1797 	 * window.  Check the sequence number versus IRS since we know
1798 	 * the sequence numbers haven't wrapped.  This is a partial fix
1799 	 * for the "LAND" DoS attack.
1800 	 */
1801 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1802 		rstreason = BANDLIM_RST_OPENPORT;
1803 		goto dropwithreset;
1804 	}
1805 
1806 	todrop = tp->rcv_nxt - th->th_seq;
1807 	if (todrop > 0) {
1808 		/*
1809 		 * If this is a duplicate SYN for our current connection,
1810 		 * advance over it and pretend and it's not a SYN.
1811 		 */
1812 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
1813 			thflags &= ~TH_SYN;
1814 			th->th_seq++;
1815 			if (th->th_urp > 1)
1816 				th->th_urp--;
1817 			else
1818 				thflags &= ~TH_URG;
1819 			todrop--;
1820 		}
1821 		/*
1822 		 * Following if statement from Stevens, vol. 2, p. 960.
1823 		 */
1824 		if (todrop > tlen
1825 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1826 			/*
1827 			 * Any valid FIN must be to the left of the window.
1828 			 * At this point the FIN must be a duplicate or out
1829 			 * of sequence; drop it.
1830 			 */
1831 			thflags &= ~TH_FIN;
1832 
1833 			/*
1834 			 * Send an ACK to resynchronize and drop any data.
1835 			 * But keep on processing for RST or ACK.
1836 			 */
1837 			tp->t_flags |= TF_ACKNOW;
1838 			todrop = tlen;
1839 			TCPSTAT_INC(tcps_rcvduppack);
1840 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1841 		} else {
1842 			TCPSTAT_INC(tcps_rcvpartduppack);
1843 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1844 		}
1845 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1846 		th->th_seq += todrop;
1847 		tlen -= todrop;
1848 		if (th->th_urp > todrop)
1849 			th->th_urp -= todrop;
1850 		else {
1851 			thflags &= ~TH_URG;
1852 			th->th_urp = 0;
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * If new data are received on a connection after the
1858 	 * user processes are gone, then RST the other end.
1859 	 */
1860 	if ((so->so_state & SS_NOFDREF) &&
1861 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1862 		char *s;
1863 
1864 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
1865 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
1866 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1867 
1868 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1869 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
1870 			    "was closed, sending RST and removing tcpcb\n",
1871 			    s, __func__, tcpstates[tp->t_state], tlen);
1872 			free(s, M_TCPLOG);
1873 		}
1874 		tp = tcp_close(tp);
1875 		TCPSTAT_INC(tcps_rcvafterclose);
1876 		rstreason = BANDLIM_UNLIMITED;
1877 		goto dropwithreset;
1878 	}
1879 
1880 	/*
1881 	 * If segment ends after window, drop trailing data
1882 	 * (and PUSH and FIN); if nothing left, just ACK.
1883 	 */
1884 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1885 	if (todrop > 0) {
1886 		TCPSTAT_INC(tcps_rcvpackafterwin);
1887 		if (todrop >= tlen) {
1888 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1889 			/*
1890 			 * If window is closed can only take segments at
1891 			 * window edge, and have to drop data and PUSH from
1892 			 * incoming segments.  Continue processing, but
1893 			 * remember to ack.  Otherwise, drop segment
1894 			 * and ack.
1895 			 */
1896 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1897 				tp->t_flags |= TF_ACKNOW;
1898 				TCPSTAT_INC(tcps_rcvwinprobe);
1899 			} else
1900 				goto dropafterack;
1901 		} else
1902 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1903 		m_adj(m, -todrop);
1904 		tlen -= todrop;
1905 		thflags &= ~(TH_PUSH|TH_FIN);
1906 	}
1907 
1908 	/*
1909 	 * If last ACK falls within this segment's sequence numbers,
1910 	 * record its timestamp.
1911 	 * NOTE:
1912 	 * 1) That the test incorporates suggestions from the latest
1913 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1914 	 * 2) That updating only on newer timestamps interferes with
1915 	 *    our earlier PAWS tests, so this check should be solely
1916 	 *    predicated on the sequence space of this segment.
1917 	 * 3) That we modify the segment boundary check to be
1918 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1919 	 *    instead of RFC1323's
1920 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1921 	 *    This modified check allows us to overcome RFC1323's
1922 	 *    limitations as described in Stevens TCP/IP Illustrated
1923 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1924 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1925 	 */
1926 	if ((to.to_flags & TOF_TS) != 0 &&
1927 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1928 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1929 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1930 		tp->ts_recent_age = ticks;
1931 		tp->ts_recent = to.to_tsval;
1932 	}
1933 
1934 	/*
1935 	 * If a SYN is in the window, then this is an
1936 	 * error and we send an RST and drop the connection.
1937 	 */
1938 	if (thflags & TH_SYN) {
1939 		KASSERT(ti_locked == TI_WLOCKED,
1940 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
1941 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1942 
1943 		tp = tcp_drop(tp, ECONNRESET);
1944 		rstreason = BANDLIM_UNLIMITED;
1945 		goto drop;
1946 	}
1947 
1948 	/*
1949 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1950 	 * flag is on (half-synchronized state), then queue data for
1951 	 * later processing; else drop segment and return.
1952 	 */
1953 	if ((thflags & TH_ACK) == 0) {
1954 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1955 		    (tp->t_flags & TF_NEEDSYN))
1956 			goto step6;
1957 		else if (tp->t_flags & TF_ACKNOW)
1958 			goto dropafterack;
1959 		else
1960 			goto drop;
1961 	}
1962 
1963 	/*
1964 	 * Ack processing.
1965 	 */
1966 	switch (tp->t_state) {
1967 
1968 	/*
1969 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1970 	 * ESTABLISHED state and continue processing.
1971 	 * The ACK was checked above.
1972 	 */
1973 	case TCPS_SYN_RECEIVED:
1974 
1975 		TCPSTAT_INC(tcps_connects);
1976 		soisconnected(so);
1977 		/* Do window scaling? */
1978 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1979 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1980 			tp->rcv_scale = tp->request_r_scale;
1981 			tp->snd_wnd = tiwin;
1982 		}
1983 		/*
1984 		 * Make transitions:
1985 		 *      SYN-RECEIVED  -> ESTABLISHED
1986 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1987 		 */
1988 		tp->t_starttime = ticks;
1989 		if (tp->t_flags & TF_NEEDFIN) {
1990 			tp->t_state = TCPS_FIN_WAIT_1;
1991 			tp->t_flags &= ~TF_NEEDFIN;
1992 		} else {
1993 			tp->t_state = TCPS_ESTABLISHED;
1994 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1995 		}
1996 		/*
1997 		 * If segment contains data or ACK, will call tcp_reass()
1998 		 * later; if not, do so now to pass queued data to user.
1999 		 */
2000 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2001 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2002 			    (struct mbuf *)0);
2003 		tp->snd_wl1 = th->th_seq - 1;
2004 		/* FALLTHROUGH */
2005 
2006 	/*
2007 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2008 	 * ACKs.  If the ack is in the range
2009 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2010 	 * then advance tp->snd_una to th->th_ack and drop
2011 	 * data from the retransmission queue.  If this ACK reflects
2012 	 * more up to date window information we update our window information.
