xref: /freebsd/sys/netinet/tcp_input.c (revision 78b9f0095b4af3aca6c931b2c7b009ddb8a05125)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #ifdef TCP_HHOOK
63 #include <sys/hhook.h>
64 #endif
65 #include <sys/malloc.h>
66 #include <sys/mbuf.h>
67 #include <sys/proc.h>		/* for proc0 declaration */
68 #include <sys/protosw.h>
69 #include <sys/sdt.h>
70 #include <sys/signalvar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/systm.h>
76 
77 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
78 
79 #include <vm/uma.h>
80 
81 #include <net/if.h>
82 #include <net/if_var.h>
83 #include <net/route.h>
84 #include <net/vnet.h>
85 
86 #define TCPSTATES		/* for logging */
87 
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
94 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
95 #include <netinet/ip_var.h>
96 #include <netinet/ip_options.h>
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/nd6.h>
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_log_buf.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet6/tcp6_var.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/cc/cc.h>
112 #include <netinet/tcp_fastopen.h>
113 #ifdef TCPPCAP
114 #include <netinet/tcp_pcap.h>
115 #endif
116 #include <netinet/tcp_syncache.h>
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 #endif /* TCPDEBUG */
120 #ifdef TCP_OFFLOAD
121 #include <netinet/tcp_offload.h>
122 #endif
123 
124 #include <netipsec/ipsec_support.h>
125 
126 #include <machine/in_cksum.h>
127 
128 #include <security/mac/mac_framework.h>
129 
130 const int tcprexmtthresh = 3;
131 
132 int tcp_log_in_vain = 0;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
134     &tcp_log_in_vain, 0,
135     "Log all incoming TCP segments to closed ports");
136 
137 VNET_DEFINE(int, blackhole) = 0;
138 #define	V_blackhole		VNET(blackhole)
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(blackhole), 0,
141     "Do not send RST on segments to closed ports");
142 
143 VNET_DEFINE(int, tcp_delack_enabled) = 1;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_delack_enabled), 0,
146     "Delay ACK to try and piggyback it onto a data packet");
147 
148 VNET_DEFINE(int, drop_synfin) = 0;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
150     &VNET_NAME(drop_synfin), 0,
151     "Drop TCP packets with SYN+FIN set");
152 
153 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
156     "Use calculated pipe/in-flight bytes per RFC 6675");
157 
158 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
160     &VNET_NAME(tcp_do_rfc3042), 0,
161     "Enable RFC 3042 (Limited Transmit)");
162 
163 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
165     &VNET_NAME(tcp_do_rfc3390), 0,
166     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
167 
168 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
170     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
171     "Slow-start flight size (initial congestion window) in number of segments");
172 
173 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
175     &VNET_NAME(tcp_do_rfc3465), 0,
176     "Enable RFC 3465 (Appropriate Byte Counting)");
177 
178 VNET_DEFINE(int, tcp_abc_l_var) = 2;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
180     &VNET_NAME(tcp_abc_l_var), 2,
181     "Cap the max cwnd increment during slow-start to this number of segments");
182 
183 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
184 
185 VNET_DEFINE(int, tcp_do_ecn) = 2;
186 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_do_ecn), 0,
188     "TCP ECN support");
189 
190 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
191 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
192     &VNET_NAME(tcp_ecn_maxretries), 0,
193     "Max retries before giving up on ECN");
194 
195 VNET_DEFINE(int, tcp_insecure_syn) = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_insecure_syn), 0,
198     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
199 
200 VNET_DEFINE(int, tcp_insecure_rst) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_insecure_rst), 0,
203     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
204 
205 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
206 #define	V_tcp_recvspace	VNET(tcp_recvspace)
207 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
209 
210 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_do_autorcvbuf), 0,
213     "Enable automatic receive buffer sizing");
214 
215 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
217     &VNET_NAME(tcp_autorcvbuf_inc), 0,
218     "Incrementor step size of automatic receive buffer");
219 
220 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
222     &VNET_NAME(tcp_autorcvbuf_max), 0,
223     "Max size of automatic receive buffer");
224 
225 VNET_DEFINE(struct inpcbhead, tcb);
226 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
227 VNET_DEFINE(struct inpcbinfo, tcbinfo);
228 
229 /*
230  * TCP statistics are stored in an array of counter(9)s, which size matches
231  * size of struct tcpstat.  TCP running connection count is a regular array.
232  */
233 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
234 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
235     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
236 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
237 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
238     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
239     "TCP connection counts by TCP state");
240 
241 static void
242 tcp_vnet_init(const void *unused)
243 {
244 
245 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
246 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
247 }
248 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
249     tcp_vnet_init, NULL);
250 
251 #ifdef VIMAGE
252 static void
253 tcp_vnet_uninit(const void *unused)
254 {
255 
256 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
257 	VNET_PCPUSTAT_FREE(tcpstat);
258 }
259 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
260     tcp_vnet_uninit, NULL);
261 #endif /* VIMAGE */
262 
263 /*
264  * Kernel module interface for updating tcpstat.  The argument is an index
265  * into tcpstat treated as an array.
266  */
267 void
268 kmod_tcpstat_inc(int statnum)
269 {
270 
271 	counter_u64_add(VNET(tcpstat)[statnum], 1);
272 }
273 
274 #ifdef TCP_HHOOK
275 /*
276  * Wrapper for the TCP established input helper hook.
277  */
278 void
279 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
280 {
281 	struct tcp_hhook_data hhook_data;
282 
283 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
284 		hhook_data.tp = tp;
285 		hhook_data.th = th;
286 		hhook_data.to = to;
287 
288 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
289 		    tp->osd);
290 	}
291 }
292 #endif
293 
294 /*
295  * CC wrapper hook functions
296  */
297 void
298 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
299     uint16_t type)
300 {
301 	INP_WLOCK_ASSERT(tp->t_inpcb);
302 
303 	tp->ccv->nsegs = nsegs;
304 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
305 	if (tp->snd_cwnd <= tp->snd_wnd)
306 		tp->ccv->flags |= CCF_CWND_LIMITED;
307 	else
308 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
309 
310 	if (type == CC_ACK) {
311 		if (tp->snd_cwnd > tp->snd_ssthresh) {
312 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
313 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
314 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
315 				tp->t_bytes_acked -= tp->snd_cwnd;
316 				tp->ccv->flags |= CCF_ABC_SENTAWND;
317 			}
318 		} else {
319 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
320 				tp->t_bytes_acked = 0;
321 		}
322 	}
323 
324 	if (CC_ALGO(tp)->ack_received != NULL) {
325 		/* XXXLAS: Find a way to live without this */
326 		tp->ccv->curack = th->th_ack;
327 		CC_ALGO(tp)->ack_received(tp->ccv, type);
328 	}
329 }
330 
331 void
332 cc_conn_init(struct tcpcb *tp)
333 {
334 	struct hc_metrics_lite metrics;
335 	struct inpcb *inp = tp->t_inpcb;
336 	u_int maxseg;
337 	int rtt;
338 
339 	INP_WLOCK_ASSERT(tp->t_inpcb);
340 
341 	tcp_hc_get(&inp->inp_inc, &metrics);
342 	maxseg = tcp_maxseg(tp);
343 
344 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
345 		tp->t_srtt = rtt;
346 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
347 		TCPSTAT_INC(tcps_usedrtt);
348 		if (metrics.rmx_rttvar) {
349 			tp->t_rttvar = metrics.rmx_rttvar;
350 			TCPSTAT_INC(tcps_usedrttvar);
351 		} else {
352 			/* default variation is +- 1 rtt */
353 			tp->t_rttvar =
354 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
355 		}
356 		TCPT_RANGESET(tp->t_rxtcur,
357 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
358 		    tp->t_rttmin, TCPTV_REXMTMAX);
359 	}
360 	if (metrics.rmx_ssthresh) {
361 		/*
362 		 * There's some sort of gateway or interface
363 		 * buffer limit on the path.  Use this to set
364 		 * the slow start threshold, but set the
365 		 * threshold to no less than 2*mss.
366 		 */
367 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
368 		TCPSTAT_INC(tcps_usedssthresh);
369 	}
370 
371 	/*
372 	 * Set the initial slow-start flight size.
373 	 *
374 	 * RFC5681 Section 3.1 specifies the default conservative values.
375 	 * RFC3390 specifies slightly more aggressive values.
376 	 * RFC6928 increases it to ten segments.
377 	 * Support for user specified value for initial flight size.
378 	 *
379 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
380 	 * reduce the initial CWND to one segment as congestion is likely
381 	 * requiring us to be cautious.
382 	 */
383 	if (tp->snd_cwnd == 1)
384 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
385 	else if (V_tcp_initcwnd_segments)
386 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg,
387 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
388 	else if (V_tcp_do_rfc3390)
389 		tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380));
390 	else {
391 		/* Per RFC5681 Section 3.1 */
392 		if (maxseg > 2190)
393 			tp->snd_cwnd = 2 * maxseg;
394 		else if (maxseg > 1095)
395 			tp->snd_cwnd = 3 * maxseg;
396 		else
397 			tp->snd_cwnd = 4 * maxseg;
398 	}
399 
400 	if (CC_ALGO(tp)->conn_init != NULL)
401 		CC_ALGO(tp)->conn_init(tp->ccv);
402 }
403 
404 void inline
405 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
406 {
407 	u_int maxseg;
408 
409 	INP_WLOCK_ASSERT(tp->t_inpcb);
410 
411 	switch(type) {
412 	case CC_NDUPACK:
413 		if (!IN_FASTRECOVERY(tp->t_flags)) {
414 			tp->snd_recover = tp->snd_max;
415 			if (tp->t_flags & TF_ECN_PERMIT)
416 				tp->t_flags |= TF_ECN_SND_CWR;
417 		}
418 		break;
419 	case CC_ECN:
420 		if (!IN_CONGRECOVERY(tp->t_flags)) {
421 			TCPSTAT_INC(tcps_ecn_rcwnd);
422 			tp->snd_recover = tp->snd_max;
423 			if (tp->t_flags & TF_ECN_PERMIT)
424 				tp->t_flags |= TF_ECN_SND_CWR;
425 		}
426 		break;
427 	case CC_RTO:
428 		maxseg = tcp_maxseg(tp);
429 		tp->t_dupacks = 0;
430 		tp->t_bytes_acked = 0;
431 		EXIT_RECOVERY(tp->t_flags);
432 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
433 		    maxseg) * maxseg;
434 		tp->snd_cwnd = maxseg;
435 		break;
436 	case CC_RTO_ERR:
437 		TCPSTAT_INC(tcps_sndrexmitbad);
438 		/* RTO was unnecessary, so reset everything. */
439 		tp->snd_cwnd = tp->snd_cwnd_prev;
440 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
441 		tp->snd_recover = tp->snd_recover_prev;
442 		if (tp->t_flags & TF_WASFRECOVERY)
443 			ENTER_FASTRECOVERY(tp->t_flags);
444 		if (tp->t_flags & TF_WASCRECOVERY)
445 			ENTER_CONGRECOVERY(tp->t_flags);
446 		tp->snd_nxt = tp->snd_max;
447 		tp->t_flags &= ~TF_PREVVALID;
448 		tp->t_badrxtwin = 0;
449 		break;
450 	}
451 
452 	if (CC_ALGO(tp)->cong_signal != NULL) {
453 		if (th != NULL)
454 			tp->ccv->curack = th->th_ack;
455 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
456 	}
457 }
458 
459 void inline
460 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
461 {
462 	INP_WLOCK_ASSERT(tp->t_inpcb);
463 
464 	/* XXXLAS: KASSERT that we're in recovery? */
465 
466 	if (CC_ALGO(tp)->post_recovery != NULL) {
467 		tp->ccv->curack = th->th_ack;
468 		CC_ALGO(tp)->post_recovery(tp->ccv);
469 	}
470 	/* XXXLAS: EXIT_RECOVERY ? */
471 	tp->t_bytes_acked = 0;
472 }
473 
474 /*
475  * Indicate whether this ack should be delayed.  We can delay the ack if
476  * following conditions are met:
477  *	- There is no delayed ack timer in progress.
478  *	- Our last ack wasn't a 0-sized window. We never want to delay
479  *	  the ack that opens up a 0-sized window.
480  *	- LRO wasn't used for this segment. We make sure by checking that the
481  *	  segment size is not larger than the MSS.
482  */
483 #define DELAY_ACK(tp, tlen)						\
484 	((!tcp_timer_active(tp, TT_DELACK) &&				\
485 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
486 	    (tlen <= tp->t_maxseg) &&					\
487 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
488 
489 static void inline
490 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
491 {
492 	INP_WLOCK_ASSERT(tp->t_inpcb);
493 
494 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
495 		switch (iptos & IPTOS_ECN_MASK) {
496 		case IPTOS_ECN_CE:
497 		    tp->ccv->flags |= CCF_IPHDR_CE;
498 		    break;
499 		case IPTOS_ECN_ECT0:
500 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
501 		    break;
502 		case IPTOS_ECN_ECT1:
503 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
504 		    break;
505 		}
506 
507 		if (th->th_flags & TH_CWR)
508 			tp->ccv->flags |= CCF_TCPHDR_CWR;
509 		else
510 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
511 
512 		if (tp->t_flags & TF_DELACK)
513 			tp->ccv->flags |= CCF_DELACK;
514 		else
515 			tp->ccv->flags &= ~CCF_DELACK;
516 
517 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
518 
519 		if (tp->ccv->flags & CCF_ACKNOW)
520 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
521 	}
522 }
523 
524 /*
525  * TCP input handling is split into multiple parts:
526  *   tcp6_input is a thin wrapper around tcp_input for the extended
527  *	ip6_protox[] call format in ip6_input
528  *   tcp_input handles primary segment validation, inpcb lookup and
529  *	SYN processing on listen sockets
530  *   tcp_do_segment processes the ACK and text of the segment for
531  *	establishing, established and closing connections
532  */
533 #ifdef INET6
534 int
535 tcp6_input(struct mbuf **mp, int *offp, int proto)
536 {
537 	struct mbuf *m = *mp;
538 	struct in6_ifaddr *ia6;
539 	struct ip6_hdr *ip6;
540 
541 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
542 
543 	/*
544 	 * draft-itojun-ipv6-tcp-to-anycast
545 	 * better place to put this in?
546 	 */
547 	ip6 = mtod(m, struct ip6_hdr *);
548 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
549 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
550 		struct ip6_hdr *ip6;
551 
552 		ifa_free(&ia6->ia_ifa);
553 		ip6 = mtod(m, struct ip6_hdr *);
554 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
555 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
556 		return (IPPROTO_DONE);
557 	}
558 	if (ia6)
559 		ifa_free(&ia6->ia_ifa);
560 
561 	return (tcp_input(mp, offp, proto));
562 }
563 #endif /* INET6 */
564 
565 int
566 tcp_input(struct mbuf **mp, int *offp, int proto)
567 {
568 	struct mbuf *m = *mp;
569 	struct tcphdr *th = NULL;
570 	struct ip *ip = NULL;
571 	struct inpcb *inp = NULL;
572 	struct tcpcb *tp = NULL;
573 	struct socket *so = NULL;
574 	u_char *optp = NULL;
575 	int off0;
576 	int optlen = 0;
577 #ifdef INET
578 	int len;
579 #endif
580 	int tlen = 0, off;
581 	int drop_hdrlen;
582 	int thflags;
583 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
584 	uint8_t iptos;
585 	struct m_tag *fwd_tag = NULL;
586 	struct epoch_tracker et;
587 #ifdef INET6
588 	struct ip6_hdr *ip6 = NULL;
589 	int isipv6;
590 #else
591 	const void *ip6 = NULL;
592 #endif /* INET6 */
593 	struct tcpopt to;		/* options in this segment */
594 	char *s = NULL;			/* address and port logging */
595 	int ti_locked;
596 #ifdef TCPDEBUG
597 	/*
598 	 * The size of tcp_saveipgen must be the size of the max ip header,
599 	 * now IPv6.
