xref: /freebsd/sys/netinet/tcp_input.c (revision 79457a8ad150d784f6c02c5e65e8b75c6836e651)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/arb.h>
62 #include <sys/kernel.h>
63 #ifdef TCP_HHOOK
64 #include <sys/hhook.h>
65 #endif
66 #include <sys/malloc.h>
67 #include <sys/mbuf.h>
68 #include <sys/proc.h>		/* for proc0 declaration */
69 #include <sys/protosw.h>
70 #include <sys/qmath.h>
71 #include <sys/sdt.h>
72 #include <sys/signalvar.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/systm.h>
78 #include <sys/stats.h>
79 
80 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
81 
82 #include <vm/uma.h>
83 
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/route.h>
87 #include <net/vnet.h>
88 
89 #define TCPSTATES		/* for logging */
90 
91 #include <netinet/in.h>
92 #include <netinet/in_kdtrace.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
97 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
98 #include <netinet/ip_var.h>
99 #include <netinet/ip_options.h>
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/nd6.h>
106 #include <netinet/tcp.h>
107 #include <netinet/tcp_fsm.h>
108 #include <netinet/tcp_log_buf.h>
109 #include <netinet/tcp_seq.h>
110 #include <netinet/tcp_timer.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/tcp6_var.h>
113 #include <netinet/tcpip.h>
114 #include <netinet/cc/cc.h>
115 #include <netinet/tcp_fastopen.h>
116 #ifdef TCPPCAP
117 #include <netinet/tcp_pcap.h>
118 #endif
119 #include <netinet/tcp_syncache.h>
120 #ifdef TCPDEBUG
121 #include <netinet/tcp_debug.h>
122 #endif /* TCPDEBUG */
123 #ifdef TCP_OFFLOAD
124 #include <netinet/tcp_offload.h>
125 #endif
126 
127 #include <netipsec/ipsec_support.h>
128 
129 #include <machine/in_cksum.h>
130 
131 #include <security/mac/mac_framework.h>
132 
133 const int tcprexmtthresh = 3;
134 
135 int tcp_log_in_vain = 0;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
137     &tcp_log_in_vain, 0,
138     "Log all incoming TCP segments to closed ports");
139 
140 VNET_DEFINE(int, blackhole) = 0;
141 #define	V_blackhole		VNET(blackhole)
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
143     &VNET_NAME(blackhole), 0,
144     "Do not send RST on segments to closed ports");
145 
146 VNET_DEFINE(int, tcp_delack_enabled) = 1;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
148     &VNET_NAME(tcp_delack_enabled), 0,
149     "Delay ACK to try and piggyback it onto a data packet");
150 
151 VNET_DEFINE(int, drop_synfin) = 0;
152 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
153     &VNET_NAME(drop_synfin), 0,
154     "Drop TCP packets with SYN+FIN set");
155 
156 VNET_DEFINE(int, tcp_do_newcwv) = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
158     &VNET_NAME(tcp_do_newcwv), 0,
159     "Enable New Congestion Window Validation per RFC7661");
160 
161 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
163     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
164     "Use calculated pipe/in-flight bytes per RFC 6675");
165 
166 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
168     &VNET_NAME(tcp_do_rfc3042), 0,
169     "Enable RFC 3042 (Limited Transmit)");
170 
171 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
173     &VNET_NAME(tcp_do_rfc3390), 0,
174     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
175 
176 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
178     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
179     "Slow-start flight size (initial congestion window) in number of segments");
180 
181 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
183     &VNET_NAME(tcp_do_rfc3465), 0,
184     "Enable RFC 3465 (Appropriate Byte Counting)");
185 
186 VNET_DEFINE(int, tcp_abc_l_var) = 2;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
188     &VNET_NAME(tcp_abc_l_var), 2,
189     "Cap the max cwnd increment during slow-start to this number of segments");
190 
191 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
192 
193 VNET_DEFINE(int, tcp_do_ecn) = 2;
194 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
195     &VNET_NAME(tcp_do_ecn), 0,
196     "TCP ECN support");
197 
198 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
199 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
200     &VNET_NAME(tcp_ecn_maxretries), 0,
201     "Max retries before giving up on ECN");
202 
203 VNET_DEFINE(int, tcp_insecure_syn) = 0;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
205     &VNET_NAME(tcp_insecure_syn), 0,
206     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
207 
208 VNET_DEFINE(int, tcp_insecure_rst) = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
210     &VNET_NAME(tcp_insecure_rst), 0,
211     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
212 
213 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
214 #define	V_tcp_recvspace	VNET(tcp_recvspace)
215 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
216     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
217 
218 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
220     &VNET_NAME(tcp_do_autorcvbuf), 0,
221     "Enable automatic receive buffer sizing");
222 
223 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
225     &VNET_NAME(tcp_autorcvbuf_max), 0,
226     "Max size of automatic receive buffer");
227 
228 VNET_DEFINE(struct inpcbhead, tcb);
229 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
230 VNET_DEFINE(struct inpcbinfo, tcbinfo);
231 
232 /*
233  * TCP statistics are stored in an array of counter(9)s, which size matches
234  * size of struct tcpstat.  TCP running connection count is a regular array.
235  */
236 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
237 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
238     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
239 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
240 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
241     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
242     "TCP connection counts by TCP state");
243 
244 static void
245 tcp_vnet_init(const void *unused)
246 {
247 
248 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
249 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
250 }
251 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
252     tcp_vnet_init, NULL);
253 
254 #ifdef VIMAGE
255 static void
256 tcp_vnet_uninit(const void *unused)
257 {
258 
259 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
260 	VNET_PCPUSTAT_FREE(tcpstat);
261 }
262 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
263     tcp_vnet_uninit, NULL);
264 #endif /* VIMAGE */
265 
266 /*
267  * Kernel module interface for updating tcpstat.  The argument is an index
268  * into tcpstat treated as an array.
269  */
270 void
271 kmod_tcpstat_inc(int statnum)
272 {
273 
274 	counter_u64_add(VNET(tcpstat)[statnum], 1);
275 }
276 
277 #ifdef TCP_HHOOK
278 /*
279  * Wrapper for the TCP established input helper hook.
280  */
281 void
282 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
283 {
284 	struct tcp_hhook_data hhook_data;
285 
286 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
287 		hhook_data.tp = tp;
288 		hhook_data.th = th;
289 		hhook_data.to = to;
290 
291 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
292 		    tp->osd);
293 	}
294 }
295 #endif
296 
297 /*
298  * CC wrapper hook functions
299  */
300 void
301 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
302     uint16_t type)
303 {
304 #ifdef STATS
305 	int32_t gput;
306 #endif
307 
308 	INP_WLOCK_ASSERT(tp->t_inpcb);
309 
310 	tp->ccv->nsegs = nsegs;
311 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
312 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
313 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
314 	     (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
315 		tp->ccv->flags |= CCF_CWND_LIMITED;
316 	else
317 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
318 
319 	if (type == CC_ACK) {
320 #ifdef STATS
321 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
322 		    ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
323 		if (!IN_RECOVERY(tp->t_flags))
324 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
325 			   tp->ccv->bytes_this_ack / (tcp_maxseg(tp) * nsegs));
326 		if ((tp->t_flags & TF_GPUTINPROG) &&
327 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
328 			/*
329 			 * Compute goodput in bits per millisecond.
330 			 */
331 			gput = (((int64_t)(th->th_ack - tp->gput_seq)) << 3) /
332 			    max(1, tcp_ts_getticks() - tp->gput_ts);
333 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
334 			    gput);
335 			/*
336 			 * XXXLAS: This is a temporary hack, and should be
337 			 * chained off VOI_TCP_GPUT when stats(9) grows an API
338 			 * to deal with chained VOIs.
339 			 */
340 			if (tp->t_stats_gput_prev > 0)
341 				stats_voi_update_abs_s32(tp->t_stats,
342 				    VOI_TCP_GPUT_ND,
343 				    ((gput - tp->t_stats_gput_prev) * 100) /
344 				    tp->t_stats_gput_prev);
345 			tp->t_flags &= ~TF_GPUTINPROG;
346 			tp->t_stats_gput_prev = gput;
347 		}
348 #endif /* STATS */
349 		if (tp->snd_cwnd > tp->snd_ssthresh) {
350 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
351 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
352 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
353 				tp->t_bytes_acked -= tp->snd_cwnd;
354 				tp->ccv->flags |= CCF_ABC_SENTAWND;
355 			}
356 		} else {
357 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
358 				tp->t_bytes_acked = 0;
359 		}
360 	}
361 
362 	if (CC_ALGO(tp)->ack_received != NULL) {
363 		/* XXXLAS: Find a way to live without this */
364 		tp->ccv->curack = th->th_ack;
365 		CC_ALGO(tp)->ack_received(tp->ccv, type);
366 	}
367 #ifdef STATS
368 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
369 #endif
370 }
371 
372 void
373 cc_conn_init(struct tcpcb *tp)
374 {
375 	struct hc_metrics_lite metrics;
376 	struct inpcb *inp = tp->t_inpcb;
377 	u_int maxseg;
378 	int rtt;
379 
380 	INP_WLOCK_ASSERT(tp->t_inpcb);
381 
382 	tcp_hc_get(&inp->inp_inc, &metrics);
383 	maxseg = tcp_maxseg(tp);
384 
385 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
386 		tp->t_srtt = rtt;
387 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
388 		TCPSTAT_INC(tcps_usedrtt);
389 		if (metrics.rmx_rttvar) {
390 			tp->t_rttvar = metrics.rmx_rttvar;
391 			TCPSTAT_INC(tcps_usedrttvar);
392 		} else {
393 			/* default variation is +- 1 rtt */
394 			tp->t_rttvar =
395 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
396 		}
397 		TCPT_RANGESET(tp->t_rxtcur,
398 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
399 		    tp->t_rttmin, TCPTV_REXMTMAX);
400 	}
401 	if (metrics.rmx_ssthresh) {
402 		/*
403 		 * There's some sort of gateway or interface
404 		 * buffer limit on the path.  Use this to set
405 		 * the slow start threshold, but set the
406 		 * threshold to no less than 2*mss.
407 		 */
408 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
409 		TCPSTAT_INC(tcps_usedssthresh);
410 	}
411 
412 	/*
413 	 * Set the initial slow-start flight size.
414 	 *
415 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
416 	 * reduce the initial CWND to one segment as congestion is likely
417 	 * requiring us to be cautious.
418 	 */
419 	if (tp->snd_cwnd == 1)
420 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
421 	else
422 		tp->snd_cwnd = tcp_compute_initwnd(maxseg);
423 
424 	if (CC_ALGO(tp)->conn_init != NULL)
425 		CC_ALGO(tp)->conn_init(tp->ccv);
426 }
427 
428 void inline
429 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
430 {
431 	u_int maxseg;
432 
433 	INP_WLOCK_ASSERT(tp->t_inpcb);
434 
435 #ifdef STATS
436 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
437 #endif
438 
439 	switch(type) {
440 	case CC_NDUPACK:
441 		if (!IN_FASTRECOVERY(tp->t_flags)) {
442 			tp->snd_recover = tp->snd_max;
443 			if (tp->t_flags2 & TF2_ECN_PERMIT)
444 				tp->t_flags2 |= TF2_ECN_SND_CWR;
445 		}
446 		break;
447 	case CC_ECN:
448 		if (!IN_CONGRECOVERY(tp->t_flags)) {
449 			TCPSTAT_INC(tcps_ecn_rcwnd);
450 			tp->snd_recover = tp->snd_max;
451 			if (tp->t_flags2 & TF2_ECN_PERMIT)
452 				tp->t_flags2 |= TF2_ECN_SND_CWR;
453 		}
454 		break;
455 	case CC_RTO:
456 		maxseg = tcp_maxseg(tp);
457 		tp->t_dupacks = 0;
458 		tp->t_bytes_acked = 0;
459 		EXIT_RECOVERY(tp->t_flags);
460 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
461 		    maxseg) * maxseg;
462 		tp->snd_cwnd = maxseg;
463 		break;
464 	case CC_RTO_ERR:
465 		TCPSTAT_INC(tcps_sndrexmitbad);
466 		/* RTO was unnecessary, so reset everything. */
467 		tp->snd_cwnd = tp->snd_cwnd_prev;
468 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
469 		tp->snd_recover = tp->snd_recover_prev;
470 		if (tp->t_flags & TF_WASFRECOVERY)
471 			ENTER_FASTRECOVERY(tp->t_flags);
472 		if (tp->t_flags & TF_WASCRECOVERY)
473 			ENTER_CONGRECOVERY(tp->t_flags);
474 		tp->snd_nxt = tp->snd_max;
475 		tp->t_flags &= ~TF_PREVVALID;
476 		tp->t_badrxtwin = 0;
477 		break;
478 	}
479 
480 	if (CC_ALGO(tp)->cong_signal != NULL) {
481 		if (th != NULL)
482 			tp->ccv->curack = th->th_ack;
483 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
484 	}
485 }
486 
487 void inline
488 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
489 {
490 	INP_WLOCK_ASSERT(tp->t_inpcb);
491 
492 	/* XXXLAS: KASSERT that we're in recovery? */
493 
494 	if (CC_ALGO(tp)->post_recovery != NULL) {
495 		tp->ccv->curack = th->th_ack;
496 		CC_ALGO(tp)->post_recovery(tp->ccv);
497 	}
498 	/* XXXLAS: EXIT_RECOVERY ? */
499 	tp->t_bytes_acked = 0;
500 }
501 
502 /*
503  * Indicate whether this ack should be delayed.  We can delay the ack if
504  * following conditions are met:
505  *	- There is no delayed ack timer in progress.
506  *	- Our last ack wasn't a 0-sized window. We never want to delay
507  *	  the ack that opens up a 0-sized window.
508  *	- LRO wasn't used for this segment. We make sure by checking that the
509  *	  segment size is not larger than the MSS.
510  */
511 #define DELAY_ACK(tp, tlen)						\
512 	((!tcp_timer_active(tp, TT_DELACK) &&				\
513 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
514 	    (tlen <= tp->t_maxseg) &&					\
515 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
516 
517 static void inline
518 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
519 {
520 	INP_WLOCK_ASSERT(tp->t_inpcb);
521 
522 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
523 		switch (iptos & IPTOS_ECN_MASK) {
524 		case IPTOS_ECN_CE:
525 		    tp->ccv->flags |= CCF_IPHDR_CE;
526 		    break;
527 		case IPTOS_ECN_ECT0:
528 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
529 		    break;
530 		case IPTOS_ECN_ECT1:
531 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
532 		    break;
533 		}
534 
535 		if (th->th_flags & TH_CWR)
536 			tp->ccv->flags |= CCF_TCPHDR_CWR;
537 		else
538 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
539 
540 		if (tp->t_flags & TF_DELACK)
541 			tp->ccv->flags |= CCF_DELACK;
542 		else
543 			tp->ccv->flags &= ~CCF_DELACK;
544 
545 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
546 
547 		if (tp->ccv->flags & CCF_ACKNOW)
548 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
549 	}
550 }
551 
552 /*
553  * TCP input handling is split into multiple parts:
554  *   tcp6_input is a thin wrapper around tcp_input for the extended
555  *	ip6_protox[] call format in ip6_input
556  *   tcp_input handles primary segment validation, inpcb lookup and
557  *	SYN processing on listen sockets
558  *   tcp_do_segment processes the ACK and text of the segment for
559  *	establishing, established and closing connections
560  */
561 #ifdef INET6
562 int
563 tcp6_input(struct mbuf **mp, int *offp, int proto)
564 {
565 	struct mbuf *m;
566 	struct in6_ifaddr *ia6;
567 	struct ip6_hdr *ip6;
568 
569 	m = *mp;
570 	if (m->m_len < *offp + sizeof(struct tcphdr)) {
571 		m = m_pullup(m, *offp + sizeof(struct tcphdr));
572 		if (m == NULL) {
573 			*mp = m;
574 			TCPSTAT_INC(tcps_rcvshort);
575 			return (IPPROTO_DONE);
576 		}
577 	}
578 
579 	/*
580 	 * draft-itojun-ipv6-tcp-to-anycast
581 	 * better place to put this in?