2013 	 */
2014 	case TCPS_ESTABLISHED:
2015 	case TCPS_FIN_WAIT_1:
2016 	case TCPS_FIN_WAIT_2:
2017 	case TCPS_CLOSE_WAIT:
2018 	case TCPS_CLOSING:
2019 	case TCPS_LAST_ACK:
2020 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2021 			TCPSTAT_INC(tcps_rcvacktoomuch);
2022 			goto dropafterack;
2023 		}
2024 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2025 		    ((to.to_flags & TOF_SACK) ||
2026 		     !TAILQ_EMPTY(&tp->snd_holes)))
2027 			tcp_sack_doack(tp, &to, th->th_ack);
2028 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2029 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2030 				TCPSTAT_INC(tcps_rcvdupack);
2031 				/*
2032 				 * If we have outstanding data (other than
2033 				 * a window probe), this is a completely
2034 				 * duplicate ack (ie, window info didn't
2035 				 * change), the ack is the biggest we've
2036 				 * seen and we've seen exactly our rexmt
2037 				 * threshhold of them, assume a packet
2038 				 * has been dropped and retransmit it.
2039 				 * Kludge snd_nxt & the congestion
2040 				 * window so we send only this one
2041 				 * packet.
2042 				 *
2043 				 * We know we're losing at the current
2044 				 * window size so do congestion avoidance
2045 				 * (set ssthresh to half the current window
2046 				 * and pull our congestion window back to
2047 				 * the new ssthresh).
2048 				 *
2049 				 * Dup acks mean that packets have left the
2050 				 * network (they're now cached at the receiver)
2051 				 * so bump cwnd by the amount in the receiver
2052 				 * to keep a constant cwnd packets in the
2053 				 * network.
2054 				 *
2055 				 * When using TCP ECN, notify the peer that
2056 				 * we reduced the cwnd.
2057 				 */
2058 				if (!tcp_timer_active(tp, TT_REXMT) ||
2059 				    th->th_ack != tp->snd_una)
2060 					tp->t_dupacks = 0;
2061 				else if (++tp->t_dupacks > tcprexmtthresh ||
2062 				    ((V_tcp_do_newreno ||
2063 				      (tp->t_flags & TF_SACK_PERMIT)) &&
2064 				     IN_FASTRECOVERY(tp))) {
2065 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2066 					    IN_FASTRECOVERY(tp)) {
2067 						int awnd;
2068 
2069 						/*
2070 						 * Compute the amount of data in flight first.
2071 						 * We can inject new data into the pipe iff
2072 						 * we have less than 1/2 the original window's
2073 						 * worth of data in flight.
2074 						 */
2075 						awnd = (tp->snd_nxt - tp->snd_fack) +
2076 							tp->sackhint.sack_bytes_rexmit;
2077 						if (awnd < tp->snd_ssthresh) {
2078 							tp->snd_cwnd += tp->t_maxseg;
2079 							if (tp->snd_cwnd > tp->snd_ssthresh)
2080 								tp->snd_cwnd = tp->snd_ssthresh;
2081 						}
2082 					} else
2083 						tp->snd_cwnd += tp->t_maxseg;
2084 					(void) tcp_output(tp);
2085 					goto drop;
2086 				} else if (tp->t_dupacks == tcprexmtthresh) {
2087 					tcp_seq onxt = tp->snd_nxt;
2088 
2089 					/*
2090 					 * If we're doing sack, check to
2091 					 * see if we're already in sack
2092 					 * recovery. If we're not doing sack,
2093 					 * check to see if we're in newreno
2094 					 * recovery.
2095 					 */
2096 					if (tp->t_flags & TF_SACK_PERMIT) {
2097 						if (IN_FASTRECOVERY(tp)) {
2098 							tp->t_dupacks = 0;
2099 							break;
2100 						}
2101 					} else if (V_tcp_do_newreno ||
2102 					    V_tcp_do_ecn) {
2103 						if (SEQ_LEQ(th->th_ack,
2104 						    tp->snd_recover)) {
2105 							tp->t_dupacks = 0;
2106 							break;
2107 						}
2108 					}
2109 					tcp_congestion_exp(tp);
2110 					tcp_timer_activate(tp, TT_REXMT, 0);
2111 					tp->t_rtttime = 0;
2112 					if (tp->t_flags & TF_SACK_PERMIT) {
2113 						TCPSTAT_INC(
2114 						    tcps_sack_recovery_episode);
2115 						tp->sack_newdata = tp->snd_nxt;
2116 						tp->snd_cwnd = tp->t_maxseg;
2117 						(void) tcp_output(tp);
2118 						goto drop;
2119 					}
2120 					tp->snd_nxt = th->th_ack;
2121 					tp->snd_cwnd = tp->t_maxseg;
2122 					(void) tcp_output(tp);
2123 					KASSERT(tp->snd_limited <= 2,
2124 					    ("%s: tp->snd_limited too big",
2125 					    __func__));
2126 					tp->snd_cwnd = tp->snd_ssthresh +
2127 					     tp->t_maxseg *
2128 					     (tp->t_dupacks - tp->snd_limited);
2129 					if (SEQ_GT(onxt, tp->snd_nxt))
2130 						tp->snd_nxt = onxt;
2131 					goto drop;
2132 				} else if (V_tcp_do_rfc3042) {
2133 					u_long oldcwnd = tp->snd_cwnd;
2134 					tcp_seq oldsndmax = tp->snd_max;
2135 					u_int sent;
2136 
2137 					KASSERT(tp->t_dupacks == 1 ||
2138 					    tp->t_dupacks == 2,
2139 					    ("%s: dupacks not 1 or 2",
2140 					    __func__));
2141 					if (tp->t_dupacks == 1)
2142 						tp->snd_limited = 0;
2143 					tp->snd_cwnd =
2144 					    (tp->snd_nxt - tp->snd_una) +
2145 					    (tp->t_dupacks - tp->snd_limited) *
2146 					    tp->t_maxseg;
2147 					(void) tcp_output(tp);
2148 					sent = tp->snd_max - oldsndmax;
2149 					if (sent > tp->t_maxseg) {
2150 						KASSERT((tp->t_dupacks == 2 &&
2151 						    tp->snd_limited == 0) ||
2152 						   (sent == tp->t_maxseg + 1 &&
2153 						    tp->t_flags & TF_SENTFIN),
2154 						    ("%s: sent too much",
2155 						    __func__));
2156 						tp->snd_limited = 2;
2157 					} else if (sent > 0)
2158 						++tp->snd_limited;
2159 					tp->snd_cwnd = oldcwnd;
2160 					goto drop;
2161 				}
2162 			} else
2163 				tp->t_dupacks = 0;
2164 			break;
2165 		}
2166 
2167 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2168 		    ("%s: th_ack <= snd_una", __func__));
2169 
2170 		/*
2171 		 * If the congestion window was inflated to account
2172 		 * for the other side's cached packets, retract it.
2173 		 */
2174 		if (V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
2175 			if (IN_FASTRECOVERY(tp)) {
2176 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2177 					if (tp->t_flags & TF_SACK_PERMIT)
2178 						tcp_sack_partialack(tp, th);
2179 					else
2180 						tcp_newreno_partial_ack(tp, th);
2181 				} else {
2182 					/*
2183 					 * Out of fast recovery.
2184 					 * Window inflation should have left us
2185 					 * with approximately snd_ssthresh
2186 					 * outstanding data.
2187 					 * But in case we would be inclined to
2188 					 * send a burst, better to do it via
2189 					 * the slow start mechanism.