600 	 */
601 	u_char tcp_saveipgen[IP6_HDR_LEN];
602 	struct tcphdr tcp_savetcp;
603 	short ostate = 0;
604 #endif
605 
606 #ifdef INET6
607 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
608 #endif
609 
610 	off0 = *offp;
611 	m = *mp;
612 	*mp = NULL;
613 	to.to_flags = 0;
614 	TCPSTAT_INC(tcps_rcvtotal);
615 
616 #ifdef INET6
617 	if (isipv6) {
618 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
619 
620 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
621 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
622 			if (m == NULL) {
623 				TCPSTAT_INC(tcps_rcvshort);
624 				return (IPPROTO_DONE);
625 			}
626 		}
627 
628 		ip6 = mtod(m, struct ip6_hdr *);
629 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
630 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
631 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
632 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
633 				th->th_sum = m->m_pkthdr.csum_data;
634 			else
635 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
636 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
637 			th->th_sum ^= 0xffff;
638 		} else
639 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
640 		if (th->th_sum) {
641 			TCPSTAT_INC(tcps_rcvbadsum);
642 			goto drop;
643 		}
644 
645 		/*
646 		 * Be proactive about unspecified IPv6 address in source.
647 		 * As we use all-zero to indicate unbounded/unconnected pcb,
648 		 * unspecified IPv6 address can be used to confuse us.
649 		 *
650 		 * Note that packets with unspecified IPv6 destination is
651 		 * already dropped in ip6_input.
652 		 */
653 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
654 			/* XXX stat */
655 			goto drop;
656 		}
657 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
658 	}
659 #endif
660 #if defined(INET) && defined(INET6)
661 	else
662 #endif
663 #ifdef INET
664 	{
665 		/*
666 		 * Get IP and TCP header together in first mbuf.
667 		 * Note: IP leaves IP header in first mbuf.
668 		 */
669 		if (off0 > sizeof (struct ip)) {
670 			ip_stripoptions(m);
671 			off0 = sizeof(struct ip);
672 		}
673 		if (m->m_len < sizeof (struct tcpiphdr)) {
674 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
675 			    == NULL) {
676 				TCPSTAT_INC(tcps_rcvshort);
677 				return (IPPROTO_DONE);
678 			}
679 		}
680 		ip = mtod(m, struct ip *);
681 		th = (struct tcphdr *)((caddr_t)ip + off0);
682 		tlen = ntohs(ip->ip_len) - off0;
683 
684 		iptos = ip->ip_tos;
685 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
686 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
687 				th->th_sum = m->m_pkthdr.csum_data;
688 			else
689 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
690 				    ip->ip_dst.s_addr,
691 				    htonl(m->m_pkthdr.csum_data + tlen +
692 				    IPPROTO_TCP));
693 			th->th_sum ^= 0xffff;
694 		} else {
695 			struct ipovly *ipov = (struct ipovly *)ip;
696 
697 			/*
698 			 * Checksum extended TCP header and data.
699 			 */
700 			len = off0 + tlen;
701 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
702 			ipov->ih_len = htons(tlen);
703 			th->th_sum = in_cksum(m, len);
704 			/* Reset length for SDT probes. */
705 			ip->ip_len = htons(len);
706 			/* Reset TOS bits */
707 			ip->ip_tos = iptos;
708 			/* Re-initialization for later version check */
709 			ip->ip_v = IPVERSION;
710 			ip->ip_hl = off0 >> 2;
711 		}
712 
713 		if (th->th_sum) {
714 			TCPSTAT_INC(tcps_rcvbadsum);
715 			goto drop;
716 		}
717 	}
718 #endif /* INET */
719 
720 	/*
721 	 * Check that TCP offset makes sense,
722 	 * pull out TCP options and adjust length.		XXX
723 	 */
724 	off = th->th_off << 2;
725 	if (off < sizeof (struct tcphdr) || off > tlen) {
726 		TCPSTAT_INC(tcps_rcvbadoff);
727 		goto drop;
728 	}
729 	tlen -= off;	/* tlen is used instead of ti->ti_len */
730 	if (off > sizeof (struct tcphdr)) {
731 #ifdef INET6
732 		if (isipv6) {
733 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
734 			ip6 = mtod(m, struct ip6_hdr *);
735 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
736 		}
737 #endif
738 #if defined(INET) && defined(INET6)
739 		else
740 #endif
741 #ifdef INET
742 		{
743 			if (m->m_len < sizeof(struct ip) + off) {
744 				if ((m = m_pullup(m, sizeof (struct ip) + off))
745 				    == NULL) {
746 					TCPSTAT_INC(tcps_rcvshort);
747 					return (IPPROTO_DONE);
748 				}
749 				ip = mtod(m, struct ip *);
750 				th = (struct tcphdr *)((caddr_t)ip + off0);
751 			}
752 		}
753 #endif
754 		optlen = off - sizeof (struct tcphdr);
755 		optp = (u_char *)(th + 1);
756 	}
757 	thflags = th->th_flags;
758 
759 	/*
760 	 * Convert TCP protocol specific fields to host format.
761 	 */
762 	tcp_fields_to_host(th);
763 
764 	/*
765 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
766 	 */
767 	drop_hdrlen = off0 + off;
768 
769 	/*
770 	 * Locate pcb for segment; if we're likely to add or remove a
771 	 * connection then first acquire pcbinfo lock.  There are three cases
772 	 * where we might discover later we need a write lock despite the
773 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
774 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
775 	 */
776 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
777 		INP_INFO_RLOCK_ET(&V_tcbinfo, et);
778 		ti_locked = TI_RLOCKED;
779 	} else
780 		ti_locked = TI_UNLOCKED;
781 
782 	/*
783 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
784 	 */
785         if (
786 #ifdef INET6
787 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
788 #ifdef INET
789 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
790 #endif
791 #endif
792 #if defined(INET) && !defined(INET6)
793 	    (m->m_flags & M_IP_NEXTHOP)
794 #endif
795 	    )
796 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
797 
798 findpcb:
799 #ifdef INVARIANTS
800 	if (ti_locked == TI_RLOCKED) {
801 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
802 	} else {
803 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
804 	}
805 #endif
806 #ifdef INET6
807 	if (isipv6 && fwd_tag != NULL) {
808 		struct sockaddr_in6 *next_hop6;
809 
810 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
811 		/*
812 		 * Transparently forwarded. Pretend to be the destination.
813 		 * Already got one like this?
814 		 */
815 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
816 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
817 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
818 		if (!inp) {
819 			/*
820 			 * It's new.  Try to find the ambushing socket.
821 			 * Because we've rewritten the destination address,
822 			 * any hardware-generated hash is ignored.
823 			 */
824 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
825 			    th->th_sport, &next_hop6->sin6_addr,
826 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
827 			    th->th_dport, INPLOOKUP_WILDCARD |
828 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
829 		}
830 	} else if (isipv6) {
831 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
832 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
833 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
834 		    m->m_pkthdr.rcvif, m);
835 	}
836 #endif /* INET6 */
837 #if defined(INET6) && defined(INET)
838 	else
839 #endif
840 #ifdef INET
841 	if (fwd_tag != NULL) {
842 		struct sockaddr_in *next_hop;
843 
844 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
845 		/*
846 		 * Transparently forwarded. Pretend to be the destination.
847 		 * already got one like this?
848 		 */
849 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
850 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
851 		    m->m_pkthdr.rcvif, m);
852 		if (!inp) {
853 			/*
854 			 * It's new.  Try to find the ambushing socket.
855 			 * Because we've rewritten the destination address,
856 			 * any hardware-generated hash is ignored.
857 			 */
858 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
859 			    th->th_sport, next_hop->sin_addr,
860 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
861 			    th->th_dport, INPLOOKUP_WILDCARD |
862 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
863 		}
864 	} else
865 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
866 		    th->th_sport, ip->ip_dst, th->th_dport,
867 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
868 		    m->m_pkthdr.rcvif, m);
869 #endif /* INET */
870 
871 	/*
872 	 * If the INPCB does not exist then all data in the incoming
873 	 * segment is discarded and an appropriate RST is sent back.
874 	 * XXX MRT Send RST using which routing table?
875 	 */
876 	if (inp == NULL) {
877 		/*
878 		 * Log communication attempts to ports that are not
879 		 * in use.
880 		 */
881 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
882 		    tcp_log_in_vain == 2) {
883 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
884 				log(LOG_INFO, "%s; %s: Connection attempt "
885 				    "to closed port\n", s, __func__);
886 		}
887 		/*
888 		 * When blackholing do not respond with a RST but
889 		 * completely ignore the segment and drop it.
890 		 */
891 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
892 		    V_blackhole == 2)
893 			goto dropunlock;
894 
895 		rstreason = BANDLIM_RST_CLOSEDPORT;
896 		goto dropwithreset;
897 	}
898 	INP_WLOCK_ASSERT(inp);
899 	/*
900 	 * While waiting for inp lock during the lookup, another thread
901 	 * can have dropped the inpcb, in which case we need to loop back
902 	 * and try to find a new inpcb to deliver to.
903 	 */
904 	if (inp->inp_flags & INP_DROPPED) {
905 		INP_WUNLOCK(inp);
906 		inp = NULL;
907 		goto findpcb;
908 	}
909 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
910 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
911 	    ((inp->inp_socket == NULL) ||
912 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
913 		inp->inp_flowid = m->m_pkthdr.flowid;
914 		inp->inp_flowtype = M_HASHTYPE_GET(m);
915 	}
916 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
917 #ifdef INET6
918 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
919 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
920 		goto dropunlock;
921 	}
922 #ifdef INET
923 	else
924 #endif
925 #endif /* INET6 */
926 #ifdef INET
927 	if (IPSEC_ENABLED(ipv4) &&
928 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
929 		goto dropunlock;
930 	}
931 #endif /* INET */
932 #endif /* IPSEC */
933 
934 	/*
935 	 * Check the minimum TTL for socket.
936 	 */
937 	if (inp->inp_ip_minttl != 0) {
938 #ifdef INET6
939 		if (isipv6) {
940 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
941 				goto dropunlock;
942 		} else
943 #endif
944 		if (inp->inp_ip_minttl > ip->ip_ttl)
945 			goto dropunlock;
946 	}
947 
948 	/*
949 	 * A previous connection in TIMEWAIT state is supposed to catch stray
950 	 * or duplicate segments arriving late.  If this segment was a
951 	 * legitimate new connection attempt, the old INPCB gets removed and
952 	 * we can try again to find a listening socket.
953 	 *
954 	 * At this point, due to earlier optimism, we may hold only an inpcb
955 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
956 	 * acquire it, or if that fails, acquire a reference on the inpcb,
957 	 * drop all locks, acquire a global write lock, and then re-acquire
958 	 * the inpcb lock.  We may at that point discover that another thread
959 	 * has tried to free the inpcb, in which case we need to loop back
960 	 * and try to find a new inpcb to deliver to.
961 	 *
962 	 * XXXRW: It may be time to rethink timewait locking.
963 	 */
964 	if (inp->inp_flags & INP_TIMEWAIT) {
965 		if (ti_locked == TI_UNLOCKED) {
966 			INP_INFO_RLOCK_ET(&V_tcbinfo, et);
967 			ti_locked = TI_RLOCKED;
968 		}
969 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
970 
971 		if (thflags & TH_SYN)
972 			tcp_dooptions(&to, optp, optlen, TO_SYN);
973 		/*
974 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
975 		 */
976 		if (tcp_twcheck(inp, &to, th, m, tlen))
977 			goto findpcb;
978 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
979 		return (IPPROTO_DONE);
980 	}
981 	/*
982 	 * The TCPCB may no longer exist if the connection is winding
983 	 * down or it is in the CLOSED state.  Either way we drop the
984 	 * segment and send an appropriate response.
985 	 */
986 	tp = intotcpcb(inp);
987 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
988 		rstreason = BANDLIM_RST_CLOSEDPORT;
989 		goto dropwithreset;
990 	}
991 
992 #ifdef TCP_OFFLOAD
993 	if (tp->t_flags & TF_TOE) {
994 		tcp_offload_input(tp, m);
995 		m = NULL;	/* consumed by the TOE driver */
996 		goto dropunlock;
997 	}
998 #endif
999 
1000 	/*
1001 	 * We've identified a valid inpcb, but it could be that we need an
1002 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1003 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1004 	 * relock, we have to jump back to 'relocked' as the connection might
1005 	 * now be in TIMEWAIT.
1006 	 */
1007 #ifdef INVARIANTS
1008 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1009 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1010 #endif
1011 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1012 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1013 	       !IS_FASTOPEN(tp->t_flags)))) {
1014 		if (ti_locked == TI_UNLOCKED) {
1015 			INP_INFO_RLOCK_ET(&V_tcbinfo, et);
1016 			ti_locked = TI_RLOCKED;
1017 		}
1018 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1019 	}
1020 
1021 #ifdef MAC
1022 	INP_WLOCK_ASSERT(inp);
1023 	if (mac_inpcb_check_deliver(inp, m))
1024 		goto dropunlock;
1025 #endif
1026 	so = inp->inp_socket;
1027 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1028 #ifdef TCPDEBUG
1029 	if (so->so_options & SO_DEBUG) {
1030 		ostate = tp->t_state;
1031 #ifdef INET6
1032 		if (isipv6) {
1033 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1034 		} else
1035 #endif
1036 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1037 		tcp_savetcp = *th;
1038 	}
1039 #endif /* TCPDEBUG */
1040 	/*
1041 	 * When the socket is accepting connections (the INPCB is in LISTEN
1042 	 * state) we look into the SYN cache if this is a new connection
1043 	 * attempt or the completion of a previous one.
1044 	 */
1045 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1046 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1047 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1048 		struct in_conninfo inc;
1049 
1050 		bzero(&inc, sizeof(inc));
1051 #ifdef INET6
1052 		if (isipv6) {
1053 			inc.inc_flags |= INC_ISIPV6;
1054 			inc.inc6_faddr = ip6->ip6_src;
1055 			inc.inc6_laddr = ip6->ip6_dst;
1056 		} else
1057 #endif
1058 		{
1059 			inc.inc_faddr = ip->ip_src;
1060 			inc.inc_laddr = ip->ip_dst;
1061 		}
1062 		inc.inc_fport = th->th_sport;
1063 		inc.inc_lport = th->th_dport;
1064 		inc.inc_fibnum = so->so_fibnum;
1065 
1066 		/*
1067 		 * Check for an existing connection attempt in syncache if
1068 		 * the flag is only ACK.  A successful lookup creates a new
1069 		 * socket appended to the listen queue in SYN_RECEIVED state.
1070 		 */
1071 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1072 
1073 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1074 			/*
1075 			 * Parse the TCP options here because
1076 			 * syncookies need access to the reflected
1077 			 * timestamp.
1078 			 */
1079 			tcp_dooptions(&to, optp, optlen, 0);
1080 			/*
1081 			 * NB: syncache_expand() doesn't unlock
1082 			 * inp and tcpinfo locks.
1083 			 */
1084 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1085 			if (rstreason < 0) {
1086 				/*
1087 				 * A failing TCP MD5 signature comparison
1088 				 * must result in the segment being dropped
1089 				 * and must not produce any response back
1090 				 * to the sender.
1091 				 */
1092 				goto dropunlock;
1093 			} else if (rstreason == 0) {
1094 				/*
1095 				 * No syncache entry or ACK was not
1096 				 * for our SYN/ACK.  Send a RST.
1097 				 * NB: syncache did its own logging
1098 				 * of the failure cause.
1099 				 */
1100 				rstreason = BANDLIM_RST_OPENPORT;
1101 				goto dropwithreset;
1102 			}
1103 tfo_socket_result:
1104 			if (so == NULL) {
1105 				/*
1106 				 * We completed the 3-way handshake
1107 				 * but could not allocate a socket
1108 				 * either due to memory shortage,
1109 				 * listen queue length limits or
1110 				 * global socket limits.  Send RST
1111 				 * or wait and have the remote end
1112 				 * retransmit the ACK for another
1113 				 * try.