582 	 */
583 	ip6 = mtod(m, struct ip6_hdr *);
584 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
585 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
586 
587 		ifa_free(&ia6->ia_ifa);
588 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
589 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
590 		*mp = NULL;
591 		return (IPPROTO_DONE);
592 	}
593 	if (ia6)
594 		ifa_free(&ia6->ia_ifa);
595 
596 	*mp = m;
597 	return (tcp_input(mp, offp, proto));
598 }
599 #endif /* INET6 */
600 
601 int
602 tcp_input(struct mbuf **mp, int *offp, int proto)
603 {
604 	struct mbuf *m = *mp;
605 	struct tcphdr *th = NULL;
606 	struct ip *ip = NULL;
607 	struct inpcb *inp = NULL;
608 	struct tcpcb *tp = NULL;
609 	struct socket *so = NULL;
610 	u_char *optp = NULL;
611 	int off0;
612 	int optlen = 0;
613 #ifdef INET
614 	int len;
615 	uint8_t ipttl;
616 #endif
617 	int tlen = 0, off;
618 	int drop_hdrlen;
619 	int thflags;
620 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
621 	uint8_t iptos;
622 	struct m_tag *fwd_tag = NULL;
623 #ifdef INET6
624 	struct ip6_hdr *ip6 = NULL;
625 	int isipv6;
626 #else
627 	const void *ip6 = NULL;
628 #endif /* INET6 */
629 	struct tcpopt to;		/* options in this segment */
630 	char *s = NULL;			/* address and port logging */
631 #ifdef TCPDEBUG
632 	/*
633 	 * The size of tcp_saveipgen must be the size of the max ip header,
634 	 * now IPv6.
635 	 */
636 	u_char tcp_saveipgen[IP6_HDR_LEN];
637 	struct tcphdr tcp_savetcp;
638 	short ostate = 0;
639 #endif
640 
641 	NET_EPOCH_ASSERT();
642 
643 #ifdef INET6
644 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
645 #endif
646 
647 	off0 = *offp;
648 	m = *mp;
649 	*mp = NULL;
650 	to.to_flags = 0;
651 	TCPSTAT_INC(tcps_rcvtotal);
652 
653 #ifdef INET6
654 	if (isipv6) {
655 
656 		ip6 = mtod(m, struct ip6_hdr *);
657 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
658 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
659 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
660 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
661 				th->th_sum = m->m_pkthdr.csum_data;
662 			else
663 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
664 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
665 			th->th_sum ^= 0xffff;
666 		} else
667 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
668 		if (th->th_sum) {
669 			TCPSTAT_INC(tcps_rcvbadsum);
670 			goto drop;
671 		}
672 
673 		/*
674 		 * Be proactive about unspecified IPv6 address in source.
675 		 * As we use all-zero to indicate unbounded/unconnected pcb,
676 		 * unspecified IPv6 address can be used to confuse us.
677 		 *
678 		 * Note that packets with unspecified IPv6 destination is
679 		 * already dropped in ip6_input.
680 		 */
681 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
682 			/* XXX stat */
683 			goto drop;
684 		}
685 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
686 	}
687 #endif
688 #if defined(INET) && defined(INET6)
689 	else
690 #endif
691 #ifdef INET
692 	{
693 		/*
694 		 * Get IP and TCP header together in first mbuf.
695 		 * Note: IP leaves IP header in first mbuf.
696 		 */
697 		if (off0 > sizeof (struct ip)) {
698 			ip_stripoptions(m);
699 			off0 = sizeof(struct ip);
700 		}
701 		if (m->m_len < sizeof (struct tcpiphdr)) {
702 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
703 			    == NULL) {
704 				TCPSTAT_INC(tcps_rcvshort);
705 				return (IPPROTO_DONE);
706 			}
707 		}
708 		ip = mtod(m, struct ip *);
709 		th = (struct tcphdr *)((caddr_t)ip + off0);
710 		tlen = ntohs(ip->ip_len) - off0;
711 
712 		iptos = ip->ip_tos;
713 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
714 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
715 				th->th_sum = m->m_pkthdr.csum_data;
716 			else
717 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
718 				    ip->ip_dst.s_addr,
719 				    htonl(m->m_pkthdr.csum_data + tlen +
720 				    IPPROTO_TCP));
721 			th->th_sum ^= 0xffff;
722 		} else {
723 			struct ipovly *ipov = (struct ipovly *)ip;
724 
725 			/*
726 			 * Checksum extended TCP header and data.
727 			 */
728 			len = off0 + tlen;
729 			ipttl = ip->ip_ttl;
730 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
731 			ipov->ih_len = htons(tlen);
732 			th->th_sum = in_cksum(m, len);
733 			/* Reset length for SDT probes. */
734 			ip->ip_len = htons(len);
735 			/* Reset TOS bits */
736 			ip->ip_tos = iptos;
737 			/* Re-initialization for later version check */
738 			ip->ip_ttl = ipttl;
739 			ip->ip_v = IPVERSION;
740 			ip->ip_hl = off0 >> 2;
741 		}
742 
743 		if (th->th_sum) {
744 			TCPSTAT_INC(tcps_rcvbadsum);
745 			goto drop;
746 		}
747 	}
748 #endif /* INET */
749 
750 	/*
751 	 * Check that TCP offset makes sense,
752 	 * pull out TCP options and adjust length.		XXX
753 	 */
754 	off = th->th_off << 2;
755 	if (off < sizeof (struct tcphdr) || off > tlen) {
756 		TCPSTAT_INC(tcps_rcvbadoff);
757 		goto drop;
758 	}
759 	tlen -= off;	/* tlen is used instead of ti->ti_len */
760 	if (off > sizeof (struct tcphdr)) {
761 #ifdef INET6
762 		if (isipv6) {
763 			if (m->m_len < off0 + off) {
764 				m = m_pullup(m, off0 + off);
765 				if (m == NULL) {
766 					TCPSTAT_INC(tcps_rcvshort);
767 					return (IPPROTO_DONE);
768 				}
769 			}
770 			ip6 = mtod(m, struct ip6_hdr *);
771 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
772 		}
773 #endif
774 #if defined(INET) && defined(INET6)
775 		else
776 #endif
777 #ifdef INET
778 		{
779 			if (m->m_len < sizeof(struct ip) + off) {
780 				if ((m = m_pullup(m, sizeof (struct ip) + off))
781 				    == NULL) {
782 					TCPSTAT_INC(tcps_rcvshort);
783 					return (IPPROTO_DONE);
784 				}
785 				ip = mtod(m, struct ip *);
786 				th = (struct tcphdr *)((caddr_t)ip + off0);
787 			}
788 		}
789 #endif
790 		optlen = off - sizeof (struct tcphdr);
791 		optp = (u_char *)(th + 1);
792 	}
793 	thflags = th->th_flags;
794 
795 	/*
796 	 * Convert TCP protocol specific fields to host format.
797 	 */
798 	tcp_fields_to_host(th);
799 
800 	/*
801 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
802 	 */
803 	drop_hdrlen = off0 + off;
804 
805 	/*
806 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
807 	 */
808         if (
809 #ifdef INET6
810 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
811 #ifdef INET
812 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
813 #endif
814 #endif
815 #if defined(INET) && !defined(INET6)
816 	    (m->m_flags & M_IP_NEXTHOP)
817 #endif
818 	    )
819 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
820 
821 findpcb:
822 #ifdef INET6
823 	if (isipv6 && fwd_tag != NULL) {
824 		struct sockaddr_in6 *next_hop6;
825 
826 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
827 		/*
828 		 * Transparently forwarded. Pretend to be the destination.
829 		 * Already got one like this?
830 		 */
831 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
832 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
833 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
834 		if (!inp) {
835 			/*
836 			 * It's new.  Try to find the ambushing socket.
837 			 * Because we've rewritten the destination address,
838 			 * any hardware-generated hash is ignored.
839 			 */
840 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
841 			    th->th_sport, &next_hop6->sin6_addr,
842 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
843 			    th->th_dport, INPLOOKUP_WILDCARD |
844 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
845 		}
846 	} else if (isipv6) {
847 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
848 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
849 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
850 		    m->m_pkthdr.rcvif, m);
851 	}
852 #endif /* INET6 */
853 #if defined(INET6) && defined(INET)
854 	else
855 #endif
856 #ifdef INET
857 	if (fwd_tag != NULL) {
858 		struct sockaddr_in *next_hop;
859 
860 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
861 		/*
862 		 * Transparently forwarded. Pretend to be the destination.
863 		 * already got one like this?
864 		 */
865 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
866 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
867 		    m->m_pkthdr.rcvif, m);
868 		if (!inp) {
869 			/*
870 			 * It's new.  Try to find the ambushing socket.
871 			 * Because we've rewritten the destination address,
872 			 * any hardware-generated hash is ignored.
873 			 */
874 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
875 			    th->th_sport, next_hop->sin_addr,
876 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
877 			    th->th_dport, INPLOOKUP_WILDCARD |
878 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
879 		}
880 	} else
881 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
882 		    th->th_sport, ip->ip_dst, th->th_dport,
883 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
884 		    m->m_pkthdr.rcvif, m);
885 #endif /* INET */
886 
887 	/*
888 	 * If the INPCB does not exist then all data in the incoming
889 	 * segment is discarded and an appropriate RST is sent back.
890 	 * XXX MRT Send RST using which routing table?
891 	 */
892 	if (inp == NULL) {
893 		/*
894 		 * Log communication attempts to ports that are not
895 		 * in use.
896 		 */
897 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
898 		    tcp_log_in_vain == 2) {
899 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
900 				log(LOG_INFO, "%s; %s: Connection attempt "
901 				    "to closed port\n", s, __func__);
902 		}
903 		/*
904 		 * When blackholing do not respond with a RST but
905 		 * completely ignore the segment and drop it.
906 		 */
907 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
908 		    V_blackhole == 2)
909 			goto dropunlock;
910 
911 		rstreason = BANDLIM_RST_CLOSEDPORT;
912 		goto dropwithreset;
913 	}
914 	INP_WLOCK_ASSERT(inp);
915 	/*
916 	 * While waiting for inp lock during the lookup, another thread
917 	 * can have dropped the inpcb, in which case we need to loop back
918 	 * and try to find a new inpcb to deliver to.
919 	 */
920 	if (inp->inp_flags & INP_DROPPED) {
921 		INP_WUNLOCK(inp);
922 		inp = NULL;
923 		goto findpcb;
924 	}
925 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
926 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
927 	    ((inp->inp_socket == NULL) ||
928 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
929 		inp->inp_flowid = m->m_pkthdr.flowid;
930 		inp->inp_flowtype = M_HASHTYPE_GET(m);
931 	}
932 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
933 #ifdef INET6
934 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
935 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
936 		goto dropunlock;
937 	}
938 #ifdef INET
939 	else
940 #endif
941 #endif /* INET6 */
942 #ifdef INET
943 	if (IPSEC_ENABLED(ipv4) &&
944 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
945 		goto dropunlock;
946 	}
947 #endif /* INET */
948 #endif /* IPSEC */
949 
950 	/*
951 	 * Check the minimum TTL for socket.
952 	 */
953 	if (inp->inp_ip_minttl != 0) {
954 #ifdef INET6
955 		if (isipv6) {
956 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
957 				goto dropunlock;
958 		} else
959 #endif
960 		if (inp->inp_ip_minttl > ip->ip_ttl)
961 			goto dropunlock;
962 	}
963 
964 	/*
965 	 * A previous connection in TIMEWAIT state is supposed to catch stray
966 	 * or duplicate segments arriving late.  If this segment was a
967 	 * legitimate new connection attempt, the old INPCB gets removed and
968 	 * we can try again to find a listening socket.
969 	 *
970 	 * At this point, due to earlier optimism, we may hold only an inpcb
971 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
972 	 * acquire it, or if that fails, acquire a reference on the inpcb,
973 	 * drop all locks, acquire a global write lock, and then re-acquire
974 	 * the inpcb lock.  We may at that point discover that another thread
975 	 * has tried to free the inpcb, in which case we need to loop back
976 	 * and try to find a new inpcb to deliver to.
977 	 *
978 	 * XXXRW: It may be time to rethink timewait locking.
979 	 */
980 	if (inp->inp_flags & INP_TIMEWAIT) {
981 		if (thflags & TH_SYN)
982 			tcp_dooptions(&to, optp, optlen, TO_SYN);
983 		/*
984 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
985 		 */
986 		if (tcp_twcheck(inp, &to, th, m, tlen))
987 			goto findpcb;
988 		return (IPPROTO_DONE);
989 	}
990 	/*
991 	 * The TCPCB may no longer exist if the connection is winding
992 	 * down or it is in the CLOSED state.  Either way we drop the
993 	 * segment and send an appropriate response.
994 	 */
995 	tp = intotcpcb(inp);
996 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
997 		rstreason = BANDLIM_RST_CLOSEDPORT;
998 		goto dropwithreset;
999 	}
1000 
1001 #ifdef TCP_OFFLOAD
1002 	if (tp->t_flags & TF_TOE) {
1003 		tcp_offload_input(tp, m);
1004 		m = NULL;	/* consumed by the TOE driver */
1005 		goto dropunlock;
1006 	}
1007 #endif
1008 
1009 #ifdef MAC
1010 	INP_WLOCK_ASSERT(inp);
1011 	if (mac_inpcb_check_deliver(inp, m))
1012 		goto dropunlock;
1013 #endif
1014 	so = inp->inp_socket;
1015 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1016 #ifdef TCPDEBUG
1017 	if (so->so_options & SO_DEBUG) {
1018 		ostate = tp->t_state;
1019 #ifdef INET6
1020 		if (isipv6) {
1021 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1022 		} else
1023 #endif
1024 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1025 		tcp_savetcp = *th;
1026 	}
1027 #endif /* TCPDEBUG */
1028 	/*
1029 	 * When the socket is accepting connections (the INPCB is in LISTEN
1030 	 * state) we look into the SYN cache if this is a new connection
1031 	 * attempt or the completion of a previous one.
1032 	 */
1033 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1034 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1035 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1036 		struct in_conninfo inc;
1037 
1038 		bzero(&inc, sizeof(inc));
1039 #ifdef INET6
1040 		if (isipv6) {
1041 			inc.inc_flags |= INC_ISIPV6;
1042 			if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1043 				inc.inc_flags |= INC_IPV6MINMTU;
1044 			inc.inc6_faddr = ip6->ip6_src;
1045 			inc.inc6_laddr = ip6->ip6_dst;
1046 		} else
1047 #endif
1048 		{
1049 			inc.inc_faddr = ip->ip_src;
1050 			inc.inc_laddr = ip->ip_dst;
1051 		}
1052 		inc.inc_fport = th->th_sport;
1053 		inc.inc_lport = th->th_dport;
1054 		inc.inc_fibnum = so->so_fibnum;
1055 
1056 		/*
1057 		 * Check for an existing connection attempt in syncache if
1058 		 * the flag is only ACK.  A successful lookup creates a new
1059 		 * socket appended to the listen queue in SYN_RECEIVED state.
1060 		 */
1061 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1062 
1063 			/*
1064 			 * Parse the TCP options here because
1065 			 * syncookies need access to the reflected
1066 			 * timestamp.
1067 			 */
1068 			tcp_dooptions(&to, optp, optlen, 0);
1069 			/*
1070 			 * NB: syncache_expand() doesn't unlock
1071 			 * inp and tcpinfo locks.
1072 			 */
1073 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1074 			if (rstreason < 0) {
1075 				/*
1076 				 * A failing TCP MD5 signature comparison
1077 				 * must result in the segment being dropped
1078 				 * and must not produce any response back
1079 				 * to the sender.
1080 				 */
1081 				goto dropunlock;
1082 			} else if (rstreason == 0) {
1083 				/*
1084 				 * No syncache entry or ACK was not
1085 				 * for our SYN/ACK.  Send a RST.
1086 				 * NB: syncache did its own logging
1087 				 * of the failure cause.
1088 				 */
1089 				rstreason = BANDLIM_RST_OPENPORT;
1090 				goto dropwithreset;
1091 			}
1092 tfo_socket_result:
1093 			if (so == NULL) {
1094 				/*
1095 				 * We completed the 3-way handshake
1096 				 * but could not allocate a socket
1097 				 * either due to memory shortage,
1098 				 * listen queue length limits or
1099 				 * global socket limits.  Send RST
1100 				 * or wait and have the remote end
1101 				 * retransmit the ACK for another
1102 				 * try.