2190 					 */
2191 					if (SEQ_GT(th->th_ack +
2192 							tp->snd_ssthresh,
2193 						   tp->snd_max))
2194 						tp->snd_cwnd = tp->snd_max -
2195 								th->th_ack +
2196 								tp->t_maxseg;
2197 					else
2198 						tp->snd_cwnd = tp->snd_ssthresh;
2199 				}
2200 			}
2201 		} else {
2202 			if (tp->t_dupacks >= tcprexmtthresh &&
2203 			    tp->snd_cwnd > tp->snd_ssthresh)
2204 				tp->snd_cwnd = tp->snd_ssthresh;
2205 		}
2206 		tp->t_dupacks = 0;
2207 		/*
2208 		 * If we reach this point, ACK is not a duplicate,
2209 		 *     i.e., it ACKs something we sent.
2210 		 */
2211 		if (tp->t_flags & TF_NEEDSYN) {
2212 			/*
2213 			 * T/TCP: Connection was half-synchronized, and our
2214 			 * SYN has been ACK'd (so connection is now fully
2215 			 * synchronized).  Go to non-starred state,
2216 			 * increment snd_una for ACK of SYN, and check if
2217 			 * we can do window scaling.
2218 			 */
2219 			tp->t_flags &= ~TF_NEEDSYN;
2220 			tp->snd_una++;
2221 			/* Do window scaling? */
2222 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2223 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2224 				tp->rcv_scale = tp->request_r_scale;
2225 				/* Send window already scaled. */
2226 			}
2227 		}
2228 
2229 process_ACK:
2230 		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2231 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2232 		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2233 		INP_WLOCK_ASSERT(tp->t_inpcb);
2234 
2235 		acked = th->th_ack - tp->snd_una;
2236 		TCPSTAT_INC(tcps_rcvackpack);
2237 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2238 
2239 		/*
2240 		 * If we just performed our first retransmit, and the ACK
2241 		 * arrives within our recovery window, then it was a mistake
2242 		 * to do the retransmit in the first place.  Recover our
2243 		 * original cwnd and ssthresh, and proceed to transmit where
2244 		 * we left off.
2245 		 */
2246 		if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0) {
2247 			TCPSTAT_INC(tcps_sndrexmitbad);
2248 			tp->snd_cwnd = tp->snd_cwnd_prev;
2249 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2250 			tp->snd_recover = tp->snd_recover_prev;
2251 			if (tp->t_flags & TF_WASFRECOVERY)
2252 				ENTER_FASTRECOVERY(tp);
2253 			tp->snd_nxt = tp->snd_max;
2254 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2255 		}
2256 
2257 		/*
2258 		 * If we have a timestamp reply, update smoothed
2259 		 * round trip time.  If no timestamp is present but
2260 		 * transmit timer is running and timed sequence
2261 		 * number was acked, update smoothed round trip time.
2262 		 * Since we now have an rtt measurement, cancel the
2263 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2264 		 * Recompute the initial retransmit timer.
2265 		 *
2266 		 * Some boxes send broken timestamp replies
2267 		 * during the SYN+ACK phase, ignore
2268 		 * timestamps of 0 or we could calculate a
2269 		 * huge RTT and blow up the retransmit timer.
2270 		 */
2271 		if ((to.to_flags & TOF_TS) != 0 &&
2272 		    to.to_tsecr) {
2273 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2274 				tp->t_rttlow = ticks - to.to_tsecr;
2275 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2276 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2277 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2278 				tp->t_rttlow = ticks - tp->t_rtttime;
2279 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2280 		}
2281 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2282 
2283 		/*
2284 		 * If all outstanding data is acked, stop retransmit
2285 		 * timer and remember to restart (more output or persist).
2286 		 * If there is more data to be acked, restart retransmit
2287 		 * timer, using current (possibly backed-off) value.
2288 		 */
2289 		if (th->th_ack == tp->snd_max) {
2290 			tcp_timer_activate(tp, TT_REXMT, 0);
2291 			needoutput = 1;
2292 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2293 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2294 
2295 		/*
2296 		 * If no data (only SYN) was ACK'd,
2297 		 *    skip rest of ACK processing.
2298 		 */
2299 		if (acked == 0)
2300 			goto step6;
2301 
2302 		/*
2303 		 * When new data is acked, open the congestion window.
2304 		 * Method depends on which congestion control state we're
2305 		 * in (slow start or cong avoid) and if ABC (RFC 3465) is
2306 		 * enabled.
2307 		 *
2308 		 * slow start: cwnd <= ssthresh
2309 		 * cong avoid: cwnd > ssthresh
2310 		 *
2311 		 * slow start and ABC (RFC 3465):
2312 		 *   Grow cwnd exponentially by the amount of data
2313 		 *   ACKed capping the max increment per ACK to
2314 		 *   (abc_l_var * maxseg) bytes.
2315 		 *
2316 		 * slow start without ABC (RFC 2581):
2317 		 *   Grow cwnd exponentially by maxseg per ACK.
2318 		 *
2319 		 * cong avoid and ABC (RFC 3465):
2320 		 *   Grow cwnd linearly by maxseg per RTT for each
2321 		 *   cwnd worth of ACKed data.
2322 		 *
2323 		 * cong avoid without ABC (RFC 2581):
2324 		 *   Grow cwnd linearly by approximately maxseg per RTT using
2325 		 *   maxseg^2 / cwnd per ACK as the increment.
2326 		 *   If cwnd > maxseg^2, fix the cwnd increment at 1 byte to
2327 		 *   avoid capping cwnd.
2328 		 */
2329 		if ((!V_tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2330 		    !IN_FASTRECOVERY(tp)) {
2331 			u_int cw = tp->snd_cwnd;
2332 			u_int incr = tp->t_maxseg;
2333 			/* In congestion avoidance? */
2334 			if (cw > tp->snd_ssthresh) {
2335 				if (V_tcp_do_rfc3465) {
2336 					tp->t_bytes_acked += acked;
2337 					if (tp->t_bytes_acked >= tp->snd_cwnd)
2338 						tp->t_bytes_acked -= cw;
2339 					else
2340 						incr = 0;
2341 				}
2342 				else
2343 					incr = max((incr * incr / cw), 1);
2344 			/*
2345 			 * In slow-start with ABC enabled and no RTO in sight?
2346 			 * (Must not use abc_l_var > 1 if slow starting after an
2347 			 * RTO. On RTO, snd_nxt = snd_una, so the snd_nxt ==
2348 			 * snd_max check is sufficient to handle this).
2349 			 */
2350 			} else if (V_tcp_do_rfc3465 &&
2351 			    tp->snd_nxt == tp->snd_max)
2352 				incr = min(acked,
2353 				    V_tcp_abc_l_var * tp->t_maxseg);
2354 			/* ABC is on by default, so (incr == 0) frequently. */
2355 			if (incr > 0)
2356 				tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2357 		}
2358 		SOCKBUF_LOCK(&so->so_snd);
2359 		if (acked > so->so_snd.sb_cc) {
2360 			tp->snd_wnd -= so->so_snd.sb_cc;
2361 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2362 			ourfinisacked = 1;
2363 		} else {
2364 			sbdrop_locked(&so->so_snd, acked);
2365 			tp->snd_wnd -= acked;
2366 			ourfinisacked = 0;
2367 		}
2368 		/* NB: sowwakeup_locked() does an implicit unlock. */
2369 		sowwakeup_locked(so);
2370 		/* Detect una wraparound. */
2371 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2372 		    !IN_FASTRECOVERY(tp) &&
2373 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2374 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2375 			tp->snd_recover = th->th_ack - 1;
2376 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2377 		    IN_FASTRECOVERY(tp) &&
2378 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2379 			EXIT_FASTRECOVERY(tp);
2380 			tp->t_bytes_acked = 0;
2381 		}
2382 		tp->snd_una = th->th_ack;
2383 		if (tp->t_flags & TF_SACK_PERMIT) {
2384 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2385 				tp->snd_recover = tp->snd_una;
2386 		}
2387 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2388 			tp->snd_nxt = tp->snd_una;
2389 
2390 		switch (tp->t_state) {
2391 
2392 		/*
2393 		 * In FIN_WAIT_1 STATE in addition to the processing
2394 		 * for the ESTABLISHED state if our FIN is now acknowledged
2395 		 * then enter FIN_WAIT_2.