1114 				 */
1115 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1116 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1117 					    "Socket allocation failed due to "
1118 					    "limits or memory shortage, %s\n",
1119 					    s, __func__,
1120 					    V_tcp_sc_rst_sock_fail ?
1121 					    "sending RST" : "try again");
1122 				if (V_tcp_sc_rst_sock_fail) {
1123 					rstreason = BANDLIM_UNLIMITED;
1124 					goto dropwithreset;
1125 				} else
1126 					goto dropunlock;
1127 			}
1128 			/*
1129 			 * Socket is created in state SYN_RECEIVED.
1130 			 * Unlock the listen socket, lock the newly
1131 			 * created socket and update the tp variable.
1132 			 */
1133 			INP_WUNLOCK(inp);	/* listen socket */
1134 			inp = sotoinpcb(so);
1135 			/*
1136 			 * New connection inpcb is already locked by
1137 			 * syncache_expand().
1138 			 */
1139 			INP_WLOCK_ASSERT(inp);
1140 			tp = intotcpcb(inp);
1141 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1142 			    ("%s: ", __func__));
1143 			/*
1144 			 * Process the segment and the data it
1145 			 * contains.  tcp_do_segment() consumes
1146 			 * the mbuf chain and unlocks the inpcb.
1147 			 */
1148 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1149 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1150 			    iptos);
1151 			if (ti_locked == TI_RLOCKED)
1152 				INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1153 			return (IPPROTO_DONE);
1154 		}
1155 		/*
1156 		 * Segment flag validation for new connection attempts:
1157 		 *
1158 		 * Our (SYN|ACK) response was rejected.
1159 		 * Check with syncache and remove entry to prevent
1160 		 * retransmits.
1161 		 *
1162 		 * NB: syncache_chkrst does its own logging of failure
1163 		 * causes.
1164 		 */
1165 		if (thflags & TH_RST) {
1166 			syncache_chkrst(&inc, th);
1167 			goto dropunlock;
1168 		}
1169 		/*
1170 		 * We can't do anything without SYN.
1171 		 */
1172 		if ((thflags & TH_SYN) == 0) {
1173 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1174 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1175 				    "SYN is missing, segment ignored\n",
1176 				    s, __func__);
1177 			TCPSTAT_INC(tcps_badsyn);
1178 			goto dropunlock;
1179 		}
1180 		/*
1181 		 * (SYN|ACK) is bogus on a listen socket.
1182 		 */
1183 		if (thflags & TH_ACK) {
1184 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1185 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1186 				    "SYN|ACK invalid, segment rejected\n",
1187 				    s, __func__);
1188 			syncache_badack(&inc);	/* XXX: Not needed! */
1189 			TCPSTAT_INC(tcps_badsyn);
1190 			rstreason = BANDLIM_RST_OPENPORT;
1191 			goto dropwithreset;
1192 		}
1193 		/*
1194 		 * If the drop_synfin option is enabled, drop all
1195 		 * segments with both the SYN and FIN bits set.
1196 		 * This prevents e.g. nmap from identifying the
1197 		 * TCP/IP stack.
1198 		 * XXX: Poor reasoning.  nmap has other methods
1199 		 * and is constantly refining its stack detection
1200 		 * strategies.
1201 		 * XXX: This is a violation of the TCP specification
1202 		 * and was used by RFC1644.
1203 		 */
1204 		if ((thflags & TH_FIN) && V_drop_synfin) {
1205 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1206 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1207 				    "SYN|FIN segment ignored (based on "
1208 				    "sysctl setting)\n", s, __func__);
1209 			TCPSTAT_INC(tcps_badsyn);
1210 			goto dropunlock;
1211 		}
1212 		/*
1213 		 * Segment's flags are (SYN) or (SYN|FIN).
1214 		 *
1215 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1216 		 * as they do not affect the state of the TCP FSM.
1217 		 * The data pointed to by TH_URG and th_urp is ignored.
1218 		 */
1219 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1220 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1221 		KASSERT(thflags & (TH_SYN),
1222 		    ("%s: Listen socket: TH_SYN not set", __func__));
1223 #ifdef INET6
1224 		/*
1225 		 * If deprecated address is forbidden,
1226 		 * we do not accept SYN to deprecated interface
1227 		 * address to prevent any new inbound connection from
1228 		 * getting established.
1229 		 * When we do not accept SYN, we send a TCP RST,
1230 		 * with deprecated source address (instead of dropping
1231 		 * it).  We compromise it as it is much better for peer
1232 		 * to send a RST, and RST will be the final packet
1233 		 * for the exchange.
1234 		 *
1235 		 * If we do not forbid deprecated addresses, we accept
1236 		 * the SYN packet.  RFC2462 does not suggest dropping
1237 		 * SYN in this case.
1238 		 * If we decipher RFC2462 5.5.4, it says like this:
1239 		 * 1. use of deprecated addr with existing
1240 		 *    communication is okay - "SHOULD continue to be
1241 		 *    used"
1242 		 * 2. use of it with new communication:
1243 		 *   (2a) "SHOULD NOT be used if alternate address
1244 		 *        with sufficient scope is available"
1245 		 *   (2b) nothing mentioned otherwise.
1246 		 * Here we fall into (2b) case as we have no choice in
1247 		 * our source address selection - we must obey the peer.
1248 		 *
1249 		 * The wording in RFC2462 is confusing, and there are
1250 		 * multiple description text for deprecated address
1251 		 * handling - worse, they are not exactly the same.
1252 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1253 		 */
1254 		if (isipv6 && !V_ip6_use_deprecated) {
1255 			struct in6_ifaddr *ia6;
1256 
1257 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1258 			if (ia6 != NULL &&
1259 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1260 				ifa_free(&ia6->ia_ifa);
1261 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1262 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1263 					"Connection attempt to deprecated "
1264 					"IPv6 address rejected\n",
1265 					s, __func__);
1266 				rstreason = BANDLIM_RST_OPENPORT;
1267 				goto dropwithreset;
1268 			}
1269 			if (ia6)
1270 				ifa_free(&ia6->ia_ifa);
1271 		}
1272 #endif /* INET6 */
1273 		/*
1274 		 * Basic sanity checks on incoming SYN requests:
1275 		 *   Don't respond if the destination is a link layer
1276 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1277 		 *   If it is from this socket it must be forged.
1278 		 *   Don't respond if the source or destination is a
1279 		 *	global or subnet broad- or multicast address.
1280 		 *   Note that it is quite possible to receive unicast
1281 		 *	link-layer packets with a broadcast IP address. Use
1282 		 *	in_broadcast() to find them.
1283 		 */
1284 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1285 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1286 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1287 				"Connection attempt from broad- or multicast "
1288 				"link layer address ignored\n", s, __func__);
1289 			goto dropunlock;
1290 		}
1291 #ifdef INET6
1292 		if (isipv6) {
1293 			if (th->th_dport == th->th_sport &&
1294 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1295 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1296 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1297 					"Connection attempt to/from self "
1298 					"ignored\n", s, __func__);
1299 				goto dropunlock;
1300 			}
1301 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1302 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1303 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1304 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1305 					"Connection attempt from/to multicast "
1306 					"address ignored\n", s, __func__);
1307 				goto dropunlock;
1308 			}
1309 		}
1310 #endif
1311 #if defined(INET) && defined(INET6)
1312 		else
1313 #endif
1314 #ifdef INET
1315 		{
1316 			if (th->th_dport == th->th_sport &&
1317 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1318 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1319 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1320 					"Connection attempt from/to self "
1321 					"ignored\n", s, __func__);
1322 				goto dropunlock;
1323 			}
1324 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1325 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1326 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1327 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1328 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1329 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1330 					"Connection attempt from/to broad- "
1331 					"or multicast address ignored\n",
1332 					s, __func__);
1333 				goto dropunlock;
1334 			}
1335 		}
1336 #endif
1337 		/*
1338 		 * SYN appears to be valid.  Create compressed TCP state
1339 		 * for syncache.
1340 		 */
1341 #ifdef TCPDEBUG
1342 		if (so->so_options & SO_DEBUG)
1343 			tcp_trace(TA_INPUT, ostate, tp,
1344 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1345 #endif
1346 		TCP_PROBE3(debug__input, tp, th, m);
1347 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1348 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1349 			goto tfo_socket_result;
1350 
1351 		/*
1352 		 * Entry added to syncache and mbuf consumed.
1353 		 * Only the listen socket is unlocked by syncache_add().
1354 		 */
1355 		if (ti_locked == TI_RLOCKED) {
1356 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1357 			ti_locked = TI_UNLOCKED;
1358 		}
1359 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1360 		return (IPPROTO_DONE);
1361 	} else if (tp->t_state == TCPS_LISTEN) {
1362 		/*
1363 		 * When a listen socket is torn down the SO_ACCEPTCONN
1364 		 * flag is removed first while connections are drained
1365 		 * from the accept queue in a unlock/lock cycle of the
1366 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1367 		 * attempt go through unhandled.
1368 		 */
1369 		goto dropunlock;
1370 	}
1371 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1372 	if (tp->t_flags & TF_SIGNATURE) {
1373 		tcp_dooptions(&to, optp, optlen, thflags);
1374 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1375 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1376 			goto dropunlock;
1377 		}
1378 		if (!TCPMD5_ENABLED() ||
1379 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1380 			goto dropunlock;
1381 	}
1382 #endif
1383 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1384 
1385 	/*
1386 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1387 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1388 	 * the inpcb, and unlocks pcbinfo.
1389 	 */
1390 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1391 	if (ti_locked == TI_RLOCKED)
1392 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1393 	return (IPPROTO_DONE);
1394 
1395 dropwithreset:
1396 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1397 
1398 	if (ti_locked == TI_RLOCKED) {
1399 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1400 		ti_locked = TI_UNLOCKED;
1401 	}
1402 #ifdef INVARIANTS
1403 	else {
1404 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1405 		    "ti_locked: %d", __func__, ti_locked));
1406 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1407 	}
1408 #endif
1409 
1410 	if (inp != NULL) {
1411 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1412 		INP_WUNLOCK(inp);
1413 	} else
1414 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1415 	m = NULL;	/* mbuf chain got consumed. */
1416 	goto drop;
1417 
1418 dropunlock:
1419 	if (m != NULL)
1420 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1421 
1422 	if (ti_locked == TI_RLOCKED) {
1423 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1424 		ti_locked = TI_UNLOCKED;
1425 	}
1426 #ifdef INVARIANTS
1427 	else {
1428 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1429 		    "ti_locked: %d", __func__, ti_locked));
1430 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1431 	}
1432 #endif
1433 
1434 	if (inp != NULL)
1435 		INP_WUNLOCK(inp);
1436 
1437 drop:
1438 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1439 	if (s != NULL)
1440 		free(s, M_TCPLOG);
1441 	if (m != NULL)
1442 		m_freem(m);
1443 	return (IPPROTO_DONE);
1444 }
1445 
1446 /*
1447  * Automatic sizing of receive socket buffer.  Often the send
1448  * buffer size is not optimally adjusted to the actual network
1449  * conditions at hand (delay bandwidth product).  Setting the
1450  * buffer size too small limits throughput on links with high
1451  * bandwidth and high delay (eg. trans-continental/oceanic links).
1452  *
1453  * On the receive side the socket buffer memory is only rarely
1454  * used to any significant extent.  This allows us to be much
1455  * more aggressive in scaling the receive socket buffer.  For
1456  * the case that the buffer space is actually used to a large
1457  * extent and we run out of kernel memory we can simply drop
1458  * the new segments; TCP on the sender will just retransmit it
1459  * later.  Setting the buffer size too big may only consume too
1460  * much kernel memory if the application doesn't read() from
1461  * the socket or packet loss or reordering makes use of the
1462  * reassembly queue.
1463  *
1464  * The criteria to step up the receive buffer one notch are:
1465  *  1. Application has not set receive buffer size with
1466  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1467  *  2. the number of bytes received during the time it takes
1468  *     one timestamp to be reflected back to us (the RTT);
1469  *  3. received bytes per RTT is within seven eighth of the
1470  *     current socket buffer size;
1471  *  4. receive buffer size has not hit maximal automatic size;
1472  *
1473  * This algorithm does one step per RTT at most and only if
1474  * we receive a bulk stream w/o packet losses or reorderings.
1475  * Shrinking the buffer during idle times is not necessary as
1476  * it doesn't consume any memory when idle.
1477  *
1478  * TODO: Only step up if the application is actually serving
1479  * the buffer to better manage the socket buffer resources.
1480  */
1481 int
1482 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1483     struct tcpcb *tp, int tlen)
1484 {
1485 	int newsize = 0;
1486 
1487 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1488 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1489 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1490 	    (tp->t_srtt >> TCP_RTT_SHIFT)) {
1491 		if (tp->rfbuf_cnt > (so->so_rcv.sb_hiwat / 8 * 7) &&
1492 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1493 			newsize = min(so->so_rcv.sb_hiwat +
1494 			    V_tcp_autorcvbuf_inc, V_tcp_autorcvbuf_max);
1495 		}
1496 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1497 
1498 		/* Start over with next RTT. */
1499 		tp->rfbuf_ts = 0;
1500 		tp->rfbuf_cnt = 0;
1501 	} else {
1502 		tp->rfbuf_cnt += tlen;	/* add up */
1503 	}
1504 
1505 	return (newsize);
1506 }
1507 
1508 void
1509 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1510     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1511 {
1512 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1513 	int rstreason, todrop, win;
1514 	uint32_t tiwin;
1515 	uint16_t nsegs;
1516 	char *s;
1517 	struct in_conninfo *inc;
1518 	struct mbuf *mfree;
1519 	struct tcpopt to;
1520 	int tfo_syn;
1521 
1522 #ifdef TCPDEBUG
1523 	/*
1524 	 * The size of tcp_saveipgen must be the size of the max ip header,
1525 	 * now IPv6.
1526 	 */
1527 	u_char tcp_saveipgen[IP6_HDR_LEN];
1528 	struct tcphdr tcp_savetcp;
1529 	short ostate = 0;
1530 #endif
1531 	thflags = th->th_flags;
1532 	inc = &tp->t_inpcb->inp_inc;
1533 	tp->sackhint.last_sack_ack = 0;
1534 	sack_changed = 0;
1535 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1536 	/*
1537 	 * If this is either a state-changing packet or current state isn't
1538 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1539 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1540 	 * caller may have unnecessarily acquired a write lock due to a race.
1541 	 */
1542 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1543 	    tp->t_state != TCPS_ESTABLISHED) {
1544 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1545 	}
1546 	INP_WLOCK_ASSERT(tp->t_inpcb);
1547 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1548 	    __func__));
1549 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1550 	    __func__));
1551 
1552 #ifdef TCPPCAP
1553 	/* Save segment, if requested. */
1554 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1555 #endif
1556 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1557 	    tlen, NULL, true);
1558 
1559 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1560 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1561 			log(LOG_DEBUG, "%s; %s: "
1562 			    "SYN|FIN segment ignored (based on "
1563 			    "sysctl setting)\n", s, __func__);
1564 			free(s, M_TCPLOG);
1565 		}
1566 		goto drop;
1567 	}
1568 
1569 	/*
1570 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1571 	 * check SEQ.ACK first.
1572 	 */
1573 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1574 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1575 		rstreason = BANDLIM_UNLIMITED;
1576 		goto dropwithreset;
1577 	}
1578 
1579 	/*
1580 	 * Segment received on connection.
1581 	 * Reset idle time and keep-alive timer.
1582 	 * XXX: This should be done after segment
1583 	 * validation to ignore broken/spoofed segs.
1584 	 */
1585 	tp->t_rcvtime = ticks;
1586 
1587 	/*
1588 	 * Scale up the window into a 32-bit value.
1589 	 * For the SYN_SENT state the scale is zero.