1103 				 */
1104 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1105 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1106 					    "Socket allocation failed due to "
1107 					    "limits or memory shortage, %s\n",
1108 					    s, __func__,
1109 					    V_tcp_sc_rst_sock_fail ?
1110 					    "sending RST" : "try again");
1111 				if (V_tcp_sc_rst_sock_fail) {
1112 					rstreason = BANDLIM_UNLIMITED;
1113 					goto dropwithreset;
1114 				} else
1115 					goto dropunlock;
1116 			}
1117 			/*
1118 			 * Socket is created in state SYN_RECEIVED.
1119 			 * Unlock the listen socket, lock the newly
1120 			 * created socket and update the tp variable.
1121 			 */
1122 			INP_WUNLOCK(inp);	/* listen socket */
1123 			inp = sotoinpcb(so);
1124 			/*
1125 			 * New connection inpcb is already locked by
1126 			 * syncache_expand().
1127 			 */
1128 			INP_WLOCK_ASSERT(inp);
1129 			tp = intotcpcb(inp);
1130 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1131 			    ("%s: ", __func__));
1132 			/*
1133 			 * Process the segment and the data it
1134 			 * contains.  tcp_do_segment() consumes
1135 			 * the mbuf chain and unlocks the inpcb.
1136 			 */
1137 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1138 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1139 			    iptos);
1140 			return (IPPROTO_DONE);
1141 		}
1142 		/*
1143 		 * Segment flag validation for new connection attempts:
1144 		 *
1145 		 * Our (SYN|ACK) response was rejected.
1146 		 * Check with syncache and remove entry to prevent
1147 		 * retransmits.
1148 		 *
1149 		 * NB: syncache_chkrst does its own logging of failure
1150 		 * causes.
1151 		 */
1152 		if (thflags & TH_RST) {
1153 			syncache_chkrst(&inc, th, m);
1154 			goto dropunlock;
1155 		}
1156 		/*
1157 		 * We can't do anything without SYN.
1158 		 */
1159 		if ((thflags & TH_SYN) == 0) {
1160 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1161 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1162 				    "SYN is missing, segment ignored\n",
1163 				    s, __func__);
1164 			TCPSTAT_INC(tcps_badsyn);
1165 			goto dropunlock;
1166 		}
1167 		/*
1168 		 * (SYN|ACK) is bogus on a listen socket.
1169 		 */
1170 		if (thflags & TH_ACK) {
1171 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1172 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1173 				    "SYN|ACK invalid, segment rejected\n",
1174 				    s, __func__);
1175 			syncache_badack(&inc);	/* XXX: Not needed! */
1176 			TCPSTAT_INC(tcps_badsyn);
1177 			rstreason = BANDLIM_RST_OPENPORT;
1178 			goto dropwithreset;
1179 		}
1180 		/*
1181 		 * If the drop_synfin option is enabled, drop all
1182 		 * segments with both the SYN and FIN bits set.
1183 		 * This prevents e.g. nmap from identifying the
1184 		 * TCP/IP stack.
1185 		 * XXX: Poor reasoning.  nmap has other methods
1186 		 * and is constantly refining its stack detection
1187 		 * strategies.
1188 		 * XXX: This is a violation of the TCP specification
1189 		 * and was used by RFC1644.
1190 		 */
1191 		if ((thflags & TH_FIN) && V_drop_synfin) {
1192 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1193 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1194 				    "SYN|FIN segment ignored (based on "
1195 				    "sysctl setting)\n", s, __func__);
1196 			TCPSTAT_INC(tcps_badsyn);
1197 			goto dropunlock;
1198 		}
1199 		/*
1200 		 * Segment's flags are (SYN) or (SYN|FIN).
1201 		 *
1202 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1203 		 * as they do not affect the state of the TCP FSM.
1204 		 * The data pointed to by TH_URG and th_urp is ignored.
1205 		 */
1206 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1207 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1208 		KASSERT(thflags & (TH_SYN),
1209 		    ("%s: Listen socket: TH_SYN not set", __func__));
1210 #ifdef INET6
1211 		/*
1212 		 * If deprecated address is forbidden,
1213 		 * we do not accept SYN to deprecated interface
1214 		 * address to prevent any new inbound connection from
1215 		 * getting established.
1216 		 * When we do not accept SYN, we send a TCP RST,
1217 		 * with deprecated source address (instead of dropping
1218 		 * it).  We compromise it as it is much better for peer
1219 		 * to send a RST, and RST will be the final packet
1220 		 * for the exchange.
1221 		 *
1222 		 * If we do not forbid deprecated addresses, we accept
1223 		 * the SYN packet.  RFC2462 does not suggest dropping
1224 		 * SYN in this case.
1225 		 * If we decipher RFC2462 5.5.4, it says like this:
1226 		 * 1. use of deprecated addr with existing
1227 		 *    communication is okay - "SHOULD continue to be
1228 		 *    used"
1229 		 * 2. use of it with new communication:
1230 		 *   (2a) "SHOULD NOT be used if alternate address
1231 		 *        with sufficient scope is available"
1232 		 *   (2b) nothing mentioned otherwise.
1233 		 * Here we fall into (2b) case as we have no choice in
1234 		 * our source address selection - we must obey the peer.
1235 		 *
1236 		 * The wording in RFC2462 is confusing, and there are
1237 		 * multiple description text for deprecated address
1238 		 * handling - worse, they are not exactly the same.
1239 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1240 		 */
1241 		if (isipv6 && !V_ip6_use_deprecated) {
1242 			struct in6_ifaddr *ia6;
1243 
1244 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1245 			if (ia6 != NULL &&
1246 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1247 				ifa_free(&ia6->ia_ifa);
1248 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1249 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1250 					"Connection attempt to deprecated "
1251 					"IPv6 address rejected\n",
1252 					s, __func__);
1253 				rstreason = BANDLIM_RST_OPENPORT;
1254 				goto dropwithreset;
1255 			}
1256 			if (ia6)
1257 				ifa_free(&ia6->ia_ifa);
1258 		}
1259 #endif /* INET6 */
1260 		/*
1261 		 * Basic sanity checks on incoming SYN requests:
1262 		 *   Don't respond if the destination is a link layer
1263 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1264 		 *   If it is from this socket it must be forged.
1265 		 *   Don't respond if the source or destination is a
1266 		 *	global or subnet broad- or multicast address.
1267 		 *   Note that it is quite possible to receive unicast
1268 		 *	link-layer packets with a broadcast IP address. Use
1269 		 *	in_broadcast() to find them.
1270 		 */
1271 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1272 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1273 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1274 				"Connection attempt from broad- or multicast "
1275 				"link layer address ignored\n", s, __func__);
1276 			goto dropunlock;
1277 		}
1278 #ifdef INET6
1279 		if (isipv6) {
1280 			if (th->th_dport == th->th_sport &&
1281 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1282 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1283 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1284 					"Connection attempt to/from self "
1285 					"ignored\n", s, __func__);
1286 				goto dropunlock;
1287 			}
1288 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1289 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1290 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1291 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1292 					"Connection attempt from/to multicast "
1293 					"address ignored\n", s, __func__);
1294 				goto dropunlock;
1295 			}
1296 		}
1297 #endif
1298 #if defined(INET) && defined(INET6)
1299 		else
1300 #endif
1301 #ifdef INET
1302 		{
1303 			if (th->th_dport == th->th_sport &&
1304 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1305 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1306 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1307 					"Connection attempt from/to self "
1308 					"ignored\n", s, __func__);
1309 				goto dropunlock;
1310 			}
1311 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1312 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1313 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1314 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1315 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1316 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1317 					"Connection attempt from/to broad- "
1318 					"or multicast address ignored\n",
1319 					s, __func__);
1320 				goto dropunlock;
1321 			}
1322 		}
1323 #endif
1324 		/*
1325 		 * SYN appears to be valid.  Create compressed TCP state
1326 		 * for syncache.
1327 		 */
1328 #ifdef TCPDEBUG
1329 		if (so->so_options & SO_DEBUG)
1330 			tcp_trace(TA_INPUT, ostate, tp,
1331 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1332 #endif
1333 		TCP_PROBE3(debug__input, tp, th, m);
1334 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1335 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL, iptos))
1336 			goto tfo_socket_result;
1337 
1338 		/*
1339 		 * Entry added to syncache and mbuf consumed.
1340 		 * Only the listen socket is unlocked by syncache_add().
1341 		 */
1342 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1343 		return (IPPROTO_DONE);
1344 	} else if (tp->t_state == TCPS_LISTEN) {
1345 		/*
1346 		 * When a listen socket is torn down the SO_ACCEPTCONN
1347 		 * flag is removed first while connections are drained
1348 		 * from the accept queue in a unlock/lock cycle of the
1349 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1350 		 * attempt go through unhandled.
1351 		 */
1352 		goto dropunlock;
1353 	}
1354 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1355 	if (tp->t_flags & TF_SIGNATURE) {
1356 		tcp_dooptions(&to, optp, optlen, thflags);
1357 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1358 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1359 			goto dropunlock;
1360 		}
1361 		if (!TCPMD5_ENABLED() ||
1362 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1363 			goto dropunlock;
1364 	}
1365 #endif
1366 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1367 
1368 	/*
1369 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1370 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1371 	 * the inpcb, and unlocks pcbinfo.
1372 	 */
1373 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1374 	return (IPPROTO_DONE);
1375 
1376 dropwithreset:
1377 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1378 
1379 	if (inp != NULL) {
1380 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1381 		INP_WUNLOCK(inp);
1382 	} else
1383 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1384 	m = NULL;	/* mbuf chain got consumed. */
1385 	goto drop;
1386 
1387 dropunlock:
1388 	if (m != NULL)
1389 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1390 
1391 	if (inp != NULL)
1392 		INP_WUNLOCK(inp);
1393 
1394 drop:
1395 	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1396 	if (s != NULL)
1397 		free(s, M_TCPLOG);
1398 	if (m != NULL)
1399 		m_freem(m);
1400 	return (IPPROTO_DONE);
1401 }
1402 
1403 /*
1404  * Automatic sizing of receive socket buffer.  Often the send
1405  * buffer size is not optimally adjusted to the actual network
1406  * conditions at hand (delay bandwidth product).  Setting the
1407  * buffer size too small limits throughput on links with high
1408  * bandwidth and high delay (eg. trans-continental/oceanic links).
1409  *
1410  * On the receive side the socket buffer memory is only rarely
1411  * used to any significant extent.  This allows us to be much
1412  * more aggressive in scaling the receive socket buffer.  For
1413  * the case that the buffer space is actually used to a large
1414  * extent and we run out of kernel memory we can simply drop
1415  * the new segments; TCP on the sender will just retransmit it
1416  * later.  Setting the buffer size too big may only consume too
1417  * much kernel memory if the application doesn't read() from
1418  * the socket or packet loss or reordering makes use of the
1419  * reassembly queue.
1420  *
1421  * The criteria to step up the receive buffer one notch are:
1422  *  1. Application has not set receive buffer size with
1423  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1424  *  2. the number of bytes received during 1/2 of an sRTT
1425  *     is at least 3/8 of the current socket buffer size.
1426  *  3. receive buffer size has not hit maximal automatic size;
1427  *
1428  * If all of the criteria are met we increaset the socket buffer
1429  * by a 1/2 (bounded by the max). This allows us to keep ahead
1430  * of slow-start but also makes it so our peer never gets limited
1431  * by our rwnd which we then open up causing a burst.
1432  *
1433  * This algorithm does two steps per RTT at most and only if
1434  * we receive a bulk stream w/o packet losses or reorderings.
1435  * Shrinking the buffer during idle times is not necessary as
1436  * it doesn't consume any memory when idle.
1437  *
1438  * TODO: Only step up if the application is actually serving
1439  * the buffer to better manage the socket buffer resources.
1440  */
1441 int
1442 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1443     struct tcpcb *tp, int tlen)
1444 {
1445 	int newsize = 0;
1446 
1447 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1448 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1449 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1450 	    ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1451 		if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1452 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1453 			newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1454 		}
1455 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1456 
1457 		/* Start over with next RTT. */
1458 		tp->rfbuf_ts = 0;
1459 		tp->rfbuf_cnt = 0;
1460 	} else {
1461 		tp->rfbuf_cnt += tlen;	/* add up */
1462 	}
1463 	return (newsize);
1464 }
1465 
1466 void
1467 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1468     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1469 {
1470 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1471 	int rstreason, todrop, win;
1472 	uint32_t tiwin;
1473 	uint16_t nsegs;
1474 	char *s;
1475 	struct in_conninfo *inc;
1476 	struct mbuf *mfree;
1477 	struct tcpopt to;
1478 	int tfo_syn;
1479 
1480 #ifdef TCPDEBUG
1481 	/*
1482 	 * The size of tcp_saveipgen must be the size of the max ip header,
1483 	 * now IPv6.
1484 	 */
1485 	u_char tcp_saveipgen[IP6_HDR_LEN];
1486 	struct tcphdr tcp_savetcp;
1487 	short ostate = 0;
1488 #endif
1489 	thflags = th->th_flags;
1490 	inc = &tp->t_inpcb->inp_inc;
1491 	tp->sackhint.last_sack_ack = 0;
1492 	sack_changed = 0;
1493 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1494 
1495 	NET_EPOCH_ASSERT();
1496 	INP_WLOCK_ASSERT(tp->t_inpcb);
1497 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1498 	    __func__));
1499 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1500 	    __func__));
1501 
1502 #ifdef TCPPCAP
1503 	/* Save segment, if requested. */
1504 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1505 #endif
1506 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1507 	    tlen, NULL, true);
1508 
1509 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1510 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1511 			log(LOG_DEBUG, "%s; %s: "
1512 			    "SYN|FIN segment ignored (based on "
1513 			    "sysctl setting)\n", s, __func__);
1514 			free(s, M_TCPLOG);
1515 		}
1516 		goto drop;
1517 	}
1518 
1519 	/*
1520 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1521 	 * check SEQ.ACK first.
1522 	 */
1523 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1524 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1525 		rstreason = BANDLIM_UNLIMITED;
1526 		goto dropwithreset;
1527 	}
1528 
1529 	/*
1530 	 * Segment received on connection.
1531 	 * Reset idle time and keep-alive timer.
1532 	 * XXX: This should be done after segment
1533 	 * validation to ignore broken/spoofed segs.
1534 	 */
1535 	tp->t_rcvtime = ticks;
1536 
1537 	/*
1538 	 * Scale up the window into a 32-bit value.
1539 	 * For the SYN_SENT state the scale is zero.
1540 	 */
1541 	tiwin = th->th_win << tp->snd_scale;
1542 #ifdef STATS
1543 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1544 #endif
1545 
1546 	/*
1547 	 * TCP ECN processing.
1548 	 */
1549 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
1550 		if (thflags & TH_CWR)
1551 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
1552 		switch (iptos & IPTOS_ECN_MASK) {
1553 		case IPTOS_ECN_CE:
1554 			tp->t_flags2 |= TF2_ECN_SND_ECE;
1555 			TCPSTAT_INC(tcps_ecn_ce);
1556 			break;
1557 		case IPTOS_ECN_ECT0:
1558 			TCPSTAT_INC(tcps_ecn_ect0);
1559 			break;
1560 		case IPTOS_ECN_ECT1:
1561 			TCPSTAT_INC(tcps_ecn_ect1);
1562 			break;
1563 		}
1564 
1565 		/* Process a packet differently from RFC3168. */
1566 		cc_ecnpkt_handler(tp, th, iptos);
1567 
1568 		/* Congestion experienced. */
1569 		if (thflags & TH_ECE) {
1570 			cc_cong_signal(tp, th, CC_ECN);
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * Parse options on any incoming segment.