2396 		 */
2397 		case TCPS_FIN_WAIT_1:
2398 			if (ourfinisacked) {
2399 				/*
2400 				 * If we can't receive any more
2401 				 * data, then closing user can proceed.
2402 				 * Starting the timer is contrary to the
2403 				 * specification, but if we don't get a FIN
2404 				 * we'll hang forever.
2405 				 *
2406 				 * XXXjl:
2407 				 * we should release the tp also, and use a
2408 				 * compressed state.
2409 				 */
2410 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2411 					int timeout;
2412 
2413 					soisdisconnected(so);
2414 					timeout = (tcp_fast_finwait2_recycle) ?
2415 						tcp_finwait2_timeout : tcp_maxidle;
2416 					tcp_timer_activate(tp, TT_2MSL, timeout);
2417 				}
2418 				tp->t_state = TCPS_FIN_WAIT_2;
2419 			}
2420 			break;
2421 
2422 		/*
2423 		 * In CLOSING STATE in addition to the processing for
2424 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2425 		 * then enter the TIME-WAIT state, otherwise ignore
2426 		 * the segment.
2427 		 */
2428 		case TCPS_CLOSING:
2429 			if (ourfinisacked) {
2430 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2431 				tcp_twstart(tp);
2432 				INP_INFO_WUNLOCK(&V_tcbinfo);
2433 				m_freem(m);
2434 				return;
2435 			}
2436 			break;
2437 
2438 		/*
2439 		 * In LAST_ACK, we may still be waiting for data to drain
2440 		 * and/or to be acked, as well as for the ack of our FIN.
2441 		 * If our FIN is now acknowledged, delete the TCB,
2442 		 * enter the closed state and return.
2443 		 */
2444 		case TCPS_LAST_ACK:
2445 			if (ourfinisacked) {
2446 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2447 				tp = tcp_close(tp);
2448 				goto drop;
2449 			}
2450 			break;
2451 		}
2452 	}
2453 
2454 step6:
2455 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2456 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2457 	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2458 	INP_WLOCK_ASSERT(tp->t_inpcb);
2459 
2460 	/*
2461 	 * Update window information.
2462 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2463 	 */
2464 	if ((thflags & TH_ACK) &&
2465 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2466 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2467 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2468 		/* keep track of pure window updates */
2469 		if (tlen == 0 &&
2470 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2471 			TCPSTAT_INC(tcps_rcvwinupd);
2472 		tp->snd_wnd = tiwin;
2473 		tp->snd_wl1 = th->th_seq;
2474 		tp->snd_wl2 = th->th_ack;
2475 		if (tp->snd_wnd > tp->max_sndwnd)
2476 			tp->max_sndwnd = tp->snd_wnd;
2477 		needoutput = 1;
2478 	}
2479 
2480 	/*
2481 	 * Process segments with URG.
2482 	 */
2483 	if ((thflags & TH_URG) && th->th_urp &&
2484 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2485 		/*
2486 		 * This is a kludge, but if we receive and accept
2487 		 * random urgent pointers, we'll crash in
2488 		 * soreceive.  It's hard to imagine someone
2489 		 * actually wanting to send this much urgent data.
2490 		 */
2491 		SOCKBUF_LOCK(&so->so_rcv);
2492 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2493 			th->th_urp = 0;			/* XXX */
2494 			thflags &= ~TH_URG;		/* XXX */
2495 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2496 			goto dodata;			/* XXX */
2497 		}
2498 		/*
2499 		 * If this segment advances the known urgent pointer,
2500 		 * then mark the data stream.  This should not happen
2501 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2502 		 * a FIN has been received from the remote side.
2503 		 * In these states we ignore the URG.
2504 		 *
2505 		 * According to RFC961 (Assigned Protocols),
2506 		 * the urgent pointer points to the last octet
2507 		 * of urgent data.  We continue, however,
2508 		 * to consider it to indicate the first octet
2509 		 * of data past the urgent section as the original
2510 		 * spec states (in one of two places).
2511 		 */
2512 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2513 			tp->rcv_up = th->th_seq + th->th_urp;
2514 			so->so_oobmark = so->so_rcv.sb_cc +
2515 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2516 			if (so->so_oobmark == 0)
2517 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2518 			sohasoutofband(so);
2519 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2520 		}
2521 		SOCKBUF_UNLOCK(&so->so_rcv);
2522 		/*
2523 		 * Remove out of band data so doesn't get presented to user.
2524 		 * This can happen independent of advancing the URG pointer,
2525 		 * but if two URG's are pending at once, some out-of-band
2526 		 * data may creep in... ick.
2527 		 */
2528 		if (th->th_urp <= (u_long)tlen &&
2529 		    !(so->so_options & SO_OOBINLINE)) {
2530 			/* hdr drop is delayed */
2531 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2532 		}
2533 	} else {
2534 		/*
2535 		 * If no out of band data is expected,
2536 		 * pull receive urgent pointer along
2537 		 * with the receive window.
2538 		 */
2539 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2540 			tp->rcv_up = tp->rcv_nxt;
2541 	}
2542 dodata:							/* XXX */
2543 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2544 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2545 	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2546 	INP_WLOCK_ASSERT(tp->t_inpcb);
2547 
2548 	/*
2549 	 * Process the segment text, merging it into the TCP sequencing queue,
2550 	 * and arranging for acknowledgment of receipt if necessary.
2551 	 * This process logically involves adjusting tp->rcv_wnd as data
2552 	 * is presented to the user (this happens in tcp_usrreq.c,
2553 	 * case PRU_RCVD).  If a FIN has already been received on this
2554 	 * connection then we just ignore the text.
2555 	 */
2556 	if ((tlen || (thflags & TH_FIN)) &&
2557 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2558 		tcp_seq save_start = th->th_seq;
2559 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2560 		/*
2561 		 * Insert segment which includes th into TCP reassembly queue
2562 		 * with control block tp.  Set thflags to whether reassembly now
2563 		 * includes a segment with FIN.  This handles the common case
2564 		 * inline (segment is the next to be received on an established
2565 		 * connection, and the queue is empty), avoiding linkage into
2566 		 * and removal from the queue and repetition of various
2567 		 * conversions.
2568 		 * Set DELACK for segments received in order, but ack
2569 		 * immediately when segments are out of order (so
2570 		 * fast retransmit can work).