1590 	 */
1591 	tiwin = th->th_win << tp->snd_scale;
1592 
1593 	/*
1594 	 * TCP ECN processing.
1595 	 */
1596 	if (tp->t_flags & TF_ECN_PERMIT) {
1597 		if (thflags & TH_CWR)
1598 			tp->t_flags &= ~TF_ECN_SND_ECE;
1599 		switch (iptos & IPTOS_ECN_MASK) {
1600 		case IPTOS_ECN_CE:
1601 			tp->t_flags |= TF_ECN_SND_ECE;
1602 			TCPSTAT_INC(tcps_ecn_ce);
1603 			break;
1604 		case IPTOS_ECN_ECT0:
1605 			TCPSTAT_INC(tcps_ecn_ect0);
1606 			break;
1607 		case IPTOS_ECN_ECT1:
1608 			TCPSTAT_INC(tcps_ecn_ect1);
1609 			break;
1610 		}
1611 
1612 		/* Process a packet differently from RFC3168. */
1613 		cc_ecnpkt_handler(tp, th, iptos);
1614 
1615 		/* Congestion experienced. */
1616 		if (thflags & TH_ECE) {
1617 			cc_cong_signal(tp, th, CC_ECN);
1618 		}
1619 	}
1620 
1621 	/*
1622 	 * Parse options on any incoming segment.
1623 	 */
1624 	tcp_dooptions(&to, (u_char *)(th + 1),
1625 	    (th->th_off << 2) - sizeof(struct tcphdr),
1626 	    (thflags & TH_SYN) ? TO_SYN : 0);
1627 
1628 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1629 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1630 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1631 		TCPSTAT_INC(tcps_sig_err_sigopt);
1632 		/* XXX: should drop? */
1633 	}
1634 #endif
1635 	/*
1636 	 * If echoed timestamp is later than the current time,
1637 	 * fall back to non RFC1323 RTT calculation.  Normalize
1638 	 * timestamp if syncookies were used when this connection
1639 	 * was established.
1640 	 */
1641 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1642 		to.to_tsecr -= tp->ts_offset;
1643 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1644 			to.to_tsecr = 0;
1645 		else if (tp->t_flags & TF_PREVVALID &&
1646 			 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1647 			cc_cong_signal(tp, th, CC_RTO_ERR);
1648 	}
1649 	/*
1650 	 * Process options only when we get SYN/ACK back. The SYN case
1651 	 * for incoming connections is handled in tcp_syncache.
1652 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1653 	 * or <SYN,ACK>) segment itself is never scaled.
1654 	 * XXX this is traditional behavior, may need to be cleaned up.
1655 	 */
1656 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1657 		if ((to.to_flags & TOF_SCALE) &&
1658 		    (tp->t_flags & TF_REQ_SCALE)) {
1659 			tp->t_flags |= TF_RCVD_SCALE;
1660 			tp->snd_scale = to.to_wscale;
1661 		}
1662 		/*
1663 		 * Initial send window.  It will be updated with
1664 		 * the next incoming segment to the scaled value.
1665 		 */
1666 		tp->snd_wnd = th->th_win;
1667 		if (to.to_flags & TOF_TS) {
1668 			tp->t_flags |= TF_RCVD_TSTMP;
1669 			tp->ts_recent = to.to_tsval;
1670 			tp->ts_recent_age = tcp_ts_getticks();
1671 		}
1672 		if (to.to_flags & TOF_MSS)
1673 			tcp_mss(tp, to.to_mss);
1674 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1675 		    (to.to_flags & TOF_SACKPERM) == 0)
1676 			tp->t_flags &= ~TF_SACK_PERMIT;
1677 		if (IS_FASTOPEN(tp->t_flags)) {
1678 			if (to.to_flags & TOF_FASTOPEN) {
1679 				uint16_t mss;
1680 
1681 				if (to.to_flags & TOF_MSS)
1682 					mss = to.to_mss;
1683 				else
1684 					if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1685 						mss = TCP6_MSS;
1686 					else
1687 						mss = TCP_MSS;
1688 				tcp_fastopen_update_cache(tp, mss,
1689 				    to.to_tfo_len, to.to_tfo_cookie);
1690 			} else
1691 				tcp_fastopen_disable_path(tp);
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * If timestamps were negotiated during SYN/ACK they should
1697 	 * appear on every segment during this session and vice versa.
1698 	 */
1699 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1700 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1701 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1702 			    "no action\n", s, __func__);
1703 			free(s, M_TCPLOG);
1704 		}
1705 	}
1706 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1707 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1708 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1709 			    "no action\n", s, __func__);
1710 			free(s, M_TCPLOG);
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * Header prediction: check for the two common cases
1716 	 * of a uni-directional data xfer.  If the packet has
1717 	 * no control flags, is in-sequence, the window didn't
1718 	 * change and we're not retransmitting, it's a
1719 	 * candidate.  If the length is zero and the ack moved
1720 	 * forward, we're the sender side of the xfer.  Just
1721 	 * free the data acked & wake any higher level process
1722 	 * that was blocked waiting for space.  If the length
1723 	 * is non-zero and the ack didn't move, we're the
1724 	 * receiver side.  If we're getting packets in-order
1725 	 * (the reassembly queue is empty), add the data to
1726 	 * the socket buffer and note that we need a delayed ack.
1727 	 * Make sure that the hidden state-flags are also off.
1728 	 * Since we check for TCPS_ESTABLISHED first, it can only
1729 	 * be TH_NEEDSYN.
1730 	 */
1731 	if (tp->t_state == TCPS_ESTABLISHED &&
1732 	    th->th_seq == tp->rcv_nxt &&
1733 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1734 	    tp->snd_nxt == tp->snd_max &&
1735 	    tiwin && tiwin == tp->snd_wnd &&
1736 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1737 	    LIST_EMPTY(&tp->t_segq) &&
1738 	    ((to.to_flags & TOF_TS) == 0 ||
1739 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1740 
1741 		/*
1742 		 * If last ACK falls within this segment's sequence numbers,
1743 		 * record the timestamp.
1744 		 * NOTE that the test is modified according to the latest
1745 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1746 		 */
1747 		if ((to.to_flags & TOF_TS) != 0 &&
1748 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1749 			tp->ts_recent_age = tcp_ts_getticks();
1750 			tp->ts_recent = to.to_tsval;
1751 		}
1752 
1753 		if (tlen == 0) {
1754 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1755 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1756 			    !IN_RECOVERY(tp->t_flags) &&
1757 			    (to.to_flags & TOF_SACK) == 0 &&
1758 			    TAILQ_EMPTY(&tp->snd_holes)) {
1759 				/*
1760 				 * This is a pure ack for outstanding data.
1761 				 */
1762 				TCPSTAT_INC(tcps_predack);
1763 
1764 				/*
1765 				 * "bad retransmit" recovery without timestamps.
1766 				 */
1767 				if ((to.to_flags & TOF_TS) == 0 &&
1768 				    tp->t_rxtshift == 1 &&
1769 				    tp->t_flags & TF_PREVVALID &&
1770 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1771 					cc_cong_signal(tp, th, CC_RTO_ERR);
1772 				}
1773 
1774 				/*
1775 				 * Recalculate the transmit timer / rtt.
1776 				 *
1777 				 * Some boxes send broken timestamp replies
1778 				 * during the SYN+ACK phase, ignore
1779 				 * timestamps of 0 or we could calculate a
1780 				 * huge RTT and blow up the retransmit timer.
1781 				 */
1782 				if ((to.to_flags & TOF_TS) != 0 &&
1783 				    to.to_tsecr) {
1784 					uint32_t t;
1785 
1786 					t = tcp_ts_getticks() - to.to_tsecr;
1787 					if (!tp->t_rttlow || tp->t_rttlow > t)
1788 						tp->t_rttlow = t;
1789 					tcp_xmit_timer(tp,
1790 					    TCP_TS_TO_TICKS(t) + 1);
1791 				} else if (tp->t_rtttime &&
1792 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1793 					if (!tp->t_rttlow ||
1794 					    tp->t_rttlow > ticks - tp->t_rtttime)
1795 						tp->t_rttlow = ticks - tp->t_rtttime;
1796 					tcp_xmit_timer(tp,
1797 							ticks - tp->t_rtttime);
1798 				}
1799 				acked = BYTES_THIS_ACK(tp, th);
1800 
1801 #ifdef TCP_HHOOK
1802 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1803 				hhook_run_tcp_est_in(tp, th, &to);
1804 #endif
1805 
1806 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1807 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1808 				sbdrop(&so->so_snd, acked);
1809 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1810 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1811 					tp->snd_recover = th->th_ack - 1;
1812 
1813 				/*
1814 				 * Let the congestion control algorithm update
1815 				 * congestion control related information. This
1816 				 * typically means increasing the congestion
1817 				 * window.
1818 				 */
1819 				cc_ack_received(tp, th, nsegs, CC_ACK);
1820 
1821 				tp->snd_una = th->th_ack;
1822 				/*
1823 				 * Pull snd_wl2 up to prevent seq wrap relative
1824 				 * to th_ack.
1825 				 */
1826 				tp->snd_wl2 = th->th_ack;
1827 				tp->t_dupacks = 0;
1828 				m_freem(m);
1829 
1830 				/*
1831 				 * If all outstanding data are acked, stop
1832 				 * retransmit timer, otherwise restart timer
1833 				 * using current (possibly backed-off) value.
1834 				 * If process is waiting for space,
1835 				 * wakeup/selwakeup/signal.  If data
1836 				 * are ready to send, let tcp_output
1837 				 * decide between more output or persist.
1838 				 */
1839 #ifdef TCPDEBUG
1840 				if (so->so_options & SO_DEBUG)
1841 					tcp_trace(TA_INPUT, ostate, tp,
1842 					    (void *)tcp_saveipgen,
1843 					    &tcp_savetcp, 0);
1844 #endif
1845 				TCP_PROBE3(debug__input, tp, th, m);
1846 				if (tp->snd_una == tp->snd_max)
1847 					tcp_timer_activate(tp, TT_REXMT, 0);
1848 				else if (!tcp_timer_active(tp, TT_PERSIST))
1849 					tcp_timer_activate(tp, TT_REXMT,
1850 						      tp->t_rxtcur);
1851 				sowwakeup(so);
1852 				if (sbavail(&so->so_snd))
1853 					(void) tp->t_fb->tfb_tcp_output(tp);
1854 				goto check_delack;
1855 			}
1856 		} else if (th->th_ack == tp->snd_una &&
1857 		    tlen <= sbspace(&so->so_rcv)) {
1858 			int newsize = 0;	/* automatic sockbuf scaling */
1859 
1860 			/*
1861 			 * This is a pure, in-sequence data packet with
1862 			 * nothing on the reassembly queue and we have enough
1863 			 * buffer space to take it.
1864 			 */
1865 			/* Clean receiver SACK report if present */
1866 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1867 				tcp_clean_sackreport(tp);
1868 			TCPSTAT_INC(tcps_preddat);
1869 			tp->rcv_nxt += tlen;
1870 			/*
1871 			 * Pull snd_wl1 up to prevent seq wrap relative to
1872 			 * th_seq.
1873 			 */
1874 			tp->snd_wl1 = th->th_seq;
1875 			/*
1876 			 * Pull rcv_up up to prevent seq wrap relative to
1877 			 * rcv_nxt.
1878 			 */
1879 			tp->rcv_up = tp->rcv_nxt;
1880 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1881 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1882 #ifdef TCPDEBUG
1883 			if (so->so_options & SO_DEBUG)
1884 				tcp_trace(TA_INPUT, ostate, tp,
1885 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1886 #endif
1887 			TCP_PROBE3(debug__input, tp, th, m);
1888 
1889 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1890 
1891 			/* Add data to socket buffer. */
1892 			SOCKBUF_LOCK(&so->so_rcv);
1893 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1894 				m_freem(m);
1895 			} else {
1896 				/*
1897 				 * Set new socket buffer size.
1898 				 * Give up when limit is reached.
1899 				 */
1900 				if (newsize)
1901 					if (!sbreserve_locked(&so->so_rcv,
1902 					    newsize, so, NULL))
1903 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1904 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1905 				sbappendstream_locked(&so->so_rcv, m, 0);
1906 			}
1907 			/* NB: sorwakeup_locked() does an implicit unlock. */
1908 			sorwakeup_locked(so);
1909 			if (DELAY_ACK(tp, tlen)) {
1910 				tp->t_flags |= TF_DELACK;
1911 			} else {
1912 				tp->t_flags |= TF_ACKNOW;
1913 				tp->t_fb->tfb_tcp_output(tp);
1914 			}
1915 			goto check_delack;
1916 		}
1917 	}
1918 
1919 	/*
1920 	 * Calculate amount of space in receive window,
1921 	 * and then do TCP input processing.
1922 	 * Receive window is amount of space in rcv queue,
1923 	 * but not less than advertised window.
1924 	 */
1925 	win = sbspace(&so->so_rcv);
1926 	if (win < 0)
1927 		win = 0;
1928 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1929 
1930 	switch (tp->t_state) {
1931 
1932 	/*
1933 	 * If the state is SYN_RECEIVED:
1934 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1935 	 */
1936 	case TCPS_SYN_RECEIVED:
1937 		if ((thflags & TH_ACK) &&
1938 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1939 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1940 				rstreason = BANDLIM_RST_OPENPORT;
1941 				goto dropwithreset;
1942 		}
1943 		if (IS_FASTOPEN(tp->t_flags)) {
1944 			/*
1945 			 * When a TFO connection is in SYN_RECEIVED, the
1946 			 * only valid packets are the initial SYN, a
1947 			 * retransmit/copy of the initial SYN (possibly with
1948 			 * a subset of the original data), a valid ACK, a
1949 			 * FIN, or a RST.
1950 			 */
1951 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1952 				rstreason = BANDLIM_RST_OPENPORT;
1953 				goto dropwithreset;
1954 			} else if (thflags & TH_SYN) {
1955 				/* non-initial SYN is ignored */
1956 				if ((tcp_timer_active(tp, TT_DELACK) ||
1957 				     tcp_timer_active(tp, TT_REXMT)))
1958 					goto drop;
1959 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1960 				goto drop;
1961 			}
1962 		}
1963 		break;
1964 
1965 	/*
1966 	 * If the state is SYN_SENT:
1967 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
1968 	 *	    been verified), then drop the connection.
1969 	 *	if seg contains a RST without an ACK, drop the seg.
1970 	 *	if seg does not contain SYN, then drop the seg.
1971 	 * Otherwise this is an acceptable SYN segment
1972 	 *	initialize tp->rcv_nxt and tp->irs
1973 	 *	if seg contains ack then advance tp->snd_una
1974 	 *	if seg contains an ECE and ECN support is enabled, the stream
1975 	 *	    is ECN capable.
1976 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1977 	 *	arrange for segment to be acked (eventually)
1978 	 *	continue processing rest of data/controls, beginning with URG
1979 	 */
1980 	case TCPS_SYN_SENT:
1981 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1982 			TCP_PROBE5(connect__refused, NULL, tp,
1983 			    m, tp, th);
1984 			tp = tcp_drop(tp, ECONNREFUSED);
1985 		}
1986 		if (thflags & TH_RST)
1987 			goto drop;
1988 		if (!(thflags & TH_SYN))
1989 			goto drop;
1990 
1991 		tp->irs = th->th_seq;
1992 		tcp_rcvseqinit(tp);
1993 		if (thflags & TH_ACK) {
1994 			int tfo_partial_ack = 0;
1995 
1996 			TCPSTAT_INC(tcps_connects);
1997 			soisconnected(so);
1998 #ifdef MAC
1999 			mac_socketpeer_set_from_mbuf(m, so);
2000 #endif
2001 			/* Do window scaling on this connection? */
2002 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2003 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2004 				tp->rcv_scale = tp->request_r_scale;
2005 			}
2006 			tp->rcv_adv += min(tp->rcv_wnd,
2007 			    TCP_MAXWIN << tp->rcv_scale);
2008 			tp->snd_una++;		/* SYN is acked */
2009 			/*
2010 			 * If not all the data that was sent in the TFO SYN
2011 			 * has been acked, resend the remainder right away.