1576 	 */
1577 	tcp_dooptions(&to, (u_char *)(th + 1),
1578 	    (th->th_off << 2) - sizeof(struct tcphdr),
1579 	    (thflags & TH_SYN) ? TO_SYN : 0);
1580 
1581 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1582 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1583 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1584 		TCPSTAT_INC(tcps_sig_err_sigopt);
1585 		/* XXX: should drop? */
1586 	}
1587 #endif
1588 	/*
1589 	 * If echoed timestamp is later than the current time,
1590 	 * fall back to non RFC1323 RTT calculation.  Normalize
1591 	 * timestamp if syncookies were used when this connection
1592 	 * was established.
1593 	 */
1594 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1595 		to.to_tsecr -= tp->ts_offset;
1596 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1597 			to.to_tsecr = 0;
1598 		else if (tp->t_flags & TF_PREVVALID &&
1599 			 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1600 			cc_cong_signal(tp, th, CC_RTO_ERR);
1601 	}
1602 	/*
1603 	 * Process options only when we get SYN/ACK back. The SYN case
1604 	 * for incoming connections is handled in tcp_syncache.
1605 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1606 	 * or <SYN,ACK>) segment itself is never scaled.
1607 	 * XXX this is traditional behavior, may need to be cleaned up.
1608 	 */
1609 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1610 		if ((to.to_flags & TOF_SCALE) &&
1611 		    (tp->t_flags & TF_REQ_SCALE)) {
1612 			tp->t_flags |= TF_RCVD_SCALE;
1613 			tp->snd_scale = to.to_wscale;
1614 		}
1615 		/*
1616 		 * Initial send window.  It will be updated with
1617 		 * the next incoming segment to the scaled value.
1618 		 */
1619 		tp->snd_wnd = th->th_win;
1620 		if (to.to_flags & TOF_TS) {
1621 			tp->t_flags |= TF_RCVD_TSTMP;
1622 			tp->ts_recent = to.to_tsval;
1623 			tp->ts_recent_age = tcp_ts_getticks();
1624 		}
1625 		if (to.to_flags & TOF_MSS)
1626 			tcp_mss(tp, to.to_mss);
1627 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1628 		    (to.to_flags & TOF_SACKPERM) == 0)
1629 			tp->t_flags &= ~TF_SACK_PERMIT;
1630 		if (IS_FASTOPEN(tp->t_flags)) {
1631 			if (to.to_flags & TOF_FASTOPEN) {
1632 				uint16_t mss;
1633 
1634 				if (to.to_flags & TOF_MSS)
1635 					mss = to.to_mss;
1636 				else
1637 					if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1638 						mss = TCP6_MSS;
1639 					else
1640 						mss = TCP_MSS;
1641 				tcp_fastopen_update_cache(tp, mss,
1642 				    to.to_tfo_len, to.to_tfo_cookie);
1643 			} else
1644 				tcp_fastopen_disable_path(tp);
1645 		}
1646 	}
1647 
1648 	/*
1649 	 * If timestamps were negotiated during SYN/ACK they should
1650 	 * appear on every segment during this session and vice versa.
1651 	 */
1652 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1653 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1654 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1655 			    "no action\n", s, __func__);
1656 			free(s, M_TCPLOG);
1657 		}
1658 	}
1659 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1660 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1661 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1662 			    "no action\n", s, __func__);
1663 			free(s, M_TCPLOG);
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * Header prediction: check for the two common cases
1669 	 * of a uni-directional data xfer.  If the packet has
1670 	 * no control flags, is in-sequence, the window didn't
1671 	 * change and we're not retransmitting, it's a
1672 	 * candidate.  If the length is zero and the ack moved
1673 	 * forward, we're the sender side of the xfer.  Just
1674 	 * free the data acked & wake any higher level process
1675 	 * that was blocked waiting for space.  If the length
1676 	 * is non-zero and the ack didn't move, we're the
1677 	 * receiver side.  If we're getting packets in-order
1678 	 * (the reassembly queue is empty), add the data to
1679 	 * the socket buffer and note that we need a delayed ack.
1680 	 * Make sure that the hidden state-flags are also off.
1681 	 * Since we check for TCPS_ESTABLISHED first, it can only
1682 	 * be TH_NEEDSYN.
1683 	 */
1684 	if (tp->t_state == TCPS_ESTABLISHED &&
1685 	    th->th_seq == tp->rcv_nxt &&
1686 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1687 	    tp->snd_nxt == tp->snd_max &&
1688 	    tiwin && tiwin == tp->snd_wnd &&
1689 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1690 	    SEGQ_EMPTY(tp) &&
1691 	    ((to.to_flags & TOF_TS) == 0 ||
1692 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1693 
1694 		/*
1695 		 * If last ACK falls within this segment's sequence numbers,
1696 		 * record the timestamp.
1697 		 * NOTE that the test is modified according to the latest
1698 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1699 		 */
1700 		if ((to.to_flags & TOF_TS) != 0 &&
1701 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1702 			tp->ts_recent_age = tcp_ts_getticks();
1703 			tp->ts_recent = to.to_tsval;
1704 		}
1705 
1706 		if (tlen == 0) {
1707 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1708 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1709 			    !IN_RECOVERY(tp->t_flags) &&
1710 			    (to.to_flags & TOF_SACK) == 0 &&
1711 			    TAILQ_EMPTY(&tp->snd_holes)) {
1712 				/*
1713 				 * This is a pure ack for outstanding data.
1714 				 */
1715 				TCPSTAT_INC(tcps_predack);
1716 
1717 				/*
1718 				 * "bad retransmit" recovery without timestamps.
1719 				 */
1720 				if ((to.to_flags & TOF_TS) == 0 &&
1721 				    tp->t_rxtshift == 1 &&
1722 				    tp->t_flags & TF_PREVVALID &&
1723 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1724 					cc_cong_signal(tp, th, CC_RTO_ERR);
1725 				}
1726 
1727 				/*
1728 				 * Recalculate the transmit timer / rtt.
1729 				 *
1730 				 * Some boxes send broken timestamp replies
1731 				 * during the SYN+ACK phase, ignore
1732 				 * timestamps of 0 or we could calculate a
1733 				 * huge RTT and blow up the retransmit timer.
1734 				 */
1735 				if ((to.to_flags & TOF_TS) != 0 &&
1736 				    to.to_tsecr) {
1737 					uint32_t t;
1738 
1739 					t = tcp_ts_getticks() - to.to_tsecr;
1740 					if (!tp->t_rttlow || tp->t_rttlow > t)
1741 						tp->t_rttlow = t;
1742 					tcp_xmit_timer(tp,
1743 					    TCP_TS_TO_TICKS(t) + 1);
1744 				} else if (tp->t_rtttime &&
1745 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1746 					if (!tp->t_rttlow ||
1747 					    tp->t_rttlow > ticks - tp->t_rtttime)
1748 						tp->t_rttlow = ticks - tp->t_rtttime;
1749 					tcp_xmit_timer(tp,
1750 							ticks - tp->t_rtttime);
1751 				}
1752 				acked = BYTES_THIS_ACK(tp, th);
1753 
1754 #ifdef TCP_HHOOK
1755 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1756 				hhook_run_tcp_est_in(tp, th, &to);
1757 #endif
1758 
1759 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1760 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1761 				sbdrop(&so->so_snd, acked);
1762 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1763 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1764 					tp->snd_recover = th->th_ack - 1;
1765 
1766 				/*
1767 				 * Let the congestion control algorithm update
1768 				 * congestion control related information. This
1769 				 * typically means increasing the congestion
1770 				 * window.
1771 				 */
1772 				cc_ack_received(tp, th, nsegs, CC_ACK);
1773 
1774 				tp->snd_una = th->th_ack;
1775 				/*
1776 				 * Pull snd_wl2 up to prevent seq wrap relative
1777 				 * to th_ack.
1778 				 */
1779 				tp->snd_wl2 = th->th_ack;
1780 				tp->t_dupacks = 0;
1781 				m_freem(m);
1782 
1783 				/*
1784 				 * If all outstanding data are acked, stop
1785 				 * retransmit timer, otherwise restart timer
1786 				 * using current (possibly backed-off) value.
1787 				 * If process is waiting for space,
1788 				 * wakeup/selwakeup/signal.  If data
1789 				 * are ready to send, let tcp_output
1790 				 * decide between more output or persist.
1791 				 */
1792 #ifdef TCPDEBUG
1793 				if (so->so_options & SO_DEBUG)
1794 					tcp_trace(TA_INPUT, ostate, tp,
1795 					    (void *)tcp_saveipgen,
1796 					    &tcp_savetcp, 0);
1797 #endif
1798 				TCP_PROBE3(debug__input, tp, th, m);
1799 				if (tp->snd_una == tp->snd_max)
1800 					tcp_timer_activate(tp, TT_REXMT, 0);
1801 				else if (!tcp_timer_active(tp, TT_PERSIST))
1802 					tcp_timer_activate(tp, TT_REXMT,
1803 						      tp->t_rxtcur);
1804 				sowwakeup(so);
1805 				if (sbavail(&so->so_snd))
1806 					(void) tp->t_fb->tfb_tcp_output(tp);
1807 				goto check_delack;
1808 			}
1809 		} else if (th->th_ack == tp->snd_una &&
1810 		    tlen <= sbspace(&so->so_rcv)) {
1811 			int newsize = 0;	/* automatic sockbuf scaling */
1812 
1813 			/*
1814 			 * This is a pure, in-sequence data packet with
1815 			 * nothing on the reassembly queue and we have enough
1816 			 * buffer space to take it.
1817 			 */
1818 			/* Clean receiver SACK report if present */
1819 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1820 				tcp_clean_sackreport(tp);
1821 			TCPSTAT_INC(tcps_preddat);
1822 			tp->rcv_nxt += tlen;
1823 			/*
1824 			 * Pull snd_wl1 up to prevent seq wrap relative to
1825 			 * th_seq.
1826 			 */
1827 			tp->snd_wl1 = th->th_seq;
1828 			/*
1829 			 * Pull rcv_up up to prevent seq wrap relative to
1830 			 * rcv_nxt.
1831 			 */
1832 			tp->rcv_up = tp->rcv_nxt;
1833 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1834 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1835 #ifdef TCPDEBUG
1836 			if (so->so_options & SO_DEBUG)
1837 				tcp_trace(TA_INPUT, ostate, tp,
1838 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1839 #endif
1840 			TCP_PROBE3(debug__input, tp, th, m);
1841 
1842 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1843 
1844 			/* Add data to socket buffer. */
1845 			SOCKBUF_LOCK(&so->so_rcv);
1846 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1847 				m_freem(m);
1848 			} else {
1849 				/*
1850 				 * Set new socket buffer size.
1851 				 * Give up when limit is reached.
1852 				 */
1853 				if (newsize)
1854 					if (!sbreserve_locked(&so->so_rcv,
1855 					    newsize, so, NULL))
1856 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1857 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1858 				sbappendstream_locked(&so->so_rcv, m, 0);
1859 			}
1860 			/* NB: sorwakeup_locked() does an implicit unlock. */
1861 			sorwakeup_locked(so);
1862 			if (DELAY_ACK(tp, tlen)) {
1863 				tp->t_flags |= TF_DELACK;
1864 			} else {
1865 				tp->t_flags |= TF_ACKNOW;
1866 				tp->t_fb->tfb_tcp_output(tp);
1867 			}
1868 			goto check_delack;
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * Calculate amount of space in receive window,
1874 	 * and then do TCP input processing.
1875 	 * Receive window is amount of space in rcv queue,
1876 	 * but not less than advertised window.
1877 	 */
1878 	win = sbspace(&so->so_rcv);
1879 	if (win < 0)
1880 		win = 0;
1881 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1882 
1883 	switch (tp->t_state) {
1884 
1885 	/*
1886 	 * If the state is SYN_RECEIVED:
1887 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1888 	 */
1889 	case TCPS_SYN_RECEIVED:
1890 		if ((thflags & TH_ACK) &&
1891 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1892 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1893 				rstreason = BANDLIM_RST_OPENPORT;
1894 				goto dropwithreset;
1895 		}
1896 		if (IS_FASTOPEN(tp->t_flags)) {
1897 			/*
1898 			 * When a TFO connection is in SYN_RECEIVED, the
1899 			 * only valid packets are the initial SYN, a
1900 			 * retransmit/copy of the initial SYN (possibly with
1901 			 * a subset of the original data), a valid ACK, a
1902 			 * FIN, or a RST.
1903 			 */
1904 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1905 				rstreason = BANDLIM_RST_OPENPORT;
1906 				goto dropwithreset;
1907 			} else if (thflags & TH_SYN) {
1908 				/* non-initial SYN is ignored */
1909 				if ((tcp_timer_active(tp, TT_DELACK) ||
1910 				     tcp_timer_active(tp, TT_REXMT)))
1911 					goto drop;
1912 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1913 				goto drop;
1914 			}
1915 		}
1916 		break;
1917 
1918 	/*
1919 	 * If the state is SYN_SENT:
1920 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
1921 	 *	    been verified), then drop the connection.
1922 	 *	if seg contains a RST without an ACK, drop the seg.
1923 	 *	if seg does not contain SYN, then drop the seg.
1924 	 * Otherwise this is an acceptable SYN segment
1925 	 *	initialize tp->rcv_nxt and tp->irs
1926 	 *	if seg contains ack then advance tp->snd_una
1927 	 *	if seg contains an ECE and ECN support is enabled, the stream
1928 	 *	    is ECN capable.
1929 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1930 	 *	arrange for segment to be acked (eventually)
1931 	 *	continue processing rest of data/controls, beginning with URG
1932 	 */
1933 	case TCPS_SYN_SENT:
1934 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1935 			TCP_PROBE5(connect__refused, NULL, tp,
1936 			    m, tp, th);
1937 			tp = tcp_drop(tp, ECONNREFUSED);
1938 		}
1939 		if (thflags & TH_RST)
1940 			goto drop;
1941 		if (!(thflags & TH_SYN))
1942 			goto drop;
1943 
1944 		tp->irs = th->th_seq;
1945 		tcp_rcvseqinit(tp);
1946 		if (thflags & TH_ACK) {
1947 			int tfo_partial_ack = 0;
1948 
1949 			TCPSTAT_INC(tcps_connects);
1950 			soisconnected(so);
1951 #ifdef MAC
1952 			mac_socketpeer_set_from_mbuf(m, so);
1953 #endif
1954 			/* Do window scaling on this connection? */
1955 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1956 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1957 				tp->rcv_scale = tp->request_r_scale;
1958 			}
1959 			tp->rcv_adv += min(tp->rcv_wnd,
1960 			    TCP_MAXWIN << tp->rcv_scale);
1961 			tp->snd_una++;		/* SYN is acked */
1962 			/*
1963 			 * If not all the data that was sent in the TFO SYN
1964 			 * has been acked, resend the remainder right away.
1965 			 */
1966 			if (IS_FASTOPEN(tp->t_flags) &&
1967 			    (tp->snd_una != tp->snd_max)) {
1968 				tp->snd_nxt = th->th_ack;
1969 				tfo_partial_ack = 1;
1970 			}
1971 			/*
1972 			 * If there's data, delay ACK; if there's also a FIN
1973 			 * ACKNOW will be turned on later.
1974 			 */
1975 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
1976 				tcp_timer_activate(tp, TT_DELACK,
1977 				    tcp_delacktime);
1978 			else
1979 				tp->t_flags |= TF_ACKNOW;
1980 
1981 			if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
1982 			    V_tcp_do_ecn) {
1983 				tp->t_flags2 |= TF2_ECN_PERMIT;
1984 				TCPSTAT_INC(tcps_ecn_shs);
1985 			}
1986 
1987 			/*
1988 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1989 			 * Transitions:
1990 			 *	SYN_SENT  --> ESTABLISHED
1991 			 *	SYN_SENT* --> FIN_WAIT_1
1992 			 */
1993 			tp->t_starttime = ticks;
1994 			if (tp->t_flags & TF_NEEDFIN) {
1995 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1996 				tp->t_flags &= ~TF_NEEDFIN;
1997 				thflags &= ~TH_SYN;
1998 			} else {
1999 				tcp_state_change(tp, TCPS_ESTABLISHED);
2000 				TCP_PROBE5(connect__established, NULL, tp,
2001 				    m, tp, th);
2002 				cc_conn_init(tp);
2003 				tcp_timer_activate(tp, TT_KEEP,
2004 				    TP_KEEPIDLE(tp));
2005 			}
2006 		} else {
2007 			/*
2008 			 * Received initial SYN in SYN-SENT[*] state =>
2009 			 * simultaneous open.