2571 		 */
2572 		if (th->th_seq == tp->rcv_nxt &&
2573 		    LIST_EMPTY(&tp->t_segq) &&
2574 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2575 			if (DELAY_ACK(tp))
2576 				tp->t_flags |= TF_DELACK;
2577 			else
2578 				tp->t_flags |= TF_ACKNOW;
2579 			tp->rcv_nxt += tlen;
2580 			thflags = th->th_flags & TH_FIN;
2581 			TCPSTAT_INC(tcps_rcvpack);
2582 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2583 			ND6_HINT(tp);
2584 			SOCKBUF_LOCK(&so->so_rcv);
2585 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2586 				m_freem(m);
2587 			else
2588 				sbappendstream_locked(&so->so_rcv, m);
2589 			/* NB: sorwakeup_locked() does an implicit unlock. */
2590 			sorwakeup_locked(so);
2591 		} else {
2592 			/*
2593 			 * XXX: Due to the header drop above "th" is
2594 			 * theoretically invalid by now.  Fortunately
2595 			 * m_adj() doesn't actually frees any mbufs
2596 			 * when trimming from the head.
2597 			 */
2598 			thflags = tcp_reass(tp, th, &tlen, m);
2599 			tp->t_flags |= TF_ACKNOW;
2600 		}
2601 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2602 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2603 #if 0
2604 		/*
2605 		 * Note the amount of data that peer has sent into
2606 		 * our window, in order to estimate the sender's
2607 		 * buffer size.
2608 		 * XXX: Unused.
2609 		 */
2610 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2611 #endif
2612 	} else {
2613 		m_freem(m);
2614 		thflags &= ~TH_FIN;
2615 	}
2616 
2617 	/*
2618 	 * If FIN is received ACK the FIN and let the user know
2619 	 * that the connection is closing.
2620 	 */
2621 	if (thflags & TH_FIN) {
2622 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2623 			socantrcvmore(so);
2624 			/*
2625 			 * If connection is half-synchronized
2626 			 * (ie NEEDSYN flag on) then delay ACK,
2627 			 * so it may be piggybacked when SYN is sent.
2628 			 * Otherwise, since we received a FIN then no
2629 			 * more input can be expected, send ACK now.
2630 			 */
2631 			if (tp->t_flags & TF_NEEDSYN)
2632 				tp->t_flags |= TF_DELACK;
2633 			else
2634 				tp->t_flags |= TF_ACKNOW;
2635 			tp->rcv_nxt++;
2636 		}
2637 		switch (tp->t_state) {
2638 
2639 		/*
2640 		 * In SYN_RECEIVED and ESTABLISHED STATES
2641 		 * enter the CLOSE_WAIT state.
2642 		 */
2643 		case TCPS_SYN_RECEIVED:
2644 			tp->t_starttime = ticks;
2645 			/* FALLTHROUGH */
2646 		case TCPS_ESTABLISHED:
2647 			tp->t_state = TCPS_CLOSE_WAIT;
2648 			break;
2649 
2650 		/*
2651 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2652 		 * enter the CLOSING state.
2653 		 */
2654 		case TCPS_FIN_WAIT_1:
2655 			tp->t_state = TCPS_CLOSING;
2656 			break;
2657 
2658 		/*
2659 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2660 		 * starting the time-wait timer, turning off the other
2661 		 * standard timers.
2662 		 */
2663 		case TCPS_FIN_WAIT_2:
2664 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2665 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2666 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2667 			    ti_locked));
2668 
2669 			tcp_twstart(tp);
2670 			INP_INFO_WUNLOCK(&V_tcbinfo);
2671 			return;
2672 		}
2673 	}
2674 	if (ti_locked == TI_RLOCKED)
2675 		INP_INFO_RUNLOCK(&V_tcbinfo);
2676 	else if (ti_locked == TI_WLOCKED)
2677 		INP_INFO_WUNLOCK(&V_tcbinfo);
2678 	else
2679 		panic("%s: dodata epilogue ti_locked %d", __func__,
2680 		    ti_locked);
2681 	ti_locked = TI_UNLOCKED;
2682 
2683 #ifdef TCPDEBUG
2684 	if (so->so_options & SO_DEBUG)
2685 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2686 			  &tcp_savetcp, 0);
2687 #endif
2688 
2689 	/*
2690 	 * Return any desired output.
2691 	 */
2692 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2693 		(void) tcp_output(tp);
2694 
2695 check_delack:
2696 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2697 	    __func__, ti_locked));
2698 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2699 	INP_WLOCK_ASSERT(tp->t_inpcb);
2700 
2701 	if (tp->t_flags & TF_DELACK) {
2702 		tp->t_flags &= ~TF_DELACK;
2703 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2704 	}
2705 	INP_WUNLOCK(tp->t_inpcb);
2706 	return;
2707 
2708 dropafterack:
2709 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2710 	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2711 
2712 	/*
2713 	 * Generate an ACK dropping incoming segment if it occupies
2714 	 * sequence space, where the ACK reflects our state.
2715 	 *
2716 	 * We can now skip the test for the RST flag since all
2717 	 * paths to this code happen after packets containing
2718 	 * RST have been dropped.
2719 	 *
2720 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2721 	 * segment we received passes the SYN-RECEIVED ACK test.
2722 	 * If it fails send a RST.  This breaks the loop in the
2723 	 * "LAND" DoS attack, and also prevents an ACK storm
2724 	 * between two listening ports that have been sent forged
2725 	 * SYN segments, each with the source address of the other.
2726 	 */
2727 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2728 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2729 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2730 		rstreason = BANDLIM_RST_OPENPORT;
2731 		goto dropwithreset;
2732 	}
2733 #ifdef TCPDEBUG
2734 	if (so->so_options & SO_DEBUG)
2735 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2736 			  &tcp_savetcp, 0);
2737 #endif
2738 	if (ti_locked == TI_RLOCKED)
2739 		INP_INFO_RUNLOCK(&V_tcbinfo);
2740 	else if (ti_locked == TI_WLOCKED)
2741 		INP_INFO_WUNLOCK(&V_tcbinfo);
2742 	else
2743 		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2744 		    ti_locked);
2745 	ti_locked = TI_UNLOCKED;
2746 
2747 	tp->t_flags |= TF_ACKNOW;
2748 	(void) tcp_output(tp);
2749 	INP_WUNLOCK(tp->t_inpcb);
2750 	m_freem(m);
2751 	return;
2752 
2753 dropwithreset:
2754 	if (ti_locked == TI_RLOCKED)
2755 		INP_INFO_RUNLOCK(&V_tcbinfo);
2756 	else if (ti_locked == TI_WLOCKED)
2757 		INP_INFO_WUNLOCK(&V_tcbinfo);
2758 	else
2759 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2760 	ti_locked = TI_UNLOCKED;
2761 
2762 	if (tp != NULL) {
2763 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2764 		INP_WUNLOCK(tp->t_inpcb);
2765 	} else
2766 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2767 	return;
2768 
2769 drop:
2770 	if (ti_locked == TI_RLOCKED)
2771 		INP_INFO_RUNLOCK(&V_tcbinfo);
2772 	else if (ti_locked == TI_WLOCKED)
2773 		INP_INFO_WUNLOCK(&V_tcbinfo);
2774 #ifdef INVARIANTS
2775 	else
2776 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2777 #endif
2778 	ti_locked = TI_UNLOCKED;
2779 
2780 	/*
2781 	 * Drop space held by incoming segment and return.
2782 	 */
2783 #ifdef TCPDEBUG
2784 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2785 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2786 			  &tcp_savetcp, 0);
2787 #endif
2788 	if (tp != NULL)
2789 		INP_WUNLOCK(tp->t_inpcb);
2790 	m_freem(m);
2791 }
2792 
2793 /*
2794  * Issue RST and make ACK acceptable to originator of segment.
2795  * The mbuf must still include the original packet header.
2796  * tp may be NULL.