2012 			 */
2013 			if (IS_FASTOPEN(tp->t_flags) &&
2014 			    (tp->snd_una != tp->snd_max)) {
2015 				tp->snd_nxt = th->th_ack;
2016 				tfo_partial_ack = 1;
2017 			}
2018 			/*
2019 			 * If there's data, delay ACK; if there's also a FIN
2020 			 * ACKNOW will be turned on later.
2021 			 */
2022 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2023 				tcp_timer_activate(tp, TT_DELACK,
2024 				    tcp_delacktime);
2025 			else
2026 				tp->t_flags |= TF_ACKNOW;
2027 
2028 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2029 				tp->t_flags |= TF_ECN_PERMIT;
2030 				TCPSTAT_INC(tcps_ecn_shs);
2031 			}
2032 
2033 			/*
2034 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2035 			 * Transitions:
2036 			 *	SYN_SENT  --> ESTABLISHED
2037 			 *	SYN_SENT* --> FIN_WAIT_1
2038 			 */
2039 			tp->t_starttime = ticks;
2040 			if (tp->t_flags & TF_NEEDFIN) {
2041 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2042 				tp->t_flags &= ~TF_NEEDFIN;
2043 				thflags &= ~TH_SYN;
2044 			} else {
2045 				tcp_state_change(tp, TCPS_ESTABLISHED);
2046 				TCP_PROBE5(connect__established, NULL, tp,
2047 				    m, tp, th);
2048 				cc_conn_init(tp);
2049 				tcp_timer_activate(tp, TT_KEEP,
2050 				    TP_KEEPIDLE(tp));
2051 			}
2052 		} else {
2053 			/*
2054 			 * Received initial SYN in SYN-SENT[*] state =>
2055 			 * simultaneous open.
2056 			 * If it succeeds, connection is * half-synchronized.
2057 			 * Otherwise, do 3-way handshake:
2058 			 *        SYN-SENT -> SYN-RECEIVED
2059 			 *        SYN-SENT* -> SYN-RECEIVED*
2060 			 */
2061 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2062 			tcp_timer_activate(tp, TT_REXMT, 0);
2063 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2064 		}
2065 
2066 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2067 		INP_WLOCK_ASSERT(tp->t_inpcb);
2068 
2069 		/*
2070 		 * Advance th->th_seq to correspond to first data byte.
2071 		 * If data, trim to stay within window,
2072 		 * dropping FIN if necessary.
2073 		 */
2074 		th->th_seq++;
2075 		if (tlen > tp->rcv_wnd) {
2076 			todrop = tlen - tp->rcv_wnd;
2077 			m_adj(m, -todrop);
2078 			tlen = tp->rcv_wnd;
2079 			thflags &= ~TH_FIN;
2080 			TCPSTAT_INC(tcps_rcvpackafterwin);
2081 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2082 		}
2083 		tp->snd_wl1 = th->th_seq - 1;
2084 		tp->rcv_up = th->th_seq;
2085 		/*
2086 		 * Client side of transaction: already sent SYN and data.
2087 		 * If the remote host used T/TCP to validate the SYN,
2088 		 * our data will be ACK'd; if so, enter normal data segment
2089 		 * processing in the middle of step 5, ack processing.
2090 		 * Otherwise, goto step 6.
2091 		 */
2092 		if (thflags & TH_ACK)
2093 			goto process_ACK;
2094 
2095 		goto step6;
2096 
2097 	/*
2098 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2099 	 *      do normal processing.
2100 	 *
2101 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2102 	 */
2103 	case TCPS_LAST_ACK:
2104 	case TCPS_CLOSING:
2105 		break;  /* continue normal processing */
2106 	}
2107 
2108 	/*
2109 	 * States other than LISTEN or SYN_SENT.
2110 	 * First check the RST flag and sequence number since reset segments
2111 	 * are exempt from the timestamp and connection count tests.  This
2112 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2113 	 * below which allowed reset segments in half the sequence space
2114 	 * to fall though and be processed (which gives forged reset
2115 	 * segments with a random sequence number a 50 percent chance of
2116 	 * killing a connection).
2117 	 * Then check timestamp, if present.
2118 	 * Then check the connection count, if present.
2119 	 * Then check that at least some bytes of segment are within
2120 	 * receive window.  If segment begins before rcv_nxt,
2121 	 * drop leading data (and SYN); if nothing left, just ack.
2122 	 */
2123 	if (thflags & TH_RST) {
2124 		/*
2125 		 * RFC5961 Section 3.2
2126 		 *
2127 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2128 		 * - If RST is in window, we send challenge ACK.
2129 		 *
2130 		 * Note: to take into account delayed ACKs, we should
2131 		 *   test against last_ack_sent instead of rcv_nxt.
2132 		 * Note 2: we handle special case of closed window, not
2133 		 *   covered by the RFC.
2134 		 */
2135 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2136 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2137 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2138 
2139 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2140 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2141 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2142 			    __func__, th, tp));
2143 
2144 			if (V_tcp_insecure_rst ||
2145 			    tp->last_ack_sent == th->th_seq) {
2146 				TCPSTAT_INC(tcps_drops);
2147 				/* Drop the connection. */
2148 				switch (tp->t_state) {
2149 				case TCPS_SYN_RECEIVED:
2150 					so->so_error = ECONNREFUSED;
2151 					goto close;
2152 				case TCPS_ESTABLISHED:
2153 				case TCPS_FIN_WAIT_1:
2154 				case TCPS_FIN_WAIT_2:
2155 				case TCPS_CLOSE_WAIT:
2156 				case TCPS_CLOSING:
2157 				case TCPS_LAST_ACK:
2158 					so->so_error = ECONNRESET;
2159 				close:
2160 					/* FALLTHROUGH */
2161 				default:
2162 					tp = tcp_close(tp);
2163 				}
2164 			} else {
2165 				TCPSTAT_INC(tcps_badrst);
2166 				/* Send challenge ACK. */
2167 				tcp_respond(tp, mtod(m, void *), th, m,
2168 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2169 				tp->last_ack_sent = tp->rcv_nxt;
2170 				m = NULL;
2171 			}
2172 		}
2173 		goto drop;
2174 	}
2175 
2176 	/*
2177 	 * RFC5961 Section 4.2
2178 	 * Send challenge ACK for any SYN in synchronized state.
2179 	 */
2180 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2181 	    tp->t_state != TCPS_SYN_RECEIVED) {
2182 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2183 
2184 		TCPSTAT_INC(tcps_badsyn);
2185 		if (V_tcp_insecure_syn &&
2186 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2187 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2188 			tp = tcp_drop(tp, ECONNRESET);
2189 			rstreason = BANDLIM_UNLIMITED;
2190 		} else {
2191 			/* Send challenge ACK. */
2192 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2193 			    tp->snd_nxt, TH_ACK);
2194 			tp->last_ack_sent = tp->rcv_nxt;
2195 			m = NULL;
2196 		}
2197 		goto drop;
2198 	}
2199 
2200 	/*
2201 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2202 	 * and it's less than ts_recent, drop it.
2203 	 */
2204 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2205 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2206 
2207 		/* Check to see if ts_recent is over 24 days old.  */
2208 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2209 			/*
2210 			 * Invalidate ts_recent.  If this segment updates
2211 			 * ts_recent, the age will be reset later and ts_recent
2212 			 * will get a valid value.  If it does not, setting
2213 			 * ts_recent to zero will at least satisfy the
2214 			 * requirement that zero be placed in the timestamp
2215 			 * echo reply when ts_recent isn't valid.  The
2216 			 * age isn't reset until we get a valid ts_recent
2217 			 * because we don't want out-of-order segments to be
2218 			 * dropped when ts_recent is old.
2219 			 */
2220 			tp->ts_recent = 0;
2221 		} else {
2222 			TCPSTAT_INC(tcps_rcvduppack);
2223 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2224 			TCPSTAT_INC(tcps_pawsdrop);
2225 			if (tlen)
2226 				goto dropafterack;
2227 			goto drop;
2228 		}
2229 	}
2230 
2231 	/*
2232 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2233 	 * this connection before trimming the data to fit the receive
2234 	 * window.  Check the sequence number versus IRS since we know
2235 	 * the sequence numbers haven't wrapped.  This is a partial fix
2236 	 * for the "LAND" DoS attack.
2237 	 */
2238 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2239 		rstreason = BANDLIM_RST_OPENPORT;
2240 		goto dropwithreset;
2241 	}
2242 
2243 	todrop = tp->rcv_nxt - th->th_seq;
2244 	if (todrop > 0) {
2245 		if (thflags & TH_SYN) {
2246 			thflags &= ~TH_SYN;
2247 			th->th_seq++;
2248 			if (th->th_urp > 1)
2249 				th->th_urp--;
2250 			else
2251 				thflags &= ~TH_URG;
2252 			todrop--;
2253 		}
2254 		/*
2255 		 * Following if statement from Stevens, vol. 2, p. 960.
2256 		 */
2257 		if (todrop > tlen
2258 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2259 			/*
2260 			 * Any valid FIN must be to the left of the window.
2261 			 * At this point the FIN must be a duplicate or out
2262 			 * of sequence; drop it.
2263 			 */
2264 			thflags &= ~TH_FIN;
2265 
2266 			/*
2267 			 * Send an ACK to resynchronize and drop any data.
2268 			 * But keep on processing for RST or ACK.
2269 			 */
2270 			tp->t_flags |= TF_ACKNOW;
2271 			todrop = tlen;
2272 			TCPSTAT_INC(tcps_rcvduppack);
2273 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2274 		} else {
2275 			TCPSTAT_INC(tcps_rcvpartduppack);
2276 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2277 		}
2278 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2279 		th->th_seq += todrop;
2280 		tlen -= todrop;
2281 		if (th->th_urp > todrop)
2282 			th->th_urp -= todrop;
2283 		else {
2284 			thflags &= ~TH_URG;
2285 			th->th_urp = 0;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * If new data are received on a connection after the
2291 	 * user processes are gone, then RST the other end.
2292 	 */
2293 	if ((so->so_state & SS_NOFDREF) &&
2294 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2295 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2296 
2297 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2298 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2299 			    "after socket was closed, "
2300 			    "sending RST and removing tcpcb\n",
2301 			    s, __func__, tcpstates[tp->t_state], tlen);
2302 			free(s, M_TCPLOG);
2303 		}
2304 		tp = tcp_close(tp);
2305 		TCPSTAT_INC(tcps_rcvafterclose);
2306 		rstreason = BANDLIM_UNLIMITED;
2307 		goto dropwithreset;
2308 	}
2309 
2310 	/*
2311 	 * If segment ends after window, drop trailing data
2312 	 * (and PUSH and FIN); if nothing left, just ACK.
2313 	 */
2314 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2315 	if (todrop > 0) {
2316 		TCPSTAT_INC(tcps_rcvpackafterwin);
2317 		if (todrop >= tlen) {
2318 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2319 			/*
2320 			 * If window is closed can only take segments at
2321 			 * window edge, and have to drop data and PUSH from
2322 			 * incoming segments.  Continue processing, but
2323 			 * remember to ack.  Otherwise, drop segment
2324 			 * and ack.
2325 			 */
2326 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2327 				tp->t_flags |= TF_ACKNOW;
2328 				TCPSTAT_INC(tcps_rcvwinprobe);
2329 			} else
2330 				goto dropafterack;
2331 		} else
2332 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2333 		m_adj(m, -todrop);
2334 		tlen -= todrop;
2335 		thflags &= ~(TH_PUSH|TH_FIN);
2336 	}
2337 
2338 	/*
2339 	 * If last ACK falls within this segment's sequence numbers,
2340 	 * record its timestamp.
2341 	 * NOTE:
2342 	 * 1) That the test incorporates suggestions from the latest
2343 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2344 	 * 2) That updating only on newer timestamps interferes with
2345 	 *    our earlier PAWS tests, so this check should be solely
2346 	 *    predicated on the sequence space of this segment.
2347 	 * 3) That we modify the segment boundary check to be
2348 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2349 	 *    instead of RFC1323's
2350 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2351 	 *    This modified check allows us to overcome RFC1323's
2352 	 *    limitations as described in Stevens TCP/IP Illustrated
2353 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2354 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2355 	 */
2356 	if ((to.to_flags & TOF_TS) != 0 &&
2357 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2358 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2359 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2360 		tp->ts_recent_age = tcp_ts_getticks();
2361 		tp->ts_recent = to.to_tsval;
2362 	}
2363 
2364 	/*
2365 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2366 	 * flag is on (half-synchronized state), then queue data for
2367 	 * later processing; else drop segment and return.
2368 	 */
2369 	if ((thflags & TH_ACK) == 0) {
2370 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2371 		    (tp->t_flags & TF_NEEDSYN)) {
2372 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2373 			    IS_FASTOPEN(tp->t_flags)) {
2374 				tp->snd_wnd = tiwin;
2375 				cc_conn_init(tp);
2376 			}
2377 			goto step6;
2378 		} else if (tp->t_flags & TF_ACKNOW)
2379 			goto dropafterack;
2380 		else
2381 			goto drop;
2382 	}
2383 
2384 	/*
2385 	 * Ack processing.
2386 	 */
2387 	switch (tp->t_state) {
2388 
2389 	/*
2390 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2391 	 * ESTABLISHED state and continue processing.
2392 	 * The ACK was checked above.
2393 	 */
2394 	case TCPS_SYN_RECEIVED:
2395 
2396 		TCPSTAT_INC(tcps_connects);
2397 		soisconnected(so);
2398 		/* Do window scaling? */
2399 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2400 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2401 			tp->rcv_scale = tp->request_r_scale;
2402 			tp->snd_wnd = tiwin;
2403 		}
2404 		/*
2405 		 * Make transitions:
2406 		 *      SYN-RECEIVED  -> ESTABLISHED
2407 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2408 		 */
2409 		tp->t_starttime = ticks;
2410 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2411 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2412 			tp->t_tfo_pending = NULL;
2413 
2414 			/*
2415 			 * Account for the ACK of our SYN prior to
2416 			 * regular ACK processing below.
2417 			 */
2418 			tp->snd_una++;
2419 		}
2420 		if (tp->t_flags & TF_NEEDFIN) {
2421 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2422 			tp->t_flags &= ~TF_NEEDFIN;
2423 		} else {
2424 			tcp_state_change(tp, TCPS_ESTABLISHED);
2425 			TCP_PROBE5(accept__established, NULL, tp,
2426 			    m, tp, th);
2427 			/*
2428 			 * TFO connections call cc_conn_init() during SYN
2429 			 * processing.  Calling it again here for such
2430 			 * connections is not harmless as it would undo the
2431 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2432 			 * is retransmitted.
2433 			 */
2434 			if (!IS_FASTOPEN(tp->t_flags))
2435 				cc_conn_init(tp);
2436 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2437 		}
2438 		/*
2439 		 * If segment contains data or ACK, will call tcp_reass()
2440 		 * later; if not, do so now to pass queued data to user.
2441 		 */
2442 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2443 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2444 			    (struct mbuf *)0);
2445 		tp->snd_wl1 = th->th_seq - 1;
2446 		/* FALLTHROUGH */
2447 
2448 	/*
2449 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2450 	 * ACKs.  If the ack is in the range
2451 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2452 	 * then advance tp->snd_una to th->th_ack and drop
2453 	 * data from the retransmission queue.  If this ACK reflects
2454 	 * more up to date window information we update our window information.
2455 	 */
2456 	case TCPS_ESTABLISHED:
2457 	case TCPS_FIN_WAIT_1:
2458 	case TCPS_FIN_WAIT_2:
2459 	case TCPS_CLOSE_WAIT:
2460 	case TCPS_CLOSING:
2461 	case TCPS_LAST_ACK:
2462 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2463 			TCPSTAT_INC(tcps_rcvacktoomuch);
2464 			goto dropafterack;
2465 		}
2466 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2467 		    ((to.to_flags & TOF_SACK) ||
2468 		     !TAILQ_EMPTY(&tp->snd_holes)))
2469 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2470 		else
2471 			/*
2472 			 * Reset the value so that previous (valid) value
2473 			 * from the last ack with SACK doesn't get used.