2010 			 * If it succeeds, connection is * half-synchronized.
2011 			 * Otherwise, do 3-way handshake:
2012 			 *        SYN-SENT -> SYN-RECEIVED
2013 			 *        SYN-SENT* -> SYN-RECEIVED*
2014 			 */
2015 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2016 			tcp_timer_activate(tp, TT_REXMT, 0);
2017 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2018 		}
2019 
2020 		INP_WLOCK_ASSERT(tp->t_inpcb);
2021 
2022 		/*
2023 		 * Advance th->th_seq to correspond to first data byte.
2024 		 * If data, trim to stay within window,
2025 		 * dropping FIN if necessary.
2026 		 */
2027 		th->th_seq++;
2028 		if (tlen > tp->rcv_wnd) {
2029 			todrop = tlen - tp->rcv_wnd;
2030 			m_adj(m, -todrop);
2031 			tlen = tp->rcv_wnd;
2032 			thflags &= ~TH_FIN;
2033 			TCPSTAT_INC(tcps_rcvpackafterwin);
2034 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2035 		}
2036 		tp->snd_wl1 = th->th_seq - 1;
2037 		tp->rcv_up = th->th_seq;
2038 		/*
2039 		 * Client side of transaction: already sent SYN and data.
2040 		 * If the remote host used T/TCP to validate the SYN,
2041 		 * our data will be ACK'd; if so, enter normal data segment
2042 		 * processing in the middle of step 5, ack processing.
2043 		 * Otherwise, goto step 6.
2044 		 */
2045 		if (thflags & TH_ACK)
2046 			goto process_ACK;
2047 
2048 		goto step6;
2049 
2050 	/*
2051 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2052 	 *      do normal processing.
2053 	 *
2054 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2055 	 */
2056 	case TCPS_LAST_ACK:
2057 	case TCPS_CLOSING:
2058 		break;  /* continue normal processing */
2059 	}
2060 
2061 	/*
2062 	 * States other than LISTEN or SYN_SENT.
2063 	 * First check the RST flag and sequence number since reset segments
2064 	 * are exempt from the timestamp and connection count tests.  This
2065 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2066 	 * below which allowed reset segments in half the sequence space
2067 	 * to fall though and be processed (which gives forged reset
2068 	 * segments with a random sequence number a 50 percent chance of
2069 	 * killing a connection).
2070 	 * Then check timestamp, if present.
2071 	 * Then check the connection count, if present.
2072 	 * Then check that at least some bytes of segment are within
2073 	 * receive window.  If segment begins before rcv_nxt,
2074 	 * drop leading data (and SYN); if nothing left, just ack.
2075 	 */
2076 	if (thflags & TH_RST) {
2077 		/*
2078 		 * RFC5961 Section 3.2
2079 		 *
2080 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2081 		 * - If RST is in window, we send challenge ACK.
2082 		 *
2083 		 * Note: to take into account delayed ACKs, we should
2084 		 *   test against last_ack_sent instead of rcv_nxt.
2085 		 * Note 2: we handle special case of closed window, not
2086 		 *   covered by the RFC.
2087 		 */
2088 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2089 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2090 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2091 
2092 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2093 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2094 			    __func__, th, tp));
2095 
2096 			if (V_tcp_insecure_rst ||
2097 			    tp->last_ack_sent == th->th_seq) {
2098 				TCPSTAT_INC(tcps_drops);
2099 				/* Drop the connection. */
2100 				switch (tp->t_state) {
2101 				case TCPS_SYN_RECEIVED:
2102 					so->so_error = ECONNREFUSED;
2103 					goto close;
2104 				case TCPS_ESTABLISHED:
2105 				case TCPS_FIN_WAIT_1:
2106 				case TCPS_FIN_WAIT_2:
2107 				case TCPS_CLOSE_WAIT:
2108 				case TCPS_CLOSING:
2109 				case TCPS_LAST_ACK:
2110 					so->so_error = ECONNRESET;
2111 				close:
2112 					/* FALLTHROUGH */
2113 				default:
2114 					tp = tcp_close(tp);
2115 				}
2116 			} else {
2117 				TCPSTAT_INC(tcps_badrst);
2118 				/* Send challenge ACK. */
2119 				tcp_respond(tp, mtod(m, void *), th, m,
2120 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2121 				tp->last_ack_sent = tp->rcv_nxt;
2122 				m = NULL;
2123 			}
2124 		}
2125 		goto drop;
2126 	}
2127 
2128 	/*
2129 	 * RFC5961 Section 4.2
2130 	 * Send challenge ACK for any SYN in synchronized state.
2131 	 */
2132 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2133 	    tp->t_state != TCPS_SYN_RECEIVED) {
2134 		TCPSTAT_INC(tcps_badsyn);
2135 		if (V_tcp_insecure_syn &&
2136 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2137 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2138 			tp = tcp_drop(tp, ECONNRESET);
2139 			rstreason = BANDLIM_UNLIMITED;
2140 		} else {
2141 			/* Send challenge ACK. */
2142 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2143 			    tp->snd_nxt, TH_ACK);
2144 			tp->last_ack_sent = tp->rcv_nxt;
2145 			m = NULL;
2146 		}
2147 		goto drop;
2148 	}
2149 
2150 	/*
2151 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2152 	 * and it's less than ts_recent, drop it.
2153 	 */
2154 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2155 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2156 
2157 		/* Check to see if ts_recent is over 24 days old.  */
2158 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2159 			/*
2160 			 * Invalidate ts_recent.  If this segment updates
2161 			 * ts_recent, the age will be reset later and ts_recent
2162 			 * will get a valid value.  If it does not, setting
2163 			 * ts_recent to zero will at least satisfy the
2164 			 * requirement that zero be placed in the timestamp
2165 			 * echo reply when ts_recent isn't valid.  The
2166 			 * age isn't reset until we get a valid ts_recent
2167 			 * because we don't want out-of-order segments to be
2168 			 * dropped when ts_recent is old.
2169 			 */
2170 			tp->ts_recent = 0;
2171 		} else {
2172 			TCPSTAT_INC(tcps_rcvduppack);
2173 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2174 			TCPSTAT_INC(tcps_pawsdrop);
2175 			if (tlen)
2176 				goto dropafterack;
2177 			goto drop;
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2183 	 * this connection before trimming the data to fit the receive
2184 	 * window.  Check the sequence number versus IRS since we know
2185 	 * the sequence numbers haven't wrapped.  This is a partial fix
2186 	 * for the "LAND" DoS attack.
2187 	 */
2188 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2189 		rstreason = BANDLIM_RST_OPENPORT;
2190 		goto dropwithreset;
2191 	}
2192 
2193 	todrop = tp->rcv_nxt - th->th_seq;
2194 	if (todrop > 0) {
2195 		if (thflags & TH_SYN) {
2196 			thflags &= ~TH_SYN;
2197 			th->th_seq++;
2198 			if (th->th_urp > 1)
2199 				th->th_urp--;
2200 			else
2201 				thflags &= ~TH_URG;
2202 			todrop--;
2203 		}
2204 		/*
2205 		 * Following if statement from Stevens, vol. 2, p. 960.
2206 		 */
2207 		if (todrop > tlen
2208 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2209 			/*
2210 			 * Any valid FIN must be to the left of the window.
2211 			 * At this point the FIN must be a duplicate or out
2212 			 * of sequence; drop it.
2213 			 */
2214 			thflags &= ~TH_FIN;
2215 
2216 			/*
2217 			 * Send an ACK to resynchronize and drop any data.
2218 			 * But keep on processing for RST or ACK.
2219 			 */
2220 			tp->t_flags |= TF_ACKNOW;
2221 			todrop = tlen;
2222 			TCPSTAT_INC(tcps_rcvduppack);
2223 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2224 		} else {
2225 			TCPSTAT_INC(tcps_rcvpartduppack);
2226 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2227 		}
2228 		/*
2229 		 * DSACK - add SACK block for dropped range
2230 		 */
2231 		if (tp->t_flags & TF_SACK_PERMIT) {
2232 			tcp_update_sack_list(tp, th->th_seq,
2233 			    th->th_seq + todrop);
2234 			/*
2235 			 * ACK now, as the next in-sequence segment
2236 			 * will clear the DSACK block again
2237 			 */
2238 			tp->t_flags |= TF_ACKNOW;
2239 		}
2240 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2241 		th->th_seq += todrop;
2242 		tlen -= todrop;
2243 		if (th->th_urp > todrop)
2244 			th->th_urp -= todrop;
2245 		else {
2246 			thflags &= ~TH_URG;
2247 			th->th_urp = 0;
2248 		}
2249 	}
2250 
2251 	/*
2252 	 * If new data are received on a connection after the
2253 	 * user processes are gone, then RST the other end.
2254 	 */
2255 	if ((so->so_state & SS_NOFDREF) &&
2256 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2257 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2258 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2259 			    "after socket was closed, "
2260 			    "sending RST and removing tcpcb\n",
2261 			    s, __func__, tcpstates[tp->t_state], tlen);
2262 			free(s, M_TCPLOG);
2263 		}
2264 		tp = tcp_close(tp);
2265 		TCPSTAT_INC(tcps_rcvafterclose);
2266 		rstreason = BANDLIM_UNLIMITED;
2267 		goto dropwithreset;
2268 	}
2269 
2270 	/*
2271 	 * If segment ends after window, drop trailing data
2272 	 * (and PUSH and FIN); if nothing left, just ACK.
2273 	 */
2274 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2275 	if (todrop > 0) {
2276 		TCPSTAT_INC(tcps_rcvpackafterwin);
2277 		if (todrop >= tlen) {
2278 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2279 			/*
2280 			 * If window is closed can only take segments at
2281 			 * window edge, and have to drop data and PUSH from
2282 			 * incoming segments.  Continue processing, but
2283 			 * remember to ack.  Otherwise, drop segment
2284 			 * and ack.
2285 			 */
2286 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2287 				tp->t_flags |= TF_ACKNOW;
2288 				TCPSTAT_INC(tcps_rcvwinprobe);
2289 			} else
2290 				goto dropafterack;
2291 		} else
2292 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2293 		m_adj(m, -todrop);
2294 		tlen -= todrop;
2295 		thflags &= ~(TH_PUSH|TH_FIN);
2296 	}
2297 
2298 	/*
2299 	 * If last ACK falls within this segment's sequence numbers,
2300 	 * record its timestamp.
2301 	 * NOTE:
2302 	 * 1) That the test incorporates suggestions from the latest
2303 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2304 	 * 2) That updating only on newer timestamps interferes with
2305 	 *    our earlier PAWS tests, so this check should be solely
2306 	 *    predicated on the sequence space of this segment.
2307 	 * 3) That we modify the segment boundary check to be
2308 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2309 	 *    instead of RFC1323's
2310 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2311 	 *    This modified check allows us to overcome RFC1323's
2312 	 *    limitations as described in Stevens TCP/IP Illustrated
2313 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2314 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2315 	 */
2316 	if ((to.to_flags & TOF_TS) != 0 &&
2317 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2318 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2319 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2320 		tp->ts_recent_age = tcp_ts_getticks();
2321 		tp->ts_recent = to.to_tsval;
2322 	}
2323 
2324 	/*
2325 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2326 	 * flag is on (half-synchronized state), then queue data for
2327 	 * later processing; else drop segment and return.
2328 	 */
2329 	if ((thflags & TH_ACK) == 0) {
2330 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2331 		    (tp->t_flags & TF_NEEDSYN)) {
2332 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2333 			    IS_FASTOPEN(tp->t_flags)) {
2334 				tp->snd_wnd = tiwin;
2335 				cc_conn_init(tp);
2336 			}
2337 			goto step6;
2338 		} else if (tp->t_flags & TF_ACKNOW)
2339 			goto dropafterack;
2340 		else
2341 			goto drop;
2342 	}
2343 
2344 	/*
2345 	 * Ack processing.
2346 	 */
2347 	switch (tp->t_state) {
2348 
2349 	/*
2350 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2351 	 * ESTABLISHED state and continue processing.
2352 	 * The ACK was checked above.
2353 	 */
2354 	case TCPS_SYN_RECEIVED:
2355 
2356 		TCPSTAT_INC(tcps_connects);
2357 		soisconnected(so);
2358 		/* Do window scaling? */
2359 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2360 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2361 			tp->rcv_scale = tp->request_r_scale;
2362 		}
2363 		tp->snd_wnd = tiwin;
2364 		/*
2365 		 * Make transitions:
2366 		 *      SYN-RECEIVED  -> ESTABLISHED
2367 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2368 		 */
2369 		tp->t_starttime = ticks;
2370 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2371 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2372 			tp->t_tfo_pending = NULL;
2373 
2374 			/*
2375 			 * Account for the ACK of our SYN prior to
2376 			 * regular ACK processing below.
2377 			 */
2378 			tp->snd_una++;
2379 		}
2380 		if (tp->t_flags & TF_NEEDFIN) {
2381 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2382 			tp->t_flags &= ~TF_NEEDFIN;
2383 		} else {
2384 			tcp_state_change(tp, TCPS_ESTABLISHED);
2385 			TCP_PROBE5(accept__established, NULL, tp,
2386 			    m, tp, th);
2387 			/*
2388 			 * TFO connections call cc_conn_init() during SYN
2389 			 * processing.  Calling it again here for such
2390 			 * connections is not harmless as it would undo the
2391 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2392 			 * is retransmitted.
2393 			 */
2394 			if (!IS_FASTOPEN(tp->t_flags))
2395 				cc_conn_init(tp);
2396 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2397 		}
2398 		/*
2399 		 * If segment contains data or ACK, will call tcp_reass()
2400 		 * later; if not, do so now to pass queued data to user.
2401 		 */
2402 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2403 			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2404 			    (struct mbuf *)0);
2405 		tp->snd_wl1 = th->th_seq - 1;
2406 		/* FALLTHROUGH */
2407 
2408 	/*
2409 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2410 	 * ACKs.  If the ack is in the range
2411 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2412 	 * then advance tp->snd_una to th->th_ack and drop
2413 	 * data from the retransmission queue.  If this ACK reflects
2414 	 * more up to date window information we update our window information.
2415 	 */
2416 	case TCPS_ESTABLISHED:
2417 	case TCPS_FIN_WAIT_1:
2418 	case TCPS_FIN_WAIT_2:
2419 	case TCPS_CLOSE_WAIT:
2420 	case TCPS_CLOSING:
2421 	case TCPS_LAST_ACK:
2422 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2423 			TCPSTAT_INC(tcps_rcvacktoomuch);
2424 			goto dropafterack;
2425 		}
2426 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2427 		    ((to.to_flags & TOF_SACK) ||
2428 		     !TAILQ_EMPTY(&tp->snd_holes)))
2429 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2430 		else
2431 			/*
2432 			 * Reset the value so that previous (valid) value
2433 			 * from the last ack with SACK doesn't get used.
2434 			 */
2435 			tp->sackhint.sacked_bytes = 0;
2436 
2437 #ifdef TCP_HHOOK
2438 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2439 		hhook_run_tcp_est_in(tp, th, &to);
2440 #endif
2441 
2442 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2443 			u_int maxseg;
2444 
2445 			maxseg = tcp_maxseg(tp);
2446 			if (tlen == 0 &&
2447 			    (tiwin == tp->snd_wnd ||
2448 			    (tp->t_flags & TF_SACK_PERMIT))) {
2449 				/*
2450 				 * If this is the first time we've seen a
2451 				 * FIN from the remote, this is not a
2452 				 * duplicate and it needs to be processed
2453 				 * normally.  This happens during a
2454 				 * simultaneous close.
2455 				 */
2456 				if ((thflags & TH_FIN) &&
2457 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2458 					tp->t_dupacks = 0;
2459 					break;
2460 				}
2461 				TCPSTAT_INC(tcps_rcvdupack);
2462 				/*
2463 				 * If we have outstanding data (other than
2464 				 * a window probe), this is a completely
2465 				 * duplicate ack (ie, window info didn't
2466 				 * change and FIN isn't set),
2467 				 * the ack is the biggest we've
2468 				 * seen and we've seen exactly our rexmt
2469 				 * threshold of them, assume a packet
2470 				 * has been dropped and retransmit it.