2797  */
2798 static void
2799 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2800     int tlen, int rstreason)
2801 {
2802 	struct ip *ip;
2803 #ifdef INET6
2804 	struct ip6_hdr *ip6;
2805 #endif
2806 
2807 	if (tp != NULL) {
2808 		INP_WLOCK_ASSERT(tp->t_inpcb);
2809 	}
2810 
2811 	/* Don't bother if destination was broadcast/multicast. */
2812 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2813 		goto drop;
2814 #ifdef INET6
2815 	if (mtod(m, struct ip *)->ip_v == 6) {
2816 		ip6 = mtod(m, struct ip6_hdr *);
2817 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2818 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2819 			goto drop;
2820 		/* IPv6 anycast check is done at tcp6_input() */
2821 	} else
2822 #endif
2823 	{
2824 		ip = mtod(m, struct ip *);
2825 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2826 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2827 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2828 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2829 			goto drop;
2830 	}
2831 
2832 	/* Perform bandwidth limiting. */
2833 	if (badport_bandlim(rstreason) < 0)
2834 		goto drop;
2835 
2836 	/* tcp_respond consumes the mbuf chain. */
2837 	if (th->th_flags & TH_ACK) {
2838 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2839 		    th->th_ack, TH_RST);
2840 	} else {
2841 		if (th->th_flags & TH_SYN)
2842 			tlen++;
2843 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2844 		    (tcp_seq)0, TH_RST|TH_ACK);
2845 	}
2846 	return;
2847 drop:
2848 	m_freem(m);
2849 }
2850 
2851 /*
2852  * Parse TCP options and place in tcpopt.
2853  */
2854 static void
2855 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2856 {
2857 	int opt, optlen;
2858 
2859 	to->to_flags = 0;
2860 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2861 		opt = cp[0];
2862 		if (opt == TCPOPT_EOL)
2863 			break;
2864 		if (opt == TCPOPT_NOP)
2865 			optlen = 1;
2866 		else {
2867 			if (cnt < 2)
2868 				break;
2869 			optlen = cp[1];
2870 			if (optlen < 2 || optlen > cnt)
2871 				break;
2872 		}
2873 		switch (opt) {
2874 		case TCPOPT_MAXSEG:
2875 			if (optlen != TCPOLEN_MAXSEG)
2876 				continue;
2877 			if (!(flags & TO_SYN))
2878 				continue;
2879 			to->to_flags |= TOF_MSS;
2880 			bcopy((char *)cp + 2,
2881 			    (char *)&to->to_mss, sizeof(to->to_mss));
2882 			to->to_mss = ntohs(to->to_mss);
2883 			break;
2884 		case TCPOPT_WINDOW:
2885 			if (optlen != TCPOLEN_WINDOW)
2886 				continue;
2887 			if (!(flags & TO_SYN))
2888 				continue;
2889 			to->to_flags |= TOF_SCALE;
2890 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2891 			break;
2892 		case TCPOPT_TIMESTAMP:
2893 			if (optlen != TCPOLEN_TIMESTAMP)
2894 				continue;
2895 			to->to_flags |= TOF_TS;
2896 			bcopy((char *)cp + 2,
2897 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2898 			to->to_tsval = ntohl(to->to_tsval);
2899 			bcopy((char *)cp + 6,
2900 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2901 			to->to_tsecr = ntohl(to->to_tsecr);
2902 			break;
2903 #ifdef TCP_SIGNATURE
2904 		/*
2905 		 * XXX In order to reply to a host which has set the
2906 		 * TCP_SIGNATURE option in its initial SYN, we have to
2907 		 * record the fact that the option was observed here
2908 		 * for the syncache code to perform the correct response.
2909 		 */
2910 		case TCPOPT_SIGNATURE:
2911 			if (optlen != TCPOLEN_SIGNATURE)
2912 				continue;
2913 			to->to_flags |= TOF_SIGNATURE;
2914 			to->to_signature = cp + 2;
2915 			break;
2916 #endif
2917 		case TCPOPT_SACK_PERMITTED:
2918 			if (optlen != TCPOLEN_SACK_PERMITTED)
2919 				continue;
2920 			if (!(flags & TO_SYN))
2921 				continue;
2922 			if (!V_tcp_do_sack)
2923 				continue;
2924 			to->to_flags |= TOF_SACKPERM;
2925 			break;
2926 		case TCPOPT_SACK:
2927 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2928 				continue;
2929 			if (flags & TO_SYN)
2930 				continue;
2931 			to->to_flags |= TOF_SACK;
2932 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2933 			to->to_sacks = cp + 2;
2934 			TCPSTAT_INC(tcps_sack_rcv_blocks);
2935 			break;
2936 		default:
2937 			continue;
2938 		}
2939 	}
2940 }
2941 
2942 /*
2943  * Pull out of band byte out of a segment so
2944  * it doesn't appear in the user's data queue.
2945  * It is still reflected in the segment length for
2946  * sequencing purposes.
2947  */
2948 static void
2949 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2950     int off)
2951 {
2952 	int cnt = off + th->th_urp - 1;
2953 
2954 	while (cnt >= 0) {
2955 		if (m->m_len > cnt) {
2956 			char *cp = mtod(m, caddr_t) + cnt;
2957 			struct tcpcb *tp = sototcpcb(so);
2958 
2959 			INP_WLOCK_ASSERT(tp->t_inpcb);
2960 
2961 			tp->t_iobc = *cp;
2962 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2963 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2964 			m->m_len--;
2965 			if (m->m_flags & M_PKTHDR)
2966 				m->m_pkthdr.len--;
2967 			return;
2968 		}
2969 		cnt -= m->m_len;
2970 		m = m->m_next;
2971 		if (m == NULL)
2972 			break;
2973 	}
2974 	panic("tcp_pulloutofband");
2975 }
2976 
2977 /*
2978  * Collect new round-trip time estimate
2979  * and update averages and current timeout.
2980  */
2981 static void
2982 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2983 {
2984 	int delta;
2985 
2986 	INP_WLOCK_ASSERT(tp->t_inpcb);
2987 
2988 	TCPSTAT_INC(tcps_rttupdated);
2989 	tp->t_rttupdated++;
2990 	if (tp->t_srtt != 0) {
2991 		/*
2992 		 * srtt is stored as fixed point with 5 bits after the
2993 		 * binary point (i.e., scaled by 8).  The following magic
2994 		 * is equivalent to the smoothing algorithm in rfc793 with
2995 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2996 		 * point).  Adjust rtt to origin 0.
2997 		 */
2998 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2999 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3000 
3001 		if ((tp->t_srtt += delta) <= 0)
3002 			tp->t_srtt = 1;
3003 
3004 		/*
3005 		 * We accumulate a smoothed rtt variance (actually, a
3006 		 * smoothed mean difference), then set the retransmit
3007 		 * timer to smoothed rtt + 4 times the smoothed variance.
3008 		 * rttvar is stored as fixed point with 4 bits after the
3009 		 * binary point (scaled by 16).  The following is
3010 		 * equivalent to rfc793 smoothing with an alpha of .75
3011 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3012 		 * rfc793's wired-in beta.
3013 		 */
3014 		if (delta < 0)
3015 			delta = -delta;
3016 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3017 		if ((tp->t_rttvar += delta) <= 0)
3018 			tp->t_rttvar = 1;
3019 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3020 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3021 	} else {
3022 		/*
3023 		 * No rtt measurement yet - use the unsmoothed rtt.
3024 		 * Set the variance to half the rtt (so our first
3025 		 * retransmit happens at 3*rtt).