2474 			 */
2475 			tp->sackhint.sacked_bytes = 0;
2476 
2477 #ifdef TCP_HHOOK
2478 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2479 		hhook_run_tcp_est_in(tp, th, &to);
2480 #endif
2481 
2482 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2483 			u_int maxseg;
2484 
2485 			maxseg = tcp_maxseg(tp);
2486 			if (tlen == 0 &&
2487 			    (tiwin == tp->snd_wnd ||
2488 			    (tp->t_flags & TF_SACK_PERMIT))) {
2489 				/*
2490 				 * If this is the first time we've seen a
2491 				 * FIN from the remote, this is not a
2492 				 * duplicate and it needs to be processed
2493 				 * normally.  This happens during a
2494 				 * simultaneous close.
2495 				 */
2496 				if ((thflags & TH_FIN) &&
2497 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2498 					tp->t_dupacks = 0;
2499 					break;
2500 				}
2501 				TCPSTAT_INC(tcps_rcvdupack);
2502 				/*
2503 				 * If we have outstanding data (other than
2504 				 * a window probe), this is a completely
2505 				 * duplicate ack (ie, window info didn't
2506 				 * change and FIN isn't set),
2507 				 * the ack is the biggest we've
2508 				 * seen and we've seen exactly our rexmt
2509 				 * threshold of them, assume a packet
2510 				 * has been dropped and retransmit it.
2511 				 * Kludge snd_nxt & the congestion
2512 				 * window so we send only this one
2513 				 * packet.
2514 				 *
2515 				 * We know we're losing at the current
2516 				 * window size so do congestion avoidance
2517 				 * (set ssthresh to half the current window
2518 				 * and pull our congestion window back to
2519 				 * the new ssthresh).
2520 				 *
2521 				 * Dup acks mean that packets have left the
2522 				 * network (they're now cached at the receiver)
2523 				 * so bump cwnd by the amount in the receiver
2524 				 * to keep a constant cwnd packets in the
2525 				 * network.
2526 				 *
2527 				 * When using TCP ECN, notify the peer that
2528 				 * we reduced the cwnd.
2529 				 */
2530 				/*
2531 				 * Following 2 kinds of acks should not affect
2532 				 * dupack counting:
2533 				 * 1) Old acks
2534 				 * 2) Acks with SACK but without any new SACK
2535 				 * information in them. These could result from
2536 				 * any anomaly in the network like a switch
2537 				 * duplicating packets or a possible DoS attack.
2538 				 */
2539 				if (th->th_ack != tp->snd_una ||
2540 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2541 				    !sack_changed))
2542 					break;
2543 				else if (!tcp_timer_active(tp, TT_REXMT))
2544 					tp->t_dupacks = 0;
2545 				else if (++tp->t_dupacks > tcprexmtthresh ||
2546 				     IN_FASTRECOVERY(tp->t_flags)) {
2547 					cc_ack_received(tp, th, nsegs,
2548 					    CC_DUPACK);
2549 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2550 					    IN_FASTRECOVERY(tp->t_flags)) {
2551 						int awnd;
2552 
2553 						/*
2554 						 * Compute the amount of data in flight first.
2555 						 * We can inject new data into the pipe iff
2556 						 * we have less than 1/2 the original window's
2557 						 * worth of data in flight.
2558 						 */
2559 						if (V_tcp_do_rfc6675_pipe)
2560 							awnd = tcp_compute_pipe(tp);
2561 						else
2562 							awnd = (tp->snd_nxt - tp->snd_fack) +
2563 								tp->sackhint.sack_bytes_rexmit;
2564 
2565 						if (awnd < tp->snd_ssthresh) {
2566 							tp->snd_cwnd += maxseg;
2567 							if (tp->snd_cwnd > tp->snd_ssthresh)
2568 								tp->snd_cwnd = tp->snd_ssthresh;
2569 						}
2570 					} else
2571 						tp->snd_cwnd += maxseg;
2572 					(void) tp->t_fb->tfb_tcp_output(tp);
2573 					goto drop;
2574 				} else if (tp->t_dupacks == tcprexmtthresh) {
2575 					tcp_seq onxt = tp->snd_nxt;
2576 
2577 					/*
2578 					 * If we're doing sack, check to
2579 					 * see if we're already in sack
2580 					 * recovery. If we're not doing sack,
2581 					 * check to see if we're in newreno
2582 					 * recovery.
2583 					 */
2584 					if (tp->t_flags & TF_SACK_PERMIT) {
2585 						if (IN_FASTRECOVERY(tp->t_flags)) {
2586 							tp->t_dupacks = 0;
2587 							break;
2588 						}
2589 					} else {
2590 						if (SEQ_LEQ(th->th_ack,
2591 						    tp->snd_recover)) {
2592 							tp->t_dupacks = 0;
2593 							break;
2594 						}
2595 					}
2596 					/* Congestion signal before ack. */
2597 					cc_cong_signal(tp, th, CC_NDUPACK);
2598 					cc_ack_received(tp, th, nsegs,
2599 					    CC_DUPACK);
2600 					tcp_timer_activate(tp, TT_REXMT, 0);
2601 					tp->t_rtttime = 0;
2602 					if (tp->t_flags & TF_SACK_PERMIT) {
2603 						TCPSTAT_INC(
2604 						    tcps_sack_recovery_episode);
2605 						tp->sack_newdata = tp->snd_nxt;
2606 						tp->snd_cwnd = maxseg;
2607 						(void) tp->t_fb->tfb_tcp_output(tp);
2608 						goto drop;
2609 					}
2610 					tp->snd_nxt = th->th_ack;
2611 					tp->snd_cwnd = maxseg;
2612 					(void) tp->t_fb->tfb_tcp_output(tp);
2613 					KASSERT(tp->snd_limited <= 2,
2614 					    ("%s: tp->snd_limited too big",
2615 					    __func__));
2616 					tp->snd_cwnd = tp->snd_ssthresh +
2617 					     maxseg *
2618 					     (tp->t_dupacks - tp->snd_limited);
2619 					if (SEQ_GT(onxt, tp->snd_nxt))
2620 						tp->snd_nxt = onxt;
2621 					goto drop;
2622 				} else if (V_tcp_do_rfc3042) {
2623 					/*
2624 					 * Process first and second duplicate
2625 					 * ACKs. Each indicates a segment
2626 					 * leaving the network, creating room
2627 					 * for more. Make sure we can send a
2628 					 * packet on reception of each duplicate
2629 					 * ACK by increasing snd_cwnd by one
2630 					 * segment. Restore the original
2631 					 * snd_cwnd after packet transmission.
2632 					 */
2633 					cc_ack_received(tp, th, nsegs,
2634 					    CC_DUPACK);
2635 					uint32_t oldcwnd = tp->snd_cwnd;
2636 					tcp_seq oldsndmax = tp->snd_max;
2637 					u_int sent;
2638 					int avail;
2639 
2640 					KASSERT(tp->t_dupacks == 1 ||
2641 					    tp->t_dupacks == 2,
2642 					    ("%s: dupacks not 1 or 2",
2643 					    __func__));
2644 					if (tp->t_dupacks == 1)
2645 						tp->snd_limited = 0;
2646 					tp->snd_cwnd =
2647 					    (tp->snd_nxt - tp->snd_una) +
2648 					    (tp->t_dupacks - tp->snd_limited) *
2649 					    maxseg;
2650 					/*
2651 					 * Only call tcp_output when there
2652 					 * is new data available to be sent.
2653 					 * Otherwise we would send pure ACKs.
2654 					 */
2655 					SOCKBUF_LOCK(&so->so_snd);
2656 					avail = sbavail(&so->so_snd) -
2657 					    (tp->snd_nxt - tp->snd_una);
2658 					SOCKBUF_UNLOCK(&so->so_snd);
2659 					if (avail > 0)
2660 						(void) tp->t_fb->tfb_tcp_output(tp);
2661 					sent = tp->snd_max - oldsndmax;
2662 					if (sent > maxseg) {
2663 						KASSERT((tp->t_dupacks == 2 &&
2664 						    tp->snd_limited == 0) ||
2665 						   (sent == maxseg + 1 &&
2666 						    tp->t_flags & TF_SENTFIN),
2667 						    ("%s: sent too much",
2668 						    __func__));
2669 						tp->snd_limited = 2;
2670 					} else if (sent > 0)
2671 						++tp->snd_limited;
2672 					tp->snd_cwnd = oldcwnd;
2673 					goto drop;
2674 				}
2675 			}
2676 			break;
2677 		} else {
2678 			/*
2679 			 * This ack is advancing the left edge, reset the
2680 			 * counter.
2681 			 */
2682 			tp->t_dupacks = 0;
2683 			/*
2684 			 * If this ack also has new SACK info, increment the
2685 			 * counter as per rfc6675.
2686 			 */
2687 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2688 				tp->t_dupacks++;
2689 		}
2690 
2691 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2692 		    ("%s: th_ack <= snd_una", __func__));
2693 
2694 		/*
2695 		 * If the congestion window was inflated to account
2696 		 * for the other side's cached packets, retract it.
2697 		 */
2698 		if (IN_FASTRECOVERY(tp->t_flags)) {
2699 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2700 				if (tp->t_flags & TF_SACK_PERMIT)
2701 					tcp_sack_partialack(tp, th);
2702 				else
2703 					tcp_newreno_partial_ack(tp, th);
2704 			} else
2705 				cc_post_recovery(tp, th);
2706 		}
2707 		/*
2708 		 * If we reach this point, ACK is not a duplicate,
2709 		 *     i.e., it ACKs something we sent.
2710 		 */
2711 		if (tp->t_flags & TF_NEEDSYN) {
2712 			/*
2713 			 * T/TCP: Connection was half-synchronized, and our
2714 			 * SYN has been ACK'd (so connection is now fully
2715 			 * synchronized).  Go to non-starred state,
2716 			 * increment snd_una for ACK of SYN, and check if
2717 			 * we can do window scaling.
2718 			 */
2719 			tp->t_flags &= ~TF_NEEDSYN;
2720 			tp->snd_una++;
2721 			/* Do window scaling? */
2722 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2723 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2724 				tp->rcv_scale = tp->request_r_scale;
2725 				/* Send window already scaled. */
2726 			}
2727 		}
2728 
2729 process_ACK:
2730 		INP_WLOCK_ASSERT(tp->t_inpcb);
2731 
2732 		acked = BYTES_THIS_ACK(tp, th);
2733 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2734 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2735 		    tp->snd_una, th->th_ack, tp, m));
2736 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2737 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2738 
2739 		/*
2740 		 * If we just performed our first retransmit, and the ACK
2741 		 * arrives within our recovery window, then it was a mistake
2742 		 * to do the retransmit in the first place.  Recover our
2743 		 * original cwnd and ssthresh, and proceed to transmit where
2744 		 * we left off.
2745 		 */
2746 		if (tp->t_rxtshift == 1 &&
2747 		    tp->t_flags & TF_PREVVALID &&
2748 		    tp->t_badrxtwin &&
2749 		    SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2750 			cc_cong_signal(tp, th, CC_RTO_ERR);
2751 
2752 		/*
2753 		 * If we have a timestamp reply, update smoothed
2754 		 * round trip time.  If no timestamp is present but
2755 		 * transmit timer is running and timed sequence
2756 		 * number was acked, update smoothed round trip time.
2757 		 * Since we now have an rtt measurement, cancel the
2758 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2759 		 * Recompute the initial retransmit timer.
2760 		 *
2761 		 * Some boxes send broken timestamp replies
2762 		 * during the SYN+ACK phase, ignore
2763 		 * timestamps of 0 or we could calculate a
2764 		 * huge RTT and blow up the retransmit timer.
2765 		 */
2766 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2767 			uint32_t t;
2768 
2769 			t = tcp_ts_getticks() - to.to_tsecr;
2770 			if (!tp->t_rttlow || tp->t_rttlow > t)
2771 				tp->t_rttlow = t;
2772 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2773 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2774 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2775 				tp->t_rttlow = ticks - tp->t_rtttime;
2776 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2777 		}
2778 
2779 		/*
2780 		 * If all outstanding data is acked, stop retransmit
2781 		 * timer and remember to restart (more output or persist).
2782 		 * If there is more data to be acked, restart retransmit
2783 		 * timer, using current (possibly backed-off) value.
2784 		 */
2785 		if (th->th_ack == tp->snd_max) {
2786 			tcp_timer_activate(tp, TT_REXMT, 0);
2787 			needoutput = 1;
2788 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2789 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2790 
2791 		/*
2792 		 * If no data (only SYN) was ACK'd,
2793 		 *    skip rest of ACK processing.
2794 		 */
2795 		if (acked == 0)
2796 			goto step6;
2797 
2798 		/*
2799 		 * Let the congestion control algorithm update congestion
2800 		 * control related information. This typically means increasing
2801 		 * the congestion window.
2802 		 */
2803 		cc_ack_received(tp, th, nsegs, CC_ACK);
2804 
2805 		SOCKBUF_LOCK(&so->so_snd);
2806 		if (acked > sbavail(&so->so_snd)) {
2807 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2808 				tp->snd_wnd -= sbavail(&so->so_snd);
2809 			else
2810 				tp->snd_wnd = 0;
2811 			mfree = sbcut_locked(&so->so_snd,
2812 			    (int)sbavail(&so->so_snd));
2813 			ourfinisacked = 1;
2814 		} else {
2815 			mfree = sbcut_locked(&so->so_snd, acked);
2816 			if (tp->snd_wnd >= (uint32_t) acked)
2817 				tp->snd_wnd -= acked;
2818 			else
2819 				tp->snd_wnd = 0;
2820 			ourfinisacked = 0;
2821 		}
2822 		/* NB: sowwakeup_locked() does an implicit unlock. */
2823 		sowwakeup_locked(so);
2824 		m_freem(mfree);
2825 		/* Detect una wraparound. */
2826 		if (!IN_RECOVERY(tp->t_flags) &&
2827 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2828 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2829 			tp->snd_recover = th->th_ack - 1;
2830 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2831 		if (IN_RECOVERY(tp->t_flags) &&
2832 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2833 			EXIT_RECOVERY(tp->t_flags);
2834 		}
2835 		tp->snd_una = th->th_ack;
2836 		if (tp->t_flags & TF_SACK_PERMIT) {
2837 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2838 				tp->snd_recover = tp->snd_una;
2839 		}
2840 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2841 			tp->snd_nxt = tp->snd_una;
2842 
2843 		switch (tp->t_state) {
2844 
2845 		/*
2846 		 * In FIN_WAIT_1 STATE in addition to the processing
2847 		 * for the ESTABLISHED state if our FIN is now acknowledged
2848 		 * then enter FIN_WAIT_2.
2849 		 */
2850 		case TCPS_FIN_WAIT_1:
2851 			if (ourfinisacked) {
2852 				/*
2853 				 * If we can't receive any more
2854 				 * data, then closing user can proceed.
2855 				 * Starting the timer is contrary to the
2856 				 * specification, but if we don't get a FIN
2857 				 * we'll hang forever.
2858 				 *
2859 				 * XXXjl:
2860 				 * we should release the tp also, and use a
2861 				 * compressed state.
2862 				 */
2863 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2864 					soisdisconnected(so);
2865 					tcp_timer_activate(tp, TT_2MSL,
2866 					    (tcp_fast_finwait2_recycle ?
2867 					    tcp_finwait2_timeout :
2868 					    TP_MAXIDLE(tp)));
2869 				}
2870 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2871 			}
2872 			break;
2873 
2874 		/*
2875 		 * In CLOSING STATE in addition to the processing for
2876 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2877 		 * then enter the TIME-WAIT state, otherwise ignore
2878 		 * the segment.