2471 				 * Kludge snd_nxt & the congestion
2472 				 * window so we send only this one
2473 				 * packet.
2474 				 *
2475 				 * We know we're losing at the current
2476 				 * window size so do congestion avoidance
2477 				 * (set ssthresh to half the current window
2478 				 * and pull our congestion window back to
2479 				 * the new ssthresh).
2480 				 *
2481 				 * Dup acks mean that packets have left the
2482 				 * network (they're now cached at the receiver)
2483 				 * so bump cwnd by the amount in the receiver
2484 				 * to keep a constant cwnd packets in the
2485 				 * network.
2486 				 *
2487 				 * When using TCP ECN, notify the peer that
2488 				 * we reduced the cwnd.
2489 				 */
2490 				/*
2491 				 * Following 2 kinds of acks should not affect
2492 				 * dupack counting:
2493 				 * 1) Old acks
2494 				 * 2) Acks with SACK but without any new SACK
2495 				 * information in them. These could result from
2496 				 * any anomaly in the network like a switch
2497 				 * duplicating packets or a possible DoS attack.
2498 				 */
2499 				if (th->th_ack != tp->snd_una ||
2500 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2501 				    !sack_changed))
2502 					break;
2503 				else if (!tcp_timer_active(tp, TT_REXMT))
2504 					tp->t_dupacks = 0;
2505 				else if (++tp->t_dupacks > tcprexmtthresh ||
2506 				     IN_FASTRECOVERY(tp->t_flags)) {
2507 					cc_ack_received(tp, th, nsegs,
2508 					    CC_DUPACK);
2509 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2510 					    IN_FASTRECOVERY(tp->t_flags)) {
2511 						int awnd;
2512 
2513 						/*
2514 						 * Compute the amount of data in flight first.
2515 						 * We can inject new data into the pipe iff
2516 						 * we have less than 1/2 the original window's
2517 						 * worth of data in flight.
2518 						 */
2519 						if (V_tcp_do_rfc6675_pipe)
2520 							awnd = tcp_compute_pipe(tp);
2521 						else
2522 							awnd = (tp->snd_nxt - tp->snd_fack) +
2523 								tp->sackhint.sack_bytes_rexmit;
2524 
2525 						if (awnd < tp->snd_ssthresh) {
2526 							tp->snd_cwnd += maxseg;
2527 							if (tp->snd_cwnd > tp->snd_ssthresh)
2528 								tp->snd_cwnd = tp->snd_ssthresh;
2529 						}
2530 					} else
2531 						tp->snd_cwnd += maxseg;
2532 					(void) tp->t_fb->tfb_tcp_output(tp);
2533 					goto drop;
2534 				} else if (tp->t_dupacks == tcprexmtthresh) {
2535 					tcp_seq onxt = tp->snd_nxt;
2536 
2537 					/*
2538 					 * If we're doing sack, check to
2539 					 * see if we're already in sack
2540 					 * recovery. If we're not doing sack,
2541 					 * check to see if we're in newreno
2542 					 * recovery.
2543 					 */
2544 					if (tp->t_flags & TF_SACK_PERMIT) {
2545 						if (IN_FASTRECOVERY(tp->t_flags)) {
2546 							tp->t_dupacks = 0;
2547 							break;
2548 						}
2549 					} else {
2550 						if (SEQ_LEQ(th->th_ack,
2551 						    tp->snd_recover)) {
2552 							tp->t_dupacks = 0;
2553 							break;
2554 						}
2555 					}
2556 					/* Congestion signal before ack. */
2557 					cc_cong_signal(tp, th, CC_NDUPACK);
2558 					cc_ack_received(tp, th, nsegs,
2559 					    CC_DUPACK);
2560 					tcp_timer_activate(tp, TT_REXMT, 0);
2561 					tp->t_rtttime = 0;
2562 					if (tp->t_flags & TF_SACK_PERMIT) {
2563 						TCPSTAT_INC(
2564 						    tcps_sack_recovery_episode);
2565 						tp->sack_newdata = tp->snd_nxt;
2566 						tp->snd_cwnd = maxseg;
2567 						(void) tp->t_fb->tfb_tcp_output(tp);
2568 						goto drop;
2569 					}
2570 					tp->snd_nxt = th->th_ack;
2571 					tp->snd_cwnd = maxseg;
2572 					(void) tp->t_fb->tfb_tcp_output(tp);
2573 					KASSERT(tp->snd_limited <= 2,
2574 					    ("%s: tp->snd_limited too big",
2575 					    __func__));
2576 					tp->snd_cwnd = tp->snd_ssthresh +
2577 					     maxseg *
2578 					     (tp->t_dupacks - tp->snd_limited);
2579 					if (SEQ_GT(onxt, tp->snd_nxt))
2580 						tp->snd_nxt = onxt;
2581 					goto drop;
2582 				} else if (V_tcp_do_rfc3042) {
2583 					/*
2584 					 * Process first and second duplicate
2585 					 * ACKs. Each indicates a segment
2586 					 * leaving the network, creating room
2587 					 * for more. Make sure we can send a
2588 					 * packet on reception of each duplicate
2589 					 * ACK by increasing snd_cwnd by one
2590 					 * segment. Restore the original
2591 					 * snd_cwnd after packet transmission.
2592 					 */
2593 					cc_ack_received(tp, th, nsegs,
2594 					    CC_DUPACK);
2595 					uint32_t oldcwnd = tp->snd_cwnd;
2596 					tcp_seq oldsndmax = tp->snd_max;
2597 					u_int sent;
2598 					int avail;
2599 
2600 					KASSERT(tp->t_dupacks == 1 ||
2601 					    tp->t_dupacks == 2,
2602 					    ("%s: dupacks not 1 or 2",
2603 					    __func__));
2604 					if (tp->t_dupacks == 1)
2605 						tp->snd_limited = 0;
2606 					tp->snd_cwnd =
2607 					    (tp->snd_nxt - tp->snd_una) +
2608 					    (tp->t_dupacks - tp->snd_limited) *
2609 					    maxseg;
2610 					/*
2611 					 * Only call tcp_output when there
2612 					 * is new data available to be sent.
2613 					 * Otherwise we would send pure ACKs.
2614 					 */
2615 					SOCKBUF_LOCK(&so->so_snd);
2616 					avail = sbavail(&so->so_snd) -
2617 					    (tp->snd_nxt - tp->snd_una);
2618 					SOCKBUF_UNLOCK(&so->so_snd);
2619 					if (avail > 0)
2620 						(void) tp->t_fb->tfb_tcp_output(tp);
2621 					sent = tp->snd_max - oldsndmax;
2622 					if (sent > maxseg) {
2623 						KASSERT((tp->t_dupacks == 2 &&
2624 						    tp->snd_limited == 0) ||
2625 						   (sent == maxseg + 1 &&
2626 						    tp->t_flags & TF_SENTFIN),
2627 						    ("%s: sent too much",
2628 						    __func__));
2629 						tp->snd_limited = 2;
2630 					} else if (sent > 0)
2631 						++tp->snd_limited;
2632 					tp->snd_cwnd = oldcwnd;
2633 					goto drop;
2634 				}
2635 			}
2636 			break;
2637 		} else {
2638 			/*
2639 			 * This ack is advancing the left edge, reset the
2640 			 * counter.
2641 			 */
2642 			tp->t_dupacks = 0;
2643 			/*
2644 			 * If this ack also has new SACK info, increment the
2645 			 * counter as per rfc6675.
2646 			 */
2647 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2648 				tp->t_dupacks++;
2649 		}
2650 
2651 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2652 		    ("%s: th_ack <= snd_una", __func__));
2653 
2654 		/*
2655 		 * If the congestion window was inflated to account
2656 		 * for the other side's cached packets, retract it.
2657 		 */
2658 		if (IN_FASTRECOVERY(tp->t_flags)) {
2659 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2660 				if (tp->t_flags & TF_SACK_PERMIT)
2661 					tcp_sack_partialack(tp, th);
2662 				else
2663 					tcp_newreno_partial_ack(tp, th);
2664 			} else
2665 				cc_post_recovery(tp, th);
2666 		}
2667 		/*
2668 		 * If we reach this point, ACK is not a duplicate,
2669 		 *     i.e., it ACKs something we sent.
2670 		 */
2671 		if (tp->t_flags & TF_NEEDSYN) {
2672 			/*
2673 			 * T/TCP: Connection was half-synchronized, and our
2674 			 * SYN has been ACK'd (so connection is now fully
2675 			 * synchronized).  Go to non-starred state,
2676 			 * increment snd_una for ACK of SYN, and check if
2677 			 * we can do window scaling.
2678 			 */
2679 			tp->t_flags &= ~TF_NEEDSYN;
2680 			tp->snd_una++;
2681 			/* Do window scaling? */
2682 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2683 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2684 				tp->rcv_scale = tp->request_r_scale;
2685 				/* Send window already scaled. */
2686 			}
2687 		}
2688 
2689 process_ACK:
2690 		INP_WLOCK_ASSERT(tp->t_inpcb);
2691 
2692 		acked = BYTES_THIS_ACK(tp, th);
2693 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2694 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2695 		    tp->snd_una, th->th_ack, tp, m));
2696 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2697 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2698 
2699 		/*
2700 		 * If we just performed our first retransmit, and the ACK
2701 		 * arrives within our recovery window, then it was a mistake
2702 		 * to do the retransmit in the first place.  Recover our
2703 		 * original cwnd and ssthresh, and proceed to transmit where
2704 		 * we left off.
2705 		 */
2706 		if (tp->t_rxtshift == 1 &&
2707 		    tp->t_flags & TF_PREVVALID &&
2708 		    tp->t_badrxtwin &&
2709 		    SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2710 			cc_cong_signal(tp, th, CC_RTO_ERR);
2711 
2712 		/*
2713 		 * If we have a timestamp reply, update smoothed
2714 		 * round trip time.  If no timestamp is present but
2715 		 * transmit timer is running and timed sequence
2716 		 * number was acked, update smoothed round trip time.
2717 		 * Since we now have an rtt measurement, cancel the
2718 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2719 		 * Recompute the initial retransmit timer.
2720 		 *
2721 		 * Some boxes send broken timestamp replies
2722 		 * during the SYN+ACK phase, ignore
2723 		 * timestamps of 0 or we could calculate a
2724 		 * huge RTT and blow up the retransmit timer.
2725 		 */
2726 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2727 			uint32_t t;
2728 
2729 			t = tcp_ts_getticks() - to.to_tsecr;
2730 			if (!tp->t_rttlow || tp->t_rttlow > t)
2731 				tp->t_rttlow = t;
2732 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2733 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2734 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2735 				tp->t_rttlow = ticks - tp->t_rtttime;
2736 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2737 		}
2738 
2739 		/*
2740 		 * If all outstanding data is acked, stop retransmit
2741 		 * timer and remember to restart (more output or persist).
2742 		 * If there is more data to be acked, restart retransmit
2743 		 * timer, using current (possibly backed-off) value.
2744 		 */
2745 		if (th->th_ack == tp->snd_max) {
2746 			tcp_timer_activate(tp, TT_REXMT, 0);
2747 			needoutput = 1;
2748 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2749 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2750 
2751 		/*
2752 		 * If no data (only SYN) was ACK'd,
2753 		 *    skip rest of ACK processing.
2754 		 */
2755 		if (acked == 0)
2756 			goto step6;
2757 
2758 		/*
2759 		 * Let the congestion control algorithm update congestion
2760 		 * control related information. This typically means increasing
2761 		 * the congestion window.
2762 		 */
2763 		cc_ack_received(tp, th, nsegs, CC_ACK);
2764 
2765 		SOCKBUF_LOCK(&so->so_snd);
2766 		if (acked > sbavail(&so->so_snd)) {
2767 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2768 				tp->snd_wnd -= sbavail(&so->so_snd);
2769 			else
2770 				tp->snd_wnd = 0;
2771 			mfree = sbcut_locked(&so->so_snd,
2772 			    (int)sbavail(&so->so_snd));
2773 			ourfinisacked = 1;
2774 		} else {
2775 			mfree = sbcut_locked(&so->so_snd, acked);
2776 			if (tp->snd_wnd >= (uint32_t) acked)
2777 				tp->snd_wnd -= acked;
2778 			else
2779 				tp->snd_wnd = 0;
2780 			ourfinisacked = 0;
2781 		}
2782 		/* NB: sowwakeup_locked() does an implicit unlock. */
2783 		sowwakeup_locked(so);
2784 		m_freem(mfree);
2785 		/* Detect una wraparound. */
2786 		if (!IN_RECOVERY(tp->t_flags) &&
2787 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2788 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2789 			tp->snd_recover = th->th_ack - 1;
2790 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2791 		if (IN_RECOVERY(tp->t_flags) &&
2792 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2793 			EXIT_RECOVERY(tp->t_flags);
2794 		}
2795 		tp->snd_una = th->th_ack;
2796 		if (tp->t_flags & TF_SACK_PERMIT) {
2797 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2798 				tp->snd_recover = tp->snd_una;
2799 		}
2800 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2801 			tp->snd_nxt = tp->snd_una;
2802 
2803 		switch (tp->t_state) {
2804 
2805 		/*
2806 		 * In FIN_WAIT_1 STATE in addition to the processing
2807 		 * for the ESTABLISHED state if our FIN is now acknowledged
2808 		 * then enter FIN_WAIT_2.
2809 		 */
2810 		case TCPS_FIN_WAIT_1:
2811 			if (ourfinisacked) {
2812 				/*
2813 				 * If we can't receive any more
2814 				 * data, then closing user can proceed.
2815 				 * Starting the timer is contrary to the
2816 				 * specification, but if we don't get a FIN
2817 				 * we'll hang forever.
2818 				 *
2819 				 * XXXjl:
2820 				 * we should release the tp also, and use a
2821 				 * compressed state.
2822 				 */
2823 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2824 					soisdisconnected(so);
2825 					tcp_timer_activate(tp, TT_2MSL,
2826 					    (tcp_fast_finwait2_recycle ?
2827 					    tcp_finwait2_timeout :
2828 					    TP_MAXIDLE(tp)));
2829 				}
2830 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2831 			}
2832 			break;
2833 
2834 		/*
2835 		 * In CLOSING STATE in addition to the processing for
2836 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2837 		 * then enter the TIME-WAIT state, otherwise ignore
2838 		 * the segment.
2839 		 */
2840 		case TCPS_CLOSING:
2841 			if (ourfinisacked) {
2842 				tcp_twstart(tp);
2843 				m_freem(m);
2844 				return;
2845 			}
2846 			break;
2847 
2848 		/*
2849 		 * In LAST_ACK, we may still be waiting for data to drain
2850 		 * and/or to be acked, as well as for the ack of our FIN.
2851 		 * If our FIN is now acknowledged, delete the TCB,
2852 		 * enter the closed state and return.
2853 		 */
2854 		case TCPS_LAST_ACK:
2855 			if (ourfinisacked) {
2856 				tp = tcp_close(tp);
2857 				goto drop;
2858 			}
2859 			break;
2860 		}
2861 	}
2862 
2863 step6:
2864 	INP_WLOCK_ASSERT(tp->t_inpcb);
2865 
2866 	/*
2867 	 * Update window information.
2868 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2869 	 */
2870 	if ((thflags & TH_ACK) &&
2871 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2872 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2873 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2874 		/* keep track of pure window updates */
2875 		if (tlen == 0 &&
2876 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2877 			TCPSTAT_INC(tcps_rcvwinupd);
2878 		tp->snd_wnd = tiwin;
2879 		tp->snd_wl1 = th->th_seq;
2880 		tp->snd_wl2 = th->th_ack;
2881 		if (tp->snd_wnd > tp->max_sndwnd)
2882 			tp->max_sndwnd = tp->snd_wnd;
2883 		needoutput = 1;
2884 	}
2885 
2886 	/*
2887 	 * Process segments with URG.
2888 	 */
2889 	if ((thflags & TH_URG) && th->th_urp &&
2890 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2891 		/*
2892 		 * This is a kludge, but if we receive and accept
2893 		 * random urgent pointers, we'll crash in
2894 		 * soreceive.  It's hard to imagine someone
2895 		 * actually wanting to send this much urgent data.