3026 		 */
3027 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3028 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3029 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3030 	}
3031 	tp->t_rtttime = 0;
3032 	tp->t_rxtshift = 0;
3033 
3034 	/*
3035 	 * the retransmit should happen at rtt + 4 * rttvar.
3036 	 * Because of the way we do the smoothing, srtt and rttvar
3037 	 * will each average +1/2 tick of bias.  When we compute
3038 	 * the retransmit timer, we want 1/2 tick of rounding and
3039 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3040 	 * firing of the timer.  The bias will give us exactly the
3041 	 * 1.5 tick we need.  But, because the bias is
3042 	 * statistical, we have to test that we don't drop below
3043 	 * the minimum feasible timer (which is 2 ticks).
3044 	 */
3045 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3046 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3047 
3048 	/*
3049 	 * We received an ack for a packet that wasn't retransmitted;
3050 	 * it is probably safe to discard any error indications we've
3051 	 * received recently.  This isn't quite right, but close enough
3052 	 * for now (a route might have failed after we sent a segment,
3053 	 * and the return path might not be symmetrical).
3054 	 */
3055 	tp->t_softerror = 0;
3056 }
3057 
3058 /*
3059  * Determine a reasonable value for maxseg size.
3060  * If the route is known, check route for mtu.
3061  * If none, use an mss that can be handled on the outgoing
3062  * interface without forcing IP to fragment; if bigger than
3063  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3064  * to utilize large mbufs.  If no route is found, route has no mtu,
3065  * or the destination isn't local, use a default, hopefully conservative
3066  * size (usually 512 or the default IP max size, but no more than the mtu
3067  * of the interface), as we can't discover anything about intervening
3068  * gateways or networks.  We also initialize the congestion/slow start
3069  * window to be a single segment if the destination isn't local.
3070  * While looking at the routing entry, we also initialize other path-dependent
3071  * parameters from pre-set or cached values in the routing entry.
3072  *
3073  * Also take into account the space needed for options that we
3074  * send regularly.  Make maxseg shorter by that amount to assure
3075  * that we can send maxseg amount of data even when the options
3076  * are present.  Store the upper limit of the length of options plus
3077  * data in maxopd.
3078  *
3079  * In case of T/TCP, we call this routine during implicit connection
3080  * setup as well (offer = -1), to initialize maxseg from the cached
3081  * MSS of our peer.
3082  *
3083  * NOTE that this routine is only called when we process an incoming
3084  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3085  */
3086 void
3087 tcp_mss_update(struct tcpcb *tp, int offer,
3088     struct hc_metrics_lite *metricptr, int *mtuflags)
3089 {
3090 	int mss;
3091 	u_long maxmtu;
3092 	struct inpcb *inp = tp->t_inpcb;
3093 	struct hc_metrics_lite metrics;
3094 	int origoffer = offer;
3095 #ifdef INET6
3096 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3097 	size_t min_protoh = isipv6 ?
3098 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3099 			    sizeof (struct tcpiphdr);
3100 #else
3101 	const size_t min_protoh = sizeof(struct tcpiphdr);
3102 #endif
3103 
3104 	INP_WLOCK_ASSERT(tp->t_inpcb);
3105 
3106 	/* Initialize. */
3107 #ifdef INET6
3108 	if (isipv6) {
3109 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3110 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3111 	} else
3112 #endif
3113 	{
3114 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3115 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3116 	}
3117 
3118 	/*
3119 	 * No route to sender, stay with default mss and return.
3120 	 */
3121 	if (maxmtu == 0) {
3122 		/*
3123 		 * In case we return early we need to initialize metrics
3124 		 * to a defined state as tcp_hc_get() would do for us
3125 		 * if there was no cache hit.
3126 		 */
3127 		if (metricptr != NULL)
3128 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3129 		return;
3130 	}
3131 
3132 	/* What have we got? */
3133 	switch (offer) {
3134 		case 0:
3135 			/*
3136 			 * Offer == 0 means that there was no MSS on the SYN
3137 			 * segment, in this case we use tcp_mssdflt as
3138 			 * already assigned to t_maxopd above.
3139 			 */
3140 			offer = tp->t_maxopd;
3141 			break;
3142 
3143 		case -1:
3144 			/*
3145 			 * Offer == -1 means that we didn't receive SYN yet.
3146 			 */
3147 			/* FALLTHROUGH */
3148 
3149 		default:
3150 			/*
3151 			 * Prevent DoS attack with too small MSS. Round up
3152 			 * to at least minmss.
3153 			 */
3154 			offer = max(offer, V_tcp_minmss);
3155 	}
3156 
3157 	/*
3158 	 * rmx information is now retrieved from tcp_hostcache.
3159 	 */
3160 	tcp_hc_get(&inp->inp_inc, &metrics);
3161 	if (metricptr != NULL)
3162 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3163 
3164 	/*
3165 	 * If there's a discovered mtu int tcp hostcache, use it
3166 	 * else, use the link mtu.
3167 	 */
3168 	if (metrics.rmx_mtu)
3169 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3170 	else {
3171 #ifdef INET6
3172 		if (isipv6) {
3173 			mss = maxmtu - min_protoh;
3174 			if (!V_path_mtu_discovery &&
3175 			    !in6_localaddr(&inp->in6p_faddr))
3176 				mss = min(mss, V_tcp_v6mssdflt);
3177 		} else
3178 #endif
3179 		{
3180 			mss = maxmtu - min_protoh;
3181 			if (!V_path_mtu_discovery &&
3182 			    !in_localaddr(inp->inp_faddr))
3183 				mss = min(mss, V_tcp_mssdflt);
3184 		}
3185 		/*
3186 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3187 		 * probably violates the TCP spec.
3188 		 * The problem is that, since we don't know the
3189 		 * other end's MSS, we are supposed to use a conservative
3190 		 * default.  But, if we do that, then MTU discovery will
3191 		 * never actually take place, because the conservative
3192 		 * default is much less than the MTUs typically seen
3193 		 * on the Internet today.  For the moment, we'll sweep
3194 		 * this under the carpet.
3195 		 *
3196 		 * The conservative default might not actually be a problem
3197 		 * if the only case this occurs is when sending an initial
3198 		 * SYN with options and data to a host we've never talked
3199 		 * to before.  Then, they will reply with an MSS value which
3200 		 * will get recorded and the new parameters should get
3201 		 * recomputed.  For Further Study.
3202 		 */
3203 	}
3204 	mss = min(mss, offer);
3205 
3206 	/*
3207 	 * Sanity check: make sure that maxopd will be large
3208 	 * enough to allow some data on segments even if the
3209 	 * all the option space is used (40bytes).  Otherwise
3210 	 * funny things may happen in tcp_output.
3211 	 */
3212 	mss = max(mss, 64);
3213 
3214 	/*
3215 	 * maxopd stores the maximum length of data AND options
3216 	 * in a segment; maxseg is the amount of data in a normal
3217 	 * segment.  We need to store this value (maxopd) apart
3218 	 * from maxseg, because now every segment carries options
3219 	 * and thus we normally have somewhat less data in segments.
3220 	 */
3221 	tp->t_maxopd = mss;
3222 
3223 	/*
3224 	 * origoffer==-1 indicates that no segments were received yet.
3225 	 * In this case we just guess.