2879 		 */
2880 		case TCPS_CLOSING:
2881 			if (ourfinisacked) {
2882 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2883 				tcp_twstart(tp);
2884 				m_freem(m);
2885 				return;
2886 			}
2887 			break;
2888 
2889 		/*
2890 		 * In LAST_ACK, we may still be waiting for data to drain
2891 		 * and/or to be acked, as well as for the ack of our FIN.
2892 		 * If our FIN is now acknowledged, delete the TCB,
2893 		 * enter the closed state and return.
2894 		 */
2895 		case TCPS_LAST_ACK:
2896 			if (ourfinisacked) {
2897 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2898 				tp = tcp_close(tp);
2899 				goto drop;
2900 			}
2901 			break;
2902 		}
2903 	}
2904 
2905 step6:
2906 	INP_WLOCK_ASSERT(tp->t_inpcb);
2907 
2908 	/*
2909 	 * Update window information.
2910 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2911 	 */
2912 	if ((thflags & TH_ACK) &&
2913 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2914 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2915 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2916 		/* keep track of pure window updates */
2917 		if (tlen == 0 &&
2918 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2919 			TCPSTAT_INC(tcps_rcvwinupd);
2920 		tp->snd_wnd = tiwin;
2921 		tp->snd_wl1 = th->th_seq;
2922 		tp->snd_wl2 = th->th_ack;
2923 		if (tp->snd_wnd > tp->max_sndwnd)
2924 			tp->max_sndwnd = tp->snd_wnd;
2925 		needoutput = 1;
2926 	}
2927 
2928 	/*
2929 	 * Process segments with URG.
2930 	 */
2931 	if ((thflags & TH_URG) && th->th_urp &&
2932 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2933 		/*
2934 		 * This is a kludge, but if we receive and accept
2935 		 * random urgent pointers, we'll crash in
2936 		 * soreceive.  It's hard to imagine someone
2937 		 * actually wanting to send this much urgent data.
2938 		 */
2939 		SOCKBUF_LOCK(&so->so_rcv);
2940 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2941 			th->th_urp = 0;			/* XXX */
2942 			thflags &= ~TH_URG;		/* XXX */
2943 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2944 			goto dodata;			/* XXX */
2945 		}
2946 		/*
2947 		 * If this segment advances the known urgent pointer,
2948 		 * then mark the data stream.  This should not happen
2949 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2950 		 * a FIN has been received from the remote side.
2951 		 * In these states we ignore the URG.
2952 		 *
2953 		 * According to RFC961 (Assigned Protocols),
2954 		 * the urgent pointer points to the last octet
2955 		 * of urgent data.  We continue, however,
2956 		 * to consider it to indicate the first octet
2957 		 * of data past the urgent section as the original
2958 		 * spec states (in one of two places).
2959 		 */
2960 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2961 			tp->rcv_up = th->th_seq + th->th_urp;
2962 			so->so_oobmark = sbavail(&so->so_rcv) +
2963 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2964 			if (so->so_oobmark == 0)
2965 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2966 			sohasoutofband(so);
2967 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2968 		}
2969 		SOCKBUF_UNLOCK(&so->so_rcv);
2970 		/*
2971 		 * Remove out of band data so doesn't get presented to user.
2972 		 * This can happen independent of advancing the URG pointer,
2973 		 * but if two URG's are pending at once, some out-of-band
2974 		 * data may creep in... ick.
2975 		 */
2976 		if (th->th_urp <= (uint32_t)tlen &&
2977 		    !(so->so_options & SO_OOBINLINE)) {
2978 			/* hdr drop is delayed */
2979 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2980 		}
2981 	} else {
2982 		/*
2983 		 * If no out of band data is expected,
2984 		 * pull receive urgent pointer along
2985 		 * with the receive window.
2986 		 */
2987 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2988 			tp->rcv_up = tp->rcv_nxt;
2989 	}
2990 dodata:							/* XXX */
2991 	INP_WLOCK_ASSERT(tp->t_inpcb);
2992 
2993 	/*
2994 	 * Process the segment text, merging it into the TCP sequencing queue,
2995 	 * and arranging for acknowledgment of receipt if necessary.
2996 	 * This process logically involves adjusting tp->rcv_wnd as data
2997 	 * is presented to the user (this happens in tcp_usrreq.c,
2998 	 * case PRU_RCVD).  If a FIN has already been received on this
2999 	 * connection then we just ignore the text.
3000 	 */
3001 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3002 		   IS_FASTOPEN(tp->t_flags));
3003 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
3004 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3005 		tcp_seq save_start = th->th_seq;
3006 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3007 		/*
3008 		 * Insert segment which includes th into TCP reassembly queue
3009 		 * with control block tp.  Set thflags to whether reassembly now
3010 		 * includes a segment with FIN.  This handles the common case
3011 		 * inline (segment is the next to be received on an established
3012 		 * connection, and the queue is empty), avoiding linkage into
3013 		 * and removal from the queue and repetition of various
3014 		 * conversions.
3015 		 * Set DELACK for segments received in order, but ack
3016 		 * immediately when segments are out of order (so
3017 		 * fast retransmit can work).
3018 		 */
3019 		if (th->th_seq == tp->rcv_nxt &&
3020 		    LIST_EMPTY(&tp->t_segq) &&
3021 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3022 		     tfo_syn)) {
3023 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3024 				tp->t_flags |= TF_DELACK;
3025 			else
3026 				tp->t_flags |= TF_ACKNOW;
3027 			tp->rcv_nxt += tlen;
3028 			thflags = th->th_flags & TH_FIN;
3029 			TCPSTAT_INC(tcps_rcvpack);
3030 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3031 			SOCKBUF_LOCK(&so->so_rcv);
3032 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3033 				m_freem(m);
3034 			else
3035 				sbappendstream_locked(&so->so_rcv, m, 0);
3036 			/* NB: sorwakeup_locked() does an implicit unlock. */
3037 			sorwakeup_locked(so);
3038 		} else {
3039 			/*
3040 			 * XXX: Due to the header drop above "th" is
3041 			 * theoretically invalid by now.  Fortunately
3042 			 * m_adj() doesn't actually frees any mbufs
3043 			 * when trimming from the head.
3044 			 */
3045 			thflags = tcp_reass(tp, th, &tlen, m);
3046 			tp->t_flags |= TF_ACKNOW;
3047 		}
3048 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3049 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3050 #if 0
3051 		/*
3052 		 * Note the amount of data that peer has sent into
3053 		 * our window, in order to estimate the sender's
3054 		 * buffer size.
3055 		 * XXX: Unused.
3056 		 */
3057 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3058 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3059 		else
3060 			len = so->so_rcv.sb_hiwat;
3061 #endif
3062 	} else {
3063 		m_freem(m);
3064 		thflags &= ~TH_FIN;
3065 	}
3066 
3067 	/*
3068 	 * If FIN is received ACK the FIN and let the user know
3069 	 * that the connection is closing.
3070 	 */
3071 	if (thflags & TH_FIN) {
3072 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3073 			socantrcvmore(so);
3074 			/*
3075 			 * If connection is half-synchronized
3076 			 * (ie NEEDSYN flag on) then delay ACK,
3077 			 * so it may be piggybacked when SYN is sent.
3078 			 * Otherwise, since we received a FIN then no
3079 			 * more input can be expected, send ACK now.
3080 			 */
3081 			if (tp->t_flags & TF_NEEDSYN)
3082 				tp->t_flags |= TF_DELACK;
3083 			else
3084 				tp->t_flags |= TF_ACKNOW;
3085 			tp->rcv_nxt++;
3086 		}
3087 		switch (tp->t_state) {
3088 
3089 		/*
3090 		 * In SYN_RECEIVED and ESTABLISHED STATES
3091 		 * enter the CLOSE_WAIT state.
3092 		 */
3093 		case TCPS_SYN_RECEIVED:
3094 			tp->t_starttime = ticks;
3095 			/* FALLTHROUGH */
3096 		case TCPS_ESTABLISHED:
3097 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3098 			break;
3099 
3100 		/*
3101 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3102 		 * enter the CLOSING state.
3103 		 */
3104 		case TCPS_FIN_WAIT_1:
3105 			tcp_state_change(tp, TCPS_CLOSING);
3106 			break;
3107 
3108 		/*
3109 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3110 		 * starting the time-wait timer, turning off the other
3111 		 * standard timers.
3112 		 */
3113 		case TCPS_FIN_WAIT_2:
3114 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3115 
3116 			tcp_twstart(tp);
3117 			return;
3118 		}
3119 	}
3120 #ifdef TCPDEBUG
3121 	if (so->so_options & SO_DEBUG)
3122 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3123 			  &tcp_savetcp, 0);
3124 #endif
3125 	TCP_PROBE3(debug__input, tp, th, m);
3126 
3127 	/*
3128 	 * Return any desired output.
3129 	 */
3130 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3131 		(void) tp->t_fb->tfb_tcp_output(tp);
3132 
3133 check_delack:
3134 	INP_WLOCK_ASSERT(tp->t_inpcb);
3135 
3136 	if (tp->t_flags & TF_DELACK) {
3137 		tp->t_flags &= ~TF_DELACK;
3138 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3139 	}
3140 	INP_WUNLOCK(tp->t_inpcb);
3141 	return;
3142 
3143 dropafterack:
3144 	/*
3145 	 * Generate an ACK dropping incoming segment if it occupies
3146 	 * sequence space, where the ACK reflects our state.
3147 	 *
3148 	 * We can now skip the test for the RST flag since all
3149 	 * paths to this code happen after packets containing
3150 	 * RST have been dropped.
3151 	 *
3152 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3153 	 * segment we received passes the SYN-RECEIVED ACK test.
3154 	 * If it fails send a RST.  This breaks the loop in the
3155 	 * "LAND" DoS attack, and also prevents an ACK storm
3156 	 * between two listening ports that have been sent forged
3157 	 * SYN segments, each with the source address of the other.
3158 	 */
3159 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3160 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3161 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3162 		rstreason = BANDLIM_RST_OPENPORT;
3163 		goto dropwithreset;
3164 	}
3165 #ifdef TCPDEBUG
3166 	if (so->so_options & SO_DEBUG)
3167 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3168 			  &tcp_savetcp, 0);
3169 #endif
3170 	TCP_PROBE3(debug__input, tp, th, m);
3171 	tp->t_flags |= TF_ACKNOW;
3172 	(void) tp->t_fb->tfb_tcp_output(tp);
3173 	INP_WUNLOCK(tp->t_inpcb);
3174 	m_freem(m);
3175 	return;
3176 
3177 dropwithreset:
3178 	if (tp != NULL) {
3179 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3180 		INP_WUNLOCK(tp->t_inpcb);
3181 	} else
3182 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3183 	return;
3184 
3185 drop:
3186 	/*
3187 	 * Drop space held by incoming segment and return.
3188 	 */
3189 #ifdef TCPDEBUG
3190 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3191 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3192 			  &tcp_savetcp, 0);
3193 #endif
3194 	TCP_PROBE3(debug__input, tp, th, m);
3195 	if (tp != NULL)
3196 		INP_WUNLOCK(tp->t_inpcb);
3197 	m_freem(m);
3198 }
3199 
3200 /*
3201  * Issue RST and make ACK acceptable to originator of segment.
3202  * The mbuf must still include the original packet header.
3203  * tp may be NULL.
3204  */
3205 void
3206 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3207     int tlen, int rstreason)
3208 {
3209 #ifdef INET
3210 	struct ip *ip;
3211 #endif
3212 #ifdef INET6
3213 	struct ip6_hdr *ip6;
3214 #endif
3215 
3216 	if (tp != NULL) {
3217 		INP_WLOCK_ASSERT(tp->t_inpcb);
3218 	}
3219 
3220 	/* Don't bother if destination was broadcast/multicast. */
3221 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3222 		goto drop;
3223 #ifdef INET6
3224 	if (mtod(m, struct ip *)->ip_v == 6) {
3225 		ip6 = mtod(m, struct ip6_hdr *);
3226 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3227 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3228 			goto drop;
3229 		/* IPv6 anycast check is done at tcp6_input() */
3230 	}
3231 #endif
3232 #if defined(INET) && defined(INET6)
3233 	else
3234 #endif
3235 #ifdef INET
3236 	{
3237 		ip = mtod(m, struct ip *);
3238 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3239 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3240 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3241 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3242 			goto drop;
3243 	}
3244 #endif
3245 
3246 	/* Perform bandwidth limiting. */
3247 	if (badport_bandlim(rstreason) < 0)
3248 		goto drop;
3249 
3250 	/* tcp_respond consumes the mbuf chain. */
3251 	if (th->th_flags & TH_ACK) {
3252 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3253 		    th->th_ack, TH_RST);
3254 	} else {
3255 		if (th->th_flags & TH_SYN)
3256 			tlen++;
3257 		if (th->th_flags & TH_FIN)
3258 			tlen++;
3259 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3260 		    (tcp_seq)0, TH_RST|TH_ACK);
3261 	}
3262 	return;
3263 drop:
3264 	m_freem(m);
3265 }
3266 
3267 /*
3268  * Parse TCP options and place in tcpopt.
3269  */
3270 void
3271 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3272 {
3273 	int opt, optlen;
3274 
3275 	to->to_flags = 0;
3276 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3277 		opt = cp[0];
3278 		if (opt == TCPOPT_EOL)
3279 			break;
3280 		if (opt == TCPOPT_NOP)
3281 			optlen = 1;
3282 		else {
3283 			if (cnt < 2)
3284 				break;
3285 			optlen = cp[1];
3286 			if (optlen < 2 || optlen > cnt)
3287 				break;
3288 		}
3289 		switch (opt) {
3290 		case TCPOPT_MAXSEG:
3291 			if (optlen != TCPOLEN_MAXSEG)
3292 				continue;
3293 			if (!(flags & TO_SYN))
3294 				continue;
3295 			to->to_flags |= TOF_MSS;
3296 			bcopy((char *)cp + 2,
3297 			    (char *)&to->to_mss, sizeof(to->to_mss));
3298 			to->to_mss = ntohs(to->to_mss);
3299 			break;
3300 		case TCPOPT_WINDOW:
3301 			if (optlen != TCPOLEN_WINDOW)
3302 				continue;
3303 			if (!(flags & TO_SYN))
3304 				continue;
3305 			to->to_flags |= TOF_SCALE;
3306 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3307 			break;
3308 		case TCPOPT_TIMESTAMP:
3309 			if (optlen != TCPOLEN_TIMESTAMP)
3310 				continue;
3311 			to->to_flags |= TOF_TS;
3312 			bcopy((char *)cp + 2,
3313 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3314 			to->to_tsval = ntohl(to->to_tsval);
3315 			bcopy((char *)cp + 6,
3316 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3317 			to->to_tsecr = ntohl(to->to_tsecr);
3318 			break;
3319 		case TCPOPT_SIGNATURE:
3320 			/*
3321 			 * In order to reply to a host which has set the
3322 			 * TCP_SIGNATURE option in its initial SYN, we have
3323 			 * to record the fact that the option was observed
3324 			 * here for the syncache code to perform the correct
3325 			 * response.
3326 			 */
3327 			if (optlen != TCPOLEN_SIGNATURE)
3328 				continue;
3329 			to->to_flags |= TOF_SIGNATURE;
3330 			to->to_signature = cp + 2;
3331 			break;
3332 		case TCPOPT_SACK_PERMITTED:
3333 			if (optlen != TCPOLEN_SACK_PERMITTED)
3334 				continue;
3335 			if (!(flags & TO_SYN))
3336 				continue;
3337 			if (!V_tcp_do_sack)
3338 				continue;
3339 			to->to_flags |= TOF_SACKPERM;
3340 			break;
3341 		case TCPOPT_SACK:
3342 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3343 				continue;
3344 			if (flags & TO_SYN)
3345 				continue;
3346 			to->to_flags |= TOF_SACK;
3347 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3348 			to->to_sacks = cp + 2;
3349 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3350 			break;
3351 		case TCPOPT_FAST_OPEN:
3352 			/*
3353 			 * Cookie length validation is performed by the
3354 			 * server side cookie checking code or the client
3355 			 * side cookie cache update code.