2896 		 */
2897 		SOCKBUF_LOCK(&so->so_rcv);
2898 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2899 			th->th_urp = 0;			/* XXX */
2900 			thflags &= ~TH_URG;		/* XXX */
2901 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2902 			goto dodata;			/* XXX */
2903 		}
2904 		/*
2905 		 * If this segment advances the known urgent pointer,
2906 		 * then mark the data stream.  This should not happen
2907 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2908 		 * a FIN has been received from the remote side.
2909 		 * In these states we ignore the URG.
2910 		 *
2911 		 * According to RFC961 (Assigned Protocols),
2912 		 * the urgent pointer points to the last octet
2913 		 * of urgent data.  We continue, however,
2914 		 * to consider it to indicate the first octet
2915 		 * of data past the urgent section as the original
2916 		 * spec states (in one of two places).
2917 		 */
2918 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2919 			tp->rcv_up = th->th_seq + th->th_urp;
2920 			so->so_oobmark = sbavail(&so->so_rcv) +
2921 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2922 			if (so->so_oobmark == 0)
2923 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2924 			sohasoutofband(so);
2925 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2926 		}
2927 		SOCKBUF_UNLOCK(&so->so_rcv);
2928 		/*
2929 		 * Remove out of band data so doesn't get presented to user.
2930 		 * This can happen independent of advancing the URG pointer,
2931 		 * but if two URG's are pending at once, some out-of-band
2932 		 * data may creep in... ick.
2933 		 */
2934 		if (th->th_urp <= (uint32_t)tlen &&
2935 		    !(so->so_options & SO_OOBINLINE)) {
2936 			/* hdr drop is delayed */
2937 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2938 		}
2939 	} else {
2940 		/*
2941 		 * If no out of band data is expected,
2942 		 * pull receive urgent pointer along
2943 		 * with the receive window.
2944 		 */
2945 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2946 			tp->rcv_up = tp->rcv_nxt;
2947 	}
2948 dodata:							/* XXX */
2949 	INP_WLOCK_ASSERT(tp->t_inpcb);
2950 
2951 	/*
2952 	 * Process the segment text, merging it into the TCP sequencing queue,
2953 	 * and arranging for acknowledgment of receipt if necessary.
2954 	 * This process logically involves adjusting tp->rcv_wnd as data
2955 	 * is presented to the user (this happens in tcp_usrreq.c,
2956 	 * case PRU_RCVD).  If a FIN has already been received on this
2957 	 * connection then we just ignore the text.
2958 	 */
2959 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
2960 		   IS_FASTOPEN(tp->t_flags));
2961 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
2962 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2963 		tcp_seq save_start = th->th_seq;
2964 		tcp_seq save_rnxt  = tp->rcv_nxt;
2965 		int     save_tlen  = tlen;
2966 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2967 		/*
2968 		 * Insert segment which includes th into TCP reassembly queue
2969 		 * with control block tp.  Set thflags to whether reassembly now
2970 		 * includes a segment with FIN.  This handles the common case
2971 		 * inline (segment is the next to be received on an established
2972 		 * connection, and the queue is empty), avoiding linkage into
2973 		 * and removal from the queue and repetition of various
2974 		 * conversions.
2975 		 * Set DELACK for segments received in order, but ack
2976 		 * immediately when segments are out of order (so
2977 		 * fast retransmit can work).
2978 		 */
2979 		if (th->th_seq == tp->rcv_nxt &&
2980 		    SEGQ_EMPTY(tp) &&
2981 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
2982 		     tfo_syn)) {
2983 			if (DELAY_ACK(tp, tlen) || tfo_syn)
2984 				tp->t_flags |= TF_DELACK;
2985 			else
2986 				tp->t_flags |= TF_ACKNOW;
2987 			tp->rcv_nxt += tlen;
2988 			thflags = th->th_flags & TH_FIN;
2989 			TCPSTAT_INC(tcps_rcvpack);
2990 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2991 			SOCKBUF_LOCK(&so->so_rcv);
2992 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2993 				m_freem(m);
2994 			else
2995 				sbappendstream_locked(&so->so_rcv, m, 0);
2996 			/* NB: sorwakeup_locked() does an implicit unlock. */
2997 			sorwakeup_locked(so);
2998 		} else {
2999 			/*
3000 			 * XXX: Due to the header drop above "th" is
3001 			 * theoretically invalid by now.  Fortunately
3002 			 * m_adj() doesn't actually frees any mbufs
3003 			 * when trimming from the head.
3004 			 */
3005 			tcp_seq temp = save_start;
3006 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
3007 			tp->t_flags |= TF_ACKNOW;
3008 		}
3009 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
3010 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3011 				/*
3012 				 * DSACK actually handled in the fastpath
3013 				 * above.
3014 				 */
3015 				tcp_update_sack_list(tp, save_start,
3016 				    save_start + save_tlen);
3017 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3018 				if ((tp->rcv_numsacks >= 1) &&
3019 				    (tp->sackblks[0].end == save_start)) {
3020 					/*
3021 					 * Partial overlap, recorded at todrop
3022 					 * above.
3023 					 */
3024 					tcp_update_sack_list(tp,
3025 					    tp->sackblks[0].start,
3026 					    tp->sackblks[0].end);
3027 				} else {
3028 					tcp_update_dsack_list(tp, save_start,
3029 					    save_start + save_tlen);
3030 				}
3031 			} else if (tlen >= save_tlen) {
3032 				/* Update of sackblks. */
3033 				tcp_update_dsack_list(tp, save_start,
3034 				    save_start + save_tlen);
3035 			} else if (tlen > 0) {
3036 				tcp_update_dsack_list(tp, save_start,
3037 				    save_start + tlen);
3038 			}
3039 		}
3040 #if 0
3041 		/*
3042 		 * Note the amount of data that peer has sent into
3043 		 * our window, in order to estimate the sender's
3044 		 * buffer size.
3045 		 * XXX: Unused.
3046 		 */
3047 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3048 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3049 		else
3050 			len = so->so_rcv.sb_hiwat;
3051 #endif
3052 	} else {
3053 		m_freem(m);
3054 		thflags &= ~TH_FIN;
3055 	}
3056 
3057 	/*
3058 	 * If FIN is received ACK the FIN and let the user know
3059 	 * that the connection is closing.
3060 	 */
3061 	if (thflags & TH_FIN) {
3062 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3063 			socantrcvmore(so);
3064 			/*
3065 			 * If connection is half-synchronized
3066 			 * (ie NEEDSYN flag on) then delay ACK,
3067 			 * so it may be piggybacked when SYN is sent.
3068 			 * Otherwise, since we received a FIN then no
3069 			 * more input can be expected, send ACK now.
3070 			 */
3071 			if (tp->t_flags & TF_NEEDSYN)
3072 				tp->t_flags |= TF_DELACK;
3073 			else
3074 				tp->t_flags |= TF_ACKNOW;
3075 			tp->rcv_nxt++;
3076 		}
3077 		switch (tp->t_state) {
3078 
3079 		/*
3080 		 * In SYN_RECEIVED and ESTABLISHED STATES
3081 		 * enter the CLOSE_WAIT state.
3082 		 */
3083 		case TCPS_SYN_RECEIVED:
3084 			tp->t_starttime = ticks;
3085 			/* FALLTHROUGH */
3086 		case TCPS_ESTABLISHED:
3087 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3088 			break;
3089 
3090 		/*
3091 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3092 		 * enter the CLOSING state.
3093 		 */
3094 		case TCPS_FIN_WAIT_1:
3095 			tcp_state_change(tp, TCPS_CLOSING);
3096 			break;
3097 
3098 		/*
3099 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3100 		 * starting the time-wait timer, turning off the other
3101 		 * standard timers.
3102 		 */
3103 		case TCPS_FIN_WAIT_2:
3104 			tcp_twstart(tp);
3105 			return;
3106 		}
3107 	}
3108 #ifdef TCPDEBUG
3109 	if (so->so_options & SO_DEBUG)
3110 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3111 			  &tcp_savetcp, 0);
3112 #endif
3113 	TCP_PROBE3(debug__input, tp, th, m);
3114 
3115 	/*
3116 	 * Return any desired output.
3117 	 */
3118 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3119 		(void) tp->t_fb->tfb_tcp_output(tp);
3120 
3121 check_delack:
3122 	INP_WLOCK_ASSERT(tp->t_inpcb);
3123 
3124 	if (tp->t_flags & TF_DELACK) {
3125 		tp->t_flags &= ~TF_DELACK;
3126 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3127 	}
3128 	INP_WUNLOCK(tp->t_inpcb);
3129 	return;
3130 
3131 dropafterack:
3132 	/*
3133 	 * Generate an ACK dropping incoming segment if it occupies
3134 	 * sequence space, where the ACK reflects our state.
3135 	 *
3136 	 * We can now skip the test for the RST flag since all
3137 	 * paths to this code happen after packets containing
3138 	 * RST have been dropped.
3139 	 *
3140 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3141 	 * segment we received passes the SYN-RECEIVED ACK test.
3142 	 * If it fails send a RST.  This breaks the loop in the
3143 	 * "LAND" DoS attack, and also prevents an ACK storm
3144 	 * between two listening ports that have been sent forged
3145 	 * SYN segments, each with the source address of the other.
3146 	 */
3147 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3148 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3149 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3150 		rstreason = BANDLIM_RST_OPENPORT;
3151 		goto dropwithreset;
3152 	}
3153 #ifdef TCPDEBUG
3154 	if (so->so_options & SO_DEBUG)
3155 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3156 			  &tcp_savetcp, 0);
3157 #endif
3158 	TCP_PROBE3(debug__input, tp, th, m);
3159 	tp->t_flags |= TF_ACKNOW;
3160 	(void) tp->t_fb->tfb_tcp_output(tp);
3161 	INP_WUNLOCK(tp->t_inpcb);
3162 	m_freem(m);
3163 	return;
3164 
3165 dropwithreset:
3166 	if (tp != NULL) {
3167 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3168 		INP_WUNLOCK(tp->t_inpcb);
3169 	} else
3170 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3171 	return;
3172 
3173 drop:
3174 	/*
3175 	 * Drop space held by incoming segment and return.
3176 	 */
3177 #ifdef TCPDEBUG
3178 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3179 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3180 			  &tcp_savetcp, 0);
3181 #endif
3182 	TCP_PROBE3(debug__input, tp, th, m);
3183 	if (tp != NULL)
3184 		INP_WUNLOCK(tp->t_inpcb);
3185 	m_freem(m);
3186 }
3187 
3188 /*
3189  * Issue RST and make ACK acceptable to originator of segment.
3190  * The mbuf must still include the original packet header.
3191  * tp may be NULL.
3192  */
3193 void
3194 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3195     int tlen, int rstreason)
3196 {
3197 #ifdef INET
3198 	struct ip *ip;
3199 #endif
3200 #ifdef INET6
3201 	struct ip6_hdr *ip6;
3202 #endif
3203 
3204 	if (tp != NULL) {
3205 		INP_WLOCK_ASSERT(tp->t_inpcb);
3206 	}
3207 
3208 	/* Don't bother if destination was broadcast/multicast. */
3209 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3210 		goto drop;
3211 #ifdef INET6
3212 	if (mtod(m, struct ip *)->ip_v == 6) {
3213 		ip6 = mtod(m, struct ip6_hdr *);
3214 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3215 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3216 			goto drop;
3217 		/* IPv6 anycast check is done at tcp6_input() */
3218 	}
3219 #endif
3220 #if defined(INET) && defined(INET6)
3221 	else
3222 #endif
3223 #ifdef INET
3224 	{
3225 		ip = mtod(m, struct ip *);
3226 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3227 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3228 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3229 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3230 			goto drop;
3231 	}
3232 #endif
3233 
3234 	/* Perform bandwidth limiting. */
3235 	if (badport_bandlim(rstreason) < 0)
3236 		goto drop;
3237 
3238 	/* tcp_respond consumes the mbuf chain. */
3239 	if (th->th_flags & TH_ACK) {
3240 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3241 		    th->th_ack, TH_RST);
3242 	} else {
3243 		if (th->th_flags & TH_SYN)
3244 			tlen++;
3245 		if (th->th_flags & TH_FIN)
3246 			tlen++;
3247 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3248 		    (tcp_seq)0, TH_RST|TH_ACK);
3249 	}
3250 	return;
3251 drop:
3252 	m_freem(m);
3253 }
3254 
3255 /*
3256  * Parse TCP options and place in tcpopt.
3257  */
3258 void
3259 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3260 {
3261 	int opt, optlen;
3262 
3263 	to->to_flags = 0;
3264 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3265 		opt = cp[0];
3266 		if (opt == TCPOPT_EOL)
3267 			break;
3268 		if (opt == TCPOPT_NOP)
3269 			optlen = 1;
3270 		else {
3271 			if (cnt < 2)
3272 				break;
3273 			optlen = cp[1];
3274 			if (optlen < 2 || optlen > cnt)
3275 				break;
3276 		}
3277 		switch (opt) {
3278 		case TCPOPT_MAXSEG:
3279 			if (optlen != TCPOLEN_MAXSEG)
3280 				continue;
3281 			if (!(flags & TO_SYN))
3282 				continue;
3283 			to->to_flags |= TOF_MSS;
3284 			bcopy((char *)cp + 2,
3285 			    (char *)&to->to_mss, sizeof(to->to_mss));
3286 			to->to_mss = ntohs(to->to_mss);
3287 			break;
3288 		case TCPOPT_WINDOW:
3289 			if (optlen != TCPOLEN_WINDOW)
3290 				continue;
3291 			if (!(flags & TO_SYN))
3292 				continue;
3293 			to->to_flags |= TOF_SCALE;
3294 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3295 			break;
3296 		case TCPOPT_TIMESTAMP:
3297 			if (optlen != TCPOLEN_TIMESTAMP)
3298 				continue;
3299 			to->to_flags |= TOF_TS;
3300 			bcopy((char *)cp + 2,
3301 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3302 			to->to_tsval = ntohl(to->to_tsval);
3303 			bcopy((char *)cp + 6,
3304 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3305 			to->to_tsecr = ntohl(to->to_tsecr);
3306 			break;
3307 		case TCPOPT_SIGNATURE:
3308 			/*
3309 			 * In order to reply to a host which has set the
3310 			 * TCP_SIGNATURE option in its initial SYN, we have
3311 			 * to record the fact that the option was observed
3312 			 * here for the syncache code to perform the correct
3313 			 * response.
3314 			 */
3315 			if (optlen != TCPOLEN_SIGNATURE)
3316 				continue;
3317 			to->to_flags |= TOF_SIGNATURE;
3318 			to->to_signature = cp + 2;
3319 			break;
3320 		case TCPOPT_SACK_PERMITTED:
3321 			if (optlen != TCPOLEN_SACK_PERMITTED)
3322 				continue;
3323 			if (!(flags & TO_SYN))
3324 				continue;
3325 			if (!V_tcp_do_sack)
3326 				continue;
3327 			to->to_flags |= TOF_SACKPERM;
3328 			break;
3329 		case TCPOPT_SACK:
3330 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3331 				continue;
3332 			if (flags & TO_SYN)
3333 				continue;
3334 			to->to_flags |= TOF_SACK;
3335 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3336 			to->to_sacks = cp + 2;
3337 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3338 			break;
3339 		case TCPOPT_FAST_OPEN:
3340 			/*
3341 			 * Cookie length validation is performed by the
3342 			 * server side cookie checking code or the client
3343 			 * side cookie cache update code.
3344 			 */
3345 			if (!(flags & TO_SYN))
3346 				continue;
3347 			if (!V_tcp_fastopen_client_enable &&
3348 			    !V_tcp_fastopen_server_enable)
3349 				continue;
3350 			to->to_flags |= TOF_FASTOPEN;
3351 			to->to_tfo_len = optlen - 2;
3352 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3353 			break;
3354 		default:
3355 			continue;
3356 		}
3357 	}
3358 }
3359 
3360 /*
3361  * Pull out of band byte out of a segment so
3362  * it doesn't appear in the user's data queue.
3363  * It is still reflected in the segment length for
3364  * sequencing purposes.