3226 	 */
3227 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3228 	    (origoffer == -1 ||
3229 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3230 		mss -= TCPOLEN_TSTAMP_APPA;
3231 
3232 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3233 	if (mss > MCLBYTES)
3234 		mss &= ~(MCLBYTES-1);
3235 #else
3236 	if (mss > MCLBYTES)
3237 		mss = mss / MCLBYTES * MCLBYTES;
3238 #endif
3239 	tp->t_maxseg = mss;
3240 }
3241 
3242 void
3243 tcp_mss(struct tcpcb *tp, int offer)
3244 {
3245 	int rtt, mss;
3246 	u_long bufsize;
3247 	struct inpcb *inp;
3248 	struct socket *so;
3249 	struct hc_metrics_lite metrics;
3250 	int mtuflags = 0;
3251 #ifdef INET6
3252 	int isipv6;
3253 #endif
3254 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3255 
3256 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3257 
3258 	mss = tp->t_maxseg;
3259 	inp = tp->t_inpcb;
3260 #ifdef INET6
3261 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3262 #endif
3263 
3264 	/*
3265 	 * If there's a pipesize, change the socket buffer to that size,
3266 	 * don't change if sb_hiwat is different than default (then it
3267 	 * has been changed on purpose with setsockopt).
3268 	 * Make the socket buffers an integral number of mss units;
3269 	 * if the mss is larger than the socket buffer, decrease the mss.
3270 	 */
3271 	so = inp->inp_socket;
3272 	SOCKBUF_LOCK(&so->so_snd);
3273 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3274 		bufsize = metrics.rmx_sendpipe;
3275 	else
3276 		bufsize = so->so_snd.sb_hiwat;
3277 	if (bufsize < mss)
3278 		mss = bufsize;
3279 	else {
3280 		bufsize = roundup(bufsize, mss);
3281 		if (bufsize > sb_max)
3282 			bufsize = sb_max;
3283 		if (bufsize > so->so_snd.sb_hiwat)
3284 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3285 	}
3286 	SOCKBUF_UNLOCK(&so->so_snd);
3287 	tp->t_maxseg = mss;
3288 
3289 	SOCKBUF_LOCK(&so->so_rcv);
3290 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3291 		bufsize = metrics.rmx_recvpipe;
3292 	else
3293 		bufsize = so->so_rcv.sb_hiwat;
3294 	if (bufsize > mss) {
3295 		bufsize = roundup(bufsize, mss);
3296 		if (bufsize > sb_max)
3297 			bufsize = sb_max;
3298 		if (bufsize > so->so_rcv.sb_hiwat)
3299 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3300 	}
3301 	SOCKBUF_UNLOCK(&so->so_rcv);
3302 	/*
3303 	 * While we're here, check the others too.
3304 	 */
3305 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3306 		tp->t_srtt = rtt;
3307 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3308 		TCPSTAT_INC(tcps_usedrtt);
3309 		if (metrics.rmx_rttvar) {
3310 			tp->t_rttvar = metrics.rmx_rttvar;
3311 			TCPSTAT_INC(tcps_usedrttvar);
3312 		} else {
3313 			/* default variation is +- 1 rtt */
3314 			tp->t_rttvar =
3315 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3316 		}
3317 		TCPT_RANGESET(tp->t_rxtcur,
3318 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3319 			      tp->t_rttmin, TCPTV_REXMTMAX);
3320 	}
3321 	if (metrics.rmx_ssthresh) {
3322 		/*
3323 		 * There's some sort of gateway or interface
3324 		 * buffer limit on the path.  Use this to set
3325 		 * the slow start threshhold, but set the
3326 		 * threshold to no less than 2*mss.
3327 		 */
3328 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3329 		TCPSTAT_INC(tcps_usedssthresh);
3330 	}
3331 	if (metrics.rmx_bandwidth)
3332 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3333 
3334 	/*
3335 	 * Set the slow-start flight size depending on whether this
3336 	 * is a local network or not.
3337 	 *
3338 	 * Extend this so we cache the cwnd too and retrieve it here.
3339 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3340 	 * have previous experience with the remote host. Be careful
3341 	 * not make cwnd bigger than remote receive window or our own
3342 	 * send socket buffer. Maybe put some additional upper bound
3343 	 * on the retrieved cwnd. Should do incremental updates to
3344 	 * hostcache when cwnd collapses so next connection doesn't
3345 	 * overloads the path again.
3346 	 *
3347 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3348 	 * We currently check only in syncache_socket for that.
3349 	 */
3350 #define TCP_METRICS_CWND
3351 #ifdef TCP_METRICS_CWND
3352 	if (metrics.rmx_cwnd)
3353 		tp->snd_cwnd = max(mss,
3354 				min(metrics.rmx_cwnd / 2,
3355 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3356 	else
3357 #endif
3358 	if (V_tcp_do_rfc3390)
3359 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3360 #ifdef INET6
3361 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3362 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3363 #else
3364 	else if (in_localaddr(inp->inp_faddr))
3365 #endif
3366 		tp->snd_cwnd = mss * V_ss_fltsz_local;
3367 	else
3368 		tp->snd_cwnd = mss * V_ss_fltsz;
3369 
3370 	/* Check the interface for TSO capabilities. */
3371 	if (mtuflags & CSUM_TSO)
3372 		tp->t_flags |= TF_TSO;
3373 }
3374 
3375 /*
3376  * Determine the MSS option to send on an outgoing SYN.
3377  */
3378 int
3379 tcp_mssopt(struct in_conninfo *inc)
3380 {
3381 	int mss = 0;
3382 	u_long maxmtu = 0;
3383 	u_long thcmtu = 0;
3384 	size_t min_protoh;
3385 
3386 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3387 
3388 #ifdef INET6
3389 	if (inc->inc_flags & INC_ISIPV6) {
3390 		mss = V_tcp_v6mssdflt;
3391 		maxmtu = tcp_maxmtu6(inc, NULL);
3392 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3393 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3394 	} else
3395 #endif
3396 	{
3397 		mss = V_tcp_mssdflt;
3398 		maxmtu = tcp_maxmtu(inc, NULL);
3399 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3400 		min_protoh = sizeof(struct tcpiphdr);
3401 	}
3402 	if (maxmtu && thcmtu)
3403 		mss = min(maxmtu, thcmtu) - min_protoh;
3404 	else if (maxmtu || thcmtu)
3405 		mss = max(maxmtu, thcmtu) - min_protoh;
3406 
3407 	return (mss);
3408 }
3409 
3410 
3411 /*
3412  * On a partial ack arrives, force the retransmission of the
3413  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3414  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3415  * be started again.
3416  */
3417 static void
3418 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3419 {
3420 	tcp_seq onxt = tp->snd_nxt;
3421 	u_long  ocwnd = tp->snd_cwnd;
3422 
3423 	INP_WLOCK_ASSERT(tp->t_inpcb);
3424 
3425 	tcp_timer_activate(tp, TT_REXMT, 0);
3426 	tp->t_rtttime = 0;
3427 	tp->snd_nxt = th->th_ack;
3428 	/*
3429 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3430 	 * (tp->snd_una has not yet been updated when this function is called.)
3431 	 */
3432 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3433 	tp->t_flags |= TF_ACKNOW;
3434 	(void) tcp_output(tp);
3435 	tp->snd_cwnd = ocwnd;
3436 	if (SEQ_GT(onxt, tp->snd_nxt))
3437 		tp->snd_nxt = onxt;
3438 	/*
3439 	 * Partial window deflation.  Relies on fact that tp->snd_una
3440 	 * not updated yet.
3441 	 */
3442 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3443 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3444 	else
3445 		tp->snd_cwnd = 0;
3446 	tp->snd_cwnd += tp->t_maxseg;
3447 }
3448