3356 			 */
3357 			if (!(flags & TO_SYN))
3358 				continue;
3359 			if (!V_tcp_fastopen_client_enable &&
3360 			    !V_tcp_fastopen_server_enable)
3361 				continue;
3362 			to->to_flags |= TOF_FASTOPEN;
3363 			to->to_tfo_len = optlen - 2;
3364 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3365 			break;
3366 		default:
3367 			continue;
3368 		}
3369 	}
3370 }
3371 
3372 /*
3373  * Pull out of band byte out of a segment so
3374  * it doesn't appear in the user's data queue.
3375  * It is still reflected in the segment length for
3376  * sequencing purposes.
3377  */
3378 void
3379 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3380     int off)
3381 {
3382 	int cnt = off + th->th_urp - 1;
3383 
3384 	while (cnt >= 0) {
3385 		if (m->m_len > cnt) {
3386 			char *cp = mtod(m, caddr_t) + cnt;
3387 			struct tcpcb *tp = sototcpcb(so);
3388 
3389 			INP_WLOCK_ASSERT(tp->t_inpcb);
3390 
3391 			tp->t_iobc = *cp;
3392 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3393 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3394 			m->m_len--;
3395 			if (m->m_flags & M_PKTHDR)
3396 				m->m_pkthdr.len--;
3397 			return;
3398 		}
3399 		cnt -= m->m_len;
3400 		m = m->m_next;
3401 		if (m == NULL)
3402 			break;
3403 	}
3404 	panic("tcp_pulloutofband");
3405 }
3406 
3407 /*
3408  * Collect new round-trip time estimate
3409  * and update averages and current timeout.
3410  */
3411 void
3412 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3413 {
3414 	int delta;
3415 
3416 	INP_WLOCK_ASSERT(tp->t_inpcb);
3417 
3418 	TCPSTAT_INC(tcps_rttupdated);
3419 	tp->t_rttupdated++;
3420 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3421 		/*
3422 		 * srtt is stored as fixed point with 5 bits after the
3423 		 * binary point (i.e., scaled by 8).  The following magic
3424 		 * is equivalent to the smoothing algorithm in rfc793 with
3425 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3426 		 * point).  Adjust rtt to origin 0.
3427 		 */
3428 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3429 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3430 
3431 		if ((tp->t_srtt += delta) <= 0)
3432 			tp->t_srtt = 1;
3433 
3434 		/*
3435 		 * We accumulate a smoothed rtt variance (actually, a
3436 		 * smoothed mean difference), then set the retransmit
3437 		 * timer to smoothed rtt + 4 times the smoothed variance.
3438 		 * rttvar is stored as fixed point with 4 bits after the
3439 		 * binary point (scaled by 16).  The following is
3440 		 * equivalent to rfc793 smoothing with an alpha of .75
3441 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3442 		 * rfc793's wired-in beta.
3443 		 */
3444 		if (delta < 0)
3445 			delta = -delta;
3446 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3447 		if ((tp->t_rttvar += delta) <= 0)
3448 			tp->t_rttvar = 1;
3449 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3450 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3451 	} else {
3452 		/*
3453 		 * No rtt measurement yet - use the unsmoothed rtt.
3454 		 * Set the variance to half the rtt (so our first
3455 		 * retransmit happens at 3*rtt).
3456 		 */
3457 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3458 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3459 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3460 	}
3461 	tp->t_rtttime = 0;
3462 	tp->t_rxtshift = 0;
3463 
3464 	/*
3465 	 * the retransmit should happen at rtt + 4 * rttvar.
3466 	 * Because of the way we do the smoothing, srtt and rttvar
3467 	 * will each average +1/2 tick of bias.  When we compute
3468 	 * the retransmit timer, we want 1/2 tick of rounding and
3469 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3470 	 * firing of the timer.  The bias will give us exactly the
3471 	 * 1.5 tick we need.  But, because the bias is
3472 	 * statistical, we have to test that we don't drop below
3473 	 * the minimum feasible timer (which is 2 ticks).
3474 	 */
3475 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3476 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3477 
3478 	/*
3479 	 * We received an ack for a packet that wasn't retransmitted;
3480 	 * it is probably safe to discard any error indications we've
3481 	 * received recently.  This isn't quite right, but close enough
3482 	 * for now (a route might have failed after we sent a segment,
3483 	 * and the return path might not be symmetrical).
3484 	 */
3485 	tp->t_softerror = 0;
3486 }
3487 
3488 /*
3489  * Determine a reasonable value for maxseg size.
3490  * If the route is known, check route for mtu.
3491  * If none, use an mss that can be handled on the outgoing interface
3492  * without forcing IP to fragment.  If no route is found, route has no mtu,
3493  * or the destination isn't local, use a default, hopefully conservative
3494  * size (usually 512 or the default IP max size, but no more than the mtu
3495  * of the interface), as we can't discover anything about intervening
3496  * gateways or networks.  We also initialize the congestion/slow start
3497  * window to be a single segment if the destination isn't local.
3498  * While looking at the routing entry, we also initialize other path-dependent
3499  * parameters from pre-set or cached values in the routing entry.
3500  *
3501  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3502  * IP options, e.g. IPSEC data, since length of this data may vary, and
3503  * thus it is calculated for every segment separately in tcp_output().
3504  *
3505  * NOTE that this routine is only called when we process an incoming
3506  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3507  * settings are handled in tcp_mssopt().
3508  */
3509 void
3510 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3511     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3512 {
3513 	int mss = 0;
3514 	uint32_t maxmtu = 0;
3515 	struct inpcb *inp = tp->t_inpcb;
3516 	struct hc_metrics_lite metrics;
3517 #ifdef INET6
3518 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3519 	size_t min_protoh = isipv6 ?
3520 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3521 			    sizeof (struct tcpiphdr);
3522 #else
3523 	const size_t min_protoh = sizeof(struct tcpiphdr);
3524 #endif
3525 
3526 	INP_WLOCK_ASSERT(tp->t_inpcb);
3527 
3528 	if (mtuoffer != -1) {
3529 		KASSERT(offer == -1, ("%s: conflict", __func__));
3530 		offer = mtuoffer - min_protoh;
3531 	}
3532 
3533 	/* Initialize. */
3534 #ifdef INET6
3535 	if (isipv6) {
3536 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3537 		tp->t_maxseg = V_tcp_v6mssdflt;
3538 	}
3539 #endif
3540 #if defined(INET) && defined(INET6)
3541 	else
3542 #endif
3543 #ifdef INET
3544 	{
3545 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3546 		tp->t_maxseg = V_tcp_mssdflt;
3547 	}
3548 #endif
3549 
3550 	/*
3551 	 * No route to sender, stay with default mss and return.
3552 	 */
3553 	if (maxmtu == 0) {
3554 		/*
3555 		 * In case we return early we need to initialize metrics
3556 		 * to a defined state as tcp_hc_get() would do for us
3557 		 * if there was no cache hit.
3558 		 */
3559 		if (metricptr != NULL)
3560 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3561 		return;
3562 	}
3563 
3564 	/* What have we got? */
3565 	switch (offer) {
3566 		case 0:
3567 			/*
3568 			 * Offer == 0 means that there was no MSS on the SYN
3569 			 * segment, in this case we use tcp_mssdflt as
3570 			 * already assigned to t_maxseg above.
3571 			 */
3572 			offer = tp->t_maxseg;
3573 			break;
3574 
3575 		case -1:
3576 			/*
3577 			 * Offer == -1 means that we didn't receive SYN yet.
3578 			 */
3579 			/* FALLTHROUGH */
3580 
3581 		default:
3582 			/*
3583 			 * Prevent DoS attack with too small MSS. Round up
3584 			 * to at least minmss.
3585 			 */
3586 			offer = max(offer, V_tcp_minmss);
3587 	}
3588 
3589 	/*
3590 	 * rmx information is now retrieved from tcp_hostcache.
3591 	 */
3592 	tcp_hc_get(&inp->inp_inc, &metrics);
3593 	if (metricptr != NULL)
3594 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3595 
3596 	/*
3597 	 * If there's a discovered mtu in tcp hostcache, use it.
3598 	 * Else, use the link mtu.
3599 	 */
3600 	if (metrics.rmx_mtu)
3601 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3602 	else {
3603 #ifdef INET6
3604 		if (isipv6) {
3605 			mss = maxmtu - min_protoh;
3606 			if (!V_path_mtu_discovery &&
3607 			    !in6_localaddr(&inp->in6p_faddr))
3608 				mss = min(mss, V_tcp_v6mssdflt);
3609 		}
3610 #endif
3611 #if defined(INET) && defined(INET6)
3612 		else
3613 #endif
3614 #ifdef INET
3615 		{
3616 			mss = maxmtu - min_protoh;
3617 			if (!V_path_mtu_discovery &&
3618 			    !in_localaddr(inp->inp_faddr))
3619 				mss = min(mss, V_tcp_mssdflt);
3620 		}
3621 #endif
3622 		/*
3623 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3624 		 * probably violates the TCP spec.
3625 		 * The problem is that, since we don't know the
3626 		 * other end's MSS, we are supposed to use a conservative
3627 		 * default.  But, if we do that, then MTU discovery will
3628 		 * never actually take place, because the conservative
3629 		 * default is much less than the MTUs typically seen
3630 		 * on the Internet today.  For the moment, we'll sweep
3631 		 * this under the carpet.
3632 		 *
3633 		 * The conservative default might not actually be a problem
3634 		 * if the only case this occurs is when sending an initial
3635 		 * SYN with options and data to a host we've never talked
3636 		 * to before.  Then, they will reply with an MSS value which
3637 		 * will get recorded and the new parameters should get
3638 		 * recomputed.  For Further Study.
3639 		 */
3640 	}
3641 	mss = min(mss, offer);
3642 
3643 	/*
3644 	 * Sanity check: make sure that maxseg will be large
3645 	 * enough to allow some data on segments even if the
3646 	 * all the option space is used (40bytes).  Otherwise
3647 	 * funny things may happen in tcp_output.
3648 	 *
3649 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3650 	 */
3651 	mss = max(mss, 64);
3652 
3653 	tp->t_maxseg = mss;
3654 }
3655 
3656 void
3657 tcp_mss(struct tcpcb *tp, int offer)
3658 {
3659 	int mss;
3660 	uint32_t bufsize;
3661 	struct inpcb *inp;
3662 	struct socket *so;
3663 	struct hc_metrics_lite metrics;
3664 	struct tcp_ifcap cap;
3665 
3666 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3667 
3668 	bzero(&cap, sizeof(cap));
3669 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3670 
3671 	mss = tp->t_maxseg;
3672 	inp = tp->t_inpcb;
3673 
3674 	/*
3675 	 * If there's a pipesize, change the socket buffer to that size,
3676 	 * don't change if sb_hiwat is different than default (then it
3677 	 * has been changed on purpose with setsockopt).
3678 	 * Make the socket buffers an integral number of mss units;
3679 	 * if the mss is larger than the socket buffer, decrease the mss.
3680 	 */
3681 	so = inp->inp_socket;
3682 	SOCKBUF_LOCK(&so->so_snd);
3683 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3684 		bufsize = metrics.rmx_sendpipe;
3685 	else
3686 		bufsize = so->so_snd.sb_hiwat;
3687 	if (bufsize < mss)
3688 		mss = bufsize;
3689 	else {
3690 		bufsize = roundup(bufsize, mss);
3691 		if (bufsize > sb_max)
3692 			bufsize = sb_max;
3693 		if (bufsize > so->so_snd.sb_hiwat)
3694 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3695 	}
3696 	SOCKBUF_UNLOCK(&so->so_snd);
3697 	/*
3698 	 * Sanity check: make sure that maxseg will be large
3699 	 * enough to allow some data on segments even if the
3700 	 * all the option space is used (40bytes).  Otherwise
3701 	 * funny things may happen in tcp_output.
3702 	 *
3703 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3704 	 */
3705 	tp->t_maxseg = max(mss, 64);
3706 
3707 	SOCKBUF_LOCK(&so->so_rcv);
3708 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3709 		bufsize = metrics.rmx_recvpipe;
3710 	else
3711 		bufsize = so->so_rcv.sb_hiwat;
3712 	if (bufsize > mss) {
3713 		bufsize = roundup(bufsize, mss);
3714 		if (bufsize > sb_max)
3715 			bufsize = sb_max;
3716 		if (bufsize > so->so_rcv.sb_hiwat)
3717 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3718 	}
3719 	SOCKBUF_UNLOCK(&so->so_rcv);
3720 
3721 	/* Check the interface for TSO capabilities. */
3722 	if (cap.ifcap & CSUM_TSO) {
3723 		tp->t_flags |= TF_TSO;
3724 		tp->t_tsomax = cap.tsomax;
3725 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3726 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3727 	}
3728 }
3729 
3730 /*
3731  * Determine the MSS option to send on an outgoing SYN.
3732  */
3733 int
3734 tcp_mssopt(struct in_conninfo *inc)
3735 {
3736 	int mss = 0;
3737 	uint32_t thcmtu = 0;
3738 	uint32_t maxmtu = 0;
3739 	size_t min_protoh;
3740 
3741 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3742 
3743 #ifdef INET6
3744 	if (inc->inc_flags & INC_ISIPV6) {
3745 		mss = V_tcp_v6mssdflt;
3746 		maxmtu = tcp_maxmtu6(inc, NULL);
3747 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3748 	}
3749 #endif
3750 #if defined(INET) && defined(INET6)
3751 	else
3752 #endif
3753 #ifdef INET
3754 	{
3755 		mss = V_tcp_mssdflt;
3756 		maxmtu = tcp_maxmtu(inc, NULL);
3757 		min_protoh = sizeof(struct tcpiphdr);
3758 	}
3759 #endif
3760 #if defined(INET6) || defined(INET)
3761 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3762 #endif
3763 
3764 	if (maxmtu && thcmtu)
3765 		mss = min(maxmtu, thcmtu) - min_protoh;
3766 	else if (maxmtu || thcmtu)
3767 		mss = max(maxmtu, thcmtu) - min_protoh;
3768 
3769 	return (mss);
3770 }
3771 
3772 
3773 /*
3774  * On a partial ack arrives, force the retransmission of the
3775  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3776  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3777  * be started again.
3778  */
3779 void
3780 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3781 {
3782 	tcp_seq onxt = tp->snd_nxt;
3783 	uint32_t ocwnd = tp->snd_cwnd;
3784 	u_int maxseg = tcp_maxseg(tp);
3785 
3786 	INP_WLOCK_ASSERT(tp->t_inpcb);
3787 
3788 	tcp_timer_activate(tp, TT_REXMT, 0);
3789 	tp->t_rtttime = 0;
3790 	tp->snd_nxt = th->th_ack;
3791 	/*
3792 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3793 	 * (tp->snd_una has not yet been updated when this function is called.)
3794 	 */
3795 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3796 	tp->t_flags |= TF_ACKNOW;
3797 	(void) tp->t_fb->tfb_tcp_output(tp);
3798 	tp->snd_cwnd = ocwnd;
3799 	if (SEQ_GT(onxt, tp->snd_nxt))
3800 		tp->snd_nxt = onxt;
3801 	/*
3802 	 * Partial window deflation.  Relies on fact that tp->snd_una
3803 	 * not updated yet.
3804 	 */
3805 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3806 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3807 	else
3808 		tp->snd_cwnd = 0;
3809 	tp->snd_cwnd += maxseg;
3810 }
3811 
3812 int
3813 tcp_compute_pipe(struct tcpcb *tp)
3814 {
3815 	return (tp->snd_max - tp->snd_una +
3816 		tp->sackhint.sack_bytes_rexmit -
3817 		tp->sackhint.sacked_bytes);
3818 }
3819