3365  */
3366 void
3367 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3368     int off)
3369 {
3370 	int cnt = off + th->th_urp - 1;
3371 
3372 	while (cnt >= 0) {
3373 		if (m->m_len > cnt) {
3374 			char *cp = mtod(m, caddr_t) + cnt;
3375 			struct tcpcb *tp = sototcpcb(so);
3376 
3377 			INP_WLOCK_ASSERT(tp->t_inpcb);
3378 
3379 			tp->t_iobc = *cp;
3380 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3381 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3382 			m->m_len--;
3383 			if (m->m_flags & M_PKTHDR)
3384 				m->m_pkthdr.len--;
3385 			return;
3386 		}
3387 		cnt -= m->m_len;
3388 		m = m->m_next;
3389 		if (m == NULL)
3390 			break;
3391 	}
3392 	panic("tcp_pulloutofband");
3393 }
3394 
3395 /*
3396  * Collect new round-trip time estimate
3397  * and update averages and current timeout.
3398  */
3399 void
3400 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3401 {
3402 	int delta;
3403 
3404 	INP_WLOCK_ASSERT(tp->t_inpcb);
3405 
3406 	TCPSTAT_INC(tcps_rttupdated);
3407 	tp->t_rttupdated++;
3408 #ifdef STATS
3409 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3410 	    imax(0, rtt * 1000 / hz));
3411 #endif
3412 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3413 		/*
3414 		 * srtt is stored as fixed point with 5 bits after the
3415 		 * binary point (i.e., scaled by 8).  The following magic
3416 		 * is equivalent to the smoothing algorithm in rfc793 with
3417 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3418 		 * point).  Adjust rtt to origin 0.
3419 		 */
3420 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3421 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3422 
3423 		if ((tp->t_srtt += delta) <= 0)
3424 			tp->t_srtt = 1;
3425 
3426 		/*
3427 		 * We accumulate a smoothed rtt variance (actually, a
3428 		 * smoothed mean difference), then set the retransmit
3429 		 * timer to smoothed rtt + 4 times the smoothed variance.
3430 		 * rttvar is stored as fixed point with 4 bits after the
3431 		 * binary point (scaled by 16).  The following is
3432 		 * equivalent to rfc793 smoothing with an alpha of .75
3433 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3434 		 * rfc793's wired-in beta.
3435 		 */
3436 		if (delta < 0)
3437 			delta = -delta;
3438 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3439 		if ((tp->t_rttvar += delta) <= 0)
3440 			tp->t_rttvar = 1;
3441 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3442 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3443 	} else {
3444 		/*
3445 		 * No rtt measurement yet - use the unsmoothed rtt.
3446 		 * Set the variance to half the rtt (so our first
3447 		 * retransmit happens at 3*rtt).
3448 		 */
3449 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3450 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3451 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3452 	}
3453 	tp->t_rtttime = 0;
3454 	tp->t_rxtshift = 0;
3455 
3456 	/*
3457 	 * the retransmit should happen at rtt + 4 * rttvar.
3458 	 * Because of the way we do the smoothing, srtt and rttvar
3459 	 * will each average +1/2 tick of bias.  When we compute
3460 	 * the retransmit timer, we want 1/2 tick of rounding and
3461 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3462 	 * firing of the timer.  The bias will give us exactly the
3463 	 * 1.5 tick we need.  But, because the bias is
3464 	 * statistical, we have to test that we don't drop below
3465 	 * the minimum feasible timer (which is 2 ticks).
3466 	 */
3467 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3468 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3469 
3470 	/*
3471 	 * We received an ack for a packet that wasn't retransmitted;
3472 	 * it is probably safe to discard any error indications we've
3473 	 * received recently.  This isn't quite right, but close enough
3474 	 * for now (a route might have failed after we sent a segment,
3475 	 * and the return path might not be symmetrical).
3476 	 */
3477 	tp->t_softerror = 0;
3478 }
3479 
3480 /*
3481  * Determine a reasonable value for maxseg size.
3482  * If the route is known, check route for mtu.
3483  * If none, use an mss that can be handled on the outgoing interface
3484  * without forcing IP to fragment.  If no route is found, route has no mtu,
3485  * or the destination isn't local, use a default, hopefully conservative
3486  * size (usually 512 or the default IP max size, but no more than the mtu
3487  * of the interface), as we can't discover anything about intervening
3488  * gateways or networks.  We also initialize the congestion/slow start
3489  * window to be a single segment if the destination isn't local.
3490  * While looking at the routing entry, we also initialize other path-dependent
3491  * parameters from pre-set or cached values in the routing entry.
3492  *
3493  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3494  * IP options, e.g. IPSEC data, since length of this data may vary, and
3495  * thus it is calculated for every segment separately in tcp_output().
3496  *
3497  * NOTE that this routine is only called when we process an incoming
3498  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3499  * settings are handled in tcp_mssopt().
3500  */
3501 void
3502 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3503     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3504 {
3505 	int mss = 0;
3506 	uint32_t maxmtu = 0;
3507 	struct inpcb *inp = tp->t_inpcb;
3508 	struct hc_metrics_lite metrics;
3509 #ifdef INET6
3510 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3511 	size_t min_protoh = isipv6 ?
3512 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3513 			    sizeof (struct tcpiphdr);
3514 #else
3515 	const size_t min_protoh = sizeof(struct tcpiphdr);
3516 #endif
3517 
3518 	INP_WLOCK_ASSERT(tp->t_inpcb);
3519 
3520 	if (mtuoffer != -1) {
3521 		KASSERT(offer == -1, ("%s: conflict", __func__));
3522 		offer = mtuoffer - min_protoh;
3523 	}
3524 
3525 	/* Initialize. */
3526 #ifdef INET6
3527 	if (isipv6) {
3528 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3529 		tp->t_maxseg = V_tcp_v6mssdflt;
3530 	}
3531 #endif
3532 #if defined(INET) && defined(INET6)
3533 	else
3534 #endif
3535 #ifdef INET
3536 	{
3537 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3538 		tp->t_maxseg = V_tcp_mssdflt;
3539 	}
3540 #endif
3541 
3542 	/*
3543 	 * No route to sender, stay with default mss and return.
3544 	 */
3545 	if (maxmtu == 0) {
3546 		/*
3547 		 * In case we return early we need to initialize metrics
3548 		 * to a defined state as tcp_hc_get() would do for us
3549 		 * if there was no cache hit.
3550 		 */
3551 		if (metricptr != NULL)
3552 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3553 		return;
3554 	}
3555 
3556 	/* What have we got? */
3557 	switch (offer) {
3558 		case 0:
3559 			/*
3560 			 * Offer == 0 means that there was no MSS on the SYN
3561 			 * segment, in this case we use tcp_mssdflt as
3562 			 * already assigned to t_maxseg above.
3563 			 */
3564 			offer = tp->t_maxseg;
3565 			break;
3566 
3567 		case -1:
3568 			/*
3569 			 * Offer == -1 means that we didn't receive SYN yet.
3570 			 */
3571 			/* FALLTHROUGH */
3572 
3573 		default:
3574 			/*
3575 			 * Prevent DoS attack with too small MSS. Round up
3576 			 * to at least minmss.
3577 			 */
3578 			offer = max(offer, V_tcp_minmss);
3579 	}
3580 
3581 	/*
3582 	 * rmx information is now retrieved from tcp_hostcache.
3583 	 */
3584 	tcp_hc_get(&inp->inp_inc, &metrics);
3585 	if (metricptr != NULL)
3586 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3587 
3588 	/*
3589 	 * If there's a discovered mtu in tcp hostcache, use it.
3590 	 * Else, use the link mtu.
3591 	 */
3592 	if (metrics.rmx_mtu)
3593 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3594 	else {
3595 #ifdef INET6
3596 		if (isipv6) {
3597 			mss = maxmtu - min_protoh;
3598 			if (!V_path_mtu_discovery &&
3599 			    !in6_localaddr(&inp->in6p_faddr))
3600 				mss = min(mss, V_tcp_v6mssdflt);
3601 		}
3602 #endif
3603 #if defined(INET) && defined(INET6)
3604 		else
3605 #endif
3606 #ifdef INET
3607 		{
3608 			mss = maxmtu - min_protoh;
3609 			if (!V_path_mtu_discovery &&
3610 			    !in_localaddr(inp->inp_faddr))
3611 				mss = min(mss, V_tcp_mssdflt);
3612 		}
3613 #endif
3614 		/*
3615 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3616 		 * probably violates the TCP spec.
3617 		 * The problem is that, since we don't know the
3618 		 * other end's MSS, we are supposed to use a conservative
3619 		 * default.  But, if we do that, then MTU discovery will
3620 		 * never actually take place, because the conservative
3621 		 * default is much less than the MTUs typically seen
3622 		 * on the Internet today.  For the moment, we'll sweep
3623 		 * this under the carpet.
3624 		 *
3625 		 * The conservative default might not actually be a problem
3626 		 * if the only case this occurs is when sending an initial
3627 		 * SYN with options and data to a host we've never talked
3628 		 * to before.  Then, they will reply with an MSS value which
3629 		 * will get recorded and the new parameters should get
3630 		 * recomputed.  For Further Study.
3631 		 */
3632 	}
3633 	mss = min(mss, offer);
3634 
3635 	/*
3636 	 * Sanity check: make sure that maxseg will be large
3637 	 * enough to allow some data on segments even if the
3638 	 * all the option space is used (40bytes).  Otherwise
3639 	 * funny things may happen in tcp_output.
3640 	 *
3641 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3642 	 */
3643 	mss = max(mss, 64);
3644 
3645 	tp->t_maxseg = mss;
3646 }
3647 
3648 void
3649 tcp_mss(struct tcpcb *tp, int offer)
3650 {
3651 	int mss;
3652 	uint32_t bufsize;
3653 	struct inpcb *inp;
3654 	struct socket *so;
3655 	struct hc_metrics_lite metrics;
3656 	struct tcp_ifcap cap;
3657 
3658 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3659 
3660 	bzero(&cap, sizeof(cap));
3661 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3662 
3663 	mss = tp->t_maxseg;
3664 	inp = tp->t_inpcb;
3665 
3666 	/*
3667 	 * If there's a pipesize, change the socket buffer to that size,
3668 	 * don't change if sb_hiwat is different than default (then it
3669 	 * has been changed on purpose with setsockopt).
3670 	 * Make the socket buffers an integral number of mss units;
3671 	 * if the mss is larger than the socket buffer, decrease the mss.
3672 	 */
3673 	so = inp->inp_socket;
3674 	SOCKBUF_LOCK(&so->so_snd);
3675 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3676 		bufsize = metrics.rmx_sendpipe;
3677 	else
3678 		bufsize = so->so_snd.sb_hiwat;
3679 	if (bufsize < mss)
3680 		mss = bufsize;
3681 	else {
3682 		bufsize = roundup(bufsize, mss);
3683 		if (bufsize > sb_max)
3684 			bufsize = sb_max;
3685 		if (bufsize > so->so_snd.sb_hiwat)
3686 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3687 	}
3688 	SOCKBUF_UNLOCK(&so->so_snd);
3689 	/*
3690 	 * Sanity check: make sure that maxseg will be large
3691 	 * enough to allow some data on segments even if the
3692 	 * all the option space is used (40bytes).  Otherwise
3693 	 * funny things may happen in tcp_output.
3694 	 *
3695 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3696 	 */
3697 	tp->t_maxseg = max(mss, 64);
3698 
3699 	SOCKBUF_LOCK(&so->so_rcv);
3700 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3701 		bufsize = metrics.rmx_recvpipe;
3702 	else
3703 		bufsize = so->so_rcv.sb_hiwat;
3704 	if (bufsize > mss) {
3705 		bufsize = roundup(bufsize, mss);
3706 		if (bufsize > sb_max)
3707 			bufsize = sb_max;
3708 		if (bufsize > so->so_rcv.sb_hiwat)
3709 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3710 	}
3711 	SOCKBUF_UNLOCK(&so->so_rcv);
3712 
3713 	/* Check the interface for TSO capabilities. */
3714 	if (cap.ifcap & CSUM_TSO) {
3715 		tp->t_flags |= TF_TSO;
3716 		tp->t_tsomax = cap.tsomax;
3717 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3718 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3719 	}
3720 }
3721 
3722 /*
3723  * Determine the MSS option to send on an outgoing SYN.
3724  */
3725 int
3726 tcp_mssopt(struct in_conninfo *inc)
3727 {
3728 	int mss = 0;
3729 	uint32_t thcmtu = 0;
3730 	uint32_t maxmtu = 0;
3731 	size_t min_protoh;
3732 
3733 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3734 
3735 #ifdef INET6
3736 	if (inc->inc_flags & INC_ISIPV6) {
3737 		mss = V_tcp_v6mssdflt;
3738 		maxmtu = tcp_maxmtu6(inc, NULL);
3739 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3740 	}
3741 #endif
3742 #if defined(INET) && defined(INET6)
3743 	else
3744 #endif
3745 #ifdef INET
3746 	{
3747 		mss = V_tcp_mssdflt;
3748 		maxmtu = tcp_maxmtu(inc, NULL);
3749 		min_protoh = sizeof(struct tcpiphdr);
3750 	}
3751 #endif
3752 #if defined(INET6) || defined(INET)
3753 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3754 #endif
3755 
3756 	if (maxmtu && thcmtu)
3757 		mss = min(maxmtu, thcmtu) - min_protoh;
3758 	else if (maxmtu || thcmtu)
3759 		mss = max(maxmtu, thcmtu) - min_protoh;
3760 
3761 	return (mss);
3762 }
3763 
3764 
3765 /*
3766  * On a partial ack arrives, force the retransmission of the
3767  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3768  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3769  * be started again.
3770  */
3771 void
3772 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3773 {
3774 	tcp_seq onxt = tp->snd_nxt;
3775 	uint32_t ocwnd = tp->snd_cwnd;
3776 	u_int maxseg = tcp_maxseg(tp);
3777 
3778 	INP_WLOCK_ASSERT(tp->t_inpcb);
3779 
3780 	tcp_timer_activate(tp, TT_REXMT, 0);
3781 	tp->t_rtttime = 0;
3782 	tp->snd_nxt = th->th_ack;
3783 	/*
3784 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3785 	 * (tp->snd_una has not yet been updated when this function is called.)
3786 	 */
3787 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3788 	tp->t_flags |= TF_ACKNOW;
3789 	(void) tp->t_fb->tfb_tcp_output(tp);
3790 	tp->snd_cwnd = ocwnd;
3791 	if (SEQ_GT(onxt, tp->snd_nxt))
3792 		tp->snd_nxt = onxt;
3793 	/*
3794 	 * Partial window deflation.  Relies on fact that tp->snd_una
3795 	 * not updated yet.
3796 	 */
3797 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3798 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3799 	else
3800 		tp->snd_cwnd = 0;
3801 	tp->snd_cwnd += maxseg;
3802 }
3803 
3804 int
3805 tcp_compute_pipe(struct tcpcb *tp)
3806 {
3807 	return (tp->snd_max - tp->snd_una +
3808 		tp->sackhint.sack_bytes_rexmit -
3809 		tp->sackhint.sacked_bytes);
3810 }
3811 
3812 uint32_t
3813 tcp_compute_initwnd(uint32_t maxseg)
3814 {
3815 	/*
3816 	 * Calculate the Initial Window, also used as Restart Window
3817 	 *
3818 	 * RFC5681 Section 3.1 specifies the default conservative values.
3819 	 * RFC3390 specifies slightly more aggressive values.
3820 	 * RFC6928 increases it to ten segments.
3821 	 * Support for user specified value for initial flight size.
3822 	 */
3823 	if (V_tcp_initcwnd_segments)
3824 		return min(V_tcp_initcwnd_segments * maxseg,
3825 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
3826 	else if (V_tcp_do_rfc3390)
3827 		return min(4 * maxseg, max(2 * maxseg, 4380));
3828 	else {
3829 		/* Per RFC5681 Section 3.1 */
3830 		if (maxseg > 2190)
3831 			return (2 * maxseg);
3832 		else if (maxseg > 1095)
3833 			return (3 * maxseg);
3834 		else
3835 			return (4 * maxseg);
3836 	}
3837 }
3838